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Abstract 
 

 Although the interest in zebrafish has been rising in research, there are still 

refinements required to some procedures. The refinement of anaesthesia tends to be 

reduced to clinical efficacy, and animals’ welfare is often disregarded. Thus, we aim to 

study an anaesthetic protocol that is efficient and that induces no or less aversion in 

adult zebrafish, using a combination of Propofol/lidocaine and the most used 

anaesthetic in fish, MS222. This study was divided in two, where the first part aimed to 

assess which concentrations are equipotent, check the complete anaesthetic profile 

and clinical quality of the anaesthetics. The second part aims to assess the aversion of 

both anaesthetic protocols. Thirty-six mixed-sex AB zebrafish were randomly assigned 

to MS222 (150mg.L-1) and Propofol/lidocaine (5mg.L-1 of propofol combined with 

150mg.L-1 of lidocaine) group. Aversion was tested in a conditioned place aversion task 

where each protocol was paired with a previously trained environment, and, afterwards, 

animals were tested again without the anaesthetic. The aversion degree was measured 

by the animals’ preference for the conditioned place. The present work contradicted 

other studies where MS222 is aversive, and showed that Propofol/lidocaine is also 

no/less aversive to zebrafish. Moreover, both provide a full anaesthesia and recovery in 

short time. Thus, both anaesthetic protocols seem to be recommended to use in adult 

zebrafish, and the new anaesthetic protocol presented has the advantage of being 

more practical to use and cheaper than MS222. Further experiments need to be made 

to refine this anaesthetic protocol and improve zebrafish welfare in different ages, 

strains, and experimental situations. 

Keywords: Anaesthesia, Animal Welfare, Zebrafish, MS222, Propofol, Lidocaine 
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Sumário 
 

   Embora o interesse em peixe-zebra tenha aumentado na investigação 

científica, existem ainda alguns procedimentos que necessitam de refinamento. O 

refinamento da anestesia tem tendencialmente sido reduzido apenas à sua eficácia 

clinica e o bem-estar animal tem sido colocado em segundo plano. Assim, o nosso 

objectivo é estudar um protocolo anestésico para peixe-zebra que seja eficaz e que 

seja pouco ou não aversivo para o peixe-zebra adulto, usando uma combinação de 

Propofol/lidocaina e o anestésico mais comummente usado em peixe, MS222. Este 

estudo consiste em duas partes, sendo que a primeira tinha como objectivo perceber 

qual a concentração equipotente dos anestésicos, estudar a qualidade clínica e o perfil 

anestésico. A segunda parte tinha como objectivo verificar se estes anestésicos eram 

aversivos. Trinta e seis animais da estirpe AB de ambos os sexos foram 

aleatoriamente atribuidos por cada um dos dois grupos, MS222 (150mg.L-1) e 

Propofol/lidocaina (5mg.L-1 de propofol combinado com 150mg.L-1 de lidocaina). A 

aversão a estes anestésicos foi então testada com um teste de aversão condicionada 

a um local em que cada protocolo anestésico foi associado a um local previamente 

preferido, e de seguida os animais foram testados novamente sem o anestésico. O 

grau de aversão foi medido através da preferência demonstrada pelos animais ao local 

condicionado.  Este estudo veio contradizer outros em que o MS222 é aversivo, 

mostrando que o Propofol/lidocaina é também não ou pouco aversivo para o peixe-

zebra adulto. Para além disso, ambos os protocolos induziram uma anestesia 

completa e uma rápida recuperação. Deste modo, ambos os anestésicos são 

recomendáveis para o peixe-zebra. O protocolo novo aqui apresentado tem as 

vantagens de ser mais prático a nível de preparação e mais barato do que o MS222. 

São ainda necessários mais estudos para refinar este protocolo anestésico e melhorar 

o bem-estar do peixe-zebra de diferentes estirpes, idades e em diferentes situações 

experimentais. 

Palavras-chave: Anestesia, Bem-estar animal, Peixe-zebra, MS222, Propofol, 

Lidocaina 
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Introduction 
 

 The crescent interest in Zebrafish by the scientific community is evident in the 

publication of more than 2400 papers in the last year regarding this species; actually 

the number of publications quadruplicated in the last 15 years (Pubmed database; 

keyword: “zebrafish” in Title/Abstract)  (Figure 1). It is then of utmost importance to 

address some methodologies used daily in research, such as anaesthesia, to fulfil gaps 

in knowledge, and achieve a complete insight of the animal’s needs to refine its use. 

 

 

Zebrafish in nature 
 

Fish represent the largest class of vertebrate animals with more than 31,000 

known species. Weber estimates that over 3000 species have some kind of use, such 

as a protein and nutrient source both for humans and for other animals, as a 

recreational and commercial resource, as a companion or display pet, and for scientific 

purposes (Weber, 2011). 

There are 6 families in the Cypriniformes order: Cyprinidae, Catostomidae, 

Gyrinocheilidae, Psilorhynchidae, Cobitidae, and Balitoridae (Nelson, 2006). The 

Fig. 1: Number of publications referent to zebrafish during the past 15 years (keyword “zebrafish” in 
Title/Abstract according to Pubmed database). 
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gender Danio of the Cyprinidae family is placed in the largest clade of freshwater fishes 

and in the second largest vertebrate animals family (Mayden et al., 2007; Nelson, 

2006). This Order is a large group of freshwater fishes distributed throughout North 

America, Africa, and Eurasia (Mayden et al., 2007). Danio rerio was first described by 

Francis Hamilton, a surgeon of the British East India Company that was in West Bengal 

at the beginning of the 19th century. This species was included in a publication named 

An Account of the Fishes Found in the River Ganges and its Branches in 1822 with 

nine more species of the gender Danio (Spence & Gerlach, 2008). 

 Danio rerio, commonly referred also as zebrafish or zebra danio (Figure 2), is a 

small cyprinid fish, native of the streams of South-eastern Himalayan region (Mayden 

et al., 2007), especially around the basins of the river Ganges and Brahmaputra, in the 

north-eastern India, Bangladesh and Nepal. There are some reports of zebrafish 

sightings in the Indus, Cauvery, Pennar, Godavari and Mahanadi river basins, in the 

Krishna river basin (Spence & Gerlach, 2008) and in the states of Rajasthan, Gujarat 

and Andra Pradesh (river basins draining into the Arabian Sea) as well as in northern 

Myanmar and Sri Lanka (Spence & Gerlach, 2008). Individuals of this species are 

normally encountered in shallow slow moving waterbodies with scarce aquatic 

vegetation and with gravel or silt as substract. This species is also often found in 

waterbodies near rice cultivations, being this association possibly related to the 

fertilizer used in agriculture that may promote the growth of zooplankton which is the 

main resource on their diet (Spence & Gerlach, 2008). This highly social species is 

characterized by a rapid growth rate, and it can grow to 35mm in nature (Spence & 

Gerlach, 2008) with a lifespan of approximately 3 years. Females have a protuberant 

genital papilla and appear to be larger than males with the last being more fusiform. It 

is common for  zebrafish to achieve maturity after 75 days, possibly mating every two 

days after reaching it, and females can produce several hundred eggs in a single 

spawn (Spence & Gerlach, 2008). 
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Zebrafish in science 
 

Fish has been a rising animal model with increasing popularity in the recent 

decades (Detolla et al., 1995; Jenkins et al., 2014) and in certain countries, being the 

third-most commonly used animal group in scientific experiments (Overturf, 2009). 

Thus, this increasing interest in fish demands a growth of knowledge in the following 

areas: aquatic animal medicine, as a support for veterinarians and aquaculture; 

companion animal medicine; conservation medicine; laboratory animal medicine; zoo 

and aquarium medicine; ecosystem health; restocking and protection of endangered 

species. This has been leading to a development of the aquatic medicine and a greater 

care of these animals. Methodologies need to be adapted to the unique characteristics 

of this paraphyletic group to improve science and decrease the impact that they may 

have on fish (Weber, 2011). 

 Since the 80’s, zebrafish (Danio rerio) has been used on laboratory and, as we 

have seen above, the number of papers with this animal quadrupled in the last decade 

(Valentim 2016), showing a clear importance of this animal model among scientists. 

This increase in popularity has economical and physiological reasons.  

 Danio rerio has been extensively used in research and analysis of the effects of 

alcohol (R. Gerlai, Lahav, Guo, & Rosenthal, 2000), drug addiction (Darland & Dowling, 

2001), learning and memory (Al-Imari & Gerlai, 2008; Pather & Gerlai, 2009), 

aggression (Robert Gerlai, 2003), social behaviour (Pather & Gerlai, 2009), fear, 

anxiety and aversion (Robert Gerlai, Fernandes, & Pereira, 2009; Speedie & Gerlai, 

2008) have been successfully studied in this animal model. It has also been used as a 

model for human diseases, such as cancer (Lieschke & Currie, 2007), cardiovascular 

Fig. 2 - Example of a male adult Zebrafish with scale 
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diseases (Zon, 1999), immune system diseases (Lieschke & Currie, 2007) and 

tuberculosis (Cronan & Tobin, 2014). It is particularly interesting in toxicological, 

developmental (Lele & Krone, 1996), and regeneration studies (Poss, Keating, & 

Nechiporuk, 2003). Over 800 labs worldwide are now using zebrafish at daily basis in 

fundamental and applied research (ZFIN1) (Howe, Bradford, & Conlin, 2013) and there 

is an increasing interest in zebrafish as a model for understanding the genetic basis of 

behaviour (Gerlai et al., 2000; Gerlai, 2003; Guo, 2004; Spence & Gerlach, 2008). 

 Its strength as a model organism lies in that, as a vertebrate, it is more 

comparable to humans than invertebrate model species such as Drosophila 

melanogaster (Barbazuk et al., 2000; Postlethwait & Talbot, 1997) or Caenorhabditis 

elegans, while, as a simple vertebrate, it is easier to perform genetic and embryonic 

manipulations than in traditional biomedical model species such as mouse or rat in 

which such procedures are both complicated and costly (Hölttä-Vuori et al., 2010; 

Spence & Gerlach, 2008). 

