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ABSTRACT 
 
Current advances in prostate cancer (PCa) steered an increased precision in 
diagnosis and treatment, even though this disease endures as a significant cause 
of death for men in Portugal, in Europe and worldwide. Diagnostic tools used today, 
e.g. PSA test, resulted in overdiagnosis and overtreatment, with significant 
morbidity and unclear clinical benefit for patients. Conversely, PCa prognosis is 
established in the clinical setting through tumor and clinical variables, although its 
precision is far from optimal. Increasing concern has been devoted to uncover 
novel molecular markers to increase precision for stratifying patients to therapies 
and the extent of surveillance required either before or after initial treatment.  
Here, we studied the relevance of germline genetic variants in genes involved in 
tumor hypoxia in the determination of PCa aggressiveness profile. Several single 
nucleotide polymorphisms (SNPs) in HIF1A (HIF1A +1772 C>T, rs11549465) and in 
genes of downstream pathways VEGF/KDR (VEGF +405 G>C, rs2010963; VEGF 
+936 C>T, rs3025039; VEGF –460 C>T, rs833061; KDR –604 T>C, rs2071559), 
LOX (LOX +473 G>A, rs1800449) and CA9 (CA9 +201 A>G, rs2071676) were 
genotyped, using DNA from approximately 1500 male subjects (754 PCa and 736 
cancer-free controls) included in case-control studies. A nested group of over 480 
PCa patients eligible for androgen deprivation therapy (ADT) was followed-up using 
as endpoints: resistance to ADT (primary), all-cause overall survival (secondary) and 
development of de novo bone metastasis while under ADT (tertiary). In addition, 
representative areas of prostate carcinoma (n=51) and of nodular prostate 
hyperplasia (BPH) (n=20) were analysed for hypoxia-inducible factor 1 alpha (HIF-
1), carbonic anhydrase IX (CAIX), lysyl oxidase (LOX) and vascular endothelial 
growth factor receptor 2 (VEGFR2) immunohistochemical protein expression using 
a tissue microarray, and correlated with putative functional polymorphisms at the 
corresponding genes (HIF1A +1772 C>T; CA9 +201 A>G; LOX +473 G>A; KDR – 
604 T>C).  
Findings from molecular epidemiology studies showed that SNPs on both the HIF1A 
(HIF1A +1772 C>T) and VEGF (VEGF +405 G>C, VEGF +936 C>T, VEGF –460 
C>T)/KDR (KDR –604 T>C) genes were not associated with increased risk for being 
diagnosed with PCa or high-grade PCa, even on univariate analyses. 
Concerning the follow-up study on patients under ADT, results demonstrated an 
independent effect of HIF1A +1772 T-carriers for developing distant metastasis  
and resistance to ADT (HR, 2.0; 95%CI, 1.1–3.9 and HR, 6.0; 95%CI, 2.2–16.8, 
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respectively), albeit no association was found with the secondary endpoint  (overall 
survival). Conversely, the VEGF/KDR SNPs were neither individually nor in 
combination significantly associated with the primary and tertiary endpoints in 
patients under ADT. Only the VEGF/KDR SNPs combined into the high/intermediate 
profile of VEGF-VEGFR2 pathway activation were associated with higher risk for all-
cause mortality (HR, 1.6; 95%CI, 1.1-2.4) in univariate analysis.  
The genotype-phenotype analyses showed higher LOX staining intensity for carriers 
of the homozygous LOX +473 G-allele (P=0.011), and that KDR -604 T-allele carriers 
were more prone to have higher VEGFR2 expression in prostate epithelial cells 
(P<0.006). Immunohistochemistry disclosed predominance of positive CAIX and 
VEGFR2 expression in epithelial cells of prostate carcinomas compared to BPH 
(P=0.043 and P=0.035, respectively). In addition, the VEGFR2 expression score in 
prostate epithelial cells was higher in organ-confined and extra prostatic carcinoma 
compared to BPH (P=0.031 and P=0.004, respectively). Notably, for LOX protein the 
immune reactivity score was significantly higher in organ-confined carcinomas 
compare to BPH (P=0.015).  
The expression on prostate epithelial cells of target molecules in hypoxia pathways 
analysed here (VEGFR2, CAIX and LOX) allowed differentiating malignant from 
benign prostate disease. Two of the genetic polymorphisms (LOX +473 G>A and 
KDR – 604 T>C) accounted for a potential gene-environment effect in the activation 
of hypoxia-driven pathways in prostate carcinoma. Nevertheless, genetic 
polymorphism-protein expression relationship in molecules analysed here were not 
concordant, suggesting that increased complexity might explain the genotype-
phenotype association. Upcoming results in LOX and CAIX SNPs from molecular 
epidemiology studies might add to the comprehension of this association, allowing 
the development of genetic risk scores combining genetic hypoxia markers and 
clinicopathological variables. Further research in larger series is warranted to 
clarify and expand present findings. Ultimately, a different set of genetic variants 
is likely to influence prognosis, including genetic polymorphisms involved in 
steroid metabolism, metastasis and drug metabolism. 
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RESUMO  
 
Os últimos avanços no cancro da próstata (CaP) conduziram a uma maior precisão 
no diagnóstico e tratamento, embora esta doença permaneça uma importante 
causa de morte nos homens em Portugal, na Europa e no mundo. Algumas 
ferramentas de diagnóstico usadas, por exemplo o teste PSA, resultaram em 
excesso de diagnósticos e tratamento excessivo, com significativa morbilidade e 
benefício clínico pouco evidente. Por outro lado, o prognóstico do CaP é 
estabelecido na clínica através da combinação de variáveis clinicopatológicas em 
nomogramas, embora a sua precisão esteja longe de ser ideal. Uma preocupação 
crescente tem sido dedicada à descoberta de novos marcadores moleculares com 
o intuito de aumentar a precisão para estratificar os doentes com CaP para 
tratamento e em relação à extensão de vigilância necessária, antes e após o 
tratamento inicial. 
Nesta tese estudou-se a relevância das variantes genéticas da linha germinativa em 
genes envolvidos na hipóxia tumoral na determinação do perfil de agressividade 
do CaP. Vários polimorfismos genéticos, no HIF1A (HIF1A 1772 C> T, rs11549465) 
e em genes de vias relevantes a jusante: VEGF / KDR (VEGF 405 G> C, rs2010963; 
VEGF 936 C> T, rs3025039; VEGF -460 C> T, rs833061 ; KDR -604 T> C, 
rs2071559), LOX (LOX 473 G> A, rs1800449) e CA9 (CA9 201 A> G, rs2071676), 
foram genotipados, usando o DNA de cerca de 1500 indivíduos do sexo masculino 
(754 CaP e 736 controlos) incluídos em estudos caso-controlo. De entre os doentes 
com CaP, um grupo de mais de 480 CaP elegíveis para terapêutica de privação de 
androgeneos, foi seguido durante vários anos. A resistência à terapêutica de 
privação de androgeneos, sobrevida global e o desenvolvimento de novo de 
metástases ósseas, foram respetivamente considerados como endpoint primário, 
secundário e terciário. Para além do estudo genético, num subgrupo de doentes e 
controlos mais reduzido, áreas representativas de carcinoma da próstata (n = 51) 
e de hiperplasia nodular da próstata (HBP) (n = 20) foram analisadas por imuno-
histoquímica (IHC) utilizando um microarray de tecido. A abundância de fator 
indutível por hipóxia (HIF-1), anidrase carbónica IX (CAIX), lisil oxidase (LOX) e a 
expressão da proteína recetor 2 do fator de crescimento vascular endothelial 
(VEGFR2) foi correlacionada com os polimorfismos estudados dos genes 
correspondentes (HIF1A 1772 C> T; CA9 201 A> G; LOX 473 G> A; KDR - 604 T>C). 
Achados dos estudos de epidemiologia molecular mostraram que os SNPs nos 
genes HIF1A (HIF1A 1772 C> T), VEGF (VEGF 405 G> C, VEGF 936 C> T, VEGF -460 
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C> T) e KDR (KDR -604 T> C) não estavam associados a maior risco de ser 
diagnosticado com CaP ou CaP de alto grau em análises uni ou multivariadas. 
Em relação ao estudo de follow-up em pacientes em terapêutica de privação 
androgénica (TPA), os resultados demonstraram um efeito independente do HIF1A 
1772 portadores alelo T para o desenvolvimento de metástases e resistência à 
terapêutica privação androgénica (TPA) (HR, 2.0; 95% CI, 1.1-3.9 e HR, 6.0; 95% CI, 
2.2-16.8, respetivamente), não tendo sido observada associação com o endpoint 
secundário (sobrevida global). Por outro lado, os polimorfismos nos genes VEGF e 
KDR não estavam individualmente nem em combinação significativamente 
associados com os endpoints primário e terciário. Apenas a combinação de 
polimorfismos no VEGF e KDR como perfil de ativação alta/intermédia da via VEGF-
VEGFR2 estava associada a maior risco de mortalidade na análise univariada (HR, 
1.6; 95% CI, 1.1-2.4). 
As análises genótipo-fenótipo mostraram maior expressão de proteína nas células 
epiteliais da próstata nos portadores homozigóticos para o alelo G do LOX 473 (P 
= 0.011) e nos portadores do alelo T do KDR -604 (P <0.006). Adicionalmente, a 
análise por imuno-histoquímica evidenciou uma maior frequência de células 
epiteliais positivas para o CAIX e VEGFR2 em CaP comparativamente com adenomas 
(P=0.043 e P=0.035, respetivamente). Além disso, o score de expressão de VEGFR2 
nas células epiteliais da próstata foi mais elevado quer no CaP confinado ao órgão 
quer no extra-prostárico comparados com os adenomas (P = 0.031 e P = 0.004, 
respetivamente). Para a proteína LOX o score de imunorreatividade foi 
significativamente maior no CaP confinado ao órgão comparado com os adenomas 
(P = 0.015). 
A expressão de moléculas-alvo por células epiteliais da próstata em vias de hipóxia 
aqui analisadas (VEGFR-2, CAIX e LOX) permitiu diferenciar a doença prostática 
maligna da benigna. Dois dos polimorfismos genéticos (LOX 473 G>A e KDR - 604 
T>C) poderão ser responsáveis por um potencial efeito gene-ambiente na ativação 
de vias induzidas por hipóxia no CaP. No entanto, a relação entre expressão 
proteica-polimorfismo genético-risco de CaP agressivo nos marcadores aqui 
analisados não foram concordantes, sugerindo que apenas uma complexidade 
acrescida poderá explicar a associação genótipo-fenótipo-risco. Os resultados dos 
estudos de epidemiologia molecular a decorrer com os polimorfismos do LOX e 
CAIX poderão acrescentar à compreensão desta associação, permitindo o 
desenvolvimento de scores de risco genético que combinam vários marcadores 
genéticos e proteicos de hipóxia com variáveis clinicopatológicas. É evidente a 
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necessidade de estudos em séries maiores para clarificar e expandir os resultados 
aqui apresentados. De facto, o conhecimento de um conjunto de variantes 
genéticas maior e mais alargado, é suscetível de influenciar o prognóstico, 
nomeadamente o conhecimento de polimorfismos genéticos envolvidos no 
metabolismo de esteróides, metástases e metabolismo de fármacos. 
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THESIS PLANNING 
 
The present thesis is organized into four different Chapters. In Chapter 1, a short 
general introduction to review cancer cell singularities and propel Prostate Cancer 
(PCa) research questions is presented. Then, the literature is reviewed throughout 
Chapter 2, despite an introductory note revealing our personal clinically-driven 
approach, focusing on PCa particularities as a research model that took questions 
from the clinical setting (bedside) towards the bench of basic and translational 
experimental investigation. These personal thoughts emerged within the frame of 
classical knowledgeable epidemiology, carcinogenesis and clinicopathology of PCa. 
Moreover, this chapter included a wide literature review attentive to hypoxia and 
cancer as a whole, with particular attention to the role of hypoxia-inducible factor 
– 1 alpha (HIF-1), which was deepened to focus on PCa and disease aggressiveness 
through the interplay with key downstream pathways. The Chapter 2 was upheld 
on candidate strong clinical background and on two published reviews [Clin 
Genitourinary Cancer 2015; 13 (4): 295-301; Actas Urol Esp 2009; 33 (9): 941-
951]. 
For the sake of clarity, we decided to include experimental works that resulted in 
scientific publication on a separate Chapter 3. Here, each separate study from a 
total of four, congruent with literature review and questions identified in clinical 
practice, was independently described and presented through a short overview, 
results and discussion, followed by the respective printed paper in appendix. 
Therefore, in this chapter the most relevant results and specific discussion are 
concisely depicted, grounded on published papers [Eur J Cancer 2014; 50: 359-65; 
PLoS ONE 2012; 7 (6):e39236] and submitted manuscripts (“Putative functional 
genetic polymorphisms in key hypoxia-regulated downstream molecules and 
phenotypic correlation in prostate cancer”, and “Inherited variation in adipokine 
pathway genes may determine prognosis for prostate cancer patients receiving 
androgen-deprivation therapy”). An integrative but concise overall conclusion, 
followed by emerging specific conclusions and prospective investigative remarks 
were depicted in Chapter 4. We believe this outline will fit the purpose of showing 
all the major scientific achievements and discoveries made throughout the PhD 
track, while making it less burdensome to readers. 
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1. GENERAL INTRODUCTION 
 
Advances in cancer biology research have led to a better understanding of this 
disease and have shown that it is an extremely complex and dynamic biological 
phenomenon, characterized by a great capacity for adaptation to evolving 
environments along its natural history. At the outset, the cancer cell is doomed to 
failure to die, due to the surrounding environment and because it is against the life 
cycle, even though if ultimately successful it will result in patient’s death. Hence, it 
is not surprising that throughout cancer development, different biological 
singularities are happening that will facilitate cancer cell’s survival and tumor 
progression.  
Tumor promotion, proliferation, cell instability, deregulation of energy 
mechanisms, mutations, resistance to apoptosis, invasiveness and metastasis, 
angiogenesis, the ability to resist and adapt to hypoxia phenomena are all 
characteristic hallmarks of cancer cells that will lead to its immortality and 
progression [1]. These singularities are characteristic phenotypic findings that are 
superimposed on the genetic background and environmental exposure’s driving 
forces, which ultimately determine the diversity among cancers and the different 
responses of patients even to the same type of cancer and therapies.  
Prostate Cancer (PCa) is a very heterogeneous disease with great clinical variability, 
varying considerably in their genetic profile and biological behavior, making it 
difficult and complex to decide the best therapeutic approach. Therefore, it is vital 
to advance our ability to detect the most aggressive cancers. For that reason, it 
seems imperious to uncover and understand the mechanisms of PCa development, 
particularly in relation to hypoxia. At our research Group we recognized that raising 
further the understanding of cancer hypoxia mechanisms and its impact on 
angiogenesis and tumor microenvironment of PCa will add relevant information to 
current knowledge and potentially impact clinical reasoning. In fact, although 
tumor hypoxia is common in urological oncology, particularly in relation to PCa 
aggressiveness, further research in environmental factors and germline genetic 
variants as modulators of hypoxia in PCa will foster comprehensive development 
of predictive and prognostic biomarkers to improve PCa management. 
Neoplastic tissues in the prostate gland are highly hypoxic, where the degree of 
microenvironmental hypoxia largely determines the response to subsequent 
resistance to treatment and tumor progression, as reflected in the local response 
evaluated through immunohistochemistry [2]. 
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Several studies have shown a relevant role for hypoxia in androgen dependent PCa, 
which is supported by the observed clinical impact of anti-androgens involving the 
downregulation of hypoxia-inducible factor 1 alpha (HIF-1) transcription and 
decreased angiogenic potential [3-5]. Studies involving genetic variants, including 
the HIF1A gene, in susceptibility to PCa and hypoxia mechanisms are scarce and 
often controversial [4-7], thereby fostering further research. Even though some 
biomarkers are central in hypoxia, we should consider a panel of markers since 
individually they are unlikely to be assertive enough to be clinically relevant [8,9]. 
In fact, underlying tumor hypoxia we should notice the existence of a regulatory 
circuit between molecules (such as vascular endothelial growth factor, VEGF, lysyl 
oxidase, LOX, carbonic anhydrase, CAIX) and pathways controlled by HIF-1, which 
synergistically model the tumor microenvironment and regulate PCa 
aggressiveness. 
During the process of fitting with hypoxia, the microenvironment changes and cells 
adapt to withstand the hostile environment, where well documented 
neoangiogenesis regulated by VEGF and its receptors allows new architecture and 
microcirculation, glycolytic pathways change to avoid cellular acidosis with altered 
expression of glucose transporters -1 and -3 (GLUT-1 and GLUT-3), changes in pH 
regulation through carbonic anhydrase IX, and altered lysyl oxidase to modulate 
extracellular matrix to allow tumor expansion and metastasis. A recent study 
identified HIF-1, VEGF and angiogenesis as hypoxia markers that were associated 
with risk of biochemical failure in patients with localized PCa [2], whereas others 
showed LOX and CAIX overexpression in PCa compared with BPH and correlation 
with Gleason grade [10], although additional studies are required to confirm these 
proteins as useful hypoxia markers in PCa. 
Underlying the intricate resulting phenotype of hypoxia microenvironment in 
prostate tumors, uncovering germline variations in locus of genes coding for 
molecules in hypoxia pathways likely to play a role in tumor progression and 
aggressiveness may reveal new potential biomarkers.  
The identification of better hypoxia biomarkers can help personalize which patients 
might benefit more from regulatory hypoxia therapies. Ultimately, being capable 
of predicting the correlation of local hypoxic phenotypic changes with prognosis, 
can lead to the application of focal therapy directed to hypoxic areas guided by 
magnetic resonance imaging or using hypoxia-targeted nanotools [11,12].  
This thesis is focused on hypoxia-driven prostate tumor aggressiveness and 
disease progression. Here we attempt to disclose genetic and phenotypic 
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characteristics from molecules involved in hypoxia pathways that better define 
malignancy and discriminate aggressive disease. The ultimate purpose is to 
congregate enough data from genetic and protein markers (from pathways directly 
regulated by HIF-1: CAIX, LOX, VEGFR2) in order to develop a 
predictive/prognostic model for stratification by risk groups according to the 
molecular profile. Analysis of genetic variants that may influence the production 
and action of these molecules, may add new insights into the functional molecular 
profile of susceptibility to cancer and understanding of its pathophysiology. 
Accordingly, we expect to study the functional effect of single nucleotide 
polymorphisms (SNPs) through the verification of protein expression directly in 
prostatic tissue by immunohistochemistry (IHC). We expect that results presented 
may help clarify the mechanism of hypoxia in PCa development and will prove to 
be a step in the need to continue and deepen this line of investigation. 
 
 1.1. Aims 
 

 To study the protein expression directly in prostatic tissue corresponding to 
the functional effect of SNPs in the respective genes, revealing genotype-
phenotype relationships. 

 To analyze genetic variants in genes coding for molecules that may influence 
hypoxia downstream effects, therefore adding new insights into the 
functional molecular profile of susceptibility to prostate cancer and 
understanding of its pathophysiology.  

 To uncover genetic and phenotypic characteristics from molecules involved 
in hypoxia pathways that better define malignancy and discriminate 
aggressive disease.  

 To identify better hypoxia biomarkers and add to knowledge on 
stratification of patients who might benefit more from regulatory hypoxia 
therapies.  

 Contribute to the development of new risk scores using molecular markers 
capable of predicting local hypoxic phenotypic changes, which can lead to 
the application of focal therapy directed to hypoxic areas.  
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REVIEW OF THE LITERATURE 
 
2.1 Prostate cancer as a particular research model: from bedside-to-bench 
 
Prostate cancer is one of the most frequent and controversial pathologies of 
modern medicine. In recent years we have witnessed on the one hand an increased 
demand for care in this area and on the other hand the development of scientific 
advances accompanied by great technological progress. 
The pronounced progress and new perspectives of cure obtained with the use of 
prostate specific antigen (PSA) [13] enabled earlier diagnosis of the disease. The 
technology has progressed immensely allowing easier, faster and more accurate 
diagnosis, and more comfortable treatments with less sequelae. However, current 
ultimate treatments have been developed for over fifty years. Indeed, radical 
prostatectomy (RP) remains the paramount therapeutic opportunity for local 
disease, and androgen deprivation therapy the everyday treatment for advanced 
disease. 
Prostate cancer is now considered a heterogeneous disease, where efforts should 
be emphasized towards detecting, identifying and targeting the most aggressive 
tumors. Existing prognostic algorithms that include clinicopathological variables 
such as the Gleason grade, PSA, imaging and histological features are limited to 
crude estimates of disease progression. 
Knowledge of the mechanisms of carcinogenesis and tumor biology, including 
genetic changes associated with tumor initiation and progression, has been an 
opportunity to add genetic markers to the predictive and prognostic panel, to 
improve clinical reasoning and aid therapeutic decisions. 
For several years it was recognized that a genetic component underlies PCa 
development and aggressiveness, and approximately 42% higher risk cancer can 
be ascribed to genetic factors [14]. Only a small proportion of cancers can be 
attributed to monogenic, high penetrance genes, whereas most have multifactorial 
etiology, combining environmental and genetic factors. Low penetrance genetic 
variants, alone or combined as a genetic risk score have been studied, although 
still inconclusive [15-17].  
The identification of susceptibility genes for PCa and its biochemical and metabolic 
relationship will add to our knowledge contributions in the field of molecular 
cancer pathophysiology, allowing the closer identification of risk groups and to 
establish relations with drug response. Notably, several current therapies 
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(androgen deprivation therapy, chemotherapy, and radiotherapy) may be 
influenced by genetic variations with functional features in genes coding for 
regulatory molecules in tissue hypoxia. 
 
 2.1.1. Anatomy 
 Prostate is an exocrine organ measuring approximately 25cc. It is 
characterized by the presence of tubuloalveolar glands that secrete fluid through 
ducts that empty into the prostatic urethra. The prostate is located deep in the 
pelvis below the pubis, above rectum and between bladder and external urinary 
sphincter. The prostate is involved by a capsule and is divided into a peripheral 
zone, where most cancers arise, a transition zone where approximately 15% of 
neoplasias occur, and a central zone with rare malignant transformation [18]. 
 
 2.1.2. Histopathology 
 Normal prostatic epithelium contains a heterogeneous group of cells 
representing several distinct levels of differentiation. Secretory cells are well 
differentiated epithelial cells that are PSA-producers and androgen receptor (AR) 
positive. The secretory cells are derived from basal cells through an intermediate 
proliferating group of cells that are variable in AR and PSA expression. The PSA 
producing secretory cells are terminally differentiated and incapable of 
proliferation [19]. Rare neuroendocrine cells are also present in normal prostatic 
epithelium.  
More than 95% of PCa are adenocarcinomas that arise in acinar and proximal ductal 
epithelium. The typical adenocarcinoma of prostate can be distinguished from 
others neoplasms using PSA immunohistochemistry. Intraductal proliferation, 
termed prostatic intraepithelial neoplasia (PIN) is considered a histologic precursor 
of malignancy; however, an atrophic but highly proliferative condition associated 
with chronic inflammation, proliferative inflammatory atrophy (PIA), may in fact be 
the first histologic step in the carcinogenic process [20]. PIN is defined by the 
presence of cytological atypical epithelial cells within architecturally benign 
appearing acini and is subdivided into low and high grade; only high grade PIN is 
considered a precursor of invasive carcinomas and it may precede the development 
of cancer by 10 years or more [21]. Prostatic adenocarcinomas are often multifocal 
and heterogeneous, a factor that complicates both prognostication and attempts 
to develop focal therapies. Patients not only have multifocal tumors but also an 
average of 2.7 different grades of cancer in each specimen; only 10% of cancers 
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from RP specimens are comprised of a single histologic grade. The majority of RP 
specimens contain more than one prostate malignancy focus and type. Genetic 
studies indicated that multifocality is typically a function of separately arising 
tumors rather than intraprostatic tumor spread [22]. Adding to the picture, several 
studies indicate a critical role for stroma cells in supporting the growth of 
malignant prostate epithelial cells, thereby remaining an area of active 
investigation [23]. 
 
 2.1.3. Epidemiology 
 Considerable changes have occurred in the epidemiology of PCa since the 
widespread availability of PSA in the early 1990s. In fact, dramatic changes in its 
incidence have taken place since the PSA became commercially available, as 
prostate tissue has been increasingly biopsied with better quality in men without 
symptoms. 
Prostate cancer is an important public health issue, being the most frequent non 
cutaneous male malignancy and the second most common cause of cancer death 
in men [24]. It was estimated that during the year 2012 in the United States, PCa 
became the most common cancer in men over 60 years, with about 214 740 new 
cases and 28 170 deaths [25], accounting for approximately 29% of new malignant 
cases and 9% of the causes of death by cancer in males. Concurringly in Europe, 
PCa is the leading cause of death in males, whereas incidence is highest in Northern 
and Western Europe (> 200 per 100 000) with continuously increasing rates in 
Eastern and Southern Europe [26]. During the last decade, the five-year relative 
survival for PCa steadily increased from 73.4% in 1999-2001 to 83,5% in 2005-
2007, with an estimated total economic burden of PCa in Europe exceeding 8.43 
billion euros [26]. In Portugal, the number of estimated new cases of PCa in 2008 
has been 5140 [27,28]. It is the most common malignancy in men after colorectal 
cancer. The estimated risk for a Portuguese man, below 75 years old, to develop 
any cancer type is 25.9%, while the risk for PCa is 3.2% and the risk of dying from 
PCa 3.0 % [29]. 
There are large differences in incidence of PCa between countries, ethnic 
backgrounds and populations. Genetic, environmental and social characteristics 
(access to medical care for example) are likely factors that might influence the 
development and progression of the disease, despite the persistent clinically-
established risk factors, age, race and family history of PCa [30]. Environmental 
factors have been suggested to influence the risk of progression from so called 
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latent PCa to clinical PCa, including fat and alcohol consumption, exposure to 
ultraviolet radiation, chronic inflammation, obesity and metabolic syndrome, but 
further research is warranted to confirm association.  
  
 2.1.4. Molecular mechanisms 
 Prostate cancer has elevated morbidity, even though its pathogenesis 
remains unclear. Several putative risk factors and mechanisms have been 
implicated, but current evidence remains inconclusive.  
Normal epithelial cells acquire somatic mutations in critical regions of the genome 
that result in increased cell proliferation and confer the ability to invade and 
metastasize; their normal function is modified due to alterations in multiple cellular 
signaling pathways. Actually, the progression of PCa is known to be caused by 
deregulation of intracellular signaling pathways such as the AR pathway, PI3K-Akt, 
NF-kB, Wnt and Notch. It is known that PCa is an endocrine-related cancer driven 
by androgens, and the mutations at that level are thought to be determinant [31]. 
A genetic polymorphism has been defined as a commonly occurring (>1%) genetic 
variation, at the nucleotide level, in the general population. Compared to 
mutations, SNPs have been perceived as functionally insignificant, albeit current 
evidence emphasizes that a considerable fraction affects protein intrinsic 
properties and function to a variable degree. Low penetrance susceptibility alleles 
are defined as polymorphic genes with specific alleles that associate with altered 
susceptibility for disease. Usually, variants in these genes are common in the 
normal population. Therefore, although each variant may be associated with a 
relatively small attributable fraction risk for prostate cancer, the impact of 
combining relevant genetic polymorphisms, may add significance to their use as 
molecular markers and determinants of PCa diagnosis and aggressiveness 
prediction. Several reports have demonstrated the importance of genetic 
polymorphisms in the phenotype of several cellular mechanisms. If these genetic 
variants are combined to induce interactions at gene and protein level, they are 
likely to influence cancer mechanisms at the cell, with repercussion in the 
microenvironment and with perception of external environment.   
 
 2.1.5. Diagnosis 
 Screening for Pca is a highly controversial topic. There is no level 1 evidence 
that PSA screening reduces mortality due to PCa. In the Cochrane review published 
in 2013, screening was associated with increased diagnosis of PCa (RR, 1.3; 95%CI, 
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1.02-1.7), with more localized disease (RR, 1.8; 95%CI, 1.2-2.7) and less advanced 
PCa (T3-4, N1, M1) (RR, 0.8; 95%CI, 0.7-0.9). The early detection of PCa seems to 
be important because it allows the diagnosis of localized and potentially curable 
disease, even at the expenses of increased iatrogeny in patients with indolent 
tumors [32,33]. Nevertheless, controversy exists concerning the cost-effective 
profile of using PSA widely [34] and the impact on the patient’s overall quality of 
life is still unclear. 
A critical issue emerging from the debatable PSA-associated overdiagnosis and 
overtreatment is the previously unmet need for additional molecular markers that 
can improve the discrimination of PCa aggressiveness. The patient with advanced 
disease may receive only palliative treatment. 
The diagnosis of PCa is based on PSA values and/or suspicious digital rectal 
examination, which refer, when adequate, for prostate biopsy. Usually, men with 
PSA values  4.0 ng/ml or PSA velocity > 0,75ng/ml/year, are candidates for 
prostate biopsy. Nevertheless, these PSA cut-offs remain controversial and often 
lead to false positives and negatives. 
Diagnosis of PCa relies on prostate biopsy with subsequent histopathological 
identification. The accuracy and lower morbidity of prostate biopsy procedure 
should be taken into account, and are known to influence diagnosis precision. 
Currently, the prostate biopsy protocols are increasingly standardized, together 
with better echography and fusion images obtained from MRI, which have allowed 
significant advances in diagnosis accuracy and therapeutic guidance (mainly 
surgical precision and the possibility of focal treatments). 
Histopathologically determined Gleason grade and PSA levels are commonly used 
in nomograms for clinical assessment of the prognosis. 
 
 2.1.6. Clinical and pathological staging 
 Classification of disease staging, either local or regional or systemic, is 
crucial, since it informs about its progression and extent. Ordinarily, we use the 
Union for International Cancer Control (UICC) classification of the tumor, node and 
metastasis (TNM), including the following features: digital rectal examination, 
multiparametric magnetic resonance imaging (MRI), histopathological findings and 
PSA values. 
The most precise staging is provided when patients are submitted to RP. In this 
setting the RP specimen, seminal vesicles and locoregional lymph nodes are 
analyzed together, providing more precise information to better assess risk of 
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recurrence and necessity of adjuvant treatment. Nevertheless, PCa has a great 
clinical variability. In cases, PCa patients apparently remain asymptomatic, often 
without a diagnosis and die of other causes. Frequently, this slow-growing, indolent 
disease may never elapse as clinically important, and patients are likely to die from 
another cause [35,36]. This may be due to old age at the time of diagnosis, slow 
growth seen in many tumors or to therapeutic response. However, sometimes 
tumors are very aggressive from the start and rapidly progress after a variable 
period of latency.  
Thus, given the elevated prevalence of this disease, its morbidity and mortality, as 
well as the economic and social repercussions, additional efforts should be 
undertaken to understand and establish the biological, genetic and environmental 
mechanisms underlying PCa natural history [37].  
 
 2.1.7. Treatments 
 Therapeutic options in PCa should be reasoned taking into account disease 
stage (TNM), tumor Gleason grade, PSA level, and patient's age, life expectancy, 
expected quality of life, in order to modify its natural history, influencing the risk 
of disease progression and mortality [38]. When such factors are evaluated, diverse 
treatments are available including active surveillance, surgery, focal therapy, 
radiotherapy, brachytherapy, hormonal therapy and chemotherapy, according to 
the moment in the disease natural history. 
The development of novel biomarkers for PCa that fit within clinical needs, will 
certainly improve prognosis and clinical decision-making capacity. In this setting, 
it is necessary to foster research in this field to upgrade knowledge and accurately 
provide guidance for different therapeutic options. In recent years, active 
surveillance and focal treatments in PCa, have emerged as novel therapeutic 
modalities with strong evidence to take into account. Knowledge of biomarkers and 
PCa features can help make the right choices for our patients. 
 
 
 
 
 
 
 
 



29 
 

2. 2. Hypoxia and cancer  
[Fraga A et al. Tumor hypoxia. The role of HIF. Actas Urol Esp 2009; 33 (9): 941-51] 
 
Solid tumors usually occur and progress in a hypoxic environment, suggesting that 
hypoxia modulates tumor cell resistance to apoptosis and influences 
neoangiogenesis, making them more aggressive, with invasive capacity and 
resistant to treatment.  
The genetic and biological mechanisms underlying this phenomenon are 
incompletely clear, even though many studies suggest a role of HIF in this process. 
Under hypoxic conditions, the alpha subunit is not destroyed, and will activate 
transcription of a set of genes that ultimately contributes to tumor aggressiveness. 
Its expression is associated to an increased metastatic potential that has been 
shown in both animal studies and human tumors. 
Hypoxia-inducible factor (HIF) is a transcription factor that regulates cells’ response 
to hypoxia and acts as a regulator of oxygen homeostasis [39-41]. The 
transcription factor activates genes that codify proteins that increase the 
availability of oxygen and permit metabolic adaptation in the absence of oxygen; 
it controls the expression of several genes and proteins involved in angiogenesis, 
erythropoiesis, glycolysis, invasion, apoptosis, vascular tone, pH regulation, 
epithelial homeostasis, and drug resistance. More than 60 target genes induced by 
HIF have been identified [40]; others are suppressed [42]; many functions are HIF-
dependent [42]. 
Tumor hypoxia has emerged as a key factor in tumor progression and is associated 
to a poor prognosis in urological oncology, particularly kidney and prostate cancer. 
The purpose of this study was to review the significance of hypoxia in 
carcinogenesis and tumor progression by reviewing the current knowledge on the 
subject and the mechanisms of action and activation of hypoxia-inducible factor 1 
alpha (HIF-1). 
 
 2.2.1. Molecular structure of HIF‑1 
 The HIF1A gene, which codifies HIF-1, is located in the 14q21-q24 locus 
[43], which contains 15 exons [44]. It is a heterodimer composed of alpha chains 
(regulated by O2) and beta chains, arranged in a helix-loop-helix (bHLH); it belongs 
to a family of transcription factors consisting of three alpha subunits (HIF-1, HIF-
2, HIF-3) and one beta subunit (HIF-1), also known as aryl hydrocarbon nuclear 
translocator (ARNT) [45-47].  
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There are two nuclear localization signals (NLS), located on the C-terminal 
(aminoacids 718-721) and on the N-terminal (aminoacids 17-33), but only the C-
terminal is responsible for the nuclear accumulation of HIF-1 [48]. It is also known 
that HIF contains two transactivation domains (TAD) in the C-terminal (aminoacids 
531-575 and 786-826), separated by a sequence of aminoacids (575-786) that 
inhibit transactivation [49] (Figure 1).  
 

 
Figure 1. Molecular structure of HIF-1. Adapted from [45]. 

 
The N-terminal of the molecule (aminoacid 1-390) contains the bHLH-PAS domain, 
necessary for dimerization and binding to DNA [50]. The interaction between the 
bHLH domains of the two subunits regulates their dimerization [51]. 
The C-terminal domain’s function is to signal the translocation of HIF-1 for the 
nucleus, protein stabilization, and interaction with coactivator p300 [49]. In the 
oxygen-dependent domain (ODD) of HIF-1, proline residues in positions 402 and 
564 have an important effect on the stability of the protein in normoxic conditions, 
as they permit, when hydroxylated, recognition by the von Hippel-Lindau protein 
(pVHL) and subsequent activation of the ubiquitin degradation pathway [52-57]. 
The hydroxylation of proline residues in the ODD domain of HIF-1 is the critical 
point that regulates the protein’s stability [58,59] (Figure 2). The transcription 
activity of HIF1A gene is thus regulated by the cellular oxygen tension. 
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Figure 2. Stability and activity of the HIF. Adapted from [60]. 

 
 2.2.2. Molecular mechanisms of HIF and of HIF1A activation 
 In the presence of O2, the proline hydroxylation domains (PHD1, 2, 3) 
provoke specific hydroxylation in two proline residues (P402 and P564) in the HIF-
1 ODD, which allows pVHL to recognize HIF-1; the E3-ubiquitin complex is 
formed, which will transform HIF-1 into a degradation target [61-64]. Jaakkola et 
al [63] showed that the interaction between pVHL and the specific HIF-1 domain 
is regulated by the hydroxylation of the proline residue (HIF-1 P564) by an enzyme 
called HIF-1 prolyl hydroxylase (HIF-PH), which requires iron and oxygen. 
Another O2 sensor is the factor inhibiting HIF-1 (FIH-1), which hydroxylates HIF-1 
in the presence of O2, at the asparagine residue 803 in the transcription activation 
domain of the C-terminal (C-TAD), and is inactive in hypoxia, which permits 
interaction with co-activators CBP/p300 [65,66] (Figure 2). 
In hypoxic conditions, molecular O2 is not available, and thus the enzymes are 
inactive, which implies elevated levels of HIF-1 [5]. HIF-1 is not hydroxylated, and 
therefore not degraded; this causes it to accumulate in heterodimerized form with 
the beta subunit (HIF-). This heterodimer migrates toward the nucleus, where it 
binds to the specific DNA sequences, and activates genes involved in the adaptation 
to hypoxia, cell survival, angiogenesis, and metastasis, such as, for instance, 
vascular endothelial growth factor (VEGF), transforming growth factor alpha (TGF-
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), glucose transporter 1 (GLUT-1), and carbonic anhydrase IX (CAIX), among many 
others known to be involved in tumor development and aggressiveness [67,68]. 
Therefore, the main regulator of HIF is oxygen [54,69]. The second in order of 
importance are oncogenes, which may contribute to stabilize or degrade protein. 
For example, protein p53, the product of the tumor suppressor gene TP53, inhibits 
the activity of HIF-1 and becomes a target for proteasomal degradation [70]. 
However, TP53 deletions or mutations may facilitate the accumulation of HIF-1 in 
conditions of hypoxia, increasing the expression of VEGF in tumor cells. 
The product of the tumor suppressor gene VHL also regulates the stability of HIF-
1 [71], since in the presence of oxygen pVHL can bind to the HIF-1 subunit and 
become a target for prolyl-hydroxylation [57-59]. Additionally, other oncogenes (v-
Src or RasV12) inhibit prolyl-hydroxylation, which implies stabilization of HIF-1 
[69-72]. 
We also know that the expression of the HIF1A gene can be regulated through other 
pathways, mainly those of intracellular signaling, such as protein-kinase B (Akt) and 
phosphatidylinositol 3’-kinase (PI3K), although their role in these regulation 
pathways is not yet clear.  
Other HIF1A-regulating molecules have been described, such as the reactive 
oxygen species (ROS) involved in carcinogenesis, or cytokines like the tumor 
necrosis factor alpha (TNF-) and angiotensin [73-77], which signal pathways such 
as RAS/RAF1/MEK1/ERK1/2 and/or p53/JNK, activated as a response to 
oncogenes, growth factors, or hypoxia (Figure 3). 

 
Figure 3. HIF-1 signaling and regulation pathways. Adapted from [78]. 
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 2.2.3. General functions of the HIF1A gene 
 Hypoxia is a diminished oxygen tension, defined in clinical terms as a 
reduction of the availability of oxygen to critical levels (tension under 7%) [77]. 
HIF-1 is involved in the response to hypoxia, in oxygen homeostasis, and in 
myocardial, brain and retinal ischemia, pulmonary hypertension, preeclampsia, 
intrauterine growth retardation, and cancer. It plays a crucial role in physiological 
homeostatic and etiopathological mechanisms. It acts on target genes because its 
function is regulated by growth factors and genetic abnormalities involved in tumor 
progression [79,80]. 
Aberrant blood vessels can disappear at any time, but they can sometimes be 
reutilized, causing local reoxygenation, stimulating sudden changes of hypoxia 
and reoxygenation as a result of local angiogenesis [81-84]. 
The tumor’s environment is well characterized; it is understood as a fluctuation 
between hypoxia and nutrient deprivation that leads to genetic and epigenetic 
adaptation of cell clones, which increases its invasion and metastatic capacity. 
Additionally, these adaptations to hypoxia make tumors more difficult to treat and 
more resistant to therapies. An important part of this process is the adaptation of 
gene products as a response to hypoxia, and the fact that many of these hypoxia-
regulated genes are mediated by HIF1A [85]; approximately 1% of the genome is 
estimated to be regulated by hypoxia. 
Tumor hypoxia by itself is an important epigenetic factor in the regulation of the 
HIF-1 protein. In addition to inhibiting PSDs and HIF-1, hypoxia generates oxygen 
free radicals capable of stabilizing the HIF-1 protein and of inducing the HIF and 
VEGF genes [86,87]. 
When hypoxia is established, there is a cell response to prevent apoptosis [63], and 
the HIF-1 transcription factor is activated, which generates a heterodimer with 
HIF-1 (ARNT) in the hypoxia response element (HRE), which leads to a multiple cell 
response and the activation of oncogenes [88], increased vascularization with the 
production of VEGF, increased glucose transport (GLUT1), increased activity of 
carbonic anhydrase (CAIX), and even the induction of several apoptotic genes [89-
91]. HIF is known to act on genes that codify erythropoietin, transferrin, endothelin-
1, inducible nitric oxide synthase (iNOS), hemoxygenase 1, insulin growth factor-2 
(IGF-2), insulin-like growth factor binding proteins 1, 2 and 3 (IGFBP 1, 2, 3), 
glucose transporters (GLUT), and glycolytic enzymes [50,92,93] (Figure 4). This 
promotes metabolic adaptation to hypoxia, and is also regulated by O2 tension, 
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depending on the expression of the HIF-1 subunit [94]. Malignant cells’ ability to 
adapt to hypoxia is fundamental for tumor growth (Table 1). 

