
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Contributions on Deep Transfer
Learning

Chetak Kandaswamy

MAP-tele Doctoral Program in Telecommunications

Supervisor: Jaime dos Santos Cardoso (PhD)

Co-supervisor: Luís Miguel Almeida da Silva (PhD)

January 20, 2016

c© Chetak Kandaswamy, 2016

Contributions on Deep Transfer Learning

Chetak Kandaswamy

MAP-tele Doctoral Program in Telecommunications

January 20, 2016

i

Abstract

Machine Learning (ML) is reshaping our world by building machines that can see, read, listen,
talk, and write (Marr, 2015). For example, imagine you want to eat your favorite food and ask
a mobile app what are the nearby restaurants that serve your favorite food. The app uses a ML
algorithm to analyze the information of your location and time to provide better service. Imagine
a startup that wants to use ML algorithm optimize their resources and requirements. Envision a
scenario where a breast cancer patient and a surgeon want to plan a surgery. Generally, it takes
a highly trained surgeon’s subjective evaluation of the breast cancer surgery to make treatment
decisions. Employing ML algorithms allows an objective evaluation of the surgery with a sense
of femininity (aesthetic metric by (Beadle et al., 1984)), using 3D imaging that helps the patient
and the doctor to visualize and collectively decide what they are seeing, and then make a informed
decision about the surgery (Oliveira, 2013).

The ability of ML algorithms to automatically understand the contents of images opened new
ways to tackle prominent computer vision challenges like view point variation, illumination, occlu-
sion, scale, deformation, background clutter, and intra-class variation. Especially, Deep learning
algorithms like Stacked Denoising Autoencoders, Convolutional Neural Networks, and Deep Be-
lief Nets have addressed these challenges with state-of-the-art results and have surpassed human
performance. The salient attribute of Deep learning algorithms is that they automatically learn fea-
tures from a large number of data samples without overfitting the model. Deep learning provides
a partial solution to the research statement how to get computer programs to self-learn patterns
from data. We consider machine learning as a broadening field which integrates interdisciplinary
knowledge of learning processes from other fields such as psychology, biology, neuroscience, and
economy. From this we attempt to answer questions such as: what kind of process can lead to
learning, under what conditions, and for what kind of data? (Mitchell, 2006) In this thesis we
integrated knowledge of deep learning with transfer learning where the learning is inspired from
human-like learning processes to build our Deep Transfer Learning framework:

“how to get computer programs to self-learn patterns in data-efficient and domain-
general way?”

Our survey on the state-of-the-art machine learning methods that use self-learn patterns lead to
deep learning models. The subsequent question is about how learning algorithms can be inspired
from human-like learning processes. For the sake of simplicity, we narrowed our scope down to
human like knowledge transfer from one scenario to another.

It is interesting to study the various possible cases of transfer learning settings based on the
distributions, posterior probabilities, learning function and the classification tasks. We have de-
signed three main mechanisms that harness the advantages of our proposed Deep Transfer Learn-
ing (DTL) framework: 1) Layerwise Transfer Learning (LTL), 2) Source-Target-Source (STS) and
3) Deep Transfer Learning Ensemble. First, we developed two approaches based on LTL mecha-
nism : a) Transfer Learning unsupervised (TLu) and b) Transfer Learning supervised (TLs). On

ii

the other hand, STS mechanisms were tested for both single and multi-source problems. Finally,
we developed DTLE as an ensemble of various LTL approaches. To analyze the effectiveness we
assess the designed DTL framework for practical applications like drug discovery and cross-sensor
biometric identification. We also implemented a DTL software based on an interactive interface
for GPU based machine learning algorithms. This software provides an interface to baseline and
various transfer learning methods.

iii

Resumo

Aprendizagem Computacional (AC) consiste na criação de máquinas capazes de ver, ler, ouvir,
falar e escrever (Marr, 2015). Por exemplo, imaginando que desejamos comer o nosso prato fa-
vorito e nos aconselhamos com uma aplicação móvel relativamente a restaurante próximos que
sirvam tal prato, a aplicação utilizará um algoritmo de AC para analisar a informação relativa à
localização do utilizador de modo a proporcionar o melhor serviço possível. No caso alternativo
da criação de uma startup tentando cimentar o seu negócio, um algoritmo de AC facilitará o pro-
cesso de como economizar recursos suficientes. Ainda num terceiro caso, num cenário em que
um paciente de cancro da mama e um cirurgião querem planear uma cirurgia, as decisões são
geralmente tomadas através de uma avaliação subjetiva levada a cabo por um cirurgião altamente
especializado. A utilização de algoritmos de AC nesta aplicação específica introduziu um maior
grau de objetividade (Beadle et al., 1984) através de informação de imagiologia 3D, ajudando
tanto o médico como o paciente a atingir coletivamente uma decisão bem informada relativamente
à cirurgia (Oliveira, 2013).

A capacidade de algoritmos de AC de automaticamente compreender o conteúdo de imagens
abriu novas possibilidades de encarar desafios proeminentes de visão computacional, como vari-
ações de ponto de vista, iluminação, oclusão, escala, deformação, variabilidade de background
ou variação intra-classe. Em especial, algorithmos de aprendizagem profunda, como deep al-
gorithims: Stacked Denoising Autoencoders, Convolutional Neural Networks ou Deep Belief
Nets mostraram-se capazes de abordar estes desafios e apresentar performance ao nível do es-
tado da arte, ultrapassando largamente o potencial humano para realizar tais tarefas. O atributo
mais saliente relativo a algoritmos de aprendizagem profunda foca-se na sua capacidade de auto-
maticamente aprenderem características a partir de uma grande quantidade de dados, sem causar
overfitting dos modelos treinados. Aprendizagem profunda permite uma solução parcial à questão
comum nesta área de investigação relativa a como conseguir que computadores sejam capazes
de entender de forma autónoma padrões em grandes quantidades de dados. De modo a atingir
este último desafio, a área de aprendizagem computacional tem alargado o seu espectro interdisci-
plinar através da integração de conhecimentos de especialistas de outras áreas, como a psicologia,
a biologia, as neurociências ou a economia, de modo a entender que processos humanos con-
duzem à aprendizagem e integração de conhecimentos dada uma série de dados sob uma série de
condições (Mitchell, 2006). Nesta tese, integrámos o conhecimento de aprendizagem computa-
cional profunda com transfer learning, em que a aprendizagem é inspirada no processo humano
de aprendizagem, para construir a nossa framework de Deep Transfer Learning:

“como conseguir que computadores sejam capazes de aprender, de forma autónoma,
padrões de maneira eficiente em termos de dados, e para domínio generalizado?”

Na presente tese o foco de investigação recai sobre métodos de AC capazes de auto-aprenderem
padrões através da utilização de métodos de aprendizagem profunda. A questão subsequente
prende-se com como desenvolver tais metodologias de forma inspirada no processo de aquisição

iv

de conhecimento do ser-humano. Como simplificação, reduzimos o espectro de interesse na trans-
ferência de conhecimento entre duas tarefas de modo a utilizar conhecimento adquirido numa para
resolver outra.

É interessante estudar uma série de possíveis variações no processo de transferência de apren-
dizagem, quer ao nível das distribuições, probabilidades posteriores, funções de aprendizagem
e também tarefas de classificação. Foram criados três mecanismos base da framework de deep
transfer learning: 1) Layerwise Transfer Learning (LTL), 2) Source-Target-Source (STS) e 3)
Deep Transfer Learning Ensemble. Relativamente à primeira metodologia, duas abordagens foram
tomadas: a) Transferência de conhecimento não-supervisionada (TLu) e b) Transferência de con-
hecimento supervisionada (TLs). Por outro lado, os mecanismos de STS desenvolvidos foram tes-
tados tanto em problemas com uma fonte de informação como em problemas de múltiplas fontes.
Finalmente, foram também desenvolvidas e testadas metodologias ensemble de várias abordagens
LTL. De modo a analisar a eficácia dos métodos desenvolvidos, testes práticos foram levados a
cabo ao nível de descoberta de fármacos e também de biometria inter-sensor. Um software de
DTL baseado em interface interativa para algoritmos de AC baseados em GPU foi também imple-
mentado. Este software fornece uma interface para problemas baseline e outras metodologias de
transferência de conhecimento.

To my mother and father, to whom I owe everything.
To my sister and my brother, for being driving force in my life.

vi

vii

Acknowledgments

I would like to express my sincere gratitude to my advisor Professor Jaime dos Santos Cardoso
for the continuous support of my PhD study and research, for his patience, motivation, enthusiasm
and immense knowledge. The joy and enthusiasm he has for his research was contagious and
motivational for me, even during tough times in the PhD pursuit. I am also thankful for the
excellent example he has provided me as a successful researcher and Professor. I could not imagine
having a better advisor and mentor for my PhD study.

Furthermore, I am very grateful to my co-advisor Professor Luís Miguel Almeida da Silva, for
the opportunity to develop my PhD study in the area of deep learning, for the insightful comments
both in my work and in this thesis, for her support and for many motivating discussions. I appre-
ciate all his contributions of time, ideas, and funding to make my PhD experience productive and
stimulating. His guidance helped me in all the time of research and writing of this thesis.

I extend my gratitude to NNIG (Neural Network Interest Group), INEB for all the conditions
provided. I am very glad to have had the possibility of being embraced by this group. I am
especially gra teful to: Luís. A. Alexandre, Jorge. M. Santos and Joaquim Marques de Sá. A
very special word of gratitude is due to Ricardo Sousa, Tiago Esteves and Telmo Amaral, for their
constant support and encouragement.

I extend my sincere thank to INESC Porto, for all the work conditions, infrastructure and
technical support given to my PhD thesis and for the other challenges I worked in. I am especially
grateful to all the members of the Visual Computing and Machine Intelligence (VCMI) group
have contributed immensely to my personal and professional time. I am especially grateful to:
Ana Rebelo, Ines Domingues, A. Filipa Sequeira, Samaneh Khoshrou, Eduardo Marques, João.
C. Monteiro, João. P. Monteiro, Hooshiar Zolfagharnasab, Kelwin Fernandes and Helder Olivera.
The group has been a source of friendship as well as motivation and collaboration. I thank FEUP
for providing the support and conducive environment for my PhD. I would like to than Jonathan
Barber for his support for building tools for the research work.

I shall also dedicate a few words to someone whose influence in my life spanned out the time
I was his student from the degree to become a researcher. The way I reason about Mathematics,
Science, Knowledge and Life itself was deeply influenced by the many things he taught me about.
Thank you Professor Girish M Chandra.

I thank Professor Manuel Alberto Pereira Ricardo and Professor Rui Campos who are source
of inspiration and provided me the guidance for building my research capabilities. I also like to
thank Professor Adriano Moreira for believing in my professional ability and provided me the
opportunity to pursue my PhD.

I thank Professor Helmut Prendinger for the opportunity to work in his lab on drones at
Tokyo. I thank Andrew Holliday, Danielle Delatte, Johannes Laurmaa, Kim Samba, Pierre Ecarlat,
Ragevendra Jain, Ruben Geraldas and Naoki Tada for their support during the research at National
Institute of Information, Tokyo.

viii

A special word of thanks to my friends without whose encouragement and unconditional sup-
port it would be a challenge: Saravanan Kandasamy, Kumaresa Vanji, Abhishek Chatterjee, Bala-
murugan Varadharajan, Herlina Jayadianti and Merle Planten. I would like to thank my Portuguese
Professor Magarida Mouta who helped me to get along with culture shock and enjoy the interac-
tion with beautiful land of Portugal. Thank you for your support when I have needed it the most.

For the ancestors who paved the path before me upon whose shoulders I stand. Kandaswamy
family who have been my constant source inspiration, competition and encouragement. To my
wife Jivitha Anand who became my source of encouragement and to my six months old baby
Adya, you mean the world to me.

Thank you with all my heart!
Chetak Kandaswamy

“Machine Learning is a core,
transformative way by which we (academicians &

industrial specialist) are rethinking how we’re doing everything”

Sundar Pichai

ix

x

CONTENTS xi

Contents

Contents xiii

List of Figures xvii

List of Tables xx

I Introduction and Related work 1

1 Introduction 3
1.1 Motivation . 4
1.2 Thesis Statement . 4
1.3 Objectives . 5
1.4 Contributions and Related Publications . 5
1.5 Structure of the Thesis . 7

2 Related work 9
2.1 Trends in feature extraction methods in ML . 9

2.1.1 Convolutional Neural Networks (CNN) 12
2.1.2 Stacked Denoising Autoencoders (SDA) 13
2.1.3 Deep Belief Nets (DBN) . 14

2.2 Model for Transfer Learning in ML . 14
2.3 Challenges in Deep architectures using Transfer Learning 16
2.4 Conclusions . 17

II Deep Transfer Learning Mechanisms 19

3 Deep Transfer Learning Framework 21
3.1 Fundamental concepts of deep learning . 21

3.1.1 Stacked Denoising Autoencoder (SDA) 23
3.1.2 Convolutional Neural Network (CNN) 24
3.1.3 Baseline for Stacked Denoising Autoencoders 25
3.1.4 Baseline for Convolutional Neural Network 25

3.2 Problem Formulation for Deep Transfer Learning 25
3.2.1 Comparing distributions . 26

3.3 Datasets . 27
3.3.1 Character recognition . 27
3.3.2 Object recognition . 29

xii CONTENTS

3.4 Conclusion . 29

4 Layerwise Transfer Learning 31
4.1 Layerwise Transfer Learning mechanism . 31

4.1.1 Transfer Learning unsupervised (TLu) 32
4.1.2 Transfer Learning supervised (TLs) . 33

4.2 Layerwise Transfer Learning for SDA and CNN 34
4.2.1 Network Architecture . 36

4.3 Results and Discussions . 38
4.3.1 Problem Categorization . 38
4.3.2 TLu: Different label sets . 38
4.3.3 TLu: Equal label sets . 40
4.3.4 TLs . 41
4.3.5 Layerwise Transfer Learning for CNN 42
4.3.6 Analysis of TLu and TLs for SDA model 44

4.4 Conclusions . 48

5 Source-Target-Source 49
5.1 Source-Target-Source mechanism . 49
5.2 Multi-source Source-Target-Source mechanism 49
5.3 Experimental Setup and Results . 51

5.3.1 Transferring specific features Vs. generic features for STS approach . . . 52
5.4 Conclusions and discussion . 52

6 Deep Transfer Learning Ensemble 57
6.1 Experimental setup and Results . 58

6.1.1 Retrain specific DTL . 59
6.1.2 Transfer specific DTL . 59
6.1.3 Retrain and Transfer specific DTLE . 61

6.2 Conclusions and discussion . 61

III Deep Transfer Learning Applications 63

7 High-content Analysis of Breast Cancer Cells 65
7.1 Introduction . 65
7.2 Materials and Methods . 66

7.2.1 Data splitting . 67
7.2.2 Layerwise Transfer Learning using Stacked Autoassociators 68
7.2.3 LOOCV Training and Network Hyper-parameters 69

7.3 Results . 71
7.3.1 Comparison with other state-of-the-art methods 73

7.4 Conclusion . 73

8 Cross-sensor Biometrics 75
8.1 Cross-Sensor Recognition . 76

8.1.1 GMM-Universal Background Model (GMM-UBM) 77
8.1.2 GMM Supervectors (SV-SDA) . 78
8.1.3 CNN . 78

CONTENTS xiii

8.2 Cross-sensor dataset . 79
8.2.1 Image pre-processing . 80
8.2.2 Data partitioning . 80
8.2.3 Evaluation metrics . 80

8.3 Cross-sensor recognition performance . 80
8.3.1 Baseline and Transfer Learning . 81
8.3.2 Source-target-source . 83
8.3.3 Multiple Source STS . 85

8.4 Conclusions . 87

IV Conclusion and Future work 91

9 Conclusion and Future Work 93
9.1 DTL mechanisms . 93

9.1.1 Layerwise Transfer Learning (LTL) mechanism 94
9.1.2 Source-Target-Source (STS) mechanism 95
9.1.3 Deep Transfer Learning Ensemble (DTLE) mechanism 95
9.1.4 User interface . 95

9.2 DTL for real-world applications and scenarios 96
9.2.1 High-content analysis for drug-discovery 96
9.2.2 Cross-sensor biometric recognition . 97

9.3 Future work . 97

A Model compression for real-time application 101
A.1 Results . 104
A.2 Conclusions and Future Work . 106

References 109

xiv CONTENTS

LIST OF FIGURES xv

List of Figures

2.1 Evolution of feature extraction methods from 1960’s to 2015. 10
2.2 Worldwide interest over time in the field of Machine Learning with Deep learning,

Support Vector Machines and Random Forest. Keyword usage trends from 2004
to present. 12

2.3 Left: A regular 3-layer Neural Network. Right: A CNN arranges its neurons in
three dimensions (width, height, depth), as visualized in one of the layers. Every
layer of a CNN transforms the 3D input volume to a 3D output volume of neuron
activations. In this example, the red input layer holds the image, so its width and
height would be the dimensions of the image, and the depth would be three (Red,
Green, Blue channels) (Li and Karpathy, 2015). 13

3.1 (a) Pre-training the first layer feature set, (b) Pre-trained K−1 layers 24
3.2 Samples from character recognition tasks . 28
3.3 Samples from various shape recognition tasks . 29

4.1 Transfer learning unsupervised (TLu) . 32
4.2 TLs for “L1” feature transference approach. 33
4.3 A pictorial representation of approaches: Pre-training (PT), Baseline (BL), Transfer Learn-

ing unsupervised (TLu) and Transfer Learning supervised (TLs) with the option of lock or
unlock for each layer . 35

4.4 A pictorial representation of labels are different TL setting YS 6= YT and PS (X) 6= PT (X)

as the Jensen-Shannon divergence (JSD) between the source and the target distribution is
greater than 0.8 . 38

4.5 Comparison between TLu and baseline (dotted vertical line) for hard transfer prob-
lems. Top: Average test error rate (%) (ε) on Synthetic digits, Lowercase and
Uppercase letters datasets by reusing unsupervised features either from Arabic or
Latin or Latin-2 dataset. Bottom: Computational time for the same experiments,
in seconds. Box whiskers are standard deviations. 45

4.6 Comparison between TLu and baseline (dotted vertical line) for reverse transfer
problems. Top: Average test error rate (%) (ε) on Arabic, Latin and Latin-2
datasets by reusing unsupervised features either from Synthetic digits or Low-
ercase or Uppercase letters dataset. Bottom: Computational time for the same
experiments, in seconds. Box whiskers are standard deviations. 46

4.7 Classification results on MAHDBase dataset (Arabic digits) for feature transfer-
ence approach by reusing various layers, for different numbers N/c of training
samples per class. Left: Average classification test error rate. Right: Average
time taken for classification. 47

xvi LIST OF FIGURES

4.8 Classification results on MNIST dataset (Latin digits) for feature transference ap-
proach by reusing various layers, for different numbers N/c of training samples
per class. Left: Average classification test error rate. Right: Average time taken
for classification. 47

5.1 (Left:) Relative improvement over baseline approach for character recognition tasks 3
& 4 as listed in Table 5.1; (Right:) Relative improvement for the tasks on the left, the
regions are enclosed to observe relative improvement between two different approaches.
We observe negative transference for TLs (supervised) approach as it gets stuck at local
solution space of specialized features. TLu (unsupervised) approach easily recovers the
fragile co-adapted neurons as the unsupervised features are not target specific. Also TLu
improves over the baseline for complete training data. STS approach as intended shake the
current local optimal solution, thus overcoming the specialized features of source network
unlike TLs approach. The STS shows performance improvement, but unable to recover
the fragile co-adapted neurons thus using complete target data, had lower performance
than TLu and baseline. 53

5.2 Feature samples from first layer of non-canonical object recognition task. We observe the
transition of same features becoming more distinct, from BL towards STS approach are
marked in red circle and from TLs towards STS marked in blue box. 53

6.1 A pictorial representation of Ensemble of Deep Transfer Learning. 57

7.1 A- Examples of different phenotypes (MOA) captured after compound incubation
of MFC7-wt cells. According to Ljosa et al. (Ljosa et al., 2013) only 6 of the 12
MOA were visually identifiable. B- Cell segmentation and feature extraction are
performed using CellProfiler (Carpenter et al., 2006). For each cell, a variety of
geometric, intensity, subcellular localization and texture features were extracted. . 67

7.2 Comparison of Baseline versus DTL approaches. Left: Baseline average accuracy
for classifying Pset1 and DTL approaches for classifying Pset1 reusing Pset2. Right:
Baseline average accuracy for classifying Pset2 and DTL approaches for classifying
Pset2 reusing Pset1. 71

7.3 Confusion matrices for the baseline and TL settings on the MOA problem (average
outcomes over 10 repetitions). 72

8.1 Schematic representation of the GMM-UBM periocular recognition algorithm pro-
posed by Monteiro et al. (Monteiro and Cardoso, 2015). 77

8.2 Examples of images from each subset of the CSIP database. From (a-j) respec-
tively: AR0, AR1, BF0, BR0, BR1, CF0, CR0, CR1, DF0 and DR0. 79

8.3 Graphical representation of the MS-STS Rank-1 recognition rates obtained for all
the no-flash subsets of the CSIP database using all the flash datasets as sources,
plotted against the respective BL, TLs and STS results. 88

8.4 Graphical representation of the MS-STS Rank-1 recognition rates obtained for all
the six possible orders of the chosen source datasets. Results concern to (a) AR0
and (b) CR0 as targets. 89

9.1 A pictorial representation of DTL soft user interface depicting the three DTL mechanisms 96

A.1 An illustrative picture showing a scenario in which smart drones build a shared
map and track the traffic movements at a freeway junction. Picture courtesy of
NVIDIA. 101

LIST OF FIGURES xvii

A.2 Block diagram of model compression method for Ensemble of Deep Learning
Models for Semantic Segmentation. 103

A.3 Block diagram of Extract-upscale method of Deep Learning Models modified for
Semantic Segmentation with skip connections. 104

A.4 Comparison between output labels for the single and compressed FCN-ResNet-
152 models, the ensemble and the ground-truth. In most cases, the compressed
model is getting closer to the segmentation quality of the ensemble. 105

A.5 Screen shot of the Hikawa primary school premises marking the pool and the play
area performing semantic segmentation on FCN-Resnet-50 with skip connections. 106

xviii LIST OF FIGURES

LIST OF TABLES xix

List of Tables

3.1 Number of instances available for each dataset. 28

4.1 Lists TLs, TLu Transfer Learning and Baseline Approach. An illustration of TLs
with all possible combinations for a 3 hidden layer network. 34

4.2 Average classification test error in percentage (ε) obtained with the baseline ap-
proach along with the corresponding average training times (seconds) with GTX
770. 36

4.3 Changing the set of labels YS 6= YT , YS = YT for arbitrary distributions PS (X) 6=
PT (X). Average classification test error (%) (ε) obtained for a target problem
using TLu approach for different combinations of: target data distribution (PT);
target label set (ΩT); source distribution (PS); source label set (ΩS) for Hard and
Reverse Transfer problems using SDA; The difference between distributions is
given by Kullback-Leibler (KL) and Jensen-Shannon (JS) divergence. 39

4.4 Average Test Error (%) (ε) of TLs approaches for Hard and Reverse Transfer
problems using SDA . 40

4.5 Average Test Error (%) (ε) by reusing harder problem Latin-2 for classifying either
Lowercase or Uppercase letters. 42

4.6 Percent average classification test error (standard deviation) obtained for different
approaches, dataset, and numbers N/c of design samples per class for layer based,
supervised feature transference for CNN model. 44

4.7 Percentage Average Error by reusing Latin at N/c = 1320 47

5.1 Comparison of percentage average error rate (ε) for BL, cBL, TLu, TLs and STS approach
for different ratios of target data (PT) reusing source (PS) distribution. Tasks 1 to 4 study
specific feature transfer on character recognition problem and tasks 5 & 6 study generic
feature transfer on object recognition problem. 54

5.2 Comparison of positive vs. negative transference using complete target data and retrain-
ing all layers; Performance is measured using percent average test error (ε) with 10 repe-
titions; TLs shows positive transference for classifying MNIST PL reusing Lowercase PLC

same as Task 1. And negative transference for classifying PLC reusing PL, same as Task
3. In both cases iteratively repeating STS outperforms both BL and TLs approaches. . . 55

6.1 Percent average classification accuracy obtained for all three possible transfer
learning cases; 6 different experiments are performed on three different types of
tasks i.e., character, object and biomedical image recognition; We compare estab-
lished frameworks i.e., Baseline (BL), retrain specific DTL (DTLr), and transfer
specific DTL (DTLt) with our approach, retrain specific DTLE (DTLEr), transfer
specific DTLE (DTLEt), and Ensemble of DTL (DTLE); the difference between
two datasets distribution and is given by Jensen-Shannon divergence (JSD) . . . 60

xx LIST OF TABLES

7.1 Distribution of MOAs across batches for Pset1 and Pset2 with at least one common
batch between MOAs. Pset1 and Pset2 datasets have 6 mutually exclusive MOAs. . 68

7.2 Average accuracy in percentage and average computation time in minutes (stan-
dard deviation in parenthesis) of the baseline (BL) and DTL approaches. The
results are over 10 repetitions for the target data (PT) with compounds (C) and
source data (PS). 70

7.3 Comparison of accuracy obtained and total time taken per repetition in minutes
with other state-of-the-art methods. 70

8.1 Technical details concerning the acquisitions setups used for each subset of the
CSIP database. 79

8.2 Rank-1 recognition rates, in %, observed for the GMM-UBM algorithm for all
possible cross-sensor scenarios in the CSIP database. 81

8.3 Rank-1 recognition rates, in %, observed for the SV-SDA algorithm for all possible
cross-sensor scenarios in the CSIP database. 82

8.4 Rank-1 recognition rates, in %, observed for the CNN algorithm for all possible
cross-sensor scenarios in the CSIP database. 82

8.5 Rank-1 recognition rates, in %, observed for the SDA methodology and the STS
approach. 84

8.6 Rank-1 recognition rates, in %, observed for the SV-SDA methodology and a sin-
gle cycle of the STS approach. 84

8.7 Rank-1 recognition rates, in %, observed for the CNN methodology and a single
cycle of the STS approach. 84

8.8 Rank-1 recognition rates, in %, observed for the CNN methodology and STS ap-
proach. 85

A.1 Comparison of Deep Learning object recognition architectures 102
A.2 Model compression accuracy in Percentage with DTLE approach 104
A.3 Model compression accuracy in Percentage with MS-STS approach 105

LIST OF TABLES xxi

Acronym

BL Baseline

cBL Combined Baseline

CNN Convolutional Neural Network

conv Convolutional layer

CPA CellProfiler Analyst

CPU Central Processing Unit

CSIP Cross-sensor Iris and Periocular

dA denoising Autoencoder

DBN Deep Belief Nets

DNA Deoxyribonucleic acid

DNN Deep Neural Network

DTL Deep Transfer Learning

DTLE Deep Transfer Learning Ensemble

DTLEr Retrain Specific Deep Transfer Learning Ensemble

DTLEt Transfer Specific Deep Transfer Learning Ensemble

FC Fully-connected layer

FCN Fully Convolutional Network

FT Finetune

GMM Gaussian Mixture Models

GPU Graphical Processing Unit

HCA High Content Analysis

HT Hard Transfer

IDSM individual specific models

JS Jensen-Shannon

JSD Jensen-Shannon Divergence

xxii LIST OF TABLES

KL Kullback-Leibler

LBP Local Binary Pattern

LOOCV Leave-One-Compound-Out Cross Validation

LR Logistic regression

LTL Layerwise Transfer Learning

MAP Maximum a Posterior

MCF7-wt Breast Cancer Expressing wild-type p53

MFCC Mel-frequency Cepstral Coefficients

ML Machine Learning

MOA Mechanisms of Action

MSCOCO Microsoft Common Object in Context

MS-STS Multi-source Source-Target-Source

NICE Noisy Iris Challenge Evaluation

NN Neural Network

pool Pooling layer

PT Pre-train

RBF Radial Basis Function

RBM Restricted Boltzmann Machines

RT Reverse Transfer

SAA Stacked Autoencoder

SDA Stacked Denoising Autoencoder

SGD Stochastic Gradient Descent

STS Source-Target-Source

SV Support Vector

SVM Support Vector Machines

TL Transfer Learning

TLs Transfer Learning supervised

TLu Transfer Learning unsupervised

UAV Unmanned Aerial Vehicle

UBM Universal Background Model

WiFi Wireless Fidelity

Part I

Introduction and Related work

1

Introduction 3

Chapter 1

Introduction

Machines have become an essential part of our everyday life. Towards the end of the last

century, smart machines outperformed humans in mundane or highly specific tasks. These ma-

chines use algorithms that are trained to automatically learn general laws from specific training

data. Algorithms such as deep neural networks, support vector machines, Bayesian methods and

many more have contributed to a wide range of applications including biomedical applications for

drug discovery, data mining applications for detection of traffic signs, self-driving cars, biometric

sensor interpretations, location identification of a person based on his wireless fidelity (WiFi) data,

and aerial surveillance using swarm of unmanned aerial vehicles (UAVs). While these algorithms

demonstrate the practical importance of machine learning methods, researchers are actively pur-

suing more effective algorithms. Some of the interesting application of machine learning methods

are now briefly discussed.

Computer Vision: Object recognition. The early success in hand-written digit recognition

by convolutional (or time-delay) neural networks laid stepping stone for many computer vision

applications. Semantic segmentation, object recognition, image recognition and 3D objects recog-

nition in natural images are among the main examples.

Telecommunications: WiFi-Based Indoor Localization. An interesting problem faced by

ubiquitous computing and social networking community is locating the smartphone user position

in an indoor environment with WiFi data. This indoor WiFi localization problem is a challenge as

it is very expensive to calibrate WiFi data for building localization models in a large-scale environ-

ment. Moreover, it is known that the WiFi signal-strength values are function of time, device, and

other dynamic factors. Machine learning algorithms are used to reduce the recalibration efforts by

adapting to the dynamic changes in time and devices.

Biomedical Applications: Breast cancer drug discovery. Machine learning algorithms has

paved a new way to better utilize the vast patients’ data for better and faster drug discovery and

diagnosis of patients. Areas like early detection of Breast Cancer using Mammogramy Images

and Magnetic Resonance Imaging of breast have benefited from such methods.

While these applications demonstrate the practical importance of machine learning methods,

researchers are actively pursuing more effective algorithms.

4 Introduction

1.1 Motivation

The world we live in requires knowledge of many things. We learn these things by continuously

interacting with the external environment and developing skills accordingly.

We learn to play football for the fun of kicking the ball. Yet for playing football we require

many other basic skills. To be a successful player, we use our previous knowledge of walking,

running, jumping, kicking, etc. Our brain continuously learns to interact with the external envi-

ronment and learns these specialized behavior patterns which may lead to winning. Inspired by this

natural and continuous human learning, we attempt to train machines to mimic such human-like

learning structures. The machine continuously learns and reuses its knowledge to solve different

and specialised tasks, and this enables it to develop a wide knowledge base.

The world we live in presents both good and bad opportunities to learn. Football is fun to play,

as long as we curb our habits which may prove to be counter productive. To be effective we should

avoid playing without properly warming up first and look to leverage our strengths to positively

affect the overall performance. The same is true even for machines. Training an algorithm with

adverse knowledge produces negative performance on the intended task, and the resulting solution

itself may falls into a local minima. It will be beneficial to utilize the adverse knowledge as a

means and not as an end result.