 Thus, zebrafish are very cost-efficient, easy to breed and breeds all year round, 

has high fecundity (200–300 eggs per female per spawning every other day) (Gerlai et 

al., 2009), short lifecycle, small size allowing to be housed in large numbers in a 

relatively small space, being easily maintained and used in laboratory settings (Kalueff, 

Stewart, & Gerlai, 2014; Readman, Owen, Murrell, & Knowles, 2013). Plus, the 

zebrafish genome is also well characterized and fully sequenced, revealing a close 

parallel between mammals (even humans) and zebrafish regarding behaviour, genetics 

and physiology. Thus,  zebrafish has been considered one of the primary model 

organisms in modern day genetics (Grunwald & Eisen, 2002). Adding to all these 

features, it also possesses rapid development and a relatively long lifespan, which 

makes them a useful model for various human brain disorders. External fertilization and 

transparency of embryos and larvae increase their value in genetic manipulations, 

protein tracking, developmental and toxicological studies. The availability of multiple 

zebrafish strains is another important aspect of this species, enabling studies of strain 

differences in brain function, behaviour, and drug responses (Stewart, Braubach, 

Spitsbergen, Gerlai, & Kalueff, 2014).   

                                                             
1 ZFIN: https://zfin.org/ 
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In spite of this increasing use, this has not been accompanied by a full 

understanding of the animal welfare, and the best procedures to be performed, leading 

to the need of refinement of several techniques, as, for example, anaesthesia 

protocols. 

 

(Zebra)fish and anaesthesia 
 

Anaesthesia is required for mammals in research and clinical settings on a daily 

basis to avoid or decrease distress and pain associated with invasive procedures or 

procedures requiring immobility only. Thus, before addressing the characteristics of 

anaesthesia process, it is important to focus on a misconception that it is still believed 

by many. Do fish feel pain? Many address that they don’t, even though a review of the 

literature provides no compelling reason to consider fish any differently from other 

vertebrates. There are evidences that fish feel pain and can experience suffering as 

birds and mammals do. In fact, they may feel even more pain than human neonates 

and preterm babies (Braithwaite, 2010). Fish have been shown to possess nociceptors 

that are physiologically identical to those found in mammals, brain structures and 

opioid receptors necessary to feel pain, and a capacity to associate specific events with 

noxious and stressful stimuli (Sneddon, 2003, 2009). Stressors are responsible for the 

disturbance of the individuals’ normal physiology and general health, potentially leading 

to certain disorders. This disruption is dependent on the duration and intensity of the 

stress or stressors (Weber, 2011). Some of the most common stressors identified in 

fish include: changes in either chemical or physical water quality conditions (water 

temperature, pH, alkalinity, salinity, dissolved oxygen), accumulation of nitrogenous 

waste in water, other environmental pollution, handling, transport, excess of noise, 

poor/inadequate nutrition, overstocking, aggression, predation (environment), infectious 

diseases (parasitic, bacterial, viral, fungal), among others (Weber, 2011). Although 

there are few studies involving zebrafish (Sneddon, 2011), we should consider that 

they feel pain and stress until prove it wrong. And that’s why any invasive or potentially 

harmful procedure in zebrafish should be subject to monitoring and appropriate ethical 

review (Reed & Jennings, 2011). Indeed, this is now a legal requirement for fish in 

general from the moment they become an independent free feeding larva, as stated in 
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the European Directive 2010/63/EU on the protection of animals used for scientific 

purposes (European Parliament & Council, 2010). 

The word anaesthesia has a Greek derivation, meaning loss of sensation or 

insensibility; it has also been described as a reversible process of intoxication where 

the individual undergoes on a state of unconsciousness and can be awake without 

harm. This loss of sensation is a continuum as presented in Figure 3. Anaesthesia is 

preceded by sedation, a state of drowsiness with reduced sensory perception, but 

without a major loss of equilibrium or sensory perception (Ross, Ross, & Robb, 2000). 

Anaesthetic agents are then normally used for several procedures in fish, such 

as surgery (e.g.: cardiac regeneration studies), fin clipping for genetic identification, 

and retrieval of blood samples in laboratory and field settings (Nickum, 1988; 

Trushenski et al., 2013).  They can also be used to assess if the anaesthetic by itself 

can produce changes on a neurological, physiological and behavioural level. This 

evaluation may be important not only for the fish welfare, but it may also have clinical 

and toxicological implications. Anaesthetic drugs can also be used in overdose as 

euthanasia agents or at least as agents that induce loss of consciousness before 

another method of euthanasia is performed. Thus, almost all laboratory fish, some free 

range fish and a few aquaculture fish will have contact with anaesthetic agents at some 

point in their life, which translates into millions of animals per year exposed to 

anaesthetics (Readman et al., 2013). In fact, different types of anaesthetics have been 

used to aid in the capture, handling, artificial reproduction, and transport of fish as an 

anti-stress procedure in modern aquaculture (Roubach & Gomes, 2005). 

Fig. 3 – The sedation-anaesthesia continuum. Image from (Ross et al., 2000). 
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Anaesthesia for fishes is an area where relatively little is known or formally 

reported, and has many practical difficulties. Further, the wide range of species and 

evolutionary context makes generalisations across fish species extremely problematic 

(Readman et al., 2013). It should also be noted that there is a large spectrum of areas, 

from research to field ecology, aquaculture and veterinary science that would benefit 

from better anaesthetic protocols.  

The actual mode of action of anaesthetics in invertebrates and fish is poorly 

known but some agents appear to show an inverse relationship between the dose 

required to induce loss of consciousness and the animal position in the evolutionary 

tree. Therefore, to anaesthetize a fish, it may be necessary a larger dose of 

anaesthetic than it would be necessary to administer in a mammal. This phenomenon 

may be related with the evolution of molecular mechanisms and to an increase of 

active sites for certain compounds in higher vertebrates (Ross et al., 2000). 

Although the difficulty to control anaesthesia depth, if the induction is slow, 

several stages may be detected. There are different scales to evaluate anaesthetic 

depth in fish, and Table 1 is an example of these scales. 

 

 

 In general, anaesthesia is fully achieved by the induction of three main 

components: hypnosis (loss of consciousness), analgesia (lack of sensation which also 

blunts autonomic reflexes) and muscle relaxation (Miller, Eriksson, & Fleisher, 2009). 

Table 1 – Stages of  anaesthesia in fish taken from (McFarland, 1959; Ross et al., 2000). 
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With unconsciousness, amnesia may also be attained. For practical purposes, 

anaesthesia may be reduced to three obvious phases: induction, maintenance and 

recovery of anaesthesia (Ross et al., 2000). Induction is a phase where the animal is 

exposed to the anaesthetic agent, increase its activity (excitement phase), and lose 

consciousness/equilibrium. This is followed by the anaesthesia maintenance that 

involves extending the previous stage without harming the animal. If long duration 

maintenance is needed, the anaesthetic concentration must be decreased, and 

oxygenation provided. To recover from continuous anaesthesia, the anaesthetic 

administration is stopped and, after some time, the fish regain equilibrium in the water, 

returning later to its normal state. If the necessary precautions are not taken, and the 

anaesthesia lasted for too long, death may occur due to overdose, especially if the 

drug concentration is high. In order to avoid death after a procedure, general good care 

and cautious handling are essential (Ross et al., 2000). 

Anaesthesia of small fish is normally induced by placing the fish into an 

anaesthetic solution that is absorbed through the gills and enters the arterial blood 

circulation, and the anaesthetics or their metabolites are excreted via the gills (Ross et 

al., 2000). The animal regains consciousness when it returns to fresh water. As this 

type of anaesthesia induces a massive absorption, extreme care must be taken to 

avoid overdosing or too deep stages of anaesthesia (Carter, Woodley, & Brown, 2011). 

The difficulty to control the anaesthetic depth in an anaesthetic bath is an animal 

welfare liability as it causes stress to the animal, risk of mortality and may be a variable 

that induces bias in the results between assays. 

Another concern raised is, as anaesthesia is both used in the field and closed 

facilities, there is an associated risk of anaesthetics to become pollutants (Valcárcel et 

al., 2012). As these pharmaceuticals are synthetic chemicals, they are also classified 

as xenobiotics. Although they have a strong role and a beneficial effect on nowadays 

society, the environmental implications of the use of certain anaesthetics remains 

largely unknown and unconsidered, which raises some concerns. The polluting effects 

of these xenobiotics are often assessed in the ecotoxicology  field, where the zebrafish 

embryo model is used (Busch et al., 2011). 
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Anaesthetics  
 

According to the literature, a good anaesthetic for fish have several 

characteristics, such as high solubility in any matrix, high potency, high safety margin, 

induction of a complete recovery, the ability to be administered in various ways 

(immersion and injection) and to be able to induce a range of depths of anaesthesia 

(Readman et al., 2013; Thienpoint & Niemegeers, 1965). It was also described that the 

ideal anaesthetics induce “anaesthesia within 3 minutes or less, cause no toxicity to 

fish at treatment levels, present no mammalian safety problems, leave low tissue 

residues after a withdrawal time of 1 h or less, and be reasonable in cost” (Marking & 

Meyer, 1985). 

 The standard anaesthetic used nowadays for fish is tricaine methanesulfonate 

(TMS; also known as MS222). This is a local anaesthetic that acts as muscle relaxant 

and blocks sodium and to a lesser degree potassium currents in nerve membranes. It 

is currently the only anaesthetic approved for aquatic species by the US Food and 

Drug Administration (FDA) and the most widely used sedative and anaesthetic for 

zebrafish. 

 MS222 is available as a water-soluble powder that is acidic in solution, altering 

the pH to 5 or lower, which may cause irritation in the skin and mucous membranes of 

the fish, increasing the risk of acidosis on fish’s plasma. This should be avoided by 

making a buffered solution adding sodium bicarbonate or sodium hydroxide (Harper & 

Lawrence, 2012) or Tris buffer (Westerfield, 2000) to MS222. However, it appears  that 

the stress is induced by the anaesthetic and not by the low pH of the water in channel 

catfish (Welker, Lim, Yildirim-Aksoy, & Klesius, 2007). Similarly, zebrafish immersed in 

buffered or unbuffered MS222 typically respond with tachyventilation before righting 

reflex, body, and opercular movements cease (Wilson, Bunte, & Carty, 2009). 