 
Figure 4. Responses determined by the HIF. Adapted from [95]. 

 
 
 
 
Table 1. Examples of molecules regulated by HIF-1 and their pathophysiologic action 
 

Molecule Function References 
VEGF Angiogenesis [5-7] [16] [37,38] [66] [68] [71-78] 
Erythropoietin Erythropoiesis [5-7][16][66][68][77,78] 
GLUT-1 Glycolysis [5-7][16][37,38][66][68] [77,78] 
TGF- Invasion and metastasis [5-7][37,38][78] 
Transferrin Apoptosis [5-7][16][68][77,78] 
Endothelin Vascular tone [5-7][16][68][77,78] 
CAIX pH regulator [5-7][37,38][66][77,78] 
iNOS Drug resistance [5-7][16][68][77,78] 
IGFBP-1, 2, 3 Homeostasis [5-7][16][68][77,78] 

 
 
 2.2.4. Hypoxia, hypoxia inducible factor, and cancer 
 Hypoxia is significantly less in tumors in which the average O2 tension 
exceeds 1.5% [77,96,97]. In order to survive, tumor cells must adapt to a low pO2; 
many genomic products are involved in tumor neoangiogenesis. These adaptations 
contribute to phenotypic survival and clinical aggressiveness [98]. Tumor hypoxia 
has been associated with poor prognosis in many kinds of cancer [99]. 
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Tumor cell clones can adapt to hypoxic microenvironments in both primary and 
metastatic sites. The genetic and epigenetic mechanisms of adaptation to hypoxia 
(genetic instability, aerobic glycolysis, loss of control of the cell cycle, loss of 
apoptosis signalling) are characteristic of malignancy [85] (Figure 5). 

 
Figure 5. HIF-1 regulation 

 
There is evidence that hypoxia may control and maintain genetic instability. This 
genetic instability may reduce DNA repair and increase the rate of mutation [90]. 
Intratumor hypoxia is a factor of poor prognosis observed in prostate, breast, 
musculoskeletal, head and neck, and cervical cancer [100-102]; it is associated with 
a higher rate of failure of radiotherapy, chemotherapy, and with increased 
metastasis [90]. 
We know that the activation of aerobic glycolysis represents an initial event in the 
process of neoplastic transformation, probably as a response to increased cell 
proliferation [103], since rapidly proliferating cells consume more oxygen. Tumors 
have increased glycolysis, and we know that the concentration of glucose and of 
components of the glycolytic pathway have an effect on HIF [104,105]. The tumor 
pH is more acidic due to an increased production of lactate and CO2. In order to 
survive, cells must maintain a balance between the intracellular and the 
extracellular pH; this is achieved thanks to several transporters. Carbonic 
anhydrase IX plays a fundamental role in this balance; several studies have shown 
a correlation between hypoxia, angiogenesis, HIF-1, and CAIX [106]. 
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Therefore, HIF levels are adapted for cells to maintain a high rate of proliferation; 
on the other hand, the increased cell proliferation may induce an increased 
expression of HIF [92]. In conditions of hypoxia, where the action of growth factors 
leads to an increased cell proliferation and thus to an increased oxygen 
requirement, HIF-1 is more expressed and activated, inducing the expression of 
genes that codify the pro-angiogenic molecules that permit metabolic adaptation 
to hypoxia; this is the most powerful activator of genes that codify glycolytic 
enzymes and pro-angiogenic growth factors [92,107-109,95], since tumors cannot 
thrive without angiogenesis that allows the diffusion of oxygen, glucose, and other 
nutrients [110,111]. 
Angiogenesis is the development of new blood vessels from the pre-existing vessel 
network, and plays a preponderant role in various pathophysiologic mechanisms, 
both benign (cicatrization, wounds, ischemia, diabetic retinopathy) and malignant 
(tumor growth and metastasis); VEGF plays a fundamental role in angiogenesis, 
and is regulated by HIF [60,112,113]. 
Currently, there is evidence that tumor blood vessels are disorganized and lack an 
adequate structure for circulation, which often leads to collapse. Since tumor 
development requires oxygen, nutrients, and an adequate metabolic function, it is 
necessary to promote angiogenesis factors in order to inhibit the apoptosis of 
tumor cells triggered by hypoxia. Therefore, angiogenesis as a response to tumor 
hypoxia is mediated by HIF-1 [114]. 
HIF-1 has been considered a key factor in the regulation of VEGF and its receptor 
(VEGRF), as well as of other angiogenic factors. Several immunohistochemical 
studies conducted on various tumor models [115] show that the expression of HIF-
1 is associated with an increase in VEGF and of vascularization and metastasis, 
which imply a worse prognosis [116,117]. There seems to be a direct relationship 
between angiogenesis and metastasis in several kinds of tumors, such as 
melanoma, glioma, lung, breast, ovary, bladder and prostate cancers [118,119]. It 
has been proven that HIF-1 target proteins are implicated in the proliferation, 
survival, adhesion, and mobility of cancer cells. 
On the other hand, an increased expression of HIF-1, in combination with 
inactivated mutations in suppressor genes such as VHL, p53, PTEN or the 
amplification of the oncogenes Akt, RAS, ERK1/2, has often been observed in 
cancer patients; these abnormalities are associated with tumor growth, invasion, 
and metastasis. 
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Zhong et al. [120] have demonstrated an increased expression of HIF-1 in 
approximately 53% of tumors, including cancer of colon, stomach, pancreas, lung, 
ovary, prostate, kidney, melanoma, and glioblastoma. The increased expression of 
HIF-1 is associated with a shorter survival in breast and uterine cancer, and with 
poor response to treatment in nasopharyngeal cancer, highlighting the role of 
tumor hypoxia in prognosis [116,121-125] (Table 2). 
 
Table 2. Tumors that show overexpression of HIF assessed with immunohistochemistry 
 

 References 
Organ [99] [83-85] [97,98] [72][100-104] [48][60][105-108] 
Colon X     
Stomach X     
Pancreas X     
Lung X  X   
Ovary X  X   
Uterus  X  X  
Prostate X X X  X 
Kidney X     
Glioma X  X   
Breast  X X X  
Head and neck  X    
Melanoma X  X   

 
In prostate cancer, it is expressed in the initial stages of carcinogenesis, and this 
expression is associated with diagnostic and prognostic indicators of early relapse 
and metastasis; HIF-1 may be a potential poor prognosis biomarker. Its 
importance in tumor progression becomes a potential target in chemoprevention 
strategies and in the ability to inhibit angiogenesis [85]. Experimental studies with 
mice prostate cancer cells show that an overexpression of HIF-1 is associated with 
more growth and metastatic potential [126]. Similarly, a greater expression of HIF-
1 has been found in human prostate tumors [120,127]. The VEGF gene, induced 
mainly by HIF-1, has been frequently found to be overexpressed in prostate 
cancer, especially in patients with metastatic or hormone-resistant cancer; this 
suggests a central action of this molecule in this process [128,129]. 
The activation of oncogenes and growth factors can induce the HIF system in non-
hypoxic cells, or amplify the response to hypoxia. In fact, several growth factors 
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and cytokines of the stroma and parenchyma also act as regulators and are capable 
of inducing the expression of HIF-1, its binding and transactivation capacity, such 
as the epidermal growth factor (EGF) [130], TGF [109,131], factors IGF-1 and IGF-
2 [132], and interleukin 1beta [83, 133]. Additionally, recent studies show that HIF 
may play an important role in resistance to treatment [83,134,135]. 
The HIF system acts as the main regulator of the response to hypoxia, triggering 
the cascade of mechanisms that permit the tumor to adapt to a hostile 
environment, and emerges as an important transcription factor in the biology of 
cancer. 
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2.3. Hypoxia and prostate cancer aggressiveness: from pathophysiology to 
clinical biomarkers 
[Fraga A et al. Hypoxia and Prostate Cancer Aggressiveness: A Tale With Many Endings. 
Clin Genitourinary Cancer 2015; 13 (4): 295-301] 

 Tumors have been reported to possess extensive regions of hypoxia relative to the 
corresponding normal tissue [96,97]. At least partially, this is due to the rapid 
proliferation of tumor mass that distances cells from the oxygen carrying 
vasculature, but is also the consequence of distorted and irregular characteristics 
of newly formed vessels, ultimately leading to inefficient oxygen transport. It is 
well established that solid tumors, like prostate cancer, exist under fluctuating 
oxygen tensions and are exposed to both acute and chronic hypoxia [136-138]. 
The hypoxic tumor microenvironment correlates with increased tumor 
invasiveness, metastasis, and resistance to radiotherapy and chemotherapy 
[97,139-141]. Hypoxia has a detrimental effect on the efficacy of treatment and 
consequently in the clinical outcomes of patients with prostate cancer, being an 
independent poor prognostic indicator for patients with prostate and other cancers 
[97,136]. 
Over 1% of the genome is transcriptionally responsive to hypoxia, although this 
varies according to cell type [142]. A large number of endogenous markers of 
hypoxia which are up-regulated under hypoxic conditions include the vascular 
endothelial growth factor A (VEGF-A), prolyl hydroxylase 2 (PHD2), inducible nitric 
oxide synthase (iNOS), cyclooxygenase 2 (COX-2), carbonic anhydrase IX (CAIX), 
lysyl oxidase (LOX), hypoxia inducible factor 1a (HIF-1a), hypoxia inducible factor 
2a (HIF-2a), glucose transporter 1 (GLUT-1), erythropoietin (EPO), E-cadherin, and 
angiopoietin 2 (Ang2), among others [60,143,144]. 
Most of these genes have previously been shown to be upregulated by hypoxia in 
vitro and in vivo tumor models, resulting in a more aggressive, treatment-resistant 
phenotype [145-148]. Nonetheless, of all these hypoxia biomarkers, none could 
adequately predict tumor hypoxia [96], even though a biomarker that could reliably 
and easily identify a man’s prostate cancer oxygen status would be useful for 
personalized medicine. Current knowledge suggests that rather than considering 
individual genes, a panel of genes may provide a more accurate reflection of tumor 
hypoxia [8,9]. 
Here, we demonstrate linkage with HIF-1 as a tentative explanatory mechanism of 
prostate cancer aggressiveness. Hypoxia drives a tale where HIF-1-dependent 
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effects lead to many influences in distinct key cancer biology features, rendering 
targeted therapies the endings less efficient. The most appropriate approach would 
be to inhibit the upstream common driver (HIF-1) activity. Additional translational 
and clinical research initiatives in prostate cancer are required to prove its 
usefulness. 
 
 2.3.1. A common tumor hypoxia-driven mechanism (through HIF-1), 
with many pathways and therapeutic implications 
 
 The hypoxia-inducible factor induces the transcription of numerous genes 
involved in multiple functions on hypoxia conditions [138,149,150]. HIF-1 is a 
heterodimeric transcription factor that is the prototypical hypoxia-associated 
molecule [40]. It is the master key regulator in the hypoxic response of cells by the 
activity of prolyl hydroxylase domain and orchestrates the hypoxic response 
(Figure 6). Usually HIF-1 has a cytoplasmic localization, but under hypoxic 
conditions it is detected and localized in the nucleus, where it binds to HIF-1 and 
induces transcription causing up-regulation of effector genes by binding to the 
hypoxia response element within their promoter regions (Figure 6) [151,152].  
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Figure 6. Integration of hypoxia with HIF-1-associated mechanisms in prostate cancer. 
specifically downstream-activated LOX, VEGF, and CAIX pathways, and emergence of 
metastatic traits. The hypoxic environment at the growing prostate tumor primary site 
conducts HIF-1a toward phosphorylation and translocation to the nucleus instead of the 
usual proteosomal degradation in normoxia. Here, both the stimulus to increase HIF-1a 
availability and the suppression of PHD activity concur to hamper HIF-1a degradation. 
Within the nucleus of the malignant cell, this transcription factor initiates the expression of 
genes (eg, VEGF, LOX, CA9) notable for their role in driving prostate cancer progression 
and metastasis. Taken together, these molecules are responsible for modulating the tumor 
microenvironment through recruitment of tumor-associated macrophages (TAMs), 
promoting angiogenesis (neoangiogenesis with loss of pericytes, contributing to tortuous 
and permeable vessels), inducing epithelial-to-mesenchymal transition (E-M-T) and 
metastasis, thus promoting prostate cancer aggressiveness. Abbreviations: CA9, carbonic 
anhydrase IX; E-M-T, epithelial-to-mesenchymal transition; HIF-1, hypoxia inducible factor 
subunit 1 alpha; HIF-1, hypoxia inducible factor subunit 1 beta; LOX, lysyl oxidase; MAPK, 
mitogen activated protein kinase; PHD, prolyl hydrolases; PI3K, phosphoinositol-3-kinase; 
TAM, tumor-associated macrophages; VEGF, vascular endothelial growth factor; VHL, von 
Hippel-Lindau.  
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Under hypoxic conditions, HIF-1 induces expression of pro-angiogenic factors and 
endothelial cell mitogens, eg, vascular endothelial growth factor A (VEGF-A), thus 
inducing proliferation, sprouting and tube formation of endothelial cells and 
sustained angiogenesis [153]. Unlike HIF-1, HIF-2 protein is expressed only in 
some cell types, can escape degradation, and is transcriptionally active at near-
normoxic conditions [154,155]. Still, HIF-2 contributes as HIF-1 to the 
development of tumor aggressiveness [155,156]. In the prostate, focal HIF-2 
expression has been detected in benign neuroendocrinelike and malignant cells 
[157], being more pronounced in larger prostate tumors [5]. Thus, the role of HIF-
2 in hypoxia-associated tumors, particularly prostate cancer, warrants further 
investigation. 
HIF-1 protein has been shown to be increased in prostate cancer tissue sections 
compared to BPH and to be associated with higher risk for biochemical failure 
[151,2]. One study reported a trend for higher HIF-1 mRNA expression in prostate 
cancer versus BPH samples [10]. However, this finding agrees with previous studies 
showing that HIF-1 is decisively regulated at the posttranslational level [5,158]. 
Additionally, a direct link between androgen receptors and pro-angiogenic factors 
may exist, as HIF-1 expression is increased with androgens [5] and decreased in 
prostatectomy specimen treated with preoperative androgen deprivation therapy 
[159,2]. 
Neovascularization is essential for physiologic processes, including in the cancer 
pathophysiology. In fact, it is well established that tumor growth is associated with 
increased vascularity [146,160,161]. Mounting evidence from in vitro and in vivo 
models indicates VEGF is a key regulator of angiogenesis through an effect in 
endothelial cell growth and proliferation [161]. VEGF binds 2 highly related receptor 
tyrosine kinases, VEGFR-1 and VEGFR-2. VEGFR-1 expression is upregulated by 
hypoxia via an HIF-1 dependent mechanism, thereby favouring the activation of 
VEGF/VEGFR-1 and -2 signalling pathways due to increased availability of both 
ligand and receptors [162]. 
It is known that oxygen tension plays a key role in regulating the expression of 
VEGF [163], whereas VEGF inhibition suppresses pathologic angiogenesis in a wide 
variety of preclinical models. More specifically, hypoxia may trigger vascular 
endothelial growth factor (VEGF) expression via the transcription complex of 
hypoxia-inducible factor HIF-1 (Figure 7). Hypoxia and the consequential 
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angiogenesis may play a major role in prostate cancer progression [164], as VEGF 
and HIF-1 is increased in prostate cancer compared to BPH [165,151]. 
Tumor cells usually have a high rate of glucose uptake accompanied by elevated 
glucose consumption through the preferential activation of the glycolytic pathway 
[104]. Several genes involved in glucose uptake and glycolysis (eg, GLUT-1 and 
most genes coding for enzymes in the glycolytic pathway) have been shown to be 
targets of HIF-1 [47]. Additionally, HIF-1 activation inhibits mitochondrial 
metabolism by promoting the expression of pyruvate dehydrogenase kinase 1 to 
inhibit pyruvate dehydrogenase activity [166], thereby diverting pyruvate to lactate. 
Noteworthy, despite the decreased flux of glucose-derived pyruvate into the 
mitochondria, in place of oxidative metabolism, cancers rely on reductive reactions 
from glutamine carbon [167]. Enhanced lactate production and the production of 
CO2 induced by anaerobic conditions contribute to the major acid load in tumor 
environment. The production of CO2 induced by anaerobic conditions further 
contributes to the major acid load in the tumor environment. One of the striking 
features of cancer cells is their ability to acidify their environment, and the 
orientation of CAIX suggests that it may serve as one of the mechanisms by which 
cancer cells regulate extracellular pH and induce cytoplasmic alkalization, playing 
a role in the adaptation of tumors to hypoxic conditions by regulating the pH of 
the intracellular and extracellular compartment (Figure 7) [168,169]. 
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Figure 7. Hypoxia-Induced HIF-1-Driven Modulation of Key Genes and Resulting Biological Effect. During tumor growth, the unavoidable low availability of oxygen in 
some areas triggers oxygen-sensing mechanisms, notably prolyl hydrolases (PHDs), which regulate HIF-1 activity (if downregulated, or alternatively proteasomal 
degradation). In addition, mitochondria-mediated use of oxygen produces reactive oxygen species that suppress PHD2 activity, further stabilizing HIF-1. Alternative 
hypoxia-independent or -dependent pathways for HIF-1 up-regulation include binding of growth factors (IGF, EGF, TGF) to tyrosine kinase receptors that signal HIF1A 
transcription through MAPK and PI3K/Akt/mTOR pathways (by up-regulating the transcription factor eIF-4E). Stabilized and active HIF-1 protein enters the nucleus and 
binds to HIF-1 to form a complex that regulates the expression of key genes that code for proteins with relevant functions in prostate cancer development and 
progression. Regulation of genes encoding proteins responsible for metabolic reprograming (eg, GLUT1, ALDOA, PGK1, LDH, PDK1, HK1, and HK2 that switch tumor 
cell toward glycogenolysis as the main source of energy); genes responsible for pH regulation (eg, MCT1, MCT4, and CA9 that alkalinize the intracellular environment); 
genes involved in tumor cell apoptosis and survival (eg, IGF2, TGFA, BNIP3, CCND1, TP53, and VEGFA, which down-regulate apoptosis while inducing survival);  
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genes accounting for neoangiogenesis (eg, VEGF, PDGF, ANGPT2, and SERPINE1 that up-regulate 
sprouting of new tumor vessel; and genes coding for modulators of invasion and metastasis (eg, the 
proteolytic CTSD, MMP2, and PLAUR, migration inducers TGFA, MET, and LOX, and adhesion 
molecules E-cadherin and vimentin). Abbreviations: ALDOA, aldolase A gene; ANGPT2, angiopoietin 
2 gene; BNIP3, bcl2/adenovirus e1b 19 kDa protein-interacting protein 3 gene; CA9, carbonic 
anhydrase 9 gene; CAIX, carbonic anhydrase IX; CathpsD, cathepsin D gene; CCND1, cyclin D1 gene; 
CTSD, cathepsin D gene; ECM, extracellular matrix; EGF, epidermal growth factor; eIF-4E, eukaryotic 
translation initiation factor 4E; GLUT1, solute carrier family 2 (facilitated glucose transporter) member 
1 or SLC2A1 gene; HIF-1, hypoxia-inducible factor 1 alpha; HIF-1, hypoxia-inducible factor 1 beta; 
HK1, hexokinase 1 gene; HK2, hexokinase 2 gene; IGF, insulin growth factor; IGF2, insulin growth 
factor 2 gene; LDH, lactate dehydrogenase A gene; LOX, lysyl oxidase; LOX, lysyl oxidase gene; MAPK, 
mitogen activated protein kinase pathway; MCT1, solute carrier family 16 (monocarboxylic acid 
transporter) member 1 or SLC16A1 gene; MCT4, solute carrier family 16 (monocarboxylic acid 
transporter) member 1 or SLC16A3 gene; MET, met protooncogene gene; MMP2, matrix 
metalloproteinase 2 gene; O2, molecular oxygen; PDGF, platelet-derived growth factor gene; PDHA, 
pyruvate dehydrogenase A; PDK1, pyruvate dehydrogenase kinase isoenzyme 1 gene; PGK1, 
phosphoglycerate kinase 1 gene; PHD2, prolyl hydrolase 2; PI3K/mTOR, phosphatidylinositol 3-
kinase/mammalian target of rapamycin pathway; PLAUR, plasminogen activator receptor urokinase-
type gene; ROS, reactive oxygen species; SERPINE1, serpin peptidase inhibitor member 1 or 
plasminogen activator inhibitor type 1 gene; TCA, tricarboxylic acid cycle; TGF, transforming growth 
factor; TGFA, transforming growth factor alpha gene; TP53, tumor protein p53 gene; VEGFA, vascular 
endothelial growth factor A gene.  
The membrane-bound enzyme CAIX catalyzes the reversible conversion of CO2 to 
carbonic acid, contributing to the modulation of pH in tumor cells [170]. The CAIX 
is HIF-dependent and has been shown to be up-regulated in multiple human 
cancers [170]. A correlation between hypoxia, angiogenesis, HIF-1, and CAIX in 
tumors and metastasis has been reported [106], although the involvement of 
cancer-associated antigen in prostate tumor progression and metastasis through 
the modulation of pH remains elusive.  
Despite being normally expressed in normal tissues, CAIX becomes highly 
expressed when tumor cell hypoxia occurs in malignancies [171]. CAIX is up-
regulated by hypoxia [172], and its gene is a target of HIF-1 (Figure 7) [173]. 
Interestingly, the degree of CAIX expression was found to be a prognostic factor of 
poor survival in many cancer types [174-179]. Prostate cancer cell lines can express 
CAIX during severe hypoxia [180], which is a good marker of hypoxia particularly 
for androgen-independent cell lines, with reliable increases in CA9 mRNA 
expression after hypoxia exposure [10]. Even though initial findings showed an 
absence of CAIX expression in primary prostate cancers [180,181], others have 
observed moderate expression in both BPH and malignant prostatic tissue [10]. 
Thus, the clinical usefulness of CAIX as a diagnostic tool with implications for 
therapy and patient outcome remains to be elucidated.  
The clinical and pathologic heterogeneity found in cancers highly depends on 
reciprocal interactions between malignant cells and their dynamic 
microenvironment [1]. The cross-talk between cells and with extracellular matrix 
(ECM) in tumor microenvironment seems to be critical in many aspects of cancer 
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development, including maintenance of cancer cell dormancy, cancer progression 
and metastasis, and drug resistance [1]. The ECM of solid tumors is composed of 
a complex meshwork of fibrillar collagens, glycoproteins, and proteoglycans 
[182,183], which affect metastasis, proliferation, angiogenesis, adhesion, 
migration, invasion, and drug delivery [184,185]. 
Hypoxia is an important microenvironment factor in the development of cancer, 
and while HIF-1 has been shown to be the key regulator of the cellular response 
to hypoxia [1,186], the relationship between tumor hypoxia and components of 
ECM is far less known. The role of ECM components and remodeling in cancer has 
only been a focus of research during the last years. Recent findings suggest that 
hypoxia mediates collagen 1 fiber remodeling in the ECM of tumors, which may 
impact delivery of macromolecular agents and the dissemination of cells [184,187-
189]. Collagen type I is the major structural ECM component in prostate tumors, 
with cancer cell invasion occurring radially along its fibers [187]. Moreover, cells of 
myofibroblast phenotype in the reactive stroma of Gleason 3 scored prostate 
cancers exhibited elevated collagen type 1 synthesis, which was first observed in 
activated periacinar fibroblasts adjacent to prostatic intraepithelial neoplasia [184]. 
In a previously described hypoxia gene signature [190], LOX was shown to be 
directly regulated by HIF-1 and essential for hypoxia-induced metastasis in several 
cancer models [191,192]. In agreement with this finding, hypoxia-induced cancer 
cell invasion was severely impaired through inhibition of LOX expression [193,194]. 
Cancer cell proliferation was stimulated by LOX in a HIF-1-dependent manner both 
in vitro and in vivo [194]. Thus, the regulatory circuit between LOX and HIF-1 act 
in synergy to foster tumor formation in the adaptation of tumor cells to hypoxia 
(Figure 7).  
The LOX family of oxidases oxidizes lysine residues in collagens and elastin, 
resulting in the covalent cross-linking and stabilization of these ECM structural 
components, thus providing collagen and elastic fibers with most of their tensile 
strength and structural integrity [195]. The accurately regulated expression and 
activity of the LOX family of oxidases are a prerequisite for them to exert critical 
functions in connective tissue homeostasis. LOX mRNA level is highly up-regulated 
under hypoxic conditions mediated by HIF-1 at the transcriptional level [183]. In 
addition to the well-documented roles in connective tissue homeostasis, the LOX 
family of oxidases participates in other critical biological functions, including cell 
migration, cell polarity, epithelial-to-mesenchymal transition (EMT), and 
angiogenesis [196-200]. 
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LOX is synthesized as a pro-enzyme (Pro-LOX) from stromal cells, from normal 
epithelial cells, or from tumor cells under hypoxic conditions, and is secreted where 
it undergoes extracellular proteolytic processing by pro-collagen C-proteinases to 
a functional enzyme and a pro-peptide (LOX-PP) [201,202]. Levels of Pro-LOX 
production in prostate cancer epithelium are decreased as a function of prostate 
cancer progression [203]. A recent study proposed that Pro-LOX, but not LOX-PP, 
is a tumor suppressor [204]. Further studies showed that LOX-PP is an active 
inhibitor of prostate cancer and other tumor cells growth and of RAS-dependent 
signalling [194,205,206].  
Although LOX was initially implicated as a tumor suppressor, now it is accepted as 
a poor prognosis marker, particularly in promoting metastasis in breast, lung, 
prostatic, head and neck, and bronchogenic carcinomas 
[207,208,203,186,191,149]. Cancer invasion is facilitated by stromal collagen 
reorganization, and this behavior is significantly increased in collagen-dense 
tissues (Figure 7) [209]. Many ECM modifying enzymes, including matrix 
metalloproteinases and LOX family oxidases, are aberrantly expressed during 
malignant transformation, progression, and metastasis of cancers [186].  
Lysyl oxidase-like 2 (LOXL2), a LOX oxidase family member, accumulates in the 
endothelial ECM and regulates sprouting angiogenesis through assembling type IV 
collagen in the endothelial basement membrane [210]. Therefore, oxidases of the 
LOX family play roles in cancer progression and metastasis, promoting not only 
cancer cell migration and invasion but also angiogenesis in concert with pro-
angiogenic factors under hypoxia. Furthermore, inhibition of LOXL2 resulted in a 
marked reduction in activated fibroblasts and endothelial cells, as well as 
decreased production of growth factors and cytokines [211]. In agreement, a recent 
report in advanced renal cell carcinoma patients receiving therapy with 
angiogenesis inhibitors (pazopanib and sunitinib) disclosed an association of a 
LOXL2 intronic single nucleotide polymorphism (rs4872122) with overall survival, 
suggesting its potential role as a predictive biomarker for antiangiogenic drugs and 
as a therapeutic target in cancer [212]. 
LOX is a potent chemokine inducing directional migration of varied cell types; when 
it is present, it strongly induces directional migration of cells [186], and it regulates 
cell polarity and the E-M-T process (Figure 7) [186,194]. Hypoxia represses E-
cadherin expression and promotes E-M-T [198,200]. HIF-1 enhanced E-M-T in vitro 
and induced epithelial cell migration through up-regulation of LOX [198-200,213]. 
The up-regulated expression of LOX and LOXL2 under hypoxia is required and 
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sufficient for hypoxic repression of E-cadherin, possibly through stabilization of 
the SNAIL transcription factor [198,199]. Further studies are warranted to 
investigate the contribution of individual LOX family members to the induction of 
E-M-T in the context of dynamic microenvironment during cancer cell invasion and 
metastasis. 
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CLINICAL STUDIES 
 
3.1. Clinical study 1  
[Fraga A et al. The HIF1A functional genetic polymorphism at locus +1772 associates with 
progression to metastatic prostate cancer and refractoriness to hormonal castration. Eur J Cancer 
2014; 50: 359-65] 
 
 3.1.1. Summary 
 The hypoxia inducible factor 1 alpha (HIF1) is a key regulator of tumour 
cell response to hypoxia, orchestrating mechanisms known to be involved in cancer 
aggressiveness and metastatic behaviour.  
In this study we sought to evaluate the association of a functional genetic 
polymorphism in HIF1A with overall and metastatic prostate cancer (PCa) risk and 
with response to androgen deprivation therapy (ADT). The HIF1A +1772 C>T 
(rs11549465) polymorphism was genotyped, using DNA isolated from peripheral 
blood, in 1490 male subjects (754 with prostate cancer and 736 controls cancer-
free) through Real-Time PCR. A nested group of cancer patients who were eligible 
for androgen deprivation therapy was followed up. Univariate and multivariate 
models were used to analyse the response to hormonal treatment and the risk for 
developing distant metastasis. Age-adjusted odds ratios were calculated to 
evaluate prostate cancer risk.  
Results showed that patients under ADT carrying the HIF1A +1772 T-allele have 
increased risk for developing distant metastasis (OR, 2.0; 95%CI, 1.1–3.9) and an 
independent 6-fold increased risk for resistance to ADT after multivariate analysis 
(OR, 6.0; 95%CI, 2.2–16.8). This polymorphism was not associated with increased 
risk for being diagnosed with prostate cancer (OR, 0.9; 95%CI, 0.7–1.2). 
The HIF1A +1772 genetic polymorphism predicts more aggressive prostate cancer 
behaviour, supporting the involvement of HIF1a in prostate cancer biological 
progression and ADT resistance. Molecular profiles using hypoxia markers may 
help predict clinically relevant prostate cancer and response to ADT. 
 
 3.1.2. Overview and methods 
 Currently, only incipient but scarce markers help to predict whether PCa will 
be an aggressive, fast growing disease or an indolent slow growing type of cancer 
[214]. The hypoxia inducible factor 1 alpha (HIF-1) is a transcription factor coded 
by the HIF1A gene that regulates cellular response to hypoxia [215,216], inducing 
cancer progression through activation of many genes involved in regulatory cancer 
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biology (angiogenesis, cell metabolism, cell survival, and epithelial-to-
mesenchymal transition) [217]. The HIF1A gene harbours several SNPs, including a 
C-to-T substitution at locus +1772 that result in aminoacid modification (proline 
by serine). Previous in vitro studies showed higher transcriptional activity of the 
variant allele under both normoxic and hypoxic conditions [217,215], whereas 
additional research associated this SNP with increased tumour microvessel density 
[215,217,120].  
In prostate cancer, the few molecular epidemiology studies in this SNP were 
conducted in distinct ethnic populations and clinicopathological characteristics, 
leading to conflicting results [218-220]. Furthermore, the association of HIF1A 
+1772 C>T with prostate cancer progression, metastasis and refractoriness to 
androgen deprivation therapy (ADT) merits further evaluation in larger series of 
patients. In the present study we sought to analyse the association of the functional 
SNP +1772 C>T in HIF1A with PCa using prostatic biopsy-proven controls, and to 
predict the response to treatment in men receiving ADT. 
Histologically confirmed prostate cancers (n = 754) or non-cancers (n = 736) were 
included in a case-control study. Patients were recruited from five Hospitals in 
Portugal between 1990 and 2009: Portuguese Institute of Oncology – Porto Centre, 
S. João Hospital, Porto Military Hospital, Porto Hospital Centre, and Central Lisbon 
Hospital Centre. The study was approved by hospital’s research ethics committees 
and consent obtained from participants. The non-PCa control group comprises men 
referred for prostate biopsy, but with normal or benign prostatic histology. Patients 
with highgrade prostatic intraepithelial neoplasia or a biopsy suspicious of cancer 
were excluded. A nested sample of subjects from the group of PCa patients (those 
eligible for androgen deprivation therapy, ADT, (n = 429) was followed up for 
several years. These patients were submitted to orchiectomy or luteinising 
hormone releasing hormone agonist (LHRHa) (with or without anti-androgen) 
immediately after diagnosis or after relapsing from surgery/radiotherapy. 
Resistance to ADT was defined as the time from ADT initiation to two consecutive 
rises of PSA greater than the PSA nadir or progression of bone lesions [221,222]. 
The white cell fraction of blood samples was used to extract DNA (QIAmp DNA 
Blood Mini Kit, Qiagen). The HIF1A +1772 C>T (rs11549465) genetic polymorphism 
was genotyped by Real-Time PCR using a pre-designed validated Taqman assay 
(Applied Biosystems). Procedures implemented for quality control included double 
sampling in about 5% of samples and the use of negative controls in every run. 
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 3.1.3. Results  
 One-thousand four hundred ninety individuals were included in this study, 
736 cancer-free controls and 754 with a positive biopsy for prostate cancer (median 
age, 66.8 and 68.0 years old, respectively, p = 0.001). Biopsy findings in the control 
cancer-free group revealed normal histology (10.9%), benign prostatic hyperplasia 
(33.4%), chronic prostatitis (55.2%) and atrophy (0.5%). As expected, PCa patients 
presented significantly higher serum PSA levels at diagnosis (p < 0.0001). HIF1A 
+1772 (rs11549465) genotype distributions by group and risk analysis is shown in 
Table 3.  
 

Table 3. HIF1A +1772 genotype distribution and risk for prostate cancer 
 

                            Prostate cancer 
 Control            All    High-grade (Gleason<7) 
HIF1A genotypes N N aOR (95%CI) N aOR (95%CI) 
Additive model      
CC 566 579 Referent 333 Referent 
CT 156 164 1.0 (0.8-1.3) 83 0.9 (0.7-1.2) 
TT 14 11 0.9 (0.4-2.1) 7 1.0 (0.4-2.5 
Dominant model      
CC 566 579 Referent 333 Referent 
T carriers 170 175 1.0 (0.8-1.3) 90 0.9 (0.7-1.2) 
aOR (95%CI), age-adjusted odds ratios and the respective 95% confidence intervals 

 
Both additive and dominant genetic models were not associated with prostate 
cancer risk or high grade disease. The distribution of HIF1A +1772 C>T genotypes 
among the non-cancer control subjects were in agreement with Wardy–Weinberg 
equilibrium (p = 0.988). Furthermore, we found that this SNP was not associated to 
earlier onset of disease, using Kaplan–Meier plots and functions (data not shown). 
In the group of prostate cancer patients, analyses of the association between HIF1A 
+1772 genetic variants and patient’s clinicopathological characteristics showed 
over-representation of T-allele in the group of patients not treated with definitive 
therapy (p = 0.05) and who developed metastasis at any time during the course of 
malignant disease (Table 4). 
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Table 4. Genotype distribution in PCa subjects (n=754) according to clinicopathological 
characteristics 

 
 HIF1A +1772 C>T genotypes  
 CC (n=579) CT (n=164) TT (n=11) p 
Definitive therapy     
   No 228 (75.0) 69 (22.7) 7 (2.3)  
   Yes 281 (78.5) 76 (21.2) 1 (0.3) 0.05* 
Clinical stage     
   Localized 262 (78.9) 67 (20.2) 3 (0.9)  
   Advanced 222 (76.0) 66 (22.6) 4 (1.4) 0.639* 
Gleason score     
   < 7 177 (75.0) 56 (23.7) 3 (1.3)  
    7 333 (78.7) 83 (19.6) 7 (1.7) 0.443* 
Tumor percenta 17.0 (6.0-40.0) 20.0 (5.0-38.5) 65.0 (50.0-80.0) 0.185** 

      Data are presented as number of cases and respective percentage. 
      a Median (interquartile range). * Chi-square test; ** Kruskal-Wallis test.  
      Columns do not sum up because of missing data. 
 
From the group of 754 patients with prostate cancer, 429 were eligible for 
androgen deprivation therapy, either due to advanced disease at diagnosis or due 
to disease progression. The clinicopathological characteristics of this nested group 
are shown in Table 5.  
 

Table 5. Clinicopathological characteristics features of the group of patients under ADT 
(n=429) 

 
 n (%) 
Age at diagnosis, yrs  
Median (IQR) 70.0 (64.9-75.4) 
PSA at diagnosis, ng/ml  
Median (IQR) 19.0 (8.9-51.6) 
Gleason score  
   <7 128 (32.2) 
    7 269 (67.8) 
Clinical stage  
   Localized 156 (38.7) 
   Advanced 247 (61.3) 
Metastasis at ADT initiation  
   No 286 (75.9) 
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   Yes 91 (24.1) 
Definitive therapy  
   No 299 (69.7) 
   RP/RT 130 (30.3) 
ADT pharmacological group  
   aLHRH alone 91 (21.2) 
   aLHRH + antiandrogen 338 (78.8) 

ADT, androgen deprivation therapy; aLHRH, luteinising hormone releasing hormone 
agonist; RP/RT, radical prostatectomy/radiotherapy; IQR, interquartile range 
 
From the group of patients on ADT, 194 (45.2%) developed resistance to hormonal 
therapy. The median (95%CI) follow up time was 91.8 (79.8–103.7) months. 
Univariate age-adjusted empirical time-to-ADT resistance analysis on clinical 
covariates showed that Gleason grade > 7 (HR, 2.8; 95%CI, 2.0–4.1), advanced 
clinical stage (HR, 3.7; 95%CI, 2.5–5.3), definitive treatment (HR, 0.6; 95%CI, 0.4–
0.8), PSA > 20 ng/ml (HR, 1.9; 95%CI, 1.5–2.6) and presence of metastasis at ADT 
initiation (HR, 2.9; 95%CI, 2.1–3.9) were all significantly associated with resistance 
to ADT. The associations between HIF1A +1772 C>T genotypes and the time-to-
event age-adjusted univariate and multivariate analyses are shown in Table 6.  
 

Table 6. Association of HIF1A +1722 C>T polymorphism with resistance to ADT 
 

 Resistance to ADT 
  Univariate Multivariate* 
HIF1A +1722 C>T LR HR (95%CI) p HR (95%CI) p 
Additive model 2.24     
CC  Referent  Referent  
CT  0.8 (0.6-1.2) 0.288 1.0 (0.7-1.5) 0.918 
TT  1.8 (0.7-4.6) 0.183 6.1 (2.2-17.0) 0.001 
Dominant model 2.70     
CC  Referent  Referent  
T carriers  0.9 (0.6-1.2) 0.460 1.1 (0.8-1.7) 0.536 
Recessive model 3.86     
C carriers  Referent  Referent  
TT  1.9 (0.8-4.8) 0.149 6.0 (2.2-16.8) 0.001 

LR, likelihood ratio; ADT, androgen deprivation therapy; HR, hazard ratio; 95%CI, 95% 
confidence interval. * Cox regression using as covariates: Gleason grade, clinical stage, PSA 
 20 ng/ml, definitive therapy and existence of metastasis at the time of hormonal 
castration initiation. 
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Although we have not found association of HIF1A +1772 C>T polymorphism with 
resistance to ADT on univariate analysis, in the recessive model the T homozygous 
genotype was associated with a 6-fold higher risk for developing resistance to ADT, 
after adjustment for relevant clinicopathological variables (Gleason grade, clinical 
stage, PSA > 20 ng/ml, definitive therapy and existence of metastases at the time 
of hormonal castration initiation) (Table 6). The risk of developing metastasis at 
any time during the course of disease in patients under ADT was significantly 
higher for T-allele carriers, still after adjustment for other clinical covariates 
(Gleason grade, clinical stage and PSA > 20 ng/ml) (Table 7). 
 

Table 7. Risk for metastasis in patients receiving androgen deprivation therapy 
 
 Univariate analysis* Multivariate analysis** 
HIF1A +1722  n OR (95%CI) P n OR (95%CI) p 
Additive model 380   323   
CC  Referent   Referent  
CT  1.7 (1.0-2.7)   1.9 (1.0-3.6)  
TT  3.5 (0.6-19.4) 0.055  14.9 (1.0-223.1) 0.031a 
Dominant model 380   323   
CC  Referent   Referent  
T carriers  1.7 (1.1-2.8) 0.023  2.0 (1.1-3.9) 0.027 
Recessive model 380   323   
C carriers  Referent   Referent  
TT  3.1 (0.6-17.1) 0.199  12.9 (0.9-190.1) 0.063 

a p for trend. OR (95%CI), odds ratio with 95% confidence interval. 
* Age-adjusted ORs. 
** Multivariate logistic regression analysis using Gleason grade, clinical stage and PSA  20 
ng/ml as covariates.  
  
