IBPORTO

FEU FACULDADE DE ENGENHARIA
UNIVERSIDADE DO PORTO

Spectrum-based Diagnosis for
Run-time Systems

Nuno Cardoso

Supervisor: Professor Rui Abreu

Co-Supervisor: Professor David Garlan

Doctoral Programme in Informatics Engineering

May 27, 2016



© Nuno Cardoso: May 27, 2016



Engineering Faculty, University of Porto

Spectrum-based Diagnosis for Run-time Systems

Nuno Cardoso

Dissertation submitted to Faculdade de Engenharia da Universidade do Porto
to obtain the degree of

Doctor Philosophiae in Informatics Engineering

Supervisor: Professor Rui Abreu

Co-Supervisor: Professor David Garlan

President: Professor Eugénio Oliveira
University of Porto, Portugal

Referee: Professor Jorge Barbosa
University of Porto, Portugal

Referee: Professor Rogério de Lemos
University of Kent, UK

Referee: Professor Jodo Marques e Silva
University of Lisbon, Portugal
University College Dublin, Ireland

May 27, 2016






The work developed for this thesis was co-supported by the
National Science Foundation under Grant No. CNS 1116848, and
by the scholarship number SFRH/BD/79368/2011 from Fundacao

para a Ciéncia e Tecnologia.

@
o0 11

FCT

Fundagiao para a Ciéncia e a Tecnologia
MINISTERIO DA EDUCAGAO E CIENCIA

(} QUADRO
DE REFERENCIA
p O I_I | ESTRATEGICO

NACIONAL

GOVERNO DE MINISTERIO DA EDUCACAO
PORTUG AL E CIENCIA

* X %
* *
* *
* >

* 5 Kk

UNIAO EUROPEIA
Fundo Social Europeu



N compare exe c

Lione

However detectlo
-Pdss

feferred
- Density

constraint
! »

dl

leellh

follow

mechanism running

l\-ili*-lll.i activating

DDd cnmmandt freezing

shall

g iy

INTIEF TN L

Skypa j

'uuiJi'.;,'
i i:alle-:l

ﬂdsily

» =

DE'Flf"I 1t lDf"I DEb“ggl”g

probability

test

m.quallty

ta S k summary

T

marlked

ution

'softwa

JJh ract

H

FLET T

introduce

J.?:tll

LT

Inputs

rwfeedback

NFGE

calculati 1ng

=a consideredprocedure s

study scenarlm.

e u I:Iezp ite

3 .
=] rafar

Lrapters

mraninad ].l:lad l— - N
FALELNY s involved
kernel = thesis:
technlque i 1 i

re

"
13
"
| |

1 STAte

O

b

consequently proper - E‘.
a1 = - entalling ueam . =
= ia starting ] =
LT T L .-: = % o . rEpﬂlr—t H::
i u & = Eil'lg_].E' L— 3 aun T r B
- ”'}K:E3I1] . A tH Y B D)
1 - Widaral band LT ——— m 2 q_
Researcht im:—= " Qo = L
membershlp - hereas R .g
- - .;L“-._ Ll'.I].Jll'llpr!:' Ei.hni representing TR v reven't IIIII : D— . 5ITI|311EF =
=~ ."i> £ f_'“'d'_“ ‘t WO | g EIIIIIE'_-p-|ZIlIII'II2|II'I, dutg
| o R inoain 2 =
il B | Eheurlstlc 5
I oI kpr-:u:eszes -
s 2 Ldarin BTN HeLChilad
0O parallel WO " K- : ) list DI" er cause %
3 Program ordered SE""."E'I"a]_ [l R ].thl i “interval -
O - =} { service '- i
! new . i
=41 il oo Randﬂm r estimation &'
_C 1 omo - e i m === independent
-l—" ach ':Iz N cuy

cwrtmin

§
Formally -

n_

CDEfflClEﬂtEﬂﬂ?EPwﬂ
I g ‘ lI'ICl:II I EC'I:

[ T

pnint

node: v

s o g

EII11IIILII'I't cantral

e T

ponfidence

% 3T Hﬂrene ra -t e ablainad EE ! ' CDllectan
g sefchar Wﬂﬂm ﬁsecond
E H‘I'::{:T.ﬂ\'ﬂ _j'.' § Eener ..:IIIIL;-.. E : § rE'qLJ:I.r:f im E appllcat 10N optimize
o aspect o 2 @ : 2 i I I
v e a = E [
. i t E = .-u- -C: E H17] .
) 1 A transitian + g o
En:-ni:lus:.-:lns sy Lt | %
. :E: i : . 'ura-:_;‘j_:rl t h 0 u g h Ltnvariant E
i v LL R evaluating T Wl Plan 32
— . = R y B anhan<a 1ﬂg1C i :—:'I =
=P least . distributed . necessary . f g e 2
i - = ] stage ‘ avility [fresponse W = m”"
ﬁ;“”gg ....... o partlcular@q@m@m; ;
E . g; Language I .- j mas lmllr':‘lglgmpu te ) w
< PrOCeSs STy | Ty Y-
$' + i - o 1t Vi
o b -.“I.Lu”m b ._"_,1:001 E .
mrtjwlnformatlon e S
threshald cancition intuition opELatig Lo check e T
: secific . Present o Ol 2
£ : S ———— s i
" i 'GPE.E'!. *,; st E.. Cuteds 5“
:_'..;—.—. agnly “ R Fabim Sl B . . lll.l[.i b
= ] g . =.. graduslly bEE_‘I_:_ - Corollary “ = E ! T :;-,.'
4 L o . ZH e BEEUr ar.u hecome o= e @ ":
E -'d activaty _;' inEIE:Ead U AUEAMAE i speedup '|_|. w - !
assaciated E Liss m - .-.;»...7;..-... ru d L_ = LlLl:; ELE
+ Irrigati 5 |
E |;|__1g'| ion i te rmg torrel a:m cnmputer GJ = tllD (i}
o : —~ E g - i L
tu . .
= e & o, ., mxiniz ing :[DHCFE‘IIE']._-,-'A C';_ L?J'- ing E,.,-U m.': E P
nu-cn. 11 - u ularity U i TRfp— = E - H L_ 1 E
N Sec = . almast b P "l_'l . £ 3
] [ W T
L|nc|e-te-| m |net| k- i:n:-m|:-ut1ng. F':;;tﬁ;g:—rng 3 E% S 5 : N U E vacam j:_: £
addEd derlute E_; _— 5 "'"3 st =T Y
T Y j ! evaluation X ) = 'r_'u Cma G E-l
.— Coverage : : ret u r n 5 .':J.'b:uh:].- calculatl-:ln IE O D_q_ _— ,:_;_
13 .I: = less autonomic | o e b ]_ - deﬂ
i3 l erent FI-EII-EIllEll;.-EI'tlI:II'I Va rla eCDntraSt U Estimate =



symptom .':a t pFDbabllltIE‘S expected,  context, sprinkler efficientlism note 1)

Intuitively Lefip 5 F:Iegrade vz-ﬁ|:|nz-l‘:'r1;a-eru::n§-V —
J— 13 ;'.”;” Dchla:" ston E I_Dﬂt‘ﬂ ,ﬁ eventually Ve‘r_Sl':'n w s -
efine e s =
loop = e My ['UE mz U
mean F 7 E: & S'E'ttlr'lg ".I'E'Ctl:lrll:: 7=
Benchmark % Ffirst\ . 3EE T
S e a r C ma CcONflictexplore dESCFle‘ weme - R () completeness— & 5
behavior o it 3 g
.. e (C) SCOpE it
Cetc . M i lm p r Ove :‘:E;Qﬁr dependent perfﬂrmed e
g verhead ardinality
f dUu ]_ t" s e s g s, dePLELeg, orine

O
= S_t I LIC'tU rgﬂfaztm <

lemen ta tion anconsequence
ALPpLLELLY 1E.'.I.E1

l D-
kL
important

averageirm

respansible xdapt
tend

I:qcall_,z_“atlon c | — water O sdative Worevious i .
farmal -I-J . . El_ﬂ_ebugge r _|=E,:I£,Ul?wn method — E
OpentlL o E . .. Architecture — S—
w ™ enabdle — l ' t% >
-E« sctea = oy ccart ] efficiens SHCOOINZ W OT @
rar L release .Stride = Eserdmns P EIlEtE"t S range .|
v TEEAr il BE -~
= p—y filtering e e m e n CFJ?'EIIJ_'FE' = | estimates =
LrE:. e BUBAT Principles contribution digscuss E fdetall E
o gOOdneSSQue tiong ° due;£

respectivel e th gantain
i division pm '[J]_]_!II LA

= Proof ) constant active
-Hﬂ 3 -||l|--|:| Fr -.'*:|u-.'~m remainder {7y
il E effort c-:urrputatmn O

amework Uana]_

i
x

'_-s

“crisp o 1mpact nalysis. -

! ! -3 Simgle |.-'. E' _
5  randaomly e _ C CH. similarity g
— W cEg setups v}
pert = R E ap ree i : ara iz z 8
e RN £ H-» 21 W willspace (04 call="= ;J
likel 4 . 5 B ropalagy CE iy
e L H'_'SL 5 splanETien . C Eé lagy E 3 E I:II EIClE' H_G
b - i 'I_I L L_E\HH:- passibility " o
: Q¢ I\ approaches - N
%J - IJ.Ilu,!.:: IﬂtrﬂdUCtiﬂlﬂa,xazsumti Science bitches! O :-Ezta-(r:rs ﬁztrg,_ Em.ﬂl
of able real 5 0 ) Y— o i O
D;- ol ,-|'I':||.|i.'_ll_' .D._ et s : _-|j m 4_] i|'||:l|.||. L tg : E il L1 Rank
£ o WBaseline @ "y © Let"™ i § e £Nd “ .
;t:'-taj i § s waste ?L?“- change — w gﬁ E:-:hi;;_l:_ulé‘_it E EII:'l:'l.'l".l'ng
" automatically I:E '’ D_lﬂ% 3 m'—"“
i whenever detect,,,, s ‘= followins implenent - £z
f Q! activation > s s - following™ " output wmit o = -
EE =1 tl'l'-'ratl'::'ﬂ _'::_-:" C""""":I"':I Williams® g p =t h E‘.-: R
..... - =
o E Q'E —= knowledge O-U testlng O n e 3 e -
— 59 L. " Additionall : e
: = 'EL' precise 4_’_ }F = . }I.
3 m g minimality *T I ::1::_11:' . E'-U
& sh . o i
Hinstrumentatiﬂ i _l_j m determine .2l0M L. cun1 13 .d = oo !
S § cutoff foundm ' T LAt line S e C t rum ==:s:
U trie Mo 3@ Y
E |every o _ pesitive: aya] Jable e W5 hi
£ thus i healthy o N . llne . |_I'—| s
[ . . bEt_’EE_r' 1: r%* d.uruurur.-mi E g;l
t{:hr::n ..... ~https — w . =k ma y %L_Q g .
1 Sutomated E = :j:-: -::. uL anshad :
= : . ] " c a ter o o thymanie - W=
e falter = CPUER L TSl § ) makeshinrerany | %
_,:f'E “nother prﬂvlde L H: t; L AL _ m i
l—-'f'c;:' reducing equivalent T & T m o E Mo
(-U,.J‘“ ctor FEASOALNG WEll : P::Il_é rﬁ = wn m —E -
RLRLAun LI"| Li E ..-:
JUsage 0] -t Dﬂ-’ c = ot E
111us1-:trya‘1!?ee Dimpaszinle uEn DECUFFELI# 5 FE O —glr_l:
e n e r a -t 1 O n d l B O EEF-.-'EF t d afarement ioned e EI '_,_"
g exonerate apgraximately mg ruuel.u.mlng .”a.-_.dl:,,?llﬂsl_ Er”EEdEd D b S E rva -t l D npm-_-;.;._.;h. E






Spectrum-based Fault Localization
in Embedded Software

VA
e !
Dol n

A






To Ligia, my best friend and love of my life.






Despite the advances made in the Computer Science domain, it remains practically
impossible to create faultless systems. Acknowledging this fact, the concept of
self-healing control loops was introduced. A self-healing control loop is an instance
of an autonomic control loop, having the purpose of both improving the dependability
of some system and reducing human intervention to a minimum. In contrast to other
approaches to assure dependability, self-healing systems achieve the aforementioned
goals by employing mechanisms that, at run-time, either prevent or solve eventual
errors.

Among the tasks involved in creating a self-healing system is the task of diagnosis. The
goal of this thesis is to create an automatic diagnostic framework for run-time/self-healing
systems. In contrast to the existent approaches, we aim at creating a diagnostic
framework that is both general purpose and lightweight.

To achieve our goal while meeting the aforementioned criteria, we improve upon
a development-time diagnostic approach called Spectrum-based Fault Localization
(SFL). On the one hand, SFL makes use of a high-level abstraction of the system
under analysis (called spectrum), making it, in principle, usable in a large diversity of
scenarios. Concretely, the only requirements to use SFL in a real-world scenario are
that (1) the system’s activity must be divisible into transactions, (2) the correctness of
each transaction must be evaluable, (3) the components’ activations must be observable
and (4) it must be possible to associate the components’ activity with the corresponding
transactions. On the other hand, and when compared to classical model-based diagnosis
approaches, SFL does not require detailed a system model, making both the modeling
and diagnostic processes lightweight.

In the scope of SFL, the diagnostic process can be divided in two stages: diagnostic
candidate generation and ranking. The first stage consists in computing sets of
components that, by assuming their faultiness, would explain the observed erroneous
behavior. Since many sets may meet the above criteria, in the second stage, the sets are
ranked according to their likelihood of being the real explanation for the system’s erratic
behavior. Concretely, in this thesis, we aim at optimizing both stages. To that end, we



pointed 3 limitations of the current SFL approach.

The first limitation is related to the fact that the candidate generation problem is
NP-hard, thereby being the bottleneck of the SFL framework. Taking this fact into
account, we propose a novel algorithm, dubbed MHS?, that is not only more efficient
than state-of-the-art algorithm (Staccato) but is also capable of making use of multiple
processing units to solve the candidate generation problem. In practice, this improvement
translates into: (1) better diagnostic accuracy when setting a time-based cutoff, due to
the fact that calculating more candidates increases the likelihood of finding the correct
diagnostic candidate, and (2) smaller diagnostic latency when setting a solution size
cutoff, due to the fact that calculating a fixed number of diagnostic candidates takes less
time with MHS? than with Staccato.

The second limitation is related to the fact that SFL abstracts the transactions’ outcome
in terms of correct/incorrect behavior. Even though this binary error abstraction is
capable of correctly encoding functional errors, when diagnosing non-functional errors,
it abstracts error symptoms (such as performance degradation), thus impairing the
diagnostic accuracy. In this thesis we propose a novel approach to encode and diagnose
both functional and non-functional errors by incorporating in SFL concepts from the fuzzy
logic domain. First, we propose the replacement of the classical binary logic for fuzzy
logic to detect/encode error states. The fuzzy approach to error detection encodes the
error state as a continuous variable, taking values between 0 and 1 (corresponding to
a pass and fail, respectively), allowing for a more accurate representation of degraded
states. Second, we generalize SFL to take advantage of the added information. For
the conducted benchmark, and when compared to the classical approach, the fuzzy SFL
approach improved the diagnostic quality in 65% of the test cases.

The third limitation is related to how SFL handles fault intermittency. SFL accounts for the
fact that faulty components may fail intermittently by considering a parameter (known as
goodness) that quantifies the probability that faulty components may still exhibit correct
behavior. The current SFL approach does, however, (1) assume that this goodness
probability is context independent and (2) does not provide means for integrating past
diagnosis experience in the calculation of the goodness parameter. In this thesis we
present a novel approach, coined NFGE, aimed at addressing such limitations. The first
limitation was addressed by generalizing both the hit spectrum abstraction and SFL to
use information about the system’s state in the diagnostic process. The second limitation
was addressed by proposing a Kernel Density Estimate approach that uses feedback
observations to model the components’ goodnesses as a non-linear function of the
system’s state. We evaluated the approach with both synthetic and real data, yielding
lower estimation errors, thus increasing the diagnosis performance.



Apesar dos avancos feitos no dominio da Ciéncia da Computacdo, continua a ser
impossivel, na pratica, criar sistemas sem falhas. Face a este facto, o conceito de
sistemas self-healing foi proposto. Estes sistemas tem como objetivo maximizar a sua
fiabilidade e, a0 mesmo tempo, reduzir a necessidade de intervengdo humana. Em
contraste com outras abordagens, os sistemas self-healing atingem os objetivos acima
mencionados, empregando mecanismos que, durante a execucao do sistema, previnem
ou resolvem eventuais erros.

Entre as tarefas envolvidas na criacdo de um sistema self-healing esta a tarefa de
diagnéstico. Esta tese tem como objetivo criar uma sistema de diagnéstico automatico
para sistemas self-healing. Em contraste com as abordagens existentes, estabelecemos
como requisitos necessarios a criagcdo de um sistema que seja tanto leve como de uso
geral.

Para alcancar o nosso objetivo, tendo em conta os critérios mencionados, decidimos
melhorar uma abordagem anteriormente utilizada no ambito do diagnéstico na fase
de desenvolvimento do sistema, chamada SFL. Por um lado, o SFL faz uso de uma
abstracao de alto nivel do sistema sob analise (denominada de spectrum), tornando-se,
em principio, utilizadvel numa grande diversidade de cendrios. Na pratica, os Unicos
requisitos para utilizar o SFL num cenario real sdo: (1) a atividade do sistema deve
ser divisivel em transacdes, (2) a regularidade de cada transagdo deve ser avaliavel,
(3) as ativagbes dos componentes devem ser observaveis e (4) deve ser possivel
associar a atividade dos componentes com as transacdes correspondentes. Por outro
lado, e quando comparado com as abordagens tradicionais de diagndstico baseado em
modelos, o SFL ndo requer um modelo detalhado do sistema, tornando leves tanto o
processo de modelagem bem como o de diagndstico.

No dmbito do SFL, o processo de diagnéstico pode ser dividido em duas fases: fase de
geracao e fase de ordenacgao dos candidatos de diagnostico. A primeira fase consiste
em computar conjuntos de componentes que, assumindo que se encontram num estado
faltoso, explicariam o comportamento erratico do sistema. Uma vez que muitos conjuntos
podem satisfazer este critério, na segunda fase, os conjuntos sio classificados de



acordo com a probabilidade de serem a verdadeira explicacdo para o comportamento
observado. Concretamente, 0 nosso objetivo nesta tese prende-se com a otimizacao
destas duas tarefas. Para tal propusemo-nos a resolver 3 limitagdes de forma a tornar o
SFL mais rapido e preciso.

