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Abstract

Vibrations of structures and mechanical systems have plenty of advantages, but also disadvantages.
Notably, vibrations can lead to failures or damage of equipment. Therefore, knowing more about
the vibratory behaviour helps engineers to control damage and to take preventive measures in order
to avoid damages or malfunctions.

For a long time, optimising material properties was a goal in material design. An important
aspect in the optimisation of fibrous composite materials is the fibre angles in different layers of
the laminate. In traditional composite laminates, the fibre orientation is constant in a ply, but
some researchers paid attention to the possibility of changing the fibre orientation angle inside a
ply. A laminate with plies which have curvilinear fibre paths is considered as a variable stiffness
composite laminate (VSCL). Due to the variation of in-plane stiffness in a VSCL, these laminates
find special applications in naval, aerospace, or other structures (e.g. in solar array wings, aircraft
wings, fuselages and tail sections).

Vibrations of VSCL plates are analysed in this thesis. To define a curvilinear fibre path, it is
assumed that the fibre angle varies linearly along one of the Cartesian axes, say x, from a value T0
at the centre of the panel to the value T1 at the panel edges, x =±a/2, where the panel has length
a. The fibre path defined in this fashion is called the reference fibre path; other fibre paths in the
ply can be produced by shifting - or copying - this path with a constant distance through direction
y. During the manufacture process, there is a limitation on the fibre curvature radius; if the fibre
path curvature is less than a determined amount, there will be kinking or buckling of the tows in
the ply.

In this thesis, a p-version finite element based on a third-order shear deformation theory is
used to model the displacements. Non-linear terms based on von Kármán strain–displacement
relations are included. Using the principle of virtual work, the equations of motion are obtained
in matrix form. The order of the equations of motion (regarded as the order of the full model)
can be reduced using static condensation and modal coordinates (reduced-order models). The
transient responses of the equations of motion of VSCL models are obtained using Newmark
method; the same method is employed to obtain solutions in static problems, using time as an
auxiliary parameter. The program is implemented in an in-house Visual Fortran code. To find the
periodic oscillations of VSCL plates in free and forced vibrations, the shooting method is used,
together with a Runge-Kutta-Fehlberg method for integration, again in an in-house Visual Fortran
computational code.

In a traditional composite laminate the stiffness does not change - at the macro scale - in
the laminate, while, in a VSCL laminate stiffnesses change spatially with respect to at least one
coordinate. It is found that this change in local stiffness changes the natural frequencies and mode
shapes of vibration of the laminate, both in the linear and the non-linear regimes. Using VSCL,
the stress field and the strengths in the laminate may change in a different way from what would
occur in a laminate with rectilinear fibres. Consequently, the load magnitudes at which damage
onset appears, as well as the position of damage onset, can be changed.
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The effect of geometrical imperfections (out-of-planarity) is included in the p-version finite
element too. The free and forced, non-linear, periodic vibrations of VSCL plates are analysed
using displacement time-histories, phase plane plots, frequency spectra and shapes assumed by
the plates. Bifurcations from main branches of the backbone of frequency response curves are
detected and analysed. The effect of imperfection of the plate on the hardening and softening of
the free vibration backbone curves are detailed.



Resumo

Materiais compósitos laminados são frequentemente utilizados em elementos estruturais sujeitos
a vibrações. Um aspeto importante na otimização de materiais compósitos reforçados com fibras
é a orientação destas últimas. Em laminados compósitos tradicionais, a orientação das fibras dis-
postas na mesma lâmina é constante, mas alguns investigadores têm explorado a possibilidade de
alterar a orientação das fibras numa lâmina, utilizando fibras curvilíneas. Um laminado com fibras
curvilíneas é um laminado compósito com rigidez variável (VSCL do inglês Variable Stiffness
Composite Laminates).

Vibrações e a deformação em regime estático de placas VSCL são analisadas nesta tese.
Considera-se, em particular, o caso de fibras cujo ângulo é uma função bilinear de um dos eixos
cartesianos. Limitações impostas à curvatura das fibras pelo processo de fabrico e pela ocorrência
de encurvadura são tomadas em consideração.

Um aspeto fundamental desta tese, é o desenvolvimento de um elemento finito da versão p
para placas VSCL, baseado numa teoria de deformação de corte de terceira ordem. Os termos
não-lineares das relações entre deformações e deslocamentos de von Kármán são considerados,
para se conseguir estudar grandes deslocamentos (regime geometricamente não-linear). Usando
o princípio dos trabalhos virtuais, as equações de movimento são obtidas na forma matricial.
O número de equações de movimento do modelo completo foi reduzido utilizando condensação
estática e coordenadas modais (modelos de ordem reduzida). No que concerne à resolução das
equações do movimento, foram essencialmente utilizados dois métodos. Para obter soluções em
regime estático e respostas dinâmicas em regime transiente, as equações do movimento foram
resolvidas pelo método de Newmark, no primeiro caso utilizando o tempo como um parâmetro
artificial auxiliar. Para encontrar as oscilações periódicas de placas, tanto em vibrações livres
como forçadas, foi utilizado o método do disparo (método shooting), em conjunto com um método
Runge-Kutta-Fehlberg para a integração no tempo das equações do movimento. Em todos os
casos, recorreu-se a códigos computacionais escritos em Fortran 90.

Enquanto numa placa laminada compósita com fibras retilíneas a rigidez não muda - à escala
macro - de um ponto para o outro do plano médio, numa placa VSCL a rigidez muda espacial-
mente. Verificou-se que esta alteração na rigidez local provoca alterações nas frequências naturais
e nos modos de vibração do laminado, tanto em regime linear como no regime geometricamente
não linear. Usando VSCL, o campo de tensões e a resistência do laminado muda de uma forma
diferente do que ocorreria num laminado com fibras retilíneas. Por conseguinte, as magnitudes de
carga para a qual dano se inicia, bem como o local em que se dá esse início, são alterados.

O efeito de imperfeições geométricas (alteração da planaridade) foi incluído no elemento finito
da versão p desenvolvido. Vibrações periódicas nos regimes livre e forçado, não lineares, de pla-
cas VSCL foram analisadas utilizando gráficos dos deslocamentos em função do tempo, planos
de fase, espectros de frequência e as formas assumidas pelas placas. Bifurcações de ramos prin-
cipais da curvas dorsais (backbone curves) e de curvas de resposta de frequência foram detetadas
e analisadas. O efeito de imperfeições geométricas da placa sobre a inclinação das curvas dorsais

iii



iv

foi descrito.
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“We think someone else, someone smarter than us,
someone more capable, someone with more resources will solve that problem.

But there isn’t anyone else.”
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Notation
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Chapter 1

Variable Stiffness Composite Laminates

1.1 Introduction

Composite materials are made of at least two constituent materials that remain separated in the

finished structure. Laminated fibre-reinforced composites are a popular type of composites, which

have a number of advantages in comparison to metal based structures, including the facts that

they offer lightweight and stiff surfaces, which resist well to corrosion and are also believed to

have a relatively long fatigue life. Most commonly, fibre reinforced composite materials have

straight and unidirectional fibres, which are homogeneously distributed in each lamina, hence, in

a macroscopic sense, it can be considered that the stiffness does not vary in the laminate domain.

While many techniques for optimising traditional composite materials (constant stiffness com-

posite laminates - CSCL) have been developed, modern processing methods allow for more com-

plex composite structures to be conceived and created. The appearance of automated tow-placement

technology (see a photo of this machine by NLR - Nationaal Lucht- en Ruimtevaartlaboratorium

or the National Aerospace Laboratory of the Netherlands - in Figure 1.1), as a modern composite

manufacturing mechanism, turned the production of laminates with curved fibres (variable stiff-

ness composite laminates - VSCL) easier. Variable stiffness designs allow for the composite to be

tailored to a wider range of properties than traditional straight-fibre laminates. In some applica-

tions, including in aerospace and naval structures, it may be quite interesting to design laminated

plates using curvilinear fibres instead of straight ones, since by using a VSCL the natural frequen-

cies change and vibrational resonance can be avoided; or one can expect a different stress field,

displacement, damage onset or also different response to the forced vibrations in the non-linear

regime. Here, without incurring weight penalties, the vibration response can be optimised by

tailoring the fibre angles of different layers.

This dissertation concentrates on VSCL panels where the fibre orientation angle is not constant

in a ply and acronym ‘VSCL’ will be mostly used for this specific type of panel. Fibres can be

placed together in a curvilinear path to make a variable stiffness composite ply. This can be done

using an automated tow-placement machine with rotating head (see Figure 1.1). Two variable

stiffness composite laminates with different fibre paths are presented in Figure 1.2. Composite

1
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Figure 1.1: Tow-placement machine producing plies with curvilinear fibre path. Courtesy of NLR.

materials where the stiffness is purposely made to vary in the laminate have, particularly since the

nineties [1–5], deserved greater interest, because they may lead to more efficient designs.

There are several techniques to obtain VSCL panels. The main ones, represented in Figure 1.3

- with variable stiffness in surface of the panel - are: using curvilinear fibres [6–8], varying the

volume fraction of fibres [9, 10], and dropping or adding plies to the laminate [11–13]. Attaching

discrete stiffeners to the laminate [14–16], Figure 1.3(d), can be regarded as a procedure that varies

the stiffness. Functionally graded plates [17] in which the material properties change in the in-

plane directions [18, 19] may be regarded as VSCL plates. It is also worth noting that materials

whose stiffness varies in space appear in nature [20].

Not negating that other ways of varying the stiffness may, for technological or economic rea-

sons, be more adequate in specific situations, varying the fibre orientation has a few advantages.
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 Figure 1.2: Two different VSCL plates with curvilinear fibres, right figure is a multi-layer laminate
and left is a single-layer ply. Courtesy of NLR.

2 
 

discrete stiffeners to the laminate [85-92], Figure 1 (d), can be regarded as a procedure that varies the 

stiffness [10] and will be briefly addressed. Functionally graded materials [93] could be also 

categorised as composite materials with variable stiffness, but in this review we focus on fibrous 

composites and will not include FGM.  

 

  

(a) Laminate with curvilinear fibres 

 

 

 

 

(b) Lamina with variable fibre volume fraction 

 

 

 

 

(c) Laminate with internally dropped plies. 

 

 

(d) Plate with stiffeners 

Figure 1. Examples of four types of variable stiffness composite panels. 

 

This review concentrates on VSCL panels where the fibre orientation angle is not constant in a 

ply [4–69], as represented in Figure 1 (a), and acronym ‘VSCL’ will be mostly used for this specific 

type of panel. Not negating that other ways of varying the stiffness may, for technologic or economic 

reasons, be more adequate in specific situations varying fibre orientations has a few advantages. One 

of them is that the stiffness varies continuously with the membrane coordinates, in opposition to 

what occurs either when stiffeners are attached to a laminate or when plies are terminated at different 

locations. The later options lead to abrupt changes in the thickness direction, which produce stress 

concentration and out-of-plane, interlaminar, stresses [81]. Moreover, unlike stiffeners, curvilinear 

fibres do not introduce major geometry variations. Curved fibres offer a wider degree of possibilities 

Figure 1.3: Examples of four types of variable stiffness composite panels [43].
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One of them is that the stiffness varies continuously with the membrane coordinates, in opposition

to what occurs either when stiffeners are attached to a laminate or when plies are terminated at

different locations. The two last options lead to abrupt changes in the thickness direction, which

produce stress concentration and out-of-plane, interlaminar, stresses [11, 13]. Moreover, unlike

stiffeners, curvilinear fibres do not introduce major geometry variations. Curved fibres offer a

wider degree of possibilities than variations of rectilinear fibre volume fraction and provide a so-

lution to the problem of continuity when one considers manufacturing a structure with different

fibre angles in adjoining elements [1, 3, 21]. Furthermore, curvilinear fibres also offer a way to

diminish stress concentrations that occur, e.g., around holes or cut-outs.

The objectives of this thesis are summarised in the next section. Manufacturing of VSCL and

the definition of fibre paths are addressed after. Finally, the organization of the thesis is described.

1.2 Objectives

The objective of this thesis is to investigate the vibrations of VSCL panels, identifying the conse-

quences of using curvilinear instead of linear fibre paths on the vibrational mode shapes, natural

frequencies, forced response, stress distribution and failure onset. Taking into account the ap-

plications in aircraft and spacecraft panels, vibrations with large amplitude displacements will

be considered. In fact, vibrations of those panels often occur in the non-linear regime, because

the panels are thin and subjected to large dynamic excitations and therefore vibrate with large

displacements. Due to existence of geometrical imperfection in the built panels, the effect of out-

of-plane imperfection is considered. Changes in the free vibration behaviour of the panel from

hardening to softening due to geometrical imperfection will be showed.

1.3 Manufacturing VSCL with Curvilinear Fibres

Here, a short review on manufacturing aspects of variable stiffness composites is given. Literature

reviews on the static analysis, damage, free and forced oscillations in the non-linear regime plus

linear vibration of variable stiffness panels will be presented in the following chapters.

One of the reasons behind the increasing availability of curved fibre laminates is that present

tow-placement machines are capable of controlling fibre tows individually. Tow-placement ma-

chines have a computer controlled robotic arm with a fibre placement head, allowing for a precise

control of the fibre orientation and providing the possibility to curve the fibres within the plane of

the laminate; they also have cut/restart capabilities [22, 23]. This technology opens the door to an

enlarged design space, with respect to the traditional straight-fibre reinforced composites, offering

new possibilities for weight reduction and better performance, which is particularly important in

means of transport [24]. For instance, the application of this technology to aircraft fuselage regions

dominated by bending, linked to regions where shear deformation mostly affects the response, is

suggested1. In such a case, plies with fibres aligned along a certain axis should turn to plies where

1http://aerospaceengineeringblog.com/variable-stiffness-composites/

http://aerospaceengineeringblog.com/variable-stiffness-composites/
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the fibres that make 45 degrees with relation to the same axis. With curvilinear fibres, these two

regions can be connected in a continuous fashion.

Automated fibre placement (AFP) with advanced machines (also written as Automated Tow-

Placement Machines) is the chief procedure to obtain laminates with curvilinear fibres and – as

written above – benefits from the machines’ capability to control tow-placement [24]; but it also

induces defects [25, 26]. Gaps and overlaps as defects of variable stiffness plies are visible in

Figure 1.2. This technology is, maybe for the first time, mentioned in a series of works presented

at the International SAMPE Symposiums, including [27–29]. Tow overlapping and tow dropping

result in fibre and resin rich or poor regions. A novel fibre placement technique, designated as

“Continuous Tow Shearing (CTS)” which uses shear deformation characteristics of dry tows, has

been presented in Ref. [30]. Tests indicate that CTS can decrease process-induced defects such as

fibre wrinkling, resin rich areas and fibre discontinuity.

Another type of advanced fibre placement – different from the one mentioned in a previous

paragraph and, for example, in Refs. [22] and [23] – is tailored fibre placement (TFP), an auto-

mated textile process for the production of reinforcing structures [31,32]. This process apparently

allows manufacturing textile preforms for composite parts with fibre layouts of arbitrary direction

using embroidery technology; the desired fibre quantities and orientations can be transferred into

fibre preforms.

1.4 Variable Stiffness Laminate with Curvilinear Fibres

The fibres in each unique lamina are straight in a similar direction in constant stiffness composite

laminates, Figure 1.4(a), or they can be in curved forms (leading to variable stiffness composite

laminates), Figure 1.4(b). In CSCL plates, the fibre orientations in each lamina do not change, but

from one lamina to another they can be altered. To date, the main focus of researchers has been

finding the best stacking sequence for the layers in these CSCL plates, which can result in a better

design for deformations, frequencies, and vibration mode shapes.

In this thesis we consider laminated plates with variable fibre angle through a ply, Figure

1.4(b). Theoretically, this variation could obey any pattern. One pattern for fibre paths to develop

is a curvilinear form. The other fibre paths may be attained using the curvilinear reference fibre

path.

1.4.1 Definition of Reference Fibre Path

The fibre path orientation θ is here defined as

θ (x) = 2(T1−T0)
|x|
a

+T0 (1.1)

in which T0 and T1 are the path orientation angles in the centre and vertical edges of a rectangular

plate, with length a and width b, where x and y Cartesian coordinates system is used, Figure

Accessed: 29 September 2015
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(a) Constant stiffness lamina (b) Variable stiffness lamina 

Figure 1.4: Lamina with straight fibres versus lamina with curved fibres.

1.5. Here, the fibre orientations change spatially. To introduce a VSCL plate with k layers the

notation
[
〈T0,T1〉(1),〈T0,T1〉(2), . . . ,〈T0,T1〉(k)

]
is used, here 〈T0,T1〉(k) shows the fibre angles at

the centre and the edge of the kth lamina. Also,
[
〈T0,T1〉1, . . . ,〈T0,T1〉i, . . . ,〈T0,T1〉k

]
sym

means

that the laminate has 2× k layers which are symmetric about the mid-plane.

1.4.2 Shifted Curvilinear Fibres

Once the reference fibre path is defined, it is easy to find the remaining fibre paths. There are two

methods to find the other fibre paths: parallel and shifted methods. The shifting of the reference

fibre path along an axis to create the remaining paths is more straight-forward than the use of

parallel paths. The first fibre path created is the reference fibre path. The next fibre path is made

by shifting the reference fibre path a fixed amount in the y direction. The remaining fibre paths

for the lamina are made in the same manner, with the only difference being the amount that each

path is shifted along the y axis. The completed shifted fibre 〈0o,45o〉 lamina can be seen in Figure
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Figure 1.5: Reference fibre path in VSCL with curvilinear fibres
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Figure 1.6: A 〈0o,45o〉 lamina created by (a) shifted fibre method, and (b) parallel fibre method.

1.6(a). Note that here the change in fibre orientation only takes place along the x axis. In shifted

fibre method, a single analytical expression for the fibre orientation angle exists that is valid for

all fibre paths.

1.4.3 Parallel Curvilinear Fibres

The parallel method creates fibre paths so that each path is defined as a set of points lying a

constant distance from the reference curve. In this pattern, any fibre curve is created parallel to

another fibre curve. Unlike in the shifted fibre method, in the parallel fibre method, the reference

path obeys an analytical expression that is not obeyed by the other paths. The completed parallel

fibre 〈0o,45o〉 lamina can be seen in Figure 1.6(b). Unlike the shifted fibre, two points, A and B,

which have the same x coordinate no longer have identical fibre orientations. In this investigation,

the shifted fibre paths are used. For more details on this, one can refer to Ref. [6].

1.4.4 Manufacturing Limitations on VSCL by Shifted Curvilinear Fibres

In order to create the variable-stiffness laminates here considered, it is necessary to actually curve

the tow paths. If a fibre is curved too much, then it is quite possible that a kink in the fibre develops.

In an effort to limit the degree of this kinking, the curvature of the fibre paths should be less than

a prescribed maximum value. The paths of shifted fibres in the ply are identical to the reference

fibre path. The definition of curvature for a function of a single variable f (x) is given by

K =
f ′′ (x)(

1+( f ′ (x))2
) 3

2
(1.2)

Recognising that the reference fibre path of a given ply is defined by the single variable x, its

curvature can be found by substituting the fibre path equation for f (x) in the above equation. Only
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the curvature of this path in the positive portion of the panel needs to be calculated, since the

reference fibre path is antisymmetric about the y axis. So the fibre orientation is

θ (x) = (T1−T0)
x
a
2
+T0, 0 < x <

a
2

(1.3)

and the fibre path equation is

f (x) =
∫

tan
(
(T1−T0)

x
a
2
+T0

)
dx (1.4)

or

f (x) =
a

2(T0−T1)

{
ln
[

cos
(
(T1−T0)

x
a
2
+T0

)]
− ln [cos(T0)]

}
. (1.5)

At each location along the reference fibre path, the curvature is required to be less than the

maximum allowable curvature of 3.28 m−1 [6], to insure that the laminate could be made (this

value may change depending on the material, layup rate, and compaction pressure used in the

manufacturing process. Ref. [33] gives different values for different tow properties). In the nu-

merical examples that follow, results are computed only if the curvature is less than this critical

value. When the curvature exceeded the maximum allowable curvature, no analysis is performed

since the laminate should not be, according to Ref. [6], manufactured. Therefore, the following

constraint inequality is respected:

K =
2(T1−T0)

a
cos
(
(T1−T0)

x
a
2
+T0

)
< 3.28 (1.6)

1.5 Organization of this Dissertation

The thesis is organised into 7 chapters. Chapter 1 introduces VSCL plates with curvilinear fibre

which follow a reference fibre path. Two different methods (parallel and shifted) are presented to

make the variable stiffness ply using the reference fibre path. The manufacturing limitations of

VSCL plates are presented here. Linear modelling of VSCL plate with a p-version finite element

with hierarchical set of shape functions, using a third order shear deformation theory (TSDT), is

developed in Chapter 2. Here, the solution to the eigenvalue problem of VSCL plates is given and

the natural frequencies and mode shapes of vibration are calculated and compared for clamped,

simply-supported and free plates. The third chapter is self-contained with the development of the

theory. In the next chapters, improved formulations to include non-linearities are developed.

The non-linear model and equations of equilibrium based on the virtual work principle are

introduced in Chapter 3, which is devoted to static problems. Newmark method is used to solve

the equations of equilibrium in the non-linear regime. Numerical results for large deflection and

stresses are presented and compared.

Damage onset of VSCL plates under different types of static and dynamic loads are thoroughly

studied in Chapter 4. Here, Tsai-Wu damage criterion is used and the equations of motion are
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solved by Newmark method . The transient behaviour of VSCL plates under different loadings is

presented.

Static condensation and modal summation method, that reduce the number of degrees of free-

dom in non-linear VSCL models are presented in Chapter 5, where the shooting method is used

to find free periodic oscillations of VSCL plates. Results for non-linear frequencies are compared

and backbone curves, bifurcations, time history responses, phase-plane diagrams and frequency

spectra of deflection amplitude and stresses are presented. Here, free oscillations of imperfect

VSCL plates are also addressed.

The shooting method is also used in Chapter 6 to find forced periodic oscillations of VSCL

plates. Frequency response curves for different VSCL plates are presented, where bifurcations

are detected. Steady-state time histories, phase-plane plots and frequency spectra for deflection

amplitude, and stresses in a periodic cycle in different points of bifurcated and fundamental branch

of the response are studied. Damage onset is analysed.

Chapter 7 points out the conclusions of the thesis. Based on the conclusions, some new sub-

jects are suggested to investigate in the future.





Chapter 2

Linear Vibrational Modes of VSCL
Plates

2.1 Introduction

In this chapter, natural frequencies and vibrational mode shapes of variable stiffness composite

laminated (VSCL) plates with curvilinear fibres are studied. The plates are rectangular either

perfect or with geometric imperfections (out-of-planarity). In each ply of the rectangular VSCLs,

the fibre-orientation angle changes linearly with respect to the horizontal coordinate, Equation

(1.1).

To define the modes of vibration of the laminates, a p-version finite element with hierarchical

basis functions is presented. This element follows a third-order shear deformation theory (TSDT),

because this theory allows one to consider shear deformation and is hence more accurate than clas-

sical plate theory. In addition, deformation through the thickness is more truthfully represented in

a TSDT than in a FSDT (first-order shear deformation theory) and, unlike the latter, a TSDT does

not require a shear correction factor. On the other hand, a TSDT is still an equivalent single layer

theory, and hence has smaller implementation and computational costs than layerwise theories or

three-dimensional elasticity (for more details see Refs. [34–39]).

The convergence properties of this new element are investigated. Taking manufacturing re-

strictions regarding the fibre curvatures into account, maps of natural frequencies as functions of

tow-orientation angles are determined in demonstrative examples. This manufacturing limitation

arises from a fact that the curvature of fibres should not be larger than a specific value, in order to

prevent the occurrence of fibre kinking [6]. It is verified that the use of curvilinear fibres instead of

the traditional straight fibres introduces a greater degree of flexibility, which can be used to adjust

frequencies and vibrational mode shapes. Some experimental results for VSCL plates with free

edges are given and further compared with numerical results of the linear model.

11
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2.1.1 Literature Review

There are several publications on vibrations of constant stiffness composite laminate (CSCL)

plates and shells, i.e., in laminates with straight fibres. But, in spite of the fact that VSCL

panels find application in fields where they are prone to experience vibrations, there is a very

limited number of studies on the vibrations of these panels. Wu and Lee [40] studied the frequen-

cies of a conical shell with variable stiffness, as the function of circumferential coordinate, and

achieved changes of 20% and 7% in the fundamental frequencies of shells with simply-supported

and clamped boundary conditions, respectively.

In another reference [41], the effect of transverse shear deformation and embedded manufac-

turing defects (gaps and overlaps) on the linear natural frequencies was presented. The governing

equations obtained via classical and shear deformation theories and then the authors solved the

equations by using the hybrid Fourier–Galerkin method. It was declared that for moderately-thick

plates with length-to-thickness ratio a/h = 10, major differences emerge between classical lam-

inate plate theory and TSDT predictions. In particular, discrepancy up to 15% was observed for

the fundamental frequency.

In Ref. [42], a layerwise formulation for free vibrations of symmetric and unsymmetric VSCL

plates was applied taking into account a linear variation of the in-plane displacement fields in each

layer of plate. The authors in Ref. [42] concluded that increasing the fibre orientation angle at

the edge of laminates always leads to lower fundamental natural frequencies; where the same is

not necessarily true in what regards the fibre angle at the centre of the laminates. In comparison

between symmetric and unsymmetric laminates with the same properties, they found that the max-

imum fundamental natural frequencies occur in the symmetric laminate. However, they mentioned

that the frequency values of higher modes were often larger for unsymmetric VSCL plates.

Ref. [43] includes a review on VSCL panels as well as a comparison between natural frequen-

cies obtained by p-version and h-version finite element models of VSCL plates. Another reference

includes a small discussion on the linear vibration of VSCL plates in terms of the number of in-

plane, out-of-plane and rotation shape functions in p-version finite element [44].

In another research [45], Ritz solutions used to find natural frequencies and vibration modes of

laminated plates having curvilinear reinforcing fibers. VSCL plates with quadratically, cubically,

and arbitrarily shaped fibers, defined using spline functions, were studied. It was showed that the

effect of the fiber shapes diminish by inserting symmetric layers toward the outermost layer into

the inner layers. Also, plates with thin outer layers and thick inner layers which are symmetric to

the outer layer presented higher frequencies than those with thick outermost layers [45].

In variable stiffness panels, the stiffness properties are continuous functions of position. Ide-

ally, by varying the fibre steering geometry, the stiffness properties at each point in the panel can

be independently varied. The additional freedom in locally tailoring the stiffness properties means

that the performance of variable stiffness panels can be highly improved over constant stiffness

(straight fibres) panels. However, this additional freedom comes at the price of having a signifi-

cantly enlarged design space. In this fashion, optimisation can be used to find a VSCL panel with
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Fig. 1 Displacements and rotations in a symmetric laminate with Cartesian coordinates. 

 

 

 

Fig. 2 Fibre orientation in a variable stiffness lamina. 
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Figure 2.1: Coordinates of a laminated plate

maximized fundamental frequency; two examples are provided by Refs. [46, 47], where variable

stiffness shells are analised using classical lamination theory. Most of the results presented in this

chapter are published in Ref. [48].

2.2 Linear Formulation for of VSCL Plates with Curvilinear Fibres
and with Imperfections

A right-handed three-dimensional Cartesian coordinate system is adopted, with the x and y axis

on the middle plane of the undeformed plate and the z axis positive upwards. The origin of the

coordinate system is located in the geometric centre of the undeformed plate (Figure 2.1).

In the TSDT used here, the displacement components in the x, y, and z directions, represented

by u, v, and w are given (see Refs. [34, 37, 39] for displacement field without imperfection) by

Equations (2.1)

u(x,y,z, t) = u0 (x,y, t)+ zφ x (x,y, t)− cz3
(

φ x (x,y, t)+
∂w0 (x,y, t)

∂x

)
,

v(x,y,z, t) = v0 (x,y, t)+ zφ y (x,y, t)− cz3
(

φ y (x,y, t)+
∂w0 (x,y, t)

∂y

)
,

w(x,y,z, t) = w0 (x,y, t)+wi (x,y) , (2.1)

where u0, v0, and w0 are the values of u, v, and w at the mid-plane and φ x and φ y are the in-

dependent rotations of the normal to the middle surface about the y and x axis, respectively (as

shown in the Figure 2.1). t is time, c = 4/3h2, and h is the plate thickness. Initial geometric

imperfection in the normal direction, wi, associated with zero initial stress, is considered in the

formulation. If c = 0, one can obtain the displacement field of FSDT. The displacement field

of this TSDT accommodates quadratic variation of transverse shear strains (and hence stresses)

through the thickness and vanishing of transverse shear stresses on the top and bottom of a plate.

Unlike FSDT, mentioned TSDT requires no shear correction factors.
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In the following equations, function arguments are not always given. Herein, the mid-plane

displacements are given by



u0 (x,y, t)

v0 (x,y, t)

w0 (x,y, t)

φ x (x,y, t)

φ y (x,y, t)


=


Nu (x,y)T 0 0 0 0

0 Nu (x,y)T 0 0 0
0 0 Nw (x,y)T 0 0
0 0 0 Nφφφ x (x,y)T 0
0 0 0 0 Nφφφ y (x,y)

T





qu (t)

qv (t)

qw (t)

qφφφ x
(t)

qφφφ y
(t)


(2.2)

where Ni (x,y) are vector of shape functions and qi (t) are generalised displacement vectors (i=
u, v, w, φ x, and φ y). Vector Nu (x,y) is constituted by p2

u in-plane shape functions, Nw (x,y)

is constituted by p2
w out-of-plane shape functions. Nφφφ x (x,y) and Nφφφ y (x,y) are the vectors of

shape functions for the rotations of the cross section about the y and x axis, respectively. If the

boundary conditions permit, we have the same number of terms, for Nφφφ x (x,y) and Nφφφ y (x,y), given

by p2
φ
= p2

φx
= p2

φy
. Also, the vector of shape functions for displacements in the y direction Nv (x,y)

are the same as the one for displacements in the x direction, Nu (x,y).

Here, b c and { } mean a row and column vectors, respectively. The row vectors of bi-

dimensional surface or membrane, transverse and rotational shape functions that appear in Equa-

tion (2.2) are, respectively

NuT (ξ ,η) = NvT (ξ ,η) = bg1 (ξ )g1 (η) ,g1 (ξ )g2 (η) , . . . , gpu (ξ )gpu (η)c ,

NwT (ξ ,η) = b f1 (ξ ) f1 (η) , f1 (ξ ) f2 (η) , . . . , fpw (ξ ) fpw (η)c ,

Nφφφ x
T
(ξ ,η) =

⌊
h1 (ξ )h1 (η) ,h1 (ξ )h2 (η) , . . . , hpφx

(ξ )hpφx
(η)
⌋
,

Nφφφ y
T
(ξ ,η) =

⌊
h1 (ξ )h1 (η) ,h1 (ξ )h2 (η) , . . . , hpφy

(ξ )hpφy
(η)
⌋

(2.3)

where g, f and h are surface, transverse and rotation one-dimensional displacement shape func-

tions (see Appendix A); pu = pv, pw, pφx and pφy are the numbers of respective displacement shape

functions employed. η and ξ are the local co-ordinates, and related to principal coordinates of x

and y by x = a
2 ξ , y = b

2 η , where a and b are the length and width of the plate, and ξ and η change

from -1 to 1.

p-Version finite element method as a discretization procedure for solving partial differential

equations is used. In this method, the finite element mesh is fixed and the polynomial degrees

of elements are increased. This is in contrast with the widely used discretization procedure h-

version finite element method in which the polynomial degrees of elements are fixed and the mesh

is refined. In the linear elastic mechanics problem, it is demonstrated that solutions based on the

p-version converge faster than solutions based on the h-version [49]. Additional computational
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results and evidence of faster convergence of the p-version finite element were presented in Ref.

[50]. In the p-version finite element method, one is free to choose the number and the set of

displacement shape functions to use in the element definition, being each of the displacement

components - u, v, w, φx, and φy - associated with a particular set of shape functions (see Appendix

A).