 3.1.4. Discussion 
 Hypoxia is a frequent event during prostate cancer progression, while the 
hypoxia-responsive gene HIF1A codes for a key transcription factor that has been 
proposed as a modulator of PCa initiation and progression [85,151,223]. We 
analysed a functional SNP (+1772 C>T) in the HIF1A gene in prostate cancer 
patients and controls and found lack of association, although a relatively large 
population with approximately 1500 men was analysed. Concordantly, two large 
case-control studies from the United States of America and China also observed no 
risk for having PCa in carriers of this polymorphism [224,220], even though 
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opposite results have been also reported [218,225]. The C-by-T substitution in the 
+1772 locus at the oxygen-dependent domain of the HIF1A gene results in a 
proline-to-serine substitution and was shown to stabilise HIF1A and enhance its 
activity as a transcription factor in both normoxia and hypoxia [215,226]. In 
agreement, albeit we hypothesised those carriers of T allele were more susceptible 
to have cancer, our data, together with other, suggest no influence in earlier stages 
of prostate cancer development. As PCa natural history usually reveals slow 
growing indolent tumours, the initial steps of carcinogenesis are not likely to be 
relevant sources of hypoxia, thereby inducing the activation of other than the HIF-
1 pathway. Actually, a previous report found that HIF1A +1772 C>T genotypes 
were not correlated with HIF-1 and VEGF expression in localised prostatic tumours 
[218]. However, HIF-1 overexpression has been reported in cancer precursor 
lesions, high grade prostate intraepithelial neoplasia, and early stage PCa, 
compared with normal prostate epithelium [151]. 
Previous studies have shown overexpression of HIF-1 in many tumours with 
advanced grade, implying HIF-1 as an independent prognostic factor in cancer 
[120]. In addition, increasing evidence suggests that genetic markers may be 
independent predictors of outcome in PCa with various SNPs predicting decreased 
progression-free and overall survival [227-229]. Data presented here show that the 
homozygous T genotype and T-allele of HIF1A +1772 C>T is associated with 
increased relapsing after ADT, whereas the T allele is prone to higher risk for 
having distant metastasis, still after adjustment for empirical covariates (adjusted 
by Gleason grade, clinical stage and PSA > 20 ng/ml for the risk of metastasis; and 
by Gleason grade, clinical stage, PSA > 20 ng/ml, definitive therapy and existence 
of metastases at the time of hormonal castration initiation for the risk of disease 
recurrence after ADT). While the recessive model (TT versus CT/CC) was 
significantly associated with resistance to ADT, the dominant (TT/CT versus CC) 
and additive models were significant for metastasis development under ADT. A 
recently published meta-analysis suggests that both the T allele and TT genotype 
were significantly associated with increased cancer risk [230]. Experimental data 
also support a functional role for the C-by-T substitution at the allele and 
homozygous genotype level [215,226,231]. We found that additivity was better 
fitted for metastasis but not to ADT resistance, even though the low number of 
patients carrying the TT genotype in metastasis analyses yielded a very wide CI, 
hence deserving careful interpretation.  
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Our findings in a large cohort of patients that received ADT, support a role for HIF-
1 in the pathophysiology of castration resistance and the HIF1A +1772 C>T 
polymorphism as a potential pharmacogenomics predictor of the response to ADT. 
Concordantly, a recent study demonstrated that HIF1a expression contributed both 
to metastasis and chemo-resistance of castration resistant prostate cancer [232]. 
A study comparing HIF1A +1772 C>T genotypes between castration-resistant PCa 
and non-cancer men showed that the T-allele was overrepresented in the cancer 
group, although it was not associated with survival [219]. Noteworthy, this report 
presents data from 196 castration-resistant patients using univariate analysis. 
Another study observed a somatic rare mutation at the same locus in 1/15 
androgen-independent prostate tumours, whereas functional studies 
demonstrated in androgen-independent prostate cancer cells that the T-allele is 
associated with increased transcriptional activity and protein expression [226]. 
Therefore, we hypothesise that carrying the T-allele, which stabilises HIF-1 protein 
and upregulates the HIF1A gene expression, may offer a selective advantage to 
androgen-independent tumour cells through the upregulation of several genes 
involved in metastasis, angiogenesis, epithelial-to-mesenchymal transition or in 
other cancer-associated mechanisms [138,85,233-235]. The SNP in HIF1A at locus 
+1772 represents a germline variant, suggesting a cumulative impact of higher HIF-
1 expression since birth. However, we hypothesise that HIF1A +1772 functional 
SNP repercussion when combined with hypoxic environmental events or with other 
genetic risk factors is triggered to higher extent in response to hypoxia-inductive 
treatments such as ADT. When confirmed in larger and independent samples, 
additional therapeutic schemes (such as CYP17A1 inhibitors or chemotherapy) 
could be offered to carriers of the poor responder TT genotype as alternative to 
ADT. These patients could also be enrolled in clinical trials with drugs that target 
HIF-1 function (e.g. tasquinimod and other agents that target HIF-1 or its 
downstream products) [236-239].  
Present findings should be further extended and replicated by future studies 
focusing on genetic polymorphisms as predictors of treatment response to allow 
tailored therapy in PCa patients. Using this focused candidate gene approach to 
evaluate the HIF1A +1772 C>T SNP gives us an incomplete analysis of hypoxia 
mechanism. Other hypoxia-related SNPs were not included in this study. However, 
our study has several strengths such as the selection of the candidate gene based 
on biological evidence of functional importance; statistical analyses accounted for 
relevant clinical and pathological factors. In this study all men (including the 
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controls) were screened for prostate cancer based on both PSA level and digital 
rectal exam during the recruitment period and diagnosis was determined by 
standard biopsy or surgical sample, thus making outcome misclassification 
unlikely. 
Our findings suggest that the HIF1A +1772 C>T might be a useful marker of 
aggressive PCa, particularly a predictor of the response to ADT, thus a plausible 
candidate to include in a panel of risk prediction SNPs in combination with clinical 
and pathologic features. 
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3.2. Clinical study 2 
[Ribeiro R, Monteiro CP, Azevedo A, Cunha V, Ramanakumar AV, Fraga A, Pina F, Lopes C, 
Medeiros R, Franco EL. Performance of an Adipokine Pathway-Based Multilocus Genetic Risk 
Score for Prostate Cancer Risk Prediction. PLoS ONE 2012; 7 (6): e39236] 
 
 3.2.1. Summary 
 Few biomarkers are available to predict prostate cancer risk. Single 
nucleotide polymorphisms (SNPs) tend to have weak individual effects but, in 
combination, they have stronger predictive value. We used a candidate pathway 
approach to investigate 29 functional SNPs in key genes from relevant adipokine 
pathways in a sample of 1006 men eligible for prostate biopsy, which included data 
from putative functional SNPs from the VEGF/KDR pathway, since VEGF is produced 
in adipose tissue and VEGFR2 expressed in tumors and surrounding vessels. We 
used stepwise multivariate logistic regression and bootstrapping to develop a 
multilocus genetic risk score by weighting each risk SNP empirically based on its 
association with disease. Seven common functional polymorphisms were 
associated with overall and high-grade prostate cancer (Gleason7), whereas three 
variants were associated with high metastatic-risk prostate cancer (PSA20 ng/mL 
and/ or Gleason8). All the examined SNPs in VEGF (3 SNPs) and KDR (1 SNP) genes 
did not reach significance in association analysis, therefore they were not further 
included in multilocus genetic risk analyses. Nevertheless, the addition of genetic 
variants to age and PSA improved the predictive accuracy for overall and high-grade 
prostate cancer, using either the area under the receiver-operating characteristics 
curves (P<0.02), the net reclassification improvement (P<0.001) and integrated 
discrimination improvement (P<0.001) measures. These results suggest that 
functional polymorphisms in adipokine pathways may act individually and 
cumulatively to affect risk and severity of prostate cancer, supporting the influence 
of adipokine pathways in the pathogenesis of prostate cancer.  
 
 3.2.2. Overview and methods 
 Prostate cancer is a complex and unpredictable disease, with risk being 
affected by advancing age, ethnic background and family history. Although the 
causes of prostate cancer are not yet fully understood, genetic variation influences 
disease risk [240].  
Many prostatic biopsies are unnecessary [241], which underscores the need for 
better prediction models with increased specificity to aid clinicians decide whether 
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or not to recommend biopsy. After diagnosis, some cancers are indolent and cause 
no clinical problems, whereas others progress and may be fatal [38]. Therefore, it 
is important to search for biomarkers of aggressive clinical outcome. Genetic 
markers provide good candidates for such a role. Single-nucleotide polymorphisms 
(SNPs) identified as loci associated with prostate cancer in genome-wide association 
studies (GWAS) are common but confer only small increases in risk and the 
mechanisms underlying their association with prostate cancer risk remain unknown 
[242,243].  
Common polymorphisms in adipokine pathways including SNPs in genes coding 
for VEGF/VEGFR2 pathway are plausible candidates that may help predict prostate 
cancer susceptibility. In this report, we tested the hypothesis that SNPs in candidate 
genes involved in adipokine pathways may contribute to prostate cancer 
susceptibility and aggressiveness in a population of men referred for diagnostic 
surveillance. 
Participants were enrolled after being referred to the urology departments of the 
participating hospitals for prostatic transrectal ultrasound guided biopsy (8–13 
cores), on the basis of abnormal digital rectal examinations and/or single baseline 
PSA levels over 2.5 ng/mL. We selected a control group of patients with non-
prostate cancer (benign prostate hyperplasia [BPH] or chronic prostatitis) from the 
prospectively enrolled men undergoing prostate biopsy. Prostate pathology and 
Gleason scores were determined via biopsy. None of the participants had 
undergone prostate cancer treatment (hormonal castration, surgery, 
chemotherapy, or radiotherapy). All remaining 1006 eligible Caucasian patients 
were included for molecular analysis. 
Candidate SNPs were selected from the best evidence from published studies and 
through public databases that provide information on the phenotypic risks. From 
a total of 29 literature-defined putative functional SNPs in 19 different genes and 
corresponding to 9 adipokine pathways, 4 SNPs were related with VEGF/VEFR2 
pathway (Table 8). 
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Table 8. Characteristics of SNPs from the VEGF/KDR pathway included in this study 
 

Gene SNP ID Substitution Locus Region 
KDR rs2071559 T>C - 604 promoter 
VEGF rs2010963 G>C + 405 5’-UTR 
VEGF rs833061 C>T - 460 promoter 
VEGF rs3025039 C>T + 936 3’-UTR 

SNP, single nucleotide polymorphism; VEGF, vascular endothelial growth factor gene; KDR, 
VEGFR2 gene. 
 
SNPs were genotyped using TaqMan allelic discrimination (Applied Biosystems) or 
polymerase chain reaction - restriction fragment length polymorphism analysis. 
SNPs in VEGF and KDR were studied by Taqman. 
 
 3.2.3. Results 
 
 A total of 449 histologically confirmed prostate cancer and 557 non-prostate 
cancer patients were included in the analyses. We evaluated the associations 
between each individual SNP on prostate cancer susceptibility. No association was 
found for VEGF and KDR SNPs with overall, high-grade and high-risk for metastasis 
PCa (Table 9).  

 
Table 9. Age-adjusted Odds Ratios and 95% CI of prostate cancer according to VEGF/KDR 

pathway polymorphisms 
 

  Age-adjusted ORs 
Genetic NPC All PCa HGPCaa HRPCaMb 
Polymorphism n n OR (95%CI) n OR (95%CI) n OR (95%CI) 
KDR -604 T>C        
Additive model        
      TT 154 127 Referent 105 Referent 48 Referent 
      CT 281 215 0.9(0.7-1.2) 177 0.9(0.7-1.3) 72 0.8(0.5-1.3) 
      CC 122 107 1.1(0.7-1.5) 92 1.1(0.8-1.6) 35 1.0(0.6-1.6) 
Dominant model        
      TT 154 127 Referent 105 Referent 48 Referent 
      C carriers 403 322 1.0(0.7-1.3) 269 1.0(0.7-1.3) 107 0.9(0.6-1.3) 
Recessive model        
      T carriers 435 342 Referent 282 Referent 120 Referent 
      CC 122 107 1.1(0.8-1.5) 92 1.3(0.9-1.6) 35 1.1(0.7-1.7) 
VEGF -460 C>T        
Additive model        
      CC 131 114 Referent 99 Referent 46 Referent 
      CT 274 201 0.9(0.6-1.2) 166 0.8(0.6-1.1) 74 0.8(0.5-1.2) 
      TT 151 13 1.1(0.8-1.5) 108 1.0(0.7-1.5) 34 0.7(0.4-1.1) 
Dominant model        
      TT 151 133 Referent 108 Referent 34 Referent 
      C carriers 405 315 0.9(0.6-1.1) 265 0.9(0.6-1.2) 120 1.2(0.8-1.9) 
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Recessive model 

       
      T carriers 425 334 Referent 274 Referent 108 Referent 
      CC 131 114 1.1(0.8-1.4) 99 1.1(0.8-1.5) 46 1.3(0.9-2.0) 
VEGF +405 G>C        
Additive model        
      GG 251 200 Referent 169 Referent 77 Referent 
      GC 252 197 1.0(0.8-1.3) 162 1.0(0.7-1.3) 66 0.8(0.6-1.2) 
      CC 54 50 1.2(0.8-1.9) 41 1.2(0.8-1.9) 10 0.7(0.3-1.4) 
Dominant model        
      GG 251 200 Referent 169 Referent 77 Referent 
      C carriers 306 247 1.0(0.8-1.3) 203 1.0(0.8-1.3) 76 0.8(0.6-1.2) 
Recessive model        
      G carriers 503 397 Referent 331 Referent 143 Referent 
      CC 54 50 1.2(0.8-1.9) 41 1.2(0.8-1.9) 10 0.7(0.4-1.5) 
VEGF +936 G>C        
Additive model        
      CC 421 341 Referent 282 Referent 114 Referent 
      CT 123 100 1.0(0.7-1.3) 87 1.0(0.7-1.4) 39 1.1(0.7-1.6) 
      TT 11 8 0.9(0.3-2.2) 5 0.7(0.2-2.0) 2 0.7(0.1-3.2) 
Dominant model        
      CC 421 341 Referent 282 Referent 114 Referent 
      T carriers 134 108 1.0(0.7-1.3) 92 1.0(0.7-1.3) 41 1.0(0.7-1.6) 
Recessive model        
      C carriers 544 441 Referent 369 Referent 153 Referent 
      TT 11 8 0.9(0.4-2.2) 5 0.7(0.2-2.0) 2 0.7(0.1-3.1) 

N, number of evaluable patients; SNP, single nucleotide polymorphism; OR (95%CI), age-
adjusted odds-ratio and respective 95% confidence interval. 
a HGPCa,High-grade Prostate Cancer (Gleason grade ≥7) 
b HRPCaM, High-risk Prostate Cancer for metastasis (Gleason grade≥8 and/or PSA≥20 
ng.mL-1) 
 
When we estimated the overall mutually-adjusted effects by stepwise multivariate 
logistic regression, only the SNPs in LEPR Gln223Arg, SPP1-66 T>G, IGF1R+3174 
G>A, IGFBP3-202A>C, FGF2+223C>T and IL6-597G>A, plus age and PSA remained 
independently associated with risk for overall, and for high-grade prostate cancer. 
The SNPs in VEGF/KDR analysed didn’t reach significance for inclusion in the risk 
score. 
The inclusive (age and PSA added to the multi-locus genetic set) linear risk scores 
computed on the basis of the above logistic regression models were tested using 
goodness of fit, were significantly greater than for the models based on the 
restricted age plus PSA score, for all prostate cancers (P=0.0002) and high-grade 
prostate cancers (P=0.0001), after likelihood ratio test and confirmed via the net 
reclassification improvement (NRI) and integrated discrimination improvement (IDI) 
comparisons. 
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 3.2.4. Discussion 
 
 Functional SNPs in genes coding for molecules involved in adipokine 
pathways may modulate the expression, transport, or signaling of adipokines, 
thereby influencing prostate cancer risk and biology. Our findings show that SNPs 
in genes from adipokine pathways (leptin, interleukin-6, fibroblast growth factor 2, 
osteopontin, and insulin growth factor) may influence the development of prostate 
cancer and aggressive disease. Nevertheless, several of the candidate SNPs in 
adipokine pathways known to affect oncogenesis, investigated here, were not 
associated with prostate cancer risk. Most of our null results for candidate SNPs, 
namely in VEGF-460, VEGF+405, VEGF+936, were in agreement with other studies 
[244-247]. To our knowledge, there have been no prior reports of null associations 
of KDR-604 and other functional SNPs in other genes with prostate cancer. 
Although a wealth of evidence demonstrates the effects of individual VEGF on 
prostate carcinogenesis, it is unlikely that the overall pathophysiological impact is 
due to the influence of a simple genotypic variation in vivo. Here, we showed that 
consideration of the cumulative susceptibility contributed by SNPs from adipokine 
pathways helps in risk stratification. Our analyses indicated that the inclusive (age 
and PSA added to the multi-locus genetic set) risk score provides improvements in 
discrimination and prediction of all prostate cancer, and high-grade prostate 
cancer. The effect of the studied SNPs in VEGF and KDR were not strong enough to 
be included as risk genotypes in the inclusive model, therefore other more robust 
genetic markers may cooperate to influence the endocrine and paracrine activity of 
adipokine pathways that leads to tumor development and progression. However, 
we cannot exclude that other SNPs in VEGF/KDR pathway may prove to exert a more 
solid effect in PCa.  
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3.3. Clinical study 3 
[Ribeiro R, Monteiro C, Ramanakumar AV, Guedes A, Francisco N, Ferreira AL, Fraga A, 
Sousa M, Cunha V, Azevedo A, Maurício J, Lobo F, Pina F, Calais-da-Silva FM, Calais-da-Silva 
FE, Lopes C, Franco EL, Medeiros R. Inherited variation in adipokine pathway genes may 
determine prognosis for prostate cancer patients receiving androgen-deprivation therapy. 
Submitted] 
 
 3.3.1. Summary 
 Androgen deprivation therapy (ADT) is commonly used to treat advanced 
and recurrent prostate cancer, although prognosis varies widely among individuals. 
We evaluated whether polymorphisms in adipokine pathway genes may predict 
clinical outcomes among prostate cancer patients. We enrolled 483 patients who 
underwent ADT and genotyped them for 27 functional single nucleotide 
polymorphisms (SNPs) in 17 genes from 9 adipokine pathways, including SNPs from 
the VEGF/KDR pathway. SNPs were also combined by pathway according to 
functional characteristics.  
The ADIPOQ +45 T>G G homozygous carriers were more likely to present 
biochemical progression and to die than T-allele carriers. Having the ADIPOQ +276 
G>T G homozygous genotype and the tumor necrosis factor high activation genetic 
profile were associated with reduced likelihood of resistance to ADT. Presence of 
the IL6 -572 G>C C-allele was independently associated with all-cause mortality. 
The LEPR Gln223Arg G-allele variant was associated with a more than twofold 
increased risk of developing metastasis. The SNPs in VEGF and KDR genes were not 
associated with any of the clinical outcomes studied after adjustment for other 
relevant variables. Genetic polymorphisms in specific adipokine pathways might 
have a clinical role in evaluating prognosis among men treated with ADT, as 
opposite to the effect of SNPs in VEGF/KDR pathway, either alone or in combination.  
 
 3.3.2. Overview and methods 
 In the last decades, depletion or blockage of androgen action has been the 
standard of care for men with advanced prostate cancer [248]. Response to 
treatment is not durable since patients become resistant to ADT, leading to 
castration-resistance status, an invariably fatal condition [249]. Although 
mechanisms responsible for prostate cancer cell survival after ADT are not entirely 
understood, there is evidence that AR-dependent and AR-independent pathways 
may be implicated [250,251].  
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While germline DNA polymorphisms in androgen pathways were shown to influence 
the response to ADT, no study has examined the predictive role of polymorphisms 
in genes of adipokine pathways on clinical outcomes after ADT initiation. Some 
functional SNPs in genes encoding molecules of these pathways (e.g. VEGF/KDR 
among others) have been shown to be associated with prostate cancer risk 
[244,252-254] and a recent study found that obese men were at increased risk of 
developing castration-resistant prostate cancer and metastasis [255]. We studied a 
cohort of prostate cancer patients treated with ADT to examine the prognostic 
significance of 27 functional adipokine pathway SNPs with risk of metastasis, 
response to chemical/surgical castration, and all-cause mortality (ACM). 
Patients with histopathologically confirmed prostate cancer and treated with ADT 
between 1990 and 2009 were included in this study (n=483). Patients were 
recruited from 4 Hospitals in Portugal.  ADT consisted of orchiectomy or 
treatment with luteinizing hormone releasing hormone- agonist (LHRHa) with or 
without anti-androgen after diagnosis of advanced or metastatic prostate cancer or 
after relapsing from primary local therapy with curative intent. Hormonal treatment 
was continued at least until disease progression, based on serum PSA levels, 
imaging, and clinical findings. The primary endpoint was resistance to ADT, 
defined as the time from ADT initiation to two consecutive rises of PSA (1 week 
apart) greater than the PSA nadir (defined as biochemical progression) or 
progression of bone lesions (new or size increase, soft tissue metastasis, or at least 
2 new metastatic spots in bone scintigraphy), despite at least two consecutive 
hormonal manipulations [221,222]. The secondary endpoints included overall 
survival, defined as the time from ADT initiation to death from any cause, and 
appearance of distant metastasis at any time during the course of the disease 
(identified by x-rays, computed tomography scans or bone scintigraphy), after 
diagnosis.  
Candidate genes involved in adipokine pathways known to affect oncogenesis were 
selected, including 3 SNPs in VEGF and 1 SNP in KDR (mentioned in Table 8 of 
Experimental study 2). A total of 27 literature-defined putative functional SNPs in 
17 different genes were chosen, corresponding to 9 adipokine pathways. We also 
examined combinations of SNPs by adipokine pathway according to their functional 
implications (Table 10). 
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Table 10. VEGF/KDR pathway SNPs included in experimental study 3 and the rationale for 
combined analysis 

 
Pathway SNPs Genotypes Functional outcomes SNP functional combinations 
VEGF/KDR KDR -604 TT  

[256] 
signaling  
activation 

Expression * 
(-460/+405) 

 VEGF-460 C carrier 
 [257,258] 

expression 
activation 

Expression ** 
(-460/+405/+936) 

 VEGF+405 GG  
[257,258] 

expression 
activation 

Activation *** 
(-460/+405/KDR) 

 VEGF+936 CC  
[259] 

expression 
activation 

Activation **** 
(-460/+405/+936/KDR) 

* Expression 2 VEGF SNPs (-460/+405, according to ref [257]): low vs. high. 
** Expression 3 VEGF SNPs: high, -460/+405 high/936 CC; intermediate, -460/+405 
high/936 T carrier and -460/+405 low/936 CC; low, -460/+405 low/936 T carrier. 
*** Activation 2 VEGF SNPs: high, -460/+405 high/KDR TT; intermediate, -460/+405 
high/KDR Ccarrier and -460/+405 low/KDR TT; low, -460/+405 low/KDR Ccarrier. 
**** Activation 3 VEGF SNPs: high, high or intermediate expression/KDR TT; intermediate, 
high expression/ KDR Ccarrier and low expression/ KDR TT; low, low or intermediate 
expression/ KDR Ccarrier. 
 
Allelic discrimination through Taqman genotyping (Applied Biosystems) or 
polymerase chain reaction, followed by restriction fragment length polymorphism 
analysis was used for genotyping.  
 
 3.3.3. Results  
 The median duration between ADT initiation and disease progression was 
91.8 months, while the median follow-up from ADT initiation to death or last visit 
was 126.9 months. Empirical analysis using Cox regression was then performed to 
evaluate the association of SNPs and their functional combinations with the 
outcomes of interest.  
The genotypes ADIPOQ +276 TT/TG, IL6R Asp358Ala CC and ADIPOQ +45 GG, and 
the high expression ADIPOQ haplotype, low TNFa expression and low/intermediate 
TNFa activation genetic profiles were significantly associated with biochemical 
progression under hormonal castration. However, the VEGF and KDR SNPs, either 
individually or combined, were not associated with resistance to ADT (Table 11). 
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Table 11. Association of SNPs in genes of adipokine pathways with resistance to ADT 
 

  Resistance to ADT 
SNPs and combined SNPs MGF (%) Model No. LR aHR (95%CI) 
KDR-604 48 Dominant 463 2.07 1.13 (0.84-1.52) 
VEGF+405 38 Dominant 463 3.24 1.20 (0.92-1.58) 
VEGF-460 44 Recessive 457 3.90 1.30 (0.95-1.78) 
VEGF+936 13 Recessive 440 2.68 1.80 (0.58-5.65) 
VEGF expression 2 SNP 1 --- --- 457 2.35 1.16 (0.86-1.55) 
VEGF expression, L/I vs H 1 --- --- 436 2.51 1.18 (0.89-1.55) 
VEGF activation, L vs I/H 1 --- --- 457 3.77 1.33 (0.93-1.90) 
VEGF activation, L/I vs H 1 --- --- 436 2.69 1.19 (0.89-1.59) 

ADT, androgen deprivation therapy; No., number of subjects; MGF, minor genotype 
frequency in the cohort; LR, likelihood ratio; aHR (95%CI), age-adjusted hazard ratio and 
respective 95% confidence interval; SNP, single nucleotide polymorphism. KDR, vascular 
endothelial receptor 2; VEGF, vascular endothelial growth factor. L, low; I, intermediate; H, 
high. 
 
Moreover, the IL6R Asp358Ala CC and ADIPOQ +45 GG, IL6-572 C carriers and high 
VEGF activation 2SNPs were associated with shorter time to ACM following ADT 
(Table 12). A 62% higher risk for all-cause mortality was associated with carrying 
high/intermediate activation of VEGF/KDR pathway (combined VEGF-
460/VEGF+405/KDR-604). 
 

Table 12. Association of SNPs in genes of adipokine pathways with all-cause mortality 
 

  All-cause mortality 
SNPs and combined SNPs MGF (%) Model No. LR aHR (95%CI) 
KDR-604 48 Recessive 468 16.29 1.16 (0.80-1.68) 
VEGF+405 38 Recessive 468 16.87 1.28 (0.83-1.96) 
VEGF-460 44 Recessive 462 13.85 1.14 (0.77-1.68) 
VEGF+936 13 Dominant 445 18.24 1.23 (0.83-1.83) 
VEGF expression 2 SNP --- --- 462 13.43 1.02 (0.72-1.45) 
VEGF expression, L/I vs H --- --- 441 15.93 1.07 (0.77-1.49) 
VEGF activation, L vs I/H --- --- 462 18.51 1.62 (1.09-2.41) 
VEGF activation, L/I vs H --- --- 441 17.24 1.28 (0.87-1.88) 

ADT, androgen deprivation therapy; No., number of subjects; MGF, minor genotype 
frequency in the cohort; LR, likelihood ratio; aHR (95%CI), age-adjusted hazard ratio and 
respective 95% confidence interval; SNP, single nucleotide polymorphism. KDR, vascular 
endothelial receptor 2; VEGF, vascular endothelial growth factor. L, low; I, intermediate; H, 
high. 
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A significant relation with increased risk for developing distant metastasis was 
observed in the LEPR Gln223Arg G carriers, LEPR Lys109Arg homozygous G 
carriers, TNFRSF1A -329 G carriers, and for the high/intermediate LEPR signaling 
genetic profiles, but not with VEGF or KDR genetic polymorphisms. 
The predictive effects of SNPs on time to biochemical progression under hormonal 
castration and ACM were then evaluated in presence of significant 
clinicopathological predictors (from Table 1) using Cox regression.  Only the effect 
of ADIPOQ +45 and +276 SNPs and of the TNFa activation genetic profile on the 
response to ADT remained strong after adjustment for clinical factors. Analysis of 
the secondary endpoint ACM after adjusting for other predictors showed that 
ADIPOQ +45 T>G and IL6 -572 G>C remained significant predictors. On multivariate 
logistic regression, patients with the combined high/intermediate LEPR signaling 
genetic profile remained associated with greater risk of developing distant 
metastatic disease (OR=3.41, 95%CI: 1.71-6.79).  
 
 3.3.4. Discussion  
 
 We examined whether germline polymorphisms in adipokine pathways are 
determinants of the response to ADT. The time to biochemical progression under 
hormonal castration was influenced by two SNPs in ADIPOQ and by combined SNPs 
in TNFa pathway activation. The predictive ability of ADIPOQ +45 extended towards 
the secondary endpoint ACM, together with IL6-572 genetic polymorphism. 
Additionally, our results also suggest an association of the combined LEPR genetic 
profile with development of distant metastasis. The combined VEGF/KDR activation 
genetic profile yielded prognostic relevance only on univariate analysis, thereby 
revealing lower robustness within the whole adipokine pathway analysis. 
Androgen deprivation therapy remains the mainstay treatment for advanced and 
recurrent prostate cancer [260,221]. The mechanisms responsible for castration-
resistant prostate cancer development are not clearly established. Despite obvious 
interest in AR-dependent pathways, other independent pathways have been 
described [250,261], in which androgen-refractory cells use alternative survival 
pathways to overcome the growth inhibition imposed by ADT [250,262]. Adipokine 
pathways, have been implicated in intracellular signals such as those activated in 
hormonal castration resistance [263]. Furthermore, mitogenic and anti-apoptoptic 
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effects of some adipokines (e.g. leptin, IL-6, IGF-1) seem to be limited to androgen-
refractory prostate cancer cells [264-266].  
Inherited genetic markers have been fairly explored as predictors of prostate 
cancer outcomes. Although we took a focused candidate gene approach to evaluate 
the association of key SNPs in adipokine pathways with relevant prostate cancer 
outcomes in a cohort of patients in ADT, our study has some limitations. Although 
we included only functional SNPs from genes in adipokine pathways, our SNP panel 
and SNP combinations could be incomplete. Strengths of our study include the 
large size and homogeneous population. The long follow-up time allowed analysis 
of primary and secondary end points with large number of events (46.4% for 
disease progression under ADT; 32.2% for mortality; 44.9% for metastasis). 
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3.4. Clinical study 4 
[Fraga A, Ribeiro R, Coelho A, Vizcaíno JR, Coutinho H, Lopes JM, Príncipe P, Lobato C, Lopes 
C, Medeiros R. Putative functional genetic polymorphisms in key hypoxia-regulated 
downstream molecules and phenotypic correlation in prostate cancer. Submitted] 
 
 3.4.1. Summary 
 In this study we sought if, in their quest to handle hypoxia, prostate tumors 
express target hypoxia-associated molecules and their correlation with putative 
functional genetic polymorphisms. 
Representative areas of prostate carcinoma (n=51) and of nodular prostate 
hyperplasia (BPH) (n=20) were analysed for HIF-1, CAIX, LOX and VEGFR2 
immunohistochemistry expression using a tissue microarray. DNA was isolated 
from peripheral blood and used to genotype functional polymorphisms at the 
corresponding genes (HIF1A +1772 C>T, rs11549465; CA9 +201 A>G; rs2071676; 
LOX +473 G>A, rs1800449; KDR – 604 T>C, rs2071559).  
Immunohistochemistry disclosed predominance of positive CAIX and VEGFR2 
expression in epithelial cells of prostate carcinomas compared to BPH (P=0.043 and 
P=0.035, respectively). In addition, the VEGFR2 expression score in prostate 
epithelial cells was higher in organ-confined and extra prostatic carcinoma 
compare to BPH (P=0.031 and P=0.004, respectively). Notably, for LOX protein the 
immunoreactivity score was significantly higher in organ-confined carcinomas 
compare to BPH (P=0.015). The genotype-phenotype analyses showed higher LOX 
staining intensity for carriers of the homozygous LOX +473 G-allele (P=0.011), and 
that KDR -604 T-allele carriers were more prone to have higher VEGFR2 expression 
in prostate epithelial cells (P<0.006). 
The expression on prostate epithelial cells of target molecules in hypoxia pathways 
analysed here (VEGFR2, CAIX and LOX) allowed differentiating malignant from 
benign prostate disease. Two of the genetic polymorphisms (LOX +473 G>A and 
KDR – 604 T>C), account for a potential gene-environment effect in the activation 
of hypoxia-driven pathways in prostate carcinoma. Further research in larger series 
is warranted to validate present findings. 
 
 3.4.2. Overview and methods 
 During tumor growth, the oxygen supply and nutrients scarcity urges 
malignant cells to signal to the microenvironment their needs. The hypoxia 
inducible factor 1 alpha (HIF-1α) is a key factor by which tumors regulate the 
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response to hypoxia, triggering cascades with pro-tumoral effects [138,147]. HIF-
1 mechanism implies targeting hypoxia response elements in promoters of 
downstream target genes, notably vascular endothelial growth factor (VEGF), 
carbonic anhydrase IX (CA9), and lysyl oxidase (LOX) promoters, resulting in more 
aggressive, treatment resistant phenotype [138,147,10]. In prostate carcinoma, a 
large study has demonstrated the relevance of intrinsic markers of tumor hypoxia 
for localized disease and outcome of radical treatment [2]. 
Recent findings indicate that genetic variants may modulate the predisposition for 
prostate carcinoma and associate with clinical outcome [214,267]. Single 
nucleotide polymorphisms (SNPs) in genes coding for molecules involved in the 
response to hypoxia, particularly a functional polymorphism in HIF1A gene at locus 
+1772 C>T [9,231,218,219,226,224,220], has been studied in association with 
prostate carcinoma with controversial results. However, we are not aware of studies 
implicating SNPs in other genes (e.g. LOX, CA9, KDR) of HIF-1α-mediated hypoxia 
downstream pathways. 
Based on the role of hypoxia-associated molecules in cancer, we hypothesized an 
association, at the genetic and protein level, between HIF1A, LOX, CA9 and KDR 
genetic variants, the protein expression and prostate carcinoma.  
Seventy-one patients with prostate pathology (n=51 with carcinoma, and n=20 with 
nodular hyperplasia, BPH) were included, after informed consent and approval by 
hospitals’ ethical committees. Patient’s clinicopathological data (Table 13) was 
collected from clinical files and pathological staging determined as organ-confined 
(T1-T2) (OCPCa) or extra prostatic (T3-T4) (EPCa) disease.  
 

Table 13. Descriptive clinicopathological data of participating patients 
 BPH OCPCa EPCa 
Age at diagnosis, yrs 67.8  8.4 61.3  6.4 63.3  6.3 
PSA at diagnosis, ng/mL 5.5  5.1 6.6  2.4 11.9  5.6 
Weight of the prostate, g 94.8  32.1 45.9  14.3 56.6  22.7 
Gleason Score 
      < 7 
       7 

 
- 
- 

 
14 (43.8) 
18 (56.3) 

 
0 (0.0) 
19 (100) 

Percentage of tumor *, % - 15.0 (6.3 – 20.0) 57.0 (28.8 - 78.8) 
Descriptive data of continuous variables is presented as mean  standard deviation, except 
for percentage of tumor [data shown as median (interquartile range)]. Categorical variable 
is depicted as number of observations and respective frequencies. BPH, prostate nodular 
hyperplasia; EPCa, extra prostatic cancer; OCPCa, organ-confined prostate carcinoma; PSA, 
prostate specific antigen. * on prostatectomy specimens. 
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The white cell fraction from peripheral blood was used to extract DNA (QIAmp DNA 
Blood Mini Kit, Qiagen). Four putative functional SNPs (3 non-synonymous and 1 in 
the promoter region) in 4 candidate genes involved in key hypoxia pathways were 
selected (HIF1A +1772 C>T, rs11549465; CA9 +201 A>G, rs2071676; LOX +473 
G>A, rs1800449; KDR -604 T>C, rs2071559). Genotyping was done by Real-Time 
PCR using Taqman ssays (Applied Biosystems).  
Representative areas of carcinoma and of nodular hyperplasia were selected and 
included into tissue microarray as previously described [268]. Slides were stained 
with anti-HIF-1 (Novus Biologicals), anti-LOX, (Abcam), anti-VEGFR2 (Abcam) and 
anti-CAIX, (Novus Biologicals) and immunohistochemical evaluation was 
independently reviewed by two pathologists. Qualitative and quantitative 
measurements were made for VEGFR2 expression in vasculature and prostate 
epithelial cells, and HIF-1, LOX and CAIX in prostate epithelial cells, for both 
carcinoma and nodular hyperplasia. VEGFR2 intensity was multiplied by the 
percentage of tumor cells at that intensity level (VEGFR2 H-score); for LOX the score 
was calculated by multiplicating the percentage of positive cells with staining 
intensity (LOX immunoreactivity score, IRS). A representative image of the 
expression of each aforementioned protein is shown in Figure 8. 
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Figure 8. Representative microscopy images of staining for hypoxia markers in prostate 
tissues (MO, 400x) 

 
A) HIF-1α - notice the granular cytoplasmic immunoreactivity of the malignant epithelial 
cells. In this case, more than 50% of the glands stained. B) LOX - strong and diffuse nuclear 
immunoreactivity of the epithelial cells. C) CAIX - note a focal apical cytoplasmic 
immunoreactivity in epithelial cells. D)  VEGFR2 - moderate nuclear and weak cytoplasmic 
expression of the epithelial cells 
 
 
 3.4.3. Results  
 Epithelial cells staining positivity for CAIX and VEGFR was significantly higher 
in prostate carcinomas compared with BPH (P=0.043 and P=0.035, respectively) 
(Figure 9). Concurrently, despite non-significant, both HIF-1 and LOX 
immunoreactivities had a tendency to be elevated in carcinomas (P=0.111 and 
P=0.266, respectively) (Figure 9).  
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Figure 9. Frequency of patients with positive staining in benign and malignant epithelial 
cells 

 
CAIX, carbonic anhydrase IX; HIF-1, hypoxia inducible factor - 1 alpha; LOX, lysyl oxidase; 
VEGFR2, vascular endothelial growth factor receptor 2. BPH, nodular prostate hyperplasia; 
EP, extra prostatic disease; OC, organ-confined disease. 
 
Notably, although not significantly more expressed in prostate carcinomas, the 
LOX IRS, was significantly more elevated in organ-confined carcinomas than BPH 
(P=0.015) (Figure 10), and higher in patients with positive HIF-1 expression 
(P=0.053) (Figure 11).  
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Figure 10. Comparison of LOX immunoreactivity score in prostate epithelial cells of 
benign and malignant patients. 

 
BPH, nodular prostate hyperplasia; EP, extra prostatic disease; OC, organ-confined disease. 
LOX, lysyl oxidase; IRS, immunoreactivity score. Kruskall-Wallis followed by Mann-Whitney 
non-parametric tests were used to calculate differences between prostatic pathologies. 
 

Figure 11. LOX immunoreactivity score by HIF-1 positivity in epithelial cells 

 
Patients with positive HIF-1 expression are prone to higher LOX IRS. HIF-1, hypoxia 
inducible factor – 1 alpha; LOX, lysyl oxidase. IRS, immunoreactivity score. Mann-Whitney 
non-parametric test was used to calculate differences between positive and negative HIF-
1 expression. 
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VEGFR2 immunoreactivity was observed in vascular endothelial cells (only in 20% 
of all samples) and epithelial cells (70% of patients with extra prostatic carcinomas 
and approximately half of organ-confined carcinomas). Noteworthy, the VEGFR2 H-
score in epithelial cells was statistically distinct between BPH and organ-confined 
or extra prostatic carcinomas (P=0.031 and P=0.004, respectively) (Figure 12).  
 

Figure 12. Expression of VEGFR2 (H score) in prostate epithelial cells according to 
prostatic diseases 

 
BPH, nodular prostate hyperplasia; EP, extra prostatic disease; OC, organ-confined disease. 
VEGFR2, vascular endothelial growth factor receptor 2. Kruskall-Wallis followed by Mann-
Whitney non-parametric tests were used to calculate differences between prostatic 
pathologies. 
 
 
The genotypic distribution in polymorphisms HIF1A +1772 C>T, LOX +473 G>A, 
CA9 +201 A>G and KDR -604 T>C is shown in Table 14. There was no over-
represented genotype in disease groups.  
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Table 14. Genotypic distribution of functional SNPs in genes of hypoxia pathways by disease status 
using additive and recessive models analyses 

 Prostatic disease status  
HIF1A +1772 C>T 
genotypes 

BPH OCPCa EPCa P * 
Additive model     
CC 10 (0.59) 23 (0.82) 14 (0.78)  
CT 5 (0.29) 5 (0.18) 4 (0.22)  
TT 2 (0.12) 0 (0.0) 0 (0.0) 0.144 
Recessive model     
CC 10 (0.59) 23 (0.82) 14 (0.78)  
TT/CT 7 (0.41) 5 (0.18) 4 (0.22) 0.205 
LOX +473 G>A genotypes   
Additive model     
GG 6 (0.71) 16 (0.55) 13 (0.72)  
GA 2 (0.29) 11 (0.38) 4 (0.22)  
AA 0 (0.0) 2 (0.07) 1 (0.06) 0.740 
Recessive model     
GG 6 (0.71) 16 (0.55) 13 (0.72)  
AA/GA 2 (0.29) 13 (0.45) 5 (0.28) 0.442 
CA9 +201 A>G genotypes     
Additive model     
GG 3 (0.38) 9 (0.31) 5 (0.29)  
GA 5 (0.62) 18 (0.62) 10 (0.59)  
AA 0 (0.0) 2 (0.07) 2 (0.12) 0.882 
Recessive model     
GG 3 (0.38) 9 (0.31) 5 (0.29)  
GA/AA 5 (0.62) 20 (0.69) 12 (0.71) 0.918 
KDR -604 T>C genotypes     
Additive model     
CC 6 (0.33) 8 (0.26) 3 (0.17)  
CT 8 (0.45) 15 (0.48) 13 (0.72)  
TT 4 (0.22) 8 (0.26) 2 (0.11) 0.436 
Recessive model     
CC 6 (0.33) 8 (0.26) 3 (0.17)  
TT/CT 12 (0.67) 23 (0.74) 15 (0.83) 0.515 

* Fisher exact test. BPH, nodular prostate hyperplasia; OCPCa, organ-confined prostate carcinoma; 
EPCa, extra prostatic carcinoma. CA9, carbonic anhydrase IX gene; HIF1A, hypoxia inducible factor 1 
alpha gene; KDR, vascular endothelial growth factor receptor 2 gene; LOX, lysyl oxidase gene.  
 
