
University of Porto
Faculty of Engineering

Incremental Modular Testing in
Aspect Oriented Programing

!

Friday, November 12, 2010

André Monteiro de Oliveira Restivo
August 2015

Scientific Supervision by

Ademar Aguiar, Assistant Professor
Departmento de Engenharia Informática

Faculdade de Engenharia da Universidade do Porto

Ana Moreira, Associate Professor
Departamento de Informática

Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa

In partial fulfillment of requirements for the degree of
Doctor of Philosophy in Computer Science

by the Doctoral Program in Informatics Engineering

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Aberto da Universidade do Porto

https://core.ac.uk/display/143408124?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.up.pt
http://www.fe.up.pt

Contact Information:

André Monteiro de Oliveira Restivo
Faculdade de Engenharia da Universidade do Porto
Departamento de Engenharia Informática

Rua Dr. Roberto Frias, s/n
4200-465 Porto
Portugal

Tel.: +351 22 508 1772
Fax.: +351 22 508 1440
Email: arestivo@fe.up.pt
URL: http://www.fe.up.pt/~arestivo

This thesis was typeset on an Lenovo E530® running Ubuntu 12.04® using the free LATEX typesetting system,
originally developed by Leslie Lamport based on TEX created by Donald Knuth. The body text is set in Latin
Modern, a Computer Modern derived font originally designed by Donald Knuth. Other fonts include Sans
and Typewriter from the Computer Modern family, and Courier, a monospaced font originally designed by
Howard Kettler at IBM and later redrawn by Adrian Frutiger. Typographical decisions were based on the
recommendations given in The Elements of Typographic Style by Robert Bringhurst (2004), and graphical
guidelines were inspired in The Visual Display of Quantitative Information by Edward Tufte (2001). This
colophon has exactly one hundred and twenty-four (124) words, excluding all numbers and symbols.

André Monteiro de Oliveira Restivo
“Incremental Modular Testing in Aspect Oriented Programing”
Copyright ©2015 by André Monteiro de Oliveira Restivo.
All rights reserved.

to my parents, for the unconditional support

to Filipa, for understanding

Abstract

Developing good quality software is a hard task. The development cycle is com-
posed of several tasks that must fit perfectly in order to produce software that
is usable, maintainable, reliable, extensible and secure. The reason why it is so
hard to attain these goals is that software is extremely complex. A large software
product is composed of several parts that must be perfectly integrated like in a
giant jigsaw puzzle.

If done correctly, the parts that compose a software product, let us call them
modules, are going to be as loosely coupled as possible. Modules should need to
know as little as possible about the inner workings of other modules. This so-called
modularity is of paramount importance as it makes modules more understandable,
autonomous and promotes reusability.

The ideal scenario would be one where each module is only responsible for one
concern. Developing software would then be a question of composing these modules
together. Unfortunately, although software development paradigms and techniques
are surely focused in achieving this perfect separation of concerns, there are still
some concerns that get inevitably scattered and tangled throughout the code.

Aspect Oriented Programming (AOP) is a paradigm that promises to tame these
crosscutting concerns and separate them into their own units of modularity. The
way it proposes to do so is to enable the developer to pinpoint specific points of
interest in the code, using a domain specific language, and then inject context
aware code into those points. In this way, a concern that used to be scattered, can
be contained and still affect many different parts of the code.

Software testing provides stakeholders a measure of the quality of the software
being produced. It is one of the activities of the development cycle and is extremely
important in order to achieve good quality software. Unit testing is specially

v

important when we are trying to create modular software, as it allows testing each
module almost independently from others.

Unfortunately, as we will show in this thesis, using AOP hinders the usage of unit
testing. You can either throw away part of the modularity gained by using it or
drop some unit tests. This happens due to the capability of AOP to change the
behavior of existing modules, making tests that have been specifically created for
those modules only work when the AOP code is not present. Changing the tests
to account for the AOP code breaks the modularity, and the only other existing
option is to remove those tests.

In this thesis, we propose using semi-automatic code inspection to create a tree of
the dependencies between modules and use an incremental testing approach that
allows each software layer to be tested in isolation. As layers are added, one after
the other, if a certain part of the code breaks a previous test, it will be possible
to mark the broken tests as being replaced by new tests that take into account
the modifications that have been introduced by the AOP code. This allows unit
tests in lower layers to still be usable without breaking the modularity promised
by AOP.

A testbed was created to test the proposed approach and we were able to create
and use unit tests that would otherwise be impossible to run in the complete
system. We also showed how the approach is able to tackle some AOP specific
software faults. To help with the tests, we developed a reference implementation
of a support tool.

We believe that the approach being presented solves an important problem that
prevents the adoption of AOP from being more widespread. We do not assume
to have solved all AOP problems, but we think this thesis presents an important
step in the right direction as it enables a more sane usage of tests in conjunction
with aspects.

vi

Resumo

O desenvolvimento de software de boa qualidade é uma tarefa complicada. O
ciclo de desenvolvimento é composto por várias tarefas que têm de se coordenar
perfeitamente, a fim de produzir software utilizável, mantível, confiável, extensível
e seguro. A razão porque é tão difícil de atingir estes objetivos é que o software
é extremamente complexo. Um produto de software de grandes dimensões é com-
posto por várias peças complexas que têm de se encaixar perfeitamente como num
puzzle gigante.

Se feito corretamente, as peças que compõem um projeto de software, vamos
chamá-las de módulos, vão ser fracamente acoplados. Os módulos devem precisar
saber tão pouco quanto possível sobre o funcionamento interno dos outros módulos.
A modularidade é de grande importância, pois acaba por produzir módulos mais
fáceis de perceber e promove a sua reutilização.

Idealmente, cada módulo deveria ser responsável por apenas um único interesse
(em inglês concern). O desenvolvimento de software seria então uma questão
de composição destes módulos. Infelizmente, apesar da existência de técnicas e
paradigmas de programação focados em conseguir uma perfeita separação destes
interesses, ainda existem alguns que ficam inevitavelmente espalhados e misturados
ao longo do código.

A Programação Orientada a Aspectos (AOP) é um paradigma que promete separar
esses interesses transversais nas suas próprias unidades de modularidade. A forma
como se propõe fazê-lo é permitindo ao programador que identifique pontos de
interesse no código, usando uma linguagem específica do domínio e, em seguida,
injecte código com acesso ao contexto nesses pontos. Desta forma, um interesse
que esteja espalhado, pode ser contido e ainda assim afectar diferentes partes do
código.

vii

O processo de testes fornece às partes interessadas uma medida da qualidade do
software produzido. É uma das fases do ciclo de desenvolvimento, e é extrema-
mente importante a fim de conseguir que o software seja de boa qualidade. O teste
de unidade é especialmente importante quando estamos a tentar criar um software
modular, pois permite testar cada módulo separadamente, isto é, sem a influência
de outros módulos.

Infelizmente, como ficará demonstrado nesta tese, a utilização de AOP dificulta
o uso de testes de unidade. A solução é descartar alguns testes ou perder parte
da modularidade ganha com o uso de AOP. Isto acontece devido à capacidade
que os aspectos têm de alterar o comportamento dos módulos existentes, fazendo
que testes que foram criados especificamente para esses módulos não funcionem
quando certos aspectos estão presentes. Alterando os testes para terem em conta
o código AOP quebra a modularidade, e a única outra opção existente é remover
esses testes.

Nesta tese, propomos a utilização de métodos de inspeção de código para criar
uma árvore de dependências entre módulos e o uso de uma abordagem de teste
incrementais que permitem testar cada camada de software em isolamento. À
medida que as camadas são adicionadas, uma após a outra, quando uma nova
camada, que contém aspectos, é adicionada, será possível marcar testes que sejam
quebrados por esta nova camada como sendo substituídos por novos testes que
levam em consideração as alterações que tenham sido introduzidas por código
AOP. Isto permite que testes de unidade em camadas mais baixas ainda possam
ser utilizados sem quebrar a modularidade prometida pelos aspectos.

Foi criado um projecto para servir de bancada de testes para a abordagem proposta
e, nesse projecto, fomos capazes de criar e usar testes de unidade que de outra forma
seriam impossíveis de executar. Também mostramos como a abordagem é capaz
de resolver algumas falhas comuns específicas ao AOP. Para ajudar com os testes,
desenvolvemos uma ferramenta de apoio de referência.

Acreditamos que a abordagem apresentada resolve um problema importante que
impede uma adopção mais alargada do AOP. Não assumimos ter descoberto a
solução para todos os problemas relacionados com AOP, mas achamos que esta
tese apresenta uma passo importante na direcção certa, uma vez que permite um
uso mais fácil de testes em conjunto com os aspectos.

viii

Contents

1 Introduction 1

1.1 Aspects and Modularity . 2

1.2 Motivation . 3

1.3 Research Goals . 3

1.4 Research Strategy . 4

1.5 Main Results . 5

1.6 How to Read this Dissertation . 6

I State of the Art 9

2 Modularity 11

2.1 On the Complexity of Software . 12

2.2 Principles of Software Design . 13

2.3 Modular Programming . 14

2.3.1 Inheritance . 15

2.3.2 Multiple Inheritance . 15

2.3.3 Interfaces . 15

2.3.4 Mixins . 16

2.3.5 Traits . 16

ix

2.3.6 Composition . 17

2.3.7 Summary . 17

2.4 Crosscutting concerns . 17

2.5 Other Approaches . 18

2.5.1 Role Oriented Programming 19

2.5.2 Feature Oriented Programming 19

2.5.3 Subject Oriented Programming 20

2.5.4 Publish and Subscribe . 20

2.5.5 Generative Programming . 21

2.5.6 Aspect Oriented Programming 21

2.6 Summary . 21

3 Aspects 23

3.1 Key Concepts . 23

3.2 AspectJ . 25

3.2.1 Join Point Model . 25

3.2.2 Pointcuts . 26

3.2.3 Advices . 27

3.2.4 The Aspect Construct . 28

3.2.5 Precedence . 29

3.2.6 Inter-type Declarations . 30

3.2.7 Summary . 30

3.3 AspectJ Example . 31

3.4 Alternative Approaches to AOP . 33

3.4.1 Composition Filters . 33

3.4.2 Hyperslices . 34

x

3.4.3 Event Based AOP . 35

3.5 Aspect Oriented Software Development 35

3.5.1 Requirements Analysis . 35

3.5.2 Design . 36

3.5.3 Construction . 39

3.5.4 Testing and Validation . 43

3.5.5 Code Documentation . 43

3.6 Key Research Issues . 44

3.6.1 Fragile Point Cuts . 44

3.6.2 Interferences . 44

3.7 Summary . 45

4 Testing 47

4.1 The Importance of Software Testing 48

4.2 Types of Tests . 48

4.3 Testing Levels . 49

4.3.1 Unit Testing . 49

4.3.2 Integration Testing . 50

4.3.3 System Testing . 51

4.3.4 Acceptance Testing . 51

4.3.5 Regression Testing . 51

4.4 Summary . 52

II Problem and Solution 53

5 Unit Testing Aspects 55

5.1 Motivational Example . 56

xi

5.1.1 Base System . 56

5.1.2 Unit Tests . 57

5.1.3 Separating Concerns . 58

5.1.4 Adding Authentication and Security 59

5.2 Research Problem . 60

5.2.1 Moving the Test . 61

5.2.2 Changing the Test . 62

5.2.3 Using AOP to Change the Test 62

5.2.4 Reasoning . 63

5.3 Interferences . 65

5.3.1 The Anatomy of Aspect Interferences 66

5.3.2 Detecting Aspect Interferences 68

5.3.3 Aspect Interference Resolution 71

5.3.4 Avoiding Aspect Interferences 71

5.4 Related Issues . 72

5.4.1 Using Unit Tests with AOP 73

5.4.2 Using Different Approaches to Testing AOP 73

5.5 Summary . 75

6 Modular Testing in AOP 77

6.1 Dependency Graph . 78

6.2 Testing Modules . 79

6.3 Annotating Tests . 81

6.4 Example Scenario . 82

6.5 Formal Analysis . 84

6.5.1 Domain of Discourse . 84

xii

6.5.2 Operators . 84

6.5.3 Predicates . 85

6.5.4 Assumptions . 86

6.5.5 Theorems . 87

6.6 Testing for Interactions . 88

6.7 Proposed Testing Strategy . 91

6.8 Strategy Evolution . 91

6.8.1 Method-Test Approach . 92

6.8.2 Concern-Test Approach . 92

6.8.3 Module-Test Approach . 93

6.8.4 Advice-Test Approach . 94

6.9 Limitations . 94

6.10 Summary . 95

7 Implementation 97

7.1 DrUID: Unexpected Interference Detection 99

7.2 Aida: Automatic Interference Detection for AOP 101

7.3 Current Issues . 103

7.4 Summary . 104

III Validation and Future Work 105

8 Validation 107

8.1 School Testbed . 108

8.1.1 Testing . 109

8.1.2 Interference Resolution . 111

xiii

8.1.3 Multiple Configurations . 114

8.1.4 Incompatible Modules . 114

8.1.5 Performance . 115

8.2 Incremental Testing and Common AOP Faults 115

8.2.1 Incorrect Strength in Pointcut Patterns 116

8.2.2 Incorrect Aspect Precedence 118

8.2.3 Failure to Preserve Postconditions and State Invariants . . . 121

8.2.4 Incorrect Focus of Control Flow 124

8.2.5 Incorrect Changes in Control Dependencies 127

8.2.6 Incorrect Changes in Exceptional Control Flow 128

8.2.7 Failures due to Inter-type Declarations 131

8.2.8 Incorrect Changes in Polymorphic Calls 134

8.3 Summary . 135

9 Conclusions 137

9.1 Contributions . 138

9.2 Future Work . 140

Bibliography 141

Glossary 155

Acronyms 159

A Published Articles 161

xiv

List of Figures

2.1 Scattering and Tangling of Concerns 18

3.1 AspectJ Primary Elements . 29

5.1 Banking System Dependencies . 63

5.2 Naive Solutions to the Testing Concern Problem 64

6.1 Dependencies Between Modules . 79

6.2 Identifying and Removing Circular Dependencies 80

6.3 Modular Testing Process . 82

6.4 Some Possible Compilation Orders 89

6.5 Dependency Example . 89

6.6 Module D is Added After Module A 90

6.7 Module A is Added After Module D 90

7.1 First Approach to the Problem . 98

7.2 The DrUID Approach . 99

7.3 DrUID: Dependency Interface . 100

7.4 The Aida Approach . 102

7.5 Aida: Dependency Graph . 102

7.6 Aida: Interface for Running Tests 103

xv

8.1 School Testbed Core Classes . 108

8.2 School Testbed Package Dependencies 110

xvi

List of Tables

3.1 AspectJ Join Point Model . 27

8.1 School Testbed Aspect Packages . 109

8.2 School Testbed Implemented Tests 112

8.3 School Testbed Replaced Tests . 113

xvii

List of Listings

3.1 Join Point Examples . 26

3.2 Pointcut Examples . 28

3.3 A Simple Security Example Aspect 28

3.4 Inter-type Declarations . 31

3.5 Person Class . 31

3.6 Person Class with Caching . 32

3.7 Caching Aspect . 32

3.8 Error Filter Example . 33

3.9 Hyperslices Example . 34

3.10 Reusable Observer Pattern (AOP) 40

5.1 Banking System – Person Class . 56

5.2 Banking System – Account Class 57

5.3 Banking System – Person Class Tests 58

5.4 Banking System – Account Class Tests 59

5.5 Banking System – AccountOwner Aspect 60

5.6 Banking System – AccountOwner Tests 60

5.7 Banking System – Authentication Aspect 61

5.8 Banking System – Security Aspect 62

6.1 Secure Transfer Test . 83

xix

8.1 Replacing Test Example . 111

8.2 Fault 1: Value Class . 117

8.3 Fault 1: Limits Aspect . 117

8.4 Fault 1: Limits Tests . 117

8.5 Fault 2: Call Class . 118

8.6 Fault 2: Timing Aspect . 119

8.7 Fault 2: Billing Aspect . 120

8.8 Fault 2: Billing Aspect Test . 120

8.9 Fault 2: Timing Aspect Test . 120

8.10 Fault 3: Transfer Class . 122

8.11 Fault 3: TransferList Class . 122

8.12 Fault 3: VerifiedTransferOnly Aspect 123

8.13 Fault 3: Transfer List Tests . 123

8.14 Fault 3: Verified Transfer Only tests 124

8.15 Fault 4: QuickSort Class . 125

8.16 Fault 4: QuickSort Tests . 125

8.17 Fault 4: Invert Sort Aspect . 126

8.18 Fault 4: Invert Sort Tests . 127

8.19 Fault 6: Config Class . 128

8.20 Fault 6: Config Tests . 128

8.21 Fault 6: Default Values Aspect . 129

8.22 Fault 6: Default Values Tests . 130

8.23 Fault 7: User Class . 131

8.24 Fault 7: Employee Class . 132

8.25 Fault 7: Manager Class . 132

xx

8.26 Fault 7: Administrator Interface . 132

8.27 Fault 7: Operation Class . 132

8.28 Fault 7: Operation Tests . 133

8.29 Fault 7: Super Employee Aspect . 133

8.30 Fault 7: Super Employee Tests . 134

8.31 Fault 8: User Class . 134

8.32 Fault 8: Administrator class . 135

8.33 Fault 8: User Tests . 135

8.34 Fault 8: Strong Password Aspect 135

xxi

Preface

Having read quite a few of these prefaces myself, I have to admit that I feel like a
cliché when trying to explain where my inclination towards the computer sciences
comes from. I was about 6 or 7 years old when my parents bought me a 1982 ZX
Spectrum 48K. It was quite a remarkable piece of technology and no one I knew
had one at that time.

In the beginning, I mostly used it to play games. For those who never had the
pleasure to hold one of these, it is important to notice that the main I/O device
was a common tape recorder. One day, something seemingly ordinary happened,
that ended up having an extraordinary influence on my life. The tape recorder
stopped working and I really wanted to play. So I picked up the instruction manual
and started reading it, looking for a way to fix it. This very small book did not
contain what I expected, it was a manual for a language that was preloaded into
every one of these devices: Sinclair BASIC. I started fiddling with it and, since
that day, I never stopped enjoying programming.

When I was not playing with my computer, I was either playing with my friends or
doing something that, in retrospective, also shaped my future. The LEGO system
was always one of my preferred toys. What really attracted me to it, was that
after following the manual that came with each box set, one could just combine
the pieces with pieces from other boxes to create bigger, and sometimes better,
constructions. This modularity was something that always fascinated me and that
I will always consider a major cornerstone of every simple and elegant system.

The combination between programming and the elegance of modular systems was
only made apparent to me a few years later, when one of my favorite high school
teachers helped me transform, what was at the time, an horrible spaghetti code

xxiii

into modular procedural code. After that episode, I always strive to make my code
as modular as possible.

Having explained where my inclination for the subject came from, it is still hard
to pinpoint exactly where the topic of this thesis came from. I remember that the
first time I read about aspect oriented programming, it seemed that a very well
kept secret had been revealed to me. It seemed the solution for all my modularity
problems – it ended up not being exactly that – and I immediately decided that I
wanted to explore the matter further. After that, the topic I was pursuing seemed
to gain a life of its own as it changed from detecting interactions between aspects
to testing aspect oriented code.

This thesis would have been possible, but would have been harder, if not for the
help of all my friends and colleagues that never gave up on asking me if it was
finished. All the time, even when asked not to. I thank them for their support
and I do not dare to try to enumerate them for fear of forgetting someone.

I have to thank especially my good friend Sérgio Carvalho who had to endure my
ramblings about aspects, especially in the beginning of this work and ended up
being an excellent think wall. A thank you note goes to Miguel Pessoa Monteiro
for his help on constantly broadening my perspectives regarding interferences due
to aspect composition.

And of course to my supervisors Ademar Aguiar and Ana Moreira, who never gave
up on me and always offered their support and guidance whenever and wherever
I needed.

A final word of appreciation goes to FCT, for the support provided through schol-
arship SFRH/BD/32730/2006.

André Restivo
Porto, Portugal, August 2015

xxiv

“Begin at the beginning,”, the
King said, very gravely, “and go
on till you come to the end: then
stop”

Lewis Carrol – 1865

1
Introduction

Contents
1.1 Aspects and Modularity 2

1.2 Motivation . 3

1.3 Research Goals . 3

1.4 Research Strategy . 4

1.5 Main Results . 5

1.6 How to Read this Dissertation 6

The software development cycle is a complicated beast. It is composed of many
stages, each one producing a series of artifacts that should fit together perfectly
to produce a product that is as correct as possible.

Many other desirable characteristics are usually associated with the development of
good software. Software must be usable, maintainable, scalable, reliable, extensible
and secure just to mention a few. Most of these are strictly related to another
characteristic that we normally associate with well-written software: modularity.

2 Introduction

When we call a piece of software modular, what we are illustrating is the fact that
it is composed of several smaller units that can be described, reused, replaced and
tested in isolation. It is a fundamental characteristic of software and a cornerstone
for all the other desirable characteristics.

It has been long known that some software concerns are hard, if not impossible,
to confine to a single unit of modularity. In fact, they often encompass all the
code making a perfectly modular software system very hard to achieve. Aspect
Oriented Programming (AOP) appeared with the promise that it would allow these
concerns to be separated in their own units of modularity.

However, Modularity is related to more than just the code itself. Other artifacts,
like documentation and test cases, must also be modular if we want to be able to
reuse modules easily .

In this thesis, we intend to analyze the impact of AOP in the modularity of test
cases and how we can improve it.

This chapter starts by briefly presenting the context and scope of this dissertation,
followed by its goals, main results, and a description of each one of the other
chapters.

1.1 Aspects and Modularity

AOP is a programming paradigm that builds on the success of the classical Object
Oriented Programming (OOP) paradigm. It states that crosscutting concerns,
those that are impossible to encapsulate into their own units of modularity using
OOP, can be separated by using special code constructs.

This is possible because AOP languages contain two important mechanisms. The
first one allows developers to identify certain points in the execution flow and the
second one allows the introduction of code at those points. In this way, code that
used to be spread throughout several units can be kept together in a single unit
of modularity.

Motivation 3

1.2 Motivation

The advantages of a modular approach to software design are all well known to
developers. However, when a new software development approach appears, that
promises to improve the overall modularity of software systems, it often finds
resistance amongst developers as some of their old methods and practices are
incompatible with it.

A number of software developing techniques that improve modularity are already
well established in the development community. These techniques allow developers
to easily reuse great portions of their code and design. We have reached a point
where small improvements to current techniques are only accepted by developers
if they do not affect their current workflow or there is a dramatic benefit that is
perfectly clear.

To improve the acceptance of AOP amongst developers, we have to realize that
software modules are no longer just another piece of code. They encompass many
other artifacts like documentation and tests. To achieve true modularity, all these
components must be addressed. We believe that by contributing to improve testing
techniques for AOP, without changing their core aspects, we will help mitigate
AOP acceptance issues by the developer community.

1.3 Research Goals

The goal of this thesis is to make testing compatible with the ideals proposed
in the AOP paradigm. We will argue that, at this moment, mainstream testing
procedures break the modularity that AOP tries to implement.

This happens because AOP allows units to modify the behavior of other units
without their knowledge. This is often called obliviousness and is a fundamental
property of the paradigm.

To solve this problem, we propose a new technique that we called Incremen-
tal modular testing in Aspect Oriented Programing. This technique, detailed in
Chapter 6, evolved from the thesis that:

4 Introduction

An incremental testing solution allows developers to keep the promise of
modularity achieved by using AOP, without compromising the outcome
of the testing process.

1.4 Research Strategy

Software engineering is still a relatively recent research field and is an area that
is still maturing. There are several characteristics of software development that
suggest its own research paradigm, combining aspects from other disciplines: it is
a human creative phenomenon; software products are costly and usually have long
cycle times; it is difficult to control all relevant parameters; technology changes
very frequently, so old knowledge becomes obsolete fast; it is difficult to replicate
studies; and there are few common ground theories.

A categorization proposed at Dagstuhl workshop [THP93], groups research meth-
ods in four general categories, quoted from Zelkowitz and Wallace [ZW98]:

■ Scientific method. "Scientists develop a theory to explain a phenomenon;
they propose a hypothesis and then test alternative variations of the hypoth-
esis. As they do so, they collect data to verify or refute the claims of the
hypothesis."

■ Engineering method. "Engineers develop and test a solution to a hypoth-
esis. Based upon the results of the test, they improve the solution until it
requires no further improvement."

■ Empirical method. "A statistical method is proposed as a means to validate
a given hypothesis. Unlike the scientific method, there may not be a formal
model or theory describing the hypothesis. Data is collected to verify the
hypothesis."

■ Analytical method. "A formal theory is developed, and results derived
from that theory can be compared with empirical observations."

These categories apply to science in general. Effective experimentation in software
engineering requires more specific approaches. Software engineering research com-
prises computer science issues, human issues and organizational issues. It is thus
often convenient to use combinations of research approaches both from computer

Main Results 5

science and social sciences. The taxonomy described by Zelkowitz and Wallace
[ZW98] identifies twelve different types of experimental approaches for software
engineering, grouped into three broad categories:

■ Observational methods. "An observational method collects relevant data
as a project develops. There is relatively little control over the development
process other than through using the new technology that is being studied".
There are four types: project monitoring, case study, assertion, and field
study.

■ Historical methods. "A historical method collects data from projects that
have already been completed. The data already exist; it is only necessary to
analyze what has already been collected". There are four methods: literature
search, legacy data, lessons learned, and static analysis.

■ Controlled methods. "A controlled method provides multiple instances
of an observation for statistical validity of the results. This method is the
classical method of experimental design in other scientific disciplines". There
are four types of controlled methods: replicated experiment, synthetic envi-
ronment experiment, dynamic analysis, and simulation.

The best combination of methods to use in a concrete research approach is strongly
dependent on the specific characteristics of the research study to perform, viz. its
purpose, environment and resources. Hereafter, the research methods referred will
use this terminology. Further description of each method can be found in [ZW98].

Based on the expected results and contributions of the work presented in this dis-
sertation, the research strategy was based on the usage of observational methods.
In particular, a series of case studies, the most important of which is documented
in Chapter 8.

1.5 Main Results

The primary outcomes of this thesis encompass the following aimed contributions
to the body of knowledge in software engineering:

■ A detailed explanation of the problems introduced by testing in aspect ori-
ented programming.

6 Introduction

■ A technique that allows the usage of testing procedures with aspect oriented
programming without breaking the modularity that it strives to achieve.

■ A testbed that can be used by the community to study the interactions
between aspects and unit testing.

■ A reference implementation of a support tool for the developed approach.
■ The evidence of benefits of using the developed technique.

1.6 How to Read this Dissertation

The remaining of this dissertation is organized into three parts, with the following
overall structure:

■ Part 1: State of the Art. Where the author introduces the context of the
thesis and presents the current state of the art in the research areas most
relevant for the understanding of this document.

– Chapter 2, "Modularity" (p. 11), explains the importance of modularity
in the context of software development as well as the difficulties in
achieving it and some of the techniques developed to tackle the subject.

– Chapter 3, "Aspects" (p. 23), introduces the notion of AOP, its
objectives and shortcomings, and a particular implementation of the
paradigm in the form of the language AspectJ.

– Chapter 4, "Testing" (p. 47), lays down the different types of testing
involved in the software development cycle and the importance of each
one in obtaining quality software.

■ Part 2: Problem and Solution. Where the author first describes the
problem to be solved and proposes a solution.

– Chapter 5, "Unit Testing Aspects" (p. 55), explains how introducing
testing to AOP code breaks the modularity gained or compromises the
quality of the tests.

– Chapter 6, "Modular Testing in AOP" (p. 77), presents a technique
that aims at fixing the problem identified in the previous chapter.

– Chapter 7, "Implementation" (p. 97), presents a reference implemen-
tation for the technique presented in the previous chapter based on
annotations and incremental compilation.

How to Read this Dissertation 7

■ Part 3: Validation and Future Work. Where the author explains how
the work done was validated and points to future developments.

– Chapter 8, "Results and Validation" (p. 107), shows how the technique
behaves by applying it to a testbed developed for this same effect.

– Chapter 9, "Conclusions and Future Work" (p. 137), outlines the main
conclusions of this dissertation, and points to further work.

Part I

State of the Art

9

Fools ignore complexity. Prag-
matists suffer it. Some can avoid
it. Geniuses remove it.

Alan J. Perlis – 1982

2
Modularity

Contents
2.1 On the Complexity of Software 12

2.2 Principles of Software Design 13

2.3 Modular Programming 14

2.4 Crosscutting concerns . 17

2.5 Other Approaches . 18

2.6 Summary . 21

In this chapter, we will discuss how we can use modularity to tackle the inherent
complexity of software. We will also discuss several paradigms and techniques used
to improve modularity.

12 Modularity

2.1 On the Complexity of Software

Software development is difficult; doing it well is very difficult. In fact, doing
anything well is always difficult. Creating a building, deriving a complex mathe-
matical formula or writing a novel, wherever there is complexity, we have a hard
time coping with it.

Modern software systems, at least those that are large enough to be worth con-
sidering, are inherently complex. Some of this complexity is accidental and is
introduced by the languages, tools and processes used to build software systems.
But most of it is essential to the software itself and trying to abstract it often
abstracts away its essence [Bro87]. Software systems will always be complex and
hard to reason about, but slowly we are discovering new ways to make developing
them easier. Still, a single silver bullet does not exist.

The first computer programs ever written were so small that there was no reason
for thinking about common software engineering problems. Those first programs
were written in low-level code and even the first high-level languages did not have
structured programming constructs or even block structures. It was only in the
late 1960s that these started to become mainstream [Eds68].

As systems grew larger, the need to decompose them into smaller and more
manageable pieces became stronger. This led to a new family of programming
languages and a new programming style usually referred to as Procedural Oriented
Programming (POP). The ability to decompose a system into procedures and
functions made developing larger systems considerably easier.

In the late 1960s a new generation of languages appeared. Objects were now
the most important artifacts and new features such as encapsulation, modularity,
polymorphism, and inheritance were considered a solution for most programming
problems. Although it was in the early 1990s that OOP became mainstream, it is
still the most widely used programming paradigm.

High-level languages, POP, and OOP are all examples of advances that allowed
the removal of some of the non-essential complexities of software systems with-
out removing their fundamental characteristics. The common trait of these new
advances is that they allow the decomposition of a larger problem into a set of
smaller and more manageable ones.

Principles of Software Design 13

2.2 Principles of Software Design

A clear Separation of Concerns (SoC) [Eds82] is of paramount importance in
achieving a good software design. It is also considered one of the most important
principles of software engineering [Rob00] and yet it is one of the most difficult to
achieve. The next list highlights some of those principles:

■ Separation of concerns. Every important concern should be considered
in isolation [Eds76, Eds82]. This allows developers to concentrate on one
concern at a time, abstracting the complexity of the complete system and
making development easier and errors less prone to occur.

■ Low coupling. Every module should communicate with as few others as
possible [EL79]. This will prevent large ripple effects when changing the
behavior of a module, easier assembly of modules and higher reusability.

■ Weak coupling. If two modules communicate at all, they should exchange
as little information as possible [EL79].

■ Information hiding. All information about a component should be private
to a component unless it is specifically declared public [Dav72]. Preventing
others from accessing the internal implementation and the data representa-
tion of a module, will ensure that changes to these will not affect dependent
modules (as long as the public interface is kept the same).

■ Logical cohesion. Related components should be grouped together [EL79].
■ Open closed principle. A module should be open for extension but closed

for modification [Ber88]. This allows developers to change the behavior of a
module without having to change its source code.

■ Liskov substitution principle. A derived class may substitute a base
class [BJ94]. For this to be true, preconditions of the supertype cannot be
strengthened, postconditions cannot be weakened and invariants must be
preserved.

■ Dependency inversion principle. High-level modules should not de-
pend on low-level modules. Both should depend on abstractions. Abstrac-
tions should not depend on details. Details should depend on abstractions
[Rob96a]. This allows for the creation of modules that are more flexible,
durable and reusable.

■ Stable dependencies principle. A module should only depend on modules

14 Modularity

that are more stable than itself [Rob97]. In this case, stable means less prone
to changes.

■ Interface segregation principle. Many client specific interfaces are better
than one general purpose interface [Rob96b]. Clients of a module should only
know about the specific details they care about. No module should be forced
to depend on methods it does not use.

■ Law of Demeter. Each unit should have knowledge only about closely re-
lated units [KIA88, KI89]. A module should avoid calling a method returned
by another method. In other words: do not talk to strangers.

By using these principles, and in particular SoC, we will certainly be able to create
better software. Software created in this way will feature the following advantages
[SPB06] 1:

■ Explicitness The structure of each concern is fully and clearly expressed in
a single module.

■ Reusability As concerns are contained in a single module, they can be more
easily reused in other programs.

■ Modularity Since all concerns are inside modular units that encapsulate
structure and behavior, the overall modularity of an application is improved.

■ Evolution Evolution becomes easier since the implementation of changes to
concerns always occurs locally within a module and saves the need to adapt
existing classes.

■ Pluggability Since all concerns are described inside a single module, they
can be easily plugged in and out of an application.

In the next section, we will analyze some techniques and paradigms that are used
to create modular programs.

2.3 Modular Programming

Modular programming is a programming style where different concerns of a single
program are separated into different units of modularity making them easier to
reason about, reuse, maintain and debug.

1In the original paper, this list referred to the advantages of aspect oriented programming.
The list has been adapted to better follow the flow of the document.

Modular Programming 15

OOP was the first real take on creating a modular programming paradigm. It
is based on the idea that functions and properties should be aggregated inside
programming units called classes. It provides some key concepts that help in
achieving modularity like encapsulation, inheritance and polymorphism.

2.3.1 Inheritance

There are two key concepts that are often confused when talking about inheritance.
Interface inheritance, also know as behavioral subtyping, is related to the Liskov
substitution principle – if S is a subtype of T, then objects of type T may be
replaced with objects of type S [BJ94]. It establishes an is-a relationship between
types. Implementation inheritance, on the other hand, allows implementation
reuse. Subclasses inherit their parents external interface, data members and code.
Many languages embrace the two concepts making subtyping and inheritance a
single aspect.

2.3.2 Multiple Inheritance

As the name indicates, languages that support multiple inheritance allow a class
to inherit from more than one parent class. This inheritance is normally done both
at the interface and implementation levels.

Multiple inheritance promotes reusability but can cause ambiguity problems when
classes inherit from more than one class. This is sometimes called the deadly
diamond of death [Mar98] and is tackled in different ways by different languages.

2.3.3 Interfaces

Some programming languages prohibit multiple inheritance altogether and use
interfaces instead. Single inheritance is still allowed and classes can implement
more than one interface at a time.

Interfaces are just like classes but do not provide a default implementation. This
way, they remove the ambiguity problem that comes with multiple inheritance but
can force developers to use the same code in different implementing classes.

16 Modularity

2.3.4 Mixins

In classical OOP, classes must declare from which parent classes they inherit from.
Mixins are a mechanism to define non-instantiable classes that will eventually
extend a superclass. Using mixins, we are able to specialize the behavior of several
parent classes. For this reason, mixins are also referred to as abstract subclasses
[BC90].

At first look, mixins might just look like multiple inheritance but as they do not
force a static inheritance chain, they can be used in different ways. For example, in
re-mix, a framework that provides mixins for C# and Visual Basic .NET, mixins
can be applied in the following places [Sch09]:

■ A class can declaratively choose to be extended by one or more mixins.
■ A mixin can declaratively choose to extend one or more classes.
■ An application can declaratively choose to combine mixins and classes.
■ A programmer can – at run-time – choose to combine mixins and classes.
■ Any person can – at deployment time – choose to combine mixins and classes.

There is a subtle, but important, difference between the capabilities of mixins and
those of multiple inheritance. By allowing the extension of classes to be declared
outside the scope of the child class we make them oblivious to the final composition
of the system, promoting a better SoC.

2.3.5 Traits

Traits are another inheritance mechanism very similar to mixins. A trait is also a
non-instantiable class that can be used to extend the functionality of other classes.
They have, however, a few key characteristics that separate them [FR04]:

■ Symmetric sum: an operation that merges two disjoint traits to create a new
trait.

■ Override: forms a new trait by layering additional methods over an existing
trait.

■ Alias: creates a new trait by adding a new name for an existing method.
■ Exclusion: forms a new trait by removing a method from an existing trait.

In this way, traits are also a step forward in promoting a good SoC.

Crosscutting concerns 17

2.3.6 Composition

Using composition instead of inheritance, is a technique where classes are composed
together in order to achieve the same benefits of inheritance without establishing
a fixed hierarchy. Some languages even go as far as not allowing inheritance
altogether making composition the only way to achieve code reuse in a modular
way.

This approach promotes flexibility in the face of changing requirements as the code
is not fixed to a rigid, inheritance-based, structure.

2.3.7 Summary

All the techniques and language constructs that we described in the previous
sections try to solve a single problem: How can we extend and compose modular
units in order to prevent code replication and have a better separation of concerns?

For this reason, some of them seem pretty similar just in a different package. In
fact, most programming languages do not use just one of these approaches but
they borrow ideas from a few of them in order to create languages that tackle the
concern composition problem from a different angle.

In the next section, we will discuss the main reason why the classical OOP model
has failed to achieve a clear SoC.

2.4 Crosscutting concerns

The concepts behind OOP are vital for modular programming, but as they force
a single decomposition criteria on the programmer they also force some concerns
to get scattered and tangled throughout the code [MT02].

We can think of a software concern as any interest, which pertains to the develop-
ment of the system, its operation, or any other matters that are important to one
or more stakeholders [vdBCC05].

When using a modern programming paradigm, one of the problems that need to be
tackled is which decomposition to choose from all the possible ones [Dav72]. The
optimum solution would be to have each concern in its own unit of modularity.

18 Modularity

When a program is modularized, following any given decomposition criteria, the
concerns that do not align with that criteria end up tangled and scattered through-
out several modules of the system.

These concerns are usually referred to as crosscutting concerns. Scattering occurs
when a concern is spread through several modules while tangling occurs when one
module contains the code for several concerns (see Figure 2.1).

Figure 2.1: Scattering and Tangling of Concerns

Some common examples of crosscutting concerns are logging, security, instrumen-
tation, error handling and caching, but there are many others.

It is believed that for any large enough program, having crosscutting concerns is
inevitable as there will never be a decomposition criteria able to separate every
concern into a different module. This problem is often referred to as the tyranny
of the dominant decomposition [MT02]. The core concerns of the application force
other concerns, often non-functional, to get scattered throughout the application
code. This tangling of concerns is one of the major contributors for the increased
complexity of large software applications.

The techniques we will analyze in the next sections try to improve on this paradigm
by adding different composition mechanisms that promote modularity.

2.5 Other Approaches

There are many other approaches to improving the separation of concerns in
software besides using objects. Several other techniques and paradigms have been

Other Approaches 19

proposed throughout the time with different degrees of success and acceptance.
Next we present the ones that we felt were most relevant for this work.

