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Teoria e Prática

“ Toda a teoria deve ser feita para poder ser posta em prática, e toda
a prática deve obedecer a uma teoria. Só os espíritos superficiais desligam
a teoria da prática, não olhando a que a teoria não é senão uma teoria da
prática, e a prática não é senão a prática de uma teoria. Quem não sabe
nada dum assunto, e consegue alguma coisa nele por sorte ou acaso, chama
«teórico» a quem sabe mais, e, por igual acaso, consegue menos. Quem sabe,
mas não sabe aplicar - isto é, quem afinal não sabe, porque não saber aplicar
é uma maneira de não saber -, tem rancor a quem aplica por instinto, isto é,
sem saber que realmente sabe. Mas, em ambos os casos, para o homem são
de espírito e equilibrado de inteligência, há uma separação abusiva. Na vida
superior a teoria e a prática completam-se. Foram feitas uma para a outra. ”

Fernando Pessoa,
in ´Palavras iniciais da Revista de Comércio e Contabilidade’





Abstract

While shopping, customer choices are influenced by in-store factors, in particular dur-
ing unplanned purchases and product stockouts. The arrangement of products on the
shelves becomes crucial in this context and a key factor to retailers’ competitiveness. Re-
cently, the shortage of shelf space and the increasing number of products available have
greatly magnified the importance of how merchandise is displayed.

The Shelf Space Allocation Problem (SSAP) has long been considered by marketing
professionals and the scientific community, with the first published studies tracing back to
the seventies. However, academic work is far from being applied in practice: most of the
optimization models have practical limitations, either because of their simplicity and lack
of key-practical features or due to the large number of parameters difficult to estimate. As
a result, there has been a misalignment between software applications, business practices,
and research.

Motivated by the space management problems arising in the Food Retail Industry, the
objective of this thesis is to tackle the SSAP and bridge the existing gap between research
and practice with the development of innovative quantitative tools that support the gen-
eration of automated and optimized shelf space allocation solutions in practice. A case
study in a European Food Retailer provides the right motivation to understand the current
challenges faced by retailers and constitutes the perfect environment to assess the practical
value of our scientific contributions.

The contributions of this thesis are aligned with two main directions. On one hand, we
pushed the frontier of the shelf space literature with new mathematical models and state-
of-the-art solution approaches that combine mathematical programming with heuristics.
We investigated key practical features of the problem, with an emphasis in Merchandising
Rules, and developed innovative approaches capable of delivering high quality solutions,
suitable to business practice, in reasonable computational time. On the other hand, we
developed a comprehensive decision support system for the automatic generation of shelf
space solutions (planograms) that is nowadays being used on a daily basis in the case study
company, proving the validity of our achievements. Despite the straight link with the case
study, all the mathematical models and algorithms that emerged from this thesis are exten-
sible to other food or non-food retailers sharing similar challenges.

We believe that this thesis is an important contribution both by bringing additional re-
alism into academia and by proving the value of advanced analytics in practice. Moreover,
it will ultimately contribute to the “next generation” of shelf space planning systems.
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Resumo

Durante o processo de compra, as escolhas dos consumidores são influenciadas por fato-
res associados à disposição dos produtos nas lojas, especialmente durante as compras não
planeadas e nas situações de rutura de produtos. Neste contexto, a disposição dos produ-
tos nas prateleiras torna-se crucial e um fator-chave para a competitividade dos retalhistas.
Recentemente, a escassez de espaço e o aumento do número de produtos disponíveis criou
uma maior ênfase na forma como a mercadoria é exibida.

O Problema da Alocação dos Produtos nas Prateleiras (SSAP) tem sido alvo de estudo
por profissionais de marketing e pela comunidade científica desde os anos setenta. No
entanto, a maioria dos modelos e abordagens de otimização têm limitações que inibem a
sua aplicação prática, seja por causa da sua simplicidade e falta de características-chave
ou devido ao elevado número de parâmetros difíceis de estimar. Consequentemente, existe
um desalinhamento entre as aplicações de software existentes, as práticas do negócio, e a
investigação desenvolvida.

Motivados pelos problemas de gestão de espaço na Indústria Alimentar, o objetivo
desta dissertação é abordar o SSAP com vista a um melhor alinhamento entre a prática e a
teoria, através do desenvolvimento de ferramentas quantitativas inovadoras que suportem
a geração de soluções de alocação de espaço na prática. Um caso de estudo num retalhista
europeu constitui o ambiente ideal para compreensão dos desafios atuais e para avaliação
do valor prático das contribuições científicas.

As contribuições desta dissertação estão alinhadas com duas direções principais. Por
um lado, foram desenvolvidos novos modelos matemáticos e novos métodos de solução
que constituem avanços científicos no SSAP. Estas abordagens integram novas caracterís-
ticas práticas do problema, com ênfase nas Regras de Merchandising, e oferecem soluções
de alta qualidade, adequadas para a prática, e com bom desempenho computacional. Por
outro lado, foi desenvolvido um sistema de apoio à decisão para a geração automática de
soluções de alocação de espaço (denominados planogramas), que está atualmente imple-
mentado e em utilização no caso de estudo. Apesar desta estreita ligação com um retalhista,
todos os modelos matemáticos e todos os métodos de solução desenvolvidos são extensí-
veis a outras indústrias com características semelhantes.

Acreditamos que esta tese é uma contribuição importante quer por trazer métodos ino-
vadores e realismo adicional à investigação científica quer por provar o valor de abordagens
quantitativas na prática. Além disso, acreditamos ter contribuido para a próxima geração
de sistemas de planeamento e gestão de espaço no retalho.

vii





Acknowledgments

It is with sincere gratitude and appreciation that I thank all that have assisted me during
this amazing journey.

I am most grateful to Sonae MC, the European Food Retailer that collaborated in this
project, for their support and many contributions. I address special thanks to João Amaral
who trusted in me for this huge project, Jorge Liz for believing in the project since the
very first second, Joel Pacheco for being the perfect liaison in some critical phases and
also Frederico Santos, Sérgio Lapela, Miguel Camanho, Vasco Rei, Hélder Matos and all
the micro-space team. At last, but not the least, I would like to acknowledge Constantino
Gomes, Pedro Soares and Susana Borges for their patience and kindness when explaining
me the deepest details of space management and afterwards when testing the first GAP
prototypes.

I acknowledge my supervisors, Maria Antónia Carravilla and José Fernando Oliveira,
for their endless support, contagious enthusiasm and for all the trust in my capabilities
(much more than mine for sure). They were truly friends in so many moments and I have
learned so much more than Operations Research (OR) with them. They gave to me all
kinds of opportunities to grow and become a better researcher, better professional and bet-
ter person. I also appreciate their dedication to teaching and emphasize again the deep
admiration that I have for them since the very first OR class.

The members of Iolab have contributed immensely to my personal and professional
time during the PhD. Our group has been a source of very strong friendships as well as
good advices and collaborations. I am especially thankful to Elsa Silva. We built a very
strong friendship out of the project and I cannot thank her enough for all the support and
for all the help she has given me. This project would not have been the same without her. I
would also like to acknowledge Pedro Amorim, Victor Camargo, Gonçalo Figueira, Miguel
Gomes, Pedro Rocha, Sam Heshmatti and the women power, Diana Lopez, Sara Martins,
Maria João Pires, and Beatriz Oliveira. There are also many other past and present mem-
bers from Iolab, and from FEUP in general, that I have had the pleasure to meet during this
time. Above all, thank you all for making my days so much better. I am also grateful to
José Pedro Rodrigues for participating with me in the different extra curricular activities
that I was involved. Finally, I acknowledge Bernardo Almada-Lobo for the words of advice
in many situations.

During this time I had the pleasure to visit ICMC at the University of São Paulo and the
UCLA Anderson School of Management. I am very grateful to Franklina Toledo for the

ix



x

way I was exceptionally received and for the work we did during my stay in Brazil. I am
also grateful to Felipe Caro for hosting me at UCLA and for letting me attend his amazing
classes. These two periods abroad were very important to gain perspective and to grow my
passion and eager to know more and more.

On a more personal perspective, my dearest grandparents are a constant presence in
my life and I thank them all they taught me by example. I also thank to all my uncles
and cousins, nothing makes me more proud than belonging to our big (and still growing...)
family. Our Sunday lunches are a major part of my week and I would not miss them for
anything. My friends are also a big part of me and I must acknowledge them for all the
crazy and not so crazy moments that we have. Cris, a very special thank you for always
being there for me since our first days in FEUP. Luis’ family also deserves all my thanks
for being so welcoming. Ricky is already part of the family and I acknowledge him as well.

My parents are my truly examples of love, dedication, hard work, commitment and
they are my greatest examples in life. I am so grateful for their support and many words of
advice that they have given to me throughout these years. Above all, thank you for passing
to me all these values that I see in you that make me so proud of being your daughter. My
younger and much alike sister Maria João and my brother Augusto are very important to
me and I am grateful to them for always being present in my life and for all the brotherhood
moments that we constantly have.

My last words are to Luis. I sincerely do not know how to thank all the patience, sup-
port and words of encouragement in my many moments of crisis. You pushed me to do
better and better every single day of my PhD and I have learned so much from your exam-
ple. Thank you so much for everything, I am so lucky and so proud of having you by my
side.

To all, my wholehearted thank you.



Contents

1 Motivation and Overview 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Shelf Space Planning within Retail Operations . . . . . . . . . . . . . . . . 2

1.2.1 Demand and Supply Chain Planning . . . . . . . . . . . . . . . . . 2
1.2.2 Master Category Planning . . . . . . . . . . . . . . . . . . . . . . 4

1.3 The Shelf Space Allocation Problem . . . . . . . . . . . . . . . . . . . . . 5
1.3.1 Current Practices . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3.2 Consumer Demand Effects . . . . . . . . . . . . . . . . . . . . . . 6
1.3.3 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Case Study Presentation . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.5 Research Objectives and Methodology . . . . . . . . . . . . . . . . . . . . 11
1.6 Thesis Synopsis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 From a Literature Review to a Classification Framework for Shelf Space Allo-
cation Problems 17
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Shelf Space Allocation Problem . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.1 Space Effects on Consumer Demand . . . . . . . . . . . . . . . . . 21
2.3 Shelf Space Allocation Review . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.1 Space Decisions . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.2 Demand and Cost Estimation . . . . . . . . . . . . . . . . . . . . 23
2.3.3 Problem Constraints . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.3.4 Instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4 Classification Framework for the Shelf Space Allocation Problem . . . . . 29
2.5 Conclusion and Directions for Future Research . . . . . . . . . . . . . . . 32
2.A Problem Instances Table . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3 Allocating Products on Shelves under Merchandising Rules: Multi-level Prod-
uct Families with Display Directions 41
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2 Literature overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3.1 Product Grouping . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

xi



xii Contents

3.4 Model Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.4.1 Objective Function and Allocation Constraints . . . . . . . . . . . 47
3.4.2 Sequencing Constraints . . . . . . . . . . . . . . . . . . . . . . . . 48
3.4.3 Product Grouping Constraints . . . . . . . . . . . . . . . . . . . . 50

3.5 Solution Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.5.1 Improving Feasibility . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.5.2 Improving Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.6 Experimental Analysis and Computational Results . . . . . . . . . . . . . 56
3.6.1 Problem Instances . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.6.2 Model Validation and Performance Evaluation . . . . . . . . . . . 57
3.6.3 Solution Approach Computational Results . . . . . . . . . . . . . . 60

3.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.A Adapted Formulation from Russel and Urban . . . . . . . . . . . . . . . . 64
3.B Result Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4 Replicating Shelf Space Allocation Solutions Across Retail Stores 75
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.2 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.2.1 Problem Definition and Notation . . . . . . . . . . . . . . . . . . . 81
4.3 Model Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.3.1 Objective Function . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.3.2 Single-Segment Shelf Space Replication Model . . . . . . . . . . . 85
4.3.3 Multi-Segment Shelf Space Replication Model . . . . . . . . . . . 86

4.4 MIP-based Heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.4.1 Methodology Currently Used . . . . . . . . . . . . . . . . . . . . 88
4.4.2 MIP-based Heuristic . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.A Pseudocode of the MIP-based heuristic . . . . . . . . . . . . . . . . . . . . 96
4.B Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5 Using Analytics to Enhance Shelf Space Management in a Food Retailer 101
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.2 Shelf Space Management at Sonae MC . . . . . . . . . . . . . . . . . . . . 103
5.3 Theory and Practice of Shelf Space Management . . . . . . . . . . . . . . 106
5.4 GAP Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.4.1 Analytical Approach . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.4.2 Decision Support System . . . . . . . . . . . . . . . . . . . . . . . 115
5.4.3 Project Development . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.5 Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.5.1 Automation: from planogram construction to planogram evaluation 118
5.5.2 Optimization: targeting optimality in all customization levels . . . . 118



Contents xiii

5.5.3 Standardization: knowledge management for a global process . . . 120
5.6 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.A Target Facings Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6 Conclusion 125
6.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

A Notation 131
A.1 Shelf Space Allocation Problem . . . . . . . . . . . . . . . . . . . . . . . 131
A.2 Shelf Space Replication Problem . . . . . . . . . . . . . . . . . . . . . . . 132
A.3 Target Facings Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

B Planogram Solutions 135
B.1 Example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
B.2 Example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
B.3 Example 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
B.4 Example 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139





Chapter 1

Motivation and Overview

1.1. Introduction

The retail trade sector is a key intermediary in the modern economy between thousands
of product suppliers and consumers. It is the largest non-financial business economy in
the European Union (EU) in terms of number of enterprises and persons employed, and
the second largest in turnover, showing the importance and competitiveness of this sector.
In the EU, non-specialized retailers registered a turnover of 1,065 billions of Euros and
employed 6.6 million people in 2010. In Portugal, this sector represented a turnover of 11
billions of Euros and employed 68,000 people in the same year (Source: Eurostat).

In this competitive environment, retailers strive for customer satisfaction and opera-
tional efficiency, aiming to improve their stores’ financial performance. To achieve such
goal, retail organizations are moving towards demand driven initiatives, with the lemma
“every sale counts”, while trying to optimize their two most expensive resources: space
and inventory.

While shopping, customer choices are highly influenced by in-store factors, in particu-
lar during frequent unplanned purchases and when the products they are searching for are
not available. This is in part motivated by the low level of involvement that consumers have
with in-store decisions, often made quickly and with only a minimal search. More than just
displaying the merchandising, a clever product arrangement on the shelves assumes a cru-
cial importance as a tool to increase visibility, consumer awareness and demand for the
products, ultimately leading to better performance. Therefore, retailers work on getting the
right goods to the right places at the right time (Chandon et al. [2009]).

The above challenges are further stressed due to the increasing number of products
available. Hübner and Kuhn [2012] point out a 30% increase in the number of products
in overall store assortments in nearly 10 years, between 2000 and 2009. Moreover, the
short product life cycles and the increasing number of stores raise the need for constant
shelf space planning. As a consequence, space management has become progressively
challenging and an active field of research in retail operations management, under the name
Shelf Space Allocation Problem (SSAP).

The retail sector is one of the biggest users of Information and Communications Tech-
nology (ICT), and thus a driver of innovation. Nevertheless, Hübner and Kuhn [2012]
and Bai [2005] state a misalignment in shelf space management between commercial soft-
ware applications and research: on the one hand software vendors focus mainly on the
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2 Chapter 1. Motivation and Overview

development of large-scale data processing technologies, with limited or no use of math-
ematical optimization and disregarding the space effects on consumer demand. On the
other hand, state-of-the-art optimization methods have practical limitations, either because
of their simplicity and lack of key features, or due to their complexity and expensive es-
timation requirements for parameters. A closer cooperation between retail research and
practice is needed and will ultimately lead to the “next generation” of shelf space planning
systems, with automated and optimized shelf space allocation solutions (Bai [2005]).

This thesis is the result of problem-driven research motivated by the space management
problems arising in the food retail industry. In collaboration with a European Food Retailer,
the objective is to tackle the SSAP and bridge this gap between retail research and practice
with the development of quantitative tools that support the generation of automated and
optimized shelf space allocation solutions in practice. The case study not only provides
the motivation to understand the current challenges and flaws on the current literature ap-
proaches, but also constitutes the perfect environment to assess the practical value of our
scientific contributions. Despite this straight link with the case study, all the mathematical
models and algorithms emerging from this thesis are expected to be extensible to other
food or non-food retailers sharing similar challenges.

This introductory chapter presents an overview of shelf space planning and defines
the objectives of this thesis. The remainder of the chapter is organized as follows. In
Section 1.2, shelf space planning is framed within retail operations. Section 1.3 introduces
the SSAP in detail focusing on current practices, consumer demand effects and relevant
decisions and constraints. The case study of the European Food Retailer that collaborated
in this thesis, Sonae MC, is introduced in Section 1.4. Section 1.5 presents the research
objectives and methodology, and section 1.6 contains a synopsis of the remaining chapters
of this thesis.

1.2. Shelf Space Planning within Retail Operations

Getting the right goods to the right places at the right time in the most efficient way requires
the coordination and cooperation of thousands of individual decisions in supply chain plan-
ning and customer management. Hübner et al. [2013] and Hübner and Kuhn [2012] present
comprehensive operations planning frameworks that identify and integrate all relevant re-
tail planning aspects. The objective is to enable practitioners and researchers to classify
decisions and realize the interdependencies between them. In this section, shelf space
planning is framed within both the supply chain planning and master category frameworks.

1.2.1 Demand and Supply Chain Planning

The primary objective of retail is to bridge the gap between the point of production and
the point of sale, which stresses the supply chain role in this industry. Both distribution
and in-store operations are costly and importantly as the first has a direct impact on the
latter. Furthermore, the low value nature of grocery products leads to a higher share of
distribution costs compared to manufacturing companies.
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Hübner et al. [2013] present a retail oriented, consumer-backed demand and supply
chain planning matrix based on the supply chain planning framework from Fleischmann
et al. [2008] for manufacturing industries. This framework, depicted in Figure 1.1, follows
the concept of hierarchical planning and distinguishes the planning problems horizontally
along the flow of goods and vertically along the time horizon. The flow of goods is di-
vided into four domains: Procurement, Warehousing, Distribution and Sales; and the time
horizon is classified into long-, mid- and short-term. Long-term planning take strategic
decisions concerning the configuration and layout of the entire network; Mid-term master
planning deals with the coordination and planning of the operations and promotions for
the next 6-12 months and short-term execution planning specifies the activities for the next
few days or weeks. The disaggregation of data and results follows the decreasing planning
horizon down the hierarchy.

Figure 1.1 – Retail demand and supply chain planning framework (Hübner et al. [2013])

The planning modules are linked by vertical and horizontal information flows that iden-
tify the interdependencies between the activities. These activities usually belong to dif-
ferent organizational hierarchies and responsibilities which cause some obstacles in their
cooperation. Additionally, this framework is embedded between consumer interactions on
the sales side and supplier interactions on the procurement side, which affects the entire
planning process and requires an integrative approach.

Shelf space planning fits within the master category planning module, which frames
all the mid-term sales planning tasks of category management. It also has major interac-
tions with other planning activities. The layout and infrastructure of stores are long-term
decisions from strategic outlet planning that highly constrain the space available for shelf
place planning. Nowadays, retailers have to balance the conflict of an increasing number
of products to display versus the limited amount of store space available (Bai [2005]).

Despite being a sales-oriented decision, shelf space planning impacts and is impacted
by supply chain decisions. Backstage is limited and scarce and shelf space should hold
enough inventory until restocking to ensure product availability and avoid the occurrence
of stockouts. Therefore, distribution decisions such as shipping frequencies, lead times and
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order sizes have to be properly coordinated with shelf space allocation.
At last, all these decisions affect in-store planning, with a high impact on shelf-replenishment

operations and personnel planning.

1.2.2 Master Category Planning

Master category planning covers the sales planning tasks of category management, divided
into four major hierarchical activities: category sales planning, assortment planning, shelf
space planning and in-store logistics planning, as proposed by Hübner and Kuhn [2012]
(Figure 1.2).

Figure 1.2 – Interdependencies between retail problems (Hübner and Kuhn [2012])

Category sales planning start by identifying the set of categories to have in each store
type, their role and depth, price position, space share and mid-term demand forecasting.
Moreover, it sets the guidelines for subordinated planning problems, to ensure that the
categories’ role is always present. From that moment on, categories are planned individu-
ally in a shorter planning horizon. Assortment planning involves deciding the products to
carry in the stores. Optimizing assortment planning requires the consideration of the con-
sumer demand for the products, including both substitution and complementary demand
(substitution demand from non-existing products and complementary demand from related
products) (Kök et al. [2009]). On the other hand, shelf space planning assigns and locates
the space to the individual products of the assortment, under capacity and restocking con-
straints. Both assortment and shelf space planning activities are usually accomplished for
clusters of stores with similar demand and space patterns. At the end of master category
planning, in-store planning includes store personnel planning and store logistics planning.
Similarly to the rest of the supply chain, the above decisions differ in their planning horizon,
decision owners and IT areas. Ultimately, they also diverge in terms of research domains.

The interdependency between the activities is evident. Large assortments drive lower
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inventory levels of individual products, which reduce their visibility on the shelves, in-
crease the risk of stockouts and impose frequent replenishment operations, leading to high
restocking costs. However, Hübner and Kuhn [2012] alert that those problems are not yet
sufficiently integrated. On the one hand, assortment decisions disregard space elasticity
effects and to a large extent shelf space constraints too. On the other hand, shelf space
allocation assume lost sales and no consumer substitution for non-available products. Fur-
thermore, the shelf inventory is not carefully handled to obtain synergies in replenishment
activities.

1.3. The Shelf Space Allocation Problem

According to a survey to US retailers (Keltz and Sterneckert [2009]), the main drivers
for space planning initiatives rely on the improvement of overall profitability (and overall
sales), reduction of the stock levels, improvement of product availability and in delivering
a differentiated consumer shopping experience. However, the same survey concludes that
the benefits realized are not meeting the expectations. This chapter presents an overview
of the shelf space allocation problem and its current challenges.

1.3.1 Current Practices

As mentioned above, shelf space planning follows assortment planning and is done sep-
arately for each category, in a mid-term planning horizon. It is often called micro-space
planning because of its precedence by store space planning (known as macro-space plan-
ning, a long-term decision). The increasing number of stores turns impractical individual
plans and often lead to store clustering based on demand and space patterns. However,
current trends towards customer centricity state that “One plan does not fit all” and defend
store-specific space planning.

Retailers use planograms to plan the products placement on the shelves. A planogram
is an illustration of a category specific part of a store, showing exactly where each product
should physically be displayed and how many faces that product should hold. An example
of a planogram and its corresponding implementation in a store is present in Figure 1.3.

Figure 1.3 – Example of a planogram and its implementation in a supermarket
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Products are usually placed on shelves following merchandising rules which specify
associations of products in families that are placed together on the shelves (such as color,
brand, type and flavor). These rules try to reproduce the way customers search for the
products while shopping and have also in mind the identity of the retailer and its strategy
for each category. The complexity of the merchandising rules vary from retailer to retailer
but can include more than one level of family types, family sequences, special display
locations, among other requirements. In some situations, those rules are defined together
with category captains, which are key suppliers with deeper knowledge about each category
(for more information about category captains, please consult Kurtulus and Toktay [2009]),
or using techniques such as market basket analysis. In Figure 1.4 one can see a planogram
where products are organized and highlighted by brand. Note that products are placed in
rectangular shapes, one shape for each brand.

Figure 1.4 – Planogram with products organized and highlighted by brand

Generating planograms is a highly time consuming activity - the industry standard for
manually creating a single planogram is three hours (JDA [2009]). Therefore, adequate
Information Technology (IT) systems are essential. Despite this, 30% of the retailers did
not use any kind of IT support in 2009, and only 36% had up-to-date technology, as seen in
Figure 1.5. This reality is changing as retailers are realizing the benefits of space planning.

Current commercial IT solutions are similar in their purpose and scope and focus on
simplicity, allowing for realistic views of the shelves, the ability to quickly handle products
and providing different data and powerful analysis reporting. Those systems already incor-
porate tools for the automatic generation of planograms based on simple heuristics such as
proportional-to-market share or proportional-to-profit share and require a significant tun-
ning effort for additional requirements. Among the space planning solutions currently on
the market the top three vendors are: Spaceman suite (AC Nielsen) and Space planning
(JDA), with over 2000 users each, and Apollo professional (MEMRB/IRI), with over 800
users (Hübner and Kuhn [2012]).

Nevertheless, today’s commercial IT solutions for space planning have been essentially
used for visual and handling purposes, and the planograms are still generated with signifi-
cant human interaction. As a matter of fact, many authors argue that no “real” optimization
takes places due to the limited or non existing use of mathematical optimization and con-
sumer demand effects (Irion et al. [2011], Hansen et al. [2010], Hübner and Kuhn [2012],
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Drèze et al. [1994], Desmet and Renaudin [1998]). As a result, automatically generated
planograms are most likely to receive significant manual adjustments by the end users.

No IT support

30%

Planned major 

upgrade

13%
Started major 

upgrade

21%

Up-to-date 

technology

36%

Figure 1.5 – Status of retailers IT usage for shelf space planning (Hübner and Kuhn [2012])

1.3.2 Consumer Demand Effects

Most shoppers enter the store with only a general idea of what to purchase, becoming sus-
ceptible to in-store marketing. Additionally, reduced assortments and stockouts force con-
sumers to search for substitution products, highlighting the role of space management. The
low level of involvement that customers have with in-store decisions, often made quickly
and with only a minimal search, reinforces the importance of in-store marketing.

Experimental studies have consistently proven the positive effect of space on the de-
mand of the products. These studies point to three main elasticities: space elasticity mea-
sures the increasing responsiveness of sales as more space is allocated to a product, expe-
riencing declined marginal returns at some point - see Fgure 1.6 (Curhan [1972], Chandon
et al. [2009]); location elasticity highlights key display locations that bring a better expo-
sure, such as the eye- or hand-level (Drèze et al. [1994]); lastly, cross elasticity measures
the interdependency between adjacent products and is assumed to be positive for com-
plementary products and negative for substitute products (Corstjens and Doyle [1981]).
Additionally, the way products are arranged on the shelves can also have an important
role on gaining the consumers’ attention. Thus, carefully organizing them in families can
increase interest, while disorganized or excessive complexity (i.e. variations in the basic
visual content) damages the buying experience (Pieters et al. [2010]). We call to this effect
design complexity.

1.3.3 Problem Definition

Shelf Space Allocation is the scientific name for the problem of distributing the scarce shelf
space of a retail store among a set of products of a category. The definition of the prob-
lem may vary depending on the retail segment, company’s strategy, relation with vendors,
store layout, among others. This section will define the problem as generic as possible,
considering food retail environments.
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Figure 1.6 – Sales rate in function of shelf space for a single product (Abbott and Palekar
[2008])

To start with, there is the need to review some concepts related to shelf space allocation,
some of them already mentioned before. A Stock-Keeping Unit (SKU) is a unique identifier
for each distinct product that can be purchased. Each SKU belongs to a supplier, is part
of a brand, and contains a set of other attributes, such as colour, size and packaging, that
distinguishes it from all other products. We call to these attributes family types. A family
is a set of products sharing the same value for a given attribute. The highest organizational
structure of products are categories. Usually in a planogram all SKUs belong to the same
category.

A retailer usually displays a limited part of the inventory of a SKU on the shelves,
leaving the rest in the backroom. The visible stock of each product can be characterized
by the number of facings wide, high and deep, as depicted in Figure 1.7. The number of
facings wide is most commonly known as the facings of the product. The way each product
is placed on the shelves defines its orientation: front, back, top or side. The days-supply
value of a product measures the number of demand days covered by its shelf stock until the
need for replenishment.

2 Facings 
High

2 Facings 
Wide

3 Facings 
Deep

Figure 1.7 – Facings wide, high and deep of a product (front view on the left and side view
on the right)
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Fixtures are located in segments that are placed end-to-end (i.e. horizontally stacked
against each other) to form the aisles of the stores. Each segment has its own shelf place-
ment. Shelves can be aligned with the shelves of the other segments, forming continuous
long shelves from the beginning to the end of the aisle or they can be placed differently,
forming misalignments that need to be taken into consideration while placing the products.
Whenever a planogram has misalignments between the shelves we refer to it as irregular
planogram, as opposed to regular planogram. Figure 1.8 presents an irregular planogram
with 3 segments.

Figure 1.8 – Example of an irregular planogram

Shelf space planning may involve other fixtures than shelves, such as chests, pallets
and pegboards. Chests are enclosed spaces for storing non-organized products and peg-
boards are bars with steel rods sticking out to hold peggable products like shewing gums.
Nevertheless, these fixtures are out of the scope of this thesis.

Objectives

The aim of the SSAP is usually to obtain the maximum profit or sales out of the available
space, considering consumer demand in function of the space allocated to the products.
Section 1.3.2 presented a brief overview of the most commonly considered consumer de-
mand effects: space-, location- and cross-elasticities.

Some authors also include a cost reduction approach, with a higher emphasis in inven-
tory management. However, Bai [2005] points out that if the products’ demand is depen-
dent on the space, a cost-minimization objective may not be appropriate as it may reduce
the number of product facings which is against the intent of the problem.

Decisions

The most common SSAP decisions are the number of facings (wide) for the products and
their placement on the shelves. The problem is usually seen in a 2D fashion because the
items placed behind each facing cannot be seen directly and hence do not have an impact on
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consumer demand (inventory requirements can be considered by determining the number
of items behind each facing).

The fixtures location is frequently given as input to the model because retailers are
not likely to change the layout of the shelves during products reallocation. However, it is
also possible to consider the shelf location as a decision. Several approaches also integrate
other non-space decisions that have an impact on consumer demand, including assortment,
replenishment, promotions and advertising.

Constraints

There are several potential constraints for the SSAP, ranging from hard to soft, depending
on the need to entirely satisfy these requirements. A list of the most commonly considered
constrains is presented below, organized from the hardest to the softest.

• Integrality Constraints - the space allocated to a product on each shelf should be an
integral number of times the size of that product;

• Physical Constraints - The total shelf space available cannot be exceeded. Physical
constraints can be one or two dimensional, whether they consider height constraints.
Nevertheless, these are often ignored when the vertical location of the shelves can be
readjusted at the end.

• Control Constraints - Many retailers set lower and upper bounds to the number of
facings to ensure that a minimum and a maximum exposure is given to the products.
Other bounds can result from special contracts with important suppliers, with the
power to influence the location and shelf space of their products. These contracts
usually set minimum space shares for brands. Retailers may also try to maintain a
minimum and maximum number of days-supply for each product, in order to control
stockouts, inventory costs and replenishment costs.

• Family Constraints - Merchandising rules identify families of products that should
be placed together on the shelves, preferably in rectangular shapes. These rules may
also specify predefined family sequences and shapes orientation.

Most part of the complexity in the SSAP comes from the inclusion of the space effects
on the demand function, which are hard to estimate and non-linear by nature. The literature
presents a great variety of models which incorporate different estimates of (some of) those
effects. These models also differ in the level of detail of the decisions, ranging from facings
calculation to almost complete planogram descriptions. As a consequence, there is no
definitive shelf space allocation model. Moreover, models that can be adapted to reality
are particularly difficult to find either because of their simplicity and lack of key practical
features, or due to their complexity and expensive estimation requirements for parameters.
One important practical limitation is that most models disregard that product allocation
must follow merchandising rules which specify associations of products on the shelves.

Finding the best products allocation from the set of all possible arrangements of prod-
ucts is clearly a combinatorial problem. From a simplistic point of view, it consists in
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placing a set of small items (products) into a set of large objects (fixtures). Therefore, it
can be related to the literature of Cutting and Packing Problems. More specifically, the
SSAP can be considered a extension of a placement type of problem, according to the
Wäscher’s improved typology of Cutting and Packing Problems Wäscher et al. [2007]. In
this paper, Placement Problems are described in the following way:

“ (...) a weakly heterogeneous assortment of small items has to be assigned
to a given limited set of large objects. The value or the total size (as an aux-
iliary objective) of the accommodated small items has to be maximized (...)
”

The simplest form of the Placement Problem, with one large object, is already NP-
hard. The SSAP further extends Placement Problems by integrating the effect of space
variables on the products’ demand. Several practical constraints are additionally added to
the problem.

1.4. Case Study Presentation

This thesis had the collaboration of Sonae MC with whom we carried out a project aiming
at developing a tool for the automatic generation of planograms, where we integrated and
validated the main outcomes of this thesis.

Sonae MC operates a food retail business in Portugal and is one of the biggest Por-
tuguese companies (ranked the 4th in 2014, with 3.33 billion annual sales). Its brand Conti-
nente is the country food retail market leader, with a network of 478 stores (and additionally
162 stores under franchising) covering the entire country, with three major formats: conve-
nience stores (Continente Bom dia), supermarkets (Continente Modelo), and hypermarkets
(Continente).

Sonae MC has a centralized operations management activity, responsible for planning
all the operations for the stores nationwide. The space planning department is engaged
with managing the space available at the stores, an activity that comprises two main levels:
a macro-space planning level that defines, on a long-term basis, the layout of the stores;
and a micro- (or shelf-) space planning level that defines, for each category, the products’
placement on the shelves. Shelf space plans are updated with an average rate of 2 to 3
times a year for more than 300 categories. This activity fully occupies 23 space managers
that generate an average of 60,000 planograms each year.

Similarly to other retailers, shelf space is managed on a cluster based approach. Space
managers start by creating generic shelf space plans that fit the average sales of each cluster
of stores. Once validated with category managers to check its consistency with the category
strategy, these generic plans are then replicated for all the stores of the clusters, by adjusting
the product facings to each store, while keeping the same allocation rules. Figure 1.9
summarizes this shelf space planning process.

Sonae MC uses a space planning software from one of the top three vendors, the
JDA Software Group, Inc. Although automatic tools for planogram generation are avail-
able in JDA software, these tools do not accommodate all the intrinsic complexity of
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Guidelines
Merchandising 

Rules

Store A.1

Store A.2

Store A.3

Generic cluster-based planograms

Store-specific planograms

Product assortment

Stores’ equipment

Planogram Generation Planogram Replication

Figure 1.9 – The micro-space planning process has a major interaction with the commercial
department and comprises two main processes: Generation and Replication

the company’s merchandising rules. Therefore, space managers manually developed the
planograms by dragging and dropping the products onto the shelves.