Regarding genotype-phenotype relation, there was lack of association between 
HIF1A +1772 C>T and CA9 +201 A>G genotypes with HIF-1 and CAIX protein 
expression (Table 15).  
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Table 15. Association of the genetic polymorphisms in HIF1A +1772 C>T and CA9 +201 
A>G with HIF-1 and CAIX immunoreactivity in prostatic epithelial cells 

 
  Recessive models (HIF1A and CA9)  
HIF-1 expression  CC TT/CT P * 
      Negative  28 (0.76) 9 (0.24)  
      Positive  10 (0.77) 3 (0.23) 0.928 
      < 50%  32 (0.74) 11 (0.26)  
       50%  6 (0.86) 1 (0.14) 0.516 
CAIX expression  GG GA/AA  
      Negative  9 (0.75) 20 (0.69)  
      Positive  3 (0.25) 9 (0.31) 0.699 

    * Fisher exact test  
 
In contrast, LOX expression was significantly more intense in carriers of the LOX 
+473 homozygous G allele compared to AA/AG (P=0.011), despite no significance 
was achieved for IRS (but with similar trend) (Figure 13). Alongside, KDR -604 T-
allele carriers were more prone to have VEGFR2 expression in prostate epithelial 
cells but not in vessels (Table 16). The VEGFR2 H-score was significantly higher in 
T-allele carriers compared to homozygous C (Figure 14).  
 

Figure 13. LOX protein expression (both for immunoreactivity score and staining 
intensity) according to LOX +473 G>A polymorphism 

 

    IRS, immunoreactivity score; LOX, lysy oxidase; a.u., arbitrary units. 
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Figure 14. VEGFR2 protein expression (H score) according to KDR -604 T>C 
polymorphism. KDR, gene coding for VEGFR2 protein 

 
      VEGFR2, vascular endothelial growth factor receptor 2.  
 

Table 16. Association of the KDR-604 T>C genetic polymorphism with VEGFR2 
immunoreactivity in vessels and in prostatic epithelial cells 

 
 Additive model   Recessive model  
VEGFR + cells CC CT TT P *  CC TT/CT P * 
Vessels          
   Negative 11 (0.3) 22 (0.5) 9 (0.2)   11 (0.3) 31 (0.7)  
   Positive 3 (0.3) 5 (0.4) 4 (0.3) 0.681  3 (0.3) 9 (0.7) 0.626 
Epithelial          
   Negative 11 (0.4) 13 (0.5) 4 (0.1)   11 (0.4) 17 (0.6)  
   Positive 3 (0.1) 14 (0.5) 9 (0.4) 0.039  3 (0.1) 23 (0.9) 0.030 

* Fisher exact test 
 
Only data from prostate carcinomas was used to evaluate if hypoxia proteins 
associated with Gleason score or PSA>10 ng/mL (Table 17). Statistical trends were 
observed for higher VEGFR2 H-score expression in more undifferentiated 
carcinomas (Gleason 7) (P=0.099) and in patients with prostate specific antigen 
(PSA)  10 (P=0.085), and for positive CAIX expression in prostate carcinomas from 
patients with PSA above 10 (P=0.078). 
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Table 17. Expression of proteins from hypoxia pathways in prostate cancer patients, by 
Gleason grade and PSA value 

 

PSA, prostate specific antigen; VEGFR2, vascular endothelial growth factor receptor 2; LOX, 
lysyl oxidase; HIF1a, hypoxia inducible factor 1 alpha; CAIX, carbonic anhydrase IX. a 
Kruskal Wallis and Mann-Whitney U tests for VEGFR2 H-score in epithelial cells; b Chi-square 
test.* Fisher exact test. 
 
 
 3.4.4. Discussion  
 The hypoxia-driven HIF-1 upregulation activates downstream pathways 
involved in metabolism (e.g. CAIX), angiogenesis (e.g. VEGF/VEGFR2 pathway) and 
extracellular matrix activity (e.g. LOX), which can modulate cancer behavior [269]. 
Experimental and clinical studies in prostate carcinoma demonstrated that HIF-1 
overexpression was associated with malignancy, progression and metastatic 
potential [126] [2]. Here, we found a non-significant statistical trend for higher HIF-
1 protein expression in prostate carcinomas compared to BPH, which may be due 
to the limited number of samples. Besides vascular endothelial cells also prostate 
epithelial cells express VEGFR2, which were shown to signal through the 
AKT/mTOR/P70S6K pathway [270]. We found that VEGFR2 was expressed in the 
epithelium and endothelial cells, though more frequently expressed in epithelial 
tumor cells of organ confined or extra prostatic carcinomas than in BPH. Hence, in 
the prostate VEGFR2 expression is mainly expressed in malignant epithelium where 
its ligand VEGF may exert a direct effect in tumor cell growth. Previous 
immunohistochemistry studies reported VEGFR2 expression in high-grade prostate 
intra-epithelial neoplasia and carcinomas of the prostate [271], whereas gene 
expression findings in prostate cancer cell lines evidenced suppressive growth and 
promotion of apoptosis with KDR antisense oligonucleotide [272]. Taken together 

 Gleason grade (n=38) PSA at diagnosis (n=36) 
 <7 7 P <10 10 P 
VEGFR2 H-score a 30.924.7 60.117.9 0.099 30.21.2 80.033.5 0.085 
LOX IRS score a 10.21.6 7.61.1 0.184 9.21.1 6.61.8 0.242 
HIF-1 expression b 
         Negative 
         Positive 

 
6 (0.50) 
6 (0.50) 

 
19 (0.73) 
7 (0.27) 

 
 

0.163 

 
17 (0.65) 
9 (0.35) 

 
8 (0.80) 
2 (0.20) 

 
 

0.335* 
CAIX expression b 
         Negative 
         Positive 

 
10 (0.83) 
2 (0.17) 

 
15 (0.58) 
11 (0.42) 

 
 

0.117* 

 
19 (0.73) 
7 (0.27) 

 
5 (0.50) 
5 (0.50) 

 
 

0.078 
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with present data, these findings indicate that VEGFR2 expression in epithelial 
prostate carcinoma cells supports a function for VEGF that is not limited to 
angiogenesis. Thus, abrogation of VEGFR2 signalling in malignant epithelial cells 
may prove an effective therapeutic modality for the treatment of prostate cancer. 
At present, two anti-angiogenic drugs are being tested in the phase III setting for 
men with prostate cancer, carbozantinib (a dual VEGFR2/MET inhibitor) and 
tasquinimod (down-regulator of HIF-1), that showed beneficial and encouraging 
results on phase II trials [273]. 
Tumor cells have to adapt to the hypoxia-driven switch in metabolism, with 
consequent acidosis, in order to survive. CAIX is a membrane-bound protein crucial 
for pH regulation in the highly metabolically active malignant cells. In agreement, 
carbonic anhydrase IX gene (CA9) is a target of HIF-1α and is up-regulated in 
response to hypoxia [274]. CA9 mRNA expression increases reliably following 
hypoxia incubation of PC-3 cells [275], although no significant differences on 
mRNA expression were found when comparing BPH with prostate carcinomas [10]. 
Other studies described lack of CAIX expression in primary prostate carcinoma and 
hypothesized alternate pathways for maintaining pH balance [276,277]. 
Conversely, our results disclosed increased frequency of cases with epithelial cell 
positivity for CAIX expression in organ confined and extra prostatic carcinomas 
compared to BPH. Our findings taken together with reports of CAIX expression in 
epithelial prostate carcinoma cells [275,10] sustain the need for reconsidering CAIX 
role in prostate carcinoma.  
The lysyl oxidase gene (LOX), was shown to be directly regulated by HIF-1α 
transcription factor and essential for hypoxia-induced metastasis and cancer cell 
proliferation [192]. In the prostate we found that LOX immunoreactivity score was 
associated with HIF-1 positivity, thus supporting the regulatory nature of HIF-1 
in LOX expression. Furthermore, although the number of cases with positive LOX 
expression in carcinomas was similar to BPH, the LOX IRS was significantly higher 
in organ confined prostate carcinomas compared with BPH. Interestingly, increased 
expression of LOX mRNA in prostate carcinomas compared with BPH was previously 
observed [10]. LOX biological functions that include effects in cell growth, 
migration and polarity agrees with the increased LOX expression found in our 
carcinoma samples.  
In this study, evaluation of protein expression according to SNPs in their coding 
genes disclosed a genotype-phenotype effect for the LOX and KDR SNPs, but no 
functional validation at the protein level was observed for the studied HIF1A and 
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CA9 SNPs. The C-to-T substitution at locus +1772 (rs11549465) in HIF1A gene 
localizes in the oxygen-dependent domain of the gene where the variant allele was 
shown to stabilize HIF1A mRNA and enhance HIF1A transcriptional activity [215]. 
Notwithstanding the functional rationale, association of this SNP with prostate 
carcinoma risk and with microvessel density, yielded conflicting results 
[9,218,220,224]. In our study, the lack of statistical differences in HIF1A +1772 
C>T genotypes for HIF-1 protein expression, agrees with a previous report in 
prostatic carcinoma [218]. However, the low frequency of TT carriers in our sample 
(only 2 cases) may have influenced statistical power, since the HIF-1α protein and 
mRNA overexpression have been associated with the TT genotype [231,278].  
A functional genetic variant on KDR gene that codifies for VEGFR2 is located in the 
promoter region (-604 T>C, rs2071559), where the C-allele has been associated 
with lower transcription activity, and decreased serum VEGFR2 level [256]. 
Interestingly, we found that T carriers had a significantly higher VEGFR2 expression 
in prostate epithelial cells, thereby suggesting that this SNP might prove useful for 
predictive and/or prognostic evaluations in prostate carcinoma, warranting future 
studies.  
A SNP in exon 1 of CA9 gene is located at locus +201 (rs2071676), where an A-to-
G substitution leads to a change of valine-by-methionine in codon 33. Even though 
we observed an over representation of CAIX positive immunoreactivity in prostate 
carcinoma compared to BPH, the nonsynonymous SNP in CA9 +201 was unable to 
explain variations in the levels of CAIX protein expression in the prostatic tissue, 
suggesting lack of influence in protein expression, even though the impact of this 
nonsynonymous substitution (valine to methionine) in CAIX protein activity remains 
to be confirmed.  
The LOX gene is translated and secreted as a proenzyme (Pro-LOX), and then 
processed to a functional enzyme (LOX) and a propeptide (LOX-PP) . We studied a 
SNP in LOX gene that has been identified at locus +473 G>A (rs1800449), that 
cause an aminoacid substitution (Arg158Glu). This SNP locates at a highly 
conserved region within LOX-PP, where the A-allele was found to decrease the 
protective capacity of LOX-PP, while increasing the Pro-LOX-associated invasive 
ability of tumor cells [279]. When evaluating LOX immunoreactivity and expression 
intensity by immunohistochemistry in prostate tissues, we found it significantly 
lower in carriers of the LOX +473 A-allele. In the present study, we found that LOX 
was primarily present at the nucleus of epithelial cells, which fits with other reports 
asserting that this enzyme may have important functions in secretory cells, as 
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catalyser of histones in the nucleus [280]. Thus, our findings seem to suggest a 
wider variety of functions for LOX in prostate epithelial cells, beyond those related 
to cross-link formation in collagen and elastin, which merit further research. We 
hypothesize that the trafficking of LOX towards inside the cell or a specific cell 
compartment may be subordinated to the structural molecular characteristics and 
folding of the protein, which could be determined by LOX +473 G>A polymorphism.  
Our endeavour to study the genotype-phenotype correlation in key hypoxia 
markers and its association with prostate cancer yielded encouraging findings, 
even though results should be interpreted in the context of potential limitations. 
The lack of statistical significance for genotypic frequencies between disease 
groups on the putative functional target SNPs in HIF1A, LOX, CA9 and KDR likely 
reflects underpowered sample size. This was a major issue as conclusions were 
impracticable for genetic association analysis and limited for genotype-phenotype 
inferences. Further limitations arisen from stratification of carcinomas by stage, 
Gleason score or PSA level, showing at most only statistical trends for increased 
expression of VEGFR2 and CAIX in more aggressive phenotypes. Nevertheless, 
considering the hypothesis-generating nature of this study, we report findings that 
provide important clues to further work in larger samples. Another issue may be 
related with raised concern over similar hypoxic dysregulation for both prostate 
carcinoma and benign hyperproliferative diseases. However, inclusion of BPH 
patients as controls arranged for age-matching with elderly prostate cancer 
patients, similar clinical and diagnostic procedures (including prostate biopsy) 
making the possibility of crossover remote; and this group represents the normality 
in men at that age, since most men of that age carry benign prostate hyperplasia.  
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CONCLUSIONS AND FUTURE PERSPECTIVES 
 
4.1. General conclusion 
 
Hypoxia is usually found in large solid tumors and is a known inducer of 
metastasis, being strongly correlated to poorer outcomes. In prostate cancer, as in 
angiogenesis dependent tumors, there is now evidence of intratumoral hypoxia’s 
profound effect in cancer progression through HIF-mediated regulation of 
molecules that mediate functional interactions with key aspects of angiogenesis 
and metastasis.  
We have thoroughly revised the state of the art of HIF-mediated molecular 
mechanisms in cancer in a HIF-1 centric perspective where HIF‑1 is crucial for 
the initiation of angiogenesis, tumor growth, progression, and metastasis. In 
prostate cancer, the combination of insightful studies on cancer hypoxia suggests 
the existence of a regulatory circuit between molecules or pathways (such as VEGF, 
LOX, or CAIX) downstream of HIF-1a, which synergistically modulate tumor 
microenvironment and promote prostate cancer aggressiveness. 
The orchestrator role attributed to HIF as a master regulator of the transcription of 
genes encoding factors involved in these processes provides the rationale for 
including HIF inhibitors in prostate cancer therapy regimens, particularly in patients 
with localized or locally advanced disease, with elevated expression of hypoxia 
driven molecules in primary tumors.  
Additional studies are needed to clarify the cross-talk between cellular players in 
the hypoxic prostate tumor microenvironment, whereas further insight from 
translational and clinical data connecting prostate tumor hypoxia with metastasis 
and mortality will definitively contribute toward novel, personalized therapies. 
We have shown here that a HIF1A SNP was able to predict disease progression and 
aggressiveness in a large series of prostate cancer patients. The VEGF and KDR 
SNPs had a low predictive and prognostic value for prostate cancer. However, the 
study concerning the relationship between HIF1A and other genetic markers such 
as CA9, LOX and VEGF/KDR with prostate cancer aggressiveness remains 
incomplete yet running in the laboratory. We hypothesize that synergistic influence 
of these SNPs (and eventually others) combined according to their phenotypic 
effect, will add predictive and prognostic value to clinicopathological variables in 
the context of prostate cancer. 
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Prostate carcinoma growth triggers hypoxia, which regulates HIF1A expression that 
in turn impacts the expression of downstream pathways including LOX, CAIX and 
VEGFR2 in tumor cells. From the putatively functional SNPs included here we 
observed that only the genetic variants in LOX and KDR were functionally associated 
with differential protein expression in malignant epithelial cells. Thereby, no 
functional confirmation was observed for the SNP in HIF1A, even though this SNP 
was associated with resistance to ADT and bone metastasis development in the 
genetic epidemiology study. Conversely, for the KDR SNP we analysed, albeit there 
was overexpression of VEGFR2 in prostate tumor cells for the variant genotype, no 
association was found with PCa risk, or with endpoint analysis in patients 
undergoing ADT. These seemingly controversial findings might rely on the 
heterogeneity of patients and diseases for the molecular epidemiology and 
histochemical studies. Therefore, future immunohistochemical studies should use 
prostate tumor samples from ADT patients in order to inform more appropriately 
about a rapidly growing cancer that upwardly impacts hypoxia. In these tumors, 
higher concordance between germline DNA-to-gene/protein expressions would be 
expected. Results presented here warrant further research in larger samples in 
order to evaluate the predictive and prognostic value of KDR and LOX SNPs in 
prostate carcinoma. 
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4.2. Future perspectives 
 
With advances in genotyping and sequencing technologies, continued discovery of 
novel genetic markers associated with disease initiation, progression and response 
or resistance to treatment is expected. Furthermore, multicentric large scale 
studies are required in order to generate novel markers with increased precision. 
Therefore, we expect to foster investigation by increasing the number of SNPs, 
performing “GWAS local” in hypoxia markers, and always correlating with 
phenotypic expression. From combining markers from key pathways involved in 
prostate cancer hypoxia to the participation/implementation of collaborative 
studies, we anticipate a shorter route towards the translation of these discoveries 
into the development of novel tests to assist clinical decision making reasoning 
and to assist patient stratification in clinical trials. Large clinical trials involving 
multi institutional collaborations will be required to prospectively validate the 
utility of these markers for clinical decision making.  
In the framework of the line of research presented here, we are aware that 
information from gene expression analysis (from both in vitro and FFPE tissues) 
will be required for validation of results. In addition, analysing expression profiles 
of microRNAs might also reveal a hypoxia-associated microRNA predictive or 
prognostic role that can independently forecast outcome. 
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A B S T R A C T

Solid tumors usually occur and progress in a hypoxic environment, suggesting that tumor 

cells are resistant to apoptosis and are associated to an increased angiogenesis, which 

makes them more aggressive, with invasive capacity and resistant to treatment.

The genetic and biological mechanisms underlying this phenomenon are still unclear, but 

many studies suggest a role of HIF in this process. Under hypoxic conditions, the alpha 

subunit is not destroyed, and will activate transcription of a set of genes contributing to 

tumor aggressiveness. Its expression is associated to an increased metastatic potential 

that has been shown in both animal studies and human tumors. 

Tumor hypoxia has emerged as a key factor in tumor progression and is associated to a 

poor prognosis, particularly in kidney and prostate tumors. The purpose of this study was 

to review the significance of hypoxia in carcinogeneses and tumor progression by review-

ing the current knowledge on the subject and the mechanisms of action and activation 

of HIF‑1a.

© 2009 AEU. Published by Elsevier España, S.L. All rights reserved.
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A B S T R A C T

Los tumores sólidos, por lo general, existen y progresan en un ambiente de hipoxia; así 

se observa que las células tumorales son resistentes a la apoptosis y se acompañan de un 

aumento de la angiogénesis, volviéndose más agresivas, con capacidad invasora y resisten- 

tes al tratamiento.

La genética y los mecanismos biológicos subyacentes a este fenómeno son todavía poco 

claros, pero muchos estudios sugieren un papel del factor inducible por hipoxia (hipoxia 

inducible factor [HIF]) en este proceso. En condiciones de hipoxia, la subunidad alfa no es 

destruida y activará la transcripción de un conjunto de genes que contribuyen a la agre-

sividad del tumor. Su expresión está asociada a un aumento del potencial metastásico que 

se verifica tanto en estudios animales, como en tumores humanos.
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La hipoxia tumoral se ha convertido en un factor clave en la progresión tumoral y se asocia 

a un mal pronóstico, sobre todo en tumores de riñón y próstata. Este trabajo tiene por obje-

tivo revisar la importancia de la hipoxia en la carcinogénesis y en la progresión tumoral, 

presentando una revisión de los conocimientos actuales sobre el tema, mecanismos de 

acción y la activación del HIF-1α.

© 2009 AEU. Publicado por Elsevier España, S.L. Todos los derechos reservados.

Introduction 

Hypoxia‑inducible factor (HIF) is a transcription factor that 
regulates cells’ response to hypoxia and acts as a regulator of 
oxygen homeostasis1‑3. Wang and Semenza’s4 identification 
of the HIF transcription system is crucial for understanding 
the physiology of O2; we now know that HIF and hypoxia are 
the main determinants of angiogenesis and that, for instance, 
they regulate the processes of invasion and metastasis that 
determine the tumor’s aggressiveness. 

The transcription factor activates genes that codify 
proteins that increase the availability of oxygen and permit 
metabolic adaptation in the absence of oxygen; it controls the 
expression of dozens of genes and protein products involved 
in angiogenesis, erythropoiesis, glycolysis, invasion, apoptosis, 
vascular tone, pH regulation, epithelial homeostasis, and drug 
resistance. 

More than 60 target genes induced by HIF have been 
identified2; others are suppressed7; many functions are 
HIF‑dependent7. 

Molecular structure of HIF‑1a 

The HIF1A gene, which codifies HIF‑1a, is located in the 
14q21‑q24 locus9, which contains 15 exons10. It is a heterodimer 
composed of alpha chains (regulated by O2) and beta chains, 
arranged in a helix‑loop‑helix (bHLH); it belongs to a family 
of transcription factors consisting of three alpha subunits 
(HIF‑1a, HIF‑2a, HIF‑3a) and one beta subunit (HIF 1a), also 
known as aryl hydrocarbon nuclear translocator (ARNT)4,11,15. 

There are two nuclear localization signals (NLS), located on 
the C‑terminal (aminoacids 718‑721) and on the N‑terminal 
(aminoacids 17‑33), but only the C‑terminal is responsible for 
the nuclear accumulation of HIF‑1a16. It is also known that HIF 
contains two transactivation domains (TAD) in the C‑terminal 
(aminoacids 531‑575 and 786‑826), separated by a sequence of 
aminoacids (575‑786) that inhibit transactivation17 (Fig. 1). 

The N‑terminal of the molecule (aminoacid 1‑390) con
tains the bHLH‑PAS domain, necessary for dimerization and 
binding to DNA18. The interaction between the bHLH domains 
of the two subunits regulates their dimerization19. 

The C‑terminal domain’s function is to signal the 
translocation of HIF‑1a for the nucleus, protein stabilization, 
and interaction with coactivator p30017. In the domain of 
oxygen‑dependent degradation (ODD) domain of HIF‑1a, 
proline residues in positions 402 and 564 have an important 
effect on the stability of the protein in normoxic conditions, 
as they permit, when hydroxylated, recognition by the von 

Hippel‑Lindau protein (pVHL) and subsequent activation of 
the ubiquitin degradation pathway20‑25. The hydroxylation of 
proline residues in the ODD domain of HIF‑1a is the critical 
point that regulates the protein’s stability26,27 (Fig. 2). The 
transcription activity of HIF1A genes is thus regulated by the 
cellular oxygen tension. 

Molecular mechanisms of HIF and of HIF1A  
activation 

In the presence of O2, the proline hydroxylation domains 
(PHD1, 2, 3) provoke specific hydroxylation in two proline 
residues (P402 y P564) in the HIF‑1a ODD, which allows pVHL to 
recognize HIF‑1a; the E3‑ubiquitin complex is formed, which 
will transform HIF‑1a into a degradation target30‑33. Jaakkola 
et al32 showed that the interaction between pVHL and the 
specific HIF‑1a domain is regulated by the hydroxylation of 
the proline residue (HIF‑1a P564) by an enzyme called HIF‑1a 
prolyl hydroxylase (HIF‑PH), which requires iron and oxygen. 

Another O2 sensor is the factor inhibiting HIF‑1 (FIH‑1), 
which hydroxylates HIF‑1a in the presence of O2, at the 
asparagine residue 803 in the transcription activation domain 
of the C‑terminal (C‑TAD), and is inactive in hypoxia, which 
permits interaction with co‑activators CBP/p30034,35 (fig. 2). 

In hypoxic conditions, molecular O2 is not available, and 
thus the enzymes are inactive, which implies elevated levels 
of HIF‑1a36. HIF‑1a is not hydroxylated, and therefore not 
degraded; this causes it to accumulate in heterodimerized 
form with the beta subunit (HIF‑β). This heterodimer migrates 
toward the nucleus, where it binds to the specific DNA 
sequences, and activates genes involved in the adaptation 
to hypoxia, cell survival, angiogenesis, and metastasis, such 
as, for instance, vascular endothelial growth factor (VEGF), 
transforming growth factor alpha (TGF‑a), glucose transporter 
1 (GLUT‑1), and carbonic anhydrase IX (CA9), among many 
others known to be involved in tumor development and 
aggressiveness37,38. 

Therefore, the main regulator of HIF is oxygen22,39. The 
second in order of importance are oncogenes, which may 
contribute to stabilize or degrade protein. For example, protein 
p53, the product of the tumor suppressor gene TP53, inhibits 
the activity of HIF‑1a and becomes a target for proteasomal 
degradation40. However, TP53 deletions or mutations may 
facilitate the accumulation of HIF‑1a in conditions of hypoxia, 
increasing the expression of VEGF in tumor cells. 

The product of the tumor suppressor gene VHL also 
regulates the stability of HIF‑1a42, since in the presence of 
oxygen pVHL can bind to the HIF‑1a subunit and become 
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Figure 1 – Molecular structure of HIF‑1a. Adapted from Shi YH55.

Figure 2 - Stability and activity of the hypoxia‑inducible factor. Adapted from Brahimi‑Horn and Pouyssegur94.
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a target for prolyl‑hydroxylation25‑27. Additionally, other 
oncogenes (v‑Src or RasV12) inhibit prolyl‑hydroxylation, 
which implies stabilization of HIF‑1a39‑42. 

We also know that the expression of the HIF1A gene can 
be regulated through other pathways, mainly the those of 
intracellular signaling, such as protein‑kinase B (Akt) and 
phosphatidylinositol 3’‑kinase (PI3K), although its role in 
these regulation pathways is not yet clear. 

Other HIF1A‑regulating molecules have been described, 
such as the oxygen‑reactive species (ROS) involved in 
carcinogenesis, or cytokines like the tumor necrosis factor 
(TNF‑a) and angiotensin49‑53, which signal pathways such 
as RAS/RAF1/MEK1/ERK1/2 and/or p53/JNK, activated as a 
response to oncogenes, growth factors, or hypoxia (Fig. 3). 

General functions of the HIF1A gene

Hypoxia is a diminished oxygen tension, defined in clinical 
terms as a reduction of the availability of oxygen to critical 
levels (tension under 7%)53. 

HIF‑1a is involved in the response to hypoxia, in oxygen 
homeostasis, and in myocardial, brain and retinal ischemia, 
pulmonary hypertension, preeclampsia, intrauterine growth 

retardation, and cancer. It plays a crucial role in physiological 
homeostatic and etiopathological mechanisms. It acts on 
target genes because its function is regulated by growth factors 
and genetic abnormalities involved in tumor progression54,55. 

Aberrant blood vessels can disappear at any time, but they 
can sometimes be reutilized, causing local reoxygenation, 
stimulating sudden changes of hypoxia and reoxygenation as 
a result of local angiogenesis56‑59. 

The tumor’s environment is well characterized; it is understood 
as a fluctuation between hypoxia and nutrient deprivation that 
leads to genetic and epigenetic adaptation of cell clones, which 
increases its invasion and metastatic capacity. 

Additionally, these adaptations to hypoxia make tumors 
more difficult to treat and more resistant to therapies. An 
important part of this process is the adaptation of gene 
products as a response to hypoxia, and the fact that many 
of these hypoxia‑regulated genes are mediated by HIF1A60; 
approximately 1% of the genome is estimated to be regulated 
by hypoxia. 

Tumor hypoxia by itself is an important epigenetic factor in 
the regulation of the HIF‑1a protein. In addition to inhibiting 
PSDs and HIF‑1a, hypoxia generates oxygen free radicals 
capable of stabilizing the HIF‑1a protein and of inducing the 
HIF and VEGF genes61,62. 
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Figure 3 – HIF‑1a signaling and regulation pathways: oncogenes, growth factors, and hypoxia. Adapted from Shi YH et al4.
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When hypoxia is established, there is a cell response 
to prevent apoptosis63, and the HIF‑1a transcription factor 
is activated, which generates a heterodimer with HIF‑1β 
(ARNT) in the hypoxia response element (HRE), which leads 
to a multiple cell response and the activation of oncogenes64, 
increased vascularization with the production of VEGF, 
increased glucose transport (GLUT1), increased activity of 
carbonic anhydrase (CA9), and even the induction of several 
apoptotic genes65‑67. HIF is known to act on genes that codify 
erythropoietin, transferrin, endothelin‑1, inducible nitric oxide 
synthase (iNOS), hemoxygenase 1, insulin growth factor‑2 
(IGF‑2), insulin‑like growth factor‑binding proteins 1, 2 and 
3 (IGFBP 1, 2, 3), glucose transporters (GLUT), and glycolytic 
enzymes18,28,68 (Fig. 4). This promotes metabolic adaptation to 
hypoxia, and is also regulated by O2 tension, depending on the 
expression of the HIF‑1a subuinit69. Malignant cells’ ability to 
adapt to hypoxia is fundamental for tumor growth (Table 1). 

Hypoxia, hypoxia inducible factor, and cancer 

Hypoxia is significantly less in tumors in which the average O2 
tension exceeds 1.5%53,79,80. 

In order to survive, tumor cells must adapt to a low pO2; many 
genomic products are involved in tumor neoangiogenesis. 
These adaptations contribute to phenotypic survival and 
clinical aggressiveness81. Tumor hypoxia has been associated 
with poor prognosis in many kinds of cancer82. 

Tumor cell clones can adapt to hypoxic microenvironments 
in both primary and metastatic sites. The genetic and epigenetic 
mechanisms of adaptation to hypoxia (genetic instability, 
aerobic glycolysis, loss of control of the cell cycle, loss of 
apoptosis signaling) are characteristic of malignancy60 (Fig. 5). 

There is evidence that hypoxia may control and maintain 
genetic instability. This genetic instability may reduce DNA 
repair and increase the rate of mutation66. 

Intratumor hypoxia is a factor of poor prognosis observed 
in prostate, breast, musculoskeletal, head and neck, and 
cervical cancer83‑85; it is associated with a higher rate of 
failure of radiotherapy, chemotherapy, and with increased 
metastases66. 

We know that the activation of aerobic glycolysis represents 
an initial event in the process of neoplastic transformation, 
probably as a response to increased cell proliferation86, since 
rapidly proliferating cells consume more oxygen. Tumors have 
increased glycolysis, and we know that the concentration of 
glucose and of components of the glycolytic pathway have 
an effect on HIF87,88. The tumor pH is more acidic due to an 
increased production of lactate and CO2. In order to survive, 

Molecule	 Function 	 References 

VEGF	 Angiogenesis	 5‑7, 16, 37, 38, 66, 68,  
		    71‑78 
Erythropoietin	 Erythropoiesis	 5‑7, 16, 66, 68, 77, 78 
GLUT‑1	 Glycolysis	 5‑7, 16, 37, 38, 66, 68,  
		    77, 78 
TGF‑a	 Invasion and metastasis	 5‑7, 37, 38, 78 
Transferrin	 Apoptosis	 5‑7, 16, 68, 77, 78 
Endothelin 	 Vascular tone	 5‑7, 16, 68, 77, 78 
CA 9	 pH regulator	 5‑7, 37, 38, 66, 77, 78 
iNOS	 Drug resistance	 5‑7, 16, 68, 77, 78 8
IGFBP‑1, 2, 3	 Homeostasis	 5‑7, 16, 68, 77, 78 

Table 1 – Molecules regulated by HIF‑1# and their 
pathophysiologic action

HIF

PO2

Metabolismo energético
Transportadores

de glucosa;
enzimas glucolíticas

Angiogénesis
VEGF, VEGFR-1/2,

Ang-2, tie2

Invasión/Metástasis
cMET, CXCR4, SDF-1, uPAR,

PAI, Cathepsin D, TGF

Apoptosis
P53, NIX, BNIP-3, RTP801

Proliferación celular
IGF-2, epo, VEGF

Necrosis
tumoral

Figure 4 – Responses determined by the hypoxia‑inducible factor: it acts as the main physiologic regulator of hypoxia. 
Adapted from Acker and Plate93.
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cells must maintain a balance between the intracellular 
and the extracellular pH; this is achieved thanks to several 
transporters. Carbonic anhydrase IX (CA9) plays a fundamental 
role in this balance; several studies have shown a correlation 
between hypoxia, angiogenesis, HIF‑1a, and CA989. 

Therefore, HIF levels are adapted for cells to maintain a 
high rate of proliferation; on the other hand, the increased 
cell proliferation may induce an increased expression of 
HIF28. In conditions of hypoxia, where the action of growth 
factors leads to an increased cell proliferation and thus to an 
increased oxygen requirement, HIF‑1a is more expressed and 
activated, inducing the expression of genes that codify the 
pro‑angiogenic molecules that permit metabolic adaptation to 
hypoxia; this is the most powerful activator of genes that codify 
glycolytic enzymes and pro‑angiogenic growth factors28,90‑93, 
since tumors cannot thrive without angiogenesis that allows 
the diffusion of oxygen, glucose, and other nutrients77,78. 

Angiogenesis is the development of new blood vessels from 
the preexisting vessel network, and plays a preponderant 
role in various pathophysiologic mechanisms, both benign 
(cicatrization, wounds, ischemia, diabetic retinopathy) and 
malignant (tumor growth and metastasis); VEGF plays a 
fundamental role in angiogenesis, and is regulated by HIF94‑96. 

Currently, there is evidence that tumor blood vessels are 
disorganized and lack an adequate structure for circulation, 

which often leads to collapse. Since tumor development 
requires oxygen, nutrients, and an adequate metabolic 
function, it is necessary to promote angiogenesis factors 
in order to inhibit the apoptosis of tumor cells triggered by 
hypoxia. Therefore, angiogenesis as a response to tumor 
hypoxia is mediated by HIF‑1a55. 

HIF‑1a has been considered a key factor in the regulation of 
VEGF and its receptor (VEGRF), as well as of other angiogenic 
factors. Several immunohistochemical studies conducted on 
various tumor models71 show that the expression of HIF‑1a is 
associated with an increase in VEGF and of vascularization and 
metastasis, which imply a worse prognosis72,76. There seems to 
be a direct relationship between angiogenesis and metastasis 
in several kinds of tumors, such as melanoma, glyoma, lung, 
breast, ovary, bladder, and prostate cancers97,98. It has been 
proven that HIF‑1a target proteins are implicated in the 
proliferation, survival, adhesion, and mobility of cancer cells. 

On the other hand, an increased expression of HIF‑1a, in 
combination with inactivated mutations in suppressor genes 
such as VHL, p53, PTEN or the amplification of the oncogenes 
Akt, RAS, ERK1/2, has often been observed in cancer patients; 
these abnormalities are associated with tumor growth, 
invasion, and metastasis. 

Zhong et al99 have demonstrated an increased expression 
of HIF‑1a in approximately 53% of tumors, including cancer 
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of colon, stomach, pancreas, lung, ovary, prostate, kidney, 
melanoma, and glyoblastoma. The increased expression of 
HIF‑1a is associated with a shorter survival in breast and 
uterine cancer, and with poor response to treatment in 
nasopharyngeal cancer, highlighting the role of tumor hypoxia 
in prognosis72,100‑104 (Table 2). 

In prostate cancer, it is expressed in the initial stages 
of carcinogenesis, and this expression is associated with 
diagnostic and prognostic indicators of early relapse and 
metastasis; HIF‑1 may be a potential poor‑prognosis biomarker. 
Its importance in tumor progression becomes a potential 
target in chemoprevention strategies and in the ability to 
inhibit angiogenesis60. Experimental studies with mice 
prostate cancer cells show that an overexpression of HIF‑1a 
is associated with more growth and metastatic potential108. 
Similarly, a greater expression of HIF‑1a has been found in 
human prostate tumors48,99. The VEGF gene, induced mainly 
by HIF‑1a, has been frequently found to be overexpressed 
in prostate cancer, especially in patients with metastatic or 
hormone‑resistant cancer; this suggests a central action of 
this molecule in this process105,106. 

The activation of oncogenes and growth factors can 
induce the HIF system in non‑hypoxidating cells, or amplify 
the response to hypoxia. In fact, several growth factors 
and cytokines of the stroma and parenchyma also act as 
regulators and are capable of inducing the expression of 
HIF‑1a, its binding and transactivation capacity, such as the 
epidermal growth factor (EGF)46, TGFa92,107, factors IGF‑1 and 
IGF‑2109, and interleukin 1b110. Additionally, recent studies 
show that HIF may play an important role in resistance to 
treatment111‑113. 

The HIF system acts as the main regulator of the response 
to hypoxia, triggering the cascade of mechanisms that permit 
the tumor to adapt to a hostile environment, and emerges as 
an important transcription factor in the biology of cancer. 

Conclusion 

The activation of HIF is regulated by several mechanisms that 
arise from the stabilization of the HIF‑1a subunits, which 
involves multiple signals and pathways. 

Hypoxia, some tumor suppressor genes, growth factors, 
and cytokines increase the stability and/or transactivation 
of HIF1A, which results in an increased production of HIF‑1a 
and consequently, tumor angiogenesis, metabolic adaptation 
to hypoxia, and a prolonged cell survival, due to the action 
on several target genes. HIF‑1a is crucial for the initiation of 
angiogenesis, tumor growth, progression, and metastasis. 

Thus, it seems critical to develop techniques to block or 
inhibit angiogenesis and the HIF1a factor to reduce the 
chances of it becoming a more aggressive cancer. This would 
reduce cancer morbidity and mortality. 

HIF‑1a may be an early marker for carcinogenesis, valuable 
for predicting tumor progression and prognosis. 
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Review

Hypoxia and Prostate Cancer Aggressiveness:
A Tale With Many Endings

Avelino Fraga,1,2,3 Ricardo Ribeiro,3,4,5,6 Paulo Príncipe,1,3 Carlos Lopes,2

Rui Medeiros3,4,6

Abstract
Angiogenesis, increased glycolysis, and cellular adaptation to hypoxic microenvironment are characteristic of solid
tumors, including prostate cancer. These representative features are the cornerstone of cancer biology, which are well
correlated with invasion, metastasis, and lethality, as well as likely with the success of prostate cancer treatment (eg,
tumor hypoxia has been associated with resistance to chemotherapy and radiotherapy). It is well established that
prostate cancer cells also metabolically depend on enhanced glucose transport and glycolysis for expansion, whereas
growth is contingent with neovascularization to permit diffusion of oxygen and glucose. While hypoxia inducible factor
1 alpha (HIF-1a) remains the central player, the succeeding activated molecules and pathways track distinct branches,
all positively correlated with the degree of intratumoral hypoxia. Among these, the vascular endothelial growth factor
axis as well as the lysyl oxidase and carbonic anhydrase IX activities are notable in prostate cancer and merit further
study. Here, we demonstrate their linkage with HIF-1a as a tentative explanatory mechanism of prostate cancer
aggressiveness. Hypoxia drives a tale where HIF-1a-dependent effects lead to many influences in distinct key cancer
biology features, rendering targeted therapies toward targets at the endings less efficient. The most appropriate
approach will be to inhibit the upstream common driver (HIF-1a) activity. Additional translational and clinical research
initiatives in prostate cancer are required to prove its usefulness.
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Introduction
Neoangiogenesis is a characteristic of progressing solid tumors.