2.5.1 Role Oriented Programming

In Role Oriented Programming (ROP), we consider that objects can play different
roles at different times and sometimes play more than one role at a time. Roles
can be seen as interfaces with rights and responsibilities [ZA06].

Roles allow objects to evolve over time, taking different characteristics depending
on the current context and time. Each time two classes collaborate, they are each
playing a different role. These roles often fall outside the main concern of the class
and should be also modeled and coded separately.

Advocates of ROP believe this is how us, as humans, perceive the world. For
example, a person has a set of intrinsic characteristics. But when it plays another
role, for example the role of a teacher, a new set of behaviors and characteristics
emerges without replacing the characteristics that make a person a person but
building upon them.

As roles act as representatives of classes, this enables them to participate in several
places of the program and still maintain a separation of concerns at the code level
[Gra06].

A ROP programming language must allow the definition of such roles and the
assignment of roles to objects dynamically. There must also exist a mechanism
that allows querying an object for a particular role. Concerns can be separated in
each role and joined together as roles are assigned to objects.

2.5.2 Feature Oriented Programming

Feature Oriented Programming (FOP) is generally used in Software Product Lines
(SPLs) where each feature is seen as an increment in program functionality. This
concept leads to conceptually layered software designs. In FOP [Chr97], features
are raised to first-class entities and are seen as small increments in program devel-
opment or functionality.

20 Modularity

Features are composed in a particular order and the interaction between them, for
each specific composition, is defined in separate units. Instead of having method
overwriting, as in OOP, FOP uses lifters. Lifters provide a mechanism to adapt
the features to each possible composition. Objects can then be created simply by
composing a set of features in a specific order.

2.5.3 Subject Oriented Programming

The essential characteristic of Subject Oriented Programming (SOP) is that dif-
ferent subjects can define and operate upon shared objects separately, without
each of the subjects needing to know any details except the identity of the object.
Subjects can be combined to form cooperating groups called compositions. The
composition also defines a rule, the composition rule that specifies in detail how
the components are to be combined [WH93].

In OOP, each class only has one single point of view in regard to the object it
describes. In SOP [WH93], the state and behavior of each class are not intrinsic
to itself but is the result of the composition of various subjective perceptions.

The interaction between subjects, composed together to form a subject activation,
is determined by composition rules.

2.5.4 Publish and Subscribe

The Publish and Subscribe pattern, and also the Observer pattern, are well-
established design techniques that allow programmers to develop objects that
can send messages to other objects without knowing before hand which are those
objects.

Using this pattern, developers don’t need to know which objects are interested in
their messages but have to decide which messages are important. For each one
of these possible messages, some code has to be written inside the publisher class
making it less flexible than AOP. In fact, the Observer pattern can be refactored
to AOP in a very elegant way making it unnecessary to repeat its code throughout
the program and keeping its logic completely separated from the main concerns
[MF05b].

Summary 21

2.5.5 Generative Programming

Generative programming is another approach to consider. By stepping up to the
meta level, a program that generates source code for another program is able
to inject code in specific points of execution. We can even look into AOP as a
specific case of generative programming. For example, most AspectJ compilers do
a first pass where AspectJ code is transformed into pure Java code. This first step
can bee seen as going from a higher level language, where concerns can be easily
untangled, to a lower lever generated one.

2.5.6 Aspect Oriented Programming

Aspects encapsulate crosscutting concerns in separate units of modularity as
an implementation pattern that can then be applied in several different places
throughout the code.

A comprehensive review of aspect oriented programming will be done in Chapter 3.

2.6 Summary

The complexity of software development has been tackled in several different ways
throughout the years. The general consensus seems to be that modularity and a
clear SoC are key ingredients to make programming easier and more productive.

When some of the alternatives to objects – aspects, subjects, roles and features –
are compared, it is sometimes hard to distinguish between them as they seem to
revolve around the same idea of composition with just slight variations in semantic.

In the next chapter, we will explore in more detail one of these alternatives, aspect
oriented programming.

Every program is a part of some other
program and rarely fits.

Alan J. Perlis – 1982

3
Aspects

Contents
3.1 Key Concepts . 23

3.2 AspectJ . 25

3.3 AspectJ Example . 31

3.4 Alternative Approaches to AOP 33

3.5 Aspect Oriented Software Development 35

3.6 Key Research Issues . 44

3.7 Summary . 45

3.1 Key Concepts

AOP is a programming paradigm having the objective of encapsulating crosscut-
ting concerns into separate units of modularity [GJA+97].

24 Aspects

Just as OOP did not replace POP, but instead was built on top of it, AOP does
not intend to replace OOP but rather to be an extension to it. In fact, the AOP
paradigm is so generic and decoupled from OOP that it can be applied to other
paradigms, including directly to POP [RD00].

Most AOP languages make use of two fundamental constructions: advices and join
points. Join points are well-defined points in the control flow of a program. Each
AOP language has a specific join point model that defines the different type of
join points that can be specified. On the other hand, advices are pieces of code
that should be executed when a certain join point is activated.

There are many programming techniques with the objective of reaching a better
separation of concerns. AOP has two fundamental properties that make it different
[RD00, Rob01]:

■ Quantification. The idea that one can write unitary and separate state-
ments that have effect in many, non-local places in a programming system.

■ Obliviousness. The places these quantifications apply to do not have to be
specifically prepared to receive these enhancements.

These two properties are fundamental to achieve a clear separation of concerns.

In a non-oblivious language, the developer would have to add some code or anno-
tation to the base system in order for the desired concern to be invoked. Classical
programming languages already have constructs for this (e.g. method calls) but
using them to invoke an external concern would violate the principle of separation
of concerns.

Quantification allows us to define sets of join points without knowing exactly to
which code they will apply to. A good join point model will be one that will allow
a great amount of expressiveness making it easier to describe these set of join
points. It is also important for join points to be resilient (i.e. not easily breakable
when code changes) and have a clear intention (making it easier for the reader to
understand their purpose) [BR08].

As an example, let us imagine an application that logs all variable changes into a
single file. With a classical programming language, this could be done by using
one of many available logging libraries. As hard as we try we will find it impossible
to implement this application without polluting the source code with calls to this

AspectJ 25

library in all methods that change values of variables (optimally setter methods).
This means the logging concern of the application will be inextricably tangled and
scattered throughout the source code.

With AOP, we could create a separate aspect with a single pointcut that captured
all the join points where setter methods are called. We could then apply an advice
to this pointcut that would capture the old and new value of the variables and write
them to a log file. In this way, the concern is completely separated from the rest
of the program and can be easily removed and even reused in other applications.

In the next section, we will give a brief introduction to AspectJ, one of the most
used AOP languages, and the one we will be using throughout this work.

3.2 AspectJ

AspectJ was one of the first AOP languages to be developed. As most AOP
languages, it was built as an extension to an already existent OOP language, in
this case, the Java language.

AspectJ showcases a powerful join point model. It also has constructs to define
sets of join points and to expose data from their execution context (pointcuts),
places holding code to be run at those join points (advices), the AOP equivalent
to OOP classes (aspects) and a mechanism for static crosscutting.

AspectJ is one of the most used and known AOP languages, mainly because it
was one of the first and also because it is based on a very popular OOP language.
There are also a lot of support tools for the language, making it a perfect candidate
for AOP research.

3.2.1 Join Point Model

AspectJ sports a large number of different join points that can be targets for
advices. These join points range from method and constructor calls, field reference,
and assignment to exception handling and even execution of advices.

Method call join points can refer to method names, method parameters, return
types, modifiers like static or private, and throws clauses, while constructor dec-
larations omit the return type and replace the method name with the class name

26 Aspects

(just like Java method calls and constructors). Wildcards can be used to replace
any of these elements or a part of them. Listing 3.1 shows some examples of
AspectJ join points and showcases the flexibility of the join point model.

Listing 3.1: Join Point Examples
1 // any public method call having a single parameter of type int.

2 call(public * *(int))

3
4 // execution of a private method starting with set from class

5 // Foo having a number of parameters with the last one being of type int

6 execution(private Foo.set*(.., int)).

7
8 // call to the constructor of any class whose name ends with Bar

9 // or any subclass of a class with that name pattern.

10 call(*Bar+.new ())

3.2.2 Pointcuts

Pointcuts have two purposes in AspectJ. The first is to combine any number of
join points under one single predicate (using boolean expressions). The second is
to allow the exposure of the join point context.

To expose context from the join points, AspectJ uses three different predicates:
this, target and args. The first one allows one to expose the current object, the
second one to expose the target object and the last one to expose the arguments.
The meaning of these keywords changes slightly depending on the type of pointcut
they are used with. Table 3.1 shows the different meanings in detail.

Pointcuts can be named and have a list of arguments that can be used to expose
the context of the included join points to advices. A pointcut can be either a
member of a class or an aspect and can have an access modifier such as public
or private. It is also possible to declare a pointcut abstract or to override it in
subclasses or subaspects. Listing 3.2 has some examples of pointcuts and context
exposure.

There are also some special pointcut predicates. The predicates within and within-
code allows one to match only join points where the executing code is inside either
a specific type or a specific method. The predicates cflow and cflowbelow pick
join points in the control flow of any join point picked out by a specific pointcut
(including or excluding that same pointcut).

AspectJ 27

Table 3.1: AspectJ Join Point Model [Asp10b]

Join Point this target args

Method Call executing object target object method args

Method Execution executing object executing object method args

Constructor Call executing object None constructor args

Constructor Execution executing object executing object constructor args

Static Init Execution None None None

Object Pre-initialization None None constructor args

Object initialization executing object executing object constructor args

Field reference executing object target object None

Field assignment executing object target object assigned value

Handler execution executing object executing object caught exception

Advice execution executing aspect executing aspect advice args

3.2.3 Advices

Advices contain the code to be executed when a pointcut picks up a join point.
There are three types of advices: before, after and around.

As the name implies, before advices execute before the matched join point executes.
This is the simplest of the three types of advices.

Unlike the before advice, the after advice can have three different forms. One
can choose to execute the advice always, only if the method returns or only if the
method throws an exception. The last two forms allow the capture of the returning
value or the thrown exception.

Around advices run instead of the matched join point. Because of this, they must
declare a return type. Around advices can still choose to execute the original
matched join point, with the same argument values or with different ones, using
the special clause proceed. Listing 3.3 has a small example of an around advice.

28 Aspects

Listing 3.2: Pointcut Examples
1 // Exposing the int argument of any call to any public

2 // methods of any class having a single int argument

3 pointcut publicCall(int x): call(public *.*(int)) && args(x);

4
5 // Exposing the int argument of any call to any public

6 // methods starting with set in class Foo and also the called object.

7 pointcut setCall(Foo f, int x):

8 execution(private Foo.set*(.., int)) && this(f) && args(x);

3.2.4 The Aspect Construct

Aspects are a first-class artifact of AspectJ. They play the same role as classes in
OOP but are different in a number of ways. Aspects can have methods and fields,
just like classes, but they also have pointcuts and advices. Aspects cannot be
instantiated directly, but they can have a constructor. They can also implement
interfaces, extend classes and even extend other aspects.

By default, aspects are singletons. Using special clauses one can change this
behavior. By defining an aspect as being perthis or pertarget, a different aspect is
instantiated for each current or target object of the matched join point. An aspect
defined as percflow or percflowbelow is instantiated for each flow of control of the
join points picked out by the pointcut.

Listing 3.3 has an example of what a complete aspect looks like and Figure 3.1
depicts the various elements of AspectJ.

Listing 3.3: A Simple Security Example Aspect
1 public aspect Security {

2 // Every method starting with set and having a single int argument

3 // of class Account. Capturing the account and value.

4 pointcut setValue(Account a, int v):

5 call(public Account.set*(int)) && this(a) && args(v);

6
7 // If user has access to the account run the original join point.

8 void around(Account a, int v) : setValue(a, v) {

9 if (SecurityManager.userHasAccess(a) proceed(v);

10 }

11 }

AspectJ 29

Figure 3.1: AspectJ Primary Elements

3.2.5 Precedence

In a single join point, there can be multiple advices being applied simultaneously.
There are several rules that determine the precedence between these. If the two
pieces of advice are defined in different aspects, then there are three possible cases
[Asp10a]:

■ If aspect A is matched earlier than aspect B in some declare precedence
form, then all advices in concrete aspect A have precedence over all advice
in concrete aspect B when they are on the same join point.

■ Otherwise, if aspect A is a sub-aspect of aspect B, then all advices defined
in A have precedence over all of those defined in B. So, unless otherwise
specified with a declare precedence, advices declared in a sub-aspect have
precedence over those declared in a super-aspect.

■ Otherwise, if two pieces of advice are defined in two different aspects, it is
undefined which one has precedence.

If the two pieces of advice are defined in the same aspect, then there are two
possible cases:

■ If either are after advices, then the one that appears later in the aspect has
precedence over the one that appears earlier.

■ Otherwise, the one that appears earlier in the aspect has precedence over
the one that appears later.

30 Aspects

These rules can lead to circularity, which will result in errors signalized by the
compiler.

The mechanism behind advice precedence resolution is the following:

■ At a particular join point, advices are ordered by precedence.
■ Around advices controls whether advices of lower precedence will run by

calling proceed. The call to proceed will run the advice with next precedence,
or the computation under the join point if there is no further advices.

■ Before advices can prevent advices of lower precedence from running by
throwing an exception. If it returns normally, however, then the advices of
the next precedence, or the computation under the join point if there are no
further advice, will run.

■ After returning advices will run the advice of next precedence, or the com-
putation under the join point if there is no further advice. Then, if that
computation returns normally, the body of the advice will run.

■ After throwing advices will run the advice of next precedence, or the com-
putation under the join point if there is no further advice. Then, if that
computation throws an exception of an appropriate type, the body of the
advice will run.

■ After advices will run the advice of next precedence, or the computation
under the join point if there is no further advice. Then the body of the
advice will run.

3.2.6 Inter-type Declarations

Aspects can declare members (fields, methods, and constructors) that are owned
by other types. These are called inter-type members. Aspects can also declare
that other types implement new interfaces or extend a new class. See Listing 3.4
for some examples.

3.2.7 Summary

These last sections are just a very brief summary of everything that can be ac-
complished using AspectJ [Asp10a].

AspectJ Example 31

Listing 3.4: Inter-type Declarations
1 public aspect Security {

2 // Declare that the class User has a new field called username.

3 private String User.username;

4
5 // Declare that the class User has a new method called setPassword.

6 private boolean setPassword(String old , String new) {...}

7
8 // Declare that the Account class implements the Private interface.

9 declare parents: Account implements Private;

10
11 // Declare that the Account class extends the SecuredObject class.

12 declare parents: Account extends SecuredObject;

13 }

By introducing the notion of join points, pointcuts and advices into a widely
popular programming language (Java), AspectJ has managed to make AOP more
popular. These same introduced constructs transformed the language from a
classical object oriented programming language to a language where obliviousness
and quantification are possible.

In the next section, we show how some of these concepts can be put together to
encapsulate a crosscutting concern in a separate module.

3.3 AspectJ Example

Let us start by imagining a class that represents a person. Let us also assume
that same class has a static method that retrieves a person from a database and
returns it. Listing 3.5 shows that method without the actual database retrieval
implementation as it is not important for this particular example.

Listing 3.5: Person Class
1 public class Person {

2 public static Person getPerson(int id) {

3 Person person = getPersonFromDatabase(id);

4 return person;

5 }

6 }

A common addition to such a method would be to add a caching mechanism. By
doing so, we are preventing multiple calls to this method with the same id from

32 Aspects

having to execute a possibly expensive operation, as is querying a database, by
sacrificing some memory. The problem with the implementation shown in Listing
3.6 is that two concerns, the retrieval of a person from the database and caching,
are tangled inside the same method.

Listing 3.6: Person Class with Caching
1 public class Person {

2 private static HashMap <Integer , Person > peopleCache;

3 public static Person getPerson(int id) {

4 if (people.containsKey(new Integer(id)))

5 return peopleCache.get(new Integer(id));

6 Person person = getPersonFromDatabase(id);

7 peopleCache.put(new Integer(id), person);

8 return person;

9 }

10 }

The AOP way of preventing this tangling is to define a separate aspect designed
exclusively for the caching concern. Listing 3.7 shows how this could be achieved.
By creating a pointcut that captures all join points where the getPerson method
is called, we can then apply an around advice to this pointcut. This advice can
then verify if the person with the desired id has already been retrieved from the
database and if not proceed with the method call.

Listing 3.7: Caching Aspect
1 public aspect PersonCaching {

2 private static HashMap <Integer , Person > peopleCache;

3
4 pointcut getPerson(int id) : call(public Person getPerson(int)) && args(id);

5
6 Person around(int id) : getPerson(id) {

7 if (peopleCache.containsKey(new Integer(id)))

8 return people.get(new Integer(id));

9 else return proceed(id);

10 }

11 }

In this small example, we have seen how AspectJ can help to separate concerns
into their own units of modularity. In the next couple of sections, other approaches
to AOP will be shown as well as alternative techniques to AOP as far as separation
of concerns goes.

Alternative Approaches to AOP 33

3.4 Alternative Approaches to AOP

In the previous sections, we have seen the most common approach used in AOP
languages. However, there are several other techniques that can be used with
similar or even better results. In this section, we will analyze some of these
alternative approaches.

3.4.1 Composition Filters

Composition Filters (CF) [BA92, AT98] use two first class elements to define
crosscutting concerns: Concerns, which are used to define the primary behavior,
and Filters that are used to extend that behavior.

Filters can be composed around objects in a modular way. Their primary objective
is to intercept messages passed to the object and either accept them or reject
them. Depending on the filter type these two actions can have different results.
For example, when an Error Filter accepts a message it will pass it to the next
filter unchanged, and if it rejects the message it will raise an error. A Dispatch
Filter will delegate the message to an internal message if it is accepted or pass it
to the next filter if it is rejected.

An example of an Error Filter written in Sina, a CF language, can be seen in
Listing 3.8 [Koo95]. This example is just a snippet of class defined in this language
that implements a simple stack.

Listing 3.8: Error Filter Example
1 stackEmpty : Error = { stackNotEmpty => {pop , top}, true ~> {pop , top} };

In this example, stackNotEmpty is a condition defined previously in the class. The
initializer of the first input filter, the error filter named stackEmpty, specifies that
the filter accepts messages with the selector pop or top when the stack is not empty.
It could be read as “if stackNotEmpty then accept a message with (pop or top)”.

The second filter element could be interpreted as “if true then accept a message
not with (pop or top)”, which is the same as “accept a message without pop and
without top”. As a result, the error filter rejects messages with selector pop or
top when the stack is empty, causing it to generate an error, and accept messages
otherwise.

34 Aspects

By creating a language-independent specification, based on filters, on top of the
classical OOP model, CFs provide a mechanism to separate crosscutting concerns
from the primary concerns.

3.4.2 Hyperslices

Hyperslices [PHWSMS99] are a set of conventional modules containing units that
pertain to only one single concern. A system is written as a collection of hyperslices
that can be composed using hypermodules.

A hypermodule is a set of hyperslices composed using a composition rule to create
a new hyperslice. As hypermodules are also hyperslices, these can be nested at
will to create the composed system.

A simple example written in Hyper/J, a Java based hyperslices language, of how
hyperslices can be used can be seen in Listing 3.9 [Fai04]. In this example, we
must considerer that two classes called Foo and Bar have been defined in their
own separate files. Each one of these classes has one method only. The method
hi has been declared in the Foo class and the method bye has been declared in
the Bar class. Concerns are then declared for each one of these methods and a
hypermodule is created that composes these concerns together.

Listing 3.9: Hyperslices Example
1 -hyperspace

2 hyperspace demo

3 composable class Foo;

4 composable class Bar;

5
6 -concerns

7 class Foo : Feature.hi

8 class Bar : Feature.bye

9
10 -hypermodules

11 hypermodule DemoHM

12 hyperslices: Feature.hi, Feature.bye;

13 relationships:

14 mergeByName;

15 equate operation Feature.hi.sayHi ,

16 Feature.bye.sayBye

17 into greet;

18 merge class Feature.hi.Foo , Feature.bye.Bar;

19 end hypermodule;

Aspect Oriented Software Development 35

Contrary to most AOP approaches, there is no separation between base code and
crosscutting concerns when using hyperslices.

3.4.3 Event Based AOP

While a classic AOP language like AspectJ is based on the capture of join points
by pointcuts, Event Based AOP (EAOP) is based on the monitoring of execution
events [ROM01].

Events are very similar to AspectJ join points as they also represent the execution
points of a program but instead of being captured by pointcuts, sequences of
events are analyzed by a monitor and matched against selected event sequences.
The use of a monitor instead of pointcuts being matched in a pre-processor, allows
greater flexibility, a better composition of aspects and dynamic instantiation of
aspects. Besides this, it makes it easier to define aspects from a formal point of
view [ROM01].

3.5 Aspect Oriented Software Development

A large number of software development approaches exist. Nevertheless, most of
them follow the same development lifecycle. Aspect Oriented Software Develop-
ment (AOSD), although not a software development methodology per se, can be
used in each of the various activities of the development process. AOSD adds to
the process with the inclusion of new tools and languages, but, at the same time,
some activities must be changed to accommodate this new approach. For example,
documentation and testing techniques must evolve to cope with the new concepts
and language constructs brought by AOP. The following sections summarize some
of the existing approaches, each focusing a particular phase of the lifecycle.

3.5.1 Requirements Analysis

The requirements phase of the software development cycle is one that can benefit
with the introduction of the AOP approach. Grundy [Gru99] states that tra-
ditional requirements capturing techniques are not powerful enough to describe

36 Aspects

component requirements, leading to less reusable components. This study lead to
a new requirements specification methodology named Aspect Oriented Component
Requirements Engineering (AOCRE).

Rashid [RMA03] rationalized that SoC issues were a real problem even in the
requirement analysis phase of the software development cycle, leading to another
new requirement specification paradigm: Aspect Oriented Requirements Engi-
neering (AORE). Using aspects in this early phase of the process, Early Aspects
[RMA+10], allows the identification of conflicts between crosscutting concerns
earlier and at the same time it helps achieve a better traceability of system-wide
requirements throughout the development process. Using aspects in this phase also
ensures better homogeneity in an aspect oriented software development process.
A new extension to the Unified Modeling Language (UML) notation has also been
developed to support these new ideas [AMBR02].

Sutton [SMSR02] presented Cosmos, a software concern-space modeling schema.
In this proposed schema, the author separates the notions of concerns, relationships
and predicates. Concerns are classified as logical and physical. Logical concerns are
further typed as classifications, classes, instances, properties, and topics; physical
concerns as collections, instances, and attributes. Relationships are classified as
categorical, interpretive, physical, and mapping. Predicates apply to concerns and
relationships and reflect consistency considerations.

A promising approach has been introduced by Baniassad [BC04] and Clarke [CB05]
with their Theme Process. This process is composed by two separate but related
methodologies: Theme/Doc (that allows users to identify aspects in a set of re-
quirements) and Theme/UML (how to model them in UML style designs).

Araújo [AWK04] proposed an approach to model scenario-based requirements
using aspect oriented principles. His approach used Interaction Pattern Speci-
fications (IPSs) to model aspectual scenarios. He also showed how these aspectual
scenarios could be later composed with non-aspectual scenarios and transformed
into executable state machines.

3.5.2 Design

The second phase of most software development methodologies is the high-level
design phase. The requirements captured in the Requirement Analysis phase are

Aspect Oriented Software Development 37

transformed into modules, classes, and their interactions. Once again in this phase,
the shift to AOSD brings some new challenges.

Specification

The most obvious problem found in this phase is how to adapt current architecture
specification methodologies to cope with the new elements and ideas introduced by
AOP. Several approaches to this problem exist, and not surprisingly most of them
are based in the existing UML extension mechanisms, like the use of stereotypes.

Suzuki [SY99] states that crosscutting problems are very often only found in the
construction phase of the development cycle. Developers usually deal with the
problems found by adding aspects manually at that stage. This happens mainly
due to the lack of aspect oriented tools focused in this phase of the development
cycle. The same author listed some of the advantages of incorporating aspects
earlier, in the design phase:

■ Documentation and Learning. By visualizing aspects early in the design
phase, developers can better understand how they interact in a more intuitive
way. Also, this results in the early documentation of aspect usage.

■ Reuse of Aspects. The documentation of aspects in the design phase will
allow the reuse of the aspectized components in different projects making it
possible to create aspect libraries.

■ Round-trip Development. Incremental development is a common devel-
opment strategy, where the various phases of the development process are
repeated in order to fine tune any design flaws encountered during any of
the phases. By adding aspects in the construction phase of the development
process, developers are compromising the chance of going back to the design
phase and change the system architecture.

In order to allow early aspect oriented system designs, Suzuki [SY99] proposed
extensions to the current UML diagrams supporting the design phase of the devel-
opment process. In these new extensions, aspects would be represented as classes
with an aspect stereotype. This is an obvious solution as aspects are much like
classes, as they also have methods and attributes. The operation list compartment
of the aspect would then show each weaving of the aspect as operations with the

38 Aspects

weave stereotype attached and a classifier to show which classes, methods and
variables are affected by it.

There are three types of relationships possible between classes in the UML no-
tation: Association, Generalization, and Dependency. The same author states
that, the kind of relationship between classes and aspects is better suited for a
Dependency relationship, or, more precisely an Abstract Dependency relationship
with a realize stereotype attached to it. Woven classes, the virtual classes that are
the result of the weaving process, could then be represented simply as classes with
the woven class stereotype.

Aldawud [AEB01] has a similar, but more simplistic, approach using stereotypes
to mark classes as being aspects, and associations between aspects and classes as
having the control stereotype meaning that an aspect controls in some way that
particular class.

Kandé [KKS02] proposed an alternative to this notation, with pointcuts being
represented as new separate elements and adding an advice block to the aspect
elements. New notations to represent AOP features, like the multiplicity of aspects,
have also been proposed. The same author also presented some modifications to
the collaborative diagrams of the UML in order to represent when join points are
reached.

Ho [HPJP00] has a different approach to the problem by using annotations and
stereotypes as guides to the weaving process. For example, a class that should
be made persistent could be marked as persistent and the weaving process would
know which aspects had to be weaved in order to accomplish this.

Another different approach, using stereotypes to represent crosscutting concerns,
advices and introductions (inter-type declarations), has been presented by Stein
[SHU02]. This work also proposes the use of UML interaction diagrams to rep-
resent join points and collaboration diagrams to show how aspects interact with
other units.

The Theme approach [CB05], already referred in the previous section, also allows
the modeling of aspects in UML style diagrams.

A complete semantics for specifying pointcuts in UML diagrams has also been
detailed in [PDF+02].

Aspect Oriented Software Development 39

Design Patterns

Design patterns are well-known generic solutions to commonly recurrent prob-
lems. Patterns gained popularity in the software engineering community after the
publication of the famous Design Patterns book by the The Gang of Four (GoF)
[GHJV94]. The advent of AOP is a great opportunity to redefine patterns in a
more modular form.

Hannemann [HK02] has shown how Design Patterns could be mapped as aspects.
The same author has described some of the advantages of using AOP to implement
Design Patterns:

■ Locality. All code implementing the patterns is local to the pattern itself.
None of the related classes is changed in the process.

■ Reusability. The pattern code can be reused throughout an application
only by implementing a single concrete aspect (see Listing 3.10).

■ CompositionTransparency. If a class becomes involved in more than one
Design Pattern (even in patterns of the same kind), each pattern can be
reasoned about independently.

■ (Un)pluggability. Adding and removing patterns becomes as simple as
removing the implementing aspect from the system.

Clarke and Kande [CW01, KC03] have also written about how patterns could be
implemented using AOP. Interestingly, both used the UML annotation extensions
for AOP they proposed (see Section 3.5.2).

Garcia [GSF+05] has made an interesting study, comparing the implementations
of all 23 Patterns proposed by the GoF in both OOP and AOP. This assessment
study has shown that in many cases the AOP version of the patterns provided a
better SoC, better reusability and needed lesser number of lines of code.

3.5.3 Construction

The construction phase of the development cycle is when the actual code is written.
As AOP has several implications in this phase, several issues have been raised,
namely: reusability, conflicts between aspects and accidental pointcuts.

40 Aspects

Reusability

Achieving better reusability has always been one of the major goals of software
engineering. The use of reusable modules reduces the implementation time and
ensures that the used code has already been thoroughly tested and documented.
As has been shown by Garcia [GSF+05], AOP allows developers to achieve better
SoC in software applications, therefore better modularity and easier reusability is
attained.

Listing 3.10 shows how the Observer pattern can be implemented using AOP aim-
ing for reusability. In this example, a generic Observer pattern aspect was created.
This aspect, created as an abstract aspect, specifies two new interfaces: Observer
and Subject. At this point, these interfaces are not implemented by any class.
Notice that this aspect is declared as being perthis(subjectConstructed(Subject)),
meaning that one instance of this aspect exists for each Subject object. With
this, one instance of the observers vector is created for each Subject. Then, the
addObserver and removeObserver methods were created, as well as the abstract
pointcut subjectChanged. An advice connected to this pointcut was also created.
This advice will call the abstract method updateObserver for each Observer in the
observers vector. Notice that the subjectChanged method captures the context in
order to the advice to access the observers of the correct Subject. As this aspect
never refers to the Screen or Point classes, it can be reused in the same software
application or in other systems.

Binding this aspect to the correct classes is done by extending this aspect into a
concrete aspect called PointObserverPattern. This aspect uses the declare clause to
specify that the Point class implements the Subject interface and that the Screen
class implements the Observer interface. This aspect defines also the concrete
implementations of the subjectChanged pointcut and the updateObserver method
making it possible to describe what events should be observed and what to do
when these events occur. This example shows how suited AOP is to implement
modular and reusable crosscutting concerns.

Listing 3.10: Reusable Observer Pattern (AOP)
1 public abstract aspect ObserverPattern : pertarget(Subject s)

2 {

3 public interface Observer { }

4 public interface Subject { }

5
6 Vector observers = new Vector ();

Aspect Oriented Software Development 41

7
8 public void addObserver(Observer o)

9 {

10 observers.add(o);

11 }

12
13 abstract protected pointcut subjectChanged(Subject s);

14
15 after(Subject p) : subjectChanged(p)

16 {

17 Iterator itr = observers.iterator ();

18 while (itr.hasNext ())

19 ((Observer)itr.next). updateObserver ();

20 }

21
22 public abstract void updateObserver(Observer o, Subject s);

23 }

24
25 public aspect PointObserverPattern extends ObserverPattern

26 {

27 declare parents: Screen implements Observer;

28 declare parents: Point implements Subject;

29
30 pointcut subjectChanged(Subject s)

31 {

32 call(void Point.set *(..) && target(s));

33 }

34
35 public void updateObserver(Observer o, Subject s)

36 {

37 (Screen(o)). updateDisplay ());

38 }

39 }

Hanenberg [HU01] introduced some interesting rules on how to use aspects to
achieve reusability:

■ Separated pointcut declarations. Whenever a new aspect is created, a
corresponding abstract super-aspect has to be implemented that contains all
pointcuts declarations and definitions needed by the aspect. Advices in the
sub-aspect refer to the pointcuts defined in the super-aspect.

■ No pointcut for more than one advice. If one pointcut is used for more
than one advice, there is no possibility to adapt the behavior of a single
advice.

■ Concrete aspects are always empty. Once an advice is within a concrete
aspect, it becomes lost for any further reuse. In this way, a concrete aspect

42 Aspects

should not contain any pointcut definition (besides abstract ones). This
guarantees the possibility to redefine the pointcuts in a concrete aspect.

Refactoring

Refactoring is the process of rewriting a computer program, or other material, to
improve its structure, or readability, while explicitly preserving its meaning and
behavior. Several common methods for refactoring have been detailed in [FBB+99].

With AOP, new methods allowing the refactoring of existing code into this new
paradigm have been described in [Mon05, MF05a, MF05b]. Using these methods,
it is possible to take an original OOP code and untangle it safely, turning it into
AOP code. Unit tests can then be used to allow developers to refactor code making
sure modules still behave correctly [Bin99].

Debugging

Debugging has been an issue with AOP. When debugging AOP code, most frame-
works use the result of the weaving process instead of the original aspect and class
implementations. This may make debugging harder for AOP developers. Tools
should improve by showing crosscutting structures, like thread trees that hide
generated calls, and giving the ability to set breakpoints on pointcuts. [MR02] has
an interesting approach both to the problem of debugging as well as to the related
problem of profiling.

On the other hand, AOP can be used as a powerful debugging tool. By instru-
menting an application using AOP techniques, we can achieve extremely powerful
debugging tools as is the case of TOD, an omniscient debugging tool based on
weaving [PTP07].

Development Environments

Before a new paradigm becomes ready for wide use and is accepted by industry,
good development environments have to emerge. Several of these environments are
already available for AOP. As AspectJ is currently the AOP leader language, it
was expected that the first environments to appear would support this particular

Aspect Oriented Software Development 43

language. AspectJ is an extension of the Java language while Eclipse [Ecl10] is a
successful open-source development environment, for that same language, that
already had features like refactoring and unit testing. So, it was no surprise
that the first good AOP development environments, AspectJ Development Tools
(AJDT), appeared as extensions to the Eclipse IDE [AJD10].

3.5.4 Testing and Validation

Testing and validation routines are important aspects of the software development
cycle because no development paradigm ensures code correctness per se.

In AOP, the main element is the aspect. Aspects differ significantly from classes
and procedures. Testing AOP should not only test if the aspect performs as
expected, but also if the classes modified by them continue to work correctly
[Zha02].

Zhao [Zha02, Zha03] proposed three levels of testing for aspect-based code:

■ Intra-module testing. Testing each individual element, such as advices
methods and introductions.

■ Inter-module testing. Testing a public module along other modules it
calls without considering invocations from other modules outside the aspect
or class.

■ Intra-aspect testing. Testing the interaction between the aspect and mul-
tiple modules when they are called in a random sequence from outside the
aspect.

3.5.5 Code Documentation

Code documentation is another important step of the development cycle. With the
introduction of the new AOP elements, code documentation must be rethought.
AspectJ already offers AOP oriented documentation features such as the ajdoc
documentation tool [Asp15].

Besides AOP code documentation, another interesting possibility is to incorporate
the AOP paradigm ideas in the code documentation process. In this way, docu-

44 Aspects

mentation snippets could be thought as being documentation aspects that could
be weaved together and, in this way, be composed into a complete document.

3.6 Key Research Issues

In this section, we will discuss some key research issues that are relevant to the
work being presented.

3.6.1 Fragile Point Cuts

Designing pointcuts that truly capture the intention of the developer is difficult.
Instead of that, pointcuts often rely on the code structure of the base program.
This makes pointcut expressions not capable of remaining valid as the base code
evolves.

“The fragile pointcut problem occurs in aspect oriented systems when
pointcuts unintentionally capture or miss particular join points as a
consequence of their fragility with respect to seemingly safe modifica-
tions to the base program” [AKJ06].

For example, stating that we want to capture join points in all methods that
modify the internal state of an object, would be better than saying that we want
to capture all methods starting with set. The latter alternative would be prone to
errors if, for example, we added a new method to the class named setup.

Enumerating all the desired join points is a bad idea because we would have to
continuously add new join points as new methods are added to the base code.
Using wildcards to circumvent this problem can cause problems if the pointcut
language is not as intentional as it should.

3.6.2 Interferences

One of the most criticized aspects of glsaop is that when multiple concerns are
woven at the same join point they can easily interfere with each other. We can

Summary 45

think of an interference as an unexpected interaction that causes one, or more, of
the woven concerns to have an undesirable behavior.

In Section 5.3 we will analyze this issue more thoroughly and discuss some of the
work being done to mitigate it.

3.7 Summary

Achieving a perfect separation of concerns in software development is something
that has been eluding developers for many years. The general consensus is that
there will never be a perfect solution. All we have are a diversity of tools that
tackle specific difficulties.

AOP is another great tool that allows developers to write reusable and modular
code. There are however several issues that still have to be polished, either by
changing the way in which we use the idea of AOP, or by creating new tools that
help developers better control the extreme power behind it.

In the next chapter, we will talk about testing, in general, and in Chapter 5 we
will discuss the particular problems inherent to the testing of aspects.

Testing leads to failure, and fail-
ure leads to understanding.

Burt Rutan

4
Testing

Contents
4.1 The Importance of Software Testing 48

4.2 Types of Tests . 48

4.3 Testing Levels . 49

4.4 Summary . 52

Software testing is one of the core activities of software development. It is the
process in which stakeholders assess the quality of the software product being
developed.

Testing can be seen in two different perspectives. As a way to improve the confi-
dence of the stakeholders in the code or as a way to find errors in order to correct
them [Mye79]. This might seem a subtle difference, but if your goal when creating
a test is to try to prove that the code has errors, you will use inputs that you
know have a higher probability of breaking the code. A successful test is one that
reveals a failure.

48 Testing

In this chapter, we will take a quick glance into the world of software testing
starting by understanding the importance of testing followed by an explanation of
the testing process itself.

4.1 The Importance of Software Testing

For the most part of it, software is written by humans, and humans are known to
make mistakes; sometimes lots of them.

Most of the times, when a program fails to perform its function, there are no
catastrophic consequences to that event. At most you will lose a day of hard work
if you forgot to save your documents. However, it is estimated that software bugs
have an annual impact close to $60 billion in the United States economy and a
third of this value could be avoided with better testing [Tas02].

But sometimes, the aftermath of a software bug is indeed catastrophic. Besides
the software that we normally use in our homes and work, some software is used
in hospitals, banks, rocket launching and many other activities where a single
software bug can cost lives and lots of funds and resources.

4.2 Types of Tests

The simplest way to categorize tests is to divide them into the black box and white
box approaches [Whi87]:

■ White Box. In white box tests, the inner workings of the code are taken
into consideration when selection the test data to be used. This approach
is useful when trying to determine if there are any significant errors in the
code not directly caused by the misinterpretation of the requirements or
specification. White box tests are also known as structural testing.

■ Black Box. In black box tests, only the external interfaces are exercised
in order to find if they comply with the requirements and specification. No
knowledge of the inner working of the code is used. Black box tests are also
known as functional testing.

Testing Levels 49

4.3 Testing Levels

Software testing can be done in several different levels according to the software
development activity they are used in.

4.3.1 Unit Testing

Unit testing is a testing process where small units of code are tested in isolation
[Bec94]. Since attention is focused on smaller units of the program, unit testing
makes testing complex software systems easier. It is also easier to pinpoint the
cause of an error, since, when an error is found, it is known to exist in a particular
unit [Mye79].

Unit testing is used during the implementation activity of the software cycle, the
phase where the code is actually produced. It is the lowest level of testing and the
one that developers are more familiar with.

Unit tests are very often written by the same developers writing the code, usually
at the function or class level. This is done to assure that each piece of code is
working as expected. However, these tests cannot make any assurances about the
behavior of the complete system.

A perfect unit test would be one that tests all possible inputs to a function and
correctly tests any side effects produced while being shielded from code from other
units.