Occasionally, gill bleeding occurs, and some fish do not recover from anaesthesia 

(Matthews & Varga, 2012). This local anaesthetic is administered in a water bath, 

acting systemically as it is absorbed through the gills and skin of some fishes. It has 

been recently contested because of the possibility of inducing neuromuscular blockade 

instead of inducing loss of consciousness, causing stress. In addition,  it may affect the 

hemodynamic equilibrium as it lowers the heart rate, increasing the risk of accidental 

death, especially in long duration anaesthesia (Huang et al., 2010; Readman et al., 



FCUP 

Anaesthetic aversion in Zebrafish (Danio rerio) 
10 

 

2013; Reed & Jennings, 2011). This accidental death can occur as, quoting the 

renowned toxicologist and zebrafish scholar von Hohenheim: “Poison is in everything, 

and nothing is without poison. The dosage makes it either a poison or a remedy”. The 

users pro-MS222 advocate that this potential mortality may be caused by a misused of 

the anaesthetic and more training is needed. 

Therefore, the establishment of suitable anaesthetics is not easy, as it depends 

on the purpose of the experiment (type of procedure and the potential influence of the 

drug in the outcomes), the species of the fish, gender, its size and the stage of 

development, which may limit the use and efficiency of these products (Ribeiro et al., 

2015). It is then necessary to take into account these variables and more different 

anaesthetic protocols should be carefully evaluated and characterized. In this sense, 

we intend to study a new anaesthetic protocol, the combination of propofol and 

lidocaine. 

 Propofol (Diprivan®, Rapinovet®, Propoflo®, Lipuro®) is 2,6-diisopropylphenol 

with sedative-hypnotic properties (Larijani & Gratz, 1989). It has been widely used as 

an intravenous anaesthetic drug in human patients (Andrews et al., 1997) and in 

veterinary practice (Gholipourkanani & Ahadizadeh, 2013). In contrast to MS222, 

propofol is a widely used anaesthetic in mammalian species (Oda, Bailey, Lewbart, 

Griffith, & Posner, 2014). Propofol is a short-acting, rapidly metabolized agent, which is 

characterized by a lack of cumulative effects and by a rapid recovery after its 

administration in effective doses or by continuous infusion (Gholipourkanani & 

Ahadizadeh, 2013). It provides a reliable, rapid and smooth induction of anaesthesia, 

adequate hypnosis, minimal suppression of vital organ functions and some analgesia 

at high doses during surgical interventions (Gholipourkanani & Ahadizadeh, 2013), 

although this last effect is highly debatable (Fassoulaki, 2011). Moreover, recovery is 

observed to be rapid, uncomplicated and complete. This substance has been used as 

an injectable to induce anaesthesia in reptiles, some fish species such as the Gulf of 

Mexico sturgeon (Acipenser oxyrinchus desotoi), in which MS222 isn’t effective 

(Fleming, Heard, Francis Floyd, & Riggs, 2003), and in spotted bamboo sharks 

(Chiloscyllium plagiosum) (Miller, Mitchell, & Heatley, 2005). Subanaesthetic 

concentrations of propofol might also be useful as a sedative for brief handling and 

transportation (Oda et al., 2014). However the efficacy and safety of any anaesthetic 

agent vary among species, life stages and environmental conditions, and more studies 
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are needed to take advantages of this anaesthetic in ornamental fish (Gholipourkanani 

& Ahadizadeh, 2013). 

Lidocaine (2-(diethylamino)-N-(2, 6-dimethylphenyl) acetimide), also commonly 

known as Lignocaine or Xylocaine, is a widely used analgesic synthetized in 1943 that 

was used for many years as a local anaesthetic agent and it is also an antiarrhythmic 

drug (Collinsworth, Kalman, & Harrison, 1974) in mammals, inducing cardiac 

depressant effects. Nevertheless, it has been used in fish, and its analgesic and/ or 

anaesthetic effects have been demonstrated in zebrafish (Collymore, Tolwani, Lieggi, & 

Rasmussen, 2014), Algansea lacustris (Lopez, Mendoza, Ross, Rivera Lopez, & Orbe 

Mendoza, 1991),  goldfish and Cyprinus carpio, especially if used in conjunction with 

sodium bicarbonate to stabilise the dose response (Carrasco, Sumano, & Navarro-

Fierro, 1984; Feldman, Defrancisco, & Cascella, 1975). In a water bath, lidocaine is 

normally used in the hydrochloride form, because without the hydrochloride salt it is 

insoluble in water and only soluble in acetone or alcohol (Park, Park, Gil, Nam, & Kim, 

2011). It is relatively cheap, easy to obtain and, in most fish, it has a good safety 

margin (Ross et al., 2000). 

Recent research showed that propofol provokes a consistent analgesia in zebrafish 

only in high doses (Valentim, Félix, Carvalho, Diniz, & Antunes, 2016) which may 

increase the risk of  overdose; high concentration of lidocaine in a water bath also 

increased zebrafish mortality (Collymore et al., 2014). Nevertheless, when propofol is 

combined with lidocaine both doses can be decreased (Valentim et al., 2016) inducing 

a balanced anaesthesia. The application of this concept leads to a safe protocol with 

analgesia and potentially fewer side effects. Propofol/lidocaine showed to be suitable 

for procedures needing a quick loss of consciousness and analgesia gain (e.g.: tail fin 

clipping), while MS222 is more adequate when a rapid recovery is essential (e.g.: to 

test an immediate effect of a substance administered intraperitoneally) (Valentim et al., 

2016). Thus, this combination was already tested regarding clinical parameters 

(Valentim et al., 2016), but little is known about the impact on animal welfare.  

A greater effort should be done to refine anaesthesia in fish regarding not only 

clinical effectiveness, but also animal welfare. Little has been done in the past to 

assess the possibility that these compounds may induce distress in fish (Readman et 

al., 2013). 
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Zebrafish behaviour: aversion 
 

 Fear is a functional emotion with a deep evolutionary origin, which let us 

understand that Earth has always been an environment filled with hazardous situations 

that the organisms had to surpass to stay alive. The instinct of staying alive consists in 

the goal of having offspring and perpetuating the genes. Hence, even the more basic 

forms of life have developed defence mechanisms and responses to deal with the daily 

threats that they had to face, as dangerous chemicals, weather changes, the presence 

of a predator or an aggressive conspecific (Öhman, 2008). There are many strategies/ 

behaviours to cope with these threats (Ahmed, Seguin, & Gerlai, 2011). Fish may 

freeze, hide or, alternatively, escape from the aversive environment, depending on the 

environmental circumstances (Ahmed et al., 2011). It is then well documented that fish 

manifest fear in several different ways (Domenici, 2010). Clinical signs of distress are 

observed in fish home-tanks, such as, body orientation and swimming, feeding, hiding, 

and spatial position, i.e. in the water column, near the water surface or in the bottom, 

near aeration or heater (Weber, 2011). 

 Fear and anxiety are overlapping, aversive, active states centred on a threat/ 

aversive stimulus. Both involve strong negative feelings that are often manifested 

physically. The signals expressed when animals face aversive stimuli may be similar 

between fear and anxiety, being difficult to phenotypically distinguish them. However, 

they are different in a psychological level, involving different brain pathways. Fear is a 

dread of imminent disaster and an urge to self-defence, primarily by fleeing from the 

hazard. Anxiety is denoted as an unpleasant feeling due to prediction of a possible 

hazardous situation happening. The best way to assess the degree of aversion and 

stress that a compound may induce in the individuals would be to ask the animal. As 

this is not literally possible, behaviour has been a widely used tool described in the 

literature to assess learning, anxiety, and aversion (Colwill, Raymond, Ferreira, & 

Escudero, 2005; Williams, White, & Messer, 2002; Xu, Scott-Scheiern, Kempker, & 

Simons, 2007) and it can help researchers and veterinarians to establish many 

nonspecific signs of distress in fish. In this study, we used the escape response, a key 

behaviour for the survival of this paraphyletic group, avoiding predation. The escape 

response to an aversive stimulus  has attracted a lot of attention by the scientific 
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community in different areas of research such as, neurophysiology (Eaton, Lee, & 

Foreman, 2001), biomechanics (Wakeling, 2006), kinematics (Domenici & Blake, 

1997), and behavioural ecology (Godin, 1997). 

 Our experiment was performed in a modified apparatus light/dark box. This is 

usually used to assess anxiety in rodents (Wong, Makowska, & Weary, 2013), and also 

in fish (Stewart, Braubach, Spitsbergen, Gerlai, & Kalueff, 2014). In the literature there 

are some contradictory results regarding the dark/light environment preference of adult 

zebrafish, as the preference may depend on light intensity and other stimuli present 

(Stephenson, Whitlock, & Partridge, 2011). Thus, we used the referred apparatus to 

test the conditioned place aversion, which relies on fleeing or avoiding an aversive 

environment where the escape behaviour and/or alteration of spatial occupation are the 

visual signs to understand the degree of avoidance. This paradigm has been used in 

rodents and fish, and it consists on pairing an aversive experience with a previously 

neutral/positive environment, resulting in the avoidance of the previously 

neutral/preferred place (Wong et al., 2013). The degree of avoidance is directly linked 

to the failed attempts to enter in the aversive side, the latency to enter in the previously 

preferred side and the time spent in each side (Readman et al., 2013). It is probable 

that aversion assessed in this test results from anxiety caused by the introduction of 

the potentially aversive stimulus in a neutral or preferred place.  

Therefore, behavioural assessments help to understand the degree of aversion 

that individuals may suffer without the need of more invasive techniques, saving money 

and time.  

 

Aims of the study 
 

As referred, Propofol/lidocaine is a promising combination to be used in 

zebrafish. However, there is no knowledge regarding its effect on the animal welfare. 