Em primeiro lugar, o problema de geracdo de candidatos pertence a categoria de
complexidade NP-hard, sendo assim o bottleneck do SFL. Tendo em conta este facto,
propusemos um novo algoritmo, denominado de MHS?, que n&o s6 é mais eficiente do
que o algoritmo existente (Staccato) mas também é capaz de fazer uso de multiplos
CPUs para resolver o problema de forma mais rapida. Na pratica, esta melhoria
traduz-se em: (1) melhoria da precisao do diagnéstico ao definir um cutoff baseado em
tempo, devido ao facto de que ao calcular mais candidatos a probabilidade de encontrar
o candidato diagndstico correto aumenta e, (2) menor laténcia de diagnéstico ao definir
cutoff baseado no tamanho da solugao, devido ao facto de que o calculo de um ndamero
fixo de candidatos levar menos tempo com o MHS? do que com o Staccato.

Em segundo lugar, o SFL abstrai o resultado das transagcbes em termos de
comportamento correto/incorreto. Embora a abstracdo binaria de erro seja capaz
de codificar corretamente erros funcionais, na presenca de erros ndao funcionais, os
sintomas de erro (como por exemplo a degradacdo de desempenho) sao completamente
abstraidos, prejudicando assim a precisdo do diagnéstico. Nesta tese propomos
uma abordagem baseada em légica difusa, denominada de Fuzzinel, para codificar e
diagnosticar tanto erros funcionais como nao funcionais. Em primeiro lugar, propusemos
a substituicdo da légica binaria para légica difusa no processo de detecao/codificacao
de estados de erro. Esta abordagem codifica o estado de erro como sendo uma
variavel continua, assumindo valores entre 0 e 1 (correspondendo aos estados nominais
e faltosos, respetivamente), permitindo assim uma representagcdo mais precisa dos
estados de desempenho ndo 6timo. Em segundo lugar, generalizamos o SFL para
incorporar esta informagéao adicional. Nas experiéncias realizadas, e quando comparado
com a abordagem anterior, o Fuzzinel melhorou a qualidade de diagnéstico em 65% dos
casos de teste.

Em terceiro lugar, o SFL lida com o facto de os componentes defeituosos poderem
falhar intermitentemente considerando um parametro (denominado de goodndess) que
quantifica a probabilidade de um componente defeituoso apresentar um comportamento
correto. No entanto, a abordagem atual assume que (1) essa probabilidade é
independente do contexto de execucéo e (2) ndo tem em conta experiéncia passada
diagnostico no calculo dessa probabilidade. Nesta tese apresentamos uma nova
abordagem, denominada de NFGE, com o objetivo de mitigar estas limitagbes. A
resolugdo para a primeira limitagao passou por generalizar tanto a abstragdo do sistema
bem como generalizar 0 SFL para usar a informacao sobre o estado do sistema no
processo de diagnostico. Para resolver a segunda limitagdo, propusemos abordagem
baseada numa técnica denominada de Kernel Density Estimates que utiliza observacdes
de feedback para modelar as goodnesses dos componentes como uma fung¢ao néo linear
do estado do sistema. Avaliamos a abordagem com dois casos de estudo, nos quais
observamos erros de estimativa menores, aumentando consequentemente a qualidade
do diagnéstico.



Contents

List of Figures

List of Algorithms

List of Acronyms

1

Introduction

1.1

1.2

1.3

1.4
1.5

Diagnostic Problem

1.1.1 Heuristic-based Diagnosis . . . . . . ... .. .. ... ... . ...,
1.1.2 Model-based Diagnosis . . . . . . ... ... ... ... ...
Spectrum-based Fault Localization . . . . .. ... ... ... ........
1.2.1 Candidate Generation . . . . .. ... ... ... ... ........
1.22 Candidate Ranking. . . . . . . . .. ... ...

Research Goals .

1.3.1 Candidate Generation . . . . ... .. ... ... ... ...
1.3.1.1 Algorithmic Efficiency . . . .. ... ... ... .. .....
1.3.1.2 Horizontal Scalability . . .. ... ... ...........

1.3.2 CandidateRanking. . . ... ... ... ... . ... ... . .....
1.3.21 FuzzyErrors . . . . . . ..
1.322 SystemState. . ... ... ... ... ... . ...

Origin of Chapters
Thesis Outline . .

MHS? — Optimizations

2.1
2.2

2.3

Approach . .. ..
Algorithm Analysis

2.2.1 Completeness/Soundness analysis . . ... ... ..........
2.2.2 Complexity Analysis . . . . . . . . .

Data structures . .

2.3.1 Encoding (U,S) . . . .

2.3.2 Encoding D

vii



2.4 Practical Considerations . . . . . . . . . . . .. . ..
241 Heuristics . . . . . . . o e e
2.4.2 Ambiguity Group Removal . . . . . . ...
2.4.3 Problem Minimization . . .. ... ... ... ... .. ... . ...,

2.5 Benchmark . . . . . . . . .
251 Smallproblems . . . . ... ... ...
252 Largeproblems. . . . .. ... ...

2.6 SUMMArY . . . . e e e

MHS® — Parallelization

3.1 Approach . . . . . . . e e

3.2 Benchmark . . . . . . . . .. e
3.21 SmallProblems. . . . . .. .. . . . .. ..
3.22 LargeProblems . . ... ... .. ... ... ...

3.3 Summary . ..o e

Fuzzinel

4.1 Approach . . . . . . . e
41.1 Fuzzy Error Detection . . . .. ... ... ... oo
4.1.2 Fuzzy Error Diagnosis . . . . . . . ... oo

42 Benchmark . . . . . . . . . . ..
421 Setup . . . . e
4.2.2 EvaluationMetric . . . . .. . ... .
423 Results . . . . . . e

4.3 SUMMArY . . . . o o i e e e e e e e e e e e e e e e e

NFGE

5.1 Approach . . . . . . . e
51.1 Modeling gj(st) . . . . . o oo i
5.1.2 Rankingusing gj(st) . . . . . . . ..

5.2 Benchmark . . . . . . . . . e
5.2.1 Prediction Error Study . . . . . ...
5.2.2 DiagnosticStudy . . . . . . ...

5.3 Summary . . .. e e e

Related Work

6.1 Traditional Debugging . . . . . . . . . .
6.2 SoftwareTesting . . . . . . . . e
6.3 Instrumentation . . . . . ... ... ...
6.4 Automated Diagnosis . . . . . . . . .

Conclusions

7.1 Research Questions . . . . . . . . . . . i e

7.2 Contributions . . . . . . . .. e e

7.3 FutureWork . . . . . . . e
7.3.1 GoodnessModeling . .. ... ... .. ... ... ... .. . ...
7.3.2 Candidate Generation . . . ... ... ... ... .. .. .. ...,
7.3.3 Candidate Ranking. . . . ... ... ... . ... .. ... ..

References

ii

100
101

107



List of Figures

1.1 Relations and properties of self-healing research (adapted from [Psaier

and Dustdar, 2011]) . . . . . . . . 2
1.2 MAPE-Kcontrolloop . . . . . . . . . . 3
1.3 Bugexample . . .. . . . . ... 5
1.4 is_freezing f functiontrace . . ... ... ... ... ... ... ... .. 5
1.5 lIrrigation systemexample . . . . . . .. ... .. o 6
1.6 Irrigation system example —Sensors . . . . .. ... ... ... .. ..., 7
1.7 Diagnostic proCess . . . . . . . o i i e e 9
1.8 Spectrum with M components and N transactions . . ... ... ...... 10
1.9 Hitspectrumexample . . ... ... ... .. . ... .. 10
1.10 Irrigation system example = SFL . . . . . . . . . ... 11
111 Example . . . o . o 13
1.12 Candidate generation flowchart . . . . .. ... ... ... ... ... ... 15
1.13 Example search tree (pre-order traversal, from top to bottom) . . . . . . .. 16
1.14 Candidate ranking flowchart . . . . . . . ... ... .. ... .. ....... 17
1.15 Likelihood plots . . . . . . . . . . . o 19
1.16 Irrigation system example — Fuzzy errors . . . . . . ... ... ... .. .. 21
1.17 Skype call quality rating (screenshot) . . . . . . . . .. ... . ..., 22
1.18 Thesisoutline . . . . . . . . .. . .. . . e 25
2.1 Optimizations’ visual intuition . . . . . .. ... ... ... L. 29
2.2 Search space size COmparison . . . . . . . ..o oot i et e 30
2.3 Example search tree showing binary matrix for (U, S) (no optimizations) . . 34
2.4 Filterwith4delements. . . . . . .. .. .. ... ... 35
2.5 Atrieencoding6 HSs . . . . . . .. 35
2.6 Example search tree with heuristic values (with optimizations) . . . . . . . . 39
2.7 (M,N,R)parameters’impact . . . . ... ... ... .. ... . ... ..., 41
2.8 Smallproblems’results . . . ... ... .. .. ... .. 43
2.9 Largeproblems’results . . . ... ... L 45
3.1 MHS?Map-Reduce workflow . . ... ..................... 47
3.2 Lparameterintuition . . . . . . . . . L 49
3.3 Skip functions intuition . . . . ... L L 49

iii



v

3.4 Balancing problem when using the Stride function . . . ... ... ... .. 50
3.5 Smallproblems’results . . . . . ... ... ... . 52
3.6 Largeproblems’results . . . ... ... .o o 53
3.7 Large problems’ results with x-axis transformation . . . ... ... ... .. 54
41 Crispvs. fuzzysets . . ... . . . . . ... 58
4.2 Arbitrary membershipfunctions . . . . .. ... 59
4.3 Error detection sensitivity intuition . . . .. ..o oL 0oL 59
4.4 Fuzzy error hit spectrumexample . . . . . ... ... 60
4.5 Likelihood functionplot. . . . . . . .. .. ... .. 61
4.6 Likelihoodplots . . . . . . . . . .. 62
4.7 Probabilistictopology model . . . . ... ... oo 63
4.8 N-tier service architecture . . . . . . ... ... 64
4.9 Example diagnosticreport . . . . . . . .. .. 65
410 Benchmarkresults . . . . . . . . .. e 67
4.11 Benchmark results (detailed view) . . . . .. ... .. ... ... .. .... 68
4.12 Quality improvementdensityplot . . . . ... .. ... ... ... . L. 69
5.1 Density estimation and underlyingkernels . . . . . ... ... ... ..... 72
5.2 Impactofbwvalue . . ... ... .. . ... 73
5.3 Goodness vs. pass/fail KDEs . . . . . .. ... ... ... . ... ... 73
5.4 Estimation model confidence vs. time . . . ... ... ... ... ... ... 75
55 NFGEexample . . . . . . . . 76
5.6 Predictionerrors . . . . . . .. 78
6.1 Instrumentation code insertion (adapted from [Tikir and Hollingsworth, 2002]) 85
6.2 Delta debugging example (adapted from [Zeller and Hildebrandt, 2002] and
[Perezetal,2014]) . . . . . . . e 88
7.1 Statespectrum . . . . .. 97
7.2 State categorization . . . ... ... Lo 97
7.3 KNN-based feedback spectrum extractionexample . . . . .. ... ... .. 98
7.4 Variable model confidence example . . . .. ... ... ... ........ 99
7.5 mpg(7)COMPAriSON . . . . . o L 101
7.6 Similarity coefficients’ comparison . . . . ... ... oo Lo 102
7.7 Confidence hit spectrumexample . . . .. ... ... ... ... ... . 103
7.8 Likelihood functionplot. . . . . . ... ... ... ... o 103
7.9 Likelihoodplots . . . . . . . . . ... 104



1.1
2.1
2.2
2.3
3.1
3.2

List of Algorithms

Staccato . . . . . . e e e e e e 14
MHS? —Optimizations . . . . . . . . . o i 28
isMiintmal . . . . . . . e e e e e e e e 36
purgeSuperSets . . . . . . ... . e e e e e e e e e 37
MHS? —Maptask . . . . . . oot 48
MHS? —Reducetask . . . . . . . o oo 50



vi



List of Acronyms

ADL Architecture Definition Language

CPU Central Processing Unit

DCC Dynamic Code Coverage

GUI Graphical User Interface

HS Hitting Set

KDE Kernel Density Estimate

KNN K-Nearest Neighbors

MAPE-K Monitor, Analyze, Plan, Execute and Knowledge
MBD Model-based Diagnosis

MHS? Map-Reduce Heuristic-driven Search for Minimal Hitting Sets
MHS Minimal Hitting Set

MLE Maximum Likelihood Estimation

NFGE Non-linear Feedback-based Goodness Estimate
SFL Spectrum-based Fault Localization

TMR Triple Modular Redundancy

vii



viii



1 Introduction

Modern society is increasingly dependent on technology and, with the appearance of
low-cost computing environments, this dependency has experienced an exponential
growth. Within a half-century span, computers evolved from a state where they were only
able to interact with nearby systems to the point where they can communicate within a
matter of seconds despite their distance [Allan, 2001, Polsson, 2015]. Furthermore, with
the availability of low-cost high-speed interconnections, software systems grew to global
scales and gradually infiltrated most aspects of the modern life style.

The rapid growth of software systems in terms of both size and number happens mainly
due to the fact that computers are an extremely versatile tool, which can be used to
more efficiently solve a large variety of tasks in different domains. One side effect of the
large scope of software systems is the increase in complexity [Horn, 2001]. The rise in
complexity almost unavoidably leads to a growing number of bugs which, in turn, can
eventually cause errors/failures [Salehie and Tahvildari, 2005].

When unexpected behavior is observed, developers need to identify the root cause(s) that
made the system deviate from its intended behavior. This task (also known as software
debugging, fault localization, or error diagnosis) is the most time-intensive and expensive
phase of the software development cycle [Hailpern and Santhanam, 2002], and has been
a concern since the beginning of computer history'. In fact, it was estimated that the
global cost of debugging software has risen to $312 billion annually®. To put this value
into perspective, that is equivalent to the cost of 729 “Airbus A380” aircrafts®.

The high cost of debugging software is related to the fact that the process of detecting,
locating and fixing faults is both non-trivial and error-prone. It was estimated that a

'In 1946, the term bug was first used in the scope of computer science by Grace Hopper to document a
problem in the Mark Il computer. In fact, the source of the problem was an actual bug (more specifically
a moth) that was trapped in a relay, impeding its correct functioning.

2 University of Cambridge, "Financial content: Cambridge University study states software bugs cost
economy $312 billion per year", http://www.prweb.com/releases/2013/1/prweb10298185.
htm, accessed October 06, 2015.

3$428 million per unit, https://en.wikipedia.org/wiki/Airbus_A380, accessed October 06,
2015.

sl


http://www.prweb.com/releases/2013/1/prweb10298185.htm
http://www.prweb.com/releases/2013/1/prweb10298185.htm
https://en.wikipedia.org/wiki/Airbus_A380

1 Introduction

X

great share of the development resources, easily ranging from 50% to 70%, is normally
assigned to software testing and diagnosis [Hailpern and Santhanam, 2002] and that
even experienced developers are wrong almost 90% of the time in their initial guesses
about the the faults’ locations [Ko and Myers, 2008].

To ease this process several diagnostic tools have been proposed (see Chapter 6 for
examples). Despite the improvement that such development-time diagnostic-related tools
represent, it remains practically impossible to create faultless systems. Acknowledging
this fact, the concept of self-healing system has been proposed. Self-healing systems
have the goal of improving their dependability* at run-time while reducing human
intervention by employing mechanisms that either prevent or solve eventual errors [Ghosh
et al.,, 2007]. In [Psaier and Dustdar, 2011], the authors summarize the concept of
self-healing system as follows (Figure 1.1):

“The reason for enhancing a system with self-healing properties is to achieve
continuous availability. Compensating the dynamics of a running system,
self-healing techniques momentarily are in charge of the maintenance
of health. Enduring continuity includes resilience against intended,
necessary adaptations and unintentional, arbitrary behavior. Self-healing
implementations work by detecting disruptions, diagnosing failure root cause
and deriving a remedy, and recovering with a sound strategy. Additionally, to
the accuracy of the essential sensor and actuator infrastructure, the success
depends on timely detection of system misbehavior. This is only possible
by continuously analyzing the sensed data as well as observing the results
of necessary adaptation actions. The system design leads to a control loop
similar assembly. An environment dependent and preferably adaptable set of
policies support remedy decisions. Possible policies include simple sets of
event dependent instructions but also extended Al estimations supporting the
resolution of previously unknown faults.”

Autonomic Continuous
Computing el Availability
| [Kephart et al., 2007] ] Self-Healing
Systems Maintenance
of Health

Objectives
Self-Adaptive
Systems
[Laddaga et al., 2003]

Survivability

Detecting

Systems
[Dijkstra, 1982]

Self-Stabilizing ]

Attributes Diagnosing ]

Fault-Tolerant
[Pierce, 1965]

Closed-loop

Systems

Survivable
[Linger et al., 1998]

Policies

Figure 1.1: Relations and properties of self-healing research (adapted from [Psaier and
Dustdar, 2011])

“4According to [Avizienis et al., 2004], dependability is an integrating concept that encompasses availability
(readiness for correct service), reliability (continuity of correct service), safety (absence of catastrophic
consequences on the users and the environment), integrity (absence of improper systems alterations)
and maintainability (ability to undergo modifications and repairs).

2 |l



The self-healing concept is in fact a specialization of a broader concept, called autonomic
computing [Kephart and Chess, 2003]. To implement an autonomic system, /BM
suggests a reference model for autonomic control loops [Kephart et al., 2007], referred to
as the Monitor, Analyze, Plan, Execute and Knowledge (MAPE-K) control loop and is
depicted in Figure 1.2. In the MAPE-K autonomic loop, the managed resource represents
any software or hardware resource that is given autonomic behavior by coupling it with
an autonomic manager. In a practice, the managed resource can be, for instance, a web
server, a database, an operating system, a cluster of machines, a hard drive, a wired or
wireless network, etc..

Autonomic Manager

Analyze Plan

Monitor Execute
Knowledge

Managed Resource Touchpoint
| Sensors |—| Effectors |

Managed Resource

Figure 1.2: MAPE-K control loop

In the context of self-healing systems, the monitor component determines whether the
system is in degraded or erroneous state, through the information collected by the
managed resource’s sensors (also known as probes or gauges [Garlan et al., 2001]).
The analyzer component is responsible for pinpointing the probable source(s) of system
errors. The plan component creates a repair plan targeted at returning the system to
an operational state. The executor component implements the repair plan, by using a
set of system effectors that carry out changes to the managed resource. The change
implemented by the effectors can be coarse-grained (e.g., adding or removing servers to
a web server cluster [Garlan et al., 2004]) or fine-grained (e.g., changing configuration
parameters in a web server) [Bigus et al., 2002]. The knowledge component collects the
knowledge produced by all the aforementioned components and stores it for future use.

In this thesis, our focus is on the analyzer component of the MAPE-K control loop.
Our goal is to create an automatic diagnostic framework for run-time systems. Even
though several diagnostic approaches have been proposed the large majority is either
too specific to a particular application (e.g., [Chao et al., 2004, Mohammadi and
Hashtrudi-Zad, 2007, Kasick et al., 2010, Tan et al., 2010, Shvachko et al., 2010]) or too
costly (e.g., [Reiter, 1987, De Kleer and Williams, 1987, Mayer and Stumptner, 2003,
Wotawa et al., 2002]). In contrast to the existent approaches, we aim at creating a
diagnostic framework meeting the following criteria:

a3



1 Introduction

4

e It must be “general purpose”:
— It must be usable in a large variety of systems.