1.5. Research Objectives and Methodology

As aforementioned, this thesis is motivated by the space management problems arising in
food retail. From his deep analysis of retail category management problems, Hübner and
Kuhn [2012] identified four directions of future research in this field: (1) Alignment of soft-
ware applications and science; (2) Alignment of assortment and shelf space management;
(3) Alignment with other planning objectives and (4) Alignment within shelf space com-
petition (for instance, study of the category captainship effects). The overview presented
in this initial chapter motivated the need for future research in these areas.

The research objectives of this thesis are related with the first direction for future re-
search: alignment of software applications and science. We aim to develop quantitative
tools to support the generation of automated and optimized shelf space allocation solutions
in practice, thus contributing to the “next generation” of shelf space planning systems. To
achieve such objective, a close collaboration is held with a Food Retailer (Sonae MC),
which gives the necessary proximity to the practice. Meanwhile, we also aim to make
important contributions to the current state-of-the-art of shelf space management with the
development of new formulations and solution approaches to the SSAP and related prob-
lems.

Throughout this thesis we will follow the typical OR methodology that starts by the
problem definition, then mathematical modeling, solution methods and at the end testing
and validation.

Problem Definition – In spite of the existing commercial applications for the process
automation, planograms are still in most of the cases manually generated. We aim to study
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the retailers’ space planning process and identify what should be done for a better fit of
those applications and how quantitative methods can help in that task.

Mathematical Modeling – The SSAP can be seen as an optimization problem and given
the type of decisions involved we use Mixed Integer Programming (MIP) to model this
problem. MIP is one of the most widely used techniques to solve hard optimization prob-
lems due to its flexibility in capturing problems’ details. Although some models exist in the
literature devoted to SSAP, these models are either too simplistic and lacking key practical
features, or too complex and with parameters hard to estimate. We aim to study in depth
those models, identify their flaws for practical implementation and develop new formula-
tions that can be used in practice.

Solution Methods – To solve MIP problems both branch-and-bound and branch-and-
cut algorithms are normally applied using modern commercial solvers. In spite of the
remarkable improvements in the quality of these general purpose solvers, and the recent
developments in hardware, the SSAP is a complex problem and it is not expected that a
straightforward implementation of a MIP model can solve realistic size instances. Under
these circumstances, alternative solution methods are required. Metaheuristics (heuristic
search) algorithms are often used being tailored to solve large-scale combinatorial opti-
mization problems which require the efficient exploration of large scale neighborhoods.
Recently, a trendy and successful research line is the creation of algorithms combining
metaheuristics with exact methods, the so-called matheuristics. We will base our solution
strategy in MIP-based heuristics, which are a class of matheuristics relying on the heuristic
solution of the mathematical formulation. We aim to design and develop new matheuristics
for the problem that ensure scalability and efficiency. We believe that this solution tech-
nique is a good choice for this problem due to the high and constantly evolving number
of practical features which are not easily grasped with a traditional metaheuristic. Fur-
thermore, in general, these algorithms are flexible enough to cope with different model
extensions and new features.

Testing and Validation – As our ultimate objective is to bridge the gap between theory
and practice, the work would not be complete without a practical validation. We intend to
implement the methods on the case study and evaluate the results.

1.6. Thesis Synopsis

Figure 1.10 presents an overview of the main chapters of this thesis, that are organized
around the typical shelf space planning process shown in section 1.4. We start by giving
an overview of the shelf space literature and then we approach two different space-related
problems: First we tackle the traditional SSAP using a more practical oriented perspective,
with a higher emphasis on merchandising rules. Secondly, we look at the problem of gen-
erating store-specific planograms from generic planograms, which we called Shelf Space
Replication Problem. To the best of our knowledge, this is the first time that the replication
problem is introduced in the literature and we believe that it is a major step towards the use
of operations research (OR) in the practice of shelf space management. The outcomes from
the two problems were implemented and tested on the case-study, giving rise to a Decision
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Support System (DSS) that is now used on a daily basis by the company’s space managers.
This DSS and the key implementation issues that supported its success are described in the
last chapter.

Store A.1

Store A.2

Store A.3

Planogram Generation Planogram Replication

Chapter 3 - Allocating Products on 
Shelves under Merchandising Rules: 
Multi-level Product Families with 
Display Directions

Chapter 4 - Replicating Shelf Space 
Allocation Solutions Across Retail 
Stores

Chapter 5 - Using Analytics to Enhance Shelf Space Management in a Food 
Retailer

Chapter 2 - From a Literature Review to a Classification Framework for Shelf 
Space Allocation Problems

Figure 1.10 – Chapters of the thesis

This thesis is paper-oriented, which means that the main chapters consist of a collection
of papers. Despite the many advantages of using this type of approach, it has the drawback
of resulting in multiple descriptions of the same definitions.

In this section, we overview the main aspects covered in each chapter and the most
substantial contributions associated with each one.

Chapter 2 provides a description and a state-of-the-art literature review of the SSAP fo-
cusing on mathematical modeling approaches. Based on this review, a classification frame-
work is proposed with the intent to systematize the research into a set of sub-problems.
Future research lines point to the most promising open questions in this field.

Chapter 3 presents a novel mixed integer programming formulation for the SSAP con-
sidering two innovative features emerging from merchandising rules: hierarchical prod-
uct families and display directions. The formulation uses single commodity flow con-
straints to model product sequencing and explores the hierarchy in product families to
reduce the combinatorial nature of the problem. Based on the formulation, a mathematical
programming-based heuristic is also presented which uses the product families to decom-
pose the problem into a sequence of sub-problems.

Chapter 4 describes the novel problem of transforming generic cluster-based shelf
space plans into store-specific plans, a process that is called Replication in this paper.
Two mathematical programming formulations are presented to address the Shelf Space



Bibliography 15

Replication Problem, with different levels of practical details. The formulations use a
novel inventory-related objective function that balances the products’ inventory level in
order to trigger joint shelf replenishments. Based on the formulations, a mathematical
programming-based heuristic is also introduced in order to ensure the process scalability.

Chapter 5 introduces GAP, the DSS that is nowadays used on a daily basis by the space
management team of Sonae MC. We developed a modular Operations Research (OR)-
approach that systematically applies tailor-made mathematical programming models com-
bined with heuristics to efficiently create planograms. On top of its algorithmic advances,
one of the most relevant features of GAP is its flexibility to incorporate different types of
merchandising rules, allowing the company to test different strategies for the products allo-
cation. Nevertheless, it goes beyond the straightforward implementation of merchandising
rules and it trades-off customization with optimization. GAP enhances shelf space man-
agement in three axis: process automation, space optimization and image standardization.

Finally, Chapter 6 summarizes the work and suggests directions for future research.
We included at the end two Appendices. Appendix A summarizes the nomenclature

used to describe the three mathematical models present in chapters 3 to 5, and Appendix B
presents additional planograms generated by the DSS and the corresponding merchandising
rules.
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Chapter 2

From a Literature Review to a Classification
Framework for Shelf Space Allocation
Problems

Teresa Bianchi-Aguiar∗ · Maria Antónia Carravilla∗ · José F. Oliveira∗

Abstract The Shelf Space Allocation Problem has long been addressed by marketing
professionals and researchers, with the first studies tracing back to the 1970s. Nevertheless,
this field presents a wide range of different approaches, that deal with different decisions
and space elasticity effects in more comprehensive or simplistic formulations. As a result,
there is not a unique model and, consequently, no benchmark sets are available. This pa-
per provides a description and a state-of-the-art literature review of this problem focusing
on mathematical modeling approaches. Based on this review, a classification framework
is proposed with the intent to systematize the research into a set of sub-problems. Future
research lines point to the most promising open questions in this field.

Keywords Retail operations ·Shelf space allocation ·Framework

2.1. Introduction

The Shelf Space Allocation Problem (hereafter referred as SSAP) consists of distributing
the scarce shelf space of a retail store among the different products to be displayed. While
shopping, customer choices are highly influenced by in-store factors that positively impact
the visibility, awareness and demand for the products. This fact highlights the role of shelf
space planning in retail operations with the ultimate objective of maximizing the profit
obtained from the limited available retail space. Moreover, the shorter product life cycles,
the rising number of products available for selling and the high number of stores have turn
this activity increasingly challenging and an active field of research.

Most part of the complexity in the SSAP comes from the consideration of the space
effects on the customer’s demand function, which are difficult to estimate and non-linear
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by nature. The literature presents a great variety of models which incorporate different
estimates of some of those effects. Models also differ in the level of detail of the deci-
sions, ranging from rough space estimations to almost complete shelf space descriptions.
Moreover, shelf space problems may also differ from company to company, depending on
strategies, managerial style, categories of products, retailer-supplier relationships, among
others. Additionally, the SSAP is usually addressed together with other related retail prob-
lems that integrate other sales’ elasticities, further increasing the complexity of the demand
functions. As a consequence, there is no unique shelf space allocation model and no in-
stance benchmarks set are available.

In this paper, a literature review of the shelf space allocation models is made. The
SSAP has long ago been addressed by marketing professionals and researchers, with the
first studies tracing back to the 1970s. This stream of research has been growing ever since
without any work systematizing published research. The only exception comes from Hüb-
ner and Kuhn [2012] in 2011 that presented an overview of the state-of-the-art research and
software applications in retail category management, which includes shelf space manage-
ment. Nevertheless, the vast scope of the paper did not allow a deep analysis of shelf space
allocation problems.

Figure 2.1 shows the increasing number of publications between 1970 and 2015, with
a total of 43 papers. We highlight the decade of 2000, when the number of published
works sharply increased to the double, and also the projection for the current decade that
anticipates a sustained growth. The European Journal of Operational Research has been
the major journal for the presentation of new developments in this field (with 9 published
articles). Other journals such as the Journal of Retailing (6 articles) and the Journal of Op-
erational Research Society (5 articles) have also presented significant contributions. These
publications focused both on experimentally measuring the effects of shelf space allocation
on the products’ demand and on building decision models and optimization algorithms.
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Figure 2.1 – The evolution of the publication activity on Shelf Space Allocation (the last
decade is projected based on the data available for the period 2010-2015)

Despite the recent progresses that this research area has been experiencing, Bai [2005]
and Hübner and Kuhn [2012] state a misalignment in shelf space management between



2.2. Shelf Space Allocation Problem 19

existing commercial software applications and research agenda. Software vendors focus
mainly on the development of applications with large-scale data processing technologies,
with limited or no use of mathematical optimization and disregarding the space effects
on consumer demand. As a consequence, these applications require significant human
interaction and are essentially used for visual and handling purposes. State-of-the-art op-
timization methods, on the other hand, have practical limitations, either because of their
simplicity and lack of key features, or due to their complexity and expensive parameter
estimation requirements. Therefore, many challenges still exist and the SSAP is still an
open problem.

With this literature review we intent to stimulate further research and boost more prac-
tical approaches to the problem. For that purpose, the remainder of the review is organized
as follows. In Section 2.2 we present the problem and identify the basic features that mod-
els must capture to support decision making. Section 2.3 reviews the existing literature of
the SSAP focusing on mathematical models with an emphasis in 3 main building blocks:
decisions, demand and cost functions, and problem constraints. We also analyze the inte-
gration of the problem with other interdependent decisions and identify the main areas of
application. Section 2.4 introduces a classification framework that systematizes the differ-
ent types of approaches. Based on this framework, section 2.5 draws the final conclusions
and disagnoses existing gaps in order to identify promising future research lines.

2.2. Shelf Space Allocation Problem

Space management comprises two hierarchical levels. A store (macro) level, deciding
the space for product categories, and a product category (micro) level, which allocates
individual products within each category. The SSAP is usually connected with the micro
level and considers the allocation of a category of products onto the shelves to which it has
been previously assigned.

The traditional space planning tool is a planogram, representing an illustration of a
specific part of a store, showing exactly where each product should physically be dis-
played and how much space that product should have. Figure 2.2 presents an example of a
planogram where we can see the number of different decisions that must be taken to create
a full planogram. The shelf stock of each product can be characterized by the number of
facings wide, high and deep. The number of facings wide is most commonly known as the
product’s facings (as often the remaining decisions are not tackled) and is the key space
decision. The location of each product is defined by the shelf allocated to the product and
its placement within the shelf. Other decisions include the products’ orientation that spec-
ify the way products are displayed on shelves: front, back, top or sideway. Product A in
Figure 2.2 has 2 facings wide, 3 facings high and 4 facings deep. It is located in the first
shelf of the planogram in the first position (0 cm measured from the lower-left corner).

The aim of the SSAP is to maximize the outcome obtained from the available retail
space. The problem focuses on demand and in the center of the problem there is the ob-
jective of maximizing the profit obtained with consumer demand, which in turn depends
on the space allocated to the products. This problem has also a cost side and besides the
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Figure 2.2 – Example of a planogram (front view on the left and side view on the right)

product costs, it sometimes considers operation costs originated by replenishment, holding
and ordering activities.

There are several potential constraints for the SSAP, ranging from hard to soft, depend-
ing on the need to entirely satisfy these requirements. Besides the integrality and capacity
constraints, typical of placement problems, Control constraints for lower and upper bounds
may also be set for the products. Lower bounds are defined when the retailer wants to
maintain a minimum number of facings of all products or because of new products which
need a chance to make an impact. Upper bounds are set for products at a later stage of the
life cycle, or for sales’ champions, when the retailer wants to leave space for refreshing
the product assortment of the stores. Availability constraints also limit products’ sales by a
production or availability limit.

On top of the previous requirements, many companies also define merchandising rules
that identify families of products that should be placed together on the shelves, prefer-
ably in rectangular shapes. For example, the products of the planogram in Figure 2.2 are
grouped into 3 rectangular-shaped families. These are called product grouping constraints.
Merchandising rules may also specify other company-specific requirements such as family
sequences, shapes’ orientation (either columns or lines), special locations for special prod-
ucts, among others. Merchandising rules try to reproduce the way customers search for the
products while shopping and are obtained with the help of category captains (key suppliers
with deeper knowledge about each category - Kurtulus and Toktay [2009]) and techniques
such as market basket analysis.

Shelf space allocation has a close interaction with other related retail problems, such
as assortment planning, inventory management and shelf replenishment operations. When
planning stores’ assortment, retailers have to carefully consider the effect of carrying large
assortments due to the space limitations. Increasing the assortment reduces the visibility
of the products on the shelves and drive lower inventory levels, which leverages the risk of
stockouts and imposes frequent replenishment operations. On the other hand, not carrying
some products in the assortment may generate lost-demand from loyal costumers. There-
fore, a careful alignment is needed between space, assortment and inventory levels. More-
over, retailers only display a limited amount of the inventory on the shelves, storing the
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remaining products in the backroom. Hence, the alignment between shelf replenishment
operations and shelf space allocation is also vital to avoid stockouts and design efficient
shelf space plans.

Nonetheless, most part of the complexity in the SSAP comes from the inclusion of the
space effects on the demand function. We will now review the key space effects that were
studied in the literature and that are usually present in the demand functions.

2.2.1 Space Effects on Consumer Demand

Marketing studies have proven the positive influence of shelf space in stimulating consumer
demand and identified three main types of product elasticities that should be incorporated
into the demand functions to represent the consumers’ behavior: space elasticity, location
elasticity and cross elasticity.

Space Elasticity was originally defined by Curhan [1972] as “the ratio of relative
change in unit sales to relative change in shelf space”. Experiments have concluded that
products’ demand increases as more space is allocated to them. However, the increasing
rate slows down until a steady point, resembling an “S” shape. An average increasing rate
of 20% was reported by Curhan [1972] and 9% by Corstjens and Doyle [1981]. These val-
ues are only an indication, as the space elasticity strongly differs with the products category
and shelves features.

Location Elasticity measures the impact of the vertical and horizontal location on the
demand of the products. Studies show a higher impact of products located on the top- and
middle- shelf positions (at eye and hand level) and at the beginning of the aisles, with the
vertical effects dominating the horizontal ones (Chandon et al. [2009]). Drèze et al. [1994]
reported an average of 39% and 15% sales’ increase from the worst to the best vertical and
horizontal position, respectively.

Cross Elasticity was introduced by Corstjens and Doyle [1981] to evaluate the inter-
dependency between two different products. Ranging between [-1,1] cross elasticities are
considered to be positive for complementary products and negative for substitution prod-
ucts. Drèze et al. [1994] experienced a boost of sales of above 5% in complementary
merchandising. However, most retailers reveal the difficulty to attain a real estimation of
such values, due to the complicated merchandizing relationships between products and the
quantity of data required.

Additionally, the way products are arranged on the shelves can also have an important
role on gaining the consumers’ attention, which we call here the Design Complexity effect.
Pieters et al. [2010] show that carefully organizing a display in families increases the view-
ers’ attention but its excessive complexity (i.e. variations in the basic visual content) can
indeed decrease their interest. As a result, products are organized in families in rectangular
shapes (Geismar et al. [2014], Russell and Urban [2010]). The need to follow structured
shapes is sometimes further stressed by assuming a direction for the shapes, either vertical
or horizontal (forming straight columns or straight lines). To the best of our knowledge,
the impact of this latter effect on demand has never been studied or included in any model.

Due to the high testing costs, experiments have not been sufficiently extensive, with
most of them dating from the 1960s and 1970s. In addition, some results are contradictory,
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with few conclusions that can be generalized. As an example, while Chandon et al. [2009]
reveal that the variation in the number of facings is the most significant in-store factor,
Drèze et al. [1994] state that location has a larger impact, as long as a minimum inventory
is maintained to avoid stockouts.

2.3. Shelf Space Allocation Review

As aforementioned, the demand estimation is at the center of the problem and products
are to be organized having in mind the effect of space in their demand. Nevertheless,
(1) the types of decisions, (2) the space effects considered, (3) the way the demand and
cost functions are estimated and (4) the problem constraints vary considerably from one
approach to the other, which creates a high level of inconsistency in this field. This section
reviews the literature of SSAP focusing on the existing mathematical formulations. The
review mainly tackles the four topics just mentioned (1)-(4) plus an additional topic that
analysis the instances used in the publications.

Hereafter consider the following notation: N products, indexed by i, j ∈ N are to be
placed on K shelves, indexed by k ∈M. Products and shelves features are described below,
the remaining parameters are introduced as required.

ai width of product i,

li (ui) lower bound (upper bound) on the number of facings of product i,

pi unitary profit of product i,

ci unitary cost of product i,

W total capacity of the planogram,

wk width of shelf k,

hk vertical location of shelf k.

2.3.1 Space Decisions

Space allocation models generally consider 3 different decisions: the space occupied by
each product, often measured by the number of facings (Space), the allocation of products
to the shelves (Allocation) and the location of the products on each shelf (Location). The
following 3 variables are associated with these decisions:

Wi the space allocated to product i ∈ N , either measured in facings or linear space,

Yik =1 weather product i ∈ N in allocated to shelf k ∈M or not,

Xik the continuous horizontal location of product i ∈N in shelf k ∈M (measured from
the most left point of the shelf).

Table 2.1 shows the publications that consider each of the 3 decisions mentioned above.
Note that the existing mathematical models focus specially on determining the space for
the products. The reason behind this emphasis lies in the fact that most authors consider



2.3. Shelf Space Allocation Review 23

space elasticity as the most important effect, with a higher impact on demand than the
remaining elasticities. The table also shows that only 4 publications consider location
decisions. Nevertheless, if location decisions are disregarded, solutions do not translate
into a complete description of a planogram.

Table 2.1 – Shelf space decisions

Decisions References

Space

n Facings

Anderson and Amato [1974], Hansen and Heinsbroek [1979], Anderson
[1979], Corstjens and Doyle [1981], Corstjens and Doyle [1983], Zufryden
[1986], Bultez et al. [1989],Preston and Mercer [1990], Borin et al. [1994],
Drèze et al. [1994], Brown and Lee [1996], Urban [1998], Yang and Chen
[1999], Yang [2001], Urban [2002], Lim et al. [2004], Bai [2005], Hwang
et al. [2005], Reyes and Frazier [2005], Maiti and Maiti [2006], Hariga et al.
[2007], Reyes and Frazier [2007], Bai and Kendall [2008], van Nierop et al.
[2008], Abbott and Palekar [2008], Hwang et al. [2009], Ranaseshan et al.
[2009], Raut et al. [2009], Gajjar and Adil [2010], Hansen et al. [2010],
Murray et al. [2010], Russell and Urban [2010], Irion et al. [2011], Lotfi
et al. [2011], Gajjar and Adil [2011a], Gajjar and Adil [2011a], Lotfi and
Torabi [2011], Hübner and Kuhn [2011], Irion et al. [2012], Geismar et al.
[2014]

Allocation

Shelf k
Drèze et al. [1994], Yang and Chen [1999], Yang [2001], Lim et al. [2004],
Bai [2005], Hwang et al. [2005], Hariga et al. [2007], van Nierop et al.
[2008], Hwang et al. [2009], Raut et al. [2009], Gajjar and Adil [2010],
Hansen et al. [2010], Murray et al. [2010], Russell and Urban [2010], Gajjar
and Adil [2011a], Gajjar and Adil [2011a], Lotfi and Torabi [2011], Geismar
et al. [2014]

Location

Shelf k

x

van Nierop et al. [2008], Hwang et al. [2009], Hansen et al. [2010], Raut
et al. [2009], Russell and Urban [2010]

The variables defined before construct the problem in a 2D fashion. Such an approach
is based on the fact that items placed behind each facing cannot be seen directly and hence
do not have an impact on consumer demand. As a result, it is not also common to see
other type of space-related decisions such as the number of facings high and deep, and
products’ orientation. Moreover, products tend to have a preferred orientation, specified
by the suppliers. Nonetheless, as these quantities impact inventory related decisions recent
works (see Ranaseshan et al. [2009] and Murray et al. [2010]) are starting to consider 3D
space-related decisions.

Due to the large number of products within categories, some authors also argue that it
is not practical to optimize shelf space plans having in mind all products. As a result, the
decisions are sometimes aggregated and tackled at the brand level (or subcategory level).

All the above decisions are product-related but planograms also have shelves whose
location needs to be determined. The shelf-related decisions are usually given as input to
the models because retailers are not likely to change the layout of the shelves during prod-
ucts reallocation. However, some authors consider the shelf height as a decision: Hwang
et al. [2009] and Coskun [2012] are two examples. To the best of our knowledge, the
determination of the number of shelves to place on planograms has never been tackled.

Several approaches also integrate other non-space decisions that have an impact on
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consumer demand, with an emphasis on assortment and inventory management. Other
variables such as promotions, advertising and pricing also appear in some formulations but
these decisions are most of the times considered as fixed (i.e. decided beforehand) and
only affect the demand function. The investigation of these related problems is considered
beyond the scope of this paper.

2.3.2 Demand and Cost Estimation

The objective functions have usually three main components: the profit obtained with the
sales of the products, which depend on the demand di, subtracted by purchasing costs ci

and other estimated costs oi, as identified in equation 2.1. The complexity of the shelf
space formulation relies on the demand and cost estimations which will be analyzed next.

P =
∑
i∈N

(pi ·di− ci ·di−oi) (2.1)

Demand Estimation

The literature has a great variety of demand functions which incorporate different elastici-
ties’ estimates, as well as different ways of aggregating these effects. Moreover, many pro-
posed functions tend to focus on particular effects while disregarding the others. Table 2.2
presents the characteristics that each publication has considered for the demand estimates.
We distinguish between the space related elasticities (space-, cross-, vertical location- and
horizontal location-), other demand effects that were also taken into consideration, and
two different types of aggregation: additive and multiplicative. The consideration of the
space elasticity is common to all approaches and this effect is frequently aggregated with
other elasticities using a multiplicative form. Cross and vertical location elasticities are
also frequently considered but only five approaches aggregate both effects. The horizontal
dimension is often disregarded.

Despite the existence of many demand estimates, this field presents some key demand-
functions that are almost consensual and used across multiple publications. Next, we re-
view the most important ones.

One of the first and most important demand functions in shelf-space allocation litera-
ture was introduced by Corstjens and Doyle [1981], which influenced most future research.
They formulated the problem in a non-linear multiplicative form and included space- and
cross- elasticities. The demand of product i was formulated as:

di = αi ·W
βi
i ·
∏

j∈N : j,i

Wδi j
j (2.2)

where Wi is defined in terms of (linear) space allocated to product i, αi is a scaling
constant identified as the base demand for the product (demand with one facing), βi is
the space elasticity expressed as a power function and δi j is the cross-elasticity between
products i and j. Note that δi j can be positive or negative depending upon whether i and j
are complementary or substitute of each other, and that δi j, is not necessarily equal to δ ji.
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Table 2.2 – Consumer demand effects in demand estimation

Reference SE CE
LE

Other
EA

V H A M

Anderson and Amato [1974] L out-of-assortment substitution •

Hansen and Heinsbroek [1979] P
Anderson [1979] P
Corstjens and Doyle [1981] P • •

Corstjens and Doyle [1983] P • •

Zufryden [1986] P
Bultez et al. [1989] P • •

Preston and Mercer [1990] P
Borin et al. [1994] P • Stockout and out-of-assortment substitution •

Drèze et al. [1994] P • •

Brown and Lee [1996] P • •

Urban [1998] P • •

Yang and Chen [1999] P • • •

Yang [2001] L •

Lim et al. [2004] L • •

Bai [2005] P
Hwang et al. [2005] P • • Inventory level •

Reyes and Frazier [2005] L • •

Maiti and Maiti [2006] P • Inventory level and price elasticity •

Hariga et al. [2007] P • • Inventory level •

Reyes and Frazier [2007] P Price elasticity •

Bai and Kendall [2008] P Inventory level and decay (freshness) •

van Nierop et al. [2008] P • • •

Abbott and Palekar [2008] L • •

Hwang et al. [2009] P • • • •

Ranaseshan et al. [2009] P • •

Raut et al. [2009] L • • •

Gajjar and Adil [2010] P
Hansen et al. [2010] L • • • •

Murray et al. [2010] P • Own- and cross-price elasticity •

Russell and Urban [2010] P • • •

Gajjar and Adil [2011a] L •

Gajjar and Adil [2011b] P
Irion et al. [2011] P • •

Lotfi and Torabi [2011] P • •

Lotfi et al. [2011] P Own- and cross-price elasticity •

Hübner and Kuhn [2011] P • Out of assortment substitution •

Irion et al. [2012] P • •

Geismar et al. [2014] L •

SE - Space Elasticity (L - Linear and P - Polynomial), CE - Cross Elasticity, LE - Location Elasticity
(V - Vertical and H - Horizontal), EA - Effects Aggregation (A - Additive and M - Multiplicative)
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This demand formulation uses polynomial terms to model the decreasing demand rate
as the number of facings increases. These polynomial forms were widely used by other
authors who extended this formulation in many different ways. Urban [1998] stated that
the unit of measure of the products, Wi, could also be in terms of facings, as long as all
parameters reflect the appropriate measure, and many following formulations used facings
instead. Yang and Chen [1999] additionally integrated the location effect of a product, by
using variables Wik instead, and considering different parameter values depending on the
shelf k. They also included additional marketing variables. Hwang et al. [2005] assumed an
average location effect in case the same product is displayed on different shelves at the same
time. Corstjens and Doyle [1983] and Raut et al. [2009] included the time dimension and
assumed that past demand influences current period demand, and Gajjar and Adil [2010]
and Irion et al. [2012] presented piecewise linearization approaches for this formulation.
Nevertheless, Bai [2005] argues that the polynomial form is intrinsic linear as it can be
easily transformed to a linear function by a logarithmic transformation and the parameters
can then be estimated by a simple linear regression. To the best of our knowledge there is
not any paper with such approach though.

At last, Borin et al. [1994] and Urban [1998] extended the original function by consid-
ering the demand coming from the consumers which are willing to purchase a replacing
product if their preferred product is not included in the assortment or is temporarily stock-
out. For that porpuse, consider products l ∈ N− which are not present on the shelves. The
demand function becomes:

di = αi ·W
βi
i

∏
j∈N : j,i

Wδi j
j

1 +
∑
l∈N−

(1−Θl) · f (αl, δli)

 (2.3)

where Θl is the resistance to compromise and f is a function that represents the distri-
bution of demand amongst the displayed products.

Due to the highly non-linear nature of the space elasticities, all the models that include
these effects are complex and generally hard to solve. Yang and Chen [1999] proposed
a simplified and yet practical alternative model in the form of a linear multi-knapsack
problem that started a new trend in SSAP. The authors state that in practice it is difficult
to obtain an estimation for the sales volume elasticity and make the assumption that the
profit of any product is linear with regard to a range of facings, if it is kept in a controlled
range defined by proper upper and lower bounds. Those bounds are to be determined by
the management according to the policy of the store. They propose a formulation that
maximizes the benefit of including items (additional facings) in a set of knapsacks (each
shelf is a knapsack) while not exceeding the knapsack capacity. The resulting objective
function is the following:

P =
∑
i∈N

∑
k∈M

pik ·Wik (2.4)

where pik is the per-facing profit of product i on shelf k. By associating the shelf space
allocation problem to a knapsack problem, the authors also proved that even a simplified
version of the problem is NP-hard. Nevertheless, its simplicity was criticized by several
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authors because it contradicted previous experiments revealing an S-shaped curve for the
effects of space elasticity. Other authors, such as Lim et al. [2004], further defended the
linearity assumption stating that retailers prefer to operate on the linear portion of the S-
shaped curve of marginal returns. This simplified version has been used by several authors
to develop efficient heuristics and matheuristics for the problem.

The discrete nature of the aforementioned models disregards the exact location of the
products and assigns the same effect regardless of the product’s location on a particular
shelf. Hansen et al. [2010] and Russell and Urban [2010] considered location decisions
and proposed (quasi) horizontal effects on the demand function that we will review now.

Hansen et al. [2010] extended the simplified version of Yang and Chen [1999] and
presented a formulation where the variables were discretized to consider the horizontal lo-
cation of the products on the shelves. The authors divided the shelf in multiple horizontal
segments and defined the binary decision variables W jkh f as the decision of allocating prod-
uct i on shelf k starting at horizontal segment h for face-length f . The resulting objective
function is as follows:

P =
∑
i∈N

∑
k∈M

Tk∑
h=1

ui∑
f =1

pikh f ·Wikh f +
∑
i∈N

∑
j∈N

Vi j

2
· ei j (2.5)

where pikh f is the profit of product i associated with W jkh f . A non-linear profit function
is considered, with a decreasing demand rate as the number of facings increase. However,
the non-linearity is absorbed by parameter pikh f , as it depends on the number of facings
assigned to each product. The second part of the objective function is a linearization of
the cross-elasticity effect. The authors defined parameters ei j as the unitary incremental
profit or loss due to cross-elasticity effects between products i and j, which is multiplied
by min(bi,b j), where bi and b j are the total lengths of products i and j on the shelf. The
function is linearized by introducing variables Vi j = min(bi,b j).

Russell and Urban [2010] introduced the first formulation with continuous horizontal
locations for the products. They based their demand function on a previous work by Drèze
et al. [1994] who noted that sales tend to be quadratic in the horizontal dimension and cubic
in the vertical one. As for space elasticity, the authors chose to use a quadratic formulation,
not only for consistency and tractability, but also because it reflects diminishing returns.
The expected demand for each product i is then expressed by:

di = β0i +β1i ·Xi +β2i ·X2
i +∑

k

[
β3i · (hk ·Yik) +β4i · (hk ·Yik)2 +β5i · (hk ·Yik)3 +β6i ·Wik +β7i ·W2

ik

]
(2.6)

where β•i are appropriate coefficients for the specific implementation. Since Yik is a
binary variable, the demand formulation is expressed as a quadratic function.
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Cost Estimation

The literature on shelf space allocation has focused less on the cost side of the problem
and many authors only subtract to the selling price of each unit sold its corresponding
purchasing costs, which result in its gross margin. Corstjens and Doyle [1981] considers a
second component on the objective function that estimates the operating costs (which they
called store expense). This component takes into consideration the concept of economies
of scale and considers marginal costs:

oi = γi ·d
τi
i = γi

xβi
i ·
∏

j∈N : j,i

xγi j
j


τi

(2.7)

γi is the cost scale parameter of product i and τi is the operating cost elasticity as-
sociated with increased sales. This element has been used by other authors to represent
operating costs.

Reyes and Frazier [2005] present an interesting alternative approach to model operating
costs. They consider three additional factors besides the purchasing costs, namely, ordering
costs, holding costs and stockout costs: ordering costs consider a constant cost rate that is
multiplied by the number of orders per day; holding costs are given as a percentage of the
purchase cost of an item; and stockout costs are assumed near zero (which occur when the
space is well planned). The cost formulation is as follows:

oi = O ·
di

si
+ H · ci · xi (2.8)

where O is the ordering cost rate, (di/xi) represent the number of orders per day, H is
the daily ordering cost rate and c is the product purchasing cost.

2.3.3 Problem Constraints

The type of constraints present in the shelf space formulations have also evolve over the
years. Table 2.3 indicates the publications that consider each constraint type identified on
Section 2.2, namely: integrality, capacity, control of lower and upper bounds, availability
and product grouping constraints.

Integrality, capacity and control constraints are the most common features of the prob-
lem, both in simplistic and linear approaches as well as in comprehensive and polynomial
models. Availability constraints were introduced by Corstjens and Doyle [1981] but Yang
and Chen [1999] concluded that retailers can prevent stockout occurrences by building
effective logistics systems. Since that moment on, this type of constraint was rarely con-
sidered.