Therefore, this experiment intends to provide evidences about the efficacy and welfare 

improvement of Propofol/lidocaine combination in comparison with the standard 

anaesthetic MS222 in adult zebrafish.  
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Thus, the main aim of the study is to establish the least aversive and more 

effective anaesthetic protocol to refine anaesthesia for adult zebrafish. The more 

specific aims are the following: 

Study 1 

 - To define an equipotent dose for the combination Propofol/lidocaine 

   and MS222; 

 - To study different clinical parameters (loss of consciousness, loss of 

   response to a light or to a painful stimuli and anaesthesia  

   recovery); 

Study 2 

 - To assess aversion of Propofol/lidocaine and MS222 in adult zebrafish 

   using equipotent doses in the conditioned place aversion  

   test. 

 

A new anaesthetic protocol, less or not aversive for adult zebrafish, will improve 

zebrafish welfare having less impact in the research output, and reducing the variability 

inherent to a poor animal welfare. Also, a clinical efficacy will increase the survival rate 

and reduce the costs. Therefore, the refinement of this combination can then lead to 

more efficient, cheaper, and robust scientific outcomes with less expense of animal 

suffering. This kind of study serves the purpose of continuing the work to assess new 

methodologies that can be used interdisciplinary being this study the start of a 

continuum needed to validate the use of a new protocol that can replace or be a valid 

option to the standard one if proven to be better, not only in laboratory, but also in field 

studies and aquaculture.  
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Material and Methods 
 

 All procedures were carried out under personal and project licenses approved 

by the National Competent Authority for animal research (Direção-Geral de 

Alimentação e Veterinária, Lisbon, Portugal). All experimental procedures were 

performed in accordance with the European Directive 2010/63/EU on the protection of 

animals used for scientific purposes, and its transposition to the Portuguese law, 

‘Decreto Lei’ 113/2013. 

 

Animals and housing 
 

 Ninety-nine adult mixed-sex AB zebrafish bred in the Animal Facility of i3S from 

progenitors bought to IGC (Lisbon) were used. They were maintained in groups in 3.5 L 

tanks (maximum of 5 fish per liter), in a 14h:10h light:dark cycle, in a recirculating water 

system connected to a central unit of water purification and controlled conditions (27 ± 

0.5 °C, pH of 7 + 0.5, conductivity of 700-715 µS). Adult fish were fed three times a day 

with a commercial diet (GEMA micro 300 for adults and GEMA micro 75 for larvae) 

supplemented with artemia (after 21 days post-fertilization). In the study 2, animals 

were housed in pairs during the conditioned place avoidance test (description below), 

to reduce stress induced by social isolation. As a result, the experimental unit for all 

variables on this assay was the pair, as zebrafish is a highly social species and it is 

expected that individuals prefer to be housed with conspecifics (Collymore, Tolwani, & 

Rasmussen, 2015; Engeszer, Patterson, Rao, & Parichy, 2007). The same conditions 

of water and light:dark cycle were maintained in the conditioned place aversion 

apparatus. 

 

Reproduction and development  
 

 In order to obtain a known and pure strain of adult zebrafish (AB), we had to 

establish this line by breeding new animals in the institute facility.  
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 To obtain fertilised eggs in the laboratory, it is important to mimic some 

naturalistic conditions to allow the animals to express similar behaviour to the one that 

would be expressed in the wild. Thus, zebrafish in a 2:3 male:female ratio were placed 

in a commercially available 1L breeding tank (Figure 4). This tank has a plastic grid on 

the floor to avoid animals to reach the eggs and eat them.  

 

 Near the end of the light cycle, genders were separated with a transparent 

barrier throughout the night to increase the probability of reproduction when together. 

In the next morning, during the first hours of the light-cycle, the barrier was withdrawn, 

the level of water was lowered, and the breeding tank was tilted. This procedure is 

based on the zebrafish preference to reproduce in shallow waters at the first light hours 

of the day. After ~3 hours, the adults were placed in their home tank and the eggs were 

retrieved to a petri dish filled with E3 zebrafish embryo medium (annex 1). Then a 

screening was performed to retrieve debris and non-fertilized eggs. After 24 hours 

post-fertilization (hpf), the eggs were bleached in a solution of 0.037% by putting the 

Fig. 4 – Breeding tank (Tecniplast, USA). 
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embryos sequentially and for 5 minutes in the following containers with:  bleach, water, 

bleach, water and water. The eggs that were properly bleached returned to a petri dish 

filled with E3 medium. On the fifth day, animals were transferred to a bigger container, 

and on the sixth day they started being fed three times a day. Twenty-one days post-

fertilization and during one week, the E3 medium was gradually replaced with water 

being then the animals transferred to the recirculating water system at the age of one 

month and housed like adult fish.  

 

Study 1: Establishment of equipotent dose and clinical variables 

evaluation 
 

 In this context, the term equipotent dose is the dose of anaesthetics that induce 

the same clinical sign at the same time, in this case, the loss of equilibrium. To obtain 

the equipotent dose of each anaesthetic administered in an anaesthetic bath, a pilot 

assay with three different doses of MS222 and Propofol/lidocaine combination was 

made using thirty-four 1.5 year old zebrafish (N= 34). To reduce the number of animals 

used in this pilot assay, they were re-used with an interval of ~3 weeks between each 

anaesthesia. These initial concentrations were chosen based on prior work of our 

research group (Valentim et al., 2016) and on the work of Wong (Wong, Von 

Keyserlingk, Richards, & Weary, 2014), and a curve dose-response for loss of 

equilibrium was drawn, and the equipotent dose chosen had the requirement to induce 

anaesthesia in less than a minute to 100 seconds. Zebrafish were randomly assigned 

to six different groups: a group anaesthetized with 150mg/L of MS222 (M150 group), 

n= 10; a group anaesthetized with 175mg/L of MS222 (M175 group), n= 10; a group 

anaesthetized with 200mg/L of MS222 (M200 group), n= 10; a group anaesthetized 

with 2.5mg/L of propofol combined with  150mg/L of lidocaine (C25 group), n=10; a 

group anaesthetized with 5.0mg/L of propofol combined with  150mg/L of lidocaine 

(C50 group), n=10 and a group anaesthetized with 7.5mg/L of propofol combined with 

150mg/L of lidocaine (C75 group), n=10. Buffered MS222 solution was prepared by 

adding ethyl 3-aminobenzoate methanesulfonate (MS222) powder (Sigma-Aldrich, 

USA) to system water, making a stock solution of 10g/L buffered with sodium 

bicarbonate until pH reached 7.0.  Propofol (Lipuro 2%, B. Braun Melsungen AG, 
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Germany) and lidocaine (2%, Braun, Queluz de Baixo, Barcarena, Portugal) did not 

require any previous preparation.  

 The anaesthetic water bath of 200 mL was always freshly prepared with the 

system water and put in a 1L tank.  Zebrafish were placed in the prepared water bath 

and time to lose the equilibrium was registered when fish stayed more than 3 seconds 

in lateral or dorsal recumbency.  After the equilibrium loss was achieved, the side of the 

fish was touched with a plastic pipette until it stopped reacting (loss of light stimulus). 

Afterwards, the caudal fin was gently pinched with forceps until the animal had no 

response to this painful stimulus. The response to light and painful stimuli was 

evaluated every 30 seconds. After not responding to a painful stimulus, the tested 

individuals were placed in another tank with clean water. Latency to move and time to 

recover the equilibrium were registered. Equilibrium was gained when fish stayed in the 

upright position more than 3 seconds. If the fish took more than 20 minutes to 

equilibrium loss or pain response loss, it was placed in the recovery tank, and 

eliminated from the analysis.   

 Animals were observed 1, 12 and 24 hours after equilibrium gain to make sure 

of their complete recovery and normal behaviour re-establishment, insuring zebrafish 

welfare.  

 Afterwards, a confirmation assay with 4-7-month old animals (N=24) was made 

to ensure that the equipotent dose was the same for these younger animals. This age 

span is more relevant for zebrafish used in research. 

 

Study 2: Aversion to anaesthetics 
 

 For this study, we used 4-7 months old mixed-sex zebrafish (N=56), randomly 

paired and divided in 3 groups: HCl group (animals subjected to water with a pH of 3, 

induced by hydrochloric acid; n= 10), MS222 group (n=9) and Propofol/lidocaine group 

(n=9). The animals from the last two groups were subjected to the equipotent 

concentrations of these anaesthetics established in study 1. Hydrochloric acid at a pH 

of 3 is aversive to zebrafish (Readman et al., 2013), thus HCl group acts as a positive 

control validating this methodology. 
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 Conditioned place avoidance 
 

 This task is based on Wong et al (2014) to study zebrafish aversion to the 

anaesthetics. This test is conducted in an apparatus that consists of two opaque 

aquariums linked by a tube that allows the fish to visit both sides (Figure 5). When a 

barrier is needed, it is placed in the illuminated side to restrain the animal from 

switching sides. As referred, in this test, zebrafish were housed in pairs. Each 

aquarium has a lid and each lid has a light source, but only one was on each given 

time. Plastic vertical plants were added as an environmental enrichment so the 

zebrafish could cope with pairing house, providing a place to hide. Plants were always 

placed in both side of the apparatus, in the opposite corner of the tube, near the back 

wall.  Aeration was also provided and placed near the plant, as the system was closed 

(see scheme of the test in Annex 4). 

Light source 

Aeration tube 

Fig. 5 – Conditioned Place Aversion experimental apparatus top (A) and front view (B).  

Barrier 

A 

B 

Vertical plastic plant 

Observational 

window 



FCUP 

Anaesthetic aversion in Zebrafish (Danio rerio) 
20 

 

 

Habituation  

 

 This phase lasted 48 hours and allowed the animals to acclimatise to the 

apparatus. In this phase animals were fed 5 times a day in the side where they were 

found. Before feeding time, we recorded the movements of the animals for 10 minutes 

to assess in which side of the apparatus the individuals spend more time, i.e., their 

preference for the lightning conditions. In the end, the average of all trials showed that 

our animals spent more the lighted side. As, at this point, the animals were not tested; 

the word “control” corresponds to the 48 hours of habituation. 