— It must be possible to add new components to the managed resource without
altering the diagnostic framework.

— It must handle different instrumentation granularities.
e |t must be “scalable”:

— It must be able to handle systems with large number of components.
e |t must be “accurate”

To achieve our goal while meeting the aforementioned criteria, we improve over a
development-time diagnostic technique called Spectrum-based Fault Localization
(SFL). SFL uses a high-level abstraction of the system under analysis, making it, in
principle, usable in a large diversity of scenarios. The only requirements to use SFL in a
real-world scenario are that (1) the system’s activity must be divisible into transactions,
(2) the correctness of each transaction must be evaluable, (3) the components’ activations
must be observable and (4) it must be possible to associate the components’ activity with
the corresponding transactions.

The high-level abstraction implies that a large amount of the diagnostic complexity is
traded-off for accuracy. Even though SFL is less accurate than some existing diagnostic
approaches (e.g., [Reiter, 1987, De Kleer and Williams, 1987, Mayer and Stumptner,
2003, Wotawa et al., 2002]), it is able to scale to large systems where heavier approaches
are not usable. Furthermore, given enough diversity in the observations, SFL tends to be
accurate enough for practical purposes [Santelices et al., 2009, Abreu et al., 2009b].

In the remainder of this chapter we further discuss the scope of our work. In Section 1.1
(page 4), we describe the diagnostic problem. In Section 1.2 (page 9), we present
the state-of-the-art SFL approach for development-time diagnosis. In Section 1.3 (page

19), we discuss our research goals. In Section 1.4 (page 23), we present the origin of
chapters. Finally, in Section 1.5 (page 24), we present the thesis outline.

1.1 Diagnostic Problem

In general terms, a diagnostic problem occurs whenever the behavior of a particular
system (natural or artificial) deviates from the expected behavior [Reiter, 1987, De Kleer
and Williams, 1992]. The challenge consists in finding the true root causes of such
abnormal behavior.

In our work we use the taxonomy proposed by [Avizienis et al., 2004]:

e An error is an incorrect system state that may cause a failure.

e A failure, is the observable manifestation of an error: an error becomes a failure
when it propagates to the system’s output.

¢ A fault/bug is the cause of an error in the system.




1.1 Diagnostic Problem

def f_to_c(temp_f):
return (temp_f — 32) = 5 // 9

def is_freezing_c(temp_c):
return temp_c <= 0

def is_freezing f(temp_f):
return is_freezing_c(f_to_c(temp_f))

Figure 1.3: Bug example

To illustrate these concepts, take for instance the three Python functions presented in
Figure 1.3. The purpose of function f_to_c is to convert a temperature from Fahrenheit
degrees to Celsius. Since the whole operation is performed using integer arithmetic, the
implementation is faulty and may compute erroneous results. Function is_freezing f,
which is implemented by daisy chaining functions f_to_c and is_freezing_c, should
return True if the input value (in Fahrenheit) is below water’s freezing point and False
otherwise.

f_to_c is_freezing f
Input | Expected Observed | Expected Observed | Outcome
31°F | —0.555°C —1°C True True Error
32°F 0°C 0°C True True Nominal
33°F 0.555°C 0°C False True Failure

Figure 1.4: is_freezing_f function trace

By analyzing Figure 1.4, we can see that for 32°F the function is_freezing_f not only
works as expected but also does not activate the fault (i.e., the result of f_to_c is
correct). For 31°F, despite activating the fault (i.e., the result of f_to_c is not correct), the
aggregate result of both functions is correct due to the fact that function is_freezing c
masks the error. Finally, for 33°F' the fault is activated and the error propagates to the
system output, delivering an incorrect result.

A prerequisite to diagnose a system is that the occurrence of errors/failures is detected.
The process of observing the system state and deciding whether or not it satisfies the
system’s specification is known as the oracle problem.

The approaches to solve the diagnostic problem can be broadly divided in two groups:
heuristic and model based diagnosis (also known as diagnosis from first principles).

1.1.1 Heuristic-based Diagnosis

Heuristic-based diagnosis approaches are focused on encoding expert knowledge
generated by previous diagnostic experience to more efficiently address future diagnostic
problems. In such diagnostic systems, the diagnostic reasoning is greatly based upon
the observed error symptoms and the possible (known) solutions to such symptoms. A

alls



1 Introduction

6

consequence of this type of reasoning is that the structure of the system under analysis
is only weakly represented, if present at all. While such diagnostic systems are effective
in diagnosing known abnormalities, they tend to fail whenever new error symptoms
emerge.

o
o o
o o o
o
/C’ o
Sprinkler
(a) Sprinklers
iping
Water Supply

(b) Piping

Figure 1.5: Irrigation system example

As an illustrative example, consider an irrigation system with the additional goal of
guaranteeing that irrigation problems are automatically detected and diagnosed. For
the example shown in Figure 1.5a, one could use peer-similarity to accomplish the
self-diagnosis goal. The usage of peer-similarity requires that all components in the
system behave similarly with regard to a set of metrics and the presence of outlier metric
values implies the occurrence of errors in the corresponding components [Kasick et al.,
2010, Shvachko et al., 2010, Tan et al., 2010]. Assuming that, for instance, the water
pressure or consumption for each sprinkler is observable, substantial variations in such
metrics among the system’s sprinklers would signal a sprinkler failure.

Even though this approach would most likely perform well in the described system, in
a system where the sprinklers operate at different pressures or have different water
consumption rates the outlier detection would be too inaccurate. Furthermore, if all the
sprinklers in the system fail similarly, this particular approach may fail to detect and,
consequently, to diagnose the errors.

Another problem with the aforementioned approach is related to the fact that, to meet the

similarity requirement, the abstraction of the system neglects the existence of important
components and may result in poor diagnostic quality. Considering the fact that the




1.1 Diagnostic Problem

sprinklers are fed by a piping system, as depicted in Figure 1.5b, the observation of an
error symptom in a sprinkler does not necessarily mean that the problem occurred there.
In practice, the symptom of low water pressure may be due to water shortage, piping
failure, and/or sprinkler failure.

Finally, consider a situation in which the state of the sprinklers is not directly observable
but instead the system is equipped with humidity sensors, placed at arbitrary positions in
the field, as shown in Figure 1.6. As the state of the system’s components is not available,
the peer-similarity technique is no longer usable.

0
0+0+0
0+0
0

Sensor
Figure 1.6: Irrigation system example — Sensors

Another example of this type of diagnostic approach is the so-called medical
diagnostic guidelines. Even though such guidelines effectively enhance both diagnostic
accuracy and efficiency for common diseases, they fail in the presence of unknown
symptoms/diseases (e.g., a patient with a green glowing eye).

Even though apparently unrelated to the computer science domain, the previous
examples show the potential problems related to heuristic diagnostic techniques.
Establishing a parallel with software, we see that software systems are mostly composed
of heterogeneous sets of components with, almost inevitably, different degrees of
state observability thus strongly limiting the scope of application of existing diagnostic
heuristics over different systems [Salehie and Tahvildari, 2005].

1.1.2 Model-based Diagnosis

Model-based Diagnosis (MBD) approaches focus on encoding the structure and
expected behavior of the system under analysis which, together with observations of the
system’s behavior, are used to perform the diagnostic reasoning [De Kleer and Williams,
1987, Reiter, 1987].

Definition 1 (Model-based Diagnostic System). A model-based diagnostic system DS is
defined as the triple DS = (SD, COMPS, OBS) , where:

e SD is a propositional theory describing the behavior of the system
e COMPS ={ci,...,car} Is a set of components in SD

e OBS is a set of observable variables in SD

all7



1 Introduction

8

The existence of such a model enables the diagnostic system to successfully cope (from
a theoretical point-of-view) with new error symptoms (such as the patient with the glowing
eye). Whenever the observed system behavior for a particular scenario (i.e., a specific
assignment over variables in O B.S) conflicts with the behavior predicted by the model SD,
the diagnostic reasoning revolves around finding sets of components that, by assuming
their faultiness, would explain the erroneous behavior.

To guarantee generality, MBD algorithms reason in terms of conflicts. Informally, a conflict
represents a set of components that cannot be simultaneously healthy to explain the
observed erroneous behavior.

Definition 2 (h-literal). An h-literal, denotes the component’s health. The positive h-literal
h corresponds to a healthy component whereas, the negative h-literal —h corresponds to
an unhealthy one.

Definition 3 (Conflict). Let HL™(C) = A jec Ij be the conjunction of positive h-literals for
a set of components C C COMPS and obs an observation term over variables in OBS. C
is a conflict for (DS, obs) if and only if:

SD A obs A HLY(C) (1.1)

is inconsistent.

In other words, a conflict is a set of components that cannot be simultaneously healthy
for the observed erroneous behavior to occur.

Definition 4 (Diagnostic Candidate). Let C C COMPS be a set of components. We
define d(C') to be the conjunction:

( A ﬁhm> /\( A hm) (1.2)

meC meCOMPS\C

Given an observation term obs over variables in OBS, a diagnostic candidate for DS is a
conjunction d(C') such that:
SD A obs A d(C) (1.3)

is consistent.

In the remainder we refer to d(C') simply as d, which we identify with the set C.

In this context, a diagnostic candidate is thereby a set of components that is conjectured
to be unhealthy, resolving all conflicts entailed by SD A obs.

A problem with the above definition is related to the fact that a candidate d containing all
of the system’s components (i.e., d = COMPS) always resolves every conflict by SD Aobs.
Intuitively, this is equivalent to saying that the whole system is faulty which, in practice,
is not a very helpful conclusion. To apply the concept of a diagnostic candidate to real
systems with success, one must refine the definition so that the candidate contains the
minimum number of components while still solving all the conflicts.

Definition 5 (Minimal Diagnostic Candidate). A candidate d is minimal if and only if #; :
d' C d such that d’ is a diagnostic candidate.




1.2 Spectrum-based Fault Localization

The end result of the diagnostic reasoning is the diagnostic report. A diagnostic report
features a set of explanations for the erroneous behavior (i.e., the diagnostic candidates)
as well as a measure of how likely each explanation is. The process of calculating a
diagnostic report can be broadly divided in two stages, as depicted in Figure 1.7.

Diagnostic Engine

Candidate Candidate Diagnostic

Observations CararEier Ranking Report

Figure 1.7: Diagnostic process

Definition 6 (Diagnostic Report). A diagnostic report D = (di,...,d,...,dk) iS an
ordered set of K diagnostic candidates, such that:

Va.ep : Pr(dy | obs) > Pr(dyy1 | obs) (1.4)

1.2 Spectrum-based Fault Localization

A limitation of traditional MBD approaches is the necessity of a detailed system model
which, in practice and due to the large complexity of modern computer systems, normally
entails a large modeling effort/cost, thus narrowing its range of application [Pietersma
et al., 2006, Horn, 2001]. To overcome the complexity of creating precise system models,
Spectrum-based Fault Localization (SFL)°> approaches were proposed [Abreu et al.,
2009a, De Kleer, 2009, Casanova et al., 2013]. Instead of relying on a fine grained model
of the system (i.e., SD € DS) to generate conflict sets, SFL infer conflicts by performing
a dynamic analysis of the system.

To apply SFL to a system, it must be abstracted in terms of two general concepts:
component, and transaction. A component is an element of the system that, for diagnostic
purposes, is considered to be atomic®. A transaction is a set of component activations
that (1) share a common goal, and (2) the correctness of the provided service can be
verified. The error detection mechanism, from a SFL perspective, is treated as a black
box.

To gather all the required information to perform diagnosis, the system under analysis

must be instrumented (see Section 6.3). The instrumentation’s output, commonly known
as spectrum [Harrold et al., 1998], is defined as the pair (A, e) (Figure 1.8), where:

e A (activity matrix) encodes the involvement of components in transactions.

e ¢ (error vector) encodes the correctness of each individual transaction.

®For simplicity and unless stated otherwise, we use the acronym SFL to refer to a particular SFL approach
known as Spectrum-based Reasoning for Fault Localization. In Section 6.4 (page 89) an alternative and
more common SFL approach is presented.

®In a software environment, a component can be for instance a statement, a function, a class, a service,
etc..

allo



1 Introduction

. . error
activity matrix vector
A A - A el
Aoy Age -+ Aoy e
An1 An2 - Anum en

Figure 1.8: Spectrum with A/ components and N transactions

Even though several types of spectra exist, the most commonly used is called a hit
spectrum [Harrold et al., 1998, Yilmaz et al., 2008, Santelices et al., 2009].

’

Definition 7 (Hit Spectrum). The hit spectrum abstraction encodes the components
activity in terms of hit/not hit and the transactions’ correctness in terms of pass/fail. Using
the hit spectrum abstraction, A and e are defined as:

if component j was involved in transaction i

A = 1.5
! {0, otherwise (1.5)

(1.6)

1, iftransaction i failed
€; = .
0, otherwise

For convenience, in this thesis we may treat A; as a set containing the indices of all
components involved in transaction i. Formally, A; can also be defined as:

A; = {j | if component j was involved in transaction i} (1.7)

Since both forms encode the same information, we can use the two forms
interchangeably. Whenever we apply set operations to A, we are implicitly using the set
form. In Figure 1.9 an example hit spectrum in both forms is presented.

A .

7 e 7 A e
C C C
L2 1] {12y |1
1 1 0|1

2| {1,3} |1

o1 31 {1,2,3} | 0
1 1 110 T

b) Set form
(a) Matrix form (b)

Figure 1.9: Hit spectrum example

10



1.2 Spectrum-based Fault Localization

(a) Components

S2
QS\ S4
+
S3
-
Active Sensor \<

(b) Transaction

A

€1 C2 C3 C4 C5 Cg Cr Cg Cg Cip C11 C12 C13 Ci4 C15 Cie C17 C18 C19

1 |e o . o e . . . . ® e e e o o . . . e | e
2 o o o o e o o o o o o o
3 o o o o e o o . )
4 o o e o e o ) o o o | oo

(c) Hit spectrum (0’s and 1’s were replaced by “” and “®” for readability)

Figure 1.10: Irrigation system example — SFL

To illustrate how SFL can be used in an arbitrary system, consider again the example
in Figure 1.6. For this system, the set of all components is composed of 19 elements
(Figure 1.10a): 9 sprinklers (c; through cg), 9 piping elements (c19 through ci5) and the
water supply (c19). There are 4 different transaction types (one for each sensor). Each
of those transactions consists of the activation of all the surrounding sprinklers as well
as the piping elements used to by those sprinklers, as depicted in Figure 1.10b. A
possible approach to evaluate the success of each transaction would be to compare the
humidity value obtained by the corresponding sensor to an arbitrary threshold interval. If
the humidity on the ground is either too high or too low, the transaction fails.

Consider a scenario where, for the described system, sensors s; and s; (see
Figure 1.10b) detect an incorrect humidity level whereas, the remaining sensors, detect
a corrected humidity level. The spectrum corresponding to this scenario is depicted in
Figure 1.10c. The spectrum contains 4 transactions (each transaction ¢ corresponds to
the sensor s;) and both transactions 1 and 4 are marked as erroneous. Additionally, for

a1



1 Introduction

12

each transaction, all the sprinklers adjacent to the corresponding sensor as well as the
piping elements needed to feed such sprinklers are marked as active.

In the next sub-sections we present the relevant details of existent SFL algorithms to
solve both the candidate generation and ranking problems.

1.2.1 Candidate Generation

In a naive approach, the candidate generation problem can be addressed by
computing the power set of all components in the system (P(COMPS)). However, as
{P(COMPS)}| = 2lICOMPSI} " this approach becomes quickly ineffective. In practice,
rather than iterating over all possible sets just to find that most are not minimal or even
consistent with the observations, search algorithms are typically used to only consider
sets that meet the minimal candidate criteria (see Definition 5).

Despite the advantage of only computing minimal candidates, the problem is still
remarkably hard. The calculation of minimal candidates, conceptually referred to as
hitting sets, is a problem equivalent to the Minimal Hitting Set problem [Reiter, 1987],
which is known to be NP-Hard [Garey and Johnson, 1990]. The formal definition of the
Minimal Hitting Set problem goes as follows:

Definition 8 (Hitting Set). Given a set U of M elements (called the universe) and a
collection S of N sets, a set d is said to be a Hitting Set (HS) of (U, S) if and only if:

HS(U,S,d) :=d CUA (Vseg : dN s # 0) (1.8)
Corollary 1.2.1. Iff,cq:sNU =0, U isa HS of S.
Corollary 1.2.2. I[f3,c5:sNU =0, HS(U, S,d) never holds.
Corollary 1.2.3. d = () is a hitting for S = 0.
Corollary 1.2.4. HS(U, S, d) is associative:
HS(U,S,d)AHS(U',S',d) = HS({UUU,SUS,dUd) (1.9)

Definition 9 (Minimal Hitting Set). A setd is a Minimal Hitting Set (MHS) of (U, S) if and
only if:
MHS (U, S,d) := HS(U,S,d) A (Barca: HS(U, S,d')) (1.10)

i.e., d is a HS and no proper subset of d is a HS.

There may be several MHSs dj, for (U, S), which constitute the MHS collection D. The
MHS problem consists thereby in computing D for a particular pair (U, S).

Putting this definition in terms of the candidate generation problem, the set of all
components of the system (COMPS) is equivalent to the set U, whereas the set of all
conflicts entailed by SD A obs is equivalent to S. A MHS for all the conflicts entailed by
SD A obs is, in fact, a diagnostic candidate for SD A obs [Reiter, 1987].




1.2 Spectrum-based Fault Localization

Under the SFL abstraction, a conflict occurs whenever a failed transaction exists in
the spectrum. The elements of the conflict set are the components activated in such
transaction. Intuitively, since the transaction failed, it follows that at least one of the
components must not be healthy for the erroneous behavior to occur.

As an example, consider the hit spectrum in Figure 1.11a for which all 2 possible (but not
necessarily valid) candidates (i.e., P(COMPS)) are presented in Figure 1.11b. For this
particular spectrum, two minimal candidates/MHSs exist: {1} and {2, 3}. Even though the
set {1, 2,3} is also HS, it is not minimal as it can be subsumed either by {1} or {2, 3}.

i ‘ A ‘ e
1 {1,2} 1
2 | {1,3} |1
31 {1,2,3} | 0
(a) Hit spectrum (b) Hasse diagram of P({1,2,3})

Figure 1.11: Example

Being a NP-hard problem, the usage of exhaustive search algorithms (e.g., [Reiter,
1987, Wotawa, 2001]), is prohibitive for most real-world problems. In order to solve the
candidate generation problem in a reasonable amount of time, approaches that relax
the strict minimality” constraint have been proposed [Abreu and Van Gemund, 2009, De
Kleer and Williams, 1992, Feldman et al., 2008].

A simplified® version of the state-of-the-art SFL candidate generation algorithm (called
Staccato) [Abreu and Van Gemund, 2009] is presented in Algorithm 1.1 and Figure 1.12.
The algorithm works in a divide and conquer fashion by, at each stage of its execution,
performing one of two different tasks (lines 2, 3, and 4 or 6-8), depending on whether the
set d is a HS. As we shall shortly see, due to the algorithm’s divide and conquer nature,
d is a HS whenever S = ).