The strain displacement relations by Green deformation tensor is expressed as (after Ref. [51])

εx =
1
2

(
2

∂u
∂x

+
∂u
∂x

∂u
∂x

+
∂v
∂x

∂v
∂x

+
∂w
∂x

∂w
∂x

)
,

εy =
1
2

(
2

∂v
∂y

+
∂u
∂y

∂u
∂y

+
∂v
∂y

∂v
∂y

+
∂w
∂y

∂w
∂y

)
,

εz =
1
2

(
2

∂w
∂ z

+
∂u
∂ z

∂u
∂ z

+
∂v
∂ z

∂v
∂ z

+
∂w
∂ z

∂w
∂ z

)
,

εxy =
1
2

(
∂u
∂y

+
∂v
∂x

+
∂u
∂x

∂u
∂y

+
∂v
∂x

∂v
∂y

+
∂w
∂x

∂w
∂y

)
,

εxz =
1
2

(
∂u
∂ z

+
∂w
∂x

+
∂u
∂x

∂u
∂ z

+
∂v
∂x

∂v
∂ z

+
∂w
∂x

∂w
∂ z

)
,

εyz =
1
2

(
∂v
∂ z

+
∂w
∂y

+
∂u
∂y

∂u
∂ z

+
∂v
∂y

∂v
∂ z

+
∂w
∂y

∂w
∂ z

)
,

γxy = 2εxy,γxz = 2εxz,γyz = 2εyz. (2.4)

where εi is the normal strain acting on the surface normal to i in direction i, and εi j is the shear

strain acting on the surface normal to i in direction j. Strains, with some simplifications by neglect-

ing higher order terms except the term which include imperfection, can be expressed as (again, as

will be often done in this text, for simplicity we write u0 (x,y, t) as u0, etc.)

εx (x,y,z, t) =
∂u0

∂x
+
(
z− cz3) ∂φx

∂x
− cz3

(
∂ 2w0

∂x2

)
+

∂w0

∂x
∂wi

∂x
,

εy (x,y,z, t) =
∂v0

∂y
+
(
z− cz3) ∂φy

∂y
− cz3

(
∂ 2w0

∂y2

)
+

∂w0

∂y
∂wi

∂y
,

εz (x,y,z, t) = 0,

γxy (x,y,z, t) =
∂u0

∂y
+

∂v0

∂x
+
(
z− cz3)(∂φx

∂y
+

∂φy

∂x

)
−2cz3 ∂ 2w0

∂x∂y
+

∂w0

∂x
∂wi

∂y
+

∂w0

∂y
∂wi

∂x
,
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γyz (x,y,z, t) =
(
1−3cz2)(

φy (x,y, t)+
∂w0

∂y

)
,

γxz (x,y,z, t) =
(
1−3cz2)(

φx (x,y, t)+
∂w0

∂x

)
. (2.5)

These expressions are in general accurate enough for linear vibrations of plates. If more accurate

expressions are needed, the Equations (2.5) can be improved retaining all the non-linear terms.

Strains can be presented in the matrix form as


εx

εy

γxy

=

 1 0 0 z 0 0 −cz3 0 0

0 1 0 0 z 0 0 −cz3 0

0 0 1 0 0 z 0 0 −cz3

εεε

εεε =


εεε

p
o

εεεb
o

εεεb
o

+


εεε

p1
o

0
εεεb1

o

 (2.6)

in which εεε
p
o is the linear in-plane strain

εεε
p
o =


u0
,x

v0
,y

u0
,y + v0

,x

 (2.7)

Here, partial derivation is represented by a comma. εεεb
o is the linear bending strain

εεε
b
o =


φx,x

φy,y

φx,y +φy,x

 (2.8)

and εεεb1
o is another linear strain

εεε
b1
o =


w0
,xx

w0
,yy

2w0
,xy

 (2.9)

εεε
p1
o is the linear strain due to imperfection as

εεε
p1
o =


w0
,xwi,x

w0
,ywi,y

w0
,xwi,y +w0

,ywi,x

 (2.10)

The following linear strain displacement relation is employed for the transverse shear strains in

the TSDT model:
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{
γyz

γxz

}
=

[ (
1−3cz2

)
0

0
(
1−3cz2

) ]γγγ
p
o

γγγ
p
o =

{
w0
,y +φy

w0
,x +φx

}
(2.11)

By introducing mid-plane displacements of Equation (2.2) in the definitions above,

εεε
p
o =

 Nu
,x

T 0
0 Nu

,y
T

Nu
,y

T Nu
,x

T

{ qu

qv

}
,

εεε
b
o =


Nφφφ x
,x

T
0

0 Nφφφ y
,y

T

Nφφφ x
,y

T
Nφφφ y
,x

T


{

qφφφ x

qφφφ y

}
,

εεε
b1
o =


Nw
,xx

T

Nw
,yy

T

2Nw
,xy

T

qw,

εεε
p1
o =

1
2


wi,xNw

,x

wi,yNw
,y

wi,xNw
,y +wi,yNw

,x

qw,

γγγ
p
o =

[
Nw
,y

T 0 Nφφφ y
T

Nw
,x

T Nφφφ x
T 0

]
qw

qφφφ x

qφφφ y

 . (2.12)

A variable stiffness composite lamina can be considered as an orthotropic composite plate in each

point of its surface. So, the stress-strain relation in the kth lamina in the material coordinates is

(see Refs. [34, 52])



σ1

σ2

τ23

τ13

τ12



(k)

=


Q11 Q12 0 0 0

Q21 Q22 0 0 0

0 0 Q44 0 0

0 0 0 Q55 0

0 0 0 0 Q66



(k)

ε1

ε2

γ23

γ13

γ12



(k)

(2.13)

in which index 1 is direction of the fibre, 2 is perpendicular to the fibre orientation in the lamina

surface, and 12, 13, and 23 are shear directions. Qi j are elastic properties of the lamina. Elastic

constants are (see Refs. [34, 35]):
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Q(k)
11 =

E(k)
1

1−ν
(k)
12 ν

(k)
21

,

Q(k)
12 =

ν
(k)
12 E(k)

2

1−ν
(k)
12 ν

(k)
21

,

Q(k)
22 =

E(k)
2

1−ν
(k)
12 ν

(k)
21

,

Q(k)
44 = G(k)

23 ,

Q(k)
55 = G(k)

13 ,

Q(k)
66 = G(k)

12 , (2.14)

where, E(k)
1 is the major elasticity modulus, E(k)

2 the lower elasticity modulus, G(k)
12 , G(k)

13 , and G(k)
23

the shear moduli, and ν
(k)
12 the Poisson ratio in the kth layer. To apply the principle of virtual

work, as described in Ref. [53], it is convenient to transform the stresses and strains from principal

fibre coordinates (1,2, and 3) to xyz coordinates. For that purpose, the following transformation

matrices are used (Refs. [34, 35]):



σx

σy

τyz

τxz

τxy


=


cos2 θ sin2

θ 0 0 −2sinθ cosθ

sin2
θ cos2 θ 0 0 2sinθ cosθ

0 0 cosθ sinθ 0

0 0 −sinθ cosθ 0

sinθ cosθ −sinθ cosθ 0 0 −sin2
θ + cos2 θ





σ1

σ2

τ23

τ13

τ12


(2.15)



εx

εy

γyz

γxz

γxy


=


cos2 θ sin2

θ 0 0 −sinθ cosθ

sin2
θ cos2θ 0 0 sinθ cosθ

0 0 cosθ sinθ 0

0 0 −sinθ cosθ 0

2sinθ cosθ −2sinθ cosθ 0 0 −sin2
θ + cos2θ





ε1

ε2

γ23

γ13

γ12


(2.16)

where θ is the fibre angle. One should note that in opposition to CSCL plates, the fibre orientation

is changing in VSCL plates and so the fibre coordinates (the material coordinate) are not constant.

Using Equation (2.13) and transformation matrices above, the stress-strain relation in the global

coordinates is
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σx

σy

τyz

τxz

τxy



(k)

=


Q̄11 Q̄12 0 0 Q̄16

Q̄21 Q̄22 0 0 Q̄26

0 0 Q̄44 Q̄45 0

0 0 Q̄54 Q̄55 0

Q̄61 Q̄62 0 0 Q̄66



(k)

εx

εy

γyz

γxz

γxy



(k)

(2.17)

with transformed reduced stiffnesses (Q̄i j) depending on the fibre orientation θ defined as (similar

formulations but for lamina with straight fibres can be found in Refs. [34, 54])

Q̄11 = Q11 cos4
θ +2(Q12 +2Q66)sin2

θ cos2
θ +Q22 sin4

θ ,

Q̄12 = Q̄21 = (Q11 +Q22−4Q66)sin2
θ cos2

θ +Q12
(
sin4

θ + cos4
θ
)
,

Q̄22 = Q11 sin4
θ +2(Q12 +2Q66)sin2

θ cos2
θ +Q22 cos4

θ ,

Q̄16 = Q̄61 = (Q11−Q12−2Q66)sinθ cos3
θ +(Q12−Q22 +2Q66)sin3

θ cosθ ,

Q̄26 = Q̄62 = (Q11−Q12−2Q66)sin3
θ cosθ +(Q12−Q22 +2Q66)sinθ cos3

θ ,

Q̄66 = (Q11−2Q12 +Q22−2Q66)sin2
θ cos2

θ +Q66
(
sin4

θ + cos4
θ
)
,

Q̄44 = Q44 cos2
θ +Q55 sin2

θ ,

Q̄45 = Q̄54 = (−Q44 +Q55)sinθ cosθ ,

Q̄55 = Q44 sin2
θ +Q55 cos2

θ . (2.18)

As follows, by introducing coefficients Ui, (i = 1− 7), the transformed reduced stiffnesses (Q̄i j)

can be simplified. Similar expressions but for lamina with straight fibres can be found in Ref. [55].

U1 =
1
8
(3Q11 +2Q12 +3Q22 +4Q66) ,

U2 =
1
2
(Q11−Q22) ,

U3 =
1
8
(Q11−2Q12 +Q22−4Q66) ,
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U4 =
1
8
(Q11 +6Q12 +Q22−4Q66) ,

U5 =
1
8
(Q11−2Q12 +Q22 +4Q66) ,

U6 =
1
2
(Q44 +Q55) ,

U7 =
1
2
(Q44−Q55) , (2.19)

and so

Q̄(k)
11 =U1 +U2 cos2θ k +U3 cos4θ k,

Q̄(k)
12 =U4−U3 cos4θ k,

Q̄(k)
22 =U1−U2 cos2θ k +U3 cos4θ k,

Q̄(k)
16 =

1
2

U2 sin2θ k +U3 sin4θ k,

Q̄(k)
26 =

1
2

U2 sin2θ k−U3 sin4θ k,

Q̄(k)
66 =U5−U3 cos4θ k,

Q̄(k)
44 =U6 +U7 cos2θ k,

Q̄(k)
45 =−U7 sin2θ k,

Q̄(k)
55 =U6−U7 cos2θ k. (2.20)

The following coefficients are going to be used as coefficients in the virtual work principle

(here, n stands for number of layers):

(Ai j,Bi j,Ci j,Di j,Ei j,Fi j) =
n

∑
k=1

∫ zk

zk−1

Q̄(k)
i j

(
1,z,z2,−cz3,−cz4,c2z6)dz, i, j = 1,2 and 6
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(Gi j,Hi j, Ii j) =
n

∑
k=1

∫ zk

zk−1

Q̄(k)
i j

(
1,−3cz2,9c2z4)dz, i, j = 4 and 5 (2.21)

Replacing Equations (2.20) in Equations (2.21), one obtains

A(x) =
n

∑
k=1

hk


 U1 U4 0

U4 U1 0

0 0 U5

+U2

 1 0 0

0 −1 0

0 0 0

cos2θ k (x)+U3

 1 −1 0

−1 1 0

0 0 −1



cos4θ k (x)+
U2

2

 0 0 1

0 0 1

1 1 0

sin2θ k (x)+U3

 0 0 1

0 0 −1

1 −1 0

sin4θ k (x)

 ,

B(x) = 0,

C(x)=
n

∑
k=1

z3
k− z3

k−1

3


 U1 U4 0

U4 U1 0

0 0 U5

+U2

 1 0 0

0 −1 0

0 0 0

cos2θ k (x)+U3

 1 −1 0

−1 1 0

0 0 −1



cos4θ k (x)+
U2

2

 0 0 1

0 0 1

1 1 0

sin2θ k (x)+U3

 0 0 1

0 0 −1

1 −1 0

sin4θ k (x)

 ,

D(x) = 0,

E(x) =
n

∑
k=1

(
−c

z5
k− z5

k−1

5

)
 U1 U4 0

U4 U1 0

0 0 U5

+U2

 1 0 0

0 −1 0

0 0 0

cos2θ k (x)+U3

 1 −1 0

−1 1 0

0 0 −1

cos4θ k (x)+
U2

2

 0 0 1

0 0 1

1 1 0

sin2θ k (x)+U3

 0 0 1

0 0 −1

1 −1 0

sin4θ k (x)

 ,

F(x) =
n

∑
k=1

(
c2 z7

k− z7
k−1

7

)
 U1 U4 0

U4 U1 0

0 0 U5

+U2

 1 0 0

0 −1 0

0 0 0

cos2θ k (x)+
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U3

 1 −1 0

−1 1 0

0 0 −1

cos4θ k (x)+
U2

2

 0 0 1

0 0 1

1 1 0

sin2θ k (x)+U3

 0 0 1

0 0 −1

1 −1 0

sin4θ k (x)

 ,

G(x) =
n

∑
k=1

hk

(
U6

[
1 0

0 1

]
+U7

[
1 0

0 −1

]
cos2θ k (x)+U7

[
0 −1

−1 0

]
sin2θ k (x)

)
,

H(x)=
n

∑
k=1
−c
(
z3

k− z3
k−1
)(

U6

[
1 0

0 1

]
+U7

[
1 0

0 −1

]
cos2θ k (x)+U7

[
0 −1

−1 0

]
sin2θ k (x)

)
,

I(x)=
n

∑
k=1

9
5

c2 (z5
k− z5

k−1
)(

U6

[
1 0

0 1

]
+U7

[
1 0

0 −1

]
cos2θ k (x)+U7

[
0 −1

−1 0

]
sin2θ k (x)

)
.

(2.22)

Because only symmetric laminated plates will be analised, there is no coupling between in-plane

stretching and transverse bending, therefore B and D are null matrices. The plate equations of

motion are derived by equating the sum of the virtual works of inertia forces (δWj) and elastic

(internal) restoring forces (δWin) to zero.

δWj +δWin = 0 (2.23)

The virtual work of the elastic restoring (internal) forces is:

δWin =−
∫

V



δεx

δεy

δγxy

δγyz

δγxz



T 

σ x

σ y

τxy

τyz

τxz


dV (2.24)

Extending strains and stresses in the equation above, the internal work is (for simplicity, matrix

A(x) is denoted by A and etc.)

δWin =−
∫

Ω

(
δεεε

p
o

T Aεεε
p
o +δεεε

b
o

T
(C+2E+F)εεε

b
o +δεεε

b
o

T
(E+F)εεε

b1
o +δεεε

b1
o

T
(E+F)εεε

b
o+

δεεε
b1
o

T Fεεε
b1
o +δγγγ

p
o

T (G+2H+ I)γγγ
p
o +δεεε

p1
o

T Aεεε
p
o +δεεε

p
o

T Aεεε
p1
o +δεεε

p1
o

T Aεεε
p1
o

)
dΩ (2.25)

where Ω is the surface of the plate. According to the Equation (2.25), the virtual work of internal

forces has nine terms; one can calculate the first term as
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δεεε
p
o

T Aεεε
p
o =

{
δqu

δqv

}T [
Nu
,x 0 Nu

,y

0 Nu
,y Nu

,x

]
A

 Nu
,x

T 0
0 Nu

,y
T

Nu
,y

T Nu
,x

T

{ qu

qv

}
=

{
δqu

δqv

}T [
K11

L1 K12
L1

K21
L1 K22

L1

]{
qu

qv

}
. (2.26)

The second term is

δεεε
b
o

T
(C+2E+F)εεε

b
o =

{
δqφφφ x

δqφφφ y

}T [
Nφφφ x
,x 0 Nφφφ x

,y

0 Nφφφ y
,y Nφφφ y

,x

]
(C+2E+F)


Nφφφ x
,x

T
0

0 Nφφφ y
,y

T

Nφφφ x
,y

T
Nφφφ y
,x

T


{

qφφφ x

qφφφ y

}
=

{
δqφφφ x

δqφφφ y

}T [
K44

L1 K45
L1

K54
L1 K55

L1

]{
qφφφ x

qφφφ y

}
. (2.27)

The third term is

δεεε
b
o

T
(E+F)εεε

b1
o =

{
δqφφφ x

δqφφφ y

}T [
Nφφφ x
,x 0 Nφφφ x

,y

0 Nφφφ y
,y Nφφφ y

,x

]
(E+F)


Nw
,xx

T

Nw
,yy

T

2Nw
,xy

T

qw

=

{
δqφφφ x

δqφφφ y

}T [
K43

L1

K53
L1

]
qw; (2.28)

the fourth term in Equation (2.25) is defined as the transpose of the third term. It can be shown as

δεεε
b1
o

T
(E+F)εεε

b
o = δqw

T

[
K43

L1
T

K53
L1

T

]{
δqφφφ x

δqφφφ y

}
= δqw

T
[

K34
L1 K35

L1

]{
δqφφφ x

δqφφφ y

}
. (2.29)

The fifth term is expressed as

δεεε
b1
o

T Fεεε
b1
o = δqw

T
[

Nw
,xx Nw

,yy 2Nw
,xy

]
F


Nw
,xx

T

Nw
,yy

T

2Nw
,xy

T

qw = δqw
T K33

L1qw. (2.30)

The sixth term is defined as
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δγγγ
p
o

T (G+2H+ I)γγγ
p
o =


δqw

δqφφφ x

δqφφφ y


T  Nw

,y Nw
,x

0 Nφφφ x

Nφφφ y 0

(G+2H+ I)

[
Nw
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T 0 Nφφφ y
T

Nw
,x

T Nφφφ x
T 0
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qφφφ x

qφφφ y

 . (2.31)

The seventh, eighth and ninth terms are affected by imperfection, where the seventh term is

δεεε
p1
o

T Aεεε
p
o =

1
2

δqw
T


wi,xNw

,x

wi,yNw
,y

wi,xNw
,y +wi,yNw

,x


T

A

 Nu
,x

T 0
0 Nu

,y
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Nu
,y

T Nu
,x

T

{ qu

qv

}
=

δqw
T
[

K31
L3 K32

L3

]{ qu

qv

}
(2.32)

The eighth term is the transpose of the seventh term as

δεεε
p
o

T Aεεε
p1
o =

{
δqu δqv

}T
[

K13
L3

K23
L3

]
qw (2.33)

while

[
K13

L3

K23
L3

]
=
[

K31
L3 K32

L3

]T
(2.34)

The ninth term is defined as

δεεε
p1
o

T Aεεε
p1
o =

1
4

δqw
T


wi,xNw

,x

wi,yNw
,y

wi,xNw
,y +wi,yNw
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T

A


wi,xNw

,x
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,y

wi,xNw
,y +wi,yNw

,x

qw = δqw
T K33

L3qw

(2.35)

So the internal virtual work, given in Equation (2.25), can be written as

δWin =−
∫

Ω

δ



qu

qv

qw

qφφφ x

qφφφ y



T 
K11

L K12
L K13

L 0 0
K22

L K23
L 0 0

K33
L K34

L K35
L

K44
L K45

L

sym K55
L





qu

qv

qw

qφφφ x

qφφφ y


dΩ (2.36)
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Above, generalised coordinate vectors qk,(k = u,v,w,φφφ x,φφφ y) are variables and linear stiffness

sub-matrices Ki j
L ,(i, j = 1−5) are constant. These sub-matrices are defined as


K11

L K12
L K13

L 0 0
K22

L K23
L 0 0

K33
L K34

L K35
L

K44
L K45

L

sym K55
L

=


K11

L1 K12
L1 0 0 0

K22
L1 0 0 0

K33
L1 K34

L1 K35
L1

K44
L1 K45

L1

sym K55
L1



+


0 0 0 0 0

0 0 0 0
K33

L2 K34
L2 K35

L2

K44
L2 K45

L2

sym K55
L2

+


0 0 K13
L3 0 0

0 K23
L3 0 0

K33
L3 0 0

0 0
sym 0

 (2.37)

Above, Ki j
L1 and Ki j

L2 are the linear stiffness sub-matrices for a perfect VSCL plate and Ki j
L3 are

the linear stiffness sub-matrices due to an imperfection.

The virtual work of inertia forces is

δWj =−
∫ h

2

− h
2

∫
Ω

ρ (δuü+δvv̈+δwẅ)dΩdz (2.38)

Here, two over-dots is the second derivation with respect to time, and ρ is the density of the plate.

Using Equations (2.1) and (2.2), the virtual work of inertia forces can be written as

δWj =
∫

Ω

δ



qu

qv

qw

qφφφ x

qφφφ y



T 
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M22 0 0 0
M33 M34 M35

M44 0
sym M55





q̈u
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q̈w

q̈φφφ x

q̈φφφ y


dΩ (2.39)

The mass sub-matrices are defined as

M11 = M22 = ρh
∫

Ω

NuNuT dΩ,

M33 = ρh
∫

Ω

NwNwT dΩ+
ρh3

252

∫
Ω

(
Nw
,xNw

,x
T +Nw

,yNw
,y

T
)

dΩ,

M34 =−4ρh3

315

∫
Ω

Nw
,xNφφφ x

T
dΩ,

M35 =−4ρh3

315

∫
Ω

Nw
,yNφφφ y

T
dΩ,



26 Linear Vibrational Modes of VSCL Plates

M44 =−17ρh3

315

∫
Ω

Nφφφ xNφφφ x
T

dΩ,

M55 =−17ρh3

315

∫
Ω

Nφφφ yNφφφ y
T

dΩ. (2.40)

Considering harmonic oscillations, the second derivatives of generalised displacements with

respect to time are q̈(t) =−ω2q(t); then, as a result of the virtual work principle, Equation (2.23),

one can obtain
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M33 M34 M35

M44 0
sym M55
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qv

qw

qφφφ x

qφφφ y


=



0
0
0
0
0


(2.41)

From Equation (2.41), an eigenvalue problem can be derived, where the eigenvalues are the square

of linear natural frequencies ωli and the eigenvectors φφφ i define the corresponding mode shapes of

vibration.

2.3 Numerical Results

In this section, natural frequencies and mode shapes of vibration of various plates are given. The

superior convergence rate of the p-version finite element method in smooth linear problems has

been proved by well-posed theoretical arguments [56]. Numerical tests, where the high conver-

gence rate of displacement based plate p-version finite elements was confirmed in linear and non-

linear problems, can, for example, be found in [57–63]. The aim of this study is to show the

convergence properties of the p-element proposed for VSCL, to investigate how does the variable

stiffness influence the natural modes of vibration, and if plates with different thickness and with

different boundary conditions are affected in a diverse way by the variation of the fibre orientation.

The properties of the plates analised are defined in Table 2.1.

2.3.1 Convergence Study

Convergence studies were carried out and some of them are here shown, with the goal of demon-

strating that an accurate p-version model can be constructed with a small number of DOF. Tables
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Table 2.1: Characteristics of the plates studied.

a b h E1 E2 G12 G13 G23 ν12 ρ

(m) (m) (m) (GPa) (GPa) (GPa) (GPa) (GPa) (kg/m3 )

Plate 1 VSCL
1 1 0.01-0.1 173 7.2 3.76 3.76 3.76 0.29 1540
Plate 2 CSCL
1 1 0.1 173 33.1 9.38 8.27 3.24 0.25 1000
Plate 3 CSCL
0.48 0.32 0.001 120.5 90.63 3.58 3.58 3.58 0.32 1540
Plate 4 CSCL
0.2 0.1 0.001 131.7 9.86 4.21 4.21 4.21 0.28 1600
Plate 5 VSCL (experiment)
0.4 0.3 0.00177 126.3 8.765 4.92 4.92 3.35 0.334 1580
Plate 6 VSCL (with imperfection)
0.2085 0.21 0.0003 198 198 76.15 76.15 76.15 0.3 7850
Plate 7 VSCL (with imperfection)
1 1 0.1 207.79 207.79 79.92 79.92 79.92 0.3177 8166

2.2 and 2.3 show the convergence of the linear natural frequency of a VSCL plate with the number

of in-plane, rotational and out-of-plane shape functions used. The VSCL plate considered here is

a three-layer [〈0o,45o〉,〈−45o,−60o〉,〈0o,45o〉] laminate plate with characteristics given in Table

2.1 as Plate 1. Taking as reference the model with p = pu = pw = pφ = 19, the maximum relative

error of natural frequencies computed with the model taking p = pu = pw = pφ = 10 is 0.21%.

Here, ten out-of-plane, in-plane, and rotational shape functions (500 DOF totally) give a very good

approximation to the first eight linear natural frequencies, and this element is used in the analyses

that follow in this chapter, unless otherwise specified.

2.3.2 Comparison with Numerical Results

The model here employed is validated by comparing its results with the linear natural frequencies

obtained elsewhere (including Refs. [61, 64–69]). For that purpose, the model is applied to CSCL

plates with different thickness to length ratios in Tables 2.4, 2.5, and 2.6. The linear vibration

results of the model for VSCLs plate are compared with experimental results in Section 2.3.3.

The following boundary conditions are considered: simply-supported with movable edges

(SSSS-2), clamped, and free (see Appendix A). These comparisons show a good agreement be-

tween the results of the present TSDT model and published data, computed via models based

on classical, first-order, or higher-order shear deformation theories. Ref. [64] used a layerwise

B-spline finite strip method (LWB). A layerwise plate theory (LWPT), an exact 3-D elasticity so-

lution, a higher-order shear deformable plate theory (HSDPT), a first-order shear deformable plate

theory (FSDPT or FSDT), and a classical plate theory (CPT) are used in Ref. [65]. Classical plate

theory is used in Ref. [66], and FSDT is applied in Refs. [61,67]. Ref. [68] applied a higher-order

theory with FEM and Ref. [69] a thin plate theory with Rayleigh Ritz. The characteristics of the

plates used here are given in Table 2.1. Plate 2, in Table 2.4, is a three-layer [0o,90o,0o] laminate
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Table 2.2: Convergence of the linear natural frequency of a VSCL plate with in-plane and rotation
shape functions.

pu, pw, pφ Mode
1 2 3 4 5 6 7 8

4,10,4 3881.9 5792.0 7912.9 8659.4 9519.6 11714 12643 14032
5,10,5 3874.3 5738.0 7788.8 8606.9 9450.0 11568 12533 12675
6,10,6 3871.0 5732.1 7778.9 8434.2 9379.0 11405 12420 12648
7,10,7 3867.8 5721.1 7768.5 8417.1 9367.6 11333 12164 12414
8,10,8 3858.6 5715.8 7759.6 8412.4 9344.3 11308 12142 12381
9,10,9 3858.0 5712.8 7739.3 8408.9 9329.6 11298 12136 12371
10,10,10 3856.6 5711.7 7738.7 8405.9 9327.6 11294 12135 12341
11,11,11 3855.7 5709.9 7734.9 8398.7 9324.2 11287 12128 12332
12,12,12 3853.8 5707.1 7733.2 8396.3 9319.5 11281 12119 12328
13,13,13 3853.8 5706.7 7730.7 8393.7 9317.5 11278 12117 12328
14,14,14 3852.9 5705.5 7729.3 8392.2 9314.9 11274 12113 12322
15,15,15 3852.7 5705.1 7728.9 8390.9 9314.4 11273 12112 12320
17,17,17 3852.2 5704.5 7728.3 8389.8 9313.2 11271 12109 12319
19,19,19 3852.1 5704.2 7728.2 8389.3 9313.0 11271 12109 12318

Table 2.3: Convergence of the linear natural frequency of a VSCL plate with out-of-plane shape
functions.

pu, pw, pφ Mode
1 2 3 4 5 6 7 8

10,4,10 3901.9 5762.8 7867.8 8494.5 9532.7 11491 12431 12522
10,5,10 3874.5 5750.8 7819.7 8473.5 9409.1 11404 12358 12449
10,6,10 3872.1 5731.7 7772.6 8460.6 9376.8 11379 12234 12412
10,7,10 3862.1 5726.4 7767.0 8425.4 9359.4 11341 12224 12370
10,8,10 3860.4 5716.9 7748.2 8417.4 9344.3 11317 12155 12366
10,9,10 3856.8 5715.1 7743.7 8406.8 9332.7 11299 12145 12344
10,10,10 3856.6 5711.7 7738.7 8405.9 9327.6 11294 12135 12341
13,13,13 3853.8 5706.7 7730.7 8393.7 9317.5 11278 12117 12328
14,14,14 3852.9 5705.5 7729.3 8392.2 9314.9 11274 12113 12322
15,15,15 3852.7 5705.1 7728.9 8390.9 9314.4 11273 12112 12320
17,17,17 3852.2 5704.5 7728.3 8389.8 9313.2 11271 12109 12319
19,19,19 3852.1 5704.2 7728.2 8389.3 9313.0 11271 12109 12318
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plate. Plate 3, in Table 2.5, is an eight-layer [2θ ,−θ ,θ ,0o]sym laminate plate and Plate 4, in Table

2.6, is a thirty two-layer [(−45o,45o)8]sym laminate plate.

Table 2.4: Natural frequency parameters ωh
√

ρ/E2 of simply-supported CSCL Plate 2.

Method Mode
1 2 3 4 5 6 7 8

LWB [64] 0.06715 0.12819 0.17230 0.20811 0.22868 0.28423 0.29358 0.31807
LWPT [65] 0.06716 0.12816 0.17225 0.20808 0.22864 0.28415 0.29549 0.31973
Exact [65] 0.06715 0.12811 0.17217 0.20798 - - - -
HSDPT [65] 0.06839 0.11301 0.17921 0.21526 - - - -
FSDPT [65] 0.06931 0.12886 0.18674 0.22055 - - - -
CPT [65] 0.07769 0.15185 0.26599 0.31077 - - - -
Present
p = 9 0.06858 0.13046 0.17952 0.21563 0.23160 0.29165 0.30622 0.33103
p = 10 0.06858 0.13046 0.17952 0.21563 0.23158 0.29164 0.30621 0.33103
p = 13 0.06858 0.13046 0.17952 0.21563 0.23158 0.29164 0.30621 0.33103

Table 2.5: Natural frequencies (rad/s) of clamped CSCL Plate 3. (Present results are calculated
using p = 10)

Method Mode
1 2 3 4 5 6 7 8

θ = 45o

CPT [66] 511.387 645.281 886.217 - - - - -
FSDT [67] 511.083 644.870 885.608 1231.88 1339.55 1470.12 1692.10 1698.88
Present 511.103 644.876 885.586 1231.81 1339.69 1470.22 1690.36 1698.92

θ = 60o

FSDT [67] 473.502 606.411 829.030 1129.90 1238.95 1366.27 1539.49 1606.11
Present 473.505 606.409 829.022 1129.87 1238.97 1366.23 1538.39 1606.08

θ = 90o

FSDT [67] 433.776 680.754 1070.14 1153.52 1213.96 1557.11 1824.91 2059.33
Present 433.756 680.765 1069.99 1153.61 1213.84 1557.07 1825.18 2058.83

The TSDT results of Table 2.4 are always more accurate than the CPT ones. Table 2.4 also

shows that the present TSDT based model provides results that, with one exception, are closer to

the exact ones than the FSDT results of Ref. [65]. It is recalled that another advantage of TSDT

over FSDT is the fact that the former does not require a shear correction factor. In Table 2.5, the

present natural frequencies computed using p = 10 shape functions (equal to 500 DOF) agree very

well with natural frequencies by FSDT [67]; the maximum relative error is 0.1% for the 7th mode

when θ = 45o. The present natural frequencies in Table 2.6 are in good agreement with the results

of CPT (by Ritz method) [69] and FSDT [61] (here h/b = 0.01).
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Table 2.6: Natural frequency parameters ωa2h
√

ρ/E2 of free CSCL Plate 4.

Method Mode
1 2 3 4 5 6 7 8

Ref. [61] - FSDT 8.569 23.197 28.946 45.612 48.267 66.202 67.218 77.978
Ref. [68] - HSDT 8.60 23.38 29.44 46.10 48.80 67.57 68.14 -
Ref. [69] - CPT 8.58 23.38 29.19 45.79 48.68 66.74 68.02 78.81
Present - p = 10 8.5883 23.459 29.179 45.660 48.824 67.088 67.541 78.284
Present - p = 13 8.5843 23.431 29.105 45.601 48.730 66.845 67.363 78.126

2.3.3 Comparison with the Experimental Results

In this section, vibrational modes of a VSCL plate are compared with experimental results. The

analysis is carried out on a VSCL in order to extract the modes of vibration, obtaining results for

model validation. The layup of the plate analysed is the following: [〈30o,10o〉 ,〈−30o,−10o〉 ,
〈30o,10o〉 ,〈−30o,−10o〉 ,〈90o,90o〉]sym. The material used is Hexply AS4/8552, a high perfor-

mance material for aerospace structures. The material properties of Plate 5 of Table 2.1 were

specified by the manufacturer. The boundary conditions of the plate are free. To see the experi-

ment setup and procedure refer to Appendix B.

Table 2.7 presents the first seven natural frequencies computed using present TSDT model and

FSDT finite elements alongside the identified natural frequencies (after Ref. [70]). The column

on the right-hand side of the table contains the relative difference between the numeric values,

computed with the present TSDT, and the experimental values.