 

Training phase 

 

 In this phase, before feeding, animals were transferred to the illuminated side of 

the apparatus using a net; animals already at that side were also netted. Besides 

putting the animal in the right side for feeding, this procedure allowed zebrafish to be 

habituated to netting, minimising the stress of being handled. The animals stayed in the 

lighted side and could not escape to the dark side because of the divider placed in the 

lighted side. Then, light conditions were switched between sides, divider was removed, 

and food was placed in the current lighted side and animals were free to move and eat. 

Feeding animals in the lighted side will reinforce the preference established during 

habituation. Furthermore, the divider removal and the light switch will act as cues 

signalling the presence of food in the other side. This way, the animal is trained to pass 

the tube. This phase lasted for a maximum of 10 days or until the individuals reach the 

criterion of fully trained, i.e., when at least one animal from each pair entered 3 times in 

the lighted side in less than a minute and never took more than 2 minutes in the other 

trials in one day.  Thus, during this period, latency to enter in the lighted side was 

recorded. The measures of the last day of training – Last training - were used to be 

compared with the testing period measures.  
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Testing period 

 

 Twenty-four hours after being fully trained, animals were video recorded for 15 

minutes – Preanaesthesia. Then, each pair of fish was subjected to only one 

anaesthetic episode, wherein the concentration used was defined by the establishment 

of an equipotent dose (study 1). In the test period, a barrier was placed in the 

illuminated side between the tanks to avoid animals to pass to the non-illuminated side. 

In this side, the anaesthetic is diluted. Then, the light conditions were switched 

between sides, the barrier lifted and then the assay started with the food introduction in 

the illuminated side containing the anaesthetic. This trial ended when at least one of 

the individuals lost the equilibrium (assessed by observation), when 3 minutes after 

entering the side with anaesthetic elapsed (a safe measure of time to ensure that the 

animal in unconscious as the apparatus is opaque with only a small window and so it is 

not always possible to check the state of the animal) or when 15 minutes had passed.

 This point of observation is called “Anaesthetic episode”. Afterwards, they are 

allowed to recover in a tank with clean water for at least 15 minutes, period after which 

the animals exhibited a normal swimming and behaviour. Then the animals were 

introduced again in the dark side of the experimental apparatus, with the barrier in this 

side to prevent animals to pass to the illuminated side for 5 minutes. The previous trial 

is then repeated without adding the anaesthetic to test if there is a conditioning 

regarding the side that previously had this compound (the previously preferred side)- 

Postanaesthesia. Time spent in each side, number of visits, attempts and latency to 

enter the lighted side were recorded to assess the aversion induced by each 

anaesthetic. Attempt is scored when fish enters the tunnel until 1 cm of the entrance, 

with head facing the tunnel, while a visit is considered when fish whole body enters in 

the aquarium. 

All recordings were made with the camera placed facing the tunnel and later 

analysed manually using video and keyboard input recording software.  

Prior to the test, a trial was made with food colouring to ensure that there was 

no diffusion of the anaesthetic to the other side of the apparatus. After 30 minutes, 

there was minimal diffusion to the opposite side, which was more than the duration of 

the trial, ensuring that there was no or only a negligible passage of the anaesthetics to 

the dark side of the apparatus during testing period. 
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Data analysis 
 

 First, data were analysed concerning normal distribution (Shapiro-Wilk test) and 

homogeneity of variances between groups (Levene’s test).  

The time to lose equilibrium, reflexes and to recover from anaesthesia between 

different concentrations of the same anaesthetic protocol (three groups) and between 

anaesthetic protocols (comparisons between low, intermediate and high 

concentrations) can be evaluated by statistical tests that compare the means of a 

continuous dependent variable between unrelated groups. The same tests will also be 

used to compare the differences between anaesthetic protocols regarding the latency 

to pass to the illuminated tank, number of attempts and time spent in each tank in the 

conditioned place aversion test. If the assumptions normal distribution and 

homogeneity of variances between groups were fulfilled, a parametric test was used: 

Student’s t-test for comparisons between two unrelated groups or one-way ANOVA 

with Tukey as a posthoc test when three unrelated groups are evaluated. If the 

homogeneity of variances is not verified, a parametric test with corrections to this 

assumption violation will be used (Welch correction with Games-Howell as a posthoc 

test). When both assumptions are broken, the analysis was performed using a non-

parametric test: Mann-Whitney U test for two unrelated samples and Kruskal-Wallis 

with the posthoc Dunn’s test for three unrelated samples.    

 The paired Student’s t-test compares the means of a continuous dependent 

variable between two related groups, while the Wilcoxon signed-rank test is the 

correspondent nonparametric test. These tests can be used to compare the differences 

in the time spent in the dark and illuminated side, in the preferred side before and after 

anaesthesia exposure, and to compare the number of attempts of the same animal in 

different points of observation within a treatment group. Friedman test is used to 

compare non-parametric data of more than two related groups, in this case, it was used 

to compare the latency of the same animal to enter in the lighted side between different 

points in time: the last day of training, anaesthetic episode and post-anaesthesia. 

 To study the anaesthetic protocols’ doses at which the majority of the animals 

lost equilibrium between 60 and 100 seconds, a scatter plot of the data was used.  
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All hypotheses were two-tailed tested and statistical significance was set at p≤ 0.05. 

Data was inserted in the Microsoft Excel™ 2010 (Microsoft Corporation, Redmond, 

WA, USA), and analysed using IBM SPSS™ 20 for Windows (SPSS Inc., Chicago, IL, 

USA). Prior to the beginning of the study, a sample size calculation2 was made using 

Wong’s results to ensure that our number of animals/pairs was enough to replicate the 

protocol (Wong et al., 2014)  

  

2https://www.dssresearch.com/KnowledgeCenter/toolkitcalculators.aspx 
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Results  

 

 Detailed statistical results can be consulted in the annexes 2, 3 and 5. 

Establishment of equipotent doses and clinical variables 

Old fish pilot study 

 

 In our study, the equipotent doses were established as the doses of different 

anaesthetic protocols that induced a loss of ventral recumbency at the same time, 

between 60 and 100 seconds. Most of the animals that loss equilibrium at that range of 

time was treated with the high concentrations of both anaesthetics: C75 and M200 

group (Figure 6). As both groups had low response variability, these concentrations 

were established as equipotent doses using 1.5 years zebrafish. 
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 Regarding time to lose equilibrium, there were significant differences between 

concentrations in the Propofol/lidocaine combination groups (H (2) = 12.418, p= 0.002) 

where C75 animals lose the equilibrium faster than the ones from C25 group (p= 

0.001). Regarding this variable, there are also significant differences between MS222 

groups (H (2) = 11.980, p= 0.003), with M200 being quicker to lose equilibrium than the 

other groups (p= 0.036 and p= 0.003 for M175 and M150, respectively). Between 

anaesthetic protocols, M200 zebrafish lost the equilibrium faster than C25, and C75 

was also faster than M150 (p= 0.002, p= 0.034, respectively) (Figure 6). However, 

there were no differences between all the other groups. 

Fig. 6 - Time to lose equilibrium in each anaesthetic protocol. Data are presented as median 

[interquartile range]. C25, C50, and C75 - groups anaesthetized with 2.5mg/L, 50mg/L or 75mg/L of 

propofol, respectively, combined with 150mg/L of lidocaine; M150, M175, M200 - groups 

anaesthetized with 150mg/L, 175mg/L or 200mg/L of MS222, respectively. * for comparisons with 

C25 (p= 0.001) and M150 (p= 0.034); # for comparisons with M150 (p= 0.003), M175 (p= 0.036), 

and C25 (p= 0.002). Comparisons between groups using Kruskal-Wallis with Dunn’s test. 
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 Regarding time to lose reaction to a light touch, there were significant 

differences between concentrations in the Propofol/lidocaine combination groups (F (2, 

12.58) = 6.752, ppropofol/lidocaine= 0.010) where C75 animals lost reaction to this stimulus 

more quickly than C25 group (p= 0.049). In the animals anaesthetized with MS222 (F 

(2, 15.18) = 10.503, p= 0.001), M200 group presented a quicker loss of response to 

light stimulus than M150 (p= 0.004) and M175 (p= 0.042). Also, C75 animals lost the 

reaction to touch faster than M150 (p= 0.015) (Figure 7). No other difference between 

anaesthetic protocols or doses was detected. 

 Regarding time to lose the response to a painful stimulus, there were no 

significant differences between concentrations in the Propofol/lidocaine combination 

groups (F (2, 14.31) = 2.853, ppropofol/lidocaine= 0.091), but there were significant 

differences in the MS222 groups (F (2, 14.74) = 8.445, pms222= 0.004) where M200 

zebrafish loss response to pain more quickly than the other MS222 groups (p= 0.015 

Fig. 7 - Time to lose reaction to touch in each anaesthetic protocol. Data are presented as median 

[interquartile range]. C25, C50, and C75 - groups anaesthetized with 2.5mg/L, 5.0mg/L or 7.5mg/L of 

propofol, respectively, combined with 150mg/L of lidocaine; M150, M175, M200 - groups 

anaesthetized with 150mg/L, 175mg/L or 200mg/L of MS222, respectively. # for comparisons with 

C25 (p= 0.049) and M150 (p= 0.015); * for comparisons with M150 (p= 0.004), and M175 (p= 0.042). 

Comparisons between groups using Welch correction with Games-Howell’s as a posthoc test. 
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and p= 0.046 for M150 and M175, respectively). Also, M200 group lost response to this 

stimulus faster than C25 (p= 0.044), and C50 (p= 0.031) groups (Figure 8). Thus, 

200mg/L of MS222 induced the loss of painful stimulus faster than the other 

anaesthetic protocol, except when 7.5mg/L of propofol combined with 150mg/L of 

lidocaine was used. No other significant differences were found. 