The first task, which is triggered whenever d is not a HS (line 1), aims at dividing the initial
problem in smaller sub-problems. This goal is achieved by iteratively selecting an element
j € U from a heuristically® ordered set (line 2) and creating a temporary collection S’
containing all the sets s € S : j € s, I.e., the sets hit by {j} (line 3). Finally, the algorithm
makes a recursive call to solve the sub-problem S\ S’ with set dU {j} (line 4).

The second task, which occurs whenever d is a HS (line 5), aims at collecting HSs while
guaranteeing that no HS in D has a proper subset also contained in D. The first step
in this task is to check if d is minimal (line 6) with regard to the already discovered MHS
collection D. If d is minimal, all super-sets of d in D are purged (line 7) and, finally, d is
added to D (line 8).

"We use the term minimal in a more liberal way due to mentioned relaxation. A candidate d is said to be
minimal if no other calculated candidate is contained in d.

8For simplicity, the cutoff conditions were omitted.

®The details of chosen heuristic are presented in Section 2.4.1. For now assume that the order is arbitrary
and that, for every possible ordering, the algorithm computes the same result.

al[13



1 Introduction

14

Algorithm 1.1 Staccato
Inputs: (U,S,d=0,D =0)

Output: Minimal hitting set collection D

1 if S # 0 then # divide task

2 for j € Rank(U,S) do

3 S« {s|seSAjeEs}

4 D «+ Staccato(U \ {j},S\ S, du{j}, D)

5 else # conquer task
6 if ﬂd’ED :d’ C d then

7 D« D\{d |deDAdCd}

8 D« DuU{d}

9 return D

To illustrate how Staccato works, consider the example in Figure 1.13'? which represents
a possible search tree for Staccato with U = {1,2,3} and S = {{1,2},{1,3}}
(Figure 1.11a). Each node in the search tree represents a call to the function (all the
parameters as well as the return value are encoded as a table). Leaf nodes represent
function calls for which d is a HS whereas intermediate nodes represent calls for which d
is not a HS.

In the outer call to the algorithm (the leftmost node), as S # (), the algorithm performs
the divide task. After exploring the sub-tree starting with d = {2}, the algorithm yields the
collection D = {{1,2},{2,3}}.

We can see that at this point, if the execution were to be interrupted, {1,2} would be
erroneously considered a MHS. However, after exploring the sub-tree starting with d =
{1}, the set {1, 2} is removed yielding the collection D = {{1},{2,3}}.

The inspection of the sub-tree starting with d = {3} does not make further changes to
collection D. On the one hand, the HS {1, 3} is a proper super-set of {1}. On the other
hand, the HS {2, 3} is already contained in D.

As expected, the result for this example would be the collection D = {{1},{2,3}}.

"Note that the order of node exploration (and consequently the shape of the tree) was selected for illustrative
purposes.




1.2 Spectrum-based Fault Localization

is d
minimal?

remove
super-sets
of d from D

yes: dis a
candidate

d (current set)

D (candidate set) ——4

Initially empty

add d to D

is S @é)

empty?

no: dis not a L (
candidate L

Return D

-

heuristically sort

.
create temporary

components

For each component c € U

recursive call ( update D with

_.: S’ filtering

transactions
where c is active |

L with S', d U {c} L return value

Figure 1.12: Candidate generation flowchart

all1s



1 Introduction

:}E: 16

U {1,3} {3}
S {{1,3}} 0
d {2} {1,2}
D 0 0
Return {{1,2},{2,3}} {{1,2}}
{1}
0
{2,3)
{{1,2}}
1,2,3 2,3}
@5 0. X L2 5 )
0 {1}
0 {12, 2.3)) =
{{1},{2,3}} {{1},{2,3}} 0
{1,3}
{{1},{2,3}}
{{1},{2,3}}
{1,2} {1}
{{1,2}} 0
{3} {2,3}
{{1},{2,3}} ({1}, {2,3}}
{{1},{2,3}} {{1},{2,3}}

Figure 1.13: Example search tree (pre-order traversal, from top to bottom)




1.2 Spectrum-based Fault Localization

1.2.2 Candidate Ranking

The candidate ranking problem is normally addressed using a naive Bayes classifier
[Abreu et al., 2009a, De Kleer, 2009]. Concretely, the posterior probability of each
candidate d € D given the observed run-time behavior (Pr(d | obs)) is calculated
assuming conditional independence throughout the process (Figure 1.14).

For each candidate d € D

Pr(d | Aje) =
4] o
Pr(d) P;(A:lez | d)
A, e (spectrum) o Pr(Aie)
(Naive Bayes Classifier) .—» Sort D
D (candidate set)
Estimate goodness parameters
(Maximum likelihood estimation)

Figure 1.14: Candidate ranking flowchart

Under a set of observations, the posterior probabilities are calculated according to Bayes
rule as:

Pr(obs | d)
= o 1.11
Pr(d| obs) = Pr(d) x Pr(obs) ( )
Since for SFL obs = (A, e), we can rewrite the previous expression as:
B Pr(A,e|d)
PT(d’A,e) —P"'(d) X W
H Pr(Ai,ei ‘ d) (112)
_ i€l..N
= Pr(d) Pr(A,e)

The denominator Pr(A,e) is a normalizing term that is identical for all d € D and is not
considered for ranking purposes.

To define Pr(d), let p; denote the prior probability that a component ¢; is at fault'.
Assuming that components fail independently, the prior probability for a particular
candidate d € D is given by:

Prid)=]]»;- ] -p) (1.13)

jed  jeCOMPS\d

""The value of p; is application dependent. In the context of development-time fault localization it is often
approximated as p; = 1/1000, i.e., 1 fault for each 1000 lines of code [Carey et al., 1999].

all17



1 Introduction

Pr(d) estimates the probability that a candidate, without further evidence, is responsible
for the system’s malfunction. By using equal values for all p; it follows that the larger the
candidate the smaller its prior probability will be.

In order to bias the prior probability taking run-time information into account, Pr(A;,e; | d)
(referred to as likelihood) is defined as:

G(d, Az) ifei =0

) (1.14)
1— G(d,A;) otherwise

Pr(Ai,ei | d) = {

G(d, A;) (referred to as transaction goodness) is used to account for the fact that
components may fail intermittently, estimating the probability of nominal system behavior
under an activation pattern A; and a diagnostic candidate d.

Let g; (referred to as component goodness) denote the probability that a component ¢;
performs nominally. Considering that all components must perform nominally to observe
a nominal system behavior, G(d, A;) is defined as:

GdA)= ] v (1.15)
JE(dNA)

In scenarios where the real values for g; are not available those values can be estimated
by maximizing Pr(A,e | d) (Maximum Likelihood Estimation (MLE) for naive Bayes
classifier) under parameters {g; | j € d} [Abreu et al., 2009a]. This approach implies
that for a particular candidate d the optimal g; values may differ from those for another
candidate d’ for the same components.

As an example, consider again the hit spectrum in Figure 1.11a. As previously explained,
two minimal diagnostic candidates exist: {1} and {2,3}. In order to rank the candidates
we calculate Pr(d | A,e) for both candidates. Applying the procedure described above,
it follows that:

Pr(d) Pr(A,e|d)
1 999 999
Pr({1} | A, e) = . . 1- (1 — . 1.16
r({1 14 €) = 1556 1000 1000 X L9 L—g1)- o (1.16)
t1 to t3
Pr(d) Pr(A,e|d)
999 1

Pr({2,3} | A,e)

- ' ' 1—g5)-(1—g3)-(g2- 117
1000 1000 1000 < (L 92) (1 —g3)- (g2 g3) (1.17)

t1 to t3

By performing a MLE for both functions it follows that Pr({1} | A,e) is maximized for
g1 =0.3(3) and Pr({2,3} | A,e) for g = g3 = 0.5 (see Figure 1.15).

Applying the maximizing values to both expressions, it follows that Pr({1} | A,e) =
1.47 x 1079 and Pr({2,3} | A,e) = 6.25 x 10~% entailing the ranking ({1}, {2, 3}).

18



1.3 Research Goals

0.15 1
0.1
0.05 |
’ 0.33 0.66 ] '
| g1 ' 92 Lo 93
(a) Pr(A,e | {1}) (b) Pr(A,e|{2,3})

Figure 1.15: Likelihood plots

1.3 Research Goals

The goal of our research is to improve SFL for run-time environments. Concretely, we
improve SFL in two different dimensions: accuracy and latency. Accuracy is related to
the number of components that are wrongly indicted in a diagnostic report while latency
is related to the time needed to calculate a diagnostic report.

Even though these two metrics are also important in development-time scenarios, at
run-time (or in a fully automated diagnostic setup) their importance becomes even more
increased. On the one hand, a low quality diagnostic report may cause the system to halt
due to a large amount of unnecessary maintenance tasks. On the other hand, and due to
the fact that the system is on-line, if the errors are not corrected in a timely fashion, they
may propagate to other sub-systems or even cause the system to fail.

In view of the aforementioned goals, we draw the following hypothesis:

Spectrum-based Fault Localization algorithms can be improved to better cope with the
accuracy and latency requirements of run-time environments.

In the remainder of this section we discuss a set of limitations of the state-of-the-art SFL
approach (see Section 1.2, page 9). Furthermore, we detail the research goals for this
thesis.

1.3.1 Candidate Generation

In this section we discuss the limitations of the current candidate generation approach for
SFL (see Section 1.2.1, page 12).

alf19



1 Introduction

20

1.3.1.1 Algorithmic Efficiency

Staccato, the state-of-the-art algorithm for SFL candidate generation, was designed with
diagnostic efficiency in mind. As shown in [Abreu and Van Gemund, 2009], the algorithm
explores the search space in such a way that guarantees, with high likelihood, that the
correct diagnostic candidate is computed. However, as seen in Figure 1.13, the search
is often, from a computational point-of-view, inefficient. For the given example, the set
{2, 3} was unnecessarily evaluated twice.

By improving the algorithm’s computational efficiency, it is possible to either compute
the same diagnostic candidates in a smaller time frame or, alternatively, explore a larger
portion of the search space in the same time frame.

? Research Question 1
Is it possible to optimize Staccato to minimize redundant/superfluous computations?

1.3.1.2 Horizontal Scalability

An important limitation of existent candidate generation algorithms is their inability to use
multiple processing units to compute diagnostic candidates, also known as horizontal
scalability.

A consequence of this limitation is that, given the time constraints of run-time
environments, one must necessarily trade-off accuracy for performance. By having
the ability to use multiple processing units it is possible to take advantage of the ever
increasing number of platforms for parallel and distributed computing (e.g., Map Reduce
[Dean and Ghemawat, 2004]) to improve the diagnostic accuracy/latency.

? Research Question 2
Is it possible to parallelize Staccato as way of reducing the diagnostic latency and,
if so, by how much?

1.3.2 Candidate Ranking

In this section we discuss the limitations of the current candidate ranking approach for
SFL (see Section 1.2.2, page 17).




1.3 Research Goals

1.3.2.1 Fuzzy Errors

A limitation of the discussed SFL candidate ranking approach is related to the assumption
that every transaction outcome can be categorized in terms of correct/incorrect [Abreu
et al., 2009a, De Kleer, 2009, Casanova et al., 2013, Chen et al., 2013]. While a binary
error abstraction works well when diagnosing functional errors (i.e., the output value
differs from the expected value), such an abstraction is unable to accurately represent
non-functional errors/fuzzy errors (e.g., performance degradation errors)'2.

The presence of non-functional errors in a system implies that the distinction between
correct and incorrect states is often fuzzy, existing instead a gradual transition between
such states. In such scenarios, it is often the case that a system does not break down
recognizably but rather deteriorates over time [Ghosh et al.,, 2007]. Using a binary
abstraction to system correctness implies that the perceived deterioration of the system
(i.e., the error symptoms) is completely overlooked by the diagnostic algorithm and, as a
consequence, diagnostic quality is reduced.

Using our running example to illustrate this limitation, consider that the field is not properly
watered. The most likely situation is that, between two arbitrary points, the soil's water
level varies gradually (Figure 1.16a). The binary error abstraction limits the perceived
error to two possible states (Figure 1.16b). The visual contrast between Figure 1.16a and
Figure 1.16b clearly shows that information is lost in the error discretization process, thus
impairing the diagnostic accuracy.

>.<\

(a) Actual error state

(b) Perceived error state

Figure 1.16: Irrigation system example — Fuzzy errors

'2n this thesis, the terms non-functional errors and fuzzy errors are used interchangeably

a2



AN

1 Introduction

As a more computer science related example, consider the following error description for
a web service:

e The round-trip time (rtt) for a transaction must be less than 1s.
e Between 0.5s and 1s the performance is sub-optimal.

While a binary error coding can be easily used to represent the error state of a transaction
by using the expression e = rtt < 1, it fails to encode the sub-optimal performance when

0.5 <rtt < 1.
@ How would you rate the overall quality of this call?

Your feedback will help us make Skype better,

Excellent
Perfect, dear, no problems

Good
Minor problems, hardly noticed them

Fair
Had some problems that affected the call

Poor
Had several problems; really affected the cal

Very bad
Problems so bad the call was impossible

Figure 1.17: Skype call quality rating (screenshot)

As a real-world example of fuzzy errors, consider the case of a voice over IP service such
as Skype'3. After the call is made, the user can be asked to rate the quality of the call in
terms of stars: 1 star — very bad, 5 stars — excellent (Figure 1.17). Intuitively, we can
see that a binary error logic abstracts available information from the diagnostic engine as
a two-valued logic cannot encode the same information as five-valued logic.

The challenge of solving this limitation is thereby twofold. First, it is necessary to define
an appropriate method for both detecting and abstracting non-functional errors and the
associated error symptoms. Second, it is necessary to integrate the additional knowledge
in the diagnostic process.

2 Research Question 3
| How to encode fuzzy error symptoms?

? Research Question 4
| How to improve SFL to make use of the fuzzy error information?

13https ://www.skype.com

2 |


https://www.skype.com

1.4 Origin of Chapters

1.3.2.2 System State

A limitation of the SFL approach presented in Section 1.2.2 is related to the high level of
abstraction enforced by the usage of hit spectra as it does not provide any information
about the state of the system during each component’s execution. Additionally, it
abstracts the number of times each component was used and, consequently, the
sequence in which they were used in each transaction. As a consequence, hit spectrum
approaches are unable to distinguishing pairs of components for which the activity is
equal.

Furthermore, the discussed SFL approach estimates g; as being constant with respect
to a set of observations. Consider that the effective (normally unknown) goodness for
component (e.g., a hard drive) was directly related to its lifetime and took the shape of
a sigmoid, gradually decreasing over time. Due to the fact that, for a hard drive, the
slope of the goodness curve is small and the time is monotonic, g; can, most of the
times, be successfully approximated by a constant with small errors. However, if the
observations spanned over a long period or the slope of the goodness curve was larger
(e.g., for a floppy disk), a constant goodness function would fail to accurately model the
actual goodness, entailing large average errors. Given the multiplicative nature of the
goodness value usage, even small errors can have a serious impact in the diagnosis
report ranking.

Finally, hit spectrum approaches are not able to incorporate existent knowledge about the
system in the diagnostic process. As the state of the system is completely abstracted in
the hit spectrum, it would be impossible to distinguish, for instance, a new hard drive from
an old hard drive. As a consequence, even if the actual goodness curve was available for
all components in the system, the algorithm would not be able to use it.

2 Research Question 5
How to enable SFL to adapt to different systems based on previous diagnostic
experience?

? Research Question 6
| How to incorporate information about the system’s state in SFL?

1.4 Origin of Chapters

Chapters 2 and 3 are based on the work from [Cardoso and Abreu, 2014a], which was
published in the proceedings of the 25th International Workshop on Principles of
Diagnosis'* (best paper award). An early version of the paper was also published
in the proceedings of both the 16th Portuguese Conference on Artificial Intelligence
(EPIA)'> [Cardoso and Abreu, 2013b] and the International Conference on

“nttp://dx-2014.ist.tugraz.at/
Bhttp://www.epia2013.uac.pt/

|23


http://dx-2014.ist.tugraz.at/
http://www.epia2013.uac.pt/

1 Introduction

Multi-core Software Engineering, Performance, and Tools (MUSEPAT)'® [Cardoso
and Abreu, 2013a].

Chapter 4 is based on the work from [Cardoso and Abreu, 2014b], which was published
in the proceedings of the 25th International Workshop on Principles of Diagnosis
(best paper award nominee).

Chapter 5 is based on the work from [Cardoso and Abreu, 2013c], which was published
in the proceedings of the 27th AAAI Conference on Artificial Intelligence (AAAI)'" .

1.5 Thesis Outline

In Figure 1.18 we present the thesis outline. We suggest a pre-order traversal of the tree,
from top to bottom.

24

1Ghttp ://eventos.fct.unl.pt/musepat2013/
171'11:tp ://www.aaai.org/Conferences/AAATI/aaail3.php



http://eventos.fct.unl.pt/musepat2013/
http://www.aaai.org/Conferences/AAAI/aaai13.php

1.5 Thesis Outline

Research
Goals

Section 1.3.1.1

Candidate
Generation

Section 1.2.1

Research
Goals

Section 1.3.1.2

Research
Goals

Section 1.3.2.1

Fuzzinel
Chapter 4

Candidate
Ranking

Section 1.2.2

Research °
Goals

Section 1.3.2.2

Figure 1.18: Thesis outline

|23



1 Introduction

W 26



2 MHS? — Optimizations

In this chapter we present the sequential version our novel MHS generation algorithm,
dubbed Map-Reduce Heuristic-driven Search for Minimal Hitting Sets (MHS?). As
explained in Section 1.3.1.1 (page 20), our goal in this chapter is to improve the
computational efficiency of the Staccato algorithm.

This chapter is divided as follows. First, we introduce our MHS generation algorithm.
Second, we provide a formal analysis of the proposed algorithm. Third, we discuss
the data-structures used in the algorithm’s implementation. Fourth, we discuss some
practical aspects of the algorithm’s utilization.  Fifth and lastly, we evaluate the
performance of our algorithm.

2.1 Approach

The proposed algorithm consists of an improved version of the Staccato algorithm [Abreu
and Van Gemund, 2009] (see Algorithm 1.1, page 14). In contrast to the original
algorithm, we propose 3 optimizations that prevent redundant calculations (Figure 2.1).

The first optimization (line 7 and Figure 2.1a) prevents multiple evaluations of the same
set, as it was the case of {2,3} in the example presented in Figure 1.13 (page 16).
Removing element 5 from U (and, consequently, from S) after its evaluation has the
practical effect of reducing the search space to a spanning tree of the original search
tree.

To see the effect of this optimization, consider the example in Figure 2.1a. The example
depicts the largest search trees for U = {1,2,3} with and without optimization 1. Each
box represents a call to algorithm and the value contained inside each box represents the
value of d for that particular call.