During tumor growth, malignant cells become progressively distant
from the vasculature, oxygen supply, and nutrients, urging tumor
cells to signal to the microenvironment the requirement to form
new blood vessels. Tumors have been reported to possess extensive
regions of hypoxia relative to the corresponding normal tissue.1,2 At
least partially, this is due to the rapid proliferation of tumor mass

that distances cells from the oxygen carrying vasculature, but is also
the consequence of distorted and irregular characteristics of newly
formed vessels, ultimately leading to inefficient oxygen transport. It
is well established that solid tumors, like prostate cancer, exist under
fluctuating oxygen tensions and are exposed to both acute and
chronic hypoxia.3-5

The hypoxic tumor microenvironment correlates with increased
tumor invasiveness, metastasis, and resistance to radiotherapy and
chemotherapy.2,6-8 Hypoxia has a detrimental effect on the efficacy
of treatment and consequently in the clinical outcomes of patients
with prostate cancer, being an independent poor prognostic indi-
cator for patients with prostate and other cancers.2,3

Over 1% of the genome is transcriptionally responsive to
hypoxia, although this varies according to cell type.9 A large
number of endogenous markers of hypoxia which are up-regulated
under hypoxic conditions include the vascular endothelial growth
factor A (VEGF-A), prolyl hydroxylase 2 (PHD2), inducible nitric
oxide synthase (iNOS), cyclooxygenase 2 (COX-2), carbonic
anhydrase IX (CAIX), lysyl oxidase (LOX), hypoxia inducible
factor 1a (HIF-1a), hypoxia inducible factor 2a (HIF-2a),
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glucose transporter 1 (GLUT-1), erythropoietin (EPO), E-cad-
herin, and angiopoietin 2 (Ang2), among others (Figure 1).10-12

Most of these genes have previously been shown to be up-
regulated by hypoxia in in vitro and in vivo tumor models,
resulting in a more aggressive, treatment-resistant phenotype.13-16

Nonetheless, of all these hypoxia biomarkers, none could
adequately predict tumor hypoxia,1 even though a biomarker that
could reliably and easily identify a man’s prostate cancer oxygen
status would be useful for personalized medicine. Current
knowledge suggests that rather than considering individual genes,
a panel of genes may provide a more accurate reflection of tumor
hypoxia.17,18 Moreover, tumor hypoxia is cyclical, with a mix of

acute and chronic hypoxia in a constantly changing environment
due to a changeable microvascular supply.1

A recent large study identified HIF-1a and VEGF as intrinsic
markers of tumor hypoxia and angiogenesis, which were associated
with risk of biochemical failure in patients with localized prostate
cancer.19 In another study, it was shown that LOX and GLUT-1
were significantly overexpressed in malignant compared to benign
prostate tissue and were correlated with Gleason score.20 LOX and
GLUT-1 have been previously reported as hypoxia-associated genes,
respectively involved in matrix remodeling and glucose trans-
port,21,22 which are key features of cancer aggressiveness. Hypoxic
cancer cells overexpress GLUT-1 to accelerate glucose intake mainly

Figure 1 Hypoxia-Induced HIF-1a-Driven Modulation of Key Genes and Resulting Biological Effect

During tumor growth, the unavoidable low availability of oxygen in some areas triggers oxygen-sensing mechanisms, notably prolyl hydrolases (PHDs), which regulate HIF-1a activity (if down-
regulated, or alternatively proteasomal degradation). In addition, mitochondria-mediated use of oxygen produces reactive oxygen species that suppress PHD2 activity, further stabilizing HIF-1a.
Alternative hypoxia-independent or -dependent pathways for HIF-1a up-regulation include binding of growth factors (IGF, EGF, TGF) to tyrosine kinase receptors that signal HIF1A transcription through
MAPK and PI3K/Akt/mTOR pathways (by up-regulating the transcription factor eIF-4E). Stabilized and active HIF-1a protein enters the nucleus and binds to HIF-1b to form a complex that regulates the
expression of key genes that code for proteins with relevant functions in prostate cancer development and progression. Regulation of genes encoding proteins responsible for metabolic reprograming
(eg, GLUT1, ALDOA, PGK1, LDH, PDK1, HK1, and HK2 that switch tumor cell toward glycogenolysis as the main source of energy); genes responsible for pH regulation (eg, MCT1, MCT4, and CA9
that alkalinize the intracellular environment); genes involved in tumor cell apoptosis and survival (eg, IGF2, TGFA, BNIP3, CCND1, TP53, and VEGFA, which down-regulate apoptosis while inducing
survival); genes accounting for neoangiogenesis (eg, VEGF, PDGF, ANGPT2, and SERPINE1 that up-regulate sprouting of new tumor vessel; and genes coding for modulators of invasion and
metastasis (eg, the proteolytic CTSD, MMP2, and PLAUR, migration inducers TGFA, MET, and LOX, and adhesion molecules E-cadherin and vimentin).
Abbreviations: ALDOA ¼ aldolase A gene; ANGPT2 ¼ angiopoietin 2 gene; BNIP3 ¼ bcl2/adenovirus e1b 19 kDa protein-interacting protein 3 gene; CA9 ¼ carbonic anhydrase 9 gene;
CAIX ¼ carbonic anhydrase IX; CathpsD ¼ cathepsin D gene; CCND1 ¼ cyclin D1 gene; CTSD ¼ cathepsin D gene; ECM ¼ extracellular matrix; EGF ¼ epidermal growth factor; eIF-4E ¼ eukaryotic
translation initiation factor 4E; GLUT1 ¼ solute carrier family 2 (facilitated glucose transporter) member 1 or SLC2A1 gene; HIF-1a ¼ hypoxia-inducible factor 1 alpha; HIF-1b ¼ hypoxia-inducible
factor 1 beta; HK1 ¼ hexokinase 1 gene; HK2 ¼ hexokinase 2 gene; IGF ¼ insulin growth factor; IGF2 ¼ insulin growth factor 2 gene; LDH ¼ lactate dehydrogenase A gene; LOX ¼ lysyl oxidase;
LOX ¼ lysyl oxidase gene; MAPK ¼ mitogen activated protein kinase pathway; MCT1 ¼ solute carrier family 16 (monocarboxylic acid transporter) member 1 or SLC16A1 gene; MCT4 ¼ solute
carrier family 16 (monocarboxylic acid transporter) member 1 or SLC16A3 gene; MET ¼ met protooncogene gene; MMP2 ¼ matrix metalloproteinase 2 gene; O2 ¼ molecular oxygen;
PDGF ¼ platelet-derived growth factor gene; PDHA ¼ pyruvate dehydrogenase A; PDK1 ¼ pyruvate dehydrogenase kinase isoenzyme 1 gene; PGK1 ¼ phosphoglycerate kinase 1 gene;
PHD2 ¼ prolyl hydrolase 2; PI3K/mTOR ¼ phosphatidylinositol 3-kinase/mammalian target of rapamycin pathway; PLAUR ¼ plasminogen activator receptor urokinase-type gene; ROS ¼ reactive
oxygen species; SERPINE1 ¼ serpin peptidase inhibitor member 1 or plasminogen activator inhibitor type 1 gene; TCA ¼ tricarboxylic acid cycle; TGF ¼ transforming growth factor;
TGFA ¼ transforming growth factor alpha gene; TP53 ¼ tumor protein p53 gene; VEGFA ¼ vascular endothelial growth factor A gene.
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for anaerobic respiration, preventing death due to oxygen defi-
ciency.21 LOX is an extracellular matrix protein that is consistently
overexpressed in hypoxic human tumor cells9,22 and is also a useful
marker of the hypoxia response in vitro.20,22 Nevertheless, further
studies at the protein level are needed to confirm LOX and GLUT-
1 as useful hypoxia markers in prostate cancer.

A Common Tumor Hypoxia-Driven
Mechanism (Through HIF-1a) With
Many Paths and Therapeutic
Implications

The hypoxia-inducible factor induces the transcription of
numerous genes involved in multiple functions on hypoxia
conditions.5,23,24 HIF-1a is a heterodimeric transcription factor
that is the prototypical hypoxia-associated molecule.25 Is the key
of master regulator in the hypoxic response of cells by the activity
of PHD (prolyl hydroxylase domain) and orchestrates the hyp-
oxic response (Figure 2). Usually HIF-1a has cytoplasmic local-
ization, but under hypoxic conditions it is detected and localized
in the nucleus, where it binds to HIF-1b and induces tran-
scription causing up-regulation of effector genes by binding to
the hypoxia response element within their promoter regions
(Figure 2).26,27 Under hypoxic conditions, HIF-1a induces
expression of pro-angiogenic factors and endothelial cell mito-
gens, eg, vascular endothelial growth factor A (VEGF-A), thus
inducing proliferation, sprouting and tube formation of endo-
thelial cells and sustained angiogenesis.28 Unlike HIF-1a, HIF-
2a protein is expressed only in some cell types, can escape
degradation, and is transcriptionally active at near-normoxic
conditions.29,30 Still, HIF-2a contributes as HIF-1a to the
development of tumor aggressiveness.30,31 In the prostate, focal
HIF-2a expression has been detected in benign neuroendocrine-
like and malignant cells,32 being more pronounced in larger
prostate tumors.33 Thus, the role of HIF-2a in hypoxia-
associated tumors, particularly prostate cancer, warrants further
investigation.

HIF-1a protein has been shown to be increased in prostate
cancer tissue sections compared to benign prostatic hypertrophy
(BPH) and to be associated with higher risk for biochemical fail-
ure.19,26 One study reported a trend for higher HIF-1a mRNA
expression in prostate cancer versus BPH samples.20 However, this
finding agrees with previous studies showing that HIF-1a is deci-
sively regulated at the posttranslational level.33,34 Additionally, a
direct link between androgen receptors and pro-angiogenic factors
may exist, as HIF-1a expression is increased with androgens33 and
decreased in prostatectomy specimen treated with preoperative
androgen deprivation therapy.19,35

Neovascularization is essential for physiologic processes,
including in the cancer pathophysiology. In fact, it is well estab-
lished that tumor growth is associated with increased vascu-
larity.14,36,37 Mounting evidence from in vitro and in vivo models
indicates vascular endothelial growth factor (VEGF) is a key regu-
lator of angiogenesis through an effect in endothelial cell growth and
proliferation.37 VEGF binds 2 highly related receptor tyrosine ki-
nases, VEGFR-1 and VEGFR-2. VEGFR-1 expression is up-
regulated by hypoxia via an HIF-1a dependent mechanism,
thereby favoring the activation of VEGF/VEGFR-1 and -2 signaling

pathways due to increased availability of both ligand and
receptors.38

It is known that oxygen tension plays a key role in regulating
the expression of VEGF,39 whereas VEGF inhibition suppresses
pathologic angiogenesis in a wide variety of preclinical models.
More specifically, hypoxia may trigger vascular endothelial growth
factor (VEGF) expression via the transcription complex of
hypoxia-inducible factor HIF-1a (Figure 1). Hypoxia and the
consequential angiogenesis may play a major role in prostate
cancer progression,40 as VEGF and HIF-1a is increased in prostate
cancer compared to BPH.26,41

Tumor cells usually have a high rate of glucose uptake
accompanied by elevated glucose consumption through the pref-
erential activation of the glycolytic pathway.42 Several genes
involved in glucose uptake and glycolysis (eg, GLUT1 and most
genes coding for enzymes in the glycolytic pathway) have been
shown to be targets of HIF-1a.43 Additionally, HIF-1a activation
inhibits mitochondrial metabolism by promoting the expression
of pyruvate dehydrogenase kinase 1 to inhibit pyruvate dehydro-
genase activity,44 thereby diverting pyruvate to lactate. Note-
worthy, despite the decreased flux of glucose-derived pyruvate into
the mitochondria, in place of oxidative metabolism, cancers rely
on reductive reactions from glutamine carbon.45 Enhanced lactate
production and the production of CO2 induced by anaerobic
conditions contributes to the major acid load in tumor environ-
ment. The production of CO2 induced by anaerobic conditions
further contributes to the major acid load in the tumor environ-
ment. One of the striking features of cancer cells is their ability to
acidify their environment, and the orientation of CAIX suggests
that it may serve as one of the mechanisms by which cancer cells
regulate extracellular pH and induce cytoplasmic alkalization,
playing a role in the adaptation of tumors to hypoxic conditions
by regulating the pH of the intracellular and extracellular
compartment (Figure 1).46,47

The membrane-bound enzyme CAIX catalyzes the reversible
conversion of CO2 to carbonic acid and contributes to the
modulation of pH in tumor cells.48 The CAIX is HIF dependent
and has been shown to be up-regulated in multiple human
cancers.48 A correlation between hypoxia, angiogenesis, HIF-1a,
and CAIX in tumors and metastasis has been reported,49 although
the involvement of cancer-associated antigen in prostate tumor
progression and metastasis through the modulation of pH remains
elusive.

Despite being normally expressed in normal tissues, CAIX be-
comes highly expressed when tumor cell hypoxia occurs in malig-
nancies.50 CAIX is up-regulated by hypoxia,51 and its gene is a
target of HIF-1a (Figure 1).52 Interestingly, the degree of CAIX
expression was found to be a prognostic factor of poor survival in
many cancer types.53-58 Prostate cancer cell lines can express CAIX
during severe hypoxic,59 which is a good marker of hypoxia
particularly for androgen-independent cell lines, with reliable in-
creases in CA9 mRNA expression after hypoxia exposure.20 Even
though initial findings showed an absence of CAIX expression in
primary prostate cancers,59,60 others have observed moderate
expression in both BPH and malignant prostatic tissue.20 Thus, the
clinical usefulness of CAIX as a diagnostic tool with implications for
therapy and patient outcome remains to be elucidated.
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Figure 2 Integration of Hypoxia With HIF-1a-Associated Mechanisms in Prostate Cancer, Specifically Downstream-Activated LOX,
VEGF, and CAIX Pathways, and Emergence of Metastatic Traits

The hypoxic environment at the growing prostate tumor primary site conducts HIF-1a toward phosphorylation and translocation to the nucleus instead of the usual proteosomal degradation in
normoxia. Here, both the stimulus to increase HIF-1a availability and the suppression of PHD activity concur to hamper HIF-1a degradation. Within the nucleus of the malignant cell, this transcription
factor initiates the expression of genes (eg, VEGF, LOX, CA9) notable for their role in driving prostate cancer progression and metastasis. Taken together, these molecules are responsible
for modulating the tumor microenvironment through recruitment of TAMs, promoting angiogenesis (neoangiogenesis with loss of pericytes, contributing to tortuous and permeable vessels), inducing
E-M-T and metastasis, thus promoting prostate cancer aggressiveness.
Abbreviations: CA9 ¼ carbonic anhydrase IX; E-M-T ¼ epithelial-to-mesenchymal transition; HIF-1a ¼ hypoxia inducible factor subunit 1 alpha; HIF-1b ¼ hypoxia inducible factor subunit 1 beta;
LOX ¼ lysyl oxidase; MAPK ¼ mitogen activated protein kinase; PHD ¼ prolyl hydrolases; PI3K ¼ phosphoinositol-3-kinase; TAM ¼ tumor-associated macrophages; VEGF ¼ vascular endothelial
growth factor; VHL ¼ von Hippel-Lindau.
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The clinical and pathologic heterogeneity found in cancers
highly depends on reciprocal interactions between malignant cells
and their dynamic microenvironment.61 The cross-talk between
cells and with extracellular matrix (ECM) in tumor microenvi-
ronment seems to be critical in many aspects of cancer develop-
ment, including maintenance of cancer cell dormancy, cancer
progression and metastasis, and drug resistance.61 The ECM of
solid tumors is composed of a complex meshwork of fibrillar col-
lagens, glycoproteins, and proteoglycans,62,63 which affect metas-
tasis, proliferation, angiogenesis, adhesion, migration, invasion, and
drug delivery.64,65

Hypoxia is an important microenvironment factor in the
development of cancer, and while HIF-1a has been shown to be
the key regulator of the cellular response to hypoxia,61,66 the
relationship between tumor hypoxia and components of ECM is
far less known. The role of ECM components and remodeling in
cancer has only been a focus of research during the last years.
Recent findings suggest that hypoxia mediates collagen 1 fiber
remodeling in the ECM of tumors, which may impact delivery of
macromolecular agents and the dissemination of cells.67 Collagen
type I is the major structural ECM component in prostate tu-
mors,64,68,69 with cancer cell invasion occurring radially along its
fibers.67 Moreover, cells of myofibroblast phenotype in the reac-
tive stroma of Gleason 3escored prostate cancers exhibited
elevated collagen type 1 synthesis, which was first observed in
activated periacinar fibroblasts adjacent to prostatic intraepithelial
neoplasia.64

In a previously described hypoxia gene signature,70 LOX was
shown to be directly regulated by HIF-1a and essential for hypoxia-
induced metastasis in several cancer models.66,71 In agreement with
this finding, hypoxia-induced cancer cell invasion was severely
impaired through inhibition of LOX expression.72,73 Cancer cell
proliferation was stimulated by LOX in a HIF-1a-dependent
manner both in vitro and in vivo.73 Thus, the regulatory circuit
between LOX and HIF-1a act in synergy to foster tumor formation
in the adaptation of tumor cells to hypoxia (Figure 1).

The LOX family of oxidases oxidizes lysine residues in collagens
and elastin, resulting in the covalent cross-linking and stabilization
of these ECM structural components, thus providing collagen and
elastic fibers with most of their tensile strength and structural
integrity.74 The accurately regulated expression and activity of the
LOX family of oxidases are a prerequisite for them to exert critical
functions in connective tissue homeostasis. LOX mRNA level is
highly up-regulated under hypoxic conditions mediated by HIF-1a
at the transcriptional level.63 In addition to the well-documented
roles in connective tissue homeostasis, the LOX family of oxidases
participates in other critical biological functions, including cell
migration, cell polarity, epithelial-to-mesenchymal transition
(EMT), and angiogenesis.75-79

LOX is synthesized as a pro-enzyme (Pro-LOX) from stromal
cells, from normal epithelial cells, or from tumor cells under
hypoxic conditions, and is secreted where it undergoes extracel-
lular proteolytic processing by pro-collagen C-proteinases to a
functional enzyme and a pro-peptide (LOX-PP).80,81 Levels of
Pro-LOX production in prostate cancer epithelium are decreased
as a function of prostate cancer progression.82 A recent study
proposed that Pro-LOX, but not LOX-PP, is a tumor

suppressor.83 Further studies showed that LOX-PP is an active
inhibitor of prostate cancer and other tumor cells growth and of
RAS-dependent signaling.73,84,85

Although LOX was initially implicated as a tumor suppressor,
now it is accepted as a poor prognosis marker, particularly in pro-
moting metastasis in breast, lung, prostatic, head and neck, and
bronchogenic carcinomas.23,66,71,82,86,87 Cancer invasion is facili-
tated by stromal collagen reorganization, and this behavior is
significantly increased in collagen-dense tissues (Figure 1).88 Many
ECM modifying enzymes, including matrix metalloproteinases and
LOX family oxidases, are aberrantly expressed during malignant
transformation, progression, and metastasis of cancers.66

Lysyl oxidase-like 2 (LOXL2), a LOX oxidase family member,
accumulates in the endothelial ECM and regulates sprouting
angiogenesis through assembling type IV collagen in the endothelial
basement membrane.89 Therefore, oxidases of the LOX family play
roles in cancer progression and metastasis, promoting not only
cancer cell migration and invasion but also angiogenesis in concert
with pro-angiogenic factors under hypoxia. Furthermore, inhibition
of LOXL2 resulted in a marked reduction in activated fibroblasts
and endothelial cells, as well as decreased production of growth
factors and cytokines.90 In agreement, a recent report in advanced
renal cell carcinoma patients receiving therapy with angiogenesis
inhibitors (pazopanib and sunitinib) disclosed an association of a
LOXL2 intronic single nucleotide polymorphism (rs4872122) with
overall survival, suggesting its potential role as a predictive
biomarker for antiangiogenic drugs and as a therapeutic target in
cancer.91

LOX is a potent chemokine inducing directional migration of
varied cell types; when it is present, it strongly induces directional
migration of cells,66 and it regulates cell polarity and the EMT
process (Figure 1).66,73 Hypoxia represses E-cadherin expression and
promotes EMT.77,79 HIF-1a enhanced EMT in vitro and induced
epithelial cell migration through up-regulation of LOX.77-79,92 The
up-regulated expression of LOX and LOXL2 under hypoxia is
required and sufficient for hypoxic repression of E-cadherin,
possibly through stabilization of the SNAIL transcription fac-
tor.77,78 Further studies are warranted to investigate the contribu-
tion of individual LOX family members to the induction of EMT in
the context of dynamic microenvironment during cancer cell inva-
sion and metastasis.

Conclusion
Hypoxia is usually found in large solid tumors and is a known

inducer of metastasis, being strongly correlated to poorer out-
comes. In prostate cancer, as in angiogenesis-dependent tumors,
there is now evidence of intratumoral hypoxia’s profound effect
in cancer progression through HIF-mediated regulation of
molecules that mediate functional interactions with key aspects
of angiogenesis and metastasis. So far, the combination of
insightful studies on cancer hypoxia suggests the existence of a
regulatory circuit between molecules or pathways (such as VEGF,
LOX, or CAIX) downstream of HIF-1a, which synergistically
modulate tumor microenvironment and promote prostate cancer
aggressiveness.

The orchestrator role attributed to HIF as a master regulator of
the transcription of genes encoding factors involved in these
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processes provides the rationale for including HIF inhibitors in
prostate cancer therapy regimens, particularly in patients with
localized or locally advanced disease, with elevated expression of
hypoxia-driven molecules in primary tumors. Additional studies are
needed to clarify the cross-talk between cellular players in the
hypoxic prostate tumor microenvironment, whereas insight from
further translational and clinical data connecting prostate tumor
hypoxia with metastasis and mortality will definitively contribute
toward novel, personalized therapies.

Clinical Practice Points
� Hypoxia is an important factor in the development of cancer,
and HIF1alpha has been shown to be a central molecule in the
progression of prostate cancer. However, the relation between
HIF1alpha and other factors such as CAIX, LOX and VEGF in
prostate cancer is yet to be investigated. It is understood that
there is some relation, but no interrelation, between the factors
in the context of prostate cancer.

� In this review, we demonstrate the straight relation between
these factors, and we believe that these factors are the same
processes determinated by hypoxia.

� Further studies on the relation between HIF1alpha, CAIX, LOX,
and VEGFR2 and the different mechanisms and proteins that
determinate the progression of prostate cancer are required in an
effort to find biomarkers.
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Abstract The hypoxia inducible factor 1 alpha (HIF1a) is a key regulator of tumour cell
response to hypoxia, orchestrating mechanisms known to be involved in cancer aggressiveness
and metastatic behaviour. In this study we sought to evaluate the association of a functional
genetic polymorphism in HIF1A with overall and metastatic prostate cancer (PCa) risk and
with response to androgen deprivation therapy (ADT).
The HIF1A +1772 C>T (rs11549465) polymorphism was genotyped, using DNA isolated
from peripheral blood, in 1490 male subjects (754 with prostate cancer and 736 controls can-
cer-free) through Real-Time PCR. A nested group of cancer patients who were eligible for
androgen deprivation therapy was followed up. Univariate and multivariate models were used
to analyse the response to hormonal treatment and the risk for developing distant metastasis.
Age-adjusted odds ratios were calculated to evaluate prostate cancer risk.
Our results showed that patients under ADT carrying the HIF1A +1772 T-allele have
increased risk for developing distant metastasis (OR, 2.0; 95%CI, 1.1–3.9) and an independent
6-fold increased risk for resistance to ADT after multivariate analysis (OR, 6.0; 95%CI, 2.2–
16.8). This polymorphism was not associated with increased risk for being diagnosed with
prostate cancer (OR, 0.9; 95%CI, 0.7–1.2).
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The HIF1A +1772 genetic polymorphism predicts a more aggressive prostate cancer behav-
iour, supporting the involvement of HIF1a in prostate cancer biological progression and
ADT resistance. Molecular profiles using hypoxia markers may help predict clinically relevant
prostate cancer and response to ADT.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Prostate cancer (PCa) remains a major public health
concern because it is the most common malignant neo-
plasia and the second leading cause of cancer death in
men [1].

Clinically, it is a heterogeneous disease, with aggres-
siveness risk differing greatly among individuals despite
similar clinical and pathological characteristics. Cur-
rently, only incipient but scarce markers help to predict
whether PCa will be an aggressive, fast growing disease
or an indolent slow growing type of cancer [2]. There-
fore, new strategies to help clinicians distinguish
between lethal and indolent prostate cancer are needed.
Recent findings indicate that genetic variants may pre-
dispose to more aggressive prostate cancer [3–5], which
is supported by epidemiological studies that propose
genetic background influences cancer prognosis [6–8].
Recent genome-wide association studies (GWAS)
revealed numerous genetic variants associated with
prostate cancer risk, although only little discriminatory
ability was shown for fatal forms of the disease [9].

Intratumoural hypoxia is a hallmark of solid neopla-
sias. It is well established that hypoxic tumoural micro-
environment initiates multiple cellular responses,
ultimately resulting in cancer progression [10,11]. The
hypoxia inducible factor 1 alpha (HIF1a) is a transcrip-
tion factor coded by the HIF1A gene that regulates cel-
lular response to hypoxia [12,13], inducing cancer
progression through activation of many genes involved
in regulatory cancer biology (angiogenesis, cell metabo-
lism, cell survival, and epithelial-to-mesenchymal transi-
tion) [14]. The HIF1A gene harbours several SNPs,
including a C-to-T substitution at locus +1772 that
result in aminoacid modification (proline by serine). Pre-
vious in vitro studies showed higher transcriptional
activity of the variant allele under both normoxic and
hypoxic conditions [12,14], whereas additional research
associated this SNP with increased tumour microvessel
density [12,14,15].

Recent studies yielded conflicting results regarding the
involvement of HIF1A +1772 C>T genetic polymor-
phism in cancer, albeit a significant positive association
remained after meta-analysis in Caucasian women spe-
cific cancers [16,17]. In prostate cancer, the few studies
were conducted in distinct ethnic populations and clinico-
pathological characteristics leading to conflicting
results [16,18,19]. Furthermore, the association of HIF1A

+1772 C>T SNP with prostate cancer progression,

metastasis and refractoriness to androgen deprivation
therapy (ADT) merits further evaluation in larger series
of patients. In the present study we sought to analyse
the association of the functional SNP +1772 C>T in
HIF1A with PCa using prostatic biopsy-proven controls,
and to predict the response to treatment in men receiving
ADT.

2. Patients and methods

2.1. Patients

Subjects with histological confirmation, whether on
biopsy or surgical specimen, of prostate cancer
(n = 754) or absence of malignancy (n = 736) were
included in a case-control study. Patients were recruited
from five Hospitals in Portugal between 1990 and 2009:
Portuguese Institute of Oncology – Porto Centre, S.
João Hospital, Porto Military Hospital, Porto Hospital
Centre, and Central Lisbon Hospital Centre. The study
was approved by hospital’s research ethics committees
and consent obtained from participants.

The non-PCa control group comprises men referred
for prostate biopsy (8–13 cores) on the basis of abnor-
mal digital rectal examination and/or single baseline
PSA levels over 2.5 ng/ml, but with normal or benign
prostatic histology. Subjects without malignancy at
biopsy (BPH or chronic prostatitis) were considered
controls since (1) diagnosis was contemporary, (2) were
age matched with elderly cancer patients, (3) all were
submitted to digital rectal examination, PSA estimate
and prostatic biopsy, making remote the possibility of
crossover, (4) most men have benign diseases of the
prostate by the 7th–8th decades of life, making it normal
in men of that age, (5) bias would be expectable if only
men without prostatic disease were eligible, because of
the much younger range of ages. Patients with high-
grade prostatic intraepithelial neoplasia or a biopsy sus-
picious of cancer were excluded.

A nested sample of subjects from the group of PCa
patients (those eligible for androgen deprivation ther-
apy, ADT, (n = 429) was followed up for several years.
These patients were submitted to orchiectomy or lutein-
ising hormone releasing hormone agonist (LHRHa)
(with or without anti-androgen) immediately after
diagnosis or after relapsing from surgery/radiotherapy.
Resistance to ADT was defined as the time from ADT
initiation to two consecutive rises of PSA greater than
the PSA nadir or progression of bone lesions [20,21].
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The time intervals between visits to the clinic were those
routinely in use and determined by international,
namely European, guidelines [20,22]. Information was
collected through chart review.

2.2. Genotyping

A venous blood sample (6 ml) was obtained by fore-
arm venipuncture and the white cell fraction used to
extract DNA (QIAmp DNA Blood Mini Kit, Qiagen).
Blood samples for genetic analysis were collected inde-
pendent of treatment initiation. The HIF1A +1772
C>T (rs11549465) genetic polymorphism was genotyped
by Real-Time PCR using a pre-designed validated Taq-
man assay (Applied Biosystems). Procedures imple-
mented for quality control included double sampling
in about 5% of samples and the use of negative controls
in every run.

2.3. Statistical analysis

The Kolmogorov–Smirnov test was used to assess
departure from normality of continuous variables, while
medians and interquartile ranges were used as descrip-
tive statistics. The Mean differences between groups
for data not normally distributed was compared by
Mann–Whitney or Kruskal–Wallis tests. The departure
from Hardy-Weinberg equilibrium for HIF1A +1772
C>T polymorphism in the non-prostate cancer group
was tested by Pearson’s chi-square.

Unconditional logistic regression was used to esti-
mate age-adjusted odds ratios (aORs) and 95% confi-
dence intervals (95%CIs) for the associations between
the polymorphism and development of prostate cancer
based on additive, recessive and dominant genetic mod-
els (additive, CC versus Ct versus tt, and based on the
minor allele: dominant, CC versus Ct + tt; recessive,
CC + Ct versus tt). We examined the association of
HIF1A +1772 C>T genetic polymorphism with overall
prostate cancer and restricted to high-grade prostate
cancer (combined Gleason score P7) in comparison
with controls non-cancers.

Serum PSA at diagnosis was stratified according to a
20 ng/ml cutoff, the combined Gleason score was strati-
fied into two groups (<7 versus P7), whereas clinical
stage was further stratified as localised (T1–T2) or
advanced (defined as a tumour invading and extending
beyond the prostate capsule and/or extending into adja-
cent tissue, involving regional lymph nodes and/or dis-
tant metastatic sites). The time-to-resistance to ADT
was calculated as the interval (in months) since the
beginning of ADT until the date of resistance to ADT
or last visit.

Empirical analyses were conducted to determine
covariates for multivariate models. For time-to-event
analyses, age-adjusted Cox regression models were used

to assess risk of ADT resistance, whereas age-adjusted
logistic regression models were used to evaluate the risk
for metastasis. Then, multivariate analysis included rel-
evant clinical variables from empirical evaluation and
genetic models. A multivariate Cox proportional haz-
ards model was derived to identify the independent pre-
dictive risks for biochemical progression under
hormonal castration, while a multivariate logistic regres-
sion model was performed to evaluate clinical and
genetic predictive factors for prostate cancer metastasis.
Statistical analyses were done using STATA version
10.0 (StataCorp, College Station, Texas).

3. Results

One-thousand four hundred ninety individuals were
included in this study, 736 cancer-free controls and
754 with a positive biopsy for prostate cancer (median
age, 66.8 and 68.0 years old, respectively, p = 0.001).
Biopsy findings in the control cancer-free group revealed
normal histology (10.9%), benign prostatic hyperplasia
(33.4%), chronic prostatitis (55.2%) and atrophy
(0.5%). As expected, PCa patients presented significantly
higher serum PSA levels at diagnosis (p < 0.0001).

HIF1A +1772 (rs11549465) genotype distribution by
group and risk analysis is shown in Table 1. Both addi-
tive and dominant genetic models were not associated
with prostate cancer risk or high grade disease. The dis-
tribution of HIF1A +1772 C>T genotypes among the
non-cancer control subjects were in agreement with
Wardy–Weinberg equilibrium (p = 0.988). Furthermore,
we found that this SNP was not associated to earlier
onset of disease, using Kaplan–Meier plots and func-
tions (data not shown).

In the group of prostate cancer patients, analyses of
the association between HIF1A +1772 genetic variants
and patient’s clinicopathological characteristics showed
over-representation of T-allele in the group of patients
not treated with definitive therapy (p = 0.05) and who
developed metastasis at any time during the course of
malignant disease (Table 2).

From the group of 754 patients with prostate cancer,
429 were eligible for androgen deprivation therapy,
either due to advanced disease at diagnosis or due to dis-
ease progression. The clinicopathological characteristics
of this nested group are shown in Table 3. From the
group of patients on ADT, 194 (45.2%) developed resis-
tance to hormonal therapy. The median (95%CI) follow-
up time was 91.8 (79.8–103.7) months.

Univariate age-adjusted empirical time-to-ADT
resistance analysis on clinical covariates showed that
Gleason grade P7 (HR, 2.8; 95%CI, 2.0–4.1), advanced
clinical stage (HR, 3.7; 95%CI, 2.5–5.3), definitive treat-
ment (HR, 0.6; 95%CI, 0.4–0.8), PSA P 20 ng/ml (HR,
1.9; 95%CI, 1.5–2.6) and presence of metastasis at
ADT initiation (HR, 2.9; 95%CI, 2.1–3.9) were all
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significantly associated with resistance to ADT. The
associations between HIF1A +1772 C>T genotypes
and the time-to-event age-adjusted univariate and multi-
variate analyses are shown in Table 4. Although we have
not found association of HIF1A +1772 C>T polymor-
phism with resistance to ADT on univariate analysis,
in the recessive model the T homozygous genotype
was associated with a 6-fold higher risk for developing
resistance to ADT, after adjustment for relevant clinico-
pathological variables (Gleason grade, clinical stage,
PSA P 20 ng/ml, definitive therapy and existence of
metastases at the time of hormonal castration initiation)
(Table 4). The risk of developing metastasis at any time
during the course of disease in patients under ADT was
significantly higher for T-allele carriers, still after adjust-
ment for other clinical covariates (Gleason grade, clini-
cal stage and PSA P 20 ng/ml) (Table 5).

4. Discussion

Hypoxia is a frequent event during prostate cancer
progression, while the hypoxia-responsive gene HIF1A

codes for a key transcription factor that has been pro-
posed as a modulator of PCa initiation and progression
[23–25]. We analysed a functional SNP (+1772 C>T) in
the HIF1A gene in prostate cancer patients and controls
and found lack of association, although a relatively
large population with approximately 1500 men was ana-
lysed. Concordantly, two large case-control studies from
the United States of America and China also observed
no risk for having PCa in carriers of this polymorphism
[19,26], even though opposite results have been also
reported [16,27]. The C-by-T substitution in the +1772
locus at the oxygen-dependent domain of the HIF1A

gene results in a proline-to-serine substitution and was
shown to stabilise HIF1A and enhance its activity as a
transcription factor in both normoxia and hypoxia
[12,28]. In agreement, albeit we hypothesised those car-
riers of T allele were more susceptible to have cancer,
our data, together with other, suggest no influence in
earlier stages of prostate cancer development. As PCa
natural history usually reveals slow growing indolent
tumours, the initial steps of carcinogenesis are not likely
to be relevant sources of hypoxia, thereby inducing the

Table 1
HIF1A +1772 genotype distribution and risk for prostate cancer.

Prostate cancer

Control All High-grade (Gleason P7)

HIF1A genotypes N N aOR (95%CI) N aOR (95%CI)

Additive model

CC 566 579 Referent 333 Referent
CT 156 164 1.0 (0.8–1.3) 83 0.9 (0.7–1.2)
TT 14 11 0.9 (0.4–2.1) 7 1.0 (0.4–2.5)

Dominant model

CC 566 579 Referent 333 Referent
T carriers 170 175 1.0 (0.8–1.3) 90 0.9 (0.7–1.2)

aOR(95%CI), age-adjusted odds ratios and the respective 95% confidence intervals.

Table 2
Genotype distribution in PCa subjects (n = 754) according to clinicopathological characteristics.

HIF1A +1772 C>T genotypes

CC (n = 579) CT (n = 164) TT (n = 11) p

Definitive therapy

No 228 (75.0) 69 (22.7) 7 (2.3)
Yes 281 (78.5) 76 (21.2) 1 (0.3) 0.05*

Clinical stage

Localised 262 (78.9) 67 (20.2) 3 (0.9)
Advanced 222 (76.0) 66 (22.6) 4 (1.4) 0.639*

Gleason score

<7 177 (75.0) 56 (23.7) 3 (1.3)
P7 333 (78.7) 83 (19.6) 7 (1.7) 0.443*

Tumour percenta 17.0 (6.0–40.0) 20.0 (5.0–38.5) 65.0 (50.0–80.0) 0.185**

Data are presented as number of cases and respective percentage.
a Median (interquartile range).

* Chi-square test.
** Kruskal–Wallis test. Columns do not sum up because of missing data.
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activation of other than the HIF1a pathway. Actually, a
previous report found that HIF1A +1772 C>T geno-
types were not correlated with HIF1a and VEGF
expression in localised prostatic tumours [16]. However,
HIF1a overexpression has been reported in cancer pre-
cursor lesions, high grade prostate intraepithelial neo-
plasia, and early stage PCa, compared with normal
prostate epithelium [24].

Previous studies have shown overexpression of
HIF1a in many tumours with advanced grade, implying
HIF1a as an independent prognostic factor in cancer
[15]. In addition, increasing evidence suggests that

genetic markers may be independent predictors of out-
come in PCa with various SNPs predicting decreased
progression-free and overall survival [3–6]. Data pre-
sented here show that the homozygous T genotype T-
allele of HIF1A +1772 C>T is associated with increased
relapsing after ADT, whereas the T allele is prone to
higher risk for having distant metastasis, still after
adjustment for empirical covariates (adjusted by Glea-
son grade, clinical stage and PSA P 20 ng/ml for the
risk of metastasis; and by Gleason grade, clinical stage,
PSA P 20 ng/ml, definitive therapy and existence of
metastases at the time of hormonal castration initiation
for the risk of disease recurrence after ADT). While the
recessive model (TT versus CT/CC) was significantly
associated with resistance to ADT, the dominant (TT/
CT versus CC) and additive models were significant
for metastasis development under ADT. A recently pub-
lished meta-analysis suggests that both the T allele and
TT genotype were significantly associated with increased
cancer risk [17]. Experimental data also support a func-
tional role for the C-by-T substitution at the allele and
homozygous genotype level [12,28,29]. We found that
additivity was better fitted for metastasis but not to
ADT resistance, even though the low number of patients
carrying the TT genotype in metastasis analyses yielded
a very wide CI, hence deserving careful interpretation.

Our findings in a large cohort of patients that
received ADT, support a role for HIF1a in the patho-
physiology of castration resistance and the HIF1A

+1772 C>T polymorphism as a potential pharmacoge-
nomic predictor of the response to ADT. Concordantly,
a recent study demonstrated that HIF1a expression con-
tributed both to metastasis and chemo-resistance of cas-
tration resistant prostate cancer [30]. A study comparing
HIF1A +1772 C>T genotypes between castration-resis-
tant PCa and non-cancer men showed that the T-allele
was overrepresented in the cancer group, although it
was not associated with survival [18]. Noteworthy, this
report presents data from 196 castration-resistant

Table 3
Clinicopathological characteristics features of the group of patients
under that received ADT (n = 429).

n (%)

Age at diagnosis, yrs

Median (IQR) 70.0 (64.9–75.4)
PSA at diagnosis, ng/ml
Median (IQR) 19.0 (8.9–51.6)

Gleason score

<7 128 (32.2)
P7 269 (67.8)

Clinical stage

Localised 156 (38.7)
Advanced 247 (61.3)

Metastasis at ADT initiation

No 286 (75.9)
Yes 91 (24.1)

Definitive therapy

No 299 (69.7)
RP/RT 130 (30.3)

ADT pharmacological group

aLHRH alone 91 (21.2)
aLHRH + antiandrogen 338 (78.8)

ADT, androgen deprivation therapy; aLHRH, luteinising hormone
releasing hormone agonist; RP/RT, radical prostatectomy/radiother-
apy; IQR, interquartile range.

Table 4
Association of HIF1A +1772 C>T polymorphism with resistance to ADT.

Resistance to ADT

Univariate Multivariate*

HIF1A +1772 C>T LR HR (95%CI) p HR (95%CI) p

Additive model 2.24
CC Referent Referent
CT 0.8 (0.6–1.2) 0.288 1.0 (0.7–1.5) 0.918
TT 1.8 (0.7–4.6) 0.183 6.1 (2.2–17.0) 0.001
Dominant model 2.70
CC Referent
T carriers 0.9 (0.6–1.2) 0.460 1.1 (0.8–1.7) 0.536
Recessive model 3.86
C carriers Referent Referent
TT 1.9 (0.8–4.8) 0.149 6.0 (2.2–16.8) 0.001

LR, likelihood ratio. ADT, androgen deprivation therapy. HR, hazard ratio; 95%CI, 95% confidence interval.
* Cox regression using as covariates: Gleason grade, clinical stage, PSA P 20 ng/ml, definitive therapy and existence of metastases at the time of
hormonal castration initiation.
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patients using univariate analysis. Another study
observed a somatic rare mutation at the same locus in
1/15 androgen-independent prostate tumours, whereas
functional studies demonstrated in androgen-indepen-
dent prostate cancer cells that the T-allele is associated
with increased transcriptional activity and protein
expression [28]. Therefore, we hypothesise that carrying
the T-allele, which stabilises HIF1a protein and upregu-
lates the HIF1A1 gene expression, may offer a selective
advantage to androgen-independent tumour cells
through the upregulation of several genes involved in
metastasis, angiogenesis, epithelial-to-mesenchymal
transition or in other cancer-associated mechanisms
[10,23,31–33]. The SNP in HIF1A at locus +1772 repre-
sents a germline variant, suggesting a cumulative impact
of higher HIF1a expression since birth. However, we
hypothesise that HIF1A+1772 functional SNP repercus-
sion when combined with hypoxic environmental events
or with other genetic risk factors is triggered to higher
extent in response to hypoxia-inductive treatments such
as ADT. When confirmed in larger and independent
samples, additional therapeutic schemes (such as
CYP17A1 inhibitors or chemotherapy) could be offered
to carriers of the poor responder TT genotype as alter-
native to ADT. These patients could also be enrolled
in clinical trials with drugs that target HIF1a function
(e.g. tasquinimod and other agents that target HIF1a
or its downstream products) [34–37].

Present findings should be further extended and rep-
licated by future studies focusing on genetic polymor-
phisms as predictors of treatment response to allow
tailored therapy in PCa patients. Using this focused can-
didate gene approach to evaluate the HIF1A +1772
C>T SNP gives us an incomplete analysis of hypoxia
mechanism. Other hypoxia-related SNPs were not
included in this study. However, our study has several
strengths such as the selection of the candidate gene
based on biological evidence of functional importance;
statistical analyses accounted for relevant clinical and
pathological factors. In this study all men (including

the controls) were screened for prostate cancer based
on both PSA level and digital rectal exam during the
recruitment period and diagnosis was determined by
standard biopsy or surgical sample, thus making out-
come misclassification unlikely.

Our findings suggest that the HIF1A +1772 C>T
might be a useful marker of aggressive PCa, particularly
a predictor of the response to ADT, thus a plausible
candidate to include in a panel of risk prediction SNPs
in combination with clinical and pathologic features.
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Abstract

Few biomarkers are available to predict prostate cancer risk. Single nucleotide polymorphisms (SNPs) tend to have weak
individual effects but, in combination, they have stronger predictive value. Adipokine pathways have been implicated in the
pathogenesis. We used a candidate pathway approach to investigate 29 functional SNPs in key genes from relevant
adipokine pathways in a sample of 1006 men eligible for prostate biopsy. We used stepwise multivariate logistic regression
and bootstrapping to develop a multilocus genetic risk score by weighting each risk SNP empirically based on its
association with disease. Seven common functional polymorphisms were associated with overall and high-grade prostate
cancer (Gleason$7), whereas three variants were associated with high metastatic-risk prostate cancer (PSA$20 ng/mL and/
or Gleason$8). The addition of genetic variants to age and PSA improved the predictive accuracy for overall and high-grade
prostate cancer, using either the area under the receiver-operating characteristics curves (P,0.02), the net reclassification
improvement (P,0.001) and integrated discrimination improvement (P,0.001) measures. These results suggest that
functional polymorphisms in adipokine pathways may act individually and cumulatively to affect risk and severity of
prostate cancer, supporting the influence of adipokine pathways in the pathogenesis of prostate cancer. Use of such
adipokine multilocus genetic risk score can enhance the predictive value of PSA and age in estimating absolute risk, which
supports further evaluation of its clinical significance.
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Introduction

Prostate cancer is a complex and unpredictable disease, with

risk being affected by advancing age, ethnic background and

family history. Although the causes of prostate cancer are not yet

fully understood, genetic variation influences disease risk [1].