Of course, testing all possible inputs is usually impossible, so developers must
carefully choose which inputs they want to test the unit with. The chosen inputs
should cover all possible code branches [Whi87] and all edge and corner cases.
This is not an easy task and several techniques, manual and automated, have been
developed to aid in selecting test cases.

It is also important for the tests to be correct. For this to happen, tests should
be written by someone that did not write the code or at least before writing the
code. This will prevent mistakes induced by a form of confirmation bias. It is also
common for test data to be automatically generated using, for example, a slower
but less error prone version of the code.

Unit testing is usually done using a white box approach.

50 Testing

Stubs, Mocks, Dummies and Fakes

As most units depend on other units, to assure that tests are run in isolation, test
doubles have to be used. Test doubles are pretend-objects that are used in place
of objects that the tested unit depends upon but are not part of the test.

There are several types of these objects [Fow07]:

■ Dummy objects are objects that are passed around but are never used.
These are usually just objects that fill parameter lists as the code would not
compile without them.

■ Fake objects are objects that work as intended but take shortcuts in the
implementation making them more suitable for testing. Either because they
are less prone to errors, faster or they have an easier setup.

■ Stubs are only able to provide canned answers to the calls that are made
during the test. They do not have an actual working implementation and
sometimes can record information about calls.

■ Mocks are pre-programmed objects with expectations. When using mocks,
the tester starts by defining which calls are expected to be made by the tested
unit. Unlike the other types of doubles, mocks can do behavior verifications
while the other are only good to do state verifications.

4.3.2 Integration Testing

Integration testing is the phase in which previously tested units are aggregated
into larger groups that are tested together. Unit testing is useful to find local
faults in programs but does not exercise the relations between units.

Several different strategies can be used to choose the order in which units are
grouped together:

■ In the big bang strategy, a large group of modules is grouped together into the
complete software system or into a major part of it. Real usage scenarios are
then used to flush any problems created by the interaction of the previously
tested units.

Testing Levels 51

■ The top-down starts by testing modules that have no other modules depend-
ing on them. This forces the creation of a lot of code doubles in order to test
modules that depend on modules that have not been integrated yet. The
testing continues by replacing those doubles with the actual implementation.

■ On the other hand, the bottom-up strategy starts by testing modules that
do not depend upon any other ones. The testing continues by climbing up
the dependency graph until the complete system is tested.

Integration testing is normally done using a mix of black box and white box testing.

4.3.3 System Testing

In the system testing phase, the complete system is tested all at once. There is
no more need for code doubles. The behavior of the system is compared to the
one present in the specification in order to uncover faults. The software is run on
top of the final hardware and focus on final details like usability, load, security,
installation and compatibility.

4.3.4 Acceptance Testing

Acceptance tests are very similar to system tests. The main difference is that they
are normally performed by the client or by the final users of the product. In this
way, technical aspects are less important and feature completion and correctness
is more valued.

4.3.5 Regression Testing

The objective behind regression testing is to uncover faults that might be intro-
duced by changes to the system. These faults can be new ones, or faults already
fixed. In this way, it is considered important that tests exist for all faults discovered
and fixed previously.

52 Testing

4.4 Summary

In this chapter, we have talked about the extreme importance of testing in software
development. We also described several strategies and the usage of tests in the
different phases of the development cycle.

When tests are done to the complete system, like in system and acceptance tests,
there is no real big difference between testing OOP or AOP code. But when it
comes to testing smaller parts of the system, the nature of AOP gets in the way
making the promise of a good separation of concerns harder to achieve; not at the
code level but at the also very important testing level.

To truly have reusable software components, we have to consider tests as an integral
part of those same components. In the next chapter, we will see how AOP is not
suitable for that goal. At least not without some help.

Part II

Problem and Solution

53

Beware of bugs in the above
code; I have only proved it cor-
rect, not tried it.

Donald E. Knuth

5
Unit Testing Aspects

Contents
5.1 Motivational Example . 56

5.2 Research Problem . 60

5.3 Interferences . 65

5.4 Related Issues . 72

5.5 Summary . 75

Most current software developers regard testing as an important part of their
development process. In many development technologies, it is the first stepping
stone to developing top quality software [Mye79].

In this chapter, we will discuss some issues that arise when we try to apply testing
techniques, and in particular unit testing, to an AOP language like AspectJ.

With AOP, we are aiming at having each concern in its own module and with
unit testing one tries to create tests that are particular to one unit at a time.

56 Unit Testing Aspects

Ideally, one should be able to create unit tests for each concern that would also be
self-contained and have no traces of other crosscutting concerns.

5.1 Motivational Example

In this section, we will describe a simple example, written in AspectJ, that we
believe illustrates the problem we are trying to solve.

For simplicity sake, we will use a very simple and stripped down example of a
banking system. This system will have only two classes: A Person class and an
Account class. We will start by explaining how these two classes work and interact.

5.1.1 Base System

In this simple banking system, a person will only have two attributes: a name and
an id. Listing 5.1 shows the Java code used to implement this class.

Listing 5.1: Banking System – Person Class
1 public class Person {

2 private int id;

3 private String name;

4
5 public Person(String name , int id) {

6 this.name = name;

7 this.id = id;

8 }

9
10 public String getName () {

11 return name;

12 }

13
14 public int getId () {

15 return id;

16 }

17 }

Accounts were also kept to a minimum specification. Besides having an id and its
current balance, each account has only one owner. The most complicated feature
of this class is its capability of transferring money to other accounts. Listing 5.2
shows the Java code used to implement this class.

Motivational Example 57

Listing 5.2: Banking System – Account Class
1 public class Account {

2 private Person owner;

3 private int id;

4 private double balance;

5
6 public Account(Person owner , int id, double balance) {

7 this.owner = owner;

8 this.id = id;

9 this.balance = balance;

10 }

11
12 public Person getOwner () {

13 return owner;

14 }

15
16 public int getId() {

17 return id;

18 }

19
20 public void transfer(double ammount , Account otherAccount)

21 throws Exception {

22 if (ammount <= 0)

23 throw new Exception("Can’t␣transfer␣a␣negative␣value");

24 otherAccount.setBalance(otherAccount.getBalance () + ammount);

25 setBalance(getBalance () - ammount);

26 }

27
28 public void setBalance(double balance) {

29 this.balance = balance;

30 }

31
32 public double getBalance () {

33 return balance;

34 }

35 }

5.1.2 Unit Tests

We also created some very simple unit tests for both classes. Listing 5.3 shows
the Java code used to test the Person class. These unit tests only verify if the id
and name of the person are stored correctly after a Person object is created and
if they can be retrieved correctly.

A different set of unit tests have been created to test the Account class. These test
if the owner of the account and balance are set correctly after an Account object
is created, if they can be retrieved correctly, and if transfers work as they are
supposed to. For simplicity sake we did not test any error conditions. Listing 5.4

58 Unit Testing Aspects

Listing 5.3: Banking System – Person Class Tests
1 import junit.framework.TestCase;

2
3 public class TestPerson extends TestCase {

4 public void testName () {

5 Person p = new Person("John", 1);

6 assertEquals("John", p.getName ());

7 }

8
9 public void testId () {

10 Person p = new Person("John", 1);

11 assertEquals (1, p.getId ());

12 }

13 }

shows the Java code used to test the Account class.

5.1.3 Separating Concerns

Despite the obvious shortcomings of the example, a classical object oriented pro-
gramming developer would be quite happy with the achieved design. He would
say that the account and person concerns were clearly separated into their own
modules. Even the unit tests would be to his satisfaction as each unit test only
tests the behavior of one class.

A more thorough inspection of the code will show that one concern, which we can
call each account has one owner, is tangled with the other account concerns. This
will make it harder to evolve the system if later on we decide that each account
can have several owners or if we want to reuse the Account class in a different
setup where accounts have several owners.

Separating this concern into a different module can be easily achieved with some
AspectJ code. Listing 5.5 shows the code of the AccountOwner aspect where inter-
type declarations are used to implement the concern we want to remove from the
Account class.

To improve the modularity of the system, the tests should also be separated. This
can be achieved by removing all references to the Person class from the account
tests and moving the account owner test to a separate file containing tests for the
AccountOwner aspect. Listing 5.6 shows the AccountOwner tests.

Motivational Example 59

Listing 5.4: Banking System – Account Class Tests
1 import junit.framework.TestCase;

2
3 public class TestAccount extends TestCase {

4
5 public void testOwner () {

6 Person p = new Person("Jonh", 1);

7 Account a = new Account(p, 1, 0);

8 assertEquals(p, a.getOwner ());

9 }

10
11 public void testBalance () {

12 Person p = new Person("Jonh", 1);

13 Account a = new Account(p, 1, 1000);

14 assertEquals (1000.0 , a.getBalance ());

15 }

16
17 public void testTransfer () throws Exception {

18 Person p1 = new Person("Jonh", 1);

19 Account a1 = new Account(p1, 1, 1000);

20
21 Person p2 = new Person("Mary", 2);

22 Account a2 = new Account(p2, 2, 500);

23
24 assertEquals (1000.0 , a1.getBalance ());

25 assertEquals (500.0 , a2.getBalance ());

26
27 a1.transfer (200, a2);

28
29 assertEquals (800.0 , a1.getBalance ());

30 assertEquals (700.0 , a2.getBalance ());

31 }

32 }

5.1.4 Adding Authentication and Security

To prove our point, we are going to add two more modules into the system. The
first one will allow persons to authenticate by adding a login and a password to
each person. We will also provide an extended constructor to the Person class and
implement methods for logging in into the system and verifying who is the current
user. Listing 5.7 shows the Authentication aspect.

The Security aspect will use the data provided by the Authentication to infer if the
current user can execute operations like transferring money from one account to
another. This will be accomplished by capturing the transfer method join point of
the Account class and, using an around advice, verify if the user is owner of that
account.

60 Unit Testing Aspects

Listing 5.5: Banking System – AccountOwner Aspect
1 public aspect AccountOwner {

2 private Person Account.owner;

3
4 public Person Account.getOwner () {

5 return owner;

6 }

7
8 public Account.new(Person owner , int id, double balance) {

9 this(id , balance);

10 this.owner = owner;

11 }

12 }

Listing 5.6: Banking System – AccountOwner Tests
1 import junit.framework.TestCase;

2
3 public class AccountOwnerTest extends TestCase {

4 public void testOwner () {

5 Person p = new Person("Jonh", 1);

6 Account a = new Account(p, 1, 0);

7 assertEquals(p, a.getOwner ());

8 }

9 }

In order not to overcomplicate this example, we are not going to provide the code
used to test these two new modules. The complete code, with separate modules
for each concern and separate test cases for each module, would have the set of
dependencies that can be observed in Figure 5.1.

5.2 Research Problem

In the previous section, we showed how we can use unit tests in AspectJ while
keeping concerns separated even at the testing level. The problem with this
approach is not obvious at first sight but can be easily spotted if we actually
run the tests. The Security aspect changes the Account class behavior in such a
way that it breaks its tests. The testTransfer test will start throwing an exception
because the owner of the account is not logged into the system. This means that
the system can no longer be easily tested. There are several naive approaches we
can use to solve this problem but, as we will see in the next sections, none of them

Research Problem 61

Listing 5.7: Banking System – Authentication Aspect
1 public aspect Authentication {

2 private String Person.login;

3 private String Person.password;

4
5 private static HashMap <String , Person > people

6 = new HashMap <String , Person >();

7 private static Person currentUser = null;

8
9 private Person.new(String name , int id,

10 String login , String password) {

11 this(name , id);

12 this.login = login;

13 this.password = password;

14 people.put(login , this);

15 }

16
17 public String Person.getPassword () {

18 return password;

19 }

20
21 public Person getCurrentUser () {

22 return currentUser;

23 }

24
25 public boolean login(String login , String password) {

26 if (! people.containsValue(login)) return false;

27 if (people.get(login). getPassword (). equals(password)) {

28 currentUser = people.get(login);

29 return true;

30 }

31 return false;

32 }

33 }

is perfect.

5.2.1 Moving the Test

The most simple solution would be to move the offending test from the account
module to the security module and changing it to accommodate the security con-
cern. This could be easily achieved by adding some code to the test in order to
login the correct user before performing the transfers.

The problem with this approach is that the account module would lose the test-
Transfer test. This would make it harder to reuse this module in other systems.

62 Unit Testing Aspects

Listing 5.8: Banking System – Security Aspect
1 public aspect Security {

2 pointcut transfer(Account a) :

3 execution(public void Account.transfer (..)) && target(a);

4
5 void around(Account a) throws Exception : transfer(a) {

6 Person owner = a.getOwner ();

7 Person currentUser =

8 Authentication.aspectOf (). getCurrentUser ();

9 if (owner.equals(currentUser))

10 proceed(a);

11 else throw new Exception("Operation␣not␣allowed");

12 }

13 }

At the same time, the basic functionality of transferring money between accounts
would no longer be tested individually.

5.2.2 Changing the Test

By changing the accountTransfer test to accommodate the changes introduced by
the security aspect, we could easily make it work again. This would also have the
effect of making the security and account concerns tangled with each other.

This would happen not at the working code level but at the testing level. Although
it might seem to be just a small problem, this would prevent the account module
from being easily reused alone in other systems. It would also mean that the basic
functionality of transferring money between accounts would no longer be tested
individually.

5.2.3 Using AOP to Change the Test

We could keep the account module code as it is and use the AspectJ capabilities
to change the test by only changing some code in the security module.

This could be achieved, for example, by adding an aspect to the security module,
that captured the testTransfer method join point and, with an around advice,
recreated it having the security module concerns into account.

Research Problem 63

Figure 5.1: Banking System Dependencies

The problem with this approach is the same of the previous one. The difference is
that the tangling now happens in the security module. The advantage is that the
Account class, if used in isolation, now has working tests for its transfer method.

5.2.4 Reasoning

The reason why these approaches do not work is that there are several properties
of the system that we want to keep but are unable to:

1. Invasive aspects from higher order modules should not influence
the outcome of a unit test. The testTransfer test should run without the
influence of the security aspect. Each test should run at least once without
the influence of higher level modules and concerns. This assures that tests
run in isolation as they are supposed to.

64 Unit Testing Aspects

2. Tests should be oblivious in relation to other modules. The account
module should have no knowledge of the security module. Tests inside a
module should not have to care about other modules as we want them to
run in isolation.

3. Unit tests should only test the concerns of the module they belong
to. The testTransfer test should be coded into the correct module. Each test
should be coded inside the module it is testing in order to make reusability
easier.

All the proposed approaches violate at least one of these properties. Figure 5.2
shows what happens in each one of these proposed solutions. The diagram is hori-
zontally divided into two different scenarios: the top scenario shows what happens
when the account and security modules are used together; the bottom scenario
shows what happens if we reuse the account module separately from the security
module. In each scenario, we can see two images: the top one, represents the code
that is actually compiled and that will be tested; the bottom one represents the
code that the testTransfer test is really testing. The image is then divided into
four parts representing the original code and the three proposed solutions:

Figure 5.2: Naive Solutions to the Testing Concern Problem

Interferences 65

■ Figure 5.2a) shows the original scenario. The test code tests the account
module without any regard for the security module. When run together, the
code being tested is not the same as the compiled one (and, therefore, is
prone to break inadvertently). However, when run in isolation, the test is
accurate and tests only what it should.

■ In Figure 5.2b) we moved the test. When both modules are compiled to-
gether, we are testing the same behavior that has been compiled. However,
we are never testing the account module separately. When the module is
used without the security module, it is not even tested.

■ In Figure 5.2c) we changed the test. When both modules are compiled
together, we have the same result as in the previous point. When the account
module is used without the security module, the test that is run is the
changed test. This will result in a compilation error as the security features
that are used by the test are absent from the compiled code.

■ In Figure 5.2d) we used AOP to change the test. When both modules are
compiled together, we have the same result as in the previous points. When
the account module is used without the security module, the correct code is
compiled and tested. Besides being harder to code, the only problem with
this approach is that when the complete system is tested, the account module
is never tested in isolation.

As we have just shown, none of these solutions is perfect. In the next section we
will discuss one the of the research issues that would greatly benefit from a more
tamable approach to AOP testing. In Section 5.4 we will see how other authors
have managed to use testing techniques together with AOP and in Chapter 6 we
will propose our own solution for this problem.

5.3 Interferences

Besides providing higher software modularity, AOP also aims for a characteristic
called obliviousness that states that developers should be able to implement appli-
cation modules without any knowledge of previously implemented aspects or any
future implementations [RD00, Rob01].

Current AOP languages, like AspectJ, are so powerful that obliviousness sometimes
appears to be more of a problem than a solution. This is especially true when a

66 Unit Testing Aspects

large number of aspect modules are added into an application, often changing its
behavior, and thus making some aspect modules incompatible with each other.
This happens because most aspects expect to be weaved into an application with
a certain behavior and, if that behavior has been changed by a previously weaved
aspect, then their own behavior could prove erroneous.

Having a good testing strategy is of paramount importance to detect these inter-
ferences [RA09a].

The next section presents a brief roundup of several classification terminologies
found in the literature that try to describe the different types of conflicts and
interferences between aspects. Following this section, we describe prior work
regarding how conflicts can be detected, solved and prevented.

5.3.1 The Anatomy of Aspect Interferences

Understanding a problem is always the first step to solving it. In this partic-
ular case, it is important to identify the various kinds of interferences between
aspects and how they emerge. Several researchers have tried to categorize aspect
interaction according to different perspectives.

In the next sections, three different approaches to aspect interference terminol-
ogy and cataloging are presented. These approaches look at the same problem
from different angles and each one of them has an important perspective into the
problem.

The Interference Point of View

The most important work done in this area is probably the classification of aspect
interferences by Tessier [TBB04]. In his work the author points out several different
ways in which aspects can interfere with each other:

■ Crosscutting Specifications. The use of join points, and specially with
’*’ wildcards, can lead to accidental join points or infinite recursions.

■ Aspect-Aspect Conflicts. When multiple aspects exist in the same sys-
tem, problems like mutual exclusions between aspects, the importance of

Interferences 67

aspect ordering, or conditional execution of an aspect by another aspect can
occur.

■ Base-Aspect Conflicts. Circular dependencies between aspects and basic
classes.

■ Concern-Concern Conflicts. Aspects changing a functionality needed by
other aspect and composition anomalies normally happening due to subtype
substitutability.

The Aspect Point of View

According to Katz [Kat04], three types of aspects can be described in respect to
how they affect an application. This classification is important as some interfer-
ences only happen with some types of aspects. The three different aspect types
are the following:

■ Spectative aspects only gather information about the system to which
they are woven, usually by adding fields and methods, but do not influence
the possible underlying computations.

■ Regulatory aspects change the flow of control (e.g., which methods are
activated in which conditions) but do not change the computation done to
existing fields.

■ Invasive aspects change values of existing fields (but still should not inval-
idate desirable properties).

The Dependency Point of View

Kienzle [KYX03] approached the problem from a different point of view by consid-
ering only the relationships of dependency between aspects and the original code.
Three different kinds of aspect dependencies have been identified:

■ Orthogonal aspects provide functionality to an application that is com-
pletely independent of the other functionalities of the application. No data
structures are shared between these aspects and the rest of the application.
This kind of aspects is very uncommon.

68 Unit Testing Aspects

■ Uni-directional aspects depend from some functionality of the applica-
tion. These can be further divided as preserving – if the application func-
tionality is maintained or enhanced without any current functionalities being
altered or hidden; or modifying – if the application functionality is altered
or hidden.

■ Circular aspects are mutually dependent of each other. This kind of
aspects is so tightly coupled that one can argue if they should really be
considered as separate aspects or as one unique aspect.

Axis of Invasion

Munoz [MBB08] proposed to classify invasive aspects under three different axes:
control flow, data access and structural.

■ Control flow invasive advices allow developers to change the control flow of
a program. These have been further categorized as augmentation, replace-
ment, conditional replacement, multiple and crossing.

■ Data access invasive advices allow developers to change the flow of informa-
tion in a program. These have been categorized as read, write and argument
passing.

■ Structural invasive advices allow developers to change the structure of a
class. They can change the class hierarchy and add operations and fields.

5.3.2 Detecting Aspect Interferences

In order to solve the problem posed by the interference of aspects, a second problem
must be solved first: how to detect that an aspect interferes with another aspect
or module? Literature has many different ideas about how to solve this problem.
These ideas are explained next.

Program Slicing

Balzarotti [BM04] claims that this problem can be solved by using a technique
proposed in the early 80’s called program slicing. A slice of a program is the set

Interferences 69

of statements which affect a given point in an executable program. According to
the author the following holds:

Let A1 and A2 be two aspects and S1 and S2 the corresponding back-
ward slices obtained by using all the statements defined in A1 and A2
as slicing criteria. A1 does not interfere with A2 if A1 ∩ S2 = ∅.

According to the author, this technique is accurate enough to identify all interfer-
ences introduced by an aspect but some of those are later considered to be false-
positives (i.e., intentional interferences). Furthermore, the existence of pointcuts
that are defined based on dynamic contexts forces the analysis of every execution
trace increasing the number of these false-positives. However, the approach has
the advantage of removing the burden of having to declare formally the expected
behavior of each aspect.

Aspect Integration Contracts

Contracts have been introduced by Meyer [Mey92] as a defensive solution against
dependency problems in OOP. Some authors claim that contracts can be imported
into the AOP world in order to assist programmers on avoiding interference prob-
lems.

Lagaisse [LJDW04] proposed an extension to the Design by Contract (DbC)
paradigm by allowing aspects to define what they expect of the system and how
they will change it. This will allow the detection of interferences by other aspects
that were weaved before, as well as the detection of interferences by aspects that
are bounded to be weaved later in the process. According to the author, for an
Aspect A bound to a component C the following should be defined:

1. The aspect should specify what it requires from component C and possibly
from other software components.

2. The aspect also needs to specify in which way it affects the component C
and the functionality it provides (if applicable).

3. The specification of component C must express which interference is permit-
ted from certain (types of) aspects.

70 Unit Testing Aspects

This approach has the disadvantage of forcing the programmer to verbosely specify
all requirements and modifications for each aspect as well as permitted interfer-
ences. On the other hand, the formal specification of behaviors has proven to be
a valuable tool in Software Engineering.

Regression Testing

Katz [Kat04] proposed the use of regression testing and regression verification as
tools that could help identifying harmful aspects. The idea behind this technique
is to use regression testing as normally and then weave each aspect into the system
and rerun all regression tests to see if they still pass. If an error is found, either
the error is corrected or the failing tests have to be replaced by new ones specific
for that particular aspect.

Service-Based Approach

It has been noticed by Kienzle [KYX03] that aspects can be defined as entities
that require services from a system, provide new services to that same system and
removes others. If there is some way of explicitly describing what services are
required by each aspect it would be possible to detect interferences (for example,
an aspect that removes a service needed by another aspect) and to choose better
weaving orders.

Introduction and Hierarchical Changes Interferences

Störzer [SK03] developed a technique to detect interferences caused by two differ-
ent, but related, properties of AOP languages. He claims that the possibility of
aspects introducing members in other classes can lead to undesired behaviors as
it can result in changes of dynamic lookup if the introduced method redefines a
method of a superclass. He calls this type of interference binding interference.

The other problem Störzer refers to is the possibility of aspects changing the
inheritance hierarchy of a set of classes. He claims that this type of changes can
also give place to binding interferences as well as some unexpected behavior caused
by the fact that instanceof predicates will no longer give the same results as before.

Interferences 71

To detect this kind of conflicts, Störzer proposes an analysis based on the lookup
changes introduced by aspects.

Kessler [KT06] also studied how structural interferences could be detected. How-
ever, his approach is based in a logic engine where programmers can specify rules
(ordering, visibility, dependencies, ...). He also described the different types of
interferences that are possible with introductions and hierarchical changes and
proposes solutions for each one of them.

Graph-Based Approach

Havinga [HNBA07] proposed a method based on modeling programs as graphs
and aspect introductions as graph transformation rules. Using these two models
it is then possible to detect conflicts caused by aspect introductions. Both graphs,
representing programs, and transformation rules, representing introductions, can
be automatically generated from source code.

Although interesting, this approach suffers the same problem of other automatic
approaches to this problem as intentional interferences cannot be differentiated
from unintentional ones.

5.3.3 Aspect Interference Resolution

Douence [DFS02, DFS04] proposed a framework that allowed programmers to solve
aspect interferences by using a dedicated composition language. The idea behind
this language is to allow an explicit composition of aspects at the same execution
point. The interferences solved by this approach are those that occur when the
same crosscut is used by two different aspects.

5.3.4 Avoiding Aspect Interferences

The powerfulness of current AOP languages has been the target of several re-
searchers that claim that without any control mechanisms, interferences will al-
ways be a big problem in the AOP world. In the next few sections, some of the
approaches that follow this path are described.

72 Unit Testing Aspects

Robust Pointcuts

Braem [BGKV06] proposed a method based on Inductive Logic Programming in
order to automatically discover intentional pattern-based pointcuts. This method
aims at solving the fragile pointcut problem, that states that pointcuts defined by
enumeration do not cope well with program evolution and that the use of wildcards
to solve this problem can cause interferences by means of accidental join points.

Crosscutting Interfaces

Crosscutting Programming Interfaces, or XPIs, have been introduced by Griswold
[GSS+06] as a form of making AOP programming easier. By using abstract in-
terfaces to expose pointcut designators, this approach decouples aspect code from
the unstable details of advised code without compromising the expressiveness of
existing AO languages or requiring new ones. The author expects that integrated-
development-environment support could aid programmers by showing the scope of
an XPI applicability.

Join Point Encapsulation

The reason why AOP is so powerful and at the same time so easily misused is that
join points are available for weaving without any knowledge of the programmer
that originally developed the code. On one hand, this allows the developers to be
oblivious about what code is going to be weaved in their code, but, on the other
hand, is the source of interferences and conflicts. Larochelle [LSS03] proposed
the idea of adding join point encapsulation by introducing a new kind of advice:
join point encapsulation advice, or restriction advice. Restriction advice serves
to encapsulate the join points selected by a pointcut against modification by
other aspects thus enabling the modular representation of the encapsulation of
crosscutting sets of join points.

5.4 Related Issues

In this section, we will highlight some of the previous work done on the field of
testing aspect oriented programming software.

Related Issues 73

5.4.1 Using Unit Tests with AOP

Zhou [ZZR04] acknowledged the difficulties posed by aspect oriented programming
when testing is involved. He proposed a four step approach to the problem.

In the first step, only classes are tested. This would enable the elimination of
non-aspect related errors.

The second step is to weave each aspect with the base classes separately and test
each one of the woven systems. Zhou claims that this is similar to unit testing
each concern and that aspects seldom interact with each other.

In the third step, several aspects would be tested simultaneously in order to do
integration testing. This step would enable the interaction between aspects to be
tested.

The final step would perform system-wide testing as all aspects are tested at the
same time.

Ceccato [CTR05] explores the idea that aspect oriented programming code is easier
to test than object oriented programming code because each concern can be tested
separately due to the nature of aspects themselves and at the same time harder
due to the new fault types introduced by the paradigm (see Section 8.2). To solve
the identified problems, he proposes an incremental test based approach.

Wanga [WZ12] addresses some of the problems posed by testing aspect oriented
programming by testing base classes first using unit testing, then testing each
aspect using integration testing and finally testing the complete woven system
using system testing.

5.4.2 Using Different Approaches to Testing AOP

Mortensen [Mor05] described an approach to solving errors both in the quantifica-
tion of pointcuts and in the code of advices. He proposes the combination of two
traditional techniques – coverage and mutation testing. By using static analysis
of an aspect to guide in the selection of appropriate coverage criteria for aspect
code fragments, he provides a set of mutation operators to evaluate if a test suite
is sufficiently sensitive to find errors.

74 Unit Testing Aspects

Xu [XX06] proposed a state-based approach to testing AOP programs. He argues
that it can reduce the testing cost by reusing test cases and identifying aspect spe-
cific faults. They achieve that by thinking of aspects as incremental modifications
of their base classes and identifying how to reuse the concrete base class tests for
testing. Xu [XEAXW12] also presented a framework for testing whether or not
aspect oriented programs conform to their state models. This framework supports
two families of strategies for the automated generation of aspect tests from aspect
oriented programming state models. The first strategy derives tests and test code
from an aspect-oriented state model while the second one generates test code from
the counterexamples of model checking. The author used mutation analysis to
evaluate the effectiveness of these testing strategies.

Parizi [PGAA09] [PGAA09] proposes using automated random testing (ART) with
AspectJ. He argues that it is possible to do so but that current distance measures
would not be all applicable or sufficient to address the notion of evenly spread
of test cases suggested by ART. Later [PGL15] he proposed an automated test
generation technique with tool support based on guided random testing for AspectJ
programs.

Wedyan [WG10] applied data flow testing to AOP. He created a tool that identifies
the DefUse Associations in AspectJ programs and computes the coverage obtained
from a test suite.

Ferrari [FNRM10] created a mutation-based testing tool called Proteum/AJ that,
according to the author, overcomes some limitations identified in previous tools for
aspect oriented programming programs. In a previous study, together with Levin
[LF14], they studied the effort required to migrate test code from object oriented
programming to aspect oriented programming programs.

Delamare [DBG+11] developed the AdviceTracker tool that monitors the execution
of advices in an aspect-oriented program and uses this information to build test
cases that target faults in pointcut designators.

Alexander et al. [ABAA04] presented the differences between OOP and AOP when
it comes to testing. In particular, they address the fact that aspects have to be
tested in the context into which they are woven. They propose a fault model and
testing criteria for AOP.

Ceccato et al. [CTR05], explored the differences between testing AOP and OOP.
They also considered an incremental testing approach for AOP.

Summary 75

Lopes et al. [CVL05], proposed using mock objects that emulate execution context
information in order to use unit tests on aspectual behavior.

Yamazaki et al. [YSM+05] proposed a method of unit testing without weaving an
aspect by describing test cases from the same viewpoint as describing the aspect
for the program.

5.5 Summary

Testing software is an important part of most software development processes. It
is the phase where faults are eventually discovered before they become part of the
finished product.

In this chapter, we have shown that unit testing, as is, is not compatible with
the use of AOP, as either the modularity of those tests is broken or not all tests
are run. In the next chapter, we will present a possible approach to solving this
problem that enables unit tests to still be free of crosscutting concerns without
losing the ability to test all methods in isolation.

Depend upon it there comes a
time when for every addition of
knowledge you forget something
that you knew before. It is of
the highest importance, there-
fore, not to have useless facts el-
bowing out the useful ones.

Arthur Conan Doyle – 1887

6
Modular Testing in AOP

Contents
6.1 Dependency Graph . 78

6.2 Testing Modules . 79

6.3 Annotating Tests . 81

6.4 Example Scenario . 82

6.5 Formal Analysis . 84

6.6 Testing for Interactions 88

6.7 Proposed Testing Strategy 91

6.8 Strategy Evolution . 91

6.9 Limitations . 94

6.10 Summary . 95

In this chapter, we will discuss a methodology that allows unit testing of AOP
programs without breaking the modularity introduced by the use of aspects.

78 Modular Testing in AOP

In the previous chapter, we have shown that while aspects allow a better separation
of concerns, when we introduce unit tests, that separation is broken. This happens
because tests are created without having in mind the addition of invasive aspects.

What we propose is a methodology where invasive aspects are allowed to declare
tests from other modules as being deprecated and then adding its own tests. In
the next sections, this methodology will be presented and explained in detail.

6.1 Dependency Graph

Software systems are made up of modules. Modules are independent units that
can be used to construct complex systems. They should also be easily reused in
a different project, and if they have unit tests, those tests should also be easily
reused.

When a module interacts with another module, through a well-defined interface,
we can say that that module depends on the functionality of the other module
to perform its tasks. The set of dependencies between modules can be seen
as a directed graph where nodes represent the modules and edges represent the
dependencies.

A well-designed software system should be built in such a way that low-level
modules do not depend on higher level modules. Software systems should be built
layer by layer, with each layer adding more functionalities. if this is accomplished,
then the module graph becomes a Directed Acyclic Graph (DAG) (see Figure 6.1).

Unfortunately, not all software systems follow this recommendation and it is com-
mon to find circular dependencies even in the most well-designed software systems.
In graph theory, these collection of nodes that form circular dependencies are called
strongly connected components, and although they cannot be easily removed, they
can be isolated. We do this by considering each strongly connected component
in the graph as a super module. In this way, we can consider that all software
systems can be thought as being composed as a DAG of module dependencies (see
Figure 6.2).

The nature of these dependencies is different when we are discussing the classic
OOP model or an AOP based program. While in OOP, dependencies are created
when a class references a class or an interface defined in another module, in AOP

Testing Modules 79

Figure 6.1: Dependencies Between Modules

references can also be created when join points are declared. These dependencies
can be more complicated to detect as in some languages the join point model can
be very expressive.

But the real difference between OOP and AOP dependencies is that when module
A depends on module B, in a pure OOP program, we can be sure that module B
behavior is not changed directly by module A. The same cannot be said if module
A contains invasive aspects.

6.2 Testing Modules

When testing modules in an AOP program we have to take into consideration that
some modules might change the behavior of modules they depend on. But if we
are able to extract the dependency graph, that we just described in the previous
section, from the source code of an AOP program, we can be sure that we will
have at least one low-level module (or super module) that does not depend upon
any other modules.

This module, or modules, can be easily tested in isolation as they can be compiled
separately. Their unit tests can be run without any danger of them failing due to
behavior modifications introduced by aspects belonging to higher level modules.

80 Modular Testing in AOP

Figure 6.2: Identifying and Removing Circular Dependencies

After this initial testing step, some of the remaining modules will depend solely
on the modules that have already been compiled and tested. We can take one of
these modules and compile it together with the previously tested modules. Then,
we can run the tests not only for the newly selected module but also the tests that
have already been run for previous. This process can continue until there are no
more modules to test.

When a new module is selected for the testing process, its tests can either all pass
or some of them might fail. If a test fails on the newly selected module, we can be
sure that the error has not been introduced by a higher level aspect as these have
not been compiled into the system.

If a test on a previously tested module fails when the new module is introduced
into the testing process, then it means that the new module altered the behavior
of one of the previous modules. This can mean one of two things, either the newly
introduced module is defective, or it is changing the behavior of the previous
module in such a way that its tests have become deprecated and must be replaced
with new tests.

Unfortunately, a mechanism that allows developers to deprecate and replace tests
in modules whose behavior is changed by invasive aspects from other modules does
not exist. This forces developers to cheat by using one of the approaches previously
described in Section 5.2. In the next section, we will propose a different approach
to this problem.

Annotating Tests 81

6.3 Annotating Tests

To tackle this problem, we propose an annotation based approach where developers
can mark tests as being deprecated. The whole testing process becomes as follows:

1. Extract a dependency graph between the modules that compose the program.
2. Identify circular dependencies and treat those modules as being a single

larger module. This effectively transforms the dependency graph into a DAG.
3. Pick a module that does not depend on any untested modules and test

it together with the previously tested modules. Both tests from previous
modules and the module being tested should be executed. Several different
things can happen:

(a) Some tests from the current module fail. This means that there is a
bug either in the code of the new module or in its tests. The testing
procedure stops and the problems are reported. The developer fixes the
module and repeats the testing procedure from step 1.

(b) Some tests from previous modules fail. The testing procedure stops and
the problems are reported. After analyzing the results, the developer
can interpret them in two different ways:

i. The code of the new module has a bug and it is changing the
behavior of another module in an unexpected way. The developer
fixes the module and repeats the testing procedure from step 1.

ii. The code of the new module is changing the behavior of a previously
tested module in an expected way. If it does not already exist,
the developer adds a new test for the new behavior and adds an
annotation stating that the old test is deprecated by this new test.
This effectively means that the deprecated test should not be run
if the new test is part of the system being tested.

(c) All tests pass. Nothing needs to be done.

4. If there are still untested modules, go back to step 3.

Figure 6.3 contains a simple flow chart depicting the whole process. In this figure,
the green colored boxes denote actions and decisions that are part of the automatic
testing system. The yellow colored boxes denote actions and decisions done by the
developer.

82 Modular Testing in AOP

Figure 6.3: Modular Testing Process

6.4 Example Scenario

In the motivational example presented in Section 5.1, we described a very simple
stripped down system for a bank. In this example, the code has been separated
into five modules: Person, Account, Authentication, Security, and AccountOwner.
Figure 5.1 shows the dependency graph for this system.

As was shown in Section 5.2, the problem with testing invasive aspects is that it is
in their nature to disrupt tests from lower level modules and there is no solution to
prevent that from happening except by breaking some other desirable properties.

In this example, the Security module breaks the tests developed for the Account
module as these do not expect having to login into the system. By using our
approach this is what would happen:

1. The Person module would be tested in isolation.
2. The Person and Account modules would be tested together. As they don’t

depend on each other their tests would not interfere.
3. The Person, Account and Authentication modules would be tested together.

As they don’t depend on each other their tests would not interfere.

Example Scenario 83

4. The Person, Account, Authentication and AccountOwner modules would be
tested together. The AccountOwner module depends on the Person and
Account modules, but it is not an invasive aspect so the tests belonging to
these two modules should not be affected. It is up to the test developer to
make sure that the Person and Account modules do not interfere on the tests
of the AccountOwner module. This can be accomplished by using mocks or
stubs (see Section 4.3.1).

5. The Person, Account, Authentication, AccountOwner and Security modules
would be tested together. As the Security module has invasive aspects in
relation to the Account module, tests in that module do not expect users to
authenticate before performing transactions. This means that tests in the
Account module, namely the testTransfer test, would now fail.

By analyzing the causes of this failure, the developer could easily understand that
the test failed due to an interaction between these two modules. As this interaction
was expected, the developer just has to add a new test to the Security module that
tests this interaction. This test should have an annotation stating that it replaces
the testTransfer test in the Account module (see Listing 6.1).

Listing 6.1: Secure Transfer Test
1 @ReplaceTest("Account.testTransfer")

2 public void testSecureTransfer () throws Exception {

3 Person p1 = new Person ("Jonh", 1, "john", "password");

4 Account a1 = new Account (p1, 1, 1000);

5
6 Person p2 = new Person ("Mary", 2);

7 Account a2 = new Account (p2, 2, 500);

8
9 Authentication.login("john", "password");

10
11 assertEquals (1000.0 , a1.getBalance ());

12 assertEquals (500.0 , a2.getBalance ());

13 a1.transfer (200, a2);

14
15 assertEquals (800.0 , a1.getBalance ());

16 assertEquals (700.0 , a2.getBalance ());

17 }

In this way, when the code is tested again, as the Security module is added, the
system will know to use the testSecureTransfer instead of the testTransfer test.

84 Modular Testing in AOP

In the following section, we will analyze our approach in a more formal manner.
In Chapter 7 we will present an implementation of this approach for the AspectJ
language.

6.5 Formal Analysis

6.5.1 Domain of Discourse

We will start by defining our domain of discourse. In this analysis, our variables
and terms will be modules, compositions of modules and unit tests of the same
program. To simplify our analysis, we will assume that all terms of the form m or
mi are modules, all terms of the form c or cj are compositions and all of the form
t or ti are tests.