1.2 Thesis Statement

The machine learning community in general has addressed challenges focused on the narrow view

of the research question how to get computer programs to learn some class functions from ex-

amples? To illustrate the limitation of this narrow view we do not have computer programs that

have the ability to think like people. To break this view the community focused on Alan Turing’s

ambitious research question: Can machines think? (Turing, 1950) which faced severe challenges

on the definitions of machine and thinking. The question was later softened with Can machines

do what we (as thinking entities) do? (Kurzweil, 2005). As a pragmatic option towards the goal

of the General Intelligence paradigm, Tom Mitchell proposes a broader interdisciplinary view of

machine learning involving computer programmers and statisticians who have already contributed

to statistical-computational theories of learning processes. Together with other field experts like

psychologist, economists, biologists and neuroscientists, they collectively questioned What kind

of process can lead to learning under what conditions for what kind of data? (Mitchell, 2006).

This document attempts to address the fundamental question of how to get computer pro-

grams to self-learn patterns from data. To this inquiry, we integrate interdisciplinary knowledge

of human learning processes from other fields, for example: 1) psychological studies of the hu-

man ability to easily adapt the learning from one situation to suit or adjust to another situation

with minimal or no deviation (Perkins and Salomon, 1992), 2) neurological studies like the hu-

man ability to perceive images with the hierarchical working structure of the neocortex (Hubel

and Wiesel, 1959), and 3) other psychological studies of the human ability to continuously learn

1.3 Objectives 5

new processes (London and Sessa, 2007). In this thesis, we are interested in designing machine

learning algorithms that are motivated by the above research question inspired from human-like

learning processes.

1.3 Objectives

The main objective of this research is to develop a machine learning framework that attempts to

self-learn the patterns and reuse extracted information from the data, enabling it to express the

information as understandable by humans while making it possible to compete with state-of-the-

art technology. In other words, the research aims to create an automated feature extractor that

can be used to solve various tasks in spite of the tasks being different from each other. The core

idea is to reuse the experience gained in learning to perform one or more tasks to help improve

the learning performance of other tasks. Although, sharing or reusing the knowledge may lead

to either an improved (positive) or degraded (negative) performance. In this work we intend to

curtail negative learning or at least maintain the same performance as in the case of no sharing of

knowledge.

In this sense, the self-learning feature extractor should produce generic and reusable features

for multiple tasks from different domains. The performance of the designed framework is to be

evaluated on various computer vision benchmark data as well as in two problem specific applica-

tions: a biomedical application for drug discovery in breast cancer cells and sensor applications

for person identification from multiple sensory data.

1.4 Contributions and Related Publications

A summary of the contributions of the thesis is as follows:

1. We have designed a Deep Transfer Learning (DTL) framework by combining the advantage

of the hierarchical feature representation property of deep networks with the feature reuse

property of Transfer Learning. This synergy led to the development of a self-learning feature

extractor that produces generic and reusable features for solving multiple tasks. The DTL

framework produced three mechanisms inspired by the human learning process that help to

solve major challenges of machine learning problems:

(a) A layer-wise feature transference mechanism to reuse extracted features initially trained

on a source domain and tested on a target domain with little modification of the model;

this mechanism indeed enhanced the performance for many challenging computer vi-

sion datasets, but is limited to reuse only features of source problems that lead to

positive feature transference;

(b) A Source-Target-Source mechanism, where the layer-wise feature transference is op-

timized by switching between multiple domains (both source and target) and thus ex-

panding the optimal solution search space;

6 Introduction

(c) A Deep Transfer Learning Ensemble mechanism where the layer-wise feature trans-

ference mechanism is combined with the traditional ensemble learning.

2. We have investigated our designed layer-wise feature transference mechanism for applica-

tion specific scenarios, such as the analysis of breast cancer cell images for drug discovery.

3. We extended our Source-Target-Source mechanism with a multi-source version for cross-

sensor biometric classification applied to the identification of human anatomical structure

in the periocular region.

Finally, we created a user interface for our DTL framework utilizing GPU parallel processing

capabilities, which can be used by machine learning researchers to compare their methodologies

and/or help in solving real problems in the field.

List of Publications arising from this thesis

Journal papers:

• Kandaswamy, C., Silva, L.M., Alexandre, L.A., and Santos, J.M. "High-content Analysis of

Breast Cancer using Single-Cell Deep Transfer Learning", Journal of Biomolecular Screen-

ing, SAGE, January 8, 2016, doi: 10.1177/1087057115623451

• Kandaswamy, C., Monteiro, J.C., Silva, L.M and Cardoso, J.S. "Multi-source Deep Transfer

Learning for Cross-sensor Biometrics." Neural Computing and Applications, 1-15, 2016,

doi: 10.1007/s00521-016-2325-5

Conference papers:

• Kandaswamy, C., Silva, L. M., Alexandre, L. A., and Santos, J. M. Deep transfer learning

ensemble for classification. In Advances in Computational Intelligence, pages 335–348.

Springer, 2015a. doi: 10.1007/978-3-319-19258-1_29

• Kandaswamy, C., Silva, L. M., and Cardoso, J. S. Source-target-source classification using

stacked denoising autoencoders. In Pattern Recognition and Image Analysis, pages 39–47.

Springer, 2015b

• Kandaswamy, C., Silva, L. M., Alexandre, L. A., Sousa, R., Santos, J. M., de Sá, J. M.,

et al. Improving transfer learning accuracy by reusing stacked denoising autoencoders. In

IEEE International Conference on Systems, Man and Cybernetics (SMC), pages 1380–1387.

IEEE, 2014b. doi: 10.1109/SMC.2014.6974107

• Kandaswamy, C., Silva, L. M., Alexandre, L. A., Santos, J. M., and de Sá, J. M. Improving

deep neural network performance by reusing features trained with transductive transfer-

ence. In Artificial Neural Networks and Machine Learning–ICANN 2014, pages 265–272.

Springer, 2014a. doi: 10.1007/978-3-319-11179-7_34

1.5 Structure of the Thesis 7

Workshop paper:

• Kandaswamy, C., Silva, L.M., Cardoso, J.S. "Improving Classification Accuracy of Deep

Neural Networks by Transferring Features from a Different Distribution," 20th edition of

the Portuguese Conference on Pattern Recognition, University of Beira Interior, Covilhã,

2014.

Conference papers in collaboration:

• Amaral, T., Kandaswamy, C., Silva, L. M., Alexandre, L., Marques de Sá, J., and Santos,

J. M. Improving performance on problems with few labelled data by reusing stacked auto-

encoders. In International conference on Machine Learning and Applications (ICMLA),

pages 367–372. IEEE, 2014a. doi: 10.1109/ICMLA.2014.65

• Amaral, T., Silva, L. M., Alexandre, L. A., Kandaswamy, C., de Sá, J. M., and Santos, J. M.

Transfer learning using rotated image data to improve deep neural network performance.

In Image Analysis and Recognition, pages 290–300. Springer, 2014b. doi: 10.1007/978-3-

319-11758-4_32

• Amaral, T., Silva, L. M., Alexandre, L. A., Kandaswamy, C., Santos, J. M., and de Sá, J. M.

Using different cost functions to train stacked auto-encoders. In Mexican international

conference on artificial intelligence (MICAI), pages 114–120. IEEE, 2013. doi: 10.1109/

MICAI.2013.20

1.5 Structure of the Thesis

This thesis is organized into three parts. The first part includes a research introduction and a liter-

ature review. The second part discusses the theoretical modeling of the designed DTL framework

(in Chapter 3, 4, 5, and 6). The third part discusses the application specific design of the DTL

framework, thesis conclusions, and ideas for future work (in Chapter 7, 8 and 9). Finally appendix

A discusses on one of the future work application.

8 Introduction

Related work 9

Chapter 2

Related work

Computer algorithms that improve automatically through experience without being explicitly pro-

grammed have been the key research question of the machine learning community for the past fifty

years. This technological need gave rise to an abundant variety of learning algorithms that are used

in speech recognition, computer vision, data mining, and many other applications (Bishop, 2006).

In this chapter we discuss only the most relevant state-of-the-art Machine Learning (ML) and

Transfer Learning (TL) algorithms along with their applications and limitations, in the perspective

of our defined objectives discussed in the previous chapter. A background knowledge on artificial

neural networks, probability theory, and optimization are not essential.

In Section 2.1, we analyze the pros and cons of feature extraction since its inception as hand-

crafted features to the present day automated processes. In Section 2.2, we examine the knowledge

transfer in machines1 model, approaches, and limitations. In Section 2.3 we consider research

methods of the established feature transference methods with state-of-the-art feature extraction

processes, common practices, and pitfalls.

2.1 Trends in feature extraction methods in ML

In this section we briefly discuss the major trends of feature extraction methods in the Machine

Learning field starting from the early 1960’s to the present day. From a literature survey and

keyword usage search, we identified major trend changes in the perspective of the machine learn-

ing community and categorized these trends into three evolutionary stages of feature extraction

methods. A timeline depiction of these trends along with their evolution is shown in Figure 2.1.

From the early 1960’s till 2006, the community answered queries on how to build methods

which transform the collected raw data into a form that a computer can handle. These are first

generation feature extraction methods appearing at a time when feature extraction was considered

as a field only for specialists who generally used carefully handcrafted features for each learning

problem.

1Commonly referred to as Transfer Learning.

10 Related work

Figure 2.1: Evolution of feature extraction methods from 1960’s to 2015.

Around 2006 the community devised low level feature extractors like Scale-Invariant Feature

Transform (SIFT) (Lowe, 1999), Histogram of Oriented Gradients (HoG) (Dalal and Triggs, 2005)

for object recognition, and Mel-Frequency Cepstral Coefficients (MFCC) (Davis and Mermelstein,

1980) for speech recognition. These methods were used in a wide variety of applications, thus

heralding the second generation of feature extraction methods. SIFT is called a local feature de-

scriptor and allows a point inside an RGB2 image to be represented robustly by a low dimensional

vector. When you take multiple images of the same physical object while rotating the camera,

the SIFT descriptors of corresponding points are very similar in their 128-D space. After the

community shifted towards more ambitious object recognition problems and away from geometry

recovery problems, we had a flurry of research in Bag of Words, Spatial Pyramids, Vector Quanti-

zation and machine learning tools used in any and all stages of the computer vision pipeline. HoG

came at a time when everybody was applying spatial binning to bags of words, using multiple

layers of learning and making their systems overly complicated. HoG was quite simple and well

understood since it was a linear Support Vector Machine (Tomasz, 2015).

In 2012, the community at large began asking how machines can self-learn representations

from data. For example, represented data must be in the space of the learner such that it can be

classified. This led to a third generation of feature extraction methods in the form of Trainable

Feature Transform, which substitutes traditional handcrafted feature extraction with automated

feature extraction. To illustrate, when Trainable Feature Transform understands a scene of a man

standing, it first learns by distinguishing the pixels of the man with the background, then the

lines or edges and finally the object of the man (Bengio, 2009). This has become a new model

2RGB is a color model in which the red, green, and blue are added in different ways to reproduce broad array colors

2.1 Trends in feature extraction methods in ML 11

for representing data, which is generally based on deep neural network architectures and more

popularly known as Deep Learning.

What about other widely used algorithms? Machine learning algorithms such as decision

trees, nearest neighbor, logistic regression, Bayesian network, multi-layer neural networks, sup-

port vector machines (SVM), and random forest may indeed produce reasonably effective meth-

ods for a vast array of applications but are limited by feature extraction methods that are mostly

handcrafted or have low-level features. To understand the state-of-the-art trends in the machine

learning field, we conducted a survey using Google keyword search on worldwide data for the last

10 years with respect to most popular algorithms such as support vector machines, deep learning

and random forest. We observed that around the year 2012 the field of Machine Learning gained

popularity along with deep learning and random forest algorithms (See Figure 2.2, full report on

Google Trends) (Google, 2015). To understand these trends in detail, we further studied vari-

ous applications and competitions held in the field of Machine Learning. We observed that deep

learning was not only used in a wide variety of applications, but also revolutionized the Machine

Learning field in the past decade.

Convolutional Neural Network (CNN) (LeCun et al., 1998) is a machine learning algorithm

belonging to the family of deep neural networks whose architecture of alternating convolutional

layers and subsampling layers was inspired by the alternating structure of simple and complex

cells in the primary visual cortex (Hubel and Wiesel, 1959). Below is a list of applications in

particular to competitions won by CNN among all other algorithms like Decision Trees, Near-

est Neighbor, Support Vector Machines, Random Forest and Bayesian Networks. For more on

current state-of-the-art results in object classification visit Rodrigo Benenson’s website http:

//rodrigob.github.io/ (Benenson, accessed January 12, 2016).

Application: [Year] competition (Group won)
• Handwriting recognition:[Many] MNIST & Arabic (IDSIA)
• Volumetric brain image segmentation: [2009] connectomics (IDSIA, MIT)
• OCR in the Wild [2011]: StreetView House Numbers (NYU and others)
• Traffic sign recognition: [2011] GTSRB competition (IDSIA, NYU)
• Breast cancer cell mitosis detection: [2011] MITOS (IDSIA)
• Human Action Recognition: [2011] Hollywood II dataset (Stanford)
• Scene Parsing: [2012] Stanford bgd, SiftFlow, Barcelona (NYU)
• Speech Recognition: [2012] Acoustic modeling (IBM and Google)
• Pedestrian Detection: [2013] INRIA datasets and others (NYU)
• Large Scale Visual Recognition: [2013] ImageNet dataset (NYU)
• Large Scale Visual Recognition: [2014] ImageNet dataset (GoogLeNet)
• Large Scale Visual Recognition: [2015] ImageNet dataset (MSRA, AMAX)

These achievements were made possible due to a breakthrough in training neural nets to self-

learn the representation one layer of neurons at a time from a large number of training samples

(labeled and unlabeled) without overfitting. This made deep learning appear more efficient when

http://www.google.com/trends/explore?hl=en-US#q=Machine+Learning,Support+vector+machines,Deep+Learning,+Random+forest+&cmpt=q
http://rodrigob.github.io/
http://rodrigob.github.io/

12 Related work

Figure 2.2: Worldwide interest over time in the field of Machine Learning with Deep learning,
Support Vector Machines and Random Forest. Keyword usage trends from 2004 to present.

compared to other algorithms. This ability along with the availability of low cost parallel com-

putational capabilities developed wide acceptance among varied machine learning groups all over

the world.

Let’s begin by understanding what is deep learning. To learn the skill of running one has to

know the basics of balancing and walking. Similarly, deep learning intends to first learn the basic

representation structures and then reuse these structures to develop more specific and abstract

feature representations of the data. Deep Learning allows computational models that are composed

of multiple processing layers to learn representations of data with multiple levels of abstraction

(LeCun et al., 1998).

In the next subsections we discuss some of the popular deep learning methods: Convolutional

Neural Networks (LeCun et al., 1998), Stacked Denoising Autoencoders (Vincent et al., 2010) and

Deep Belief Nets (Hinton et al., 2006).

2.1.1 Convolutional Neural Networks (CNN)

The research of Neocognitron by Fukushima et.al, introduced CNN as a self-organizing neural

network which is unaffected by shift in position for pattern recognition (Fukushima, 1980). This

work was later improved by Yann Lecunn et.al, by training a multi-layer neural network with the

back-propagation algorithm for gradient based learning (LeCun et al., 1998).

Convolutional Neural Networks take advantage of the fact that the input consists of images

by constraining the architecture in a more sensible way. In particular, and unlike a regular Neural

Network, the layers of a CNN have neurons arranged in three dimensions: width, height, and

depth. (Note that the word depth here refers to the third dimension of an activation volume, not

2.1 Trends in feature extraction methods in ML 13

to the depth of a full Neural Network, which can refer to the total number of layers in a network.)

The CNN architecture transforms the full image into a single vector of class scores, arranged along

the depth dimension. This process is illustrated in Fig 2.3.

Figure 2.3: Left: A regular 3-layer Neural Network. Right: A CNN arranges its neurons in
three dimensions (width, height, depth), as visualized in one of the layers. Every layer of a CNN
transforms the 3D input volume to a 3D output volume of neuron activations. In this example, the
red input layer holds the image, so its width and height would be the dimensions of the image, and
the depth would be three (Red, Green, Blue channels) (Li and Karpathy, 2015).

CNNs exploit spatially-local correlation by enforcing a local connectivity pattern between

neurons of adjacent layers. The architecture thus ensures that the learned filters produce the

strongest response to a spatially local input pattern. Also, sharing weights increases the invari-

ance of learned filters by replicating each filter across the entire visual field. These replicated

filters share the same parametrization (weight vector and bias) and form a feature map. Replicat-

ing units in this way allows for features to be detected regardless of their position in the visual

field. Additionally, weight sharing increases learning efficiency by greatly reducing the number

of free parameters being learned. The constraints on the model enable CNN to achieve better

generalization on vision problems.

2.1.2 Stacked Denoising Autoencoders (SDA)

An autoencoder is a simple neural network with one hidden layer designed to reconstruct its own

input. For that reason, it hs an equal number of input and output neurons. The learning ac-

curacy is obtained by minimizing the average reconstruction error between the original and the

reconstructed instances. The encoding and decoding feature sets (input-hidden and hidden-output

weights, respectively) may optionally be constrained as transposes of each other. In this case the

autoencoder is said to have tied weights. A denoising Autoencoder (dA) (Vincent et al., 2008)

is a variant of the autoencoder where now a corrupted version of the input is used to reconstruct

the original instances. Moreover, the dA makes an excellent building block for deep networks

(Bengio, 2012, Section 5.4). Stacking multiple dA’s one on top of each other gives the model the

advantage of hierarchical features with low-layer features represented at lower layers and higher-

layer features represented at upper layers (Bengio, 2012, Section 3).

14 Related work

2.1.3 Deep Belief Nets (DBN)

Deep Belief Nets are a specific type of energy-based model that attempts to learn low-energy state

for a desired variable (Salakhutdinov and Hinton, 2009). The DBNs are a fully general Boltzmann

machines (Hinton et al., 1984), in which the connections between the hidden units are restricted

in such a way that the hidden units form multiple layers. Restricting the fully connected network

in Boltzmann machines improves the speed and accuracy, latter coined as restricted boltzmann

machines (RBM) (Salakhutdinov et al., 2007). Using a greedy layer-wise pre-training (Hinton

et al., 2006) for training stacked RBM paved the way for Deep architectures leading to Deep Belief

Nets (Hinton et al., 2006) and Deep Boltzmann Machines (Salakhutdinov and Hinton, 2009).

DBNs perform better than the Stacked Autoencoders in cases where they have access to prior

probability distribution are available (Holst et al., 2015).

2.2 Model for Transfer Learning in ML

The initial works on transfer learning began with the 1995 NIPS workshop. The Defense Ad-

vanced Research Projects Agency (DARPA) funded in 2005 a Transfer Learning (TL) program

to increase the interest in TL challenges and potential contributions (Gasser et al., 2005). The

Multitask learning by (Caruana, 1997) explores the simultaneously learning of multiple tasks by

sharing the weights of the network. The core idea of sharing weights increases learning of model

that solves many tasks with good generalization. The Multitask Learning approach is different

from multiclass learning, the model learns c different output variables {Y1,Y2, ...,Yc} correspond-

ing to n different tasks. The Multitask Learning learns multiple source tasks simultaneously by

sharing the knowledge (features) between the tasks or conditional models.

In Lifelong Learning, multiple related source tasks are learned one after another by the model

in an incremental approach; to solve for nth (target) task the model needs to learn serially all

source model tasks up to the (n−1) task. The previous learning helps to solve the new target task.

However, if the source task(s) are not related to the target task causes degraded performance. It is

also limited by the order in which the source tasks are presented. Learning to Learn (Thrun and

Pratt, 2012) is a variation of Lifelong Learning (Thrun, 1998). The main intuition of this model

is based on learning many tasks serially, one after another, under the assumption that learning the

n-th task may be easier than the (n−1)-th task.

A large number of works have been produced with the name Domain Adaptation like (Blitzer

et al., 2006), (Jiang, 2008), (Patricia and Caputo, 2014), (Ben-David et al., 2010) and (Bruzzone

and Marconcini, 2010). Domain adaptation is a transfer learning framework which adapts the

learner such that tasks between correlated domains3 perform better than uncorrelated domains.

3The correlation between probability distributions (which allows estimating quantitatively how similar they are)
can be empirically evaluated according to some similarity metrics. Hence, two domains are considered correlated if
the distance between the corresponding underlying distributions is relatively small according to proper metrics, see
(Bruzzone and Marconcini, 2010).

2.2 Model for Transfer Learning in ML 15

Domain adaptation expects that the closer the distributions of the problem are, the better the fea-

tures trained on the source problem will perform on the target problem, thus limiting transfer

learning problems to those for which the distributions are closely related.

Some traditional machine learning models can be used under different conditions for TL prob-

lems, like Semi-Supervised Learning, Ensemble methods, Bayesian priors, and meta-learning.

The Semi-Supervised Learning explores how to learn from both labeled and unlabeled data, thus

transferring the knowledge from source labeled data to the target unlabeled data (Zhu, 2006). The

traditional Ensemble method combines a set of models to construct a complex classifier for a clas-

sification problem. Ensemble methods can be directly used in TL models by building the set of

models from different distributions or tasks or problems. The various ensemble approaches and

its solutions are discussed in (Jiang, 2008). Traditionally, in Bayesian priors models, we use a

maximum a posterior (MAP) estimation approach for supervised learning to get Bayesian pri-

ors distributions. If the Bayesian priors are computed from the source domain labeled instances

then this approach can be used easily for many TL problems. Even classical machine learning

techniques such as rule induction may be easily leveraged to assist with TL applications. In meta-

learning the reuse of meta-features (knowledge) or properties of the model is utilized to solve a

new task (Vilalta and Drissi, 2002). Listed below are the most common methods for TL problems

with unlabeled data (Zhu, 2006):

1. Use a trade-off parameter between the labeled and the unlabeled data. The trade-off param-

eter is calculated with Kullback-Leibler divergence4 between the domains.

2. Use of a instance weighting method to factorize in both source labeled and target unlabeled

instances during training.

3. Use of label propagation for unlabeled target data on a nearest neighbor graph.

Here we focus on the knowledge transfer based on the several survey works in the past

decade discussing on overview and applications of transfer learning. The survey by Pan et.al,

discusses several transfer learning frameworks including classification, regression, and clustering

approaches in inductive, transductive, and unsupervised transfer settings (Pan and Yang, 2010).

The difference between inductive and transductive learning is that the inductive learners can nat-

urally handle unseen data, whereas the transductive learning will be used to contrast inductive

learning. A learner is said to be transductive if it works only on the labeled and unlabeled training

data, and cannot handle unseen data. Survey works of Van otterlo et.al, on TL for reinforcement

learning are specific for relational domains (Van Otterlo, 2005) and another survey on reinforce-

ment learning specify about the relation between between domains with only limited environ-

mental feedback rather than correctly labeled examples (Taylor and Stone, 2009). Many specific

transfer learning applications have been studied in detail: in activity recognition by (Cook et al.,

4Kullback-Leibler divergence measures the similarity of some distribution P to another distribution Q. It is not
symmetric in P and Q.

16 Related work

2013), in bioinformatics by (Xu and Yang, 2011) and in Cross-domain collaborative filtering by

(Li, 2011).

Studying the various surveys on TL we summaries the main goal of TL is to transfer the

knowledge (learning) obtained from a source domain to one or more target domains in order to

efficiently develop an effective hypothesis for a new task, domain or distribution (Ben-David et al.,

2010). Brute-forcing knowledge from the source domain into the target domain, irrespective of

their divergence, may cause a certain performance degradation or, in even worse cases, break the

original data consistency in the target domain called as negative transference (Shao et al., 2015)

or the performance the may exceed than the no transfer network (baseline approach) called as

positive transference. This ambiguity in performances raises general issues regarding the transfer

process: when to transfer?, what to transfer?, and how to transfer?

The answer to when to transfer includes the issues whether transfer learning is necessary for

specific learning tasks and whether the source domain data is related to the target domain data.

In scenarios where the training instances are sufficient, impressive performance can be achieved

without any type of knowledge transference. However, we need to build models which adapt the

gained knowledge to these scenarios in order to improve the overall performance of the new tasks.

The answer to what to transfer can be summed up in three approaches: the inductive transfer

learning, using all the source domain instances and their corresponding labels for knowledge trans-

fer; the instance transfer learning, relying mostly in the use of source domain labeled instances and

also sometimes in target domain unlabeled instances; and the parameter transfer learning, using

model parameters or hyper-parameters of the source domain for faster and accurate modelling of

the target domain.

The answer to how to transfer includes all the specific transfer learning techniques. Knowl-

edge transfer is based on the non-negative matrix trifactorization framework. The transfer learning

phase is performed via dimensionality reduction (Shao et al., 2015). The most widely used meth-

ods transfer not only features but also parameters and hyper-parameters to the target domain.

In the literature, the term TL is used by different groups under different names and/or defini-

tions. To have all these definitions under a single framework is challenging. In here, we use the

most common underlying phenomena of TL that is very simple and generic among all the different

definitions. We reuse the knowledge learned from a problem, or a set of problems, in a way that

the knowledge gained helps to solve the new problem(s) more effectively. Inside this broad defi-

nition of TL, in the next section we discuss various methodologies for solving the above general

issues that have been previously explored in the context of deep neural networks.

2.3 Challenges in Deep architectures using Transfer Learning

In recent years, there has been a growing interest in deep architectures for TL applications. One

such interesting study inquired on how transferable are the lower layers’ (generic) versus higher

2.4 Conclusions 17

layers’ (specific) features in the hierarchical deep network (Yosinski et al., 2014). Another impor-

tant work studied unsupervised TL using stacked autoencoders on a deep architecture model (Glo-

rot et al., 2011). Concept drift is a study that incorporate the change in environment for big

data (Gama et al., 2014). The feature transference approach for transferring top level CNN fea-

tures for various object recognition problems have performed better in most of the cases (Razavian

et al., 2014).

Even with good performance with most of the problems we foresee many shortcomings of

these types of approaches: 1) the tasks have to be related, 2) the feature space and the learning

space of the problem must be the same. Despite the vast body of literature on the subject (see (Glo-

rot et al., 2011), (Bengio et al., 2013), (Bengio, 2012), (Ciresan et al., 2012)), there are still many

contentious issues regarding TL problems from different distributions. TL methods, especially

domain adaptation (Glorot et al., 2011) and multi-task learning (Bengio et al., 2013), are based

on the assumption that both source and target problems are drawn from a related distribution.

Even self-taught learning, which uses unlabeled data to train, needs both the source and the target

datasets to be from the same modality (the input must be either image, audio or text only) (Raina

et al., 2007).

Here we summarize the main challenges that are faced by the deep learning community using

transfer learning approaches:

1. How transferable are the supervised and/or unsupervised features for correlated or uncorre-

lated domains?

2. How do we avoid or reduce the feature transferability that may lead to negative transference?

3. Is it possible to have transference across different network architectures? e.g. the number

of layers and/or number of neurons.

4. Is it possible to have transference between different modalities? e.g. image to text or text to

sound, etc.

5. Is it still possible to have effective TL in the case of large number of a target data training

samples?

6. How do we select the target model if there are multiple models from different source domain

problems?

2.4 Conclusions

It can be seen throughout the history of machine learning that some algorithms do better than

others, but what makes the difference? Easily, the most important factor is the ability of machines

to interpret data like humans. Then, how to enable machines to efficiently represent data without

human interaction? Also, how to reuse the knowledge gained by learning problems to solve a new

problem? The key to answer such questions may be in deep learning using TL approaches. Our

18 Related work

analysis of feature extraction methods and knowledge transference in terms of their capabilities

and goals leads to this conclusion.

As guidance for future directions of this research work, we intend to utilize generic feature

representations obtained by deep learning methods for multiple problems, tasks, or domains using

the TL approaches. These computationally expensive hierarchical models trained on very large

datasets will be harnessed. First we using parallel processing hardware that has scalable compu-

tational power like GPUs that provide higher performance of watt per bit. Second we improve

the algorithm to use faster optimization techniques and TL approaches. In the subsequently chap-

ters we discuss our proposed approaches and original contributions that would mitigate previously

discussed challenges.

Part II

Deep Transfer Learning Mechanisms

19

Deep Transfer Learning Framework 21

Chapter 3

Deep Transfer Learning Framework

In this chapter our objective is to present an introduction of the basic Deep Transfer Learning con-

cepts and techniques for classification of image based problems. We begin by introducing some

of the necessary terminology and by describing fundamental concepts and operations associated

with the process of transferring source problem knowledge (features) to target form suitable for

training machines. In this chapter we discuss the deep transfer learning methodology that over-

comes the multi-layer perceptrons limitation of overfitting and utilize a transfer learning technique

for training on large unlabeled data samples. Some parts of this chapter are used in (Kandaswamy

et al., 2014b) and (Kandaswamy et al., 2014a).

3.1 Fundamental concepts of deep learning

Deep Neural Networks (DNN) are very similar to ordinary Neural Networks (NN). NNs receive

an input (a single vector) and transform it through a series of hidden layers. Each hidden layer

is made up of a set of neurons, where each neuron is typically fully connected to all neurons in

the previous layer, and where neurons in a single layer function completely independently and

do not share any connections. The last fully-connected layer is called the “output layer” and in

classification settings it represents the class scores. NNs do not scale well to full images: the

full connectivity is wasteful and the huge number of parameters would quickly lead to overfitting.

Similarly, DNN’s are made up of neurons that have learnable weights and biases. Each neuron

receives some inputs, performs a dot product with a weight vector and optionally applies a non-

linear function. The whole network still expresses a single differentiable score function: from

the raw image pixels on one end to class scores at the other. And they still have a loss function

(e.g. Softmax) on the last (fully-connected) layer and all the tips/tricks we developed for learning

regular Neural Networks still apply:

1. Learning method: Let us define a dataset by a set of tuples D = {(xxxi,yi)}N
i=1, xxxi ∈ XN , yi ∈

YN . The set XN = {xxx1, ...,xxxN} contains N instances of a d-dimensional random vector X ⊆
Rd . Similarly, the set YN = {y1, . . . ,yN} contains N instances of a one-dimensional random

variable Y . Essentially, Y is a coding set for the labels using some one-to-one mapping (e.g.,

22 Deep Transfer Learning Framework

Ω = “equilateral”,“circle”,“square”}→ Y = {0,1,2} with number of labels c = 3). We

assume that N instances are drawn by an i.i.d. sampling process from the input space X with

a certain probability distribution P(X).

Deep learning design has flexibility to utilize two main types of learning methods for train-

ing a classifier: supervised learning (when labeled training samples are given) or unsu-

pervised learning (when labeled training samples are not available). In this context for

supervised learning D = {(xxxi,yi)}N
i=1 while for unsupervised learning D = {xxxi}N

i=1.

2. Logistic regression model Logistic regression is a probabilistic, linear classifier. The score

function f : Rd 7→Rc that maps the raw image pixels to c number of class scores is given by

a linear mapping equation as shown below:

f (xxxi,www,bbb) = wwwT xxxi +bbb (3.1)

where www are often called the weights (features) matrices mapping each input layer neuron

to every output layer neuron, and bbb is the bias vector because it influences the output scores.