Table 2.7: Comparison between numerical and experimental natural frequencies (Hz) of the VSCL
plate 5 of Table 2.1.

Mode TSDT FSDT (Ref. [70]) Experimental Relative difference (%)
1 48.057 46.879 50.897 -5.6
2 50.365 49.059 57.522 -12.4
3 85.951 84.155 85.777 0.2
4 108.24 106.31 109.28 -0.9
5 117.87 115.61 120.14 -1.9
6 161.88 156.95 162.36 -0.3
7 203.01 200.19 195.64 3.8

The modes of vibration obtained experimentally [70] are compared in Figure 2.2 with the ones

defined by two types of finite element models, one of the h-version FSDT [70] and the other of

the present p-version TSDT. Although gaps and overlaps [1], which are consequence of the tow

placement, exist in the real plate and were not taken into account in the models, the models provide

natural frequency values and mode shapes quite close to the experimental ones.

Most natural frequencies are rather well predicted by the TSDT model. The exception is the

natural frequency of the second mode, where a difference of 12% between theory and experiments

was found. This may be explained by the particularity that the excitation point is not far from a

nodal line of this mode. Other reasons justify the differences encountered. One of them regards the



2.3 Numerical Results 31

 
 

 

 

 
Mode shape 1 - TSDT Mode shape 1 - FSDT Mode shape 1 - Experimental 

 
 

 

 

 
Mode shape 2 - TSDT Mode shape 2 - FSDT Mode shape 2 - Experimental 

 
 

 

 

 
Mode shape 3 - TSDT Mode shape 3 - FSDT Mode shape 3 - Experimental 

 
 

 

 

 
Mode shape 4 - TSDT Mode shape 4 - FSDT Mode shape 4 - Experimental 

   

   

 

  

Figure 2.2: Numerical and experimental vibration mode shapes: first to fourth modes [70].
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Figure 2.3: Numerical and experimental vibration mode shapes: fifth to seventh modes [70].
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material constants: the in-plane elasticity and shear moduli are tabulated, they should be approx-

imately correct, but it was not possible to verify if they are completely accurate; the transverse

shear moduli were not given by the supplier and we guessed the values. The second reason is

related with the orientation of the fibres. In the model, it is assumed that the fibres are perfectly

shifted, all obeying the same analytical formula, but in truth this does not occur, as only the central

tow is shifted, the other tows are parallel to it. The real plate shows gaps or overlaps that are not

in the theoretical model.

2.3.4 Dependence of Vibration Modes on the Fibre Orientation

In some situations in industry, designers need to change the natural frequencies to higher or lower

values in order to avoid resonance. This aim may be achieved by using a VSCL instead of a CSCL

plate, without changing the plate dimensions or the constitutive materials, because in a VSCL plate

the frequencies are also sensitive to variations of the fibre orientation within each particular layer.

In this section, numerical experiments are carried out to illustrate how the natural frequencies and

mode shapes change with the fibre orientation. To obtain Figure 2.4, a VSCL plate with a wide

range of fibre orientations is analised. For a VSCL plate as the one used in Table 2.2 (Plate 1 of

Table 2.1, but with a = b = 0.5 m), the maximum relative difference in the frequency computation

between a model with 320 and 500 DOF, among the first nine frequencies, is less than 0.4%. To

be time-efficient, just in Figures 2.4 and 2.5, eight in-plane, out-of-plane, and rotational shape

functions (320 DOF) are used.

Figure 2.4 shows the possible frequencies for a four-layer clamped VSCL with h/a = 0.1

and fibre-orientation angles as [〈T0,T1〉,〈90o +T0,90o +T1〉]sym (the mechanical properties and

geometry is the same as the VSCL plate used in Table 2.2). As written in Section 1.4.4, the

variation of the fibre orientations is not totally free, due to manufacturing constraints [6]. The

VSCL plates with fibre-orientation angles located in the hatched area in Figure 2.4 should not be

manufactured, due to the curvature constrain defined by the tow-placement machine. A dashed-

line in the figures represents the CSCL plates where both angles T0 and T1 are the same. As this

figure shows, for some modes of vibration, the CSCL dashed-line does not cross the areas of

maximum or minimum frequency. So, in these cases, the maximum and/or minimum value of the

natural frequency is obtained with VSCL plates. The reachable difference between the highest and

lowest frequency in this VSCL plate is 10% for the first frequency, 15% for fifth frequency, and

3% for eighth frequency (for other frequencies till the ninth, this difference is between 3% and

15%).

Using VSCL with diverse fibre orientation also leads to changes in the mode shapes. This fea-

ture is shown in Figure 2.5, where the first six modes of vibration for the VSCL plates with fibre-

orientation angles varying as [〈45o,90o〉 ,〈−45o,0o〉]sym, [〈0o,−40o〉 ,〈90o,50o〉]sym, [〈30o,60o〉 ,
〈−60o,−30o〉]sym, and [〈90o,60o〉 ,〈0o,−30o〉]sym are illustrated. The plates considered here have

the same geometrical and mechanical properties as the one used in Figure 2.4. So, the natural

frequencies of these modes were given in Figure 2.4. The difference for the second to sixth mode
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shapes, ordered according to the growing natural frequency, is obvious and notable for the differ-

ent VSCL plates considered. In the case of the first mode, Figure 2.5 is not so illustrative, but

Figure 2.6, which shows sections (y = 0) of the fundamental mode shapes of these four VSCL

plates, demonstrates that also in this case there is some variation.

To understand how the boundary conditions and the plate thickness relate with the fibre varia-

tion, Tables 2.8, 2.9 and 2.10 show the first nine frequencies of three-layer square VSCL plates of

diverse thickness, for simply-supported with movable edges (SSSS-2), clamped, and free boundary

conditions, respectively. The geometric and material properties are as Plate 5 in Table 2.1 and the

fibre-orientation angles are [〈0o,45o〉 ,〈−45o,−60o〉 ,〈0o,45o〉] ,[〈30o,0o〉 ,〈45o,90o〉 ,〈30o,0o〉],
and [〈90o,45o〉 ,〈60o,30o〉 ,〈90o,45o〉]. VSCL plates with thickness to length ratio h/a equal either

to 0.01 or to 0.1 are investigated here. In these tables, the results are obtained with ten in-plane,

out-of-plane, and rotational shape functions (500 DOF). Although, any change in the fibre angles

results to an alteration in the natural frequency, the boundary condition of the VSCL plate has a

decisive role on the change trend. As an example, we note that by changing fibre angles from

[〈0o,45o〉 ,〈−45o,−60o〉 ,〈0o,45o〉] to [〈30o,0o〉 ,〈45o,90o〉 ,〈30o,0o〉], in the VSCL plate studied

in Tables 2.8, 2.9 and 2.10, the frequencies decrease in the simply-supported and free boundary

conditions while they increase in the clamped conditions. From plate’s thickness point of view,

changing fibre orientations may result in a more significant change - in relative terms - in the

natural frequencies of a thin VSCL plate in comparison with a thick one.

Table 2.8: Linear natural frequencies (Hz) for simply-supported VSCL plates.

h/a Mode
1 2 3 4 5 6 7 8 9
[〈0o,45o〉 ,〈−45o,−60o〉 ,〈0o,45o〉]

0.01 358.488 589.9 960.361 1075.21 1327.88 1474.67 1726.71 2137.13 2262.35
0.1 2934.69 4688.3 7000.96 7324.22 8471.78 10448.8 10907 11653.3 12812.9

[〈30o,0o〉 ,〈45o,90o〉 ,〈30o,0o〉]
0.01 308.799 503.799 845.509 1131.31 1279.85 1307.4 1701.66 1758.95 2342
0.1 2620.4 4225.74 6704.11 7121.26 8383.48 9317.14 11079.5 11762 12154.1

[〈90o,45o〉 ,〈60o,30o〉 ,〈90o,45o〉]
0.01 329.688 539.407 886.392 1091.2 1279.9 1401.87 1755.53 1809.82 2216.58
0.1 2746.66 4402.32 6915.87 7058.72 8254.38 9626.07 11158.9 11486.5 12375.6

2.3.5 Verification of the Model Including Geometrical Imperfection

Although any type of geometry imperfection can be integrated in the model, sinusoidal imperfec-

tion, wi = h0×cos(πx/a)cos(πy/b), is applied into the formulation, as was done in Refs. [71,72],

in which h0 is the imperfection magnitude at the centre of the plate. To validate the linear model,

some examples of linear frequencies of imperfect laminates are compared with published data. Be-

cause data on imperfect VSCL plates are not available, the comparisons are made with isotropic

and CSCL plates. In all comparison studies on imperfect plates, a specific simply-supported
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Table 2.9: Linear natural frequencies (Hz) for clamped VSCL plates.

h/a Mode
1 2 3 4 5 6 7 8 9
[〈0o,45o〉 ,〈−45o,−60o〉 ,〈0o,45o〉]

0.01 579.398 821.532 1225.79 1493.76 1726.96 1775.16 2135.76 2443.53 2706.78
0.1 3856.6 5711.95 7743.34 8406.57 9329.84 11295.2 12134.7 12343.9 13516.2

[〈30o,0o〉 ,〈45o,90o〉 ,〈30o,0o〉]
0.01 667.177 862.919 1234.64 1701.04 1775.56 1902.48 2269.83 2310.69 2879.58
0.1 4144.85 5696.2 8166.79 8214.53 9562.22 10805.3 12216.5 12720.3 13552.6

[〈90o,45o〉 ,〈60o,30o〉 ,〈90o,45o〉]
0.01 710.771 912.183 1335.49 1689.69 1836.71 1987.55 2278.23 2466.75 2920.42
0.1 4284.2 5761.83 8193.46 8247.32 9210.52 10770 12062.6 12503.6 12566.9

Table 2.10: Linear natural frequencies (Hz) for free VSCL plates.

h/a Mode
1 2 3 4 5 6 7 8 9
[〈0o,45o〉 ,〈−45o,−60o〉 ,〈0o,45o〉]

0.01 140.946 170.21 344.57 477.563 592.531 715.99 718.893 872.198 1007.9
0.1 1267.89 1624.7 2951.58 4175.95 4800.67 5450.35 5674.65 6416.61 7095.51

[〈30o,0o〉 ,〈45o,90o〉 ,〈30o,0o〉]
0.01 110.436 177.48 266.529 459.734 468.741 618.25 658.132 771.549 856.679
0.1 1046.35 1699.37 2455.55 4019.93 4021.99 5080.01 5256.28 6123.58 6971.14

[〈90o,45o〉 ,〈60o,30o〉 ,〈90o,45o〉]
0.01 123.172 151.348 277.543 389.523 404.515 577.629 622.333 693.601 840.149
0.1 1146.96 1450.12 2466.98 3519.31 3528.15 4808.8 5257.86 5536.84 6343.97



36 Linear Vibrational Modes of VSCL Plates

boundary condition, with restrained normal displacement at the plate edges and fully free in-plane

displacements (SSSS-3), has been used (see Appendix A) [71–73].

For the comparison example in Figure 2.7, an isotropic imperfect plate with mechanical prop-

erties of plate 6 in Table 2.1 are used. First - and second - mode frequencies versus imperfection

are compared with data from Ref. [71]. The difference between frequencies of the imperfect plate

(with h0/h = 1) with two methods is about 2%. It seems to us that this difference is due to the

different methods used to model the plate; in Ref. [71], Kirchhoff hypothesis was used.

Another comparison study is shown in Table 2.11, which gives linear frequency parameters

ωlia2π2
√

ρ/D - with D = Eh3/12
(
1−ν2

)
- of a square stainless steel imperfect plate (h0 = 0.2h)

with properties of plate 7 of Table 2.1. The boundary conditions are simply-supported (SSSS-3).

Good correlation is achieved.

Table 2.11: Comparison of linear frequency parameters ωia2π2
√

ρ/D for a simply-supported
(SSSS-3) square plate with imperfection (h0 = 0.2h).

Mode number i Kitipornchai et al. [73] Rafiee et al. [72] Present
1 1.9379 1.9494 1.9473
2 4.6088 4.7912 4.6162
3 4.6088 4.7912 4.6162
4 7.0676 7.0698 7.0443

2.4 Conclusions

In this chapter, variable stiffness composite laminated plates with curvilinear fibres were analysed

with a p-version finite element, using a third order shear deformation theory. The effects of using

curvilinear fibres instead of straight fibres in laminated composite plates on the mode shapes and

natural frequencies of vibration were investigated. Several boundary conditions and plate thick-

nesses were considered. It is found that using VSCL plates can change mode shapes of vibration

meaningfully and may lead to a significant decrease or increase in the natural frequencies. Ap-

parently, thicker plates are less influenced, relatively, than thinner plates, a behavior that may be

explained by the fact that the alteration considered in the fibre variation, with respect to traditional

laminates, only occurs in a plane. This conjecture is a result of a limited number of case studies

and requires further validation. Also, the laminate model including imperfection parameters in the

out-of-plane direction was verified.
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Figure 1. Contour plots of natural frequencies against T0 and T1 as fiber angles in a VSCL. 
 

 

  

  

0             30            60             90 

80 

60 

40 

20 

0 

- 20 

- 40 

T
0
 

T
1
 

  

  

0             30            60             90 

80 

60 

40 

20 

0 

- 20 

- 40 

T
0
 

T
1
 

  

  

0             30            60             90 

80 

60 

40 

20 

0 

- 20 

- 40 

T
0
 

T
1
 

  

  

0             30            60             90 

80 

60 

40 

20 

0 

- 20 

- 40 

T
0
 

T
1
 

  

  

0             30            60             90 

80 

60 

40 

20 

0 

- 20 

- 40 

T
0
 

T
1
 

  

  

0             30            60             90 

80 

60 

40 

20 

0 

- 20 

- 40 

T
0
 

T
1
 

  

  

0             30            60             90 

80 

60 

40 

20 

0 

- 20 

- 40 

T
0
 

T
1
 

  

  

0             30            60             90 

80 

60 

40 

20 

0 

- 20 

- 40 

T
0
 

T
1
 

  

  

0             30            60             90 

80 

60 

40 

20 

0 

- 20 

- 40 

T
0
 

T
1
 

Figure 2.4: Contour plots of natural frequencies against T0 and T1 as fibre angles in a VSCL.
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Fig. 4. Mode shapes of VSCL with (a) <T0, T1>=<45,90>, (b) <T0, T1>=<0,-40>, (C) <T0, T1>=<30,60>, (d) <T0, T1>=<90,60>. 

 Figure 2.5: Mode shapes of vibration of VSCL with (a) 〈T0,T1〉 = 〈45o,90o〉; (b) 〈T0,T1〉 =
〈0o,−40o〉; (c) 〈T0,T1〉= 〈30o,60o〉; (d) 〈T0,T1〉= 〈90o,60o〉.
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Fig. 5. First mode shapes of four different VSCL plates in � � 0. 
 

 

Figure 2.6: First mode shapes of vibrations for four different VSCL plates (y = 0).
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Fig. 8. Comparison of the Ref. [14] and present natural frequency of (a) first and (b) 

second mode versus the geometric imperfection. 
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Figure 2.7: Comparison of (a) the first and (b) the second natural frequencies versus the geometric
imperfection calculated by the present method and given by Ref. [71].





Chapter 3

Static Analysis of VSCL Plates in the
Geometrically Non-Linear Regime

3.1 Introduction

The present chapter aims at computing large deflections (taking geometric non-linearity into ac-

count) and stresses of diverse VSCL plates with curvilinear fibres, and showing that the fibre

variation may indeed be used to reduce deflections and stresses in some static loadings. The cur-

rent tailoring concept may allow one to implement the best fibre angles for minimising deflections

and/or to find VSCLs with lower stresses, for the same constitutive materials, overall panel dimen-

sions and loadings. To carry out the analysis, a p-version finite element that follows third-order

shear deformation theory (TSDT) [34–36] is developed. A linear version of this element has been

applied to determine the linear modes of vibration of VSCLs in Chapter 2. The new non-linear

element is employed in diverse test cases on CSCLs taken from the literature. We found, as is

typical in p-elements, that accurate results are computed with a relatively small number of degrees

of freedom. Deflections, normal stresses and shear stresses are determined as functions of tow-

orientation angles in demonstrative examples. Shear transverse stresses are calculated with both

constitutive and equilibrium equations. The effects of geometric non-linearity on the deflection

and stresses of VSCLs are shown. The model presented allows to continue searching for advan-

tages of VSCL plates and to better understand the behaviour of these plates in different loading

conditions.

3.1.1 Literature Review

With the expansion of the idea of using VSCLs with curvilinear fibres, investigators [6–8] dis-

cussed the novelties of such laminates in buckling, failure, stresses, and static deformation when

the plates are subjected to in-plane uniaxial loading and end shortening. These novelties were due

to the ability of VSCLs to re-distribute stresses via the spatial variation of fibre angles [74]. Af-

ter these achievements, Tatting and Gürdal developed a design tool, where a solver designated as

41
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STAGS was integrated with a laminate design software [22,23]. With the help of the software de-

veloped, Tatting and Gürdal succeeded to continue analysing buckling, prebuckling, deformation,

and stress distributions in a VSCL plate subjected to in-plane loading (with emphasis in plates

with a hole - because of the usefulness of VSCLs in distributing the stresses created around the

hole). Recent works show the continuing interest of researchers in uncovering unknown aspects of

stress distribution in VSCLs with curvilinear fibres [9, 75–78]. Senocak and Tanriover [9] studied

VSCL plates subjected to in-plane loading, using Galerkin method. In references [76–78], buck-

ling, failure and interlaminar stresses of VSCL plates were investigated using ABAQUS finite

element software. The studies included normal deflection and normal stresses of the plate. In an-

other analysis [79], a generalised differential quadrature method together with a Newton–Raphson

iterative scheme was presented for non-linear analysis of variable stiffness conical shell panels.

Ref. [74] showed that stiffness tailoring improves the buckling performance of VSCL plates

by allowing re-distribution of loads from the critical regions of the plate. In Ref. [74], a differential

quadrature method (DQM) was investigated for performing buckling analysis of VSCL panels. In

another study [80], it was demonstrated that the stiffness tailoring of VSCL plates through the

design of fibre orientation distributions can improve the buckling resistance, which is mainly due

to the non-uniform, in-plane load re-distribution. The postbuckling performance of VSCL plates

under a compression loading was assessed by studying both the maximum transverse displace-

ment and the end-shortening strain in Ref. [81]. For this analysis, an efficient tool based on the

variational principle and the Rayleigh-Ritz method was developed in Ref. [81]. In another refer-

ence [82], the postbuckling behaviour of the VSCL plates with perturbation method was discussed.

There, optimised variable stiffness plates for maximum buckling load, demonstrating significant

improvements in load-carrying capacity, were used.

In paper [83], the authors presented a layerwise theory, p-version finite element method for

static analysis of unsymmetric laminates with curvilinear fibres, including von Kármán strains.

A displacement field that varies linearly along the thickness of each layer was considered. For

unsymmetric laminates in the linear and non-linear regimes, it was observed that a VSCL plate

that experiences larger deflection in the linear regime, is not necessarily the one that suffers larger

deflections in the non-linear regime. Also, it was shown that unsymmetric stacking sequences

often decrease the overall stiffness of the plates, both in the linear and in the non-linear regimes;

consequently, leading to larger deflection amplitudes [83]. The same authors mentioned the effects

of the curved fibres in re-distributing the static applied load within the plates in non-linear regime

[84]. They showed that although the distributed load was the same in all the studies, the maximum

deflection did not occur at the central point in VSCL plates.

Analyses on the effect of transverse shear deformation and embedded manufacturing defects

(gaps and overlaps during manufacturing process) on the deflection of VSCL plates were given

in Ref. [41]. This reference presented the governing equations obtained via classical and shear

deformation theories, and then solved them by using the hybrid Fourier–Galerkin method. It

showed for moderately-thick plates with length-to-thickness ratio a/h = 10, major differences

emerge between CLPT and TSDT predictions, in a way that discrepancy up to 23% was observed
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for the maximum out-of-plane deflection. This reference showed the important role played by

shear deformation in moderately-thick VSCL plates [41].

There are several publications addressing deflections and stresses aspects on CSCL (constant

stiffness composite laminated) plates, i.e. in laminates with straight fibres. One can find 3-D

elasticity exact solution for static analysis of multilayered (CSCL) plates in Ref. [85]. Ref. [86]

showed experimental and classical plate theory (CPT) results on the deflection of CSCL plates

in the non-linear regime. Putcha and Reddy [87] presented a refined mixed shear flexible finite

element for the non-linear analysis of CSCL plates. Zhang and Kim [88] offered a 3-node triangu-

lar element for linear and geometrically non-linear analysis of deflections of laminated composite

plates. A very comprehensive review including geometric non-linear finite element analysis of

CSCL plates can be found in Ref. [89]. A particular mixed-enhanced finite element for linear

bending analysis of CSCL plates based on first-order shear deformation theory (FSDT) was pre-

sented in Refs. [90–92]. There, even though FSDT was used, transverse shear stresses in compos-

ite plates were quite well computed. Most of the results given in this chapter have already been

published in Ref. [93].

3.2 Modelling of VSCL Plates Considering Geometrical Non-linearity

The displacement field described in Chapter 2, Equations (2.1), excluding imperfection is used

here. Non-linear terms based on von Kármán strain–displacement relations, a simplified version

of Green’s strain tensor, Equations (2.4), for moderate geometric non-linearity, are here introduced

(for simplicity we write ε (x,y,z, t) as ε , etc.).

εx =
∂u0

∂x
+
(
z− cz3) ∂φx

∂x
− cz3

(
∂ 2w0

∂x2

)
+

1
2

(
∂w0

∂x

)2

,

εy =
∂v0

∂y
+
(
z− cz3) ∂φy

∂y
− cz3

(
∂ 2w0

∂y2

)
+

1
2

(
∂w0

∂y

)2

,

εz = 0,

γxy =
∂u0

∂y
+

∂v0

∂x
+
(
z− cz3)(∂φx

∂y
+

∂φy

∂x

)
+

∂w0

∂x
∂w0

∂y
−2cz3 ∂ 2w0
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(
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∂w0

∂y

)
,

γxz =
(
1−3cz2)(

φx (x,y, t)+
∂w0

∂x

)
. (3.1)
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These expressions are in general accurate enough for static analysis of VSCL plates in the non-

linear regime. If more accurate expressions are needed, the Equations (3.1) can be improved

retaining all the non-linear terms. Now, strains can be presented in matrix form as
εx

εy

γxy

=

 1 0 0 z 0 0 −cz3 0 0

0 1 0 0 z 0 0 −cz3 0

0 0 1 0 0 z 0 0 −cz3

εεε

εεε =


εεε

p
o

εεεb
o

εεεb
o

+


εεε

p1
o

0
εεεb1

o

 (3.2)

in which εεε
p
o , εεεb

o and εεεb1
o are introduced already in Section 2.2, Equations (2.7) - (2.9). εεε

p1
o is the

non-linear in-plane strain as

εεε
p1
o =


1
2

(
w0
,x
)2

1
2

(
w0
,y
)2

w0
,xw0

,y

 (3.3)

By introducing the mid-plane displacements of Equation (2.2) in the non-linear in-plane strain,

above, one can obtain

εεε
p1
o =

1
2


w0
,xNw

,x

w0
,yNw

,y

w0
,xNw

,y +w0
,yNw

,x

qw. (3.4)

Using the method introduced in Section 2.2, the virtual work of the elastic restoring (internal)

forces, Equation (2.25), extends as

δWin =−
∫

Ω

(
δεεε

p
o

T Aεεε
p
o +δεεε

b
o

T
(C+2E+F)εεε

b
o +δεεε

b
o

T
(E+F)εεε

b1
o +δεεε

b1
o

T
(E+F)εεε

b
o+

δεεε
b1
o

T Fεεε
b1
o +δγγγ

p
o

T (G+2H+ I)γγγ
p
o +δεεε

p1
o

T Aεεε
p
o +δεεε

p
o

T Aεεε
p1
o +δεεε

p1
o

T Aεεε
p1
o

)
dΩ. (3.5)

The first six terms are exactly as defined in Section 2.2, the last three terms are changed as

given below. The seventh term is

δεεε
p1
o

T Aεεε
p
o =

1
2

δqw
T


w0
,xNw

,x

w0
,yNw

,y

w0
,xNw

,y +w0
,yNw

,x


T

A

 Nu
,x

T 0
0 Nu

,y
T

Nu
,y

T Nu
,x

T

{ qu

qv

}
=

δqw
T
[

K31
NL K32

NL

]{ qu

qv

}
(3.6)

The eighth term is transpose of the seventh term and written as
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δεεε
p
o

T Aεεε
p1
o = δ

{
qu

qv

}T [
K13

NL

K23
NL

]
qw (3.7)

where

[
K13

NL

K23
NL

]
=
[

K31
NL K32

NL

]T
(3.8)

The ninth term is defined as

δεεε
p1
o

T Aεεε
p1
o =

1
4

δqw
T


w0
,xNw

,x

w0
,yNw

,y

w0
,xNw

,y +w0
,yNw

,x


T

A


w0
,xNw

,x

w0
,yNw

,y

w0
,xNw

,y +w0
,yNw

,x

qw = δqw
T K33

NLqw (3.9)

The internal virtual work, given in Equation (3.5), can be written as

δWin =−
∫

Ω

δ



qu

qv

qw

qφφφ x

qφφφ y



T 
K11

L K12
L 0 0 0

K22
L 0 0 0

K33
L K34

L K35
L

K44
L K45

L

sym K55
L





qu

qv

qw

qφφφ x

qφφφ y


dΩ

−
∫

Ω

δ



qu

qv

qw

qφφφ x

qφφφ y



T 
0 0 K13

NL (qw) 0 0
0 0 K23

NL (qw) 0 0
K31

NL (qw) K32
NL (qw) K33

NL (qw) 0 0
0 0 0 0 0
0 0 0 0 0





qu

qv

qw

qφφφ x

qφφφ y


dΩ (3.10)

Above, generalised coordinates qk,(k = u,v,w,φφφ x,φφφ y) are variables, the linear stiffness matrix

is symmetric and constituted by sub-matrices Ki j
L ,(i, j = 1− 5), which are all constant, already

defined in Section 2.2. Ki j
NL,(i, j = 1−5) are designated as non-linear stiffness sub-matrices, be-

cause they lead to non-linear terms. With the exception of K33
NL, sub-matrices Ki j

NL depend linearly

on the transverse deflection. Matrix K33
NL is a quadratic function of the transverse deflections.

The virtual work of external forces is

δWex =
∫

Ω

(
δu fu (x,y, t)+δv fv (x,y, t)+δw fw (x,y, t)+δφx fφx (x,y, t)+δφy fφy (x,y, t)

)
dΩ =
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∫
Ω

δ



qu

qv

qw

qφφφ x

qφφφ y



T 
Nu (x,y) 0 0 0 0

0 Nu (x,y) 0 0 0
0 0 Nw (x,y) 0 0
0 0 0 Nφφφ x (x,y) 0
0 0 0 0 Nφφφ y (x,y)





fu (x,y, t)

fv (x,y, t)

fw (x,y, t)

fφx (x,y, t)

fφy (x,y, t)


dΩ

(3.11)

in which fw is the transverse load, fu and fv are the in-plane loads, and fφx and fφy are moments

about axis y and x, respectively. All the forces and moments are per unit area.

Defining the virtual work of the internal and external forces, and applying the principle of

virtual work, the equations of equilibrium are obtained as δWin + δWex = 0. These equations are

of the following form:


K11

L K12
L 0 0 0

K22
L 0 0 0

K33
L K34

L K35
L

K44
L K45

L

sym K55
L





qu

qv

qw

qφφφ x

qφφφ y


+


0 0 K13

NL (qw) 0 0
0 0 K23

NL (qw) 0 0
K31

NL (qw) K32
NL (qw) K33

NL (qw) 0 0
0 0 0 0 0
0 0 0 0 0





qu

qv

qw

qφφφ x

qφφφ y



=



fu

fv

fw

fφφφ x

fφφφ y


(3.12)

The vector of generalised external forces on the right-hand side of Equation (3.12) is obtained from

virtual work of external forces. In the numerical applications, we will only consider transverse

forces, so only fw is not zero.

3.2.1 Solution of the Equations of Equilibrium by Newmark Method

Equations (3.12) is a non-linear algebraic equation which can be solved by Newton-Raphson

method; however, because it worked quite well, an in-house code based on Newmark method

[62, 94] is used, being time an artificial parameter. The Newmark Method for static analysis is

used here as a special case of dynamic analysis; the same method is applied to dynamic problems

in the next chapter. To use Newmark method, one needs the mass in equations of equilibrium, we

already have it from Equations (2.40). We may write the Equation of equilibrium (3.12) as

Kq = f (3.13)
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To facilitate the explanation of Newmark method [94] for a more generalised equation of motion,

let’s take a general form of

Mq̈+Cq̇+Kq = f (3.14)

with M, C, K, f, and q representing mass, damping, stiffness, force and generalised coordinates,

respectively.

Before describing the Newmark method, a brief introduction should be written about the Lin-

ear Acceleration Method. By discretising the time τ into n instants τ j, j = 1 . . .n and assuming

that acceleration change with respect to the time (in a small length of the time ∆t) is linear, one

can write

q̈(τ) = q̈ j +
1
∆t

(−q̈ j + q̈ j+1)τ 0≤ τ ≤ ∆t (3.15)

where τ = 0 at point j; and τ = ∆t at point j+1 . By integrating with respect to time, one has

q̇(τ) = q̇ j + q̈ jτ +
1

2∆t
(−q̈ j + q̈ j+1)τ

2 (3.16)

with another integration one has

q(τ) = q j + q̇ jτ +
1
2

q̈ jτ
2 +

1
6∆t

(−q̈ j + q̈ j+1)τ
3. (3.17)

At τ = ∆t:

q̇ j+1 = q̇ j +∆t
(

1
2

q̈ j +
1
2

q̈ j+1

)
,

q j+1 = q j + q̇ j∆t +∆t2
(

1
3

q̈ j +
1
6

q̈ j+1

)
. (3.18)

Newmark method is a generalisation of the linear acceleration method, where

q̇ j+1 = q̇ j +∆t ((1− γ) q̈ j + γq̈ j+1) ,

q j+1 = q j + q̇ j∆t +∆t2
((

1
2
−β

)
q̈ j +β q̈ j+1

)
. (3.19)

If γ = 1
2 and β = 1

6 the Newmark method is equal to the Linear Acceleration Method. As-

suming average acceleration q̈(t) = q̈ j+q̈ j+1
2 so q̇ j+1 = q̇ j +∆t q̈ j+q̈ j+1

2 and q j+1 = q j + q̇ j∆t +
1
2 ∆t2 q̈ j+q̈ j+1

2 . By this definition, if γ = 1
2 and β = 1

4 the Newmark method is equal to the Constant

Average Acceleration Method.

Now, using the Newmark method one can obtain the acceleration and the velocity at a new

point, namely j+1, using the generalised coordinate of the new point j+1 and the acceleration,

the velocity and the generalised coordinate of the last point j. The acceleration and the velocity at

the new point are
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q̈ j+1 =
1

β∆t2 (q j+1−q j)−
1

β∆t
q̇ j−

(
1

2β
−1
)

q̈ j,

q̇ j+1 =
γ

β∆t
(q j+1−q j)+

(
1− γ

β

)
q̇ j +∆t

(
1− γ

2β

)
q̈ j. (3.20)

One can write them with constants a1−6 as

q̈ j+1 = a1 (q j+1−q j)−a3q̇ j−a5q̈ j,

q̇ j+1 = a2 (q j+1−q j)+a4q̇ j +a6q̈ j. (3.21)

Applying these definitions in the general form of Equation (3.14), one can find generalised

coordinates for the new point q j+1 using information of previous point (q j, q̇ j and q̈ j) and the

force at the new point, as

(a1M+a2C+K)q j+1 = f j+1 +(a1M+a2C)q j +(a3M−a4C) q̇ j +(a5M−a6C) q̈ j. (3.22)

The only problem is to find information of the first point j = 0. By knowing the initial condition

for velocity, q̇0, and displacement, q0, at point j = 0, one can obtain initial acceleration from

Mq̈0 = f0−Cq̇0−Kq0. (3.23)

In linear vibration, the Newmark method is unconditionally stable when γ ≥ 1
2 and β ≥

1
4

(
γ + 1

2

)2, [94]. The constant average acceleration method is unconditionally stable (regardless

of the time step) and linear acceleration method is conditionally stable (regarding to time step).

For good accuracy, the constant average acceleration method with time step given by ω0∆t
2π

= 0.01

or ∆t = 0.01τ0 may be used, in which ω0 and τ0 are fundamental frequency and period of vibra-

tion [94]. In this study, the constant average acceleration method (where γ = 1
2 and β = 1

4 ) is

used.