6.5.2 Operators

We will start by defining a couple of operators that will make it easier to follow the
analysis. The composition operator (◦) represents the composition of two modules
compiled together (see expression(6.1)). A module can also be composed with a
composition (see expression (6.2)) and two compositions can also be composed
with each other (see expression (6.3)).

c = mi ◦ mj (6.1)
ci = cj ◦ m (6.2)
ci = cj ◦ ck (6.3)

We will also use the belongs operator (∈) to specify that a certain module or
composition is part of a certain composition (see expression (6.4)).

m ∈ c (6.4)

And we will use the belongs operator (∈) to specify that a certain test is defined
inside a certain module (see expression (6.5)).

Formal Analysis 85

t ∈ m (6.5)

And, of course, if a test is defined in a module that is part of a composition, the
test is also part of the composition (see expression (6.6)).

t ∈ m ∧ m ∈ c → t ∈ c (6.6)

6.5.3 Predicates

We will also define certain predicates that pertain to the domain of discourse.

Modules and compositions may depend on other modules (predicate D). A module
or composition that depends on another module cannot be compiled separately
from the module it depends on (see expression (6.7) – module depends on module
– and expression (6.8) – compostion depends on module).

D(ma, mb) (6.7)
D(c, m) (6.8)

Compositions and modules may also depend on compositions. This means that
they depend on, at least one, of the modules that are part of the composition (see
expression (6.9) and expression (6.10)).

D(m, c) ↔ ∃ma ∈ c D(m, ma) (6.9)
D(ca, cb) ↔ ∃ma ∈ ca∃mb ∈ cb D(ma, mb) (6.10)

If all modules that a certain module or composition depends on are part of one
composition, we can declare that that module or composition depends only (pred-
icate Do) on that one composition (see expression (6.11)).

Do(m, c) ↔ ¬∃ma /∈ c D(m, ma) (6.11)

86 Modular Testing in AOP

If a module m has all its dependencies satisfied in composition c, then the compo-
sition m ◦ c is valid. However, this does not prove that the composition is correct.

Tests can be applied to modules or compositions. If a test run succeeds in the scope
of a certain module or composition we can say that the module or composition
passed the test (see expression (6.12) – module passes test – and expression (6.13)
– composition passes test).

P (m, t) (6.12)
P (c, t) (6.13)

Modules can declare that they are replacing tests. We can also declare if a test
was replaced by a module using the predicate R (see (6.14)).

R(t, m) (6.14)

A module or composition can be declared correct if its behavior is consistent with
its requirements. Tests can be used to assert if this is the case. A correct module
or composition can also be declared by using the predicate C (see expression (6.15)
and expression (6.16)).

C(m) (6.15)
C(c) (6.16)

6.5.4 Assumptions

Assumption 6.1 All tests are correct. If a composition is correct, all tests defined
inside its module must pass except those that have been replaced by modules inside
that same composition (see (6.17)).

∀c C(c) → ∀m ∈ c ∀t ∈ m (R(t, m) ∨ P (c, t)) (6.17)

Formal Analysis 87

Assumption 6.2 All tests are complete. If all tests defined inside a composition,
except those that have been replaced by modules inside it, pass then the composition
is correct (see (6.18)).

∀c ∀m ∈ c ∀t ∈ m (R(t, m) ∨ P (c, t)) → C(c) (6.18)

6.5.5 Theorems

Based on these assumptions, we will now try to prove some theorems that describe
the whole base of the approach.

We will start by analyzing the incremental nature of the approach. Namely, if
adding a new module to the test process and retesting previous and new tests is a
valid option to test if a program is correct.

Theorem 6.3 Let c be a composition of modules tested as being correct. Let m

be a module that depends only on the modules contained in c. If all tests defined
in m ◦ c, that were not replaced by m or by c, pass for composition m ◦ c, then
composition m ◦ c is also correct (see (6.19)).

C(c) ∧ Do(m, c) ∧ ∀mt ∈ (m ◦ c) ∀t ∈ mt (R(t, m ◦ c) ∨ P (m ◦ c, t)) → C(m ◦ c)
(6.19)

Proof If module m depends only on modules defined inside composition c, then
composition m ◦ c is valid. If we substitute composition c in the assumption 6.2
by m ◦ c we get the same expression we are trying to prove. Hence, the theorem
is correct under the assumption that tests are complete.

We will also need to show that when a module is not correct, the approach correctly
predicts the existence of a fault.

88 Modular Testing in AOP

Theorem 6.4 Let c be a composition of modules tested as being correct. Let m

be a module that depends only on the modules contained in c. If there exists a test
defined in m that fails for composition m ◦ c, then composition m ◦ c is not correct
(see (6.20)).

C(c) ∧ Do(m, c) ∧ ∃t ∈ m ¬P (t, m ◦ c)) → ¬C(m ◦ c) (6.20)

Proof As we have seen in assumption 6.2, for a composition to be correct all tests
defined inside it must pass or be replaced by a module. If there is a test t belonging
to module m, then this test could not be replaced by composition c as this would
create a dependency between c and m and invalidate composition c, and it also
could not be replaced by module m, as it is defined inside it. As the test fails to
pass for composition m ◦ c then this composition must be incorrect.

6.6 Testing for Interactions

Although AOP improves modularity, sometimes reasoning about interactions be-
tween modules is not as easy as in OOP. This happens as reasoning about the base
code can become invalid once aspects from other modules are taken into account.

When unit tests uncover faults, it is also important to be able to pinpoint easily
where the fault originated. In this section, we will explore how modular testing
can be used to reason about unexpected interactions that are the source of faults.

By transforming our dependency graph into a directed acyclic graph and then
incrementally compiling and testing its modules using a topological sort order, we
might get not one compilation order but several ones (see Figure 6.4).

Using any one of those orders is enough to use our testing approach but we can
take advantage of this fact to extract even more information from the tests.

For example, in Figure 6.5, we can compile incrementally the four modules in three
different ways: {C, B, A, D}, {C, B, D, A} or {C, D, B, A}. Let us imagine the
following scenario:

Testing for Interactions 89

Figure 6.4: Some Possible Compilation Orders

Figure 6.5: Dependency Example

1. When testing using the order {C, B, A, D}, tests for modules C, B and A pass
and when module D is added a test from itself fails. The only information we
can extract from this test is that something is wrong with the composition
of module D with the remaining modules.

2. When testing using the order {C, D, B, A}, tests for modules C, D and B
pass and when module A is added a test from module D fails. Using this
order there is some more information we can extract from the test. Not
only is there something wrong with module D but that something seems to
be originating from module A. As module A does not depend or interact
with module D directly, the developer could extrapolate that module A is
changing something in module B that is changing something in module C
which is breaking module D. The developer could then add some annotation
to module A stating that it broke module D.

3. We could easily confirm this problem by running the tests using the order
{C, B, D, A} and noticing that only when module A was added into the
system did module D break.

In Figures 6.6 and 6.7 we can observe how we can extract two different informations
depending on the compilation order. In Figure 6.6, when module D is added, we
cannot pinpoint if there is an interaction with another module. In Figure 6.7, when
module A is added, module D fails its tests revealing an interaction between the

90 Modular Testing in AOP

Figure 6.6: Module D is Added After Module A

Figure 6.7: Module A is Added After Module D

two modules.

To ensure the maximum amount of information is extracted from these tests, the
module where the test failed should be added as soon as possible to the system.
This allows us to deduce that if, at that time, a unit test fails, then the problem
lies in the added module as the only other modules added all passed their tests.

On the other hand, if all tests still pass when the module is added, then the fault
is in a higher level module. One that is changing the behavior of the module or
the behavior of a module this module depends on.

Taking this into consideration, after discovering that module D, from the previous
example, has a test that fails. We should compile the modules incrementally in the
following order: C, D, B and A. The test that failed previously will either fail when
module D is added, uncovering a fault in that same module, or when modules A
and B are added, pointing to an interaction between one of those modules and
module D.

In the next section, we will summarize the proposed testing strategy that has been
described in this chapter.

Proposed Testing Strategy 91

6.7 Proposed Testing Strategy

The strategy that has been delineated throughout this chapter can be summarized
in four clear steps:

■ Develop modules with few or no circular dependencies. The main
objective of using AOP is to prevent crosscutting concerns from polluting
the code. This will help make the code more modular which will improve
several other aspects like reusability and maintainability. A code base where
modules have circular dependencies removes a lot of these advantages so it
should be already a top priority to have as few of these as possible. When
using this strategy, it becomes even more important to observe this principle
as circular dependencies prevent an incremental compilation strategy.

■ Use classic unit testing techniques. Testing techniques for OOP code
have already been thoroughly discussed in the literature. We argued that
they are not enough for the aspect oriented programming case, but they
should be used as a starting point. By using stubs and mocks, the developer
can isolate each module from the behavior of lower-level modules.

■ Use incremental testing. In order to isolate tests from the behavior of
possible higher level modules containing invasive aspects, we should use an
incremental testing strategy. This strategy complements the use of classical
unit testing techniques by providing protection from higher level modules
without breaking the encapsulation within each module.

■ Try different composition orders. If a fault is detected, try different
composition orders in order to better pinpoint the origin of the fault. This
should be done only after a fault has been detected. The faulty module
should be added as soon as possible so that all possible interactions can be
analyzed.

6.8 Strategy Evolution

During the course of this work, the approach that we propose has taken different
forms. In this section, we try to explain the evolution behind it and what are the
advantages as disandvantages of each new step.

92 Modular Testing in AOP

6.8.1 Method-Test Approach

Our initial idea was to consider tests as being the proof that a certain concern
was implemented correctly. Ideally, for every concern in the system, the developer
should be able to create a test for it. Class methods are the artefacts that end up
implementing those concerns. So we could have annotations in each method with
a reference to the test for the concern that the method was implementing.

In order to create the DAG of dependencies needed for our incremental testing
process, we proposed another annotation where each method could declare the
tests it depends on. Notice that we do not specify which methods the method
depends on, but the tests that were created to test that method. This means that
every time an aspect is added to the system, in our incremental testing process,
and a previously tested test fails, we can pinpoint which methods are affected by
that interaction.

Finally, we proposed another annotation that allows developers to declare expected
interactions. This annotation would be used by developers on advices to pinpoint
which tests they expect to break.

Having these annotations in place, our testing process would be able to create the
directed acyclic graph of dependencies, using the requires and adds annotations,
and run only the tests that have not been removed by subsequent advices by means
of the removes annotation.

Besides the extra effort put in by the developer, the problem with this approach
is that the relation between methods/advices and tests is artificial.

6.8.2 Concern-Test Approach

To mitigate the artificiality of our first approach, we decided to add a new annota-
tion that would depict a concern. In this approach, each method has an annotation
stating which concern it implements. These concerns can even be derived from
the requirements phase.

In this way, methods and advices no longer add, remove or depend on tests but
on concerns. To know which concern is tested by each test we need an annotation
that will be applied to each test with a reference to the concern.

Strategy Evolution 93

To apply our proposed testing process using this approach, we start by selecting
a module whose methods do not depend on any concern from another module.
Tests for the concerns defined in the module are run. In each step we add another
module that only has requires annotations referencing concerns added by modules
that already have been tested. If a test that passed in a previous step fails after a
new module is added we can infer that there is an interaction between a concern
implemented in that module and the concern that the failing test was testing.

In comparison with the first approach, this one has a richer set of metadata on
the implemented concerns and their tests. This extra knowledge allows us to
better understand which concerns are interacting with each other. Developers can
therefore reason more easily if the interaction is expected or if it is an unexpected
interference.

6.8.3 Module-Test Approach

The previous two approaches imposed an heavy burden on the developers as they
had to add a lot of annotations to the code. In this iteration we tried to reduce
the amount of extra work needed by removing most of them.

We started by considering modules as being defined by the way the used language,
in this case AspectJ, defined its own units of modularity – Java packages. To
prevent cases where the relation between the language defined units and the
intended modules is not a direct one, we added an optional annotation so that
each class/aspect could define to which module it belongs.

Tests defined inside a module are considered as being used to test some concern
of the module. This removed the burden to add annotations for each test.

The only annotations really needed, are between tests. The replaces annotations
identify cases where a test represents a concern, developed as an invasive aspect,
that changes the behavior of another concern that is tested by the other test.

This approach drastically reduced the amount of extra work by the developer.
However, the information gathered is much less. But still, when interactions are
detected we can get information about which test failed and which modules caused
the interaction. This information should be enough for the developer to identify
the origin of the problem and act accordingly.

94 Modular Testing in AOP

6.8.4 Advice-Test Approach

The last approach considered was an easy evolution from the previous one. The
only mandatory annotation in our previous approach was used to remove a test
from the system when a module containing invasive aspects was added to the
system changing the behavior the test was testing. An alternative would be to use
an advice to disable the test.

Although this approach does not use any annotations, besides the optional one
that changes the way modules are defined as language constructs, the incremental
compilation process is still needed to ensure that disabled tests are run at least
once during testing.

6.9 Limitations

In the previous sections, we have shown how tests will crosscut different modules,
even when using aspect oriented programming, making them, the modules, hard to
reuse. We then described a testing strategy that promises to prevent the tangling
and scattering of these unit tests. However, there are some limitations to this
strategy that we will summarize in the next few paragraphs.

The strategy is extremely sensitive to bad code. Especially code that has lots of
circular dependencies. This makes the strategy harder to use in poorly written
legacy code. Fortunately, a tool based on this strategy will be able to analyze
dependencies and warn the developer when circular dependencies are being created.

For the strategy to work perfectly, tests must be complete. When an invasive
aspect changes the behavior of a module that module must have a test that detects
that the new behavior is faulty. This is not always feasible as the tests should not
have been written having in mind the aspect. It will be the responsibility of the
developer of the invasive aspect to expect a test to fail in the modified module and
add one if no test fails.

To implement the strategy, there must be a way to inspect the code and extract
the dependencies and invasive behavior between modules. In some programming
languages, this might be hard to achieve.

Summary 95

Although we tried to minimize the extra work needed, this strategy will mean that
developers will have to step up their unit tests and add some extra annotations.

In large projects, the time needed to run all unit tests is usually quite high. By
applying this strategy, the time needed to test the complete system will be squared.
This might be a possible show stopper.

The last identified problem is that the strategy does not, in fact, remove all the
modularity problems. When an annotation is declared in a module, stating that
a test from another module is being deprecated in favor of another one, we are
adding information to the module that is not pertinent to that module. Ways to
solve these and other issues will be discussed in Section 9.2.

6.10 Summary

In this chapter, we delineated a possible solution to the problem identified in
Chapter 5.

We have shown that programs that are well structured – with few circular depen-
dencies – can be annotated in such a way that allows unit testing without losing
any modularity.

We also identified the importance of creating tools to aid the developer into im-
plementing the ideas that we delineated in this chapter.

In the end, we feel that an incremental testing strategy is an important step
forward in order to make aspect oriented programming more usable.

In programming, the hard part
isn’t solving problems, but decid-
ing what problems to solve.

Paul Graham – 2004

7
Implementation

Contents
7.1 DrUID: Unexpected Interference Detection 99

7.2 Aida: Automatic Interference Detection for AOP . . . 101

7.3 Current Issues . 103

7.4 Summary . 104

Two tools that target AspectJ have been developed to experiment with the strategy
proposed in the last chapter. These tools were implemented as Eclipse [Ecl10]
plugins.

AspectJ was chosen as the target language for several different reasons. First, it is
one of the most used AOP languages and a target for much of the current research.
Secondly, as it is Java based, it can be used with Eclipse, an IDE where plugin
development is straightforward. With Eclipse we also get two other important
benefits, Java Development Tools (JDT) [JDT10] and AspectJ Development Tools
(AJDT) [AJD10], tools for, respectively, the Java and AspectJ languages that allow
access to the source code abstract syntax tree.

98 Implementation

The original idea behind this thesis was to better understand how aspects interfered
with one another and, especially, how unexpected interferences could be detected
automatically. As time progressed, the original idea was expanded as it soon
became clearer that the proposed approach could be used not only for interference
detection but for testing in general.

During the course of the work, two different plugins were developed: DrUID and
Aida. Both are based on the usage of annotations throughout the code that contain
information about which interferences are expected.

A first approach to the problem suggested that the following annotations were
necessary [RA07][RA08] (see Figure 7.1 and Appendix A):

■ @AddsTest Indicates that a certain test has been added in order to test
the code where the annotation has been attached to.

■ @RequiresTest Indicates that the code where this annotation is used, re-
quires the feature implemented by the code that added the test referred by
the annotation.

■ @SupressesTest Indicates that the code where this annotation is used
changed the feature that was tested by the test referred by this annotation.

Figure 7.1: First Approach to the Problem

The idea behind this approach is that tests are indicative of features. Whenever
a feature is implemented, a test can be created to test it and can be used as
the indicator that the feature is still present and working. Whenever there is an
interaction, a test will be broken. If the interaction is expected, the culprit code
can announce that intention using an annotation.

As work progressed, other approaches where developed and, based on these new
approaches, two different tools were created – DrUID and Aida.

DrUID: Unexpected Interference Detection 99

7.1 DrUID: Unexpected Interference Detection

DrUID (UID as in Unexpected Interference Detection) [Res09] was the first at-
tempt at creating a plugin to help developers follow the methodology being ex-
plored throughout this document. In order to accomplish this, the plugin allows
developers to define several characteristics about system artifacts using Java an-
notations (see Figure 7.2):

■ @Feature Used to annotate code as to being part of the implementation of
a certain feature.

■ @Depends Used to mark code as being dependent on the implementation
of a certain feature. This defines the order in which the system is composed
and tested.

■ @Deprecates Informs the plugin that a certain piece of code breaks a
certain feature. To be used when a expected interaction is detected.

■ @Tests Used on tests to inform the plugin that they are used to test a
certain feature. When the test fails then the test is defective or feature is
either defective or has been changed by another feature. In the last case this
makes it an interaction.

■ @Unit Used to group different classes into units.

Figure 7.2: The DrUID Approach

Several aids have been implemented to guide the developer in this process in
the form of Eclipse quick fixes and quick assists. Each time a file is saved in

100 Implementation

Eclipse, the annotations are inspected and any errors are reported. Besides that,
a dependency graph is created and shown in a graphical form (see Figure 7.3)
that allows the developer to navigate through the code following the dependencies
between artifacts.

Figure 7.3: DrUID: Dependency Interface

With the dependency graph created, the developer can order DrUID to execute a
conflict test analysis. This analysis executes the following steps:

1. Execute a strongly connected analysis of the dependency graph transforming
it into a Directed Acyclic Graph (DAG) of components (sets of artifacts).

2. Execute a topological sort in order to determine in which order the compo-
nents must be compiled.

3. For each component:

(a) Compile it.
(b) Execute the tests defined for the features provided by this component.
(c) Execute the tests defined by previous components.

Step 3b) verifies if the component is working as expected and step 3c) verifies if
previous features have been broken by the newly introduced component.

When the later happens, an interaction has been detected and the analysis stops.
This interaction is reported to the developer with an explanation of which feature
has been broken by which component. This will allow the developer to understand
what went wrong and act accordingly. Two different conclusions can be extrapo-
lated by the output generated by the tool: (i) the interaction is expected (ii) the
interaction reveals a conflict between aspects.

Aida: Automatic Interference Detection for AOP 101

In the first case, the developer simply has to declare the interaction by using, once
again, annotations. By using Eclipse quick fixes added by the plugin this can be
done easily by the developer.

In the latter case, we are confronted with a conflict that has to be dealt with in
another way. If possible, the developer can change the implementation of one of
the aspects in order to remove the conflict. But in some cases, the conflict might
have been caused by two incompatible requirements and, in that case, it can only
be corrected by changing the software requirements themselves.

After being presented to the community [RA09b], several issues with the imple-
mentation have been pointed out and addressed in the following iteration of the
plugin. The most debated problem was that the plugin asked too much extra work
from the developer.

7.2 Aida: Automatic Interference Detection for
AOP

Aida [Res10] is an evolution of the DrUID tool, built from scratch, having the
main objective of removing most of the burden put on the developer to annotate
his code. It also has a bigger focus on the testing process. In this tool, we
started by removing the notion of annotating features manually. We did this by
considering each test as a feature. This means that the developer only needs to
create test cases for each individual behavior. Obviously, this also removed the
need to specify which test case tests what feature.

Using code inspection, we were also able to remove the need of specifying the
dependencies between features. At the cost of losing some of the details of the
dependency graph used in DrUID, with Aida we rely only on the dependencies
between units. In the end, we were down to only 2 types of annotations (see
Figure 7.4):

■ @TestFor Used to indicate which unit each test is testing.
■ @ReplacesTest Used to indicate that a test replaces another test. It also

indicates that if the unit the test is related to is present in the system, then
the replaced test does not have to be run.

102 Implementation

Figure 7.4: The Aida Approach

Units are defined as being contained inside Java packages by default. A third
optional annotation (@Unit) can be used to alter this behavior.

The dependencies between units are automatically calculated by using the infor-
mation provided by the JDT and AJDT Eclipse plugins. Aida is then able to show
a graph of these dependencies (see Figure 7.5).

Figure 7.5: Aida: Dependency Graph

With the dependency graph calculated, the test process is very similar to that of
DrUID. We start by extracting the dependency graph from the source code, then
we order the units by sorting them topologically and test them adding each unit
incrementally to the system. Figure 7.6 shows the interface for running all tests
in a project.

After running the complete set of tests, Aida is capable of reporting, both graph-
ically and in text, eventual errors and interferences detected. This allows the
developer to add @ReplaceTest annotations, when an interaction is expected, or
correct his code if the interaction was unexpected.

Current Issues 103

Figure 7.6: Aida: Interface for Running Tests

7.3 Current Issues

There are still some issues with the implementation of these tools. Aida has been a
major step forward as it removes most of the burden of declaring the dependencies
from the developer, but there are still a couple of issues.

The first problem is that not all dependencies can be detected. At the moment,
Aida is able to detect dependencies caused by: import declarations, method and
constructor calls, type declarations and advices. These encompass most of the
cases, but soft dependencies, like the ones created using reflection are not detected.

The second problem is that every time the project is tested, all the tests have to
be run again. This problem is augmented by the fact that most tests are being
run several times.

This second problem could be mitigated by doing some code analysis to figure
which tests might have their results altered by the introduction of a new unit in
the incremental compilation process.

104 Implementation

7.4 Summary

In this chapter, we described the implementation of two different plugins that are
able to guide and assist developers into using the technique described throughout
this document.

These two tools are capable of, not only providing assistance to the developers in
the definition of the meta-data needed for the technique, but also run the entire
incremental compilation and testing process. At the same time, they are able
to provide a graphical representation of the dependencies between units that can
prove helpful for developers as they allow the identification of unwanted circular
ones.

The fact that these tools were developed and work shows that the technique is
usable in the real world. However, as seen in the previous section, there are still a
couple of issues that might be show stoppers in some particular situations.

Part III

Validation and Future Work

105

You may never know what re-
sults come of your action, but if
you do nothing there will be no
result.

Mahatma Gandhi

8
Validation

Contents
8.1 School Testbed . 108

8.2 Incremental Testing and Common AOP Faults 115

8.3 Summary . 135

The best way to validate the proposed testing process would be to test it in real
world applications. There are several open source AspectJ projects, some of them
created exclusively for testing and validating new AOP methodologies.

The characteristics that we were looking for in such a project were that it had to be
developed in AspectJ, it had to have few circular dependencies between modules
and it had to have a test framework.

Unfortunately, all the existing projects fail in one of these three aspects. For ex-
ample, the two most used testbed projects for AspectJ are AJHotDraw [MMvD07]
and Health Watcher [GGB+07]. The first of these has an architecture with a
dependency graph so complicated that most of the code is part of a mass of
14 different packages that depend on each other forming a strongly connected

108 Validation

Figure 8.1: School Testbed Core Classes

component. The second one is a much cleaner project, but, unfortunately, there
are no tests developed for it.

Having failed to elect a good and popular testbed where to run our testing process,
we ended up developing our own testbed.

8.1 School Testbed

A simple school information system [Res14] was implemented featuring personal
information for students, teacher and administrators, course information, class
schedules, infrastructure information and grading. Figure 7.5 shows the depen-
dency diagram as extracted by Aida while Figure 8.1 shows the base classes of the
system.

Some packages containing aspects have been added to the system (see Figure 8.2).
We can divide these in two groups. The first one, in blue, is composed of packages

School Testbed 109

Table 8.1: School Testbed Aspect Packages

Package Description

Authentication Adds a login and password attributes to the Person
class. Offers methods to login and logoff as well as a
way to verify who is logged in.

Attendance Adds a list of students that attended a certain lecture
and methods to manage that list.

Security Assures that the passwords are hashed using a secure
hashing algorithm. For this, it advises the methods that
set and verify passwords of the Authentication module.

Permission Verifies that the logged in user has permissions to exe-
cute the command being executed. Advises almost every
method in the code in order to do this verification.

Logging Logs to a file important information. At the moment
only the creation of new objects and login attempts. To
do this, it advises the object creation methods but does
not change their behavior.

Minimum Grade Adds the possibility of a course evaluation having a
minimum grade that the student must attain to pass
the course. Adds methods to define this minimum grade
and advises the methods that calculate the student final
grade.

that only declare new attributes and methods. While the second one, in purple,
contains aspects that modify the behavior of the base classes by using advices. A
description of these packages can be seen in Table 8.1.

8.1.1 Testing

Each one of the packages in the system was thoroughly tested. Table 8.2 lists all
the test cases defined in each package.

The total number of tests amounts to 55 with most of them belonging to the
Permission package. This happens as this package crosscuts the entire application

110 Validation

Figure 8.2: School Testbed Package Dependencies

School Testbed 111

and modifies the behavior of almost all methods by adding a permission system.
This makes it important to test if those methods are still working when the user
has permission to use them, and also if access is denied when the user has no
permission to use them.

8.1.2 Interference Resolution

As was explained in previous chapters, when using Aida packages are incrementally
compiled. Each time a new package is introduced into the system the complete
set of tests is run.

Packages containing invasive aspects will modify the behavior of packages previ-
ously added to the system, breaking their tests. This allows us to identify potential
interferences between packages. Whenever a test breaks after a new package is
added, it is either a fault with the new package or an interference.

Sometimes these interferences are intentional. On those cases, we still want the
complete set of tests to pass and we accomplish this by adding @ReplaceTest
annotations on the tests that replace those that are broken, with those annotations
referencing the latter. Listing 8.1 shows an example where the security Package
has a test that verifies if passwords are not stored in plain text replacing a previous
test from the Authentication package that tested if passwords were stored correctly.

Listing 8.1: Replacing Test Example
1 @ReplaceTest("authentication.tests.AuthenticationTest.testSetCredentials")

2 public void testArePasswordsHashed () {

3 Administrator admin = PersonFactory.createAdministrator("John", "Somewhere");

4 admin.setLogin("john");

5 admin.setPassword("1234");

6 assertFalse("1234".equals(admin.getPassword ()));

7 }

By using Aida, interferences were easily spotted. Each time an invasive aspect was
added, a test broke somewhere. In the rare event where that did not happen, it
was due to an error in the implementation of the new aspect or a poorly written
test. Table 8.3 shows a list of all tests for invasive aspects and the tests they
replaced.

By using the technique described in this document, we were able to test all the
packages of the system, in isolation, without compromising modularity.

112 Validation

Table 8.2: School Testbed Implemented Tests

Package Test Cases Total

Courses testCreateCourse, testRemoveCourse 2

Infrastructure testCreateRoom 1

People testCreatePeople, testCreateStudent, 4

testCreateTeacher, testCreateAdmin

Instance testCreateInstance 1

Schedule testCreateSchedule, testCreateLecture 2

Grading testEvaluation, testGrading, testFinalResult 3

Attendance testAddAttendance, testRemoveAttendance 2

Authentication testSetCredentials, testAuthenticate, testLogoff, 4

testWrongCredentials

MinimumGrade testMinimumGrade 1

Security testArePasswordsHashed, testAuthenticate 2

Permission testAuthenticationPermissions, 32

testAttendanceNoLogin, testCreateCourseNoLogin,

testRemoveCourseNoLogin,

testCreateCourseStudent, testCreateCourseTeacher,

testCreateCourseAdmin, testRemoveCourseAdmin,

testCreateEvaluationNoLogin, testCreateEvaluationNotTeacher,

testCreateEvaluationNotInstanceTeacher,

testCreateEvaluationInstanceTeacher,

testCreateGradeNoLogin, testCreateGradeNotTeacher,

testCreateGradeNotInstanceTeacher,

testCreateGradeInstanceTeacher, testMinimumGrade,

testCreateInstanceNoLogin, testCreateInstanceAdmin,

testCreateLectureNoLogin testChangeLectureState,

testCreatePeopleNoLogin, testCreatePeopleStudent,

testCreatePeopleAdmin, testCreateRoomNoLogin,

testCreateRoomStudent, testCreateRoomTeacher,

testCreateRoomAdmin, testCreateScheduleNoLogin,

testCreateScheduleStudent,

testCreateScheduleTeacher, testCreateScheduleAdmin

All Packages 55

School Testbed 113

Table 8.3: School Testbed Replaced Tests
New Test Replaced Test

Security.testArePasswordsHashed Authentication.testSetCredentials

Permission.testAttendaceNoLogin
Attendance.testAddAttendance

Attendance.testRemoveAttendance

Permission.testAuthenticationPermissions Authentication.testAuthentication

Permission.testCreateCourseNoLogin
Course.testCreateCourse

Permission.testCreateCourseAsStudent/Teacher/Admin

Permission.testRemoveCourseNoLogin
Course.testRemoveCourse

Permission.testRemoveCourseAsAdmin

Permission.testCreateEvaluationNoLogin

Evaluation.testEvaluation
Permission.testCreateEvaluationNotTeacher

Permission.testCreateEvaluationNotInstanceTeacher

Permission.testCreateEvaluationAsInstanceTeacher

Permission.testCreateGradeNoLogin

Grade.testGrade
Permission.testCreateGradeNotTeacher

Permission.testCreateGradeNotInstanceTeacher

Permission.testCreateGradeAsInstanceTeacher

Permission.testCreateGradeNoLogin

Permission.testMinimumGrade MinimumGrade.testMinimumGrade

Permission.testCreateInstanceNoLogin
Lecture.testCreateLecture

Permission.testCreateInstanceAsAdmin

Permission.testCreateLectureNoLogin
Lecture.testCreateLecture

Permission.testChangeLectureState

Permission.testCreatePeopleNoLogin Person.testCreatePeople

Permission.testCreatePeopleAsStudent/Teacher/Admin Person.testCreateStudent/Teacher/Admin

Permission.testCreateRoomNoLogin
Room.testCreateRoom

Permission.testCreateRoomAsStudent/Teacher/Admin

Permission.testCreateScheduleNoLogin
Schedule.testSchedule

Permission.testCreateScheduleAsStudent/Teacher/Admin

114 Validation

8.1.3 Multiple Configurations

With modularity assured, we can combine the code in several different configura-
tions. For example, we might only want the People and Authentication packages
to create a simple authentication system.

The advise based dependencies do not have to be met in order for a combination
to be valid. For example, we can combine the packages Security and People and
have a functioning system even if the Security module advises the Authentication
module, which would not be present in the system. Of course, without the Authen-
tication package, the Security packaged would not be of much use, but it would
still be a valid configuration.

Considering only the classical and declare dependencies, the ones that must be
met, there are 77 different possible valid configurations. If we add the other 4
packages, in any possible combination, we get 8 times more possibilities. Or a
grand total of 616 configurations. We were able to test all of these, successfully,
using Aida without having to add or remove any of the tests.

8.1.4 Incompatible Modules

Sometimes modules are incompatible by design. For example, we can have two
modules, with invasive aspects, advising the same module in incompatible ways.
Maybe these two modules are not supposed to be used together but are alternatives
to each other.

Our initial approach, or even our initial prototype DrUID, would be able to cope
with this scenario. But Aida, would not. Aida misses the metadata necessary
to understand when a feature, or a test, that is required by a module are being
deprecated by another module.

We changed the metadata introduced by the developer, as we progressed our work,
as a way to make the process much simpler to use. Unfortunately, at the same
time, we lost some of its capabilities.

Incremental Testing and Common AOP Faults 115

8.1.5 Performance

As expected, the amount of time needed to test the complete system was much
higher due to the constant repetition of tests. Compiling the whole system took
about 15 seconds in our testing environment 1. By using an incremental testing
approach, the system had to be compiled 12 times (one for each module). Total
compilation time was about 70 seconds.

This shows a significant increase in testing time that could jeopardize the use of
this approach within an agile like methodology where tests are run frequently.
There are several different ways in which this problem could be mitigated:

■ The developer can select small subsets of the modules appropriate to the
changes he is conducting. When satisfied with these tests he can test the
whole system. This would make a complete system compilation happen less
frequently.

■ Aida could be able to allow the developer to select the module that is being
tested. When a certain module is selected, modules that this module depends
on could be automatically considered correct. In this way, there would only
be two steps involved in the compilation. First, compile the module and all
modules that the module depends on. Second, compile all the modules.
A complete system test would only be necessary in case of an error or,
periodically, to check if everything was still correct.

■ By using some kind of program slicing technique, Aida could be capable of
selecting the tests that need to be run in each compilation step.

8.2 Incremental Testing and Common AOP
Faults

A fault model identifies the relationships and components of a system under test
that are most likely to have faults [Bin00]. They are important for any testing
strategy as they narrow the number of places one has to look when searching for
faults.

1Octa-core Intel i7-3632QM CPU @ 2.20GHz / 8GB

116 Validation

Alexander [ABAA04] has proposed a fault model for AOP that was later on
extended by Ceccato [CTR05]. Deursen has also proposed his own AOP fault
model [vDMM05]. In the following sections, we will describe the various fault
types identified by these authors. We will also show how our approach can tackle
each one of these faults using small examples.

It is not the intention of this section to point out that using our approach we
can detect some faults that could not be detected using a classical approach. The
intention is to show that it can still detect the faults and, at the same time, make
sure the tests are in the correct modules in order to maintain modularity.

8.2.1 Incorrect Strength in Pointcut Patterns

One of the biggest selling points for an AOP language is the expressiveness level of
its pointcut patterns. A good AOP language should enable developers to indicate
exactly which join points they want to capture when declaring a pointcut. In
reality, this is very hard to achieve.

Ideally, a developer should be able to explain the exact meaning behind each
pointcut expression. However, developing a pointcut language that allows this is as
difficult as developing a natural language analyzer. Instead, most AOP languages,
take advantage of de-facto code standards and resort to the use of wildcards as
a way of allowing developers to capture several join points in a single pointcut
expression.

In this way, a developer, instead of declaring that he wishes to capture the execu-
tion of all methods of a particular class that changes its relevant internal structure,
can declare that he wishes to capture the execution of all methods that start with
the word set. This strategy may reveal itself problematic when a new method is
added to the class that starts with set but does not belong to the specific set of
methods that the developer intended to capture in the first place (e.g., a method
called setupConnections).

The alternative would be for the developer to extensively declare exactly which
methods he intended to capture. This has the obvious problem of new methods
being added into the class, that should also be captured, making it hard for the
developer to maintain its code. This problem is closely related to the so-called
fragile pointcut problem [MC04].

Incremental Testing and Common AOP Faults 117

Consider for example the code in Listing 8.2 describing a simple Value class that
has 3 simple setter methods. Imagine that for this example, we have a TestValue
class containing a testValues test that tests these simple methods.

Listing 8.2: Fault 1: Value Class
1 package value;

2
3 public class Value {

4 private int minimum , maximum , nominal;

5
6 public void setMinimum(int minimum) { this.minimum = minimum; }

7 public void setMaximum(int maximum) { this.maximum = maximum; }

8 public void setNominal(int nominal) { this.nominal = nominal; }

9 }

We then add a new aspect to the application that controls the maximum value of
each one of the three variables of the Value class. Listing 8.3 contains the code to
do that and Listing 8.4 contains a simplified version of the appropriate tests for
this aspect. As you can see, this aspect is invasive and a ReplaceTest annotation
is required.

Listing 8.3: Fault 1: Limits Aspect
1 package limits;

2
3 import value.Value;

4
5 public aspect Limits {

6 pointcut setterCalled(int value) : call(public void Value.set *(..)) && args(value);

7
8 void around(int value) : setterCalled(value) {

9 if (value > 100) throw new InvalidValueException ();

10 if (value < 0) throw new InvalidValueException ();

11 proceed(value);

12 }

13 }

Listing 8.4: Fault 1: Limits Tests
1 package limits;

2
3 import com.feup.contribution.aida.annotations.ReplaceTest;

4
5 import junit.framework.TestCase;

6 import value.Value;

7
8 public class TestLimits extends TestCase{

9 @ReplaceTest("value.TestValue.testValues")

10 public void testLimits () {

11 try {

118 Validation

12 Value value = new Value ();

13 value.setMaximum (200);

14 fail("Should␣have␣failed");

15 } catch (Exception e) { }

16 }

17 }

If we later add a new method called setId to the Value class, that we do not which
to impose any limits to, the pointcut will inaccurately select the join point that
refers to the call of this new method. This will make any tests done to this method
break as intended. At the same time, we ensured that all tests are in their own
units of modularity.

8.2.2 Incorrect Aspect Precedence

In Section 3.2.5 we have seen how the order in which aspects are woven into the
system can be changed using the declare precedence clause. Incorrect ordering
of aspects, especially when they interact through state variables, can affect the
overall system behavior.

For example, an aspect that ciphers a password for security reasons and an aspect
that tests if passwords are sufficiently strong have to be run in the correct order. If
the cipher aspect runs first, the other aspect will be unable to inspect the password.

Lets consider a simple example describing a telecommunication system. In this
example, the Call class represents a simple phone call. The class can be in three
different states: waiting (the caller is waiting for the callee to answer), connected
(the connection is established) and finished (one of the two parties hanged up). The
class goes through these states as the constructor, connect and hangup methods
are called (see Listing 8.5).

Listing 8.5: Fault 2: Call Class
1 package call;

2
3 import com.feup.contribution.aida.annotations.PackageName;

4
5 @PackageName("Call")

6 public class Call {

7 public enum STATE {WAITING , CONNECTED , FINISHED };

8
9 private STATE state;

10

Incremental Testing and Common AOP Faults 119

11 public Call() {

12 this.state = STATE.WAITING;

13 }

14
15 public void connect () {

16 if (this.state == STATE.WAITING) this.state = STATE.CONNECTED;

17 }

18
19 public void hangup () {

20 if (this.state == STATE.CONNECTED) this.state = STATE.FINISHED;

21 }

22
23 public STATE getState () {

24 return state;

25 }

26 }

To this simple system (having only one class), we added two aspects. The first
one controls the amount of time spent in a single call (see Listing 8.6); the second
one, calculates how much should be payed for that same call (see Listing 8.7).
Both these aspects are triggered at the same join point (when the call is finished)
and this leads to a precedence problem as the billing aspect needs information
calculated by the timing aspect to work properly.