The model’s prediction ypred is the class whose probability is maximal, specifically:

ypred = argmaxy P(Y = y|x,www,bbb) (3.2)

3. Deep network model Deep learning has multiple hidden layer and plus one linear clas-

sifier layer, thus a K layered deep network has K − 1 number of hidden layers plus one

classification layer. Given a dataset D a neural network attempts to learn features, repre-

sented as a vector www j of optimal weights and biases. For a neural network with K num-

ber of layers, the features w j are represented as a set of matrix of each layer, i.e., the set

W = www1
M1×M2

, . . . ,wwwk
Mk×Mk+1

K
k=1

contains Mk×Mk+1 weight matrix for each layer. Here Mk is the number of neurons in the

k-th layer and Mk+1 is the number of neurons in the (k+1)-th layer. The mapping function

for deep network for k-th layer is as follows:

f
(

xxxi,wwwk,bbbk
)
= {wwwk}T xxxi +bbbk (3.3)

Here we use the negative log-likelihood as the loss function to learn optimal model param-

eters θ . This is equivalent to maximizing the log-likelihood L of the data set D as given

below:

L (θ = {W,bbb} ,D) =
|D|

∑
i=1

log(P(Y = y|x,W,bbb)) (3.4)

3.1 Fundamental concepts of deep learning 23

We then compute the class-membership probabilities for each sample ypred as given in the

below equation:

ypred = argmaxy P(Y = y|x,W,bbb) (3.5)

4. Random Initialization: To reduce the variance of the back-propagated gradient, Glorot and

Bengio (Glorot et al., 2011) proposed to randomly initialize the weights of the neurons in

the k-th layer of the network using the uniform distribution as given in eq. (3.6)

wwwk = U

[
−
√

6√
Mk +Mk+1

,

√
6√

Mk +Mk+1

]
(3.6)

5. Stochastic Gradient Descent: Gradient Descent is a process that optimizes the Neural Net-

work loss function. At each iteration (also known as epoch) the gradient of the loss function

is computed to perform a parameter update. In large-scale applications, the training data can

have millions of examples, hence, it seems wasteful to compute the full loss function over

the entire training set in order to perform only a single parameter update. A very common

approach to address this challenge is to compute the gradient over batches of training data.

Therefore a much faster convergence can be achieved in practice by evaluating mini-batch

gradients to perform more frequent parameter updates. The extreme case of this is a set-

ting where the mini-batch contains only a single example. This process is called Stochastic

Gradient Descent (SGD) (or also sometimes on-line gradient descent).

6. Baseline (BL): Given a target dataset DT , a BL classifier is any function f (www) that is trained

from a random combination of instances from xxxi ∈ XT to solve for target task YT .

7. Validation sets for Hyperparameter tuning: From the training set we extract a subset

called validation set that is used not for training but as a "fake" test set to tune the model’s

hyperparameters.

3.1.1 Stacked Denoising Autoencoder (SDA)

A Stacked Denoising Autoencoder is a type deep neural network where greedy-layerwise train-

ing is done by stacking one denoising autoencoder on top of other. SDA training (Bengio, 2009,

Section 6.2) comprises of two stages: an unsupervised pre-training stage followed by a supervised

fine-tuning stage. In the unsupervised pre-training stage, the XN is used alone without their cor-

responding label set. The pre-training of the first hidden layer denoted as L1 (k-th layer = 1) is

performed by considering it as a regular dA as shown in Fig.3.1a. Its features www1 are trained for

several epochs until the cost function hopefully reaching a global minimum. After the first layer is

completely pre-trained, we keep only the encoding features www1 of the dA and discard the decoding

features. Then we begin pre-training the second hidden layer L2 in a similar way, except that in

this case, we reconstruct the output values of the 1st hidden layer instead of the input data. Then

we repeat the pre-training until the K−1th hidden layer is completely pre-trained to obtain wwwK−1

24 Deep Transfer Learning Framework

as shown in Fig.3.1b. We represent each layer training of this multi-layered network as a function

U(W).

Figure 3.1: (a) Pre-training the first layer feature set, (b) Pre-trained K−1 layers

In the supervised fine-tuning stage, a logistic regression layer with c neurons is added to the

top of the pre-trained machine, where c is the number of labels in D. Then, the entire classifier

is trained (fine-tuned) using both XN and YN in order to minimize a cross-entropy loss function

measuring the error between the classifier’s predictions and the correct labels. We represent this

supervised fine-tuning process as a function S(W,ccc).

3.1.2 Convolutional Neural Network (CNN)

We use three main types of layers to build CNN architectures: Convolutional Layer (conv), Pooling

Layer (pool), and Fully-Connected Layer (FC). We will stack these layers to form a full CNN

architecture with a logistic regression classifier (LR). CNN architecture is better explained in three

stages. The image processing stage, the alternating convolutional and subsampling stage and

finally the classification stage (LeCun et al., 1998). The image processing stage is a pre-processing

stage of predefined filters that are kept fixed during training. The convolutional and subsampling

are architectural ideas to ensure some degree of shift and distortion invariance. The convolution

layer convolutes the input with a set of filters like Gabor filters or trained filters producing feature

maps (Simple cells). These feature maps are further reduced by subsampling (Complex cells).

Finally, feature or kernel size of convolution filters and subsampling are chosen such that the output

maps of the last convolutional layer are downsampled to 1 pixel per map or fully connected layer

and fed to classification stage. The depth of the CNN is a function of the number of alternating

convolutional and subsampling stage.

Another important concept of CNNs is that of max-pooling. Max-pooling (Scherer et al.,

2010) is a form of non-linear downsampling and can be used instead of subsampling layers. Max-

pooling partitions the input image into a set of non-overlapping rectangles and, for each such

3.2 Problem Formulation for Deep Transfer Learning 25

sub-region, outputs the maximum value. The max-pooling can lead to faster convergence, select

superior invariant features and improve generalization.

3.1.3 Baseline for Stacked Denoising Autoencoders

SDA are multiple layer networks where each one is trained as a denoising autoencoder (dA). SDA

training comprises of two stages: an unsupervised pre-training stage followed by a supervised

fine-tuning stage. During pre-training (PT), the network is generated by stacking multiple dA one

on top of each other thus learning unsupervised features, represented as a vector U(www1, . . . ,wwwK−1)

of optimal weights and biases and simplified notation as U(W). Then, a logistic regression layer

is added on top and the whole network and fine-tuned S(U(W))in a supervised way, thus learning

supervised features as discussed in Section 3.1.1.

Algorithm 1 Baseline approach for either SDA or CNN.
Given a training Dtrain, validation Dvalid and test set Dtest ,

1. Randomly initialize a classifier network;

2. IF: “Model == Convolution Neural Network";

Train (Fine-tune) the network using Dtrain and Dvalid ;

ELSE IF: “Model == Stacked Denoising Autoencoder";

Pre-train the network using Dtrain and Dvalid ;

Fine-tune the network using Dtrain and Dvalid ;

3. Test the network using Dtest , obtaining baseline classification error ε .

3.1.4 Baseline for Convolutional Neural Network

The training of CNN consists of alternating convolutional and max pooling layers. The posterior

probabilities are then calculated for the fully connected layer. The CNN network is trained with

random initialization. The BL approach for both SDA and CNN are elaborated in Algorithm 1.

3.2 Problem Formulation for Deep Transfer Learning

The study of transfer learning was inspired by the ability of humans to reuse prior experience

under different environments. Naturally, the transfer learning paradigm implies reusing learning

machines previously trained for a given source problem S in order to solve, with minor modifica-

tions, a different target problem T . An ideal transfer learning method should improve the reused

classifier over the one trained from scratch called baseline.

Given an dataset D = {(xxxi,yi)}N
i=1 drawn from input space X and a set of labels Y , a classifier

is any function f (xxx) : X → Y that maps instances xxxi ∈ X to labels. The classifier performance,

26 Deep Transfer Learning Framework

like error rate ε to predict and computation time, is measured on a test set Xtest with v unlabeled

instances drawn from the same distribution P(X).

Traditionally, the goal of transfer learning is to transfer the learning (knowledge) from a

source-problem input space XS to one or more problems, or distributions, to efficiently develop

an effective hypothesis for a new task, problem, or distribution (Bruzzone and Marconcini, 2010).

In this framework of transfer learning, the source and target problems may come from equal or

different distributions. In supervised learning, the source YS and target YT labels may be equal or

different. Four possible cases of transfer learning problems can be identified:

1. The distributions are equal PS (X) = PT (X) and the labels are also equal YS = YT .

2. The distributions are equal PS (X) = PT (X) and the labels are not equal YS 6= YT .

3. The distributions are different PS (X) 6= PT (X) and the labels are equal YS = YT .

4. The distributions are different PS (X) 6= PT (X) and the labels are not equal YS 6= YT .

Under such hypothesis, our goal is to obtain an accurate classification for target-domain instances

by exploiting labeled training instances from the source-domain.

Throughout the thesis when formalizing a theory we represent different dataset from the same

classification problem as DA, DB or DC. In case of dataset from real world applications we use

PA, PB or PC. To emphasize the distinction that real world dataset PA is an estimate of true domain

X from which the i.i.d samples are drawn. The source dataset is represented as DS and the target

dataset as DT . The usage of this representation will be clear through the context.

Combined Baseline (cBL): Given a source dataset DS and a target dataset DT , a cBL classifier is

any function f (www) that is trained from a random combination of instances from both xxxi ∈ XS and

xxxi ∈ XT to solve for target task YT .

Transfer learning (TL): We first train the source network with the source data XS and YS and

then copy its hidden layers to the target network. In case YS 6= YT , we add a classifier layer ran-

domly initialized. The network is trained towards the target task YT . If the performance of the

newly trained target network exceeds the performance of the baseline approach we have positive

transference; otherwise we have negative transference.

Transferred layers: We may select a particular layer or set of layers of the whole source network

to transfer. For example we may select to transfer only the first layer features to the target network.

The rest of the target network layer features are randomly initialized.

3.2.1 Comparing distributions

Traditionally, the Kullback-Leibler (KL) divergence has been used to estimate distribution dif-

ferences between two datasets (Lin, 1991). Given two probability functions p(x) and q(x), KL

divergence is defined as:

DKL(p||q) = ∑
x

p(x) log
p(x)
q(x)

(3.7)

3.3 Datasets 27

Besides the theoretical and practical limitations of this measure (undefined when q(x) = 0) and

having no upper bound, one drawback of this measure is that it cannot be defined as a distance

metric since it does not obey the symmetry and the triangular inequality properties. An alternative

to this is the well known Jensen-Shannon (JS) divergence (Lin, 1991) given by:

DJS(p||q) = αDKL(p||r)+βDKL(q||r), with r = α p+βq, (3.8)

where DKL is the Kullback-Leibler divergence as defined in eq. (3.7).

When α = β = 1/2 in eq.3.8 we are dealing with the specific Jensen-Shannon divergence and

DJS is lower- and upper-bounded by 0 and 1, respectively, when using logarithm base 2 (Lin,

1991). This means that when DJS(p||q) = 0 we can consider that p and q are identical and when

DJS(p||q) = 1, the distributions are different. We use Jensen-Shannon divergence as a measure to

compute the difference between the distributions of two datasets.

We measure the improvement using the transferred features over random initialization using

the relative improvement, ir, to the baseline methodology as follows:

ir =
εBL− εmethod

εBL
(3.9)

where εmethod represents the average error rate observed for a given methodology.

3.3 Datasets

We evaluate DTL on three types of tasks - character and object recognition - using five original

datasets1. These datasets are either distinct in the number of labels or distributions. To evaluate all

possible TL cases, we modified the five original datasets into fourteen different datasets as listed

in Table 3.1. All the datasets are re-sized to 28×28 pixels from the original size.

3.3.1 Character recognition

We evaluated the framework in two different settings for recognizing characters. We used the

MNIST dataset and called it as Latin PL which had 60,000 training and 10,000 testing instances

with labeled hand-written latin digits from 0 to 9. Then we used the MADbase dataset and called

it as Arabic PAr which had 60,000 training and 10,000 testing instances with labeled hand-written

arabic digits from 0 to 9. Additionally, the Chars74k dataset was modified to obtain the Lowercase

dataset PLC with lowercase letters from a-to-z, the Uppercase dataset PUC with uppercase letters

from A-to-Z, and the Digits PD dataset with digits from 0-to-9. The Latin-2 dataset is a modified

version of MNIST to match the number of training and validation instances of the Lowercase

dataset.

1Here we would like to acknowledge the following research centers for making available their datasets: Center
for Neural Science, New York University for MNIST; Microsoft Research India for Chars74k; Electronics Engineering
Dept., The American University in Cairo for MADbase; LISA labs, University of Montreal, Canada for BabyAI shapes.

28 Deep Transfer Learning Framework

Table 3.1: Number of instances available for each dataset.

Data set Labels Instances
Ω classes Train Valid Test

Latin PL 0-to-9 Ω09 10 50,000 10,000 10,000
Latin-2 PL2 0-to-9 Ω09 10 13,208 6,604 6,604
Arabic PAr 0-to-9 Ω09 10 50,000 10,000 10,000
Chars74k PCh a-to-z, A-to-Z, 0-to-9 ΩaZ09 62 39,624 19,812 19,812
Lowercase PLC a-to-z Ωaz 26 13,208 6,604 6,604
Uppercase PUC A-to-Z ΩAZ 26 13,208 6,604 6,604
Digits PD 0-to-9 Ω09 10 13,208 6,604 6,604
Canonical PSh1 eqt,cir,sqr Ωsh1 3 14,000 1,000 5,000
Non-Canonical PSh2 tri,ell,rec Ωsh2 3 14,000 1,000 5,000
Curve & corner PSh3 rou,cor Ωsh3 2 14,000 1,000 5,000
Shape1 PA eqt,cir,sqr ΩA 3 10,000 5,000 5,000
Shape2 PB tri,ell,rec ΩB 3 10,000 5,000 5,000

Figure 3.2: Samples from character recognition tasks

3.4 Conclusion 29

3.3.2 Object recognition

We generated two sets of object recognition problems based on the level of complexity of the

classification tasks. The basic object recognition problems contains three datasets: canonical,

non-canonical and curve Vs. corner as shown in Fig 3.3. The (more) complex object recognition

problems contains two datasets: Shape1 and Shape2.

The first set of basic object recognition problems are as follows:

• the canonical dataset PSh1 is composed of images of equilateral triangle, circle and square;

• the non-canonical dataset PSh2 is composed of images of triangle, ellipse and rectangle;

• the curve Vs. corner dataset PSh3 is composed of images of curved or cornered surfaces.

The second set has more complex object recognition problems made of variations from the

basic set; such as variation of colors (ranging from of 0 to 7), variation in position of objects

inside the image frame (from left extreme to right extreme) and variations in the angle of the

object alignment (from 0 to 360o), which are categorized into two tasks listed as follows:

• Shape1 having canonical patterns namely images of equilateral triangles, circles and squares;

• Shape2 having more complex non-canonical patterns, namely images of ellipsis, rectangles

and triangles;

Figure 3.3: Samples from various shape recognition tasks

3.4 Conclusion

The fundamental concepts for Deep Transfer Learning framework have been studied based on the

current state-of-the-art methods. We have various object recognition and character recognition

problems to study the mechanism that will be developed for the DTL framework. We combine

the advantage of the deep models and the transfer learning model for the three mechanisms de-

veloped. In Chapter 4, we discuss the layerwise transfer learning, where we specifically study the

unsupervised versus supervised training of the models. In Chapter 5, we investigate by continu-

ously switching source and target dataset such that the solution space reaches to common minima.

In Chapter 6, we implement an ensemble method for various layerwise transfer learning mecha-

nisms.

30 Deep Transfer Learning Framework

Layerwise Transfer Learning 31

Chapter 4

Layerwise Transfer Learning

We propose a layerwise transfer learning approach1, which enables deep neural networks to trans-

fer features of hidden layer(s) for a classifier trained in either an unsupervised or a supervised

way. Our approach is inspired by the 1959 biological model proposed by Nobel laureates David

H. Hubel and Torsten Wiesel, who found two types of cells in the visual primary cortex: simple

cells and complex cells. The visual cortex is the part of the brain that is responsible for pro-

cessing the visual information. Deep architectures try to mimic the human primary visual cortex

(see (Vincent et al., 2010), (LeCun et al., 1998), (Hinton et al., 2006) and (Bengio, 2009, Section

11.3)).

4.1 Layerwise Transfer Learning mechanism

We analyze two types of DTL approaches for Layerwise Transfer Learning mechanism: 1) Trans-

fer Learning unsupervised (TLu), and 2) Transfer Learning supervised (TLs). We train a classifier

on a harder problem and then reuse it on a simpler problem with a completely different task drawn

from a different distribution. For example we pick the features of a machine built to classify images

of digits from 0-to-9 and reuse them to classify images of letters from a-to-z. Similar experiments

are conducted by reversing the role played by each problem (simpler to harder). In addition, we

also explore transfer learning between same task problems drawn from different distributions of

geometrical shapes. Processing large data as we did, on millions of neural connections, would take

several weeks using traditional CPUs. Instead, we used a GPU for faster processing of these large

networks and to allow repetitions of each experiment several times for statistical significance.

A deep model is trained on a source problem, and its features are transferred to help in solving

a target problem. We represent this feature transference by wwwk
S⇒ wwwk

T for k-th layer. Therefore we

explore feature transference in deep models either at the pre-training stage U(W), coined Transfer

Learning unsupervised (TLu), or at the fine-tuning stage S(W), coined Transfer Learning super-

vised (TLs).

1Some parts of this chapter are used in (Kandaswamy et al., 2014a) and (Kandaswamy et al., 2014b)

32 Layerwise Transfer Learning

Figure 4.1: Transfer learning unsupervised (TLu)

4.1.1 Transfer Learning unsupervised (TLu)

In the TLu approach the unsupervised features are transferred from the source to the target network

as depicted in Fig 4.1, TLu. As a first step we randomly initialize each layer of the network using

uniform distribution (Glorot et al., 2011):

wwwk = U

[
−
√

6√
Mk +Mk+1

,

√
6√

Mk +Mk+1

]
(4.1)

In second step we apply greedy layerwise pretraining to the network until K−1th hidden layer

U(www1
S, . . . ,www

K−1
S) using source data unlabelled samples as explained in Section 3.1.1.

U(www1
S, . . . ,www

K−1
S) (4.2)

In the third step we apply feature transference by mapping the pretrained source network

features to the target problem features as shown in eq. (4.3) and as depicted in Fig.4.1.

U(www1
S, . . . ,www

K−1
S)⇒{www1

T , . . . ,www
K−1
T } (4.3)

Once the features are transferred to the target network we apply fine-tuning as a regular deep

network as explained in Section 3.1.1. We add a logistic regression layer with cT number of

neurons, where cT is number of classes in the target dataset. The K-th layer weight matrix connects

the networks K− 1-th hidden layer to the logistic regression layer and the matrix dimension is

given by MK−1× cT .

wwwK
T = wwwK

{MK−1×cT } (4.4)

Finally, we fine-tune this entire deep network as a multi-layer perceptron using back-propagation

as given in eq.(4.5). The TLu approach is listed as approach number 9 in Table 4.1 and pseudocode

is given in Algorithm 2.

S(W) = S(U(www1
T , . . . ,www

K−1
T),wwwK

T) (4.5)

4.1 Layerwise Transfer Learning mechanism 33

4.1.2 Transfer Learning supervised (TLs)

Figure 4.2: TLs for “L1” feature transference approach.

Supervised features are transferred from the source to the target network as illustrated in

Fig 4.2. The TLs approach is similar to TLu approach. Here in TLs approach we transfer fine-

tuned source problem features instead of pre-trained features.

First, we randomly initialized source feature set as in eq.(4.1) and then pre-train the network

U(www1
S, . . . ,www

K−1
S) until the K− 1th hidden layer as in eq.(4.2). After pre-training, we fine-tuned

these unsupervised features with the source problem labeled instances as given in eq.(4.6), where

cS is number of source problem classes.

S(U(www1
S, . . . ,www

K−1
S),wwwK

S.{MK−1×cS}) (4.6)

Then we apply feature transference by mapping the fine-tuned source network features to the

target problem features based on transfer setting YS = YT or YS 6= YT .

In the case of YS 6= YT transfer setting could not reuse the logistic regression layer, as the label

set for the source problem ΩS with cS labels is not equal to the target problem label set ΩT with cT

labels. Thus the logistic regression layer was randomly initialized for the target problem. Then we

apply feature transference by mapping the fine-tuned source network features to the target problem

features as shown in eq.(4.7):

S(U(www1
S, . . . ,www

K−1
S))⇒{www1

T , . . . ,www
K−1
T } (4.7)

Once the features are transferred to the target network we apply fine-tuning as a regular deep

network as explained in Section 3.1.1. We remove the previous logistic regression layer if YS 6=YT

and add a new logistic regression layer. Finally, we fine-tune this entire deep network as a multi-

layer perceptron using back-propagation as given in eq.(4.8). This is listed as “FT” approach in

Table 4.1

S(WT) = S(S(U(www1
T , . . . ,www

K−1
T),wwwK

T)) (4.8)

34 Layerwise Transfer Learning

Table 4.1: Lists TLs, TLu Transfer Learning and Baseline Approach. An illustration of TLs with
all possible combinations for a 3 hidden layer network.

No. Approaches Feature Transference S(WT) =

1. FT S(U(www1
S, . . . ,www

K−1
S))⇒{www1

T , . . . ,www
K−1
T } S(S(U(WT)))

2. L1+L2+L3 S(U(www1
S,www

2
S,www

3
S))⇒ www1

T ,www
2
T ,www

3
T S(S(U(WT)))

3. L1+L3 S(U(www1
S,www

3
S))⇒ www1

T ,www
3
T S(S(U(WT)))

4. L2+L3 S(U(www2
S,www

3
S))⇒ www2

T ,www
3
T S(S(U(WT)))

5. L1+L2 S(U(www1
S,www

2
S))⇒ www1

T ,www
2
T S(S(U(WT)))

6. L3 S(U(www3
S))⇒ www3

T S(S(U(WT)))

7. L2 S(U(www2
S))⇒ www2

T S(S(U(WT)))

8. L1 S(U(www1
S))⇒ www1

T S(S(U(WT)))

9. TLu U(www1
S, . . . ,www

K−1
S)⇒{www1

T , . . . ,www
K−1
T } S(U(www1

T , . . . ,www
K−1
T),wwwK

T)

10. Baseline - S(U(www1
T , . . . ,www

K−1
T),wwwK

T)

In case of YS = YT we retrain logistic regression layer as shown in eq.(4.9) and its simplified

form is S(S(U(WT))):

S(U(www1
S, . . . ,www

K−1
S),wwwK

S)⇒{W} (4.9)

The TLs has 1 to 8 approaches as listed in Table 4.1 and pseudocode is given in Algorithm 2.

For example in approach number 8 listed as “L1” approach in Table 4.1, we transfer the first layer,

that is, S(U(www1
S))⇒ www1

T as illustrated in Fig.4.2 (L1 stands for Layer 1). Then we fine-tuned for a

second time the entire classifier like a regular multi-layer perceptron with back-propagation using

both design and label sets of the target problem.

Similarly, we can transfer the first and second layer features, that is, S(U(www1
S,www

2
S))⇒ www1

T ,www
2
T ,

listed as the “L1+L2” approach in Table 4.1. It was interesting to see that this opened up various

new combinations of supervised features to reuse for the target problem.

4.2 Layerwise Transfer Learning for SDA and CNN

Usually, in the feature transference, we transfer the features of a model from the source to the

target problem. In the Layerwise Transfer Learning (LTL) approach, we transfer either supervised

or unsupervised or low-level layer or high-level layer or combination of these features using LTL

as shown in Table 4.1 and pseudocode for baseline and LTL is shown in Algorithm 2.

Generic features or specific feature: The bottom-layer/ low-level features are referred to

as generic and the top-layer/ high-level features as specific. The in-between layers between the

bottom and top layer are the middle-level features. For example in a three hidden layer deep

network, bottom or L1 layer features are termed as generic features, middle or L2 layer features

are termed as middle-level features and top or L3 layer features are termed as specific features. The

4.2 Layerwise Transfer Learning for SDA and CNN 35

Figure 4.3: A pictorial representation of approaches: Pre-training (PT), Baseline (BL), Transfer Learning
unsupervised (TLu) and Transfer Learning supervised (TLs) with the option of lock or unlock for each layer

choice of whether or not to fine-tune the L1 layer of the target network depends on the number

of samples in the target dataset and also on network architecture (Kandaswamy et al., 2014b)

and (Razavian et al., 2014).

Locking or unlocking layers: Once the features are transferred to the target network, we

add a logistic regression layer for the target task YT . We have the choice to fine-tune this entire

network W as a multi-layer perceptron using backpropagation or lock a given layer (Yosinski

et al., 2014), (Kandaswamy et al., 2015b), meaning that the transferred feature from the source

network wwwk
S ⇒ wwwk

T do not change during the error propagation for the target task. This gives

the choice of whether or not to fine-tune certain layers of the target network. Locking a layer

dictates the splitting of inter-layer connections (co-adapted neurons) which leads to difficulty in

optimization (Yosinski et al., 2014).

For example, locking a middle-level (L2) layer in a three hidden layer deep net, breaks the

error backpropogation from the top (L3) to middle (L2) layer. The network weights between L2

and L3 has a matrix dimension is given by M2×M3 is as given in eq.(4.10).

www3
S = www3

{M2×M3} (4.10)

The weight matrix was optimized when trained with the source problem dataset also influences

the co-adaptation of neurons between L2 and L3. Locking the flow of gradient decent from L3 to

L2 during the backpropogation of error breaks the fragile co-adaptation of neurons between the

layers, this forces the network to shake the solution space from local minima to a new solution

space adaptable to the target problem promoting domain generalization.

The TLu and TLs leads to several possible approaches to solve a problem as shown in Fig. 4.3:

1) we can choose particular layer(s) of the network to be locked or unlocked, 2) we can choose to

transfer either generic, middle-level or specific features to the target network, 3) we can choose to

transfer either supervised or unsupervised features to the target network

The LTL approach enables the flexibility to adapt the mechanism based on the application.

36 Layerwise Transfer Learning

Table 4.2: Average classification test error in percentage (ε) obtained with the baseline approach
along with the corresponding average training times (seconds) with GTX 770.

Data set Labels Avg. Training Time (s)
Distribution Ω c ε Total Pre-train(%) Fine-tune(%)
Latin PL 0-to-9 Ω09 10 1.61±0.19 10698 40.0 60.0
Arabic PAr •-to-9 Ω•9 10 1.37±0.07 8051 20.7 79.3
Latin-2 PL2 0-to-9 Ω09 10 2.92±0.10 2347 28.1 71.9
Digits PD 0-to-9 Ω09 10 1.88±0.14 1010 34.6 65.4
Lowercase PLC a-to-z Ωaz 26 4.95±0.16 2997 43.6 56.4
Uppercase PUC A-to-Z ΩAZ 26 5.01±0.27 2567 34.7 65.3
Shape1 PA ’eqt’,’cir’,’sqr’ Ωsh1 3 7.88±0.93 3564 54.9 45.1
Shape2 PB ’tri’,’ell’,’rec’ Ωsh2 3 15.51±6.31 4095 60.5 39.5

For example, if a application needs supervised features from generic layer, we choose the L1

approach from Table 4.1. We transfer only layer one supervised features from source to target

network, S(U(www1
S))⇒ www1

T and then randomly initialize and fine-tune other layer feature set of

the target network, S(S(U(WT))). Similarly if we need both low-level and middle-level features

to transfer both we choose to transfer both first and second layer parameters i.e.,we choose the

L1+L2 approach S(U(www1
S,www

2
S))⇒ www1

T ,www
2
T .

We use following simplified notations to ease the readability of the text. We denote deep

network architecture as [L1,. . .,LK] with K− 1 hidden layers and the K-th layer is the logistic

regression layer (LR). We represent feature transference as ’1’ and not to transfer as ’0’ in the

transfer network architecture, similarly ’1’ represent unlocked layer and ’0’ represent locked layer

in the retrain network architecture. For example to denote network architecture for a three hidden

layer network as [L1,L2,L3,LR]. Here we transfer all the hidden layers only and do not transfer

LR layer of the source network to the target network, we denote the transfer network architecture

as [1 1 1 0]. To retain only the top and LR layer we denote the retrain network architecture as [0 0

1 1].

4.2.1 Network Architecture

Tuning hyper-parameters such as learning rate or setting the appropriate network architecture for

training the deep network is desirable but it is highly time consuming. For SDA model, we used

pre-training and fine-tuning learning rates of 0.001 and 0.1, respectively, taken from our previously

tuned models. The stopping criteria for pre-training was fixed to 40 epochs; stopping criteria for

fine-tuning was set to a maximum of 1000 epochs with the validation dataset. Each of these exper-

iments is repeated 10 times and Student t-test is performed to give some statistical significance.

We selected the network architecture inspired from the Convolutional Neural Network’s pyra-

midal structure for classification of visual patterns (LeCun et al., 1998). This enabled us to exploit

the geometrical properties of images. Given the number of inputs as 28×28 = 784 = 16×72 pix-

els, the number of neurons at each hidden layer is selected as a decreasing geometrical progression.

Thus, the number of neurons in the kth layer is given by Mk = 16(7− k)2. We represent the deep

4.2 Layerwise Transfer Learning for SDA and CNN 37

Algorithm 2 Pseudocode for baseline and Transfer learning approach
Baseline: Initialize randomly:
Given a two datasets DA and DB, Select a dataset and train the
network with input x
{Stage 1: Pretrain the Network}
build SDA by greedy layer
for K in number of hidden layers do

randomly initialize: W
{Build denoising autoencoder (dA)}
for each epoch in Pretraining do

Corrupt the input, x = x+noise
hidden layer = Sigmoid(wkx+bias)
reconstruct = Sigmoid((wk)T x+bias′)
minimize cross-entropy loss and update weight vector

end for
stack the dA’s

end for
{Stage 2: Fine-tune the Network}
add a logistic regression layer with Y labels
for each epoch in Fine-tuining do

backpropogate the errors
update the weights
calculate validation error on validation set
if best validation error < validation error then

update weights of the network
best validation error = validation error
calculate test error on test set
best test error = current error

end if
end for
error = best test error

Initialize with trained features DA:
Given a two datasets DA and DB, with tasks YA and YB,
Select DA dataset and train the network A as described on the
left side.
{Stage 1: Transfer the features}
Select a reuse mode: TLu or and TLs
Select which hidden layers to transfer
if YA 6= YB then

chop of the logistic layer
end if
for K in number of layers do

if layer = transfer then
if mode = TLu then

transfer unsupervised features
U(wk

A)⇒ wk
B

else if mode = TLs then
transfer supervised features
wk

A⇒ wk
B

end if
else if layer = no transfer then

randomly initialize weights wk
B

end if
end for
{Stage 2: Fine-tune the Network}
if YA = YB then

add a logistic regression layer with YB labels
end if
for each epoch in Fine-tuining do

backpropogate the errors
if lock is TRUE in each Layer then

no update of weights
else

update the weights
end if
calculate validation error on validation set
if best validation error < validation error then

update weights of the network
best validation error = validation error
calculate test error on test set
best test error = current error

end if
end for
error = best test error

network as [M1,M2,. . . , Mk, c], where c is the number of output labels. In the following experi-

ments the SDA network has three hidden layers and one output layer, or [16×62, 16×52, 16×42,

c] amounting to 784,384 connections. Moreover, the induced random corruption levels for each

of the three hidden layers inputs are [10%, 20%, 30%], respectively.

We used Theano (Bergstra et al., 2010), a GPU compatible machine learning library to perform

all our experiments on a i7-377(3.50GHz), 16GB RAM and GTX 770 GPU processor. Table 4.2

presents average test error rates of the Baseline SDA for each dataset along with the computation

time in seconds for the above defined network architecture. The GPU parallel processing allows

training both CNN’s and SDA’s deep neural networks with millions of neural connection, for very

small learning rate, for large number of epochs, for very large datasets within several days. Each

of these experiments are repeated 10 times to increase the confidence level of the results. The

hyperparameters for CNN used kernel filter size of [20, 50] and max training epochs of 200. The

learning rate of 0.1 is set with batch training of 100.

38 Layerwise Transfer Learning

Figure 4.4: A pictorial representation of labels are different TL setting YS 6=YT and PS (X) 6= PT (X) as the
Jensen-Shannon divergence (JSD) between the source and the target distribution is greater than 0.8

4.3 Results and Discussions

4.3.1 Problem Categorization

If a problem has higher classification error than another problem we categorize it as a harder

problem. Moreover, if the source problem is harder than the target problem we categorize the

transfer learning setting as Hard Transfer (HT). The reverse case, that is, when the roles of such

source and target problems are interchanged the transfer learning setting is categorized as Reverse

Transfer (RT). In the experiments we are interested solely in the case of different distributions of

the source and target datasets, PS (X) 6= PT (X).