Without the proposed optimization, a large amount of redundant work would be performed
(e.g., 8 evaluations of the set {1, 2,3}). With the proposed optimization, it is guaranteed

|27



2 MHS? - Optimizations

Algorithm 2.1 MHS? — Optimizations

w

Inputs: (U,S,d=10,D = 0)
Output: Minimal hitting set collection D

1 if 3¢5 : sNU = () then # Opt 3
2 return D

3 if S # () then

4 U«U\{jljeUA(Bscs:jes)} # Opt 2
5 for j € Rank(U,S) do

6 S+ {s|seSAjEs}

7 U<« U\{j} # Opt 1
8 D« MHS?(U,S\ §',dU {5}, D)

9 else

10 if Aycp : d C dthen

11 D+ D\{d|deDAdCd}
12 D+ DU {d}

13 return D

that every set is evaluated at most once. Concretely, the upper-bound size of the search
space without optimizations can be described with the following expression:

a(U) =1+ b(|U]) (2.1)

(2.2)

b(x) = r+azxblx—1) if:c>9
0 otherwise

b(x) is described on the On-Line Encyclopedia of Integer Sequences as the number of
permutations of nonempty subsets of a set with size z. Since the empty set may also
be a solution for a given problem, it is necessary to add 1 to the result of b(z) (see
https://oeis.org/A007526 for further information).

On the other hand, the upper-bound size of the search space for the optimized algorithm
is given by the following expression:

c(U) = 2Vl (2.3)

To illustrate both upper-bound search space sizes, both functions are plotted in
Figure 2.2. We can clearly see that a(U) grows much faster than ¢(U) (note the log
scale).

The second optimization (line 4 and Figure 2.1b) preemptively filters elements of U
not contained in any set in S. As this filtering process reduces the size of U and,
consequently, the size of the data structures holding (U, S), the operations performed on
(U, S), such as the ranking calculation, become faster.



https://oeis.org/A007526

2.1 Approach

[{01,02}J——[{cl,02,03}J

{er}
[{01703}J——[{C1,C2,C3}]

(e (e

{c2}

({CZ,CS}J——[{CI7CQ7C3}]

[{01,03}J——[{01,02,03}J

{es}
[{02,03}]——[{01,02,03}J

J

[{61,62}] ({61,62,63}J

(a) Optimization 1

~N

{61763}
{c2}
{c2,c3}
{cs}
(61 Co C3 €; )
_ [ ] [ ] [ ]
i [ ] [ ] [ ]
(® o o )

(b) Optimization 2

Cl Cp C3 (4 €;

° ° °

° ° °

L ° ° ° ° )
-
1 C2 C3 €i
° ° °
° ° °
°
° ° °

(c¢) Optimization 3

Figure 2.1: Optimizations’ visual intuition

The third optimization (lines 1, 2, and Figure 2.1c) prevents the examination of branches
such that 3,c5 : sNU =0, i.e., there is at least one set that cannot be hit by any element
in U. The existence of such a set in S guarantees, by definition, that no HS will be found
(see Corollary 1.2.2, page 12).

|20



2 MHS? - Optimizations

W 30

=)

e}

o a0 | |7 Without optimization 1 — a(U)

% 10 =— With optimizaton1  — ¢(U)

©

S5 0

o 10° 1 - (] L
2

o)

Q -

o 100 - . : : : : : : : : : : : : |
> O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

U]
Figure 2.2: Search space size comparison

2.2 Algorithm Analysis

In this section we discuss the algorithm from a more formal point-of-view. First, we prove
the algorithm’s soundness and completeness.’ Second, we provide some intuition on the
complexity of the different operations performed by the MHS? algorithm.

2.2.1 Completeness/Soundness analysis
Lemma 2.2.1. All sets computed by MHS? are HSs.

Proof. Suppose MHS? is set to compute a single HS. At each step, an element j € U
is selected and MHS® is recursively called for S\ S’ with set d U {;}. This procedure is
repeated until S = (), at which point () is a HS for S (see Corollary 1.2.3, page 12).

Let S/, and j, be the S’ set and j element at the n'* recursive level. Since Vses: 1 jn €8
(i.e., {jn} is a hitting set for S, it follows that:

n

N\ HS(Un, S}, dn) (2.4)

1

From Corollary 1.2.4 (page 12), as S = U7 S, and d = |J] d,, it follows that:

N HS(Un, S, dn) = HS(U,S,d) (2.5)
1

Lemma 2.2.2 (Completeness). Staccato computes all MHSs for a problem (U, S).

'In this context, and assuming no cutoffs are enforced, the algorithm is sound if all computed sets are
MHSs. A complete algorithm should compute all MHSs. It is worth noting that a sound algorithm
may miss some MHSs and a complete algorithm may compute some sets that are not MHSs (i.e.,
soundness < completeness).




2.2 Algorithm Analysis

Proof. Suppose Staccato does not stop the branch exploration after a HS is found. Under
this constraint, it follows that the algorithm comprehensively explores every element in
P(U), which contains all HSs for (U, S) and, consequently, all MHSs for (U, S).

By stopping the branch exploration after an HS d is found, the HSs contained in {d U d’ |
d C (U\d)Ad # (0} are ignored. Since, by definition HS(U, S,d) A (d' # 0) =
-~MHS (U, S,dud’), we can conclude that even though some HSs are ignored, all MHSs
are nonetheless computed. |

Theorem 2.2.1. Optimization 1 preserves completeness.

Proof. Let Q = P(U \ (dU{j})). After every recursive call to Staccato, it is guaranteed
that all MHSs contained in K = {dU {j} Ue | e € Q} are evaluated (Lemma 2.2.2).

By removing j from U for subsequent calls of Staccato under the same search tree
branch, the algorithm prevents subsequent evaluations of the sets contained in K, only
calculating the MHSs contained in L = {dUe | e € Q}. Since KUL = {dUe | e € P(U\d)},
the optimization preserves completeness. [ ]

Theorem 2.2.2. Optimization 2 preserves completeness.

Proof. Let K = {j | j € U A ($ses : j € 5)}. By definition, it follows that:
HS(U,S,d) AdNK # 0 = -~MHS(U, S, d) (2.6)

Since removing elements in K from U only prevents the calculation of sets that
are guaranteed not to be MHSs, we can conclude that the optimization preserves
completeness. [ ]

Theorem 2.2.3. Optimization 3 preserves completeness.

Proof. From Corollary 1.2.2 (page 12), it follows that:
Jses:sNU =0 = $4: HS(U, S,d) (2.7)

Since halting the exploration of a branch whenever the aforementioned condition holds
only prevents the examination of sets that are guaranteed not to be HSs, we can conclude
that the optimization preserves completeness. |

Corollary 2.2.1. MHS? is complete.

Theorem 2.2.4 (Soundness). If all MHSs are evaluated, all sets computed by MHS® are
MHSs.

Proof. Given the fact that a set d is only added to D if and only if 3ycp : d C d and,
prior to its addition, all sets in {d’ | € D Ad C d'} are removed from D, it follows that,
at any given point, the sets in D are relatively minimal (i.e., 4 wep : d C d). Since, by
hypothesis, all existent MHSs for the problem are evaluated (and therefore added to D)
and all sets contained in D are always relatively minimal, no absolutely non-minimal HS
is contained in D. [ |

1K



2 MHS? - Optimizations

2.2.2 Complexity Analysis

As shown in [Garey and Johnson, 1990], the MHS problem is NP-Hard. In this section
we provide upper-bound values for the complexity of the operations performed in each
call of MHS?.

Each time MHS? is called it:

1. Checks whether the current sub-problem has any solutions: O (M x N), where
M = |U|and N = |S] (line 1, optimization 3).

2. Checks whether the current sub-problem is trivially solvable: O(1) (line 3).
If the problem is not trivially solvable, the algorithm:

1. Removes elements from U that are guaranteed not to form MHSs: O(M x N) (line
4, optimization 2).

2. Generates heuristic values for each element in U: at least O(M), usually O (M x
N) (line 5).

3. Ranks elements of U according to their heuristic values: O (M x log(M)) (line 5).

4. Prepares, for each element of the ranking, a sub-problem to be solved: O (M? x N)
(lines 6 — 7).

a) Simplifies the problem: O (M x N) (line 6).
b) Removes the current element from U: O(1) (line 7, optimization 1).
If the problem is trivially solvable, the algorithm:

1. Checks if the current set d is minimal with respect to D: O(I x K x L), where
I=|d,K=|D|,and L = 3" ,cp, 4 (line 10).

2. Removes non-minimal HSs from D: O(I x K x L) (line 11).

3. Adds d to D: O(I) (line 12).

2.3 Data structures
To have an efficient implementation of MHS? the following operations must be performed
efficiently:

1. Remove elements from S (line 6);

w/< 32




2.3 Data structures

2. Check set for relative minimality (line 10);
3. Purge proper super sets of a set from collection D (line 11);

In the remainder of this section, we analyze the data structures used in our
reference implementation. The implementation is available at https://github.com/
npcardoso/MHS2.

2.3.1 Encoding (U, S)

To efficiently encode and manipulate (U, S), we make use of a N x M binary matrix
(referred to as A) where each of the matrix’s rows encodes the membership of each
element j € U in a particular set S; (i.e., A;; = [j € S;], where [.] denotes Iverson’s
operator: [True] = 1, [False] = 0).

To avoid making multiple copies of the matrix when a modification to (U, S) is required,
we make use of a data structure we refer to as a filter. In practice, a filter is a vector
storing which columns/rows should be ignored at each stage of the algorithm’s execution.
Consequently, the resultant data structure is a 3-tuple (A, fe¢, fr) representing the original
(U, S) matrix, and the filtered columns/rows respectively.

To illustrate how this works in practice, consider the example in Figure 2.3 showing the
matrix representation of (U, S). Similarly to Figure 1.13 (page 16), each node in the
search tree represents a call to the function (all the parameters as well as the return
value are encoded as a table). Colored matrix cells represent the filtered elements of the
original matrix. Each circle marks the element that triggered the filtering of corresponding
row.

A naive implementation of such filters could be done with Boolean vectors where each
cell encodes the state of each column/row. Even though this approach is more efficient
than copying the matrix multiple times, it is possible to improve this structure to be more
efficient when iterating over a filtered matrix.

To that end, we use an integer vector where each cell contains the index of the next
unfiltered element. Such filter vectors have n + 1 elements, where n is the maximum
number of elements to be filtered. The filter vector indexes are zero-based so it is possible
to filter the first row/column of the matrix, which are one-based. The initial state for n
element filter is formally defined as f; = (i + 1) mod (n+ 1).

To iterate using one of such filters, a counter starting at 0 must be kept and, after each
iteration, it is updated as i = f;. The loop ends when the counter returns its value to 0.

To filter an element i, one must iterate back from j = ¢ — 1 until f; # ¢, setting each f; to
be equal to f;. In contrast to the naive approach, when all elements are filtered, the loop
is never executed, improving the efficiency.

Figure 2.4 depicts the states of a filter for a maximum of four elements after filtering
elements 3, 1, 2, and, finally, 4.

]33


https://github.com/npcardoso/MHS2
https://github.com/npcardoso/MHS2

2 MHS? - Optimizations

W/ 34

@] C2 C3

A c1 C 3
° v ° v
d [ . [ . [ ]
D {2} {1,2}
Return {} {}
{{1,2},{2,3}} {{1,2}}

C1 C2 C3

C1 C2 C3

° v .
° v

2,3}

C1 Co C3

{{1,2}}

° ° v ) . {{1,2},{2,3}}
° . . v . °
{} {1}
{} {{1,2},{2,3}} i o c3
{{1},{2,3}} {{1},{2,3}} v y
{1,3}
{{1},{2,3}}
{{1},{2,3}}

2.3.2 Encoding D

To efficiently store HSs, check their relative minimality and purge non-MHSs, we use the
trie data structure. A trie is a tree-like data structure where the set of node values in the

path from the root to a marked node corresponds to an element (in this case a HS) stored
in the trie.

C1 Co C3

C1 Co C3

° ° . ° v .
° . v ° . v
{3} {2,3}
{{1},{2,3}} {{1},{2,3}}
{{1},{2,3}} {{1},{2,3}}

Figure 2.3: Example search tree showing binary matrix for (U, S) (no optimizations)

To operate a trie, we assume the existence of the following basic operations:




2.3 Data structures

1

Initial state
After filter i = 2
After filter i = 4
After filteri =1
After filter i = 3

1 4
2 0
3 0
3 ©

©) 0
0 0

S W = = =O

Figure 2.4: Filter with 4 elements

e isMarked(n): Checks whether node n is marked. If node n is an invalid node
(denoted as x) the function returns False.

e getChild(n,e): Returns the child node of n with value e or x if no child of node n
has value e.

e getChildren(n): Returns the node values of the children of node n.

e setChild(n,e,n’): Assigns node n’ as the child of n with value e. If n’ = x, the
function removes the child node with value e instead.

An important prerequisite to efficiently implement the required (complex) trie operations
is that the elements in all HSs are ordered (in the following we assume ascending
order). On the one hand, the ordering assumption guarantees that any HS has a unique
representation (e.g., {1,2,3} vs. {2,3,1} or {3,2,1}). On the other hand, it guarantees
that the trie itself has an ordered structure (i.e., ﬂn,n/,e,e/ : n' = getChild(n,e) N e €
getChildren(n') A ¢ < e), enabling a reduction in the amount of nodes to be processed
when checking for minimality and purging super sets.

(a) Using unordered sets (b) Using ordered sets

Figure 2.5: A trie encoding 6 HSs

As an example consider two possible tries storing HSs {1,2,3,5}, {1,2,4,6}, {1,2,5},
{2,4,6}, {2,4,6,7,8}, and {8}, which are presented in Figure 2.5.

|35



2 MHS? - Optimizations

W/ 36

Algorithm 2.2 isMinimal
Inputs: (n,d)

Output: Boolean

1 if isMarked(n) then
2 return False

3 else if n # x then

4  whiled # 0 do

5 e < min(d)

6 d+ d\{e}

7 n' < getChild(n, e)

8 if “isMinimal(n', d) then
9 return False

10 return True

The algorithm for checking the minimality of an HS in view of the HSs encoded in the trie
(line 10 in Algorithm 2.1) is presented in Algorithm 2.2. The algorithm attempts to find a
path from the root node to a marked node composed exclusively of elements from set d.
If no such path is found, set d has no subsets in the trie and, consequently, is minimal. In
practice, the algorithm works by iteratively selecting an element e from d and recursively
exploring the child node with value e using the set d \ {e}. Since the trie has an ordered
structure, the elements of d are orderly selected and removed from d, avoiding the need
to explore different permutations of the same sets.

The algorithm for purging all supersets of a particular HS from the trie (line 11 in
Algorithm 2.1) is presented in Algorithm 2.3. The algorithm attempts to find all the paths
from the root node to some node in the trie containing all elements from set d and removes
them. In practice, the algorithm explores the tree recursively and, whenever the value
(e) of the node being inspected is contained in d, e is removed from d for subsequent
recursive calls in that particular branch. Whenever d becomes empty (signaling that all
elements in the original set d are contained in the path to node n), that particular subtree
is removed from the trie.

While removing the subtree when d is empty effectively removes all supersets from the
trie, it may also leave extraneous nodes in the trie (i.e., nodes that are not marked and
do not have marked nodes in their sub-trees). To remove such extraneous nodes, after
exploring the sub-trees of a particular node, the algorithm checks if it is marked and, if
not, if it has no children. If the node is not marked and has no children, it is also removed
from the trie.




2.4 Practical Considerations

Algorithm 2.3 purgeSuperSets
Inputs: (n,d)

Output: Node

1 if d =0 then
2 return x
3 else
4 e < min(d)
5 for ¢’ : ¢/ € getChildren(n) A e’ < e do
6 d«d
7 if ¢ = e then
8 d « d\ {e}
n' < purgeSuperSets(getChild(n,e’),d)
10 n < setChild(n,e',n’)
11 if ~marked(n) A getChildren(n) = () then
12 return x

13 return n

2.4 Practical Considerations

In this section we discuss domain-specific aspects of the proposed algorithm. First,
we discuss the selection of the heuristic as a way of improving the performance of
MHS? in a particular domain. Second, we present two pre-processing operations aimed
at decreasing the problem’s complexity while guaranteeing that the solution remains
unaltered.

2.4.1 Heuristics

To fine tune the algorithm for a domain specific goal, the algorithm uses the concept of
heuristic to drive the search by determining the shape and order of exploration of the
search tree. An example of heuristic would be to rank the elements of U according to the
number of sets they hit. Concretely, such a heuristic would be defined as follows:

H(G)=|{s|s€SAje s} (2.8)

Intuitively, this heuristic attempts to greedily minimize the size of the computed HSs.

In the context of SFL, as faults may not be consistently triggered, failing transactions
convey information on the possible causes of a system malfunction whereas successful
transactions help the diagnosis system to exonerate components that would otherwise
be inaccurately judged as faulty. As the goal of diagnosis is to find the best explanation
for an error, using a heuristic that minimizes the size of the computed HSs may not be
ideal.

|37



2 MHS? - Optimizations

W/ 38

To convey this intuition to Staccato, the Ochiai similarity coefficient [e Silva
MeyerDada al., 2004] was used as a heuristic [Abreu and Van Gemund, 2009]. The
selection of this particular similarity coefficient was based on the results of previous
work on similarity-based SFL showing evidence that, for real-world diagnostic scenarios,
Ochiai provides good heuristic results [Abreu et al., 2007]. Concretely, the heuristic is
defined as follows:

H() = n11(j) (2.9)
V (m11G) +101(7)) * (11 (7) + m10()

where
e n;1: Number of failing transactions where j was active.
e n19: Number of failing transactions where j was not active.
e ng1: Number of passing transactions where j was active.

To illustrate how the heuristic works in practice, consider the search tree in Figure 2.6 in
which the heuristic values are presented. Similarly to Figure 2.3 (page 34), each node
in the search tree represents a call to the function. Unlike Figure 2.3, instead of only
representing the conflicts, the full hit spectrum is presented?. Also, Figure 2.6 depicts a
search tree for the fully optimized MHS algorithm.

We can see that the ranking for the outermost call the component evaluation order is
(c2,c1,c4,c3). Intuitively, this is due to the fact that ¢; and ¢, share the same activation
pattern in failing transactions but ¢; was also activated in a passing transaction whereas
co was not. The same logic can be applied between ¢3 and ¢4. Since ¢; and ¢, were
activated in more failing transactions than cs and c4, they are evaluated first.

It is important to note that, due to the fact that the failing transactions get filtered during
the algorithm’s execution, the value of the heuristic for a particular element may vary for
different nodes in the search tree.

2.4.2 Ambiguity Group Removal

Ambiguity groups [Gonzéalez-Sanchez et al., 2011a] occur when two or more elements of
U are members of the same sets in S (i.e., for two elements ji, jo, Vscs : j1 € s & jo € 3).
If such groups exist, if follows that:

MHS (U, S,dU {j1}) & MHS(U,S,dU {js}) (2.10)

Intuitively, the above formula states that the elements from an ambiguity group are
interchangeable since they hit the same sets. It is possible to take advantage of this fact
by collapsing the different ambiguity groups into single elements (and making sure such
information is available), thus reducing the search space.