3.3 Numerical Results and Comparison Study

In this section, large deflections and stresses of various VSCL and CSCL plates are given. The

study aims to show that the p-element proposed provides accurate results, to examine how does

variable stiffness influence the deflections and stresses, and to investigate if plates with different

thickness and with different loading conditions (as depicted in Figure 3.1) are affected in a diverse

way by the variation of the fibre orientation. The properties of the plates analysed herein are

defined in Table 3.1.

Here, in the case of non-linear analysis of VSCLs via a model based on TSDT, numerical tests

were carried out with the goal of verifying if an accurate p-version model can be constructed with
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Figure 3.1: Plate under three different loads.

a small number of degrees of freedom (DOF). It was verified that the 245 DOF (p = pu = pw =

pφ = 7) model provides solutions quite close to models with more degrees of freedom. Moreover,

we will show that this p-element (with p = pu = pw = pφ = 7) stands successfully comparisons

with other approaches (examples in ensuing Tables 3.2 - 3.4). Since it also requires a reasonable

computational time, this number of degrees of freedom is used in the analyses that follow, unless

otherwise specified.

Table 3.1: Characteristics of the plates studied.

a b h E1 E2 G12 G13 G23 ν12
(m) (m) (m) (GPa) (GPa) (GPa) (GPa) (GPa)
Plate 1
0.3048 0.3048 0.00244 12.605 12.628 2.16 2.16 2.16 0.25
Plate 2
0.5 0.5 Various 25 1 0.50 0.50 0.20 0.25
Plate 3
1 1 Various 173 7.2 3.76 3.76 3.76 0.29

The model introduced in the previous section is now partially validated by comparing its results

with the deflections and stresses obtained elsewhere, either in the linear regime or in the geomet-

rically non-linear regime. For that purpose, the model is applied to a CSCL [0o,90o]sym plate, with

different uniform loadings (of magnitude fw) in the non-linear regime, in Figure 3.2 and Table 3.2,

and to a plate with the same layup, but subjected to very small sinusoidally distributed loading (so

that the plate is in the linear regime), in Table 3.3.

The plate of Figure 3.2 is Plate 1 in Table 3.1, with clamped boundaries. The deflections

computed with the present TSDT are very close to the ones of references [88] and [95], where

Reissner-Mindlin or FSDT theory was followed (identified by RDKQ and LDT18 in the figure),

and to the displacements from Ref. [87], where TSDT was employed (identified by TSDT in the

figure). The agreement between the deflections of the present method and the experimental results

[86] is reasonable (the data from reference [86] was read in reference [87]), particularly if one

takes into account that it is somewhat difficult to impose clamped boundary conditions in practice
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Fig. 3 Plate under three different loadings. 

 

 

 
 

 

Fig. 4 Central deflection of a CSCL Plate 2 against different uniform loads, computed with various 
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Figure 3.2: Central deflection of CSCL Plate 1 of Table 3.1 under different uniform loads, com-
puted with various methods.

and that imperfections that often appear in real plates, influence the results [71]. The deflections

computed by the approach here proposed deviate from the ones of reference [96] (denoted by

FSDT Natural Mode in the figure) as the displacement magnitude increases (deflection results

from Ref. [96] was read from a graph in Ref. [97], where a three-node multilayered triangular

facet element based on a so called “natural mode method” and FSDT was used) and deviate even

more from the thin plate theory based data of references [86] and [97] (CPT and CPT* in the

Figure). In Figure 3.2, a difference between CPT and higher-order theories is observed which is

slightly strange, because the plate is quite thin.

For a plate with edges simply-supported and immovable (SSSS-1) (for boundary conditions,

see Appendix A), with different thicknesses, Table 3.2 shows a good comparison between the

present deflections and deflections computed with other methods, including analytical results.

Here, a plate similar to Plate 2 of Table 3.1, but with a and b equal to 1 m, is used. In this

table, methods from Refs. [88,98–100] including a 4-node quadrilateral displacement-based lami-

nated element (RDKQ-NL24), a displacement-based 3-node, 18-degree-of-freedom flat triangular

plate/shell element (LDT18), a so-called material finite element (MFE), HSDT, and analytical

solution are involved.

Table 3.3 tabulates deflections, and normal and shear stresses, using constitutive and equilib-

rium equations, for a simply-supported plate with movable edges (SSSS-2) that is under a sinu-

soidally distributed transverse load. Plate 2 in Table 3.1 (but with a = b = 1 m) is used. The

following non-dimensional parameters are adopted [85]:

w = w0 (0,0)
(

π4Qh3

12a4 fw

)
,
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Table 3.2: Central deflection of simply-supported CSCL Plate 2 of Table 3.1 under uniform load-
ing.

fwa4

E2h4 Central deflection w0(0,0)
h

Present HSDT FSDT (RDKQ- FSDT Analytical FSDT
[98] NL24) [88] (LDT18) [88] [99] (MFE) [100]

h = 0.025
50 0.2938 0.293 0.2941 0.2829 0.293 0.293
100 0.4641 0.464 0.4673 0.4513 0.464 0.463
150 0.5805 0.582 0.5866 0.5678 0.582 0.578
200 0.6686 0.664 0.6786 0.6577 0.664 0.666
250 0.7415 0.738 0.7541 0.7317 0.738 -
h = 0.05
50 0.3126 0.320 0.3280 0.2955 0.320 0.314
100 0.4808 0.493 0.4949 0.4626 0.486 0.482
150 0.5929 0.592 0.6080 0.5768 0.592 0.593
200 0.6785 0.680 0.6948 0.6649 0.680 0.678
250 0.7486 0.752 0.7663 0.7373 0.752 -
h = 0.1
50 0.3608 0.360 0.3704 0.3317 0.356 0.366
100 0.5179 0.520 0.5249 0.4922 0.510 0.522
150 0.6212 0.624 0.6290 0.6002 0.610 0.625
200 0.7005 0.696 0.7099 0.6834 0.689 0.703
250 0.7659 0.760 0.7770 0.7521 0.747 -

Q = 4G12 +
E1 +E2 (1+2ν)

1−ν2 ,

σ x = σx

(
0,0,

h
2

)(
h2

a2 fw

)
,

σ y = σy

(
0,0,

h
4

)(
h2

a2 fw

)
,

τxy = τxy

(
−a

2
,−b

2
,
h
2

)(
h2

a2 fw

)
,

τxz = τxz

(
−a

2
,0,0

)( h
a fw

)
,

τyz = τyz

(
0,−b

2
,0
)(

h
a fw

)
, (3.24)

where fw is the magnitude of the sinusoidally distributed load fw(x,y) = fw cos
( xπ

a

)
cos
( yπ

b

)
. The

constitutive transverse shear stresses - τc
xz and τc

yz - and the in-plane stresses - σx, σy and τxy - are

obtained from the constitutive relations, Equation (2.17). As is well known, the transverse shear
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Table 3.3: Deflection and stresses of simply-supported CSCL Plate 2 of Table 3.1 under sinu-
soidally distributed transverse load.

a/h Source w σ x σ y τxy τxz τyz

100 3D-Elasticity [85] 1.008 0.539 0.271 0.022 0.337 0.141
HSDT [101] - 0.539 0.271 0.021 0.372 0.128
Karama et al. [102] - 0.538 0.270 0.021 0.324 0.118
HSDT [103] - 0.538 0.270 0.021 0.290 0.112
Present - Constitutive Eq. 1.007 0.540 0.272 0.020 0.289 0.111
Present - Equilibrium Eq. 0.333 0.136

20 3D-Elasticity [85] 1.189 0.543 0.308 0.023 0.328 0.156
HSDT [101] - 0.543 0.306 0.023 0.362 0.142
Karama et al. [102] - 0.541 0.306 0.023 0.316 0.131
HSDT [103] - 0.539 0.304 0.023 0.283 0.123
Present - Constitutive Eq. 1.182 0.541 0.307 0.022 0.282 0.123
Present - Equilibrium Eq. 0.327 0.152

10 3D-Elasticity [85] 1.709 0.559 0.401 0.028 0.301 0.196
HSDT [101] - 0.561 0.395 0.028 0.335 0.177
Karama et al. [102] - 0.553 0.393 0.027 0.294 0.163
HSDT [103] - 0.546 0.389 0.027 0.264 0.153
Present - Constitutive Eq. 1.695 0.549 0.397 0.026 0.263 0.154
Present - Equilibrium Eq. 0.304 0.192

4 3D-Elasticity [85] 4.491 0.720 0.663 0.047 0.219 0.292
HSDT [101] - 0.740 0.635 0.048 0.254 0.269
Karama et al. [102] - 0.699 0.637 0.046 0.226 0.253
HSDT [103] - 0.665 0.632 0.044 0.206 0.239
Present - Constitutive Eq. 4.570 0.680 0.644 0.043 0.204 0.241
Present - Equilibrium Eq. 0.228 0.298
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stresses that result from the constitutive equations are not continuous at the interfaces between

different oriented layers, and are therefore not realistic. One way of solving this issue, which

was also adopted in this work, is using the equilibrium equations of 3-D elasticity to compute the

stresses, i.e. using the following equations:

τ
e
xz =−

∫ z

h
2

(σx,x + τxy,y)dz,

τ
e
yz =−

∫ z

h
2

(σy,y + τxy,x)dz. (3.25)

Equations (3.25) are obtained from the equilibrium equations of 3-D elasticity in directions x and

y, without acceleration (static analysis), body or surface forces in those directions [51]. In this

work, the external loads are always in the z direction. One verifies in Table 3.3 that the deflection,

the normal stresses, the membrane shear stresses and the shear stresses computed by equilibrium

equations are in good agreement with the 3D-elasticity results of reference [85]. It is noteworthy

that this good agreement between the present results and 3D-elasticity occurs even in the very thick

plate where a/h = 4. Moreover, the deflection, the normal and membrane shear stresses computed

with the present approach are generally very close to the ones provided by other references. The

transverse shear stresses computed by constitutive relation here and in Ref. [103] are also quite

close. Furthermore, one verifies that the transverse shear stresses τxz computed via the constitutive

relations differ less than 14% from the equilibrium relation stresses. In what transverse shear

stresses τyz are concerned, the relative difference is always smaller than 20%. The constitutive

relation based stresses are smaller than the equilibrium relation ones. The comparisons presented

in this section indicate that the model here introduced and the computational code implemented

are correct.

For the sake of completeness and to further verify the model, Table 3.4 shows an example that

illustrates the convergence and accuracy on deflection and stress computation, by comparison with

3-D elasticity solutions taken from reference [85]. The considered CSCL square plate is simply-

supported with movable edges (SSSS-2), with fibre configuration [0o,90o,0o,90o,0o], and has the

mechanical properties of Plate 2 in Table 3.1 (but with a = b = 1 m). The plate is under a static

load, with sinusoidal distribution and of small intensity – that means the analysis is in the linear

regime; the non-linear terms are not included in the model. In Table 3.2, there was a somewhat

similar example, but in a different plate and, although small displacements were considered, the

non-linear model was used. The non-dimensional parameters mentioned in Equations (3.24) are

used except, after [85], σ y = σy
(
0,0, h

3 , t
)( h2

a2 fw

)
.

p-Version finite elements with 180, 245, 405, and 500 DOFs are used and the transverse

shear stresses are calculated by the equilibrium equations, to satisfy continuity requirements. The

present method, with only 180 or 245 DOF, gives results that are generally very close to the 3-D

elasticity results.



54 Static Analysis of VSCL Plates in the Geometrically Non-Linear Regime

Table 3.4: Comparison of deflection and stresses of a CSCL plate subjected to static sinusoidal
load.

a/h Method w σ x σ y τxy τxz τyz

100 3D-Elasticity [85] 1.006 0.539 0.360 -0.0213 0.272 0.205
Present 180 DOF 1.004 0.539 0.356 -0.0200 0.265 0.206
Present 245 DOF 1.005 0.541 0.358 -0.0201 0.260 0.200
Present 405 DOF 1.005 0.541 0.358 -0.0201 0.264 0.203
Present 500 DOF 1.005 0.541 0.358 -0.0201 0.264 0.203

50 3D-Elasticity [85] 1.023 0.539 0.363 -0.0214 0.271 0.206
Present 245 DOF 1.020 0.540 0.360 -0.0202 0.260 0.200

20 3D-Elasticity [85] 1.145 0.539 0.380 -0.0222 0.268 0.212
Present 245 DOF 1.122 0.540 0.373 -0.0207 0.257 0.207

10 3D-Elasticity [85] 1.570 0.545 0.430 -0.0246 0.258 0.223
Present 245 DOF 1.480 0.542 0.410 -0.0223 0.246 0.223
Present 500 DOF 1.480 0.542 0.410 -0.0223 0.247 0.226

3.3.1 Deflection of VSCL Plates

Initially, we consider a clamped four-layer VSCL plate [〈T0,T1〉,〈90o +T0,90o +T1〉]sym. For this

plate a = b = 0.5 m, h = 0.005 m; the other characteristics are the ones given for Plate 3 in Table

3.1. The plate is subjected to a uniformly transverse distributed static pressure of 1×105 Nm−2.

The analyses of static deformation on this plate indicate that, for any fibre angle variation 〈T0,T1〉,
deflection is symmetric about the centre of the plate, we mean that the following relation holds:

w0 (x,y) = w0 (−x,−y). This symmetry condition is a consequence of the function used to de-

fine the curvilinear fibre, Equation (1.3), of the symmetry of load and boundaries. Four points

in half of this plate are analysed in Figure 3.3; due to the symmetry condition given, these four

points roughly provide an overall picture of the plate behaviour. Here, a dashed line represents

CSCL plates (where T0 and T1 are equal) and the hatched area represents VSCL plates that cannot

be manufactured, sub-section 1.4.4. The figure shows that VSCL plates can experience less de-

flection than any CSCL in specific points. For instance, at point (x,y) =
(a

4 ,−
b
4

)
, the deflection

ratio w0
(a

4 ,−
b
4

)
/h = 0.3905 of the VSCL plate with [〈70o,20o〉,〈160o,110o〉]sym is 77% of the

deflection ratio (w0
(a

4 ,−
b
4

)
/h = 0.5043) of the CSCL plate with [0o,90o]sym. At the other points

considered in the figure (i.e. (x,y) equal to (0,0), (a/4,b/4) and (0,b/4)), CSCL plates show

minimum deflection.

Deflection ratios w0 (x,y)/h of a four-layer CSCL plate and of a VSCL plate are depicted in

Figure 3.4. The plate’s characteristics and the loading condition used in Figures 3.3 and 3.4 are

the same; the two plates in Figure 3.4 share the same fibre orientation at x = 0. An area in lighter

blue indicates larger deflection and the red arrow shows the point of maximum deflection. This

figure shows that, in the VSCL as in the CSCL, the largest deflection occurs at the centre of the

plate and also that deflections are symmetric with respect to the centre of the plate. But it is clear

that due to the change in the fibre orientation from CSCL to VSCL, the pattern of deflection at the

plate changes.
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Fig. 2 Deflection ratio � �⁄ � contour plots of four-layer VSCL plates subjected to uniform load with 
different fibre angles. 
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Figure 3.3: Deflection ratio w0(x,y)
h contour plots of four-layer VSCL Plates 3 of Table 3.1 with

different fibre angles. The plate is subjected to a uniform load.
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Fig. 3 Deflection ratio of two CSCL and VSCL plates. 
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Figure 3.4: Deflection of CSCL and of VSCL Plate 3 of Table 3.1. (a) [0o,90o]sym and (b)
[〈0o,−40o〉,〈90o,50o〉]sym

In the case presented in Figure 3.3, we understood that with VSCL plates one achieves smaller

deflection around point (x,y) = (a/4,−b/4) in comparison with CSCL plates. This indicates that

the VSCL plates with fibre paths considered here may be advantageous if the loads are out-of-

centre point loads, instead of uniform, sinusoidal or loads applied in the plate centre. To test the

preceding idea and look for advantages of VSCLs over CSCLs, plates subjected to two point loads

of 3×104 N at (x,y) = (−a/4,b/4) and (a/4,−b/4) (see Figure 3.1), with different fibre angles,

but with the same geometric and material properties (the ones of plates in Figure 3.3) are analysed.

Here, unlike in Figure 3.4, the maximum deflection does not occur at the centre of the plate and the

position of maximum deflection changes slightly by altering the fibre orientation angles. Figure

3.5(a) depicts deflection ratios for a VSCL plate with [〈70o,20o〉,〈160o,110o〉]sym fibre angles. In

order to find the maximum deflection W , 1600 different points of this plate are analysed and the

maximum deflection among these points is chosen. Figure 3.5(b) portrays the maximum deflection

of these VSCL plates with different fibre orientation angles. As this figure demonstrates, there are

many VSCL plates whose maximum deflections are smaller than any possible CSCL plate; this is

especially – but not only – true below the dash-line of CSCL plates in Figure 3.5(b). For example,

by choosing the VSCL plate with [〈60o,10o〉,〈150o,100o〉]sym the maximum deflection is reduced

around 8% in comparison with the [0o,90o]sym CSCL plate.

3.3.2 Stress Distribution in VSCL plates

In Table 3.3, a simply-supported plate with movable edges (SSSS-2) was analysed in order to

compare stresses and deflections computed here with published ones. The lack of results in the
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Fig. 5 a) Deflection ratio of a VSCL plate subjected to two point-loads, b) Contour plot of maximum 
deflection ratio �� �⁄ � of the VSCL plate with different fiber angles. 
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Figure 3.5: (a) Deflection in VSCL Plate 3 of Table 3.1 subjected to two point loads [〈70o,20o〉,
〈160o,110o〉]sym, and (b) Contour plot of maximum deflection ratio W/h of the VSCL Plate 3 with
different fibre angles.

literature on stresses in CSCL plates with clamped edges, as well as in plates with edges simply-

supported and immovable (SSSS-1), now motivates the author to present a few results in Table

3.5. These can be used by other researchers in future investigations. The stresses and deflections

presented in Table 3.5 are for a plate with the geometry and loading conditions of the plate in

Table 3.3, but with the just mentioned boundary conditions. Here, the results are for w(0,0),

σ x (0,0,h/2), σ y (0,0,h/4), τxy (−a/4,−b/4,h/2), τxz (−a/4,−b/4,0), τyz (−a/4,−b/4,0), i.e.

Tables 3.3 and 3.5 show the shear stresses at different points. For clamped and simply-supported

with immovable edges (SSSS-1) boundary conditions, the transverse shear stresses of the present

model computed with the constitutive equations are zero or very small at the edges of the plate, and

this is the reason why these stresses are now examined in a different point. Normal stresses and

deflection are calculated in the centre of the plate in both tables. The results of Tables 3.3 and 3.5,

which are obtained with a load of small magnitude, show that the deflection and normal stresses

for simply-supported plates with movable (SSSS-2) or immovable (SSSS-1) edges are the same

in the linear regime (as would be expected). Both tables show an increase in the non-dimensional

parameters w, σ x (with one exception in the thin clamped plate at Table 3.5), σ y, τxy, and τyz and

a decrease in τxz when the plate gets thicker (with another exception in Table 3.5, from a/h = 100

to a/h = 20 when using the equilibrium equations).

Increasing the load, the difference between deflection and stresses on plates with the two

boundary conditions appears. If we increase the magnitude of the load to 1 Pa, which is much

larger than the small load – in the scale of 10−3 Pa – used in Table 3.3, we get w0 (x,y)/h = 0.4

for the simply-supported plate with movable edges and w0 (x,y)/h = 0.33 for the plate simply-

supported with immovable edges (SSSS-2). Therefore, applying higher loads, the two plates with
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Table 3.5: Deflection and stresses of clamped and simply-supported CSCL Plate 2 of Table 3.1.

a/h w σ x σ y τxy τxz τyz

(0,0)
(
0,0, h

2

) (
0,0, h

4

) (−a
4 , −b

4 , h
2

) (−a
4 , −b

4 ,0
) (−a

4 , −b
4 ,0

)
Clamped
100 Constitutive Eqs. 0.254 0.221 0.102 0.0045 0.136 0.037

Equilibrium Eqs. 0.155 0.049
20 Constitutive Eqs. 0.425 0.205 0.155 0.0052 0.115 0.068

Equilibrium Eqs. 0.164 0.088
10 Constitutive Eqs. 0.848 0.218 0.227 0.0068 0.100 0.106

Equilibrium Eqs. 0.145 0.146
4 Constitutive Eqs. 3.048 0.416 0.277 0.0139 0.085 0.127

Equilibrium Eqs. 0.097 0.202
Simply-supported with immovable edges
100 Constitutive Eqs. 1.007 0.541 0.272 0.0109 0.145 0.055

Equilibrium Eqs. 0.170 0.069
20 Constitutive Eqs. 1.184 0.542 0.308 0.0108 0.141 0.062

Equilibrium Eqs. 0.165 0.077
10 Constitutive Eqs. 1.695 0.549 0.397 0.0128 0.132 0.077

Equilibrium Eqs. 0.153 0.097
4 Constitutive Eqs. 4.570 0.680 0.644 0.0213 0.102 0.121

Equilibrium Eqs. 0.114 0.151

different simply-supported boundary conditions (SSSS-1 and SSSS-2) experience different deflec-

tion and hence different stress.

Now, numerical results are provided for a VSCL plate subjected to a sinusoidally distributed

transverse load. These may serve as a benchmark for future studies in the non-linear regime.

Table 3.6 presents deflections and stresses for a VSCL plate that is either clamped or simply-

supported with movable edges (SSSS-2). The plate has four layers with fibre angles defined by

[〈45o,0o〉,〈135o,90o〉]sym; the remaining characteristics are the ones of Plate 3 in Table 3.1. The

deflection is divided by the plate thickness and the stresses are in GPa; deflection and stresses

are computed at particular points, specifically: w0 (0,0)/h, σx = σx (0,0,h/2), σy = σy (0,0,h/4),

τxy = τxy (−a/4,−b/4,h/2), τxz = τxz (−a/4,−b/4,0), and τyz = τyz (−a/4,−b/4,0).

The force magnitudes were chosen so that the non-dimensional transverse displacement at

x = y = 0 is more or less equal to the plate thickness. As might be expected, normal stresses

are larger in thicker than in thin plates, experiencing displacements with similar non-dimensional

magnitude, irrespectively of the boundary conditions. Proportionally, the normal stresses and the

membrane shear stresses experience very different variations with the thickness in clamped and

simply-supported with movable edges plates (SSSS-2). In fact, whilst, for example, the normal

stress σx increases about 20 times when the boundaries are fully clamped, it increases about 4

times in the case of simply-supported with movable edges. In what transverse shear stresses are

concerned, one realizes that even though a third-order shear deformation theory is being used,

equilibrium and constitutive equations results are markedly different, significantly more than what

occurred in Tables 3.3 and 3.5. This is an effect of geometrical non-linearity that we will examine
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in more detail in the following paragraphs.

Table 3.6: Deflection and stresses (GPa) of VSCL Plate 3 of Table 3.1 under sinusoidally dis-
tributed transverse load (here xEy means x×10y).

h/a fw (Pa) w0(0,0)
h σx σy τxy τc

xz τe
xz τc

yz τe
yz

Clamped
0.01 10E5 1.04 0.81E-1 0.61E-1 0.31E-2 0.10E-2 0.20E-2 0.37E-3 0.39E-3
0.05 5.0E7 1.01 0.16E1 0.12E1 0.58E-1 0.10 0.19 0.43E-1 0.53E-1
Simply-supported with movable edges (SSSS-2)
0.01 2.0E4 0.98 0.22 0.27 0.36E-1 0.10 0.77E-2 0.37E-1 0.41E-2
0.05 1.1E7 0.98 0.89 0.72 0.28E-1 0.14E-1 0.64E-1 0.56E-1 0.30E-2

Altering the fibre orientations in a VSCL plate changes the stress field. So, not only the stress

magnitudes, but also the place where the maximum stress is attained change with the curvilinear

paths. Imagine for example a clamped [〈T0,T1〉,〈90o +T0,90o +T1〉]sym plate like Plate 3 of Table

3.1 (but with a = b = 0.5 m, h = 0.005 m), which is subjected to two point loads with magnitude

104 N, applied as shown in Figure 3.1. Figure 3.6 shows the maximum normal and in-plane

stresses attained (for σx (x,y,h/2), σy (x,y,h/4), τxy (x,y,h/2)) and their locations on the plane;

and Figure 3.7 displays these results for τxz (x,y,0) and τyz (x,y,0). Only a quarter of the plate

is analysed, because with this loading and fibre distribution, we expect the location of maximum

stress to be in this particular quarter (and, with the same value, on the opposite quarter).

Figure 3.6 shows that the maximum value of σx is very sensitive to changes in the fibre ori-

entation angle. For many fibre angles, this stress is low (red area), but a minor change in fibre

angles can alter σx very much. The behaviour of σy is similar. Some CSCL plates with higher

T0 are the plates where a lower maximum normal stresses σx and σy is attained. In the quarter of

the plate investigated, there are three distinct areas where points with maximum stress, for both

normal stresses σx and σy, exist. One of these areas is close to the load and the other two are

at the edges. No easy pattern can be found between these three areas and the fibre angles, but

we acknowledge that these areas are prone to sustain local effects with the appearance of larger

stresses. In-plane stress τxy is sensitive to fibre angle change, and it has a high amount (yellow

areas in the figure) for many angles. The maximum stress τxy is achieved in two distinct areas, one

is close to the load, and the other starts from one of the edges, and continues to the next edge. The

transverse shear stresses τc
xz and τc

yz show opposite patterns, Figure 3.7. With constant T0 and T1,

if one transverse stress is maximum, the other transverse stress is minimum. About the place of

these maximum stresses, both transverse stresses are maximum in just one small area, but not the

same, inside the quarter of the plate. Curiously, τe
xz and τe

yz show a more similar variation with the

fibre angles, although one transverse shear stress, τe
yz, varies in a quite more regular way than the

other, τe
xz. It would be expected that the maximum values of transverse shear stresses would occur

in two distinct adjacent edges (at x =±a/2 and y =±b/2, respectively; it is recalled that z = 0).

Figure 3.7 confirms this and shows exactly the points where the maximum values of τe
xz and τe

yz

are attained under the hypothesis behind the present model.
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Figure 3.6: Maximum normal and in-plane shear stresses and change of their locations for VSCL
Plate 3 of Table 3.1, subjected to two point loads, with different fibre angles.
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Figure 3.7: Maximum transverse shear stresses and change of their locations for VSCL Plate 3 of
Table 3.1, subjected to two point loads, with different fibre angles.
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Fig. 9 Shear stress distribution through the thickness of a simply-supported nine-layer CSCL Plate 2 in 

linear regime. 
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Figure 3.8: Shear stress distribution through the thickness simply-supported nine-layer CSCL
Plate 2 of Table 3.1 in linear regime.

The previous paragraphs were focused on the variation of stresses with coordinates x and y.

We now address the variation of stresses along the plate thickness (where x = −a/2 and y = 0).

If one computes the transverse shear stresses by the equilibrium equations in the way expressed

by Equations (3.25), zero stresses are obtained at the bottom surface of the plate. This zero shear

stress in the bottom surface is due to the absence of integration constant in Equations (3.25) and

is reasonable in the linear regime, where the deformed bottom surface remains almost parallel to

the original xy plane. Using Equations (3.25) and with strain-displacement relation in the linear

regime, the stresses at the top surface of the plate are also zero (see Figure 3.8), again a realistic

result in the absence of large displacements and of tangential forces in the surface. We note that

Figure 3.8 shows a good comparison between the present solution and Ref. [85], in the linear

regime, for a nine-layer [0o,90o,0o,90o,0o,90o,0o,90o,0o] CSCL plate.

However, increasing the load, therefore, increasing the displacements and making non-linearity

more meaningful, the equilibrium Equations (3.25), lead to non-zero transverse shear stresses at

the top surface of a plate. Figure 3.9 shows this issue for a three-layer [0o,90o,0o] CSCL plate

(where x = −a/2 and y = 0). In this figure, τxz is a non-dimensional stress parameter calculated

by dividing the shear stress by its maximum value, in order to facilitate comparisons. Here, the

properties of Plate 2 in Table 3.1, with simply-supported boundaries and movable edges (SSSS-2),

are used. We consider that the appearance of non-zero values on the surface is correct, because

the surface has an inclination with respect to the xy plane (at x = −a/2 and y = 0). Hence, even

if the absence of forces tangential to the surface would lead to zero shear along this tangent, this

is not in a direction parallel to y or z. Although often ignored, the appearance of non-zero shear

transverse stresses at the top surface of the plate in the non-linear regime is not unknown and has

been addressed in detail in Ref. [104].

By introducing relatively small changes in the fibre angles on VSCL plates, different stresses



3.3 Numerical Results and Comparison Study 63

38 

 

 

 

 

 

 

 

 

 

 

figFig. 10 Shear stress distribution through the thickness of a simply-supported nine-layer CSCL Plate 2 

in linear regime. 

 

 

 

 

 

 

 

 

 

 

figFig. 11 Shear stress distribution through the thickness of a simply-supported three-layer CSCL Plate 2 

in non-linear regime, with increasing sinusoidally distributed transverse load. 
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Figure 3.9: Shear stress distribution through the thickness of a simply-supported three-layer CSCL
Plate 2 of Table 3.1 in non-linear regime, with increasing sinusoidally distributed transverse load.

are achieved. Hence, one can exploit the change of the fibre orientation in VSCL plates to avoid

damages and failure, by adjusting the curvilinear fibre to the particular application of the plate.

This idea is going to be further examined in the next chapter. For now, to illustrate the variations

that occur through the thickness of a VSCL plate, plates of the type [〈T0,T1〉,〈90o +T0,90o +T1〉]sym

, with different angles T0 and T1, are analysed. Figure 3.10 shows these stress distributions un-

der sinusoidally distributed loading (with magnitude 103 N) for σx = σx (0,0,z), σy = σy (0,0,z),

τxy = τxy (−a/2,−b/2,z), τxz = τxz (−a/2,0,z), and τyz = τyz (0,−b/2,z). The properties are the

ones of Plate 3 in Table 3.1 (but with a = b = 0.5,h = 0.005 m). In this figure, transverse shear

stresses computed by constitutive relation are continuous because of the similar shear transverse

moduli.

Figure 3.11 shows the stresses for a VSCL [〈90o,40o〉,〈180o,130o〉]sym plate, under sinu-

soidally distributed loading. Other properties are similar to the plate used in Figure 3.10. Also,

the deflection ratio of the plate at section y = 0 is given. The distributions of σx and σy demon-

strate that the inner and outer layers react differently to the increase in load, with large values of

σx in the inner layers and large values of σy in the outer layers. As might be expected, the upper

layers are in compression and the lower ones in traction. But the point where σx is zero – which

in Figure 3.11 has coordinates (0,0,z) – moves, because its coordinate z increases with the load as

a consequence of non-linear effects. In the case studied, increasing the load first leads to positive

τc
yz stresses and then to negative. Moreover, whilst the absolute values of σx and σy increase less

than the load (again a consequence of non-linearity), the absolute values of τc
xz and τc

yz experience

large variations as non-linearity becomes more important.
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Fig. 11 In-plane and shear stress distribution through the thickness of simply-supported VSCL Plates 3, with movable 
edges, under sinusoidally distributed loading, with different fibre angles. 
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Figure 3.10: In-plane and shear stress distribution through the thickness of simply-supported
VSCL Plates 3 of Table 3.1, with movable edges, under sinusoidally distributed loading, with
different fibre angles.
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Fig. 13 In-plane and shear stress distribution through the thickness as well as deflection in the section of the plate of a 

simply-supported VSCL Plate 3, with movable edges, under increasingly sinusoidally distributed loading. 
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the section of the plate of simply-supported VSCL Plate 3 of Table 3.1, with movable edges, under
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3.4 Conclusions

In this chapter, variable stiffness composite laminated plates with curvilinear fibres were analysed

with the p-version finite element, using a third-order shear deformation theory. Due to the absence

of data on VSCL plates, the formulation was verified by means of comparisons with published

data on traditional, constant stiffness, laminates. The effects of using curvilinear fibres instead of

straight fibres in laminated composite plates on (large) deflections and stresses were investigated.

Several boundary conditions, plate thicknesses, and different loadings were considered. The tests

carried out did not show that, for the fibre paths considered, VSCL always surpass CSCL. But

it was found that using VSCL plates with linear variation of the fibre angle can lead to smaller

displacement at certain points or even, for special loadings like eccentric point loads, diminish

deflections of the plate overall. Curvilinear fibres also lead to changes in the stresses, as altering

the position of maximum stress at the plate. These changes in maximum stresses magnitudes and

locations may be exploited to improve damage resistance in particular applications. The transverse

shear stresses computed by equilibrium equations was investigated in the non-linear regime and

it was shown that non-zero shear stresses occur in the surfaces of the plate. This is due to the

deformation of the outer planes, which are far from parallel to the xy plane when the displacements

are large.