4.3.2 TLu: Different label sets

In this section we study feature transference behavior of a machine trained on a harder problem

with our TLu approach using SDA model. For that purpose we have carried out experiments by

training a machine to classify images of handwritten digits (harder problem than synthetic digits)

and reusing unsupervised features to classify images of synthetic letters, as shown in Fig. 4.4.

We also performed experiments by reversing the problem roles: training a machine with simpler

problems like synthetic letters and reusing the features to classify harder problems like handwritten

digits. In both these studies, the label set ‘digits’ and the label set ‘letters’ are different, YS 6= YT .

4.3.2.1 Classifying letters reusing digits: HT

The goal is to classify images of synthetic letters by reusing unsupervised features of a machine

trained on a harder problem like handwritten digits from 0-to-9.

The performance of classifying letters reusing a machine pre-trained with digits is listed in

Table 4.3. The average error rate of recognizing uppercase letters, 4.31±0.61% by reusing a

machine pre-trained with Latin digits is significantly lower than baseline, 5.01±0.27%. Similar

results are obtained from recognizing the lowercase letters. In both cases the significance level

(5%) allows rejecting the null hypothesis of equal error rates.

4.3 Results and Discussions 39
Ta

bl
e

4.
3:

C
ha

ng
in

g
th

e
se

to
f

la
be

ls
Y S
6=

Y T
,Y

S
=

Y T
fo

r
ar

bi
tr

ar
y

di
st

ri
bu

tio
ns

P S
(X

)
6=

P T
(X

).
A

ve
ra

ge
cl

as
si

fic
at

io
n

te
st

er
ro

r
(%

)
(ε

)
ob

ta
in

ed
fo

r
a

ta
rg

et
pr

ob
le

m
us

in
g

T
L

u
ap

pr
oa

ch
fo

r
di

ff
er

en
t

co
m

bi
na

tio
ns

of
:

ta
rg

et
da

ta
di

st
ri

bu
tio

n
(P

T
);

ta
rg

et
la

be
l

se
t

(Ω
T

);
so

ur
ce

di
st

ri
bu

tio
n

(P
S)

;
so

ur
ce

la
be

ls
et

(Ω
S)

fo
rH

ar
d

an
d

R
ev

er
se

Tr
an

sf
er

pr
ob

le
m

s
us

in
g

SD
A

;T
he

di
ff

er
en

ce
be

tw
ee

n
di

st
ri

bu
tio

ns
is

gi
ve

n
by

K
ul

lb
ac

k-
L

ei
bl

er
(K

L
)a

nd
Je

ns
en

-S
ha

nn
on

(J
S)

di
ve

rg
en

ce
.

H
ar

d
Tr

an
sf

er
:H

ar
de

r⇒
Si

m
pl

er
R

ev
er

se
Tr

an
sf

er
:S

im
pl

er
⇒

H
ar

de
r

P S
Ω

S
P T

Ω
T

ε
K

L
JS

P S
Ω

S
P T

Ω
T

ε
K

L
JS

YS6=YT

B
L

P U
C

Ω
A

Z
5.

01
±

0.
27

..
B

L
P L

2
Ω

09
2.

92
±

0.
10

..
T

L
P L

2
Ω

09
P U

C
Ω

A
Z

4.
65
±

0.
19
⇑

49
.3

0.
99

T
L

P U
C

Ω
A

Z
P L

2
Ω

09
3.

34
±

0.
09
⇓

42
.2

0.
99

T
L

P L
Ω

09
P U

C
Ω

A
Z

4.
31
±

0.
16
⇑

32
.8

0.
79

T
L

P L
C

Ω
az

P L
2

Ω
09

3.
28
±

0.
10
⇓

42
.2

0.
99

T
L

P A
r

Ω
•9

P U
C

Ω
A

Z
4.

41
±

0.
22
⇑

48
.6

0.
99

B
L

P L
Ω

09
1.

61
±

0.
19

..
B

L
P L

C
Ω

az
4.

95
±

0.
16

..
T

L
P U

C
Ω

A
Z

P L
Ω

09
1.

81
±

0.
19
⇓

4.
3

0.
79

T
L

P L
2

Ω
09

P L
C

Ω
az

4.
67
±

0.
38
⇑

49
.3

0.
99

T
L

P L
C

Ω
az

P L
Ω

09
1.

79
±

0.
22
⇓

4.
5

0.
80

T
L

P L
Ω

09
P L

C
Ω

az
4.

37
±

0.
13
⇑

32
.6

0.
80

T
L

P A
r

Ω
•9

P L
C

Ω
az

4.
43
±

0.
11
⇑

48
.6

0.
99

B
L

P A
r

Ω
•9

1.
37
±

0.
07

..
T

L
P U

C
Ω

A
Z

P A
r

Ω
•9

1.
47
±

0.
08
⇓

22
.8

0.
99

T
L

P L
C

Ω
az

P A
r

Ω
•9

1.
49
±

0.
07
⇓

22
.9

0.
99

YS=YT

B
L

P D
Ω

09
1.

88
±

0.
14

..
B

L
P L

2
Ω

09
2.

92
±

0.
10

..
T

L
P L

2
Ω

09
P D

Ω
09

1.
79
±

0.
12
◦

44
.5

0.
99

T
L

P D
Ω

09
P L

2
Ω

09
3.

27
±

0.
16
⇓

43
.7

0.
99

T
L

P L
Ω

09
P D

Ω
09

1.
78
±

0.
21
◦

31
.9

0.
88

T
L

P A
r

Ω
•9

P D
Ω

09
1.

75
±

0.
21
◦

43
.9

0.
99

B
L

P L
Ω

09
1.

61
±

0.
19

..
T

L
P D

Ω
09

P L
Ω

09
1.

84
±

0.
26
⇓

43
.7

0.
99

B
L

P A
Ω

sh
1

7.
88
±

0.
93

..
T

L
P B

Ω
sh

2
P A

Ω
sh

1
7.

96
±

0.
93
◦

39
.4

0.
99

B
L

P A
r

Ω
•9

1.
37
±

0.
07

..
T

L
P D

Ω
09

P A
r

Ω
•9

1.
52
±

0.
07
⇓

24
.4

0.
99

B
L

P B
Ω

sh
2

15
.5

1±
6.

31
..

T
L

P A
Ω

sh
1

P B
Ω

sh
2

13
.0

8±
0.

58
◦

34
.2

0.
99

⇑,
⇓,
◦

st
at

is
tic

al
ly

si
gn

ifi
ca

nt
im

pr
ov

em
en

to
rd

eg
ra

da
tio

n
or

no
ch

an
ge

,r
es

pe
ct

iv
el

y,
th

an
ba

se
lin

e
at

5%
le

ve
l.

T
he

be
st

ε
ob

ta
in

ed
fo

ra
ta

rg
et

da
ta

se
ti

s
m

ar
ke

d
in

bo
ld

.

40 Layerwise Transfer Learning

Table 4.4: Average Test Error (%) (ε) of TLs approaches for Hard and Reverse Transfer problems
using SDA

Hard Transfer Reverse Transfer
Target: PUC PLC PA PL2 PL2 PB

Source: PL2 PL2 PB PUC PLC PA

Labels: YS 6= YT YS 6= YT YS = YT YS 6= YT YS 6= YT YS = YT

JS: 0.99 0.99 0.99 0.99 0.99 0.99
Approaches ε ε ε ε ε ε

FT 4.58±0.19 ⇑ 4.57±0.08 ⇑ 9.13±1.57 ⇓ 3.49±0.19 ⇓ 3.46±0.18 ⇓ 25.52±14.71 ⇓
L1+L2+L3 10.93±0.5 ⇓ 10.70±0.3 ⇓ 11.10±2.0 ⇓ 9.29±0.54 ⇓ 8.68±0.39 ⇓ 39.81±09.88 ⇓
L1+L3 5.28±0.16 ⇓ 5.31±0.18 ⇓ 5.23±1.45 ⇑ 4.14±0.24 ⇓ 4.14±0.15 ⇓ 20.34±16.42 ◦
L2+L3 5.41±0.25 ⇓ 5.61±0.11 ⇓ 9.94±2.54 ⇓ 4.40±0.13 ⇓ 4.36±0.12 ⇓ 26.27±15.47 ⇓
L1+L2 5.60±0.19 ⇓ 5.68±0.10 ⇓ 6.88±1.89 ⇑ 4.22±0.13 ⇓ 4.15±0.14 ⇓ 22.69±15.43 ◦
L3 4.81±0.30 ◦ 5.17±0.15 ⇓ 10.34±0.9 ⇓ 3.86±0.11 ⇓ 3.82±0.17 ⇓ 26.89±13.53 ⇓
L2 4.88±0.17 ◦ 4.95±0.13 ◦ 11.14±1.5 ⇓ 3.78±0.13 ⇓ 3.76±0.14 ⇓ 29.71±13.79 ⇓
L1 4.72±0.18 ⇑ 4.72±0.17 ⇑ 7.29±1.42 ◦ 3.59±0.14 ⇓ 3.59±0.19 ⇓ 23.96±15.45 ◦
Baseline 5.01±0.27 4.95±0.16 7.88±0.93 2.92±0.10 2.92±0.10 15.51±6.31
⇑, ⇓, ◦ statistically significant improvement or degradation or no change than baseline (at 5%

level). The best ε obtained for a target dataset are marked in bold.

Transference of unsupervised features of a machine trained on harder source problems like

handwritten digits improves the overall performance of simpler target problems. It is interesting

to note that the source trained problems are from totally different distributions.

4.3.2.2 Classifying digits reusing letters: RT

The goal is to study the transference behavior by reusing unsupervised features of a machine

trained on simpler problem. We simply reversed the roles of the source and target problems as

discussed in section 4.3.2.1. Here we consider a problem of classifying handwritten digits from

0-to-9 by reusing unsupervised features of a machine trained on simpler problem like synthetic

letters. We observed, that this approach had worst performance than the baseline. The results

are listed in Table 4.3 also with similar results in the case of Arabic digits. The study confirms

that the degrading performance is due to transference of unsupervised features trained on simpler

problems like synthetic letters.

4.3.3 TLu: Equal label sets

We have considered the problem of recognizing digits by reusing unsupervised features trained

with digits. Similarly, the problem of recognizing geometrical shapes by reusing unsupervised

features trained with canonical shapes is studied. In both cases the label sets are equal, YS = YT .

4.3.3.1 Canonical shapes as a subset of geometrical shapes: HT

Let’s consider a classification task to determine geometrical shapes from the Shape2 dataset having

triangles, ellipses or rectangles. This task has higher classification error than the Shape1 dataset

which is made up of canonical shapes of equilateral triangles, circles or squares. The classification

4.3 Results and Discussions 41

performance of the TLu approach for Shape1 by reusing Shape2 features is ε = 7.88±0.93%,

lower than the baseline 7.96±0.93% approach where there is not sufficient evidence to reject the

null hypothesis. The results are listed in Table 4.3.

4.3.3.2 Synthetic digits as a subset of handwritten digits: HT

The performance of recognizing synthetic digits by reusing unsupervised features trained with

either Latin-2, Latin or Arabic handwritten digits is listed in Table 4.3. We observe that the average

error rate of recognizing synthetic digits by reusing Latin-2 digits is 1.79±0.12% which is lower

than the baseline 1.88±0.14% approach. This result is supported by a similar result when reusing

Latin or Arabic digits. However, the differences are not statistically significant.

4.3.3.3 Handwritten digits as a superset of synthetic digits: RT

The recognition of Latin-2, Latin and Arabic digits reusing unsupervised features trained with

synthetic digits, is a reverse problem. We observe that the average error rate of recognizing Latin-

2 digits is 3.27±0.16% which is higher than the baseline 2.92±0.10% approach. This result

is supported by a similar result when reusing Latin or Arabic digits. In addition, we observe

degrading performance in the case of recognizing geometrical shapes by reusing unsupervised

features of canonical shapes. The degradation is statistically significant in all cases.

4.3.4 TLs

In this section we discuss the performance of the TLs approach both for hard transfer and reverse

transfer problems using SDA models. Eight different layerwise transfer settings were studied as

listed in the first column of Table 4.4 (see also Table 4.1) the values are marked bold when they

performed significantly better than the baseline.

4.3.4.1 Reuse supervised features for HT: Different Label sets

Let us consider a HT problem of unequal label sets, YS 6= YT drawn from different distributions.

For example, classifying images of lowercase letters from a-to-z by reusing supervised features of

handwritten digits.

In case of the “L1”, the average error rate of uppercase letters, 4.72±0.18% was significantly

lower than the baseline, 5.01±0.27%. Similar results are obtained for the lowercase letters. In both

cases the significance level allows rejecting the null hypothesis of equal error rates. We observe a

reduction in computation time with large standard deviation. That may be due to the fine-tuning

stopping criteria.

When reusing a single layer L1, L2 or L3, we observe that the features of the low-level/generic

layer lead to lower classification error. When reusing multiple layers L1+L2, L2+L3, L1+L3, we

observe that reusing L1+L3 performs better than the reuse of L1+L2 for both uppercase and low-

ercase datasets. Reusing all three layers L1+L2+L3 has degraded performance as the supervised

42 Layerwise Transfer Learning

features are well tuned for the source problem and fine-tuning only the logistic regression layer

does not compensate for good features for the target problem. Thus reusing higher layer (L3 of the

network) supervised features is not as good as reusing low-level/generic features layer (L1 layer

of the network) supervised features.

In the case of “FT”, the average error rate of uppercase letters is 4.58±0.19% and is signif-

icantly lower than the baseline 5.01±0.27%, with 54% speed up w.r.t the baseline a significant

reduction in average computation time. Similar results are obtained for the lowercase letters. In

both cases the significance level allows rejecting the null hypothesis of equal error rates.

4.3.4.2 Reuse supervised features for HT: Equal label sets

In the same way, let us consider a HT problem of equal label sets YS = YT drawn from different

distributions. For example, a problem of recognizing geometrical shapes by reusing supervised

features trained with canonical shapes. We observe performance improvement namely in case

of the “L1+L3”, ε= 5.23±1.45% was significantly lower than the baseline ε=7.88±0.93%. The

significance level allows rejecting the null hypothesis of equal error rates.

4.3.4.3 Reuse supervised features for RT

Let us now consider two problems: 1) Classifying digits by reusing supervised features of a ma-

chine trained with letters is a case of YS 6= YT , and 2) Classifying geometrical shapes reusing

supervised features of a machine trained with canonical shapes is a case of YS =YT . In both cases,

we observe degrading performance with respect to the baseline (negative feature transference) is

shown in Table 4.4 reverse transfer column.

Table 4.5: Average Test Error (%) (ε) by reusing harder problem Latin-2 for classifying either
Lowercase or Uppercase letters.

Approaches PLC PUC

ε Time(s) ε Time(s)
BL SDA 4.95±0.16 2997 5.01±0.27 2567
TL TLs:L1 4.72±0.17 2261 4.72±0.18 2515
TL TLu 4.67±0.38 1148 4.65±0.19 1498
TL TLs:FT 4.57±0.08 1020 4.58±0.19 1180

4.3.5 Layerwise Transfer Learning for CNN

In the following experiments we compare baseline (BL) and transfer learning supervised (TLs)

approaches classification error ε using test dataset, for different amounts of training samples per

class, N/c. Given a training, validation and test sets we can design a classifier, apply transference

using either CNN or SDA model to obtain test errors by following the procedure described in

Algorithm 3.

4.3 Results and Discussions 43

Algorithm 3 Experimental procedure.
Select a source DS and a target DT dataset ∈ (Latin or Arabic or Lowercase or Upper-
case). Both DS and DT dataset contains a subset of training, validation and test samples, i.e.,
(DS.train,DS.valid ,DS.test) and (DT.train,DT.valid ,DT.test) respectively.

Repeat the below experiment for for different fractions of whole training sample such that
N ∈ [100,250,500,1000,1320,2500,5000]:

1. Run the baseline approach;

2. Obtain a new DT.train. f rac by randomly picking N samples from the complete DT.train sam-
ples;

3. For each TL approach such that L∈ [L1,L1+L2, ...] from Table 4.1;

(a) Lock k-th layer of the network trained on DS;

(b) Retrain the network using DT.train. f rac except the k-th layer;

(c) Test the network using dataset DT , to obtain the classification error ε .

First we select a source and target dataset from any of the four datasets: Latin, Arabic, Lower-

case or Uppercase. We train the source dataset DS for each N samples that were randomly picked

from a set of different amounts of training samples [100,250,500,1000,1320,2500,5000]. In each

of this iteration; step (1) we run the baseline approach, step (2) we build DT.train. f rac by randomly

picking N samples. Finally, in step (3), we apply the various layer based feature transference

approaches as listed in Table 4.1.

4.3.5.1 Classifying digits reusing letters: RT

Let us consider a problem of classifying images of lowercase a-to-z by reusing supervised features

of digits 0-to-9. We train a CNN to solve Latin handwritten digits and reuse it to solve a Latin

synthetic characters without having to train it from scratch, is a case of reverse transfer learning

problem. We perform TLs approach by applying Algorithm 3 for classifying images of both

Lowercase and Uppercase Latin synthetic characters. The results are presented in Table 4.6.

From Table 4.6 we observe the classification results of single layer approach: L1, L2 or L3.

Reusing the low-level layer supervised features of Layer one (L1) not only performs better than

L2 and L3 but also performs better than the baseline approach. Except in case of classifying

uppercase characters using N/c = 1320, which rises the question that does the source model needs

more number of samples per class to classify, N/c = 5000. In that case the L1 approach performs

better than the rest of the approaches.

Performing TLs by transferring multiple layers at a time like L1+L2, L2+L3 or L1+L3, as

listed in Table 4.1 approach number 5, 4 and 3. We observe that reusing L1+L2 layers (lower-

level layers) perform better than reusing L1+L3 and L2+L3 for both uppercase and lowercase

datasets. This supports our previous conclusion that low-level layer features of L1 are better and

it would be better to use low and middle layers at the same time. We can also observe that the

44 Layerwise Transfer Learning

Table 4.6: Percent average classification test error (standard deviation) obtained for different ap-
proaches, dataset, and numbers N/c of design samples per class for layer based, supervised feature
transference for CNN model.

Approaches: PUC reuse PL PLC reuse PL

N/c: 1320 5000 1320 5000
L1+L2+L3 5.96(0.13) 5.32(0.18) 6.13(0.13) 5.63(0.15)
L1+L3 4.49(0.14) 4.24(0.10) 4.75(0.13) 4.57(0.09)
L1+L2 3.61(0.12) 3.39(0.12) 3.83(0.06) 3.63(0.13)
L3 4.30(0.13) 4.20(0.16) 4.62(0.18) 4.61(0.14)
L2 3.54(0.14) 3.43(0.06) 3.72(0.11) 3.58(0.15)
L1 3.43(0.11) 3.35(0.09) 3.64(0.06) 3.56(0.11)
BL 3.42(0.10) 3.42(0.10) 3.65(0.12) 3.65(0.12)

reusing multiple layers:L1+L2 features are better than reusing only middle (L2) or only top (L3)

layer features.

Finally, reusing all three layers: L1+L2+L3 has degraded performance as the complete super-

vised features are well tuned for the source problem and training only the logistic regression layer

has no improvement.

We observe from Table 4.6 and Table 4.7 that increasing the number of samples per class

improves the classification of uppercase characters with L1 features using CNN. Also Table 4.7

provides the comparison of classification results between both CNN and SDA (Kandaswamy et al.,

2014c) models.

4.3.6 Analysis of TLu and TLs for SDA model

Analyzing the results of the TLu and TLs approach, we conclude that the unsupervised feature

transference improves performance in the case of hard transfer problems. The TLs approach

performs better for hard transfer problems, when either using “L1” or “FT” approach. The “FT”

approach has the least classification error among all approaches.

To summarize, let us consider the problem of classifying images of either from a-to-z or from

A-to-Z (lowercase or uppercase) letters, using unlabeled images of the Latin digits from 0-to-9

of the Latin-2 dataset. To have a fair comparison we use the Latin-2 dataset, which has the same

number of instances as the lowercase or uppercase letters dataset. The Table 4.5 gives the summary

average error rates for the TLu and TLs approaches.

Analyzing the performance difference of transferring either Arabic or Latin dataset we con-

clude that even though both Arabic and Latin datasets are both handwritten digits with equal

number of instances, the average classification error rate of Latin is higher than Arabic dataset.

Thus, Latin is a harder problem than the Arabic dataset. We observe that the unsupervised fea-

tures trained with the Latin dataset and reused to classify lowercase dataset had lower ε error

than reusing features trained with the Arabic dataset. Similar results were observed in the case

of uppercase dataset, as listed in Table 4.3. We studied TLs approach between Arabic and Latin

4.3 Results and Discussions 45

0 1 2 3 4 5 6
Test Error rate (%)

Baseline

Arabic
 digits

Latin
 digits

Latin-2
 digits

(P
re

-t
ra

in
ed

 w
it

h)

1.88

1.75

1.78

1.79

4.95

4.43

4.37

4.67

5.01

4.41

4.31

4.65

0 500 1000 1500 2000 2500 3000 3500
Time (sec)

Baseline

Arabic
 digits

Latin
 digits

Latin-2
 digits

(P
re

-t
ra

in
ed

 w
it

h)

1011

282

171

225

2997

1753

844

1148

2567

2019

1279

1498

Synthetic digits
Lowercase letters
Uppercase letters

Figure 4.5: Comparison between TLu and baseline (dotted vertical line) for hard transfer prob-
lems. Top: Average test error rate (%) (ε) on Synthetic digits, Lowercase and Uppercase letters
datasets by reusing unsupervised features either from Arabic or Latin or Latin-2 dataset. Bottom:
Computational time for the same experiments, in seconds. Box whiskers are standard deviations.

datasets using CNN model (Kandaswamy et al., 2014a). The result supports our conclusion of

hard transfer performs better than reverse transfer.

On the other hand, both TLu and TLs show negative transference (degrading performance

with respect to the baseline) in the case of reverse transfer problems. It seems that the features

transferred from simpler problems to harder problems (from different distributions) are not well

suited for the target problem.

A graphical illustration of the performance of TLu and baseline approaches is shown in Fig.4.5

(hard transfer) and Fig.4.6 (reverse transfer). To highlight the differences, the baseline averages

are plotted as a dotted vertical line for each target problem. To summarize, the TLu approach

shows positive transference when the machine is trained on hard transfer problems but negative

transference when the machine is trained on reverse transfer problems.

46 Layerwise Transfer Learning

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Test Error rate (%)

Baseline

 Uppercase
 letters

Lowercase
letters

Synthetic
 digits

(P
re

-t
ra

in
ed

 w
it

h)

2.92

3.34

3.28

3.27

1.61

1.81

1.79

1.84

1.37

1.47

1.49

1.52

0 2000 4000 6000 8000 10000
Time(sec)

Baseline

 Uppercase
 letters

Lowercase
letters

Synthetic
 digits

(P
re

-t
ra

in
ed

 w
it

h)

660

716

694

379

4280

7486

8294

5120

1666

2380

1648

1834

Latin-2 digits
Latin digits
Arabic digits

Figure 4.6: Comparison between TLu and baseline (dotted vertical line) for reverse transfer prob-
lems. Top: Average test error rate (%) (ε) on Arabic, Latin and Latin-2 datasets by reusing unsu-
pervised features either from Synthetic digits or Lowercase or Uppercase letters dataset. Bottom:
Computational time for the same experiments, in seconds. Box whiskers are standard deviations.

4.3.6.1 Transference From Arabic digits to Latin digits and Vice-versa

We conclude that reusing L1 and L1+L2 perform better than other approaches for both upper-

case and lowercase datasets. To increase the confidence of the above conclusions we perform

experiment with different datasets by varying the number of samples per class on TL by applying

Algorithm 3.

We performed experiments to train a CNN with Latin digits and reuse it to classify Arabic

digits and reverse the role of source and target datasets. We observe that reusing the features

trained using Latin digits have better performance than reusing Arabic digits, as shown in Fig 4.7

and Fig 4.8.

4.3 Results and Discussions 47

Table 4.7: Percentage Average Error by reusing Latin at N/c = 1320

Approaches Lowercase Uppercase
Test Error % Test Error %

SDA BL 4.95±0.16 5.01±0.27
SDA L1 4.72±0.17 4.72±0.18
SDA PT 4.67±0.38 4.65±0.19
SDA FT 4.57±0.08 4.58±0.19
CNN L1+L2 3.83±0.06 3.61±0.12
CNN BL 3.65±0.12 3.42±0.10
CNN L1 3.64±0.06 3.43±0.11

100 250 500 1000 2500 5000
nds/c

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Te
st

 E
rr

or
 (

%
)

Xarabic (Baseline)
Xarabic reuse Xlatin [L1]
Xarabic reuse Xlatin [L1+ L2]

100 250 500 1000 2500 5000
nds/c

0
200
400
600
800

1000
1200
1400
1600
1800

 T
im

e
(s

ec
)

Xarabic (Baseline)
Xarabic reuse Xlatin [L1]
Xarabic reuse Xlatin [L1+ L2]

Figure 4.7: Classification results on MAHDBase dataset (Arabic digits) for feature transference
approach by reusing various layers, for different numbers N/c of training samples per class. Left:
Average classification test error rate. Right: Average time taken for classification.

100 250 500 1000 2500 5000
nds/c

0

1

2

3

4

5

6

7

Te
st

 E
rr

or
 (

%
)

Xlatin (Baseline)
Xlatin reuse Xarabic [L1]
Xlatin reuse Xarabic [L1+ L2]

100 250 500 1000 2500 5000
nds/c

0

200

400

600

800

1000

1200

1400

Ti
m

e
(s

ec
)

Xlatin (Baseline)
Xlatin reuse Xarabic [L1]
Xlatin reuse Xarabic [L1+ L2]

Figure 4.8: Classification results on MNIST dataset (Latin digits) for feature transference approach
by reusing various layers, for different numbers N/c of training samples per class. Left: Average
classification test error rate. Right: Average time taken for classification.

48 Layerwise Transfer Learning

4.4 Conclusions

We studied the performance of both unsupervised (TLu) and supervised (TLs) feature transference

approaches where the source and target instances were drawn from different distributions. The

results showed significant reduction in average error rate and computation time from the baseline

for hard transfer problems. In the TLu approach, we achieved a 7% improvement on accuracy

and 41% reduction on computation time for uppercase datasets. Similar results were observed in

lowercase datasets. Subsequently, in TLs approach we achieved lower average error rates than

the baseline. The best result was obtained for TLs:FT approach in which we reused the three

supervised hidden layers of the source problem for solving the target problem and it resulted in

a 54% speed up w.r.t the baseline. We observed that features trained on harder problems are

generic and are able to adapt better to the target problem than ones trained on simpler problems.

In addition, by transferring features from geometrical shapes to canonical shapes, we achieved

a 7.4% relative improvement on the average error rate in the TLs approach. We also observed

negative transfer learning (performance degradation) in both approaches for reverse transfer cases

drawn from different distributions.

We proposed a layer based feature transference approach that supports standard neural net-

works like CNN and SDA for solving hard transfer and reverse transfer learning problems. By

transferring either low-level or high-level layer features on machines trained either in unsuper-

vised or supervised fashion. Using this approach we achieved performance improvement with

significant reduction in computation times and also decreased the classification error rate. We

achieved significant performance by transferring learning from source to target problem, by using

low-level layer features trained in supervised fashion in the case of CNN’s and high-level layer

features trained in a unsupervised fashion in the case of SDA’s.

In some cases a feature transference of large labeled data collection is cheaper than collecting

and labeling data for the new problem. The lower cost may be due to the fact that the unlabeled

and/or labeled data from a related problem are in abundance. As a consequence of these advantages

of LTL, we have applied it in practical application covering a broad range of problems. In Chapter

7, LTL is applied to the analysis of breast cancer cell for drug discovery and in Chapter 8, LTL is

applied for the identification of persons using the periocular region.

As already indicated, however, LTL has its limitations. One practical limitation is that the

source problem need to be harder than the target problem especially for character and object

recognition tasks. The solution to this challenge is beyond the state-of-the-art of deep transfer

learning methods. It would be interesting for future research to examine ways to avoid negative

transference of features for improving classifier performance. Consequently, in Chapter 5 and

Chapter 6 we investigate the above discussed challenges.

Source-Target-Source 49

Chapter 5

Source-Target-Source 1

5.1 Source-Target-Source mechanism

We propose a STS approach 2. The main idea of transfer learning is that the knowledge (features)

learnt in a source domain provide a good initialization for the learning task in a target problem,

better than starting the learning in the target domain at random (likely to get stuck in a poor local

optimum). In here we propose to iterate the learning between both domains. The intuition is that,

like in typical metaheuristics in optimization (i.e. tabu search and simulated annealing), moving

the learning from one domain to the other will ‘shake’ the current local optimal solution, allowing

us to keep exploring the space of solutions (ideally, allowing us to reach a better solution in the

process). Likewise the metaheuristics in optimization, we keep track of the solutions reached in

each iteration, and the outputted solution is the best of all. The pseudo-code for the STS process

is listed in Algorithm 4.

5.2 Multi-source Source-Target-Source mechanism

We extend the STS methodologies by reusing knowledge learnt by a model from training on mul-

tiple sources. In recent years, two different approaches have attempted to account for the reuse of

multiple sources for TL: a) Lifelong Learning (Thrun, 1998) and b) Multitask Learning (Caruana,

1997). Both approaches are based on specific TL scenarios and assume that the data and the tasks

are related.

Both Lifelong Learning and Multitask Learning approaches suffer from some limitations. For

example, if two tasks are negatively correlated, the learning process will cause degradation of the

generalization performance of both tasks. In order to avoid such issues, a strong task selection is

required in order to restrain the application of such methods to a limited set of positively correlated

problems. The Multi-Source Source-Target-Source (MS-STS) approach improves generalization

performance over multiple problems, with no need for prior task selection.

1Some parts of this chapter are used in (Kandaswamy et al., 2015b)
2The naming ‘source’ and ‘target’ is some what misleading in our learning framework.

50 Source-Target-Source

Algorithm 4 Pseudocode for STS
1: Initialize with trained features DT :
2: Two datasets DS and DT , with tasks YS and YT are drawn from PS and PT distributions.
3: Select DS dataset to train
4: baseline: train network A as shown in the baseline approach
5: Set value to max cycles
6: list of max cycles errors to zero
7: for R in max cycles do
8: transfer: transfer features from network A to new network B as shown in the transfer

learning approach
9: update errors list with best test error

10: if cycle = odd number then
11: STS R = test error for Dataset DS

12: else
13: STS R = test error for Dataset DT

14: end if
15: if error < avg(errors list) then
16: BREAK
17: end if
18: Switch between dataset DS and DT

19: end for

The MS-STS approach is briefly explained along with the pseudocode in Algorithm 5. Given

a pool set containing multiple datasets from a similar problem for solving a particular application,

Pool = {DA,DB, . . . ,DZ} drawn from PA(X),PB(X), . . . ,PZ(X) distributions respectively, where Z

is number of datasets. We select a deep neural network architecture and initialize the weights

of the each layer of the network using uniform distribution under the limits as shown in Step 1

of Algorithm 5. Initializing the weights through this method narrows down the gradient search

parameter thus speeding up the training of the network Glorot et al. (2011). Heuristically, we set

max number of cycles R = 10 and can vary depending on the nature of the problem. In step 2,

we select a desired target dataset DdT from the Pool for which we intend to have the best overall

accuracy. During each of R cycles a target dataset DT is selected among the pool of datasets for

which we apply deep transfer learning approach as discussed in Section 4.1.2 and Source-Target-

Source approach as discussed in Kandaswamy et al. (2015b) by selecting layers to transfer and/or

to lock in the new network.