One important practical limitation from the current literature is that it neglects mer-
chandising rules during products’ allocation. To overcome this, Lim et al. [2004] intro-
duced an additional element on the objective function and attributed additional benefits if
two products with affinity were placed on the same shelf. Russell and Urban [2010] ex-
plicitly considered the products as part of a family, which can be based on a variety of
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Table 2.3 – Shelf space constraints

Constraints References

Integrality
Wi ∈ N, ∀i ∈ N

(Wik ∈ N, ∀i ∈ N ,k ∈M)
Yik ∈ {0,1}, ∀i ∈ N ,k ∈M

Anderson and Amato [1974], Hansen and Heinsbroek [1979], Zufryden [1986],
Preston and Mercer [1990], Borin et al. [1994], Drèze et al. [1994], Yang and
Chen [1999], Yang [2001], Lim et al. [2004], Bai [2005], Hwang et al. [2005],
Reyes and Frazier [2005], Maiti and Maiti [2006], Hariga et al. [2007], Reyes
and Frazier [2007], Bai and Kendall [2008], van Nierop et al. [2008], Ranaseshan
et al. [2009], Raut et al. [2009], Gajjar and Adil [2010], Hansen et al. [2010],
Murray et al. [2010], Russell and Urban [2010], Gajjar and Adil [2011a], Gajjar
and Adil [2011b], Lotfi and Torabi [2011], Lotfi et al. [2011], Hübner and Kuhn
[2011], Irion et al. [2012], Geismar et al. [2014]

Capacity∑
i∈N ai Wi ≤W

(
∑

i∈N aiWik ≤ wk, ∀k ∈M)

Anderson and Amato [1974], Hansen and Heinsbroek [1979], Anderson [1979],
Corstjens and Doyle [1981], Corstjens and Doyle [1983], Zufryden [1986], Bul-
tez et al. [1989], Preston and Mercer [1990], Borin et al. [1994], Drèze et al.
[1994], Brown and Lee [1996], Urban [1998], Yang and Chen [1999], Yang
[2001], Lim et al. [2004], Bai [2005], Hwang et al. [2005], Reyes and Frazier
[2005], Maiti and Maiti [2006], Hariga et al. [2007], Reyes and Frazier [2007],
Bai and Kendall [2008], van Nierop et al. [2008], Abbott and Palekar [2008],
Hwang et al. [2009], Ranaseshan et al. [2009], Raut et al. [2009], Gajjar and Adil
[2010], Hansen et al. [2010], Murray et al. [2010], Russell and Urban [2010],
Gajjar and Adil [2011a], Gajjar and Adil [2011b], Irion et al. [2011], Lotfi and
Torabi [2011], Lotfi et al. [2011], Hübner and Kuhn [2011], Coskun [2012], Irion
et al. [2012], Geismar et al. [2014]

Control
li ≤ xi, ∀i ∈ N

(li ≤
∑

k∈M xik, ∀i ∈ N)
ui ≥ xi, ∀i ∈ N

(ui ≥
∑

k∈M xik, ∀i ∈ N)

Hansen and Heinsbroek [1979], Corstjens and Doyle [1981], Zufryden [1986],
Preston and Mercer [1990], Borin et al. [1994], Reyes and Frazier [2005], Ur-
ban [1998], Yang and Chen [1999], Yang [2001], Lim et al. [2004], Bai [2005],
Hwang et al. [2005], Maiti and Maiti [2006], Hariga et al. [2007], Reyes and
Frazier [2007], Bai and Kendall [2008], van Nierop et al. [2008], Hwang et al.
[2009], Ranaseshan et al. [2009], Raut et al. [2009], Gajjar and Adil [2010],
Hansen et al. [2010], Murray et al. [2010], Russell and Urban [2010], Gajjar
and Adil [2011a], Gajjar and Adil [2011b], Irion et al. [2011], Lotfi and Torabi
[2011], Lotfi et al. [2011], Hübner and Kuhn [2011], Irion et al. [2012], Geismar
et al. [2014]

Availability
di ≤ supply limit, ∀i ∈ N

Corstjens and Doyle [1981], Zufryden [1986], Urban [1998], Yang and Chen
[1999], Ranaseshan et al. [2009]

Family
Grouping

Lim et al. [2004], Russell and Urban [2010]
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characteristics, such as brand, flavor, price set, among others. Products of these families
should be kept together and, for aesthetic reasons, in uniform and rectangular shapes. To
the best of our knowledge, this was the first publication that explicitly considered product
families as a constraint.

2.3.4 Instances

Similarly to the variety of SSAP models, there is not a unique set of benchmark instances,
and authors have been mainly generating and using their own data sets, with few com-
parisons between approaches. Moreover, few instances are published online and made
available to the research community.

Table 2.4 in Appendix 2.A presents an overview of the widely different data sets studied
in this review, we identify the following information: instance type (randomly generated
or real-world), solution method (heuristic or exact method), instance size and motivation.
Note that there are many real-world instances coming from a wide range of categories, such
as quality candies, bottled juices, canned dog food and distilled-spirits.

The size of the instances can be measured by the number of products considered. We
observe that real-world instances have usually small problem sizes as they often aggregate
products into brands or subcategories. Indeed, a great share of the instances approach the
problem from an aggregated perspective or consider a very small set of products, leading
to instances with less than 10 products / brands. Other instances present a more detailed
perspective by approaching the problem at the product level, with more than 100 products.
Nevertheless, we noticed that these bigger instances are tackled in less-constrained and
simplistic problem descriptions. For instance, Drèze et al. [1994] allocates 115 products
but considers a discretized version of its polynomial demand function and assigns products
to shelves only limited to capacity constraints.

Table 2.4 also shows that many instances were solved using heuristics as the authors
commonly argue that shelf space models are difficult to solve using exact methods.

2.4. Classification Framework for the Shelf Space Allocation
Problem

Based on the literature reviewed in the previous section, we propose a classification frame-
work for the shelf space allocation problem, with the intent to systematize the different
types of formulations. As it became clear through the paper, the demand function esti-
mation is at the center of the problem, and different approaches aggregate different types
of decisions and elasticities. These are the two main dimensions used for classifying the
problems, using the framework present in Figure 2.3.

Note that both the decisions and space effects tend to evolve as there are precedences
between them. Allocation decisions are always considered on top of facings calculation.
In the same way, no problem considers location elasticities without considering space elas-
ticities. This is the basis of the framework. The more decisions and elasticities are con-
sidered, the more on the lower right side the problem is. The only exception are the cross-
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Figure 2.3 – Classification Framework for the Shelf Space Allocation Problem

elasticities, that are used without any known precedence. Because of that, this last effect
was included in an additional dimension.

The names of the problems were generated using the acronyms associated with both the
decisions and the elasticities. The first part of the names are connected with the decisions
and the second part with the elasticities. As an example, the problem that considers all
decisions and elasticities is called SSALP-VHCE, Shelf Space Allocation and Location
Problem with vertical-, horizontal- and cross- elasticity effects.

In the lower part of the framework we distinguish between the different types of prob-
lem constraints, that also evolve under a precedence scheme. These constraints can also
be included in the name of the problems by considering an additional (third) part. As an
example, if the problem SSALP-VHE is considered with product grouping constraints, we
call to this problem SSAP-VHE-G.

Figure 2.4 presents the distribution of the publications across the framework. The gray
scale indicates the amount of research addressing the problem. The darker areas reveal
more publications tackling that problem. The figure shows that the basic problem SSP,
with and without cross-elasticity effects, are the most tackled problems in the literature. It
also reveals that the right side of the framework has received less attention from the research
community. This fact corroborates the initial findings concerning the lack of approaches
considering location decisions and gives a clear indication of the research gaps in this field,
as discussed in the following final section.
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Figure 2.4 – Distribution of the publications across the framework

2.5. Conclusion and Directions for Future Research

In this paper we reviewed the literature of the Shelf Space Allocation Problem and pre-
sented a classification framework that systematized the widely different approaches to the
problem. We also distributed the existing literature across the different problems proposed
in the framework in order to identify the main research gaps. This study revealed the fol-
lowing suggestions for future research, that we divided into five main directions:

Exploration of the gaps identified by the framework – Section 2.2 revealed the impor-
tance of merchandising rules and strengthen the need to consider product families as this is
a key requirement from most retailers in practice. However, most of the current literature on
shelf space allocation disregards location decisions. As a result, existing formulations are
not capable of being extended to included these constraints and additional work is required
to develop new formulations and solution approaches to the SSALP.

Development of efficient solution methods – The shelf space allocation literature has
mainly focused on developing formulations and exact mathematical approaches and few
heuristics and matheuristics have been proposed. The only exception is the linear formu-
lation from Yang and Chen [1999] (whose profit function is present in equation (2.4)), that
has been widely used to develop many solution approaches mainly to the SSAP problems.
Moreover, most computational experiments have used instances with a very small number
of products and larger problems are usually randomly generated. Hence, we find crucial
to gather a set of benchmark instances that can be used to compare solution approaches
covering realistics features and sizes.

Consideration of space-related extensions – There are many space-related extensions
that are worth studying. We highlight three of them in this review.

Firstly, shelf space models could be extended to identify the family types that should
be used to group products, seeking to increase display attractiveness. Until now, family
groups have been used as constraints and given as inputs to the models. To the best of our
knowledge, the quantification of the impact of these groups on the consumer demand is
still to be studied. Figure 2.5 presents the corresponding framework extension, in terms
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of types of elasticities, with the inclusion of an additional effect which we called Design
Complexity. Note that more experimental studies need to be conducted to correctly evaluate
the impact of the design complexity on the demand.

Space 
Elasticity (SE)

Vertical Location 
Elasticity 

(VE)

Horizontal 
Location 

Elasticity (HE)

Elasticities

Design 
Complexity 

(DCE)

Figure 2.5 – Framework extension to consider Design Complexity

Secondly, most literature on shelf space allocation considers that the location of the
shelves is defined beforehand. The reasons behind this assumption mostly come from
the observation that retailers are not likely to change the shelf positions during operations
due to the high cost that such endeavor would represent. However, shelves’ placement
is an important decision to consider during stores’ opening and refurbishment as well as
during significant assortment modifications. Therefore, this problem extension is not only
a valuable pratical contribution but also a scientific contribution given the challenge that it
holds. This extension could easily be included in the framework by adding a fourth decision
with the name Shelf Design, as seen in Figure 2.6. Note that these two extensions perfectly
fit the framework because they also have precedences with the remaining decisions and
elasticities.

Space (S) Allocation (A) Location (L)

Decisions

Shelf Design (D)

Figure 2.6 – Framework extension to consider Shelf Design

Thirdly, as stores usually have other types of fixtures, their study and integration are
also potential research topics. Pegboards are a particularly engaging fixture type for future
studies because of their inherit complexity and the fact that they have been hardly studied
in the literature. Nevertheless, in our opinion, this research line would not fit in this stream,
but it would rather open a new one.

Alignment with other retail problems – The interdependency of this problem with other
retail planning activities was also highlighted through this review. Many opportunities lie
in this research direction. The solutions generated using any shelf space model strongly
depend on the category space and product assortment previously defined, considered as
inputs to these models. Both the literature and practice of retail shelf space would benefit
from an integration or a sensitivity analysis on the impact of these upstream decisions in
shelf space plans. Some authors have already tackled assortment and shelf space jointly but
usually disregard the space-elasticity effects (typical in shelf space literature) or the substi-
tution effects (typical in assortment literature). Moreover, the problem would benefit from
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deeper analysis on inventory-related concerns with a focus on replenishment synergies.
Both problems are highly interdependent as shelf replenishment operations have expensive
handling costs and are limited to the shelf merchandisers available to immediately fill the
shelves after stockout. The inclusion of the concept of target service level would be an
interesting approach.

Alignment of software applications with science – Besides the need for efficient algo-
rithms able to cope with high number of products, the expensive estimation requirements
for parameters is also a major barrier for a better alignment between science and software
applications. Nevertheless, there are other ways of improving the use of shelf space theory
in practice. One example is to study the creation of shelf space solutions taking into ac-
count the current planogram implemented in the stores in order to trade-off potential profit
and the costs of changes, namely, handling costs.

Appendix 2.A Problem Instances Table

This section presents the details of the data sets discussed in this review, in section 2.3.4.
We identify the following information: instance type (randomly generated or real-world),
solution method (heuristic or exact method), instance size and motivation.
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Table 2.4 – Problem Instances

Reference
Data

Method
Instances

G R Size Motivation

Anderson and Amato [1974] • H 4 brands Illustrative example

Hansen and Heinsbroek [1979] • H 6443 products Based on a LOEB-IGA study

Corstjens and Doyle [1981] • E 5 product categories Quality candy, ice cream and greeting cards with 140 stores

Corstjens and Doyle [1983] • E 4 product groups Illustrative example

Zufryden [1986] • E up to 40 products

Bultez et al. [1989] • H 20 products Canned dog food (Belgium retailer)

Drèze et al. [1994] • E average size 115 products Analgesics, Bottled Juices, Canned Seafood, Canned Soup,
(27 min. and 235 max.) Oral Care, Refrigerated Juices (US supermarket - 60 stores)

Borin et al. [1994],
• • H 6 products (generated), Ketchup (local supermarket)Borin and Farris [1995] 18 products (field study)

Brown and Lee [1996] • E one instance with 2 product categories Juice (US grocery stores)

Urban [1998] • H up to 54 products Based on Borin et al. [1994]

Yang [2001] • H up to 10 products, 4 shelves

Urban [2002] • H 6 products Based on Borin et al. [1994]

Lim et al. [2004] • H up to 100 products and 30 shelves

Bai [2005] • H up to 100 products and 40 shelves

Hwang et al. [2005] • H 4 products and 6 shelves

Reyes and Frazier [2005] • E 6 products

Maiti and Maiti [2006] • H up to 5 products

Hariga et al. [2007] • E 4 products and 4 display areas

Reyes and Frazier [2007] • E 4 products Random but based on real world data collected from a US grocery store

Bai and Kendall [2008] • H up to 64 products Small instances based on Borin et al. [1994] and generated large instances.

van Nierop et al. [2008] • H 81 products and 5 shelves Canned Soup from Drèze et al. [1994].

Hwang et al. [2009] • E/H 4 products

Ranaseshan et al. [2009] • H 6, 10 and 14 products Generated from a category of size 300 of Baked Beans and Noodles.
Data collected from a medium size national grocery retailer.

Raut et al. [2009] • E/H 6 screens / 6 products, 5 weeks Exhibitors movie allocation problem in a multiplex.

Gajjar and Adil [2010],
Gajjar and Adil [2011a], • H up to 200 products and 50 shelves
Gajjar and Adil [2011b]

E up to 10 products and 2 shelves
Hansen et al. [2010] • • H up to 100 products and 10 shelves (generated) Health and beauty

H 67 products and 7 shelves (case study)

Murray et al. [2010] • E up to 100 products (3 orientations) and 10 shelves

Russell and Urban [2010] •
E 10 products, 5 families, 4 shelves Distilled-spiritsH 103 products, 36 families, 25 shelves

Irion et al. [2011] • E 9 categories Home improvement-product retailer

Lotfi and Torabi [2011] •
E up to 20 products
H up to 80 products

Lotfi et al. [2011] • E 4 products

Hübner and Kuhn [2012] • E up to 250 products

Irion et al. [2012] • • E up to 50 products Home improvement-product retailer

Geismar et al. [2014] • H 200 and 500 products Motivated by a case study in a blockbuster store

Data: G - Generated and R - Real, Method: H - Heuristic and E - Exact
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Chapter 3

Allocating Products on Shelves under
Merchandising Rules: Multi-level Product
Families with Display Directions

Teresa Bianchi-Aguiar∗ · Elsa Silva∗ · Luis Guimarães∗ ·
Maria Antónia Carravilla∗ · José F. Oliveira∗

Abstract Retailers’ individual products are categorized as part of product families. Mer-
chandising rules specify how the products should be arranged on the shelves using prod-
uct families, creating more structured displays capable of increasing the viewers’ attention.
This paper presents a novel mixed integer programming formulation for the Shelf Space Al-
location Problem considering two innovative features emerging from merchandising rules:
hierarchical product families and display directions. The formulation uses single com-
modity flow constraints to model product sequencing and explores the product families’
hierarchy to reduce the combinatorial nature of the problem. Based on the formulation, a
mathematical programming-based heuristic was also developed that uses product families
to decompose the problem into a sequence of sub-problems. To improve performance, its
original design was adapted following two directions: recovery from infeasible solutions
and reduction of solution times. A new set of real case benchmark instances is also pro-
vided, which was used to assess the formulation and the matheuristic. This approach will
allow retailers to efficiently create planograms capable of following merchandising rules
and optimizing shelf space revenue.

Keywords Retail ·Shelf space allocation ·Single commodity flow formulation ·MIP-
based heuristics

3.1. Introduction

While shopping, customer choices are highly influenced by in-store factors, in particular
during frequent unplanned purchases and when the products they are searching for are not
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available. In this context, more than just displaying the merchandise, a clever product
arrangement on the shelves can boost demand and ultimately the stores’ financial perfor-
mance. With the increasing number of products available for the same scarce space, shelf
space planning has become more and more challenging and an active field of research in
retail operations management, under the name Shelf Space Allocation Problem (SSAP).

The SSAP consists of distributing the scarce shelf space of a retail store among the
different products to be displayed. Marketing studies have proven that space allocation
has a positive impact on the visibility, consumer awareness and demand for the products
(Drèze et al. [1994], Chandon et al. [2009], Curhan [1972], Desmet and Renaudin [1998]).
As a result, for the past 40 years several models have tried to address the various objec-
tives associated with product-to-shelf allocation, ranging from comprehensive to simplistic
forms.

In practice, the traditional space planning tool is a planogram, which is a blueprint of
the shelves where retailers develop their merchandising plan, showing exactly the location
where each product should physically be displayed and the number of facings that the
product should hold. Planograms are usually created separately for each category, whose
space is determined beforehand on a macro or upstream level. There are space planning
software systems which can assist retailers in this activity. These systems provide realistic
views of the shelves and allow retailers to quickly handle products through the planograms.
Moreover, they have powerful analysis reports and automatic tools for product-to-shelf
allocation.

However, Hübner and Kuhn [2012] and Bai [2005] identified a misalignment in shelf
space planning between commercial software applications and research: on one hand, soft-
ware vendors focus mainly on the development of large-scale data processing technologies,
with limited or no use of mathematical optimization and disregarding consumer demand
effects. On the other hand, state-of-the-art optimization methods have practical limitations,
either because of their simplicity and lack of key features, or due to their complexity and
expensive estimation requirements for parameters.

Retailers’ individual products are categorized as part of product families. One im-
portant practical limitation from the current literature is that it disregards that product al-
location must follow merchandising rules which specify associations of products on the
shelves. Merchandising rules try to reproduce the way customers search for the products
while shopping and are obtained with the help of category captains (key suppliers with
deeper knowledge about each category - Kurtulus and Toktay [2009]) and techniques such
as market basket analysis. Those rules vary from retailer to retailer, and can include more
than one level of product association.

Another key practical feature of the problem is the way families are arranged on the
shelves. Pieters et al. [2010] show that carefully organizing a display increases the viewers’
attention but its excessive complexity (i.e. variations in the basic visual content) can indeed
decrease their interest. These concepts are applied in the Shelf Space Allocation Problem
by imposing that both the products and the families are arranged in rectangular shapes
(Geismar et al. [2014], Russell and Urban [2010]). The need to follow structured shapes
is sometimes further stressed by assuming a direction for the shapes, either vertical or
horizontal (forming columns or lines). To the best of our knowledge, the display direction
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is for the first time tackled in this paper.
This paper presents a novel and realistic mathematical model for the SSAP with multi-

level product families. The model uses a linear profit function, as suggested by Yang
and Chen [1999], and considers space and location decisions, similarly to Russell and
Urban [2010]. Considering product families requires the definition of the exact location
of the products on the shelves (not common in SSA literature) and thus products need
to be sequenced. This additional requirement turns the models much more complex as
sequencing decisions are known to pose hard analytical challenges mainly due to subtour
elimination constraints. Following the research done in other combinatorial problems such
as the asymmetric traveling salesman problem (Öncan et al. [2009]), we improved the
modeling of product location using commodity-based constraints which are known to yield
very tight models. This formulation is embedded in a matheuristic aiming at delivering
quasi optimal solutions in short computational times. The matheuristic solves a sequence
of sub-problems, exploring the hierarchy present in the product families. Using instances
taken from a European grocery retailer, we demonstrate the applicability of the formulation,
and report the improvements obtained with both the formulation and matheuristic over the
existing literature.

The contributions of this paper are as follows. A novel mathematical model has been
developed for the Shelf Space Allocation Problem with location decisions based on the
commodity flow formulation. This model additionally explores the existence of product
families to reduce the combinatorial nature of the problem and introduces a new practical
constraint imposed to product families: the display direction. On the algorithmic front, an
innovative matheuristic is presented that was tailor-made to the formulation as it is based on
the existence of multi-level product families. To improve the matheuristic performance, its
original design was adapted following two directions: recovery from infeasible solutions
through backtracking (improving feasibility) and reduction of solution times by adjusting
the model’s detail (improving efficiency). Finally, a new set of real case benchmark in-
stances is provided for the shelf space allocation problem with location decisions, allowing
for future research in this area.

The remainder of this paper is structured as follows. Section 3.2 begins with a literature
review on the Shelf Space Allocation Problem defining the basis of this research. The
problem is formally defined in section 3.3 with a focus on the definition of real world
features. Section 3.4 is dedicated to describing the novel realistic mathematical formulation
with single commodity flow constraints, and section 3.5 describes the solution approach
that was tailor-made for the model. The computational results are presented and analyzed
in section 3.6. The final section 3.7 pinpoints the conclusions and potential topics for future
research.

3.2. Literature overview

The shelf space allocation problem has long been addressed by marketing professionals
and researchers, with the first studies tracing back to the 1970s.

Marketing studies have proven the positive influence of shelf space on stimulating con-
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sumer demand and identified three main demand effects: space elasticity, location and
cross-elasticity. Implicit in most experiments is the assumption of diminishing marginal
returns (in the form of an S-shaped curve), which results in non-linear and complex profit
functions. Previous literature has focused broadly on finding different ways of addressing
the various effects associated with product-to-shelf allocation, and several models with dif-
ferent goals have been developed. As a result, there is no definitive shelf space allocation
model(s) and no benchmarks are available (Lim et al. [2004]).

The basic Shelf Space Allocation Problem consists of maximizing profit by deciding
how much space is required for each product, under shelf capacity, control (lower and
upper bounds) and availability constraints. In this basic SSAP, the amount of shelf space
is considered the only significant factor and the location is disregarded. In very early
works, several authors proposed different formulations for this problem. Among them,
Corstjens and Doyle [1981] and Zufryden [1986] proposed comprehensive models with
multiplicative polynomial forces that were important landmarks used as a reference by
many researchers. More recently, the problem has been extended to incorporate other
issues, such as assortment decisions, wholesale prices and inventory control (Borin et al.
[1994], Urban [1998], Hwang et al. [2005], Hariga et al. [2007], Murray et al. [2010],
Hübner and Kuhn [2011]).

In a large-scale experimental study, Drèze et al. [1994] concluded that the location of a
product is more important to stimulate sales than the number of facings allocated to it, as
long as a minimum threshold is maintained to avoid stockouts. In accordance, Yang and
Chen [1999] formulated a model that divides the shelf space into a distinct set of shelves,
and defined the demand of an item according to the shelf where the item is displayed.
However, the discrete nature of the model provides the same effect no matter the exact
place where a product is located on a particular shelf. Russell and Urban [2010], Hansen
et al. [2010] and Geismar et al. [2014] proposed (quasi) continuous horizontal effects.
Despite this, none of the models were able to solve to optimality instances with more than
10 products.

Several efforts have been recently made by researchers to develop more tractable mod-
els. Yang and Chen [1999] proposed a simplified and yet practical alternative model in the
form of a linear multi-knapsack problem that started a new stream of Shelf Space allocation
(called LSSAP in Gajjar and Adil [2011]), and proved that even a simplified version of the
problem is NP-hard. The authors state that in practice it is difficult to obtain an estimation
for the sales volume elasticity and make the assumption that the profit of any product is
linear with regard to a range of facings, for which an upper and lower bound should be
controlled. Those bounds are to be determined by the management according to the pol-
icy of the store. Lim et al. [2004] further defended the linearity assumption stating that
retailers prefer to operate on the linear portion of the S-shaped curve of marginal returns.
This simplified version of the problem has been used by several authors to develop efficient
heuristics and matheuristics for the problem (Yang [2001], Lim et al. [2004], Hansen et al.
[2010], Gajjar and Adil [2011], Castelli and Vanneschi [2014]).

Another key practical feature which has been neglected in the current state-of-the-art
is the existence of product family arrangements on the shelves. The relationship between
products has long been addressed by some authors, by assigning additional (less) profit if
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two complementary (substitute) products are assigned to the same shelf. However, Russell
and Urban [2010] and Geismar et al. [2014] are the only authors who allocate the space in
such a manner that keeps product families together, and in uniform and rectangular shapes,
to improve the aesthetics of the planograms.

3.3. Problem Description

There are two decision levels in shelf space allocation: a store (macro) level, deciding
the space for product categories, and a product category (micro) level, which allocates
individual products within each category. This paper describes and tackles the problem
faced by a retailer when defining the micro-space. The objective is, for a given category, to
determine the optimal allocation of products, as well as their shelf location. The problem
is defined as follows.

Consider a specific category of a store, whose space has been previously determined.
There are K shelves available (indexed by k ∈ K), where the retailers wish to display N
products (indexed by i, j ∈ N). Without loss of generality, the shelves are numbered from
bottom to top. The length and height of shelf k are respectively wk and hk and each facing
(i.e. visible unit containing other units stacked behind for inventory purposes) of product i
is ai long and bi high. One product might be placed in more than one shelf, as long as it is
vertically aligned.

The profit per facing of product i is pi. Similarly to Yang and Chen [1999] and Lim
et al. [2004], we assume a linear profit function with the number of facings by considering
that retailers operate on the linear portion of the S-shaped curve of marginal returns. In
accordance, a lower and upper bound of li and ui are defined for the products. The problem
also considers of vertical location effects by using the effectiveness of each shelf k, γk, to
generate revenue. This parameter is multiplied by the profit to obtain the revenue potential
from displaying each unit of product i on each shelf k. Cross-elasticities and the horizontal
effects are disregarded as cross-elasticities have parameters which are difficult to estimate
and the horizontal effects are less important (according to Drèze et al. [1994]), and can be
tackled in a downstream problem by rearranging the products and product families.

Under the given operating conditions, the decisions to be made for each product are:
the number of facings to be displayed on each shelf and its horizontal location within the
shelf.

Up to this point we have described the standard shelf space allocation problem as com-
monly tackled in the literature (except for the location decisions that are usually disre-
garded). However, there are still key practical features associated with product grouping
that need to be addressed. These are introduced next.

3.3.1 Product Grouping

Retailers specify merchandising rules that impact how products are placed on shelves.
Those merchandising rules identify a set of product families whose products should be
grouped together. Moreover, if a product family spans more than one shelf, the products
should maintain a uniform and rectangular shape, with a small deviation v allowed between
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shelves. For that purpose, consider M product families (indexed by u ∈M), each one con-
taining one or more products, defined by the set Nu. Due to its uniform shape, product
families are also called blocks. Both terms are used interchangeably in the remainder of
the paper.

Merchandising rules often comprehend multi-level hierarchical structures of product
families, trying to further capture the consumer buying behavior. As an example, retail-
ers might want to organize yogurts firstly by type, differentiating classic from drinkable
yogurts, secondly by brand, and thirdly by flavor. Two distinct product families may also
have different downstream families or a different number of levels (for instance, drinkable
yogurts further divided by package size and classic yogurts by brand and flavor). Figure 3.1
presents an example of a planogram with two levels of product families. This multi-level
structure can be better captured by a network of product families and represented using a
directed acyclic graph, as seen in figure 3.2. The graph starts with a dummy node connect-
ing all the product families from the first level. Each product family is then connected to
its downstream families, which form the second level of the graph, and so forth until the
product level is reached. Consider the setsMu that define the downstream product families
belonging to each upstream (or parent) family u.

Product Family A Product Family A.1

Product Grouping – Level 1 Product Grouping – Level 2

Figure 3.1 – Example of a Planogram with two levels of product grouping

Retailers may also specify whether product families should have a horizontal or vertical
shape when placed on the shelves. A horizontal family is predominantly located on one
shelf (or more, as far as it occupies the whole length of its parent), whereas a vertical family
occupies as much as possible all the shelves from the parent family. In Figure 3.1, the
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P3
P1

...

Figure 3.2 – Product grouping diagram from Figure 3.1

families from the first level are placed horizontally, whereas the families from the second
level assume a vertical orientation. The same direction is defined for all families from the
same parent but, the direction among different parents may differ within each level. For
this purpose, consider the sets SH and SV , containing the families that should have their
downstream blocks with a horizontal and vertical shape, respectively.

3.4. Model Formulation

This section presents the formulation proposed for the Shelf Space Allocation Problem
with location decisions, as described in the previous chapter. The starting point was the
work by Russell and Urban [2010]. To the best of our knowledge, this is the first paper
that presents a model that treats product location as a continuous variable, aiming for the
complete description of the planogram. They additionally considered practical require-
ments related to product families, once again aligned with the motivation for this paper. To
improve the applicability of the formulation, we follow Yang and Chen [1999] and other
subsequent researchers, and consider a linear profit function. For clarification purposes,
the section is divided into three subsections. Firstly we define the objective function and
allocation constraints. At this point, the formulation corresponds to the basic shelf space
allocation problem. The next two subsections present the necessary constraints to define
the exact location of the products, divided into sequencing constraints and family grouping
constraints.

The necessary decision variables are presented along the text; however, two sets of de-
cision variables are sufficient to define the solution of the problem:

Wik the integer number of facings of product i ∈ N on shelf k ∈ K ,

Xs
i the continuous horizontal location of product i ∈ N , measured from the lower-left

corner of the planogram to the lower-left corner of the first facing of the product.
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3.4.1 Objective Function and Allocation Constraints

The objective function and the allocation constraints are similar to Yang and Chen [1999],
and define the number of facings allocated to each product on each shelf:

Maximize Z =
∑
i∈N

∑
k∈K

pi ·γk ·Wik (3.1)

subject to:
∑
k∈K

Wik ≤ ui, ∀ i ∈ N (3.2)∑
k∈K

Wik ≥ li, ∀ i ∈ N (3.3)∑
i∈N

ai ·Wik ≤ wk, ∀k ∈ K (3.4)

Wik = 0, ∀ i ∈ N, k ∈ K : bi ≤ hk (3.5)

Wik ∈ N0, ∀ i ∈ N , k ∈ K (3.6)

As previously mentioned, the objective function (3.1) is a linear profit function where
the profit associated with each product is linear with regard to a shelf and a range of facings,
controlled by an upper and lower bound imposed by constraints (3.2) and (3.3). The prod-
uct piγk is analogous to the parameter pik used in Yang and Chen [1999], but it additionally
specifies how the value was obtained (Geismar et al. [2014]). Constraints (3.4) ensure that
shelf capacities are not exceeded and (3.5) prevent products from being placed on shelves
where they do not fit. Lastly, constraints (3.6) guarantee that the decision variables W are
non-negative integers.

3.4.2 Sequencing Constraints

Considering product families requires the definition of the exact location of the products
on the shelves and thus products need to be sequenced. The traditional sequencing Ti j

variables defining whether product i precedes (=1) or proceeds (=0) product j would be
responsible for the exponential increase of the model’s size. To overcome this fact, we
explore the existence of a multi-level hierarchy of product families. For each shelf, we start
by defining a sequence with the blocks from the first level. Afterwards, for each first level
block, we define a sequence with the corresponding blocks from the following level and so
forth, until the products are reached. At the end of the levels, by placing all the product
sequences in the correct order, the overall sequence is then obtained. This approach also
guarantees that the products belonging to the same block are consecutively placed on each
shelf, which is another requirement from the problem.

To capture this idea, consider a network where the nodes are associated with the prod-
ucts and the arcs represent the precedence in the allocation of the products. The network
has two additional nodes: one source node, which is connected to the first product, and a
sink node, connected to the last. In this approach, instead of using one product network
on each shelf for the sequencing decisions, we consider a set of networks, one for each
parent block, whose nodes are the corresponding blocks from the downstream level. This
is illustrated in Figure 3.3. To model these networks, consider that single products might
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Figure 3.3 – Network for Level 1 and 2-A, based on the diagram from Figure 3.2

also be seen as blocks, containing one product each. Each block u ∈M is then associated
with the setVu containing the blocks from the immediate downstream level, either product
families (m,n ∈Mu) or products (m,n ∈ N). In Figure 3.2, while the set from block A (VA)
contains the blocks A.1, A.2 and A.3 (∈ M), the set from block A.1 (VA.1) contains the
products P1-P6 (∈ N). Additionally, consider a dummy node 0 associated with the source
and the sink node of the networks and a new setV =M∪N that aggregates all the blocks.
Accordingly, the following additional decision variables are introduced into the model:

Tmnk = 1 if block m is displayed immediately after block n on shelf k ∈ K , u ∈M,m,n ∈
Vu∪{0},

Ymk = 1 if block m ∈ V is located on shelf k ∈ K .

For each network associated with the block u ∈M, the following constraints determine
the sequence of its downstream blocks m,n ∈ Vu on each shelf k:∑

m∈Vu

T0mk = Yuk, ∀ u ∈M, k ∈ K (3.7)∑
m∈Vu

Tm0k = Yuk, ∀ u ∈M, k ∈ K (3.8)∑
n∈Vu∪{0}

Tnmk = Ymk, ∀ u ∈M,m ∈ Vu, k ∈ K (3.9)∑
n∈Vu∪{0}

Tmnk = Ymk, ∀ u ∈M,m ∈ Vu, k ∈ K (3.10)

Ymk ≤ Yuk, ∀u ∈M, m ∈ Vu, k ∈ K (3.11)

Wik ≥ Yik, ∀ i ∈ N , k ∈ K (3.12)

Ymk ∈ {0,1}, ∀m ∈ V, k ∈ K (3.13)

Tmnk ∈ {0,1}, ∀u ∈M, m,n ∈ Vu∪{0}, k ∈ K (3.14)

For each block u, constraints (3.7)-(3.10) ensure that if a block is present on a shelf, a
tour exists among its downstream blocks, starting and ending in the source and sink node.
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Constraints (3.7) and (3.8) force the tour to pass once through the source and sink node,
while constraints (3.9) and (3.10) ensure that, if a downstream block is on the shelf, it
should be immediately preceded and proceeded by exactly one node, either a block or the
source/sink. Constraints (3.11) state that one block is only present on a shelf if the parent
block is also present and finally constraints (3.12) make the connection with the allocation
part of the problem. Constraints (3.13) and (3.14) guarantee that the variables are binary.