Chapter 4

Damage Onset of VSCL Plates: Statics
and Dynamics

4.1 Introduction

With knowledge of the published literature on VSCL, the author believes that the developed p-

version finite element, with non-linear strain-displacement relations, as described in Chapter 3,

can be used to properly estimate the damage onset on VSCL plates. The p-version finite element

method (FEM) has to its advantage a fast convergence rate and the high degree of continuity in the

domain [48, 56, 63, 93]. The p-version finite element with hierarchical basis functions, based on

a Third-Order Shear Deformation Theory (TSDT) in the linear strain-displacement regime, was

already proposed to analyse the natural modes of vibration of VSCLs, in Chapter 2. In Chapter

3, the author explored VSCL plates subjected to static loads, to investigate the stress distributions

and their dependence on non-uniform stiffness. In this chapter, the p-version finite element based

on TSDT is applied in the geometrically non-linear regime to VSCL plates, in order to further

assess their structural properties. Large deflections and damage onset of VSCL plates, when they

are subjected to different static and dynamic loads, as uniform, partial (localised), sinusoidal, and

impact loads, are studied.

To predict damage onset in VSCL plates, the well-known and widely used [105–107] stress

based Tsai-Wu failure criterion is utilized here. The aim is to define an in-plane damage onset

index and the safety factor for CSCL and VSCL plates. The stress computation with the present

model was verified in [93] by comparison with other models and is here further verified by com-

parison with a 3-D elasticity based analysis.

4.1.1 Literature Review

Using curvilinear fibres, the stiffnesses become a function of the position [108]; these non-homogenous,

locally orthotropic layers lead to VSCL, in which modification of load paths offers the possibility

to distribute stresses in a more advantageous way [76,109]. Improved structural performances ac-

cessible by VSCL plates – like less deflection and smaller likelihood of damage onset under static

67
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and dynamic loads – are sought in this chapter. The analyses presented in this chapter are already

given in Refs. [110, 111]. Although this chapter looks to the concept of load carrying capacity

from the damage onset viewpoint, many other researchers investigate this concept using buckling

and postbuckling behaviour of the VSCL plates. Accordingly, buckling and postbuckling is very

often mentioned in the literature review.

Reference [112], a review paper on works published before 2010, lists pros and cons of param-

eterisation and optimisation algorithms used in the design of VSCLs. Recently, tailoring the fibre

orientations, to maximize natural frequency, load carrying capacity or to minimise deflections has

attracted a few researchers. Tailoring VSCLs to optimise natural frequency and deflection is essen-

tially related with stiffness (mass also influences the natural frequency, but it is generally assumed

that using curvilinear fibres does not affect mass distribution); this is different from maximizing

the damage load, which depends on local strength [10]. In Ref. [77], the postbuckling first-ply

failure response characteristics of VSCLs – modelled in the commercial finite element package

Abaqus – are analysed using a set of physically-based criteria developed in [76]. In Ref. [78],

the onset of delamination, an important failure mechanism in laminated plates, is evaluated us-

ing Abaqus to estimate interlaminar stresses in VSCLs. Delamination initiations are addressed

in Ref. [113] by studying the response to impacts and the compression after impact, again using

Abaqus to model VSCL plates. A multi-objective optimisation approach, with a non-dominated

sorting genetic algorithm (NSGA-II), is employed in [114] to optimise either the strength around

a circular hole with Tsai-Wu failure criterion, or the fundamental frequency, in a VSCL plate. An-

other design tailoring problem – the pressure pillowing of a fuselage VSCL panel – is addressed

in [109], where Abaqus is yet again used with the goal of maximizing the load carrying capacity

and the buckling capacity. References [75, 115] draw attention to the fact that thick laminates are

more likely to experience failure than buckling, because the in-plane failure strains are an order of

magnitude smaller than the buckling strains.

In Ref. [116], an optimisation (Global Response Surface Method as well as Abaqus) of a

VSCL fuselage window belt demonstrated 26% postbuckling stability improvement compared to

a CSCL design. The evaluations revealed that the optimal VSCL panel has 23% lower Tsai-Wu

failure index and 10% reduction in in-plane shear stiffness compared to the CSCL design [116].

In another work [117], the authors optimised composite beams subjected to different loading for

maximum failure load and proved the additional capacity of variable stiffness concept over the

conventional straight-fiber concept due to re-distribution of loads.

Buckling, progressive damage and failure analyses were conducted on VSCL panels with and

without central cut-outs in Ref. [118]. A continuum damage model in a commercially available

code ABAQUS was applied for the simulation of the response of composite panels with increasing

compression loads. Ref. [118] demonstrated that VSCLs, mainly with overlaps in the fibers, show

improvements on the retardation of damage initiation and on the increase of structural strength by

about 55%. It was shown in the same reference that the central hole is not the main geometri-

cal cause for failure of notched panels, although stress re-distribution due to the cut-out may be

playing a role. It is concluded in Ref. [118] that VSCLs with curvilinear fibres can redirect load
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Figure 4.1: Configuration of a laminate. A rectangle where a localised distributed load is applied
(a “patch load”) is represented.

fluxes from the central regions to their stiffer edges, hence increasing buckling loads and delaying

the initiation of damage and final structural failure to higher applied load levels. In another study,

Ref. [119] gave the experimental results for variable stiffness flat panels with central circular holes

and presented the buckling performance improvements attainable by elastic tailoring of composite

laminates.

A semi-analytical variational approach was developed in Ref. [120] to perform postbuckling

analysis of VSCL plates under uniform axial compression loading. It was demonstrated that en-

hanced results are given by the VSCL laminates, in which only small amounts of stiffness re-

duction occur in the postbuckling regime and simultaneously their overall stiffness and critical

buckling load are maintained relatively high [120].

Ref. [41] presented an analysis on the effect of transverse shear deformation and embedded

manufacturing defects (gaps and overlaps during manufacturing process) on the critical buckling

load of VSCL plates using classical and shear deformation theories. A hybrid Fourier–Galerkin

method was used to solve the governing equations. It was demonstrated that the discrepancy be-

tween critical buckling load obtained by CLPT and TSDT predictions is up to 33% for moderately-

thick plates with length-to-thickness ratio a/h = 10, showing the importance of shear deformation

theory in moderately-thick plates [41].

4.2 Damage Onset by a Non-linear Model for VSCL Plates

Here, rectangular symmetric laminates will be studied. In Figure 4.1, a plate is represented, to-

gether with Cartesian coordinates, the origin of which is the plate centroid. The curvilinear fibre

paths are as they introduced in Section 1.4.1. A p-version finite element, with hierarchical basis

functions and following TSDT, is employed to investigate if damage appears on laminates, under

the action of various static and dynamic loads.

The virtual works of inertia in the non-linear regime of strain-displacements (already given in

Section 2.2), internal and external forces (already given in Section 3.2) are defined and applied in

the principle of virtual work, to find the equations of motion below; details on these matrices were

given in the past chapters. A stiffness proportional damping, a special case of viscous damping, is
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introduced in the equations of motion, with α representing the factor of proportionality [121,122].

The vector on the right-hand side of Equation (4.1) is the vector of generalised external forces. In

the following numerical examples, we only consider transverse forces, so only fw is not zero. To

solve these non-linear differential equations, we use an in-house code written in FORTRAN, that

implements Newmark method [62, 94] (also see Section 3.2.1). This code was used to find static

solutions using time as an artificial parameter, and to find steady-state and transient responses to

dynamic loads, including impact loads.
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(4.1)

As written in the introduction, different failure criteria have been used for composites and,

specifically, for variable stiffness laminates. Various failure modes, namely, fibre failure, matrix

failure, interfacial failure, delamination, and buckling, interact and can occur to cause the onset

of damage. In the maximum stress and strain criteria, individual stress or strain components have

specific limits, which are not affected by the other components; there is no interaction between

stress or strain components. Here, we will use a quadratic, interactive Tsai-Wu failure criterion,

taking into consideration a multi-axial stress state and how the combination of different stress com-

ponents affect the damage onset [123]. Accordingly, damage starts when the following condition

is satisfied
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Fig. 2 Various failure envelopes for a [0º,90º,90º,0º] plate. 

 

III. Failure of Laminates with Curvilinear Fibers in Statics and Dynamics 

Differences between CSCL plates and VSCL plates with curvilinear fibers are discussed in this section. We are 

chiefly interested on failure onset and criterion (7) is evaluated on the different plates, under various static and 

dynamic loading conditions. In the dynamic case, the steady state response to harmonic loads is considered first, 

and, after, the transient response of a VSCL plate under an impact is shown. Although natural frequencies [16] and 

deflections (in the static regime) [17] of VSCL have been computed before using this model, both are given here to 

provide a more complete picture of the mechanical behavior of the diverse plates. This section is divided in two. In 

Section III A, small deflections are considered, so that non-linear terms would be unimportant and they are 

neglected in the formulation, and the present approach is compared with an established reference that gives 

deflections and stresses in the linear regime. In addition, the linear part of the present model is employed to compute 

the natural frequencies of vibration of the plates under analysis here. Section III B is devoted to the analysis of 

failure onset and deflections in the non-linear regime. 

A. Linear Analysis 

Demonstrations of the accuracy of the TSDT model employed here have been presented in [16, 17]. For the sake 

of completeness and to further verify the model, Table 1 shows an example that illustrates the convergence and 
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Figure 4.2: Various failure envelopes for a [0o,90o,90o,0o] plate.
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Interaction parameter f ∗,−0.5≤ f ∗ ≤ 0, is a constant; f ∗ equal to zero is generally used in more

conservative damage onset prediction, but in this chapter we make it equal to -0.5, to include

the interaction effect between normal stresses [123]. Finding the actual value of the interaction

parameter is not possible only with uni-directional strength tests, it requires bi-axial test results

instead; taking this parameter equal to -0.5 is, in isotropic materials, the same as using the von

Mises yield criterion [123].

Tsai-Wu criterion is often defended in the literature as a good first-ply failure criterion. To

illustrate the difference between this and other criteria, different failure criteria (maximum strain

and stress criteria, Tsai-Hill criterion and Tsai-Wu criterion, i.e. Equation (4.2), with f ∗ equal to 0

or to -0.5) are assessed for a CSCL plate and their envelopes are shown in Figure 4.2. The plate lay-

up is [0o,90o,90o,0o] with geometric and mechanical properties defined as E1 = 172.37 GPa, E2 =

6.89 GPa, G12 = G13 = 3.45 GPa, G23 = 1.38 GPa, ν = 0.25. The envelopes are obtained using

the software Helius: CompositePro1. As Figure 4.2 describes, the maximum stress envelope does

not show any interaction between normal stresses, while maximum strain envelope reveals such

interaction. Of the criteria under consideration here, Tsai-Hill criterion is the most conservative

that assumes interaction. For most stresses, Tsai-Wu criterion is more conservative when taking

interaction parameter equal to 0 rather than -0.5. Only when both stresses are compressive, Tsai-

Wu criterion with interaction parameter equal to -0.5 is less safe.

Equation (4.2) can be described either with a damage onset index or using a safety factor.

Ref. [106] suggests replacing stresses σ and τ with λσ and λτ; the λ that results in beginning of

1Helius: CompositePro Software

http://www.firehole.com/products/comppro/
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the damage is recognized as the safety factor. Among different laminates, the one with lower λ

would be the laminate where damage onset is less likely.

4.3 Numerical Results

Differences between CSCL plates and VSCL plates with curvilinear fibres are discussed in this

section. We are chiefly interested in the damage onset in the non-linear regime and the criterion

expressed by the Equation (4.2) is evaluated on the different plates, under various static and dy-

namic loading conditions. In the dynamic case, the steady state response to harmonic loads is

considered first, and, after, the transient response of a VSCL plate under an impact is shown.

4.3.1 Deflection and Damage Onset in the Non-Linear Regime

The p-version finite element method can treat laminates with diverse curvilinear fibres, different

sequence stacking and number of layers, but in this section we will consider a four-layer variable

stiffness laminate with curvilinear fibre configuration [〈T0,T1〉,90o + 〈T0,T1〉]sym in order to restrict

the domain of the study. For the laminates with straight fibres, T0 is equal to T1 and can take values

0o or 45o, so that strength and stiffness are greater in two specific directions; but for the laminates

with curvilinear fibres T0 – that takes one of the following values: 20o, 40o, 45o, 60o, 80o – is

different than T1 (that can be -20o, 0o, 20o, 40o, 60o or 80o); these angles take into account the

manufacturing limitation on fibre curvatures (see 1.4.4). The VSCL plate considered here and

in the remaining examples in this chapter is fully clamped and with the geometry a = b = 0.5

m, h = 0.005 m and mechanical properties of AS4/3501-6 carbon epoxy (after [106]): E1 = 142

GPa, E2 = 10.3 GPa, G12 = G13 = G23 = 7.2 GPa, ν12 = 0.27, ρ = 1580, kg/m3, Xt = 2280 MPa,

Xc = 1440 MPa, Yt = 57 MPa, Yc = 228 MPa, S = 71 MPa.

The four-layer laminate with curvilinear fibre configuration [〈45o,80o〉,〈135o,170o〉]sym is se-

lected to verify the convergence of results with the number of shape functions in the non-linear

regime. Deflections at the centre of the plate and damage onset safety factors, computed us-

ing two p-version finite elements, one with 245 DOF, the other with 405 DOF, are compared

in Table 4.1. The minimum safety factor is the one reported here; in order to find it, a grid

of 40× 40× 100 points (along the width, length and thickness, respectively) is defined and the

safety factor is computed in each node. An acceptable agreement between the damage onset

safety factors and non-dimensional deflections computed with the two approaches is observed

in this table. Taking into account that the computational effort is very large if more than 81

(9× 9) shape functions are used per displacement component, and taking into consideration the

former comparison between p-version models, as well as comparisons carried out in the last

chapters, we decided to use 405 DOF for the ensuing analyses in this chapter. Different trans-

verse loadings, namely uniform load, fw (x,y, t) = 104 cos(ωt) , sinusoidally distributed load,

fw (x,y, t) = 104 cos(πx/a)cos(πy/b)cos(ωt) , and a partial load defined as

fw (x,y, t) = 5×105 cos(ωt) (4.3)



4.3 Numerical Results 73

if

(−0.3a≤ x≤−0.2a,0.2b≤ y≤ 0.3b) or (0.2a≤ x≤ 0.3a,−0.3b≤ y≤−0.2b)

are applied to the plates. These partial, or patch, loads correspond to concentrated (point) loads if

the patches are small. Unlike a concentrated load, patch loads do not lead to infinite stresses at the

application point; they also have the advantage of requiring less shape functions for convergence.

The loads are either static or dynamic, with dynamic here meaning harmonic and with an excitation

frequency ω equal to the fundamental natural frequency of the laminate.

Table 4.1: Non-dimensional deflection and damage onset safety factor of a VSCL plate under
different dynamic and static loads (Difference is calculated taking 405 DOF as reference).

Non-dimensional deflection, W/h Damage onset safety factor
Loading 245 DOF 405 DOF 245 DOF 405 DOF
Harmonic uniform 0.8737 (≈ 1.1%) 0. 8835 3.16 (≈ 5.4%) 3.34
Static uniform 0.2828 (≈ 0.0%) 0.2828 13.85 (≈ 2.1%) 14.14
Harmonic sinusoidal 0.8155 (≈ 0.3%) 0.8181 4.70 (≈ 0.2%) 4.69
Static sinusoidal 0.2089 (≈ 0.0%) 0.2088 23.62 (≈ 0.1%) 23.59
Harmonic partial 0.8234 (≈ 0.4%) 0.8267 3.55 (≈ 7.3%) 3.83
Static partial 0.1765 (≈ 1.6%) 0.1793 8.95 (≈ 6.7%) 8.39

Real-life structures have some kind of energy dissipation mechanism or damping. Here, we

employ small damping factors, academic but consistent with the fact that structural damping is

small in most structures [122]. It is valuable to mention that to find the actual value of damping,

one may follow methods defined in Refs. [121,122]. In the example of Table 4.1, the proportional

damping parameter α in Equation (4.1) is taken as 10−5.

Figure 4.3 compares deflection ratios, represented by a solid circle, and safety factors – shown

by column bars – of different laminates with straight and curvilinear fibres. The deflection ratios

were defined by dividing the value of maximum deflection, which does not necessarily take place

at the centroid, of the laminate under analysis, by the maximum deflection of the cross-ply lami-

nate [0o,90o,90o,0o] (i.e. [〈0o,0o〉,〈90o,90o〉]sym or simply T0,T1 = 0o,0o in the figure), subjected

to the same loading condition. Each part of this figure exemplifies the results for the laminates

subjected to different harmonic, static, or impact loads. In this figure, harmonic loads have as ex-

citation frequency, ω , the fundamental natural frequency, and impact loads are defined as half-sine

functions of time with duration equal to half a fundamental period of vibration of the laminate.

The proportional damping parameter is taken as 5×10−5. Starting with Figure 4.3(a), deflection

ratios, defined as W/h, and damage onset when the plates are oscillating at steady-state under the

action of a harmonic load located only in two specific regions of the plate – partial loads, Equation

(4.3) – and with amplitude 106 Nm−2, are assessed. The laminate with curvilinear fibre configura-

tion [〈60o,20o〉,〈150o,110o〉]sym (simply T0,T1 = 60o,20o in the figure) has minimum deflection.

VSCL plate [〈45o,80o〉,〈135o,170o〉]sym is the safest configuration albeit it experiences deflection

larger than [〈60o,20o〉,〈150o,110o〉]sym; thus, the former laminate is more flexible and develops

lower stresses at the edges than the latter. Still in the case of loads harmonic in time and comparing
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with the CSCL laminates, VSCL [〈45o,80o〉,〈135o,170o〉]sym experiences a deflection of similar

magnitude, with a substantially larger safety factor. For all plates but one, the point with the mini-

mum safety factor is found at the edge and bottom surface; however, it is not always exactly at the

same position. In the unique case of [〈45o,80o〉,〈135o,170o〉]sym, the point where the safety factor

is minimum is not at the bottom of the plate, but still is at the edge. With loads of the same inten-

sity, but static, different results are estimated in Figure 4.3(b). In general, changing the load, from

harmonic to static, decreases the deflection magnitude and reduces the probability of damage on-

set, as shown by the increase in the safety factors in Figure 4.3(b). So with the same load intensity,

the harmonic load at the linear natural frequency is more likely than the static load to cause a start

of damage. Minimum deflection and highest safety factor occur in variable stiffness laminates,

respectively with configurations [〈60o,20o〉,〈150o,110o〉]sym and [〈45o,80o〉,〈135o,170o〉]sym. In

all but one of the fibre angle configurations, the damage onset occurs on the bottom surface, at

the edges of the plate, only for [〈45o,80o〉,〈135o,170o〉]sym plate (that also has the highest safety

factor), the damage starts on the patch load area, at the upper surface and far from edges. Another

result, not shown in the figure, is that the maximum deflection of the laminates subjected to two

harmonic partial loads occurs at its centre, while for the laminates under static partial load it does

not necessarily happen at the centre of the plate. In the latter case, the location that experiences

maximum deflection depends on the fibre orientation. In the former case – harmonic excitation

at the natural frequency – the plates experience deflections with a shape that approaches the first

linear mode of vibration, with maximum amplitude at the centre.

Figure 4.3(c) and (d) present a similar analysis, with harmonic and static sinusoidal force with

intensity 2× 104 Nm−2. Due to the load spatial distribution, the maximum deflection always

takes place at the plate’s centre. Laminates under harmonic and static sinusoidal load have the

minimum deflection in the cross-ply configuration [0o,90o,90o,0o], while in the static case the

laminate with curvilinear fibre T0,T1 = 80o,40o experiences very low deflection with a high safety

factor. The VSCL with fibre arrangement [〈45o,80o〉,〈135o,170o〉]sym has the maximum safety

factor, and the minimum safety factor is for VSCL laminate [〈40o,0o〉,〈130o,90o〉]sym. Another

difference between laminates under harmonic and static sinusoidal loads is the high safety factor of

laminates under static load, confirming the fact that, for the same load intensity, harmonic loading

can be more critical than static loading. Different CSCL and VSCL plates, under both loading

cases, experience damage onset at the edges, on the bottom surface. The exception is plate with

curvilinear fibre T0,T1 = 45o,80o, where damage starts at the edge, somewhere between the upper

and bottom surfaces (close to a layer interface), also this plate is, as mentioned above, the one that

has maximum damage onset safety factor.

Maximum deflection magnitudes and minimum safety factors of transient responses of lami-

nates subjected to impacts are displayed in the last two figures of Figure 4.3. Figure 4.3(e) cor-

responds to a uniform load, with intensity 3× 104 N/m−2, and Figure 4.3(f) to an impact by a

partial load with intensity 2× 106 Nm−2 applied at −0.3a ≤ x ≤ −0.2a,0.2b ≤ y ≤ 0.3b. In the

case of uniform impact, maximum deflections are found at the centre of the plates, but when the

impact is due to a partial load, the maximum deflection does not necessarily occur at the centre of
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(a) Harmonic partial load (b) Static partial load 

  

(c) Harmonic sinusoidal load (d) Static sinusoidal load 

  

(e) Impact uniform load (f) Impact partial load 

Fig. 2. Deflection ratios (solid circles) and damage safety factors (column bars) of laminates 

with straight and curvilinear fibres under different types of loads. 
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Figure 4.3: Deflection ratios (solid circles) and damage safety factors (column bars) of laminates
with straight and curvilinear fibres under different types of loads. Dashed-lines represent deflec-
tion ratio equal to one.
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the plate and its location depends on the fibre orientation. If the laminates are under the impact of

a uniformly distributed load, by choosing the arrangement [〈80o,40o〉,〈170o,130o〉]sym, keeping

the deflection almost equal to the cross-ply case [0o,90o,90o,0o], one obtains a safer laminate.

When applying an impact by a partial load, taking the curvilinear fibres [〈40o,0o〉,〈130o,90o〉]sym

would be as safe as the cross-ply case [0o,90o,90o,0o], while the VSCL plate has the minimum

deflection and the cross-ply has maximum deflection. In summary, the diverse load cases in

Figure 4.3 lead to some common conclusions; although the laminate with the curvilinear fibre

[〈45o,80o〉,〈135o,170o〉]sym has usually high deflection, it has the largest safety factor. Curvilin-

ear fibre format [〈80o,40o〉,〈170o,130o〉]sym usually has the second highest safety factor among

the cases studied.

4.3.2 Transient Response of a Sample VSCL Plate in the Non-Linear Regime

In this section, the response to impact loads of a VSCL plate is analysed in more detail. Fig-

ure 4.3 shows that using VSCL instead of CSCL plates may avoid damage onset; the reason is

that laminates with straight fibres have uniform stiffness and strength while laminates with curved

fibres have non-uniform stiffness and strength. Non-constant stiffness in a laminate changes de-

flections; moreover non-constant stiffness and strength together influence the damage onset, an

action stemming from a different stress re-distribution throughout the laminate.

In addition to the effect of curvilinear fibres in stress re-distribution (more about stresses in

VSCL plates can be found in Chapter 3), non-linear relation between strains (and subsequently

stresses) and displacements changes meaningfully the order of magnitude of normal and shear

stresses, which are applied in the damage criterion, Equation (4.2). The damage safety factor

is influenced by both the non-uniform strengths, and in the non-linear regime, by a significant

change in the order of magnitude of the stresses, shown in Figure 4.4. This figure shows stresses

and maximum damage index for the laminate with fibres [〈60o,20o〉,〈150o,110o〉]sym, loaded by

a partial impact equal to the one of Figure 4.3(f), but when the force intensity is increasing. The

displayed stresses belong to the location of maximum damage index. The figure shows the analysis

done either in the linear or in the non-linear regime. The proportional damping parameter α was

assumed to be 5×10−5.

Figure 4.4(a), presenting results in the non-linear regime with the load magnitude ranging

from 0.5 MPa to 4 MPa, shows that increasing the load has a uniform effect on the in-plane

stresses, whereas its increase to values greater than 2 MPa has more influence on σx than on

σy. Another result that is not shown in the figure is that increasing the load alters the location

of maximum damage index (although it happens always at the line belonging to the horizontal

edge and bottom surfaces, i.e. y = b/2 and z = −h/2), which is a consequence of the fact that

the stresses’ magnitudes change differently. For the load magnitude between 0.5 to 2 MPa, σy

is the largest stress, and Tsai-Wu index changes from 0.15 to 0.63; in this range, the maximum

damage index is found to be around point (x/a,y/b,z/h) = (−0.15,0.5,−0.5). Increasing the

load magnitude from 3 MPa to 4 MPa raises the Tsai-Wu index from 0.96 to 1.27, in this range

σx is the largest stress, and the maximum damage index happens near point (x/a,y/b,z/h) =
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a) Analysis in the non-linear regime 

 

 

b) Analysis in the linear regime 
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Figure 4.4: Effect of increasing the load on the damage index. (a) Analysis in the non-linear
regime; (b) Analysis in the linear regime.

(−0.125,0.5,−0.5). The maximum Tsai-Wu index always takes place at the bottom surface of

the plate.

Figure 4.4(b) gives the results for the same problem but in the linear regime. In the linear

regime, damage appears when the load magnitude is around 2.5 MPa, while in the non-linear

regime it appears when the load magnitude is around 3 MPa. In the linear regime, σx is smaller

when the load magnitude is 4 MPa than when it is 3 MPa. When the load magnitude is 4 MPa, τxy

is negative. It should be re-called that the stresses given here belong to the location of maximum

damage index, which changes with the load magnitude. Here, if the load magnitude is 0.5 MPa or

1 MPa then the maximum damage index is around 0.15 and 0.32, respectively, and it occurs around

point (x/a,y/b,z/h) = (−0.15,0.5,−0.5). Increasing the load magnitude from 2 MPa to 3 MPa

raises the maximum damage index from 0.72 to 1.23 and changes its location, which becomes

close to point (x/a,y/b,z/h) = (−0.125,0.5,−0.5). When the load magnitude is 4 MPa, the

maximum damage index is around 2 and takes place at point (x/a,y/b,z/h)= (−0.225,0.4,−0.5).

These analyses indicate that the geometrical non-linearity, represented in the strain-displacement

relation, can lead to a change in the position of damage onset.

Time-response and damage indices of this VSCL plate under the impact of one partial load

with intensity 3× 106 Nm−2 – applied at −0.3a ≤ x ≤ −0.2a,0.2b ≤ y ≤ 0.3b – are plotted in

Figure 4.5. The half-sine impact duration is a quarter of, half of, or equal to the first natural

period of vibration, 2π/ω1. To simplify the comparison of the curves, non-dimensional force is

plotted (by means of dividing it by its maximum); deflections are divided by the thickness. The

unsymmetrical impact load causes the maximum deflection to happen at a place different than

the centre of the plate. If the impact duration is small, say a quarter of first natural period of

vibration given in Figure 4.5(a), the plate experiences damage onset at almost t = 0.0006 s, so

the results after this moment are not valid, because the model does not account for damage or its

propagation. If the impact duration is half of the first natural period of vibration, given in Figure
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a) Force duration is a quarter of the 
first natural period of vibration 

 

b) Force duration is half of the first 
natural period of vibration 

 
c) Force duration is equal to the first natural period of vibration 

 

Fig. 4. Transient time response, force, and damage index of a VSCL plate under an impact 
of partial load. 
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Figure 4.5: Transient time response, force, and damage index of a VSCL plate under an impact of
partial load.

4.5(b), the maximum deflection and damage index occur respectively later and before the moment

of maximum force. It is interesting that before the force exceeds its maximum value, the laminate

almost touches its onset of damage, but later at the moment of maximum force, the plate damage

index is smaller. The maximum damage index almost reaches 1 and the maximum deflection and

deflection at the centre (W/h) are almost 0.6, meaning that the non-linear terms are important.

Increasing the load can lead to damage onset in the plate. With an impact load of longer duration,

as given in Figure 4.5(c) (equal to first natural period of vibration), the maximum damage index

occurs when the load has its maximum amount.

4.4 Conclusions

Laminates with different straight and curvilinear fibre orientations (various angles at centre and

edges of the plate) under various static, harmonic, and impact loads are investigated. The effect

of half-sine impact loads with different durations on VSCL plates is studied. Deflections and
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damage onset of the laminates in the non-linear regime are given for several fibre configurations.

The stress computation with the present model was verified by comparison with a 3-D elasticity

based analysis. The following conclusions emerge from this study:

1. Under different studied harmonic, static, and impact loads, laminate with curvilinear fi-

bre orientation [〈45o,80o〉,〈135o,170o〉]sym has the largest safety factor (among the plates

considered), in what concerns resistance to damage onset. This configuration represents

a VSCL plate that is locally angle-ply in the plate centroid (due to 45o and -45o, that is

135o, fibres placed at the centroid). This VSCL plate, [〈45o,80o〉,〈135o,170o〉]sym, shows

more resistance to the appearance of damage than the traditional angle-ply CSCL laminate

with the same number of layers and mechanical properties [〈45o,45o〉,〈−45o,−45o〉]sym or

([45o,−45o]sym).

2. In comparison with [〈45o,80o〉 ,〈135o,170o〉]sym, another fibre configuration [〈80o,40o〉 ,
〈170o,130o〉]sym has a reasonable high safety factor, with less deflection magnitude. The

numerical tests indicate that the existence of fibres with 40o and -50o (that is 130o), close to

the edges can increase the damage resistance of the plate.

3. In the considered loading conditions, the angle-ply [45o,−45o,−45o,45o] laminate is safer

than cross-ply configuration [0o,90o,90o,0o].

4. Changing the load, from harmonic with a frequency equal to the natural frequency to static,

decreases the deflection magnitude and reduces the probability of damage occurrence.

5. It is hence concluded that damage onset can be avoided with VSCL, under certain static and

dynamic loads.

6. The duration of impacts has a significant influence not only on the deflection variation with

time, but also on the damage onset. Regarding the latter, impacts with smaller time span

and the same intensity can be more dangerous than longer impacts.





Chapter 5

Free Geometrically Non-linear
Oscillations of Perfect and Imperfect
VSCL Plates

5.1 Introduction

In this chapter, the author intends to include the effect of imperfections and study in detail the

free vibration of imperfect VSCL plates. A p-version finite element model, based on a TSDT that

applies to imperfect (out-of-planarity) VSCL plates with curvilinear fibres will be presented. The

reference fibre path, introduced by a function of horizontal coordinate x, is shifted along Cartesian

coordinate y, in the rectangular VSCL plate as described in Section 1.4.1. The edges of the lami-

nates are clamped, except in comparison studies, where simply-supported conditions are applied.

The finite element model, later designated as ”full model”, may be statically condensed [124],

leading to a model that will be designated as the ”statically condensed model”. The number of de-

grees of freedom (DOF) of the model are further reduced using modal coordinates [125]. Periodic

solutions of the plate in the absence of external loads, in the geometrically non-linear regime, are

calculated using the shooting method and Runge-Kutta-Fehlberg method modified with Cash-Karp

method to control the error with adaptive stepsize. Branches that bifurcate from the fundamental

backbone curves are found and studied in detail using phase plane plots, time histories plots and

Fourier spectra. Here, "phase plane plot" means a plot that is obtained by projecting trajectories

in the plane defined by the transverse displacement and the transverse velocity at a point.

Adding to the consideration of geometrical imperfections in VSCL, this chapter has a distinc-

tive feature that the shooting method is employed to analyse non-linear free vibrations of VSCL.

The displacement field is modelled by TSDT and the equations of motion (full model), in the

time-domain, are obtained using a p-version finite element method. The shooting method allows

one to solve non-linear boundary value problems [126], therefore it can be applied to find periodic

solutions. Unlike perturbation methods, shooting is not restricted to small amplitude oscillations

81
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and its application in systems with many degrees of freedom is not – in what concerns the algo-

rithm – excessively complicated. In comparison with harmonic balance – or similar – methods

the Fourier spectra of the solution is not artificially restricted. Although time domain integration

is also performed, shooting is a more straightforward procedure of obtaining periodic solutions

in a certain frequency range than direct integration methods applied on their own. In comparison

with harmonic balance, shooting has the disadvantages of suffering from numerical issues and

requiring longer computational times [126, 127]. The application of the shooting technique to the

problem at hand is assessed on this chapter.

5.1.1 Literature Review

The p-version FEM was employed to investigate the linear frequencies of vibration in Chapter 2,

deformations and stresses in the geometrically non-linear regime in Chapter 3, damage onset in

the non-linear regime in Chapter 4 and non-linear forced and free vibrations of VSCL plates in

Refs. [63] and [44]. About the free non-linear vibration of VSCL panels with curvilinear fibres

few papers were published, Refs. [44, 128, 129], but using the harmonic balance method, with

either a thin panel [128, 129] or a FSDT model [44]. Furthermore, the plates were considered to

be perfect in Refs. [44] and [128].

Ref. [129] gave a p-version finite element for geometrically non-linear vibrations of thin shal-

low shells. This reference showed the influence of the different fibre paths in the non-linear oscil-

lations not only on backbone curves and shapes, but also by projections of trajectories in a phase

plane. Different hardening and softening behaviour of the backbones curves of VSCL panels were

also studied [129]. Here, harmonic balance method was used.