The new network is trained and tested as regular deep network for the selected DT . A list of

best accuracies for each cycle is maintained for every dataset in the pool. If the current cycle test

accuracy for the desired target dataset DdT is greater than the average of top 3 best test accuracy

for the desired target dataset DdT . We break the cycle and store the final weights of the network.

The training and testing serially on multiple datasets improves the domain generalization property

on the approach and focusing on desired target dataset helps improve the domain specialization

property also, with higher focus and performance on the first of such properties.

It is necessary here to clarify exactly what is meant by Multi-source Source-Target-Source

5.3 Experimental Setup and Results 51

Algorithm 5 Pseudocode for MS-STS
1: Randomly initialize the weights of every layer of the network using uniform distribution:

wk ∼U
[

−
√

6√
Nk+Nk+1

,
√

6√
Nk+Nk+1

]
2: select a desired target dataset DdT from the Pool = {DA,DB, . . . ,DZ}.
3: for r in R cycles do
4: for p in Pool do
5: DT = p {set p as target dataset}

{transfer features to new network as discussed in the transfer learning approach Kan-
daswamy et al. (2015b) and select which of the layers to transfer and which of the layers
to lock, out of K layers}

6: for k in K do
7: wk

S⇒ wk
T {transfer selected layers}

8: wk
S m wk

T {lock selected layers}
9: end for

10: train and test the new network with DT

11: update the test accuracy list
12: if accuracy of DdT > avg(top 3 best test accuracy in DdT accuracy list) then
13: BREAK
14: end if{Continue MS-STS step 3 till global optima is reached for the DdT .}
15: end for
16: end for

(MS-STS) as all of the above mentioned methods also use multiple sources to train the network.

MS-STS proposes to extend the established STS methodology with multiple sources instead of

only single source. The intuition is that, providing multiple initialization points for exploring the

space for optimal solution may allow us to reach a better solution. The search may increase the

computational cost.

We explore the MS-STS to improve generalization over multiple problems, not just one prob-

lem. This approach has both the ability of domain generalization and domain specialization prop-

erties, where in it has higher performance for task solved in perspective of domain generalization

properties.

5.3 Experimental Setup and Results

Training Deep Neural Network: The network we used in character recognition experiments

had three hidden layers with [576, 400, 256] units and the networks used in object recognition

experiments also had three hidden layers with [100, 200, 300] units. Both networks have an output

layer appropriate to the number of classes being considered. All hidden layers were pre-trained

as denoising autoencoders via gradient descent, using the cross-entropy cost and a learning rate

of 0.001. Pre-training ran for a minimum of 50 epochs in the case of character recognition tasks,

and for a minimum of 60 epoch when using object recognition tasks. The complete networks

were fine-tuned via gradient descent, using the cross-entropy cost and a learning rate of 0.1. The

52 Source-Target-Source

fine-tuning ran until the validation error did not decrease below 0.1% or until 1000 epochs for all

tasks. Our code for experiments was based on the Theano library 6 and ran with the help of a GTX

770 GPU.

5.3.1 Transferring specific features Vs. generic features for STS approach

In this experiment, we intentionally set adverse configurations for feature transference, to study

the two main causes of negative feature transference. First, by transferring specific features on

tasks that are different, YS 6= YT we focus on feature specialization in tasks 1 to 4 as listed in

Table 5.1. Second, by transferring generic features on distributions that are similar, we focus on

splitting of co-adapted neurons between layers in tasks 5 & 6 in Table 5.1. Here we study the

effects of negative feature transference problems with few training samples.

First, we study the effects of transferring specific features on character recognition problem.

In Table 5.1 for TLu and TLs approach, tasks 1 & 2 have shown negative transference for classi-

fying handwritten digits PL by reusing source network PLC and PUC. Tasks 3 & 4 show positive

transference for classifying either PLC and PUC by reusing source network PL training on complete

data. We observe for tasks 1 to 4 that STS outperforms other approaches for few target samples.

In tasks 1 & 2, STS outperforms BL with a relative improvement of≈59% and in tasks 3 & 4 STS

shows ≈30% improvement for 0.05% of target data. Fig 5.1. illustrates the relative improvement

performance of BL, TLu, TLs and STS approaches for tasks 1 & 2.

Second, tasks 5 & 6 analyse the effects of transferring generic features on object recognition

problems as shown in Table 5.1. Intuitively canonical objects are a subset of non-canonical objects

(equilateral triangles are a subset of triangles), thus PSh1 ⊆ PSh2. The number of categories to

classify in source and target tasks are equal YS = YT , thus the only change is due to splitting of

co-adapted neurons between the layers while fine-tuning, as we have forced to lock the bottom

layer, making the optimization harder. cBL, TLu and TLs approaches show negative transference

as intended. As solving non-canonical objects is more difficult than solving canonical objects

(Kandaswamy et al., 2014c), with STS we observe a relative improvement of ≈81% for the same

task using 0.05% of total training data the baseline approach performs better when using complete

training data. Fig 5.2. shows the non-canonical task features for BL, cBL, TL and STS approach

using 0.05% of total training data.

To solve for the complete target data using STS, we implement repeating several cycles of STS

(see Algorithm 4) till a certain stopping criteria is reached. We observe significant improvements

using STS over both positive and negative transferred features using TLs as listed in Table 5.2.

5.4 Conclusions and discussion

Our experiments with the character and object recognition tasks show that a deep neural network

learns a new task more quickly and accurately using transfer learning. Unfortunately, they are

unreliable for different source and target distributions, because sometimes they lead to negative

5.4 Conclusions and discussion 53

Figure 5.1: (Left:) Relative improvement over baseline approach for character recognition tasks 3 & 4
as listed in Table 5.1; (Right:) Relative improvement for the tasks on the left, the regions are enclosed to
observe relative improvement between two different approaches. We observe negative transference for TLs
(supervised) approach as it gets stuck at local solution space of specialized features. TLu (unsupervised)
approach easily recovers the fragile co-adapted neurons as the unsupervised features are not target specific.
Also TLu improves over the baseline for complete training data. STS approach as intended shake the current
local optimal solution, thus overcoming the specialized features of source network unlike TLs approach.
The STS shows performance improvement, but unable to recover the fragile co-adapted neurons thus using
complete target data, had lower performance than TLu and baseline.

Figure 5.2: Feature samples from first layer of non-canonical object recognition task. We observe the
transition of same features becoming more distinct, from BL towards STS approach are marked in red
circle and from TLs towards STS marked in blue box.

54 Source-Target-Source

Table 5.1: Comparison of percentage average error rate (ε) for BL, cBL, TLu, TLs and STS approach for
different ratios of target data (PT) reusing source (PS) distribution. Tasks 1 to 4 study specific feature transfer
on character recognition problem and tasks 5 & 6 study generic feature transfer on object recognition
problem.

Approach Ratio of total number of training samples
PT PS 0.05 0.1 0.2 0.3 0.4 0.5 1 #

C
ha

ra
ct

er
s

Ta
sk

s
ar

e
di

ff
er

en
t

BL PL 6.4 (0.1) 4.7 (0.1) 3.3 (0.1) 2.7 (0.2) 2.3 (0.0) 2.3 (0.4) 1.5 (0.1)
TLu PL PLC 7.4 (0.2) 5.3 (0.1) 3.8 (0.2) 3.5 (0.7) 2.7 (0.2) 2.5 (0.2) 2.3 (0.0) 1
TLs PL PLC 7.4 (0.1) 5.8 (0.2) 4.6 (0.2) 3.7 (0.0) 3.2 (0.2) 2.9 (0.1) 2.1 (0.1)
STS PL PLC 2.6 (0.1) 2.1 (0.0) 2.0 (0.1) 1.9 (0.1) 1.8 (0.0) 1.7 (0.1) 1.5 (0.0)
BL PL 6.4 (0.1) 4.7 (0.1) 3.3 (0.1) 2.7 (0.2) 2.3 (0.0) 2.3 (0.4) 1.5 (0.1)
TLu PL PUC 7.4 (0.3) 5.6 (0.6) 4.0 (0.2) 3.1 (0.1) 2.8 (0.2) 3.0 (0.5) 2.1 (0.3) 2
TLs PL PUC 7.6 (0.3) 5.8 (0.2) 4.4 (0.2) 3.5 (0.0) 3.1 (0.0) 2.7 (0.0) 2.0 (0.1)
STS PL PUC 2.4 (0.0) 2.2 (0.2) 1.9 (0.0) 1.7 (0.1) 1.7 (0.1) 1.6 (0.1) 1.5 (0.0)
BL PLC 17.1 (0.1) 13.3 (0.2) 10.8 (0.1) 9.5 (0.1) 8.4 (0.1) 7.7 (0.6) 4.8 (0.1)
TLu PLC PL 17.1 (0.6) 13.8 (0.6) 10.9 (0.2) 9.2 (0.4) 8.2 (0.4) 7.2 (0.2) 4.7 (0.2) 3
TLs PLC PL 18.9 (0.2) 14.6 (0.8) 11.3 (0.2) 9.6 (0.2) 8.7 (0.4) 7.5 (0.2) 5.3 (0.3)
STS PLC PL 12.3 (0.3) 9.7 (0.0) 8.5 (0.6) 7.2 (0.4) 6.7 (0.2) 6.0 (0.1) 5.0 (0.2)
BL PUC 16.2 (0.2) 12.9 (0.2) 10.4 (0.2) 9.1 (0.1) 8.5 (0.7) 7.3 (0.5) 4.9 (0.2)
TLu PUC PL 15.9 (0.3) 13.2 (0.4) 10.8 (0.3) 9.1 (0.3) 8.0 (0.1) 7.4 (0.3) 4.6 (0.1) 4
TLs PUC PL 16.5 (0.3) 13.6 (0.5) 10.8 (0.2) 9.2 (0.2) 8.5 (0.2) 7.4 (0.1) 5.0 (0.2)
STS PUC PL 10.8 (0.4) 9.1 (0.1) 7.8 (0.2) 6.8 (0.1) 6.6 (0.1) 6.1 (0.1) 4.7 (0.1)

O
bj

ec
ts

Ta
sk

s
ar

e
si

m
ila

r

BL PSh2 37.9 (10.2) 36.6 (4.8) 25.1 (3.6) 16.9 (9.6) 14.7 (7.8) 11.9 (7.1) 4.2 (2.3)
cBL PSh2 PSh1 28.7 (6.3) 13.6 (2.2) 12.6 (10.4) 9.9 (8.0) 6.6 (3.0) 13.0 (8.4) 10.6 (6.7) 5
TLs PSh2 PSh1 32.3 (2.3) 32.0 (3.3) 30.7 (4.1) 26.9 (1.7) 26.4 (1.9) 27.0 (1.3) 24.0 (0.3)
STS PSh2 PSh1 7.7 (2.6) 6.2 (2.4) 5.9 (3.5) 5.4 (3.1) 5.3 (2.6) 5.0 (3.0) 5.2 (2.2)
BL PSh2 37.9 (10.2) 36.6 (4.8) 25.1 (3.6) 16.9 (9.6) 14.7 (7.8) 11.9 (7.1) 4.2 (2.3)
cBL PSh2 PSh3 31.0 (1.8) 30.5 (8.8) 18.4 (11.3) 20.0 (11.2) 5.6 (1.7) 12.4 (7.6) 8.9 (6.6) 6
TLs PSh2 PSh3 25.0 (3.3) 20.7 (1.8) 18.4 (2.0) 18.4 (1.1) 16.8 (1.8) 17.2 (1.7) 15.5 (2.5)
STS PSh2 PSh3 6.1 (2.3) 5.9 (2.7) 5.8 (2.6) 4.9 (2.1) 5.0 (2.2) 5.7 (3.0) 5.6 (2.6)

feature transference. The STS algorithm was designed to avoid negative transfer, since by recov-

ering fragile co-adapted interactions of neurons between the layers.

We make several contributions as listed:

1. The STS approach outperforms both baseline and other transfer learning approaches.

2. We studied TLu and TLs approach for both transferring generic features on distributions

that are similar and transferring specific features on tasks that are different. The study

demonstrated the flexibility of these two approaches for solving applications that had certain

constrains.

3. We studied the impact of splitting of co-adapted neurons and it efficiently improved the

domain generalization capability of the network.

4. Finally, using the cyclic STS approach reduced the transferability gap(the ratio of source

error rate over target error rate) between the source and the target tasks. We summarize that

the STS outperforms both the baseline and the transfer learning approaches.

Even though the cyclic STS reduced the transferability gap between the source and the target

tasks, a pattern is observed when the initial transference was negative. In the negative transference

case of cyclic STS, we observe the odd cycles performing better than the even cycles. Iteratively

5.4 Conclusions and discussion 55

Table 5.2: Comparison of positive vs. negative transference using complete target data and retraining all
layers; Performance is measured using percent average test error (ε) with 10 repetitions; TLs shows positive
transference for classifying MNIST PL reusing Lowercase PLC same as Task 1. And negative transference
for classifying PLC reusing PL, same as Task 3. In both cases iteratively repeating STS outperforms both BL
and TLs approaches.

Iterative STS -ve transference +ve transference
DB DA ε DB DA ε

BL DA PLC PL 1.7 (0.3) PL PLC 4.9 (0.2)
TLs DB⇒ DA PLC PL 1.9 (0.2) PL PLC 4.5 (0.2)

STS1 DA⇒ DB⇒ DA PLC PL 1.6 (0.1) PL PLC 4.9 (0.1)
STS2 DB⇒ DA⇒ DB⇒ DA PLC PL 1.9 (0.1) PL PLC 4.4 (0.2)
STS3 DA⇒ DB⇒ DA⇒ DB⇒ DA PLC PL 1.6 (0.1) PL PLC 4.9 (0.1)
STS4 DB⇒ DA⇒ DB⇒ DA⇒ DB⇒ DA PLC PL 1.9 (0.1) PL PLC 4.5 (0.2)
STS5 DA⇒ DB⇒ DA⇒ DB⇒ DA⇒ DB⇒ DA PLC PL 1.5 (0.1) PL PLC 5.0 (0.1)

switching the training between the source and the target did not sufficiently perturb the solution

out of local minima to a new solution space.

56 Source-Target-Source

Deep Transfer Learning Ensemble 57

Chapter 6

Deep Transfer Learning Ensemble 1

We propose a Deep Transfer Learning Ensemble (DTLE) where we combine the main advantage of

deep transfer learning with traditional ensemble learning. DTL offers generic source domain fea-

tures as a good initialization for the target problem, which is better than random initialization. Like

in a traditional ensemble, the various transfer and/or retrain conditions of DTL combine to provide

a committee of decision makers for the ensemble, where in the DTL model may transfer features

from both the source domains. Numerous empirical and theoretical studies have demonstrated that

ensemble (committee) models often obtain higher accuracy than single models (Kuncheva, 2004).

Figure 6.1: A pictorial representation of Ensemble of Deep Transfer Learning.

The overall framework of DTLE depicted in Fig. 6.1, employs a deep model learnt on the

source domain and applies DTL with various conditions, like transfer hidden layers (transfer or

randomly initialize), and then retrains (locks or unlocks) the network on the target domain. The

DTLE also computes posterior probabilities PT (y|x) for each of the DTL models for the target

task. The class probabilities are obtained using the average of all posterior probabilities PT (y|x)
of every model. The models are trained on baseline method (BL) using the standard deep learning

and deep transfer learning approaches.

The bottom-layer features are referred to as general and the top-layer features as specific.

The pseudo-code for the DTLE process is listed in Algorithm 6, as a study of the two following

1Some parts of this chapter are used in (Kandaswamy et al., 2015a)

58 Deep Transfer Learning Ensemble

conditions of feature transference: 1) transfer specific features, and 2) retrain specific features. In

retrain specific features the condition dictates the splitting of inter-layer connections (co-adapted

neurons) which leads to difficulty in optimization (Yosinski et al., 2014)).

Notations: We use following simplified notations to ease the readability of the text. We

denote deep network architecture as [L1,. . .,LK] with K− 1 hidden layers and the K-th layer is

the logistic regression layer (LR). We represent feature transference as ’1’ and not to transfer as

’0’ in the transfer network architecture, similarly ’1’ represent unlocked layer and ’0’ represent

locked layer in the retrain network architecture. For example to denote network architecture for a

three hidden layer network as [L1,L2,L3,LR]. Here we transfer all the hidden layers only and do

not transfer LR layer of the source network to the target network, we denote the transfer network

architecture as [1 1 1 0]. To retain only the top and LR layer we denote the retrain network

architecture as [0 0 1 1].

Algorithm 6 Pseudocode for DTLE
1: Initialize with trained features DS:
2: Given two datasets DS and DT , with tasks YS and YT , drawn from PS and PT distributions.
3: Let the total number of models in the ensemble be R

{Select type of TL interaction to evaluate}
4: if evaluate == co-adapted interactions then
5: R = possible combination of retrained layers
6: else if evaluate == generic vs. specific then
7: R = possible combination of transferred layers
8: end if
9: baseline: Train network A using source dataset, DS as shown in the baseline approach.

10: for each model R in the ensemble of TL do
11: transfer: transfer features from network A to new network B as shown in the transfer

learning approach
12: Compute posterior probabilities PT (y|x) for target dataset, DT .
13: end for

{Combine all the posterior probabilities PT (y|x) of each model, R}
14: Compute y = argmax ∑Ri∈R PT (y|x)

6.1 Experimental setup and Results

Training Stacked denoising autoencoders: The network we used in character recognition exper-

iments had three hidden layers with [576, 400, 256] units, batch size of 100 and pre-training ran

for a minimum of 25 epochs. The networks used in object recognition experiments also had three

hidden layers with [100, 200, 300] units, batch size of 300 and pre-training ran for a minimum of

10 epochs. All hidden layers were pre-trained as denoising autoencoders via gradient descent, us-

ing the cross-entropy cost and a learning rate of 0.001. The complete networks were fine-tuned via

gradient descent, using the cross-entropy cost and a learning rate of 0.1. The fine-tuning ran until

the validation error did not decrease below 0.1% or until 1000 epochs for all tasks. Our code was

6.1 Experimental setup and Results 59

based on the Theano library 6 and ran with the help of a GTX 770 GPU. To determine if a result

is statistically significant over ten repetition of each experiment, we used paired student t-test to

calculate a p-value, which is the probability of observing an effect given that the null hypothesis

is true. We marked each result in Table 6.1, with ’*’ when the result was statistically significant,

i.e., if an observed p-value is lower than 0.01 (1%).

6.1.1 Retrain specific DTL

In this section, we study retrain specific DTL (DTLr). In this condition of DTL, we transfer all

the hidden layers of the source network to the target network, i.e., transfer [1 1 1 1] and retrain

only unlocked layers marked as ’1’, for example retrain [0 0 1 1]. We study the fragile splitting of

the co-adapted neurons caused due to locking of the layer, thus stopping learning in that selected

hidden layer of the target network. This avoids overfitting of the network for the target task.

Generally the features of the lower layers of the network are generic therefore they can be

used to solve a broader spectrum of problem. The higher layer features are specific to the task the

network was trained. We would like to re-utilize the generic features of the source network and

retrain the transferred network for target specific task. In this section, we study suitable conditions

such that we obtain positive transference retraining only specific layers of the target network.

We observe a consistent improvement in DTLr across all the cases of transfer learning for the

condition: transfer = [1111] & retrain = [1111]. We conclude that this is due to two main reasons:

1) the transferred layer weights are better than random initialization and, 2) retraining the network

without locking any layer improves the chances of better generalization.

We observe statistically significant result for all conditions of DTLr except for transfer =

[1111] & retrain = [0001]. This still offer good generalization compared to random initialization,

but is lower than in other transfer conditions.

Ensemble of 4 DTLr models gives retrain specific DTLE (DTLEr). We observe better average

accuracy than BL and DTLr conditions and results are shown in Table 6.1. We perform paired

student t-test comparing the accuracy results DTLEr with accuracy results of DTLr.

6.1.2 Transfer specific DTL

In this section, we study Transfer specific DTL (DTLt). In this condition of DTL, we transfer

only specific layers of the source network to the target network, for example transfer [0 0 1 1] and

retrain all the layers, i.e., retrain [1 1 1 1]. We study the generic versus specific feature transference

due to transferring of the layer, thus reusing the features for the target task. This not only speeds

up the training but also improves the accuracy of the network.

We observe that DTLt performs better than BL, even for condition when only the logistic

regression layer is transferred and retaining the whole target network with backpropagation algo-

rithm as shown in Table 6.1.

Ensemble of 4 DTLt models gives transfer specific DTLE (DTLEt). We observe better aver-

age accuracy than BL and DTLt conditions as shown in Table 6.1.

60 Deep Transfer Learning Ensemble

Table
6.1:Percentaverage

classification
accuracy

obtained
forallthree

possible
transferlearning

cases;6
differentexperim

ents
are

perform
ed

on
three

differenttypes
oftasks

i.e.,character,objectand
biom

edicalim
age

recognition;W
e

com
pare

established
fram

ew
orks

i.e.,B
aseline

(B
L

),retrain
specific

D
T

L
(D

T
L

r),and
transfer

specific
D

T
L

(D
T

L
t)

w
ith

our
approach,retrain

specific
D

T
L

E
(D

T
L

E
r),transfer

specific
D

T
L

E
(D

T
L

E
t),and

E
nsem

ble
ofD

T
L

(D
T

L
E

);the
difference

betw
een

tw
o

datasets
distribution

and
is

given
by

Jensen-Shannon
divergence

(JSD
)

M
arginal

P
S (X

)6=
P

T
(X

)
P

S (X
)
=

P
T
(X

)
P

S (X
)6=

P
T
(X

)
L

abels
Y

S
=

Y
T

Y
S 6=

Y
T

Y
S 6=

Y
T

T
L

case
I

II
III

E
xperim

ent
1

2
3

4
5

6
Source

N
on-C

anonical
M

N
IST

N
on-C

anonical
C

O
M

P
M

N
IST

M
N

IST
Target

C
anonical

D
igit

C
urve

&
corner

M
O

A
L

ow
er

U
pper

JSD
0.99

0.99
0

0
0.80

0.79
A

pproaches
Avg

A
cc

Avg
A

cc
Avg

A
cc

Avg
A

cc
Avg

A
cc

Avg
A

cc
B

L
99.49(0.32)

97.74(0.09)
98.35(0.27)

96.38(0.5)
94.34(0.13)

94.93(0.13)

R
etrain

Specific
D

T
L

D
T

L
r

transfer
retrain

[1111]
[1111]

99.51(0.17)
97.92(0.27)*

99.00(0.46)
97.54(0.40)*

94.71(0.22)*
94.94(0.23)*

[1111]
[0111]

96.92(1.72)*
98.06(0.17)*

97.06(1.47)*
98.07(0.18)

94.52(0.24)*
94.74(0.15)*

[1111]
[0011]

96.60(1.64)*
98.14(0.18)*

96.79(1.53)*
98.23(0.17)

93.92(0.29)*
94.10(0.15)*

[1111]
[0001]

95.78(1.91)*
97.36(0.51)*

96.46(1.68)*
98.16(0.22)

89.36(0.83)*
89.57(0.99)*

D
T

L
E

r
99.57(0.13)

98.62(0.14)
99.27(0.31)

98.24(0.27)
95.11(0.18)

95.38(0.18)

Transfer
Specific

D
T

L

D
T

L
t

transfer
retrain

[1111]
[1111]

99.51(0.17)*
97.93(0.27)*

99.00(0.46)*
97.54(0.40)

94.71(0.22)
94.94(0.23)*

[0111]
[1111]

99.73(0.12)*
97.09(0.34)*

99.60(0.16)*
96.76(1.22)

92.80(0.26)*
93.96(0.15)*

[0011]
[1111]

86.83(17.26)
97.29(0.30)*

68.81(5.71)
96.71(0.46)*

93.28(0.28)*
93.97(0.33)*

[0001]
[1111]

99.84(0.08)
97.46(0.17)*

98.86(0.38)*
96.81(0.65)

93.40(0.17)*
94.38(0.16)*

D
T

L
E

t
99.91(0.03)

98.18(0.16)
99.58(0.16)

97.54(0.53)
94.56(0.11)

95.26(0.10)

D
T

L
E

99.86(0.03)
98.87(0.10)

99.52(0.16)
98.12(0.31)

95.18(0.06)
95.70(0.16)

6.2 Conclusions and discussion 61

6.1.3 Retrain and Transfer specific DTLE

We observe significant improvements in average accuracy using DTLE over both DTLEr and

DTLEt using all the conditions as listed in Table 6.1 except for the transfer learning case II.

Firstly, we observe that in DTLEr, 6 out of 6 experiments obtains better accuracy than BL and

other established DTL approaches. Secondly, we observe that in DTLEt , 5 out of 6 experiments

obtains better accuracy than BL and other established DTL approaches. Finally, we observe that

in DTLE approach 3 out of 6 experiments obtain better accuracy than BL and other established

DTL approaches.

6.2 Conclusions and discussion

We propose an ensemble of deep transfer learning approaches using 9 datasets with varied image

recognition tasks like character and object image recognition. Our contributions are as listed

below:

1. We analyzed all possible cases of transfer learning, based on change in distribution and

change in classification task between the source and the target domains.

2. The experimental analysis of the retrain specific DTL approaches across all possible cases of

transfer learning showed that the conditions of transfer all layers and/or retrain all layers, obtained

better overall accuracy not only than the baseline, but also in comparison to other DT Lr conditions.

This is due to two main reasons: 1) the transferred layer weights are better than random initial-

ization and, 2) retraining the network target task improves the chances of better generalization by

forcing splitting of fragile co-adapted neurons.

3. We observed that transfer specific DTL approaches obtained better overall accuracy than the

baseline but were not as good as retrain specific DTL, since the fine-tuned weights of the transfer

specific DTL forced the solution to the local minima.

4. An experimental analysis of retrain specific DTLE, transfer specific DTLE and DTLE ap-

proaches showed that DT LEr, ensemble of posterior probabilities of four DT Lr models, obtained

a statistically significant better accuracy than individual DT Lr. DTLE outperformed the baseline

and other DTL approaches when the distributions and tasks were different.

In the future we would like to explore the possibility of transferring features from multiple

source problems, and combining them under the DTLE framework.

62 Deep Transfer Learning Ensemble

Part III

Deep Transfer Learning Applications

63

High-content Analysis of Breast Cancer Cells 65

Chapter 7

High-content Analysis of Breast Cancer
Cells 1

High-content Analysis has revolutionized cancer drug-discovery by identifying substances that

alter the phenotype of a cell which prevent tumor growth and metastasis. The high-resolution bio-

fluorescence images from the assays allow precise quantitative measures enabling the distinction

of small molecules of a host cell from a tumor. In this Chapter, we are particularly interested in the

application of Deep Transfer Learning (DTL), a cutting edge machine learning method, to the clas-

sification of chemical mechanisms of action (MOA).Compound classification has been performed

using image-based profiling methods sometimes combined with feature reduction methods such

as principal component analysis or factor analysis. In this article, we map the input features of

each cell to a particular MOA class without using any type of profiling or feature reduction meth-

ods. To the best of our knowledge, this is the first application of DNN in this domain, leveraging

single-cell information. Furthermore, we use Deep Transfer Learning (DTL) to alleviate the inten-

sive and computational demanding effort of searching the huge parameter’s space of a DNN and

even more, to improve its original performance. Results show that using this approach, we obtain

a 30% speed up and a 2% accuracy improvement.

7.1 Introduction

Recent advances in quantitative microscopy and high-performance computing have enabled a rapid

progress in the development of high-throughput image-based assays. These high-content analysis

(HCA) assays allow not only a precise quantitative observation of multiple parameters like nuclear

size, nuclear morphology, DNA replication and many more subtle features derived from each

image but also the screening of thousands of cells simultaneously highlighting the complex nature

of such data. To tackle this high-throughput high-dimensional problem, biologists tend to use

population-averages of per-cell information prior to machine learning (ML) algorithms such as

principal component analysis, random forest, K-nearest neighbors or support vector machines.

1Some parts of this chapter are used from article (Kandaswamy et al., 2016b)

66 High-content Analysis of Breast Cancer Cells

Moreover, a recent survey (Singh et al., 2014) shows that about 70% of the papers on HCA

experiments published in Science, Nature, Cell, and the Proceedings of the National Academy

of Sciences from 2000 to 2012 used only one or two of the cell’s measured features and less

than 15% used more than 6. Unfortunately and due to the exponential increase in the number of

product terms (LeCun et al., 1998), such ML algorithms become impractical for these problems

with thousands of samples and hundreds of measured features. As a result, about 85% of the

research work in HCA underutilized potentially valuable information that might have helped in

speeding up early stage drug discovery. In this paper, we are interested in exploring state-of-

the-art algorithms developed in the field of artificial intelligence to address these high-throughput

high-dimensional data.

The discovery of hierarchical visual sensory processing systems in the neocortex of the mam-

mal brain motivated the field of artificial intelligence to develop algorithms to hierarchically extract

information from the data (Serre et al., 2005), (Lee et al., 1998).

Our contribution can thus be summarized as follows: 1) use of per-cell information with all

the extracted features from high-content images; 2) use of state-of-the-art deep learning models

coupled with GPU computational power to analyze such high-throughput high-dimensional data;

3) use of transfer learning to improve the performance of the models. In particular, we consider

Stacked Autoassociators (Vincent et al., 2010), (Amaral et al., 2013) (SAA) as classifiers of

MOA on a freely available MFC7 wild-type breast cancer data (Ljosa et al., 2013) using a DTL

framework that includes a Transfer Learning supervised (TLs) (Amaral et al., 2013), (Amaral

et al., 2014a).

7.2 Materials and Methods

We used a publicly available (http://www.broadinstitute.org/bbbc, accession BBBC021)

dataset from the genetically engineered MCF7-wt (breast cancer expressing wild-type p53) cell

line. Briefly (all details of sample preparation and image analysis can be found in Ljosa et

al. (Ljosa et al., 2013)), images of cell cultures with a given treatment (specific compound x con-

centration combination) were acquired on a high-content imaging platform using a 16-bit camera.

Each image was further segmented using CellProfiler Analyst (Carpenter et al., 2006) (CPA) by

identifying nuclear and cytoplasmic boundaries. Then, 453 distinct features for each cell repre-

senting a variety of geometric, intensity, subcellular localization and texture features (Young et al.,

2008) were extracted with CPA. Figure 7.1 shows some examples of captured images representing

some of the MOA as well as some of the features extracted with CPA.

Our problem consists in predicting the MOA of a given treatment using per-cell information,

in contrast to other established methodologies that use some profiling technique (see Ljosa et

al. (Ljosa et al., 2013) for a comparative study). There is a total of 103 treatments corresponding

to combinations of 38 compounds at one to seven concentrations. We only used the 148,649 cells

of non-control samples thus giving a data matrix with 148,649 lines (representing cells) and 453

columns (representing the extracted features). To perform transfer learning we need to define a

http://www.broadinstitute.org/bbbc

7.2 Materials and Methods 67

source and a target problem. For that purpose the original MFC7 dataset with 12 MOAs is split

into two mutually exclusive datasets with 6 MOAs each, Set1 and Set2. The distribution across

the two subsets was performed in order to join MOAs with common batches (see Table 7.1).

Figure 7.1: A- Examples of different phenotypes (MOA) captured after compound incubation of
MFC7-wt cells. According to Ljosa et al. (Ljosa et al., 2013) only 6 of the 12 MOA were visually
identifiable. B- Cell segmentation and feature extraction are performed using CellProfiler (Car-
penter et al., 2006). For each cell, a variety of geometric, intensity, subcellular localization and
texture features were extracted.

7.2.1 Data splitting

Network architectures, hyper-parameters and training Two deep network algorithms are

used, namely Deepnet1 (in the paper) and Deepnet2 (some additional results in the supplementary

material):

1. Deepnet1: Stacked autoassociators (SAA)

2. Deepnet2: Stacked denoising autoencoders (SDA)

SDA1 is a variant of the SAA where a corrupted version of the input is used instead during training

in order to build a more robust model.