2Recall that every node having all rows with e; = 1 (i.e., the conflicts) filtered represents a (potentially
non-minimal) diagnostic candidate.




2.4 Practical Considerations

€1 € c3 c4| € €cp C C3 €4 €
A . o ° o °
o V ° o V ) °
e o | o o V | o
H(j) ° o . ° °
0.7 e
Ci1 C C3 ¢4 € €1 €y €3 c4| e
v e ° o Vv °
v e ° o Vv . °
e o | o v e | e
€1 C C3 C4| € e . o . e . o
o o . .| e 0.7 0.1
o o °
o o | o
L] . ® . . Ci Cy C3 C4| € Ci C C3 C4| €
0.7 0.8 0.4 0.6 e o .| e VAR T .| e
o o ° vV e °
o V| o . o V | o
° ° . ° °
€1 Cy €3 c4| € Ci Cy €3 C4| €
e o ° v e °
e o ° h v e °
vV e | e . vV e | e
° ° ) ° °

Figure 2.6: Example search tree with heuristic values (with optimizations)
As an example consider the following MHS problem:

U=1{1,2,3,4}
S ={{1,2},{3,4}} (2.11)
D = {{17 3}> {L 4}’ {2> 3}7 {27 4}}

For this example elements 1 and 2 form an ambiguity group. Also, 3 and 4 form another

ambiguity group. Running the same algorithm with ambiguity group removal, only 1
HS is generated ({1,3}). However, since we know that 1 and 2 as well as 3 and 4

|39



2 MHS? - Optimizations

o/ 40

are interchangeable, the remaining 3 MHSs can be generated by applying all possible
substitutions.

2.4.3 Problem Minimization

A non-minimal (U, S) problem occurs when:

Jsses:sC s (2.12)

Whenever such condition holds, solving (U, S) is equivalent to solving (U, S’), where S" =
S\ {s'}. This is due to the fact that, on the one hand, by hitting s it is guaranteed by
definition that all sets s’ are also necessarily hit. On the other hand, by hitting a set s’
with an element z (i.e., z € §'), it does not guarantee that s is also hit. In the case of =
not hitting s, 2 possible outcomes can take place:

1. There is a set e € S’ such that z € (s’ Ne). In this scenario, if d U {z} is a MHS for
(U, S), italso is a MHS for (U, S").

2. There is not a set e € 5" such that « € (s’ Ne¢). In this case, if dU {z} is a HS for
(U,S), d also is a HS for (U, S) and, therefore, d U {z} is not a MHS for (U, S).

Given this, the removal of all sets s’ from S does not alter its result. Consequently, solving
the problem (U, S) or its minimal version is equivalent. However, since the size of the
data-structures is reduced, the algorithm performs faster. To implement this functionality,
one may use the trie data structure described in Section 2.3.2 to filter the non-minimal
sets.

As an example consider the following problem:

U ={1,2,3,4}
S ={{1,2},{1,3},{1,2,4},{1,2,3,4}} (2.13)
D ={{1},{2,3}}

For this problem we can see that sets {1,2,4} and {1, 2, 3,4} are not minimal as both are
supersets of {1,2}. In fact, only sets {1,2} and {1, 3} are minimal, which produce the
following minimal problem:

U ={1,2,3}
S ={{1,2},{1,3}} (2.14)
D' = {{1},{2,3}}

As expected, the solution to both problems is equal.




2.5 Benchmark

2.5 Benchmark

To assess the performance of our algorithm we conducted a set of benchmarks aimed
at evaluating the impact of each of the proposed optimizations(all the benchmarks were
conducted in a single computer with 2x Intel Xeon Central Processing Unit (CPU)
X5570 @ 2.93GHz, 4 cores each).

For our benchmarks, we generated several MHS problems by means of a Bernoulli
process, with parameters M = |U|, N = |S|, and R = Pr(j € s). The presented results
represent the average over 100 problems for each combination (M, N, R). Furthermore,
when applicable, the Ochiai heuristic was used, and no pre-processing was performed
on (U, S).

le6

le4d

D] (log)

le2

MHS Cardinality
10 15 20 1e0

5

Figure 2.7: (M, N, R) parameters’ impact

To better understand how the parameters affect the problem’s solution, consider the
following observations (Figure 2.7):

1. For the same (M, N) parameter values:

a) The average MHS cardinality for problems generated with smaller R values is
larger than the average MHS cardinality for problems generated with larger R

cal[4n



2 MHS? - Optimizations

= Y)

values (i.e., the MHS cardinality is negatively correlated with the R value).

b) The average solution size (i.e., | D|) was minimal for problems generated with
R =0.05.

¢) |D| was not maximal for problems generated with R = 0.95.

2. Problems generated with larger (M, N) values have the maximal |D| value for
smaller R values than problems generated with smaller (M, N) values (i.e., the
value of R for maximal |D| is negatively correlated with (M, N)).

2.5.1 Small problems

The first benchmark in this section is aimed at evaluating the impact of each optimization
for small problems, for which all MHSs can be calculated (M = N € {10, 20, 30,40}, and
R € {0.05,0.15, ...,0.95}).

In Figure 2.8, we observe the throughputs?® for 5 different implementations of the algorithm
with an increasing number of features. At one end of the scale, Baseline represents an
implementation with no optimizations as well as no heuristic (i.e., random ranking). At the
other end, Opts 1 — 3 represents an implementation with both the Ochiai heuristic and all
the proposed optimizations (the ids are presented in Algorithm 2.1). Heuristic represents
the performance of Staccato. For readability, data points for which the throughput was
less than 0.1 MHS/sec were omitted from the plots.

The analysis of the results shows that the heuristic by itself introduces a significant
performance improvement over Baseline for M = N = 10 (5x faster on average, note
the log scale). Such result presents a strong evidence that using a heuristic to drive
the search can not only improve the quality of the computed MHSs (as shown in [Abreu
and Van Gemund, 2009]) but also improve the computational efficiency of the algorithm.
Additionally, and in comparison to the Heuristic (i.e., Staccato) performance, all the
optimizations showed an improved performance of at least 1.5x (Opt 1 for R = 0.95),
at most 170000x (Opts 1 — 3 for R = 0.05), and on average 34000x, 8000x, and 1700 x
for Opts 1 — 3, Opts 1 — 2, and Opt 1 respectively.

Analyzing the remaining tests cases (M = N € {20,30,40}), we can see that, with the
increase of the problem size and for small R values, the relative contribution of each
optimization becomes more significant (for M = N € {10,20,30}, R = 0.05, Opts 1 — 3
performs 30x, 7000x, and 1000000x faster than Opt 1, respectively). We also observe
that, on average and for all combinations of (M, N, R), Opts 1 — 3 was the algorithm with
the best performance, implying that the computational savings introduced by optimization
3 should, on average, outweigh its overhead.

It also worth understanding how each optimized implementation improves over Heuristic.
A closer inspection of the results reveals the following patterns:

3The throughput metric is calculated as the number of generated MHSs divided by the total run-time and is
measured in MHSs/sec. When calculating this metric, we took care to discard all non-minimal HSs.




2.5 Benchmark

—A—| Baseline Heuristic (Staccato) |——| Opt 1 |——| Opts 1-2 Opts 1-3 (MHS2)
[{o]
D -
—
<
3 -
<
N il
. z
: 1
-
O o
D -
—
¢
e
-
(e}
O
—
<
2 -
<
: 1]
. z
: 1
: 3
=~ -
f_g 3
~ o
—2|
5 o1
o -
£ ©
2
o
Z3
= 24
: <
: 1
‘ z
1
w
O o
D -
—
o
i
—
[{e}
2 -
P! &
A I 5
< T [
b i J
I S Z
% 1
: T
I
: 3
D =
-
)
e
—

Figure 2.8: Small problems’ results

1. All algorithms have similar performances for large R values.

2. All optimizations are more effective for smaller R values.

3. Optimizations 1 and 2 have a considerable effect for all R values whereas
optimization 3 is only effective for small R values.

Pattern 1 can be explained by noting that the average MHS cardinality is negatively
correlated with the R value. It follows then that, problems with large R values have shallow
search trees and, consequently, the optimizations, which focus on improving the search
tree exploration, have a lesser performance impact.

Conversely, pattern 2 can be explained using the complimentary argument. For small
R values, as the search trees become deeper, the non-optimized algorithms perform a

all43



2 MHS? - Optimizations

large amount of unnecessary divide tasks, thus leaving (exponentially) more room for
improvements.

To explain pattern 3, we shall look at the optimizations individually:

e Optimization 1 prevents the exploration of paths composed of the same elements
although in different orders. Such inefficiencies occur whenever the MHSs are
composed of more than 1 element.

e Optimization 2 reduces the overhead associated with the heuristic calculation. The
overhead reduction also occurs whenever the MHSs are composed of more than 1
element.

e Optimization 3 performs a look-ahead verification to assess whether the current
sub-tree is a dead-end (i.e., no MHSs will be generated in such sub-tree) and
terminate the exploration if a dead end is reached. The impact of this optimization is
contingent on how far ahead it detects the dead-end which, in turn, is dependent on
the deepness of the search tree. As the deepness of the search tree is negatively
correlated with R, this optimization is more effective for small R values.

2.5.2 Large problems

The second benchmark is aimed at evaluating the impact of each optimization for
large problems where it is impractical to calculate all MHSs (M = N = 103, and
R € {0.05,---,0.95}). In all the following test cases a time based cutoff of 30 seconds
was enforced.

The first two plots in Figure 2.9 present both the percentage of HSs that were minimal
(MHS%) and the average HS cardinality for each of the 5 implementations. For large
problems, we observe that the heuristic plays an important role in assuring that the
computed HSs are in fact minimal (98% vs. 0% minimality for Heuristic and Baseline, on
average). Even though the MHS% of Opts 1 — 2 and Opts 1 — 3 is lower when compared
to Opt 1, we can see that the average HS cardinality of the former implementations is
comparable to cardinality of the later, implying that the number of extraneous elements in
the non-minimal HSs is small (specially when compared to Baseline).

The remainder of Figure 2.9 presents the number of HSs as well as the throughput for
all implementations. While Baseline, Heuristic, and Opt 1 compute 500 HSs on average,
the remaining implementations compute 93000 HSs on average (186 x better). Taking into
account the number of computed HSs, despite the lower MHS%, the absolute number of
MHSs for optimizations 2 and 3 is effectively larger than the number of MHSs calculated
by the remainder algorithms.

Finally, it is interesting to note that even though we increased the problem size by 25x
factor, the throughput of MHS? is comparable to the throughput observed in Figure 2.8.
We can conclude that the fully optimized MHS? scales to large problems more efficiently
than Staccato.

o/ 44
/\



2.6 Summary

—A—|Baseline Heuristic (Staccato) |——|Opt 1 |——| Opts 1-2 Opts 1-3 (MHS2)
N
s1 ¥ Y ¥ 3 P 0 TR x
P g
S 4 + $
~
©
E g
E D
=
=
S
N
4 A A A A A A A A A _A
o
(32}
2
-
—
(<)
Ey
=29
ke
<
[
O o
. O -
(@) —
>
<
o
3
—
~
QO -
—
2 3
o«
=
)
[%2)
T 9l
++ -
I
<
i
3
7 $
- S—o + + ¢ + & ¢ $
—
(<)
i)
=
- O -
S -
a
<
[<)
S
O o
=
< o7
'_ —

0.05 0.15 0.25 0.35 0.45

Figure 2.9: Large problems’ results

2.6 Summary

In this chapter we successfully addressed the limitations presented in Section 1.3.1.1
(page 20) thereby positively answering Research Question 1 (page 20). Concretely, in

this chapter:

e We proposed 3 optimizations to Staccato (Section 2.1, page 27):

— The first optimization prevents multiple examinations of the same set.

cal[4s



2 MHS? - Optimizations

o/ 46
/\

— The second optimization preemptively filters elements of U not contained in
any setin S.

— The third optimization prevents the examination of branches such that there is
at least one set that cannot be hit by any element in U.

We provided a formal analysis of the proposed algorithm:

— We formally proved that the optimized algorithm is both sound and complete
(Section 2.2.1, page 30).

— We gave some intuition about the complexity of the algorithm’s different
operations (Section 2.2.2, page 32).

We analyzed the implementation details of our reference implementation, which is
available at https://github.com/npcardoso/MHS2 (Section 2.3, page 32).
We discussed some practical aspects of our MHS generation algorithm:

— We discussed how the heuristic influences the algorithm’s performance
(Section 2.4.1, page 37).

— We discussed how to improve the algorithm’s performance in the presence of
ambiguity groups (Section 2.4.2, page 38).

— We discussed how to improve the algorithm’s performance when solving
non-minimal problems (Section 2.4.3, page 40).

We presented the conducted benchmarks showing that our algorithm:

1. Performs 34000x faster than Staccato for small problems (Section 2.5.1, page
42).

2. Performs 186 faster than Staccato for large problems (Section 2.5.2, page
44).

3. Exhibits a similar throughput in both small and large problems.

The faster algorithm enables the exploration of a larger number of HS, increasing the
likelihood of actually finding the “best” MHS for a particular instance of the problem. In
the particular case of SFL, this improvement translates into:

o Better diagnostic accuracy when setting a time-based cutoff, due to the fact
that calculating more candidates increases the likelihood of finding the correct
diagnostic candidate.

e Smaller diagnostic latency when setting a solution size cutoff, due to the fact that
calculating a fixed number of diagnostic candidates takes less time with MHS? than
with Staccato.



https://github.com/npcardoso/MHS2

3 MHS? — Parallelization

In this section we present the parallelized version of MHS?. As explained in
Section 1.3.1.2 (page 20), our goal in this chapter is to enable the computation of MHSs
in parallel or even distributed environments.

This chapter is divided as follows. First, we introduce our MHS generation algorithm.
Second, we evaluate the performance of our algorithm.

3.1 Approach

The parallel algorithm can be seen as a Map-Reduce algorithm [Dean and Ghemawat,
2004] (Figure 3.1). The map task (Algorithm 3.1) is a modified version of Algorithm 2.1
(page 28).

MHS?

Reduce > D

Figure 3.1: MHS® Map-Reduce workflow

aill47



3 MHS? - Parallelization

2
/\

Algorithm 3.1 MHS? — Map task
Inputs: (U,S,d=10,D = 0)

Parameters: (L, Skip,k,np)
Output: Minimal hitting set collection D,

1 if Jses : sNU = () then
2 return D

3 if S # 0 then

4 U«U\{jljcUAN(Bscs:jes)}
5 for j € Rank(U,S) do

6 if |d| + 1= L A Skip(k,np) then
7

8

U« U\{j} # Opt 1
continue

9 S+ {s|seSNnjes}

10 U+~ U\{j}

11 D+ MHS?*(U\ {j},S\S,dU{j}, D)

12 else

13 if ﬂdlep :d’ C d then

14 D+ D\{d' |deDAdCd}

15 D+ DuU{d}

16 return D

In contrast to the sequential algorithm, we added a parameter L that sets the fork-level,
i.e., the number of calls in the stack (or equivalently, |d| + 1), at which the computation
is divided among the processes/threads. When a process of the distributed algorithm
reaches the target level L, it uses a load division function (Skip) to decide which elements
of the ranking to skip or to analyze. The value of L implicitly controls the granularity
of decision of the load division function at the cost of performing more redundant
calculations (Figure 3.2). Implicitly, by setting a value L > 1, all processes redundantly
compute all HS such that |d| < L.

In parallel processing environments, it is desirable to minimize the amount of time
processes are idle. ldleness periods may arise when a process completes its work
before other threads on which subsequent processing stages depend on. Concretely, for
Map-Reduce algorithms, it is desirable that all map complete their jobs simultaneously,
thus minimizing idle periods and improving resources usage. Taking this fact into account,
a correct selection of the load distribution function (i.e.,Skip) is critical for obtaining good
performance.

With regard to the load division, we propose two different approaches. The first,

referred to as Stride, consists in assigning elements of the ranking to processes cyclically
(Figure 3.3a). Formally, a process picy1..np} is assigned to a branch b; of the search tree




3.1 Approach

£ \\ L=1
{1} {2} {3} {4}
7 \\\ < L=
({1.2}) ({1.3}) ({1.4}) ({2.3}]({2.4}) (3,4}
Evaluations ]
Decisions
Redundant| Non-redundant
1 1 15
2 5 11 6
L2 (9 |20 - s ()|

Figure 3.2: L parameter intuition

I modnp=£k—1 (3.1)

The second approach, referred to as Random, uses a pseudo-random generator to divide
the computation (Figure 3.3b). This random generator is fed into a uniform distribution
generator that assures that, over time, all p, get assigned a similar number of elements
although in random order. This method is aimed at obtaining a more even distribution of
the problem across processes than Stride (Figure 3.4). Formally, a process pye(i..np} is
assigned to an element of the ranking if:

rand() mod np =k —1 (3.2)

A particularity of this approach is that the seed of the pseudo random generator must be
shared across every process to assure that no further communication is needed.

(a) Stride function (b) Random function

Figure 3.3: Skip functions intuition

2l |40



3 MHS? - Parallelization

£ \\ L=1
{2} {3} {4}
N\
({121) (1.3 ({143) ({2.3}) ({2,4}) (3,4}

Figure 3.4: Balancing problem when using the Stride function

Algorithm 3.2 MHS? — Reduce task
Inputs: (Di,...,Dy;,)

Output: Minimal hitting set collection D

1D«

2 D'+ Sort(U,~, D},)

3 ford € D' do

4  if Byep :d Cdthen
5 D« DU{d}

6 return D

Finally, the reduce task (Algorithm 3.2), responsible for merging all partial MHS
collections D}CE{LM} originating from the map task. The reducer works by merging all
HSs in a list, ordered by cardinality. The ordered list is then iterated, adding all MHSs
to D. As the HSs are inserted in an increasing cardinality order, it is not necessary to
look for subsumable HSs (line 14 in Algorithm 3.1) in D, thus improving the algorithm’s

performance.

3.2 Benchmark

To assess the performance of our algorithm we conducted a set of benchmarks in a setup
similar to the one presented in Section 2.5 (page 41). To evaluate the gains introduced
by the parallelization of the candidate generation algorithm we use the speedup metric.
In parallel computing, speedup refers to how much a parallel algorithm optimizes an
arbitrary metric in relation to the corresponding sequential algorithm. Concretely, the

speedup metric is defined as:
_M

S, = 72 (3.3)

where:

&/ 50
/\



3.2 Benchmark

e pis the number of processors;
e M, is the value of an arbitrary metric for the sequential algorithm;

e M, is the value of the same arbitrary metric for the parallel algorithm with p
processors.

In small problems where all minimal candidates are calculable, the observed metric is
the execution time, evaluating how much faster is the parallel version of the algorithm
when compared to its sequential counterpart. In large problems where only a subset
of the solution is calculable, we evaluate the algorithm’s throughput improvement by
registering the number of minimal candidates calculated by the parallel algorithm with
different number of processors and constrained by the same calculation time.

A normalized version of the speedup is called efficiency and is defined as:

Sy M

E,="22_- "1 3.4
P T X, (3.4)

The efficiency value typically ranges between zero and one and estimates how
well-utilized the processors are in solving the problem, compared to how much effort is
wasted in communication and synchronization.