Inspired by the good results in the Asymmetric Traveling Salesman Problem (Öncan
et al. [2009]), we used single commodity flow constraints to guarantee that sequences are
connected. The disconnected subtours are eliminated with additional decision variables
representing a commodity flow through each network, which has to satisfy conservation
constraints. The commodity is associated with the length of the corresponding upstream
block on the shelf. Every time the commodity goes from one downstream block to another,
the length assigned to the first block is added to the commodity flow. At the end, when the
commodity enters the sink node, its value should be equal to the total length occupied by
the upstream block. In the first block, the total length is equal to the width of the shelf,
meaning that the entire space of the planogram is occupied. For this purpose, two sets of
decision variables are added to the model:

Fmnk the continuous flow from block m to block n on shelf k ∈K , u ∈M, m,n ∈Vu∪{0},

Lik shelf length assigned to product i ∈ N on shelf k ∈ K .

The single commodity flow constraints that enforce the existence of a path from the
source to the sink node of each network associated with block u ∈M are the following:∑

m∈Vu

F0mk = 0, ∀u ∈M, k ∈ K (3.15)∑
m∈Vu

Fm0k =
∑
i∈Nu

Lik, ∀u ∈M, k ∈ K (3.16)∑
n∈Vu∪{0}:

m,n

Fnmk +
∑
i∈Nm

Lik =
∑

n∈Vu∪{0}:
m,n

Fmnk, ∀u ∈M, m ∈ Vu, k ∈ K (3.17)

Fmnk ≤ wk ·Tmnk, ∀u ∈M, m,n ∈ Vu∪{0} : m , n, k ∈ K (3.18)∑
i∈N

Lik = wk, ∀k ∈ K (3.19)

ai ·Wik ≤ Lik, ∀ i ∈ N , k ∈ K (3.20)

Lik ≥ 0, ∀ i ∈ N , k ∈ K (3.21)

Fmnk ≥ 0, ∀u ∈M, m,n ∈ Vu∪{0}, k ∈ K (3.22)

Constraints (3.15) force the commodity flow to leave the source of each network with
no length, and constraints (3.16) ensure that in the end the total flow amount must be equal
to the total length of the upstream block on the shelf (equal to zero if the block is not on the
shelf). The flow balance constraints are expressed by (3.17), which ensure that the flow that
enters each node plus its block’s length is equal to the flow that leaves the node. Constraints
(3.18) guarantee that the flow only traverses active arcs, and in (3.19) the total width of each
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shelf should be occupied by the products. Constraints (3.20) ensure that enough space is
reserved on each shelf for the facings of the products. Finally, the nonnegativity of the
product’s length and commodity flows are ensured by (3.21)) and (3.22)).

3.4.3 Product Grouping Constraints

For aesthetic reasons, both the families and the products should have rectangular shapes
on the shelves, which means that each block should be placed on contiguous shelves and
aligned, with a small deviation v allowed between shelves. This leads to a new set of deci-
sion variables and an extension of variable Xs

i , from product to block range:

Xs
m the horizontal location of the block m ∈ V (left coordinate),

Xe
m the horizontal location of the block m ∈ V (right coordinate),

FLmk = 1 if k ∈ K is the first shelf of block m ∈ V,

LLmk = 1 if k ∈ K is the last shelf of block m ∈ V.

The sequencing constraints (3.9) - (3.14) already impose the connectivity of the blocks
within each shelf. The following constraints guarantee the rectangular shape and also de-
fine the horizontal location of the blocks:

Xs
m ≥ Xs

u +
∑

n∈Vu∪{0}:
n,m

Fnmk, ∀u ∈M, m ∈ Vu, k ∈ K (3.23)

Xs
m ≤ Xs

u +
∑

n∈Vu∪{0}:
n,m

Fnmk + W · (1−Ymk), ∀u ∈M, m ∈ Vu, k ∈ K (3.24)

Xe
m−Xs

m ≥
∑
i∈Nm

Lik, ∀m ∈ V, k ∈ K (3.25)

Xe
m−Xs

m− v ≤
∑
i∈Nm

Lik + W · (1−Ymk), ∀m ∈ V, k ∈ K (3.26)∑
k∈K

FLmk = 1, ∀m ∈ V (3.27)∑
k∈K

LLmk = 1, ∀m ∈ V (3.28)

FLm,k+1 + Ymk = Ym,k+1 + LLmk, ∀m ∈ V, k ∈ K : k , K (3.29)

FLm0 = Ym0, ∀m ∈ V (3.30)

LLmK = YmK , ∀m ∈ V (3.31)

Xs
m,X

e
m ≥ 0, ∀m ∈ V (3.32)

FLmk,LLmk ∈ {0,1}, ∀m ∈ V, k ∈ K (3.33)

Constraint sets (3.23) and (3.24) establish the horizontal location of each block (left
coordinate) according to the location of its parent block and the flow coming from the
preceding block (that equals the length of the blocks since the beginning of the parent
block). Constraints (3.25) and (3.26) define the right coordinate for each block and keep
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its location within v units from one shelf to the others. Constraint sets (3.27) and (3.28)
establish the top and bottom shelf where each block is located, while constraints (3.29)-
(3.31) keep the block on adjacent shelves.

Finally, if the blocks have predefined orientations, either horizontal or vertical, the
following constraints guarantee the desired shapes:

Ymk = Yuk, ∀u ∈ SV , m ∈Mu, k (3.34)∑
n∈Vu:n,m

Ynk ≤ M · (2−Ymk −Ym,k+1), ∀u ∈ SH , m ∈Mu, k ∈ K : k , K (3.35)

Constraints (3.34) ensure that the vertical blocks are present on the same shelves as their
parent block, while constraint set (3.35) only allows a horizontal block to occupy more
than one shelf if the first one is fully occupied by the block. Note that these two last
requirements can be defined as soft constraints by introducing two new sets of variables
that can relax the constraints, although there is a penalty on the objective function value.

For the sake of simplicity, this model will hereafter be referred to as BAP – Block
Allocation Problem.

3.5. Solution Approach

When the instance size increases, the shelf space allocation problem with location deci-
sions becomes intractable, which limits the straightforward use of standard mathematical
programming approaches, in particular when dealing with real world instances. This fact
motivated the development of an approximate method. We chose a mathematical pro-
gramming based approach because the high number of constraints associated with family
grouping would make it difficult to develop a constructive heuristic capable of generating
high quality feasible solutions within reasonable time limits.

Our solution approach decomposes the original problem into smaller sub-problems
that can be more easily solved using exact methods. Following the idea that most of the
computational burden comes from the integer variables, we used an approach based on the
relax-and-fix (R&F) framework (Pochet and Wolsey [2006]). This framework decomposes
the integer variables of large-scale MIP problems into subsets, and then sequentially solves
relaxed MIP sub-problems containing each subset. As the number of integer variables in
each sub-problem is significantly smaller than the original problem, the solution times to
solve each one to optimality is lower.

Consider the set G composed of the integer variables Y , T associated with the blocks,
and W with the products. At each iteration l, the integer variables are grouped into three
subsets: GF

l - variables whose values have been fixed in previous iterations to the values
Y ′, T ′ and W′, GI

l - variables required to be integer in the current iteration, and finally GR
l -

the relaxed variables. The sub-problem to be solved, labeled subBAPl, corresponds to the
original SSA model where equations (3.6), (3.13) and (3.14) are replaced by:

Y = Y ′,T = T ′,W = W′ ∀ (Y,T,W) ∈ GF
l (3.36)

(Y,T ) ∈ {0,1},W ∈ N0, ∀ (Y,T,W) ∈ GI
l (3.37)
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(Y,T,W) ≥ 0, ∀ (Y,T,W) ∈ GR
l (3.38)

As the matheuristic progresses, the three subsets are updated as follows: part or all the
integer variables are fixed (moved from GI to GF) and part or all the remaining relaxed
variables are turned into integer variables (from GR to GI). The way subsets evolve defines
both the quality of the solution and the computational burden of the R&F heuristic. The
heuristic finishes when a feasible integer solution is found for the entire problem or when
a sub-problem is infeasible.

In the SSAP, the family blocks and their hierarchical structure define a natural partition
of the problem. The relation between the blocks within each upper block is indeed the most
computational demanding feature of the problem due to the T variables (for sequencing
purposes). In accordance, a block partition is used to define the subsets. The heuristic starts
by solving sub-problems corresponding to the blocks from the first level and progressively
moves down until it reaches the blocks in the last level. For that reason, this matheuristic
will hereafter be called H-BAP – hierarchical resolution of BAP. For clarification purposes,
figure 3.4 depicts three successive iterations of the heuristic (the first iteration corresponds
to the initial one).

0

A B

A.1 A.2 A.3 B.1 B.2 B.3 B.4 B.5 B.6 B.7

...

Iteration 1

0

A B

A.1 A.2 A.3 B.1 B.2 B.3 B.4 B.5 B.6 B.7

...

Iteration 2

Fixed Variables Integer Variables Relaxed Variables

0

A B

A.1 A.2 A.3 B.1 B.2 B.3 B.4 B.5 B.6 B.7

...

Iteration 3

Blocks belonging to 
the same upper blok 

are solved at the 
same iteration

Figure 3.4 – Successive iterations of the MIP based heuristic
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The blocks in dark gray are those in which the value of the integer variables are fixed
to the solution obtained in previous iterations (equations 3.36). The blocks in light gray
are restricted to assume integer values (equations 3.37), and finally, the blocks in white are
relaxed to fractional values (equations 3.38). From one iteration to the next, the subsets are
updated so that at each time the variables in the integer set correspond to all blocks from
the same upstream block. This evolution scheme was chosen to take into consideration the
shape’s orientation, as it impacts all the blocks from the same parent.

The pseudocode for the heuristic is presented below (Algorithm 1), where the func-
tion getNextIntegerS et returns the integer variables for each iteration. The algorithm is a
straightforward implementation of what has been previously described. Note that line 11
guarantees that the subset GF (fixed variables) is updated correctly if the integer variables
of two successive iterations overlap. The code is sufficiently generic to allow other evolu-
tion schemes for the subsets (function getNextIntegerS et).

Algorithm 1: Pseudocode for the MIP based heuristic (H-BAP)
1 begin
2 l← 1
3 GI

l := Solve getNextIntegerS et
4 GF

l := ∅
5 GR

l := G\{GI
l }

6 while GR
l < ∅ do

7 Status := Solve subBAPl

8 if Status = Feasible then
9 Y’ := Y, T’ := T, W’ := W

10 GI
l+1 := Solve getNextIntegerS et

11 GF
l+1 := GF

l ∪ (GI
l \{G

I
l ∩G

I
l+1})

12 GR
l+1 := GR

l \{G
I
l+1}

13 else
14 Return Infeasible
15 end
16 l← l + 1
17 end
18 Status :=Solve subBAPl

19 Return Status
20 end

3.5.1 Improving Feasibility

Finding a feasible solution while using a R&F heuristic is not always guaranteed. Even
though a top-down approach for the SSAP explores the problem structure, it risks creating
top level assignments that constitute infeasible product allocations. As it goes further down,
the heuristic might not reserve enough space to guarantee the minimum facings for all the
products, especially when forcing integrality on the W variables.

Therefore, to minimize the chances of infeasibility, we have created a new set of con-
straints that take into consideration product-related features at an earlier stage. For that
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purpose, consider a new parameter wmax
m with the width of the largest product from each

block m ( wmax
m = max{ai|i ∈ Nm}). As the family (and product) blocks have to form rect-

angular shapes, and all the products have to be allocated, the minimum width of a block is
wmax

m . In accordance, we introduce the new set of constraints (3.39):∑
i∈Nm

Lik ≥ wmax
m ∀m ∈M, k ∈ K (3.39)

Additionally, the heuristic was also changed to include a backtracking scheme. Whenever
a sub-problem is infeasible, the heuristic shifts backward instead of forward, and solves a
larger sub-problem by unfixing previous parts of the solution while maintaining the current
integer variables. The heuristic starts by unfixing all the integer variables from the previous
level, and while the problem remains infeasible it moves further backwards until reaching a
maximum number of backward moves, or the set GF is empty. Notice that the backtracking
scheme unfixes the variables by level instead of blocks. This gives the necessary freedom
to change the blocks arrangement. This backtracking only requires changes in the way the
sets are updated and the above formulation does not suffer any change.

Algorithm 2 presents the backtracking scheme that should replace line 14 in Algo-
rithm 1 for handling infeasible sub-problems. The new subset GF

l contains the variables
that should be unfixed in the next iteration. This subset is updated using the function
getUnFixS et. Once again, the code allows other backtracking schemes (by changing the
function getUnFixS et). We will hereafter call to this extension Improving Feasiblity (H-
BAP-IF).

Algorithm 2: Pseudocode for improving feasibility – replaces line 14 in Algorithm 1

1 if GF
l < ∅ then

2 GF
l+1 := Solve getUnFixS et

3 GI
l+1 := GI

l ∪G
F
l+1

4 GF
l+1 := GF

l \{G
F
l+1}

5 else
6 Return Infeasible
7 end

3.5.2 Improving Efficiency

As previously mentioned, most of the problem’s complexity comes from the family groups
which impose hard constraints on the positioning of the products. One possible approach to
improve the problem’s efficiency would be to reduce the level of detail by not considering
the products until a later stage (by removing the single product blocks from the model’s
formulation, it is possible to substantially reduce its size). The products could be handled
afterwards in a downstream problem by using a knapsack model (multiple examples are
provided in the literature) or a heuristic method. Such approach is only possible if all the
family groups are handled in this upstream model.

However, there are two drawbacks when the products are removed from the formula-



56
Chapter 3. Allocating Products on Shelves under Merchandising Rules: Multi-level

Product Families with Display Directions

tion: firstly, the final space assigned to each block may not be enough to guarantee the
minimum number of facings for the corresponding products, and secondly, the blocks may
be assigned to shelves where the products do not fit because of their height.

To avoid potential downstream infeasibilities, we chose to disregard the products’ se-
quencing and exact positioning, and yet consider the products’ linear shelf space allocation
to shelves. This change requires the use of the length (L) instead of the number of facings
(W) both in the objective function and to ensure the products’ lower and upper bounds.
Constraints (3.2)-(3.6), (3.12)) and (3.20) are replaced by:

Maximize
∑
i∈N

∑
k∈K

Z = pi ·γk ·Lik (3.40)

subject to:
∑
k∈K

Lik ≤ ui ·wi, ∀ i ∈ N (3.41)∑
k∈K

Lik ≥ li ·wi, ∀ i ∈ N (3.42)

Lik = 0, ∀ i ∈ N, k ∈ K : bi ≤ hk (3.43)

Lik ≥ Yik ·wi, ∀ i ∈ N , k ∈ K (3.44)

Additionally, the sequencing and family block variables and constraints do not apply
to single product blocks, except Y variables. For that purpose, consider a new set MU

containing all the blocks from M except the lowest ones (MU ∈ {0,A,B} in the diagram
from Figure 3.2). In constraints (3.7)-(3.10),(3.14),(3.15)-(3.18),(3.22),(3.23) and (3.24)
the set M is replaced by MU , and in constraints (3.25)-(3.33) the set V is replaced by M.
We will hereafter call to this extension Improving efficiency (H-BAP-IE).

3.6. Experimental Analysis and Computational Results

This section presents the results of the computational study to validate and assess the per-
formance of both the formulation and the solution approach. For this purpose, we provide a
set of benchmark instances for the shelf space allocation problem that capture the different
features of real world problems as described in Section 3.3. All the computational exper-
iments were conducted on Intel @2.40GHz processing units limited to 4.0Gb of Random
Access Memory using the Linux operating system. The IBM ILOG CPLEX 12.4 was used
both as the mixed integer and linear programming solver.

3.6.1 Problem Instances

A total of 54 problem instances were obtained from a European Grocery Retailer. The
company defines very complex block diagrams that try to reproduce the way customers
search for the products while shopping. Blocks can be defined by different criteria and
the most common ones are brand, type, package size and flavor. To ensure that different
realities are covered, the instances belong to 22 different categories, ranging from low
to high sales products, light to heavy block diagrams, vertically to horizontally shaped
blocks, among other features. Table 3.1 presents the key information about the instances:
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number of products (N), number of family blocks (M), number of shelves (K), number
of hierarchical levels (L) and number of vertical (MV) and horizontal blocks (MH). The
instances are grouped by category and organized by increasing number of products (for
example, instances AZ_1, AZ_2 and AZ_3 belong to category AZ, whose average number
of products is higher than category FL). As it is possible to see, the instances vary in size
and are significantly bigger than the ones reported in the literature, with up to 240 products,
9 shelves and 5 hierarchy levels.

One critical information for planogram design is the lower and upper bounds on the
number of product facings. The lower bounds were set to one in all instances and the upper
bounds were determined by setting a days supply baseline for the planogram (i.e. number
of days that the shelf inventory should last), based on the revenue potential and the space
available. Other information was taken into consideration, such as the maximum number
of facings determined by the management, product shelf life, supplier contracts, among
others. The exact calculus behind the upper bounds is beyond the scope of this paper.
Another key parameter is shelf effectiveness. We used beta functions to model the way
the management considers the shelves’ attractiveness to the consumers, always privileging
eye-level shelves.

The instances are available online in Bianchi-Aguiar et al. [2014]. It was not possible
to test the instances found in the literature either because they were not available, or be-
cause they did not consider family groups. As aforementioned, family groups are of major
importance in practice and are a key feature of our problem definition and the basis of our
formulation.

Table 3.1 – Problem Instances

Name N M K L MV MH Name N M K L MV MH Name N M K L MV MH

FL_1 16 16 6 4 5 10 CR_2 32 13 7 3 0 12 SM_3 49 10 6 3 7 2
AZ_3 10 11 5 3 8 2 CR_1 82 44 5 4 4 39 SM_1 171 47 6 4 36 10
AZ_2 25 12 5 3 9 2 PT_1 38 22 6 5 0 21 CA_2 77 34 6 5 2 31
AZ_1 32 27 5 3 0 26 AI_1 37 22 7 4 5 16 AG_2 19 19 7 5 0 18
LS_1 26 5 8 2 0 4 AI_3 41 27 9 5 4 22 AG_1 39 6 7 2 5 0
VG_3 7 4 7 2 0 3 AI_4 47 24 9 4 7 16 AG_4 85 32 5 4 10 21
VG_2 19 18 6 4 2 15 AI_2 47 17 7 3 3 13 AG_3 113 24 8 4 17 6
VG_4 28 15 6 3 2 12 VN_1 45 32 6 3 0 31 AB_1 28 14 8 3 0 13
VG_5 42 17 6 4 10 6 SP_1 49 15 7 4 6 8 AB_2 160 42 8 4 0 41
VG_1 60 29 8 4 0 28 OM_3 22 16 5 4 2 13 VV_2 84 3 5 2 2 0
CP_2 8 11 6 3 0 10 OM_1 54 41 5 4 6 34 VV_1 121 9 5 2 8 0
CP_1 24 18 5 3 5 12 OM_2 78 17 6 3 0 16 LO_2 15 4 5 2 0 3
CP_4 47 29 8 3 28 0 LC_1 46 21 6 4 4 16 LO_1 206 128 7 3 122 5
CP_3 51 27 6 5 21 5 LC_2 59 25 6 3 4 20 BH_1 108 25 7 3 0 24
CR_6 16 8 5 2 0 7 SM_6 19 7 6 3 4 2 BH_2 131 26 5 4 17 8
CR_5 19 10 5 3 0 9 SM_2 31 8 6 3 5 2 CH_1 190 99 6 4 15 83
CR_4 22 14 5 3 0 13 SM_4 34 11 6 3 8 2 BC_1 239 121 6 5 10 110
CR_3 25 11 5 3 0 10 SM_5 38 10 6 3 7 2 DE_1 240 45 8 4 40 4

N - Number of Products, M - Number of Family Blocks, K - Number of Shelves, L - Number of Hierarchical Levels,
MV - Number of Vertical Blocks, MH - Number of Horizontal Blocks
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3.6.2 Model Validation and Performance Evaluation

The model analysis will firstly focus on the validation of the practical constraints by an-
alyzing one of the instances in three different scenarios: (1) the first scenario does not
consider family blocks. For that purpose,M was replaced in all instances by a single block
containing all the products:M = {1},N1 =N ; (2) the second scenario considers the family
blocks without the shapes’ direction, i.e. S H = {} and S V = {}; (3) and the third scenario
considers the blocks to their full extent. Secondly, the performance of the formulation will
be assessed. Although there is no comparable formulation in the literature, we have adapted
Russell and Urban [2010] formulation (RU), which is, to the best of our knowledge, the
only formulation present in the literature that also considers continuous location decisions,
and have compared the results achieved by the two formulations. Appendix 3.A presents
all the details about this adapted formulation.

Figure 3.5 presents the planogram obtained for one of the smallest instances, AZ_3,
in each of the three scenarios. The results were obtained using the IBM ILOG CPLEX
Optimization Studio to run the monolithic model BAP until optimality. AZ_3 contains 10
products organized into two levels of product families, the first one being horizontal and
the second one vertical. Each planogram is firstly highlighted by the families of level 1,
secondly by the families of level 2, and lastly by the products. By analyzing Scenario 1,
it is possible to see that the products with the highest profits were on the highest shelves
and reaching the maximum number of facings, while the lowest profit products were on
the lowest shelves and with the minimum number of facings. This allocation is in ac-
cordance with the objective function and resulted in the highest objective function value
among the three scenarios (71751.4, 71749.4 and 70535.7 respectively). However, the re-
sulting planogram does not follow any implementation logic, which may make the search
for the products in the stores difficult, specially when the size of the planogram increases.
In Scenario 2, which already organizes the products by product families, the blocks with
the highest average profit are also pushed to the top, although they might include prod-
ucts with low profit. The objective function is lower than the one of the first scenario,
but the families bring a better understanding of the planogram. Finally, by including the
shapes’ direction in Scenario 3, we obtain the lowest objective function value but with a
clear identification of the allocation rules. Moreover, this new feature brings more realism,
providing shelf space layouts similar to what is seen in practice. This analysis demon-
strates that, even though the objective function decreases with the new features, benefits
are obtained by organizing products into families. These benefits are hard to grasp in the
model as they are linked to the customers’ response to the complexity of the planograms
and to the way costumers search for the products while shopping. However, merchandising
rules have been and are carefully studied by marketeers and the gains obtained by taking
these rules into consideration are supposed to overcompensate the decreasing values in the
objective function.

Table 3.2 summarizes the results obtained for all the instances in the three scenarios
and the two formulations (BAP and RU). The detailed information is presented in Table 3.4
from Appendix 3.B. For each instance, we provide information about the linear relaxation
(Zlr), best integer solution found (Z), total execution time in seconds (T ) and the deviation
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Figure 3.5 – Solution Analysis of instance AZ_3 in the three scenarios
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of the best integer solution found from the best upper bound available at the stopping
criteria (GAP). The models were implemented using the IBM ILOG CPLEX Optimization
Studio and a time limit of 3600 seconds was used as stopping criteria. As the vertical
shapes are common and can easily lead to infeasible solutions if the capacity is tight for the
products’ lower bound, the vertical shape constraints were considered soft constraints (in
both formulations) by introducing a new decision variable Rmk that equals 1 if the constraint
associated with block m and shelf k is violated. In that case, the following penalty P is
subtracted from the objective function:

P =
∑
i∈N

∑
k∈K

pi ·γk ·ui (3.45)

Table 3.2 – Summary of results for the two formulations BAP and RU in the three scenarios

Scenario 1 Scenario 2 Scenario 3

BAP RU BAP RU BAP RU

# Feasible solutions 25 38 39 26 44(4∗) 30 (0∗)
# Optimal solutions 5 8 9 8 22 17
# Better solutions 0 32 22 3 22 4
# GAP < 1% 10 27 19 13 30 23
# Average GAP (%) 3.9 2.9 2.5 2.3 2.2∗∗ 2.5∗∗

Average time for optimal solutions∗∗∗ (sec) 576.8 60.6 699.9 782.7 129.8 189.3
∗ # instances violating at least one vertical shape’s direction (Z < 0); ∗∗ Instances with Z < 0 were
not considered; ∗∗∗ Considering only instances in which both models obtained optimal solutions.

In the third scenario, it was possible to find feasible solutions within the time limit for
44 instances (4 of those instances violated at least one vertical shape’s direction). Out of
these instances, 22 were solved until proving optimality and 8 ended within at most 1%
from the optimal solution. Interestingly, as the new constraints are introduced into the
model, the execution times decrease 6.1% from the first to the second scenario and 35.4%
to the third. In accordance, the number of feasible (and optimal) solutions increases by
14 (and 5) from the first to the second scenario, and by 4 (and 15) to the third. Neverthe-
less, one hour is still a prohibitive amount of time to obtain solutions in practice and 10
instances (15 in Scenario 2) still need to be solved. This motivated the development of a
mathematical programming based heuristic whose computational study is presented in the
next section.

When comparing our formulation to the adapted version of Russell and Urban [2010]
(Appendix 3.A), we were able to outperform the latter in the last two scenarios, both in
the number of feasible and optimal solutions. In Scenario 2 we obtained more 13 feasible
and 1 optimal solutions and in Scenario 3 we obtained more 14 feasible and 5 optimal
solutions. Additionally, it also took less time in the instances where both approaches ob-
tained provably optimal solutions: 9% less in the second scenario and 31% less in the third.
However, when looking at the first scenario, Russell and Urban [2010] were able to find
a further 13 feasible and 3 optimal solutions and took less 89% of the time to solve the
instances where both approaches obtained provably optimal solutions. As our formulation
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was developed to take advantage of the blocks’ hierarchy, it was not expected to perform
as well as Russel’s in this scenario.

3.6.3 Solution Approach Computational Results

We tested the H-BAP matheuristic and its two extensions, Improving Feasibility (H-BAP-
IF) and Improving Efficiency (H-BAP-IE), in all instances using both Scenario 2 and Sce-
nario 3. Scenario 1 was not tested as the matheuristic is based on the natural partition of
the products in family blocks which were not considered in this scenario.

The matheuristic was implemented in C++ and compiled using a gcc compiler. The
formulation was embedded in the code and the resulting sub-problems were solved with the
CPLEX library for C++. For each sub-problem subBAPl, a time limit was defined accord-
ing to the level and number of blocks in the integer set GI

l . The overall matheuristic time
was limited to 3600 seconds, and whenever a sub-problem stopped before its time limit,
the remaining time was used in the subsequent sub-problems. The downstream level of the
Improving Efficiency extension was solved using the adapted Russel and Urban’s formu-
lation (at this level, with no family blocks). All sequencing variables Ti j were previously
fixed by decreasing order of sales. The reason why a common knapsack formulation was
not used is because it was necessary to align each product across its assigned shelves. The
vertical shapes’ constraints were also considered soft constraints.

Table 3.3 summarizes the results obtained with the matheuristic and compares them
with the plain resolution of the same formulation (BAP) by CPLEX. The detailed informa-
tion is presented in Table 3.5 of Appendix 3.B. For each instance, we provide information
about the best integer solution found (Z), the total execution time in seconds (T ) and the
deviation of the best integer solution from the best upper bound available (taken from the
previous section) (GAP).

The performance profiles from Figures 3.6 (for Scenario 2) and 3.7(for Scenario 3)
further explore the comparison between the four approaches by presenting cumulative dis-
tribution functions for two performance metrics: execution times and solution quality (for
additional information about performance profiles, please see Dolan and Moré [2002]).
Each approach is represented by a curve where each point (τ,ρ) means that the execution
times of that approach took at most τ times more than the execution times of the fastest
approach (or the solution is within a factor of τ from the best integer solution found), in
100ρ% of the instances. For example, in Scenario 2, the approach H-BAP has a better
objective function value on 30% of the instances (τ = 0,ρ = 0.30), is within 10% of the best
solution in 76% of the cases (τ = 1.1,ρ = 0.76) and solves a total of 78% of the instances
(τ→∞,ρ = 0.78). To build the graphs, we used all the 54 instances and whenever we had
an instance with no integer solution found, infeasible or violating the shapes’ direction we
assumed that it was within an infinite distance from the best solution.

With regard to the H-BAP matheuristic (without extensions), and comparatively to the
BAP formulation, it was possible to improve the results in two directions: the number of
feasible solutions was increased (by 3 and 4 in the second and third scenario, respectively)
and the running times were reduced (by 73% and 72%). The results were obtained without
compromising the quality of the solution whose GAP increased on average 1.7% in Sce-
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Table 3.3 – Summary of results for the H-BAP matheuristic and its extensions using Sce-
nario 2 and Scenario 3

Scenario 2 Scenario 3

BAP H-BAP H-BAP-IF H-BAP-IE BAP H-BAP H-BAP-IF H-BAP-IE

# Feasible solutions 39 42 49 52 44(4∗) 48(6∗) 54(7∗) 53(4∗)
# Optimal solutions 9 2 2 1 22 11 13 5
# Better solutions – 7 8 3 – 11 12 6
Average GAP (%)∗∗ 2.5 4.2 4.8 8.2 2.2 3.0 2.8 4.4
Average time (sec)∗∗ 3154.9 750.3 866.4 184.8 2249.9 559.6 517.6 105.5
Avg.deviation to BAP (%) ∗∗ – -2.2 -2.4 -6.5 – -0.2 0.1 -1.5
∗#instances violating at least one vertical shape’s direction (Z<0); ∗∗Instances with Z<0 were not considered.
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Figure 3.6 – Performance profile of Scenario 2 using computational times (on the left side)
and solution quality (on the right side) as performance measures
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and solution quality (on the right side) as performance measures
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nario 2 and 0.8% in Scenario 3, with a distance of 2.2% and 0.2% to the BAP solutions. The
performance profiles further prove these findings. 70% of the instances are solved within
at most 1% from the best solution in the third scenario, and 5% in the second. Moreover,
in Scenario 3, H-BAP has a performance similar to BAP, with the advantage of generating
feasible solutions for a higher number of instances.

The Improving Feasibility (H-BAP-IF) extension made it possible to obtain feasible
solutions for the instances that were infeasible in the H-BAP matheuristic. As a result, the
number of solutions increased by 7 in the second scenario, and all instances were solved in
third scenario. Both the execution times and the quality of the solution remained similar for
the instances that were already feasible before, as confirmed in the performance profiles,
that present similar patterns. Moreover, H-BAP-IF dominates both H-BAP and BAP in
Scenario 3: the solution quality performance profile for this approach lies above the other
two for all performance ratios. The performance profiles also show an execution time
overhead caused by the backtracking scheme.

The Improving Efficiency (H-BAP-IE) extension explores a trade-off between the exe-
cution times and the quality of the solution. An additional reduction of 79% (Scenario 2)
and 80% (Scenario 3) was obtained in the execution times by sacrificing 3.2% and 1.6%
of the average GAP. This trade-off is also visible in the performance profiles, as the curves
from H-BAP-IE start with the lowest percentage of intances close to the best solution. In
70% of the intances the solution is within 7% (Scenario 2) and 4% (Scenario 3) from the
best solution, still the highest figures among the different heuristics. On the other hand, the
execution times are substantially better, dominating all other approaches.

3.7. Conclusions

This paper presents a novel and realistic mixed integer programming formulation for the
Shelf Space Allocation Problem with location decisions and a new practical constraint im-
posed to product families: the shapes’ direction. The novelty in the formulation comes
from introducing single commodity flow constraints to model product sequencing and ex-
ploring product families to reduce the combinatorial nature of the problem. Based on
the formulation, a mathematical programming-based heuristic was also developed that ex-
plores the hierarchy present in the product families to decompose the problem into a se-
quence of sub-problems. To improve the matheuristic’s performance, its original design
was adapted following two directions: recovery from infeasible solutions (improving fea-
sibility) and reduction of solution times (improving efficiency). We also provide a set of
real case benchmark instances for the shelf space allocation problem with location de-
cisions which was used to assess the formulation and matheuristic and will allow future
research in this area.

We proved the validity of the real-world features by analyzing a concrete example and
by showing its impact on the solution. Three different scenarios were used for this pur-
pose: in the first scenario no product families were considered; in the second scenario
product families did not have shapes’ direction; and lastly, in the third scenario, product
families were fully considered. The scenario analysis showed that, even though the ob-



64
Chapter 3. Allocating Products on Shelves under Merchandising Rules: Multi-level

Product Families with Display Directions

jective function decreases with the new features, benefits are obtained with a more clever
product arrangement on the shelves. However, these benefits are hard to grasp in the model
as they are linked to the customers’ response to the complexity of the planograms and to
the way customers search for the products while shopping. The example also made clear
that it is important to define good lower and upper bounds for the number of product fac-
ings, by ensuring that the lower bounds define satisfactory quantities for the products (in
accordance with replenishment policies to avoid stockouts) and the upper bounds take into
consideration the products’ shelf life and holding costs. This importance is stressed due to
the use of a linear profit function in the novel formulation. Moreover, the example showed
(in line with the computational experiments) that introducing the new features made the
problem easier to solve.

Extensive computational tests were performed on both the formulation and the matheuris-
tic. The formulation was able to find feasible solutions within a time limit of one hour for
44 out of 54 instances (50% of them were solved to optimality). However, as the instance
size increases using an exact approach such as branch-and-cut on the formulation fails
to generate feasible solutions. The matheuristic improved these results in two directions:
it was able to solve a higher number of instances and decreased running times by over
70%. The results were obtained with a limited impact on the quality of the solutions. The
matheuristic’s Improving Efficiency extension further explored a trade-off between the ex-
ecution times and the solution quality. For the scenario with shape’s direction, execution
times were on average below 120 seconds and within 1.5% of the best known solution.