We used hyper-parameters from other models to save computational cost. The values of all the

hyper-parameters were selected by performing an informal search on the MNIST, Chars74k and

BabyAIshapes dataset taken from our previous models (Kandaswamy et al., 2014b). We did not

perform a systematic grid search given the high computational cost, although it is conceivable that

even better results could be obtained by systematically tuning the hyper-parameter values.

The classifier is trained on the training set and the validation set is used to periodically control

how our model is doing in terms of accuracy on data not used for training, as well as to evalu-

ate early-stopping criteria in the fine-tuning phase to prevent overfitting. The choice of when to

stop fine-tuning is based on a geometrically increasing amount of patience. The patience is ge-

ometrically increased when the current validation score is below the best validation score. The

68 High-content Analysis of Breast Cancer Cells

Table 7.1: Distribution of MOAs across batches for Pset1 and Pset2 with at least one common batch
between MOAs. Pset1 and Pset2 datasets have 6 mutually exclusive MOAs.

Set Nr. Mechanism of action Short Number of Batches Common
name compounds Batches

Pset1 Actin disruptors Act 3 01, 02

02, 07,08

Pset1 DNA replication DR 4 02, 08, 09
Pset1 Epithelial Epi 3 05, 08, 10
Pset1 Kinase inhibitors KI 3 07
Pset1 Microtubule stabilizers MS 3 01, 07
Pset1 Protein degradation PD 4 02, 06, 07

Total Nr. of Compounds 20
Total Nr. of Treatments 42

Pset2 Aurora kinase inhibitors Aur 3 01, 03, 04

01, 03, 04

Pset2 Cholesterol-lowering Ch 2 09
Pset2 DNA damage DD 4 03,04
Pset2 Eg5 inhibitors Eg5 2 01,03
Pset2 Microtubule destabilizers MD 4 01,03
Pset2 Protein synthesis PS 3 03,04

Total Nr. of Compounds 18
Total Nr. of Treatments 61

backpropagation error is fine-tuned until it runs out of patience or stops at reaching max fine-

tuning epochs. The trained classifier is then tested on the unseen individual cells from the test set

and each prediction is matched with their ground-truth of MOA.

The code for reproducing the results, available in the link: https://github.com/chetakks/

DTL.

High performance computing (HPC) We used HPC machines to perform all our experiments:

1. HPC1: i7-377 (3.50GHz), 16GB RAM with five GTX 980 GPU processors.

2. HPC2: i7-377 (3.50GHz), 16GB RAM with two GTX 770 GPU processors.

We measured the performance of a single thread CPU i7-377 (3.50GHz) with 16GB RAM versus

the GTX 770 graphics card. GPU is preferable for large matrices as is the case of the MFC7 data.

This allows us to exploit the advantage of parallel computing capability of GPUs.

7.2.2 Layerwise Transfer Learning using Stacked Autoassociators

We consider a Stacked Autoassociators (SAA) (Vincent et al., 2010) to build our classifier of

MOA. An autoencoder or autoassociator is a simple neural network with one hidden layer de-

signed to reconstruct its own input. We additionally constrain the encoding and decoding feature

sets (input-hidden and hidden-output weights, respectively) to be transpose of each other (tied

https://github.com/chetakks/DTL
https://github.com/chetakks/DTL

7.2 Materials and Methods 69

weights). SAA training (Vincent et al., 2008) comprises two stages: an unsupervised pre-training

stage where the information of the labels (MOA) is not used, followed by a supervised fine-tuning

stage, now using the MOA information. In the pre-training stage, a greedy layer-wise approach is

used to train the hidden layers of the SAA. The first hidden layer is considered as a regular autoas-

sociator and its features (weights) are trained for several epochs in order to reconstruct the original

inputs. After the first layer is pre-trained, we keep only the encoding features and stack a second

(hidden) layer over with weights that are trained in a similar way, but now to reconstruct the val-

ues. This process is repeated until the k-th hidden layer is pre-trained. In the fine-tuning stage, a

logistic regression layer with neurons and weight vector is added to the top of the pre-trained ma-

chine and this entire network is fine-tuned using the training subset (now with the labels) in order

to minimize a cross-entropy loss function measuring the error between the classifier’s predictions

and the correct label codes. The optimization process uses a stochastic gradient descent approach

of backpropagation using batches of training data to speed up computation time. The learnt fea-

tures are represented by the weights and biases of the trained SAA. For a SAA with hidden layers

is the set of all such parameters. Figure 2 describes these two stages.

To be more precise, let us introduce some notation considering a SAA with 7 hidden layers

plus 1 logistic layer, both for the source and target models. We use four different TL settings

for supervised layerwise feature transference. In such settings the “0” represents “no transfer”,

that is, the weights of that specific layer of the target model are randomly initialized and not

reused from the source model; the“1” represents “transferred”, that is, the initial weights of that

specific layer are obtained (reused) from the trained source model. Note that for each setting, the

logistic regression layer is also transferred from the source model to the target model. The setting

[00111111] means that we randomly initialized the first and second layers of the target model and

transferred all the remaining layers from the source problem. The target network thus built is then

fine-tuned with the target data.

7.2.3 LOOCV Training and Network Hyper-parameters

Regarding the training process we followed a similar procedure as in Ljosa et al. (Ljosa et al.,

2013). To prevent sharing of batch-specific image properties/features or compound properties

between the training and test sets and thus to prevent the classifiers to learn artifact properties

of the set of individual images rather than the more general cell phenotype (Shamir, 2011), we

considered using a leave-one-compound-out cross validation (LOOCV) procedure where all the

cells treated with the same compound as the treatment being classified are hold out, even if those

other cells were treated with a different concentration. Thus, the test set in LOOCV is composed

of all the cells from one of the compounds that is held out; the remaining cells (from all the other

compounds) are split in a training set, used to train the model, and a validation set, used to prevent

overfitting by evaluating early-stopping criteria in the fine-tuning phase. The choice of when

to stop fine-tuning is based on a geometrically increasing amount of patience. The patience is

geometrically increased when the current validation score is below the best validation score. The

backpropagation error is fine-tuned until it runs out of patience or the maximum fine-tuning epochs

70 High-content Analysis of Breast Cancer Cells

allowed is reached. The trained classifier is then tested on the unseen individual cells from the test

set and each prediction is matched with their ground-truth of MOA. The classifier prediction of

each cell from the same field of view is then combined to calculate treatment prediction accuracy

using majority voting. Each of the experiments is repeated 10 times. Tuning hyper-parameters

such as the learning rate or setting the appropriate network architecture for training the deep model

is desirable but is highly time consuming. The results of the following section were obtained using

SAAs with 7 hidden layers of 500 neurons each. We used pre-training and fine-tuning learning

rates of 0.001 and 0.1, respectively. The stopping criteria for pre-training was fixed to 60 epochs,

which is the value where the reconstruction cost saturates; stopping criteria for fine-tuning was

set to a maximum of 1000 epochs with the validation set. The complete details of these networks

are listed in the (Kandaswamy et al., 2016b), Supplementary Table S2. Processing large data

as we did, on millions of neural connections, would take several weeks using traditional CPUs.

For that reason, we used Theano (Bergstra et al., 2010), a GPU compatible machine learning

library, to perform all our experiments on a i7-377 (3.50GHz), 16GB RAM with two GTX 770

and five GTX 980 GPU processors (see (Kandaswamy et al., 2016b), Supplementary material High

performance computing section). The code and software to reproduce the results are available at

http://www.deepnets.ineb.up.pt/files/software/DTL_frontend.html

Table 7.2: Average accuracy in percentage and average computation time in minutes (standard
deviation in parenthesis) of the baseline (BL) and DTL approaches. The results are over 10 repe-
titions for the target data (PT) with compounds (C) and source data (PS).

Settings Test Time per compound (m) Total time per
Approach Transfer PS PT C Accuracy p-value (to BL) Pre-train Fine-tune repetition (m)
BL Pset1 20 84.29(3.21) 8.34(0.0) 16.98(1.3) 506(29)
DTL_1 [00000011] Pset2 Pset1 20 87.62(6.96) 0.187 - 17.54(2.5) 350(51)
DTL_2 [00001111] Pset2 Pset1 20 77.62(8.80) 0.351 - 15.08(1.4) 301(29)
DTL_3 [00111111] Pset2 Pset1 20 86.19(8.73) 0.589 - 16.72(2.0) 334(41)
DTL_4 [11111111] Pset2 Pset1 20 86.43(3.38) 0.331 - 10.35(0.9) 207(18)
BL Pset2 18 87.05(4.25) 12.71(0.2) 26.10(1.8) 698(37)
DTL_1 [00000011] Pset1 Pset2 18 87.87(6.86) 0.734 - 27.36(2.3) 492(42)
DTL_2 [00001111] Pset1 Pset2 18 69.67(11.4) <0.001 - 21.39(2.7) 385(49)
DTL_3 [00111111] Pset1 Pset2 18 85.08(6.99) 0.513 - 25.33(2.8) 455(50)
DTL_4 [11111111] Pset1 Pset2 18 75.57(4.72) <0.001 - 19.79(2.2) 356(41)

Table 7.3: Comparison of accuracy obtained and total time taken per repetition in minutes with
other state-of-the-art methods.

Method Pset1 Pset2
Accuracy (%) Time (m) Accuracy (%) Time (m)

Linear SVM 20.95 32 23.49 49
SVM using RBF (model trained
using 1% of total training data) 21.04 78 17.5 125
8 layers deep architecture (Baseline) 84.29 506 87.05 698
DTL_1 [00000011] 87.62 350 87.87 492

http://www.deepnets.ineb.up.pt/files/software/DTL_frontend.html

7.3 Results 71

Figure 7.2: Comparison of Baseline versus DTL approaches. Left: Baseline average accuracy for
classifying Pset1 and DTL approaches for classifying Pset1 reusing Pset2. Right: Baseline average
accuracy for classifying Pset2 and DTL approaches for classifying Pset2 reusing Pset1.

7.3 Results

The analysis of large volumes of multiparametric high-dimensional data without overfitting the

network using a high number of cytological features in a time frame suitable for drug discovery

presents a significant challenge for any learning algorithm. In the following we present the results

obtained by our approach. The results of the baseline SAA for classifying MOAs for Pset1 and

Pset2 datasets are listed in Table 7.2. We observe that classifying MOAs of Pset2 is about 2.8%

more accurate than classifying MOAs of Pset1, even though both datasets have an equal number

of MOAs. Also, the computation time to classify Pset2 dataset is greater than that of Pset1 dataset.

The Pset2 dataset has 61 treatments for 18 compounds, whereas Pset1 has 42 treatments for 20 com-

pounds. The confusion matrix for classifying MOAs using the baseline approach for both Pset1 and

Pset2 datasets is shown in Fig. 7.3 and the precision, recall and f1-score are listed in (Kandaswamy

et al., 2016b), Supplementary Table S3.

To further improve the results over the baseline approach, we considered a deep transfer learn-

ing framework where the knowledge gained with the source problem is reused to solve the target

problem. The results for four DTL settings are presented in Table 7.2 and the respective boxplots

displayed in Fig. 7.2. Essentially, we observe that the DTL_1 setting improves over the baseline

for both Pset1 and Pset2 datasets. It is interesting to note that the best results are obtained when such

specific (top) layer weights are transferred from the source to the target problem (the 7th hidden

layer weights and the logistic regression weights are reused) and the rest of the (lower) layers are

randomly initialized. For example, classifying Pset1 reusing Pset2 with the DTL_1 transfer setting,

produces models 2% more accurate than the baseline and about 0.8% over the transfer all case

DTL_4. One of the reasons for this behavior is that higher layers of the network learn problem-

specific features from the data while the lower layers learn generic features (Kandaswamy et al.,

2014b), (Yosinski et al., 2014), thus it seems beneficial to use the knowledge acquired in the source

problem on its higher layers. Moreover, the DTL_1 setting speeds up computation time by 30%

72 High-content Analysis of Breast Cancer Cells

Figure 7.3: Confusion matrices for the baseline and TL settings on the MOA problem (average
outcomes over 10 repetitions).

7.4 Conclusion 73

over the baseline approach. Confusion matrices for all DTL settings can be analyzed in Fig. 7.3.

To represent class imbalance the confusion matrix represent number of elements in each class and

the background blue color is normalized confusion matrices (higher the accuracy darker the color).

Given these results, we believe that DTL_1 would be a good setting to use on similar problems by

a researcher who wishes to use DTL on this type of problem.

7.3.1 Comparison with other state-of-the-art methods

Table 7.3 lists a comparison of our deep learning (Baseline and best TL setting) results with two

state-of-the-art machine learning algorithms; Support Vector Machines (SVM) (Cortes and Vap-

nik, 1995) using linear and radial basis function (RBF) kernel using a freely available and fast

C-based implementation of multi-class SVM (SVMmulticlass, version 2.20). For linear SVM we

optimized the trade-off between training error and margin cost from 0.001 to 50000 (see (Kan-

daswamy et al., 2016b), Supplementary Table S4) and the best model obtained an overall accuracy

of about 21% for Pset1 and 23% for Pset2 (see (Kandaswamy et al., 2016b), Supplementary Tables

S7 and S8). For SVM RBF we optimized the margin cost from 1 to 1000 and the gamma parame-

ter from 0.001 to 0.00001 (see (Kandaswamy et al., 2016b), Supplementary Table S5). As the grid

search is computationally expensive, we restricted to only one compound using 10% of the total

training data. We observed the best model at margin cost 100 and gamma 0.001 but taking between

419 to 755 minutes to obtain a 45% accuracy (see (Kandaswamy et al., 2016b), Supplementary

Table S6). Thus we performed the experiments with 1% of the total training data to train the SVM

RBF and obtained an overall accuracy of about 21% for and 18% for (see (Kandaswamy et al.,

2016b), Supplementary Tables S9 and S10). Further increasing the number of training samples

improves the overall accuracy but leads to an exponential increase in computation time.

7.4 Conclusion

To stimulate the development of new drugs effective against a wide spectrum of cancers, we pro-

pose a Deep Transfer Learning (DTL) classifying framework that uses high-content HCA data.

Our classifiers are built upon individual cell information without employing any type of profiling

or reduction methods on extracted cell features. The main motivation to use a DTL approach was

to show that we can reuse, with minor modifications, the knowledge acquired in solving a classi-

fication of MOA from one cell line to solve a new classification of MOA from another cell line

without having to follow the whole training procedure. This is particularly useful for new drug

testing as computational time is saved. For that purpose, the data was carefully split into two mu-

tually exclusive 6-class problems represented by Pset1 and Pset2 datasets. The average accuracies

of the baseline SAA for Pset1 and Pset2 datasets are about 84% and 87%, respectively, using a 7

hidden layer SAA with 500 neurons in each layer. The DTL approach showed that the transference

of specific weights of the source model was useful and we have obtained positive transference for

both the data sets. Although the difference in accuracy of Pset1 and Pset2, between Baseline and

Transfer learning is not statistically significant, we observed around 30% computational speed up,

74 High-content Analysis of Breast Cancer Cells

when using the DTL approach. Our approach was also superior when compared to multi-class

Support Vector Machines.

Regarding the 12-class problem we trained several SAAs ranging from 3 to 8 hidden layers

with 500 to 1000 neurons in each layer. However, training a 7 hidden layer SAA with 500 neurons

in each layer may take, on average, 30 to 48 hours per repetition. We performed some preliminary

experiments using the adequate leave-one-out approach and, without too much hyperparameter

search, the best model obtained around 77% accuracy. As future work we intend to explore a

different approach for the 12-class problem using Convolutional Neural Networks (CNN) directly

applied to the images and not to hand-crafted features. CNNs are state-of-the-art deep neural

networks that use a sort of hierarchical representation of the data similar to that of the neocortex

and are especially designed for image recognition tasks. We expect to obtain a similar hierarchical

feature extraction directly from the images, giving the possibility of the deep network to self-

extracting relevant cytological features layer-by-layer.

Cross-sensor Biometrics 75

Chapter 8

Cross-sensor Biometrics 1

In this Chapter, we work on biometric recognition problem with multiple sensor scenario. In infor-

mation technology, biometrics refers to the quantitative measure and analysis of human anatomical

or behavioural characteristics, such as Deoxyribonucleic acid (DNA), fingerprints, eye retinas and

irises, voice patterns, facial patterns and hand measurements, for authentication purposes.

With the increasing popularity and availability of mobile devices, capable of performing the

whole biometric recognition framework, from data acquisition to the final decision, a new obstacle

is presented to the development of such systems: the need to adapt to the wide variety of available

sensors and their respective heterogeneity with regards to image quality. The question of whether

or not sensors from different manufacturers show a high degree of interoperability allowing, for

example, for an individual to be enrolled in a single system and then be successfully recognized in

a vast variety of alternative devices, is of growing importance in the research field of biometrics.

With this formulation in mind, it is trivial to understand how the principles of transfer learning

may be adopted for this rising challenge.

With recent studies showing that cross-sensor matching, where the test instances are verified

using data enrolled with a different sensor, often lead to reduced performance, we attempt to

overcome this challenge by making use of transfer learning principles and, thus, achieve state-of-

the-art performance for a large variety of acquisition scenarios. For that purpose we choose, from

the vast array of transfer learning approaches, to explore and extend the Source-Target-Source

(STS) approach, first proposed in (Kandaswamy et al., 2015b), while applying it to the specific

challenge of cross-sensor periocular recognition. STS is a recent alternative that has shown both

increased performance with object and computer vision recognition tasks, as well as an gain in

processing speed.

The practical problem of cross-sensor biometrics has also been the focus of many works in

recent years, highly motivated by the growing variety and availablity of mobile sensors. The

most commonly found works concern mostly iris recognition. Connaughton et al. (Connaughton

et al., 2011) performed a comparison between three commercially available iris cameras, with

the aim of assessing the interoperability between them and the impact of some state-of-the-art

1Some parts of this chapter are used from article (Kandaswamy et al., 2016a)

76 Cross-sensor Biometrics

recognition algorithms in both single as well as cross-sensor scenarios. The authors arrived at

some conclusions, namely the fact that the relative performance of a given algorithm in a variety

of single-sensor scenarios does not relate reliably to the performance of the same algorithm when

tested in cross-sensor scenarios. Furthermore, performance observed for all cross-sensor scenarios

was consistently worse than their single-sensor counterparts.

Another recent work on the field of iris recognition, proposed by Pillai et al. (Pillai et al., 2014),

attempted to adapt iris instances acquired with one sensor to the characteristics of a new sensor, in

an attempt to mitigate the performance-drop commonly observed in cross-sensor scenarios. Both

Santos et al. (Santos et al., 2015) and Jilela and Ross (Jillela and Ross, 2014) propose methods

based on information extracted from the periocular region. While Santos et al. propose a frame-

work based on multiple descriptors to work on periocular data on multiple mobile sensors, Jilela

and Ross attempt to match iris and face images from the same individual, acquired with distinct

sensors, using periocular traits to help in the recognition process. With the marked advantages

of periocular recognition over its iris and face counterparts becoming more widely accepted and

researched, especially when unconstrained acquisition settings are considered, the present work

will focus on exploring transfer learning alternatives to periocular recognition in order to attenuate

the problems commonly associated with cross-sensor scenarios.

8.1 Cross-Sensor Recognition

In the present work we explore the approaches outlined in the previous section as an alternative

to tackle the cross-sensor biometric recognition problem. This problem can be understood as the

problem of successfully performing biometric recognition on a specific image acquisition device

without the need of performing a new enrollment phase for the new device specifically. This

interpretation can be easily extrapolated to the domain of the aforementioned approaches if both

devices are understood as the target (where recognition is to be performed) and the source (where

enrollment was carried out). In the following sections we outline the experimental setups designed

to assess the performance of the proposed methodologies in the specific practical problem of cross-

sensor periocular recognition.

The periocular region is commonly described as the region in the immediate vicinity of the eye.

Periocular recognition can be motivated as a representation in between face and iris recognition.

It has been shown to present increased performance when only degraded facial data or low quality

iris images are made available to the recognition system.

We start by detailing a baseline algorithm, first proposed by Monteiro et al. (Monteiro and Car-

doso, 2015), that has presented state-of-the-art performance for multiple single-sensor scenarios,

as well as a commonly used feature representation technique - Gaussian Mixture Models (GMM)

supervectors - which will be explored for SDA approaches. We then present the experimental

setup under which each of the tested methodologies was assessed as well as the performance

8.1 Cross-Sensor Recognition 77

metrics chosen for such process. Finally, we present the most significant results as well as a de-

tailed discussion concerning the relative performance of each method for each of the proposed

challenges.

8.1.1 GMM-Universal Background Model (GMM-UBM)

The GMM-UBM algorithm for periocular recognition, first proposed by Monteiro et al. (Monteiro

and Cardoso, 2015), is schematically represented in Figure 8.1. During the enrollment, a set of

G models describing the unique statistical distribution of biometric features for each individual

g ∈ {1, ...,G} is trained by maximum a posteriori (MAP) adaptation of an Universal Background

Model (UBM). The UBM is a representation of the variability that the chosen biometric trait

presents in the universe of all individuals. MAP adaptation works as a specialization of the UBM

based on each individual’s biometric data. The idea of MAP adaptation of the UBM was first

proposed by Reynolds (Reynolds et al., 2000), for speaker verification. The tuning of the UBM

parameters in a maximum a posteriori sense, using individual specific biometric data, provides a

tight coupling between the individual models and the UBM, resulting in better performance and

faster scoring than uncoupled methods, as well as a robust and precise parameter estimation, even

when only a small amount of data is available.

Figure 8.1: Schematic representation of the GMM-UBM periocular recognition algorithm pro-
posed by Monteiro et al. (Monteiro and Cardoso, 2015).

The recognition stage is carried out through the projection of the features extracted from an

unknown sample onto both the UBM and the individual specific models (IDSM) of interest. A

likelihood-ratio between both projections outputs the final recognition score. Depending on the

functioning mode of the system - verification or identification - decision is carried out by thresh-

olding or maximum likelihood-ratio respectively. The use of a likelihood-ratio score with an

78 Cross-sensor Biometrics

universal reference works as a normalization step, mapping the likelihood values in accordance to

their global projection. Without such step, finding a global optimal value for the decision threshold

would be a far more complex process.

Gaussian Mixture Models (GMM) were chosen to model both the UBM and the individual

specific models (IDSM). From the most common interpretations, GMMs are seen as capable of

representing broad “hidden” classes, reflective of the unique structural arrangements observed in

the analysed biometric. The original work was proposed using SIFT keypoint descriptors as the

only features, but a more recent version (Monteiro et al., 2015) proposed a score-level fusion of

multiple descriptors (SIFT, HOG, Local Binary Pattern (LBP) and GIST), resulting in improved

performance.

The original work was designed with single-sensor recognition in mind, i.e. the source and

target data are the same. In the present work we also assess the performance in cross-sensor

scenarios, where training of models and classification are carried out on distinct data sources.

Some preliminary results for such setup have already been reported in a follow-up work by the

original authors (Monteiro et al., 2015). The present work will more thoroughly analyse and

discuss such results, as well as presenting a comparative analysis with alternative approaches.

8.1.2 GMM Supervectors (SV-SDA)

In the previous section, recognition was carried out through a likelihood ratio between a target

IDSM and the UBM. Recently, a significant amount of works have explored the use of an alter-

native GMM representation - GMM supervectors - as the input for classification algorithms, with

some promising results being reported in the literature (Campbell et al., 2006). Super-vector no-

tation consists on concatenating in a single vector all the parameters describing a GMM (weights,

means and covariance matrices). For example, the mean values of the UBM can be concatenated

to form a single mean super-vector, m, given by m= [µT 1,µT 2, ...,µT k], where k is the total number

of mixtures in the UBM (Ge et al., 2015). A similar representation can be extracted for the IDSM

parameters or even for single images. On the present work we describe each training image t

belonging to subject i, Imt,i, by its supervector representation, obtained by MAP adaptation of the

UBM parameters using the feature data extracted solely from Imt,i. SIFT keypoint descriptors are

used for feature description and model training, as proposed by Monteiro et al. (Monteiro and Car-

doso, 2015). We then perform training, validation and classification using the SDA methodology

for both TLs and STS approaches, as detailed in Chapter 4, Section 4.1.2.

8.1.3 CNN

The CNN methodology for both TLs, STS and MSTS approaches was also carried out, as de-

scribed in Section 3.1.2, using raw pixel intensity values. We use three main types of layers to

build CNN architectures: Convolutional Layer (conv), Pooling Layer (pool), and Fully-Connected

Layer (FC). We will stack these layers to form a full CNN architecture with a logistic regression

classifier (LR). Architecture of our 5 layer CNN model has [Conv - Pool] x 3 -FC -LR. We first

8.2 Cross-sensor dataset 79

crop the image into 200 by 120 and then convert the image to greyscale which is presented as the

input. This is convolved with 30 different 1st layer filters, each of size 12 by 12, using a stride of

1 in both x and y. The resulting feature maps are then pooled in (max within 2x2 regions, using

stride 1) to give 30 different 94 by 54 element feature maps. Similar operations are repeated with

60 and 90 different layer filters in 2nd and 3rd layers respectively. The 4th layer is fully connected,

taking features from the top convolutional layer as input in vector form. The final layer is a c-way

logistic regression classifier, c being the number of classes. All filters and feature maps are square

in shape.

8.2 Cross-sensor dataset

The methodologies outlined in the previous sections were assessed on the Cross-Sensor Iris and

Periocular (CSIP) dataset. The CSIP database, created for the assessment of the algorithm pro-

posed by Santos et al. (Santos et al., 2015), is a recent and publicly available dataset, designed

with the main goal of gathering periocular images from a representative group of participants,

acquired using a variety of mobile sensors under a set of variable acquisition conditions. Given

the heterogeneity of the camera sensors and lens setups of consumer mobile devices, 10 different

setups were used during the dataset acquisition stage: four different devices, some of which had

both frontal and rear cameras, and LED flash. This variety of sensors confers a strong appeal

to the CSIP database regarding its potential use for the assessment of algorithms under a highly

heterogeneous set of conditions. A summary of the details concerning each of such setups may be

observed in Table 8.1, while a visual example of an image for each subset of the same individual

is depicted in Figure 8.2. Each participant was imaged using all of the presented setups.

Table 8.1: Technical details concerning the acquisitions setups used for each subset of the CSIP
database.

Setup ID AR0 AR1 BF0 BR0 BR1 CF0 CR0 CR1 DF0 DR0
Device A B C D

Manufacturer Sony Ericsson Apple ThL Huawei
Model Xperia Arc S iPhone 4 W200 U8510
O.S. Android 2.3.4 iOS 7.1 Android 4.2.1 Android 4.3.3

Camera Rear Frontal Rear Frontal Rear Frontal Rear
Resolution 3264×2448 640×480 2592×1936 2592×1920 3264×2448 640×480 2048×1536

Flash No Yes No No Yes No No Yes No No

[a] [b] [c] [d] [e]

[f] [g] [h] [i] [j]
Figure 8.2: Examples of images from each subset of the CSIP database. From (a-j) respectively:
AR0, AR1, BF0, BR0, BR1, CF0, CR0, CR1, DF0 and DR0.

80 Cross-sensor Biometrics

To simulate the variable noise associated with on-the-go recognition, participants were not

imaged at a single location, but instead they were enrolled at multiple sites with artificial, natural,

and mixed illumination conditions. In total, 50 participants were enrolled, all Caucasian and

mostly males (82%), with ages ranging between 21 and 62 years (mean± std = 31.18± 9.93

years). For each periocular image acquired by the mobile devices, a binary iris segmentation

mask was also produced. The masks were obtained automatically using the state-of-the-art iris

segmentation approach proposed by Tan et al. (Tan et al., 2010), which is particularly suitable

for uncontrolled acquisition conditions, as demonstrated by its first place ranking at Noisy Iris

Challenge Evaluation - Part 1 (NICE.I) (Proença and Alexandre, 2007).

8.2.1 Image pre-processing

Images from the CSIP database were converted to grayscale and re-sized so as to present a fixed

number of pixels, necessary for the implementation of all the approaches based on the CNN

methodology. Resizing was carried out in such a way that geometrical proportions were kept

from the original images.

8.2.2 Data partitioning

In order to achieve a fair and meaningful comparison between the tested methodologies, a common

experimental setup was designed. The set of all images of the CSIP dataset was divided as follows:

50% of the images per individual and per subset were kept for model training, 25% were chosen for

validation of the trained models and the remaining 25% were used to assess performance. Train,

validation and test subsets were randomly selected and all experiments were cross-validated 10

times.

8.2.3 Evaluation metrics

Performance was evaluated only for identification problems, where, given a biometric sample

from an unknown source, the e most probable identities are assessed. For such problems the most

commonly found performance metric is the rank-1 recognition rate, which refers to the ratio of

correctly assessed identities, when e = 1.

8.3 Cross-sensor recognition performance

The main results obtained for the experimental setups detailed in the last section are summarized

in Tables 8.2 through 8.8. Discussion of these results will be carried out, from this point onwards,

starting with the BL and TLs approaches, followed by an analysis on how the STS strategy may

improve performance in cross-sensor scenarios and, finally, on the effect that multiple sources of

information may present.

8.3 Cross-sensor recognition performance 81

8.3.1 Baseline and Transfer Learning

The baseline results for each tested methodology (GMM-UBM, SV-SDA and CNN) are presented

in the diagonal values of Tables 8.2, 8.3 and 8.4 respectively. By the sole analysis of these results

some conclusions may already be drawn. First of all it is easily discernible how the GMM-UBM

methodology, specifically designed to solve the single-sensor periocular recognition problem, out-

performs both alternatives in such conditions. Even for the CSIP subsets that, in theory, offer

the least challenging conditions (AR1, BR1 and CR1), the performance drop observed is non-

negligible. Taking AR1 as a specific example a relative performance drop of 26.6% and 18.3%

is observed against the SV-SDA and CNN methodologies respectively. This effect is, however,

reversed when cross-sensor scenarios are taken into consideration.

If we consider a single target dataset, it is readily observable that the variance in performance

in a lot less pronounced for the CNN and SV-SDA methodologies than for GMM-UBM. Further-

more, it also notorious how the significantly better single-sensor scenario results of the GMM-

UBM are severely degraded when a more complex challenge is presented to the algorithm. A

trivial conclusion can be taken from such observations: even though the GMM-UBM presents

the best baseline results, as expected from an algorithm tailored for that specific challenge, the

application of transfer learning to both CNN and SV-SDA methodologies results in a considerably

lower variance in the performance values observed for a single target dataset, regardless of the

chosen source. A valid deduction, following such conclusions, is that improving the baseline per-

formance of such methodologies will also result in an increased cross-sensor performance. Given

that the challenge of cross-sensor biometric recognition is mostly concerned with the performance

loss observed in such cases, the global behaviour of the tested methodologies seems to, at least,

motivate further research seeking to improve the baseline performance.

In the next section we explore the effect that the source-target-source approach presents over

the simpler TLs alternative.

Table 8.2: Rank-1 recognition rates, in %, observed for the GMM-UBM algorithm for all possible
cross-sensor scenarios in the CSIP database.