Listing 8.6: Fault 2: Timing Aspect
1 package timing;

2
3 import com.feup.contribution.aida.annotations.PackageName;

4
5 import call.Call;

6
7 @PackageName("Timing")

8 public aspect CallTiming {

9 private long Call.callStart;

10 private long Call.callStop;

11
12 pointcut connected(Call c) : execution(public void Call.connect (..)) && this(c);

13 pointcut finished(Call c) : execution(public void Call.hangup (..)) && this(c);

14
15 after(Call c) returning () : connected(c) {

16 c.callStart = System.currentTimeMillis ();

17 }

18
19 after(Call c) returning () : finished(c) {

20 c.callStop = System.currentTimeMillis ();

21 }

22
23 public long Call.getDuration () {

24 return callStop - callStart;

25 }

26 }

120 Validation

Listing 8.7: Fault 2: Billing Aspect
1 package billing;

2
3 import com.feup.contribution.aida.annotations.PackageName;

4
5 import call.Call;

6 import timing.CallTiming;

7
8 @PackageName("Billing")

9 public aspect CallBilling {

10 private double Call.cost;

11
12 declare precedence: CallBilling , CallTiming;

13
14 pointcut finished(Call c) : execution(public void Call.hangup (..)) && this(c);

15
16 after(Call c) returning () : finished(c) {

17 c.cost = Math.round(c.getDuration () / 1000) * 0.25;

18 }

19
20 public double Call.getCost () {

21 return cost;

22 }

23 }

Listing 8.8: Fault 2: Billing Aspect Test
1 package billing;

2
3 import junit.framework.TestCase;

4 import call.Call;

5
6 import com.feup.contribution.aida.annotations.TestFor;

7
8 @TestFor("Billing")

9 public class CallBillingTest extends TestCase {

10 public void testTiming () {

11 Call c = new Call ();

12 c.connect ();

13 try { Thread.sleep (2000); } catch (InterruptedException e) { }

14 c.hangup ();

15 assertEquals (0.5, c.getCost ());

16 }

17 }

Listing 8.9: Fault 2: Timing Aspect Test
1 package timing;

2
3 import com.feup.contribution.aida.annotations.TestFor;

4

Incremental Testing and Common AOP Faults 121

5 import call.Call;

6 import junit.framework.TestCase;

7
8 @TestFor("Timing")

9 public class CallTimingTest extends TestCase {

10 public void testTiming () {

11 Call c = new Call ();

12 assertEquals (0, c.getDuration ());

13 c.connect ();

14 try { Thread.sleep (1000); } catch (InterruptedException e) { }

15 c.hangup ();

16 assertTrue(c.getDuration () > 0 && c.getDuration () < 2000);

17 }

18 }

This could be solved by adding a declare precedence instruction stating that the
timing aspect had precedence over the billing aspect.

By using our proposed approach, the testing system would be able to infer the
different orders in which the system could be composed. Neither one of the
two possible orders would give a different result. Both would work or not work
depending on the default precedence order. This would show the user that the
problem is not an interference between aspects allowing him to explore other
possible candidate faults. As soon as the problem has been fixed, the testing
procedure would work without problems.

8.2.3 Failure to Preserve Postconditions and State Invari-
ants

Clients expect method postconditions to be preserved even when aspects are woven
into the system. The modification of method postconditions can cause method
clients to behave in unexpected ways.

However, in some cases, the modification of postconditions and the subsequent
modification of the behavior of clients might be the desired result of an aspect.
This has proved to be a major source of errors in AOP applications.

In this section, an example illustrating the failure to preserve a postcondition (and
a state invariant) after an aspect is applied is demonstrated.

The Transfer class represents a transfer between accounts (see Listing 8.10). The
TransferList class represents several of these transfers and keeps a cache holding

122 Validation

the total amount of all the transfers it contains. The addTransfer method of the
TransferList class has an implicit postcondition that states that the saved amount
after its execution must be equal to the original value plus the value of the added
transfer. The class also has an implicit state invariant that states that the total
amount saved in the cache must be equal to the sum of the amounts of all transfers
(see Listing 8.11).

Listing 8.10: Fault 3: Transfer Class
1 package transfer;

2 import com.feup.contribution.aida.annotations.PackageName;

3
4 @PackageName("Transfer")

5 public class Transfer {

6 private int ammount;

7
8 public Transfer(int ammount) {

9 setAmmount(ammount);

10 }

11
12 public void setAmmount(int ammount) {

13 this.ammount = ammount;

14 }

15
16 public int getAmmount () {

17 return ammount;

18 }

19 }

Listing 8.11: Fault 3: TransferList Class
1 package transfer;

2 import java.util.LinkedList;

3
4 import com.feup.contribution.aida.annotations.PackageName;

5
6 @PackageName("Transfer")

7 public class TransferList {

8 private LinkedList <Transfer > transfers = new LinkedList <Transfer >();

9 private int total = 0;

10
11 // Postcondition: total = total + t.getAmmount ()

12 public void addTransfer(Transfer t) {

13 transfers.add(t);

14 total += t.getAmmount ();

15 }

16
17 public int getTotal () {

18 return total;

19 }

20
21 public void setTotal(int total) {

Incremental Testing and Common AOP Faults 123

22 this.total = total;

23 }

24 }

If we add an aspect that allows transfers to be verified (or not), and we state that
the total amount of a transfer list is equal to the sum of the amounts of only the
verified transfers, the postcondition and the state invariant are not preserved (see
Listing 8.12).

Listing 8.12: Fault 3: VerifiedTransferOnly Aspect
1 package verified;

2 import transfer.Transfer;

3 import transfer.TransferList;

4
5 import com.feup.contribution.aida.annotations.PackageName;

6
7 @PackageName("VerifiedTransfer")

8 public aspect VerifiedTransferOnly {

9 private boolean Transfer.isVerified;

10
11 public void Transfer.setIsVerified(boolean isVerified) {

12 this.isVerified = isVerified;

13 }

14
15 pointcut transferAdded(TransferList tl, Transfer t) :

16 call(public void TransferList.addTransfer (..)) && target(tl) && args(t);

17
18 after(TransferList tl, Transfer t) : transferAdded(tl, t) {

19 if (!t.isVerified) tl.setTotal(tl.getTotal () - t.getAmmount ());

20 }

21 }

A test for the addTransfer method will pass if the aspect is not compiled into the
code but fail if it is (see Listing 8.13).

Listing 8.13: Fault 3: Transfer List Tests
1 package transfer;

2 import com.feup.contribution.aida.annotations.TestFor;

3
4 import junit.framework.TestCase;

5
6 @TestFor("Transfer")

7 public class TestTransferList extends TestCase{

8
9 public void testTotal () {

10 TransferList tl = new TransferList ();

11 tl.addTransfer(new Transfer (10));

12 tl.addTransfer(new Transfer (20));

13 tl.addTransfer(new Transfer (40));

14 tl.addTransfer(new Transfer (25));

124 Validation

15 assertEquals (95, tl.getTotal ());

16 }

17 }

By adding an annotation to the VerifiedTransferOnly test class, that states that
the test testVerifiedTransfer replaces the previous test, and then test the system
incrementally, both tests are run and both tests will pass. The first test will run
without the aspect compiled while the second one will run with the aspect (see
Listing 8.14).

Listing 8.14: Fault 3: Verified Transfer Only tests
1 package verified;

2
3 import junit.framework.TestCase;

4 import transfer.Transfer;

5 import transfer.TransferList;

6
7 import com.feup.contribution.aida.annotations.ReplaceTest;

8 import com.feup.contribution.aida.annotations.TestFor;

9
10 @TestFor("VerifiedTransfer")

11 public class TestVerifiedTransferOnly extends TestCase{

12
13 @ReplaceTest("transfer.TestTransferList.testTotal")

14 public void testVerifiedTransfer () {

15 TransferList tl = new TransferList ();

16 Transfer t1 = new Transfer (10);

17 t1.setIsVerified(true); tl.addTransfer(t1);

18 Transfer t2 = new Transfer (20);

19 t2.setIsVerified(true); tl.addTransfer(t2);

20 Transfer t3 = new Transfer (40);

21 t3.setIsVerified(false); tl.addTransfer(t3);

22 Transfer t4 = new Transfer (25);

23 t4.setIsVerified(true); tl.addTransfer(t4);

24 assertEquals (55, tl.getTotal ());

25 }

26 }

8.2.4 Incorrect Focus of Control Flow

Sometimes join points should only be selected in a particular context. For example,
in a recursive call, we might want to select only the join point of the first call and
not the subsequent calls. Failure to restrict the selection to the proper context can
lead to extremely hard to reason problems.

Incremental Testing and Common AOP Faults 125

In this section, we demonstrate a incorrect focus of control flow fault in AspectJ.
Listing 8.15 shows a simple example of a class capable of sorting lists containing
integer values using a recursive algorithm. For simplicity sake, this algorithm is
not optimized in any way.

Listing 8.15: Fault 4: QuickSort Class
1 package sort;

2 import java.util.LinkedList;

3
4 import com.feup.contribution.aida.annotations.PackageName;

5
6 @PackageName("Sort")

7 public class QuickSort {

8 public static LinkedList <Integer > sort(LinkedList <Integer > list) {

9 if (list.size() <= 1) return list;

10 Integer pivot = list.getFirst ();

11 list.removeFirst ();

12 LinkedList <Integer > smaller = new LinkedList <Integer >();

13 LinkedList <Integer > greater = new LinkedList <Integer >();

14 for (Integer v : list) {

15 if (v.intValue () < pivot.intValue ()) smaller.add(v);

16 else greater.add(v);

17 }

18 LinkedList <Integer > ret = new LinkedList <Integer >();

19 ret.addAll(sort(smaller));

20 ret.add(pivot);

21 ret.addAll(sort(greater));

22 return ret;

23 }

24 }

Listing 8.16 contains a simple test that asserts that the sorted list contains all
elements of the original list and they are sorted. This test is done by generating
1000 random numbers and sorting them using the class in Listing 8.15.

Listing 8.16: Fault 4: QuickSort Tests
1 package sort;

2 import java.util.LinkedList;

3 import java.util.Random;

4
5 import com.feup.contribution.aida.annotations.TestFor;

6
7 import junit.framework.TestCase;

8
9 @TestFor("Sort")

10 public class QuickSortTest extends TestCase{

11 public void testSort () {

12 LinkedList <Integer > list = new LinkedList <Integer >();

13 LinkedList <Integer > copy = new LinkedList <Integer >();

14 Random random = new Random ();

126 Validation

15 for (int i = 0; i < 10; i++) {

16 Integer v = new Integer(random.nextInt (10000));

17 list.add(v);

18 copy.add(v);

19 }

20 list = QuickSort.sort(list);

21 assertEquals(copy.size(), list.size ());

22 for (Integer v : copy) {

23 assertTrue(list.contains(v));

24 }

25 for (int i = 0; i < list.size() - 1; i++) {

26 assertTrue(list.get(i). intValue () <= list.get(i + 1). intValue ());

27 }

28 }

29 }

The aspect introduced in Listing 8.17 modifies the behavior of this algorithm by
applying an around advice at the join point represented by the call to the sorting
algorithm and returning an inverted version of the returning result. Line 12 of this
aspect is extremely important. It prevents the advice from being applied in every
step of the recursive algorithm which would result in an unsorted list.

Listing 8.17: Fault 4: Invert Sort Aspect
1 package invert;

2 import java.util.LinkedList;

3
4 import com.feup.contribution.aida.annotations.PackageName;

5
6 import sort.QuickSort;

7
8 @PackageName("Invert")

9 public aspect InvertSort {

10 pointcut listSorted () :

11 call(public LinkedList <Integer > QuickSort.sort (..)) &&

12 !within(QuickSort);

13
14 LinkedList <Integer > around () : listSorted () {

15 LinkedList <Integer > list = proceed ();

16 LinkedList <Integer > inverted = new LinkedList <Integer >();

17 for (Integer v : list) {

18 inverted.addFirst(v);

19 }

20 return inverted;

21 }

22 }

Listing 8.18 tests the inverted version of the quicksort algorithm. It also states
that the inverted sort test replaces the original sort test. This prevents the original
test from throwing an error if run with the inverted aspect.

Incremental Testing and Common AOP Faults 127

By removing line 12 of Listing 8.17, the original sorting test will still pass, as
expected, but the inverted sort test will fail.

Listing 8.18: Fault 4: Invert Sort Tests
1 package invert;

2 import java.util.LinkedList;

3 import java.util.Random;

4
5 import com.feup.contribution.aida.annotations.ReplaceTest;

6 import com.feup.contribution.aida.annotations.TestFor;

7
8 import sort.QuickSort;

9
10 import junit.framework.TestCase;

11
12 @TestFor("Invert")

13 public class TestInverted extends TestCase{

14 @ReplaceTest("sort.QuickSortTest.testSort")

15 public void testInverted () {

16 LinkedList <Integer > list = new LinkedList <Integer >();

17 LinkedList <Integer > copy = new LinkedList <Integer >();

18 Random random = new Random ();

19 for (int i = 0; i < 10; i++) {

20 Integer v = new Integer(random.nextInt (10000));

21 list.add(v);

22 copy.add(v);

23 }

24 list = QuickSort.sort(list);

25 assertEquals(copy.size(), list.size ());

26 for (Integer v : copy) {

27 assertTrue(list.contains(v));

28 }

29 for (int i = 0; i < list.size() - 1; i++) {

30 assertTrue(list.get(i). intValue () >= list.get(i + 1). intValue ());

31 }

32 }

33 }

8.2.5 Incorrect Changes in Control Dependencies

Around advices can significantly alter the behavior semantics of a method. Faults
may arise from assumptions on control dependencies that are no longer valid in
the woven code.

The previous example can also be used to show an incorrect change in control
dependencies fault. The aspect introduced in Listing 8.17, modifies the control
dependency by applying an around advice at the join point represented by the call
to the sorting algorithm and returning an inverted version of the returning result.

128 Validation

The sorting test depicted in listing 8.16 will fail if the aspect defined in listing 8.17
is added to the system. However, as this is the intended behavior, the invert sort
tests added in listing 8.18 state that they replace the original sort test. In this
way, when compiled incrementally both tests are run and both tests succeed.

8.2.6 Incorrect Changes in Exceptional Control Flow

Listing 8.19 contains a simple property management class that can be used by
applications to manage different configuration files. This base code does not cope
with default values for properties that are not mentioned in the properties file or
with files that are missing altogether.

Listing 8.19: Fault 6: Config Class
1 package config;

2
3 import java.io.FileInputStream;

4 import java.io.FileNotFoundException;

5 import java.io.IOException;

6 import java.util.Properties;

7
8 public class Config {

9 Properties properties;

10
11 public Config(String filename)

12 throws FileNotFoundException , IOException {

13 properties = new Properties ();

14 properties.load(new FileInputStream(filename));

15 }

16
17 public String getValue(String key) {

18 return (String) properties.getProperty(key);

19 }

20 }

Listing 8.20 contains some tests for this class. Besides testing for normal behavior,
these also test if exceptions are correctly thrown when a file is not found and if
null is returned for nonexisting properties. Without any aspects applied all tests
pass.

Listing 8.20: Fault 6: Config Tests
1 package config;

2
3 import java.io.FileNotFoundException;

4 import java.io.IOException;

5

Incremental Testing and Common AOP Faults 129

6 import junit.framework.TestCase;

7
8 public class TestConfig extends TestCase {

9 public void testConfig ()

10 throws FileNotFoundException , IOException {

11 Config config = new Config("test.properties");

12 assertEquals("foo", config.getValue("bar"));

13 }

14
15 public void testNull ()

16 throws FileNotFoundException , IOException {

17 Config config = new Config("test.properties");

18 assertNull(config.getValue("foo"));

19 }

20
21 public void testFileNotFound () throws IOException {

22 try {

23 new Config("unexistant.properties");

24 } catch (FileNotFoundException e) {

25 return;

26 }

27 fail("Did␣not␣return␣FileNotFoundException");

28 }

29 }

Listing 8.21 adds an aspect to the system that allows for the existence of a default
configuration file. When a non existent configuration file is loaded, the default
configuration file is loaded instead. This behavior breaks the testFileNotFound test
found in Listing 8.20. When a property is not found in the loaded configuration
file, the aspect tries to find it in the default configuration file. This behavior breaks
the testNull test.

Listing 8.21: Fault 6: Default Values Aspect
1 package defaultvalues;

2
3 import java.io.FileNotFoundException;

4 import java.io.IOException;

5
6 import config.Config;

7
8 public aspect DefaultValues {

9 pointcut configCreated () :

10 call(public Config.new (..)) &&

11 !within(DefaultValues);

12
13 pointcut getValue(String key) :

14 call(public String Config.getValue (..)) &&

15 args(key) && !within(DefaultValues);

16
17 Config around ()

18 throws FileNotFoundException , IOException : configCreated () {

130 Validation

19 try {

20 Config config = proceed ();

21 return config;

22 } catch (FileNotFoundException e) {

23 return new Config("default.properties");

24 }

25 }

26
27 String around(String key) : getValue(key) {

28 String value = proceed(key);

29 if (value == null) {

30 Config defaultValues;

31 try {

32 defaultValues = new Config("default.properties");

33 return defaultValues.getValue(key);

34 } catch (FileNotFoundException e) {

35 } catch (IOException e) {

36 }

37 }

38 return value;

39 }

40 }

Listing 8.22 contains the alternative tests for this aspect. These include two tests
that replace the broken ones. By compiling incrementally, all tests are run at least
once and all tests pass.

Listing 8.22: Fault 6: Default Values Tests
1 package defaultvalues;

2
3 import java.io.FileNotFoundException;

4 import java.io.IOException;

5
6 import com.feup.contribution.aida.annotations.ReplaceTest;

7
8 import config.Config;

9 import junit.framework.TestCase;

10
11 public class TestDefaultValues extends TestCase {

12 @ReplaceTest("config.TestConfig.testFileNotFound")

13 public void testUnexistantFile ()

14 throws FileNotFoundException , IOException {

15 Config config = new Config("unenxistant.properties");

16 assertEquals("notfoo", config.getValue("bar"));

17 }

18
19 @ReplaceTest("config.TestConfig.testNull")

20 public void testUnexistantProperty ()

21 throws FileNotFoundException , IOException {

22 Config config = new Config("test.properties");

23 assertEquals("bar", config.getValue("foo"));

24 }

Incremental Testing and Common AOP Faults 131

25
26 public void testUnexistantDefault ()

27 throws FileNotFoundException , IOException {

28 Config config = new Config("test.properties");

29 assertNull(config.getValue("notfoo"));

30 }

31 }

8.2.7 Failures due to Inter-type Declarations

If some part of the code depends on the static class structure of the application,
changing that structure can alter the behavior of the application in unexpected
ways.

This section shown an example of the ripples that can be caused by the introduc-
tion of inter-type declarations when the control flow depends on the static class
structure.

Listings 8.23, 8.24, 8.25 and 8.26 depict a simple class hierarchy between users,
employees, and managers. User is a superclass of both Employee and Manager
but only the last of these two implements the Administrator interface.

Listing 8.27, shows a hypothetical operation that should only be performed by
administrators (in this case by managers). Listing 8.28 shows two tests that verify
that this is the case.

Listing 8.29 shows an aspect that changes the class hierarchy making the class
Employee implement the Administrator interface. As soon as this module is
introduced, the tests described in the previous paragraph will fail. By adding
the tests for this new module, as depicted in Listing 8.30, and adding a replace
test annotation, the system can be compiled and tested fully with or without the
new invasive module.

Listing 8.23: Fault 7: User Class
1 package users;

2
3 public class User {

4 private static User currentUser;

5
6 public static void setCurrentUser(User user , String password) {

7 if (user.getPassword () == password) currentUser = user;

8 }

9

132 Validation

10 public static User getCurrentUser () {

11 return currentUser;

12 }

13
14 public User(String password) {

15 this.password = password;

16 }

17
18
19 public void setPassword(String password) {

20 this.password = password;

21 }

22 public String getPassword () {

23 return password;

24 }

25
26 private String password;

27 }

Listing 8.24: Fault 7: Employee Class
1 package users;

2
3 public class Employee extends User{

4 public Employee(String password) {

5 super(password);

6 }

7 }

Listing 8.25: Fault 7: Manager Class
1 package users;

2
3 public class Manager extends User implements Administrator{

4 public Manager(String password) {

5 super(password);

6 }

7 }

Listing 8.26: Fault 7: Administrator Interface
1 package users;

2
3 public interface Administrator {

4
5 }

Listing 8.27: Fault 7: Operation Class
1 package operation;

2
3 import users.Administrator;

4 import users.User;

Incremental Testing and Common AOP Faults 133

5
6 public class Operation {

7 public void perform () throws Exception {

8 if (User.getCurrentUser () != null &&

9 User.getCurrentUser () instanceof Administrator) {

10 // doSomething

11 } else throw new Exception("Not␣allowed␣to␣perform␣operation");

12 }

13 }

Listing 8.28: Fault 7: Operation Tests
1 package operation;

2
3 import users.Employee;

4 import users.Manager;

5 import users.User;

6 import junit.framework.TestCase;

7
8 public class TestOperation extends TestCase {

9 public void testEmployee () {

10 Employee p = new Employee("abcd");

11 User.setCurrentUser(p, "abcd");

12 Operation o = new Operation ();

13 try {

14 o.perform ();

15 } catch (Exception e) {

16 return;

17 }

18 fail("Employee␣should␣not␣be␣able␣to␣perform␣operation");

19 }

20
21 public void testManager () {

22 Manager m = new Manager("abcd");

23 User.setCurrentUser(m, "abcd");

24 Operation o = new Operation ();

25 try {

26 o.perform ();

27 } catch (Exception e) {

28 fail("Manager␣should␣be␣able␣to␣perform␣operation");

29 }

30 }

31 }

Listing 8.29: Fault 7: Super Employee Aspect
1 package superemployee;

2
3 import users .*;

4
5 public aspect SuperEmployee {

6 declare parents: Employee implements Administrator;

7 }

134 Validation

Listing 8.30: Fault 7: Super Employee Tests
1 package superemployee;

2
3 import com.feup.contribution.aida.annotations.ReplaceTest;

4
5 import operation.Operation;

6 import users.Employee;

7 import users.User;

8 import junit.framework.TestCase;

9
10 public class TestSuperEmployee extends TestCase {

11 @ReplaceTest("operation.TestOperation.testEmployee")

12 public void testSuperEmployee () {

13 Employee p = new Employee("abcd");

14 User.setCurrentUser(p, "abcd");

15 Operation o = new Operation ();

16 try {

17 o.perform ();

18 } catch (Exception e) {

19 fail("Super␣employee␣should␣be␣able␣to␣perform␣operation");

20 }

21 }

22 }

8.2.8 Incorrect Changes in Polymorphic Calls

When aspect oriented programming is used to override a method inherited from a
super class, calls to that method will start redirecting to the overwritten method
instead of the superclass one. This might also be the cause of unexpected behavior.

This section shows an example of an error caused by overriding a method using
an introduction.

Listing 8.31 and 8.32 show two simple classes called User and Administrator. The
second of these classes is an extension of the other. The User class defines a
method to set its password. This method is tested as can be seen in Listing 8.33.

Listing 8.31: Fault 8: User Class
1 package user;

2
3 public class User {

4 private String password;

5
6 public void setPassword(String password) {

7 this.password = password;

8 }

9 }

Summary 135

Listing 8.32: Fault 8: Administrator class
1 package user;

2
3 public class Administrator extends User{ }

Listing 8.33: Fault 8: User Tests
1 package user;

2
3 import junit.framework.TestCase;

4
5 public class TestUser extends TestCase{

6 public void testUserPassword () throws InterruptedException {

7 User user = new User ();

8 user.setPassword("1234");

9 }

10
11 public void testAdminPassword () throws InterruptedException {

12 Administrator admin = new Administrator ();

13 admin.setPassword("1234");

14 }

15 }

When the aspect described in Listing 8.34 is introduced, the test fails even though
the aspect does not change the previous code but only introduces new code in the
Administrator class.

Listing 8.34: Fault 8: Strong Password Aspect
1 package security;

2
3 import user.Administrator;

4
5 public aspect StrongPassword {

6 public void Administrator.setPassword(String password) {

7 if (password.length () <= 6) throw new SecurityException("Password␣is␣too␣small");

8 super.setPassword(password);

9 }

10 }

8.3 Summary

Two different approaches have been taken to validate the proposed approach.

In the first one, we created a small testbed that fulfilled the expectations we had
for a well written AspectJ application. The developed testing process has then
been applied to this testbed with success. The development of the testbed has

136 Validation

been coupled with the application of the testing process from the beginning. This
allowed us to validate the feasibility of using the process in a real world situation.
During the whole coding and testing process, the tools developed to implement
the process have been helpful and easy to use.

The second approach was to apply the process to common AOP faults. The idea
behind this approach, was not to test if the process was able to pinpoint these
faults. Classical testing procedures already have no problem with that. What we
wanted to validate, was that the faults were still detectable and the needed tests
did not violate any modularity principles.

"Se podes olhar, vê. Se podes
ver, repara."

José Saramago – 1995

9
Conclusions

Contents
9.1 Contributions . 138

9.2 Future Work . 140

Over the years, and after countless advances in software development, modularity
continues to be, if not the most, at least one of the most important principles
that support this craft. It is also one tough nut to crack, as no single paradigm,
technique or tool has been completely successful at allowing developers to create
perfectly modular programs.

Crosscutting concerns are one of those things that make a developer cringe when
he is trying to create the perfect software design. Designs often start as clean and
elegant but as soon as they become more complex, they become tangled and ugly.
AOP was the first time I had hope for a good enough fix for the problem.

Unfortunately, the more I played around with AOP, the more convinced I became
that Fred Brooks is still correct [Bro87], it really seems there is no silver bullet.
There are still too many problems to address for AOP to become a widespread

138 Conclusions

solution. Finding a semantically strong join point model that allows developers
to create better pointcuts, the added difficulty in understanding AOP code, and
the fact that code is not the only type of artifact that gets tangled and scattered,
are just some of the problems that make AOP not ready to become the solution
for every single modularity problem. I still think AOP is useful in a plethora of
situations, but it is my firm believe that it should not be overused.

9.1 Contributions

In this dissertation, we identified one of these problems (see Chapter 5). It is
perfectly possible to use unit tests in conjunction with AOP. The problem is that
these unit tests must always be prepared to test the system after the advises from
any module containing aspects has been applied. If these aspects are invasive,
then the tests are not testing the unit in isolation and they stop being unit tests.

The solution we proposed is based on having tests, that test modules that contain
invasive aspects, annotated in such a way that they announce which tests test the
functionality being modified by those aspects (see Chapter 6). Having these anno-
tations in place would allow a testing technique based on incremental compilation
that could test units in lower layers of the software, using their own unit tests,
separately from invasive aspects from higher layers. We argued that this is similar
to what stubs, mocks, dummies and fakes contributed to classical unit testing.

We do not argue that the proposed solution is usable in every situation, but we
have shown that it can be used in several different scenarios (see Chapter 8). We
envision it being used in software houses that have a large repository of modules
that can be combined in different ways in order to compose different software
solutions. Anyone that has tried to create such a system knows that crosscutting
concerns are a big issue. AOP helps in achieving this dream but, as we have shown,
unit tests would have to be created for each particular project or some of the code
would not be tested at all; at least not in isolation.

The presented approach stemmed from the thesis that:

An incremental testing solution allows developers to keep the promise of
modularity achieved by using AOP, without compromising the outcome
of the testing process.

Contributions 139

Pursuing this solution produced four main contributions to the to the body of
knowledge in software engineering:

■ The problem. A detailed explanation, with examples, of the problems
introduced by testing in aspect oriented programming. We have shown that
using unit tests together with aspect oriented programming either breaks the
modularity or the isolation of those tests (see Section 5.2).

■ The approach. A technique that allows the usage of testing procedures
with aspect oriented programming without breaking the modularity that it
strives to achieve. We have shown that this technique can be used in several
different scenarios making testing and aspect oriented programming more
compatible (see Chapter 6).

■ The testbed. A test application that can be used by the community to
study the interactions between aspects and unit testing. We sincerely hope
that the community uses and builds on top of this testbed as there are very
few good sample applications that are oriented for academic purposes (see
Section 8.1).

■ The implementation. A plugin for Eclipse that supports the developed
approach. Still a prototype but it can showcase the approach in a competent
way (see Chapter 7).

Following are some of the publications done during the course of this work (see
also Appendix A):

[RA07] André Restivo and Ademar Aguiar. Towards detecting and solving as-
pect conflicts and interferences using unit tests. In Proceedings of the
5th Workshop on Software-Engineering Properties of Languages and Aspect
Technologies (SPLAT’07), pages 1–5, Vancouver BC, Canada, 2007.

[RA08] André Restivo and Ademar Aguiar. Disciplined composition of aspects
using tests. In Proceedings of the 2008 AOSD Workshop on Linking Aspect
Technology and Evolution, LATE ’08, pages 8:1–8:5, New York, NY, USA,
2008. ACM.

[RA09a] André Restivo and Ademar Aguiar. Testing for unexpected interactions in
AOP. In Software Engineering Advances, 2009. ICSEA’09. Fourth Interna-
tional Conference on, pages 548–552. IEEE, 2009.

140 Conclusions

9.2 Future Work

As the work done in this thesis was being completed, several new ideas and
ramifications of the work being done have been collected. We will now present
some of them as pointers for future work.

More Testing. The approach has been tested on several small projects created
just for the effect. These case studies are no substitute for testing on a full-fledged
project. Unfortunately, there was no opportunity for this to happen during the
time frame of this work but it would be interesting to see this work applied in the
real world.

Plugin Improvements. The plugin developed during this work is nothing more
than a crude prototype. We feel that it could be much improved by way of better
auto-complete, auto-correct and automatic suggestions.

Performance. We have shown that the approach has several performance issues
that might hinder its usage in larger projects. Using a smarter strategy to select
the tests that are needed to run after a certain code is modified, or even to select
which tests must be run after a certain aspect has been applied, would go a long
way into making the process faster. We argue that this could be accomplished, in
a future work, using code slicing.

Product Lines. We talked several times about the usefulness of this approach
in situations where large repositories of modules exist. SPLs are one such case.
Introducing this idea into the software product line research field would also be an
interesting continuation of this work.

Other Artifacts. This dissertation only addressed the problem of unit tests and
AOP, but there are several other artifacts that suffer from the same problem. One
example is documentation. Be it technical documentation or user manuals, AOP
still has to address the issue of their modularity. We think the presented approach
could be easily ported to these other artifacts.

Other Languages. We only tested the approach on one language, AspectJ. Other
aspect oriented programming languages exist, some of them with radically different
approaches. It would be interesting to study how incremental compilation could
be used in other languages.

Bibliography

[ABAA04] Roger T. Alexander, James M. Bieman, and Anneliese A. An-
drews. Towards the Systematic Testing of Aspect-Oriented Pro-
grams. Technical report, Department of Computer Science, Col-
orado State University, Fort Collins, Colorado, 2004. Cited on
pp. 74 and 116.

[AEB01] Omar Aldawud, Tzilla Elrad, and Atef Bader. A UML profile for
aspect oriented modeling. In Kris De Volder, Maurice Glandrup,
Siobhán Clarke, and Robert Filman, editors, Workshop on advanced
separation of concerns in object-oriented systems (oopsla 2001),
2001. Cited on p. 38.

[AJD10] AJDT. Eclipse AspectJ development tools (AJDT) home page,
December 2010. http://www.eclipse.org/ajdt/. Cited on pp. 43
and 97.

[AKJ06] Andy Kellens, Kris Gybels, and Johan Brichau. A Model-driven
Pointcut Language for More Robust Pointcuts. In Software En-
gineering Properties of Languages for Aspect Technology (SPLAT)
workshop, AOSD 2006, 2006. Cited on p. 44.

[AMBR02] João Araújo, Ana Moreira, Isabel Brito, and Awais Rashid. Aspect-
oriented requirements with UML. In Mohamed Kandé, Omar Al-
dawud, Grady Booch, and Bill Harrison, editors, Second interna-
tional workshop on aspect-oriented modeling with uml (uml 2002),
2002. Cited on p. 36.

[Asp10a] AspectJ Team. AspectJ Programming Guide.
http://bit.ly/9GrAHM, 14 July 2010. Cited on pp. 29 and 30.

141

142 BIBLIOGRAPHY

[Asp10b] AspectJ Team. AspectJ Programming Guide : Language Seman-
tics. http://bit.ly/qqcirO, 14 July 2010. Cited on p. 27.

[Asp15] AspectJ Team. ajdoc, the aspectj documentation tool.
https://eclipse.org/aspectj/doc/released/devguide/ajdoc-ref.html,
8 2015. Cited on p. 43.

[AT98] Mehmet Aksit and Bedir Tekinerdogan. Aspect-Oriented Program-
ming Using Composition Filters. In Proceedings of the AOP Work-
shop at ECOOP’98, 1998. Cited on p. 33.

[AWK04] João Araújo, Jon Whittle, and Dae-Kyoo Kim. Modeling and com-
posing scenario-based requirements with aspects. In Proceedings
of the requirements engineering conference, 12th ieee international
(re’04), pages 58–67, Washington, DC, USA, 2004. IEEE Computer
Society. Cited on p. 36.

[BA92] Jan Bosch and Mehmet Aksit. Composition-Filters Based Real-
Time Programming. In Proceedings of the OOPSLA’92 Workshop
on Evaluation of Object-Oriented Technology in Real-Time Sys-
tems, 1992. Cited on p. 33.

[BC90] Gilad Bracha and William Cook. Mixin-based inheritance. In Pro-
ceedings of the European Conference on Object-oriented Program-
ming on Object-oriented Programming Systems, Languages, and
Applications, OOPSLA/ECOOP ’90, pages 303–311, New York,
NY, USA, 1990. ACM. Cited on p. 16.

[BC04] Elisa Baniassad and Siobhan Clarke. Finding aspects in require-
ments with theme/doc. In Bedir Tekinerdou gan, Ana Moreira,
João Araújo, and Paul Clements, editors, In proceedings of early
aspects 2004 workshop, March 2004. Cited on p. 36.

[Bec94] Kent Beck. Simple Smalltalk Testing: With Patterns. Technical
report, First Class Software, Inc., 1994. Cited on p. 49.

[Ber88] Bertrand Meyer. Object Oriented Software Construction. Prentice
Hall, 21 March 1988. Cited on p. 13.

BIBLIOGRAPHY 143

[BGKV06] Mathieu Braem, Kris Gybels, Andy Kellens, and Wim Vander-
perren. Inducing evolution-robust pointcuts. In Proceedings of
the International ERCIM Workshop on Software Evolution, Lille,
France, volume 180, 2006. Cited on p. 72.

[Bin99] Robert Binder. Testing object-oriented systems: models, patterns,
and tools (the addison-wesley object technology series). Addison-
Wesley Professional, October 1999. Cited on p. 42.

[Bin00] Robert Binder. Testing Object-Oriented Systems: Models, Patterns,
and Tools. Addison-Wesley, 2000. Cited on p. 115.

[BJ94] Barbara H. Liskov and Jeannette M. Wing. A Behavioral No-
tion of Subtyping. ACM Transactions on Programming Languages
and Systems (TOPLAS), 16(6):1811–1841, 1994. Cited on pp. 13
and 15.

[BM04] D. Balzarotti and M. Monga. Using program slicing to analyze
aspect-oriented composition, 2004. Cited on p. 68.

[BR08] Cristiano Breuel and Francisco Reverbel. User-Defined Join Point
Selectors. Journal of Object Technology, 7(9):5–24, December 2008.
Special Issue: SPLAT. Cited on p. 24.

[Bro87] Frederick. P. Brooks. No Silver Bullet - Essence and Accidents of
Software Engineering. Computer, 20(4):10–19, April 1987. Cited
on pp. 12 and 137.

[CB05] Siobhán Clarke and Elisa Baniassad. Aspect-oriented analysis and
design: the theme approach. Addison Wesley Professional, October
2005. Cited on pp. 36 and 38.

[Chr97] Christian Prehofer. Feature-oriented programming: A fresh look
at objects. In Proceedings of the European Conference on Object-
oriented Programing, ECOOP’97, 1997. Cited on p. 19.

[CTR05] Mariano Ceccato, Paolo Tonella, and Filippo Ricca. Is AOP Code
Easier to Test than OOP Code? In Workshop on Testing Aspect-
Oriented Programs, International Conference on Aspect-Oriented
Software Development, Chicago, Illinois, March 2005. Cited on
pp. 73, 74, and 116.

144 BIBLIOGRAPHY

[CVL05] Trung Chi Ngo Cristina Videira Lopes. Unit Testing Aspectual
Behavior. In Proceedings of the 1st Workshop on Testing Aspect-
Oriented Programs, AOSD’05, March 2005. Cited on p. 75.

[CW01] Siobhán Clarke and Robert J. Walker. Composition patterns: An
approach to designing reusable aspects. In Proc. 23rd int’l conf.
software engineering (icse), pages 5–14, May 2001. Cited on p. 39.

[Dav72] David L. Parnas. On the Criteria to be Used in Decomposing
Systems into Modules. Communications of the ACM, 15(12):1053–
1058, December 1972. Cited on pp. 13 and 17.

[DBG+11] Romain Delamare, Benoit Baudry, Sudipto Ghosh, Shashank
Gupta, and Yves Le Traon. An approach for testing pointcut de-
scriptors in aspectj. Software Testing, Verification and Reliability,
21(3):215–239, 2011. Cited on p. 74.

[DFS02] Rémi Douence, P. Fradet, and M. Südholt. Detection and resolution
of aspect interactions. Technical Report RR-4435, INRIA, April
2002. Cited on p. 71.

[DFS04] Rémi Douence, Pascal Fradet, and Mario Südholt. Composition,
reuse and interaction analysis of stateful aspects. In Proceedings of
the 3rd international conference on aspect-oriented software devel-
opment (aosd), pages 141–150, 2004. Cited on p. 71.

[Ecl10] Eclipse Foundation. The Eclipse Foundation open source commu-
nity website, December 2010. http://www.eclipse.org/. Cited on
pp. 43 and 97.

[Eds68] Edsger W. Dijkstra. Letters to the Editor: Go To Statement
Considered Harmful. Communications of the ACM, 11(3):147–148,
March 1968. Cited on p. 12.

[Eds76] Edsger W. Dijkstra. A Discipline of Programming. Prentice-Hall,
28 October 1976. Cited on p. 13.

[Eds82] Edsger W. Dijkstra. On the Role of Scientific Thought. In Se-
lected Writings on Computing: A Personal Perspective, pages 60–
66. Springer-Verlag, 1982. Cited on p. 13.

BIBLIOGRAPHY 145

[EL79] Edward Yourdon and Larry L. Constantine. Structured Design:
Fundamentals of a Discipline of Computer Program and Systems
Design. Prentice Hall, 17 February 1979. Cited on p. 13.