For a long time, geometric imperfections have been considered as a reason for discrepancies

between experimental and numerical results. They have a key effect on the non-linear vibration of

structures. Even if two structures are manufactured by the same technique, it has been observed

that eigenfrequencies and non-linear behavior can be different [71, 130]. Many studies found

that the initial deflections of structures, which are unavoidable when manufacturing, are major

causes for explaining the significant discrepancies detected between theoretical results (calculated

assuming a perfect structure) and experimental observations, Refs. [51, 131, 132]. According to

Refs. [71, 130, 131], numerically computed natural frequencies of vibration of plates agree better

with experimental ones, when geometrical imperfections are taken into account in the formula-

tion. Different types of geometrical imperfections are shown in Ref. [133], where Nanda and

Pradyumna investigated the effect of geometrical imperfections on linear and non-linear frequen-

cies, as well as on the transient response of laminated shells. Even if the number of published

papers on VSCL plates is growing, the behavior of such plates in the presence of imperfections

was not extensively studied (except Ref. [134]), where most of the results given in this chapter are

published.
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5.2 Modelling of Free Vibration of VSCL Plates

This section starts with the derivation of a full model, by the p-version hierarchical finite element,

for rectangular plates with von Kármán theory. After, the full model is condensed using a tech-

nique named static condensation. Finally, both the full and the condensed models are transformed

to a reduced model using modal coordinates.

5.2.1 p-Version Finite Element Full Model

In TSDT, the displacement components, Equations (2.1) of Section 2.2, are used. Initial geometric

imperfection in the normal direction, wi, associated with zero initial stress, is considered in the

formulation. Then, mid-plane displacements can be written as in Equation (2.2).

In the cases studied here, the non-linear vibration amplitude of the clamped laminates will not

exceed 1.5 times the laminate thickness. So, it is not necessary to retain geometric non-linearities

in the in-plane displacements; and taking the von Kármán non-linearity terms (i.e. those involving

the normal displacement only) is adequate [135,136]. In the case of non-linear vibration of simply-

supported shells, Amabili [135, 136] showed that inaccurate results are obtained by keeping only

non-linear terms of the von Kármán type for vibration amplitudes of about two times the shell

thickness; so he involved geometric non-linearities in the in-plane displacements. In this chapter,

the strain-displacement relations, with the von Kármán strains, are (already given without non-

linear term in Equations (2.5)):

εx =
∂u0

∂x
+
(
z− cz3) ∂φx

∂x
− cz3

(
∂ 2w0

∂x2

)
+

1
2

(
∂w0

∂x

)2

+
∂w0

∂x
∂wi

∂x
,
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)
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2
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+
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+

∂w0
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∂wi
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+

∂w0

∂y
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,

γyz =
(
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∂w0

∂y

)
,

γxz =
(
1−3cz2)(

φx (x,y, t)+
∂w0

∂x

)
. (5.1)

These equations are generally accurate enough for non-linear vibrations of plates; if more accurate

expressions are required, more non-linear terms can be included. If the approximations in the
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above equation are not applied, the problem becomes more complex. Now, strains can be presented

in matrix form as


εx

εy

γxy

=

 1 0 0 z 0 0 −cz3 0 0

0 1 0 0 z 0 0 −cz3 0

0 0 1 0 0 z 0 0 −cz3

εεε

εεε =


εεε

p
o

εεεb
o

εεεb
o

+


εεε

p1
o

0
εεεb1

o

 (5.2)

in which εεε
p
o , εεεb

o and εεεb1
o are introduced already in Section 2.2, Equations (2.7) - (2.9). εεε

p1
o is the

non-linear in-plane strain including imperfection and is defined as

εεε
p1
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1
2
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 (5.3)

By introducing mid-plane displacements of Equation (2.2) in the equation above

εεε
p1
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1
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qw (5.4)

Now, Using the method introduced in the 2.2, the virtual work of the elastic restoring (internal)

forces, Equation (2.25), extends as
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dΩ (5.5)

The first six terms are introduced in Section 2.2, the last three terms are corrected below. The

seventh term is

δεεε
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o
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p
o =
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qv

}
(5.6)

The eighth term is transpose of the seventh term and written as
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δεεε
p
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where
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The ninth term is defined as
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In the absence of external forces, the summation of the virtual work of inertia (from Section

2.2) and internal force should be zero,

∫
V

ρ (δuü+δvv̈+δwẅ)dV +
∫

V
σi jδεi j = 0 (5.10)

where ρ is density and V represents volume. Equation (5.11) gives the time-domain ordinary

differential equations in generalised coordinates (namely the full model)


M11 0 0 0 0

M22 0 0 0
M33 M34 M35

M44 0
sym M55





q̈u

q̈v

q̈w

q̈φφφ x

q̈φφφ y


+
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L 0 0
K22

L K23
L 0 0
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L K34

L K35
L
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L

sym K55
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qφφφ y



+


0 0 K13
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0 0 K23

NL (qw) 0 0
K31

NL (qw) K32
NL (qw) K33

NL (qw) 0 0
0 0 0 0 0
0 0 0 0 0





qu

qv

qw

qφφφ x

qφφφ y


= 0 (5.11)

where all mass sub-matrices are already given in Equations (2.40). Non-linear stiffness sub-

matrices and the linear ones related to imperfection are presented in Equations (5.6) - (5.9); while

the rest of linear sub-matrices (not including imperfection) were already defined in Equations

(2.26) - (2.31). In the linear stiffness matrix, terms K13
L and K23

L appear due to the imperfection;
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term K33
L - already exists in the equations of perfect plates; but now it is affected by the imper-

fection. In the non-linear stiffness matrix, term K33
NL is affected by the deflection amplitude of

imperfect plate. The linear stiffness matrix and its sub-matrices are already defined in Equations

(2.37) in Section 2.2. Equations (5.11) - mentioned as the full model in this chapter - are a set of

2× p2
u +2× p2

w +2× p2
φ

equations.

5.2.2 Reduced Model by Statically Condensation

For the clamped plate, absence of in-plane external loads and the transverse deflection less than

2 times the plate’s thickness suggest that the in-plane displacements are not very pronounced

and the corresponding in-plane inertia can be neglected [137]. This process is known as Static

Condensation [124]; it reduces the number of equations (where the new number of DOF is 2×
p2

w +2× p2
φ

) but changes the bandwidth of the stiffness matrix. Putting the in-plane inertia equal

to zero, one obtains the in-plane displacements by

{
qu

qv

}
=−

[
K11

L K12
L

K21
L K22

L

]−1[
K13

L +K13
NL (qw)

K23
L +K23

NL (qw)

]
qw (5.12)

The equations of motion that result from Equations (5.11), where the effect of in-plane displace-

ments is taken into account, but not in-plane inertia, are

 M33 M34 M35

M44 0
sym M55




q̈w

q̈φφφ x

q̈φφφ y

+

 K33
LS K34

L K35
L
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L
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qφφφ x

qφφφ y

+

 K33
NLS (qw) 0 0

0 0
sym 0




qw

qφφφ x

qφφφ y

= 0 (5.13)

Linear term K33
LS is constant as

K33
LS = K33

L1 +K33
L2 +K33

L3 +K33
L4

where

K33
L4 =−

[
K13

L3

K23
L3

]T[
K11

L K12
L

K21
L K22

L

]−1[
K13

L3

K23
L3

]
.

K33
NLS (qw) has terms that depend linearly and terms that depend quadratically on the transverse

deflection

K33
NLS (qw) = K33

NL1 (qw)+K33
NL2 (qw)+K33

NL3 (qw)

where
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K33
NL3 (qw) =−2

[
K13

NL1

K23
NL1

]T[
K11

L K12
L

K21
L K22

L

]−1[
K13

NL1

K23
NL1

]
.

5.2.3 Reduced Model by Modal Summation Method

For simplicity, either Equation (5.11) or Equation (5.13) can be written in a compact form

Mq̈(t)+KLq(t)+KNL (q(t))q(t) = 0. (5.14)

Knowing that we will analyse the lower-order modes, very high-order modes will probably not be

excited. Therefore, we would be justified in assuming that the free vibration is the superposition

of only a few of the lower-frequency modes [125], lets say m modes (the procedure on how to

select these m modes are given in Section 5.2.5). Using a reduced modal matrix ΦΦΦ composed of

only m normal modes φφφ i, the generalised displacements q can be related to modal displacements

qm by

q(t) = ΦΦΦqm (t) (5.15)

Premultiplying Equation (5.14) by the transpose ΦΦΦ
T and substituting Equation (5.15) gives m

equations of motion as

Mq̈m (t)+KLqm (t)+KNL (qm (t))qm (t) = 0. (5.16)

Here, the modal mass M and linear stiffness matrices KL are diagonal, but the modal non-linear

stiffness KNL matrix is not. The use of an expansion, based on a truncated number of normal

modes, reduces the number of equations to the number of modes employed.

5.2.4 Periodic Free Vibration Solutions by the Shooting Method

Equation (5.16) is an autonomous system of equations. In autonomous systems, period T is not

known in advance. Here, we overcome this by fixing T , by using it as a parameter. Free periodic

solutions of the time-domain Equation (5.16) may be found by treating the equation as a two-point

boundary value problem and using the shooting method [138]. The periodicity condition is

{
y(0)

qm (0)

}
=

{
y(T )

qm (T )

}
where q̇m = y and T is the period of the free vibration. Therefore, it is only natural — but not

obligatory — to convert the system of m second-order ordinary equations of motion (5.16) to 2m

first-order ordinary differential equations on state-space coordinates (Ref. [138])
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[
0 M
M 0

]{
ẏ(t)

q̇m (t)

}
+

[
−M 0

0 KL +KNL (qm (t))

]{
y(t)

qm (t)

}
= 0 (5.17)

Taking the phase-space vector X

({
y(0)

qm (0)

}
, t

)
=

{
y(t)

qm (t)

}
, an initial value problem

can be written

Ẋ =−

[
0 M
M 0

]−1[
−M 0

0 KL +KNL (qm (t))

]
X,

X

({
y(0)

qm (0)

}
,0

)
=

{
y(0)

qm (0)

}
(5.18)

Equation (5.18) is solved when X

({
y(0)

qm (0)

}
,T

)
is equal to X

({
y(0)

qm (0)

}
,0

)
.

The initial condition

{
y(0)

qm (0)

}
for the first two points of backbone curves (which are very

close to the linear solution) is chosen with modal displacement qm (0) taken in the form of the

first linear mode shape with its velocity qm (0) equal to zero. For the following points of the re-

sponse curve, a secant predictor is used [139]. Then, the set of 2m ordinary differential equations

are integrated by an initial value method arriving at the other boundary X

({
y(0)

qm (0)

}
,T

)
; we

use Runge–Kutta–Fehlberg method modified with Cash–Karp method to control the error with

Adaptive Stepsize [138]. The purpose of this adaptive stepsize Control is to achieve some pre-

fixed accuracy in the solution with the minimum computational effort. Here, the dimension of

phase space (i.e. two times the modal coordinates) does not exceed 30; using this phase space,

it was possible to carry out the non-linear vibration examinations almost without any numerical

issue. If a researcher needs to have a higher-dimensional phase space, it could be preferable to

use Adams–Gear method designed for stiff equations [51], to avoid spurious nonstationary and

divergent motions.

To achieve the periodicity conditions, the initial values are corrected until convergence, by

X

({
y(0)

qm (0)

}
,0

)i+1

= X

({
y(0)

qm (0)

}
,0

)i

+δX (5.19)

The correction δX solves the system of equations
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∂
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qm (t)

} − [I]

δX = X
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y(0)

qm (0)

}
,0

)
−X
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y(0)

qm (0)

}
,T

)
. (5.20)

The following initial values for the free oscillations may be found using a secant predictor, given

for example in Refs. [127, 139].

It is possible to reach to turning points in the backbone curves in the free vibration of imper-

fect plates. To find a solution after the turning point, one can reverse the trend of the initial values

(for instance, during hardening behaviour, the following initial guess corresponds to a higher fre-

quency; a guess for a solution after the turning point can be obtained using an initial guess with a

decrease in the frequency). Reaching to the solution around the turning point also depends to the

frequency intervals between guesses. If a large interval prevent the prediction of a turning point, so

a smaller frequency interval (i.e. a more exact guess after turning point) maybe solve the problem

and identify the turning point (afterward hardening behaviour changes to softening or vice versa).

Finding probable bifurcations in backbone curves also is possible with this technique. The

most important issue in arriving to a bifurcation and continuing to the bifurcated solution branch

is selecting relevant modes in the modal coordinates. In addition to the inclusion of the corre-

sponding modes in the modal coordinates of the reduced-model, always a good choice of the error

parameters in the Runge-Kutta-Fehlberg method with adaptive stepsize (to read about these error

variable see Ref. [138]) is necessary to find bifurcated branches of the solution.

5.2.5 Selection of Modes for Reduced Model by the Modal Summation Method

Selecting the appropriate modes to be used in the reduced order model by modal summation

method has a decisive role in the exactness of the final results (here, transverse displacements);

also these modes have an effect on the detection of bifurcations in the frequency-response curves.

Obviously, taking all the linear modes in this method would lead to the most exact result, but

running the final code in Fortran would take a long time. In result, selecting a limited number of

the most important linear modes can help the code to give enough exact results after an acceptable

running time.

In this study, the procedure that is used to select the most important linear modes is as fol-

lows: the main frequency response curve is first determined using two modes in modal summation

method, including always the first linear mode plus an arbitrary extra mode; then the results (in

this case, maximum transverse displacement) are saved. Then, the transverse displacements ob-

tained with different couple of modes are compared and the linear modes related to the largest

results are selected. The largest deflection results corresponds to those modes which give more

flexibility to the laminate. This stage can be performed using more than two modes (usually, it is

necessary). By the end, a limited number of linear modes including the first mode are selected for
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calculation of the main frequency response curve. Depending on the modes included, bifurcations

may be detected or not.

5.3 Numerical Results

The matrices in the equations of motion (5.11) have been obtained by using Maple 13 software

with 30 digits of accuracy to avoid matrix ill-conditioning when performing surface integrals of

shape functions (already given in “Appendix A”). An in-house code written in Intel Visual For-

tran 11.1 utilizes a shooting procedure with Runge–Kutta–Fehlberg method [138] to find periodic

solutions of Equation (5.18), detect bifurcations as well as follow branches of the solution.

In what follows, perfect VSCL plates are considered first, to assess the convergence and com-

pare present results with published ones. Then, the effect of curvilinear fibres on frequency re-

sponse curves of perfect VSCL is evaluated in detail, with examples of bifurcations. Later, imper-

fect VSCL plates are studied. Because of the lack of published data for comparison in imperfect

VSCL plates, the non-linear frequencies are compared when the fibres are straight. In Chapter 2,

a section on the verification and comparison of the linear frequencies of imperfect CSCL plates

is given. Finally, the effect of sinusoidal imperfection on the backbone curves is assessed. The

mechanical properties of the plates here studied are given in Table 5.1. In addition, all the layers

of the laminated plates have the same thicknesses. As written in Section 1.4.4, a restriction during

manufacturing VSCLs is the radius of curvature of fibres. In this chapter, the fibre angles are

chosen considering this limitation.

Table 5.1: Mechanical properties of the composite plates studied.

a b h E1 E2 G12 G13 G23 ν12 ρ

(m) (m) (m) (GPa) (GPa) (GPa) (GPa) (GPa) (kg/m3 )

Plate 1
0.5 0.5 0.005 24.028 1 0.522 0.522 0.522 0.29 1000
Plate 2
0.5 0.5 0.005 173 7.2 3.76 3.76 3.76 0.29 1540
Plate 3
1 1 0.1 181 10.3 7.17 7.17 6.21 0.28 1000

5.3.1 Convergence and Comparison Study for Free Oscillation of Perfect VSCL
plates

Evaluations of plate p-version finite elements, based on the hierarchic sets of polynomial shape

functions employed here and using different deformation theories, including TSDT, on the com-

putation of linear frequencies of perfect VSCL plates, are given in the past chapters. So this sec-

tion starts with non-linear vibrations. In order to verify the p-version finite element model and the

shooting method implemented, a convergence study and a comparison with another author’s results

are performed in Table 5.2. The number of unidimensional shape functions (pu = pw = pφ = p)
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is increased from 4 to 8. The fundamental non-linear frequency parameters ΩNL = ωla
√

ρ/E2 (ωl

represents the fundamental linear frequency) of the four-layered VSCL [[〈40o,80o〉,−〈40o,80o〉]sym

are calculated with p = 4,5,6,7 , and 8 shape functions and compared with data from Ref. [128].

The non-linear frequency parameters are calculated as a function of the maximum amplitude-to-

thickness ratio wmax/h, where the point of maximum amplitude is located at the centre of the

plate. The laminate has clamped edges and the mechanical properties of Plate 1 in Table 5.1.

Three modal coordinates are considered. In order to find an accurate reduced order model, the

non-linear frequencies using five modal coordinates were calculated (but not included in Table

5.2) and compared with the results using three modal coordinates. There was a good agreement

between both results. In what convergence is concerned, we see that the relative difference be-

tween the non-linear frequency parameter computed with 125 DOF (i.e. p = pu = pw = pφ = 5)

and with 320 DOF (i.e. p = 8) is always below 0.7%. Furthermore, the non-linear frequency

parameter of the present approach is in very good agreement with the one computed in Ref. [128].

In Ref. [128], a thin plate theory, hierarchical finite element method (HFEM) is applied to obtain

ordinary differential equations of motion, which are passed to the frequency domain via the har-

monic balance method (HBM), considering solely one harmonic. The frequency domain equations

are solved using the linearized updated mode method. Hereafter, based on this study, 245 DOF

will be employed for the full models of the VSCL plates.

Table 5.2: Convergence and comparison study of fundamental non-linear frequency parameter
ΩNL of the [〈40o,80o〉,−〈40o,80o〉]sym laminate

wmax/h p Data from Ref. [128]
4 5 6 7 8

0.2 0.273 0.269 0.268 0.268 0.268 0.269
0.4 0.278 0.274 0.273 0.273 0.273 0.275
0.6 0.288 0.283 0.282 0.282 0.282 0.283
0.8 0.301 0.295 0.294 0.293 0.293 0.295
1.0 0.316 0.310 0.308 0.308 0.308 0.309

Still to verify the present model and solution method, comparisons of the non-linear frequency

parameter with data on VSCL plates from Ref. [128] are given in Table 5.3. The geometry and

mechanical properties of the laminates are the same as in the example given in Table 5.2. The stud-

ied VSCL plates have different curvilinear fibre angles T1. To calculate the non-linear frequency

parameters, static condensation is applied to the full 245 DOF model, and then, four modal co-

ordinates are used. An analysis with the same conditions, but including eight modal coordinates,

was also done. The first five digits of the non-linear frequencies computed with these two modal

reduced models were the same. In Table 5.3, the difference between Ref. [128] and the present

frequencies is less than 1%. However, our experience showed that it may be required to include

a few modal coordinates, in order to accurately compute frequencies in the non-linear regime, as

well as to find bifurcations from main backbone curves. When depicting maximum deflection ratio

wmax (0,0, t)/h at the centre of the plate against frequency ratio ω/ωl1, secondary branches that
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Fig. 2. Main branches (solid dots) and a secondary branch (hollow dots) for a VSCL 

plate with [〈40°,20°〉,-〈40°,20°〉]sym. 
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Figure 5.1: Main branches (solid dots) and a secondary branch (hollow dots) for the VSCL plate
with [〈40o,20o〉,−〈40o,20o〉]sym.

bifurcate from the main branch were observed. For instance, one of them, which was observed in

the analyses of VSCL [〈40o,20o〉,−〈40o,20o〉]sym plate, is shown in Figure 5.1.

Here, the main branches, shown in solid dot, designate branches that contain a solution that

simultaneously obeys the following: occurs at zero vibration amplitude, corresponding to a linear

mode shape and occurs at a linear natural frequency or at a sub-harmonic of a linear natural

frequency. A secondary branch, with the hollow dots, is one that bifurcates from a main branch.

A secondary branch that bifurcates from the main fundamental branch (dominated by the first

harmonic and containing the first linear mode of vibration) connects the latter with another main

branch dominated by the third harmonic. These bifurcations were not found in Ref. [128].

Table 5.3: Comparison of fundamental non-linear frequency parameter ΩNL of the VSCL [〈T0,T1〉 ,
−〈T0,T1〉]sym plates.

Fibre orientation angle Method wmax/h
0.2 0.4 0.6 0.8 1.0

[〈40o,20o〉,−〈40o,20o〉]sym Ref. [128] 0.318 0.326 0.338 0.355 0.375
Present 0.315 0.323 0.336 0.353 0.374

[〈40o,40o〉,−〈40o,40o〉]sym Ref. [128] 0.297 0.305 0.316 0.331 0.350
Present 0.295 0.302 0.314 0.330 0.349

[〈40o,60o〉,−〈40o,60o〉]sym Ref. [128] 0.278 0.284 0.294 0.307 0.322
Present 0.276 0.282 0.292 0.305 0.321

5.3.2 Effect of Fibre Angles on Free Vibration of Perfect VSCL Plates

The effect of changes in the curvilinear fibre angles T0 and T1 on the fundamental non-linear

frequency parameter ΩNL = ωl1a
√

ρ/E2 of a square VSCL plate is investigated in Figure 5.2,
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Fig. 3. Fundamental backbone curves of a) VSCL [〈45°,��〉, 90°〈45°,��〉]sym laminate, 

and b) VSCL [〈��,45°〉, 90°〈 ��,45°〉]sym laminate. 
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Figure 5.2: Fundamental backbone curves of (a) the VSCL [〈45o,T1〉,90o + 〈45o,T1〉]sym, and (b)
the VSCL [〈T0,45o〉,90o + 〈T0,45o〉]sym.

with increasing vibration amplitude. The mechanical properties of Plate 2 in Table 5.1 are used.

Fibre angles T1 and T0 are independently changed, respectively, in Figure 5.2(a) and (b), in a four-

layer symmetric ΩNL of VSCL [〈T0,T1〉,90o + 〈T0,T1〉]sym plate. In Figure5.2(a), the fibre angle

at the plate centre is constant, T0 = 45o, and is changing at the edges, T1 = 0o...90o, but in Figure

5.2(b) the fibre angles at the edges are constant 45o and angles at the plate centre are different.

Backbone curves of these perfect plates always show hardening effect. There is no significant

change in the non-linear frequencies of laminates when the curvilinear fibre angle at the edges, T1,

varies between 60o and 90o. Selecting the larger fibre angle T1 at the edge decreases the non-linear

frequencies; on the contrary, choosing larger fibre angle T0 at the centre increases the non-linear

frequencies. If fibre angles T0 at the centre change from 0o to 30o, there will be no meaningful

difference in the non-linear frequencies. It also results from the analysis of Figure 5.2 that the

effect of T0 on the non-linear frequency is larger than the effect of T1.

While calculating non-linear frequencies around the first linear frequency, in the examples

above, some bifurcations to other branches were observed. This is, by way of example, demon-

strated in Figure 5.3 for two VSCLs, namely [〈45o,15o〉,90o + 〈45o,15o〉]sym and [〈45o,75o〉 ,90o+

〈45o,75o〉]sym. The figure shows two secondary branches that bifurcate from the fundamental

backbone and another main branch, for each fibre configuration. Time histories along at least

an oscillation period (trajectories in black run for four periods; this was confirmed analysing

the phase plane plot), phase plane plots and frequency Fourier spectra, in various frequency

ratios in the second, third and fourth branches, are given in Figure 5.4 (the second and third

- secondary - branches and the fourth - main - branch of each laminate can be found in Fig-

ure 5.3). The non-linear frequency parameters related to points P1 (from second branch), P2

(from fourth branch) and P3 (from third branch) are ΩNL = 0.3103,0.3159 and 0.3159 for VSCL

[〈45o,75o〉,90o + 〈45o,75o〉]sym. In points P4 (from second branch), P5 (from fourth branch) and
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Fig. 4. Fundamental backbone •, second (secondary) branch ▲, third (secondary) 

branch ♦, and fourth (main) branch ■ of VSCL [〈45°,75°〉, 90°〈45°,75°〉]sym; 

Fundamental backbone ○, second (secondary) branch △△△△, third (secondary) branch ◊◊◊◊, 

and fourth (main) branch □ of VSCL [〈45°,15°〉, 90°〈45°,15°〉]sym. 
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Figure 5.3: Fundamental backbone , second (secondary) branch , third (secondary) branch
and fourth (main) branch of the VSCL [〈45o,75o〉,90o + 〈45o,75o〉]sym; fundamental backbone
, second (secondary) branch , third (secondary) branch and fourth (main) branch of the

VSCL [〈45o,15o〉,90o + 〈45o,15o〉]sym.

P6 (from third branch), non-linear frequency parameters are ΩNL = 0.3351,0.3466 and 0.3466 for

VSCL [〈45o,15o〉,90o + 〈45o,15o〉]sym.

It is seen that for [〈45o,75o〉,90o + 〈45o,75o〉]sym configuration, in addition to the first, the

fifth harmonic is excited in the third branch, whereas for [〈45o,15o〉,90o + 〈45o,15o〉]sym config-

uration, in addition to the first, the third harmonic is also stimulated. In the second branch, the

fourth harmonic is excited in both VSCLs, but for [〈45o,75o〉,90o + 〉45o,75o〉]sym laminate, also

third and fifth harmonics are slightly excited. In these six statuses (P1,. . . , P6), sectional views

of the plate are depicted in Figures 5.5 and 5.6. These figures display sectional views (y = 0)

of the vibration, as well as five transverse deflection plots during vibration for each P1 to P6

points. The deflection plots display deflection of the plate in different - but not necessarily sepa-

rated by equal intervals - sequential times in the oscillation period of Figure 5.4(a) and (d). In all

six points, except P2 and P5, more than one vibrational mode is observed. For both the VSCLs

[〈45o,75o〉,90o + 〈45o,75o〉]sym and [〈45o,15o〉,90o + 〈45o,15o〉]sym, the first mode is essential in

the fundamental branch and the seventh mode in the fourth branch. The relations between the sev-

enth linear frequency and the fundamental linear frequency of the [〈45o,75o〉,90o + 〈45o,75o〉]sym

plate is ωl7/ωl1 = 4.180 and of the [〈45o,15o〉,90o + 〈45o,15o〉]sym plate is ωl7/ωl1 = 4.163.

Therefore, internal resonances of order 1:4 due to coupling between modes one and seven oc-

curred in the second secondary branches, in both VSCLs.
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a) 

 

d) 

b) e) 

c) 

 

f) 

Fig. 5. Time histories in a period cycle, phase plot and frequency spectrum for VSCLs. 

a, b, and c: VSCL [〈45°,75°〉, 90°〈45°,75°〉]sym, in points P1 (second branch, 

Ω��=0.3103 indicated with green colour), P2 (fourth branch, Ω��=0.3159, black 

colour), and P3 (third branch, Ω��=0.3159, red colour); and d, e and f: VSCL 

[〈45°,15°〉, 90°〈45°,15°〉]sym, in points P4 (second branch, Ω��=0.3351, green colour), 

P5 (fourth branch, Ω��=0. 3466, black colour), and P6 (third branch, Ω��=0. 3466, red 

colour).  
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Figure 5.4: Time histories in a periodic cycle, phase plane plot and frequency spectrum for VS-
CLs. (a)–(c) VSCL [〈45o,75o〉,90o + 〈45o,75o〉]sym, in points P1 (second branch, ΩNL = 0.3103
indicated with green colour), P2 (fourth branch, ΩNL = 0.3159, black colour) and P3 (third branch,
ΩNL = 0.3159, red colour), and (d)–(f) VSCL [〈45o,15o〉, 90o + 〈45o,15o〉]sym, in points P4 (sec-
ond branch, ΩNL = 0.3351, green colour), P5 (fourth branch, ΩNL = 0.3466, black colour) and P6
(third branch, ΩNL = 0.3466, red colour).



96 Free Geometrically Non-linear Oscillations of Perfect and Imperfect VSCL Plates

32 

 

 

a) Point P1 (second branch, Ω��=0.3103) 

     

b) Point P2 (fourth branch, Ω��=0.3159) 

     

c) Point P3 (third branch, Ω��=0.3159) 

     

Fig. 6. Sectional views, at y=0, of transverse vibration in points P1, P2 and P3 for the 

VSCL [〈45°,75°〉, 90°〈45°,75°〉]sym, as well as its transverse deflection contour plots in 

five consequential and different times in the related periodic cycle. 

 

  

Figure 5.5: Sectional views, at y = 0, of transverse vibration in points P1, P2 and P3 for the
VSCL [〈45o,75o〉,90o + 〈45o,75o〉]sym, as well as its transverse deflection contour plots in five
consequential and different times in the related periodic cycle. (a) Point P1 (second branch, ΩNL =
0.3103). (b) Point P2 (fourth branch, ΩNL = 0.3159). (c) Point P3 (third branch, ΩNL = 0.3159).
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a) Point P4 (second branch, Ω��=0.3351) 

     

b) Point P5 (fourth branch, Ω��=0. 3466) 

     

c) Point P6 (third branch, Ω��=0. 3466) 

     

Fig. 7. Sectional views, at y=0, of transverse vibration in points P4, P5 and P6 for the 

VSCL [〈45°,15°〉, 90°〈45°,15°〉]sym, as well as its transverse deflection contour plots in 

five consequential and different times in the related periodic cycle. 

  

Figure 5.6: Sectional views, at y = 0 of transverse vibration in points P4, P5 and P6 for the
VSCL [〈45o,15o〉,90o + 〈45o,15o〉]sym, as well as its transverse deflection contour plots in five
consequential and different times in the related periodic cycle. (a) Point P4 (second branch, ΩNL =
0.3351). (b) Point P5 (fourth branch, ΩNL = 0.3466). (c) Point P6 (third branch, ΩNL = 0.3466).
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5.3.3 Comparison of Non-linear Frequencies of Imperfect VSCL plate

Although any type of geometry imperfection can be integrated in the model, sinusoidal imperfec-

tion, wi = h0× cos(πx/a)cos(πy/b), is applied into the formulation, as was done in Ref. [71],

in which h0 is the imperfection magnitude at the centre of the plate. To validate the model, some

examples of non-linear frequencies of imperfect laminates are compared with published data. Be-

cause data on imperfect VSCL plates are not available, the comparisons are made with CSCL

plates. In the comparison studies on imperfect plates, a specific simply-supported boundary con-

dition, with restrained normal displacement at the plate edges and fully free in-plane displacements

(SSSS-3) (the boundary condition is given in Appendix A), has been used [71, 73, 140].

The comparison, given in Table 5.4, is for a laminated CSCL square cross-ply [0o,90o,0o]

imperfect plate (i.e. [〈0o,0o〉 ,〈90o,90o〉 ,〈0o,0o〉]), with simply-supported edges (SSSS-3). The

magnitude of the imperfection is h0 = 0.1h. The mechanical properties are the ones of plate 3 of

Table 5.1. The normalized non-linear frequency (presented as ratio between non-linear and linear

frequency) of the present method with 15 modal coordinates is compared with data from Refs.

[73, 140] based on a third-order shear deformation plate theory and a parabolic shear deforma-

tion theory. The present linear frequency parameter Ω1 (where Ω2
1 = ω2

l1a4ρ (1−ν12ν21)/h2E2)

and the one from Ref. [140] differ by 2%. Possibly, the difference between the non-linear re-

sults—which ranges from 0.77 to 5.7% - is due to the single-mode techniques used in Refs.

[73, 140].

Table 5.4: Comparison of non-linear frequency ratio ωnl/ω1 for cross-ply CSCL Plate 3 of Table
5.1 with imperfection (h0 = 0.1h)

wmax
h Ref. [73] Ref. [140] Present

Single mode approach Single mode approach 25 modal coordinates
Ωl = 12.141 Ωl = 11.900

0 1 1 1
0.2 1.034 1.03 1.04
0.4 1.142 1.13 1.141
0.6 1.301 1.289 1.272
0.8 1.496 1.482 1.416
1.0 1.708 1.694 1.681

5.3.4 Effect of Imperfections on Backbone Curves in Free Vibration of VSCL Plates

Some analyses are done for imperfect CSCL ([〈45o,45o〉 ,90o + 〈45o,45o〉]sym) and imperfect VSCL

([〈45o,15o〉,90o + 〈45o,15o〉]sym, [〈45o,75o〉,90o + 〈45o,75o〉]sym, [〈15o,45o〉,90o + 〈15o,45o〉]sym

and [〈75o,45o〉,90o + 〈75o,45o〉]sym) plates with different imperfection ratios h0/h = 0, ...,1.0.

The plate geometry and mechanical properties are the ones of the example in Figure 5.2 (Plate

2 of Table 5.1). Backbones of the CSCL and VSCLs with imperfection are shown in Figure 5.7.