3.2.1 Small Problems

The first parallelization benchmark, is aimed at evaluating the behavior of MHS® for small
problems (M = N =40, R € {0.25,0.5,0.75}).

In Figure 3.5, we plot the speedup as well as the efficiency for both the Stride and
Random load distribution functions. Also, Figure 3.5 shows the run-times' as well as
the throughput? for both load distribution functions.

The analysis of Figure 3.5 shows different speedup/efficiency patterns for different R
values, which are due to the large variation in the run times: ~ 200, 5.7 and 0.1 seconds

for R = {0.25,0.5,0.75}, respectively. On the one hand, when the run time is small

(i.e., for large R values), the parallelization overhead has a higher relative impact in the o
algorithm’s performance. On the other hand, when the run time becomes larger due to

the increase of both the cardinality and the amount of MHSs (i.e., for small R values), the

relative parallelization overhead becomes almost insignificant.

'In this plot, each cluster is composed of 1 data point per test case (100 data points for each load distribution
function). The horizontal displacement inside each cluster was only added to improve the visualization of
the results.

2|n this section the throughput represents the average throughput per thread. Concretely it is calculated as

|D|

np Xt

, Where t represents the cut-off time.

|t



3 MHS? - Parallelization

Setup |~4A—|Random Stride

R=0.25 R =0.50 R=0.75

[T e, T

Efficiency
100% 133% 0

66%

33%

lel le3
- e—
wE»

Run Time (log)
2e4  3e4 4e4 1le-3  le-1
-
-
-
|
-

Throughput

le4d

[ | N T R T B |
6 7 8 1 2 3 4 5 6 7 8

=
N =
[
Do
gl =
o=
~N -
0 =
=
N =
W=

s
# CPUs

Figure 3.5: Small problems’ results

For R = 0.25 and in contrast to R € {0.5,0.75}, the speedup/efficiency of Random is
superior to the performance of Stride. The reason for such a difference in efficiency is that
the cool-down period (i.e., the period in which at least one process is idle and another is
active) of Stride was longer than the one observed for Random. The smaller cool-down
period of Random shows that the usage of a stochastic approach was successful at
evenly dividing an unbalanced search tree among threads, leading to a better load
division.

Y |l
- ff



3.2 Benchmark

Finally, we observe that Random experienced super-linear speedup (i.e, efficiency above
100%) for some of the test cases. This pattern emerges due to the fact that the complexity
of the operations performed on D (lines 13 — 15 in Algorithm 3.1), is not linear in the
number of elements stored in it. As a consequence, by reducing size of D to nip effectively
reduces the cost of the operations by a factor greater than np.

3.2.2 Large Problems

The second benchmark is aimed at evaluating the behavior of MHS? for large problems
(M =N =10% and R € {0.25,0.5,0.75}).

Minimal

90% 100%

Throughput

led 2e4 3e4 4e4 0O

0

90% 100%

80%

70%

80%

70%

led 2e4 3e4 4ed

Cutoff Time |-4&—|1sec 2 sec|—%—|4 sec|—|8sec 16 sec
R=0.25 R =0.50 R=0.75
- * A A A A A A $
% L N A B "F=* T

A A A
U —a

Figure 3.6: Large problems’ results

wopuey

aps

wopuey

apu1s

Figure 3.6 shows the minimality percentage and throughput for the large problems when
using time-based cutoffs of 1,2,4,8, and 16 seconds per process with a varying number
of processes.

|3



3 MHS? - Parallelization

-
/\

It appears that, for large problems, there is no significant difference in terms of the
amount of generated MHSs between Random and Stride. By performing a two-tailed
T-test we determined, with a 99% confidence interval, that both approaches should have,
on average, equal throughputs.

Regarding the minimality percentage of both approaches, we observed similar results to
those presented in Figure 2.9 (page 45): 97% for R = {0.25,0.5}, while for R = 0.75 the
percentage decreases to around 75%. Also, the throughput is consistent with all previous
benchmarks.

Cutoff Time | e |1sec 2sec| e |4sec| e |8sec 16 sec
wn
@ -
n
7
7
L0 6
4 & ;
I 5 5
=, 8 4
* OA 4
o ¢’ 5
4 2
Eh 3 2
211
1
o
<
84
PN 123
6
53 7
B3 i
o~ 1
3 23,
= 3 5
IJ—:g- 1 2 Y ’
™ 3 4 5 6 7 8
D
n
oo
1 1 1 1
0 50 100 150

Total CPU Time

Figure 3.7: Large problems’ results with x-axis transformation

Figure 3.7 shows the number of MHSs and throughput after applying a data
transformation. In spite of using the number of processes as the x-axis, we use the total
CPU time for all processes (rt.,,), Which is calculated as:

Ttepu = Ttwall X NP (3.5)

where rt,q is the perceived run time for the algorithm’s execution when using a “wall”
clock®. Each data point is represented by a number encoding the number of used CPUs*.

3Since rtwai accounts for both the map and reduce phases whereas the cutoff is only applied to the map
phase, it is always larger than the cutoff value.
4The points’ y-axis values are the averages over the different R values for the data points in Figure 3.6.

s4 |1



3.3 Summary

We can see that, for instance, running the algorithm for 8 seconds on 8 CPUs accounts
approximately for the same total run-time as running the algorithm for 16 seconds on 4
CPUs.

Using this plot we can easily see that, for a given total calculation time, it is, on average,
preferable to divide the task among the maximum possible number of CPUs (eventually,
given enough CPUs, this trend should hit a ceiling). As an example, we can see that 8
threads running for 2 seconds produce more MHSs than 2 threads running for 16 despite
using approximately the same total CPU time. This result is in accordance with the
super-linear speedup observed in Figure 3.5.

3.3 Summary

In this chapter we successfully addressed the limitations presented in Section 1.3.1.2
(page 20) thereby positively answering Research Question 2 (page 20). Concretely, in
this chapter:

e We proposed a parallelization approach for MHS? (Section 3.1, page 47):

— We proposed an approach based on the Map-Reduce paradigm, thereby being
applicable in both parallel and distributed environments.

— We proposed two load distribution strategies: Stride and Random.
e We presented the conducted benchmarks showing that:

1. When computing full solutions for complex enough problems, the algorithm
performs at approximately 100% efficiency even when using 8 worker threads
(Section 3.2.1, page 51).

2. When solving simple problems for which the algorithm’s run-time is small, the
efficiency quickly drops with the increase of worker threads (see Section 3.2.1,
page 51).

3. On average, the algorithm was more efficient when the problem was divided
across the maximum number of threads (see Section 3.2.2, page 53).

4. The algorithm exhibits a similar throughput per thread in both small/large
problems and sequential/parallel setups (Figures 2.8, 2.9, 3.5 and 3.6, pages
43, 45, 52 and 53, respectively).

The usage of parallel processing enables the exploration of a larger number of HS,
increasing the likelihood of actually finding the “best” MHS for a particular instance of
the problem. In the particular case of SFL, and as stated in Section 2.6 (page 45), this
improvement translates into:

e Better diagnostic accuracy when setting a time-based cutoff, due to the fact
that calculating more candidates increases the likelihood of finding the correct
candidate.

e Smaller diagnostic latency when setting a solution size cutoff, due to the fact that
calculating a fixed amount of diagnostic candidates takes less time with MHS? than
with Staccato.

al]ss



3 MHS? - Parallelization

&/ 56
/\



4 Fuzzinel

In this chapter we focus on addressing the SFL limitations explained in Section 1.3.2.1
(page 21). Concretely, we propose a generalization to the SFL diagnostic framework,
dubbed Fuzzinel', capable of diagnosing fuzzy errors with better accuracy. This chapter
is divided as follows. First, we introduce our enhanced SFL approach. Second, we
evaluate the performance of our approach.

4.1 Approach

The problem of handling fuzzy errors can be divided in two sub-problems: detection and
diagnostic problems. In this section we discuss how to solve both problems in the context
of SFL.

4.1.1 Fuzzy Error Detection

Existent approaches to error detection (e.g., [Casanova et al.,, 2013]) make use of
first-order logic descriptions of the correct behavior of the system (weak-fault models)
to assign transactions to one of two possible sets: the pass set and the fail set (P
and F respectively, where F = P). A consequence of such fault models is the
crisp distinction between correct and incorrect system states. While this classical
logic description enables an accurate representation of functional errors, it is unable to
accurately represent a large variety of non-functional errors.

"Fuzzinel is a combination of 50% “Fuzzy” and 50% “Barinel”’, which is the name of the original SFL
algorithm.

2al|s7



4 Fuzzinel

&/ 58
/\

As an example, consider a type of non-functional error that, informally, is described by
the statement “The system is slow”. Even though we can easily relate the slowness
of the system to an appropriate metric (e.g., response time), it is not easy to define a
crisp boundary in this same metric to distinguish acceptable and slow transactions. By
setting a crisp boundary at, for instance, 1 second, a response time of 0.9999 seconds
would be considered to be correct whereas a marginally superior response time would
be considered incorrect. Also, a response time of 0.9999 seconds would result in the
same type of error information (pass) as a smaller response time even though the larger
response time may represent an error symptom.

To overcome the expressiveness limitation of the classical logic error detection
mechanisms, we propose their generalization using fuzzy logic [Zadeh, 1965]. Fuzzy
logic extends the notion of binary set membership by introducing the concept of
membership functions, denoted p4 (membership function for set A), mapping a set of
problem-specific variables onto the continuous interval [0, 1], where the endpoints of 0
and 1 conform to no membership and full membership, respectively. In the context of
error detection, the concept of fuzzy membership enables the representation of 3 types of
system states: correct (uz(z) = 0), incorrect (uz(x) = 1) and degraded (0 < pz(z) < 1).
Intuitively, since F = P, in the new fuzzy error model a degraded transaction exhibits both
correct and incorrect behaviors simultaneously, however with different degrees.

[—npr L7 |

0.8 fmmmmmmmmmmmm e

0.5 1

0 rty 05 rty 1 rt3
rt

Figure 4.1: Crisp vs. fuzzy sets

As an example, consider the crisp fail set containing all response times (rt) above 1
second. This same set could be represented in terms of a membership function as

(Figure 4.1):
0 rt <1
t) = . 4.1
pr(rt) {1 et 1 (4.1)

To achieve the goal of representing the degraded state, consider that all response
times below 0.5 seconds are considered correct and all times above 1 second incorrect.
Furthermore, consider that the amount of degradation follows a linear pattern between
those two thresholds. The fuzzy fail set membership function representing this particular




4.1 Approach

type of error could be defined as:

0 , rt < 0.5
pp(rt) =92-rt—1 ,05<rt<1 (4.2
1 ,rt>1

/
f
N M‘MW
!

rt

Figure 4.2: Arbitrary membership functions

It is important to note that the assumption of linear degradation introduced in
Equation (4.2) was only made for simplicity. In real-world scenarios, the membership
functions are application dependent and can exhibit arbitrary patterns. From our
approach’s point-of-view, the membership functions are treated as black-boxes.
Figure 4.2 shows a set of alternative membership functions for the error previously
described. Despite their odd shapes they are acceptable membership functions, provided
that they correctly describe the error state of the transaction.

e 2 L B 8 ... B 32
e 1/2 - g 1/8 . 1/32
171
[ ]
o o
0.5 ¢ ® O4
0 :
0 1.5

rt

Figure 4.3: Error detection sensitivity intuition

Furthermore, it is possible to change the error detection sensitivity by raising 7 to an
exponent, as depicted in Figure 4.3. We can see that by raising u3 to an exponent in the
interval |1, 4+o00|, the error detection becomes less sensitive to errors in the fuzzy zone
(i.e., the error value in the fuzzy zone becomes smaller than the original). In contrast, by

2l 59



4 Fuzzinel

&/ 60
/\

raising p 3 to an exponent in the interval |0, 1], the error detection becomes more sensitive
to errors in the fuzzy zone. In fact, when the exponent tends to either +o0o or 0, the fuzzy
membership becomes a binary membership and errors in the fuzzy zone become passes
and fails, respectively.

) A e
7 rt
e c2 | pr(rt)  pgp(rt)
0.3 . ° 0 0
0.9 ° . 0 0.8
1.5 . ° 1 1

Figure 4.4: Fuzzy error hit spectrum example

To conclude the illustration of the fuzzy error detection process, consider the spectrum
presented in Figure 4.4, which also contains the run-times for each transaction (marked
in Figure 4.1). From this spectrum we can see that, in particular for ¢5, the crisp error
vector neglected an error symptom whereas the fuzzy error vector categorized that same
transaction as being 80% degraded.

Finally, it is worth mentioning that, even though our simplistic example only used one
variable to determine the error value of the transactions, the error value can be a function
of an arbitrary number of variables. Furthermore, a system may have several membership
function for different types of transactions.

4.1.2 Fuzzy Error Diagnosis

Using fuzzy logic to detect errors, it is possible to assert that a particular transaction is
80% degraded (i.e., uz = 0.8 and consequently uz = 0.2). The remaining challenge
consists in integrating this additional knowledge in the diagnostic process.

As an example consider again the spectrum depicted in Figure 4.4. Using the approach
explained in Section 1.2.2 (i.e., using e = ur), it follows that the candidates® d; = {¢;}
and dy = {c2} are ranked equally. However, intuitively, we would expect d; to be ranked
ahead of dy since transaction t¢2, in which component ¢; was involved, shows error
symptoms whereas t; does not.

To solve this limitation we make use of the concept of probability of a fuzzy event [Zadeh,
1968]. The probability of a fuzzy event is defined as:

Pr(a) =) pa(a) - Pr(z) (4.3)
e

where « is an arbitrary event, and € is a set representing all the possible outcomes of
.

®The candidates for the fuzzy approach are calculated by setting a threshold for pu; to discretize
transactions in terms of pass/fail. In this example we use the threshold p; = 1.




4.1 Approach

Mapping this definition to the problem at hand, we generalize Equation (1.14) as:

Pr(AZ-,ei ’ d) =€ (1 - G(d7 AZ))

w=r (4.4)
+(1—e) - G(d, A;)

=P

where the first part of the equation (z = F') accounts for the incorrect behavior whereas
the second part (x = P) accounts for the correct behavior. In contrast to Equation (1.14),
this generalization is valid for fuzzy error values (i.e., e €]0,1[). Figure 4.5 shows the
plot of the Equation (4.4) with respect to e; and G(d, A;). For comparison, we also plot
Equation (1.14) with thick black lines.

0 025 05 075 1

1
0.8 | =
0.6 | w
< =
0.4 1 &
_Q
0.2
0 ‘ ‘ ’ ‘ ‘
0 02 04 06 0.8 1
G(d, Ai)
(a) 2D view (b) 3D view

Figure 4.5: Likelihood function plot

Using the above generalization, the probabilities of the two candidates are calculated as
follows:

Pr(Ae|d;)=(08-(1—¢1)+(1—-0.8)-¢1) ()
x(1-1=-g)+(1—-1)-q1)

t3

=(08-(1—g1) +0.2-g1) x (1 —g1)
N——

N~

to t3

caller



4 Fuzzinel

&/ 62
/\

Pr(A,eldy) = (0-(1—g2)+(1-0)-9)
x(1-(1—ga)+(1—1) g)

= g2 x(1—g2)
<

t1 t3
0.8 d 0.25 t
06 | 0.2 1
0.4 1
0.1
0.2 |
0 - - - > 0 : ‘ : :
0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1
(251 g2
(@) Pr(A,e|dy) (b) Pr(A,e| ds)

Figure 4.6: Likelihood plots

By performing an MLE for both functions (Figure 4.6) it follows that Pr(A,e | d;) is
maximized for g; = 0 and Pr(A,e | dz2) for g = 0.5. Applying the maximizing values to
both expressions, it follows that Pr(d; | A,e) ~ 8 x 107% and Pr(ds | A,e) ~ 2.5 x 1074
Such probabilities entail the ranking (d;, d2), which breaks the ambiguity between d; and
de, thus improving the diagnostic accuracy.

4.2 Benchmark

In this section we describe our benchmark approach and discuss results.

4.2.1 Setup

To evaluate our approach we make use of a simulator as proposed in [Chen et al.,
2013]%. The simulator provides functions to describe and execute a probabilistic model
of an arbitrary system, thereby gathering the required spectra. The authors showed
that, in the scope of SFL, the benchmark results for both real and synthetic data are
comparable. This is mainly due to the fact that, since system is highly abstracted, the
spectra generated by real and simulated systems is similar.

3https://github.com/SERG—Delft/sfl—simulator



https://github.com/SERG-Delft/sfl-simulator

4.2 Benchmark

l Start |

Cq C1
(0,0.1,0.9,1) 4 S/ [(0.5,0.2,0.3,0.4)
€o N
- c1:0.2,¢c9: 0.8 )
S 507 4 B
S c3:0.5,0:0.5 =

c3 W (6
cy 1 c1:0.1,¢c3:0.9

Figure 4.7: Probabilistic topology model

Our simulator consists of a stack automaton which takes as input a probabilistic model
of the system (such as, for instance, the one depicted in Figure 4.7) and, through a
Monte Carlo process, generates spectra. The probabilistic model describes the system’s
topology, the interaction between components, and the system’s faults. To build the
topology portion of the model, two primitives exist: components and links (depicted in
blue and orange colors, respectively). Concretely, a component (identified by its numeric
ID) contains a list of links. A link consists of a list of component IDs with associated
transition probabilities () corresponds to no transition).

Whenever a component is activated, its links are sequentially evaluated. The evaluation
of a link consists of pushing the component’s next link onto the stack (if it exists) and
randomly selecting a component (based on the transition probabilities defined in the
activated link) to continue the execution. When all the links belonging to a component
have been evaluated, a link is popped from the call stack, returning the control to the
caller component. As soon as all the links belonging to a component have been evaluated
and the stack is empty, the execution halts.

Considering the description of the simulator, a transaction can be generated by pushing
the first link of a component marked as an entry point onto the stack (¢, in Figure 4.7) and
running the simulator from that state until its execution comes to a stop. The spectrum is
generated by repeating this process an arbitrary number of times while recording which
components have been activated in each transaction.

To emulate the error behavior, components may be injected with faults (depicted in red),
which are parameterized over 4 variables (p., p4, pi, and py). pc, pq, and p; correspond
to the probabilities of correct, degraded, and incorrect behavior. During the simulation,
whenever a faulty component is activated, the outcome of such activation (in terms of
correct, degraded, or incorrect) is randomly determined using such probabilities. In the
event of a component performing erroneously, it has an associated probability p of failure
which, whenever it occurs, it results in an premature end of the transaction (in Figure 4.7,
an error in component ¢4 always results in a failure whereas an error in component ¢;
only has a 40% chance of resulting in a failure). To determine the transaction’s fuzzy

alle3



4 Fuzzinel

error value, we apply the following rules:

1, if at least one component performed erroneously
e=+<0, if all components performed correctly (4.7)
rand(0,1), otherwise*

To generate the spectra required for our benchmark we undergo a two-step process. In
the first stage we randomly generate a set of system models, while in the second, we use
such models to generate the required spectra.