  

 During anaesthesia recovery, the animal’s latency to move is not different 

between the Propofol/lidocaine combination groups (H (2) = 5.058, ppropofol/lidocaine= 0.08) 

(Figure 9), nor between the MS222 groups (H (2) = 1.925, pms222= 0.382). However, 

Propofol/lidocaine groups took more time to start moving than MS222 groups, being 

data from C25, and C75 groups different from all MS222 groups (p≤ 0.012); C50 

behaved differently from M150 (p= 0.011) and 175 (p= 0.010) (Figure 9). Concerning 

different anaesthetics, C50 and M200 are the only groups with similar latency to move 

after anaesthesia. 

Fig. 8 - Time to lose reaction to a painful stimulus in each anaesthetic protocol. Data are 

presented as median [interquartile range]. C25, C50, and C75 - groups anaesthetized with 

2.5mg/L, 5.0mg/L or 7.5mg/L of propofol, respectively, combined with 150mg/L of lidocaine; 

M150, M175, M200 - groups anaesthetized with 150mg/L, 175mg/L or 200mg/L of MS222, 

respectively. * for comparisons with M150 (p= 0.015), with M175 (p= 0.046), with C50 (p= 

0.031) and with C25 (p= 0.044). Comparisons between groups using Welch correction with 

Games-Howell’s as a posthoc test. 
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 Regarding time to regain equilibrium after anaesthesia, there were also no 

significant differences between concentrations in the Propofol/lidocaine combination 

groups (H (2) = 2.990, ppropofol/lidocaine= 0.224), nor in the MS222 groups (H (2) = 5.656, 

pms222= 0.059). However, all the MS222 protocols induced a quicker recovery compared 

with all the Propofol/lidocaine protocols (p≤ 0.025) (Figure 10). 

 

 

Fig. 9 - Time to zebrafish start moving after each anaesthetic protocol. Data is presented as median 
[interquartile range]. C25, C50, and C75 - groups anaesthetized with 2.5mg/L, 5.0mg/L or 7.5mg/L of 
propofol, respectively, combined with 150mg/L of lidocaine; M150, M175, M200 - groups anaesthetized 
with 150mg/L, 175mg/L or 200mg/L of MS222, respectively. * for comparisons with M150 (p

C25
< 0.001, 

p
C75

= 0.001), M175 (p
C25 

< 0.001, p
C75

= 0.001), and M200 (p
C25

= 0.003, p
C75

= 0.012) ,# for comparisons 

with M150 (p= 0.011),and M175 (p= 0.010). Comparisons between groups using Kruskal-Wallis with 
Dunn’s test. 
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Young fish assay 

 

 In order to confirm the equipotent doses showed by the previously pilot study, a 

new assay was performed with younger zebrafish, 4-7 months old, an age closer to the 

most used in research. Animals of that age were also going to be used in the 

Conditioned place aversion test. The equipotent dose of MS222 chosen for older 

animals (200mg/L), induce mortality in younger zebrafish with an inferior weight. Thus, 

this experiment showed that young animals need lower doses compared with the ones 

used in older zebrafish to achieve the same effects at a safe and efficient level. The 

dose of Propofol/lidocaine previously chosen did not show to be unsafe to younger 

zebrafish, but it needed to be adapted to the new equipotent dose of MS222 regarding 

the time to equilibrium loss.  

 

Fig. 10 - Time to regain equilibrium after each anaesthetic protocol. Data are presented as median 

[interquartile range]. C25, C50, and C75 - groups anaesthetized with 2.5mg/L, 5.0mg/L or 7.5mg/L of 

propofol, respectively, combined with  150mg/L of lidocaine; M150, M175, M200 - groups anaesthetized 

with 150mg/L, 175mg/L or 200mg/L of MS222, respectively. * for comparisons with M150 (p
C25

= 0.001, p
C50 

and C75
= 0.011, ), M175 (p< 0.001) and M200 (p

C25
= 0.003, p

C50 and C75
= 0.025). Comparisons between groups 

using Kruskal-Wallis with Dunn’s test. 
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 Regarding the clinical variables presented in figure 11, the time to regain 

equilibrium during anaesthesia recovery is the only difference detected between the 

two anaesthetic protocols used. Animals anaesthetized with 175 mg/L of MS222 

gained equilibrium faster than animals anaesthetized with a combination of 5 mg/L of 

propofol with 150 mg/L of lidocaine (U>0.001, p< 0.001). As there was no difference in 

time to lose equilibrium, these doses are equipotent for these zebrafish, inducing 

equilibrium loss in a range of 60-100 seconds for the majority of the animals.  

Compiling all data from both the pilot and the young fish assay, most of the animals 

anaesthetized with 175 mg/L of MS222 and 5 mg/L of propofol combined with 150 

mg/L of lidocaine also lost equilibrium between 60 and 100 seconds (Figure 12). 

Fig. 11 – Time to achieve a certain anaesthetic endpoint using MS222 or propofol/ lidocaine: equilibrium 

(Eq) loss, loss of response to a light touch (Touch loss) and to a painful stimulus (Pain loss), start moving 

(mov) during anaesthesia recovery, and equilibrium (eq) gain. MS222 group: animals anaesthetized with 

175mg/L of MS222; Propofol/lidocaine group: animals anaesthetized with 5mg/L of propofol combined with 

150mg/L of lidocaine. Data presented as median+ interquartile range. *p
 
< 0.0001 for comparisons between 

groups using Mann-Whitney test. 
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Conditioned place aversion 

 

Light conditions preference  

 

 The assessment of the preference of side with different light conditions was 

made analysing the time spent on each side of the apparatus during the habituation 

phase. Regarding this, there was a significant difference within each group (t (7) = 

4.185, pMS222 = 0.004, t (5) =4.382 pPropofol/lidocaine= 0.007, t (9) =2.533 pHCl = 0.032) 

(Figure 14), where pairs of zebrafish spent more time in the lighted side. Thus, they 

were trained to pass the tube to be fed in the lighted side. However, after training and 

before the anaesthetic episode, the same analysis was performed and there was no 

significant difference within each group in the preanaesthesia period (pMS222 = 0.401, 

pPropofol/lidocaine = 0.491, pHCl = 0.494). As there was no difference at the preanaesthesia 

Fig. 12 – Scatter plot of the time taken to lose equilibrium in both protocols regarding all data acquired from 
older and younger zebrafish to establish equipotent doses. MS222 group: animals anaesthetized with 
175mg/L of MS222; Propofol/lidocaine group: animals anaesthetized with 5mg/L of propofol combined with 
150mg/L of lidocaine. Each dot (square or rhombus) represents an animal. The grey area represents the 60 
to 100 seconds time frame that most animals took to lose equilibrium.  
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period, a more detailed analysis was made using the control data, to check if there was 

a loss of preference during this phase. Regarding this, there was only a significant 

difference when comparing the values observed with 50% of chance in the first trial of 

the first day of habituation (p<0.001) where they had a preference for the lighted side 

(Figure 14). 

Fig. 13 – Preference by the light or dark side of the apparatus in each anaesthetic protocol during:  a) control 

and b) preanaesthesia trials. Data presented as mean + SD. *p
MS222 

= 0.004, *p
Propofol/lidocaine 

= 0.007, *p
HCl 

= 

0.032, using dependent Students’ t-test. 

  

a) b) 

Fig. 14 –Time spent in the lighted side during habituation in the different trials analysed. Each point represents 

a pair of animals. T1- first trial of the first day. T2 – last trial of the first day, T3 – first trial of the second day and 

T4 – last trial of the second day. *p
 
<0.001 comparing with 50% chance using one sample Wilcoxon test. 
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As expected, the time spent in each light condition in the control or preanaesthesia 

trials were not significantly different between groups (p light = 0.763, and pdark = 0.762 for 

control trials; plight= 0.950, and pdark= 0.966 for preanaesthesia trials). (Figure 13) 

 

Training 

 

The majority (19 out of 28) of our animals took 3 days to achieve the training criterion, 

and none took the maximum amount of days, 10. All zebrafish were considered fully 

trained to pass the tube to the lighted side, and then they were tested (Figure 15). 

 

Testing 

 

 The aversion to the anaesthetic protocols was assessed by the analysis of: a) 

the latency to pass to the lighted side after conditioning, b) the time spent in the 

preferred side after conditioning, c) number of attempts to enter the lighted side and d) 

visits made to the lighted side during anaesthesia episode and postanaesthesia trial. 

Latency to enter in the lighted side during the last training day and in the anaesthetic 

Fig. 15 – Number of pairs of zebrafish in the Conditioned Place Aversion training that achieved the criterion 

“fully trained” in 3 to 10 days. 
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episode was also recorded to further analyse possible variables that were not 

previously predicted. 

Not all pair of animals were analysed for the conditioned place aversion testing. 

One animal from the Propofol/lidocaine group never entered in the compartment with 

the anaesthetic, therefore it was deleted from the analysis. Later, a technical problem 

with the storage of the videos resulted in the loss of three videos corresponding to the 

testing of one animal from the MS222 group and two from the Propofol/lidocaine group. 

Thus, the following results are from the analysis of 8 pairs of zebrafish from the group 

MS222, 6 pairs from Propofol/lidocaine group, and 10 pairs from the HCl group. 

 When we compared latency to enter the light side between the last day of 

training, the anaesthetic episode, and the postanaesthesia trial, no significant 

differences were detected between these points of observation in the MS222 group, 

but Propofol/lidocaine group (z = -2.000, p = 0.002) took longer to enter the lighted side 

during the anaesthetic episode than during the last day of training. Also, the HCl group 

(z = -1.700, p < 0.001) had a higher latency to pass to the light side in the 

postanaesthetic moment than in the last day of training (before conditioning). No other 

statistical differences were detected between these points of time in each treatment 

group. 