Prostate cancer is usually accompanied by a rise in the

concentration of serum PSA, which has been used for decades

as a sensitive but poorly specific biomarker, and a controversial

predictor of prostate cancer mortality [2,3]. Many prostatic

biopsies are unnecessary [4], which underscores the need for

better prediction models with increased specificity to aid clinicians

decide whether or not to recommend biopsy. Furthermore, this is

especially relevant in men with mildly elevated PSA values (3–

10 ng/mL), but where the risk for being diagnosed with prostate

cancer is only about 20–25% [5]. After diagnosis, some cancers

are indolent and cause no clinical problems, whereas others

progress and may be fatal [6]. Therefore, it is important to search

for biomarkers of aggressive clinical outcome. Genetic markers

provide good candidates for such a role.

Single-nucleotide polymorphisms (SNPs) identified as loci

associated with prostate cancer in genome-wide association studies

(GWAS) are common but confer only small increases in risk and

the mechanisms underlying their association with prostate cancer

risk remain unknown [7,8]. Recently, selected SNPs from GWAS

were analyzed and converted into a genetic risk score, which was

shown to reduce the number of biopsies although it did not

discriminate aggressive cases [9].

The association between body mass and risk of prostate cancer

is supported by meta-analyses that suggest increased risk of

aggressive prostate cancer in the obese [10], and by studies using

methods to estimate abdominal adiposity [11]. Recent work has

focused on the role of adipokines and obesity-related molecules in
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the etiology of prostate cancer [12,13]. Variants in genes encoding

components of these pathways have been evaluated for prostate

cancer risk and promising candidates have been identified

[14,15,16,17]. These candidate genes code for molecules found

to be over- or under-expressed in obesity [18,19,20] and are

involved in several biological mechanisms that modulate tumor

proliferation, apoptosis, angiogenesis, motility, migration, and

immunity [12,21], i.e., traits that ultimately influence tumor

behavior. Thus, common polymorphisms in adipokine pathways

are plausible candidates that may help predict prostate cancer

susceptibility. However, few studies have examined prostate

cancer risk in the context of multi-loci SNPs in different adipokine

pathways. In this report, we tested the hypothesis that SNPs in

candidate genes involved in adipokine pathways may contribute to

prostate cancer susceptibility and aggressiveness in a population of

men referred for diagnostic surveillance. We also assessed the

clinical utility of an adipokine genetic risk score to enhance the

predictive value of age and PSA to predict high-risk individuals for

screening and therapeutic management.

Results

A total of 449 histologically confirmed prostate cancer and 557

non-prostate cancer patients were included in the analyses.

Prostate cancer patients were older (P,0.0001) and presented

with significantly higher circulating levels of PSA and a lower free/

total PSA ratio (P,0.0001 and P,0.0001, respectively) (Table 1).

We evaluated the associations between each individual SNP on

prostate cancer susceptibility (Table S2). In the dominant effect

models (referent: wild-type homozygote) there were significant

decreases in risk for LEPR Gln223Arg (aOR = 0.6, 95%CI: 0.5–0.8,

aOR = 0.6, 95%CI: 0.5–0.8 and aOR = 0.5, 95%CI: 0.4–0.8, for

all, high-grade and high-risk prostate cancer for metastasis,

respectively) and for FGF2+223 C.T (aOR = 0.7, 95%CI: 0.5–

1.0 in high-grade prostate cancer). An increase in risk of high-grade

prostate cancer was found in carriers of the IL6R Asp358Ala variant

(aOR = 1.3, 95%CI: 1.0–1.7). In the recessive effect models

(referent: wild-type homozygotes and heterozygotes) a significantly

increased risk was observed for IGF1R+3174 G.A (aOR = 1.3,

95%CI: 1.0–1.9 for overall prostate cancer), IGFBP3-202 A.C

(aOR = 1.3, 95%CI: 1.0–1.8 and aOR = 1.3, 95%CI: 1.0–1.8, for

overall and high-grade prostate cancer, respectively) and with SPP1-

66 T.C (aOR = 1.8, 95%CI: 1.1–3.0, aOR = 1.9, 95%CI: 1.1–3.2

and aOR = 2.4, 95%CI: 1.2–4.8, in overall, high-grade and high-

risk prostate cancer for metastasis, respectively). Likewise, a

significant protective effect for high-grade prostate cancer was

observed for carriers of the IL6-597 G.A variant (aOR = 0.7,

95%CI: 0.4–1.0). Age-stratification on the aforementioned seven

SNPs indicated that effects were mostly restricted to subjects below

the median age (of non-cancer group, Table S3).

Figure 1 shows that among prostate cancer cases there was a

shorter waiting time-to-onset in IL6R Asp358Ala C-allele carriers

(P = 0.026) and in IGF1R+3174 AA homozygous (P = 0.002). None

of the other five SNPs influenced the time to onset of disease (data

not shown).

To test our hypothesis that genetic variability in SNPs from

adipokine pathways may contribute a combined effect for prostate

cancer risk and/or aggressiveness, we estimated the overall

mutually-adjusted effects by stepwise multivariate logistic regres-

sion. The SNPs in LEPR Gln223Arg, SPP1-66 T.G, IGF1R+3174

G.A, IGFBP3-202 A.C, FGF2+223 C.T and IL6-597 G.A, plus

age and PSA remained independently associated with risk for

overall, and for high-grade prostate cancer (Table 2). In the prostate

cancer group with high risk for metastasis, only the LEPR

Gln223Arg, SPP1-66 T.G and FGF2+223 C.T genetic variants,

age and PSA persisted (Table 2). Within all groups, bootstrap

analysis confirmed results (Table 2).

The inclusive (age and PSA added to the multi-locus genetic set)

linear risk scores computed on the basis of the above logistic

regression models were tested as overall risk predictors categorized

in tertiles based on the distribution in the non-prostate cancer

group. As shown in Table 3, the risk for prostate cancer and high-

grade prostate cancer increased according to the tertile of risk

score (Ptrend ,0.0001 for both outcome categories). The age-

adjusted ORs for unit changes in the inclusive risk score were 2.52

(95%CI: 2.0–3.2) and 2.77 (95%CI: 2.2–3.5) for all prostate

cancers and high-grade prostate cancers, respectively. The

goodness of fit for the logistic regression models based on the

inclusive score were significantly greater than for the models based

on the restricted age plus PSA score, for all prostate cancers

(P = 0.0002) and high-grade prostate cancers (P = 0.0001), after

likelihood ratio test.

Figure 2 shows the ROC curves for the all-inclusive genetic risk

score and for the age and PSA-based risk score. The AUC estimates

for both outcomes (all prostate cancers and high-grade prostate

cancers) were significantly higher for the all-inclusive score than with

the age plus PSA predictor, P = 0.0099 and P = 0.0196, respectively

(Figure 2). The statistically superior predictive value of the all-

inclusive score was confirmed via the NRI (all prostate cancers:

9.5%, P,0.0001, high-grade prostate cancer: 13.3%, P,0.0001)

and IDI (all prostate cancers: 0.021, P,0.0001, high-grade prostate

cancer: 0.024, P,0.0001) comparisons.

Table 1. Age and hormonal variables by disease status.

Disease Status

Non-Prostate cancer Prostate cancer

Na Mean Median Na Mean Median Pb

Age, years 553 66.2 66.2 447 68.1 69.0 ,0.0001

PSA, ng/mL 540 7.5 5.9 437 26.9 8.2 ,0.0001

Free PSA, ng/mL 485 1.6 1.2 373 2.4 1.1 0.373

Free/Total PSA ratio 482 0.22 0.20 372 0.16 0.14 ,0.0001

Serum Testosterone, ng/mL 494 478.0 444.5 381 471.5 443.0 0.690

aNumber of evaluable patients for each variable;
bDifferences between groups, Mann-Whitney test. PSA, prostate specific antigen.
doi:10.1371/journal.pone.0039236.t001

Adipokine Genetic Risk Score and Prostate Cancer
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Genotype distributions in four SNPs deviated from Hardy-

Weinberg equilibrium (Table S1). In sensitivity analysis of three

relevant SNPs, equilibrium was achieved after restricting the

control group to constrained conditions, whereas the trend

towards increased risk remained stable, regardless of control

group used (restricted or unrestricted) (Table S4). Three of these

four deviated SNPs ended up in the all-inclusive risk score.

Therefore, as an additional step to clarify the relative importance

of these SNPs we tested a four SNP risk score (excluding the 3

SNPs that were not in equilibrium). Findings showed that the

predictive and discriminative ability of the inclusive risk score

based on 4 SNPs remained significant (data not shown). Therefore,

we used the all inclusive score.

Discussion

Adipose tissue deregulation has been proposed as a relevant

mechanism underlying obesity-related cancer, due to inappropri-

ate release of biologically active adipokines. Thus, functional SNPs

in genes coding for molecules involved in adipokine pathways may

modulate the expression, transport, or signaling of adipokines,

thereby influencing prostate cancer risk and biology. Our findings

show that SNPs in genes from adipokine pathways (leptin,

interleukin-6, fibroblast growth factor 2, osteopontin, and insulin

growth factor) may influence the development of prostate cancer

and aggressive disease. Interestingly, we found that both the LEPR

Gln223Arg homozygous A and SPP1-66 homozygous G were

significantly associated with all outcomes (risks of overall, high-

grade, and high metastatic-risk prostate cancers).

The pleiotrophic effects of leptin, namely in tumor development

and progression are mediated by its receptor [12,13]. Studies of

SNPs affecting this pathway provided inconsistent results in

prostate cancer. The leptin SNP at position -2548 was proposed as

a susceptibility locus for prostate cancer [14,15], albeit our data do

not support this contention. Conversely, we found an increased

risk in LEPR Gln223Arg homozygous A for prostate cancer,

whereas others observed no such association [14,16]. LEPR

Gln223Arg AA carriers have lower leptin binding affinity to

soluble leptin receptor and have increased circulating free leptin

and soluble leptin receptor levels [22,23]. Therefore, there is

increased availability of leptin for binding to the long leptin

receptor signaling isoform in the prostate tumor cell membrane.

Cumulatively, the aminoacid change in this SNP may influence

the signal for receptor intracellular recycling or degradation [24],

modulating the availability of membrane-bound leptin receptor in

tumor cells.

Osteopontin is a cytokine-like extracellular matrix molecule,

that influences cell migration and anti-apoptosis in cancer [25].

This molecule has been implicated in aggressive and metastatic

disease, and is one of a four-gene signature in prostate cancer that

predicts metastasis and death [26,27]. The T-to-G substitution at

position -66 in the human SPP1 gene modulates promoter activity

[28]. The modified bioavailability of osteopontin may induce

TH1-to-Th2 shift, modulating the microenvironment [28], and

tumor development.

The IGF1-mediated activation of IGF1R has been demonstrated

to contribute to tumor progression [29]. The IGF binding proteins

modulate the effects of IGF1 and its biological function in different

tissues. Recent evidence indicates increased risk of prostate cancer in

individuals with high serum IGF1 levels, whereas risk was decreased

in those with high levels of IGFBP-3 [30]. Furthermore, it was also

found that the IGFBP3-202 A.C SNP was associated with prostate

cancer and with low circulating levels of IGFBP3 [30]. The present

study corroborates previous findings on the IGFBP3-202 A.C CC

genotype risk for prostate cancer and high-grade disease [30,31].

Cumulatively, functional studies confirmed the underexpression of

IGFBP3 in C-allele carriers [32], resulting in increased IGF1

bioavailability. Signaling through the IGF1R is required for growth

and survival [29]. The synonymous IGF1R SNP at locus +3174 was

described as a possible splicing regulator [33], thereby generating

protein diversity [34] and serving as a mechanism for modulating

gene expression [35]. Our findings showing that AA carriers

remained independently associated with risk for all and for high-

grade prostate cancer, suggest that this SNP may modulate IGF1R

cell surface protein quantity, as well as IGF1R/IGF1R internaliza-

tion and degradation, consequently influencing prostate tumor

growth. Insulin receptor substrate –1 (IRS1) is the primary docking

protein of IGF1R, which mediates PI3K pathway activation within

the IGF1/IGF1R system. Although the IRS1 Gly972Arg SNP

results in structural protein differences [36] in our study this SNP was

not associated with prostate cancer risk, confirming previous

findings [37].

FGF2 may have a role in tumorigenesis and cancer progression

through induction of angiogenesis [38]. The FGF+223 variant in

Figure 1. Kaplan Meier analyses plots of significant genetic
polymorphisms. (A) IL6R D358A A.C and (B) IGF1R+3174 G.A. In
figure 1A the dashed line corresponds to AA and the dotted line to CC/CA
genotype. In figure 1B the dashed line represents AA, whereas the solid
corresponds to GG/GA genotype. The Log Rank test was used to compare
genotypes in IL6R D358A A.C (P = 0.026) and IGF1R+3174 G.A (P = 0.002).
doi:10.1371/journal.pone.0039236.g001
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exon 1 is associated with FGF2 expression at the transcriptional

and translational level [39]. Our findings show increased risk for

all, high-grade, and high-metastasis risk prostate cancer among

CC carriers, which are coherent with a functional upregulation of

FGF2. This molecule interacts with a family of four distinct, high-

affinity tyrosine kinase receptors, FGFR 1–4. Although increased

availability of FGF2 and changes in FGFR2 receptor availability

could play a role in the initiation and progression of prostate

cancer, we did not find an association between the FGFR2

rs2981582 in exon 2 and prostate cancer.

Initiation and progression of prostate cancer are stimulated by

IL-6 [40]. Previous findings reported no association of the IL6-174

G.C SNP with prostate cancer [17,41], except for a small study

of aggressive disease risk [42]. We did not find an association for

the IL6-174 G.C SNP and prostate cancer. On the other hand,

we found that carriers of the IL6-597 G-allele were at increased

risk for high-grade prostate cancer. In fact, functional SNPs in the

promoter region of IL6 (-174, -572 and -597) do not act

independently in the regulation of IL6 transcription [43]. The

GG genotype in IL6-597 is linked to the GG genotype in IL6-174,

which is associated with increased IL6 mRNA and protein levels.

Therefore, the higher risk of high-grade prostate cancer associated

with the IL6-597 G-allele may be due to increased IL6. IL6 signals

are transmitted via a heterodimeric receptor complex consisting of

a soluble interleukin-6 alpha subunit and a membrane-bound

signal-transducing subunit, IL6ST. The common IL6R Asp385Ala

variant is responsible for serum levels of soluble IL6R and IL6 and

associates with IL6R membrane binding due to altered cleavage

site [44], therefore, explaining our findings. The predominant

activation of trans-signaling IL6/soluble IL6R pathway in

aggressive prostate cancer [45], together with the functional

IL6R Asp358Ala influence in this mechanism, supports the

increased risk for high-grade prostate cancer we observed for C

carriers (Ala carriers).

Several of the candidate SNPs in adipokine pathways known to

affect oncogenesis, investigated here, were not associated with

prostate cancer risk. Most of our null results for candidate SNPs in

ADIPOQ+276, VEGF-460, VEGF+405, VEGF+936, PPARG

Pro12Ala and TNF-308, are in agreement with other studies

[14,17,46,47]. To our knowledge, there have been no prior reports

Table 2. Stepwise multivariate logistic regression and Bootstrap analyses.

All PCa Restricted to high-grade PCa
Restricted to high-risk PCa for
Metastasis

Multivariate
model Bootstrap

Multivariate
model Bootstrap

Multivariate
model Bootstrap

Genotype OR (95%CI)a OR (95%CI)b OR (95%CI)a OR (95%CI)b OR (95%CI)a OR (95%CI)b

Age at diagnosis 1.03 (1.01–1.05) 1.02 (1.00–1.04) 1.03 (1.01–1.05) 1.03 (1.01–1.06) 1.07 (1.03–1.11) 1.07 (1.03–1.11)

PSA at diagnosis 1.07 (1.04–1.09) 1.06 (1.04–1.09) 1.07 (1.05–1.10) 1.07 (1.04–1.11) 1.07 (1.04–1.09) 1.14 (1.09–1.19)

LEPR Gln223Arg G carriers Referent Referent Referent Referent Referent Referent

(A.G) AA 1.52 (1.14–2.02) 1.53 (1.13–2.07) 1.56 (1.15–2.12) 1.57 (1.14–2.14) 1.50 (0.91–2.45) 1.55 (0.93–2.58)

SPP1-66 T.G T carriers Referent Referent Referent Referent Referent Referent

GG 1.86 (1.07–3.23) 1.77 (1.00–3.13) 1.97 (1.10–3.52) 1.89 (1.03–3.49) 2.64 (1.16–6.01) 2.52 (1.12–5.64)

IGF1R+3174 G.A G carriers Referent Referent Referent Referent

AA 1.33 (0.93–1.89) 1.34 (0.94–1.93) 1.40 (0.96–2.05) 1.39 (0.93–2.09) – –

IGFBP3-202 A.C A carriers Referent Referent Referent Referent

CC 1.40 (1.02–1.92) 1.38 (1.01–1.88) 1.40 (1.00–1.95) 1.39 (1.00–1.93) – –

FGF2+223 C.T T carriers Referent Referent Referent Referent Referent Referent

CC 1.45 (0.98–2.14) 1.45 (0.98–2.16) 1.55 (1.00–2.38) 1.54 (1.00–2.38) 2.20 (1.01–4.78) 2.22 (1.02–4.85)

IL6-597 G.A AA Referent Referent Referent Referent

G carriers 1.42 (0.92–2.19) 1.37 (0.88–2.13) 1.61 (0.99–2.62) 1.58 (0.97–2.56) – –

Age and PSA analyzed as continuous variables. PCa, prostate cancer. aStepwise multivariate logistic regression; bMonteCarlo simulation (1000 replications). Empirical
confounding variables were independently analyzed in each model (overall prostate cancer and both restricted groups).
doi:10.1371/journal.pone.0039236.t002

Table 3. Tertiles of inclusive genetic risk score (GRS) and age-adjusted OR (CI 95%) for prostate cancer.

Inclusive Risk Score Non-prostate cancer All prostate cancer High-grade prostate cancer

Tertiles N N aOR (95%CI) N aOR (95%CI)

T1 185 78 Referent 46 Referent

T2 186 101 1.2 (0.9–1.8) 85 1.7 (1.1–2.6)

T3 186 270 3.2 (2.3–4.6) 243 4.8 (3.2–7.2)

Tertiles for all prostate cancer: T1 (,2.74897), T2 (2.74897–3.15913), T3 ($3.15913). Tertiles for high-grade prostate cancer: T1 (,2.85839), T2 (2.85839–3.30669), T3
($3.30669). The genetic risk scores were computed separately derived for overall and high-grade prostate cancer. aOR, age-adjusted ORs (95%CI).
doi:10.1371/journal.pone.0039236.t003
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of null associations of KDR-604, PPARD-87, PPARGC1A Gly482-

Ser, TNFRSF1A-329, ADIPOQ+45, ADIPOQ-11426, IL6ST

Gly148Arg, IL6-6331, and TNF-863 functional SNPs with prostate

cancer.

We observed that some SNPs have a significant risk effect

mainly in younger ages. The all-life exposure to increased levels of

adipokines and pathway activation may influence early develop-

ment of prostate cancer. Furthermore, IL6R Asp358Ala and

IGF1R +3174 SNPs were significantly associated with early-onset

prostate cancer, possibly due to accelerated tumor formation.

We tested each SNP for association with two clinically-relevant

definitions of unfavorable outcomes: high-grade (combined

Gleason score $7) and high-metastasis risk (combined Gleason

score $8 and/or PSA$20 ng/mL) prostate cancers. Combined

Gleason score is a powerful predictor of disease progression and

mortality [48], whereas Gleason score $8 is associated with

aggressive biological behavior and increased risk of occult

Figure 2. ROC curves and AUC for the inclusive risk score and PSA plus age alone. (A) All prostate cancer and (B) restricted to high-grade
prostate cancer. Solid line corresponds to the all inclusive score, whereas dashed line represents the PSA and age risk score. The dotted line indicates
the behavior of a hypothetical random score. The Likelihood ratio test was used to estimate the superiority of the inclusive risk score relative to that
of the age+PSA score for all prostate cancer (inclusive: AUC = 0.6806, PSA and age: AUC = 0.6476, P = 0.0002) and high-grade prostate cancer
(inclusive: AUC = 0.7119, PSA and age: AUC = 0.6808, P = 0.0001). PSA, prostate specific antigen.
doi:10.1371/journal.pone.0039236.g002
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disseminated disease [49]. We found functional variants in genes

from leptin, osteopontin, insulin growth factor, fibroblast growth

factor 2 and interleukin 6 pathways to be related with high-grade

prostate cancer, while SNPs in the leptin, osteopontin and

fibroblast growth factor 2 axis associate with high-metastasis risk

prostate cancer. These pathways are known to be involved in

aggressive prostate cancer, lending support for these SNPs as

clinical markers of aggressive disease. The SNPs in the risk score

predict high grade/aggressive disease, but they also predict overall

prostate cancer risk. The ability to predict overall as well as high

grade cancers might be due to the significant proportion of high

grade prostate cancer (Gleason$7) (83%) in our cancer popula-

tion.

Although a wealth of evidence demonstrates the effects of

individual adipokines on prostate carcinogenesis, it is unlikely that

the overall pathophysiological impact is due to the influence of a

single adipokine in vivo. We showed that consideration of the

cumulative susceptibility contributed by SNPs from adipokine

pathways helps in risk stratification. Our analyses indicate that the

inclusive (age and PSA added to the multi-locus genetic set) risk

score provides improvements in discrimination and prediction of

all prostate cancer, and high-grade prostate cancer. We suggest

that risk genotypes in the inclusive model may cooperate to

influence the endocrine and paracrine activity of adipokine

pathways that leads to tumor development and progression.

However, the mechanisms underlying these high-order interac-

tions among genetic polymorphisms in adipokine pathways genes

in modulating prostate cancer risk remain to be fully elucidated.

In this cohort of men subjected to prostate biopsy due to

abnormal clinical and/or PSA findings where an extensive biopsy

scheme was used, we showed that by adding a genetic score based

on 7 SNPs significantly improved the discriminative ability of an

established parsimonious model with only PSA and age. The AUC

increased significantly from 0.65 to 0.68 for all prostate cancer and

from 0.68 to 0.71 in high grade prostate cancer, when the genetic

variants were added to the model. Furthermore, the improved

predictive value of the score for prostate cancer risk persisted with

a four SNPs risk score (excluding SNPs deviated from Hardy-

Weinberg equilibrium). Although we present the largest effort to

date to study the association between adipokine genetic risk score

and risk of prostate cancer, our results should be interpreted in the

context of several potential limitations. We took a focused

candidate gene approach to evaluate key SNPs in adipokine

pathways but our SNP panel could be incomplete. Likewise,

several newly reported prostate cancer risk-associated SNPs from

genome-wide association studies were not included in the risk

prediction model. Had we been able to include them, the overall

risk prediction might have improved. We also estimated risk

associations in this study population with an exploratory intent,

without having the opportunity to validate our findings in a

separate sample of patients undergoing prostate cancer screening.

Therefore, further studies in independent populations are

required. Finally, despite our relatively large sample size, we had

limited statistical power to examine genetic variants in relation to

high-metastasis risk prostate cancer, because of the small number

of cases in this group. However, our study has several strengths: i)

it was prospective and large enough for key outcomes of interest, ii)

most of the genes and SNPs selected were based on biological

evidence of functional importance; iii) study design and statistical

analyses accounted for relevant risk factors such as ethnicity and

age [50], and although we did not have data on heredity

information in a large set of subjects, only 2.2% were actually

younger than 55 years of age, suggesting that hereditary prostate

cancers were rare in our sample; iv) we used statistical strategies to

assess the robustness of associations, such as bootstrap resampling

and discrimination improvement measures; and v) all men were

screened for prostate cancer based on both PSA level and digital

rectal exam during the recruitment period and diagnosis was

determined by standard biopsy, thus making outcome misclassi-

fication unlikely.

In summary, we identified SNPs in adipokine pathways that are

associated with prostate cancer development and with a more

aggressive phenotype. The inclusion of SNPs in the risk score

model significantly improved, albeit modestly, the performance of

PSA and age to predict overall prostate cancer and high-grade

prostate cancer risk in men subjected to biopsy. The inclusion of

further functional SNPs in a susceptibility model for prostate

cancer is warranted, in order to determine a multi-locus model to

accurately predict prostate cancer and disease aggressiveness. The

use of improved risk models, such as the one described here, may

impact public health strategies if shown to have clinical utility

when combined with individualized screening and risk reduction

strategies.

Materials and Methods

Ethics Statement
This study was approved by the ethics committees of Porto

Military Hospital and São João Hospital (Porto, Portugal). Patients

were included after signing a written informed consent.

Subjects
Participants were enrolled between September 2007 and

October 2010, after being referred to the urology departments

of the participating hospitals for prostatic transrectal ultrasound

guided biopsy (8–13 cores), on the basis of abnormal digital rectal

examinations and/or single baseline PSA levels over 2.5 ng/mL.

Our study population consisted of 1099 consecutively-admitted

Caucasian men who had histological evaluation and consented for

genotyping.

We selected a control group of patients with non-prostate

cancer (benign prostate hyperplasia [BPH] or chronic prostatitis)

from the prospectively enrolled men undergoing prostate biopsy.

Our choice of this control group was based on the following

reasons: (i) diagnosis was contemporary with that of cancers; (ii)

their advanced age at diagnosis allowed matching with elderly

cancer patients; (iii) all patients underwent digital rectal examina-

tion, PSA testing and prostate needle biopsy, making the possibility

of crossover remote. Most men develop BPH or chronic prostatitis

by the 7th–8th decades of life, making it normal in men of that age

to carry benign prostatic disease. This permitted our control group

subjects to have comparable ages to those of our prostate cancer

patients, thus minimizing the likelihood of outcome misclassifica-

tion. Had we restricted controls to men without prostatic disease

there would have been a severe imbalance in age distributions,

which would introduce bias.

Prostate pathology and Gleason scores were determined via

biopsy. In re-biopsed individuals only the last, most relevant

pathological diagnosis was considered. Ninety-three men were

excluded from the study due to a pathology report of high-grade

prostatic intraepithelial neoplasia or a biopsy suspicious of cancer

only. None of the participants had undergone prostate cancer

treatment (hormonal castration, surgery, chemotherapy, or

radiotherapy). All remaining 1006 eligible patients were included

for molecular analysis.
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Genetic Variants and Genotyping
Candidate SNPs were selected from the best evidence from

published studies and through public databases that provide

information on the phenotypic risks. Candidate genes involved in

adipokine pathways known to affect oncogenesis were selected.

SNPs with minor allele frequencies ,0.05 were excluded. A total

of 29 literature-defined putative functional SNPs in 19 different

genes were selected, corresponding to 9 adipokine pathways

(Table S1).

Genotyping for 22 SNPs (two in ADIPOQ, IL6, IL6R, KDR,

three in VEGF, LEP, two in LEPR, PPARG, PPARGC1A, PPARD,

SPP1, IGF1R, IGFBP3, IRS1, FGF2, FGFR2, TNF, TNFRSF1A) was

performed using TaqMan allelic discrimination (Applied Biosys-

tems), whereas 7 SNPs were genotyped through polymerase chain

reaction - restriction fragment length polymorphism analysis (IL6-

597/2572/2174, ADIPOQ+45, IL6ST Gly148Arg, LEPR

Gln223Arg and TNF-863), using previously described protocols.

For quality control we used non-template controls in all runs and

blind replicate genotype assessment in 5% of the samples. For the

majority of SNPs, we observed almost complete concordance

among duplicates.

Statistical Analysis
The Mann-Whitney test was used to compare means between

prostate cancer and non-cancer groups. The chi-square test was

used to test for departures from Hardy-Weinberg equilibrium for

each SNP based on the distribution among the non-prostate

cancer group.

Unconditional logistic regression was used to estimate age-

adjusted odds ratios (aORs) and 95% confidence intervals

(95%CIs) for the associations between the polymorphisms and

development of prostate cancer based on both recessive and

dominant models. We examined the association of genetic markers

with overall prostate cancer, restricted to high-grade prostate

cancer (combined Gleason score $7), and restricted to high-risk

prostate cancer for metastasis (PSA at diagnosis $20 ng/mL and/

or combined Gleason score $8). Sensitivity analyses were

conducted on the risk-associated SNPs that exhibited deviation

from Hardy-Weinberg equilibrium. This was done by restricting

the non-prostate cancer group to normal/BPH histology, and with

serum PSA ,4 ng/mL and then retesting the risk associations and

departure from Hardy-Weinberg equilibrium.

To assess whether risk-associated SNPs affected time to clinical

onset of disease we constructed Kaplan-Meier plots of the

cumulative probabilities for having prostate cancer diagnosed at

different ages according to each SNP. This analysis was conducted

among prostate cancer cases only.

Stepwise multivariate logistic regression with backward elimi-

nation (P-value for retention = 0.15) was conducted in SNPs with

aOR #0.7 or aOR $1.3 (30% decrease or increase in odds of the

outcome) plus age and PSA as continuous variables. Bootstrapping

analyses were performed through MonteCarlo simulation (1000

replications).

We constructed an inclusive multi-locus genetic risk score for

each participant by summing the coefficients for each of the

resulting variables after stepwise regression analyses. For each

SNP, the risk genotypes were coded as 1 and the non-risk alleles as

0. The model was determined by multiplying the b coefficient by

the SNPs, plus the c coefficient by the PSA value and the a
coefficient by the patient’s age (Inclusive Risk Score =S bi x Xi+c
x PSA+a x Age; where Xi = SNPs scaled for risk, bi = coefficient

for SNPs, c= coefficient for PSA, a= coefficient for Age). A

parsimonious risk score was calculated based on a model that

included only PSA and age at diagnosis. These models were fitted

independently using all prostate cancers and then restricted to

high-grade prostate cancers as outcomes. A likelihood-ratio test

was used to assess the goodness of fit between the two logistic

regression models.

We assessed the clinical value of the above two scores in

correctly predicting disease status by receiver operating charac-

teristic (ROC) curve analysis. We compared the areas under the

ROC curves (AUC) constructed with both scores (with and

without genetic information), both for all prostate cancers and

high-grade cancers, using a non-parametric algorithm [51].

We evaluated the improvement in model performance (PSA

and age risk score) introduced by the inclusion of the SNPs risk

information, using the net reclassification improvement (NRI) and

the integrated discrimination improvement (IDI) tests [52,53]. The

NRI measures the reclassification of men from one risk category to

another by addition of the genetic information to the PSA and age

prediction model, and the extent of clinical utility can be evaluated

by the magnitude of the NRI. The IDI does not consider risk

thresholds; rather it is the mean of increments and decrements in

estimated probabilities of prostate cancer for cases and non cases,

comparing models. Since the NRI measurement is heavily

dependent on the threshold levels used, we used a threshold

probability between 15% and 45%, similar to those previously

reported in such clinical context [54].

All statistical analyses were conducted in STATA version 10.0

(StataCorp, College Station, Texas). For NRI and IDI calcula-

tions, we used the nriidi-package for Stata 11 [53].

Supporting Information

Table S1 Characteristics of candidate Single Nucleotide
Polymorphisms (SNPs) involved in adipokine pathways
potentially associated with cancer. HW-E, Hardy-Weinberg

Equilibrium; ADIPOQ, adiponectin gene; IL6, interleukin-6 gene;

IL6R, interleukin-6 receptor gene; IL6ST, interleukin-6 signal

transducer gene; KDR, vascular endothelial growth factor receptor

2 gene; VEGF, vascular endothelial growth factor gene; LEP, leptin

gene; LEPR, leptin receptor gene; PPARGC1A, Peroxisome

proliferator-activated receptor gamma co-activator 1 alpha gene;

PPARD, Peroxisome proliferator-activated receptor delta gene;

PPARG, Peroxisome proliferator-activated receptor gamma gene;

SPP1, osteopontin gene; IRS1, insulin receptor substrate 1 gene;

IGFBP3, insulin growth factor binding protein 3 gene; IGF1R,

insulin growth factor 1 receptor gene; FGF2, fibroblast growth

factor 2 gene; FGFR2, fibroblast growth factor receptor 2 gene;

TNF, tumoral necrosis factor alpha gene; TNFRSF1A, tumoral

necrosis factor receptor 1 gene. a The percentage of successfully

genotyped DNA samples from the 1006 participants.

(DOC)

Table S2 Age-adjusted Odds Ratios and 95%CI of
prostate cancer (PCa) according to adipokine pathways
polymorphisms. N, number of evaluable patients; SNP, single

nucleotide polymorphism; OR (95%CI), age-adjusted odds-ratio

and respective 95% confidence interval. a HGPCa,High-grade

Prostate Cancer (Gleason grade $7). b HRPCaM, High-risk

Prostate Cancer for metastasis (Gleason grade $8 and/or PSA

$20 ng/mL).

(DOC)

Table S3 Age-adjusted Odds Ratios and 95%CI for
prostate cancer (PCa) associated with selected SNPs,
after age stratification. a High-grade Prostate Cancer,

Gleason grade $7; b High-risk Prostate Cancer for metastasis,

Gleason grade $8 and/or PSA $20 ng/mL; aOR (95%CI), age-
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adjusted odds ratio and respective 95% Confidence Interval; PCa,

Prostate Cancer; Median age at diagnosis = 67.5 years; *Evaluable

individuals for analysis.

(DOC)

Table S4 Sensitivity analysis in SNPs with deviation
from Hardy-Weinberg equilibrium. Risk for prostate cancer

after restriction on the non-prostate cancer group to just benign

prostate hyperplasia and normal or to PSA below 4 ng/mL.

*Hardy-Weinberg equilibrium, Pearson chi-square analysis for

differences between observed and expected genotype frequencies;

**Age-adjusted odds ratios; BPH, Benign Prostate Hyperplasia;

PSA, Prostate-specific Antigen; PSA, prostate-specific antigen;

SNP, signle nucleotide polymorphism; aOR (95%CI), age-

adjusted odds ratio and respective 95% confidence interval. a

Biopsy findings: normal, 14.9%; BPH, 5.4%, chronic prostatitis,

74.7%; atrophy, 5%; b Biopsy findings: normal, 73.5%; BPH,

26.5%; c Biopsy findings: normal, 22.2%; BPH, 6.0%, chronic

prostatitis, 65.8%; atrophy, 6.0%.

(DOC)
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ABSTRACT 
 
Purpose: In this study we sought if, in their quest to handle hypoxia, prostate tumors express target 
hypoxia-associated molecules and their correlation with putative functional genetic polymorphisms. 
Methods: Representative areas of prostate carcinoma (n=51) and of nodular prostate hyperplasia 
(BPH) (n=20) were analysed for HIF-1, CAIX, LOX and VEGFR2 immunohistochemistry expression 
using a tissue microarray. DNA was isolated from peripheral blood and used to genotype functional 
polymorphisms at the corresponding genes (HIF1A +1772 C>T, rs11549465; CA9 +201 A>G; 
rs2071676; LOX +473 G>A, rs1800449; KDR – 604 T>C, rs2071559).  
Results: Immunohistochemistry disclosed predominance of positive CAIX and VEGFR2 expression in 
epithelial cells of prostate carcinomas compared to BPH (P=0.043 and P=0.035, respectively). In 
addition, the VEGFR2 expression score in prostate epithelial cells was higher in organ-confined and 
extra prostatic carcinoma compare to BPH (P=0.031 and P=0.004, respectively). Notably, for LOX 
protein the immunoreactivity score was significantly higher in organ-confined carcinomas compare to 
BPH (P=0.015). The genotype-phenotype analyses showed higher LOX staining intensity for carriers 
of the homozygous LOX +473 G-allele (P=0.011), and that KDR -604 T-allele carriers were more 
prone to have higher VEGFR2 expression in prostate epithelial cells (P<0.006). 
Conclusions: The expression on prostate epithelial cells of VEGFR2, CAIX and LOX allowed 
differentiating malignant from benign prostate disease. Two of the genetic polymorphisms (LOX +473 
G>A and KDR – 604 T>C), account for a potential gene-environment effect in the activation of 
hypoxia-driven pathways in prostate carcinoma. Further research in larger series is warranted to 
validate present findings. 
 
Keywords: genetic polymorphism; hypoxia; immunohistochemistry; prostate cancer; 
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INTRODUCTION 
 

Prostate carcinoma is a common and heterogeneous malignant neoplasia, with 
aggressiveness differing among individuals despite similar clinicopathological characteristics.  

During tumor growth, the oxygen supply and nutrients scarcity urges malignant cells to signal 
to the microenvironment their needs. The hypoxia inducible factor 1 alpha (HIF-1α) is a key factor by 
which tumors regulate the response to hypoxia, triggering cascades with pro-tumoral effects [1,2]. 
HIF-1 mechanism implies targeting hypoxia response elements in promoters of downstream target 
genes, notably vascular endothelial growth factor (VEGF), carbonic anhydrase IX (CAIX), and lysyl 
oxidase (LOX) promoters, resulting in more aggressive, treatment resistant phenotype [1-3]. In 
prostate carcinoma, a large study has demonstrated the relevance of intrinsic markers of tumor 
hypoxia for localized disease and outcome of radical treatment [4]. 

Recent findings indicate that genetic variants may modulate the predisposition for prostate 
carcinoma and associate with clinical outcome [5,6]. Single nucleotide polymorphisms (SNPs) in 
genes coding for molecules involved in the response to hypoxia, particularly a functional 
polymorphism in HIF1A gene at locus +1772 C>T [7-13], has been studied in association with 
prostate carcinoma with controversial results. However, we are not aware of studies implicating SNPs 
in other genes (e.g. LOX, CA9, KDR) of HIF-1α-mediated hypoxia downstream pathways. 

Based on the role of hypoxia-associated molecules in cancer, we hypothesized an 
association, at the genetic and protein level, between HIF1A, LOX, CA9 and KDR genetic variants, 
the protein expression and prostate carcinoma. Hence, if these polymorphisms modulate the protein 
expression, then the knowledge of the genotype could help to identify patients at higher risk for 
prostate carcinoma and eventually more aggressive disease. 

 
MATERIAL AND METHODS  
 

Seventy-one patients with prostate pathology (n=51 with carcinoma, and n=20 with nodular 
hyperplasia, BPH) and elective for prostatic surgery at the Porto Hospital Centre - Sto. António 
Hospital and Porto Military Hospital were included, after informed consent ans approval by hospitals’ 
ethical committees. Inclusion criteria were 45-75 years of age and for prostate carcinomas absence of 
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previous treatments. Patient’s clinicopathological data (Table 1) was collected from clinical files and 
pathological staging determined as organ-confined (T1-T2) (OCPCa) or extra prostatic (T3-T4) 
(EPCa) disease.  

The white cell fraction from peripheral blood was used to extract DNA (QIAmp DNA Blood 
Mini Kit, Qiagen). Four putative functional SNPs (3 non-synonymous and 1 in the promoter region) in 
4 candidate genes involved in key hypoxia pathways were selected (HIF1A +1772 C>T, rs11549465; 
CA9 +201 A>G, rs2071676; LOX +473 G>A, rs1800449; KDR -604 T>C, rs2071559). Genotyping 
was done by Real-Time PCR using Taqman ssays (Applied Biosystems).  

Representative areas of carcinoma and of nodular hyperplasia were selected and included 
into tissue microarray as previously described [14]. Slides were stained with mouse monoclonal 
antibody to HIF-1 (dilution 1:100, NB100-105, Novus Biologicals), and rabbit polyclonal antibodies to 
LOX, (dilution 1:100, ab 31238, Abcam), VEGFR2 (dilution 1:200, ab 2349, Abcam) and CAIX, 
(dilution 1:1000, NB100-417, Novus Biologicals) using the VENTANA BenchMark XT series slide-
staining instrument (with the VENTANA ultraView DAB IHC detection kit, VENTANA, Tucson, AZ, 
United States). Immunohistochemical evaluation was independently reviewed by two pathologists 
(JRV and AC) to assess VEGFR2 expression in vasculature and prostate epithelial cells, and HIF-1, 
LOX and CAIX in prostate epithelial cells (carcinoma and nodular hyperplasia). Discordant cases 
were discussed in order to attain a final consensus. Staining positivity was sought for VEGFR2 in 
vessels and epithelial cells, whereas CAIX, HIF-1 and LOX expression was only performed in 
prostatic epithelial cells (both in carcinoma and nodular hyperplasia). Briefly, scores were calculated 
as following: VEGFR2 intensity was multiplied by the percentage of tumor cells at that intensity level 
(VEGFR2 H-score); for LOX the score was calculated by multiplicating the percentage of positive cells 
with staining intensity (LOX immunoreactivity score, IRS). A representative image of the expression of 
each aforementioned protein is shown in Figure 1. 