The proposed formulation (BAP) was also compared to an adapted version of the for-
mulation present in Russell and Urban [2010]. In the presence of product families the
new formulation outperformed the state-of-the-art both in terms of feasible (and optimal)
solutions and execution times. This proves that the model was successful in taking advan-
tage of the product families and in considering commodity based constraints for subtour
elimination.

We identify the following interesting topics of future research. The solutions generated
using any SSA model strongly depend on the assortment and merchandising rules defined
previously. Both the literature and practice of retail shelf space would benefit from an inte-
gration of those decisions and a sensitivity analysis on the impact of the upstream decisions
in shelf space plans. From an algorithmic perspective, an improving heuristic on top of the
existing solution approach could further increase the quality of the solutions with limited
impact on the execution times.
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within Smart Manufacturing and Logistics [Project NORTE-07-0124-FEDER-000057].

Appendix 3.A Adapted Formulation from Russel and Urban

This section presents an adapted version of the formulation by Russell and Urban [2010],
according to the Shelf Space Allocation Problem as described in section 3.3. The notation
presented in that section is used again.

The key difference of this adapted version is the possibility of placing the same product
on more than one shelf, and its alignment across shelves whenever that happens. To take
advantage of the existing alignment constraints, we considered the products as single prod-
uct family blocks, which are interchangeably represented by index i or m. Additionally,
products may occupy a length greater than its number of facings, giving more freedom to
the block alignment process (the alignment process becomes difficult when the widths of
the products are not compatible). In accordance, consider the following decision variables:

Wik the integer number of facings from product i ∈ N on shelf k ∈ K ,

Lik shelf length assigned to product i ∈ N on shelf k ∈ K ,

Ymk = 1 if block m ∈ V is located on shelf k ∈ K ,

Xs
m(Xe

m) the horizontal location of the block m ∈ V - left (right) coordinate,

Ti j = 1 if product j is located to the left of product i, i, j ∈ N ,

FLm(LLm)first (last) shelf of block m ∈ V.

The formulation is presented next, divided again into three parts: allocation, sequenc-
ing and family grouping constraints. The objective function and allocation constraints are
the following:

Maximize
∑
i∈N

∑
k∈K

pi ·γk ·Wik (3.46)

Subject to:
∑
k∈K

Wik ≤ ui, ∀ i ∈ N (3.47)∑
k∈K

Wik ≥ li, ∀ i ∈ N (3.48)

ai ·Wik ≤ Lik, ∀ i ∈ N , k ∈ K (3.49)∑
i∈N

Lik ≤ wk, ∀k ∈ K (3.50)

Wik = 0, ∀ i ∈ N, k ∈ K : bi ≤ hk (3.51)

Wik ∈ N0, ∀ i ∈ N , k ∈ K (3.52)

Lik ≤ 0, ∀ i ∈ N , k ∈ K (3.53)

Both the objective function and allocation constraints are similar to the proposed formu-
lation. The objective function maximizes the profit of the planogram in accordance with
the number of facings that each product has on each shelf. The maximum and minimum
number of facings are maintained with constraints (3.47) and (3.48). Constraints (3.49) en-
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sure that the length allocated to each product on each shelf is enough for the corresponding
number of facings, and constraints (3.50) ensure that the total length allocated to each shelf
does not exceed its capacity. Constraints (3.52) ensure that the products do not exceed the
height of the shelves.

To guarantee that there is no physical overlap between the products, the formulation
includes:

Lik ≤ wk ·Yik, ∀ i ∈ N (3.54)

Xs
ik ≥ 0, ∀ i ∈ N , k ∈ K (3.55)

Xs
ik ≤ wk −ai ·Wik, ∀ i ∈ N , k ∈ K (3.56)

Xs
ik ≤ Xs

jk + L jk −wk ·Ti j−wk · (2−Yik −Y jk), ∀ i, j ∈ N : i , j, k ∈ K (3.57)

Ti j + T ji = 1, ∀ i, j ∈ N : i < j, k ∈ K (3.58)

Ti j ∈ {0,1}, ∀ i, j ∈ N (3.59)

Constraints (3.54) relate variables L and Y: a product can only have length within the
shelves it was assigned to. The limits of the shelves are imposed by constraints (3.55) and
(3.56). Constraints (3.57) define the product sequencing by ensuring that the left coordinate
of product i is to the right of the right coordinate of product j, unless product i is to the left
of product j, or both products are on different shelves. Constraints (3.58) guarantees that
a product is either to the left or to the right of another product. The sequencing part of the
formulation is one of the key differences for the formulation proposed in this paper, which
takes advantage of the family blocks to reduce the combinatorial nature of Ti j.

Finally, product families are kept in rectangular and continuous blocks through the
following constraints:

Ymk ≤
∑
i∈Nm

Yik, ∀m ∈ V, k ∈ K (3.60)

Ymk ≥ Yik, ∀m ∈ V, i ∈ Nm, k ∈ K (3.61)

Xs
mk ≤ Xs

ik + wk · (1−Yik), ∀m ∈ V, i ∈ Nm, k ∈ K (3.62)

Xe
mk ≥ Xe

ik + Li j−wk · (1−Yik), ∀m ∈ V, i ∈ Nm, k ∈ K (3.63)

Xe
mk −Xs

mk =
∑
i∈Nm

Lik, ∀m ∈ V, k ∈ K (3.64)

FLm ≤ K − (K − k) ·Ymk, ∀m ∈ V,k ∈ K (3.65)

LLm ≥ k ·Ymk, ∀m ∈ V,k ∈ K (3.66)

LLm−FLm =
∑
k∈K

Ymk −1, ∀m ∈ V (3.67)

LLm ≥ FLm, ∀m ∈ V (3.68)

Xs
m,k+1−Xs

mk ≤ v + wk · (2−Ymk −Ym,k+1), ∀m ∈ V, k ∈ K : k < K (3.69)

Xs
mk −Xs

m,k+1 ≤ v + wk · (2−Ymk −Ym,k+1), ∀m ∈ V, k ∈ K : k < K (3.70)

Xe
m,k+1−Xe

mk ≤ v + wk · (2−Ymk −Ym,k+1), ∀m ∈ V, k ∈ K : k < K (3.71)

Xe
mk −Xe

m,k+1 ≤ v + wk · (2−Ymk −Ym,k+1), ∀m ∈ V, k ∈ K : k < K (3.72)
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Xs
mk,X

e
mk ≤ 0, ∀m ∈ V, k ∈ K (3.73)

Ymk ∈ {0,1}, ∀m ∈ V, k ∈ K (3.74)

FLm,LLm ∈ N0, ∀m ∈ V (3.75)

Constraints (3.60) and (3.61) associate the families’ placement on the shelves with the
products’ placement, while constraints (3.62)-(3.64) define the family blocks’ left and right
coordinates in accordance with the products’ coordinates. The blocks’ vertical adjacency
is ensured by constraints (3.65)-(3.68), and the horizontal adjacency by (3.69)-(3.72). Con-
straints (3.34) and (3.35) from section 3.4.3, pertaining to the novel display direction fea-
ture, were additionally added to the formulation.

Appendix 3.B Result Tables

This section presents the detailed results obtained for all the instances present in section
3.6.1. Table 3.4 contains the results using both the BAP and RU formulations in the three
scenarios. For each instance, we provide information about the linear relaxation (Zlr), best
integer solution found (Z), total execution time in seconds (T ) and the deviation of the best
integer solution found from the best upper bound available at the stopping criteria (GAP).
Note that Z is defined in equation (3.1) and additionally includes a penalty P defined in
(3.45) whenever a shape’s vertical direction is violated. This penalty explains the negative
values in some instances. The results are further explained in section 3.6.2.

Table 3.5 contains the results obtained using the H-BAP matheuristic and its extensions
in the last two scenarios. For each instance, we provide information about the best integer
solution found (Z), the total execution time in seconds (T ) and the deviation of the best
integer solution from the best upper bound available (taken from the previous section)
(GAP). The results are explained in section 3.6.
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Table 3.4 – Model Validation and Performance Results

Instance
Name

Scenario 1 Scenario 2 Scenario 3

Zlr Z T (s) GAP(%) Zlr Z T (s) GAP(%) Zlr Z T (s) GAP(%)

BAP RU BAP RU BAP RU BAP RU BAP RU BAP RU BAP RU BAP RU BAP RU BAP RU BAP RU BAP RU

FL_1 10183.5 10183.5 10089.1 10089.1 2290 259 0.0 0.0 10178.4 10181.9 9927.5 9927.5 31 79 0.0 0.0 10112.4 10181.9 9761.0 9761.0 18 30 0.0 0.0
AZ_3 71751.4 71751.4 71399.8 71399.8 13 5 0.0 0.0 71749.4 71751.2 70875.1 70875.1 1 7 0.0 0.0 70535.7 71750.8 64203.2 64203.2 2 3 0.0 0.0
AZ_2 52398.2 52398.2 52268.0 52340.0 Tl T l 0.2 0.0 52376.8 52390.1 51695.4 51695.4 1090 1431 0.0 0.0 52107.9 52375.9 51107.5 51040.4 Tl T l 0.2 0.7
AZ_1 4936.2 4936.2 4885.2 4919.4 Tl T l 0.8 0.1 4934.3 4935.4 4819.5 4829.7 Tl T l 0.6 0.5 4934.3 4935.4 4746.4 4746.4 255 96 0.0 0.0
LS_1 7393.2 7393.2 6969.1 7302.3 Tl T l 5.7 1.2 7393.2 7393.0 7166.7 7147.1 Tl T l 2.1 2.5 7393.2 7392.8 7124.2 7124.2 Tl T l 0.3 0.2
VG_3 18904.2 18904.2 18718.2 18718.2 16 7 0.0 0.0 18902.1 18903.1 18062.3 18062.3 21 20 0.0 0.0 18901.9 18903.0 17431.5 17431.5 11 8 0.0 0.0
VG_2 141171.9 141171.9 134769.0 140226.8 Tl 58 4.0 0.0 141150.8 141169.8 138756.0 138756.0 Tl T l 0.2 0.3 140699.9 141169.5 135736.8 135736.8 29 58 0.0 0.0
VG_4 18013.3 18013.3 17826.3 17853.0 Tl T l 0.4 0.2 18013.3 18012.8 17231.2 17091.9 Tl T l 0.4 2.4 18006.0 18012.2 16040.5 16040.5 34 282 0.0 0.0
VG_5 70919.1 70919.1 ∗ 70729.2 Tl T l 0.2 70919.0 70912.7 69202.0 66490.9 Tl T l 1.7 5.7 69752.5 70893.6 68151.0 ∗ Tl T l 2.1
VG_1 11325.8 11325.8 ∗ ∗ Tl T l 11323.1 11325.2 ∗ ∗ Tl T l 11323.1 11325.2 10421.8 ∗ 1119 Tl 0.0
CP_2 782.8 782.8 760.1 760.1 8 3 0.0 0.0 782.8 782.8 690.2 690.2 12 9 0.0 0.0 782.8 782.8 690.2 690.2 1 2 0.0 0.0
CP_1 472.5 472.5 471.8 471.8 Tl 1329 0.0 0.0 472.5 472.5 463.3 465.2 Tl T l 1.8 1.1 472.3 472.5 453.6 453.6 152 63 0.0 0.0
CP_4 3278.5 3278.5 ∗ ∗ Tl T l 3278.5 3278.5 ∗ ∗ Tl T l 3167.3 3278.3 ∗ ∗ Tl T l

CP_3 10380.4 10380.4 ∗ 10369.0 Tl T l 0.1 10380.4 10380.0 10054.0 ∗ Tl T l 2.4 10082.7 10379.7 -355477.4 ∗ Tl T l 100.0
CR_6 718.4 718.4 619.6 625.3 Tl T l 11.2 6.0 718.4 718.4 617.9 617.9 3405 3594 0.0 0.0 718.4 718.4 608.3 608.3 7 9 0.0 0.0
CR_5 1162.7 1162.7 1003.1 1009.9 Tl T l 11.0 10.4 1162.6 1162.5 900.7 900.7 Tl T l 4.5 6.0 1162.6 1162.5 632.1 632.1 7 13 0.0 0.0
CR_4 571.6 571.6 561.1 562.6 Tl T l 1.3 0.7 571.6 571.5 536.2 536.2 Tl T l 1.0 0.0 571.6 571.5 442.6 442.6 43 59 0.0 0.0
CR_3 641.3 641.3 536.1 545.8 Tl T l 12.7 11.4 641.0 641.2 516.0 516.0 Tl T l 13.2 13.3 641.0 641.2 460.6 460.6 18 60 0.0 0.0
CR_2 1017.3 1017.3 996.0 1006.4 Tl T l 2.0 0.8 1017.3 1017.3 975.4 852.0 Tl T l 2.9 15.1 1017.3 1017.3 872.2 872.2 1034 1616 0.0 0.0
CR_1 3801.5 3801.5 ∗ ∗ Tl T l 3801.5 3800.7 3395.2 ∗ Tl T l 8.9 3762.7 3798.5 3124.6 ∗ Tl T l 8.1
PT_1 90096.2 90096.2 60866.3 66477.9 Tl T l 8.5 0.0 90074.2 90091.9 62304.6 62304.6 93 Tl 0.0 0.0 90074.2 90091.9 62034.9 62034.9 19 Tl 0.0 0.0
AI_1 4039.6 4039.6 3792.6 4007.8 Tl T l 6.1 0.7 4039.4 4039.3 3882.5 3854.2 Tl T l 1.3 2.1 3938.1 4039.0 3748.6 3736.3 Tl T l 4.7 4.8
AI_3 7100.5 7100.5 ∗ ∗ Tl T l 7100.3 7100.4 6437.2 ∗ Tl T l 9.1 7080.8 7100.4 6474.0 ∗ Tl T l 8.4
AI_4 20423.2 20423.2 ∗ 20328.3 Tl T l 0.3 20422.6 20423.0 19758.3 ∗ Tl T l 2.1 20267.6 20422.4 19831.4 19528.2 Tl T l 0.8 3.0
AI_2 3234.7 3234.7 2939.6 3110.1 Tl T l 9.1 3.8 3234.3 3234.6 2790.6 ∗ Tl T l 12.8 3195.4 3234.4 2470.2 2120.6 Tl T l 22.2 33.3
VN_1 18270.0 18270.0 ∗ 18025.3 Tl T l 0.4 18269.9 18269.8 17571.4 ∗ Tl T l 0.5 18269.9 18269.8 15605.5 15605.5 216 Tl 0.0 0.2
SP_1 9761.4 9761.4 ∗ ∗ Tl T l 9761.4 9760.6 9591.0 ∗ Tl T l 0.7 9719.7 9759.0 9332.0 ∗ Tl T l 1.9
OM_3 527.7 527.7 502.1 503.9 Tl 1719 0.4 0.0 527.7 527.7 469.8 469.8 Tl T l 0.1 2.0 519.4 527.7 358.3 358.3 81 117 0.0 0.0
OM_1 983.3 983.3 ∗ 975.3 Tl T l 0.1 983.2 983.0 955.8 ∗ Tl T l 1.8 938.3 982.6 -24368.6 891.1 Tl T l 100.0 3.1
OM_2 299.5 299.5 ∗ ∗ Tl T l 299.5 299.5 ∗ ∗ Tl T l 299.5 299.5 259.1 ∗ 716 Tl 0.0
LC_1 21061.9 21061.9 ∗ 21017.5 Tl T l 0.1 21061.6 21059.8 20349.3 20259.2 Tl T l 0.5 1.4 21061.5 21059.8 20281.9 20007.1 Tl T l 0.5 2.5
LC_2 8443.5 8443.5 ∗ 8062.3 Tl T l 4.5 8443.4 8443.0 7938.8 ∗ Tl T l 5.6 8410.7 8442.2 7626.1 6253.1 Tl T l 9.1 25.6
SM_6 17652.6 17652.6 17150.5 17296.3 Tl T l 1.3 0.4 17651.6 17652.1 16939.1 16939.1 3373 Tl 0.0 0.0 17646.6 17651.2 16784.5 16784.5 2019 Tl 0.0 1.6
SM_2 28455.5 28455.5 27131.5 28282.4 Tl T l 4.2 0.1 28446.4 28454.1 28066.7 28067.5 Tl T l 0.5 0.4 28394.2 28453.9 27804.1 27665.3 Tl T l 0.3 1.0
SM_4 22976.6 22976.6 ∗ 22845.4 Tl T l 0.2 22971.3 22975.2 22481.3 22369.4 Tl T l 0.8 1.6 22926.9 22972.8 22303.1 22302.8 Tl T l 0.4 0.3
SM_5 10765.4 10765.4 9655.4 10693.8 Tl T l 10.2 0.4 10764.7 10765.1 10455.5 ∗ Tl T l 0.9 10734.4 10764.8 10246.5 ∗ Tl T l 0.4
SM_3 58355.6 58355.6 ∗ 57268.3 Tl T l 1.2 58345.3 58355.2 53897.1 ∗ Tl T l 5.9 57901.9 58351.9 53382.4 ∗ Tl T l 6.9
SM_1 136291.7 136291.6 ∗ ∗ Tl T l 136291.7 136278.5 ∗ ∗ Tl T l 135908.5 136266.4 ∗ ∗ Tl T l

CA_2 290.6 290.6 ∗ ∗ Tl T l 290.6 290.6 ∗ ∗ Tl T l 290.4 290.6 243.2 ∗ Tl T l 7.7
AG_2 2540.4 2540.4 2472.0 2504.0 Tl T l 2.6 1.2 2539.9 2540.3 2381.1 2372.2 Tl T l 2.7 3.7 2539.9 2540.3 2154.0 2154.0 54 138 0.0 0.0
AG_1 2743.8 2743.8 ∗ 2725.7 Tl T l 0.6 2743.8 2743.8 2559.9 ∗ Tl T l 5.9 2730.3 2743.7 -142247.9 ∗ Tl T l 100.0
AG_4 5909.1 5909.1 ∗ 5812.7 Tl T l 1.6 5909.1 5908.7 5603.0 ∗ Tl T l 3.9 5762.3 5908.5 -148264.8 ∗ Tl T l 100.0
AG_3 33623.9 33623.9 ∗ ∗ Tl T l 33623.3 33622.4 ∗ ∗ Tl T l 33598.4 33622.4 ∗ ∗ Tl T l
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Instance
Name

Scenario 1 Scenario 2 Scenario 3

Zlr Z T (s) GAP(%) Zlr Z T (s) GAP(%) Zlr Z T (s) GAP(%)

BAP RU BAP RU BAP RU BAP RU BAP RU BAP RU BAP RU BAP RU BAP RU BAP RU BAP RU BAP RU

AB_1 538.7 538.7 510.9 531.2 Tl T l 5.0 1.1 538.5 538.7 523.3 522.7 Tl T l 1.7 1.9 538.5 538.7 500.7 500.7 377 627 0.0 0.0
AB_2 7213.3 7213.3 ∗ ∗ Tl T l 7213.3 7213.2 ∗ ∗ Tl T l 7213.3 7213.2 6222.8 ∗ Tl T l 13.1
VV_2 3266.8 3266.8 ∗ 3258.4 Tl T l 0.1 3266.8 3266.4 ∗ ∗ Tl T l 3252.9 3266.3 ∗ ∗ Tl T l

VV_1 61951.0 61951.0 ∗ 22599.5 Tl T l 63.4 61951.0 61943.7 ∗ ∗ Tl T l 61016.7 61942.7 ∗ ∗ Tl T l

LO_2 69.1 69.1 68.3 68.3 557 29 0.0 0.0 69.1 69.1 65.8 65.8 339 339 0.0 0.0 69.1 69.1 51.3 51.3 84 37 0.0 0.0
LO_1 4343.3 4343.3 ∗ ∗ Tl T l 4343.3 4343.1 ∗ ∗ Tl T l 4343.3 4342.7 ∗ ∗ Tl T l

BH_1 42878.0 42878.0 ∗ ∗ Tl T l 42876.6 42875.7 ∗ ∗ Tl T l 42876.6 42875.3 40820.1 ∗ Tl T l 0.0
BH_2 77697.2 77697.2 ∗ ∗ Tl T l 77689.4 77673.4 ∗ ∗ Tl T l 74591.3 77661.5 ∗ ∗ Tl T l

CH_1 1367.9 1367.9 ∗ ∗ Tl T l 1367.9 1367.9 ∗ ∗ Tl T l 1361.2 1367.8 ∗ ∗ Tl T l

BC_1 66069.7 66069.7 ∗ ∗ Tl T l 66069.7 66065.4 ∗ ∗ Tl T l 65517.9 66057.6 ∗ ∗ Tl T l

DE_1 6720.9 6720.8 ∗ ∗ Tl T l 6720.9 6720.5 ∗ ∗ Tl T l 6719.7 6720.4 ∗ ∗ Tl T l

∗ No feasible solution was found.
Tl Time limit of 3600 s was reached.
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Table 3.5 – Solution Approach Results

Instance
Name

H-BAP H-BAP-IF H-BAP-IE

Scenario 2 Scenario 3 Scenario 2 Scenario 3 Scenario 2 Scenario 3

Z GAP(%) T(s) Z GAP(%) T(s) Z GAP(%) T(s) Z GAP(%) T(s) Z GAP(%) T(s) Z GAP(%) T(s)

FL_1 9708.7 2.2 2.1 9761.0 0.0 1.2 9708.7 2.2 2.1 9761.0 0.0 1.2 9645.0 2.9 1.0 9718.7 0.4 0.9
AZ_3 70875.2 0.0 0.6 64203.2 0.0 0.6 70875.2 0.0 0.6 64203.2 0.0 0.6 70287.5 0.8 0.4 61907.8 3.6 0.3
AZ_2 51416.1 0.6 19.3 50758.2 0.9 37.9 51416.1 0.6 19.2 50758.2 0.9 40.0 50968.1 1.4 3.0 50504.1 1.4 7.0
AZ_1 ∗ 1309.2 ∗ 4.1 4733.2 2.4 2406.9 4743.1 0.1 6.2 4587.4 5.4 860.3 4723.9 0.5 1.7
LS_1 ∗ 2359.7 7124.2 0.3 36.0 7115.8 2.8 2975.8 7124.2 0.3 36.0 7169.9 2.1 72.1 7118.7 0.4 2.9
VG_3 17649.1 2.3 1.3 17409.1 0.1 1.1 17649.1 2.3 1.5 17409.1 0.1 1.0 17000.0 5.9 0.4 16878.1 3.2 0.3
VG_2 133028.0 4.3 1.5 135737.0 0.0 1.7 133028.0 4.3 1.8 135737.0 0.0 1.8 131314.0 5.5 0.9 135265.0 0.4 0.9
VG_4 16940.4 2.1 7.4 16040.6 0.0 4.7 16940.4 2.1 7.3 16040.6 0.0 4.9 16485.2 4.7 3.1 16000.1 0.3 1.5
VG_5 68972.8 2.1 90.7 67996.4 2.3 321.1 68972.8 2.1 90.9 67996.4 2.3 324.8 68567.4 2.6 10.9 66622.1 4.3 22.7
VG_1 10870.6 3.1 579.8 10411.8 0.1 25.8 10870.6 3.1 607.3 10411.8 0.1 27.5 10041.4 10.5 49.0 10399.4 0.2 9.1
CP_2 690.2 0.0 0.3 690.2 0.0 0.2 690.2 0.0 0.3 690.2 0.0 0.3 690.2 0.0 0.4 690.2 0.0 0.2
CP_1 463.7 1.7 1177.7 453.6 0.0 42.6 461.4 2.2 1178.4 453.6 0.0 41.5 447.9 5.0 761.0 439.7 3.1 11.9
CP_4 3203.8 2.2 1159.1 -47366100.0 100.0 1158.5 3203.8 2.2 1159.4 -47366100.0 100.0 1158.3 3045.5 7.1 761.3 2638.0 15.0 302.2
CP_3 10204.6 1.0 102.2 -18659500.0 100.0 1176.4 10204.6 1.0 101.3 -18659500.0 100.0 1175.9 10045.8 2.5 34.3 -705417.0 100.0 842.4
CR_6 617.2 0.1 16.2 ∗ 5.6 617.2 0.1 14.3 608.3 0.0 31.7 483.6 21.7 7.4 541.2 11.0 0.2
CR_5 ∗ 3.9 632.1 0.0 0.7 843.5 10.6 1794.5 632.1 0.0 0.6 510.5 45.9 1.1 632.1 0.0 0.3
CR_4 493.5 8.9 2.7 442.6 0.0 1.4 493.5 8.9 2.5 442.6 0.0 1.4 492.2 9.1 1.1 442.6 0.0 0.8
CR_3 ∗ 10.6 460.6 0.0 0.8 469.5 21.1 1795.3 460.6 0.0 0.8 410.5 31.0 2.8 460.6 0.0 0.3
CR_2 ∗ 25.3 872.2 0.0 9.9 959.9 4.4 1805.5 872.2 0.0 9.3 918.6 8.6 74.2 872.2 0.0 2.2
CR_1 3255.0 12.7 127.7 3165.9 6.9 27.1 3255.0 12.7 117.7 3165.9 6.9 25.1 3181.1 14.6 37.3 3022.6 11.1 8.1
PT_1 ∗ 8.6 ∗ 1.7 54840.4 12.0 33.9 62035.0 0.0 2.3 54323.4 12.8 4.2 56182.9 9.4 1.0
AI_1 3762.4 4.4 134.0 3760.7 4.4 27.3 3762.4 4.4 139.8 3760.7 4.4 27.0 3702.1 5.9 20.5 3686.5 6.3 11.6
AI_3 6750.9 4.7 1176.7 6805.2 3.7 246.6 6750.9 4.7 1177.2 6805.2 3.7 225.1 6422.3 9.3 24.4 6465.4 8.5 39.1
AI_4 19444.4 3.7 203.8 19805.5 0.9 35.6 19444.4 3.7 209.7 19805.5 0.9 33.9 19122.0 5.3 7.8 19235.3 3.7 5.5
AI_2 ∗ 19.8 2616.8 17.5 26.0 2980.7 6.9 449.2 2616.8 17.5 24.8 2852.1 10.9 624.3 2598.6 18.1 9.1
VN_1 16800.0 4.9 25.4 ∗ 35.4 16800.0 4.9 25.6 15596.8 0.1 467.8 16703.8 5.4 15.2 15481.3 0.8 12.2
SP_1 9545.1 1.1 95.5 9321.3 2.1 1812.3 9545.1 1.1 95.0 9321.3 2.1 1811.1 9376.2 2.9 16.4 9216.7 3.2 4.5
OM_3 355.6 24.4 2.9 307.4 14.2 1.4 355.6 24.4 3.1 307.4 14.2 1.5 335.6 28.6 1.1 300.7 16.1 0.6
OM_1 962.0 1.1 65.5 889.8 3.6 214.1 962.0 1.1 67.1 889.8 3.6 214.6 918.3 5.6 25.8 795.7 13.8 35.5
OM_2 ∗ 3600.3 259.1 0.0 28.1 ∗ 3600.3 259.1 0.0 26.7 267.5 10.0 103.1 257.8 0.5 3.8
LC_1 19686.7 3.8 248.7 20276.0 0.5 7.6 19686.7 3.8 246.5 20276.0 0.5 7.6 19475.6 4.8 11.2 20184.8 1.0 1.7
LC_2 8018.9 4.7 533.9 7696.7 8.3 58.5 8018.9 4.7 533.9 7696.7 8.3 58.9 7226.3 14.1 25.7 7519.8 10.4 22.7
SM_6 16469.9 2.8 30.7 16469.9 1.9 30.2 16469.9 2.8 30.9 16469.9 1.9 30.2 16431.2 3.0 2.4 16431.2 2.1 2.1
SM_2 27393.9 2.9 45.8 27672.1 0.7 2020.6 27393.9 2.9 46.1 27672.1 0.7 2021.0 27115.2 3.9 7.2 27763.7 0.4 63.7
SM_4 22018.0 2.9 14.3 22156.8 1.0 23.1 22018.0 2.9 13.9 22156.8 1.0 23.1 21772.4 4.0 2.1 22098.1 1.3 1.8
SM_5 10394.6 1.5 35.6 10002.6 2.8 39.4 10394.6 1.5 35.8 10002.6 2.8 39.3 9704.5 8.0 2.1 10130.1 1.6 1.5
SM_3 54833.9 4.3 1818.2 54013.8 5.8 1686.9 54833.8 4.3 2279.9 54013.7 5.8 1502.0 54637.6 4.6 71.4 52799.9 7.9 82.4
SM_1 132377.0 2.7 3463.2 131061.0 2.8 3283.8 132541.0 2.6 2410.0 131207.0 2.7 2833.8 130469.0 4.1 257.5 129632.0 3.9 466.9
CA_2 ∗ 621.7 243.5 7.6 21.7 ∗ 3600.4 243.5 7.6 20.7 ∗ 2400.4 239.2 9.2 4.8
AG_2 2282.6 6.7 13.1 2132.8 1.0 1.9 2282.6 6.7 12.4 2132.8 1.0 1.9 2043.0 16.5 7.6 2132.8 1.0 0.7
AG_1 2550.4 6.3 2452.3 2558.7 5.0 2398.6 2575.7 5.3 2443.1 2558.8 4.9 2397.4 2399.4 11.8 165.8 2351.8 12.6 1071.1
AG_4 5720.9 1.9 837.3 5505.3 4.2 621.3 5720.9 1.9 838.5 5505.3 4.2 626.2 5559.1 4.7 61.2 5184.0 9.8 210.1
AG_3 32647.5 2.7 3272.7 32094.6 4.3 3285.5 32645.5 2.7 3348.7 32087.0 4.3 3271.9 31195.1 7.0 260.0 31793.4 5.2 140.0
AB_1 513.7 3.5 44.4 500.4 0.1 4.2 513.7 3.5 44.3 500.4 0.1 4.1 507.1 4.7 6.3 500.4 0.1 1.7
AB_2 ∗ 1165.2 ∗ 867.6 ∗ 3601.7 6944.2 3.0 980.5 6987.3 2.8 745.5 6953.4 2.9 92.2



3.B
.

R
esultTables

71

Instance
Name

H-BAP H-BAP-IF H-BAP-IE

Scenario 2 Scenario 3 Scenario 2 Scenario 3 Scenario 2 Scenario 3

Z GAP(%) T(s) Z GAP(%) T(s) Z GAP(%) T(s) Z GAP(%) T(s) Z GAP(%) T(s) Z GAP(%) T(s).

VV_2 3244.2 0.3 2529.1 3204.8 1.4 3600.8 3240.2 0.5 2529.5 3204.9 1.4 3600.8 3243.1 0.4 60.4 3230.3 0.6 120.3
VV_1 61597.9 0.1 1330.3 -69175900.0 100.0 1788.8 61597.9 0.1 1520.7 -69175900.0 100.0 1789.1 61596.8 0.1 19.1 60209.9 1.2 1972.9
LO_2 60.4 8.2 1495.2 51.3 0.0 32.7 60.4 8.2 1471.7 51.3 0.0 32.9 60.4 8.2 60.2 51.3 0.0 4.0
LO_1 ∗ 2871.4 -11239700.0 100.0 1574.3 ∗ 3602.3 -11239700.0 100.0 1561.0 ∗ 2400.9 -481437.0 100.0 906.0
BH_1 41637.1 1.9 1852.4 40807.2 0.1 73.8 41592.6 2.0 1856.3 40807.2 0.1 75.4 40791.4 3.9 1156.9 38246.0 6.4 198.0
BH_2 76362.3 1.0 2263.3 -218294000.0 100.0 653.6 76362.3 1.0 2272.3 -218294000.0 100.0 653.6 75697.2 1.8 438.8 73174.9 1.8 212.6
CH_1 1135.0 16.9 3601.6 -393847.0 100.0 1224.4 1147.9 16.0 3601.4 -393847.0 100.0 1202.6 1120.4 18.0 1079.6 -53232.5 100.0 743.9
BC_1 55736.7 15.5 636.7 51320.0 21.4 3407.1 55736.7 15.5 635.9 50416.3 22.8 3410.0 58771.4 10.8 460.2 ∗ 385.3
DE_1 ∗ 2964.4 ∗ 1904.8 ∗ 3601.7 -27167400.0 100.0 2725.2 6316.2 5.7 1182.6 -2249420.0 100.0 495.0
∗ No feasible solution was found.
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Chapter 4

Replicating Shelf Space Allocation Solutions
Across Retail Stores

Teresa Bianchi-Aguiar∗ · Maria Antónia Carravilla∗ · José F. Oliveira∗

Abstract Consumer-centric merchandising policies require store-specific shelf-space
planning to better account for local consumer demand. Nevertheless, the high number
of stores and the time spend developing merchandising plans force retailers to cluster the
stores, and develop generic shelf space plans. In this paper we introduce the novel problem
of transforming generic cluster-based shelf space plans into store-specific plans, a process
that is called Replication in this paper. Two mathematical programming formulations are
presented to address the Shelf Space Replication Problem, with different levels of practical
details. The formulations use a novel inventory-related objective function that balances
the products’ inventory level in order to trigger joint shelf replenishments. Based on the
formulations, a mathematical programming-based heuristic was also developed. Both ap-
proaches were tested using real data from a European Food Retailer that motivated this
project, proving their suitability for practical use.

Keywords Retail operations ·Shelf space allocation ·Replicating solutions ·Store-specific
planograms ·MIP-based heuristic

4.1. Introduction

In today’s increasing competitive environment, retailers strive for customer satisfaction and
operational efficiency, aiming to improve the stores’ financial performance. To achieve
such goal, retail organizations are moving towards demand driven initiatives, with the
lemma “every sale counts”, while trying to optimize their two most expensive resources:
space and inventory.

Shelf space planning is a mid-term operational planning activity that defines the allo-
cation of the products on the shelves for a period of 6-12 months. Two major goals are
associated with this activity: maximize selling space effectiveness and tighter inventory
control. As a matter of fact, marketing studies have long proved the positive influence of

∗INESC TEC and Faculty of Engineering, University of Porto, Porto, Portugal
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76 Chapter 4. Replicating Shelf Space Allocation Solutions Across Retail Stores

shelf space on stimulating consumer demand, highlighting the amount of space allocated to
the products (space elasticity) and specific locations, such as eye- and hand- level (Curhan
[1972], Drèze et al. [1994], Chandon et al. [2009]). On the inventory side, a loose inventory
control may increase the risk of stockouts and impose high restocking costs due to the need
for frequent replenishment.