[Fai04] George Fairbanks. Hyper/j. Slides for the course Objects and
Aspects: Language Support for Extensible and Evolvable Software,
November 2004. Cited on p. 34.

[FBB+99] Martin Fowler, Kent Beck, John Brant, William Opdyke, and
Don Roberts. Refactoring: improving the design of existing code.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
1999. Cited on p. 42.

[FNRM10] Fabiano Cutigi Ferrari, Elisa Yumi Nakagawa, Awais Rashid, and
José Carlos Maldonado. Automating the mutation testing of aspect-
oriented java programs. In Proceedings of the 5th Workshop on
Automation of Software Test, AST ’10, pages 51–58, New York,
NY, USA, 2010. ACM. Cited on p. 74.

[Fow07] Martin Fowler. Mocks arent stubs.
http://martinfowler.com/articles/mocksArentStubs.html, 2007.
Cited on p. 50.

[FR04] Kathleen Fisher and John Reppy. A typed calculus of traits. In Pro-
ceedings of the 11th Workshop on Foundations of Object-oriented
Programming, 2004. Cited on p. 16.

[GGB+07] Phil Greenwood, Alessandro F Garcia, Thiago Bartolomei, Sergio
Soares, Paulo Borba, and Awais Rashid. On the design of an end-
to-end aosd testbed for software stability. In Proceedings of the 1st
International Workshop on Assessment of Aspect-Oriented Tech-
nologies (ASAT. 07), Vancouver, Canada. Citeseer, 2007. Cited on
p. 107.

[GHJV94] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.
Design patterns. Addison-Wesley Publishing Company, Inc., Read-
ing, Massachusetts, 1994. Cited on p. 39.

[GJA+97] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,
Cristina V. Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-

146 BIBLIOGRAPHY

oriented Programming. In Mehmet Aksit and Satoshi Mat-
suoka, editors, Proceedings of 11th Europeen Conference on Object-
oriented Programming, volume 1241 of LNCS, pages 220–242.
Springer Verlag, 1997. Cited on p. 23.

[Gra06] Kasper Bilsted Graversen. The nature of roles - A taxonomic anal-
ysis of roles as a language construct. PhD thesis, IT University of
Copenhagen, Denmark, 2006. Cited on p. 19.

[Gru99] John Grundy. Aspect-oriented requirements engineering for
component-based software systems. In 4th ieee international sym-
posium on requirements engineering, pages 84–91. IEEE Computer
Society, 1999. Cited on p. 35.

[GSF+05] Alessandro Garcia, Cláudio Sant’Anna, Eduardo Figueiredo, Uirá
Kulesza, Carlos Lucena, and Arndt von Staa. Modularizing design
patterns with aspects: a quantitative study. In Aosd 05, pages 3–14,
2005. Cited on pp. 39 and 40.

[GSS+06] William G. Griswold, Macneil Shonle, Kevin Sullivan, Yuanyuan
Song, Nishit Tewari, Yuanfang Cai, and Hridesh Rajan. Modular
Software Design with Crosscutting Interfaces. IEEE - Software,
23(1):51–60, January/February 2006. Cited on p. 72.

[HK02] Jan Hannemann and Gregor Kiczales. Design pattern implementa-
tion in Java and AspectJ. In Proceedings of the 17th acm conference
on object-oriented programming, systems, languages, and applica-
tions, pages 161–173. ACM Press, 2002. Cited on p. 39.

[HNBA07] Wilke Havinga, Istvan Nagy, Lodewijk Bergmans, and Mehmet Ak-
sit. A graph-based approach to modeling and detecting composition
conflicts related to introductions. In Aosd ’07: proceedings of the 6th
international conference on aspect-oriented software development,
pages 85–95, New York, NY, USA, 2007. ACM Press. Cited on
p. 71.

[HPJP00] Wai-Ming Ho, Francois Pennaneac’h, Jean-Marc Jézéquel, and Noël
Plouzeau. Aspect-oriented design with the UML. In Peri Tarr, An-
thony Finkelstein, William Harrison, Bashar Nuseibeh, Harold Os-
sher, and Dewayne Perry, editors, Workshop on multi-dimensional

BIBLIOGRAPHY 147

separation of concerns in software engineering (icse 2000), 2000.
Cited on p. 38.

[HU01] Stefan Hanenberg and Rainer Unland. Using and reusing aspects
in AspectJ. In Kris De Volder, Maurice Glandrup, Siobhán Clarke,
and Robert Filman, editors, Workshop on advanced separation of
concerns in object-oriented systems (oopsla 2001), 2001. Cited on
p. 41.

[JDT10] JDT. Eclipse Java development tools (JDT), December 2010.
http://www.eclipse.org/jdt/. Cited on p. 97.

[Kat04] Shmuel Katz. Diagnosis of harmful aspects using regression verifi-
cation, 2004. Cited on pp. 67 and 70.

[KC03] Mohamed Kande and Valentin Crettaz. Towards patterns for
concern-oriented software architecture. In Omar Aldawud, Mo-
hamed Kandé, Grady Booch, Bill Harrison, Dominik Stein, Jeff
Gray, Siobhán Clarke, Aida Zakaria Santeon, Peri Tarr, and Faisal
Akkawi, editors, Workshop on aspect-oriented modeling with UML
(AOSD-2003), 2003. Cited on p. 39.

[KI89] Karl J. Lieberherr and Ian Holland. Assuring Good Style for
Object-oriented Programs. IEEE - Software, 6(5):38–48, September
1989. Cited on p. 14.

[KIA88] Karl J. Lieberherr, Ian Holland, and Arthur J. Riel. Object-oriented
Programming: an Objective Sense of Style. In Norman K. Mey-
rowitz, editor, Proceedings of ACM Conference on Object-oriented
Programming, Systems, Languages, and Applications (OOPSLA),
pages 323–334, September 1988. Cited on p. 14.

[KKS02] Mohamed Mancona Kandé, Jörg Kienzle, and Alfred Strohmeier.
From AOP to UML: Towards an Aspect-Oriented Architectural
Modeling Approach. In the Second International Workshop on
Aspect-Oriented Modeling with UML, in conjunction with the Fifth
International Conference on the Unified Modeling Language - the
Language and its Applications (UML2002), September 30 - Octo-
ber 4, 2002, Dresden, Germany, 2002. Also available as Techni-
cal Report IC/2002/58, Ecole Polytechnique Fédérale de Lausanne

148 BIBLIOGRAPHY

(EPFL), School of Computer and Communication Sciences. Cited
on p. 38.

[Koo95] Piet Koopmans. On the Definition and Implementation of the
Sina/st Language. PhD thesis, University of Twente, 1995. Cited
on p. 33.

[KT06] Benoit Kessler and Éric Tanter. Analyzing interactions of struc-
tural aspects. In Proceedings of the ECOOP Workshop on Aspects,
Dependencies and Interactions (ADI), 2006. Cited on p. 71.

[KYX03] Jörg Kienzle, Yang Yu, and Jie Xiong. On composition and reuse of
aspects. In Software engineering properties of languages for aspect
technologies, 2003. Cited on pp. 67 and 70.

[LF14] Thiago Gaspar Levin and Fabiano Cutigi Ferrari. Is it difficult
to test aspect-oriented software? preliminary empirical evidence
based on functional tests. In Proceedings of the 11th Workshop on
Software Modularity, 2014. Cited on p. 74.

[LJDW04] Bert Lagaisse, Wouter Joosen, and Bart De Win. Managing se-
mantic interference with aspect integration contracts. In Software
engineering properties of languages and aspect technologies, 2004.
Cited on p. 69.

[LSS03] David Larochelle, Karl Scheidt, and Kevin Sullivan. Join point
encapsulation. In Software engineering properties of languages and
aspect technologies, 2003. Cited on p. 72.

[Mar98] Robert C. Martin. Java Gems. Cambridge University Press, New
York, NY, USA, 1998. Cited on p. 15.

[MBB08] Freddy Munoz, Benoit Baudry, and Olivier Barais. A classification
of invasive patterns in AOP. Research Report RR-6501, INRIA,
2008. Cited on p. 68.

[MC04] Maximilian Störzer and Christian Koppen. PcDiff: attacking the
fragile pointcut problem. In European Interactive Workshop on
Aspects in Software, Berlin, Germany, September 2004. Cited on
p. 116.

BIBLIOGRAPHY 149

[Mey92] Bertrand Meyer. Applying "Design by Contract". IEEE - Computer,
25(10):40–51, 25 October 1992. Cited on p. 69.

[MF05a] Miguel Pessoa Monteiro and João Miguel Fernandes. The search
for aspect-oriented refactorings must go on. In Tom Tourwé, Andy
Kellens, Mariano Ceccato, and David Shepherd, editors, Linking
aspect technology and evolution, 2005. Cited on p. 42.

[MF05b] Miguel Pessoa Monteiro and João Miguel Fernandes. Towards a cat-
alog of aspect-oriented refactorings. In Peri Tarr, editor, Proc. 4rd
int’ conf. on aspect-oriented software development (AOSD-2005),
pages 111–122, 2005. Cited on pp. 20 and 42.

[MMvD07] Leon Moonen Marius Marin and Arie van Deursen. An integrated
crosscutting concern migration strategy and its application to jhot-
draw. Technical report, Delft University of Technology Software
Engineering Research Group, 2007. Cited on p. 107.

[Mon05] Miguel Pessoa Monteiro. Refactorings to evolve object-oriented
systems with aspect-oriented concepts. PhD thesis, Departamento
de Informática, Universidade do Minho, Portugal, 2005. Cited on
p. 42.

[Mor05] Michael Mortensen. An approach for adequate testing of aspectj
programs. In In 2005 Workshop on Testing Aspect-Oriented Pro-
grams (held in conjunction with AOSD, 2005. Cited on p. 73.

[MR02] Katharina Mehner and Awais Rashid. Towards a standard interface
for runtime inspection in AOP environments. In Mark C. Chu-
Carroll, Gail C. Murphy, Siobhan Clarke, Jacky Estublier, Anthony
Finkelstein, Bill Harrison, and Elissa Newman, editors, Workshop
on advanced separation of concerns in object-oriented systems (oop-
sla 2002), 2002. Cited on p. 42.

[MT02] Maja D’Hondt and Theo D’Hondt. The Tyranny of the Domi-
nant Model Decomposition. In OOPSLA Workshop on Generative
Techniques in the Context of Model-Driven Architecture, Seattle,
Washington, 2002. Cited on pp. 17 and 18.

150 BIBLIOGRAPHY

[Mye79] Glenford J. Myers. Art of Software Testing. John Wiley & Sons,
Inc., New York, NY, USA, 1979. Cited on pp. 47, 49, and 55.

[PDF+02] Renaud Pawlak, Laurence Duchien, Gerard Florin, Fabrice Legond-
Aubry, Lionel Seinturier, and Laurent Martelli. A UML notation for
aspect-oriented software design. In Omar Aldawud, Grady Booch,
Siobhán Clarke, Tzilla Elrad, Bill Harrison, Mohamed Kandi, and
Alfred Strohmeier, editors, Workshop on aspect-oriented modeling
with UML (AOSD-2002), 2002. Cited on p. 38.

[PGAA09] Reza Meimandi Parizi, Abdul Azim Abdul Ghani, Rusli Abdul-
lah, and Rodziah Atan. On the applicability of random testing
for aspect-oriented programs. International Journal of Software
Engineering and its Applications, 3(4):1–20, 2009. Cited on p. 74.

[PGL15] Reza Meimandi Parizi, Abdul Azim Abdul Ghani, and Sai Peck
Lee. Automated test generation technique for aspectual features in
aspectj. Information and Software Technology, 57:463 – 493, 2015.
Cited on p. 74.

[PHWSMS99] Peri Tarr, Harold Ossher, William Harrison, and Jr. Stanley M. Sut-
ton. N Degrees of Separation: Multi-Dimensional Separation of
Concerns. In Proceedings of the 21st international conference on
Software engineering, ICSE’99, 1999. Cited on p. 34.

[PTP07] Guillaume Pothier, Éric Tanter, and José Piquer. Scalable omni-
scient debugging. In Proceedings of the 22nd ACM SIGPLAN Con-
ference on Object-Oriented Programming Systems, Languages and
Applications (OOPSLA 2007), pages 535–552, Montreal, Canada,
October 2007. Cited on p. 42.

[RA07] André Restivo and Ademar Aguiar. Towards detecting and solving
aspect conflicts and interferences using unit tests. In Proceedings of
the 5th Workshop on Software-Engineering Properties of Languages
and Aspect Technologies (SPLAT’07), pages 1–5, Vancouver BC,
Canada, 2007. Cited on p. 98.

[RA08] André Restivo and Ademar Aguiar. Disciplined composition of
aspects using tests. In Proceedings of the 2008 AOSD Workshop on

BIBLIOGRAPHY 151

Linking Aspect Technology and Evolution, LATE ’08, pages 8:1–8:5,
New York, NY, USA, 2008. ACM. Cited on p. 98.

[RA09a] André Restivo and Ademar Aguiar. Testing for unexpected interac-
tions in AOP. In Software Engineering Advances, 2009. ICSEA’09.
Fourth International Conference on, pages 548–552. IEEE, 2009.
Cited on p. 66.

[RA09b] André Restivo and Ademar Aguiar. DrUID unexpected interac-
tions detection. Demonstration at the Aspect Oriented Software
Development Conference (AOSD’09), 2009. Cited on p. 101.

[RD00] Robert E. Filman and Daniel P. Friedman. Aspect-oriented Pro-
gramming is Quantification and Obliviousness. In OOPSLA Work-
shop on Advanced Separation of Concerns, 2000. Cited on pp. 24
and 65.

[Res09] André Restivo. DrUID: Unexpected interactions detection, 2009.
Cited on p. 99.

[Res10] André Restivo. Aida: Automatic interference detection for aspectj,
2010. Cited on p. 101.

[Res14] André Restivo. School-aspectj-testbed, 2014. Cited on p. 108.

[RMA03] Awais Rashid, Ana Moreira, and João Araújo. Modularization and
composition of aspectual requirements. In Proc. 2nd int’ conf. on
aspect-oriented software development (AOSD 2003), 2003. Cited on
p. 36.

[RMA+10] Awais Rashid, Ana Moreira, João Araújo, Paul Clements, Elisa
Baniassad, and Bedir Tekinerdogan. Early Aspects: Aspect-
Oriented Requirements Engineering and Architecture Design, 2010.
http://www.early-aspects.net/. Cited on p. 36.

[Rob96a] Robert C. Martin. The Dependency Inversion Principle. Engineer-
ing Notebook, The C++ Report, 8, May 1996. Cited on p. 13.

[Rob96b] Robert C. Martin. The Interface Segregation Principle. Engineering
Notebook, The C++ Report, June 1996. Cited on p. 14.

152 BIBLIOGRAPHY

[Rob97] Robert C. Martin. Stability. Engineering Notebook, The C++
Report, February 1997. Cited on p. 14.

[Rob00] Robert C. Martin. Design Principles and Design Patterns. Techni-
cal report, Object Mentor, 2000. Cited on p. 13.

[Rob01] Robert E. Filman. What is Aspect-oriented Programming, Revis-
ited. Technical report, RIACS, 2001. Cited on pp. 24, 65, and 157.

[ROM01] Rémi Douence, Olivier Motelet, and Mario Südholt. A Formal
Definition of Crosscuts. In Proceedings of the 3rd International
Conference on Reflection and Crosscutting Concerns, 2001. Cited
on p. 35.

[Sch09] Fabian Schmied. What can we do for you? (features of re-motion
mixins), January 2009. Cited on p. 16.

[SHU02] Dominik Stein, Stefan Hanenberg, and Rainer Unland. Designing
aspect-oriented crosscutting in UML. In Omar Aldawud, Grady
Booch, Siobhán Clarke, Tzilla Elrad, Bill Harrison, Mohamed
Kandi, and Alfred Strohmeier, editors, Workshop on aspect-oriented
modeling with UML (AOSD-2002), 2002. Cited on p. 38.

[SK03] Maximilian Störzer and Jens Krinke. Interference analysis for As-
pectJ. In Foundations of aspect-oriented languages (foal), 2003.
Cited on p. 70.

[SMSR02] Jr. Stanley M. Sutton and Isabelle Rouvellou. Modeling of software
concerns in cosmos. In Aosd ’02: proceedings of the 1st international
conference on aspect-oriented software development, pages 127–133,
New York, NY, USA, 2002. ACM Press. Cited on p. 36.

[SPB06] Stephanie Balzer, Patrick T. Eugster, and Bertrand Meyer. Can
Aspects Implement Contracts? In Proceedings of Rapid Implemen-
tation of Engineering Techniques (RISE), 2006. Cited on p. 14.

[SY99] Junichi Suzuki and Yoshikazu Yamamoto. Extending UML with
aspects: aspect support in the design phase. In ECOOP workshops,
pages 299–300, 1999. Cited on p. 37.

BIBLIOGRAPHY 153

[Tas02] Gregory Tassey. The economic impacts of inadequate infrastruc-
ture for software testing. Technical report, National Institute of
Standards and Technology, 2002. Cited on p. 48.

[TBB04] Francis Tessier, Mourad Badri, and Linda Badri. A model-based de-
tection of conflicts between crosscutting concerns: towards a formal
approach. In International workshop on aspect-oriented software
development, 2004. Cited on p. 66.

[THP93] Walter F Tichy, Nico Habermann, and Lutz Prechelt. Summary of
the dagstuhl workshop on future directions in software engineering:
February 17–21, 1992, schloß dagstuhl. ACM SIGSOFT Software
Engineering Notes, 18(1):35–48, 1993. Cited on p. 4.

[vdBCC05] Klaas van den Berg, José María Conejero, and Ruzanna Chitchyan.
AOSD Ontology 1.0 - Public Ontology of Aspect-orientation. Tech-
nical Report AOSD-Europe-UT-01 D9, AOSD-Europe, Enschede,
May 2005. Cited on pp. 17 and 155.

[vDMM05] A. van Deursen, M. Marin, and L. Moonen. A Systematic Aspect-
Oriented Refactoring and Testing Strategy, and its Application to
JHotDraw. Technical report, Centrum voor Wiskunde en Informat-
ica (CWI), March 2005. Cited on p. 116.

[WG10] Fadi Wedyan and Sudipto Ghosh. A dataflow testing approach for
aspect-oriented programs. In High-Assurance Systems Engineering
(HASE), 2010 IEEE 12th International Symposium on, pages 64–
73. IEEE, 2010. Cited on p. 74.

[WH93] William Harrison and Harold Ossher. Subject-Oriented Program-
ming - A Critique of Pure Objects. In Proceedings of the 1993
Conference on Object-Oriented Programming Systems, Languages,
and Applications, OOPLSA’93, September 1993. Cited on p. 20.

[Whi87] Lee J. White. Software testing and verification. Advances in Com-
puters, 26(1):335–390, 1987. Cited on pp. 48 and 49.

[WZ12] Peng Wanga and Xiaochun Zhao. The research of automated select
test cases for aspect-oriented software. In Proceedings of the 2nd

154 BIBLIOGRAPHY

International Conference on Mechanical, Industrial, and Manufac-
turing Engineering, MIME’2012, 2012. Cited on p. 73.

[XEAXW12] Dianxiang Xu, Omar El-Ariss, Weifeng Xu, and Linzhang Wang.
Testing aspect-oriented programs with finite state machines. Softw.
Test. Verif. Reliab., 22(4):267–293, June 2012. Cited on p. 74.

[XX06] Dianxiang Xu and Weifeng Xu. State-based Incremental Testing
of Aspect-oriented programs. In Proceedings of the 5th interna-
tional conference on aspect-oriented software development, AOSD
’06, pages 180–189, New York, NY, USA, 2006. ACM. Cited on
p. 74.

[YSM+05] Yudai Yamazaki, Kouhei Sakurai, Saeko Matsuura, Hidehiko Ma-
suhara, Hiroaki Hashiura, and Seiichi Komiya. A unit testing
framework for aspects without weaving. In Proceedings of the 1st
Workshop on Testing Aspect-Oriented Programs, AOSD’05, March
2005. Cited on p. 75.

[ZA06] Haibin Zhu and Rob Alkins. Towards role-based programming.
In Proceedings of the Workshop on Role-Based Collaboration,
CSCW’06, 2006. Cited on p. 19.

[Zha02] Jianjun Zhao. Tool support for unit testing of aspect-oriented soft-
ware. In Mark C. Chu-Carroll, Gail C. Murphy, Siobhan Clarke,
Jacky Estublier, Anthony Finkelstein, Bill Harrison, and Elissa
Newman, editors, Workshop on advanced separation of concerns
in object-oriented systems (oopsla 2001), 2002. Cited on p. 43.

[Zha03] Jianjun Zhao. Unit testing for aspect-oriented programs. Technical
Report SE-141-6, Information Processing Society of Japan (IPSJ),
May 2003. Cited on p. 43.

[ZW98] Marvin V. Zelkowitz and Dolores R. Wallace. Experimental models
for validating technology. Computer, 31(5):23–31, May 1998. Cited
on pp. 4 and 5.

[ZZR04] Yuewei Zhou, Hadar Ziv, and Debra J. Richardson. Towards A
Practical Approach to Test Aspect-Oriented Software. In Proceed-

ings of Testing of Component-Based Systems and Software Quality,
2004, January 2004. Cited on p. 73.

Glossary

advice A certain function, method or
procedure that is to be applied at
a given join point of a program.
24–32, 38, 40, 41, 43, 59, 62, 68,
72, 73, 103, 109, 127

aspect A unit for modularising an
otherwise crosscutting concern.
6, 21, 25, 26, 28–30, 32, 35, 37–
45, 58–60, 62, 63, 66–75, 77–80,
88, 91, 94, 98, 100, 101, 117–119,
121, 123, 124, 126–131, 135, 138

aspect oriented programming A
programming paradigm that al-
lows the separation of cross-
cutting concerns. 5, 6, 14, 21,
72–74, 91, 94, 95, 134, 139, 140,
159

AspectJ An AOP language based on
Java. 6, 21, 25, 26, 28, 30–32, 35,
42, 43, 55, 56, 58, 60, 62, 65, 74,
84, 97, 107, 125, 135, 140

AspectJ Development Tools A
project that provides Eclipse
platform based tool support for
AOSD with AspectJ. 159

composition The integration of mul-

tiple modular artefacts into a co-
herent whole. 17

composition filters A language-
independent specification, based
on filters, on top of the classi-
cal OOP model, that provides a
mechanism to separate crosscut-
ting concerns from the primary
concerns. 159

concern An interest, which pertains
to the system’s development, its
operation or any other matters
that are critical or otherwise im-
portant to one or more stake-
holders [vdBCC05]. 2, 13, 14,
17–20, 25, 32, 44, 45, 55, 58, 60–
63

crosscutting concern A concern,
which cannot be modularly rep-
resented within the selected de-
composition Consequently, the
elements of crosscutting concerns
are scattered and tangled within
elements of other concerns. 2,
18, 21, 23, 31, 34, 35, 56, 75, 137

decomposition The breaking down
of a larger problem into a set of
smaller problems which may be
tackled individually. 12, 17, 18

directed acyclic graph A directed
graph where there is no way to

155

156 Glossary

start at some vertex v and follow
a sequence of edges that eventu-
ally loops back to v again. 92,
159

encapsulation The ability of an ob-
ject to hide its internal represen-
tation. 12, 15

event based AOP A framework for
AOP where aspects are defined
in terms of events emitted during
program execution and crosscuts
relate sequences of events. 159

fault model A model that identifies
relationships and components of
a system under test that are most
likely to have faults. 115

feature oriented programming A
programming paradigm where
features are raised to first-class
entities and are seen as small
increments in program develop-
ment or functionality. 159

hypermodule A set of hyperslices.
34

hyperslice A set of conventional
modules that contain units that
pertain to a single concern. 34,
35

inheritance A mechanism for code
reuse where classes are based on
other classes. 12, 15–17

inter-type declaration Declaration
of members (fields, methods, and
constructors), class extensions

and interface implementations
on other types. 58

invasive aspect An aspect that
modifies the external behavior
of the advised module. 63, 68,
78–80, 82, 83, 91, 94, 111, 114,
138

Java A general-purpose computer
programming language designed
to produce programs that will
run on any computer system. 21,
25, 56–58, 97

Java Development Tools A project
that provides the tool plugins
that implement a Java IDE
supporting the development of
any Java application, including
Eclipse plugins. 159

join point A point in the control flow
of a program. 24–32, 35, 38, 44,
59, 62, 66, 72, 79, 116, 118, 119,
124, 126, 127

join point model The way in which
join points are quantified and ad-
vices are woven in a AOP lan-
guage. 24–26

modularity The degree to which a
program is decomposed so that
each module has its own clear set
of responsibilities. 1–3, 6, 11, 12,
14, 15, 17, 18, 21, 23, 58, 95

module A self-contained part of a
program having its own logic and
a clear set of responsibilities. 2,
3, 13, 14, 18, 31, 34, 37, 40, 42,

Glossary 157

43, 50, 51, 55, 58–66, 68, 78–91,
94, 95, 114–116, 131, 138, 140

object oriented programming A
programming paradigm based on
the concept of objects, which are
data structures that contain data
and code. 31, 58, 73, 74, 159

obliviousness The idea that the
places quantifications are applied
to, did not have to be specif-
ically prepared to receive these
enhancements [Rob01]. 24, 31

pointcut A program element that
picks out join points and exposes
data from their execution con-
text. 25–28, 31, 32, 35, 38–42,
44, 69, 72–74, 116, 118, 138

polymorphism The ability of a type
to appear to be another type. 12,
15

procedural oriented programming
A programming paradigm based
upon the concept of procedure
calls. 159

programming paradigm A funda-
mental style of computer pro-
gramming. 12, 17

quantification The idea that one can
write unitary and separate state-
ments that have effect in many,
non-local places in a program-
ming system [Rob01]. 24, 31

reusability The degree to which a
module is reusable in other pro-

grams as a standalone artefact
without modifications. 15

role oriented programming A
programming paradigm where
objects are seen as the compo-
sition of different roles. 159

scattering The occurrence of ele-
ments that pertain to one con-
cern in several different modules.
17, 18, 25, 94

separation of concerns A design
principle for separating a pro-
gram into distinct units of mod-
ularity, each one addressing a
different concern. 13, 18, 19, 24,
32, 45, 52, 78, 159

singleton A design pattern that re-
stricts the instantiation of a class
to one object. 28

software product line A collection
of similar software systems cre-
ated from a shared set of software
assets. 140, 159

subject oriented programming A
programming paradigm where
behaviors of objects are provided
by the various other subjects of
the objects which are beyond the
scope and control of the author
of the original object. 159

tangling The occurrence of elements
pertaining to different concerns
in the same module. 17, 18, 25,
32, 63, 94

unit test An automated piece of code

158 Glossary

that checks a single assumption
about the behavior of a single
unit of work. 56–58, 78, 84, 94,
138

unit testing The use of unit tests
to verify the correctness of pro-
grams. 6, 49, 55, 95

Acronyms

AJDT AspectJ Development Tools. 97, 102
AOP Aspect Oriented Programming. 2–4, 6, 20, 21, 23–25, 31–33, 35, 37–40, 42,

43, 45, 52, 55, 65, 69–72, 74, 75, 77–79, 88, 91, 97, 107, 116, 121, 136–138,
140

CF Composition Filters. 33, 34

DAG Directed Acyclic Graph. 78, 81, 92

EAOP Event Based AOP. 35

FOP Feature Oriented Programming. 19, 20

GoF The authors of the most influential book on Design Patterns: Erich Gamma,
Richard Helm, Ralph Johnson and John Vlissides. 39

JDT Java Development Tools. 97, 102

OOP Object Oriented Programming. 2, 12, 15–17, 20, 24, 25, 28, 34, 42, 52, 69,
74, 78, 79, 88, 91

POP Procedural Oriented Programming. 12, 24

ROP Role Oriented Programming. 19

SoC Separation of Concerns. 13, 14, 16, 17, 21
SOP Subject Oriented Programming. 20
SPL Software Product Line. 19, 140

159

A
Published Articles

161

Towards Detecting and Solving Aspect Conflicts
and Interferences Using Unit Tests

André Restivo
Faculdade de Engenharia da Universidade do Porto

arestivo@fe.up.pt

Ademar Aguiar
Faculdade de Engenharia da Universidade do Porto,

INESC Porto
aaguiar@fe.up.pt

Abstract
Aspect Oriented Programming (AOP) is a programming paradigm
that aims at solving the problem of crosscutting concerns being
normally scattered throughout several units of an application.

Although an important step forward in the search for modular-
ity, by breaking the notion of encapsulation introduced by Object
Oriented Programming (OOP), AOP has proven to be prone to nu-
merous problems caused by conflicts and interferences between as-
pects.

This paper presents work that explores the proven unit testing
techniques as a mean to help developers describe the behavior
of their aspects and to advise them about possible conflicts and
interferences.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification

General Terms Design, Languages, Verification

Keywords AOP, Conflicts, Interferences, Unit Testing

1. Introduction
Separation of concerns (SoC) has always been the main goal of
software engineering. It refers to the ability to identify,encapsulate,
and manipulate only those parts of software that are relevant to a
particular concept, goal, or purpose [1].

Aspect-Oriented Programming(AOP) [2] is a new programming
paradigm that builds on the success of proved paradigms, like
Object-Oriented Programming(OOP). The main idea behind AOP
is that concerns crosscutting several modules of an application can
be developed as single units of modularity and weaved into the
application, through a process of composition, in specific points
called joinpoints. The motivation behind AOP is to improve the
overall modularity of an application by enabling the ability to
develop crosscutting concerns as separate units.

AOP also aims for obliviousness [3], i.e. a developer shouldnot
have to know about any other aspects that are being weaved into the
application code. To make this a reality, aspects have to be allowed
to attach virtually to any position of the original source code. In
this way, each developer only has to be concerned about his own
modules.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Workshop SPLAT ’07 March 12-13, 2007 Vancouver, British Columbia, Canada
Copyright c© 2007 ACM 1-59593-656-1/07/03. . . $5.00

However, obliviousnesshas been harder to achieve than ex-
pected, as conflicts between aspects are prone to occur in large
applications with an heavy usage of AOP. In the OOP world con-
flicts are avoided by using encapsulation techniques and also by us-
ing Unit Testing or the Design by Contract (DbC) [4] approaches.
Encapsulation allowed developers to know that changing theinner
working of an unit would not break another part of the applica-
tion as long as their public interfaces would be kept the same. Unit
testing and the DbC approaches helped developers detect problems
caused by an unit changing its public behavior in an easier way (i.e.
Regression Testing).

As most AOP languages allow to weave aspects into the private
methods of an unit, thus changing their inner workings, encapsu-
lation is no longer a guarantee. However, this is an important fea-
ture of the AOP paradigm that allows crosscutting concerns,such
asloggingandsecurity, to be easily added by means of a separate
modular unit. The problem is that conflicts will certainly arise due
to the new possibilities this brings.

Besides the loss of encapsulation, unit tests and contractssud-
denly became harder to use mainly because aspects can changethe
public behavior of an unit thus making obsolete some unit tests and
contracts attached to that unit. Unit testing and the DbC approaches
have therefore to be rethought in order to accommodate this new
way of programming.

In this position paper we will argue how the unit testing ap-
proach can still be effectively used in AOP, retaining the same char-
acteristics that made it a very popular Regression Testing method-
ology, and also be helpful in detecting conflicts between aspects.

Our final objective is to create a methodology that will improve
the current state of managing conflicts in AOP and to develop tools
to support that methodology.

The paper is organized in the following sections: Section 1,this
section, introduced the problem of conflicts and interferences as
an important issue in AOP; Section 2 will describe some proposed
categorization of both aspects and conflicts; Section 3 willexplain
how these conflicts could be detected using unit tests; Section 4
will show how the different types of conflicts described in Section
2 can be identified by using the methodology explained in Section
3; Section 6 will introduce a small example that will help under-
standing how the presented methodology could be used in a real
situation; Section 7 will describe several important worksin the
conflict detection field; finally Section 8 will list some conclusions
and pointers for future work.

2. Conflicts and Interferences
Before tackling the problems posed by the introduction of aspects
into an application, we have to understand the different type of
changes they can perform and the objectives behind these changes.

Several attempts of categorizing aspects have been done in recent
literature.

2.1 Types of Interferences

Tessier [5] classified aspects by the different type of interferences
they can cause. In his work, he identified problems like:

• the use of wildcards leading to accidental joinpoints;

• conflicts between aspects and the importance of the order in
which these are weaved into the application;

• circular dependencies between aspects;

• conflicts between concerns where a concern needs to change a
functionality needed by another concern.

2.2 Types of Changes

Katz [6] took a different approach by classifying aspects according
to the type of changes they introduce in an application. According
to this author three types of aspects can be identified:

• spectative aspects, that only gather information about the sys-
tem to which they are woven, usually by adding fields and meth-
ods, but do not influence the possible underlying computations;

• regulatory aspects, that change the flow of control (e.g., which
methods are activated in which conditions) but do not change
the computation done to existing fields;

• invasive aspects, that change values of existing fields (but still
should not invalidate desirable properties).

2.3 Types of Dependencies

Kienzle [7] approached the problem from a different point ofview
by considering only the dependency relationships between aspects
and the original code. Three different kinds of aspect dependencies
have been identified:

• orthogonal aspects, that provide functionality to an application
that is completely independent from the other functionalities to
the application;

• uni-directional aspects, that depend from some functionality of
the application (these can be further divided as preserving, if the
application functionality is maintained or enhanced without any
current functionalities being altered or hidden, or modifying, if
the application functionality is altered or hidden);

• circular aspects, which are aspects that are mutually dependent
of each other.

Katz and Tessier works are extremely interesting as a starting
point for our research. We intend to analyze how the different
type of changes introduced by aspects (as defined by Katz) can
create different types of interferences (as defined by Tessier) and
how these can be tackled using unit testing. The following section
explains our approach to this problem.

3. Detecting Conflicts Using Unit Tests
Unit testing is used to informally proof the correctness of modules.
Each module has its own set of unit tests. By running these tests
one can verify if changes to a module have changed its tested
external behavior. Unit tests can be seen as a specification of the
desired behavior of a module. With the introduction of aspects these
specifications and their respective implementations can beeasily
changed by external entities, so units may no longer behave as
expected. When an aspect is weaved into the code of an application,
other aspects might have been weaved before and changed the
expected behavior of the affected unit in a way that interferes with
the new aspect being weaved.

Base Classes

A

BC

Unit Test

Add Test

Require Test

Suppress Test

Figure 1. Aspects and Unit Tests

In this way, it should be possible to specify which unit testshave
to be valid for an aspect to be correctly weaved into the system.
In the same way, it should be possible for an aspect to determine
which tests it expects to break.

Many times aspects depend on each other. This happens when
one aspect needs some behavior to be present in the system to work
properly and this behavior is introduced by another aspect.It should
also be possible for aspects to introduce new unit tests intothe
system specifying which new behaviors are being introducedby
them.

It might also happen that an aspect needs a certain behavior to be
present in the system but the unit providing this behavior does not
have a specific unit test for this particular behavior. Aspects should
be able to add new unit tests to code already in the application.

Figure 1 shows a possible diagram for an example where aspects
add, remove and depend from unit tests. In this figure the dark
square boxes are unit tests. The arrowed lines identify which unit or
aspect created the unit test. The circled lines identify a dependency
relationship, while lines with a diamond represent an invalidation
of an unit test by an aspect (the big circles). From this explanation
we can see that the initial OOP code already provided severalunit
tests. Aspect ”A” depends on two of those unit tests and adds
another one. Aspect ”B” depends on the unit test created by Aspect
”A” and at the same time suppresses one of the initial unit tests.
And finally, Aspect ”C” also depends on the unit test created by
Aspect A.

From this simple example we can already extract some conclu-
sions: Aspect ”A” is probably aspectativeaspect (as defined by
Katz) that simply added some new fields and methods to the unit;
Aspect ”B”, on the other hand, has probably changed the behavior
of the original code. We can also easily conjecture a possible or-
der for the weaving process (e.g. ”A” followed by ”B” followed by
”C”).

Finding a possible weaving order in which dependencies be-
tween aspects are assured can probably be accomplished by using
a simple Breadth-First Search (BFS) or using the A* algorithm (as
this is a typical path finding in a graph problem) . If such an order-
ing cannot be found then we are facing a conflict between aspects.
In this case, an error message should be presented stating which as-
pects failed to weave, which unit tests are missing for theseaspects,
and which aspects removed them (if any).

The next section will explain how this approach relates to
Tessier and Katz classification of aspect interferences andconflicts.

Base Class

A

Base Class

B

spectative regulatory or invasive

Figure 2. Different types of aspects

Base Class

A

Base Class

C

B

D

Base Class

E

F

circular dependency conflict dependency

Figure 3. Different types of interferences

4. Mapping aspects and interferences to unit tests
As we have seen in Section 2, aspects can be classified as being
spectative, regulatoryor invasive. Using the notation introduced in
Section 3 we can depict these different type of aspects with relation
to the unit tests they add, depend on, or suppress.

In Figure 2 there are two different aspects. Aspect ”A” is proba-
bly aspectativeaspect as it doesn’t suppress any existing unit tests.
It could also be aninvasiveaspect that happened to be ”lucky”
enough to change something the original developer wasn’t expect-
ing to be changed and didn’t include in his unit tests. Aspect”B”,
on the other hand, is clearly aregulatory or invasiveaspect as it
suppresses some of the original unit tests that would fail after it
had been weaved into the system.

In Figure 3, three types of interferences or conflicts are depicted.
In the first one, aspects ”A” and ”B” are creating a circular depen-
dency problem. The middle diagram depicts a conflict betweentwo
concerns, where aspect ”C” is changing some functionality needed
by aspect ”D”. The rightmost diagram shows aspects that needto
be weaved in the correct order to function properly and at thesame
time a dependency between aspect ”F” and ”E”.

This shows that if unit tests are correctly used they can help
detecting most of the conflicts that aspects can introduce and that
have been plaguing AOP. In the following sections we will show
how these conflicts can be tackled with our proposed methodology
with the help of a short example a short example.

5. Using annotations to specify changes to unit
tests

As has been stated before, breaking an unit test is not a clearsign of
an aspect misbehaving. Due to their own nature, aspects are bound
to change the functionality of other units of code and hence break
their unit tests. In this way, aspects must have a way of announcing
what unit tests they expect to break.

Very often, aspects are also depending on some functionality to
be present into the system. This functionality can be delivered by
the system base code or by other aspects. Conflicts between aspects
are often caused by one aspect removing a functionality needed by
another aspect, and dependency problems are commonly caused by
one aspect expecting another aspect to deliver some functionality
which somehow is not effectively delivered.

Therefore we claim that, there is a clear need for aspects to be
able to announce which aspects they are expected to break, which
aspects they depend on, and which they are adding to the overall
system. In this paper we propose that aspects should be able to
make this announcements using Java annotations. An examplewill
now be introduced to explain how this could be attainable.