Descriptive statistics included means with respective standard errors, whereas departure from 
normality was assessed with Shapiro-Wilk test. Groups were compared through Kruskal-Wallis and 
Mann-Whitney test or Student t-test. Pearson chi-square tests were used to compare frequencies 
among categorical variables. Analyses were performed in SPSS 17.0. 
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RESULTS  
 
 Epithelial cells staining positivity for CAIX and VEGFR was significantly higher in prostate 
carcinomas compared with BPH (P=0.043 and P=0.035, respectively) (Figure 2). Concurrently, 
despite non-significant, both HIF-1 and LOX immunoreactivities had a tendency to be elevated in 
carcinomas (P=0.111 and P=0.266, respectively) (Figure 2). Notably, although not significantly more 
expressed in prostate carcinomas, the LOX IRS, was significantly more elevated in organ-confined 
carcinomas than BPH (P=0.015) (Figure 3), and higher in patients with positive HIF-1 expression 
(P=0.053) (Figure 4). VEGFR2 immunoreactivity was observed in vascular endothelial cells (only in 
20% of all samples) and epithelial cells (70% of patients with extra prostatic carcinomas and 
approximately half of organ-confined carcinomas). Noteworthy, the VEGFR2 H-score in epithelial cells 
was statistically distinct between BPH and organ-confined or extra prostatic carcinomas (P=0.031 and 
P=0.004, respectively) (Figure 5).  

The genotypic distribution in polymorphisms HIF1A +1772 C>T, LOX +473 G>A, CA9 +201 
A>G and KDR -604 T>C is shown in supplementary table 1. There was no over-represented genotype 
in disease groups. Regarding genotype-phenotype relation, there was lack of association between 
HIF1A +1772 C>T and CA9 +201 A>G genotypes with HIF-1 and CAIX protein expression (Table 2). 
In contrast, LOX expression was significantly more intense in carriers of the LOX +473 homozygous 
G allele compared to AA/AG (P=0.011), despite no significance was achieved for IRS (but with similar 
trend) (Figure 6). Alongside, KDR -604 T-allele carriers were more prone to have VEGFR2 expression 
in prostate epithelial cells but not in vessels (Table 3). The VEGFR2 H-score was significantly higher 
in T-allele carriers compared to homozygous C (Figure 7).  

Only data from prostate carcinomas was used to evaluate if hypoxia proteins associated with 
Gleason score or PSA>10 ng/mL (Table 4). Statistical trends were observed for higher VEGFR2 H-
score expression in more undifferentiated carcinomas (Gleason 7) (P=0.099) and in patients with 
prostate specific antigen (PSA)  10 (P=0.085), and for positive CAIX expression in prostate 
carcinomas from patients with PSA above 10 (P=0.078). 
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DISCUSSION 
 

The hypoxia-driven HIF-1 upregulation activates downstream pathways involved in 
metabolism (e.g. CAIX), angiogenesis (e.g. VEGF/VEGFR2 pathway) and extracellular matrix activity 
(e.g. LOX), which can modulate cancer behavior [15]. Experimental and clinical studies in prostate 
carcinoma demonstrated that HIF-1 overexpression was associated with malignancy, progression 
and metastatic potential [16] [4]. Here, we found a non-significant statistical trend for higher HIF-1 
protein expression in prostate carcinomas compared to BPH, which may be due to the limited number 
of samples.  

Besides vascular endothelial cells also prostate epithelial cells express VEGFR2, which were 
shown to signal through the AKT/mTOR/P70S6K pathway [17]. We found that VEGFR2 was 
expressed in the epithelium and endothelial cells, though more frequently expressed in epithelial 
tumor cells of organ confined or extra prostatic carcinomas than in BPH. Hence, in the prostate 
VEGFR2 expression is mainly expressed in malignant epithelium where its ligand VEGF may exert a 
direct effect in tumor cell growth. Previous immunohistochemistry studies reported VEGFR2 
expression in high-grade prostate intra-epithelial neoplasia and carcinomas of the prostate [18], 
whereas gene expression findings in prostate cancer cell lines evidenced suppressive growth and 
promotion of apoptosis with KDR antisense oligonucleotide [19]. Taken together with present data, 
these findings indicate that VEGFR2 expression in epithelial prostate carcinoma cells supports a 
function for VEGF that is not limited to angiogenesis. Thus, abrogation of VEGFR2 signalling in 
malignant epithelial cells may prove an effective therapeutic modality for the treatment of prostate 
cancer. At present, two anti-angiogenic drugs are being tested in the phase III setting for men with 
prostate cancer, carbozantinib (a dual VEGFR2/MET inhibitor) and tasquinimod (down-regulator of 
HIF-1), that showed beneficial and encouraging results on phase II trials [20]. 

Tumor cells have to adapt to the hypoxia-driven switch in metabolism, with consequent 
acidosis, in order to survive. CAIX is a membrane-bound protein crucial for pH regulation in the highly 
metabolically active malignant cells. In agreement, carbonic anhydrase IX gene (CA9) is a target of 
HIF-1α and is up-regulated in response to hypoxia [21]. CA9 mRNA expression increases reliably 
following hypoxia incubation of PC-3 cells [22], although no significant differences on mRNA 
expression were found when comparing BPH with prostate carcinomas [3]. Other studies described 
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lack of CAIX expression in primary prostate carcinoma and hypothesized alternate pathways for 
maintaining pH balance [23,24]. Conversely, our results disclosed increased frequency of cases with 
epithelial cell positivity for CAIX expression in organ confined and extra prostatic carcinomas 
compared to BPH. Our findings taken together with reports of CAIX expression in epithelial prostate 
carcinoma cells [22,3] sustain the need for reconsidering CAIX role in prostate carcinoma.  

The lysyl oxidase gene (LOX), was shown to be directly regulated by HIF-1α transcription 
factor and essential for hypoxia-induced metastasis and cancer cell proliferation [25]. In the prostate 
we found that LOX immunoreactivity score was associated with HIF-1 positivity, thus supporting the 
regulatory nature of HIF-1 in LOX expression. Furthermore, although the number of cases with 
positive LOX expression in carcinomas was similar to BPH, the LOX IRS was significantly higher in 
organ confined prostate carcinomas compared with BPH. Interestingly, increased expression of LOX 
mRNA in prostate carcinomas compared with BPH was previously observed [3]. LOX biological 
functions that include effects in cell growth, migration and polarity agrees with the increased LOX 
expression found in our carcinoma samples.  

In this study, evaluation of protein expression according to SNPs in their coding genes 
disclosed a genotype-phenotype effect for the LOX and KDR SNPs, but no functional validation at the 
protein level was observed for the studied HIF1A and CA9 SNPs. The C-to-T substitution at locus 
+1772 (rs11549465) in HIF1A gene localizes in the oxygen-dependent domain of the gene where the 
variant allele was shown to stabilize HIF1A mRNA and enhance HIF1A transcriptional activity [26]. 
Notwithstanding the functional rationale, association of this SNP with prostate carcinoma risk and with 
microvessel density, yielded conflicting results [7,9,13,12]. In our study, the lack of statistical 
differences in HIF1A +1772 C>T genotypes for HIF-1 protein expression, agrees with a previous 
report in prostatic carcinoma [9]. However, the low frequency of TT carriers in our sample (only 2 
cases) may have influenced statistical power, since the HIF-1α protein and mRNA overexpression 
have been associated with the TT genotype [8,27].  

A functional genetic variant on KDR gene that codifies for VEGFR2 is located in the promoter 
region (-604 T>C, rs2071559), where the C-allele has been associated with lower transcription 
activity, and decreased serum VEGFR2 level [28]. Interestingly, we found that T carriers had a 
significantly higher VEGFR2 expression in prostate epithelial cells, thereby suggesting that this SNP 



8  

might prove useful for predictive and/or prognostic evaluations in prostate carcinoma, warranting 
future studies.  

A SNP in exon 1 of CA9 gene is located at locus +201 (rs2071676), where an A-to-G 
substitution leads to a change of valine-by-methionine in codon 33. Even though we observed an 
overrepresentation of CAIX positive immunoreactivity in prostate carcinoma compared to BPH, the 
nonsynonymous SNP in CA9 +201 was unable to explain variations in the levels of CAIX protein 
expression in the prostatic tissue, suggesting lack of influence in protein expression, even though the 
impact of this nonsynonymous substitution (valine to methionine) in CAIX protein activity remains to 
be confirmed.  

The LOX gene is translated and secreted as a proenzyme (Pro-LOX), and then processed to 
a functional enzyme (LOX) and a propeptide (LOX-PP) . We studied a SNP in LOX gene that has 
been identified at locus +473 G>A (rs1800449), that cause an aminoacid substitution (Arg158Glu). 
This SNP locates at a highly conserved region within LOX-PP, where the A-allele was found to 
decrease the protective capacity of LOX-PP, while increasing the Pro-LOX-associated invasive ability 
of tumor cells [29]. When evaluating LOX immunoreactivity and expression intensity by 
immunohistochemistry in prostate tissues, we found it significantly lower in carriers of the LOX +473 
A-allele. In the present study, we found that LOX was primarily present at the nucleus of epithelial 
cells, which fits with other reports asserting that this enzyme may have important functions in 
secretory cells, as catalyser of histones in the nucleus [30]. Thus, our findings seem to suggest a 
wider variety of functions for LOX in prostate epithelial cells, beyond those related to cross-link 
formation in collagen and elastin, which merit further research. We hypothesize that the trafficking of 
LOX towards inside the cell or a specific cell compartment may be subordinated to the structural 
molecular characteristics and folding of the protein, which could be determined by LOX +473 G>A 
polymorphism.  

Our endeavour to study the genotype-phenotype correlation in key hypoxia markers and its 
association with prostate cancer yielded encouraging findings, even though results should be 
interpreted in the context of potential limitations. The lack of statistical significance for genotypic 
frequencies between disease groups on the putative functional target SNPs in HIF1A, LOX, CA9 and 
KDR likely reflects underpowered sample size. This was a major issue as conclusions were 
impracticable for genetic association analysis and limited for genotype-phenotype inferences. Further 
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limitations arisen from stratification of carcinomas by stage, Gleason score or PSA level, showing at 
most only statistical trends for increased expression of VEGFR2 and CAIX in more aggressive 
phenotypes. Nevertheless, considering the hypothesis-generating nature of this study, we report 
findings that provide important clues to further work in larger samples. Another issue may be related 
with raised concern over similar hypoxic dysregulation for both prostate carcinoma and benign 
hyperproliferative diseases. However, inclusion of BPH patients as controls arranged for age-
matching with elderly prostate cancer patients, similar clinical and diagnostic procedures (including 
prostate biopsy) making the possibility of crossover remote; and this group represents the normality in 
men at that age, since most men of that age carry benign prostate hyperplasia.  

Prostate carcinoma triggers an increase in hypoxia, which regulates HIF1A that in turn 
impacts downstream the expression of LOX, CAIX and VEGFR2 in tumor cells. In this study we 
observed that the inherited genetic variants in LOX and KDR seem to modulate the expression of 
LOX and VEGFR2 in carcinoma cells, supporting a gene-environment interaction in the activation of 
hypoxia-driven pathways in prostate carcinoma. Results presented here warrant further research in 
larger samples in order to evaluate the predictive and prognostic value of KDR and LOX SNPs in 
prostate carcinoma. 
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LEGENDS  
 
Figure 1. Representative microscopy images of staining for hypoxia markers in prostate tissues (MO, 
400x). A) HIF-1α - notice the granular cytoplasmic immunoreactivity of the malignant epithelial cells. 
In this case, more than 50% of the glands stained. B) LOX - strong and diffuse nuclear 
immunoreactivity of the epithelial cells. C) CAIX - note a focal apical cytoplasmic immunoreactivity in 
epithelial cells. D)  VEGFR2 - moderate nuclear and weak cytoplasmic expression of the epithelial 
cells  
 
Figure 2. Frequency of patients with positive staining in benign (BPH) and malignant (organ-confined 
and extra prostatic disease) epithelial cells. CAIX, carbonic anhydrase IX; HIF-1, hypoxia inducible 
factor - 1 alpha; LOX, lysyl oxidase; VEGFR2, vascular endothelial growth factor receptor 2. BPH, 
nodular prostate hyperplasia; EP, extra prostatic disease; OC, organ-confined disease. 
 
Figure 3. Comparison of LOX immunoreactivity score in prostate epithelial cells of benign and 
malignant patients. BPH, nodular prostate hyperplasia; EP, extra prostatic disease; OC, organ-
confined disease. LOX, lysyl oxidase; IRS, immunoreactivity score. Kruskall-Wallis followed by Mann-
Whitney non-parametric tests were used to calculate differences between prostatic pathologies. 

 
Figure 4. LOX immunoreactivity score by HIF-1 positivity in epithelial cells. Patients with positive 
HIF-1 expression are prone to higher LOX IRS. HIF-1, hypoxia inducible factor – 1 alpha; LOX, 
lysyl oxidase. IRS, immunoreactivity score. Mann-Whitney non-parametric test was used to calculate 
differences between positive and negative HIF-1 expression. 
 
Figure 5. Expression of VEGFR2 (H score) in prostate epithelial cells according to prostatic diseases. 
BPH, nodular prostate hyperplasia; EP, extra prostatic disease; OC, organ-confined disease. 
VEGFR2, vascular endothelial growth factor receptor 2. Kruskall-Wallis followed by Mann-Whitney 
non-parametric tests were used to calculate differences between prostatic pathologies. 
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Figure 6. LOX protein expression (both for immunoreactivity score and staining intensity) according to 
LOX +473 G>A polymorphism. IRS, immunoreactivity score; LOX, lysy oxidase; a.u., arbitrary units. 
 
Figure 7. VEGFR2 protein expression (H score) according to KDR -604 T>C polymorphism. KDR, 
gene coding for VEGFR2 protein; VEGFR2, vascular endothelial growth factor receptor 2.  
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TABLES 
 
Table 1. Descriptive clinicopathological data of participating patients 

 BPH OCPCa EPCa 
Age at diagnosis, yrs 67.8  8.4 61.3  6.4 63.3  6.3 
PSA at diagnosis, ng/mL 5.5  5.1 6.6  2.4 11.9  5.6 
Weight of the prostate, g 94.8  32.1 45.9  14.3 56.6  22.7 
Gleason Score 
      < 7 
       7 

 
- 
- 

 
14 (43.8) 
18 (56.3) 

 
0 (0.0) 

19 (100) 
Percentage of tumor *, % - 15.0 (6.3 – 20.0) 57.0 (28.8 - 78.8) 

Descriptive data of continuous variables is presented as mean  standard deviation, except for 
percentage of tumor [data shown as median (interquartile range)]. Categorical variable is depicted as 
number of observations and respective frequencies. BPH, prostate nodular hyperplasia; EPCa, extra 
prostatic cancer; OCPCa, organ-confined prostate carcinoma; PSA, prostate specific antigen. * on 
prostatectomy specimens. 
 
 
Table 2. Association of the genetic polymorphisms in HIF1A +1772 C>T and CA9 +201 A>G with HIF-
1 and CAIX immunoreactivity in prostatic epithelial cells 

  Recessive models (HIF1A and CA9)  
HIF-1 expression  CC TT/CT P * 
      Negative  28 (0.76) 9 (0.24)  
      Positive  10 (0.77) 3 (0.23) 0.928 
      < 50%  32 (0.74) 11 (0.26)  
       50%  6 (0.86) 1 (0.14) 0.516 
CAIX expression  GG GA/AA  
      Negative  9 (0.75) 20 (0.69)  
      Positive  3 (0.25) 9 (0.31) 0.699 

* Fisher exact test  
 
Table 3. Association of the KDR-604 T>C genetic polymorphism with VEGFR2 immunoreactivity in 
vessels and in prostatic epithelial cells 

 Additive model   Recessive model  
 CC CT TT P *  CC TT/CT P * 
Vessels VEGFR+         
   Negative 11 (0.26) 22 (0.53) 9 (0.21)   11 (0.26) 31 (0.78)  
   Positive 3 (0.25) 5 (0.42) 4 (0.33) 0.681  3 (0.25) 9 (0.22) 0.626 
Epithelial cells VEGFR+         
   Negative 11 (0.39) 13 (0.47) 4 (0.14)   11 (0.39) 17 (0.42)  
   Positive 3 (0.11) 14 (0.54) 9 (0.35) 0.039  3 (0.11) 23 (0.58) 0.030 

* Fisher exact test 
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Table 4. Expression of proteins from hypoxia pathways in prostate cancer patients, by Gleason grade 
and PSA value  

PSA, prostate specific antigen; VEGFR2, vascular endothelial growth factor receptor 2; LOX, lysyl 
oxidase; HIF1a, hypoxia inducible factor 1 alpha; CAIX, carbonic anhydrase IX. a Kruskal Wallis and 
Mann-Whitney U tests for VEGFR2 H-score in epithelial cells; b Chi-square test.* Fisher exact test. 
 
 
 
 
 
 
 
 
 
 

 Gleason grade (n=38) PSA at diagnosis (n=36) 
 <7 7 P <10 10 P 
VEGFR2 H-score a 30.924.7 60.117.9 0.099 30.21.2 80.033.5 0.085 
LOX immunoreactivity score a 10.21.6 7.61.1 0.184 9.21.1 6.61.8 0.242 
HIF-1 expression b 
         Negative 
         Positive 

 
6 (0.50) 
6 (0.50) 

 
19 (0.73) 
7 (0.27) 

 
 

0.163 
 

17 (0.65) 
9 (0.35) 

 
8 (0.80) 
2 (0.20) 

 
 

0.335 * 
CAIX expression b 
         Negative 
         Positive 

 
10 (0.83) 
2 (0.17) 

 
15 (0.58) 
11 (0.42) 

 
 

0.117 * 
 

19 (0.73) 
7 (0.27) 

 
5 (0.50) 
5 (0.50) 

 
 

0.078 
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Supplementary table 1. Genotypic distribution of functional SNPs in genes of hypoxia pathways by 

disease status using additive and recessive models analyses 

 Prostatic disease status  

HIF1A +1772 C>T genotypes BPH OCPCa EPCa P * 

Additive model     

CC 10 (0.59) 23 (0.82) 14 (0.78)  

CT 5 (0.29) 5 (0.18) 4 (0.22)  

TT 2 (0.12) 0 (0.0) 0 (0.0) 0.144 

Recessive model     

CC 10 (0.59) 23 (0.82) 14 (0.78)  

TT/CT 7 (0.41) 5 (0.18) 4 (0.22) 0.205 

LOX +473 G>A genotypes   

Additive model     

GG 6 (0.71) 16 (0.55) 13 (0.72)  

GA 2 (0.29) 11 (0.38) 4 (0.22)  

AA 0 (0.0) 2 (0.07) 1 (0.06) 0.740 

Recessive model     

GG 6 (0.71) 16 (0.55) 13 (0.72)  

AA/GA 2 (0.29) 13 (0.45) 5 (0.28) 0.442 

CA9 +201 A>G genotypes     

Additive model     

GG 3 (0.38) 9 (0.31) 5 (0.29)  

GA 5 (0.62) 18 (0.62) 10 (0.59)  

AA 0 (0.0) 2 (0.07) 2 (0.12) 0.882 

Recessive model     

GG 3 (0.38) 9 (0.31) 5 (0.29)  

GA/AA 5 (0.62) 20 (0.69) 12 (0.71) 0.918 

KDR -604 T>C genotypes     

Additive model     

CC 6 (0.33) 8 (0.26) 3 (0.17)  

CT 8 (0.45) 15 (0.48) 13 (0.72)  

TT 4 (0.22) 8 (0.26) 2 (0.11) 0.436 

Recessive model     

CC 6 (0.33) 8 (0.26) 3 (0.17)  

TT/CT 12 (0.67) 23 (0.74) 15 (0.83) 0.515 

* Fisher exact test. BPH, nodular prostate hyperplasia; OCPCa, organ-confined prostate carcinoma; 

EPCa, extra prostatic carcinoma. CA9, carbonic anhydrase IX gene; HIF1A, hypoxia inducible factor 1 

alpha gene; KDR, vascular endothelial growth factor receptor 2 gene; LOX, lysyl oxidase gene.  
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ABSTRACT  

Purpose 
Androgen deprivation therapy (ADT) is commonly used to treat advanced and recurrent prostate 
cancer, although prognosis varies widely among individuals. We evaluated whether 
polymorphisms in adipokine pathway genes may predict clinical outcomes among prostate 
cancer patients. 
Patients and Methods 
We enrolled 483 patients who underwent ADT and genotyped them for 27 functional single 
nucleotide polymorphisms (SNPs) in 17 genes from 9 adipokine pathways. SNPs were also 
combined by pathway according to functional characteristics.  
Results 
The ADIPOQ +45 T>G G homozygous carriers were more likely to present biochemical 
progression (HR=4.1, 95%CI: 1.62-10.54) and to die (HR=5.0, 95%CI: 1.75-14.38) than T-allele 
carriers. Having the ADIPOQ +276 G>T G homozygous genotype and the tumor necrosis factor 
high activation genetic profile were associated with reduced likelihood of resistance to ADT 
(HR=0.71, 95%CI: 0.51-0.99 and HR=0.62, 95%CI: 0.41-0.93, respectively). Presence of the IL6 
-572 G>C C-allele was independently associated with all-cause mortality (HR=1.78, 95%CI: 
1.01-3.13). The LEPR Gln223Arg G-allele variant was associated with a more than twofold 
increased risk of developing metastasis (OR=2.1, 95%CI: 1.2-3.6). 
Conclusion 
Genetic polymorphisms in adipokine pathways might have a clinical role in evaluating prognosis 
among men treated with ADT. In addition, combined targeting of identified adipokine pathways 
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may represent a therapeutic strategy for castration-resistant prostate cancer, metastasis 
development, thus improving survival. 
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INTRODUCTION 
 In the last decades, depletion or blockage of androgen action has been the standard of 
care for men with advanced prostate cancer 1. Androgen deprivation therapy (ADT) results in 
decreased levels of serum prostate-specific antigen (PSA) as well as waning of androgen 
receptor (AR)-dependent growth. Response to treatment is not durable since patients become 
resistant to ADT, leading to castration-resistance status, an invariably fatal condition 2. Clinical 
and tumor biology factors that may partially account for disease burden and thus serve as useful 
prognostic predictors, include Gleason score, serum PSA and distant metastasis 3. Although 
mechanisms responsible for prostate cancer cell survival after ADT are not entirely understood, 
there is evidence that AR-dependent and AR-independent pathways may be implicated 4,5. Single 
nucleotide polymorphisms (SNPs) in genes involved in biosynthesis and metabolism of steroids 
and androgens seem to influence response to ADT 6-9. Recent findings showed also that 
susceptibility SNPs might also improve outcome prediction following ADT 10-13.  
 While germline DNA polymorphisms in androgen pathways were shown to influence the 
response to ADT, no study has examined the predictive role of polymorphisms in genes of 
adipokine pathways on clinical outcomes after ADT initiation. Adipokines are adipose tissue-
produced and obesity-related molecules known to be mechanistically involved in prostate tumor 
aggressiveness 14,15. Some functional SNPs in genes encoding molecules of these pathways have 
been shown to be associated with prostate cancer risk 16-19 and a recent study found that obese 
men were at increased risk of developing castration-resistant prostate cancer and metastasis 20. 
We studied a cohort of prostate cancer patients treated with ADT to examine the prognostic 
significance of 27 functional adipokine pathway SNPs with risk of metastasis, response to 
chemical/surgical castration, and all-cause mortality (ACM). 
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MATERIALS AND METHODS 
 Patients 
 Patients with histopathologically confirmed prostate cancer and treated with ADT 
between 1990 and 2009 were included in this study (n=513). Patients were recruited from 4 
Hospitals in Portugal: Portuguese Institute of Oncology – Porto Centre, Porto Military Hospital, 
Porto Hospital Centre, and Central Lisbon Hospital Centre. The research protocol and consent 
form were approved by the participating Institution’s Ethics Committees. All patients signed an 
informed consent. 
 ADT consisted of orchiectomy or treatment with luteinizing hormone releasing hormone- 
agonist (LHRHa) with or without anti-androgen after diagnosis of advanced or metastatic 
prostate cancer or after relapsing from primary local therapy with curative intent. Patients with 
adjuvant hormonal therapy for localized disease were excluded (n=24). Hormonal treatment was 
continued at least until disease progression, based on serum PSA levels, imaging, and clinical 
findings. The primary endpoint was resistance to ADT, defined as the time from ADT initiation 
to two consecutive rises of PSA (1 week apart) greater than the PSA nadir (defined as 
biochemical progression) or progression of bone lesions (new or size increase, soft tissue 
metastasis, or at least 2 new metastatic spots in bone scintigraphy), despite at least two 
consecutive hormonal manipulations 21,22. The secondary endpoints included overall survival, 
defined as the time from ADT initiation to death from any cause, and appearance of distant 
metastasis at any time during the course of the disease (identified by x-rays, computed 
tomography scans or bone scintigraphy), after diagnosis. Information concerning clinical 
endpoints was collected via standardized chart review (6 patients were excluded due to missing 
data).  
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 Genetic variants and genotyping 
 Samples of peripheral blood were used for genotyping. Candidate genes involved in 
adipokine pathways known to affect oncogenesis were selected. SNPs were selected based on 
best evidence from published studies. A total of 27 literature-defined putative functional SNPs in 
17 different genes were chosen, corresponding to 9 adipokine pathways (Supplementary table 1). 
We also examined combinations of SNPs by adipokine pathway according to their functional 
implications (Supplementary table 2). 

Allelic discrimination through Taqman genotyping (Applied Biosystems) was used for 20 
SNPs (two in ADIPOQ, rs1501299 and rs16861194; IL6, rs10499563; IL6R, rs2228145; KDR, 
rs2071559; three in VEGF, rs2010963, rs833061 and rs3025039; LEP, rs7799039; two in LEPR, 
rs1137100 and rs8179183; PPARG, rs1801282; PGC1A, rs8192678; PPARD, rs2016520; OPN, 
rs28357094; IGF1R, rs2229765; IRS1, rs1801278; FGFR2, rs2981582; TNFA, rs1800629; 
TNFRSF1A, rs4149570), whereas the remaining (three in IL6, rs1800797, rs1800796 and 
rs1800795; ADIPOQ, rs2241766; IL6ST, rs3729960; LEPR, rs1137101; TNFA, rs1800630) were 
genotyped by polymerase chain reaction, followed by restriction fragment length polymorphism 
analysis. We have previously referenced these genotyping protocols 23. Quality control measures 
included negative controls in all runs and repeated genotyping in more than 5% of the samples.  
 
 Statistical analysis 
 We calculated descriptive statistics of clinicopathological characteristics for all patients. 
PSA at diagnosis was dichotomized at 20 ng/mL based on its association with micrometastasis24. 
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Clinical stage was classified according to TNM as localized (T1-T2, with N0 and M0) or 
advanced (T3-T4 and/or N+ and/or M+).  
 For time-to-event analyses, age-adjusted Cox regression models were used to calculate 
hazard ratios (HR) and 95% confidence intervals (CIs) for the association between 
clinicopathological characteristics with each of the outcomes of interest, i.e., biochemical 
progression under hormonal castration and ACM. Age-adjusted logistic regression models were 
used to evaluate the risk for metastasis after diagnosis.  Multivariate analysis was conducted after 
selecting confounding variables by empirical evaluation for each of clinical and genetic models.  
We used two different approaches based on the minor allele: a dominant ("aa" + "Aa" genotype 
versus "AA" genotype) and a recessive ("aa" genotype versus "Aa" + "AA" genotype) model to 
evaluate the individual association of 27 SNPs with the three outcomes. The model with the 
highest likelihood ratio was presented as the best-fitting genetic model for each SNP. 
Functionally combined SNPs in each pathway were dichotomized (low/intermediate vs. high; 
low vs. intermediate/high) and the one with highest likelihood ratio was retained. For the subset 
of clinical factors, SNPs and functional combinations of SNPs were selected on the basis of a 
regression P-value <0.15. A multivariate Cox proportional hazards model was derived by 
stepwise selection (P-value for retention < 0.05) to identify the independent prognostic factors 
for biochemical progression. A multivariate logistic regression model was similarly performed 
using only non metastatic patients at diagnosis, in order to evaluate clinical and genetic 
predictive factors for prostate cancer metastasis. Statistical analyses were conducted in STATA 
version 10.0 (StataCorp, College Station, Texas).  
 
 



9  

RESULTS 
 Clinical characteristics of the final 483 patients analyzed are presented in Table 1. At 
diagnosis, 27% of patients presented distant metastasis, 62% had clinically advanced disease 
(T3-T4 and/or N+ and/or M+), and 51% had a biopsy Gleason score ≥ 7 (4+3). The median 
duration between ADT initiation and disease progression was 91.8 months, while the median 
follow-up from ADT initiation to death or last visit was 126.9 months. Several clinical factors 
were identified to predict biochemical progression under hormonal castration and ACM (Table 
1).  
 Logistic regression analysis showed that definitive therapy (OR=3.51; 95%CI: 1.86-6.61) 
and advanced clinical stage (T3-T4) (OR=4.08; 95%CI: 2.13-7.79) were associated with risk for 
distant metastasis on follow-up. Empirical analysis using Cox regression was then performed to 
evaluate the association of SNPs and their functional combinations with the outcomes of interest. 
As shown in Supplementary table 3, the genotypes ADIPOQ +276 TT/TG, IL6R Asp358Ala CC 
and ADIPOQ +45 GG, and the high expression ADIPOQ haplotype, low TNFa expression and 
low/intermediate TNFa activation genetic profiles were associated with biochemical progression 
under hormonal castration. Notably, the difference in median time to progression during ADT 
for the genotypes at ADIPOQ +45 was greater than 5 years, whereas for ADIPOQ +276 and the 
combined TNFa activation genetic profile the difference was respectively 15 and 24 months 
(Figure 1). Moreover, the IL6R Asp358Ala CC and ADIPOQ +45 GG, IL6-572 C carriers and 
high VEGF activation 2SNPs were associated with shorter time to ACM following ADT 
(Supplementary table 3). The median survival time was significantly lower for ADIPOQ +45 GG 
carriers (by more than 6 years difference) and for IL6 -572 C-allele carriers (over 2 years of 
difference compared with -572 GG) (Figure 2). A significant relation with increased risk for 
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developing distant metastasis was observed in the LEPR Gln223Arg G carriers, LEPR 
Lys109Arg homozygous G carriers, TNFRSF1A -329 G carriers, and for the high/intermediate 
LEPR signaling genetic profiles (Supplementary table 4). 
 The predictive effects of SNPs with P<0.15 (univariate analysis) on time to biochemical 
progression under hormonal castration and ACM were evaluated in presence of significant 
clinicopathological predictors (from Table 1) using Cox regression.  The effect of ADIPOQ +45 
and +276 SNPs and of the TNFa activation genetic profile on the response to ADT remained 
strong after adjustment for clinical factors (Table 2). Analysis of the secondary endpoint ACM 
after adjusting for other predictors showed that ADIPOQ +45 T>G and IL6 -572 G>C remained 
significant predictors, together with age at diagnosis, biopsy Gleason score, metastasis at ADT 
initiation and biochemical progression under hormonal castration (Table 2). On multivariate 
logistic regression, patients with the combined high/intermediate LEPR signaling genetic profile 
remained associated with greater risk of developing distant metastatic disease (OR=3.41, 95%CI: 
1.71-6.79). In this model men that received definitive therapy and who presented with advanced 
clinical stage at diagnosis were at increased risk for developing metastasis on follow-up 
(OR=4.26, 95%CI: 2.24-8.13 and OR=3.29, 95%CI: 1.75-6.18, respectively). 
 
DISCUSSION 
 We examined whether germline polymorphisms in adipokine pathways are determinants 
of the response to ADT. The time to biochemical progression under hormonal castration was 
influenced by two SNPs in ADIPOQ and by combined SNPs in TNFa pathway activation. The 
predictive ability of ADIPOQ +45 extended towards the secondary endpoint ACM, together with 
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IL6-572 genetic polymorphism. Additionally, our results also suggest an association of the 
combined LEPR genetic profile with development of distant metastasis.  
 Androgen deprivation therapy remains the mainstay treatment for advanced and recurrent 
prostate cancer 21,25. Clinical variables such as stage, biopsy Gleason score, PSA serum levels 
and metastasis 3, are established factors that influence the response to ADT, albeit SNPs may 
also be useful for prognosticating the response to ADT. Out of 27 SNPs of 17 genes related with 
9 adipokine pathways analyzed, we have identified two SNPs, ADIPOQ +45 and ADIPOQ +276 
and a functional TNFA/TNFRSF1A combination that are associated with the response to ADT. 
The mechanisms responsible for castration-resistant prostate cancer development are not clearly 
established. Despite obvious interest in AR-dependent pathways, other independent pathways 
have been described 4,26, in which androgen-refractory cells use alternative survival pathways to 
overcome the growth inhibition imposed by ADT 4,27. ADT is known to induce changes in 
adiposity and adipokine levels in circulation 28,29. Adipokine pathways, have been implicated in 
intracellular signals such as those activated in hormonal castration resistance 30. Furthermore, 
mitogenic and anti-apoptoptic effects of some adipokines (e.g. leptin, IL-6, IGF-1) seem to be 
limited to androgen-refractory prostate cancer cells 31-33. 
 In our study, ADIPOQ +45 G homozygous and ADIPOQ +276 T carriers had higher risks 
of biochemical progression under ADT. The G-allele in locus +45 and T-allele in locus +276 are 
associated with higher circulating adiponectin plasma levels 34,35. Generally, low concentrations 
have been associated with prostate cancer risk and survival, rendering adiponectin a protective 
role against cancer 36-38. Nevertheless, this effect could be dependent on the metabolic 
environment and tumor cell characteristics. ADT induces profound changes in metabolic 
environment, modulating specifically plasma adiponectin levels 29, and eventually modulating 
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the expression of adiponectin receptors, which have been shown to be receptive to cytokines and 
steroid hormones stimulus according to tumor cells androgen refractoriness status 39. 
Additionally, adiponectin has the capacity to exert stimulatory growth and motile effects in some 
prostate tumor cells, depending on PTEN status 40,41. Despite advances in understanding the role 
of adiponectin in prostate cancer risk, studies on castration-resistant prostate cancer are scarce. 
Although ADIPOQ polymorphisms have been inconsistently associated with prostate cancer risk 
16,42,43, our study is the first to evaluate ADIPOQ SNPs in association with ADT resistance. 
When we combined SNPs in TNF pathway [TNFA -863 C>A (rs1800630), TNFA -308 G>A 
(rs1800629) and TNFRSF1A -329 G>T (rs4149570)] according to functional characteristics, the 
carriers of low/intermediate TNFa activity profile had increased risks of biochemical progression 
under hormonal castration. Interestingly, case-control studies have shown lack of association 
between TNFA variants at locus -863 or -308 and prostate cancer risk 44,45. The TNF and TNFR 
superfamily plays crucial roles in mediating the inflammatory response and regulating immune 
function, in addition to triggering apoptosis of certain tumor cells 46. TNFa-mediated activation 
of TNFR1 signaling is critical for activating tumor-reactive T cells and arresting multistage 
carcinogenesis 47,48. More specifically, the proapoptotic actions of estrogen receptor beta in 
androgen-refractory prostate cancer cells required TNFa signaling 49. The very low levels of 
testosterone as result of ADT, together with increased inflammatory markers 50, create an 
inflammatory environment for tumor under ADT. We hypothesize that this scenario may be 
altered by polymorphisms in ADIPOQ and by low/intermediate TNFa activation, which likely 
result in decreased inflammatory magnitude, further depressing immunosurveillance. 
 The few studies that examined the role of germline polymorphisms in association with 
prostate cancer mortality yielded inconsistent results 51-54. In our cohort, where all patients 
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received ADT for prostate cancer while taking into consideration previous treatment modalities, 
ADIPOQ +45 T>G and IL6 -572 G>C, remained independently associated with decreased 
survival. IL-6 has been implicated with poor prognosis in prostate cancer 55,56. Activation of IL-
6/IL6R pathway is linked with neuroendocrine differentiation of prostate cancer cells, 
promiscuous activation of the AR and regulation of prostate intracrine androgen production 57-59, 
mechanisms related with resistance to hormonal castration and ultimately mortality. In other 
studies unrelated to prostate cancer, the IL6 -572 genetic polymorphism was a predictor of bone 
mineral density, metabolic syndrome and malignant conditions 60-62. The -572 C allele has been 
associated with higher serum levels of IL-6 60,63. A glucocorticoid receptor element at position -
557 to -552 likely influences steroid binding and regulates IL-6 secretion 61,64. We observed after 
multivariate analysis that IL6 -572 C carriers remained significantly associated with reduced 
overall survival following ADT, which might be the response to higher bioavailability of IL-6. In 
our study, the ADIPOQ +45 G homozygous carriers, besides being associated with biochemical 
progression under hormonal castration, showed worst survival compared with carriers of the T-
allele. The G-allele is associated with higher circulating adiponectin plasma levels 35. In vitro 
findings suggest adiponectin amplifies the activation of PI3kinase/Akt/mTOR pathway in 
prostate cancer cells with PTEN loss, which are features of aggressive tumors from patients with 
advanced or recurrent disease 65,66, as in this study. Moreover, recent findings suggest that 
AMPK, which is up-regulated by adiponectin signaling 40,41,67, if activated during energy stress 
conditions such as androgen deprivation therapy may represent an advantage that promotes 
tumor cell survival 68,69. If further confirmed, these findings suggest the implementation of 
targeted dual inhibition of PI3K and mTOR in the treatment of advanced or recurrent prostate 
cancer patients, as previously proposed 30. 
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 Leptin’s actions in tumor development and progression are mediated by leptin receptor 
14,15, which is strongly expressed in prostate tumors 70, where pathway activation induces 
aggressive cell phenotypes 71,72. We found that carriers of the combined LEPR high/intermediate 
signaling genetic profile were at increased risk for developing metastatic disease. This means 
that carrying 2 or 3 risk alleles out of 3 SNPs in LEPR (Lys109Arg, Gln223Arg and 
Lys656Asn), which may represent higher LEPR signaling capacity, increases the risk for 
metastasis in patients receiving ADT. Since LEPR 109 and LEPR 223 were associated with 
metastasis in univariate analysis, the independent effect of the combined LEPR SNPs may rely 
on the influence of those two. Although the LEPR 223 polymorphism yielded mixed results in 
case-control studies 16,23,73, G carriers have a stronger leptin-binding affinity 74. In addition, this 
polymorphism is associated with plasma soluble LEPR concentrations and may influence 
receptor recycling and degradation 75,76, thereby influencing free leptin levels and receptor 
availability at cell surface. The G-allele of LEPR 109 was also found to be associated with 
plasma soluble LEPR levels 75 and higher circulating leptin levels 77. Moreover, recent work 
evidenced a central role for leptin signaling in tumor-initiating stem cells growth and survival 78.  
 Inherited genetic markers have been fairly explored as predictors of prostate cancer 
outcomes. Although we took a focused candidate gene approach to evaluate the association of 
key SNPs in adipokine pathways with relevant prostate cancer outcomes in a cohort of patients 
in ADT, our study has some limitations. Testosterone levels were not available in all men to 
confirm castration; therefore we relied on PSA measurements, clinical and imaging information 
to define progression under hormonal castration. Although we included only functional SNPs 
from genes in adipokine pathways, our SNP panel and SNP combinations could be incomplete. 
We did not explore potential gene-environment interactions due to missing data on body mass, 
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even though it might be important in ADT. Further studies exploring eventual synergies with 
adiposity measures are required. Strengths of our study include the large size and homogeneous 
population. The long follow-up time allowed analysis of primary and secondary end points with 
large number of events (46.4% for disease progression under ADT; 32.2% for mortality; 44.9% 
for metastasis). 
 At a time when alternative therapeutic opportunities arise in advanced prostate cancer 
79,80, it is important to validate the use of germline polymorphisms to complement the value of 
clinical factors to prognosticate clinical course after ADT initiation, thereby providing a more 
personalized medicine approach to therapy and management. Our findings also underscore the 
need for examining the effectiveness of personalized therapies targeted towards adiponectin, 
tumoral necrosis factor and leptin pathways. If confirmed, our findings might help targeting 
patients with predictable precocious ADT failure and mortality for more aggressive intervention. 
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Figure 1. Kaplan-Meier estimates of cumulative incidence of disease progression under ADT by 
SNPs and functional combinations. The Log-rank test was used to analyze the equality of 
survival distributions for the different genotypes of ADIPOQ haplotype (P=0.010), ADIPOQ +45 
T>G (P=0.008), ADIPOQ +276 G>T (P=0.039), IL6R Asp358Ala A>C (P=0.028), TNFa 
pathway expression (P=0.024), and TNFa pathway activation (P=0.048). ADT, androgen 
deprivation therapy. TNFA expression is defined as the functional combination of TNFA -308 
and -863 SNPs, whereas TNFa activity includes besides the TNFRSF1A, two TNFA SNPs 
(detailed in supplementary table 2). 