 As regards to the differences between treatment groups, animals from 

Propofol/lidocaine took more time than MS222 animals to enter in the lighted side in 

the anaesthesia episode (H (2) = 12.553, p = 0.002). Also, HCl group had a higher 

postanaesthesia latency to pass to the preferred side than Propofol/lidocaine group (H 

(2) = 7.123, p = 0.028). There was no significant difference between groups concerning 

this measure in the last day of training (p = 0.103). (Figure 16) 
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 Regarding the attempts to enter the lighted side, there were no significant 

differences between anaesthetic episode and postanaesthesia within groups (pMS222 = 

0.059, pPropofol/lidocaine = 0.461, pHCl = 0.119). Nevertheless, HCl group showed more 

attempts than MS222 group (H (2) = 6.659, p = 0.036) to enter in the lighted side when 

the treatment substance was present, but no differences were detected in the 

postanaesthetic period (p = 0.106) (Figure 17).  

 

 

Fig. 16 – Latency to enter in the lighted side of the apparatus in the last day of training, in the anaesthesia 
episode and in the postanaesthesia for each treatment group. MS222 group: animals subjected to 175mg/L 
of MS222; Propofol/lidocaine group: animals subjected to 5mg/L of propofol combined with 150mg/L of 
lidocaine; HCl group: animals subjected to pH3 water with hydrochloride acid. Data presented as individual 
pair plot. Each point represents an animal  pair from different treatment groups (dot, square or triangle). 
*p

Propofol/lidocaine_Last Training vs Anaesthetic episode 
= 0.002,*p

HCl_Last Training vs Postnaesthesia 
< 0.001, *p

Anaesthetic episode_MS222 vs 

Propofol/lidocaine 
= 0.001 and *p

postanaesthesia_Propofol/lidocaine vs HCl 
= 0.036. For comparisons between trials within a group 

Friedman’s test with pairwise comparisons was used, and for comparisons between treatment groups 
Kruskal-Wallis with Dunn’s test. 
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 The number of visits to the lighted side was similar between the preanaesthesia 

and postanaesthesia trials within groups (pMS222 = 0.825, pPropofol/lidocaine = 0.474, pHCl = 

0.575). There were also no significant differences between groups both in 

preanaesthesia (p = 0.544) and postanaesthesia (p = 0.71) trials. 

 The animals from MS222 and Propofol/lidocaine group spent more time in the 

lighted side in the postanaesthesia than in the preanaesthesia trial, contrarily to the HCl 

group. However, none of these data resulted in a significant difference (pMS222 = 0.14, 

pPropofol/lidocaine = 0.055, pHCl = 0.474). There were also no differences between groups in 

the preanaesthesia data (p = 0.95), but, in the postanaesthesia trial, Propofol/lidocaine 

Fig. 17 – Number of attempts made to enter in the lighted side in each treatment group during anaesthetic 

episode and postanaesthesia trial. MS222 group: animals subjected to 175mg/L of MS222; Propofol/lidocaine 

group: animals subjected to 5mg/L of propofol combined with 150mg/L of lidocaine; HCl group: animals subjected 

to pH3 water with hydrochloride acid. Data presented as individual pair plot. Each point represents a pair of 

animals from different treatment groups (dot, square or triangle). *p
 
= 0.039 for comparisons between groups 

using Kruskal-Wallis with Dunn’s test. 
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group spent more time in the previously preferred side than HCl group (F (2.21) = 

5.281, p = 0.012) (Figure 18). 

 

 

After the anaesthetic episode, 2 out of 10 pairs from the positive control (HCl 

group) completely rejected the lighted side, i.e., they did not enter in the lighted side 

during the postanaesthesia trial. In this trial, 5 out of 8 pairs of MS222 group, and all 

pairs of the Propofol/lidocaine group spent more than 50% of the time in the previously 

preferred side. On the other hand, none of the 10 pairs of HCl group spent more than 

50% of time in the lighted side after conditioning.  

Fig. 18 – Time spent in the lighted side in each treatment group during preanaesthesia and postanaesthesia 

trials. MS222 group: animals subjected to 175mg/L of MS222; Propofol/lidocaine group: animals subjected to 

5mg/L of propofol combined with 150mg/L of lidocaine; HCl group: animals subjected to pH3 water with 

hydrochloride acid. Data presented as mean + SD. *p
 
= 0.012 for comparisons between groups using Kruskal-

Wallis with Dunn’s test. 
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Discussion  
 

As stated before, a good anaesthetic for fishes has several characteristics, such 

as high solubility in any matrix, high potency, high safety margin, induction of a 

complete recovery, the ability to be administered in various ways (immersion and 

injection) and to be able to induce a range of depths of anaesthesia (Readman et al., 

2013; Thienpoint & Niemegeers, 1965). It was also described that the ideal anaesthetic 

induces “anaesthesia within 3 minutes or less, cause no toxicity to fish at treatment 

levels, present no mammalian safety problems, leave low tissue residues after a 

withdrawal time of 1 h or less, and be reasonable in cost” (Marking & Meyer, 1985). It is 

also stated that recovery times should be within 10 minutes and no mortality during the 

experiment should occur (Park et al., 2011). But this kind of considerations lacks a 

welfare perspective, which was the major goal of this work. 

In the pilot study, we checked that both anaesthetics were safe to use and we 

determined an equipotent dose that induced equilibrium loss at the same time for both 

protocols: 200mg/L to MS222 and 7.5mg/L to propofol combined with 150mg/L of 

lidocaine. Later, we tested younger fish, the same age as the ones tested in the 

Conditioned Place Aversion test (CPA), and concluded that the doses had to be lower 

to meet safety requirements, especially with the MS222. This was expected, as the 

best concentration is variable depending on the age and weight of the animal, among 

other factors (Sneddon, 2012). Also, MS222 has been described as causing cardiac 

arrest at high concentrations (Carter et al., 2011; Huang et al., 2010). Thus, this assay 

showed that 175mg/L of MS222 and a combination of 5mg/L of propofol with 150mg/L 

of lidocaine are equipotent doses regarding time to lose equilibrium in 4-7 months old 

zebrafish. These concentrations had also the same efficiency to achieve loss of 

response to light and painful stimuli, but not equilibrium gain, which was reached first 

by MS222 treated-animals. Nevertheless, we can also consider our combination a 

good candidate to be used in adult zebrafish. Moreover, this combination could be 

useful for induction prior to a secondary method of euthanasia, such as decapitation, 

as a longer recovery time reduces the chance of the animal waking before the process 

is complete (Wong et al., 2014).  

The Conditioned Place Aversion test is performed according with animals’ 

preference for light or dark environments, thus this preference was firstly assessed in 
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our animals, as literature does not clarify this issue. Stephenson et al. studied this topic 

and found that there are many factors that affect this preference, such as food odour 

and light intensity, which explain the contradictory results of light/ dark preference in 

adult zebrafish. On the other hand, literature shows that adult zebrafish prefer a black 

substract where they have less contrast against the floor, thus being more undetected 

(Maximino et al., 2010). The methodological differences and different environments 

may introduce a change in preference. In the present study, the results from the 

habituation phase of the CPA showed that our pairs of zebrafish prefer illuminated 

environments, despite the decrease to the time spent in the lighted side throughout 

trials in the habituation phase (Figure 14), which may be related to the habituation 

process in both sides of the apparatus, after a full exploration of the new environments. 

 

After determining the light conditions preference, training started and animals 

learned quickly as 19 out of 28 pairs reached the criterion “fully trained” in a time 

spawn of 3 days.  It is important to note that, before treatment, all our animals behaved 

similarly as there were no differences between groups in the time they spent in the 

lighted side, neither in the number of visits nor in the latency during the preanaesthesia 

trial. 

Regarding the CPA testing after the anaesthetic episode, all animals showed a 

normal locomotion that was assessed by the number of visits to each side of the 

apparatus, so there was no deleterious effect and animals recovered well from the 

anaesthesia/treatment. Although there was no difference in the time spent in the light 

before and after conditioning, positive control animals took more time to enter in the 

previously preferred side in the postanaesthesia trial than in the last day of training. 

This indicates that the animals perceived the previous experience (exposure to pH 3) 

as aversive, being more cautious to enter in the side that was previously preferred; 

thus, this positive control validates this experiment to identify aversive compounds. 

There were no differences between the anaesthetic episode and postanaesthesia 

regarding the number of attempts within groups; however the positive control group 

made significantly more attempts to enter in the lighted side during the anaesthetic 

episode than the MS222 group that made no attempts. This suggests that animals may 

use their senses to perceive if there is some substance in the water, as it was already 

described that fish have the capability to perceive other acids in the water through their 

nociceptors,  and other study raised the possibility of fish perceiving substances by 
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odour (Readman et al., 2013). Contrarily to HCl, animals may not detect MS222 in the 

tube, entering without hesitations into the side with the anaesthetic, showing a non-

significantly lower latency to enter compared with HCl animals. Only then the animal 

perceived the MS222, as there is an increase in locomotion (excitement phase), 

according to previous observations. Once in this compartment, animal started to feel 

MS222 effects, being more difficult to find the small tube entrance to escape to the dark 

safe side. Animals from Propofol/lidocaine may have experienced the same difficulty to 

escape, but they showed a higher latency to enter in the side with the anaesthetic than 

the MS222 group. Also, Propofol/lidocaine animals took more time to enter in the 

lighted side during the anaesthesia period than during the last day of training. These 

differences may be caused by the milk-like coloration of propofol observed in the water, 

which could be a visual cue to the presence of a substance in that side, preventing the 

fish to enter immediately.  

Animals subjected to the anaesthetic protocols did not show differences in 

latency before and after the anaesthetic episode, as HCl animals did, indicating 

non/low aversion of zebrafish to these protocols. Extending this analysis to differences 

between groups in the postanaesthesia trial, animals from the positive control group 

had a higher latency to enter the lighted side than Propofol/lidocaine group. These 

results may point to a lower degree of aversion induced by Propofol/lidocaine 

compared with the positive control, with MS222 inducing an intermediate aversion 

(Figure 16). According to these data, aversion could be translated into the following 

order: HCL>MS222≥Propofol/Lidocaine. These considerations are supported by other 

results of postanaesthesia trial, where all animals of Propofol/lidocaine group spent 

more time in the lighted side, while 5 out of 8 animals of MS222 group had this 

preference and none animals from HCl group spent more time in the lighted side, 

indicating that the anaesthetic combination may be slightly less aversive than MS222.  