6. An example of conflicting aspects
Imagine a simple class depicting an User. This class would have
fields like its username and password. It would also have setters
and getters for those fields and averifyPasswordmethod. Listing 1
shows some simple unit tests that could have been used to ensure
that the class was working properly.

Listing 1. User Class Unit Tests

p u b l i c vo id testSetGetPassword() {
user.setPassword("foo");

assertEquals("foo", user.getPassword());
}

p u b l i c vo id testVerifyPassword() {
user.setPassword("foo");

assertEquals(t rue , user.verifyPassword("foo"));
assertEquals(f a l s e , user.verifyPassword("bar"));

}

It is also common that, for security reasons, passwords do not
get stored in clear text. It is a common practice to store them
using some hash function. However, to achieve a clear separation of
concerns between the user data model and the security concern, this
feature should be coded as a separate aspect. Listing 2 showshow
this aspect could have been coded. By introducing these aspects
some of the unit tests shown in Listing 1 get broken.

Listing 2. Encrypted Password Aspect

@SupressTest("user.UserTest .testSetGetPassword")

privileged a s p e c t EncryptedPassword {
p r o t e c t e d p o i n t c u t

passwordChanged(User user , String password):

t a r g e t (user) && a r gs(password)
&& c a l l (vo id setPassword(String));

p r o t e c t e d p o i n t c u t
verifyPassword(User user , String password):

t a r g e t (user) && a r gs(password)
&& c a l l (boo le an verifyPassword(String));

vo id around(User user , String password)

: passwordChanged(user , password)
{

// ... calculates md5 hash

user.password = md5hash ;
}

boo le an around(User user , String password)

: verifyPassword(user , password)
{

// ... calculates md5 hash

r e t u r n (user.password .equals(md5hash);

}
}

After introducing the aspect into the system, the developer
should be warned that his aspect broke some unit tests. This could
be easily computed by compiling and testing the system with and
without the aspect. The developer could then inspect the broken
unit test and decide if that would be an expected result from his
aspect. In this case he would decide that it was because the getter
and setter methods of the User class would not work as expected so
he could just add a notation expressing that. The first line ofListing
2 shows how that notation could look like.

It is also common to prevent users from using passwords that
are easily retrievable using brute force attacks. One way ofdoing
it is to prevent them from using passwords that are too small.Once
again, preventing this should be considered a separate aspect from
the user data model and could be coded as seen in Listing 3. Notice
that this aspect could have been coded in a much better fashion but
for demonstration purposes it has been coded in a way that it needed
the getter and setter methods of the original user class to work as
originally intended. The developer should then announce that this
aspect depends on thetestSetGetPasswordunit test. He could easily
do so by adding a single line stating that in the beginning of the
aspect.

Listing 3. Minimum Password Size Aspect

@RequiresTest("user.UserTest .testSetGetPassword")
@SupressesTest("user.UserTest .testVerifyPassword")

@AddsTest("user.UserTest .testVerifyPasswordML")
public a s p e c t MinimumLengthPassword {

p r o t e c t e d p o i n t c u t
setPassword(User user , String password)
: t a r g e t (user) && a r gs(password)

&& c a l l (vo id setPassword(String))
&& !w i t h i n (MinimumLengthPassword);

a f t e r (User user , String password)
: setPassword(user , password)

{
i f (user.getPassword().length ()<6) {

user.setPassword(password);
throw new RuntimeException();

}

}
}

However, after introducing the aspect into the system, the devel-
oper would be warned that another aspect has suppressed thatunit
test. Besides that, this aspect would break thetestVerifyPassword
unit test. This is a typical case of a conflict between aspects. To
solve this problem the aspect has to be rewritten in a different way
and the broken unit test must be suppressed and, perhaps, a new
unit test should be added to verify if everything is still working.

This example shows how unit tests, if correctly used, can help
detecting conflicts between aspects. It has also shown that the
developer of each different concern did not have to know about
other aspects being weaved into the system, at least until conflicts
occurred thus promoting obliviousness.

In the following section some of the related work done in this
field will be presented and discussed.

7. Related Work
In this section some of the work that has been done in the field of
conflict detection in AOP will be described briefly. The work done

so far can be divided into two different categories. Automatic de-
tection of conflicts without human intervention and forcingaspect
developers to somehow express the possible points of conflict. The
first two works described fall in the first category, while theremain-
ing three fall in the second one.

7.1 Program Slicing

Balzarotti [8] claims that this problem can be solved by using a
technique proposed in the early 80’s called program slicing. A slice
of a program is the set of statements that affect a given pointin an
executable program. According to the author the following holds:

Let A1 and A2 be two aspects and S1 and S2 the corre-
sponding backward slices obtained by using all the state-
ments defined in A1 and A2 as slicing criteria. A1 does not
interfere with A2 ifA1 ∩ S2 = ∅;

According to the author, this technique is accurate enough to
identify all interferences introduced by an aspect but can also detect
some false-positives. Furthermore, the existence of pointcuts that
are defined based on dynamic contexts, forces the analysis ofev-
ery execution trace increasing the number of these false-positives.
However the approach has the advantage of removing the burden
of having to declare formally the expected behavior of each aspect.

7.2 Introduction and Hierarchical Changes Interferences

Störzer [9] developed a technique to detect interferencescaused by
two different, but related, properties of AOP languages.

Störzer claims that the possibility of aspects introducing mem-
bers in other classes can lead to undesired behaviors as it can result
in changes of dynamic lookup if the introduced method redefines a
method of a superclass. He calls this type of interferencebinding
interference.

The other problem Störzer refers to is the possibility of aspects
changing the inheritance hierarchy of a set of classes. He claims
that this type of changes can also give place tobinding interfer-
encesas well as some unexpected behavior caused by the fact that
instanceofpredicates will no longer give the same results as before.

To detect this kind of conflicts the author proposes an analysis
based on the lookup changes introduced by aspects.

Kessler [10] also studied how structural interferences could be
detected. However, his approach is based in a logic engine where
programmers can specify rules (ordering, visibility, dependencies,
...). In [10], Kessler also described the different type of interfer-
ences that are possible with introductions and hierarchical changes
and proposed solutions for each one of them.

7.3 Aspect Integration Contracts

Contracts have been introduced by Meyer [4] as a defensive so-
lution against dependency problems in OOP. Some authors claim
that contracts can be imported into the AOP world in order to assist
programmers in avoiding interference problems.

Lagaisse [11] proposed an extension to the Design by Contract
(DbC) approach by allowing aspects to define what they expect
of the system and how they will change it. This will allow the
detection of interferences by other aspects that were weaved before,
as well as the detection of interferences by aspects that arebounded
to be weaved later in the process. According to the author, for an
Aspect A bound to a component C the following should be defined:

1. The aspect should specify what it requires from componentC
and possibly from other software components.

2. The aspect also needs to specify in which way it affects the
component C and the functionality it provides (if applicable).

3. The specification of component C must express which interfer-
ence is permitted from certain (types of) aspects.

This approach has the disadvantage of forcing the programmer
to verbosely specify all requirements and modifications foreach
aspect as well as permitted interferences. On the other hand, the
formal specification of behaviors has be proven to be a valuable
tool in Software Engineering. However, the major drawback we se
in this approach is the necessity of components to specify which
interferences are permitted thus breaking obliviousness.

7.4 Regression Testing

Katz [6] proposed the use ofregression testingandregression ver-
ification as tools that could help identifying harmful aspects. The
idea behind this technique is to use regression testing as normally
and then weave each aspect into the system and rerun all regression
tests to see if they still pass.

Katz approach is very similar to ours but does not specify the
addition and removal of unit tests by aspects. Katz argues that to
use his technique one will have to specify what are the desired
properties of the augmented system (after the aspect being tested
is added) but does not explain how this can be done.

7.5 Service Based Approach

It has been noticed by Kienzle [7] that aspects can be defined as
entities that require services from a system, provide new services
to that same system and removes others. If some way of explic-
itly describing what services are requires by each aspect itwould
be possible to detect interferences (for example, an aspectthat re-
moves a service needed by another aspect) and to choose better
weaving orders.

8. Conclusions and Future Work
Detecting conflicts caused by the introduction of aspects isan area
where much research is being carried on and much more still needs
to be done. This position paper presented a methodology thatuses
unit tests to tackle the this problem.

Our work, although very similar to the approaches of both La-
gaisse and Katz (see Sections 7.3 and 7.4), has what we think
are some major and important differences: Lagaisse forces com-
ponents to specify permitted interferences thus breaking oblivious-
ness; Katz does not specify the possibility of aspects removing unit
tests in order to announce what functionalities have been changed
from the original code.

Therefore, we believe our approach as promising and deserves
further research and exploration to firmly confirm its value.

There is still a lot of ground to cover for this methodology to
be usable. We are planning to develop plugins for some important
development tools and IDEs that will allow the use of annotations
to help developers on describing the behavior of their aspects. This
would also allow these same development tools to give feedback
about possible conflicts and interferences.

Acknowledgments
We will like to thank Miguel Pessoa Monteiro for the help in de-
veloping this paper and for the constant broadening of our per-
spectives. We will also like to thank FCT for the support provided
through scholarship SFRH/BD/32730/2006.

References
[1] Ossher, H., Tarr, P.: Multi-dimensional separation of concerns and

the Hyperspace approach. In: Software Architectures and Component
Technology: The State of the Art in Research and Practice. (2000)

[2] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes,
C., Loingtier, J.M., Irwin, J.: Aspect-oriented programming. In
Akşit, M., Matsuoka, S., eds.: 11th Europeen Conf. Object-Oriented

Programming. Volume 1241 of LNCS., Springer Verlag (1997) 220–
242

[3] Filman, R., Friedman, D.: Aspect-oriented programmingis quantifi-
cation and obliviousness (2000)

[4] Meyer, B.: Applying ”design by contract”. IEEE - Computer 25(10)
(1992) 40–51

[5] Tessier, F., Badri, M., Badri, L.: A model-based detection of conflicts
between crosscutting concerns: Towards a formal approach.In:
International Workshop on Aspect-Oriented Software Development.
(2004)

[6] Katz, S.: Diagnosis of harmful aspects using regressionverification
(2004)

[7] Kienzle, J., Yu, Y., Xiong, J.: On composition and reuse of
aspects. In: Software engineering Properties of Languagesfor Aspect
Technologies. (2003)

[8] Balzarotti, D., Monga, M.: Using program slicing to analyze aspect-
oriented composition (2004)

[9] Störzer, M., Krinke, J.: Interference analysis for AspectJ. In:
Foundations of Aspect-Oriented Languages (FOAL). (2003)

[10] Kessler, B., Tanter,́E.: Analyzing interactions of structural aspects.
ECOOP Workshop on Aspects, Dependencies and Interactions (ADI)
(2006)

[11] Lagaisse, B., Joosen, W., De Win, B.: Managing semanticinterference
with aspect integration contracts. In: Software Engineering Properties
of Languages and Aspect Technologies. (2004)

Disciplined Composition of Aspects using Tests

André Restivo
LIAAC - NIAD&R, Faculdade de Engenharia

Universidade do Porto
Rua Dr. Roberto Frias, s/n
4200-465 Porto, Portugal

arestivo@fe.up.pt

Ademar Aguiar
INESC Porto, Faculdade de Engenharia

Universidade do Porto
Rua Dr. Roberto Frias, s/n
4200-465 Porto, Portugal

aaguiar@fe.up.pt

ABSTRACT
A large part of the software development effort is typically
spent on maintenance and evolution, namely on adding new
and unanticipated features. As aspect-oriented program-
ming (AOP) can be easily used to compose software in non-
planned ways, many researchers are investigating AOP as a
technique that can play an important role in this particular
field. However, unexpected interactions between aspects are
still a major problem that compromise AOP’s applicability,
especially in large projects where many developers, often
including new team members, are involved in the process.
This paper addresses the issues of aspect conflicts and inter-
actions and proposes a technique to help compose aspects in
a disciplined way using a test-driven development approach.
A simple example for a banking system helps on illustrating
the technique.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation—Validation; D.2.5 [Software Engineering]: Test-
ing and Debugging—Testing tools

General Terms
Languages, Verification

Keywords
Aspect-Oriented Programming, Tests, Software Evolution

1. INTRODUCTION
Successful software projects do not end after their first re-
lease. As users discover bugs to be fixed and new features
to be added, several code changes are required to extend
and modify the existing system. Such changes can be done
by the original developers, third-party developers, or even
by the users themselves. Either way, changes can often lead
to the introduction of more bugs and it is usually complex
to understand how a new feature or a changed feature will
affect the overall system.

The special characteristics of AOP languages make them
good candidates for software evolution. As most evolution-
ary changes are unexpected, the power of AOP to change
the system behavior in unforeseen ways without the need to
modify the original code seems tailored for the job. How-
ever, AOP is prone to create unexpected feature interactions
that can possibly lead to conflicts.

TDD is currently a popular technique for software develop-
ment. Unit tests are used to test if individual units of source
code work properly while integration and system tests are
used to test if these same units work well together.

When using AOP, unit tests are good enough to test single
units of code, but when new behavior is added by aspects,
the test results might no longer be valid. In fact, new behav-
ior might break some of the unit tests and still this might
be the desired behavior for the aspects.

One possible approach would be to write code, into the as-
pects, that would change not only the units’ behavior but
also their unit tests. However, this would not suffice as other
units might depend on the original behavior and tracing an
integration or system test failure back to its origin might
not be as easy as in classical object-oriented programming.

Unit A Unit C

Unit B

«modifies»

Figure 1: A simple dependency example

For example (see Figure 1), consider 2 units complemented
by its unit tests that we will call Unit A and Unit B. By
running its unit tests we can verify that both work correctly.

Units A and B are then integrated into a complex system
and integration tests show that everything is working cor-
rectly. But after adding a new unit into the system, Unit

C, which is a AOP unit that changes the behavior of several
units in the system (including their unit tests), we find that

Unit B stopped working.

However, Unit C didn’t modify Unit B. A developer would
be puzzled by this behavior and classical TDD wouldn’t help
him to discover that Unit B stopped working because Unit

A, which it depends on, was modified by Unit C.

In this paper we propose a test-based technique to compose
aspect-oriented modules in a disciplined way. The technique
aims at making AOP code easier to compose and more ro-
bust to evolution.

2. INTERACTIONS AND CONFLICTS
Software systems are composed of several artifacts (e.g. mod-
ules, packages, and classes) that interact with each other.
Interactions occur when (i) artifacts depend upon other ar-
tifacts, (ii) modify other artifacts, or (iii) modify artifacts
others depend upon.

Artifacts can be modified by other artifacts either by mod-
ifying its internal state (e.g. an object changing another
object) or, when using AOP, by modifying its own behavior
(e.g. an aspect changing the behavior of a class).

When two artifacts, that work independently as expected,
interact in undesirable and unexpected ways, we are facing
a conflict. The origin of conflicts was already thoroughly
studied by several authors. Tessier [7] has identified the
different types of conflicts as: accidental joinpoints, order-
ing problems, circular dependencies, and conflicts between
different concerns (all of them unexpected and undesirable
interactions).

To detect these conflicts we must first be capable of detect-
ing interactions and then find out if they are conflicts or
not. We could easily identify interactions if we knew the
dependencies between artifacts, and also how an artifact is
influencing other artifacts.

In our approach, we consider the relevant artifacts as the
modules that compose the system. A module is a self-
contained component of a system, which has a well-defined
interface to the other components. In this way, a software
system is composed by several modules and evolves when
new modules are added or existing ones are modified.

Detecting if a module was modified by an aspect, although
not trivial, was previously studied by others, of which we
highlight here the work of Balzarotti [1]. However, to know
a change occurred is not enough. It is also necessary to
understand how the modification altered the behavior of the
module and if it is harmless and desired.

The behavior of a module can be characterized by the fea-
tures or services it provides. If we can find somehow that
a feature was modified then we can try to understand how
the behavior of the module has changed.

In the next section we will present a test-driven develop-
ment approach that can help on detecting which features
have changed due to the introduction of an aspect-oriented
module.

3. TESTING FOR CONFLICTS
Tests are a simple way of analyzing if a feature provided by
a module is correctly implemented, and was not modified by
another module. Tests can be seen as incomplete specifica-
tions of the behavior of a module. If we create tests for each
feature provided then we can use them to understand if a
certain feature was not altered in some way.

In addition, if we also define exactly the features a mod-
ule depends on, we can reason about interactions in a very
simple way. However, not all interactions are conflicts. For
example, the ultimate objective of an aspect-oriented mod-
ule might be to change a particular feature. Therefore, we
also need to know how each module intends to change the
system. This information will enable us to distinguish be-
tween desired and undesired interactions.

In our approach, a module is defined by its code, tests
and also meta-information describing the features provided,
modified, and all those it depends on.

By incrementally adding each module to the system we can
identify if all features needed by each module are still present,
and if we are modifying the system behavior in an unex-
pected way.

If, when a module is being added to the system, it is detected
that a feature it depends on has been removed or modified
by a previously added module, there is a chance that we
are facing a conflict. However, modifying the behavior of
a module in order to modify the behavior of modules that
depend on the modified one is not uncommon. So, a module
must also be able to announce that intention by deprecating
dependencies and possibly adding new alternative ones.

To clarify these concepts we will introduce a small example
in the next section.

4. A SMALL EXAMPLE: A BANK
Consider the example of a banking software system that
stores information about customers, their accounts, and re-
spective transactions.

One possible way to implement this system would be to de-
velop three separate modules, one for each of these enti-
ties, with the transaction module depending on the account
module, and the account module depending on the customer
module.

Consider now that the software has later evolved to accom-
modate two new features, persistence and security, and that
both would be implemented as new separate modules using
AOP.

4.1 Adding Persistence
The persistence module would probably change the cus-
tomer, account and transaction classes in a way that when-
ever a new instance of them is created or modified that would
be reflected in a storage system like, for instance, a relational
database.

Tests should be implemented to verify if the internal struc-
ture of each one of these classes is persistent amongst dif-

Customer Transaction

Security

Persistence

«modifies» «modifies» «modifies»

«modifies»«modifies»«modifies»

Account

Figure 2: Module Dependencies and Modifications

ferent system runs. For example, we could add a customer
to an empty bank instance, recreate the bank instance and
test if the customer is still present. For example, to test if
the customer internal state is the same, we can serialize the
customer and verify if the serialized result is the same before
and after the customer has been reloaded from its persistent
storage.

4.2 Adding Security
The security module would (i) add a login and password
fields to the customer class, (ii) add a feature that allowed
people to login into the system, and (iii) add a mechanism
that would only allow new transactions to be added if the
logged in person is the owner of the account in question.

Each of these features should also be tested.

The dependencies and modifications of such system are shown
in Figure 2.

Both modules would announce the features they depend
upon. The persistence module might depend upon the fact
that the constructors, setters and getters of the base classes
worked as expected.

Tests would probably exist for these features. The security
module would probably need the feature that added new
transactions to work properly.

Figure 3 shows the main features provided, features de-
pended upon, and features modified by this interaction.

4.3 Persistence conflicts with Security
If the base classes are implemented correctly both modules
would have the features present in the system.

However, when adding both new modules, the security mod-
ule would modify the customer class in an unexpected way.
If the security module is incorporated into the system after
the persistence module, by running the persistence tests af-
ter the security module has been added to the system, we
would identify an unexpected interaction, as the serialized
version of the customer would be different from the stored
one (due to the addition of the login and password fields by
the security module).

On the other hand, if the persistence module is added after
the security module, by running the constructor tests which

Account

Security

Persistence

«tests»

«test»
Set/Get Tests

«test»
Constructor Test

«test»
Persistence Test

«tests»

«breaks»

«tests»

«modifies»

Figure 3: Security and Persistence Interactions

the persistence module relies upon, we would discover that
it was changed by the security module.

Either way, an interaction between both modules would be
uncovered and it would be up to the developers to find the
best way to solve it.

5. MODULE META-INFORMATION
The previous version of this technique, presented in [6], used
Java annotations to store all the meta-information needed.
Although sufficient for many cases, this could be insufficient
as features are seldom implemented by a single class, but
rather by the collaboration of several classes. Therefore,
even knowing that it is not the best solution, at the mo-
ment, we are using XML files to explicitly store the needed
information. Although these files are manually written at
present, they could be produced automatically by tools sup-
porting the technique. These XML files are used to store sev-
eral characteristics that we need to know about each module:

• An identifier that will allow other modules to refer to
it.

• A set of features provided by the module and, for each
one of them, the classes and methods used to test
them.

• Features from other modules that the module depends
on.

• Features the module is supposed to break intentionally.

• Dependencies from other modules that this module in-
tentionally expects to break.

Below in Listing 1, we show an example configuration file
for the security module presented in Section 4.

Listing 1 Module Definition Example
<module name="security">

<feature name="accountHasOwner">
<test class="com.bank.security.accountOwner" method="*" />

</feature>

<feature name="accessRestrictions">
<test class="com.bank.security.accessTest" method="*" />

</feature>
<depends module="transaction" feature="addTransaction" />

</module>

For convenience purposes of the supporting tools developed
till present, we expect that modules will be self contained
in either their own directories or in jar files. This way, each
module could have its own meta-information file.

The next section will explain how this technique can be used
to compose a software system in a disciplined way.

6. ASPECTS COMPOSITION
The process of composing software using the technique de-
scribed in this paper can be automated using the following
steps:

• Find the best order in which the modules can be in-
crementally built into the system. This can be accom-
plished by using a slightly modified topological sort of
the dependency graph.

Then, for each module:

• Start by verifying if all needed features are still present
in the system. If they are not, warn the developer
of which features are missing and which module has
broken them and stop.

• Incrementally compile and add the module into the
system.

• Test if all features provided by the module are working.
If not warn the developer and stop.

• Test if all previously tested features are still working.
If some of them fail, warn the developer and stop, un-
less some module states that it intentionally broke the
feature.

• Test if the features that some module stated it had
intentionally broken are really not working. If this is
not true warn the developer and stop.

• Verify if any intentionally broken features were needed
by a previously compiled module. If so warn the de-
veloper and stop.

Although a supporting tool implementing this technique was
already developed, it still uses the earlier ideas presented in
[6]. A new version using the XML annotation files described
in Section 5 is still under development.

This tool will be capable to read the meta-information files
from an entire project and incrementally compile the whole
system warning the developers of any unexpected interac-
tion it finds. The tool will also support the creation of the
XML files and will provide a visual representation of the
dependency graph.

Using this tool for the project presented in Section 4 is ex-
pected to be easy. After importing the AspectJ project into
the tool, the user would only need to use a wizard to create
each meta-information file. At first, each file would only con-
tain information about the features provided and those it de-
pends on. After compiling the project for the first time, the

tool would warn the user about the security module changes
to the customer class constructor. These changes would have
been detected because a test existed for that feature or ser-
vice. The user would be given the choice to add information
to the XML file about that change being intentional. A sec-
ond attempt at compiling the project would warn the user
about the dependency between the persistence module and
the customer constructor having been broken by the secu-
rity module. This would allow the developer to understand
exactly how both modules interact with each other.

7. RELATED WORK
Several researchers have been working to solve this same
problem. In this section we present some of the other studies
in this field that we consider to be the most relevant. We
separated the techniques into automatic analysis techniques
and user controlled analysis techniques.

7.1 Automatic Conflict Detection
Balzarotti [1] claims that the interaction detection problem
can be solved by using a technique proposed in the early
80s, called program slicing. Although totally automatic, this
technique does not account for intended interactions.

Havinga [2] proposed a method based on modeling programs
as graphs and aspect introductions as graph transformation
rules. Using these two models it is then possible to detect
conflicts caused by aspect introductions. Both graphs, rep-
resenting programs, and transformation rules, representing
introductions, can be automatically generated from source
code. Although interesting, this approach suffers the same
problem of other automatic approaches to this problem as
intentional interferences cannot be differentiated from unin-
tentional ones.

7.2 User Controlled Conflict Detection
Lagaisse [5] proposed an extension to the Design by Con-
tract (DbC) paradigm by allowing aspects to define what
they expect of the system and how they will change it. This
will allow the detection of interferences by other aspects that
were weaved before, as well as the detection of interferences
by aspects that are bounded to be weaved later in the pro-
cess.

Katz [3] proposed the use of regression testing and regres-
sion verification as tools that could help identifying harmful
aspects. The idea behind this technique is to use regression
testing as normally and then weave each aspect into the sys-
tem and rerun all regression tests to see if they still pass. If
an error is found, either the error is corrected or the fail-
ing tests have to be replaced by new ones specific for that
particular aspect.

It has been noticed by Kienzle [4] that aspects can be defined
as entities that require services from a system, provide new
services to that same system and removes others. If there is
some way of explicitly describing what services are required
by each aspect it would be possible to detect interferences
(for example, an aspect that removes a service needed by
another aspect) and to choose better weaving orders.

7.3 Related Work Analysis
Automatic conflict detection techniques all suffer from the
same problem. Although they are easy to use, they detect
a large amount of false positives. Unless this problem can
be tackled in some unforeseen way they seem to be just
interesting analysis tools but not good enough for software
testing and validation.

The user controlled techniques that were exposed are similar
in their core ideas to our own work. Although each one
uses a different approach (test, contracts and services), the
main idea is always the same. Our own approach builds on
these ideas by adding the notion of dependency (proposed
by Kienzle) on top of Katz ideas of using regression testing.

8. CONCLUSIONS
Using AOP as a tool for software evolution is useful but
due to the decoupling of features, reasoning about the code
becomes harder, thus making interactions more difficult to
understand. This leads to a bigger risk of conflicts and more
difficulty on understanding why they happen.

This paper presented a technique based on tests that allows
developers to better understand how their code is affect-
ing other parts of the system and also to help them correct
their code. Conflicts can then be detected easier and ex-
pected interactions can be described using external XML
configuration files avoiding the detection of false positives.

Although recognizing that this technique does not solve all
problems caused by the use of AOP, such as poorly written
code or tests, or even quality code that might have conflict
problems not detected by this technique, we envision that,
as a complement to other analysis-based approaches, a tool
based on these ideas would prove useful for software evolu-
tion using AOP.

The major difficulty that this approach yields is that it de-
pends a lot on the developers and their skills with unit-
testing. With the increasing popularity of TDD and with
the help of the support tools (that are still to be developed)
we believe this problem can be overcome.

9. FUTURE WORK
In the near future we plan to create a catalog containing a
list of several conflict types. This catalog will also contain
recipes and running examples that will allow developers to
test and compare their conflict solving techniques.

We have also planned to finish and release the tool that will
support the technique in question and improve the presented

method based on experiments.

The proposed approach might also be valid for other kinds
of problems like using AOP in Software Product Lines or
simple composition problems in AO systems. Subsequent
work will explore the use of this technique in these particular
cases.

Finally, we expect to be able to prove formally that the
technique works for all cataloged cases.

10. ACKNOWLEDGMENTS
We will like to thank Ana Moreira, Cristina Videira Lopes,
and Miguel Pessoa Monteiro for their help on constantly
broadening our perspectives regarding conflicts due to as-
pect composition.

A word of appreciation goes also to all the reviewers that
helped improve this paper with their insightful comments,
namely LATE 2008 workshop reviewers.

We will also like to thank FCT for the support provided
through scholarship SFRH/BD/32730/2006.

11. REFERENCES
[1] D. Balzarotti and M. Monga. Using program slicing to

analyze aspect-oriented composition, 2004.

[2] W. Havinga, I. Nagy, L. Bergmans, and M. Aksit. A
graph-based approach to modeling and detecting
composition conflicts related to introductions. In AOSD

’07: Proceedings of the 6th international conference on

Aspect-oriented software development, pages 85–95,
New York, NY, USA, 2007. ACM Press.

[3] S. Katz. Diagnosis of harmful aspects using regression
verification, 2004.

[4] J. Kienzle, Y. Yu, and J. Xiong. On composition and
reuse of aspects. In Software engineering Properties of

Languages for Aspect Technologies, 2003.

[5] B. Lagaisse, W. Joosen, and B. De Win. Managing
semantic interference with aspect integration contracts.
In Software Engineering Properties of Languages and

Aspect Technologies, 2004.

[6] A. Restivo and A. Aguiar. Towards detecting and
solving aspect conflicts and interferences using unit
tests. In SPLAT ’07: Proceedings of the 5th workshop

on Engineering properties of languages and aspect

technologies, page 7, New York, NY, USA, 2007. ACM.

[7] F. Tessier, M. Badri, and L. Badri. A model-based
detection of conflicts between crosscutting concerns:
Towards a formal approach. In International Workshop

on Aspect-Oriented Software Development, 2004.

Testing for Unexpected Interactions in AOP
André Restivo

Artificial Intelligence and Computer Science Laboratory
Faculdade de Engenharia da Universidade do Porto

Porto, Portugal
arestivo@fe.up.pt

Ademar Aguiar
INESC Porto

Faculdade de Engenharia da Universidade do Porto
Porto, Portugal

aaguiar@fe.up.pt

Abstract—Aspect Oriented Programming (AOP) is a recent
and powerful programming technique with the objective of
improving modularity by encapsulating crosscutting concerns.
The nature of AOP makes it prone to unexpected and harmful
interactions between the different components of a system.

The claim behind this PhD is that unit tests can be used to
detect these interactions.

In this paper we explain how these can be accomplished. A
brief state of the art, work plan and a support tool (drUID) are
also presented.

I. I NTRODUCTION

Aspect Oriented Programming (AOP) is a programming
technique that allows crosscutting concerns to be separated
into their own units of modularity.

This improved modularization is usually achieved by al-
lowing developers to identify points in the control flow of
the program, called joinpoints, where pieces of code, called
advices, can be applied. Joinpoints can also be grouped
together into something that is usually called a pointcut. An
aspect is then composed of pointcuts and advices in such a
way that concerns that usually crosscutted several modulesof
the application can be kept in a single place.

AOP has already proven to be an important step towards
better code modularization. However, by allowing developers
to change the control flow of a program, it increases the
chances of unexpected interactions between different modules
occurring.

For example, imagine an application where messages are
exchanged between a server and several clients. This could be
easily done by using a classical Object Oriented approach by
creating aserverclass and aclient class. These classes would
know how to communicate between them by using some other
TCP class.

Suppose that we want to use AOP in order to cypher
the messages between the server and the client. This could
be easily done by targeting the joinpoints where each class
sends their messages and cypher the messages before they
are sent. We would then only need to do the same thing in
the receiver side and target the joinpoints where the messages
are received and decrypted. This could be done in a single
aspect thus keeping thecypher concern in a single unit of
modularity. If everything goes as planned, the main concern
of the application, sending and receiving messages, would
interact with thecypherconcern in a correct an expected way.

However, if another aspect that removed curse words from
the text being sent was added to the system, it could easily
behave in an unexpected way. This would happen if thecypher
concern was applied before theremove cursesconcern as it
would impede it from having access to the plain text version
of the message being sent.

In this example, we have two aspects that when applied
individually to the base code work correctly but interact with
each other in and unexpected and incorrect way.

We claim that using a carefully planned testing methodology
would allow to detect at least some of these unexpected
interactions.

II. RELATED WORK

Several researchers have been working to solve this same
problem. In this section we present some of the other studies
in this field that we consider to be the most relevant. We
separated the techniques into automatic analysis techniques
and user controlled analysis techniques. A more complete
review of the state of the art can be found in [8].

A. Automatic Interactions Detection

Balzarotti [2] claims that the interaction detection problem
can be solved by using a technique proposed in the early
80s, called program slicing. Although totally automatic, this
technique does not account for intended interactions.

Havinga [3] proposed a method based on modeling pro-
grams as graphs and aspect introductions as graph transforma-
tion rules. Using these two models it is then possible to detect
interactions caused by aspect introductions. Both graphs,rep-
resenting programs, and transformation rules, representing in-
troductions, can be automatically generated from source code.
Although interesting, this approach suffers the same problem
of other automatic approaches to this problem as intentional
interferences cannot be differentiated from unintentional ones.

B. User Controlled Interaction Detection

Lagaisse [6] proposed an extension to the Design by Con-
tract (DbC) paradigm by allowing aspects to define what they
expect of the system and how they will change it. This will
allow the detection of interferences by other aspects that were
weaved before, as well as the detection of interferences by
aspects that are bounded to be weaved later in the process.

Katz [4] proposed the use of regression testing and regres-
sion verification as tools that could help identifying harmful
aspects. The idea behind this technique is to use regression
testing as normally and then weave each aspect into the system
and rerun all regression tests to see if they still pass. If anerror
is found, either the error is corrected or the failing tests have
to be replaced by new ones specific for that particular aspect.

It has been noticed by Kienzle [5] that aspects can be
defined as entities that require services from a system, provide
new services to that same system and removes others. If there
is some way of explicitly describing what services are required
by each aspect it would be possible to detect interferences (for
example, an aspect that removes a service needed by another
aspect) and to choose better weaving orders.

III. R ESEARCHOBJECTIVES ANDAPPROACH

Unexpected interactions are one of the main issues prevent-
ing AOP from becoming a mainstream development approach.
Obliviousness, the capability of developing aspects without
having to reason about other concerns of the problem at the
same time, has been tagged as the culprit of this problem.

Several ways of tackling this issue have been proposed in
literature but none has proven sufficiently effective or even
widely accepted by the community.

Having in mind the difficulties of achieving modularity with
AOP, the proposed work has the following objectives:

1) To describe, formally, the different types of interactions
in order to better understand the scope of the problem.

2) To develop a test driven approach to allow the speci-
fication of incompatibilities and dependencies between
aspects.

3) To develop a supporting tool, integrated into an existing
development platform, to aid in the development of
aspects by ensuring compatibility between them.

All these objectives aim to prosecute a more fundamental
goal that is to improve the usability of AOP languages making
obliviousness, when desired, a reality.

IV. CURRENT WORK AND PRELIMINARY RESULTS

In this section we will present the current state of our work.
We will start by explaining the concept of dependency graphs
in this context. Then we will show how these graphs can be
used to compile programs incrementally in order to allow the
detection of interactions. We will by presenting a support tool
that implements the technique presented.

A. Dependency Graphs

Each module that composes an application has a set of other
modules that it depends upon. These dependencies can be of
different forms. For example, a module that calls a function
from another module has a dependency relationship with that
module as it will not work if the module, where the called
method is implemented, is not present in the system.

We can obtain the dependency graph of an application
manually or by using some kind of code inspection technique.

TCP

Server

Client

Remove Curses Cypher

Fig. 1: Dependencies between Modules

Figure 1 contains the dependency graph for the example
introduced earlier.

This graph can be used to choose an order in which the
system can be composed module by module. This incremental
composition allows us to test the system step by step while
searching for interactions between modules.

To obtain this ordering we first use astrongly connected
components(SCC) algorithm to find cycles in the graph. These
cycles will be treated as single modules. And then we do a
topological sort (TS) to compute one possible composition
order.

In the next section we will show how this graph can be used
to detect interactions between modules.

B. Testing for Interactions

With the dependency graph sorted, we start by choosing the
module that does not depend on any other modules, compile
it and run unit tests against it. In the example that we have
been using this would be theTCP module.

If the module is correct, the unit tests will all pass. We
then proceed by choosing one of the modules that depend
only on modules already tested. In this case there is a circular
dependency between theServer and Client modules. This
dependency would be detected by theSCCalgorithm and both
modules would be treated as one.

This means that the next step is to compile theTCP, Server
andClient modules together into a single application. We then
proceed by running tests against the modules composed in
previous steps. If one of these tests fail, it means that there is
an interaction between the modules compiled previously and
the ones just added to the system. If all tests pass then we run
the tests against the new modules to assure they are working
properly.

This process continues by choosing either theRemove
Cursesmodule or theCypheras both depend only on modules
already tested. Assuming we choose to compile theRemove
Cursesmodule first and after applying the same process all
tests are successful we are left with only theCyphermodule.
By applying the same process to this last module, we would

find that the tests for theRemove Cursesmodule would fail.
This means that an interaction between these 2 modules exist
as the module worked before theCypherhad been added.

We can summarize our claim by using a more generic exam-
ple. If we have a programP composed by modulesM1 through
Mn, and we take a subsetP’ of P where all dependencies are
satisfied and tests for all the modules contained inP’ pass, and
if we take a moduleMi from P - P’ and add it toP’ creating
a new subsetP” , we can get three different scenarios:

• All tests onP” pass. This means there are no interactions
between the modules inP’ and moduleMi.

• All tests onP’ pass but some tests for moduleMi fail.
This means that there is an interaction between module
Mi and one of the modules contained inP’.

• Some tests onP’ fail. These means that there is an
interaction between the module ofP’, whose test failed,
and moduleMi.

This of course assumes that the tests are well designed and
have sufficient code coverage to detect the fault introducedby
the interaction.

C. Unexpected Interactions

Not all interactions detected by the process just proposed
are unexpected or even harmful. Invasive aspects can change
the behavior or flow of a program in an intended way. After
all, they have a specific purpose and most of the times that
purpose is exactly to change how the code works.

After an expected interaction has been detected, the de-
veloper could simply change the unit tests of the modules
whose behavior was changed by aspects in other modules. This
would not be a good solution as it would break modularity and
prevent the reuse of modules.

In our approach, we expect developers to specify which
behaviors they expect to break with their aspects. This can
be done before the detection of an interaction, preventing
false positives, or after, preventing the interaction frombeing
detected the next time around. Besides stating which behaviors
are broken, developers can add tests for the new behavior of
the altered modules.

In order to improve the granularity of the process, depen-
dencies can be stated at the feature level. Each module exports
several features (i.e. the behaviors of the module as seen by
the user or by other modules through an API) and each one of
them can depend on one or more features from other modules.
This still allows us to calculate the dependency graph and, at
the same time, improves the feedback obtained by the process.
Other advantage of this approach is that it makes it easier to
insert information about the dependencies inside the source
code of the application making the whole process easier to
use.

D. Tool Support

drUID [7] is an Eclipse plug-in that helps AspectJ de-
velopers to detect interactions between aspects using the
technique that has been presented in this paper. In order to

3) For each Component
 (in TS order)

1) Strongly Connected
 Component

2) Topological Sort

a) Compile Current
 and Previous Components

DAG

b) Test Previous Components

c) Test Current Component
Interaction between

 Current and Previous
 Components

[if failed]

Error in Current Component

[if failed]

No Interactions

[passed last component]

Fig. 2: Interaction Detection Process

accomplish this, the plug-in allows developers to define several
characteristics about system artifacts using Java annotations:

• Which features are provided by each artifact.
• Which JUnit tests are used to test each feature.
• Which features depend on other features.

Several aids have been implemented to guide the developer
in this process in the form of Eclipse quick fixes and quick
assists. Each time a file is saved in Eclipse, the annotations
are inspected and any errors are reported. Besides that, a de-
pendency graph is created and shown in a graphical form that
allows the developer to navigate through the code following
the dependencies between artifacts.

With the dependency graph created, the developer can order
drUID to execute an interaction test analysis. This analysis
executes the following steps (Figure 2):

1) Execute a Strongly Connected analysis of the depen-
dency graph transforming it into a Directed Acyclic
Graph (DAG) of components (sets of artifacts).