 
Figure 2. Kaplan-Meier estimates of survival following ADT, stratified by SNPs and functional 
combinations. The equality of survival distributions for the different genotypes of IL6 -572 G>C 
(P=0.022), ADIPOQ +45 T>G (P=0.001), IL6R Asp358Ala A>C (P=0.016) and VEGF 2SNPs 
pathway activation (P=0.009) was tested with Log-rank. ADT, androgen deprivation therapy. 
VEGF pathway activation 2SNPs relates to the functional combination of two VEGF SNPs -460 
and +405 plus the KDR -604 polymorphism (detailed in supplementary table 2). 
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Table 1. Clinicopathological characteristics of prostate cancer patients and univariate analysis of factors that predicted resistance to ADT and all-cause 
mortality 

  Resistance to ADT  All-cause mortality 
 N (%) * No. of Events aHR (95%CI)  No. of Events aHR (95%CI) 
Age at diagnosis, years a 69.5(7.7)b  0.99 (0.97-1.01)   1.05 (1.02-1.07) 
PSA at diagnosis 
   < 20 ng/mL 
   ≥ 20 ng/mL  

 
235 (51) 
224 (49) 

 
75 

134 
 

Referent 
1.94 (1.46-2.59) 

  
57 
89 

 
Referent 

1.58 (1.13-2.22) 
Clinical stage 
   Localized (T1-2) 
   Advanced (T3-4) 

 
171 (38) 
282 (62) 

 
35 

173 
 

Referent 
3.68 (2.53-5.33) 

  
30 

118 
 

Referent 
2.76 (1.83-4.17) 

Biopsy Gleason score 
   ≤ 7 (3+4) 
   ≥ 7 (4+3) 

 
220 (49) 
229 (51) 

 
75 

124 
 

Referent 
2.51 (1.86-3.39) 

  
47 
85 

 
Referent 

3.02 (2.08-4.39) 
Definitive therapy 
   None 
   Radical prostatectomy/Radiotherapy 

 
327 (68) 
156 (32) 

 
168 
56 

 
Referent 

0.57 (0.40-0.79) 
  

120 
34 

 
Referent 

0.77 (0.50-1.18) 
Hormonal treatment modality 
   LHRH-agonist/orchiectomy 
   Combined ADT 

 
102 (21) 
381 (79) 

 
42 

182 
 

Referent 
1.10 (0.77-1.58) 

  
16 

138 
 

Referent 
2.57 (1.48-4.48) 

Metastases at ADT initiation 
   No 
   Yes 

 
297 (69) 
131 (31) 

 
111 
94 

 
Referent 

3.52 (2.64-4.70) 
  

79 
67 

 
Referent 

2.96 (2.13-4.12) 
Biochemical progression under hormonal castration 
   No 
   Yes 

 
259 (54) 
224 (46) 

 
-- 
-- 

 
--- 
--- 

  
26 

126 
 

Referent 
5.55 (3.63-8.49) 

* Column subtotals do not sum to 483 due to missing data. ADT, androgen deprivation therapy; PSA, prostate specific antigen; LHRH-agonist, luteinizing hormone releasing 
hormone agonist. aHR, age-adjusted hazard ratio; 95%CI, 95% confidence interval. a aHR calculated using age as a continuous variable; b Mean (standard deviation) 
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Table 2. Multivariate analysis of the association between adipokine pathway SNPs and 
resistance to ADT and all-cause mortality 

 Resistance to ADT All-cause mortality 
 HR (95%CI) HR (95%CI) 
Age at diagnosis, years --- 1.07 (1.04-1.11) 
Metastasis at ADT initiation 
   No 
   Yes 

 
Referent 

2.62 (1.81-3.80) 

 
Referent 

1.88 (1.23-2.90) 
Gleason score 
   ≤ 7 (3+4) 
   ≥ 7 (4+3) 

 
 

--- 

 
Referent 

1.70 (1.11-2.60) 
Clinical stage 
   Localized 
   Advanced 

 
Referent 

2.43 (1.55-3.82) 

 
 

--- 
Disease progression under ADT 
   No 
   Yes 

 
 

--- 

 
Referent 

4.64 (2.75-7.83) 
ADIPOQ + 45 
   T carrier 
   GG 

 
Referent 

4.14 (1.62-10.54) 

 
Referent 

5.02 (1.75-14.38) 
IL6 -572 G>C 
   GG 
   C carrier 

 
 

--- 

 
Referent 

1.78 (1.01-3.13) 

ADIPOQ +276 
   T carrier 
   GG 

 
Referent 

0.71 (0.51-0.99) 

 
 

--- 
 TNFa activation 
   Low/intermediate 
   High 

 
Referent 

0.62 (0.41-0.93) 

 
 

--- 
ADT, androgen deprivation therapy; SNP, single nucleotide polymorphism; TNFa, tumor 
necrosis factor alpha; ADIPOQ, adiponectin gene; HR(95%CI), hazard ratio and 95% 
confidence interval. 
 
 
 







Supplementary table 1. Studied single nucleotide polymorphisms (SNPs) in genes coding for molecules involved on adipokine pathways  

Pathway Gene Reference SNP ID Nucleotide substitution Genomic location MGF (%) 

Adiponectin ADIPOQ 

ADIPOQ 

ADIPOQ 

rs1501299 

rs2241766 

rs16861194 

G>T 

T>G 

A>G 

+ 276 intron 2 

+45 intron 2 

-11426 promoter 

TT (11.7) 

GG (2.3) 

GG (1.1) 

Interleukin - 6 IL6 

IL6 

IL6 

IL6 

IL6R 

IL6ST 

rs1800795 

rs1800796 

rs1800797 

rs10499563 

rs2228145 

rs3729960 

G>C 

G>C 

G>A 

T>C 

A>C 

G>C 

-174 promoter 

-572 promoter 

-597 promoter 

-6331 promoter 

Asp358Ala 

Gly148Arg 

CC (13.1) 

CC (0.4) 

AA (13.9) 

CC (4.8) 

CC (14.7) 

CC (1.5) 

Vascular Endothelial Growth Factor KDR 

VEGF 

VEGF 

VEGF 

rs2071559 

rs2010963 

rs833061 

rs3025039 

T>C 

G>C 

C>T 

C>T 

-604 promoter 

+405 5’-UTR 

-460 promoter 

+936 3’-UTR 

TT (22.2) 

CC (15.3) 

CC (20.8) 

TT (3.1) 

Leptin LEP 

LEPR 

LEPR 

LEPR 

rs7799039 

rs1137100 

rs1137101 

rs8179183 

G>A 

A>G 

A>G 

G>C 

-2548 promoter 

Lys109Arg 

Gln223Arg 

Lys656Asn 

AA (16.8) 

GG (5.7) 

GG (16.4) 

CC (2.9) 

Peroxisome proliferator-activated receptor PPARGC1A 

PPARD 

PPARG 

rs8192678 

rs2016520 

rs1801282 

A>G 

T>C 

C>G 

Gly482Ser 

-87 5’-UTR 

Pro12Ala 

GG (13.7) 

CC (5.9) 

GG (0.8) 

Osteopontin SPP1 rs28357094 T>G -66 promoter GG (5.9) 



Insulin growth factor 1 IRS1 

IGF1R 

rs1801278 

rs2229765 

C>T 

G>A 

Gly972Arg 

+3174 exon 16 

TT (1.9) 

AA (21.1) 

Fibroblast growth factor 2 FGFR2 rs2981582 C>T Intron 2 TT (3.8) 

Tumor necrosis factor alpha TNFA 

TNFA 

TNFRSF1A 

rs1800629 

rs1800630 

rs4149570 

G>A 

C>A 

G>T 

-308 promoter 

-863 promoter 

-329 promoter 

AA (5.1) 

AA (3.8) 

TT (15.7) 

MGF, minor genotype frequency in present study; ADIPOQ, adiponectin gene; IL6, interleukin-6 gene; IL6R, interleukin-6 receptor gene; IL6ST, interleukin-6 

signal transducer gene; KDR, vascular endothelial growth factor receptor 2 gene; VEGF, vascular endothelial growth factor gene; LEP, leptin gene; LEPR, leptin 

receptor gene; PPARGC1A, Peroxisome proliferator-activated receptor gamma co-activator 1 alpha gene; PPARD, Peroxisome proliferator-activated receptor delta 

gene; PPARG, Peroxisome proliferator-activated receptor gamma gene; SPP1, osteopontin gene; IRS1, insulin receptor substrate 1 gene; IGFBP3, insulin growth 

factor binding protein 3 gene; IGF1R, insulin growth factor 1 receptor gene; FGF2, fibroblast growth factor 2 gene; FGFR2, fibroblast growth factor receptor 2 

gene; TNFA, tumoral necrosis factor alpha gene; TNFRSF1A, tumoral necrosis factor receptor 1 gene.  

 



Supplementary table 2. Rationale for functional combination of Single Nucleotide Polymorphisms (SNPs), according to adipokine pathways  

Pathway SNP Genotypes Functional outcomes SNP functional combinations 

Adiponectin ADIPOQ +45 T>G 

ADIPOQ +276 G>T 

ADIPOQ -11426 

G carrier 
1,2

  

T carrier 
2,3

 

AA 
4
 

 expression 

 expression 

 expression 

haplotype (combined according to reference 
5
). 

Interleukin - 6 IL6 -174 

IL6 -572 

IL6 -597 

IL6 -6331 

IL6R 358 

IL6ST 148 

C carrier 
6
 
7
 

C carrier 
7
 

A carrier 
7
 

TT 
8
 

C carrier 
9,10

 

GG 
11

 

 expression,  activation 

 expression,  activation 

 expression,  activation 

 expression,  activation 

 signaling,  activation 

 signaling,  activation 

Signaling: high, IL6R Ccarrier/IL6ST GG; intermediate, IL6R Ccarrier/IL6ST 

Ccarrier and IL6R AA/IL6ST GG; low, IL6R AA/IL6ST Ccarrier. 

Expression: high, ≥ 3/4 risk genotypes; low, 0-2/4 risk genotypes. 

Activation: high, high expression/high or intermediate signaling; intermediate, high 

expression/low signaling and low expression/high signaling; low, low 

expression/low or intermediate signaling. 

Vascular Endothelial 

Growth Factor 

KDR -604 

VEGF -460 

VEGF +405 

VEGF +936 

TT 
12

 

C carrier 
13,14

 

GG 
13,14

 

CC 
15

 

 signaling,  activation 

 expression,  activation  

 expression,  activation  

 expression,  activation 

Expression 2 SNPs (-460/+405, according to ref 
13

): low vs. high. 

Expression 3 SNPs: high, -460/+405 high/936 CC; intermediate, -460/+405 

high/936 T carrier and -460/+405 low/936 CC; low, -460/+405 low/936 T carrier. 

Activation 2SNPs: high, -460/+405 high/KDR TT; intermediate, -460/+405 

high/KDR Ccarrier and -460/+405 low/KDR TT; low, -460/+405 low/KDR Ccarrier. 

Activation 3SNPs: high, high or intermediate expression/ KDR TT; intermediate, 

high expression/ KDR Ccarrier and low expression/ KDR TT; low, low or 

intermediate expression/ KDR Ccarrier. 

Leptin LEP -2548 

LEPR 109 

LEPR 223 

LEPR 656 

AA 
16

 

GG 
17,18

 

GG 
17,19

 

C carrier 
20

 

 expression 

 signaling 

 signaling 

 signaling 

Signaling: high, 3/3 risk alleles; intermediate, 2/3 risk alleles; low, 0-1/3 risk alleles 

Activation: high, high signaling/LEP AA or G carrier and intermediate 

signaling/LEP AA; low, low signaling/LEP AA or G carrier and intermediate 

signaling/LEP G carrier. 

Peroxisome proliferator-

activated receptor 

PPARGC1A 482 

PPARD -87 

AA 
21

 

TT 
22

 

 expression 

 expression 

Number of risk alleles: 0-3/3 



PPARG 12 G carrier 
23

  activation 

Osteopontin SPP1 -66 TT 
24

  expression --- 

Insulin growth factor IRS1 972 

IGF1R +3174 

CC 
25

 

GG 
26

 

 signaling 

 signaling 

Signaling: high, IRS1 CC/IGF1R GG; intermediate, IRS1 CC/IGF1R A carrier and 

IRS1 T carrier/IGF1R GG; low, IRS1 T carrier/IGF1R A carrier. 

Fibroblast growth factor 2 FGFR2, rs2981582 T carrier 
27

  signaling --- 

Tumor necrosis factor 

alpha 

TNFA -308  

TNFA -863 

TNFRSF1A -329 

A carrier 
28

 

A carrier 
29,30

 

T carrier 
31

 

 expression,  activation  

 expression,  activation  

 signaling,  activation 

Expression: high, -308 Acarrier/-863 Acarrier; intermediate, -308 Acarrier/-863 CC 

and -308 GG/-863 Acarrier; low, -308 GG/-863 CC. 

Activation: high, high or intermediate expression/TNFRSF1A GG; intermediate, 

high expression/TNFRSF1A Tcarrier and low expression/TNFRSF1A GG; low, low 

or intermediate expression/TNFRSF1A Tcarrier. 

MGF, minor genotype frequency in present study; ADIPOQ, adiponectin gene; IL6, interleukin-6 gene; IL6R, interleukin-6 receptor gene; IL6ST, interleukin-6 

signal transducer gene; KDR, vascular endothelial growth factor receptor 2 gene; VEGF, vascular endothelial growth factor gene; LEP, leptin gene; LEPR, leptin 

receptor gene; PPARGC1A, Peroxisome proliferator-activated receptor gamma co-activator 1 alpha gene; PPARD, Peroxisome proliferator-activated receptor delta 

gene; PPARG, Peroxisome proliferator-activated receptor gamma gene; SPP1, osteopontin gene; IRS1, insulin receptor substrate 1 gene; IGFBP3, insulin growth 

factor binding protein 3 gene; IGF1R, insulin growth factor 1 receptor gene; FGF2, fibroblast growth factor 2 gene; FGFR2, fibroblast growth factor receptor 2 

gene; TNFA, tumoral necrosis factor alpha gene; TNFRSF1A, tumoral necrosis factor receptor 1 gene.  
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Supplementary table 3. Association of SNPs in genes of adipokine pathways with resistance to ADT and all-cause mortality 

 MGF Resistance to ADT  All-cause mortality 

SNP IDs and combined SNPs 
1
 (%) Model No. LR aHR (95%CI)  Model No. LR aHR (95%CI) 

KDR-604, rs2071559 48 Dominant 463 2.07 1.13(0.84-1.52)  Recessive 468 16.29 1.16(0.80-1.68) 

VEGF+405, rs2010963 38 Dominant 463 3.24 1.20(0.92-1.58)  Recessive 468 16.87 1.28(0.83-1.96) 

VEGF-460, rs833061 44 Recessive 457 3.90 1.30(0.95-1.78)  Recessive 462 13.85 1.14(0.77-1.68) 

VEGF+936, rs3025039 13 Recessive 440 2.68 1.80(0.58-5.65)  Dominant 445 18.24 1.23(0.83-1.83) 

VEGF expression 2 SNP 
1
 --- --- 457 2.35 1.16(0.86-1.55)  --- 462 13.43 1.02(0.72-1.45) 

VEGF expression 3 SNP LI_H 
1
 --- --- 436 2.51 1.18(0.89-1.55)  --- 441 15.93 1.07(0.77-1.49) 

VEGF activation 2 SNP LI_H 
1
 --- --- 457 3.77 1.33(0.93-1.90)  --- 462 18.51 1.62(1.09-2.41) 

VEGF activation 3 SNP LI_H 
1
 --- --- 436 2.69 1.19(0.89-1.59)  --- 441 17.24 1.28(0.87-1.88) 

IL6-174, rs1800795 38 Recessive 460 1.76 0.86(0.58-1.29)  Recessive 465 18.00 0.76(0.48-1.21) 

IL6-572, rs1800796 6 Dominant 451 3.11 1.32(0.89-1.96)  Dominant 456 22.58 1.71(1.10-2.66) 

IL6-597, rs1800797 37 Recessive 449 1.46 1.03(0.68-1.55)  Recessive 455 15.90 1.12(0.80-1.56) 

IL6-6331, rs10499563 25 Dominant 462 1.61 1.16(0.59-2.28)  Recessive 467 15.94 0.89(0.64-1.24) 

IL6R, rs2228145 39 Dominant 461 5.96 0.66(0.46-0.96)  Dominant 466 19.20 0.62(0.40-0.94) 

IL6ST, rs3729960 16 Dominant 461 4.26 1.27(0.94-1.72)  Recessive 466 16.72 2.90(0.40-21.02) 

IL6 activation LI_H 
1
 --- --- 453 4.85 1.30(0.97-1.72)  --- 458 16.52 1.19(0.84-1.67) 

IL6 expression risk 
1
 --- --- 456 2.60 1.18(0.89-1.56)  --- 461 17.21 1.07(0.92-1.25) 

IL6R signaling L_IH 
1
 --- --- 460 3.27 1.31(0.84-2.04)  --- 465 14.67 1.13(0.68-1.88) 

ADIPOQ+45, rs2241766 16 Recessive 465 6.46 2.69(1.26-5.73)  Recessive 470 23.47 4.22(1.85-9.64) 

ADIPOQ +276, rs1501299 30 Recessive 464 5.35 0.76(0.58-0.99)  Recessive 469 19.29 0.74(0.54-1.02) 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ADIPOQ -11426, rs16861194 9 Dominant 447 2.91 0.54(0.20-1.45)  Recessive 452 14.78 0.78(0.49-1.24) 

ADIPOQ  haplotype LI_H 
1
 --- --- 461 1.51 1.51(1.10-2.06)  --- 466 17.53 1.29(0.87-1.90) 

LEP-2548, rs7799039 39 Dominant 463 2.60 0.86(0.65-1.13)  Dominant 468 15.84 1.08(0.71-1.65) 

LEPR109, rs1137100 21 Dominant 463 1.97 1.23(0.71-2.12)  Recessive 468 16.42 1.16(0.82-1.63) 

LEPR223, rs1137101 42 Dominant 462 4.13 1.27(0.95-1.71)  Dominant 467 19.31 1.42(0.98-2.05) 

LEPR656, rs8179183 19 Dominant 461 1.44 1.10(0.49-2.47)  Recessive 466 15.17 0.81(0.57-1.16) 

LEP activation 
1
 --- --- 460 4.42 0.50(0.20-1.21)  --- 465 13.93 0.84(0.37-1.90) 

LEPR signaling LI_H 
1
 --- --- 460 2.45 1.18(0.86-1.60)  --- 465 13.99 1.10(0.76-1.59) 

PPARG, rs1801282 8 Recessive 461 1.70 0.68(0.25-1.85)  Recessive 466 16.23 0.58(0.18-1.86) 

PGC1A, rs8192678 36 Recessive 460 1.68 1.02(0.77-1.34)  Recessive 465 15.21 1.22(0.75-2.00) 

PPARD, rs2016520 23 Recessive 459 2.80 0.85(0.64-1.13)  Recessive 464 16.78 0.60(0.24-1.46) 

PPARs risk alleles 0_123 
1
 --- --- 457 1.25 1.02(0.79-1.31)  --- 462 16.14 1.17(0.87-1.57) 

OPN, rs28357094 26 Recessive 463 2.81 1.19(0.90-1.56)  Dominant 468 16.31 0.78(0.36-1.67) 

IRS1, rs1801278 10 Recessive 452 2.56 0.68(0.28-1.65)  Recessive 456 10.84 0.62(0.23-1.69) 

IGF1R, rs2229765 45 Recessive 459 1.94 0.90(0.64-1.25)  Recessive 464 15.62 0.93(0.63-1.39) 

IGF signaling L_IH 
1
 --- --- 447 3.62 0.76(0.51-1.15)  --- 451 11.48 0.71(0.44-1.14) 

FGFR2, rs2981582 37 Recessive 459 2.93 1.20(0.84-1.71)  Recessive 464 15.70 0.77(0.48-1.23) 

TNFA-308, rs1800629 19 Recessive 458 3.09 0.85(0.63-1.14)  Dominant 463 14.34 0.91(0.46-1.80) 

TNFA-863, rs1800630 19 Dominant 459 4.42 0.79(0.59-1.06)  Dominant 464 15.92 0.78(0.55-1.10) 

TNFRSF1A-329, rs4149570 39 Recessive 457 2.43 0.86(0.58-1.27)  Recessive 462 14.20 0.84(0.52-1.37) 

TNFA activation LI_H 
1
 --- --- 456 6.51 0.70(0.50-0.98)  --- 461 15.10 0.80(0.58-1.12) 

TNFA expression L_IH 
1
 --- --- 457 6.94 0.73(0.56-0.96)  --- 459 13.90 0.91(0.66-1.27) 



Results are presented only for the best-fitting genetic model (based on the minor allele as dominant: aa + Aa genotype versus AA genotype, or recessive: 

aa genotype versus Aa + AA genotype) for each SNP or functional combination of SNPs by pathway (the model with the highest likelihood ratio was 

selected).
1
 Functional combinations of SNPs in pathways are detailed in supplementary table 2. ADT, androgen deprivation therapy; No., number of subjects; 

MGF, minor genotype frequency in the cohort; LR, likelihood ratio; aHR (95%CI), age-adjusted hazard ratio and respective 95% confidence interval; SNP, 

single nucleotide polymorphism. ADIPOQ, adiponectin; FGFR2, fibroblast growth factor receptor 2; IL6, interleukin 6; IL6R, interleukin 6 receptor; IL6ST, 

interleukin 6 signal transducer; IRS1, insulin receptor substrate 1; IGF1R, insulin growth factor receptor 1; KDR, kinase insert domain receptor; LEP, leptin; 

LEPR, leptin receptor; OPN, osteopontin; PPARD, peroxisome proliferator-activated delta; PPARG, peroxisome proliferator-activated receptor gamma; 

PGC1A, peroxisome proliferator-activated receptor gamma coactivator 1; TNFA, tumoral necrosis factor alpha; TNFRSF1A, tumor necrosis factor receptor 

superfamily, member 1A; VEGF, vascular endothelial growth factor. Significant associations are in boldface. 
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Proliferative mechanisms involving the epidermal growth factor (EGF) and
transforming growth factor beta (TGF-b1) ligands are potential alternative
pathways for prostate cancer (PC) progression to androgen independence (AI).
Thus, the combined effect of EGF and TGFB1 functional polymorphisms might
modulate tumor microenvironment and consequently its development. We
studied EGFþ61G4A and TGFB1þ869T4C functional polymorphisms in 234
patients with PC and 243 healthy individuals. Intermediate- and high-
proliferation genetic profile carriers have increased risk for PC (odds ratio
(OR)¼3.76, P¼0.007 and OR¼3.98, P¼0.004, respectively), when com-
pared with low proliferation individuals. Multivariate analysis showed a
significantly lower time to AI in the high proliferation group, compared with
the low/intermediate proliferation genetic profile carriers (HR¼2.67, P¼0.039),
after adjustment for age, metastasis and stage. Results suggest that combined
analysis of target genetic polymorphisms may contribute to the definition of
cancer susceptibility and pharmacogenomic profiles. Combined blockage of key
molecules in proliferation signaling pathways could be one of the most
promising strategies for androgen-independent prostate cancer.
The Pharmacogenomics Journal (2009) 9, 341–346; doi:10.1038/tpj.2009.20;
published online 2 June 2009

Keywords: EGF/TGFB1 functional polymorphisms; prostate cancer; SNP variations;
androgen independence

Introduction

Prostate cancer (PC) is one of the most common malignancies among men in the
Western world and a major health problem in many industrialized countries.1

Despite recent advances in the detection of early PC there is little effective
therapy for patients with locally advanced and/or metastatic disease. Patients
diagnosed in advanced stages are frequently submitted to hormonal treatment
with androgen deprivation therapy (ADT),2 although most men will eventually
fail this therapy and die from recurrent androgen-independent prostate cancer
(AIPC). AIPC is an invariably lethal condition associated with significant
deterioration of the quality of life.3,4 Therefore, it is important to understand
the mechanisms involved in AI progression.

It is known that the androgen pathway has a critical role in the survival of
prostatic cells; however, progression into advanced PC and incurable forms has
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been associated with the activation of other cascades
mediated by growth factors responsible for the balance
between cell growth rate and apoptosis. Cell proliferation
is normally regulated by the concerted action of both
mitogenic growth signals and antiproliferative signals that
converge on regulators of the cell cycle. In fact, the prostate
is known to be dependent not exclusively on androgens but
also on growth factors.5 Some authors suggest that aberrant
growth and differentiation are because of inappropriate
cellular environment.6

The epidermal growth factor (EGF) and the transforming
growth factor-beta 1 (TGF-b1) are the key players, with
opposite roles, in cell proliferation. EGF activates several
pro-oncogenic intracellular pathways leading to prolifera-
tion, differentiation and tumorigenesis of epithelial cells.7,8

Cumulatively, its receptor (EGFR (epidermal growth factor
receptor)) is proposed to participate in the pathogenesis
and growth of several epithelial human cancers. In PC cells,
EGFR ligands are frequently elevated and EGFR itself is
commonly overexpressed.9 Furthermore, EGFR expression
increases during progression to AI.10

Epidermal growth factor is encoded by the EGF gene,
located on chromosome 4q25-q27. Shabazi et al.11 identified
a functional G4A single nucleotide polymorphism at
position þ61 in the 50-untranslated region of the EGF gene
(rs4444903). In vitro studies showed that G-carriers have an
increased EGF production in both normal and tumoral
cells.11–13 This functional polymorphism has been asso-
ciated with several malignancies,11–15 including an earlier
report from our group in PC.16

Transforming growth factor-b1 is a multifunctional regu-
latory polypeptide that controls many aspects of cellular
function, such as cellular proliferation, differentiation,
migration, apoptosis, adhesion, angiogenesis, immune
surveillance and survival.17 Nevertheless, TGF-b1 has been
suggested to play a dual role, acting as a suppressor in the
early stages and as a tumor promoter in the later stages,
by enhancing tumor cell motility and invasiveness.18,19

Recently, a functional polymorphism was described in
TGFB1 gene (TGFB1þ869T4C), responsible for a T-to-C
substitution at nucleotide 29 of codon 10 (rs1982073). This
variant is located in the hydrophobic core of the signal
peptide, resulting in the replacement of a hydrophobic
leucine with a small, neutral proline. This transition has
been associated with higher circulating levels of TGF-b1

(in homozygous C).20,21

Genetic variants, which influence EGF and TGFB1 expres-
sions and protein serum levels, may impact PC development
and prognosis. Our purpose was to investigate the combina-
tion of EGFþ 61G4A and TGFB1þ869T4C functional
polymorphisms in PC and AIPC in response to ADT.

Results

Using the recessive model, frequencies for homozygous AA
and AG/GG genotypes of EGFþ61G4A polymorphism
were, respectively, 0.32 and 0.68 for PC patients and 0.34
and 0.66 in the control group. The TGFB1þ869T4C
polymorphism frequencies for homozygous CC and CT/TT
were 0.14 and 0.86 in PC group and 0.22 and 0.78 in the
control group, respectively. Observed versus expected
genotype frequencies were calculated, and no deviation
from Hardy–Weinberg equilibrium was observed, except for
the TGFB1 polymorphism in control group (EGFþ61G4A:
PC group, P¼ 0.082, control group, P¼0.073; TGFB1þ
869T4C: PC group, P¼0.761, control group, P¼0.020).

High- and intermediate-proliferation genetic profiles’
distributions were overrepresented in PC (0.56 and 0.42,
respectively) and control (0.52 and 0.40, respectively)
groups compared with the low-proliferation functional
genetic profile (Table 1). The present results show a signif-
icantly higher risk for developing PC in the intermediate-
and high-proliferation functional genetic profile carriers
(odds ratio (OR)¼ 3.76, 95% confidence interval (CI)¼1.26–
12.03 and OR¼3.98, 95% CI¼1.35–12.59, respectively).
The population attributable risk (PAR) for intermediate and
high proliferation groups was 30.8 and 42%, respectively.

The analysis of clinico-pathological characteristics accord-
ing to the combined proliferation genetic profile showed no
statistically significant associations of the combined poly-
morphisms with Gleason grade, distant metastasis and
prostate specific antigen (PSA) at the time of diagnosis
(P¼0.319, P¼ 0.572 and P¼ 0.254, respectively).

Concerning AI-free interval after the beginning of ADT,
we found a significantly reduced time-to-AI in high-
proliferation functional genetic profile carriers (93.99
(6.87) months in low/intermediate proliferation group and
76.51 (6.15) months in high proliferation group), using a
multivariate Cox regression model with age (P¼ 0.299),
tumor stage (Po0.0001), surgery (P¼ 0.982) and hormonal

Table 1 Frequencies distribution and OR analysis in control and PC groups according to EGF+61G4A and TGFB1+869T4C
combined proliferation functional genetic profile

Control group PC group OR 95% CI P-value

Combined genetic profile
Low proliferation 19 (0.08) 5 (0.02) —
Intermediate proliferation 98 (0.40) 97 (0.42) 3.76 1.26–12.03 0.007
High proliferation 126 (0.52) 132 (0.56) 3.98 1.35–12.59 0.004

Abbreviations: OR, odds ratio; PC, prostate cancer.
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treatment type (P¼0.487) as covariates (hazard ratio
(HR)¼ 2.67, 95% CI¼1.05–6.79, P¼0.039) (Figure 1).

Discussion

The intricate balance between cell growth and proliferation
factors versus apoptosis-inducing factors is mandatory for
prostate growth regulation. Conversely, homeostatic disrup-
tions in PC often trigger the loss of apoptosis and the
overexpression of factors promoting cell survival and
proliferation. A common deregulated mechanism in PC
cells is distinguished by apoptotic evasion, uncontrolled
proliferation and loss of differentiation.17

Growth factors play a significant role in the growth of
normal, hyperplastic and malignant prostatic epithelium.
There is a significant amount of evidence supporting that
the EGF and the transforming growth factor-beta (TGF-b)
families are among the most relevant mediators of prolifera-
tion in this type of cancer.22,23 In line with these findings,
our results suggest that TGF-b1 and EGF combined effect
may impact significantly in the individual PC risk, as well as
in ADT outcome. However, a limitation to the study on PC
susceptibility association with combined EGF and TGFB1
variants, resides in the significantly different mean age
between PC and control groups, and the lack of information
and subsequent adjustment for potentially relevant envi-
ronmental factors. Therefore, conclusions on this issue
should be interpreted cautiously owing to limitations
inherent to the design.

Other line of evidence unfocused in target genes showed
that in genome-wide association studies,24–26 PC suscepti-
bility loci do not reside within or near identifiable genes. It
has been hypothesized that they exist in regulatory regions
of DNA that control gene expression, or alternatively, in

regions of DNA that code for microRNAs or other regulatory
transcripts, as recently conceptualized by Glinsky.27,28

Ultimately, our results and these new lines of research will
encourage future studies to increase our understanding of
the biological basis of PC, providing an opportunity to
design new therapies.

Several lines of evidence support the involvement of EGF
in PC development. The normal and tumoral prostatic
epithelium produces large amounts of EGF,29 its receptor
was found to be overexpressed in prostatic tumors, and
the EGF/EGFR pathway has been associated with AI
development.9,30 Cumulatively, it was shown that EGF and
EGFR expression levels in PC cells are enhanced during
disease progression to AI and metastatic PC.10

Transforming growth factor-b1 exerts a wide variety of
biological actions, through both autocrine and paracrine
mechanisms. It’s role has been associated with advanced
disease and metastasis, through the induction of extracel-
lular proteolysis, angiogenesis and immune suppression.31

However, in the earlier stages of tumor development TGF-b1

can act as an inhibitor of tumor progression.32 According to
Tang et al.,33 the suppression of autocrine TGF-b1 actions
leads to the activation of tumorigenic properties. In fact, it
was observed a dual role for TGF-b1 in PC cells, with both an
inhibitory or a stimulatory growth effect.34 These apparently
paradoxal findings can be attributed to TGF-b1 concentra-
tion, which leads to proliferation in low TGF-b1 environ-
ments, and induces growth arrest in the presence of high
concentrations of TGF-b1.35 This ligand that potentially
inhibit epithelial, endothelial and hematopoietic cell pro-
liferation, is able to prevent progression through the cell
cycle by inducing expression of cyclin kinase inhibitors p15,
p21 and p27.17 Furthermore, it regulates the expression of
several key proteins in the control of cell-cycle progression
from G1-to-S phase,17 including c-myc. It was shown that
TGF-b1 can rapidly inhibit the transcription of c-myc in
epithelial cells.36 TGF-b1 is also produced in prostatic
stromal cells, inducing apoptosis through a paracrine
mechanism in prostate epithelial cell. In fact, it was already
shown that the TGF-b signaling pathway may have prog-
nostic significance in PC patients and that in vitro restora-
tion of TGF-b1 signaling pathway in PC cells inhibits
proliferation.37,38

Case–control molecular epidemiology studies from our
group and others have shown promising results concerning
the development of molecular markers for PC susceptibility
and aggressiveness.39–42 Specifically, it was hypothesized
that functional polymorphisms with impact in growth
factor and cytokine expression and circulating levels may
influence individual susceptibility to PC, the response to
treatment and prognosis significance.

The EGFþ61G4A polymorphism encodes a significant
functional difference in EGF expression.11–13 Conversely, it
is expected that G-carriers will have a higher EGF availability
in tumoral environment. EGFþ61G4A polymorphism has
been the subject of investigation in case–control studies,
involving other cancer types.11–16 Recently, we have shown
that this functional polymorphism was associated with
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increased risk for PC, being diagnosed with aggressive
disease and worst response to ADT.16

The TGFB1þ869T4C functional polymorphism is respon-
sible for significantly higher TGF-b1 circulating levels in
C-carriers and in vitro transfection experiments showed that
the signal peptide in C-carriers caused a 2.8-fold increase
in the secretion of TGF-b1 compared with T-carriers.43 The
combined lower TGF-b1 production in the presence of
T-allele21 and higher levels of EGF associated with the
presence of G-allele, might contribute to a favorable long-
term proliferative potential in prostate epithelial cells, which
may increase PC risk.

Although interactions between cancer cells and the extra-
cellular environment are important in processes such as
invasion, angiogenesis and metastization, and TGF-b1 and
EGF are known to play a role in these mechanisms,17,44 our
results do not support this hypothesis. We suggest that, as
we used a combined genetic profile of EGF and TGFB1 based
on the proliferation phenotype, we were unable to find an
association with aggressive PC.

Patients with local or distant metastatic PC are usually
treated primarily through pharmacological androgen
suppression.2 This hormonal therapy is initially efficient,
although the majority of patients will subsequently become
unresponsive to androgen inhibition45 and consequently
the development of AIPC is a clinical problem of major
concern.2,3 In fact, AIPC is a complex and heterogeneous
form of PC with a high capacity of progression and
metastization.4 Conversely, the comprehension of mole-
cular pathways underlying this disease is imperative.

The AIPC is a multistep/multievent process with differ-
ent molecular patterns throughout development, involving
changes in signaling pathways of growth suppressing or
promoting factors.46 It was hypothesized that EGF/EGFR
and TGF-b1/TGF-b1RII pathways are involved in the acquisi-
tion of AIPC phenotype, either through an independent
alternative proliferative stimulus, or through the interfer-
ence with androgen receptor (AR) axis.46,47

The prostate is an androgen-dependent (AD) organ that
undergoes involution after castration. Isaacs and Cooffey48

suggested that the shift from AD-to-AIPC may be because of
residual stem cells not responsive to androgens, which will
emerge after ADT under the appropriate growth stimulus.
It is well established that the microenvironment surround-
ing PC cells after ADT may play an important role in their
behavior. Stem cells are usually quiescent and reside
surrounded by a microenvironment that maintains the
balance between quiescence and self-renewal stem cell
population. TGF-b1 and EGF have been implicated as
modulators of stem cell proliferation, thereby regulating
their homeostasis.49

In addition to the proposed mechanism for EGF and
TGF-b1 in AI development, we suggest that by selecting AI
cell clones, ADT creates an opportunity for these undiffer-
entiated stem cells to grow according to the involving
microenvironment. Accordingly, carriers of a high-prolifera-
tion constitutive genetic profile will likely be exposed to
an increased proliferative stimulus, thus contributing to AI

disease. However, the small sample size in our study may
limit the ability to discern meaningful differences. Further
research is needed to evaluate the associations reported here
in more details. In particular large, well-designed studies of
ethnically diverse populations and functional studies on PC
cells may help clarify which variants are truly causal for this
disease.

Present results support that combined analysis of genetic
polymorphisms might reinforce the clinical capacity to
predict the response to treatment. Furthermore, these find-
ings also support the need of other studies to ascertain the
therapeutic value of targeted-combined therapies directed
against both EGF/EGFR and TGF-b1/TGF-b1RII pathways.

In summary, we observed a statistically significant increased
risk for developing PC in EGF and TGFB1 combined high- and
intermediate-proliferation functional genetic profile carriers.
Cumulatively, the high-proliferation functional genetic pro-
file carriers were more prone to develop AI.

Materials and methods

Study population
This case–control study was undertaken in 234 patients,
with a mean age of 69.1 (7.48), with histopathologically
diagnosed PC. The median follow-up time was 32 months
(range 2.5–137 months). Patients distribution according to
the stage at the time of diagnosis was 43.4% presenting
localized disease (T1–T2b), 37.9% with locally advanced
disease (T3–T4) and 18.7% with metastatic disease
(Nþ and/or Mþ ). The types of hormonal treatment were
as follows: anti-androgens plus luteinizing hormone-
releasing hormone agonists (aLHRH) combination therapy
(81.7%); aLHRH alone (8.7%) and anti-androgens alone
(9.6%). Hormone resistance was evaluated through PSA
recurrence, which was defined as two consecutive increasing
PSA values more than 1.0 ng ml�1 and differing by more
than 0.2 ng ml�1.

Men older than 40 years of age, without known history
of cancer were recruited from the Portuguese Institute of
Oncology—Porto Centre Blood Donor’s Bank and included
in the control group (n¼243), with a mean age of 44.7
(11.55). Study was conducted according to the Helsinki
Declaration principles. A venous blood sample (8 ml) was
obtained from each subject by forearm venipuncture.
White cell fraction was used to extract DNA according to
salting-out procedure.50

EGFþ 61G4A and TGFB1 þ869T4C genotyping

The EGFþ61G4A polymorphism was analyzed through
polymerase chain reaction (PCR) followed by RFLP (restric-
tion fragment length polymorphism), as described in earlier
reports.15,16 Briefly, DNA was amplified in a 50-ml reaction
mixture containing EGFþ 61G4A specific primers, PCR
buffer 1� , Taq Polymerase 1 U, MgCl2 1.5 mM, dNTPs
0.2 mM, DNA 100 ng. PCR products (242 bp) were incubated
overnight with AluI restriction endonuclease at 37 1C.
The restricted fragments were separated by electrophoresis
on 3% agarose gels with ethidium bromide staining.
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The polymorphism was defined by presence (A) or absence
(G) of an additional restriction site.

The TGFB1þ869T4C polymorphism was analyzed by
allelic discrimination using 7300 real-time PCR System
(Applied Biosystems, Foster City, CA, USA). Real-time PCR
were carried out using a 6-ml reaction mixture, containing
1� Master Mix (Applied Biosystems), with 1� probes
(TaqMan assay C__22272997_10__, Applied Biosystems)
and 90 ng of the DNA sample.

Quality control procedures implemented for genotyping
included double sampling in about 10% of the samples to
assess reliability and the use of negative controls to step-
away false-positives. In PCR-RFLP method, two authors
obtained the results independently, and the ambiguous
were reanalysed.

Statistical analysis

Genotypes of the two polymorphisms were combined into
three categories according to the functional consequences in
cell proliferation: low-, intermediate- and high-proliferation
genetic profile (Table 2). The rationale for defining high-
proliferation functional genetic profile was to associate the
overexpressing G-allele from EGF þ 61G4A polymorphism
with the T-allele from TGFB1 þ 869T4C variant related to
lower TGF-b1 production. In the intermediate-functional
genetic profile, we have combined EGFþ61G4A and
TGFB1þ869T4C polymorphisms (AA plus CT/TT carriers,
and AG/GG plus CC, respectively). The combination
of EGFþ 61G4A homozygous A with TGFB1þ869T4C
homozygous C polymorphism corresponded to the low-
proliferation genetic profile.

Genetic profiles proportions among groups were com-
pared using the Pearson’s w2-test. OR and 95% confidence
interval (CI) were calculated as a measure of association
between EGF/TGFB1 combined genetic profiles in cases and
controls. A Cox proportional hazard model was used to
analyze the time to AI (determined by the interval of time
since the beginning of ADT until AI or the last clinical
visit), considering as covariates, age at diagnosis (X69 vs
o69 years old), tumor stage (localized vs locally advanced
vs distant metastases), surgery (radical prostatectomy vs
none) and hormonal treatment type (anti-androgens plus
aLHRH combination therapy vs aLHRH alone vs anti-
androgens alone). Hardy–Weinberg equilibrium was tested
using Pearson’s w2-analysis to compare observed versus
expected genotype frequencies.

We calculated the PAR, using the following formula:
PAR¼PRF� (1�1/OR). The PAR is the fraction of disease
attributable to the risk factor, PRF is the percentage of the
risk factor in case subjects, and OR is the odds ratio. All
analyses were performed with SPSS 15.0 statistical software
(SPSS Inc., Chicago, IL, USA) considering a level of
significance o0.05.

Acknowledgments

We thank the Liga Portuguesa Contra o Cancro—Centro Regional
do Norte (Portuguese League Against Cancer); Yamanouchi—
Astellas European Foundation Award for Prostate Cancer; FCT—
Fundação para a Ciência e Tecnologia (PTDC/SAU-FCF/71552/
2006), Portuguese governmental foundation for science and
technology; this project was partially sponsored by an unrestricted
educational grant for basic research in Molecular Oncology from
Novartis Oncology Portugal; RR is a recipient of a Doctoral
degree grant from FCT (SFRH/BD/30021/2006); ALT is a reci-
pient of a Master degree grant from Liga Portuguesa Contra o
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