Shelf space planning is performed using planograms, blueprints of the shelves where
retailers develop their merchandising plans. Planograms are usually created separately for
each category, whose space is determined before, at an upstream level. Each planogram
shows, for a specific category, the exact display location for each product and the number
of facings (i.e. visible items). The items behind the facings determine the product shelf
inventory.

To perform this activity, retailers are often assisted by space planning software systems.
These systems are large-scale data processing technologies that have powerful analysis re-
ports and automatic tools for product-to-shelf allocation. Nevertheless, many studies argue
that no “real” optimization takes places due to the limited or nonexistent use of mathe-
matical optimization, and because consumer demand effects are disregarded (Irion et al.
[2011], Hansen et al. [2010], Hübner and Kuhn [2012], Drèze et al. [1994], Desmet and
Renaudin [1998]). Moreover, the existing rules are simplistic and the automatically gener-
ated planograms are not suitable or very likely to receive significant manual adjustments.
Thus, generating planograms is still a time consuming activity - the industry standard for
creating a single planogram is around three hours (JDA [2009]).

The increasing number of stores turns store-specific planograms impractical, and re-
tailers usually cluster the stores based on demand and space patterns, generating a unique
planogram for each cluster. This results in average space plans that are distributed to all
the stores of the same cluster. However, current trends state that “One plan does not fit
all” because these cluster-based planograms do not balance regional differences, and do
not accurately represent consumer demands at a localized level.

In this project we worked with a European Grocery Retailer that generates an average
of 60,000 planograms a year for over 400 stores. The company has complex merchandising
rules for product allocation, which makes space planning a time consuming process, as it
is manually executed by a team of space managers. Similarly to common practice, stores
are grouped within clusters. A generic planogram is firstly created for each cluster and
later it is manually adjusted, following dispatching rules, in order to fit the space and sales
of each store. The goal of this project was to develop an approach that from the generic
planogram automatically generates these store-specific planograms, while optimizing shelf
inventory. From now on, we will call this process Planogram Replication and the generic
planogram Role Planogram. An example of a replication process is shown in Figure 4.1.
This paper presents the MIP model and the solution approach that have been successfully
used by the company during the replication process. Its use made it possible to reduce stock
levels, replenishment costs, and to reallocate the existing space team to manage categories
more efficiently, by focusing less on the role planogram replication, and more on category
analysis and market trends.

Replicating a generic planogram to a specific store mainly requires deciding how much
space to allocate to each product in the new space. This is a challenging and relevant
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Cluster A
Role Planogram

Store A.1

Store A.2
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Figure 4.1 – Example of a replication process, from role planogram A to stores A.1 and
A.2

problem for several reasons:

• To begin with, products are categorized as part of product families and, based on
these families, merchandising rules often specify associations of products on the
shelves, which should be kept in continuous rectangular shapes. Those rules depend
on the retailers’ strategy for each category, and therefore it is difficult to automat-
ically generate planograms that accommodate all the specific details of each cate-
gory, without any human interaction. By previously constructing a role planogram,
a single moment of validation and manual adjustments is necessary for each cluster.
Moreover, the replication process guarantees the standardization across the stores of
the cluster.

• Merchandising rules frequently define multiple layers of product families which cre-
ate many product alignments that need to be taken into consideration during the
replication process. For example, a planogram can be organized firstly by brand, and
secondly by format. Each brand, and each format within each brand, has a continu-
ous rectangular shape. While replicating this planogram, we have to maintain these
shapes. This fact makes it necessary to determine the exact location of products on
the shelves, and poses many constraints to product facings. By hand, this alignment
requires a trial and error facing allocation.

• Some planograms are not continuous from the beginning until the end, but instead
the shelves may have misalignments and interruptions (see Figure 4.3). This fact
poses additional constraints to product placement. Additionally, the way shelves are
placed on the role planogram is not necessarily the way how shelves are placed in all
stores. Consequently, replicating a planogram is not always a straightforward task
and requires some initial analysis.
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• Retailers have contracts with suppliers that commonly specify lower and upper bounds
for the amount of shelf space allocated to each brand (space share). This is an ad-
ditional requirement to take into consideration when determining product facings.
Bearing in mind that some planograms have over 200 products, adjusting product
facings to the stores’ space and demand variations is not an easy nor time efficient
task, and it can indeed benefit from specialized optimization methods.

The replication problem naturally falls into the Shelf Space Allocation Problems, which
already present a strong body of literature. These problems focus mainly on the demand
side, with complex polynomial profit functions that take into consideration the impact that
space variables have on consumer demand. The basic shelf space allocation problem con-
sists of maximizing profit by deciding how much space is required for each product, con-
sidering shelf capacity and lower and upper bound constraints for the products (Corstjens
and Doyle [1981], Zufryden [1986]). More recently, other features have been introduced,
such as the effects of product location on demand by Drèze et al. [1994], the use of a sim-
plified linear objective function by Yang and Chen [1999], and the organization of products
in families by Russell and Urban [2010]. Only the latter considers the exact location of the
products on the shelves. This problem is also often integrated with other retail problems,
such as assortment (Borin et al. [1994], Hübner and Kuhn [2011]) and pricing (Murray
et al. [2010]). Despite the recent advances towards more practical models, Bai [2005] and
Hübner and Kuhn [2012] still identify a misalignment.

The literature on shelf space allocation has focused less on the cost side of the prob-
lem, and most models do not explicitly consider inventory related decisions. Baker and
Urban [1988] presented the first model that considered the demand dependent on the in-
stantaneous inventory level of an item, based on the economic order quantity (EOQ) model.
Several authors propose extensions to this model, implicitly assuming that all the inventory
is displayed and has a direct impact on demand. Urban [1998] proposes the first attempt to
include shelf space allocation in the inventory decision-making process, in a comprehensive
model that integrates assortment, allocation and replenishment decisions. Other research
by Hwang et al. [2005] and Hariga et al. [2007] additionally consider the effect of location
on demand, and Abbott and Palekar [2008] includes replenishment costs but requires an
initial space assignment as input. Nevertheless, these models have practical limitations:
they consider continuous shelf replenishment operations from the backroom and determine
individual product replenishment policies while, in practice, replenishment activities are
not continuous but constrained to the shelf merchandisers available, and products usually
have joint delivery cycles from warehouses (Hübner and Kuhn [2012]). Moreover, these
inventory-related comprehensive models are only solved to optimality for a small number
of products and to the best of our knowledge, there is not any approach in this inventory
stream that tackles the existence of product families.

Our contributions are as follows. To the best of our knowledge, we are the first to
introduce the replication problem in the shelf space literature. Therefore, we are estab-
lishing a rich novel problem within shelf space allocation that considers many practical
requirements, including product families, minimum and maximum space shares and irreg-
ular shelf placements. Secondly, we present two mathematical programming formulations
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to this problem, with different levels of detail. The formulations use a novel inventory re-
lated objective function that is also a contribution from this paper. We do not determine
order quantities, but instead we balance the products’ inventory level in order to trigger
joint shelf replenishments. Finally, we present a MIP based approach to ensure fast solu-
tions in practice.

The remainder of the paper has the following structure. Section 4.2 formally describes
the replication process and introduces the notation used in the remainder of the paper.
Section 4.3 starts by describing the novel inventory related objective function, and then
proposes two formulations for the new Shelf Space Replication Problem. Based on the
formulations, section 4.4 describes a MIP based heuristic for the problem. This section
also describes the practitioners’ heuristic that inspired this work. Section 4.5 describes a
computational study and section 4.6 draws conclusions.

4.2. Problem Description

The Replication Process consists of generating store-specific planograms for all stores of a
cluster for which a role planogram has been previously generated. We assume that the role
planogram conforms to all the necessary merchandising rules, and takes into consideration
the space effects on consumer demand. Our objective is to create new planograms by
adjusting the role planogram to fit the space and sales of all the stores, while keeping
the rules present in the role planogram. Hence, the replication process focuses more on
inventory control and less on maximizing space effectiveness.

When analyzing shelf inventory, a common metric used in practice is the days-supply,
which measures the number of demand days covered by the shelf stock. This operational
metric is also used to estimate the maximum number of days between two consecutive
shelf replenishment operations. Additionally, if the retailer wants to reduce the backroom
inventory, it can also be used to specify ordering policies. By assuming that Di is the daily
demand of product i, and S i is the total shelf inventory, the resulting days-supply value, Ri,
is obtained by equation (4.1).

Ri =
S i

Di
(4.1)

Bearing in mind the expensive handling costs, the stores’ limited resources that impose
constraints to shelf replenishment, and the fact that products normally have joint delivery
cycles from central warehouses, we consider the objective of balancing days-supply values
across the products of each new planogram. By having all products covered for a similar
number of days, we decrease the number of shelf replenishment operations, control the
stock level for long-tale products, prevent stockouts for fast moving products, and we give
the possibility of reducing backroom inventory (determined at a later stage, when selecting
the inventory policy). Moreover, we meet common practices and evaluation metrics.

Because the space has a direct impact on consumer demand, we consider that the daily
demand Di is dependent on two factors: the visible inventory, i.e. the number of facings,
and the shelves where the product is located. Cross-elasticities and horizontal effects are
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disregarded as cross-elasticities have parameters which are difficult to estimate in practice,
and the horizontal effects have a lower impact on demand (according to Drèze et al. [1994]).

Despite the operational gains that balancing days-supply brings, merchandising rules
are essential to give a meaningfully organization to the display, having a direct impact on
the planograms’ profitability. This is what the role planogram is used for. Therefore, the
replication process is constrained to keep the rules in the role planogram, in particular:

• products should keep the same relative position as in the role planogram. For that
purpose, products from the same shelf level should be placed at the same shelf level
and with the same sequence.

• product families should keep their continuous rectangular shapes. The shapes’ con-
tinuity within each shelf is already ensured by keeping the same sequence. The
rectangular shape is obtained by vertically aligning the first and the last product of
the shape on each shelf. Note that retailers may have exceptions to the rectangular
shapes and one family can have more than two product alignments (for example,
‘L” shapes have 3 alignments). Moreover, planograms usually have multi-levels of
product families, resulting in a high number of alignments. Each product may also
belong to more than one alignment.

Figure 4.2 presents an example of a role planogram, with 17 products and 3 product
families. The new planograms have to keep products A.1−A.4, B.1 and C.1−C.2 on the
first shelf level, products A.5−A.7 and B.2 on the second shelf, and products A.8−A.9, B.3
and C.3−C.5 on the third. For keeping the rectangular shape of the first family, products
A.1, A.5 and A.8 have to be aligned on the left, and products A.4, A.7 and A.9 on the right.
The same reasoning applies to the second and third families.

A.5

A.1 A.2 A.3 A.4

A.6 A.7

A.8 A.9

B.1

B.2

B.3

C.1 C.2

C.3 C.4 C.5

Figure 4.2 – Example of a role planogram.

Besides the rules present in the role planogram, there are also minimum and maximum
display quantities to ensure, as well as minimum family space share requirements (due to
supplier contracts) that must be taken into consideration.

Planograms are physically made of segments that are stacked together to form an aisle.
Each segment has its own shelves that can be aligned with the shelves of the other seg-
ments, forming continuous long shelves from the beginning to the end of the planogram
(hereafter called levels); or they can be placed differently, forming irregular levels that
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need to be taken into consideration while placing the products. Whenever a planogram has
misalignments between the shelves we refer to it as irregular planogram, as opposed to
regular planogram. Figure 4.2 presents an irregular planogram with 3 segments where two
different irregular situations arise: shelves that belong to the same level but are misaligned
(consequently, no products can be placed in between), and shelves that do not exist. Note
that if the two planograms are not compatible in terms of the number of levels, replication
is not possible.

4.2.1 Problem Definition and Notation

Assuming the aforementioned description, the problem is formally described as follows.
Consider a specific category of a store whose space contains O segments (indexed by o ∈ O)
and K levels (indexed by k ∈ K). Without loss of generality, the segments are numbered
from left to right, and the levels are ordered from bottom to top. On the intersection of
segment o with level k, there is the shelf (o,k). Shelves from irregular planograms need to
be standardized in order to find the number of levels from these planograms. This involves
two steps: if two misalignment shelves are close apart, they are placed at the same level
and all levels have all shelves, even if in practice some shelves do not exist. Figure 4.3
presents the standardized version of the planogram from Figure 4.2 along with the param-
eters associated with the shelves, which are the following:

W total width of the planogram,

wok (hok) width (height) of shelf (o,k),

eok (=1) if shelf (o,k) exists in the planogram. (=0 otherwise),

cok (=1) if shelf (o,k) is aligned with the following shelf (o+1,k) (=0 otherwise),

nok (=1) segment of the next existing shelf of level k after shelf (o,k) (if there is
no next shelf, nok = −1).

s=1 s=2 s=3

k=1

k=2

k=3

c12 = 0 e32 = 0

W

w11

h31

n23 = 3

Figure 4.3 – Standardization of the planogram from Figure 4.2.

The retailer wishes to display N products (indexed by i, j ∈ N) and the role planogram
identifies the rules for their placement: the sequence of products on each shelf and the
product families, defined by their left and right alignments. Consider ML left-alignments
and MR right-alignments (indexed by m ∈ MR ∪ML). Each alignment has two or more
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products and no more than one product on each shelf. A small deviation v is allowed be-
tween the products of each alignment. If one product is placed in more than one shelf, it
should also be vertically aligned, with the same number of facings in all shelves. There are
also Q minimum space share requirements to consider (indexed by u ∈ Q. The parameters
and sets associated with the products are the following:

ai (bi) width (height) of product i,

li (ui) lower bound (upper bound) on the number of facings of product i,

si total stock of product i for each facing,

Ki number of shelves where product i is,

Nk set of products of level k, ordered by order of appearance,

NL
m (NR

m) set of products of each left (right) alignment m,

qu minimum percentage of space to allocate to the products belonging to the
space share requirement u,

N
Q
u set of products of each minimum space share requirement u.

Under the given operating conditions, the decisions to be made for each product are: the
number of facings to be displayed on each shelf and its horizontal location. Both decisions
are determined while ensuring that the display area is fully occupied (full shelf merchan-
dising policy). The objective is balancing days-supply, assuming inventory-dependent and
shelf-dependent demand.

This new problem will hereafter be called SSRP – Shelf Space Replication Problem.

4.3. Model Development

This section presents the formulation proposed for the SSRP, as described in the previous
section. For clarification purposes, we present two versions of the formulation: a sim-
plified version that only considers one segment (Single-Segment Shelf Space Replication
Model), and a more complex version with multiple segments (Multi-Segment Shelf Space
Replication Model).

The necessary decision variables are presented along the section; however, two sets of
decision variables define the overall problem solution (common to both formulations):

Wi the integer number of facings of product i ∈ N on each of the shelves where the
product is located,

Xi the continuous horizontal location of product i ∈ N , measured from the lower-left
corner of the planogram to the lower-left corner of the first facing of the product.

Note that both the W and the X variables do not distinguish between shelf levels. This
fact is because products are required to have a rectangular shape, which imposes the same
number of facings in all shelves where the product is, and to be vertically aligned. Before
presenting the two formulations, we will first define the objective function for balancing
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days-supply.

4.3.1 Objective Function

The objective of the SSRP is balancing days-supply values across the planogram, using
equation (4.1) provided in the previous section. We consider a goal programming-based
approach, where the idea is to minimize the deviation of Ri, the days-supply value of each
product i, from a common days-supply goal R′. R′ is determined to be the average of
Ri values, and the objective function is similar to the variance (or the squared standard
deviation). This objective function is provided in equation (4.2).

minimize P =
∑
i∈N

(Ri−R′)2 (4.2)

where : R =

∑
j∈N R j

N

The days-supply of each product i is defined in terms of the product demand, Di, which
in turn depends on the space allocated to it. A diminishing return polynomial function
(resembling a “s-shaped curve”) has been widely used by several researchers in the litera-
ture to model space dependent demand. Similarly to Yang and Chen [1999] and Lim et al.
[2004], we consider that retailers prefer to operate on the linear portion of the S-shaped
curve, by defining minimum and maximum display quantities that place the demand on
this linear part. In accordance, the demand can be determined by the linear equation (4.3),
where D0

i is the base demand (for the minimum display quantity), γi and αk are scale
parameters that reflect the variation in demand with respect to the number of facings of
product i and to the shelf k where the product is placed (respectively) and ηi is an addi-
tional parameter aggregates the shelf impact in case the product is placed on more than one
shelf.

Di = ηi · (D0
i +γi ·Ki ·Wi) (4.3)

where : ηi =

∑
k∈K :i∈Nk αk

Ki

This objective function does not incorporate the time effect on demand and consequently,
it does not consider a decreasing demand effect as the shelf inventory is being purchased.
We consider instead that the minimum stock between shelf replenishments is enough to
accommodate at least one item on each product facing, ensuring that the product is always
fully visible. The days-supply values (Ri) are at last determined by equation (4.4).

Ri =
si ·Ki ·Wi

ηi · (D0
i +γi ·Ki ·Wi)

(4.4)

4.3.1.1 Alternative Objective Function

Figure 4.4 shows the days-supply values of two instances with 10 products, where each
product is associated with two values: the days-supply value when the product has a min-
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imum display quantity (in dark gray) and the days-supply value when it has the optimal
display quantity (in black). The optimal days-supply values were obtained using objective
function (4.2) and considering a single capacity constraint that ensured that the entire space
was fully stocked. Both instances are similar, with the exception of one product that has a
significantly higher minimum days-supply value in the second instance. The figure shows
that, while in the first instance days-supply values are fairly close to each other, in the sec-
ond instance they were influenced by the low-sales product (that increased the average),
resulting in more spread values. Note that this situation occurs very often in shelf space
allocation because of long-tale products. Moreover, the family alignments also constraint
the products’ facings and may lead to extreme differences in terms of days-supply values.
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Figure 4.4 – Days-supply values of two instances with the optimal values obtained using
objective function (4.2)

To overcome this fact, we propose an alternative objective function. Consider an it-
erative approach to the problem, in particular, an improvement heuristic which uses the
minimum display quantities (minimum days-supply values) as the initial solution, and it-
eratively increases the product facings one at a time, choosing at each iteration the product
with the lowest minimum days-supply value. The heuristic stops when the capacity is met
or when there are no more products that can increase their facings due to the remaining
constraints. This heuristic can be interpreted as the problem of maximizing the minimum
days-supply values among the products. However, if one product is forced to have a low
days-supply value, the iterative approach continues to maximize the minimum of the re-
maining products (as opposed to the problem of maximizing the minimum value, that does
not optimize the remaining values). At the end, all products have close days-supply values,
except the ones with high minimum days-supply values (or the ones that have to ensure
alignments, when applicable). This is confirmed in Figure 4.5, where the same instances
were solved with this improvement heuristic.

The alternative objective function tries to mimic this behavior. Consider the following
binary decision variables, which correspond to a partition of variables Wi according to their
range of facings (ui):

Wip (=1) if product i ∈ N has the pth facing on the planogram, p = 1, . . . ,ui.
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Figure 4.5 – Days-supply values of the same two instances of Figure 4.4 with the optimal
values obtained using the improvement heuristic

The parameters Rip are associated with Wip and consist of the days-supply value of each
product i prior to introducing the pth facing (note that Rip is a parameter because it does not
depend any more on the number of facings). We mimic the iterative procedure by setting
variables Wip to one by descending order of the replenishment frequency Fip = 1/Rip (for
p=1, Fip > max{Fit|t = 2, . . . ,ui}), using the linear objective function (4.5).

maximize
∑
i∈N

ui∑
p=1

Fip ·Wip (4.5)

where : Wi =

ui∑
p=1

Wip, ∀ i ∈ N (4.6)

One drawback from this objective function is the fact that the model may not set the
products by decreasing order of Fip if there are severe differences in the products’ width
(if product i is twice the width of product j, then it is more advantageous to give two
facings of product j instead of one to product i, as long as F jp + F j,p+1 > Fip). This is
not a common case when replicating planograms where the products belong to the same
category. Nevertheless, when that happens, it can be compensated with an extra coefficient
on the objective function, which increases the Fip value of the largest products.

4.3.2 Single-Segment Shelf Space Replication Model

In this subsection we formulate a simplified version of the replication problem where the
segments are not considered, with the assumption that the planogram has only one seg-
ment. Besides Wi, Wip and Xi, consider the following decision variables:

Li shelf length assigned to product i ∈ N on each of the shelves where the product is
located,

XL
m the horizontal location of left alignment m ∈ML,



86 Chapter 4. Replicating Shelf Space Allocation Solutions Across Retail Stores

XR
m the horizontal location of right alignment m ∈MR.

The Single-Segment Replication Model can be represented by the objective function
present in equation (4.5) and the following remaining linear constraints:

Ki ·Wi ≤ ui, ∀ i ∈ N (4.7)

Ki ·Wi ≥ li, ∀ i ∈ N (4.8)

Li−aiWi ≥ 0, ∀ i ∈ N (4.9)∑
i∈Nk

Li = W, ∀k ∈ K (4.10)

Xi =
∑

j∈Nk: j<i

L j, ∀k ∈ K , i ∈ Nk (4.11)

XL
m− v ≤ Xi, ∀m ∈ML, i ∈ NL

m (4.12)

XL
m ≥ Xi, ∀m ∈ML, i ∈ NL

m (4.13)

XR
m + v ≥ Xi + Li, ∀m ∈MR, i ∈ NR

k (4.14)

XR
m ≤ Xi + Li, ∀m ∈MR, i ∈ NR

k (4.15)∑
i∈Nu

(ai ·Ki ·Wi) ≥ qu, ∀u ∈ Q (4.16)

Wi ∈ N0, ∀ i ∈ N (4.17)

Li,Xi ≥ 0, ∀ i ∈ N (4.18)

XL
m ≥ 0, ∀m ∈ML (4.19)

XR
m ≥ 0, ∀m ∈MR (4.20)

Constraints (4.7) and (4.8) impose the lower and upper bounds of the number of fac-
ings. Note that Wi only specifies the number of facings on each of the shelves where the
product is placed, and it has to be multiplied by the number of shelves. Constraints (4.9)
ensure that the shelves have enough space reserved for product facings. (4.10) are capacity
constraints that additionally guarantee the Full Shelf Merchandising policy. As the shelves
are fully occupied by the products, constraints (4.11) identify the horizontal location of the
products as the sum of the lengths from the preceding products. These constraints also
guarantee that the products have the desired sequence. The left and right alignments (with
the tolerance v) are preserved by constraints (4.12)-(4.13) and (4.14)-(4.15), respectively.
Constraints (4.16) introduce the space share requirements and the remaining constraints
ensure the integrality and non-negativity properties of the variables.

4.3.3 Multi-Segment Shelf Space Replication Model

In the presence of more than one segment, the single-segment formulation may not be
suitable as it does not take into account the non-existing shelves and the misalignments
throughout the levels. Therefore, we have developed a multi-segment extension, where the
decisions regarding the product shelf space and product location consider the existence of
segments. Accordingly, consider the following additional variables:
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Lio shelf length assigned to product i ∈ N in segment o ∈ O, on each of the levels where
the product is located,

Yio (=1) if product i ∈ N is located in segment o ∈ O,

Xio the continuous horizontal location of product i ∈ N in segment o ∈ O, measured
from the lower-left corner of the planogram.

In this extension, constraints (4.10) and (4.11) are replaced by:∑
i∈Nk

Lio = wok · eok, ∀o ∈ O, k ∈ K (4.21)

Lio ≤ Yio ·wok · eok, ∀o ∈ O, k ∈ K , i ∈ Nk (4.22)

Yin + Yi+1,o ≤ 1, ∀o ∈ O, n ∈ O : n > o, k ∈ K , i ∈ N−k (4.23)

Xio =
∑

n∈O:n<o

wnk +
∑

j∈Nk: j<i

Lio, ∀o ∈ O, k ∈ K , i ∈ Nk (4.24)

Yio + Yi,nextok ≤ 1 + cok, ∀o ∈ O : nextok > 0, k ∈ K , i ∈ Nk (4.25)

bi ·Yio ≤ hok, ∀o ∈ O, k ∈ K , i ∈ Nk (4.26)

Xi ≤ Xio + W · (1−Yio), ∀i ∈ N , ∀o ∈ O (4.27)

Xi ≥ Xio−
∑

n∈O:n<o

Lin−W · (1−Yio), ∀i ∈ N , ∀o ∈ O (4.28)

Li =
∑
o∈O

Lio, ∀i ∈ N (4.29)

Lio,Xio ≥ 0, ∀ i ∈ Nk, o ∈ O (4.30)

Yio ∈ {0,1}, ∀ i ∈ Nk, o ∈ O (4.31)

Note that the sets N−k have all the products from each level k except the last. Con-
straints (4.21) are similar to the previous constraints (4.10) and ensure that the full width of
the existing shelves is occupied by the products. Constraints (4.22) relate variables Lio and
Yio by stating that the length Lio is equal to zero in case product i is not assigned to segment
o. These constraints also guarantee that a product is not assigned to a shelf that does not
exist in the store. The product sequence of each level is ensured by constraints (4.23) and
(4.24). The first set of constraints ensures the sequence between segments and the second
set ensures the sequence inside each segment. The latter also specifies the horizontal lo-
cation of each product inside each segment. Note that this variable only has a meaningful
value if the product is part of the segment. Constraints (4.25) do not allow a product to be
on both shelves k and nko in two cases: if the shelves are not consecutive, or if the shelves
are misaligned. Constraints (4.26) prevent products from being placed on shelves where
they do not fit (because of their height), and finally, the values of Li and Xi are specified
with regard to Lio and Xio, respectively.

The consideration of segments increases the complexity of the formulation, as we will
analyze later, during the computational results. Its motivation is the necessity to take into
account the non-existing shelves and misalignments thought the levels, that impose addi-
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tional constraints to the product’s placements. However, potential benefit may be achieved
by aggregating the segments that have similar shelf placements. In the more extreme case,
when all segments are equal, we obtain the Single-Segment SSRP formulation. Therefore,
both the Single and Multi-Segment formulations have practical relevance.

4.4. MIP-based Heuristic

The SSRP is a practical and relevant operational problem in retail and it is crucial to de-
velop methods that can allow its use in practice. Because the SSRP is a mid-term opera-
tional planning activity, retailers do not need real time solutions obtained in less than a few
seconds. Nevertheless, the high number of planograms that Space Managers have to handle
every year is not compatible with high generation times and the European Food Retailer
that motivated this work defined “the time to have a cup of coffee” as the maximum period
of time space managers would be willing to wait for the solutions.

This section starts by describing the methodology currently used by the Space Man-
agers at the European Food Retailer. Then, we propose a MIP-based Heuristic for the
problem, based on the formulation presented in section 4.3.

4.4.1 Methodology Currently Used

Replicating planograms is a manual and time consuming activity, mainly because of the
different product family alignments that need to be taken into consideration when placing
the products. The role planogram is, by definition, smaller than the remaining planograms,
and the ultimate decision that Space Managers have to make is on the number of facings
that each product will have. Nevertheless, aligning products is most of the time a trial
and error activity, and managers try to give one extra facing to a product, take one facing
from of a product or spread out the facings, so that all alignments are strictly fulfilled. The
company has a space planning software that assists in this task by providing realistic views
of the shelves to where the products are drag and dropped to create the planograms. This
software also has powerful analysis tools.

In general terms, the process is as follows. Space Managers start by copying the role
planogram to the new space, which leaves an empty space to fill. Product facings are then
iteratively increased based on the product’s days-supply values, in an approach similar to
the iterative procedure described in section 4.3.1. The process continuously alternates be-
tween shelves for preserving the alignments. The days-supply values are automatically
computed by the space planning software and are only based on past sales. Therefore, the
company does not explicitly take into account the impact that the space has on demand.
Moreover, the high number of alignments strongly complicates the process, making it dif-
ficult to balance days-supply values.

4.4.2 MIP-based Heuristic

Preliminary experiments showed us that by solving the problem using a commercial MIP
solver (ILOG CPLEX in our implementation) we were able to generate optimal solutions
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within the expected period, but only for small sized instances. Therefore, our goal when
developing the MIP-based heuristic was to make sure that the approach was scalable, es-
pecially in the multi-segment case.

Table 4.1 presents the number of decision variables and constraints of both formulations
(single and multi-segment) with regard to the problem parameters. Two parameters arise
as the most important: the number of segments and the number of products. However, we
can also relate the number of segments to the number of products (or vice versa) because
the more space is available, the more products the assortment has.

Table 4.1 – Size of the formulations as a function of the problem parameters

Single-segment SSRP Multi-segment SSRP

# Decision Variables
∑

i ui
∑

i ui

# Constraints 3N + 2
∑

m NR
m + 2

∑
m NL

m + Q 4N + 2
∑

m NR
m + 2

∑
m NL

m + Q

+
∑

k Nk + K +O(K + 2N +
∑

k Nk + 1
2 O
∑

k Nk)

Figure 4.6 depicts the general idea of the proposed MIP-based heuristic which has
three main steps. The first step originates an initial solution for the problem with only
the minimum display quantities for the products. The second step iteratively adds the
remaining product facings to the planogram until no more space is available. At last, the
third step tries to improve the solution by allowing the removal and insertion of new facings.
As it is possible to see, this MIP-based heuristic is inspired in the methodology currently
used by space managers at Sonae MC.

Initial Solution Planogram Filling Planogram Improvement

...
...

Figure 4.6 – Steps of the MIP-based Heuristic (for one shelf)

Technically, this approach is an integration of two well-known MIP-based improve-
ment heuristics: fix-and-optimize (Pochet and Wolsey [2006]) and local branching (Fis-
chetti and Lodi [2003]). In each iteration, we solve the SSRP formulation with the Wip vari-
ables partially constrained in one of two different ways: a subset of the variables are fixed
to the values obtained in the incumbent solution (fix-and-optimize), or a limited number of
changes can be made to the values obtained in the incumbent solution (local branching).
Figure 4.7 depicts the evolution of Wip variables throughout the iterations. The variables
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are divided into K subsets Gk, depending on the products on each shelf k: Wip ∈ Gk : i ∈Ni.
Each set has the variables sorted by increasing days-supply values (Rip), so that the prod-
ucts with low days-supply values will be considered first. Within each subset, the first
variables to be analyzed correspond to the minimum display quantities for the products
(i.e. the first li variables of each product i). At each iteration, the variables in gray are the
ones optimized by the formulation. The remaining ones are already fixed to zero (white
variables) or to one (dark gray variables).
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Figure 4.7 – State of Wip variables throughout the iterations

Step 1 - Initial Solution – In the first step, the formulation is solved with the number
of product facings limited to the minimum display quantities (first part of the Gk subsets),
resulting in an initial, feasible, but still empty planogram. As the number of facings of
each product i should be the same across all the shelves where the product is, the number
of facings is indeed limited to the first multiple of Ki, greater than or equal to li.

Step 2 - Planogram Filling – In the second step, the variables considered at each it-
eration are limited to a portion of each subset Gk, so that the space occupied by adding
those facings does not exceed a maximum length, which we defined as the minimum value
between the empty space and the length of one segment. This step ends when the space
available is insufficient for any extra facing, or at least one Wip variable was set to zero in
all products. This iterative procedure ensures the scalability of the method, and is not ex-
pected to strongly deteriorate the solution as the variables are introduced in the formulation
according to their expected order of usage.

Step 3 - Planogram Improvement – In the third step, a subset S of the Wip variables is
optimized but limited to a maximum of α changes to the values obtained in the incumbent
solution (W′ip). This improvement phase is done by adding constraint (4.32), which counts
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the number of changes on the variables and limits them to α. As the formulation would
not set Wip+1 to one without setting Wip first, the subset S contains, at each time, the β
variables with lowest days-supply values (Rip) previously set to one and the β variables
with the highest Rip values previously set to zero.∑

Wip∈S:W′ip=1

(1−Wip) +
∑

Wip∈S:W′ip=0

Wip ≤ α (4.32)

Note that this MIP-based heuristic is valid for both formulations. The pseudocode is
present in Appendix 4.A.

4.5. Experimental Results

This section presents a computational study to assess this novel SSRP problem. In par-
ticular, we will focus on the suitability of the formulation and the MIP-based heuristic to
solve the practical problems for which they were designed. For that purpose, we tested and
validated the approaches using real data provided by the company, but some of the param-
eters were masked to protect the company’s confidentiality. The test data include 20 role
planograms (A−T ) that were replicated in three stores (1− 3). Only the first corresponds
to a real store and the remaining ones were obtained by increasing one segment in store 2
and two segments in store 3 (each segment with approximately 130 cm). Table 4.2 presents
the key information of each instance, namely the number of products (N), the number of
segments of store 1 (O), the number of segments with different shelf placements (O′), and
lastly, the number of left and right alignments (ML and MR, respectively). Note that the
instances vary from 26 to 256 products and from 1 to 13 segments, with the expected pos-
itive correlation between the number of segments and the number of products. In general,
role planograms have a high number of family groups which result in up to 47 alignments.
The instances are available online in Bianchi-Aguiar et al. [2015].

Table 4.2 – Problem Instances

Regular Planograms Irregular Planograms

Instance N O O′ ML MR Instance N O O′ ML MR

A{1,2,3} 26 1 1 8 6 M{1,2,3} 122 3 2 17 18
B{1,2,3} 45 2 1 6 5 N{1,2,3} 114 5 2 17 17
C{1,2,3} 16 3 1 3 5 O{1,2,3} 239 12 2 30 47
D{1,2,3} 38 3 1 7 7 P{1,2,3} 239 13 2 21 27
E{1,2,3} 49 3 1 3 4 Q{1,2,3} 154 5 3 44 43
F{1,2,3} 190 3 1 20 12 R{1,2,3} 172 8 3 27 33
G{1,2,3} 240 3 1 32 35 S {1,2,3} 256 13 4 36 33
H{1,2,3} 188 5 1 12 11 T{1,2,3} 156 9 5 24 39
I{1,2,3} 205 6 1 12 13
J{1,2,3} 107 8 1 11 10
K{1,2,3} 67 9 1 10 12
L{1,2,3} 171 12 1 23 23



92 Chapter 4. Replicating Shelf Space Allocation Solutions Across Retail Stores

The parameters Rip are provided in the instances. These values were obtained using
equation (4.4) and considering the company sales forecast for the products as the base
demand (D0

i ). The forecasts already incorporated the impact of the products’ usual location
and space and, due to the lack of additional information, the scale parameters ηi and γi were
set to 1 and 0, respectively. The product base demand for stores 2 and 3 (indexed by l) was
generated according to formula (4.33), creating normally distributed values with mean D0

i1
(base demand from store 1) and standard deviation σi, which we considered was 25%
of the forecast. For that purpose, δil is a normally distributed random number with zero
expectation and one unit of variance.