The perfect laminate has, always, the smallest linear frequency parameter, and with increasing

the imperfection, the linear frequency of the VSCL laminate increases. The non-linear frequency
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response (ΩNL = ωl1a
√

ρ/E2) of the perfect plate shows hardening effect, but increasing the

amount of imperfection this behaviour changes to softening for small deflections, returning to

hardening for larger deflections. A comparison between VSCLs curves in Figure 5.7(b), (c) and

CSCL curves in Figure 5.7(a) shows that when the fibre angle at the edge T1 is large, the imperfect

plate is more affected by softening. Comparing the VSCL curves in Figure 5.7(d), (e) with the

CSCL curves in Figure 5.7(a), one verifies that non-linear frequencies of imperfect plates are more

affected by softening when the fibre angle at the centre of the plate T0 is small. Of all these plates,

the one with larger linear natural frequencies and which experiences less softening is the VSCL

plate [〈75o,45o〉,90o + 〈75o,45o〉]sym.

5.4 Conclusions

In this chapter, a TSDT-based p-version finite element for geometrical non-linear vibrations of im-

perfect VSCL plates was presented. The number of degrees of freedom (DOF) was first reduced

by neglecting in-plane inertia (i.e. by static condensation) and later by using modal reduction,

i.e. by considering a truncated set of modal coordinates. Periodic, free, geometrically non-linear

oscillations were studied. The periodic boundary value problem was treated using the shooting

method, with adaptive step-size control in the integration of the reduced set of equations of mo-

tion. The experience of using shooting method - where, unlike in other methods, the degree of

the non-linearity is not forcefully small or the frequency content of the response artificially lim-

ited - showed that the results for the periodic boundary value problem can be found very fast by

controlling the error parameter in adaptive step-size control algorithm. Obviously, a model with

more modal coordinates (i.e. with more DOFs) requires more computational time to be solved

and more computational memory. As shown in a convergence study, in the p -version finite ele-

ment method, seven one-dimensional shape functions in each individual displacement variable are

enough to accurately calculate the non-linear frequencies of interest in this chapter. The effects

that varying fibre angles at the vertical edges and at the centre of the ply have on the non-linear

free vibrations of VSCL plates were studied. These effects were shown in backbone curves as

well as resorting to time histories, phase - plane plots and Fourier spectra. Sectional views of two

VSCL plates in different branches were plotted. Later in this chapter, the effect of imperfection

on non-linear free vibration of VSCL plates was investigated. A CSCL plate against some VSCL

plates with different imperfection magnitudes was examined, and corresponding backbone curves

were depicted. Softening and hardening behaviours were found. The effect of varying fibre angle

at the centre and the edges of the plate on non-linear frequency of imperfect plates was assessed.

Of the particular set of plates analysed, the one that experienced less softening, and showed large

natural frequencies, both in the linear and in the non-linear regimes, for different imperfection

magnitudes, was VSCL plate [〈75o,45o〉,90o + 〈75o,45o〉]sym.
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 a) CSCL [〈45°,45°〉, 90°〈45°,45°〉]sym 

 

 

b) VSCL [〈45°,15°〉, 90°〈45°,15°〉]sym c) VSCL [〈45°,75°〉, 90°〈45°,75°〉]sym 

d) VSCL [〈15°,45°〉, 90°〈15°,45°〉]sym 

 

e) VSCL [〈75°,45°〉, 90°〈75°,45°〉]sym 

Fig. 9. Fundamental backbone of perfect plates and imperfect plates with different 

imperfection amplitude, shown, in a), for a CSCL plate; and, in b), c), d) and e), for 

various VSCL plates with different fibre angles �� and ��; • perfect plate, ○ ℎ� ℎ⁄ =0.2, ◇◇◇◇    

ℎ� ℎ⁄ =0.4, ▵▵▵▵ ℎ� ℎ⁄ =0.6, □ ℎ� ℎ⁄ =0.8, + ℎ� ℎ⁄ =1.0. 
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Figure 5.7: Fundamental backbone of perfect plates and imperfect plates with different imper-
fection magnitude, shown, in (a) for a CSCL plate, and, in (b)-(e), for various VSCL plates with
different fibre angles T0 and T1; perfect plate: , h0/h = 0.2: , h0/h = 0.4: , h0/h = 0.6: ,
h0/h = 0.8: , h0/h = 1.0: +.



Chapter 6

Forced Geometrically Non-linear
Periodic Oscillations of VSCL Plates

6.1 Introduction

Large-amplitude forced vibration, before damage onset, of variable stiffness composite laminated

plates with curvilinear fibres are studied in this chapter. As in the previous chapters, the fibre paths

considered change linearly in relation to one Cartesian coordinate. The plates are rectangular and

with clamped edges. The displacement field is modelled by a third order shear deformation theory

and the equations of motion, in the time domain, are obtained using a p-version finite element

method. The in-plane inertia is neglected, still taking into consideration the in-plane displace-

ments, and the model is statically condensed [124]. The condensed model is transformed to modal

coordinates [125] in order to have a reduced model with a smaller number of degrees-of-freedom.

A shooting method [126, 127, 138, 139, 141, 142] using fifth-order Runge-Kutta method [138], as

well as adaptive stepsize control, is used to find periodic solutions of the equations of motion.

Frequency-response curves [51] of composite laminates with different curvilinear fibre angles and

various thicknesses are plotted and compared. Tsai-Wu criterion is employed in order to pre-

dict the damage onset [105–107, 143]. When it is detected that damaged started, the continuation

method is interrupted and no further points of the response curve are computed. The reason behind

this interruption is that the model does not include the effects of damage. Examples of bifurcations

are presented and studied in detail, using projections of trajectories in a phase plane and Fourier

spectra [144–147]. The time histories and frequency spectra of steady-state stresses are plotted for

VSCL plates with different fibre angles. The steady-state stresses are also displayed for bifurcated

branches of the solutions.

6.1.1 Literature Review

Behaviours of VSCL panels on forced and free vibrations are studied respectively in Ref. [63,148]

and Ref. [44]. In papers [44, 63, 148] diverse p-version finite elements with hierarchical basis

functions are used; Ref. [63] includes studies about transient and periodic forced vibration of

101
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VSCL plates with curvilinear fibres using Newmark method. In Ref. [44], the harmonic balance

method is applied to study the periodic free vibration of such panels. We note that Newmark

method based procedures, as the one employed in Ref. [63] or Chapter 3, do not allow to recognise

bifurcations and instabilities in forced oscillations.

Ref. [148] presented a non-linear model for VSCL cylindrical shallow shells; the simulation

was performed using the harmonic balance method and via a procedure in the complex domain,

with which one can employ as many harmonics as one wishes. The resulting algebraic equation

was solved by an arc-length continuation method. The authors in this reference employed a large

number of harmonics in their numerical tests; as well as static condensation. They did not reduced

the DOF by modal analysis, so the complete statically condensed model was solved. Their study

showed non-linear frequency response curves and phase plane plots of shells with different fibre

orientations, demonstrating that the variation of the fibre orientation leads to significant changes on

the response of the shell. They introduced different alterations between hardening and softening

behaviour, the vibration shape, and the relative importance of the harmonics of the responses.

They also demonstrated that depending on fibre path adopted, more or less parts of the shells can

vibrate in phase opposition [148].

Unlike CSCL, VSCL plates have local strengths that vary along the plate; tailoring the fibre

orientations to improve damage and failure properties of composites is one of the goals of using

VSCL plates [10, 76, 78, 82, 109, 149]. Ref. [78] studied postbuckling first-ply failure response

and onset of delamination to estimate interlaminar stresses in VSCLs. Initiation of delamination

is addressed in [113] by studying the response to impacts and the compression after impact. An

example of design tailoring problem (the pressure pillowing of a fuselage VSCL panel) is given in

[109] with the goal of maximizing the load carrying capacity. The analyses of Refs. [78,109,113]

were carried out using the commercial finite element software Abaqus. An optimisation approach

is employed in [114] to optimise the strength around a circular hole, with Tsai-Wu failure criterion,

in a VSCL plate. References [75, 115] investigated in-plane and buckling responses of VSCL

plates and considered that, because the laminates were thin, the in-plane failure strains would be

an order of magnitude larger than the buckling strains. Consequently, considerations for the in-

plane strength failure were avoided. In studies on the vibration of laminates, failure analyses is

more often than not neglected; (an exception is Ref. [150], where it is arrived at the conclusion that

in a moderately thick plate, the material usually fails before the maximum deflection reaches the

magnitude of the thickness). The author believes that, especially when a moderately thick laminate

is considered, it is interesting to investigate if failure appeared due to the vibrations. Most of the

works shown in this chapter are already published in Ref. [151].

6.2 Modelling of Forced Vibration of VSCL Plates

First, a rectangular plate is modelled by a p-version finite element in the time domain considering

large deflections, using the so called von Kármán strain-displacement relations; the correspond-

ing theoretical model is designated as the full model. Then a technique named static condensa-
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tion [124] is applied to decrease the number of degrees of freedom (statically condensed model).

The condensed model is converted to a reduced model using the modal summation method [125]

(reduced model).

6.2.1 Full Model of VSCL Plates

Taking the full model as described in Chapter 5 as well as putting a proportional damping matrix,

as for example, is found in Equation (4.1), and the external force vector in the formulation, we

will have the equations of motion in the matrix form of (here terms related to imperfection are

excluded)


M11 0 0 0 0

M22 0 0 0
M33 M34 M35

M44 0
sym M55





q̈u

q̈v

q̈w

q̈φφφ x

q̈φφφ y


+


K11

L K12
L 0 0 0

K22
L 0 0 0

K33
L K34

L K35
L

K44
L K45

L

sym K55
L

×

α×



q̇u

q̇v

q̇w

q̇φφφ x

q̇φφφ y


+



qu

qv

qw

qφφφ x

qφφφ y



+


0 0 K13

NL (qw) 0 0
0 0 K23

NL (qw) 0 0
K31

NL (qw) K32
NL (qw) K33

NL (qw) 0 0
0 0 0 0 0
0 0 0 0 0





qu

qv

qw

qφφφ x

qφφφ y



=



0
0
fw

0
0


(6.1)

The set of equations of motion (6.1), regarded here as the full model, has 2× p2
u+2× p2

w+2× p2
φ

degrees of freedom.

6.2.2 Statically Condensation of the Full Model

As explained in the Section 5.2.2, in a clamped plate, knowing that the in-plane inertia is very

small, a technique called static condensation [124] can be applied to reduce the number of degrees

of freedom in Equation (6.1). The idea comes because the in-plane accelerations are not very

pronounced due to the clamped edges of the plate, the lack of in-plane external forces, and the fact

that the transverse deflection is not bigger than 2 times the plate’s thickness. Therefore, the in-

plane inertia can be neglected, particularly if, as is the case, only periodic oscillations are of interest
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[137]. Still, the in-plane displacements are retained in the equations. The process condenses the

number of equations to 2× p2
w + 2× p2

φ
degrees of freedom, but changes the bandwidth of the

non-linear stiffness matrix.

Putting the in-plane inertia and damping equal to zero, one obtains the in-plane displacements

by

{
qu

qv

}
=−

[
K11

L K12
L

K21
L K22

L

]−1[
K13

NL (qw)

K23
NL (qw)

]
qw (6.2)

Hence, the in-plane displacements depend quadratically on the transverse displacements. The

condensed equations of motion will be

 M33 M34 M35

M44 0
sym M55




q̈w

q̈φφφ x

q̈φφφ y

+

 K33
L K34

L K35
L

K44
L K45

L

sym K55
L


α×


q̇w

q̇φφφ x

q̇φφφ y

+


qw

qφφφ x

qφφφ y


+

 K33
NLS (qw) 0 0

0 0
sym 0




qw

qφφφ x

qφφφ y

=


fw

0
0

 (6.3)

In the equation above, the non-linear stiffness term, K33
NLS (qw), is defined as

K33
NLS (qw) = K33

NL1 (qw)+K33
NL2 (qw)

K33
NL2 (qw) =−2

[
K13

NL1

K23
NL1

]T[
K11

L K12
L

K21
L K22

L

]−1[
K13

NL1

K23
NL1

]
Here, the non-linear stiffness term due to static condensation, K33

NL2 (qw), includes quadratic terms

depending on transverse coordinates.

6.2.3 Modal Summation Method

In simplified notation, Equation (6.3) can be written as

Mq̈(t)+KL (αq̇(t)+q(t))+KNL (q(t))q(t) = fw (t) . (6.4)

Using the Modal Summation Method (already given in Section 5.2.3) and the simplified equation

above, we will have

Mq̈m (t)+KL (αq̇m (t)+qm (t))+KNL (qm (t))qm (t) = f(t) (6.5)

where f(t) = ΦΦΦ
T fw (t).
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6.2.4 Periodic Forced Vibration Solutions by the Shooting Method

The forced periodic vibration problem associated with Equation (6.5) is a two-point boundary

value problem [138]. To apply the procedure here suggested, first, the second-order differential

Equation (6.5) is rewritten, using q̇m (t) = y(t), as a set of 2m first-order differential equations

[
0 M
M αKL

]{
ẏ(t)

q̇m (t)

}
+

[
−M 0

0 KL +KNL (qm (t))

]{
y(t)

qm (t)

}
=

{
0

f(t)

}
(6.6)

The system of equations (6.6) is non-autonomous. The two boundaries of the above equation

respect the periodicity condition {
y(0)

qm (0)

}
=

{
y(T )

qm (T )

}
(6.7)

with T as the period of the response. Taking the phase-space vector X

({
y(0)

qm (0)

}
, t

)
={

y(t)
qm (t)

}
, an initial value problem is obtained from the boundary value problem of Equations

(6.6) and (6.7)

Ẋ =

[
0 M
M αKL

]−1({
0

f(t)

}
−

[
−M 0

0 KL +KNL (qm (t))

]
X

)
,

X

({
y(0)

qm (0)

}
,0

)
=

{
y(0)

qm (0)

}
(6.8)

The boundary value problem is solved when X

({
y(0)

qm (0)

}
,T

)
is equal to X

({
y(0)

qm (0)

}
,0

)
.

The initial conditions

{
y(0)

qm (0)

}
for the first two points of the frequency response curve

are taken as the linear solutions of Equation (6.6). Taking as generalised load a sinusoidal one,

fw (t) = psin(ωt), with ω the excitation frequency, and generalised displacements as qm (t) =

qc cos(ωt)+qs sin(ωt), the first and second initial values are{
y(0)

qm (0)

}
=

{
ωqs

qc

}
For the following points of the frequency response curve, a secant predictor is used [66]. Then the

set of 2m ordinary equations are integrated by the initial value method, fifth-order Runge-Kutta

using adaptive stepsize control [138], arriving at the other boundary X

({
y(0)

qm (0)

}
,T

)
. The

purpose of this adaptive stepsize control is to achieve some prefixed accuracy in the solution with
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the minimum computational effort. To achieve the periodicity conditions, the initial values are

corrected until convergence by

X

({
y(0)

qm (0)

}
,0

)i+1

= X

({
y(0)

qm (0)

}
,0

)i

+δX (6.9)

The correction δX solves the system of equations


∂X

({
y(0)

qm (0)

}
,T

)

∂

{
y(t)

qm (t)

} − [I]

δX = X

({
y(0)

qm (0)

}
,0

)
−X

({
y(0)

qm (0)

}
,T

)
. (6.10)

To see more details on correcting the first guess using Newton’s algorithm, as well as on

the use of the monodromy matrix to investigate the stability of the solutions, one can refer to

Refs. [126,127,139] and references therein. The following initial values of the forced response are

here found using a secant predictor, given for example in Refs. [127,139]. The monodromy matrix

is equal to

∂X


 y(0)

qm (0)

,T


∂

 y(t)
qm (t)


. Using Floquet multipliers, as the eigenvalues of monodromy

matrix, one can find the stability of the periodic vibration. If one or more of the Floquet multipliers

lie outside the unit circle, the periodic solution is unstable. If two or more Floquet multipliers are

located on the unit circle, the periodic solution is non-hyperbolic periodic solution. The solution

is unstable if one or more of the related Floquet multipliers lie outside the unit circle. If none of

the multipliers lie outside of the unit circle, a non-linear analysis should be used to determine the

stability of the non-hyperbolic periodic solution (see Ref. [126]).

6.3 Numerical Results on Forced Periodic Vibration of VSCL Plates

This section gives the properties of the plates that are studied in the numerical tests that fol-

low. Due to limitation of data for comparison, instead of a VSCL plate, a clamped CSCL plate

with mechanical properties of Plate 1 in Table 6.1 is analysed. The laminate has three lay-

ers [45o,−45o,45o] with equal thickness. The laminate is under a uniform harmonic transverse

pressure 3454.665× sin(ωt). The same laminate was the subject of examination in references

[66, 152].

To analyse the influence of the fibre angle in the forced vibrations of VSCL plates, a clamped

plate with mechanical properties of AS4/3501-6 carbon epoxy (Plate 2 in Table 6.1, after Ref.

[106]) is used. Longitudinal tensile and compressive strengths, transverse tensile and compres-

sive strengths and shear strength of the ply are, respectively, Xt = 2280 MPa, Xc = 1440 MPa,
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Yt = 57 MPa, Yc = 280 MPa and S = 71 MPa (also from reference [106]). The laminate has

four variable stiffness layers, with configuration [〈T0,T1〉,〈90o +T0,90o +T1〉]sym represented as

[〈T0,T1〉,90o + 〈T0,T1〉]sym. The fibre angles at the centre and the edges of the first and fourth

layers are respectively T0 and T1 degrees; on the second and third layers, they are T0 + 90o and

T1 + 90o. All layers have equal thickness. The laminate is subjected to transverse pressure, uni-

form in space and harmonic in time, given by 2×104× sin(ωt) Nm−2.

Table 6.1: Mechanical properties of the composite plates studied.

a b h E1 E2 G12 G13 G23 ν12 ρ

(m) (m) (m) (GPa) (GPa) (GPa) (GPa) (GPa) (kg/m3 )

Plate 1 (CSCL)
0.3048 0.3048 0.003048 206.84 5.171 2.5855 2.5855 2.5855 0.25 2564.856
Plate 2 (VSCL)
0.5 0.5 0.01 142 10.3 7.2 7.2 7.2 0.27 1580

In this analysis, the full model has equal numbers of in-plane, transverse and rotational shape

functions. It was already found in other studies (e.g. in Refs. [66, 132] that retaining more in-

plane than out-of-plane generalised coordinates facilitates the convergence of solutions when the

vibration amplitude is large, i.e, when membrane effects become more important. On the other

hand, retaining more transverse and rotational components is first of all important to achieve con-

vergence in the linear regime and in the non-linear regime in the presence of internal resonances.

We decided to use the same number of shape functions for all components in order to turn the con-

vergence analysis more concise and systematic, avoiding a large number of studies, individually

related to the diverse displacement components.

6.3.1 Verification and Convergence with the Number of Normal Modes in the Re-
duced Model

To verify the modal model (with static condensation and modal coordinates - but including all

normal modes in modal matrix ΦΦΦ), it was compared with the full model without static condensation

and in the generalised displacements q; in the former case, the shooting method was applied, but

in the latter the Newmark method was used (for details on the Newmark method refer to [62]

or Section 3.2.1; the Newmark code applied here was validated in Chapter 3). Because of the

need to employ damping in the Newmark method, in order to dissipate transients and find the

steady-state solution, we used a very small damping factor. The test plate here was the CSCL

plate previously introduced. For the sake of easiness, two hierarchical shape functions were taken

for each variable (that is pu = pw = pφ = 2). The full model (i.e. 20 DOF) of Equation (6.1) was

solved by the Newmark method. Equation (6.5) - as written with static condensation and in modal

coordinates, but including all linear normal modes (i.e. 12 DOF) - was solved by the shooting

method presented in this chapter. The results of both methods (not shown) were in very good

agreement. This supports the earlier claim, according to which considering membrane inertia is
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not really necessary in the problem under study. Furthermore, this agreement showed that the

transformation into modal coordinates and the shooting procedure were well implemented.

In another analysis, the full model, Equation (6.1), solved via the Newmark method, is used

as a benchmark for the reduced order model, solved by the shooting method. Three hierarchical

shape functions in each direction are used for each variable (pu = pw = pφ = 3). Therefore, the

full model has 45 DOF; in the reduced order model, different numbers of normal modes are con-

sidered: 10, 15, and 24 modes (Table 6.2). A damping parameter α equal to 10−5 is adopted in the

Newmark method, again in order to dissipate transients. It is shown that taking 10 normal modes

and applying the shooting method, gives results very similar to the ones of the full model, solved

by the Newmark method. By further increasing the number of modes, almost total agreement is

achieved.

Table 6.2: Convergence of the results of the present reduced order model with the number of
normal modes.

ω/ωl
Full model Reduced model Reduced model Reduced model
Equation (6.1) Equation (6.5) Equation (6.5) Equation (6.5)
45 DOF 10 DOF 15 DOF 24 DOF

wmax/h Newmark method shooting method shooting method shooting method
0.2 0.783 0.783 0.783 0.783
-0.2 1.192 1.193 1.193 1.193
0.6 1.011 1.011 1.011 1.011
1.0 1.164 1.166 1.164 1.164

Proceeding with the verification of the procedures implemented in this work, the displacement

amplitudes due to harmonic forces, uniformly distributed, are computed with the present TSDT

model (with pu = pw = pφ = 7) and are compared with published data, which was obtained apply-

ing classical plate theory. In Ref. [66] a p-version FEM with hierarchical basis functions and the

harmonic balance method (HBM) were used, with pu = 6 and pw = 4, then the model was stati-

cally condensed to 16 DOF. Ref. [152] used an h-version type FEM with 36 elements. The plate

studied is the CSCL plate introduced above. All results in Table 6.3 are for an undamped plate,

except the ones computed by Newmark method, where a small damping is introduced, for the rea-

son explained above. The fundamental linear natural frequencies of vibration, ωl , are also given.

The different values obtained for ωl reflect the different theories and degrees of discretization

employed. In the non-linear regime, the difference between the vibration amplitudes/excitation

frequencies of references [66, 152] and the ones of present full model, computed using Newmark

method, is below 1.2%. Again, given the diverse theories and degrees of discretization employed,

this is a quite reasonable agreement. Results by shooting method with 10 linear normal modes

differ at most 2.3% from the ones computed by the full model (Newmark method, 245 DOF).

Given the computational cost that ensues from using more modes in the shooting method, and the

very close agreement already achieved in Table 6.3, more modes are not used in the rest of this

chapter.
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Table 6.3: Comparison of excitation frequencies against vibration amplitudes by different meth-
ods.

CPT [66] FEM Newmark Equation (6.5) by shooting method
16 DOF CPT [152] 245 DOF 10 DOF 15 DOF 20 DOF 24 DOF
wmax/h ω/ωl wmax/h ω/ωl ω/ωl ω/ωl

0.2016 0.734 0.2 0.7219 0.730 0.730 0.718 0.718 0.718
-0.1971 1.2466 -0.2 1.2333 1.248 1.249 1.240 1.240 1.240
0.5997 1.0085 0.6 1.0085 1.012 1.018 1.018 1.018 1.018
1.0005 1.1756 1.0 1.1787 1.187 1.215 1.216 1.214 1.214
ωl (rad/s) 1580.36 1592.3 1562.43 1562.43

6.3.2 Effects of Fibre Angle at the Centre on the Forced Vibration of VSCL Plates

To investigate the effect of fibre angles at the centre of the plate on the forced vibration of variable

stiffness plate with configuration [〈T0,T1〉,〈90o +T0,90o +T1〉]sym, the angle T0 changes from 0o

to 90o by intervals of 15o, while angle T1 is constant, equal to 45o. The maximum deflection

amplitude (wmax/h) at the centre of the plate against non-dimensional excitation frequency ΩNL =

ωa
√

ρ/E2) is depicted in Figure 6.1(a). To calculate this data, the full model with seven shape

functions (pu = pw = pφ = 7), i.e. 245 DOF, is obtained first, then (generally) the first ten normal

modes are used in the reduced model of the VSCL plate.

To determine the stability of the periodic solutions, the Floquet multipliers were computed, by

calculating the eigenvalues of the monodromy matrix [126]. Only linear terms in the disturbance

were kept in the stability analysis, so when some of the Floquet multipliers are on the unit circle,

and none is outside, we know that the solution is non-hyperbolic, but not necessarily stable [126].

Solutions of this type are prone to appear in an undamped analysis; they will be simply desig-

nated as “non-hyperbolic”. When one, or more, Floquet multipliers are outside the unit circle,

the solution is beyond doubt unstable, even if it is non-hyperbolic; these solutions will be desig-

nated as “unstable”. Non-hyperbolic (with stability status not determined) and unstable solutions

of vibration are shown in hollow and solid circles, respectively.

During calculation of the forced vibrations, the damage index is controlled in the plate and the

analysis is stopped when the start of damage is detected. So, the curves end when damage starts

(wherein the maximum deflection ratio is roughly between 0.6 and 1). In VSCL [〈T0,45o〉,90o+

〈T0,45o〉]sym plates, two different scenarios happen, one when increasing the fibre angle at the

centre of the plate, T0, from 0o to 30o, the other when increasing from 30o to 90o. In the first

scenario, the increase of T0 from 0o to 30o barely affects the relations between frequency and

deflection amplitudes, but causes damage onset to appear earlier. Actually, among all VSCL

plates of the form [〈T0,45o〉,90o + 〈T0,45o〉]sym, the one with T0 = 30o experiences damage first,

when wmax/h ≈ 0.64. The position of damage onset is at the bottom surface, at coordinates

(x/a,y/b) = (1,0.35). This is a consequence of stress distribution by the curvilinear fibres in

VSCL plates, already found in Chapter 3 and Refs. [110, 111]. In the second scenario, when the

fibre angle T0 is increased from 30o to 90o, the frequency response curves of the VSCL plates are
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 Fig 2. (Colour online) Frequency response curves, showing deflection (���� ℎ⁄ ) against 

non-dimensional excitation frequency, for VSCL [〈�	,�
〉, 〈90°+�	,90°+�
〉]sym plates when 

changing fibre angle at the centre of the plate, �	, shown at (a) and when changing fibre 

angle at the edges of the plate, �
, shown at (b). Hollow and solid circles show non-

hyperbolic and unstable vibrations, respectively.  
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Figure 6.1: Frequency response curves, showing deflection (wmax/h) against non-dimensional
excitation frequency, for VSCL [〈T0,T1〉,〈90o +T0,90o +T1〉]sym plates when changing fibre angle
at the centre of the plate, T0, shown at (a) and when changing fibre angle at the edges of the
plate, T1, shown at (b). Hollow and solid circles show non-hyperbolic and unstable vibrations,
respectively.

shifted to the right, because the natural frequencies increase, and hardening becomes stronger. So,

to achieve similar deflection with the same force amplitude, the plate should be excited at higher

frequency. Interestingly, the damage onset occurs later, when the plates undergo larger deflec-

tion, being plate with T0 = 90o the one that can experience larger vibration amplitudes, achieving

wmax/h ≈ 0.94. In the last case, the damage position is at the bottom surface, at coordinates

(x/a,y/b) = (1,0.25). It is obvious that the use of curvilinear fibres in VSCL plates experiencing

periodic oscillations changes the vibration amplitude and the frequency at which damage onset

occurs. The precise position where damage onset appears also depends on the curvilinear fibre

path in periodic oscillations, as it did in transient oscillations of VSCL [110,111]. However, in the

examples of Figure 6.1, damage onset always occurred in one of the boundaries, very often either

at the top or at the bottom surface. Of this set of plates, the constant stiffness plate is not the one

where larger vibration amplitude can occur without damage onset.

6.3.3 Effects of Fibre Angle at Edges on Forced Vibration of VSCL Plates

To see how forced vibration is influenced by changes in the fibre angles at the edges of the VSCL

plates, the fibre angle at the centre, T0, is taken as 45o, and the fibre angle at the edges of the

plate, T1, is varied from 0o to 90o by intervals of 15o, see Figure 6.1(b). Again, non-hyperbolic

(and with stability undetermined) and unstable solutions are shown in hollow and solid circles,

respectively. Like above, but now in VSCL [〈45o,T1〉,90o + 〈45o,T1〉]sym plates, two scenarios

are observed: the first increasing the fibre angle at the edges, T1, from 0o to 60o, and the second
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scenario increasing T1 from 60o to 90o. In the first scenario, increasing T1 from 0o to 60o in VSCL

plates, affects the forced vibration curves by shifting them to the left, while slightly reducing the

hardening effect. So, similar deflection amplitudes are achieved at lower excitation frequencies

in laminates with larger fibre angle T1. We believe that, particularly when the first mode shape

is important, fibre angles nearly perpendicular to the boundaries tend to increase the stiffness

in comparison to other angles, because the fibres exert a stronger opposition to bending. In the

second scenario, when T1 is increased from 60o to 90o, the change in the fibre path has almost no

effect on the relation between the deflection amplitudes and the frequency of excitation; however,

it has a major effect on the amplitude at which damage onset occurs. These three are the less stiff

plates, overall. In both scenarios, no distinct pattern for damage onset could be recognized. But,

the change in fibre paths significantly affects the frequency and the amplitude at which damage

onset occurs; the VSCL plate where damage onset appears at lower vibration amplitude is plate

[〈45o,0o〉,90o + 〈45o,0o〉]sym, where damage appears at wmax/h ≈ 0.56, and occurs at the bottom

surface of the plate, coordinates (x/a,y/b) = (0.3,1). The CSCL is not the one that can experience

larger amplitude deflections without damage starting.

6.3.4 Stresses in Forced Vibration of VSCL Plates

The study of stresses is important for damage and fatigue analysis; here, we examine the stresses

in some of the plates analysed in the previous section. It was shown in Ref. [93] that the mag-

nitude of transverse shear stresses is significantly smaller than the one of in-plane stresses, when

the VSCL plate is under sinusoidal or uniform transverse loads. Consequently, transverse shear

stresses are not so important for the application of Tsai-Wu criterion in this section, and only nor-

mal stresses, σx, σy, and shear stress σxy are given here. Figure 6.2 shows normal stresses along

a period of vibration and its frequency spectra, σx, σy, and σxy, for the reference CSCL plate,

[〈45o,45o〉,90o + 〈45o,45o〉]sym, and four VSCL plates with various configurations: [〈30o,45o〉 ,90o

+〈30o,45o〉]sym, [〈75o,45o〉,90o + 〈75o,45o〉]sym, [〈45o,0o〉,90o + 〈45o,0o〉]sym , and [〈45o,75o〉 ,
90o + 〈45o,75o〉]sym. These are stresses at the centre of the plates, by way of example. The steady

state stresses develop under a uniform loading with frequency 2300 rad/s (ΩNL ≈ 0.45) (the fun-

damental frequency of the reference CSCL plate is 2365 rad/s) and the amplitude of the force per

unit area is 2× 104 Pa. The stresses are calculated at the top and bottom surfaces of the plate,

because (when finding damage onset in the VSCLs of Figure 6.1) we saw that the onset of dam-

age, calculated using Equation (4.2), generally occurs in one of these two surfaces. The frequency

spectra of the steady state harmonic stresses are also given in this figure.

Among the plates studied, the stress in direction x is maximum in the VSCL plate [〈30o,45o〉 ,90o

+〈30o,45o〉]sym, while stress in direction y is maximum in the plate [〈45o,75o〉,90o + 〈45o,75o〉]sym.

VSCL plate [〈75o,45o〉,90o + 〈75o,45o〉]sym has the minimum normal stress σx and minimum in-

plane shear stress, σxy. Stress σy is lowest in VSCL plate [〈45o,0o〉,90o + 〈45o,0o〉]sym; σx and σxy

are also low in this plate. The CSCL plate is not among the plates with maximum or minimum

stresses. The frequency spectra of the stresses show that, in these solutions, the first harmonic is

more excited than other harmonics. Nevertheless, the second harmonic and the constant element
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of the spectra are also stimulated, in some cases introducing a visible asymmetry in the variation

of stresses with time. This data shows that using curvilinear fibres can significantly change the

magnitude of in-plane stresses and their variation along a vibration period.

6.3.5 Examples of Bifurcation on Forced Vibration of VSCL Plates

Depending on the modes used in the calculation, the main fundamental branch (in this context, a

“main branch” is understood as a branch that starts in the static solution, and contains solutions

dominated by the first harmonic and by one mode of vibration; word “fundamental” indicates that,

in the particular cases of this section, this mode is the first mode of vibration) may bifurcate to

a branch that will be designated as “bifurcated” or “secondary” in this section; in the latter type

of branch a higher harmonic is important. These bifurcations are due to internal resonances, with

indirect excitation of higher modes. Two of these branches are shown in Figure 6.3. The main

branches were formed with the first ten linear normal modes, except the third, fourth, and fifth,

which were estimated to be less important in these branches. The secondary (bifurcated) branches

include the first ten normal modes and are shown in the figure with square marks. They bifurcate

from the main branch of VSCL [〈45o,75o〉,90o + 〈45o,75o〉]sym (shown in hollow red circles) and

from the main branch of VSCL [〈75o,45o〉,90o + 〈75o,45o〉]sym (shown in hollow black circles). In

Figure 6.3, the main branches of these two VSCLs start from P1 and O1 (with a small deflection),

and end at P2 and O2 where damage onsets happen. In the bifurcated branches, points P3 and O3

mark the end of the curves and correspond to the onset of damage. As displayed, in the bifurcated

branches damage onset happens at a relatively small deflection amplitude (at the centre of the

plate, it is around 0.3 or 0.4, depending on the plate), while in the main branches the damage

onset, points P2 and O2, occurs when the amplitude of deflection at the centre of the plate is

reasonably large (around 0.9 or 1.0). Here, the peak amplitude is not at the centre of the plate.