2) Execute a Topological Sort in order to determine in
which order the components must be compiled.

3) For each component:

a) Compile it.
b) Execute the tests defined for the features provided

by this component.
c) Execute the tests defined by previous components.

Step 3b verifies if the component is working as expected,
while step 3c verifies if previous features have been broken
by the newly introduced component.

When the later happens, an interaction has been detected
and the analysis stops. This interaction is reported to the
developer with an explanation of which feature has been
broken by which component. This will allow the developer
to understand what went wrong and act accordingly. Two dif-
ferent conclusions can be extrapolated by the output generated
by the tool: (i) the interaction is expected (ii) the interaction
reveals a unexpected interaction between aspects.

In the first case, the developer simply has to declare the
interaction by using, once again, annotations. By using Eclipse
quick fixes added by the plug-in this can be done easily by
the developer.

In the later case, we are confronted with a unexpected
interaction that has to be dealt with in another way. If possible
the developer can change the implementation of one of the
aspects in order to remove the interaction. But in some cases,
the interaction might have been caused by two incompatible
requirements and, in that case, it can only be corrected by
changing the software requirements themselves.

E. Evaluation

There are several aspects of the technique that need to be
validated:

1) Is the technique applicable to all possible setups?
2) Does the technique detect all kinds of interactions or are

there some that simply don’t fit into our model?
3) Is it feasible to use the technique in a real world scenario

or is the added workload too much of a burden for
developers?

We expect to validate these points using three different
approaches:

1) Creating a catalog of different interactions, with code
examples, and applying the technique to them. This
will allow a certain degree of confidence about the
universality of the technique.

2) Creating a mathematical model of the claim and for-
mally proving that it works for all possible cases. Or,
if we end up discovering it does not, explaining which
interactions it fails to detect.

3) Using the technique in real world, or almost real world,
scenarios and annotating the overhead introduced by the
extra work needed to implement the technique.

V. WORK PLAN AND IMPLICATIONS

The plan devised for this research work encompasses seven
main phases and will make use of diverse research methods
and experimental approaches. These phases are:

1) State of the Art Review - This task aims at gathering
information about the several topics relevant for the
considered problem, namely: Aspect-Oriented Program-
ming, Formal Methods (in particular Design by Con-
tract) and Regression Testing (in particular Unit Testing).

2) Exploratory Projects Development - The development
of one or several small projects using AOP in order to
better understand the interference problems existing in
the field and how they can be tackled.

3) Hypothesis and Problem Definition - The precise defini-
tion of the research questions and the formulation of a
hypothesis will be the main result of this task. Further-
more, it comprises the definition of the parameters that
will be used for validating and assessing the approach.

4) Conceptual Framework Development - Development of
the conceptual framework that will allow the detection
of interferences and conflicts between aspects.

5) Development of Supporting Tools - Development of a
supporting tool, integrated into an existing development
platform, to aid developing aspects using formal meth-
ods or regression testing to ensure compatibility between
them.

6) Result Consolidation - This phase starts after the defini-
tion of validation criteria in the scope of the Hypothesis
Definition, and gains momentum after a first version of
the approach can be validated experimentally.

7) Writing of the Thesis - This task will accompany the
considered phases for the research work as the respective
milestones contribute for its completion.

8) Participation in Conferences - As the thesis progresses
the parcial results will be presented in conferences
related to the AOP subject. Papers have already been
presented in the SPLAT’07 [8] and LATE’08 [9] work-
shops. These workshops were part of the AOSD confer-
ence (the most important AOP conference). Papers were
also presented in the CoMIC’06 [10] and CoMIC’07
[11] Doctoral Symposiums.

VI. CONCLUSIONS

We presented a technique that allows the detection of
interactions between aspects using unit tests. We showed how
the technique can be used by developers to better understand
how their code interacts with other aspects in the system
and also what they can do to correct eventual unexpected
interactions. We also showed how annotations can be used
to signal false positives and improve the overall performance
of the technique.

We recognize that this technique does not detect all possible
interactions introduced by AOP languages. The quality of
its response will always be tied to the quality of code and
tests. Even quality code with good tests can sometime have
interactions that are not detected by the technique if the
changes introduced by the aspects are of such an unexpected
nature that they are not accounted for in the unit tests.

Currently we are working on evaluating the technique but
there are still several improvements to be done:

1) Automatically detect dependencies using code analysis.
Some dependencies should be impossible to find but
detecting most of them would provide a faster and more
usable process.

2) Improve the Eclipse plug-in.
3) Investigate a possible relation with Feature Driven De-

velopment.

ACKNOWLEDGMENT

We will like to thank Ana Moreira, Cristina Videira Lopes,
and Miguel Pessoa Monteiro for their help on constantly
broadening our perspectives regarding interactions due to
aspect composition.

We will also like to thank FCT for the support provided
through scholarship SFRH/BD/32730/2006.

REFERENCES

[1] A. Restivo,Disciplined Reuse of Aspects. State of the Art and Work Plan.,
Technical Report, Faculdade de Engenharia da Universidadedo Porto,
2007.

[2] D. Balzarotti and M. Monga,Using program slicing to analyze aspect-
oriented composition, Proceedings of Foundations of Aspect-Oriented
Languages (FOAL) Workshop at AOSD 2004, Lancaster, UK, 2004.

[3] W. Havinga, I. Nagy, L. Bergmans, and M. Aksit,A graph-based
approach to modeling and detecting composition conflicts related to
introductions. Proceedings of the 6th international conference on Aspect-
oriented software development, pages 85–95, New York, NY, USA, 2007.
ACM Press.

[4] S. Katz,Diagnosis of harmful aspects using regression verification, Pro-
ceedings of Foundations of Aspect-Oriented Languages (FOAL) Work-
shop at AOSD 2004, Lancaster, UK, 2004.

[5] J. Kienzle, Y. Yu, and J. Xiong,On composition and reuse of aspects,
Software engineering Properties of Languages for Aspect Technologies,
2003.

[6] B. Lagaisse, W. Joosen, and B. De Win,Managing semantic interference
with aspect integration contracts., Software Engineering Properties of
Languages and Aspect Technologies, 2004.

[7] A. Restivo and A. Aguiar,DrUID : Unexpected Interaction Detection,
Demo at the Aspect Oriented Software Development Conference (AOSD)
2009, Charlotesville, VA, USA.

[8] A. Restivo and A. Aguiar,Towards Detecting and Solving Aspect Conflicts
and Interferences Using Unit TestsSoftware Engineering Properties
of Languages and Aspect Technologies (SPLAT’07), Vancouver, B.C.,
Canada, 2007.

[9] A. Restivo and A. Aguiar,Disciplined Composition of Aspects using Tests,
Linking Aspect Technology and Evolution (LATE’08), Brussels, April
2008.

[10] A. Restivo,The Case for Aspect Oriented Programming, 1a Confer̂encia
em Metodologias da Investigação (CoMIC’06), Portugal, January 2006.

[11] A. Restivo and A. Aguiar,Aspects: Conflicts and Interferences (A
Survey), 2a Confer̂encia em Metodologias da Investigação (CoMIC’07),
Portugal, February 2007.

Incremental Modular Testing
(to be submitted to Modularity’16)

André Restivo
Faculdade de Engenharia da

Universidade do Porto, Portugal
arestivo@fe.up.pt

Ademar Aguiar
Faculdade de Engenharia da

Universidade do Porto, Portugal
aaguiar@fe.up.pt

Ana Moreira
NOVA LINCS, Universidade Nova

de Lisboa, Portugal
amm@fct.unl.pt

Abstract
By designing systems as sets of modules that can be com-
posed into larger applications, developers unleash a multi-
tude of advantages. The promise of AOP is to enable devel-
opers to organize crosscutting concerns into separate units
of modularity making it easier to accomplish this vision.
However, AOP does not allow the untanglement of unit tests,
which impairs the development of properly tested indepen-
dent modules.

This paper presents a technique that enables developers to
encapsulate crosscutting concerns using AOP and still be
able to develop reusable unit tests. Our approach uses in-
cremental testing and invasive aspects to modify and adapt
tests.

The approach was evaluated in a medium scale project with
promising results. Without using the proposed technique,
due to the presence of invasive aspects, some unit tests
would have to be discarded or modified to accommodate
the changes made by them. This would have a profound
impact on the overall modularity and, in particular, on the
reusability of those modules. We will show that this tech-
nique enables proper unit tests that can be reused even when
coupled with aspect-oriented code.

Categories and Subject Descriptors D.2.4 [Software En-
gineering]: Testing and Debugging

Keywords testing, aspects, modularity

1. Introduction
The development of large software projects is a complex
task. Unfortunately, humans often struggle when asked to

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Modularity ’2016, March 14–17, 2016, Málaga, Spain.
Copyright © 2016 ACM 978-1-nnnn-nnnn-n/yy/mm. . . $15.00.
http://dx.doi.org/10.1145/nnnnnnn.nnnnnnn

cope with complex problems. The way we usually deal
with this is by decomposing the larger problem into sev-
eral smaller and more manageable ones. When talking about
actual code, we usually call these smaller pieces of software
as modules.

To reap as many advantages as possible from this division
into smaller modules, several important aspects should be
taken into consideration. Modules should have low coupling
and high cohesion between them, and concerns should not be
spread over several modules or tangled inside one. A good
decomposition should lead to modules that can be described,
reused, replaced and tested in isolation.

Aspect oriented software development promises to enable
developers to achieve this kind of isolation, not only at the
code level, but also at the requirements and design phases.
By using aspects, developers are able to separate each con-
cern into its own unit of modularity. Having concerns untan-
gled improves reusability as the code of each module per-
tains only to a single concern.

However, when modules are reused, there are other artifacts,
besides the actual code, that must be transferred between
projects. Some of those artifacts are all the tests that help
to develop reliable software.

In this paper, we argue that due to the nature of aspects,
some unit tests cannot be reused in different contexts thus
impeding module reusability. Testing modules in isolation
also becomes harder. We will show how using a testing tech-
nique based on incremental compilation can help mitigate
this problem.

In Section 2 the problem we propose to tackle will be iden-
tified. Section 3 describes a technique, based on incremental
testing, that aims at solving the proposed problem. Section
4 presents a Eclipse based implementation of the technique.
Our efforts to validate the solution are presented in Section
5, and Sections 6 and 7 describe related work and our con-
clusions.

2. The Problem
Let us start with a simple example. Imagine we have a
base class called Question that represents a multiple choice
question in an exam (see Listing 1 for a simplified sample of
the class).

Listing 1. Question Class
public class Question {

public void addChoice (String choice) {...}
public String getChoice(int number) {...}

}

This class is part of a module with the same name and has
several tests. One of these tests adds some choices to the
question and verifies if they are present and in the correct
order (see Listing 2 for a simplified version of the test).

Listing 2. Question Test
public void testChoices () {

Question q = new Question (" Choose a color ?");
q.addChoice ("blue");
q.addChoice ("red");
q.addChoice (" green");

assertEquals ("blue", q.getChoice (0));
assertEquals ("red", q.getChoice (1));
assertEquals ("green", q.getChoice (2));

}

As we have postulated before, this test should also be
reusable. If the Question module is reused in another project,
it should also be possible to reuse the test in that project
without any modifications. In fact, both test and code should
be seen as parts of a single reusable artefact.

In a classical object-oriented environment, this would not
be a problem. This class and its test would always work
in the same way regardless of any other artifacts present in
the system. This does not happen when aspects are present.
Imagine that we add an aspect called RandomizeChoices that
changes the positions of the choices at random as they are
added (see Listing 3 for a small excerpt of this aspect).

Listing 3. Randomize Aspect
pointcut addChoice(List list , String choice) :

cflow(call(void Question.addChoice (..))) &&
!within(Randomize) &&
target(list) && args(choice) &&
call(boolean List.add (..));

boolean around(List list , String choice) :
addChoice(list , choice) {

int position = random.nextInt(list.size() + 1);
list.add(position , choice);
return true;

}

When this aspect is added, our testChoices test will start fail-
ing five times out of six. We did not change the code of the
Question class or any code this class depends on. In object-
oriented programming, the problem of having code from

outside a module influence the outcome of a test was solved
by using mocks and stubs [4]. The difference is that, when
dealing with objects, only the code the module depends on
can alter its behavior. As we just saw, that is not the case
when coding with aspects. In the next paragraphs we will
describe some naive solutions for this problem.

Moving the test. The most simple solution would be to
move the offending test from the Question module to the
RandomChoices module and change it to accommodate the
new concern. This could be easily achieved by using the con-
tains method to test for the presence of a choice instead of
looking for it in the expected location. The problem with
this approach is that the Question module would lose the
testChoices test. This would make it harder to reuse this
module in other systems. At the same time, the basic func-
tionality of being able to add choices to questions would no
longer be tested separately.

Changing the test. By altering the testChoices test to ac-
commodate the changes introduced by the RandomChoices
aspect, we could easily make it work again. This is the same
solution as the one we saw before but instead of moving the
test to the other module and making the changes there, we
just change the test we already have. This would also have
the effect of making the Question and RandomChoices con-
cerns tangled with each other – not at the working code level
but at the testing level – preventing the Question module
from being easily reused and leaving the RandomChoices
without any tests.

Using aspects to change the test. We could keep the Ques-
tion module code unchanged and use an aspect to change
the testChoices test behavior whenever the RandomChoice
module is present in the system. This way the Question tests
would work as planned when the module is used in isolation
and the RandomChoices module would have a different test
for its own behavior. Although having some advantages, the
problem with this approach is the same as in the previous
one. The difference is that the tangling now happens in the
RandomChoices module.

None of these solutions gives us a scenario where modularity
is preserved in its entirety. However, we could summarize
the principles of what would be a good solution:

1. Obliviousness. Tests should only test the behavior of
their own modules.

2. Completeness. All concerns should have their own tests
and all tests should run at least once.

3. Correctness. When a module is reused in a different
context, tests should still work correctly.

In the next section, we will describe a technique based on
incremental compilation that allows the usage of unit tests
without breaking modularity. For the sake of completeness
we will explore four different ideas that will converge into

our final proposition and we will explain how these compare
to one another in several different aspects.

3. Incremental Testing
A well-designed software system should be built in such a
way that low-level modules do not depend on higher level
modules. Software systems should be built layer by layer,
with each layer adding more functionalities. If this is ac-
complished, then the modules dependency graph becomes
a directed acyclic graph (DAG).

Unfortunately, not all software systems follow this recom-
mendation and it is common to find circular dependencies
even in the most well-designed software systems. In graph
theory, these collection of nodes that form circular depen-
dencies are called strongly connected components, and al-
though they cannot be easily removed, they can be isolated.
We do this by considering each strongly connected compo-
nent in the graph as a super module. In this way, we can
consider that all software systems can be thought as being
composed as a DAG of module dependencies.

If we are able to extract this dependency graph from the
source code, we can be sure that we will have at least one
low-level module, lets call it module A, that does not depend
upon any other module. This module can be compiled and
tested in isolation shielding it from the potential influence of
higher level aspects.

After this initial module is tested, we can take another mod-
ule that only depends on this module, lets call it module B
and test both of them together. Tests from module B can be
easily shielded from eventual errors in the source code of
module A by using classic object-oriented unit testing tech-
niques like mocks and stubs. On the other hand, tests from
module A can still be influenced by aspects on module B
making them fail. We already ran the tests of module A once,
so all we need to do is to make sure that tests that fail under
the influence of aspects from module B are not run again.
This process can then be repeated for every module in the
system until all tests have run at least once.

When we first started researching this idea [14], we pos-
tulated that tests could be used to detect unexpected in-
terferences caused by aspects. An unexpected interference
happens when a module containing invasive aspectual code
changes the behavior of another module in unforeseen and
undesirable ways.

If tests are in place, these interferences can be easily de-
tected. However, there will be no apparent difference be-
tween an unexpected interference and an expected interac-
tion. The developer must be able to differentiate between
the two of them and act accordingly. Interferences must be
fixed and interactions must be dealt with; not because they
are wrong but because they impede the testing process.

Figure 1. Method-Test approach

To fix the testing process, the developer must be able to spec-
ify that a certain interaction is desirable. After that, the test-
ing process can ignore any tests that fail due to that inter-
action but only after the test has been successfully executed
without the offending aspect. In our initial approach we con-
sidered using code annotations to enable the developer to
specify these interactions. In the following sections, we will
demonstrate how that initial approach evolved and present
the advantages and drawbacks of each step.

3.1 Method-Test Approach

Our initial idea was to consider tests as being the proof that
a certain concern was implemented correctly. Ideally, for
every concern in the system, the developer should be able to
create a test for it. Class methods are the artefacts that end up
implementing those concerns. So we could have annotations
in each method with a reference to the test for the concern
that the method was implementing.

In order to create the DAG of dependences needed for our in-
cremental testing process, we proposed another annotation
where each method could declare the tests it depends on.
Notice that we do not specify which methods the method de-
pends on, but the tests that were created to test that method.
This means that every time an aspect is added to the system,
in our incremental testing process, and a previously tested
test fails, we can pinpoint which methods are affected by
that interaction.

Finally, we proposed another annotation that allows develop-
ers to declare expected interactions. This annotation would
be used by developers on advices to pinpoint which tests
they expect to break. Figure 1 contains a representation of
the connections achieved by these annotations. Listing 4 rep-
resents a sample of the code needed to implement this ap-
proach for the example described in the beginning of this
paper.

Listing 4. Method-Test Approach
public class Question {

@Adds(" QuestionTest.testChoices ")
public void addChoice (String choice) {...}
@Adds(" QuestionTest.testChoices ")
public String getChoice(int number) {...}

}

/* Inside Question Test Suite */
public void testChoices () {...};

Figure 2. Concern-Test approach

/* Inside Randomize Aspect */
@Removes (" QuestionTest.testChoices ")
boolean around(List list , String choice) :

addChoice(list , choice) {...};

Having these annotations in place, our testing process would
be able to create the DAG of dependencies, using the re-
quires and adds annotations, and run only the tests that have
not been removed by subsequent advices by means of the
removes annotation.

Besides the extra effort put in by the developer, the problem
with this approach is that the relation between methods/ad-
vices and tests is artificial.

3.2 Concern-Test Approach

To mitigate the artificiality of our first approach, we decided
to add a new annotation that would depict a concern. In
this approach, each method has an annotation stating which
concern it implements. These concerns can even be derived
from the requirements phase.

In this way, methods and advices no longer add, remove or
depend on tests but on concerns. To know which concern is
tested by each test we need an annotation that will be applied
to each test with a reference to the concern. Figure 2 shows
the relationships between the code artifacts derived from the
annotations in the code. Listing 5 represents a sample of
the code needed to implement this approach for the example
described in the beggining of this paper.

Listing 5. Concern-Test Approach
public class Question {

@Implements (" questionHasChoices ")
public void addChoice (String choice) {...}
@Implements (" questionHasChoices ")
public String getChoice(int number) {...}

}

/* Inside Question Test Suite */
@Tests (" Question.questionHasChoices ")
public void testChoices () {...};

/* Inside Randomize Aspect */

@Removes (" Question.questionHasChoices ")
boolean around(List list , String choice) :

addChoice(list , choice) {...}

To apply our proposed testing process using this approach,
we start by selecting a module whose methods do not depend
on any concern from another module. Tests for the concerns
defined in the module are run. In each step we add another
module that only has requires annotations referencing con-
cerns added by modules that already have been tested. If a
test that passed in a previous step fails after a new module
is added we can infer that there is an interaction between a
concern implemented in that module and the concern that
the failing test was testing.

In comparison with the first approach, this one has a richer
set of metadata on the implemented concerns and their tests.
This extra knowledge allows us to better understand which
concerns are interacting with each other. Developers can
therefore reason more easily if the interaction is expected
or if it is an unexpected interference.

3.3 Module-Test Approach

The previous two approaches imposed an heavy burden on
the developers as they had to add a lot of annotations to the
code. In this iteration we tried to reduce the amount of extra
work needed by removing most of them.

We started by considering modules as being defined by the
way the used language, in this case AspectJ, defined its own
units of modularity – Java packages. To prevent cases where
the relation between the language defined units and the in-
tended modules is not a direct one, we added an optional
annotation so that each class/aspect could define to which
module it belongs.

Tests defined inside a module are considered as being used
to test some concern of the module. This removed the burden
to add annotations for each test.

The only annotations really needed, are between tests. The
replaces annotations identify cases where a test represents a
concern, developed as an invasive aspect, that changes the
behavior of another concern that is tested by the other test.
Figure 3 shows the relationships between the code artifacts
derived from the annotations in the code. Listing 6 represents
a sample of the code needed to implement this approach for
the example described in the beginning of this paper.

Listing 6. Module-Test Approach
public class Question {

public void addChoice (String choice) {...}
public String getChoice(int number) {...}

}

/* Inside Question Test Suite */
public void testChoices () {...};

/* Inside Randomize Aspect */
boolean around(List list , String choice) :

Figure 3. Module-Test approach

addChoice(list , choice) {...}

/* Inside Randomize Test Suite */
@Replaces (" Question.QuestionTest.testChoices ")
public void testRandomChoices () {...};

This approach drastically reduced the amount of extra work
by the developer. However, the information gathered is much
less. But still, when interactions are detected we can get in-
formation about which test failed and which modules caused
the interaction. This information should be enough for the
developer to identify the origin of the problem and act ac-
cordingly.

3.4 Advice-Test Approach

The last approach considered was an easy evolution from the
previous one. The only mandatory annotation in our previous
approach was used to remove a test from the system when a
module containing invasive aspects was added to the system
changing the behavior the test was testing.

An alternative would be to use an advice to disable the test.
Listing 7 shows how that can be accomplished by simply
adding an around advice that does not call the original cap-
tured joinpoint from the test.

Listing 7. Module-Test Approach
public class Question {

public void addChoice (String choice) {...}
public String getChoice(int number) {...}

}

/* Inside Question Test Suite */
public void testChoices () {...};

/* Inside Randomize Aspect */
boolean around(List list , String choice) :

addChoice(list , choice) {...}
void around () :

testChoices () {}

/* Inside Randomize Test Suite */
public void testRandomChoices () {...};

Although this approach does not use any annotations, be-
sides the optional one that changes the way modules are
defined as language constructs, the incremental compilation
process is still needed to ensure that disabled tests are run at
least once during testing.

3.5 The Process

The process used for all these approach is, in its essence, the
same:

1. Identify all modules, their tests and dependencies.

2. Execute a strongly connected analysis of the dependency
graph transforming it into a DAG of modules.

3. Execute a topological sort to determine in which order
the components must be compiled.

4. For each component:

(a) Compile it together with the previously tested compo-
nents.

(b) Execute the tests defined for the features provided by
this component.

(c) Execute the tests defined by previous components.

When a test fails in step 4b, it means that the module being
added to the system has an error. This error can either be
caused by a test not working properly, an error in the code
of this module, or even a problem related to errors in the
previously compiled modules that was not detected by the
implemented tests.

When a test fails in step 4c, it means we have encountered
an interaction between the code of the module being tested
and one of the modules previously compiled. Depending on
the selected approach, the information given to the devel-
oper can be different. If using the Concern-Test, it should
be possible to pinpoint the concern that is being interfered
with. The other approaches would only reveal the test being
broken.

4. Implementation
During the course of the work, two different plugins were
developed: DrUID and Aida. Both are based on the usage
of annotations throughout the code that contain information
about which interferences are expected. These tools were
implemented as Eclipse plugins.

AspectJ was chosen as the target language for several rea-
sons. First, it is one of the most used aspect-oriented lan-
guages. Secondly, as it is Java based, it can be used with
Eclipse, an IDE where plugin development is straightfor-
ward. With Eclipse we also get two other important benefits,
JDT and AJDT , tools for, respectively, the Java and As-
pectJ languages that allow access to the source code abstract
syntax tree. Although the implementation is AspectJ ori-
ented, the technique we proposed is apliable to other aspect-
oriented languages following the same principles.

4.1 DrUID

DrUID (UID as in Unexpected Interference Detection) [11,
15] was the first attempt at creating a plugin to help develop-
ers follow the methodology being explored throughout this

paper. In order to accomplish this, the plugin allows devel-
opers to define several characteristics about system artifacts
using Java annotations.

Several aids have been implemented to guide the developer
in this process in the form of Eclipse quick fixes and quick
assists. Each time a file is saved in Eclipse, the annotations
are inspected and any errors are reported. Besides that, a de-
pendency graph is created and shown in a graphical form that
allows the developer to navigate through the code following
the dependencies between artifacts.

4.2 Aida

Aida [12] is an evolution of the DrUID tool, built from
scratch, having the main objective of removing most of the
burden put on the developer to annotate his code. It also has
a bigger focus on the testing process. In this tool, we started
by removing the notion of annotating features manually. We
did this by considering each test as a feature. This means
that the developer only needs to create test cases for each
individual behavior. Obviously, this also removed the need
to specify which test case tests what feature.

Using code inspection, we were also able to remove the
need of specifying the dependencies between features. At the
cost of losing some of the details of the dependency graph
used in DrUID, with Aida we rely only on the dependencies
between units. In the end, we were down to only two types
of annotations:

• @TestFor Used to indicate which unit each test is test-
ing.

• @ReplacesTest Used to indicate that a test replaces an-
other test. It also indicates that if the unit the test is related
to is present in the system, then the replaced test does not
have to be run.

Units are defined as being contained inside Java packages
by default. A third optional annotation (@Unit) can be used
to alter this behavior. The dependencies between units are
automatically calculated by using the information provided
by the JDT and AJDT Eclipse plugins.

With the dependency graph calculated, the test process is
very similar to that of DrUID. We start by extracting the
dependency graph from the source code, then we order the
units by sorting them topologically and test them adding
each unit incrementally to the system.

After running the complete set of tests, Aida is capable
of reporting, both graphically and in text, eventual errors
and interferences detected. This allows the developer to add
@ReplaceTest annotations, when an interaction is expected,
or correct his code if the interaction was unexpected.

4.3 Current Issues

There are still some issues with the implementation of these
tools. Aida has been a major step forward as it removes

most of the burden of declaring the dependencies from the
developer, but there are still a couple of issues.

The first problem is that not all dependencies can be de-
tected. At the moment, Aida is able to detect dependen-
cies caused by: import declarations, method and constructor
calls, type declarations and advices. These encompass most
of the cases, but soft dependencies, like the ones created us-
ing reflection are not detected.

The second problem is that every time the project is tested,
all the tests have to be run again. This problem is augmented
by the fact that most tests are being run several times. This
problem could be mitigated by doing some code analysis
to figure which tests might have their results altered by the
introduction of a new unit in the incremental compilation
process.

5. Validation
To validate the approach we used it in several small sized
projects and a medium sized one. The characteristics that
we were looking for in a candidate project were that it
had to be developed in AspectJ, it had to have few circular
dependencies between modules and it had to have a test
framework.

Unfortunately, all the existing open source projects we con-
sidered fail in one of these three aspects. For example, the
two most used testbed projects for AspectJ are AJHotDraw
[10] and Health Watcher [5]. The first of these has an archi-
tecture with a dependency graph so complicated that most of
the code is part of a mass of 14 different packages that de-
pend on each other forming a strongly connected component.
The second one is a much cleaner project, but, unfortunately,
there are no tests developed for it.

Having failed to elect a good and popular testbed where to
run our testing process, we ended up developing our own
testbed. A simple school information system [13] was imple-
mented featuring personal information for students, teacher
and administrators, course information, class schedules, in-
frastructure information and grading. Figure 4 shows the de-
pendencies between the implemented packages.

After implementing the base packages, some packages con-
taining aspects were added to the system:

Authentication Spectative aspect that adds a login and pass-
word attributes to the Person class. Offers methods to lo-
gin and logoff as well as a way to verify who is logged
in.

Attendance Adds a list of students that attended a certain
lecture and methods to manage that list.

Security Invasive aspect that assures that the passwords are
hashed using a secure hashing algorithm. For this, it
advises the methods that set and verify passwords of the
Authentication module.

Figure 4. School Testbed Packages

Permission Invasive aspect that verifies that the logged in
user has permissions to execute the command being exe-
cuted. Advises almost every method in the code in order
to do this verification.

Logging Spectative aspect that logs to a file important infor-
mation. At the moment only the creation of new objects
and login attempts are logged. To do this, it advises the
object creation methods but does not change their behav-
ior.

Minimum Grade Invasive aspect that adds the possibility
of a course evaluation having a minimum grade that the
student must attain to pass the course. Adds methods to
define this minimum grade and advises the methods that
calculate the student final grade.

Each one of the packages in the system was thoroughly
tested. The total number of tests amounts to 55 with most
of them belonging to the Permission package. This happens
as this package crosscuts the entire application and modifies
the behavior of almost all methods by adding a permission
system. This makes it important to test if those methods are
still working when the user has permission to use them, and
also if access is denied when the user has no permission to
use them.

By using Aida, interferences were easily spotted. Each time
an invasive aspect was added, a test broke somewhere. In the
rare event where that did not happen, it was due to an error
in the implementation of the new aspect or a poorly written
test. By using the technique described in this document, we
were able to test all the packages of the system, in isolation,
without compromising modularity.

After testing the complete system we tried to test smaller
subsets of the system where some packages were not con-
sidered. We counted 77 different possible valid configura-
tions with only some of the non-aspectual packages being
used. If we add the other four invasive packages, in any pos-

sible combination, we get eight times more possibilities. Or
a grand total of 616 configurations. We were able to test all
of these, successfully, using Aida without having to add, re-
move or change any of the tests.

6. Related Work
Katz [7] proposed the use of regression testing and regres-
sion verification as tools that could help identifying harmful
aspects. The idea behind this technique is to use regression
testing as normally and then weave each aspect into the sys-
tem and rerun all regression tests to see if they still pass. If an
error is found, either the error is corrected or the failing tests
have to be replaced by new ones specific for that particular
aspect.

Ceccato [3] proposed a technique to establish which tests
had to be rerun when incrementally adding aspects to a
system.

Balzarotti [2] claims that the interaction detection problem
can be solved by using a technique proposed in the early
80s, called program slicing. Although totally automatic, this
technique does not account for intended interactions.

Havinga [6] proposed a method based on modeling programs
as graphs and aspect introductions as graph transformation
rules. Using these two models it is then possible to detect
conflicts caused by aspect introductions. Both graphs, rep-
resenting programs, and transformation rules, representing
introductions, can be automatically generated from source
code. Although interesting, this approach suffers the same
problem of other automatic approaches to this problem, as
intentional interactions cannot be differentiated from unin-
tentional ones.

Lagaisse [9] proposed an extension to the Design by Con-
tract paradigm by allowing aspects to define what they ex-
pect of the system and how they will change it. This will al-
low the detection of interactions by other aspects that were
weaved before, as well as the detection of interactions by
aspects that are bounded to be weaved later in the process.

It has been noticed by Kienzle [8] that aspects can be defined
as entities that require services from a system, provide new
services to that same system and removes others. If there is
some way of explicitly describing what services are required
by each aspect it would be possible to detect interactions (for
example, an aspect that removes a service needed by another
aspect) and to choose better weaving orders.

A state-based testing method for aspect-oriented software
has been developed by Silveira [16]. According to the au-
thors, this method provides class–aspect and aspect–aspect
faults detecting capabilities.

Assunção [1] explored different ways to determine the order
for integration and testing of aspects and classes. Two dif-
ferent strategies, incremental and combined, for integration
testing were evaluated.

7. Conclusions
In this paper, we identified a problem that makes it hard to
use unit testing in conjunction with aspect-oriented code.
The problem is that unit tests in AOP systems must always
test the system after the advises from any modules contain-
ing aspects have been applied. If these aspects are invasive,
then the tests are not testing the unit in isolation and they
stop being unit tests.

The solution we proposed is based on having tests, that test
modules that contain invasive aspects, annotated in such a
way that they announce which tests test the functionality be-
ing modified by those aspects. Having these annotations in
place would allow a testing technique based on incremen-
tal compilation that could test units in lower layers of the
software, using their own unit tests, separately from invasive
aspects from higher layers. We argued that this is similar
to what stubs and mocks contributed to object-oriented unit
testing.

We do not argue that the proposed solution is usable in every
situation, but we have shown that it can be used in several
different scenarios. We envision it being used in software
houses that have a large repository of modules that can be
combined in different ways in order to compose different
software solutions. Anyone that has tried to create such a
system knows that crosscutting concerns are a big issue.

8. Acknowledgements
We would like to thank FCT for the support provided
through scholarship SFRH/BD/32730/2006.

References
[1] W. K. G. Assunção, T. E. Colanzi, S. R. Vergilio, and A. T.

Ramirez Pozo. Evaluating different strategies for integration
testing of aspect-oriented programs. Journal of the Brazilian
Computer Society, 20(1):9, 2014. ISSN 0104-6500. . URL
http://bit.ly/1HkTigI.

[2] D. Balzarotti and M. Monga. Using program slicing to analyze
aspect-oriented composition, 2004.

[3] M. Ceccato, P. Tonella, and F. Ricca. Is AOP Code Easier
to Test than OOP Code? In Workshop on Testing Aspect-
Oriented Programs, International Conference on Aspect-
Oriented Software Development, Chicago, Illinois, Mar. 2005.

[4] M. Fowler. Mocks aren’t stubs. Online article at martin-
fowler.com, January 2007. URL http://bit.ly/18BPLE1.

[5] P. Greenwood, A. F. Garcia, T. Bartolomei, S. Soares,
P. Borba, and A. Rashid. On the design of an end-to-end aosd
testbed for software stability. In Proceedings of the 1st Inter-
national Workshop on Assessment of Aspect-Oriented Tech-
nologies (ASAT. 07), Vancouver, Canada. Citeseer, 2007.

[6] W. Havinga, I. Nagy, L. Bergmans, and M. Aksit. A graph-
based approach to modeling and detecting composition con-
flicts related to introductions. In Aosd ’07: proceedings of the
6th international conference on aspect-oriented software de-
velopment, pages 85–95, New York, NY, USA, 2007. ACM
Press. ISBN 1-59593-615-7. .

[7] S. Katz. Diagnosis of harmful aspects using regression verifi-
cation, 2004.

[8] J. Kienzle, Y. Yu, and J. Xiong. On composition and reuse of
aspects. In Software engineering properties of languages for
aspect technologies, 2003.

[9] B. Lagaisse, W. Joosen, and B. De Win. Managing semantic
interference with aspect integration contracts. In Software
engineering properties of languages and aspect technologies,
2004.

[10] L. M. Marius Marin and A. van Deursen. An integrated
crosscutting concern migration strategy and its application to
jhotdraw. Technical report, Delft University of Technology
Software Engineering Research Group, 2007.

[11] A. Restivo. DrUID: Unexpected interactions detection, 2009.
URL https://github.com/arestivo/druid.

[12] A. Restivo. Aida: Automatic interference detection for as-
pectj, 2010. URL https://github.com/arestivo/aida.

[13] A. Restivo. School-aspectj-testbed, 2014. URL
http://bit.ly/1NWM9Tl.

[14] A. Restivo and A. Aguiar. Disciplined composition of aspects
using tests. In Proceedings of the 2008 AOSD Workshop on
Linking Aspect Technology and Evolution, LATE ’08, pages
8:1–8:5, New York, NY, USA, 2008. ACM. ISBN 978-1-
60558-147-7. . URL http://bit.ly/1QaMllo.

[15] A. Restivo and A. Aguiar. DrUID – unexpected interactions
detection. Demonstration at the Aspect Oriented Software
Development Conference (AOSD’09), 2009.

[16] F. F. Silveira, A. M. da Cunha, and M. L. Lisbôa. A state-
based testing method for detecting aspect composition faults.
In B. Murgante, S. Misra, A. Rocha, C. Torre, J. Rocha,
M. Falcão, D. Taniar, B. Apduhan, and O. Gervasi, editors,
Computational Science and Its Applications – ICCSA 2014,
volume 8583 of Lecture Notes in Computer Science, pages
418–433. Springer International Publishing, 2014. ISBN 978-
3-319-09155-6. . URL http://bit.ly/1QaMcyj.

	Introduction
	Aspects and Modularity
	Motivation
	Research Goals
	Research Strategy
	Main Results
	How to Read this Dissertation

	I State of the Art
	Modularity
	On the Complexity of Software
	Principles of Software Design
	Modular Programming
	Inheritance
	Multiple Inheritance
	Interfaces
	Mixins
	Traits
	Composition
	Summary

	Crosscutting concerns
	Other Approaches
	Role Oriented Programming
	Feature Oriented Programming
	Subject Oriented Programming
	Publish and Subscribe
	Generative Programming
	Aspect Oriented Programming

	Summary

	Aspects
	Key Concepts
	AspectJ
	Join Point Model
	Pointcuts
	Advices
	The Aspect Construct
	Precedence
	Inter-type Declarations
	Summary

	AspectJ Example
	Alternative Approaches to AOP
	Composition Filters
	Hyperslices
	Event Based AOP

	Aspect Oriented Software Development
	Requirements Analysis
	Design
	Construction
	Testing and Validation
	Code Documentation

	Key Research Issues
	Fragile Point Cuts
	Interferences

	Summary

	Testing
	The Importance of Software Testing
	Types of Tests
	Testing Levels
	Unit Testing
	Integration Testing
	System Testing
	Acceptance Testing
	Regression Testing

	Summary

	II Problem and Solution
	Unit Testing Aspects
	Motivational Example
	Base System
	Unit Tests
	Separating Concerns
	Adding Authentication and Security

	Research Problem
	Moving the Test
	Changing the Test
	Using AOP to Change the Test
	Reasoning

	Interferences
	The Anatomy of Aspect Interferences
	Detecting Aspect Interferences
	Aspect Interference Resolution
	Avoiding Aspect Interferences

	Related Issues
	Using Unit Tests with AOP
	Using Different Approaches to Testing AOP

	Summary

	Modular Testing in AOP
	Dependency Graph
	Testing Modules
	Annotating Tests
	Example Scenario
	Formal Analysis
	Domain of Discourse
	Operators
	Predicates
	Assumptions
	Theorems

	Testing for Interactions
	Proposed Testing Strategy
	Strategy Evolution
	Method-Test Approach
	Concern-Test Approach
	Module-Test Approach
	Advice-Test Approach

	Limitations
	Summary

	Implementation
	DrUID: Unexpected Interference Detection
	Aida: Automatic Interference Detection for AOP
	Current Issues
	Summary

	III Validation and Future Work
	Validation
	School Testbed
	Testing
	Interference Resolution
	Multiple Configurations
	Incompatible Modules
	Performance

	Incremental Testing and Common AOP Faults
	Incorrect Strength in Pointcut Patterns
	Incorrect Aspect Precedence
	Failure to Preserve Postconditions and State Invariants
	Incorrect Focus of Control Flow
	Incorrect Changes in Control Dependencies
	Incorrect Changes in Exceptional Control Flow
	Failures due to Inter-type Declarations
	Incorrect Changes in Polymorphic Calls

	Summary

	Conclusions
	Contributions
	Future Work

	Bibliography
	Glossary
	Acronyms
	Published Articles