D0
il = D0

i1 +σi ·δil (4.33)

All computational experiments were conducted on Intel @2.40GHz processing units
limited to 4.0Gb of Random Access Memory, using the Linux operating system. The IBM
ILOG CPLEX 12.4 was used as the mixed integer solver. The formulations and the MIP-
based approach were implemented in C++, compiled with the gcc compiler and solved
using CPLEX with the Concert Technology library. The overall execution time was limited
to 300 seconds, and each iteration of the heuristic was also limited to 90 seconds during
planogram filling (step 1 and 2), and 10 seconds during the improvement phase (step 3).

Table 4.3 summarizes the results obtained for the instances considered, grouped into
regular and irregular planograms, and into stores 1, 2 and 3. For each group we report the
performance of the approaches in terms of the average optimality gap - deviation of the
best integer solution found from the best upper bound available (GAP), average execution
time in seconds (T ) and number of instances with no solutions found within the time limit
(IS ). The instances were solved using three approaches: the multi-segment SSRP formula-
tion (M-SSRP), the multi-(single-) SSRP formulation with the aggregation of the segments
that have similar shelf placements (J-SSRP), and finally the MIP-based heuristic with the
J-SSRP (J-SSRP-H). The optimality gap of the MIP-based heuristic is measured with re-
spect to the upper bound obtained when solving the J-SSRP formulation. The detailed
information is presented in Table 4.4 of Appendix 4.B.

A straightforward use of the multi-segment formulation is not suitable for the practical
requirements, as the solver was not able to find one feasible solution within the time limit
for 28 out of 60 instances. Nevertheless, in those instances where the solver did find at least
one feasible solution, the optimality gaps were on average below 0.14% (with a maximum
of 1.45%). By joining the segments with similar shelf placements (in a pre-processing
step), the results improved significantly, both in terms of execution times (which were
reduced by 40%) and quality of the solution (whose optimality gap decreased on average
0.11%). Note that this is obtained without compromising the use of an exact approach
to the problem. The MIP-based heuristic further reduced the execution times by 88%;
however, it already presents a trade-off to the solution quality, as the GAP increased from
0.03% to 0.19% (comparatively to J-SSRP).

When comparing the regular and irregular planograms, the latter had, on average,
higher execution times. In the M-SSRP approach, this increase is not so significant (18%)
and is most probably caused by the fact that irregular planograms have on average more
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Table 4.3 – Summary of results (full results on Table 4.4 in Appendix 4.B)

M-SSRP J-SSRP J-SSRP-H

GAP T (sec) #IS∗ GAP T (sec) #IS∗ GAP T (sec) #IS∗

Regular Planograms

Store 1 0.05% 178.8 6 0.03% 90.8 0 0.19% 8.8 0
Store 2 0.03% 200.9 6 0.02% 92.1 0 0.21% 7.0 0
Store 3 0.28% 208.5 7 0.02% 101.5 0 0.24% 5.8 0
Total 0.12% 196.4 19 0.02% 95.0 0 0.21% 7.2 0

Irregular Planograms

Store 1 0.21% 197.0 2 0.05% 175.9 0 0.14% 27.2 0
Store 2 0.15% 261.8 3 0.04% 149.4 0 0.11% 29.0 0
Store 3 0.08% 263.8 4 0.03% 210.9 0 0.17% 26.3 0
Total 0.16% 239.9 9 0.04% 177.3 0 0.14% 27.5 0

Total 0.14% 213.1 28 0.03% 126.5 0 0.19% 15.0 0
∗ IS – Number of instances with no solution found within the time limit.

segments (and more products as well). However, in the J-SSRP and J-SSRP-H approaches,
this increase is higher (46% and 74%, respectively) because regular planograms use the
Single-Segment formulation. When looking at the increasing number of segments for the
same role planogram (from store 1 to store 3), although the execution times tend to increase
in stores 2 and 3, a significant increase was not perceived.

The plot presented in Figure 4.8 shows that the execution times of the J-SSRP-H ap-
proach increase linearly with the number of products times the square of the number of
segments (the instances T were considered outliers and removed from the plot due to their
fast results). This independent variable (N ·O2) is actually derived from the highest term
in the number of constraints (Table 4.1), and corroborates the initial findings about the im-
pact of the number of segments and products. Therefore, other practical instances, even if
bigger, are expected to increase the execution times linearly.
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Figure 4.8 – Plot of the execution times of J-SSRP-H in function of the number of products
(N) and the number of segments (O)

Figure 4.9 presents part of the solution from instance T1. This instance has 5 rectangu-
lar product families, highlighted in the figure, with a small “L” shape at the end. A total of
41 products are placed in the planogram, with the overall space and the days-supply values
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also identified in the figure (the facings of each product are not visible). Days-supply val-
ues are balanced as much as possible throughout the planogram, as all family alignments
have to be strictly followed.
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Figure 4.9 – Part of the solution from instance T1

We compared the solutions (only store 1 instances,using the J-SSRP-H approach) to the
hand-made planograms generated by the Space Managers of the European Food Retailer.
Figure 4.10 shows for each instance the variation in the resulting days-supply values, both
in terms of average and standard deviation. The majority of the solutions suffered a reduc-
tion in the two dimensions, with an average reduction of 16.6% and 13.1%. The size of
the circles in the figure indicate the density of each planogram in terms of products and
alignments, measured as N · (ML + MR)/O. As expected, it shows that planograms with
higher density have lower reductions in term of the two days-supply dimensions. Note that
these findings are only estimates, as the space manager from the case study may have taken
other requirements into consideration which were not considered in this study.
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4.6. Conclusions

In this paper we have presented the retail problem of transforming generic cluster-based
shelf space solutions (role planograms) into store-specific planograms. This problem is
very challenging because of merchandising rules, present in the role planogram, which
must be considered in the new planograms. This is a practical problem faced by most
retailers that are forced to cluster their stores in order to manage categories efficiently. To
the best of our knowledge, we are the first to introduce this problem, which we call Shelf
Space Replication Problem (SSRP), in the shelf space literature.

We present two mathematical programming formulations to solve the SSRP: the single-
and multi- segment, with the latter having misaligned shelves along the planogram. The
formulations use a novel inventory related objective function that is also a key-contribution
from this paper. Instead of determining individual order quantities for the products, the
formulation balances the products’ inventory level in order to trigger joint shelf replenish-
ments. This objective is in line with common practices and evaluation metrics. To ensure
fast solutions in practice, we also present a MIP-based heuristic based on the formulation,
that uses two state-of-the-art techniques: fix-and-optimize and local-branching.

To test both formulations and the MIP-based heuristic, we used real data from the
European Food Retailer that motivated this project. The results were encouraging. By
performing a pre-processing step, we were able to generate a solution for all the instances
with an average optimality gap of 0.03% in an average of 126.5 seconds. The MIP-based
heuristic explored a trade-off between execution times and solution quality, by reducing
88% of the time with an optimality gap of 0.19%.

The fact that the replication process is based on a role planogram makes the problem
suitable for most retail companies. By creating awareness on the problem, we hope to
stimulate further research and encourage the use of optimization in the practice of shelf
space management. More specifically, this paper opens the following opportunities for fu-
ture research. Other replication methods can be studied, with more evasive changes to the
role planogram (for instance, making it possible to change the product shelf). The problem
could also benefit from deeper analysis of the new objective of balancing days-supply, and
from further integrating shelf-replenishment and shelf-inventory policies. Finally, on the
algorithmic side, further work could be done to generate on-demand solutions, for instance,
by using heuristics.
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Appendix 4.A Pseudocode of the MIP-based heuristic

The MIP-based heuristic has two parts, the first corresponding to steps 1 and 2 (Initial
Solution and Planogram Filling) and the second part to step 3 (Planogram Improvement),
whose pseudocode is presented in Algorithms 3 and 4, respectively. Both parts successively
run the formulation from section 4.3 (SSRP) with some W variables fixed or additionally
constrained based on a set of subsets that evolve throughout the iterations. The first part of
the algorithm divides each set Gk into three subsets: variables not yet considered and fixed
to zero (V0

k ); variables that will be considered in the next iteration and can take either the
value 0 or 1 (VC

k ); and variables that are fixed to the values obtained in incumbent solutions
(VF

k ). The second part of the algorithm considers three different subsets: variables fixed to
one in the incumbent solution (S1); variables fixed to zero in the incumbent solution (S0);
and variables that will be considered in the next iteration whose values can change until a
maximum of α changes (S).

Algorithm 3: Pseudocode of the MIP-based heuristic (Steps 1 and 2)
1 begin
2 l← 1
3 Gk←Wip : i ∈ Nk, p ∈ Pi (variables from products on shelf k, sorted by decreasing value

of Fip)
4 VF

k ← ∅ (empty sets)
5 VC

k ← Wip ∈ Gk : p ≤
⌈

li
Ki

⌉
(variables corresponding to the minimum display quantities)

6 V0
k ←Gk\{V

C
k } (remaining variables)

7 whileVC
l ,< ∅ or there is at least one i with no variables fixed to zero do

8 Solve S S RPl : W = W′, ∀k, W ∈ VF
k ; W = 0, ∀k,W ∈ V0

k
9 W’ := W (save incumbent solution)

10 VF
k :=VF

k ∪V
I
k

11 VC
k := next variables from Gk until

∑
i
∑

p aiWip ≤ min(wko,empty space)
12 V0

k :=V0
k\{V

C
k }

13 l← l + 1
14 end
15 end

Appendix 4.B Results

This section presents the detailed results obtained for all the instances presented in section
4.5, using approaches M-SSRP, J-SSRP and J-SSRP-H. For each instance, we provide in-
formation about the best integer solution found (Z), the total execution time in seconds (T )
and the deviation of the best integer solution found from the best upper bound available at
the stopping criteria - optimality gap (GAP). In the MIP-based heuristic (J-SSRP-H), the
optimality gap is obtained with regard to the upper bound from the J-SSRP approach.
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Algorithm 4: Pseudocode of the MIP-based heuristic (Step 3)
1 begin
2 S0← W ∈ Gk : W′ = 0 (variables fixed to 0, sorted by decreasing value of Fip)
3 S1← W ∈ Gk : W′ = 1 (variables fixed to 1, sorted by decreasing value of Fip)
4 while W’ different than previous solution or maximum number of iterations do
5 α← update maximum number of variables that can be changed
6 β← update number of variables to consider
7 SC ← last β variables from set S1 and first β variables from set S0

8 Solve S S RPl : W = W′, ∀k, W ∈ S1
k ∪S

0
k ;∑

W ∈ S : W′ = 1(1−Wip) +
∑

W∈S:W′=0 Wip ≤ α

9 W’ := W (save incumbent solution)
10 l← l + 1
11 end
12 end

Table 4.4 – Results

Name M-SSRP J-SSRP J-SSRP-H Name M-SSRP J-SSRP J-SSRP-H

Z GAP T(s) Z GAP T(s) Z GAP T(s) Z GAP T(s) Z GAP T(s) Z GAP T(s)

A1 54564 0.00% 0 54564 0.00% 0 54564 0.00% 0.0 K1
∗ ∗ Tl 419175 0.01% 93.2 418025 0.28% 4.2

A2 79822 0.00% 0 79822 0.00% 0 79822 0.00% 0.1 K2
∗ ∗ Tl 528489 0.01% 4.9 526827 0.32% 2.2

A3 76839 0.01% 1 76839 0.00% 0 76839 0.00% 0.1 K3
∗ ∗ Tl 433809 0.01% 31.4 432422 0.33% 2.3

B1 140909 0.00% 0 140901 0.01% 0 140690 0.16% 0.1 L1
∗ ∗ Tl 581002 0.04% Tl 578295 0.51% 30.2

B2 272817 0.01% 7 272816 0.01% 0 272111 0.27% 0.4 L2
∗ ∗ Tl 727802 0.03% Tl 725282 0.38% 26.7

B3 315621 0.00% 6 315626 0.00% 0 315006 0.20% 0.4 L3
∗ ∗ Tl 649167 0.03% Tl 647023 0.36% 22.6

C1 18809 0.01% 0 18809 0.00% 0 18765 0.23% 0.1 M1 25085 0.01% 6.7 25085 0.01% 5.8 25082.4 0.02% 2.7
C2 16250 0.01% 1 16250 0.00% 0 16231 0.12% 0.2 M2 22557 0.08% Tl 22557 0.01% 88.3 22553 0.03% 13.4
C3 22863 0.01% 2 22863 0.01% 0 22762 0.45% 0.2 M3 18577 1.45% Tl 18795 0.03% Tl 18777 0.13% 3.1
D1 419687 0.01% 2 419687 0.01% 0 419567 0.04% 0.1 N1 63997 0.01% 1.4 63997 0.01% 0.2 63996.8 0.01% 1.0
D2 499451 0.01% 3 499451 0.01% 0 499254 0.05% 0.1 N2 61646 0.01% 19.9 61646 0.01% 0.7 61626.7 0.04% 2.0
D3 449704 0.01% 2 449704 0.01% 0 449446 0.07% 0.2 N3 80153 0.01% 46.7 80153 0.01% 0.7 80129.7 0.04% 1.5
E1 19620 0.01% 42 19620 0.01% 14 19598 0.12% 2.8 O1

∗ ∗ Tl 1103960 0.02% Tl 1100970 0.29% 26.5
E2 22726 0.03% Tl 22726 0.01% 89 22708 0.09% 3.1 O2

∗ ∗ Tl 1353880 0.01% 103.6 1352040 0.15% 16.6
E3 21147 0.22% Tl 21148 0.01% 27 21126 0.12% 0.4 O3

∗ ∗ Tl 1193150 0.01% 151.6 1190840 0.20% 9.9
F1 23649 0.24% Tl 23654 0.09% Tl 23653 0.09% 41.0 P1

∗ ∗ Tl 239139 0.09% Tl 238591 0.32% 23.7
F2

∗ ∗ Tl 30281 0.08% Tl 30204 0.33% 24.7 P2
∗ ∗ Tl 216715 0.08% Tl 216224 0.30% 35.6

F3
∗ ∗ Tl 24704 0.04% Tl 24667 0.20% 30.9 P3

∗ ∗ Tl 327311 0.04% Tl 326921 0.16% 35.3
G1

∗ ∗ Tl 159537 0.12% Tl 159248 0.30% 23.5 Q1 56529 0.01% 67.8 56536 0.01% 123.1 56526 0.03% 46.0
G2

∗ ∗ Tl 168879 0.09% Tl 168442 0.35% 22.6 Q2 65902 0.01% 274.0 65908 0.01% 50.1 65902.9 0.02% 49.3
G3

∗ ∗ Tl 202660 0.06% Tl 201922 0.43% 12.1 Q3 55583 0.05% Tl 55591 0.01% 123.5 55554.8 0.08% 31.8
H1

∗ ∗ Tl 52992 0.01% 6 52924 0.14% 0.9 R1 314363 0.41% Tl 314481 0.12% Tl 314292 0.18% 34.0
H2 54817 0.11% Tl 54852 0.01% 7 54702 0.28% 1.2 R2 446907 0.45% Tl 447152 0.05% Tl 446776 0.14% 19.9
H3

∗ ∗ Tl 74515 0.01% 6 74389 0.18% 0.7 R3
∗ ∗ Tl 382637 0.05% Tl 381840 0.26% 21.5

I1
∗ ∗ Tl 1435310 0.01% 0 1433430 0.14% 0.6 S 1 139501 0.79% Tl 139860 0.11% Tl 139682 0.24% 69.4

I2
∗ ∗ Tl 1453780 0.01% 14 1452370 0.11% 0.7 S 2

∗ ∗ Tl 158051 0.10% Tl 157861 0.22% 80.5
I3

∗ ∗ Tl 1282900 0.01% 3 1280760 0.18% 0.6 S 3
∗ ∗ Tl 189182 0.09% Tl 188719 0.33% 70.6

J1
∗ ∗ Tl 450872 0.01% 76 449773 0.25% 1.8 T1 647848 0.03% Tl 647851 0.01% 77.9 647651 0.04% 14.4

J2
∗ ∗ Tl 520909 0.01% 89 519793 0.22% 2.3 T2 669144 0.22% Tl 669354 0.01% 52.6 669244 0.03% 14.6

J3
∗ ∗ Tl 383631 0.01% 51 381684 0.52% 2.3 T3 715809 0.19% Tl 715958 0.01% Tl 715422 0.09% 13.3

∗ No feasible solution was found.
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Chapter 5

Using Analytics to Enhance Shelf Space
Management in a Food Retailer

Teresa Bianchi-Aguiar∗ · Elsa Silva∗ · Luis Guimarães∗ ·
Maria Antónia Carravilla∗ · José F. Oliveira∗ ·
João Günther Amaral† · Jorge Liz† · Sérgio Lapela†

Abstract This paper describes a collaboration project with the Portuguese leading food
retailer which addresses shelf space planning, for the allocation of products on shelves.
Prior to this project, the shelf space planning process was very time consuming, with an em-
pirical use of space elasticities, lacking formal performance evaluation criteria, and heavily
dependent on the space managers’ experience. Our challenge was to bring analytical meth-
ods into the practice in order to enhance shelf space management in three axes: process au-
tomation, space optimization, and image standardization, without disrupting (but somehow
questioning) the company’s policies. This led to the creation of GAP, a decision support
system that is today used on a daily basis by the space management team of the company.
We developed a modular Operations Research (OR)-approach that systematically applies
tailor-made mathematical programming models that were combined with heuristics to im-
prove its efficiency. On top of the algorithmic advances, one of the most relevant features
of GAP is its flexibility to incorporate different types of merchandising rules, allowing the
company to test several strategies for the product allocation. Nevertheless, it goes beyond
the straightforward implementation of merchandising rules and it trades-off customization
with optimization.

Keywords Retail operations ·Shelf space allocation ·MIP-based heuristic

5.1. Introduction

Sonae MC is one of the biggest Portuguese companies (ranked the 4th in 2014, with 3.33
billion annual sales) that operates a food retail business in Portugal. It is one of the core

∗INESC TEC and Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n 4200-465 Porto,
Portugal
†Sonae MC, Lugar do Espido, Via Norte, 4470-177 Maia, Portugal
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businesses of the Sonae Group, which also acts in other areas such as specialized retail
(selling sports goods, fashion and electronics), shopping centers and telecommunications.

Its brand Continente is the country’s food retail market leader, and has been considered
one of the most trusted brands in Portugal over the last 13 years. The company is a bench-
mark in the Portuguese market, after having launched the country’s first hypermarket in
1985. Today it has a network of 478 stores (and additionally 162 stores under franchising)
covering the entire country, with three major formats: Continente Bom dia, convenience
stores with average sales areas of 800 m2 (8,611 square feet); Continente Modelo, super-
markets located in medium sized population centers with an average of 2,000 m2 (21,528
square feet); and, finally, Continente, hypermarkets located in prime locations and offering
an extensive and varied range of products and services with average sales areas of 9,000
m2 (96,875 square feet). In total, Sonae MC has a sales area of 595,000 m2 (6,404,527
square feet) and its strategy is to grow its convenience channel and to look for international
growth opportunities.

Sonae MC is aware of the impact of in-store planning on customer satisfaction, sales
effectiveness and operations efficiency. In particular, it believes that a clever product orga-
nization on the shelves leads to higher visibility, consumer awareness and demand for the
products, as well as reduced inventory holding and handling costs. However, the short prod-
uct life cycles, the increasing number of products available and the progressively higher
number of stores has lead to a continuous need for shelf space planning which turned the
process more and more challenging for the company.

Innovation is a priority at Sonae MC, which is constantly seeking for opportunities to
improve their products, services and processes. This paper describes the development, im-
plementation and impact of an OR-based approach to better plan the allocation of products
on the shelves. It is the result of a collaborative work between the Information Systems and
Innovation Department (ISI) and the Space Planning Department (SP) of Sonae MC, and a
group of researchers from the Industrial Engineering and Management Department of the
Faculty of Engineering of the University of Porto (FEUP).

Prior to this work, the shelf space planning process was very time consuming, with
an empirical use of space elasticities, lacking formal performance evaluation criteria and
heavily dependent on the space managers’ experience. The challenge consisted of incor-
porating analytical methods into the practice in order to automate the process, improve the
return on space, and reduce stockouts and inventory costs, without disrupting (but somehow
questioning) the company’s policies. Based on these objectives, three axes were defined
for the project: Process Automation, Space Optimization, and Image Standardization.

The resulting Decision Support System (DSS) is called GAP and is today used by space
managers on a daily basis to automatically generate shelf space plans. GAP is developed
on top of a modular architecture and systematically applies tailor-made mathematical pro-
gramming models, combined with heuristics, to derive the best allocation of products on
the shelves. The key benefit of the approach is its flexibility to incorporate different types of
merchandising (placement) rules, including hierarchies of product families, family prece-
dences, display shapes, and special locations. This customization level allows space man-
agers to control the entire process and to test different strategies for allocating the products.
Moreover, GAP goes beyond the straightforward implementation of merchandising rules,
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hence combining customization with optimization.
The remainder of this paper is structured as follows. We start by describing how shelf

space is managed, firstly in Sonae MC (section 5.2) and secondly in a more generic per-
spective, both from a practical and theoretic point of view (section 5.3). GAP is presented
next, in section 5.4, with a general discussion of its analytical approach and a description of
the decision support system. We also offer some details about the project development that
were critical for its success. The impact of the project is carefully analyzed in Section 5.5.
We end with some brief concluding remarks emphasizing the fact that we are presenting
a generic approach that is suitable for other retail companies. Note that this is a practice
oriented paper and many details were omitted for the sake of simplicity. Additional papers
will be referred throughout the text for more technical details.

5.2. Shelf Space Management at Sonae MC

The primary objective of retail is to bridge the gap between the point of production and the
point of sales, which stresses the role of logistics and operations in this industry. Sonae
MC has a centralized operations management activity, responsible for planning all the op-
erations for the stores nationwide. The space planning department, as its name implies,
is engaged with managing the space available at the stores, an activity that comprises two
main levels: a macro-space planning level that defines, on a long-term basis, the layout of
the stores (divided by categories); and a micro- (or shelf-) space planning level that defines,
for each category, the products’ placement on the shelves. Shelf space planning is a mid-
term activity that updates shelf space plans with an average rate of 2 to 3 times a year for
more than 300 categories. This activity fully occupies 23 space managers.

Chests
Pallets

Pegboard

Table

Polygonal 
Shelf

Bins

Shelves

Irregular Shelf Placement

Figure 5.1 – Planograms with different types of fixtures. Some include more than one
fixture type or present irregular shelf placements, resulting in irregular planograms.

The traditional micro-space planning tool is a planogram, which is a virtual represen-
tation of the shelves, showing exactly where each product should be physically displayed
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and the inventory that it should hold. One planogram comprehends plenty of information
that has to be carefully planned: the location of the products, the number of facings (visible
items), number of items stacked behind and above each facing, packaging style, orienta-
tions (front, side, back, top), among others. Besides the most commonly used shelves,
stores have also other fixture types such as chests, pallets and pegboards (bars with steel
rods sticking out to hold peggable products like pens and pencils). Moreover, planograms
are physically made of segments that are stacked together to form an aisle. Each segment
has its own shelves, which can be placed vertically aligned with the shelves of the other seg-
ments, or be placed differently, forming irregular planograms. Some examples are present
in Figure 5.1.

At Sonae MC, planograms follow a complex structure of merchandising rules that try
to reflect the consumer buying behavior and the strategy of the company (and of the sup-
pliers) for the categories. To do so, the company has a superior customer insight due to its
successful loyalty card, which covers 3 out of 4 Portuguese households and is associated
with 90% of the sales. Morever, the company maintains key partnerships with suppliers
that have a deep knowledge about their categories, assuming the role of category captains.
Space managers are also committed to developing planograms with a compelling visual
look, and put a great effort on it. Nevertheless, the attractiveness of the planogram is a sub-
jective field and planograms depend on the space manager in charge. Figure 5.2 presents
an example of a merchandising manual for a category, where we can see that products are
usually grouped by families which are placed in rectangular shapes. Each planogram has
a hierarchy of families that typically range from 2 to 5 criteria. For each criterion, the
merchandising manual specifies the family type, the display orientation (either vertical or
horizontal), the family precedences and, in some cases, additional information about pre-
ferred locations. Due to the strategic character of merchandising rules, this figure does not
represent a real situation.

Yogurts

Classic Yogurts Drinkable Yogurts

2nd 
Criterion

3rd 
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. .
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Own Brand    Economic Brand

Economic Brand

Leader (eye-level)    Sub-leader   

. .

Flavor – Vertical

Strawberry    Mango    Peach 

Type – Vertical

Classic    Greek    Low Fat     . .

. .Leader   sub-leader   Own Brand

Display Orientation 
(Vertical, Horizontal)

Precedences

Preferred Locations (Eye-level, 
hand-level, bottom, top)

Family Type (Brand, Type, 
Flavor, Package, Size,...)

Hierarchical 
Criteria Levels

Figure 5.2 – Merchandising rules for implementing a given category: an example with
yogurts. Each manual specifies from 2 to 5 hierarchical criteria levels with different types
of information.
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The process of updating shelf space plans has a major interaction with the commercial
department, that is responsible for managing categories. The process for a given category
is as follows. The category manager (from the commercial department) triggers the pro-
cess after specifying the product portfolio (assortment) for the stores, as well as the key
merchandising rules for their implementation. Product portfolios are not store-specific but
are instead specified for clusters of stores with similar sales and space patterns in order to
manage complexity and effort. Space managers start by generating a template planogram
(known as role planogram) for each cluster, where they carefully check how merchandis-
ing rules fit the space. In a collaborative work between the space and category managers,
the planogram is then discussed and merchandising rules are tuned. Once validated by the
category manager, it is then replicated for the remaining stores, by adjusting the product
facings to the space of each store, while maintaining the same allocation rules. Figure 5.3
summarizes this shelf space planning process, where the two key processes are highlighted:
The Generation Process and the Replication Process. Note that the company has many cat-
egories to update and, at the beginning of each year, the category space planning processes
are scheduled for the entire year.

Replication Process
Planograms for all stores, with the same 

arrangement as the role Planogram

Assortment A

Assortment B

Role Planogram  A

Role Planogram B

Generation Process
Role Planogram for each cluster of stores 
with same assortment and similar sales 

and space patterns

Guidelines
Merchandising 

Rules

Guidelines
Merchandising 

Rules

Store A.1

Store A.2

Store A.3

Store B.1

Store B.2

Commercial Department Space Department with collaboration 
of the Commercial Department Space Department Stores

Figure 5.3 – The micro-space planning process has a major interaction with the commercial
department and comprises two main processes: Generation and Replication.

During the shelf space updating processes, space managers generate an average of
60,000 planograms each year. For this purpose, Sonae MC uses a space planning software
from one of the world top three vendors, the JDA Software Group, Inc. This software
gathers the necessary capabilities for creating and maintaining the planograms, including a
space database with all the key information about the products and store equipments, and
a visualization tool that provides realistic views of the shelves, the ability to easily handle
products and powerful reporting. Although automatic tools for planogram generation are
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available in JDA software, they do not accommodate all the inherent complexity of the
Merchandising Rules. Therefore, space managers manually developed their planograms
by dragging and dropping the products onto the shelves, in a time consuming activity that
lasts on average 3 hours.

One of the most difficult challenges that we faced in the beginning of the project was
the lack of formal criteria for evaluating planograms. Space managers were creating and
evaluating planograms based on their intuition and personal judgment, as opposed to ana-
lytical methods. Nevertheless, in most situations, they were empirically considering space
elasticities and balancing the product days-supply values. When analyzing shelf inventory,
days-supply is a common operational metric, measuring the number of demand days cov-
ered by the shelf stock. For balancing days-supply values, space managers were using a
software highlighting tool that colored the products according to predefined days-supply
intervals and they sought to fit all the products within one interval. Moreover, some cate-
gories had alternative objectives such as meeting the brand market-shares.

In 2011, the stores went through a successful lean process that, among other things,
changed their shelf replenishment policy from just-in-time (shelves were replenished fre-
quently in small quantities during the day) to a single shelf replenishment operation each
day, before the morning opening. This change of policy, and the fact that products nor-
mally have joint delivery cycles from the central distribution centers, explain the reasoning
behind balancing days-supply values across the products. By having all products covered
for a similar number of days, the number of shelf replenishment operations are reduced, the
stock level for long-tale products is better controlled, stockouts for fast moving products
are prevented, and it also possible to reduce the backroom inventory.

Sonae MC believed that analytics could help to improve shelf space management going
beyond a straightforward planogram automation tool and this is when this projected started.

5.3. Theory and Practice of Shelf Space Management

Most shoppers are susceptible to in-store marketing, mainly because of the low level of
involvement that consumers have with in-store decisions. Additionally, reduced assort-
ments and stockouts force the search for substitute products, highlighting the role of space
management. Experimental studies have been addressing the effect of space variables on
the demand of the products. These studies point to three main elasticities: space elasticity
measures the increasing responsiveness of demand as more space is allocated to a prod-
uct, experiencing declined marginal returns at some point (Curhan [1972], Chandon et al.
[2009]); location elasticity highlights key display locations that bring a better exposure,
such as the eye- or hand-level (Drèze et al. [1994]); lastly, cross elasticity measures the in-
terdependency between adjacent products and is assumed to be positive for complementary
products and negative for substitute products (Corstjens and Doyle [1981]). Additionally,
the way products are arranged on the shelves can also have an important role on gaining
the consumers’ attention. Thus, carefully organizing them in families can increase inter-
est, while disorganized or excessive complexity (i.e. variations in the basic visual content)
damages the buying experience (Pieters et al. [2010]).
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According to a survey to US retailers (Keltz and Sterneckert [2009]), the main drivers
for space planning initiatives rely on two main axes: maximizing selling space effective-
ness, powered by the aforementioned effects, and tighter inventory control. However, the
same survey concludes that the benefits are not meeting the expectations. As a result,
space planning investments are required because “conventional assortment analytics and
space tools do not deliver the optimization capabilities needed for success”. Software ven-
dors mainly tackle the development of large-scale data processing technologies capable of
addressing the complexity of shelf space in practice, but with limited or no use of mathe-
matical optimization, and a complete disregard for consumer demand effects. Therefore,
automatically generated planograms are still a mirage for most retailers and they often opt
for generic planograms that fit clusters of stores.

Shelf space management is an active field of research in retail operations management,
under the name Shelf Space Allocation Problem (SSAP). Despite the practical relevance of
the problem, there has been somehow a misalignment of the scientific knowledge with the
practice as most state-of-the-art mathematical models have strong limitations (Hübner and
Kuhn [2012], Bai [2005]).

The literature presents a great variety of models, mostly differing in their demand func-
tions, which incorporate different estimates of (some of) the consumer demand effects,
ranging from complex multiplicative polynomial forms to simplistic linear profit func-
tions. Nevertheless, most of these models have the common goal of maximizing demand
by deciding the product facings on each shelf, without considering their location within the
shelves. The most relevant approaches to this work are from Corstjens and Doyle [1981]
who were the first to present space elasticity in a polynomial form, Gajjar and Adil [2010]
who propose a piecewise linearization to the space elastic demand function, and Yang and
Chen [1999], who use an alternative model in the form of a linear multi-knapsack problem.

Perhaps the most important practical limitation from the aforementioned literature is
that it neglects merchandising rules; more specifically, it disregards the existence of product
families that specify associations of products on the shelves. Russell and Urban [2010] and
Geismar et al. [2014] are the only authors who define the exact location of the products on
the shelves and allocate the space in such a manner that keeps product families together,
in uniform and rectangular shapes. Despite this, none of the models were able to solve to
optimality instances with more than 10 products.

Another key-point is that the shelf space allocation literature has focused less on the
cost side of the problem and most models do not explicitly consider inventory related deci-
sions. Two authors stand out in a more inventory-related stream: Baker and Urban [1988]
presented the first model that considered the demand in function of the instantaneous in-
ventory level of an item, based on the economic order quantity (EOQ) model, and Urban
[1998] proposed the first attempt to include shelf space allocation in the inventory decision-
making process. Nevertheless, these models are comprehensive and are only solved to op-
timality for a reduced number of products. The models also include practical limitations:
they consider continuous shelf replenishment operations from the backroom and determine
individual product replenishment policies. Our approach can also relate to this stream as
we give a special emphasis to inventory.

Finally, the literature regarding Category Captains is also interesting to this work, and
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a more general work is found in the book chapter from Kurtulus and Toktay [2009]. Cate-
gory Captains are key suppliers that help retailers manage their categories, for instance by
consulting on the definition of merchandising rules. The use of external consultants with a
deep knowledge about the categories and the large number of factors behind merchandising
rules reinforce the consideration of the rules as inputs to the space planning process.

5.4. GAP Overview

This section presents an overview of GAP. More precisely, we describe the new OR-based
process that was developed to help space managers at Sonae MC perform their daily ba-
sis activities more efficiently and effectively. GAP stands for Automatic Generation of
Planograms and its main functionality is precisely the generation of planograms bearing in
mind the intrinsic complexity of the company space management process.