Target
AR0 AR1 BF0 BR0 BR1 CF0 CR0 CR1 DR0

AR0 94.4 57.8 34.1 76.8 45.9 41.8 52.8 40.7 65.6
AR1 64.6 97.1 26.5 47.9 83.6 25.5 35.4 66.8 33.7
BF0 33.1 23.1 78.2 21.1 19.4 30.8 24.0 19.8 16.0
BR0 67.4 39.6 19.7 92.4 54.2 36.5 42.3 34.3 67.7
BR1 31.8 62.3 12.0 48.1 95.5 28.3 25.6 52.5 35.3
CF0 36.4 29.1 34.7 36.5 30.8 89.8 55.8 39.8 46.3
CR0 59.5 30.2 24.4 58.1 36.4 59.3 80.3 45.7 71.9
CR1 42.6 64.9 21.2 47.8 70.8 47.5 50.5 90.0 49.0
DR0 41.3 18.0 17.4 53.0 23.1 30.3 39.8 24.8 88.7

Source

82 Cross-sensor Biometrics

Table 8.3: Rank-1 recognition rates, in %, observed for the SV-SDA algorithm for all possible
cross-sensor scenarios in the CSIP database.

Target
AR0 AR1 BF0 BR0 BR1 CF0 CR0 CR1 DR0

AR0 38.0 81.8 39.3 33.4 79.3 14.1 27.7 52.5 20.0
AR1 35.4 76.7 22.7 24.6 77.3 15.9 20.9 61.6 17.6
BF0 43.8 81.4 41.4 27.3 80.1 22.3 17.8 59.7 21.5
BR0 35.2 79.0 35.8 25.6 77.3 14.6 21.8 45.9 22.1
BR1 32.4 78.4 37.7 25.1 82.1 22.1 18.0 55.6 23.0
CF0 32.4 79.8 36.4 24.1 75.3 12.1 16.3 50.6 24.6
CR0 41.5 79.0 36.6 24.8 81.6 16.1 23.5 51.7 23.9
CR1 28.7 79.0 36.6 22.1 78.0 16.4 18.2 57.9 22.4
DR0 28.9 80.4 39.0 29.0 72.2 15.0 22.0 52.5 19.7

Source

Table 8.4: Rank-1 recognition rates, in %, observed for the CNN algorithm for all possible cross-
sensor scenarios in the CSIP database.

Target
AR0 AR1 BF0 BR0 BR1 CF0 CR0 CR1 DR0

AR0 61.5 84.2 54.0 69.0 91.0 64.4 63.9 92.0 65.3
AR1 60.8 82.1 52.0 66.0 88.5 58.1 63.9 92.0 56.7
BF0 65.9 84.5 50.0 68.5 89.5 62.6 67.4 92.3 65.3
BR0 63.0 82.6 52.4 63.5 88.0 61.8 67.0 92.0 56.7
BR1 63.0 85.0 52.4 60.5 85.5 60.4 64.3 90.3 57.3
CF0 64.4 85.0 50.8 63.5 91.5 54.8 66.1 93.0 58.0
CR0 62.2 86.8 51.2 66.5 90.5 60.7 67.9 93.3 62.7
CR1 61.4 82.9 50.4 66.5 89.5 57.8 65.2 88.0 57.3
DR0 60.0 83.2 53.2 62.0 86.5 55.2 68.7 90.0 53.3

Source

8.3 Cross-sensor recognition performance 83

8.3.2 Source-target-source

As detailed in (Kandaswamy et al., 2015b), we propose a cyclic source-target-source (STS) ap-

proach for classification using the CNN and SDA methodologies. Tables 8.7 and 8.8 present the

STS results observed for the CNN methodology for a single cycle (STS1) and for a total of 10

cycles, respectively. Analogous results for the SDA methodology may be observed in Tables 8.6

and 8.5. For a simpler analysis the baseline results are kept on the diagonal of each table, as in the

last section.

The first observation to be taken from the analysis of the aforementioned tables is how even a

single cycle of STS can significantly improve some of the baseline results. The CF0 baseline for

example, presents a relative improvement of 18.2% for the CNN methodology, and most of the

observed results already exceed those observed for the simpler TLs approach. This improvement

is even more discernible when multiple STS cycles are carried out. The results presented in Ta-

bles 8.5 and 8.8 depict this behaviour. Here, and taking the same CF0 baseline result as referred

before, the performance, comparing to the baseline, is increased to 29.0%. It is interesting to note

how the stability observed in the last section, when a single target dataset is considered, is also

observed in this approach, with the addition of significantly increased performance. The same

conclusion can, thus, be achieved: if a stronger baseline performance is achieved, STS approaches

to classification seem to present the capability of both improving the baseline performance, as

well as guaranteeing the maintenance of such performance when different acquisition scenarios

are considered.

Another consideration to be taken from the analysis of these results is how significantly worse

the results using supervector-based SDA classification are when compared with their CNN coun-

terparts. This observation can also be made from the analysis of Tables 8.2, 8.3 and 8.4 from

last section. The most obvious explanation concerns the fact that the supervector representation

based on the GMM modelling of SIFT keypoint descriptors might not present enough discrimi-

native information for accurate SDA classification, except in some specific cases. For example,

the datasets composed by higher quality images (AR1 and BR1) present considerably better per-

formance, even surpassing the performance of their CNN counterparts. These results show that

some discriminative power exists, even though it seems severely compromised when the quality

of the input images decreases. Regardless of that, the STS behaviours described above still remain

relevant for the SDA methodology, and may earn some further research regarding the use of more

adequate feature representation techniques.

As a final approach we also explored the effect of using information from multiple sources in

order to improve the performance of the cyclic STS algorithm. The main results and observations

regarding this approach will be outlined in the next section, in an attempt to summarize all the

results and observations obtained in the present work.

84 Cross-sensor Biometrics

Table 8.5: Rank-1 recognition rates, in %, observed for the SDA methodology and the STS ap-
proach.

Target
AR0 AR1 BF0 BR0 BR1 CF0 CR0 CR1 DR0

AR0 38.0 91.3 54.4 38.7 90.6 19.0 30.9 59.6 32.7
AR1 40.8 76.7 42.1 29.7 93.9 19.8 25.4 71.6 32.0
BF0 48.5 91.6 41.4 32.2 90.8 19.8 23.5 65.9 31.7
BR0 43.1 88.7 48.2 25.5 90.6 17.3 27.9 62.5 31.7
BR1 43.1 90.0 50.3 29.5 82.1 19.0 26.1 64.3 30.3
CF0 40.0 88.0 47.4 33.8 89.4 12.0 26.1 63.9 28.7
CR0 44.4 88.0 50.9 32.2 93.1 19.8 23.5 66.1 29.3
CR1 37.4 90.0 50.6 28.9 92.2 18.3 25.1 57.8 30.0
DR0 43.3 88.4 53.2 31.9 90.0 16.8 29.1 61.6 19.7

Source

Table 8.6: Rank-1 recognition rates, in %, observed for the SV-SDA methodology and a single
cycle of the STS approach.

Target
AR0 AR1 BF0 BR0 BR1 CF0 CR0 CR1 DR0

AR0 38.0 89.1 54.4 31.1 90.6 16.0 27.7 59.6 27.3
AR1 40.8 76.7 42.1 29.2 92.2 17.0 25.4 68.9 32.0
BF0 42.3 91.6 41.4 30.3 90.8 16.5 22.8 63.9 29.3
BR0 43.1 88.7 48.2 25.5 90.6 14.0 27.9 62.5 25.7
BR1 41.8 90.0 50.3 28.4 82.1 16.8 23.5 64.1 26.0
CF0 39.2 88.0 47.4 30.0 89.4 12.0 25.4 63.9 25.0
CR0 42.6 88.0 50.9 30.0 93.1 16.5 23.5 66.1 26.7
CR1 37.4 89.6 50.0 28.9 90.0 18.3 25.1 57.8 26.0
DR0 41.8 88.4 53.2 30.2 90.0 16.8 25.6 61.6 19.7

Source

Table 8.7: Rank-1 recognition rates, in %, observed for the CNN methodology and a single cycle
of the STS approach.

Target
AR0 AR1 BF0 BR0 BR1 CF0 CR0 CR1 DR0

AR0 61.5 84.5 55.2 70.0 87.5 63.0 68.3 92.3 59.3
AR1 64.4 82.1 50.4 66.5 88.5 59.3 68.7 91.0 60.0
BF0 63.7 84.0 50.0 67.5 88.0 64.8 66.1 92.0 57.3
BR0 62.2 84.0 54.0 63.5 89.5 64.1 67.0 92.0 61.3
BR1 64.4 84.2 52.4 65.0 85.5 60.4 70.9 93.3 54.7
CF0 61.5 84.5 53.6 64.0 88.0 54.8 69.6 90.7 62.0
CR0 63.3 84.5 52.0 67.5 88.5 63.0 67.9 90.0 62.0
CR1 65.2 85.3 52.8 68.5 86.5 64.1 68.7 88.0 64.0
DR0 63.7 85.5 50.4 65.5 89.0 62.6 64.8 91.7 53.3

Source

8.3 Cross-sensor recognition performance 85

Table 8.8: Rank-1 recognition rates, in %, observed for the CNN methodology and STS approach.
Target

AR0 AR1 BF0 BR0 BR1 CF0 CR0 CR1 DR0
AR0 61.5 88.7 58.4 72.5 91.0 70.0 67.8 92.3 70.0
AR1 71.9 82.1 55.2 69.5 92.5 66.7 70.9 92.0 66.7
BF0 73.3 90.3 50.0 71.5 91.5 70.7 69.1 92.0 71.3
BR0 72.6 89.0 57.6 63.5 90.5 69.6 70.4 92.7 72.0
BR1 71.5 90.8 54.8 69.0 85.5 64.4 72.2 93.3 64.7
CF0 72.6 90.5 57.2 72.5 91.5 54.8 70.0 92.3 69.3
CR0 72.2 90.8 58.4 73.5 91.0 68.9 67.9 92.3 69.3
CR1 70.7 92.1 56.4 72.5 90.5 65.9 70.4 88.0 68.0
DR0 71.1 89.7 57.2 70.0 91.0 67.0 68.7 92.3 53.3

Source

8.3.3 Multiple Source STS

Figure 8.3 summarizes both the results obtained for the STS algorithm using multiple sources

(MS-STS) as well as all the most relevant results presented in the last sections. The main goal

of MS-STS is to achieve a high degree of domain generalization, in order to allow the trained

classifiers to perform well for the widest possible variety of scenarios. For the multiple source

examples we chose the flash subsets (AR1, BR1 and CR1) as the sources and all other no-flash

datasets as the targets. This choice can be motivated by the fact that the three flash datasets

consistently presented the best absolute performance among all the experiments that we carried

out. Such observation seems to indicate that the intrinsic discriminative power of such datasets

might be higher than the remaining alternatives, thus conferring them, at least in theory, a marked

advantage as choice for source datasets. We also chose to work only with the CNN methodology,

as the vast majority of the results observed in the last section seemed to point towards its better fit

for the problem at hand.

So as to better visualize and understand the effect of the MS-STS approach over the approaches

presented in the last sections we decided to present the results in the radial plot representation that

can be observed in the 6 images from Figure 8.3. For each image a series of features can be

observed:

• Source and Target Datasets: Each of the axis of the radial plot represents the rank-1

recognition rate (in %) for the chosen target (positive vertical axis) as well all the three

source datasets.

• BL, TLs, STS1 and STS: The BL label represents the baseline performance as already

presented in the diagonal values of Tables 8.2 to 8.4. TLs and STS1/STS, on the other hand,

represent the best results for each of the 4 depicted datasets (3 sources and 1 target), for each

of their individual TLs and STS1/STS experiments (bold values in Tables 8.3 to 8.8). STS1

represents the performance after a single cycle of the STS approach, whereas STS10 refers

to the best performance observed after 10 cycles.

86 Cross-sensor Biometrics

• STS (3 sources): This label depicts the best performance observed for the target dataset,

for its individual STS1/STS experiment, considering only AR1, BR1 and CR1 as a possible

source. We chose to include this label in order to achieve the fairest possible comparison

between the MS-STS performance and the optimal single-source experiment.

• MS-STS1 and MS-STS: The two polygons, in blue and red respectively, represent the

first cycle and optimal performances, after 10 repetitions of the whole multi-source cyclic

process, for each of the source and target datasets.

By the analysis of the plots, independent of the chosen target dataset, a few interesting con-

clusions can be drawn. First, there seems to be no significant performance change, regarding the

target dataset, between the MS-STS (after 10 cycles) approach and the analogous results for STS

using only the best single source from the [AR1,BR1,CR1] set of sources. What the MS-STS of-

fers is a way of achieving this optimal performance without the need of an empirical choice of

the best source subset, thus conferring a more robust nature to the whole process. This is also the

main advantage of the multiple source approach when compared to the optimal STS performance

obtained when considering all 8 possible sources for a specific target: as the only way to achieve

the best individual performance for a given target dataset is to extensively test all possible sources

and, then, choosing the best, the real-word applicability of an approach based on STS will be lim-

ited by the amount of available data sources. By using the proposed multiple source approach we

can achieve, with high confidence, a performance for the chosen target similar to the individual

best observed among all the chosen sources. This observation, however, does not compensate the

fact that by manually choosing a single optimal source, the performance observed for the chosen

target dataset is consistently better or, in the worst case, in a similar range to the one observed for

MS-STS. Further research is needed in order to optimize the choice of source datasets so as to

reduce this performance gap.

Another interesting observation concerns the effect of the order in which the multiple sources

[AR1,BR1,CR1] are considered during the cyclic evolution of the MS-STS process. In order to

assess whether this variable had any discernible effect over the observed performance we chose

to run, for each target dataset, a set of six variants of the original results, changing the order in

which the three sources are organized during a single cycle: [[A,B,C] , [A,C,B] , ..., [C,B,A]]. The

performance plots from Figure 8.4 seem to point to the conclusion that the performance in all 4

datasets converges to a set of values in very similar ranges, regardless of the chosen organization

of source datasets along the MS-STS pipeline. This observation leads to the conclusion that, if the

best sources are found, there is no need to optimize their order. Whereas the presented example

was considerably simple, with a very small number of sources, in a practical application there is no

guarantee that the number of combinations becomes unfeasible for a brute force optimization step

of their organization. The observed results seem to indicate that this optimization process might

be less relevant, especially in scenarios such as the tested, where all sources present a relatively

similar nature (flash illumination in this specific case). It is still unclear, due to the preliminary

nature of this study how increasing variability in the source dataset conditions would affect these

8.4 Conclusions 87

observations. The focus of future research should, thus, fall on the optimal choice of sources

so that the most complete domain generalization is achieved. With this in mind, the aim of future

work would be to accurately and intelligibly perform classification under highly variable scenarios,

especially using more heterogeneous sets of source information.

8.4 Conclusions

In the present work we proposed an extended version of the Source-Target-Source approach to

Deep Transfer Learning, making use of multiple sources of information. We successfully applied

the developed algorithm to the specific problem of cross-sensor biometrics, a recent field of re-

search that aims to mitigate the performance drop observed when training and testing acquisition

conditions are considerably heterogeneous.

We observed that, when compared to a state-of-the-art algorithm designed for single-sensor

scenarios, the proposed STS and MS-STS approaches revealed a worse baseline performance but

managed to present a very interesting cross-sensor stability regardless of the nature of the data

used in the training process. It is trivial to deduce that an improvement in the baseline perfor-

mance of any of the proposed methodologies - CNN or SV-SDA - would, necessarily, result in a

stable increase of performance in all cross-sensor scenarios. Some ideas to achieve such improve-

ment would necessarily consist on exploring alternatives to the SIFT description chosen for the

supervector generation, or on the development of ensemble or joint strategies capable of making

the most of the pros of both GMM-UBM (or any other state-of-the-art single-sensor methodol-

ogy) and STS strategies to simultaneously achieve good baseline and cross-sensor performance.

Achieving a tight coupling between both methodologies will, most certainly, represent a very sig-

nificant step in the field of cross-sensor biometrics.

88 Cross-sensor Biometrics

Figure 8.3: Graphical representation of the MS-STS Rank-1 recognition rates obtained for all the
no-flash subsets of the CSIP database using all the flash datasets as sources, plotted against the
respective BL, TLs and STS results.

8.4 Conclusions 89

Figure 8.4: Graphical representation of the MS-STS Rank-1 recognition rates obtained for all the
six possible orders of the chosen source datasets. Results concern to (a) AR0 and (b) CR0 as
targets.

90 Cross-sensor Biometrics

Part IV

Conclusion and Future work

91

Conclusion and Future Work 93

Chapter 9

Conclusion and Future Work

In this thesis we have designed a Deep Transfer Learning (DTL) framework by combining the

advantage of the hierarchical feature representation property of deep networks with the feature

reuse property of Transfer Learning methodology.

9.1 DTL mechanisms

We have designed three main mechanisms that harness the advantages of our proposed DTL frame-

work. First, we developed a layer-wise feature transference mechanism called Layerwise Transfer

Learning (LTL) using either an unsupervised or supervised learning method. The second mecha-

nism, the Source-Target-Source (STS) mechanism, optimizes the layer-wise feature transference

by expanding the optimal solution search space and switching between multiple domains (both

source and target). Third, we have developed a Deep Transfer Learning Ensemble (DTLE) mech-

anism by combining various LTL models as a ensemble for a producing a generalized model. We

verified these three DTL mechanisms for the transfer learning settings:

1. Traditional ML: The distributions are equal PS (X) = PT (X) and the labels are also equal

YS = YT .

2. Traditional TL: The distributions are equal PS (X) = PT (X) and the labels are not equal

YS 6= YT .

3. Labels are equal: The distributions are different PS (X) 6= PT (X) and the labels are equal

YS = YT .

4. Labels are different: The distributions are different PS (X) 6= PT (X) and the labels are not

equal YS 6= YT .

Case 1 is a traditional machine learning setting in which the distributions between the source

and the target problem are equal PS (X) = PT (X) and YS = YT . Therefore there is no difference

between the source and the target data. Our literature review showed that the many popular and

94 Conclusion and Future Work

successful techniques like domain adaptation, concept drift, and co-variant shift are already devel-

oped for the traditional TL transfer setting, in which the distributions are drawn from the same or

very closely correlated feature spaces. In our thesis we focused our study to evaluate the perfor-

mances of our proposed DTL mechanisms for the other two key transfer learning settings- case 3

(labels are equal) and 4 (labels are different)- in which the source and the target distributions are

different, PS (X) 6= PT (X). We used well-known Jensen-Shannon (JS) divergence (Lin, 1991) to

measure the distance between the source and the target distributions.

Toy datasets: We selected specific state-of-the-art toy datasets such that it would enable us

to study both case 3 and 4 transfer settings for both object recognition and character recognition

applications.

• We used two sets of object recognition problems based on the level of complexity of the

classification tasks. The basic object recognition problems contains three datasets: canon-

ical, non-canonical and curve vs. corner as shown in Fig 3.3. The (more) complex object

recognition problems contains two datasets: Shape1 and Shape2.

• We evaluated the DTL framework in two different settings for recognizing characters. We

used the MNIST dataset and renamed it as Latin PL which had labeled hand-written latin

digits from 0 to 9. Then we used the MADbase dataset and called it as Arabic PAr which had

labeled hand-written arabic digits from 0 to 9. Additionally, the Chars74k dataset was mod-

ified to obtain the Lowercase dataset PLC with lowercase letters from a-to-z, the Uppercase

dataset PUC with uppercase letters from A-to-Z, and the Digits PD dataset with digits from

0-to-9. The Latin-2 dataset is a modified version of MNIST to match the number of training

and validation instances of the Lowercase dataset.

Problem Categorization: The categorization of the transfer learning problems is subjective

in literature. Therefore to add a quantitative measure to study the nature of source and target

learning function, we categorize a problem as harder if a problem has higher classification error

than another. Moreover, if the source problem is harder than the target problem we categorize the

transfer learning setting as Hard Transfer (HT). In the reverse case, that is, when the roles of such

source and target problems are interchanged, the transfer learning setting is categorized as Reverse

Transfer (RT).

9.1.1 Layerwise Transfer Learning (LTL) mechanism

We analyze two approaches for LTL mechanism: 1) Transfer Learning unsupervised (TLu) and

2) Transfer Learning supervised (TLs) on two deep network models: a) Stacked Denoising Au-

toencoders and b) Convolutional Neural Network. Both approaches take a classifier trained on a

harder problem and then reuse it on a simpler problem with a completely different task drawn from

a different distribution that performed better than the baseline.

In case 3 transfer settings, labels are equal PS (X) 6= PT (X) and YS = YT : by transferring fea-

tures from geometrical shapes to canonical shapes, we achieved a 7.4% relative improvement on

9.1 DTL mechanisms 95

the average error rate in the TLs approach. We also observed negative transfer learning (perfor-

mance degradation) in both approaches for reverse transfer cases drawn from different distribu-

tions.

In case 4 transfer settings, labels are different PS (X) 6= PT (X) and YS 6=YT : the TLu approach

achieved a 7% improvement on accuracy and 41% reduction on computation time for uppercase

datasets. Similar results were observed in lowercase datasets. Subsequently, in the TLs approach

we achieved lower average error rates than the baseline. The best result was obtained for the

TLs:FT approach in which we reused the three supervised hidden layers of the source problem

for solving the target problem, and it resulted in a 54% speed up with respect to the baseline. We

observed that features trained on harder problems are generic and are able to adapt better to the

target problem than ones trained on simpler problems.

9.1.2 Source-Target-Source (STS) mechanism

The main idea of the STS mechanism is to iterate the learning between both source and target

domains. The intuition is that, like in typical metaheuristics in optimization, moving the learning

from one domain to the other will “shake” the current local optimal solution, allowing us to keep

exploring the space of solutions. Ideally, this would allow us to reach a better solution in the

process. The STS approach outperforms both baseline and transfer learning approaches. We

studied TLu and TLs approaches for transferring generic features on distributions that are similar

and transferring specific features on tasks that are different to study the impact of splitting co-

adapted neurons. Finally, using the cyclic STS approach reduced the transferability gap between

the source and the target tasks. We summarize that the STS outperforms both the baseline and the

transfer learning approaches. As a extension we studied the STS approach transferring features

from multiple sources, Multi-source STS (MS-STS). The MS-STS demonstrated better domain

generalization.

9.1.3 Deep Transfer Learning Ensemble (DTLE) mechanism

When we analyzed case 3 and case 4 transfer learning settings, we observed that transfer specific

DTL approaches obtained better overall accuracy than the baseline but were not as good as retrain

specific DTL, since the fine-tuned weights of the transfer specific DTL forced the solution to the

local minima. DTLE outperformed the baseline and other DTL approaches when the distributions

and tasks were different.

9.1.4 User interface

DTL software is an interactive interface for GPU based machine learning algorithims. The soft-

ware provides an interface to the baseline and various transfer learning methods. The intention of

building a user interface for the DTL framework makes it easier for other researchers to compara-

tively evaluate their own methods.

How to use the DTL software?

96 Conclusion and Future Work

Figure 9.1: A pictorial representation of DTL soft user interface depicting the three DTL mechanisms

The step by step instructions are provided for each of the approaches along with the glos-

sary and DTL software are available at this link: http://www.deepnets.ineb.up.pt/files/

software/Deep_software_interface/DTL_frontend.html.

9.2 DTL for real-world applications and scenarios

The salient intentions of this research were to demonstrate the designed DTL framework for prac-

tical applications like drug discovery and cross-sensor biometric identification. For the first appli-

cation, we produced state-of-the-art performance on the analysis of high-content breast cancer cell

images for drug discovery using the LTL mechanism. We obtained significant improvements in

both time and accuracy. For the second application we extended our Source-Target-Source mech-

anism for cross-sensor biometric classification to identify of human anatomical structure in the

periocular region with a multi-source version.

9.2.1 High-content analysis for drug-discovery

We study LTL mechanism to provide classification of chemical mechanisms in action (MOA) of

breast cancer cells. In this application we map the input features of each cell to a particular MOA

class without using feature reduction methods. This is particularly useful for new drug testing

as computational time is saved. The average accuracies of the baseline SAA for Pset1 and Pset2

http://www.deepnets.ineb.up.pt/files/software/Deep_software_interface/DTL_frontend.html
http://www.deepnets.ineb.up.pt/files/software/Deep_software_interface/DTL_frontend.html

9.3 Future work 97

datasets are about 84% and 87%, respectively, using a seven hidden layer SAA with 500 neurons

in each layer. We observed around 30% computational speed up when using the DTL approach.

9.2.2 Cross-sensor biometric recognition

With the increasing popularity and availability of mobile devices capable of performing the whole

biometric recognition framework from data acquisition to the final decision, a new obstacle is

presented to the development of such systems: the need to adapt to the wide variety of available

sensors and their respective heterogeneity with regards to image quality. We used MS-STS ap-

proach on the CISP dataset which has ten different datasets. We observed that, when compared

to a state-of-the-art algorithm designed for single-sensor scenarios, the proposed STS and MS-

STS approaches revealed a worse baseline performance but managed to present a very interesting

cross-sensor stability regardless of the nature of the data used in the training process. It is trivial to

deduce that an improvement in the baseline performance of any of the proposed methodologies -

CNN or SV-SDA - would, necessarily, result in a stable increase of performance in all cross-sensor

scenarios.

9.3 Future work

The golden age of machine learning is just beginning (Hemsoth, 2015). The machine learning

community is focusing on more broader and ambitious challenges. Never ending learning is one

such methodology which attempts to replicate human like learning ability. Humans visualize one

aspect from one scenario and reuse it continuously for various other scenarios, with very little

training. As a pragmatic option towards the goal of General Intelligence paradigm, Tom Mitchell

proposes a broader interdisciplinary view of machine learning involving computer programmers

and statisticians who have already contributed to statistical-computational theories of learning

processes, with other field experts like psychologists, economists, biologists and neuroscientists,

collectively questioning What kind of process can lead to learning under what conditions for what

kind of data? (Mitchell, 2006).

Mechanism specific extensions to DTL framework

• CNN methodology: Traditionally, this strategy is explored when large datasets are available,

so as to achieve the most robust modeling possible. In the current work we used only two

training instances from each source dataset (Cross-sensor CISP), thus, theoretically, limit-

ing the potential of achieving good results for the problem at hand. With this observation in

mind, we can conclude that testing the proposed approaches on a larger cross-sensor peri-

ocular dataset would probably result both in higher baseline as well as higher cross-sensor

performances. One must note, however, that the availability of large amounts of data to per-

form the enrollment step is not guaranteed in real-life applications. This limitation should,

therefore, be overcome in the long run if this strategy is expected to be implemented in more

98 Conclusion and Future Work

practical solutions. Another focus of future work for CNN would be using information from

all three RGB channels instead of grayscale transformation used on the present work.

• Regarding the MS-STS, we may conclude that, even though the optimal STS performance

managed to outperform its multi-source counterpart in almost all scenarios, the reasoning for

this behaviour is both expected as well as negligible for practical applications. As we are

manually choosing the best performing source when presenting the STS results, whereas

in the MS-STS we are fixing the same set of sources for all experiments, it is expected

that optimal performance is not achieved in the situations where the best performing single

source is not included on the set of chosen sources. From a practical point of view, testing the

universe of all possible sources to empirically choose the best one is not a viable possibility.

The focus of future work should, therefore, fall on the automatic choice of the fittest sources

to achieve the highest degree of domain generalization during the MS-STS learning process

and, thus, cause the convergence of the MS-STS performance to the best possible STS

result. Future work includes testing MS-STS using SV-SDA with instance weighting and

pre-training the network with unlabelled biometric data.

• The DTLE method has several options such as retrain specific feature, generic feature, su-

pervised, unsupervised, locked, or unlocked layers. Including a possibility of training from

multiple source problem as in the MS-STS approach may lead to better domain general-

ization. This in combination with having large data samples will have a huge training re-

quirement. The DTLE method can be optimized by developing the algorithm to learn these

choices.

Application specific Extensions to DTL framework

• Traffic management using drones, enabling the detection of traffic congestion for both hu-

man driven and self-driving cars. Let us consider a scenario, in which drones are assigned

the task of performing aerial surveillance of traffic jam and report the situation back to the

ground station. The ground based server will assign tasks in real-time while the swarms

of drones will be used to communicate among themselves and make task allocation. To

perform the task, we would need smart drones that can identify the traffic jam through co-

operative communication among themselves and then report back to the ground station with

reliable information exchange using suitable routing protocols.

• In many real life problems humans are called to compare or rank items or objects in order

to choose the most appropriate item for a specific goal. Think for example of choosing

a music to listen, buying clothes, ordering a dish in a restaurant, etc. Other applications

include stock trading support systems, where one wants to predict, for instance, whether

to buy, keep or sell a stock, and biomedical classification problems, where frequently the

classes are ordered. Even when many learning problems involve classifying examples into

9.3 Future work 99

classes which have a natural order, this scenario has not received as much attention as the

standard classification problem.

• Biometric application: FBI is interested in identifying people or groups using tattoos1. This

is a biometric application more challenging than the simple finger print or facial recognition,

as there are no rigid curves like in finger print scans nor is there specific features of a face.

1http://spectrum.ieee.org/computing/software/fbi-wants-better-automated-image-analysis-
for-tattoos

http://spectrum.ieee.org/computing/software/fbi-wants-better-automated-image-analysis-for-tattoos
http://spectrum.ieee.org/computing/software/fbi-wants-better-automated-image-analysis-for-tattoos

100 Conclusion and Future Work

Model compression for real-time application 101

Appendix A

Model compression for real-time
application

In this appendix, we report preliminary work developed during an internship at National Institute

of Informatics, Tokyo at Prendingers’ lab. As discussed in the future work of the previous chapter,

an important task is the development of a shared dynamic map that helps intelligent transport sys-

tem for efficient traffic management assisted with smart drones. Traditional mapping techniques

require numerous expensive sensors in the car to collect large volumes of data that then need to

be recorded and processed offline. By contrast, drone ecosystems could efficiently move much of

the data processing into the drone, minimizing communication with the cloud. Mapping helps to

track the performance of not only automated cars but also other vehicles.

Let us consider a scenario of traffic management at a freeway junction as shown in Fig A.1, in

which swarms of drones are assigned the task of performing aerial surveillance of traffic jam and

report the situation back to the ground station. To analyze the traffic, the drones need to under-

stand high level semantic information of the aerial scene in real-time through cooperative commu-

nication among themselves and then report back to the ground station with reliable information

exchange using suitable routing protocols. We opted semantic segmentation as a classification

problem for the smart drones.

Figure A.1: An illustrative picture showing a scenario in which smart drones build a shared map
and track the traffic movements at a freeway junction. Picture courtesy of NVIDIA.

102 Model compression for real-time application

Table A.1: Comparison of Deep Learning object recognition architectures

Models
Network
depth

Model size
(MB)

Number of
parameters
(Millions)

Number of
operations
(GFLOP)

AlexNet 8 58 61 1.5
VGG-16 16 553 138 15.3
GoogLeNet 22 35 6.8 1.5
ResNet-50 50 102 0.8 3.8
Resnet-101 101 178 1.6 7.6
Resnet-152 152 241 2.3 11.3

Semantic segmentation is the problem of partitioning an image into discrete components that

correspond to semantically meaningful categories. To perform semantic segmentation, we follow

the techniques proposed in (Long et al., 2015) and train extract-upscale CNN architectures. These

are CNN architectures consisting of an ‘extract’ stage, a modified object classification CNN ar-

chitecture such as AlexNet (Krizhevsky et al., 2012), VGG-16 (Simonyan and Zisserman, 2014),

GoogLeNet (Szegedy et al., 2015), or Resnet (He et al., 2016), followed by an second ‘upscale’

stage, which up-samples the coarse output of the extract stage to the original resolution of the

image. We performed a comparison of the sizes and computational costs of a variety of different

CNN architectures for object recognition to assess their suitability for real-time applications in

embedded devices (see Table A.1).

Standard dataset: To test our proposed DTL approaches, we use standard semantic segmen-

tation toy datasets, an extended version of Pascal VOC dataset (Everingham et al., 2012). The

train set contained 8498 images from the SBD training set (Hariharan et al., 2011) and the test set

contains 736 images from PASCAL VOC 2011, none of which are contained in the train set used

in (Long et al., 2015). We modified the Microsoft Common Objects in COntext (MS COCO) (Lin

et al., 2014) dataset that contains 91 object categories to match the Pascal VOC dataset for testing

our proposed LTL, MS-STS and DTLE approaches.