In VSCL [〈45o,75o〉,90o + 〈45o,75o〉]sym, the relation between the fourth linear frequency

(ωl4 = 6374 rad/s) and the excitation frequency close to the bifurcation (ω = 2132 rad/s) is

ωl4/ω = 2.99. The first linear natural frequency is 2310 rad/s, so ωl1/ω = 1.08. Here, the first

mode is important in the first harmonic and the fourth mode in the third harmonic. These two

important modes are shown in Figure 6.4(a). Hence, an internal resonance of order 1:3 occurred,

originating a bifurcation. For the VSCL [〈75o,45o〉,90o + 〈75o,45o〉]sym, the relations of the fifth

linear frequency (ωl5 = 7601 rad/s) and the tenth linear frequency (ωl10 = 12723 rad/s) to the ex-

citation frequency close to the bifurcation (ω = 2555 rad/s) are, respectively, ωl5/ω = 2.97 and

ωl10/ω = 4.98. The first natural frequency is 2576 rad/s, hence ωl1/ω = 1.01.The first mode is

important in the first harmonic and the fifth mode in the third harmonic; the tenth mode appears in

connection with the fifth harmonic, but with less influence than the former modes. The significant

modes are depicted in Figure 6.4(b).

To better understand the vibrational behaviour of the VSCL plates, Figure 6.5 displays the non-

dimensional displacements along a period of vibration, as well as phase plane plots and frequency

spectra for the two VSCL plates studied in Figure 6.3. The displacements and the velocities are

computed at the centre of the plates. At first, we study VSCL [〈45o,75o〉,90o + 〈45o,75o〉]sym.
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Stresses (MPa) at the centre of the bottom surface  

   

Frequency spectra of stresses (MPa) at the centre of the bottom surface  

Stresses (MPa) at the centre of the top surface 

   

Frequency spectra of stresses (MPa) at the centre of the top surface 

Fig 3. (Colour online) Steady state normal stress histories and their frequency spectra 
for various VSCL plates [<30°,45°>, 90°+<30°,45°>]sym        , ■; [<75°,45°>, 
90°+<75°,45°>]sym       , □; [<45°,0°>, 90°+<45°,0°>]sym       , □; [<45°,75°>, 

90°+<45°,75°>]sym       , ○ and reference CSCL plate [<45°,45°>, 90°+<45°,45°>]sym       
, ■ 
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Figure 6.2: Steady state normal stress histories and their frequency spectra for various VSCL
plates [〈30o,45o〉,90o + 〈30o,45o〉]sym: and ; [〈75o,45o〉 , 90o + 〈75o,45o〉]sym: and ;
[〈45o,0o〉,90o + 〈45o,0o〉]sym: and ; [〈45o,75o〉,90o + 〈45o,75o〉]sym: and ; reference
CSCL plate [〈45o,45o〉,90o + 〈45o,45o〉]sym: and
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Increasing the frequency (that consequently here increases the amplitude of deflection) leads to

damage onset in points P2 and P3, at the main and the secondary branch, respectively. Looking

to the frequency spectrum on the point of damage onset on the main branch (P2), one sees that

essentially the first harmonic is excited. On the other hand, as written in the previous paragraph, in

the secondary branch (P3) the first and third harmonics are excited. The differences between the

time histories and between the phase plane plots at these two onset points are obvious from Figure

6.5(a) and (c). A somewhat similar pattern occurs in VSCL [〈75o,45o〉,90o + 〈75o,45o〉]sym, as

can be observed in Figure 6.5(b) and (d). At the points of damage onset, O2 and O3, in the main

and secondary branch, respectively, the first harmonic is excited in the main branch while the first,

third and fifth harmonics are stimulated in the secondary branch.

The shapes of plates in situations P2, P3, O2, and O3 are shown in Figure 6.6. The shape of

the plates when damage starts, at points P2 and O2, shows that mainly the first mode is excited. In

contrast, when damage starts in the bifurcated branches, i.e. at points P3 and O3, higher modes are

present. In point P3, the shape of the plate displays mainly domination of a higher mode (fourth

mode), while in point O3, the plate is affected by the fifth and tenth mode.

6.3.6 Stresses in Main and Bifurcation Branches of Frequency Response Curves

Figure 6.7 shows times histories of normal stresses along a period of vibration in points P1, P2

and P3 and the respective frequency spectra. The stresses were computed in the centre of the top

surface - i.e., at point (0,0,h/2) - and at the centre of the bottom surface - i.e., at point (0,0,−h/2)

- of VSCL plate [〈45o,75o〉,90o + 〈45o,75o〉]sym. Only normal stresses σx and σy, and shear stress

σxy are given, for the reasons specified above. At point P1, where the deflection amplitude is

small, wmax/h≈ 0.15, the positive and negative amplitudes of the two in-plane normal stress, σx,

σy, and of the in-plane shear stress, σxy, are similar; furthermore, the spectra show that only the

first harmonic is excited. At point P2, where onset of damage occurs at the end of the main branch,

wmax/h≈ 1, the maximum compressive and tensile stresses are not similar, both in σx and σy, and

neither are the absolute values of the maximum and minimum in-plane shear stress; the second

harmonic and the constant term are added to the first harmonic in the frequency spectra. All the

former characteristics are due to the non-linear effects. At the onset of damage in the bifurcated

branch (secondary branch), point P3, only the first and third harmonics are excited, without the

constant term, here wmax/h≈ 0.35. This figure shows that higher harmonics occur in the spectra of

stresses, when the amplitude of deflection increases or where bifurcations happen. The appearance

of higher harmonics in stresses may be relevant for fatigue life studies (see for example [153]),

because the number of cycles increases.

6.3.7 Direct Excitation of Higher Modes in VSCL Plates

We saw that higher order modes appear in branches that were defined by following bifurcations of

the main branch of the response curve. Damage onset was detected at lower amplitudes in these
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Figure 6.3: Bifurcations to other branches from the main branch, VSCL [〈45o,75o〉 ,90o+
〈45o,75o〉]sym, shown by , and VSCL [〈75o,45o〉,90o + 〈75o,45o〉]sym, shown by . Results are
shown for three points (x,y) = (0,0) ,(a/2,b/2), (a/2,−b/2). The solutions resulting from bi-
furcations are shown by and , respectively. Non-hyperbolic results are represented by hollow
symbols ( , , , ), while unstable results are shown by solid circles ( , ).
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a) VSCL [<45°,75°>, 90°+<45°,75°>]sym 

Mode 1 (��� �2310 rad/s) 

 

Mode 4 (��� �6374 rad/s) 

 

 

b) VSCL [<75°,45°>, 90°+<75°,45°>]sym 

Mode 1 (��� �2576 rad/s) 

 

Mode 5 (��� �7601 rad/s) 

 

Mode 10 (���� �12723 rad/s) 

 

 

Fig 5. (Colour online) Significant modes in the secondary branches separated from the 

main branch of a) VSCL [<45°,75°>, 90°+<45°,75°>]sym and b) VSCL [<75°,45°>, 

90°+<75°,45°>]sym.  

 

  

Figure 6.4: Significant modes in the secondary branches separated from the main branch of (a)
VSCL [〈45o,75o〉,90o + 〈45o,75o〉]sym and (b) VSCL [〈75o,45o〉,90o + 〈75o,45o〉]sym.
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VSCL [<45°,75°>, 90°+<45°,75°>]sym VSCL [<75°,45°>, 90°+<75°,45°>]sym 

 
a) b) 

c) d) 

 
e) f) 
Fig 6. (Colour online) a, b) Time histories along a period of vibration; c, d) phase plain 

plots; and e, f) frequency spectra for forced vibration of VSCL [<45°,75°>, 

90°+<45°,75°>]sym (shown in a, c and e) and of VSCL [<75°,45°>, 90°+<75°,45°>]sym 

(shown in b, d, and f). The analyses are carried out at points P1and O1:           and    ; P2 

and O2:           and    ; P3 and O3:            and     . In VSCL [<45°,75°>, 

90°+<45°,75°>]sym: P1 is from main branch with Ω��=0.388; P2 with Ω��=0.534; P3 

with Ω��=0.447. In VSCL [<75°,45°>, 90°+<75°,45°>]sym: O1 is from main branch 

with Ω��=0.416; O2 with Ω��=0.567; O3 with Ω��=0.508.  
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Figure 6.5: (a) and (b): Time histories along a period of vibration; (c) and (d): phase plane
plots; (e) and (f): frequency spectra for forced vibration of VSCL [〈45o,75o〉 ,90o+ 〈45o,75o〉]sym
(shown in (a), (c) and (e)) and of VSCL [〈75o,45o〉,90o + 〈75o,45o〉]sym (shown in (b), (d), and (f)).
The analyses are carried out at points P1 and O1 of Figure 6.3: black dashed line and hollow
circle ; P2 and O2: black solid line and filled circle ; P3 and O3: red solid line and filled
circle . In VSCL [〈45o,75o〉,90o + 〈45o,75o〉]sym: P1 is from the main branch with ΩNL = 0.388;
P2 with ΩNL = 0.534; P3 with ΩNL = 0.447. In VSCL [〈75o,45o〉,90o + 〈75o,45o〉]sym: O1 is
from the main branch with ΩNL = 0.416; O2 with ΩNL = 0.567; O3 with ΩNL = 0.508.
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a) VSCL [<45°,75°>, 90°+<45°,75°>]sym: Point P2 

      

b) VSCL [<45°,75°>, 90°+<45°,75°>]sym: Point P3 

      

c) VSCL [<75°,45°>, 90°+<75°,45°>]sym: Point O2 

      

d) VSCL [<75°,45°>, 90°+<75°,45°>]sym: Point O3 

      

 
 
 
Fig 7. (Colour online) Perspectives and contour plots of shapes assumed by the plates in 
solutions P2, P3, O2, and O3 of VSCLs [<45°,75°>, 90°+<45°,75°>]sym and [<75°,45°>, 
90°+<75°,45°>]sym. The shapes are at sequential times in the related periodic cycle. 
  

Figure 6.6: Perspectives and contour plots of shapes assumed by the plates in solutions
P2, P3, O2 and O3 of Figure 6.3, in VSCLs [〈45o,75o〉,90o + 〈45o,75o〉]sym and [〈75o,45o〉 ,
90o + 〈75o,45o〉sym. The shapes are at sequential times in the related periodic cycle.
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Stresses (MPa) at the centre of the bottom surface 

  

Frequency spectra of harmonic stresses (MPa) at the centre of the bottom surface  

 

Stresses (MPa) at the centre of the top surface 

  

Frequency spectra of stresses (MPa) at the centre of the top surface  

 

 

Fig 8. (Colour online) Normal stress time histories and frequency spectra for various 

points of the main and secondary branches of VSCL plate [<45°,75°>, 

90°+<45°,75°>]sym; P1:          and    ; P2:           and    ; P3:           and    ; at the centre of 

the top and bottom surfaces. 
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Figure 6.7: Normal stress time histories and frequency spectra for various points of the main and
secondary branches of VSCL plate [〈45o,75o〉,90o + 〈45o,75o〉]sym; P1: black dashed line
and hollow square ; P2: black solid line and filled square ; P3: red solid line and filled
square ; at the centre of the top and bottom surfaces.
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Fig 9. (Colour online) Frequency response curves at higher excitation frequencies for 

VSCLs [<45°,15°>, 90°+<45°,15°>]sym and [<60°,45°>, 90°+<60°,45°>]sym, and for 

CSCL [<45°,45°>, 90°+<45°,45°>]sym. Non-hyperbolic results are represented by 

hollow symbols, while unstable results are shown in solid circles. 
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Figure 6.8: Frequency response curves at higher excitation frequencies for VSCLs [〈45o,15o〉 ,
90o + 〈45o,15o〉]sym and [〈60o,45o〉,90o + 〈60o,45o〉]sym, and for CSCL [〈45o,45o〉 , 90o +
〈45o,45o〉]sym. Non-hyperbolic results are represented by hollow symbols, while unstable results
are shown in solid circles.

branches than in the main branch. It appears then that failure onset occurs at lower vibration ampli-

tudes when higher order modes are excited. To somehow confirm this hypothesis, an investigation

of higher order modes was carried out, directly exciting them, by applying forces at higher fre-

quencies. Figure 6.8 displays deflection ratio against excitation frequency. Two different VSCLs

- [〈45o,15o〉,90o + 〈45o,15o〉]sym, [〈60o,45o〉,90o + 〈60o,45o〉]sym - and a reference CSCL plate,

[〈45o,45o〉,90o + 〈45o,45o〉]sym, are excited near the natural frequency of a higher mode. When

the plates are vibrating around their natural fundamental frequency (Frequency Response Curves

shown in Figure 6.1), damage onset occurs when the maximum deflection ratio wmax/h is at least

0.6. Figure 6.8 shows that damage starts with a smaller deflection ratio (wmax/h between 0.15

and 0.2) if higher modes are (directly) excited. damage occurs at lower vibration amplitudes in the

presence of higher modes because the shapes of these modes contain more waves, deforming more

the plate. Stresses depend on the deformation of the plate, or, mathematically, on derivatives of

the displacement components, as can be seen in the expressions for strains; to obtain the stresses

one applies generalised Hooke’s law, Equation (2.13).
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6.3.8 Damage in VSCL Plates with Different Thickness

The purpose of Figure 6.9 is to show that damage starts at somewhat low non-dimensional vi-

bration displacement amplitudes in thicker plates. A VSCL [〈45o,75o〉,90o + 〈45o,75o〉]sym and

a reference CSCL [〈45o,45o〉,90o + 〈45o,45o〉]sym (i.e. angle-ply [45o,−45o]sym) with different

thickness h/a =0.01, 0.015, and 0.02 are analysed. It shows vibration amplitudes of oscillations

with frequencies around the respective fundamental frequencies until damage starts. The plot

reflects the fact that resonance in thicker plates occurs at higher excitation frequencies. The maxi-

mum deflection amplitudes correspond to the conditions when damage starts, so in thicker plates

damage starts at a lower non-dimensional vibration displacement amplitude. This is physically be-

cause at equal non-dimensional vibration displacement amplitude wmax/h, displacement is larger

in a thicker than in a thinner laminate and by generalised Hooke’s law, stresses are directly related

to the derivative of displacements (recall also that the in-plane dimensions were not changed, hence

increasing the transverse displacement, the slope increases). Furthermore, when bending occurs,

the in-plane strains increase with z, so their corresponding stresses tend to achieve larger values in

a thicker plate (see equations of strain-displacements (3.1) and strain-stress relation (2.13)). Com-

paring the VSCL and CSCL plates, one verifies that damage onset occurs at larger amplitudes of

vibration in the VSCL plate, especially when the laminate is thinner. To calculate these results,

reduced order models with at least 10 normal modes are used. Figure 6.9 is quite important, be-

cause it shows that very large amplitude vibration analyses with a model that does not account

for damage may well be useless, particularly in thick plates. This is somehow in accordance with

Ref. [150]. However, we may disagree with the conclusion taken in this reference regarding the

supposedly limited interest of non-linear shear deformation theories: non-linear shear deforma-

tion theories may still be interesting in not very thick plates, which can experience large amplitude

vibrations without damage onset, because they lead to more accurate stress computations than the-

ories based on Kirchhoff hypotheses. Furthermore, the fact that damage began in a specific point

does not necessarily mean that the plate is due to fail.

6.4 Conclusions

In this chapter, the p-version finite element based on a third order shear deformation theory for

VSCL plates is employed to study forced, periodic, non-linear, oscillations. Initially, static con-

densation is applied, neglecting in-plane inertia and, therefore, reducing the number of degrees

of freedom. Then using a truncated set of modal coordinates the number of degrees of freedom

is additionally reduced to the number of linear normal modes used. The final set of equations

of motion in the form of second order differential equations is reformulated to a new set of first

order differential equations, which are integrated in the time domain using a fifth-order Runge-

Kutta method, with time steps controlled by an adaptive step size control algorithm. The periodic

solution of the equations is treated as a boundary value problem by the shooting method. The

application of the shooting method to the reduced models helps to find results very fast, in spite
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Fig 10. (Colour online) Frequency response curves for a VSCL [<45°,75°>, 

90°+<45°,75°>]sym and a CSCL [<45°,45°>, 90°+<45°,45°>]sym plate with different 

thickness. Non-hyperbolic solutions are marked with hollow symbols and unstable ones 

with solid symbols. 
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Figure 6.9: Frequency response curves for a VSCL [〈45o,75o〉,90o + 〈45o,75o〉]sym and a CSCL
[〈45o,45o〉,90o + 〈45o,45o〉]sym plate with different thickness. Non-hyperbolic solutions are
marked with hollow symbols and unstable ones with solid symbols.
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of the non-linearities, and without any limitation on the frequency content of the response. As ex-

pected, models with more modal coordinates, require more computational time. The accuracy of

the modal reduced models is verified by carrying comparisons with the full model using Newmark

method. The results show that, in general, taking seven one-dimensional shape functions for each

displacement component in the p-version finite element method and ten modal coordinates in the

reduced models can lead to accurate models for the problems at hand.

Later, the effect of varying fibre angles by changing the governing angles, at the vertical edges

and at the centre of the plies, on the forced vibration of VSCL plates is investigated. Results in the

form of time histories, phase plane plots and Fourier spectra are shown for different vibrations in

the main branch and in secondary branches. The secondary branches are due to bifurcations and

involve higher modes of vibration. In all the analyses, a damage onset criterion is controlled and

when the damage starts, the ongoing analyses are stopped. The dynamic behaviour of VSCL plates

at the moment of damage occurrence is studied. Also, the steady-state in-plane normal and shear

stresses at CSCL and various VSCL plates are analysed. These analyses are as well performed

for the points of damage onset in branches found under bifurcations. In the set of plates studied,

it is always a VSCL, not the CSCL, that leads to the limit cases (as experiencing maximum or

minimum stress, or harmonics with larger or smaller amplitude).

In some oscillations, higher harmonics are quite important in stresses. This may affect the

fatigue life of the plates, because it increases the number of cycles per second. Other analyses are

done to evaluate the effect of the laminate thickness on the damage onset. It is verified that damage

onset occurs at smaller non-dimensional deflections in thicker than in thinner laminates. Also,

forced vibrations of laminates are assessed when higher modes of vibration are directly excited.

Either due to internal resonances or to direct excitation at higher frequencies, it is apparent that

damage starts with smaller deflection ratios in the presence of higher modes.





Chapter 7

Conclusion and Future Work

The work described in this thesis was concerned with the development of a p-version finite element

model for non-linear vibration of variable stiffness laminated plates. A new model based on a

third-order shear deformation theory was proposed. An investigation of the fibre angle change was

presented on the linear modes of vibration and non-linear large deflection statics and dynamics of

the plates. A number of interesting features of VSCL plates have been described and it was shown

that the methods employed are effective and robust on predicting non-linear dynamic and static

behaviours.

7.1 Thesis Conclusion

A general introduction of variable stiffness composite laminates was first presented in Chapter

1. With automated tow placement machines, the problem of producing plies with curved fibres

has become easier. To remove the defects of the tow placement process, like gaps and overlaps

between the fibres, other procedures and techniques are being developed.

There are two ways to put the fibres close to each other, the shifted method and the parallel

method. Without looking to the advantages and disadvantages of these two methods, in this thesis,

shifted method is considered. Anyway, the shifted method to produce other fibre paths from a

reference fibre path is the easier case for implementation in the analysis. Hence, the objectives of

this thesis were to evaluate the non-linear vibration and static analysis of composites with shifted

curvilinear fibres. Another problem that usually happens during manufacturing of these VSCL

plates is fibre kinking due to a restriction on the fibre radius curvature. This restriction limits the

selection domain of fibre angles and was considered in this thesis.

A description of linear modes of vibration of VSCL plates, as well as the effect of geometrical

imperfections on them, were given in Chapter 2. Generally, linear vibrational modes of VSCL

plates depend on fibre angles. A change in the fibre angle can change meaningfully the natural

frequency of the VSCL plate and its corresponding vibrational mode shape. This can lead to a

different dynamic behaviour in the VSCL plate. It was also found that geometric imperfections

affect the vibration modes. The VSCL model including imperfection was tested successfully.

125
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Static analyses of VSCL plates using non-linear strain-displacement relations are given in

Chapter 3. Different static loads were applied to the VSCL plate. The simulations were performed

to see how deflection of different VSCL and traditional plates (CSCL) can change with the fibre

path. Also, normal and shear stresses of the VSCL plates were analysed. It was shown that many

VSCL plates can experience less deflection in comparison to the traditional composite laminates,

with the same material and loadings. As was expected, the magnitude of normal and shear stresses

changed significantly due to stress distribution. In this chapter, it was shown that varying the

fibre angles in a VSCL plate can change the stress pattern completely. More details on the stress

behaviour of these plates under various load magnitudes and fibre angles were given in Chapter 3.

In Chapter 4, different static and dynamic loads were applied to VSCL plates. A damage

criterion (Tsai-Wu criterion) was used to see when and where the damage starts in the plates during

an increase in the load magnitude. The analysis was done taking into account non-linear strain-

displacements relations. To facilitate the comparison of damage index between different VSCL

plates, a safety factor parameter was introduced. The simulation was carried out for deflection and

safety factor of different VSCL plates under different loading conditions including static, harmonic

dynamic and impact loads. It was demonstrated that VSCL plates can experience less deflection

and they can have larger safety factor, in comparison to the traditional composite laminates, taking

the same material and loading. Also, a small discussion was given about the location of damage,

which was found to change when different VSCL plates are considered. Moreover, the growth

of the normal and shear in-plane stresses due to increasing load magnitude until damage was

displayed.

Development of a non-linear model for VSCL plates including imperfections, was performed

in Chapter 5. The geometrically non-linear and periodic free vibration of VSCL plates was simu-

lated using shooting and Runge-Kutta-Fehlberg methods. Runge-Kutta-Fehlberg integration tech-

nique is modified with Cash-Karp coefficients to control the error with adaptive stepsize. The

model obtained using the p-version finite element, named as full-model, was reduced using static

condensation. The statically condensed model neglects the in-plane inertia but includes the in-

plane displacements. The reduced model was transformed to modal coordinates with a smaller

number of degrees of freedom. Geometric imperfection were also included in the model of VSCL

plates. Backbone curves of VSCL plates with different fibre angles were given and compared.

When possible, bifurcations to secondary branches were detected using the shooting method. To

have more details, phase plane plots and Fourier spectra of bifurcated branches of the solution

were given. Some important sectional views of the vibration mode in fundamental backbone and

bifurcated solutions were displayed. In addition, the effect of imperfection on the softening be-

haviour of backbone curves were detailed in this chapter.

Chapter 6 provided qualitative assessments for geometrically non-linear forced vibration of

VSCL plates. Like in the previous chapter, the full model was statically condensed and trans-

formed to modal coordinates. It was treated with the shooting method but now in presence of

external load. The Tsai-Wu damage criterion was employed to see when the damage starts on

VSCL plates under different loadings. Frequency response curves of VSCL plates with different
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fibre angles were presented. Bifurcations were detected successfully and analysed using phase

plane plots and Fourier spectra. The analysis continued till damage starts; it was shown that dam-

age happens for lower vibration amplitudes in the bifurcated solutions. That is due to stimulation

of higher modes of vibration when the solution bifurcates from the main branch. The behaviour of

stresses in these bifurcated solutions are detailed in this chapter. Again, the sectional views of the

plates under forced periodic vibrations (for the main and bifurcated branches of the solution) are

displayed. This chapter ended with short discussion on the effect of higher modes and thickness

on the forced vibration behaviour of VSCL plates.

7.2 Recommendation for Future Work

Although the results presented here demonstrated the effectiveness of VSCL plates, it could be

further developed in a number of ways, as follows. There is clearly much more work to be done

in the area of VSCL materials.

• Forced vibration of VSCL plates including imperfection:

The proposed work will include the out-of-plane imperfections into account. Those imper-

fections are inevitable in manufacturing processes. The imperfection can take any shape

(symmetrical or unsymmetrical). This would lead to a better tool for future comparisons

between the simulation model and experimental results, although now there is a lack of

experimental results in this field.

• Experimental tests on dynamics of VSCL plates:

The applications of VSCL panels in the world are increasing, but still there is a lack of

experimental analysis especially for dynamics of VSCL plates.

• Flutter analysis on VSCL plates:

As VSCL plates are going to be used more and more in the aeronautical structures like

airplanes, it is recommended to perform some flutter analysis on these plates. A flutter

analysis can help to achieve a better design of airplane wings from VSCL materials.





Appendix A

Displacement Shape Functions and
Boundary Conditions in the p-Version
Finite Element

In what concerns the transverse displacements, a set of polynomials has been extensively applied

[57, 59, 154, 155]. With this set, the boundary conditions and the conditions of continuity at the

element boundaries are easily implemented, because only one of the first four shape functions

has either value or derivative different from zero at the end of each element. All higher order

hierarchical functions have zero magnitude and slopes at ξ = −1 and 1. This set of functions -

which was designated as f - has also the advantage of requiring a small number of DOF and will

be used here. Its form is
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and r!! = r (r−2) . . .(2or1), 0!! = (−1)!! = 1 and INT
( r

2

)
denotes the integer part of r

2 . A set of

polynomials called the g set will be applied as in-plane shape functions. The derivatives of these

g functions are not zero at the boundaries, but their value is. This set has also been applied with

success in the analysis of beams and plates [57, 59, 154, 155], and is defined as
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The disadvantage of p-version finite elements is that they are not so simple as the common

h-version finite elements. But by using a symbolic computation package to manipulate the shape

functions, the element mass and stiffness matrices are accurately and easily evaluated.

In a completely free plate (FFFF), shape functions in Equations A.1 are used for transverse

displacement and same shape functions in Equations A.2 are used for both in-plane and rotational

displacements. In a fully clamped plate (CCCC), because the displacements and rotations are zero

at the boundaries, the shape functions f1− f4 and g1−g2 are not employed.

Three types of simply-supported conditions are considered here:

• SSSS-1: simply-supported with immovable edges, in which u0 = v0 = w0 = φy = Mxx = 0

at the edges x =±a/2; and u0 = v0 = w0 = φx = Myy = 0 at the edges y =±b/2;

• SSSS-2: simply-supported with movable edges, in which v0 = w0 = φy = Mxx = Nxx = 0 at

the edges x =±a/2 and u0 = w0 = φx = Myy = Nyy = 0 at the edges y =±b/2;

• SSSS-3: simply-supported with fully free in-plane edges, in which w0 = φy = Mxx = Nxx =

Nxy = 0 at the edges x =±a/2; and w0 = φx = Myy = Nyy = Nxy = 0 at the edges y =±b/2;

but u0,v0 6= 0 at all edges;

In a simply-supported SSSS-1 plate, the transverse and rotation shape functions are taken from

Equations A.2 and in-plane shape functions from A.1. In the simply-supported boundary condi-

tion, φy at the edges x = ±a/2 and φx at the edges y = ±b/2 are zero so some bi-dimensional

rotational shape functions, which have not zero value at the related edges, must be removed from

rotational shape function row vectors Nφφφ x and Nφφφ y . Shape functions for simply-supported SSSS-2

are the same as for SSSS-1 conditions, but with lower restrictions. In this boundary conditions,

v0 = 0 at the edges x =±a/2 and u0 = 0 at the edges y =±b/2 so some bi-dimensional in-plane

shape functions, which have non zero values at the related edges, must be removed from in-plane

shape function row vectors Nu and Nv. In SSSS-3 boundary condition, no restriction is applied

to the in-plane displacements, therefore shape functions g1 (ξ ) and g2 (ξ ) are employed both in

displacements u0 and v0.



Appendix B

Experiments

Free boundary conditions were simulated by hanging the plate so that it stands vertically, as rep-

resented in Figure B.1. After some tests with a hammer, performed to obtain an idea of the values

of the first natural frequencies, it was decided to extract modes with frequencies ranging from 0

to 200 Hz. For that purpose, the plate was excited with random excitation (white noise) via an

electromagnetic shaker, which was also hanged in strings and another aluminium frame. A drive

rod and a piezoelectric force transducer, Bruel & Kjaer model 8203, connected the shaker to the

plate, so that the force was applied perpendicularly to it. A grid of 9×9 points was defined and the

acceleration measured by a light-weight piezoelectric accelerometer, model 27 A11 of Endeveco.

The frequency response functions were obtained in this pre-defined grid. An example of the FRFs

obtained can be seen in Figure B.2, which represents the accelerance that corresponds to an ac-

celeration at the point where the excitation was applied, hence the characteristic anti-resonances.

From these eighty-one FRFs, natural frequencies, modal dampings and mode shapes of vibration

were identified using a modal analysis software [70]1.

1Professors José Dias Rodrigues (jdr@fe.up.pt) and Pedro Ribeiro (pmleal@fe.up.pt) have performed the exper-
iments; the natural frequencies and natural mode shapes of vibration from the experimental data were identified by
Professors José Dias Rodrigues.
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 3 

The angle the fibre makes with the x axis changes linearly with x, so that the angle in 

lamina k is defined as 

 
  k

kk
k x

a
x 0

012



  (1) 

k

0  gives the angle between the fibre and the x axis at x=0, and k

1  gives this angle at x=a/2. 

This fibre path is represented by < k

0 | k

1 . The layup of the plate here analysed is the fol-

lowing: (<30|10, <-30|-10, <30|10, <-30|-10, <90|90)s. 

The material used is Hexply AS4/8552, a high performance material for aerospace struc-

tures. Regarding the material properties, the following values were specified by the manufac-

turer (E1 and E2 are average values): longitudinal modulus E1 = 126.3109 GPa, transverse 

modulus E2 = 8.765109 GPa, in-plane shear modulus G12 = 4.92109 GPa. The mass density 

was obtained by weighting the plate and calculating the mass per unit volume; it is approxi-

mately = 1600 kg/m3. As values for the other properties are not available, we assumed val-

ues based on their usual (from the literature) relation with the properties available: v= 0.31 

(Poisson’s ratio), and G13 = 4.92109 GPa, G23 = 3.35109 GPa (transverse shear moduli). 

 

 

Figure 2: Plate hanging. 

Free boundary conditions were simulated by hanging the plate so that it stands vertically, 

as represented in Figure 2. After some tests with a hammer, performed to obtain an idea of the 

values of the first natural frequencies, it was decided to extract modes with frequencies rang-

ing from 0 to 200 Hz. For that purpose, the plate was excited with random excitation via an 

Figure B.1: Set-up for the freely VSCL plate (Ref. [70])
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 4 

electromagnetic shaker, which was also hanged in strings and another aluminium frame. A 

drive rod and a piezoelectric force transducer, Bruel & Kjaer model 8203, connected the 

shaker to the plate, so that the force was applied perpendicularly to it. A grid of 99 points 

was defined and the acceleration measured by a light-weight piezoelectric accelerometer, 

model 27 A11 of Endeveco. The frequency response functions were obtained in this pre-

defined grid. An example of the FRFs obtained can be seen in Figure 3, which represents the 

accelerance that corresponds to an acceleration at the point where the excitation was applied, 

hence the characteristic anti-resonances. From these eighty-one FRFs, natural frequencies, 

modal dampings and mode shapes were identified using a modal analysis software. 

 

 

Figure 3: Point accelerance (force and acceleration on the same point). 

 

3 MODES OF VIBRATION 

In this section, we compare the modes of vibration obtained experimentally with the ones 

of the finite element method. The finite element employed is a 4-node isoparametric quadri-

lateral element, based on an equivalent single layer, Reissner-Mindlin approach, with a shear 

correction factor equal to 5/6. It has five degrees of freedom per node (three displacement 

components, and two rotations about the in-plane axes). Selective integration is employed, i.e., 

full integration is used for bending and membrane terms and reduced integration is used in 

shear. The value of the fibre orientation is taken into consideration at the integration points. 

Table 1 presents the first seven frequencies computed using finite elements alongside the 

identified natural frequencies. Two finite element meshes were used: 20 per 15 and 40 per 30 

elements. The column on the right-hand side of the table contains the relative difference be-

tween the numeric values, computed with the 4030 mesh, and the experimental values.  

Figure B.2: Point accelerance (force and acceleration on the same point) [70].
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