Faults

T € [3,10]

C; € [3, 10]
Figure 4.8: N-tier service architecture

We generated system models that comply with a N-tier service architecture (Figure 4.8).
Systems were created by randomly selecting the number of tiers (T" € [3,10]) as well as
the number of components in each tier (C; € [3,10],1 < i < T). Every component is
connected to all the components of the next tier with random transition probabilities. To
exhibit erroneous behavior, a number of faults (¥) was randomly injected (in terms of
position) in the systems.

In our setup, we generated 100 systems for each value F' € [2,4], totaling 300 systems.
The injected faults had 90% and 10% probabilities of degraded, and erroneous behavior,
respectively.

64




4.2 Benchmark

The spectra generation is parameterized over a single variable FE, representing the
number of errors at the end of which the simulation stops. For each generated system,
we ran 10 simulations for each value E € [1,9], totaling 90 spectra per system. Overall,
our benchmark is composed of 300 x 90 = 27000 test cases.

4.2.2 Evaluation Metric

The wasted effort metric evaluates, for a particular diagnostic report, how many healthy
components need to be inspected before all faulty components are found [Steimann et al.,
2013]. To calculate this metric one must undergo an iterative process. Starting with the
first candidate, all the candidate’s components are inspected to determine whether that
particular component was responsible for the erroneous behavior. Depending on the
result of such inspection two outcomes may occur. On the one hand, if the component is
found to be faulty, that particular component is removed from all other candidates in the
ranking. On the other hand, if the component is found to be healthy, all candidates in the
ranking containing that particular component are removed. This process is repeated until
all faulty components are found. In the case of the last inspected candidate being tied
with other candidates, it is assumed that, on average, half of the healthy components are
examined.

During this iterative process, we keep track of two counters: inspected components
(I) and faulty components (C). Using these two counters, the wasted effort metric is
calculated as

W=1-C (4.8)
d Rank I|C
1 {Cl, 64} 1 2 1
2 | {ezresery 2
3 | {esverest 3
4 {er, 2} 4 4| 9
5 {Cg, 05} 4

Figure 4.9: Example diagnostic report

As an example consider the diagnostic report presented in Figure 4.9 for which the correct
diagnostic candidate is d = {c1,c2}. In order to calculate the wasted effort, we start by
examining c¢; and ¢4 finding that ¢; is faulty while ¢4 is healthy. Due to ¢4 being healthy,
candidates ds and ds are discarded. Examining d, we observe that the only unexplored
component (c;) is faulty. Additionally, we see that both system’s faults were discovered.
However, as ds is tied with ds, we must inspect half of the healthy components. The
wasted effort of this diagnosis is therefore W = 4 — 2 = 2, meaning that 2 healthy
components (c4 and c3/cs5) were examined in the process of finding the root cause of
the system’s errors.

A normalized version of the wasted effort is called diagnostic quality and is defined as:

w
M-C

Q=1- (4.9)

all6s



4 Fuzzinel

) 66
/\

where M is the number of system components. The diagnostic quality value is between
zero and one and estimates the fraction of system’s healthy components that need to be
examined before all faulty components are found.

We refine the diagnostic quality metric to take into account the fact that, for a specific
spectrum, not all components of the systems can be at fault. As an example consider a
system with 1000 components with a spectrum consisting of a single failing transaction
activating 2 components. Assuming the diagnostic algorithm only proposes plausible®
candidates, the quality is contained in the interval between 1 and % Instead of
calculating the diagnostic quality using the M components of the system, we use Mj, the
number of “suspicious” components to calculate the new metric, which shall be referred
to as “fair quality” (Q ). A component is said to be suspicious if it was activated in a failing
transaction. A consequence of using @y is that the diagnostic qualities of all possible

permutations of the ranking always have a lower bound quality of 0.

4.2.3 Results

In this section, we compare the performance of the crisp diagnostic approach (see
Section 1.2.2, page 17) with our fuzzy approach for the generated spectra.

In Figure 4.10a, we compare the average @ ; for each test scenario. From the analysis of
the plot we can see that the crisp approach was, on average, outperformed by the fuzzy
approach. This is due to the fact that the fuzzy approach is able to successfully take
advantage of the extra fuzzy error information to break the ties in the ranking (as shown
in the example from Figure 4.4) that occur when dealing with small numbers of erroneous
transactions. Furthermore, with the increase of erroneous transactions, it appears that
the average crisp approach’s )y seems to converge towards to the same average Qy
as the fuzzy approach. This happens due to the fact that the information introduced by
the occurrence of errors eventually compensates for the limitations imposed by the crisp
error abstraction.

In Figure 4.10b, we present a set of box plots® comparing the diagnostic quality
distributions of both approaches for each test scenario. From the analysis of the plots
we can see that the fuzzy approach not only has a better performance than the crisp
approach, but also that the fuzzy approach distribution is more skewed towards better
quality results than the crisp approach. Additionally, we can see that the fuzzy approach
exhibits a higher consistency (i.e., smaller inter-quartile range) than the crisp approach.
This tendency can be further observed in Figure 4.11, where we plot a more detailed
version of Figure 4.10Db, in which we include every test case result.”

®By plausible we mean that all the candidate’s components were at least activated once in an erroneous
transaction.

®For each test scenario, the box corresponds to 2" and 37 quartiles (i.e., 50% of the cases), the vertical
lines correspond to the 1°¢ and 4" quartiles, and the small dashes correspond to test cases categorized
as outliers. A test case is considered to be an outlier if its distance from the box is greater that 1.5 « IQR
(inter-quartile range, i.e., the height of the box).

"To improve the visualization, we added transparency and random horizontal displacement to each data
point.




4.2 Benchmark

Diagnostic Quality

25%

50% 75% 100%

100% 0% 25%

75%

50%

100% 0%

50% 75%
v sined #

25%

0%

T L

Diagnostic Type |—2—|Crisp |—=—|Fuzzy

Diagnostic Type - Crisp

s

e o s e

2 3 4 5 6 7 8 9 1 2 3 4 5 6
Number of Errors Number of Errors

(a) Averages (b) Box plots

Figure 4.10: Benchmark results

Fuzzy

ORI |

¢ Siined #

€ s)ined #

all67



4 Fuzzinel

Fuzzy

o

Crisp

o

Diagnostic Type

# Faults: 2

LOOBH SO

0 @eO0a O
0 IBOIOIOWL O WROOEE O

# Faults: 3

a‘i Fa s AR .T
oMoV O °

# Faults: 4

OB ONaE ()
© VS (FEOTWOOMM DTN 1)

Q@R O0H 0
0 HOETOEOMN O CWATOH ) O

0 PO30EOmE O =0
0 GUOROEOME Q CWATOENE  ©

T T T T T
%00T  %S. %05 %S¢ %0

T T T T T
%00T %SL %05 %S¢ %0
Aurend ansoubelq

T T T T T
%00T  %S. %05 %S¢ %0

Number of Errors

Figure 4.11: Benchmark results (detailed view)



4.3 Summary

A pairwise analysis of the data (Figure 4.12) shows that our approach outperformed the
crisp approach in 65% of the test cases. Moreover, in 94% of the cases our approach
was at least as accurate as the classical approach. In the remaining 6% of the test
cases the accuracy loss was due to (1) lack of observations, and (2) marginal variations
in the posterior probability but large enough to make the relative ranking change. The
overall average improvement of quality introduced by our algorithm was of AQ s = 0.153,
representing a relative improvement of 21%. By performing a paired one-tailed T-test, we
can ascertain that our approach introduced a relative improvement of 20%, with a 99%
confidence interval.

© 1
1
1

Qy(Fuzzy) > Qy(Crisp): 94%
Relative Q¢ Improvement: 21%

—

Density

1
[
-1.0 -0.5 0.0 0.5 1.0

Qf(Fuzzy) — Q(Crisp)

Figure 4.12: Quality improvement density plot

4.3 Summary

In this chapter we successfully addressed the limitations presented in Section 1.3.2.1
(page 21) thereby answering Research Questions 3 and 4 (page 22). Concretely, in this
chapter:

e We addressed Research Question 3 by using fuzzy logic instead of the classical
binary logic to detect/encode error states (Section 4.1.1, page 57).

e We addressed Research Question 4 by generalizing the state-of-the-art SFL using
the concept of probability of a fuzzy event (Section 4.1.2, page 60).

e We presented the conducted benchmarks showing that our fuzzy error approach
(Section 4.2.3, page 66):

— Improved the diagnostic quality in 65% of the test cases.
— Performed at least as good as the classical approach in 94% of the test cases.

al[69



4 Fuzzinel

— The average relative improvement introduced by our approach was of 20%,
with a 99% confidence interval.

N, 70
/\



5 NFGE

In this chapter we focus on addressing the SFL limitations explained in Section 1.3.2.2
(page 23). Concretely, we present our approach, dubbed Non-linear Feedback-based
Goodness Estimate (NFGE), aimed at modeling the components’ goodness as a
non-linear function (referred to as gj(st)) of a set of observable state variables.
Additionally, we discuss how the SFL diagnostic framework can be generalized to make
use of state-based goodness models, such as the one we propose in this chapter.

5.1 Approach

Our approach can be divided into two independent stages: the modeling and diagnostic
stages.

5.1.1 Modeling g; (st)

Let an abstract data type, henceforward referred to as feedback spectrum, be the input
of our modeling approach.

Definition 10 (Feedback Spectrum). The feedback spectrum encodes the result of a set
of diagnoses. Concretely, let M denote the cardinality of COMPS. Fb.; consists of a
2 x M matrix defined as:

Fb.; = (St1y vy Sthy oovy SLEC) (5.1)

Fby; and Fby; are the pass and fail feedback observation lists for component c;,
respectively. Each element of Fb.; encodes the value of a set of state variables for
component c;.

In the following we assume that a mechanism for collecting feedback spectra exists.

|7



5 NFGE

Our approach to model g;(st) consists of a probabilistic model that is derived from
the feedback spectrum. Concretely, we estimate the pass and fail probability density
functions', from which we trivially calculate g; (st).

The estimation of the pass/fail probability densities consist of a Kernel Density Estimate
(KDE), f.;j(st), defined as:

fej(st) = % Z K(‘St b—wgt/> 5.2)

St/EFbej

where bw > 0 is the bandwidth, a smoothing parameter, and K (-) is a kernel function®
[Rosenblatt, 1956, Parzen, 1962]. A key aspect of KDE is the selection of the bandwidth
parameter bw. In our approach, we estimate bw by using the Silverman’s “rule of thumb”
[Silverman, 1986], defined as:

bw = 0.9 x min (a i > X | Fbe;| (702 (5.3)

"1.34

where R is the inter-quartile range of Fb.;. Regarding K (-), even though several options
exist, in our approach, we use the Gaussian kernel. Additionally, and without loss of
generality, we assume the KDEs are a function of a single variable.

As an example, consider the modeling process of g;(st) for a component ¢; given 5
pass and 3 failed feedback observations with values Fbq; = {5,7,15,20,40} and Fby; =
{40, 44,60}, respectively.

0.2 { — fo(st)
Kernels
0.15 |
>
‘n
[
o 0.1
)
0.05 |

0 5710 15 20 25 30 35 40 45 50 55 60

Figure 5.1: Density estimation and underlying kernels

'The variables are arbitrary and must be selected on component-to-component basis. Currently, the set of
variables must be manually selected.
2A kernel is a symmetric but not necessarily positive function that integrates to one.

/) 7
/\



5.1 Approach

The first step in modeling g;(st) is the estimation of the probability density function
(Equation (5.2)) for the nominal executions with parameters Fby; = {5,7,15,20,40}
and bw = 6.328 (Figure 5.1). Note that for each value in the horizontal axis, the KDE
value corresponds to the summation of all underlying kernels at the same point. From
Equation (5.2) we can see that st’ € Fb.; determines each kernel’'s offset and bw the
dispersion of the density. In particular, when using the Gaussian kernel, st’ corresponds

to its mean and bw to its standard deviation.

0.25 | — bw = 6.328
bw = 3.164
0.2 | — bw = 12.656
>
2 0.5 |
c
a
0.11
0.05 |
0

0 5 10 15 20 25 30 35 40 45 50 55 60
st

Figure 5.2: Impact of bw value

Figure 5.2 provides a visual intuition on the effect of the parameter bw in the estimate.
A sensible selection of bw is crucial in order to yield good results as using a small bw
value will reflect sampling artifacts whereas a large bw value will smooth some behavioral

trends.

— foi(st) | | 1
0.15 | f1(st)
— gi(st) | {08
2
z 2
@ 0.1 10.6 %
o© o)
a S
104 O
0.05
1 0.2
0 : : : : : : : : : : — ()
0 ) 10 15 20 25 30 35 40 45 50 55 60

st

Figure 5.3: Goodness vs. pass/fail KDEs

The second and final step is the derivation of g;(st) from the pass/fail KDEs. We will
assume that the previous step was repeated for the fail executions yielding the densities

73



5 NFGE

/) 74
/\

depicted in Figure 5.3. g;(st), is defined as:

. ij(St)
. t = — =
G () Joj (st) + fj(st)

5.1.2 Ranking using g;(st)

To use the g;(st) models in the SFL framework we make use of a data-structure which
we shall refer to as state spectrum.

Definition 11 (State spectrum). State spectrum is a generalization of the hit spectrum
data structure (see Definition 7, page 10) that is able to encode the state of a set of
variables for each execution of c; € COMPS. Formally, we redefine A as:

&, if ¢j does not have a g;j(st) model and was involved in transaction i
Ayj = < (st1,- -, stg), ifc;jhasa gj(st) model and was involved in transaction i
0, otherwise
(5.5)

Each element sti, encodes the state of the observed variables for the k™ activation of
component j in transaction i.

From the definition, it follows that if no component has a g;(st) model, only & and @ will
appear in the activity matrix. In this scenario, & corresponds to a 1 and () to a 0 in the
terms of Definition 7.

Furthermore, since the state spectrum may encode an arbitrary set of state variables, it
generalizes over a range of alternative types of spectra described in the literature (e.g.,
count spectrum, time spectrum, path spectrum, etc.).

To apply g;(st) to the SFL framework we generalize G(d, A;) as:

G(d.A)= 1 {gf’ _ ifA;; = & 56
je(dnAy) G(j, Aij), otherwise
¢G5 = 11 s 5.7)

steS

In contrast to the former version of G(d, A;), our generalization does take into account all
the states in which c; was active.

In the case of existing components with no g;(st) models, the MLE procedure still needs
to be executed. To perform the MLE, all g;(st) must be evaluated such that G(d, 4;) is
reduced to the form:

G(d A)=Px [] g (5.8)

jeA,




5.1 Approach

Ap={j|jedn Ay =4} (5.9)
where P is the result of the product of all g;(st) for transaction i.

The MLE as the effect of maximizing the Pr(d | A, e) function by fitting a set of parameters
(in this case g;). In other words, by using the MLE, the constant g; models are fitted to
the input data (i.e., (A, e)) and thus the diagnostic is more resilient to novel errors than
when using g;(st) models. To address this issue, we further improve G(d, A;) as:

JE(dNA;)

oo _ (5.10)
(1—-0j)-gj+aj- G(j,Ai;), otherwise

where «a; € [0, 1] is the estimator confidence factor for component j. In scenarios in which
the G (3, 5) is fully trusted, o; should be set to 1. Alternatively, it is possible to fall back to
the original SFL algorithm by setting every «; to 0.

As an example, consider that a g;(st) model is known to become gradually obsolete over
time. In this scenario, it should be possible to fit, for instance, a sigmoid function to the
obsolescence pattern, as shown in Figure 5.4. We can see that, as time passes, the
impact of é(j, S) in the diagnosis gradually decreases while the impact of g; increases.

— G, 9) gj — 0y

0.5 |

0 1 2 3 4 5 6 7 8 9 10
Time o0

Figure 5.4: Estimation model confidence vs. time

To compare NFGE with the approach presented in Section 1.2.2 (page 17), consider
the state spectrum presented in Figure 5.5a, for which the only minimal candidates are
di = {1} and dy = {2}. Furthermore, consider that the g;(st) model for both ¢; and ¢,
was defined as shown in Figure 5.5b.

By applying NFGE with a1 = a2 = 0 (i.e., the g;(st) models are not used in the diagnostic
process), it follows that:

Pr(Aje|d))=1—g1)x ¢ (5.11) Pr(Aje|ds)=(1—g2) X g2 (5.12)
—_—— =~ —_—— =~

t1 t2 t1 t3

75



5 NFGE

A s |
? e =
0 o S 05
(2) 0.5) | 1
(0.2) 0 0
0 (H | o 002 05 1
st
(a) State spectrum (b) Goodness Function

Figure 5.5: NFGE example
We can see that, after applying the MLE procedure, d; and ds are ranked equally.

In contrast by applying NFGE with a; = ay = 1 (i.e., the MLE procedure is not used in
the diagnostic process), it follows that:

Pr(A,e|di) = (1-g1(2)) x §1(0.2) Pr(A,e|dy) = (1 - g2(0.5)) x ga(1)
A e N s e
t1 to t1 t3

=(1-01)x 1 = (1-0.98) x0.88

—_—— ~~ —_—— =~

t1 to t1 t3
=09 x 1 =0.02 % 0.88
t1 to t1 t3
=09 = 0.0176
(5.13) (5.14)

We can see that, for this particular example, NFGE succeeds at differentiating d; from
da.

5.2 Benchmark

To assess the performance of NFGE we conducted two studies. The first study is aimed at
evaluating the prediction error of the modeling approach. At this stage, we use synthetic
goodness models in order to be able to test a wider set of goodness patterns. After
establishing the prediction error of NFGE, the second study aims at exploring, in a real
application, the cases where the classical approach tends to fail.

\/ 76
N\



5.2 Benchmark

5.2.1 Prediction Error Study

To assess the prediction error of our approach we generated a set of 20000 random
synthetic goodness models (M). With the purpose of having different learning and
observation generation processes, we modified Equation (5.2) such that each underlying
kernel has an individual bw;. Formally, the synthetic goodness models have the
underlying pass and fail distributions defined as:

‘Fb5j| K( Sthbeji)

Fei(st) = > bil’;w (5.15)

=1

Additionally, in our synthetic data setup, two types of models can be distinguished. The
first set of models use the Gaussian kernel as their building block. These models are
intended to mimic the behavior of components that exhibit smooth transitions between
any two points in the feature space (i.e., the domain of the observable variables). This
can be the case of component aging in which the goodness normally decreases gradually
over time (e.g., Figure 5.5b).

The second type of model uses the Box kernel, i.e., a rectangular-shaped kernel centered
at Fbej; with bw; width and ﬁ height. This set of models is intended to emulate
components that exhibit abrupt transitions in their goodness functions. Also, as the
original kernel differs from the learning kernel, the process of generation and learning
becomes substantially different, allowing us to get to more significant conclusions.

Finally, the generated models range from simple patterns, such as for instance the one
depicted in Figure 5.5b, to more complex patterns with up to 20 supporting kernels for
both the pass and fail densities (i.e., | Fb.;| < 20).

To generate the feedback spectra, for each model we randomly selected a set of 200
values, F, in i