These results  contradict  the conclusion already achieved in former studies that 

showed MS222 (Readman et al., 2013; Wong et al., 2014) and lidocaine as aversive to 

adult zebrafish; lidocaine in a lesser extent than MS222 (Readman et al., 2013). Our 

outcomes are different from Readman et al probably because of the use of a different 

paradigm and anaesthetic concentrations, where animals move freely between two 

sides, one containing only water and the other with an anaesthetic at 50% of its 

standard recommended concentration. Also in Readman et al the period of habituation 

to the apparatus was only of 150 seconds, while in our experiment was of 48 hours. 
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Thus, our paradigm involved conditioned learning, and the concentration used was 

higher to mimic an experimental situation where the animals have to be anaesthetized.  

Readman showed that MS222 and lidocaine may be aversive in a different/lower 

concentration, allowing the animal to perceive the anaesthetic presence and to escape 

to the other side. The indication that lidocaine may be aversive does not mean that we 

should expect an induced aversion by Propofol/lidocaine, as a combination does not 

simply induce the effects of the individual drugs, but it has its own properties (Short, 

Plummer, & Chui, 1992) 

Although we used the same paradigm as Wong et al, our outcomes about 

MS222 are different, probably because of the use of a slightly higher concentration (10 

mg/L higher), of the different individual preferences for light conditions and of the 

analysis of pairs without individual recognition. The last two reasons may also 

represent study’s limitations, which are later discussed. 

 As already referred, light preference may depend on the factors present in the 

environment. In this case, as the apparatus is divided in two chambers and housed two 

animals, there could be a possible effect of territoriality, where the submissive 

individual could seek shelter in the non-preferred chamber, i.e.  the dark environment 

that is known to provide a safer feeling to animals in a stressful situation (Chaouloff, 

Durand, & Mormède, 1997; Steenbergen, Richardson, & Champagne, 2011). These 

results in a decrease of animals’ pair preference to the lighted side, as showed by the 

lack of difference of time spent between sides in the preanaesthesia trial. Our 

anecdotal observations also confirmed this animals’ distribution that was only 

established after a period of habituation to the apparatus. As previously showed, 

animals learned to pass the tube fast, and so the time of testing may be reduced to 

less than 7 days. In this scenario, animals could be tested alone, as literature does not 

described a major effect regarding this time of social isolation for adult zebrafish 

(Krogh, Sørensen, Nilsson, & Øverli, 2010; Lindsey & Tropepe, 2014; Shams, 

Chatterjee, & Gerlai, 2015). The possibility of testing the individual eliminates the 

variable of agonistic interactions and territoriality which may have influenced the 

decrease of pair’s preference to the lighted side, and the baseline of stress.  

 Moreover, there is some data variability, especially in the HCl and 

Propofol/lidocaine groups. The sample size calculations were made prior to the 

beginning of this work based on the Wong’s results using this paradigm, but the 

animals used did not behaved the same way. Thus, we intend to increase our sample 
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size in future experiments to reduce variability and maybe detect a significant 

difference between MS222 and Propofol/lidocaine protocols. Other possible factor 

influencing the results is the colour of propofol that may act as a signal to the presence 

of a strange substance in the water. Thus, further studies should be made to eliminate 

the variable colour, by adding to the other treatments white food colouring innocuous to 

fish. Another limitation of this study was the use of pairs as experimental unit and not 

individuals, because marking zebrafish to individual recognition is not possible without 

anaesthetising the animals. To record pairs and not individual animals may have 

altered the results when two very different behaviours are summed. One possible 

solution is to either isolate the animal or pairing it with zebrafish strains that are visibly 

different (e.g. Casper strain). The use of very different strains would allow the individual 

records but still one fish may influence the behaviour of the other, and territoriality may 

also occur, as previously referred. Finally, some anaesthetics are known to induce 

postanaesthetic amnesia and no data was found regarding zebrafish, but it is known 

that all the anaesthetics tested produce amnesia at some instance in other biological 

models. Regarding MS222, a long term but not a short term memory impairment was 

showed both in Medaka fish (Oryzias latipes) and rat (Eisenberg & Dudai, 2004; 

Eisenberg, Kobilo, Berman, & Dudai, 2003).Both lidocaine and propofol induce 

postanaesthetic amnesia in other animal models , especially by impairing the 

consolidation of information retrieved immediately before or after the anaesthetic 

episode (Alkire & Vazdarjanova, 2001; O’Gorman & O’Connell, 1998; Parent & 

McGaugh, 1994; Pérez-Ruiz & Prado-Alcalá, 1989; Semba, Adachi, & Arai, 2005; 

Veselis & Pryor, 2009). Therefore, more studies are needed to dismiss the possibility of 

postanaesthetic amnesia, i.e. to be sure that the lack of aversion showed is not just a 

consequence of zebrafish not remembering the aversive episode, which would turn this 

experimental procedure not effective to test the aversion of anaesthetics.  

In conclusion, the tested anaesthetic combination showed to be a complete 

anaesthetic that would work as a good alternative for MS222, and, in the present work, 

both seems to induce a low aversion in adult zebrafish. Propofol/lidocaine is a new 

anaesthetic protocol for zebrafish that showed several parameters of a good 

anaesthetic: induction in less than 3 minutes, a complete recovery in less than 10 

minutes, high potency, high safety margin, and it is able to induce a range of depths of 

anaesthesia. Contrarily to MS222, it requires no buffering and can be administered 

directly into the water, with no prior preparation, which makes it more practical and less 
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time consuming. This anaesthetic protocol also requires the use of less quantity to 

anaesthetise, which is an advantage when there is a need to carry it, for example, to 

the work field, and it is cheaper than MS222 (0.08€ vs 0.18€ for 2 L of anaesthetic 

bath; prices provided by our animal facility and by Sigma, USA). 

Further studies are needed to assess the metabolism of Propofol/lidocaine as 

we already know that MS222 requires a period of 21 days to be completely washout 

from the fish body, and so only after that an aquaculture fish can be consumed (Park et 

al., 2009). MS222 is the only anaesthetic approved by FDA to be used in fish for 

human consumption, thus this kind of studies would allow other anaesthetics, such as 

Propofol/lidocaine, to be approved by FDA and similar organizations in other countries 

so that it could be used in aquacultures for human consumptions as a cheaper but 

efficient alternative for MS222. It is also needed to assess the polluting properties of 

both anaesthetics and its degradation in water as they can be used in the field and 

therefore, as a xenobiotic, be another pollutant introduced by humans in the water 

courses. 

It is also important to have into account that fish is a very heterogeneous group 

of vertebrates, and specific studies need to be made to ensure the effective dose for 

each animal species, and size/age range.  
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Annex 1: Recipe for E3 medium 
 

E3 medium (for zebrafish embryos) 

34.8 g NaCl 

1.6 g KCl 

5.8 g CaCl2·2H2O 

9.78 g MgCl2·6H2O 

To prepare a 60X stock, dissolve the ingredients in H2O, to a final volume of 2 L. Adjust 

the pH to 7.2 with NaOH. Autoclave. To prepare 1X medium, dilute 16.5 mL of the 60X 

stock to 1 L. Add 100 µL of 1% methylene blue (Sigma-Aldrich). 

 © 2011 Cold Spring Harbor Laboratory Press 
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Annex 2: Old fish assay data 
 

Concentration Comparison Test Probability Post-hoc Groups Probability 

Equilibrium Loss Kruskal-Wallis 0 Dunn's test M200vC75 1 

  

Dunn's test M200vC50 0.398 

Dunn's test M200vC25 0.002 

Dunn's test M175vC75 0.21 

Dunn's test M175vC50 1 

Dunn's test M175vC25 1 

Dunn's test M150vC75 0.034 

Dunn's test M150vC50 1 

Dunn's test M150vC25 1 

Touch Loss Welch 0.01 
Games-
Howell M200vC75 1 

  

Games-
Howell M200vC50 0.275 

Games-
Howell M200vC25 0.143 

Games-
Howell M175vC75 0.103 

Games-
Howell M175vC50 0.935 

Games-
Howell M175vC25 0.431 

Games-
Howell M150vC75 0.015 

Games-
Howell M150vC50 0.11 

Games-
Howell M150vC25 0.952 

Pain Loss Welch 0.091 
Games-
Howell M200vC75 0.094 

  
 
 
 
 
 
 

Games-
Howell M200vC50 0.031 

Games-
Howell M200vC25 0.044 

Games-
Howell M175vC75 0.992 

Games-
Howell M175vC50 0.694 

Games-
Howell M175vC25 0.159 

Games-
Howell M150vC75 0.534 
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Games-
Howell M150vC50 0.876 

Games-
Howell M150vC25 0.956 

Start Moving Kruskal-Wallis 0 Dunn's test M200vC75 0.012 

  

Dunn's test M200vC50 0.092 

Dunn's test M200vC25 0.003 

Dunn's test M175vC75 0.001 

Dunn's test M175vC50 0.01 

Dunn's test M175vC25 0 

Dunn's test M150vC75 0.001 

Dunn's test M150vC50 0.011 

Dunn's test M150vC25 0 

Equilibrium Gain Kruskal-Wallis 0 Dunn's test M200vC75 0.025 

  

Dunn's test M200vC50 0.025 

Dunn's test M200vC25 0.002 

Dunn's test M175vC75 0 

Dunn's test M175vC50 0 

Dunn's test M175vC25 0 

Dunn's test M150vC75 0.011 

Dunn's test M150vC50 0.011 

Dunn's test M150vC25 0.001 
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Annex 3: Young fish assay data 
 

Concentration Comparison Test Probability 

Equilibrium loss Independent t-test 0.331 

Touch reflex loss Independent t-test 0.932 

Pain reflex loss Independent t-test 0.62 

Start moving Independent t-test 0.115 

Equilibrium gain Mann-Whitney U 0 
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Annex 4: CPA scheme 
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Annex 5: Conditioned Place Aversion Data 
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