Drone dataset: We built two aerial dataset: 1) 31 aerial images from Okutama (Oku-data),

Japan and tested on the drone videos, and 2) 100 aerial images from Switzerland (Swiss-data).

Both the dataset contains 10 classes, that are background, outdoor structures, buildings, paved

ground, non-paved ground, train tracks, plants, wheeled vehicles, water, and people classes. The

data collection is at very preliminary stage and we plan to collect more data at a later stage of the

project. This initial very small data for complex semantic segmentation problem would be useful

to demonstrate the data-efficiency and domain-generalization of DTL approaches.

Model compression for DTLE

For real-time applications with drones, the propose DTLE model is bulky and slow. To have a

light, fast and accurate model we use model compression (Bucilua et al., 2006), and then expand

Model compression for real-time application 103

Figure A.2: Block diagram of model compression method for Ensemble of Deep Learning Models
for Semantic Segmentation.

on the ‘distillation’ a transfer learning technique proposed in (Hinton et al., 2015). Model com-

pression shows that large ensembles of models can be compressed to a single model, by training

the single model to mimic the outputs (logits) of the ensemble. The resultant compressed model

outperforms a model of the same architecture that is trained from hand-labelled data instead of

from the ensemble. The complex deep nets can be trained with smaller models (Ba and Caruana,

2014); a block diagram for the model compression method is shown in the Fig A.2.

Inspired by the FCN structures described in (Long et al., 2015), we transform a ResNet into an

FCN-ResNet in the following way. Starting with a set of pre-trained ResNet weights, we remove

the final average-pooling, fully-connected, and softmax layers of the network. We replace these

with a 1×1 convolution layer with a number of filters corresponding to the number of categories,

a 64×64 ‘deconvolution’ layer with stride 32, and a crop layer. The 1×1 convolution layer is ran-

domly initialized with variables drawn from a Gaussian distribution. The weights of the 64× 64

‘deconvolution’ layer are manually set to bilinear interpolation, and it is “frozen” in this arrange-

ment by setting its learning rate to 0. We adapted three residual networks of different depths:

ResNet-50, ResNet-101 and ResNet-152, having respectively 50, 101 and 152 layers. To further

improve the accuracy of Fully Convolutional residual networks, we introduce “skip layers” into

our FCN-ResNet architecture, similar to the FCN-8s architecture described in (Long et al., 2015).

By incorporating information from earlier stages in the network into the up-sampling procedure,

we could likely increase the spatial accuracy of the network, See Fig A.3 for the adaptation block

diagram.

The compression process occurs in two steps: pre-training and knowledge transfer. In the pre-

training step, we train a semantic segmentation model on a set of labelled images in the usual way.

When the training converges, we commence the knowledge transfer step.

In the knowledge transfer step, we use a second dataset. We produce labels for this data set

by running it through a pre-existing ensemble model, and storing the full logit vector produced

104 Model compression for real-time application

Figure A.3: Block diagram of Extract-upscale method of Deep Learning Models modified for
Semantic Segmentation with skip connections.

by the ensemble for each pixel of each image. We then continue training the new model but now

by training it to minimize the difference between its own output logit vectors and those of the

ensemble.

Table A.2: Model compression accuracy in Percentage with DTLE approach

FCN models
Mean IU
(%)

Pixel acc.
(%)

Forward
time
(sec)

VGG-16 (32s) 63.6 90.5 0.1
VGG-16 (16s) 65.0 91.0 0.1
VGG-16 (8s) 65.5 91.2 0.1
GoogLeNet 54.7 88.4 0.06
ResNet-50 60.6 90.4 0.06
Resnet-101 64.0 91.2 0.11
Resnet-152 65.0 91.5 0.11
Ensemble 67.7 92.1 1.29
Compressed model
(Resnet-152) 66.1 91.7 0.11

A.1 Results

Standard dataset: PASCAL VOC. In Table A.2, we compare the accuracy and forward com-

putation time of various trained or pre-trained single models, an ensemble of these models together

and a compressed model from that ensemble. We observe that even though the compressed net-

work does not achieve a mean IU1 and pixel accuracy as high as the ensemble, it is better than any

of the single models in the ensemble, and its forward computation time is less than 10% of the en-

semble. Thus our method has allowed us to capture some of the ensemble’s superior performance,
1Mean intersection over union, this is simply the unweighted average of the Jaccard indices of each category. This

is the most widely-used metric for semantic segmentation.

A.1 Results 105

Input Ground-truth Single model Ensemble Compressed
Figure A.4: Comparison between output labels for the single and compressed FCN-ResNet-152
models, the ensemble and the ground-truth. In most cases, the compressed model is getting closer
to the segmentation quality of the ensemble.

while maintaining the speed of a single FCN-ResNet. When analysing the predictions output by

our networks, we observe that knowledge transfer helps avoid some class confusions in certain

pixel areas, as we can see in the horse’s neck in Fig. A.4. In this case, the ensemble has largely

corrected for what one of its component networks perceived as an ambiguity. Learning from the

ensemble in this regard, the distilled network also knows how to handle this ambiguity.

Table A.3: Model compression accuracy in Percentage with MS-STS approach

FCN models
Mean IU
(%)

Pixel acc.
(%)

Forward
time
(sec)

VGG-16 (8s) 65.5 91.2 0.1
MS-STS Resnet-152 68.6 92.6 0.11
Ensemble 70.6 92.9 0.4
Compressed model
(Resnet-152) 69.6 92.7 0.11

In Table A.3, we compare the accuracy and forward computation time of pre-trained single

models FCN-8 and MS-STS approach using PASCAL VOC and MS COCO data set, an ensemble

of these models together and a compressed model from that ensemble. We observe that the MS-

STS approach performs better than the FCN-8s single model and the compressed model (Resnet-

152) performed almost good as the ensemble.

106 Model compression for real-time application

Figure A.5: Screen shot of the Hikawa primary school premises marking the pool and the play
area performing semantic segmentation on FCN-Resnet-50 with skip connections.

Drone dataset: We used pre-trained FCN-Resnet-50 to train for the Okutama drone data with

31 images. This model is faster and as accurate as other FCN models. We could observe that the

segmentation of people class were not accurate. We used a weighted class method for the classes

to observe the results. We do not yet have the complete dataset, thus we have the results of the

video segmentation, and thus we do not perform any metrics evaluation on this dataset. In Fig A.5

is a screen shot of the video segmentation in a Hikawa primary school.

A.2 Conclusions and Future Work

We have demonstrated a single semantic segmentation model can be trained to closely replicate

the accuracy of an ensemble of deep model, outperforming all of the individual deep models

in the ensemble, while retaining the real-time performance of an individual net. As mentioned

previously, the knowledge transfer stage of the compression process does not require any labeled

data. We are planning to explore further cases where unlabeled data might be essential, and where

we can fully realize the potential of our model compression technique. We have collected only

initial set of drone dataset with 31 images. We want to enrich the dataset with more complex

category classification for the traffic management based scenarios.

Acknowledgements

We would like to thank the support of Prof. Helmut Prendinger, National Institute of Informatics,

Tokyo and Dr. Kai Yan from LabRomance and enRoute Co., Ltd.for their guidance and support.

A.2 Conclusions and Future Work 107

We thank Mr. Andrew Holliday, Mr. Johannes Laurmaa, Mr. Pierre Ecarlat and Mr. Kim Samba

for the support and technical assistance to this research. We thank Ruben Geraldas and Naoki

Tada for organizing the aerial data collection at the Okutama, Japan using drones.

108 Model compression for real-time application

REFERENCES 109

References

Amaral, T., Silva, L. M., Alexandre, L. A., Kandaswamy, C., Santos, J. M., and de Sá, J. M. Using
different cost functions to train stacked auto-encoders. In Mexican international conference on
artificial intelligence (MICAI), pages 114–120. IEEE, 2013. doi: 10.1109/MICAI.2013.20.

Amaral, T., Kandaswamy, C., Silva, L. M., Alexandre, L., Marques de Sá, J., and Santos, J. M.
Improving performance on problems with few labelled data by reusing stacked auto-encoders.
In International conference on Machine Learning and Applications (ICMLA), pages 367–372.
IEEE, 2014a. doi: 10.1109/ICMLA.2014.65.

Amaral, T., Silva, L. M., Alexandre, L. A., Kandaswamy, C., de Sá, J. M., and Santos, J. M.
Transfer learning using rotated image data to improve deep neural network performance. In
Image Analysis and Recognition, pages 290–300. Springer, 2014b. doi: 10.1007/978-3-319-
11758-4_32.

Ba, J. and Caruana, R. Do deep nets really need to be deep? In Advances in Neural Information
Processing Systems, pages 2654–2662, 2014.

Beadle, G. F., Silver, B., Botnick, L., Hellman, S., and Harris, J. R. Cosmetic results following
primary radiation therapy for early breast cancer. Cancer, 54(12):2911–2918, 1984.

Ben-David, S., Blitzer, J., Crammer, K., Kulesza, A., Pereira, F., and Vaughan, J. W. A theory of
learning from different domains. Machine learning, 79(1-2):151–175, 2010.

Benenson, R. Discover the current state of the art in objects classification, ac-
cessed January 12, 2016. URL http://rodrigob.github.io/are_we_there_yet/build/
classification_datasets_results.html.

Bengio, Y., Courville, A., and Vincent, P. Representation learning: A review and new perspectives.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(8):1798–1828, Aug 2013.
ISSN 0162-8828. doi: 10.1109/TPAMI.2013.50.

Bengio, Y. Learning deep architectures for AI. Foundations and Trends in Machine Learning, 2
(1):1–127, 2009. doi: 10.1561/2200000006. Now Publishers.

Bengio, Y. Deep learning of representations for unsupervised and transfer learning. Unsupervised
and Transfer Learning Challenges in Machine Learning, 7:19, 2012.

Bergstra, J., Breuleux, O., Bastien, F., Lamblin, P., Pascanu, R., Desjardins, G., Turian, J., Warde-
Farley, D., and Bengio, Y. Theano: a CPU and GPU math expression compiler. In Proceedings
of the Python for Scientific Computing Conference (SciPy), volume 4, 2010.

Bishop, C. M. Pattern recognition and machine learning. springer, 2006.

http://rodrigob.github.io/are_we_there_yet/build/classification_datasets_results.html
http://rodrigob.github.io/are_we_there_yet/build/classification_datasets_results.html

110 REFERENCES

Blitzer, J., McDonald, R., and Pereira, F. Domain adaptation with structural correspondence
learning. In Proceedings of the 2006 Conference on Empirical Methods in Natural Language
Processing, pages 120–128, 2006.

Bruzzone, L. and Marconcini, M. Domain adaptation problems: A dasvm classification tech-
nique and a circular validation strategy. IEEE transactions on pattern analysis and machine
intelligence, 32(5):770–787, 2010.

Bucilua, C., Caruana, R., and Niculescu-Mizil, A. Model compression. In International Confer-
ence on Knowledge Discovery and Data Mining, pages 535–541. ACM, 2006.

Campbell, W. M., Sturim, D. E., and Reynolds, D. A. Support vector machines using gmm super-
vectors for speaker verification. Signal Processing Letters, IEEE, 13(5):308–311, 2006.

Carpenter, A. E., Jones, T. R., Lamprecht, M. R., Clarke, C., Kang, I. H., Friman, O., Guertin,
D. A., Chang, J. H., Lindquist, R. A., Moffat, J., and others. CellProfiler: image analysis
software for identifying and quantifying cell phenotypes. Genome biology, 7(10):R100, 2006.

Caruana, R. Multitask learning. Machine learning, 28(1):41–75, 1997.

Ciresan, D. C., Meier, U., and Schmidhuber, J. Transfer learning for latin and chinese characters
with deep neural networks. In International Joint Conference on Neural Networks (IJCNN),
pages 1–6. IEEE, 2012.

Connaughton, R., Sgroi, A., Bowyer, K. W., and Flynn, P. A cross-sensor evaluation of three
commercial iris cameras for iris biometrics. In Computer Society Conference on Computer
Vision and Pattern Recognition Workshops (CVPRW), pages 90–97. IEEE, 2011.

Cook, D., Feuz, K. D., and Krishnan, N. C. Transfer learning for activity recognition: A survey.
Knowledge and information systems, 36(3):537–556, 2013.

Cortes, C. and Vapnik, V. Support-vector networks. Machine learning, 20(3):273–297, 1995.

Dalal, N. and Triggs, B. Histograms of oriented gradients for human detection. In IEEE Computer
Society Conference on Computer Vision and Pattern Recognition (CVPR), volume 1, pages 886–
893. IEEE, 2005.

Davis, S. B. and Mermelstein, P. Comparison of parametric representations for monosyllabic word
recognition in continuously spoken sentences. Acoustics, Speech and Signal Processing, IEEE
Transactions on, 28(4):357–366, 1980.

Everingham, M., Van Gool, L., Williams, C. K. I., Winn, J., and Zisserman, A. The PASCAL
Visual Object Classes Challenge 2012 (VOC2012), 2012.

Fukushima, K. Neocognitron: A self-organizing neural network model for a mechanism of pattern
recognition unaffected by shift in position. Biological Cybernetics, 36(4):193 – 202, April 1980.
ISSN 0340-1200, 1432-0770.

Gama, J., Zliobaite, I., Bifet, A., Pechenizkiy, M., and Bouchachia, A. A survey on concept drift
adaptation. ACM Computing Surveys (CSUR), 46(4):44, 2014.

Gasser, L., Lakkaraju, K., Ray, S., and Swarup, S. Darpa baa 05-29: Transfer learning issues and
potential contributions. University of Illinois at Urbana-Champaign, 2005.

REFERENCES 111

Ge, Z., McCool, C., Sanderson, C., and Corke, P. Modelling local deep convolutional neural
network features to improve fine-grained image classification. In International Conference on
Image Processing (ICIP), pages 4112–4116. IEEE, 2015.

Glorot, X., Bordes, A., and Bengio, Y. Domain adaptation for large-scale sentiment classification:
A deep learning approach. In International Conference on Machine Learning (ICML), pages
513–520, 2011.

Google. Google Trends keyword search for state-of-the-art machine learning algo-
rithms, 2015. URL http://www.google.com/trends/explore?hl=en-US#q=Machine+
Learning,Support+vector+machines,Deep+Learning,+Random+forest+&cmpt=q.

Hariharan, B., Arbeláez, P., Bourdev, L., Maji, S., and Malik, J. Semantic contours from inverse
detectors. In Conference on Computer Vision (ICCV), pages 991–998. IEEE, 2011.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learning for image recognition. In Confer-
ence on Computer Vision and Pattern Recognition (CVPR). IEEE, 2016.

Hemsoth, N. Why The Golden Age Of Machine Learning is Just Beginning,
2015. URL http://www.theplatform.net/2015/10/20/why-the-golden-age-of-
machine-learning-begins-now/.

Hinton, G., Vinyals, O., and Dean, J. Distilling the knowledge in a neural network, 2015.

Hinton, G. E., Sejnowski, T. J., and Ackley, D. H. Boltzmann machines: Constraint satisfaction
networks that learn. Carnegie-Mellon University, Department of Computer Science Pittsburgh,
PA, 1984.

Hinton, G. E., Osindero, S., and Teh, Y.-W. A fast learning algorithm for deep belief nets. Neural
computation, 18(7):1527–1554, 2006.

Holst, A., de Giorgio, A., and Lansner, A. A study on the similarities of deep belief networks and
stacked autoencoders. Master’s thesis, KTH, School of Computer Science and Communication,
2015.

Hubel, D. H. and Wiesel, T. N. Receptive fields of single neurones in the cat’s striate cortex. The
Journal of physiology, 148(3):574–591, 1959.

Jiang, J. A literature survey on domain adaptation of statistical classifiers. URL: http://sifaka. cs.
uiuc. edu/jiang4/domainadaptation/survey, 2008.

Jillela, R. and Ross, A. Matching face against iris images using periocular information. In Inter-
national Conference on Image Processing (ICIP), pages 4997–5001. IEEE, 2014.

Kandaswamy, C., Silva, L. M., Alexandre, L. A., Santos, J. M., and de Sá, J. M. Improving
deep neural network performance by reusing features trained with transductive transference.
In Artificial Neural Networks and Machine Learning–ICANN 2014, pages 265–272. Springer,
2014a. doi: 10.1007/978-3-319-11179-7_34.

Kandaswamy, C., Silva, L. M., Alexandre, L. A., Sousa, R., Santos, J. M., de Sá, J. M., et al. Im-
proving transfer learning accuracy by reusing stacked denoising autoencoders. In IEEE Inter-
national Conference on Systems, Man and Cybernetics (SMC), pages 1380–1387. IEEE, 2014b.
doi: 10.1109/SMC.2014.6974107.

http://www.google.com/trends/explore?hl=en-US##q=Machine+Learning,Support+vector+machines,Deep+Learning,+Random+forest+&cmpt=q
http://www.google.com/trends/explore?hl=en-US##q=Machine+Learning,Support+vector+machines,Deep+Learning,+Random+forest+&cmpt=q
http://www.theplatform.net/2015/10/20/why-the-golden-age-of-machine-learning-begins-now/
http://www.theplatform.net/2015/10/20/why-the-golden-age-of-machine-learning-begins-now/

112 REFERENCES

Kandaswamy, C., Silva, L. M., Alexandre, L., Sousa, R., Santos, J. M., de Sá, J. M., et al. Improv-
ing transfer learning accuracy by reusing stacked denoising autoencoders. In Systems, Man and
Cybernetics (SMC), 2014 IEEE International Conference on, pages 1380–1387. IEEE, 2014c.

Kandaswamy, C., Silva, L. M., Alexandre, L. A., and Santos, J. M. Deep transfer learning en-
semble for classification. In Advances in Computational Intelligence, pages 335–348. Springer,
2015a. doi: 10.1007/978-3-319-19258-1_29.

Kandaswamy, C., Silva, L. M., and Cardoso, J. S. Source-target-source classification using stacked
denoising autoencoders. In Pattern Recognition and Image Analysis, pages 39–47. Springer,
2015b.

Kandaswamy, C., ao. C. Monteiro, J., Silva, L. M., and Cardoso, J. S. Multi-source deep transfer
learning for cross-sensor biometrics. Conditionally accepted in Neural Computing and Appli-
cations Journal, 2016a.

Kandaswamy, C., Silva, L. M., Alexandre, L. A., and Santos, J. M. High-content analysis of breast
cancer using single-cell deep transfer learning. Journal of Biomolecular Screening, SAGE,
2016b. doi: 10.1177/1087057115623451.

Krizhevsky, A., Sutskever, I., and Hinton, G. Imagenet classification with deep convolutional
neural networks. In Advances in Neural Information Processing Systems 25, pages 1106–1114,
2012.

Kuncheva, L. I. Combining pattern classifiers: methods and algorithms. John Wiley & Sons,
2004.

Kurzweil, R. The singularity is near: When humans transcend biology. Penguin, 2005.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Lee, T. S., Mumford, D., Romero, R., and Lamme, V. A. The role of the primary visual cortex in
higher level vision. Vision research, 38(15):2429–2454, 1998.

Li, B. Cross-domain collaborative filtering: A brief survey. In Tools with Artificial Intelligence
(ICTAI), 2011 23rd IEEE International Conference on, pages 1085–1086. IEEE, 2011.

Li, F.-F. and Karpathy, A. Standford Course on convolutional neural networks for visual recogni-
tion, 2015. URL http://cs231n.stanford.edu/.

Lin, J. Divergence measures based on the shannon entropy. Information Theory, IEEE Transac-
tions on, 37(1):145–151, 1991.

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., and Zitnick,
C. L. Microsoft coco: Common objects in context. In European Conference on Computer
Vision, pages 740–755. Springer, 2014.

Ljosa, V., Caie, P. D., ter Horst, R., Sokolnicki, K. L., Jenkins, E. L., Daya, S., Roberts, M. E.,
Jones, T. R., Singh, S., Genovesio, A., and others. Comparison of methods for image-based pro-
filing of cellular morphological responses to small-molecule treatment. Journal of biomolecular
screening, page 1087057113503553, 2013.

http://cs231n.stanford.edu/

REFERENCES 113

London, M. and Sessa, V. I. How groups learn, continuously. Human Resource Management, 46
(4):651–669, 2007.

Long, J., Shelhamer, E., and Darrell, T. Fully convolutional networks for semantic segmentation.
In IEEE Conference on Computer Vision and Pattern Recognition, pages 3431–3440, 2015.

Lowe, D. G. Object recognition from local scale-invariant features. In IEEE international confer-
ence on Computer vision, volume 2, pages 1150–1157. Ieee, 1999.

Marr, B. 5 ways machine learning is reshaping our world, 2015. URL http:
//www.forbes.com/sites/bernardmarr/2015/10/22/5-ways-machine-learning-
is-reshaping-our-world/.

Mitchell, T. M. The discipline of machine learning, volume 17. Carnegie Mellon University,
School of Computer Science, Machine Learning Department, 2006.

Monteiro, J. C. and Cardoso, J. S. Periocular recognition under unconstrained settings with uni-
versal background models. In International Conference on Bio-inspired Systems and Signal
Processing (BIOSIGNALS), 2015.

Monteiro, J. C., Esteves, R., Santos, G., Fiadeiro, P. T., Lobo, J., and Cardoso, J. S. A Comparative
Analysis of Two Approaches to Periocular Recognition in Mobile Scenarios, pages 268–280.
Springer International Publishing, Cham, 2015. ISBN 978-3-319-27863-6. doi: 10.1007/978-
3-319-27863-6_25. URL http://dx.doi.org/10.1007/978-3-319-27863-6_25.

Oliveira, H. An Affordable and Practical 3D Solution for the Aesthetic Evaluation of Breast
Cancer Conservative Treatment. PhD thesis, University of Porto, 2013.

Pan, S. J. and Yang, Q. A survey on transfer learning. Knowledge and Data Engineering, IEEE
Transactions on, 22(10):1345–1359, 2010.

Patricia, N. and Caputo, B. Learning to learn, from transfer learning to domain adaptation: A uni-
fying perspective. In Computer Vision and Pattern Recognition (CVPR), 2014 IEEE Conference
on, pages 1442–1449. IEEE, 2014.

Perkins, D. N. and Salomon, G. Transfer of learning. International encyclopedia of education, 2,
1992.

Pillai, J., Puertas, M., and Chellappa, R. Cross-sensor iris recognition through kernel learning.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 36(1):73–85, Jan 2014.

Proença, H. and Alexandre, L. The nice.i: noisy iris challenge evaluation - part i. In International
Conference on Biometrics: Theory, Applications, and Systems, pages 1–4. IEEE, 2007.

Raina, R., Battle, A., Lee, H., Packer, B., and Ng, A. Y. Self-taught learning: transfer learning
from unlabeled data. In International conference on Machine learning, pages 759–766. ACM,
2007.

Razavian, A. S., Azizpour, H., Sullivan, J., and Carlsson, S. Cnn features off-the-shelf: an as-
tounding baseline for recognition. In Computer Vision and Pattern Recognition Workshops
(CVPRW), 2014 IEEE Conference on, pages 512–519. IEEE, 2014.

Reynolds, D. A., Quatieri, T. F., and Dunn, R. B. Speaker verification using adapted gaussian
mixture models. Digital signal processing, 10(1):19–41, 2000.

http://www.forbes.com/sites/bernardmarr/2015/10/22/5-ways-machine-learning-is-reshaping-our-world/
http://www.forbes.com/sites/bernardmarr/2015/10/22/5-ways-machine-learning-is-reshaping-our-world/
http://www.forbes.com/sites/bernardmarr/2015/10/22/5-ways-machine-learning-is-reshaping-our-world/
http://dx.doi.org/10.1007/978-3-319-27863-6_25

114 REFERENCES

Salakhutdinov, R. and Hinton, G. E. Deep boltzmann machines. In International Conference on
Artificial Intelligence and Statistics, pages 448–455, 2009.

Salakhutdinov, R., Mnih, A., and Hinton, G. Restricted boltzmann machines for collaborative
filtering. In Proceedings of the 24th international conference on Machine learning, pages 791–
798, 2007.

Santos, G., Grancho, E., Bernardo, M. V., and Fiadeiro, P. T. Fusing iris and periocular information
for cross-sensor recognition. Pattern Recognition Letters, 57:52–59, 2015.

Scherer, D., Muller, A., and Behnke, S. Evaluation of pooling operations in convolutional archi-
tectures for object recognition. In Artificial Neural Network, 2010, pages 92 – 101. Springer,
2010.

Serre, T., Wolf, L., and Poggio, T. Object recognition with features inspired by visual cortex. In
Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Confer-
ence on, volume 2, pages 994–1000. IEEE, 2005.

Shamir, L. Assessing the efficacy of low-level image content descriptors for computer-based
fluorescence microscopy image analysis. Journal of microscopy, 243(3):284–292, 2011.

Shao, L., Zhu, F., and Li, X. Transfer learning for visual categorization: A survey. IEEE transac-
tions on neural networks and learning systems, 26(5):1019–1034, 2015.

Simonyan, K. and Zisserman, A. Very deep convolutional networks for large-scale image recog-
nition. CoRR, abs/1409.1556, 2014.

Singh, S., Carpenter, A. E., and Genovesio, A. Increasing the Content of High-Content Screening
An Overview. Journal of biomolecular screening, 19(5):640–650, 2014.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., and
Rabinovich, A. Going deeper with convolutions. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 1–9, 2015.

Tan, T., He, Z., and Sun, Z. Efficient and robust segmentation of noisy iris images for non-
cooperative iris recognition. Image and vision computing, 28(2):223–230, 2010.

Taylor, M. E. and Stone, P. Transfer learning for reinforcement learning domains: A survey. The
Journal of Machine Learning Research, 10:1633–1685, 2009.

Thrun, S. Lifelong learning algorithms. In Learning to learn, pages 181–209. Springer, 1998.

Thrun, S. and Pratt, L. Learning to learn. Springer Science & Business Media, 2012.

Tomasz. Tombone’s computer vision blog, 2015. URL http://www.computervisionblog.com/
2015/01/from-feature-descriptors-to-deep.html.

Turing, A. M. Computing machinery and intelligence. Mind, pages 433–460, 1950.

Van Otterlo, M. A survey of reinforcement learning in relational domains, 2005.

Vilalta, R. and Drissi, Y. A perspective view and survey of meta-learning. Artificial Intelligence
Review, 18(2):77–95, 2002.

http://www.computervisionblog.com/2015/01/from-feature-descriptors-to-deep.html
http://www.computervisionblog.com/2015/01/from-feature-descriptors-to-deep.html

REFERENCES 115

Vincent, P., Larochelle, H., Bengio, Y., and Manzagol, P.-A. Extracting and composing robust
features with denoising autoencoders. In Proceedings of the 25th international conference on
Machine learning, pages 1096–1103, 2008.

Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., and Manzagol, P.-A. Stacked denoising autoen-
coders: Learning useful representations in a deep network with a local denoising criterion. J.
Mach. Learn. Res., 11:3371–3408, December 2010. ISSN 1532-4435.

Xu, Q. and Yang, Q. A survey of transfer and multitask learning in bioinformatics. Journal of
Computing Science and Engineering, 5(3):257–268, 2011.

Yosinski, J., Clune, J., Bengio, Y., and Lipson, H. How transferable are features in deep neural
networks? In Advances in Neural Information Processing Systems, pages 3320–3328, 2014.

Young, D. W., Bender, A., Hoyt, J., McWhinnie, E., Chirn, G.-W., Tao, C. Y., Tallarico, J. A.,
Labow, M., Jenkins, J. L., Mitchison, T. J., and others. Integrating high-content screening and
ligand-target prediction to identify mechanism of action. Nature chemical biology, 4(1):59–68,
2008.

Zhu, X. Semi-supervised learning literature survey, 2006.

	Front Page
	Dedication
	Contents
	List of Figures
	List of Tables
	I Introduction and Related work
	1 Introduction
	1.1 Motivation
	1.2 Thesis Statement
	1.3 Objectives
	1.4 Contributions and Related Publications
	1.5 Structure of the Thesis

	2 Related work
	2.1 Trends in feature extraction methods in ML
	2.1.1 Convolutional Neural Networks (CNN)
	2.1.2 Stacked Denoising Autoencoders (SDA)
	2.1.3 Deep Belief Nets (DBN)

	2.2 Model for Transfer Learning in ML
	2.3 Challenges in Deep architectures using Transfer Learning
	2.4 Conclusions

	II Deep Transfer Learning Mechanisms
	3 Deep Transfer Learning Framework
	3.1 Fundamental concepts of deep learning
	3.1.1 Stacked Denoising Autoencoder (SDA)
	3.1.2 Convolutional Neural Network (CNN)
	3.1.3 Baseline for Stacked Denoising Autoencoders
	3.1.4 Baseline for Convolutional Neural Network

	3.2 Problem Formulation for Deep Transfer Learning
	3.2.1 Comparing distributions

	3.3 Datasets
	3.3.1 Character recognition
	3.3.2 Object recognition

	3.4 Conclusion

	4 Layerwise Transfer Learning
	4.1 Layerwise Transfer Learning mechanism
	4.1.1 Transfer Learning unsupervised (TLu)
	4.1.2 Transfer Learning supervised (TLs)

	4.2 Layerwise Transfer Learning for SDA and CNN
	4.2.1 Network Architecture

	4.3 Results and Discussions
	4.3.1 Problem Categorization
	4.3.2 TLu: Different label sets
	4.3.3 TLu: Equal label sets
	4.3.4 TLs
	4.3.5 Layerwise Transfer Learning for CNN
	4.3.6 Analysis of TLu and TLs for SDA model

	4.4 Conclusions

	5 Source-Target-Source
	5.1 Source-Target-Source mechanism
	5.2 Multi-source Source-Target-Source mechanism
	5.3 Experimental Setup and Results
	5.3.1 Transferring specific features Vs. generic features for STS approach

	5.4 Conclusions and discussion

	6 Deep Transfer Learning Ensemble
	6.1 Experimental setup and Results
	6.1.1 Retrain specific DTL
	6.1.2 Transfer specific DTL
	6.1.3 Retrain and Transfer specific DTLE

	6.2 Conclusions and discussion

	III Deep Transfer Learning Applications
	7 High-content Analysis of Breast Cancer Cells
	7.1 Introduction
	7.2 Materials and Methods
	7.2.1 Data splitting
	7.2.2 Layerwise Transfer Learning using Stacked Autoassociators
	7.2.3 LOOCV Training and Network Hyper-parameters

	7.3 Results
	7.3.1 Comparison with other state-of-the-art methods

	7.4 Conclusion

	8 Cross-sensor Biometrics
	8.1 Cross-Sensor Recognition
	8.1.1 GMM-Universal Background Model (GMM-UBM)
	8.1.2 GMM Supervectors (SV-SDA)
	8.1.3 CNN

	8.2 Cross-sensor dataset
	8.2.1 Image pre-processing
	8.2.2 Data partitioning
	8.2.3 Evaluation metrics

	8.3 Cross-sensor recognition performance
	8.3.1 Baseline and Transfer Learning
	8.3.2 Source-target-source
	8.3.3 Multiple Source STS

	8.4 Conclusions

	IV Conclusion and Future work
	9 Conclusion and Future Work
	9.1 DTL mechanisms
	9.1.1 Layerwise Transfer Learning (LTL) mechanism
	9.1.2 Source-Target-Source (STS) mechanism
	9.1.3 Deep Transfer Learning Ensemble (DTLE) mechanism
	9.1.4 User interface

	9.2 DTL for real-world applications and scenarios
	9.2.1 High-content analysis for drug-discovery
	9.2.2 Cross-sensor biometric recognition

	9.3 Future work

	A Model compression for real-time application
	A.1 Results
	A.2 Conclusions and Future Work

	References