We soon realized that one single planogram generation process was not enough to
accommodate the space management process in Sonae MC, as directly generating store
specific planograms would break the validation point in the middle of the process, and
would result in a higher validation effort for both the category and space managers. More-
over, the tremendous amount of guidelines would make unlikely the acceptance of fully
automatically generated planograms and would result in an excess of manual adjustments.
Therefore, following the company’s current practice, we divided GAP into two major pro-
cesses: GAP Generation and GAP Replication. GAP Generation is responsible for generat-
ing planograms from scratch, following a set of guidelines, and fits the Generation Process
from Figure 5.3, for the construction of role Planograms. GAP Replication, on the other
hand, adjusts a given planogram to different spaces, by adapting the product facings to the
performance and space of the new stores, while keeping all the allocation guidelines. GAP
Replication fits the Replication Process, for the generation of store specific planograms
based on the role planogram. Both processes present relevant analytical advances that will
be detailed later in this paper.

On top of the analytical advances, one of the most relevant features of GAP is the
possibility that is given to users to control the entire planogram generation process. GAP
Generation can incorporate different types of merchandising rules that can change on the
fly, allowing space managers to test different strategies or to shape the planograms accord-
ing to the current practice (see Figure 5.2 for the main types of rules that can be included).
More importantly, the users choose the level of customization, giving more or less free-
dom to the program to decide the products’ allocation on the shelves. Moreover, GAP
Replication replicates planograms with any allocation rules, including non-standard rules
such as family non-rectangular shapes, using either handmade or automatically generated
role planograms. Finally, GAP can be tuned to meet different performance evaluation cri-
teria, such as the equilibrium of days-supply values across the products (the most typical
planogram evaluation criteria), the correspondence with sales shares or the maximization
of expected demand based on space elasticity effects. All these features provide the neces-
sary flexibility that is crucial for an activity that is so highly dependent on the market, and
is so interconnected with the companies’ strategy.
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GAP consists of two main building blocks: (1) GAP optimizer is the system’s heart
and contains all the analytical methods from GAP Generation and GAP Replication for
generating planograms; and (2) GAP User Interface provides all the tools for handling
data and for managing the insertion of merchandising rules. The remainder of the section
provides details on the analytical approach behind GAP Optimizer, the description of the
overall decision support system, and an analysis of the key-factors that led to a successful
deployment in Sonae MC. Although GAP considers and integrates many types of fixtures,
all of them depicted in Figure 5.1, we will focus on the most common type: shelves.

5.4.1 Analytical Approach

Figure 5.4 presents the architecture of the GAP Optimizer. Both the GAP Generation and
the GAP Replication processes were developed in a modular fashion, and systematically
apply innovative tailor-made optimization models that were solved using mathematical
programming-based heuristics (also known as matheuritics) to ensure fast solutions. As
depicted in the figure, some of the modules are common to the two processes.

Planogram
Generation

Planogram
Replication

Target Facings Aesthetics

Compatibility
Analysis

Data 
Validation

Infeasibility
Analysis

GAP Generation

GAP Replication

Figure 5.4 – GAP Optimizer has a modular architecture and some modules are common to
both GAP Generation and GAP Replication. The key modules are highlighted in gray.

Both the GAP Generation and GAP Replication processes start with a thorough data
validation and compatibility analysis to guarantee that all the data are present and in accor-
dance with the requirements. If so, the processes proceed to the calculation of the target
number of facings for the products, with regard to one of the possible performance eval-
uation criteria. These values are then used as goals while generating the planograms in
the next modules, planogram generation or replication. In case any of the three dark gray
modules are unable to generate valid solutions, the processes end with what we called in-
feasibility analysis, in order to infer about the causes. Finally, as the visual attractiveness
is very important, the last step is designed to improve the planogram aesthetics.

We will now describe all the modules, with a high-level overview of the modeling and
solution approaches included the GAP Optimizer. Additional details are provided in the
appendix and in two technical-oriented companion papers: Bianchi-Aguiar et al. [2015b,a].
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Data Validation and Compatibility Analysis

Sometimes data has some minor inconsistencies that are not compatible with an automated
process. While space planning was a manual process, these inconsistencies were either
not visible to the human eye, and therefore disregarded, or were solved, case by case, by
the space manager. Examples of common data inconsistencies are overlapping or out-of-
border equipment and products without dimensions. Other inconsistency problems may
be generated when specifying merchandising rules or when configuring GAP. The Data
Validation module is responsible for tracing these inconsistencies and return the necessary
warnings to the user. Based on the severity of the inconsistencies, the processes may or
may not proceed.

Other problems arise when the role planogram is not compatible with the store-specific
equipment and the replication process cannot be executed. Examples of planogram incom-
patibilities are: different number of available shelf levels, different types of equipment and
products outside the assortment of the role planogram. This type of problems are traced by
the Incompatibility Analysis module, only executed in GAP Replication.

Target Facings

The Target Facings module decides the number of facings that each product should have in
order to maximize planogram performance, without considering any merchandising rules
or other allocation constraints but only the shelf-space capacity. The reasons for estimating
the target facings beforehand are twofold: it allows us to consider alternative performance
evaluation criteria, and it reduces the complexity of the subsequent allocation problems.
For the sake of brevity, this paper will focus on the most frequent planogram evaluation
objective, which aims at balancing days-supply values across the products while consider-
ing space elastic demand.

At the center of the target facings calculation is the space-to-sales curve depicted in
Figure 5.5 which predicts the demand of a product as a function of the allocated shelf
space. This curve embeds the experimental findings regarding the space elasticity effect:
the more space is allocated to a product, the more consumer awareness the product has,
leading to increasing demand. Nevertheless, the marginal returns decrease as the shelf
space reaches a saturation point, resembling an “S” shape. We included a control parameter
in the curve that specifies the maximum demand variation that can be explained by the
shelf space allocated to products and consider demand forecasts (given as inputs) as the
maximum value. Having captured the space elastic demand, we address the objective of
balancing days-supply values by defining a set of days-supply intervals, and by limiting
all the products to a unique interval. The possible days-supply intervals are calculated in a
preprocessing phase using a user-defined interval length. These intervals also depicted in
the figure using dashed lines.

The target facings optimization model is formulated as a mixed-integer program (MIP)
and embeds piecewise-linear approximations of each product’s space-to-sales curve, ob-
tained using the days-supply intervals. The model determines the target facings for each
product that maximizes the planogram expected demand, subject to the shelf-space capac-
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Figure 5.5 – Demand of a product in function of its shelf space, limited to a maximum
variation α. The vertical lines represent the days-supply intervals.

ity, minimum and maximum number of facings and limited to the selection of a single
days-supply interval. Additional details about this formulation are presented in Appendix
5.A.

GAP Generation

The GAP Generation module decides the products’ placement on the shelves, subject to
the user-defined merchandising rules. For each product, it determines the shelf (or shelves)
where the product is to be allocated, its horizontal location within the shelves, and the
number of facings to be displayed. Therefore, we may say that the outcome is a fully de-
fined planogram. This module aims to meet the target facings specified upstream (Target
Facings module), while considering the location elasticity effects when choosing the prod-
ucts’ placement. For that purpose, we have defined a set of shelf attractiveness curves that
model the attractiveness of the shelves depending on their vertical locations (Figure 5.6).
The shelf attractiveness may vary with the category and fixture type, which explains the
different alternative shapes.

Eye-level

Hand-level

Impact on demand

Sh
el

f 
le

ve
l (

ve
rt

ic
al

 lo
ca

ti
o

n
) 

a) b) c) d) e) f)

Figure 5.6 – Shelf attractiveness curves that model the attractiveness of the shelves depend-
ing on their vertical locations. We have defined 6 different curves (a-f).
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Merchandising rules present an hierarchical structure of product families that are a key-
feature of every shelf space plan. The products of each family must be placed together, in
adjacent positions, and if a family spans more than one shelf, products have to maintain a
continuous, uniform and rectangular shape that can either be vertical (like columns, occu-
pying the full height of the planogram) or horizontal (like lines, occupying the full length of
the planogram). The hierarchical structure creates complex relations between the products
that highly constrain the solutions. We capture these relations using a diagram tree, such as
the one presented in Figure 5.7. The diagram tree starts with an initial node connecting the
families from the first criteria, which define the first level of the tree. Each family is then
connected to its downstream families, leading to a multi-level tree of product families.

Level 1
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Figure 5.7 – Diagram tree representing all the product family relations for yogurts, present
in the merchandising manual from Figure 5.2

We formulated this problem using an innovative network flow MIP model. An intu-
itive network approach would associate one node to each product to find the sequence of
products on each shelf. However, such approach would lead to an extremely complex and
intractable model as the traditional sequencing variables Ti j, stating whether each product i
precedes or succeeds product j, would increase exponentially with the number of products.
To overcome this, we explore the existence of a hierarchy in the product families and con-
sider a set of multi-level family dependent networks. For each shelf, we start by defining a
network with the families from the first level of the diagram tree. Afterwards, for each first
level family, we define a network with the corresponding downstream families and repeat
the process until the last level is reached, with a set of disjoint product networks (see Figure
5.8 for a partial definition of the network resulting from the tree diagram in Figure 5.7). The
model decides on the network sequences and then the overall product sequence is obtained
by conveniently joining the product-level sequences. This approach also guarantees that
the products belonging to the same family are consecutively placed on each shelf, which is
another requirement of the problem. Additional constraints ensure the coordination of each
family between shelves for the rectangular shapes, as well as the display orientations. The
precedence and special location rules, if any, correspond to variables that are fixed during
a preprocessing step.

One of the most relevant features of the formulation is that it accommodates all the
levels of flexibility the user may want to use when generating planograms. In a less flexible
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Figure 5.8 – Partial representation of the multi-level family networks resulting from the
diagram tree in Figure 5.7.

scenario, when the user wants to control all the planogram details, the formulation will be
more constrained with many variables fixed. However, even in these cases optimization
still takes place but with a more limited scope. For instance, if the user chooses to set
high-level family precedences, the remaining families are still sequenced by the model.
In a more extreme case, if all sequences are defined, the formulation still decides on the
optimal shelf space for each product.

When the problem size increases, it becomes intractable, even when resorting to the
multi-level family networks. This fact limits the straightforward use of a commercial solver
on the standard mathematical programming model. This fact motivated the development of
an approximate method. We chose a mathematical programming based approach because
it would be difficult to develop a highly customized heuristic considering all family-related
merchandising rules, that would still be capable of generating high quality feasible solu-
tions within reasonable time limits. Moreover, a MIP-based approach makes it possible to
introduce new features in the problem with none or limited effort. The formulation is then
embedded in a matheuristic that successively solves a sequence of sub-problems exploring
the hierarchy present in the product families. The matheuristic starts by allocating families
from the first level and progressively moves down until reaching the product level. Techni-
cally, this approach is based on the relax-and-fix (R&F) framework: we consider the entire
formulation in all iterations but families already considered in previous subproblems have
their variables fixed; families not yet considered have their variables relaxed to continuous
values; and families from the current subproblem have integer variables. The approach
additionally includes a backtracking scheme. Whenever a sub-problem is infeasible, the
heuristic shifts backward instead of forward, and solves a larger sub-problem by unfixing
previous parts of the solution.

Both the formulation and the matheuristic are formally defined in Bianchi-Aguiar et al.
[2015b].
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GAP Replication

Given a fully defined planogram (role planogram), the GAP Replication module reproduces
a similar product placement for a new store without the need to provide merchandising rules
or other type of reasoning behind the planogram construction. The new space is usually
larger (in width, as most of the times planograms have the same height) but should have a
similar shelf layout to ensure the compatibility between the two planograms. Since the new
store has a different demand pattern, the objective is to meet new target number of facings,
specified upstream and suitable for this store.

We formulated the replication problem as a MIP model. Although we mainly aim to
adjust the product facings, the model necessarily determines the products’ location, in order
to guarantee that the new planogram fully complies with the role planogram. In particular,
the following product placement information is considered:

• products are required to keep the same relative position as in the role planogram. In
the case of shelves, this means that products maintain the same shelf level and they
are placed following the same sequence;

• product families are required to keep their uniform rectangular shapes. The family
continuity within each shelf is already ensured by keeping the same sequence. The
rectangular shape is obtained by vertically aligning the first and the last products
of the shape, which we call the left and right alignments. This brings flexibility to
consider shapes from the role planogram that may not be necessarily rectangular.

In other words, one may say that the role planogram suffers a controlled “expansion”
in order to keep all alignments. Note that during this process, we do not consider location
effects on demand, as the relative product placement constrains such decision.

Although solving the formulation in a commercial solver is able to generate solutions
within time limits that are acceptable in practice, we developed a second MIP-based heuris-
tic to ensure the scalability of the approach, especially for the planograms with irregular
shelf placements (mis-alignments and interruptions in each shelf level), whose additional
constraints greatly impacted the performance of the formulation.

Generically speaking, this matheuristic has three main steps. The first step generates an
initial solution for the problem with the minimum display quantities for the products. The
second step iteratively adds the remaining product facings to the planogram until no more
space is available (or no more facings can be added). The last step tries to improve the
solution by allowing the removal and insertion of new facings. Technically, this approach
is an integration of two well-known MIP-based improvement heuristics: fix-and-optimize
and local branching. Thus, in each iteration, we solve the model with some variables
partially constrained in one of two different ways: a subset of the variables are fixed to the
values obtained in the incumbent solution (fix-and-optimize) or there is a limited number of
changes allowed to the values obtained in the incumbent solution (local branching). One
of the interesting aspects of this matheuristic is that it mimics the process followed by the
space managers when manually replicating planograms.

Both the formulation and the matheuritic are formally defined in Bianchi-Aguiar et al.
[2015a].
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Aesthetics

The formulations for planogram generation and replication focus on ensuring that the
shapes are rectangular and disregard other aesthetic details, resulting in planograms with
some display issues, such as such as large and irregular gaps between the products. The
Aesthetics module is responsible for improving the attractiveness of the planogram and it
considers two key factors for obtaining attractive displays: the way products are spaced
throughout the planogram and whether the planogram is fully merchandised (i.e. full of
facings). For that purpose, the generation or replication formulation (depending on whether
it is a GAP Generation or Replication process) is re-executed again with all the decisions
fixed to the incumbent solution, with the exception of the horizontal location of the prod-
ucts. The objective function is changed, firstly to minimize the empty space, and secondly,
when no more products fit the planogram, to minimize the maximum spacing between
two consecutive products. This latter objective distributes the empty space throughout the
products.

Infeasibility Analysis

Highly customized and detailed merchandising rules lead to significantly constrained gen-
eration and replication formulations which can compromise the existence of a feasible
solution for the problems. Moreover, the target facings formulation can also be infeasible,
which result in too many possible causes for the process ending without a valid solution.
To overcome these data related issues, we have developed an Infeasibility Analysis module
that searches for the possible infeasibility causes in a structured and logical procedure. It
performs multiple runs of the infeasible formulation and, at each one, a problem feature or
requirement is removed from the formulation. The process stops after identifying a source
for the infeasibility (i.e. whenever the formulation is able to find a valid solution for the
relaxed problem).

5.4.2 Decision Support System

GAP Optimizer requires the integration of different types of information obtained from
multiple sources. If this information is not handled carefully, it may jeopardize the suc-
cessful use of the application. For that purpose, another important building block is the
GAP User Interface that manages all the data handling process, executes the Replica-
tion and Generation processes with real time status messages, and presents the generated
planograms at the end, together with a full execution report. Among other things, this report
provides all the warnings and errors that occurred during the process and when applicable,
the infeasibility causes. In other words, this interface is present throughout the entire pro-
cess, and it works as the liaison with the users. Figure 5.9 depicts the most relevant flows
of information as well as snapshots from two interface forms: the project manager for
handling the data and the generation manual for managing rules and configurations.

The generation manual is one of the key-parts of the overall system. Inspired by hand-
made merchandising manuals (c.f. Figure 5.2), this form presents a familiar interface (to
space managers) for the configuration of merchandising rules in a very intuitive way. Space
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Figure 5.9 – Inputs and Outputs of GAP

managers have high flexibility to define these rules, and in each run they can choose the
level of customization that they want to have in the generated planograms. For the advanced
users, several other configurations are available, from alternative location-elasticity curves
and planogram evaluation criteria to control parameters and tolerances. Each generation
manual can be saved, consulted and reused in multiple processes. Most importantly, it can
evolve as the space managers evaluate planogram solutions and realize possible changes to
the planograms.

With regard to the IT implementation, the GAP Optimizer is a C++ program with all
the models embedded in the code. The company acquired a commercial solver and the
formulations are executed using a C++ library from the solver. The GAP User Interface
is developed using Windows Forms, and all the communications between the two building
blocks use XML files. Both the GAP Optimizer and the GAP User Interface are executed
on a dedicated server and all Space Managers have access to the interface using a remote
desktop connection in a terminal-server architecture. At the moment, GAP does not have
a direct connection with the space database and the information is manually exported and
imported to the interface. Given the success of the project, Sonae MC is now studying
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more efficient infrastructures, both for communicating with the space planning database
and for accessing the server from the space managers terminals.

5.4.3 Project Development

The project kick-off was on March 2012 and it lasted until July 2014. The two processes,
GAP Generation and GAP Replication, were developed sequentially and each one involved
three main phases: Requirements Definition, Prototype & Proof-of-concept and Testing &

Validation. From the organizational standpoint, it included a team from FEUP, responsible
for the complete development of GAP, and two teams belonging to Sonae MC: a team from
the Space Department, responsible for validating requirements and testing GAP, and a team
from ISI (the Information Systems and Innovation Department), responsible for integrating
GAP with the Information Systems of the company.

We strongly believe that there were some key factors in GAP’s design and project
management which had a crucial contribution to the project’s success. To start with, the
decision of dividing GAP in two processes played a vital role both from the space and
commercial department perspectives, as it did not disrupt current practices. Starting the
implementation with GAP Replication has also proved to be a wise decision mainly for two
reasons. Firstly, because the replication process was faster to implement and provided more
consensual solutions, contributing to an earlier engagement of the space managers with
GAP. Secondly, it allowed us to obtain a deeper knowledge about the complex structure of
merchandising rules, which was vital for the GAP Generation.

Another key aspect was the close collaboration with the 3 space managers that were part
of the project team, whose role was essential all the way from the requirements gathering
and problem definition to the testing and validation phases. Weekly meetings between
FEUP and the space managers were important milestones to validate new developments.
This continuous process conferred great flexibility to GAP and led to the development of
an application tailored to the Sonae MC reality. Additionally, the same 3 space managers
tested and validated GAP using different categories of products, which was also significant
for building (and communicating) their internal confidence in the application.

Nevertheless, there were some challenges in this collaboration between academic re-
searchers and industry practitioners who have different objectives, incentives and time hori-
zons. In particular, at the beginning of the project we found a high resistance from the space
managers to adapt to the new process. This was gradually overcome as we attempted to
keep them updated on the evolution of the project, which improved their commitment to
GAP and allowed them to understand the potential of the application.

Training sessions were also performed before the roll-out of each of the two processes
and, given the systems’ complexity, they were crucial to engage space managers. These
sessions included the analysis of solutions with unexpected characteristics obtained while
using GAP and the development of a check-list for systematically looking for alternative
solutions in these situations. Moreover, the execution report also played a vital role in
dealing with the disappointment of space managers when GAP produces a solution that is
not expected and, more importantly, when it is not possible to generate one.

Lastly, and perhaps one of the most important key factors for the success of the GAP
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implementation was the enormous commitment of the space planning and innovation di-
rectors and their sponsorship during the whole project.

5.5. Impact

Today, GAP is used on a daily-basis by the entire micro-space team at Sonae MC, both for
the generation and replication of planograms. This section describes how it enhanced shelf
space management in each of the three axes that were identified for the project: Process
Automation, Space Optimization and Image Standardization.

5.5.1 Automation: from planogram construction to planogram evaluation

Perhaps the first and most straightforward impact of the project was on the space manage-
ment process, as it led to better processing times as well as a positive change of paradigm.

During the first months after the roll-out, all space managers were encouraged to use
GAP in their daily tasks, and to register the number of planograms that GAP could gener-
ate, as well as the process execution times (including the duration of data handling, creation
of the generation/replication manuals and handmade adjustments to the final solution). The
execution times were later compared with the legacy process and the results were encourag-
ing: based on a preliminary analysis, space managers were able to automatically generate
80% of the planograms and the category space management processes took on average
48% less time (46% less in the generation processes and 50% less in the replication pro-
cesses). Moreover, space managers also highlighted that these time reductions can be more
significant in the future, after becoming more agile using the new software and by, to-
tally or partially, reusing the generation manuals that they carefully developed for the first
processes.

Additionally, GAP shifted the space managers’ focus from planogram construction to
planogram evaluation, allowing them to concentrate in additional activities, such as market
trend studies and experiments with alternative merchandising rules. Therefore, this change
of paradigm brought increasing responsibilities to space managers, and gave to them an
analytical tool to support their decisions during the meetings with the commercial depart-
ment.

5.5.2 Optimization: targeting optimality in all customization levels

In what concerns optimization, it is necessary to measure independently the impact of GAP
Generation and GAP Replication.

One of the greatest advantages of GAP Generation is its flexibility to generate either
highly customized solutions or more demand driven (and at the same time innovative)
solutions, based on what is specified in the generation manual. Figure 5.10 depicts this
flexibility by showing three planograms: the first was handmade by a space manager and
the remaining two were generated with GAP, firstly using a fully defined generation manual
(high customization) and then using the same manual but removing family precedences
and display directions (low customization). While the first generated planogram is almost
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similar to the handmade planogram, the second presents an alternative reasoning behind
its creation that intended to put the most popular families in the premium vertical and
horizontal locations.

Hand-made 
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Figure 5.10 – Example of two planograms generated with GAP using two different levels
of customization, and comparison with a handmade planogram.

Regardless of the customization level, GAP Generation always uses the available de-
grees of freedom to optimize the number of product facings and the products’ location. To
assess the impact of GAP Generation on the planograms’ performance, we have analyzed
25 different generation processes (one of which was the example described above). These
examples were carefully selected during the proof-of-concept phase in order to guarantee
that all specificities of the categories were covered. The impact was evaluated by mea-
suring four performance metrics: potential sales increase (estimated using the location
elasticity curves with a maximum impact of 20%); days-supply balance measured in terms
of the average and the standard deviation reductions; and planogram filling rate (defined by
the ratio of the linear space utilized and the overall available space). Table 5.1 summarizes
the results when generating these planograms using high and low customization levels. The
percentage values are relative to the handmade version. GAP Generation is able to improve
the manual planogram performance in all four metrics, both in the low and high costumiza-
tion versions. As expected, reducing the number of rules imposed to the planogram yields
additional gains with an average increase of potential sales from 0.4% to 1.4%. We ob-
served that the gains were more relevant in the metrics regarding to the day-supply values
(whose average and standard deviation were reduced in 38% and 61% respecitvely), which
is consistent with our primary objective. Note that days-supply values have a major im-
pact in replenishment operations, holding costs and product availability. The planograms’
filling rate is also increased in both versions by 3% compared to the handmade planograms.
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Table 5.1 – Summary of the planograms’ performance in 25 Generation and Replication
processes.

GAP Generation
GAP Replication

Low Customization High Customization

Potential sales increase ∗ 1.4% 0.7% –
Average days-supply reduction∗ 37.6% 35.3% 34.3%
Standard deviation days-supply reduction∗ 60.8% 51.4% 56.3%
Space Occupation∗∗ 96.5% 96.7% 97.3%
Execution Time (hh:mm:ss) 00:07:12 00:01:50 00:02:10
∗ with respect to the handmade planogram; ∗∗ 94% in handmade planogram

GAP Replication, by definition, has less flexibility to optimize, only deciding on the
number of facings that products have in the new planograms, subject to many allocation
rules that were extracted from the role planogram. Nevertheless, a smarter product facing
allocation can optimize the day-supply values. We used the same 25 examples to assess
GAP Replication performance by replicating the handmade planograms to the same store.
The results are also present in Table 5.1 and prove that we are still able to significantly
improve days-supply balancing.

This project also caused a deep cultural change in the company. The success of the
project motivated the use of OR-approaches (and more generically speaking, of analytical
approaches) in other operations planning activities. In particular, it already triggered many
other projects with the same OR group from the University of Porto, both in space related
problems, such as backroom optimization, and in other related areas, such as marketing,
store operations and logistics.

5.5.3 Standardization: knowledge management for a global process

Space Managers are divided into groups responsible for subsets of categories. The cate-
gories’ know-how is kept inside each group, supported by manuals that report the imple-
mentation details (using a template similar to Figure 5.2). Nevertheless, these manuals are
frequently limited to the upper criteria levels, giving only a general idea of the reasoning
behind the planograms. Consequently, space managers keep most of the category know-
how, which is partially lost when organizational changes occur. GAP also had a major
impact on standardizing information and managing knowledge. Firstly, the use of elec-
tronic generation manuals (and the possibility of reusing them) centralized the categories’
space planning know-how and made it possible to systematize the tacit knowledge avail-
able into information that can be shared among peers. Secondly, it reduced the subjectivity
of the process, which is nowadays less dependent of the managers’ experience.

5.6. Concluding Remarks

In the highly competitive retail environment of today, retailers can benefit from analytic
tools for better decision making and many successful examples are reported in the liter-
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ature. Shelf space planning is one area that is still to be explored mainly because of its
complexity and high dependency on merchandising rules. We believe that this work is an
important contribution in this direction both from a theoretical and practical point of view.
On the scientific front, we provide innovative mathematical models and efficient algorithms
to the shelf space allocation problem and bring more realism to the scientific approaches
to this problem. From the application perspective, we give insights on how to tailor ana-
lytical approaches to the practice of shelf space management, namely by introducing the
replication problem and by allowing users to control the level of customization from solu-
tions, while still applying optimization in every step of the process. We also provide project
management details that were critical during GAP implementation in Sonae MC, the major
Portuguese retail company.

Although this paper describes a real application of shelf space planning, the approach
does not intrinsically depend on any company specific policies, as it is based on rules that
are defined in run-time. Therefore, it is sufficiently generic to be suitable to other retail
companies working in the grocery or similar markets. Its modular nature also enables its
adaptation and integration with other realities and IT systems.
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Appendix 5.A Target Facings Model

In this appendix, we provide a mathematical formulation of the Target Facings Model. Con-
sider a specific category of a store with overall capacity C. The retailer wants to allocate N
products, indexed by i ∈N , with length ai. Each product is associated with a space-to-sales
curve presented in Figure 5.5 that is linearized with piecewise lines, obtained using the fac-
ings associated with the days-supply intervals (see Figure 5.11). There are T days-supply
intervals, indexed by n ∈ T . For each product i, the minimum and maximum facings of
each interval n are dsn

i and dsn+1
i .

This space-to-sales curve represented in the figure is widely used in the literature and is
associated with a polynomial function depending on the space-elasticity parameter as firstly
introduced by Corstjens and Doyle [1981]. Other authors already proposed piecewise linear
approximations such as Gajjar and Adil [2010]. However, we are the first to consider the
problem with days-supply intervals.

The objective is to maximize the planogram’s expected demand by determining the
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Figure 5.11 – Piecewise linearization of the space elasticity curve considering the days-
supply intervals.

number of facings for each product i. The decisions to be made are: γn, which specifies
whether the days-supply interval n is selected for all products; and Wn

i , which indicates
the number of facings of product i if the days-supply interval is γn. The formulation is as
follows:

Maximize
∑
i∈N

∑
n∈T

f n
i (Wn

i ) (5.1)

Subject to:
∑
i∈N

∑
n∈T

Wn
i ·ai ≤C (shelf-space capacity) (5.2)

li ≤
∑
n∈T

Wn
i ≤ ui, ∀ i ∈ N (minimum and maximum facings) (5.3)

dsn
i ·γn ≤Wn

i ≤ dsn
i ·γn, ∀ i ∈ N , n ∈ T (number of facings) (5.4)∑

n∈DS

γn = 1 (single day-supply interval) (5.5)

Wn
i ∈ {0,1}, ∀ i ∈ N , n ∈ T ;γn ∈ {0,1}, ∀n ∈ T (integrality) (5.6)
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Chapter 6

Conclusion

This thesis is the result of problem-driven research motivated by the space management
problems arising in the food retail industry. Instigated by the current challenges faced
by Sonae MC, a Food Retailer operating in the Portuguese market, we approached two
space-related problems. Firstly, we tackled the traditional Shelf Space Allocation Prob-
lem (SSAP) extending it in a practical oriented perspective, with a special emphasis on
merchandising rules. Secondly, we looked into the problem of generating store-specific
planograms from generic cluster-based planograms, introducing a innovative problem which
we called Shelf Space Replication Problem (SSRP). This is a practice-oriented problem that
was designed to help retailers which are forced to cluster their stores in order to efficiently
manage categories. The case study of Sonae MC provided the motivation to understand
these current challenges and was also the perfect environment to assess the practical value
of our work.

The contributions of this thesis are aligned in two main directions. On one hand, we
pushed the frontier of the shelf space literature with new formulations and solution ap-
proaches. On the other hand, we developed a Decision Support System (DSS) for the
automatic generation of planograms that is nowadays being used on a daily basis by the
shelf space management team at Sonae MC. In what concerns the shelf space literature,
we started by reviewing the different SSAP models and developed a classification frame-
work for this problem (Chapter 2). Subsequently, we proposed a commodity flow based
formulation to the SSAP with two additional practical features: hierarchical product fam-
ilies and display directions. Later, we introduced an innovative application of Operations
Research (OR) within the shelf space literature for replicating a shelf space plan across
different stores, the aforementioned SSRP. Connected to this problem, we also proposed
a promising objective function for shelf space problems that targets inventory leveling in
order to obtain replenishment synergies. On the algorithmic front, we focused on MIP-
based heuristics and developed two approaches, one for each of the two problems tackled.
Chapters 3 and 4 describe the advances in the SSAP and SSRP, respectively. Regarding the
DSS, we developed a modular system that successively applies OR-based approaches for
the automatic generation of planograms. One of the most relevant features of the DSS is the
flexibility to incorporate different merchandising rules, allowing the users to test different
strategies for the products allocation. Chapter 5 details on how the analytical developments
were tailored to fit the practice of shelf space management and the key-factors that led to a
successful implementation.
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In the highly competitive retail environment of today, there is no doubt that retailers
can benefit from analytic tools to better managing space and increase their profitability.
We believe that this thesis is an important contribution in this direction both by bringing
additional realism into academia and by proving the value of advanced analytics in practice.
Moreover, it fulfills its ultimate objective with the creation of one of the first applications
of the “next generation” of shelf space planning systems.

In the remaining conclusions, we will make a brief description of the key-contributions
of each chapter and highlight future research lines.

6.1. Contributions

The key-contributions of each chapter are the following.
Chapter 2 presented a description and a state-of-the-art literature review of the SSAP

focusing on mathematical modeling approaches. This review emphasized the existence of
a wide range of different approaches dealing with different decisions and space elasticity
effects, which created a high level of inconsistency in the field. Based on this review, a
classification framework was proposed with the intent to systematize the research into a set
of sub-problems. The distribution of the existing publications across the sub-problems gave
a clear indication of the research gaps in this field and we highlight the need to consider
merchandising rules. Future research lines pointed to the most promising open questions
in this field and suggested possible extensions to the framework. This chapter originated
the following research paper:

• T. Bianchi-Aguiar, Maria Antónia Carravilla and José F. Oliveira. From a literature
review to a classification framework for shelf space application problems. Working
paper, 2015.

Chapter 3 presented a novel and realistic mixed integer programming formulation for
the SSAP that considers location decisions and two novel features: hierarchical product
families and display directions. The novelty in the formulation comes from introducing
single commodity flow constraints to model product sequencing and from exploring the
hierarchy in the product families to reduce the combinatorial nature of the problem. Based
on the formulation, a MIP-based heuristic was also developed that uses product families to
decompose the problem into a sequence of sub-problems that are solved using a relax-and-
fix approach. To improve the matheuristic’s performance, its original design was adapted
following two directions: recovery from infeasible solutions (improving feasibility) and
reduction of solution times (improving efficiency). We also provided a set of real case
benchmark instances for the shelf space allocation problem with location decisions which
was used to assess the formulation and the matheuristic and will hopefully allow future
research in this area.

We proved the validity of the real-world features by analyzing a concrete example
where we tested different scenarios: we removed the display shapes and then the product
families to check the changes on the solution. This example showed that, even though the
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objective function decreases with the inclusion of these features, benefits are obtained with
a more clever product arrangement on the shelves. However, these benefits are hard to
grasp in the model as they are linked to the customers’ response to the complexity of the
planograms and to the way customers search for the products while shopping.

The new formulation (BAP) was compared to a state-of-the-art formulation and proved
the benefit of the commodity flow based constraints to obtain better solutions and better
execution times by exploring the product families hierarchy. Extensive computational tests
were also performed to compare the formulation with the matheuristic. The matheuristic
improved the solutions in two directions: it was able to solve a higher number of instances
and it decreased the running times by over 70%. Nevertheless, this was obtained with a lim-
ited decrease on the solution quality. The Improving Efficiency extension further explored
the trade-off of seeking lower execution times.

Chapter 3 resulted in the following research paper:

• T. Bianchi-Aguiar, Elsa Silva, Luis Guimarães, Maria Antónia Carravilla and José
F. Oliveira. Allocating Products on Shelves under Merchandising Rules: Multi-level
Product Families with Display Directions. Submitted for publication, 2015.

In Chapter 4 we presented the SSRP, the retail problem of transforming generic cluster-
based shelf space solutions (role-planograms) into store-specific planograms. To the best
of our knowledge, we are the first to introduce this problem in the shelf space literature.
As the replication process is done by systematically extracting all the features out of the
role planogram, we believe that it is suitable for most retail companies and may improve
the use of analytics in practice.

We presented two mathematical programming formulations to solve the SSRP: the
single- and multi- segment, with the latter having misaligned shelves along the planogram.
The formulations use a novel inventory related objective function that is also a key-contribution
of this chapter. Instead of determining individual order quantities for the products, the
formulation balances the products’ inventory level in order to trigger joint shelf replenish-
ments. This objective is in line with common practices and evaluation metrics. To ensure
the process scalability, we also present a MIP-based heuristic based on the formulation, that
combines two well-known mathematical programming based heuristics: fix-and-optimize
and local-branching. Moreover, we provided a set of real case benchmark instances to
promote future research in this novel problem.

We tested the formulations and the MIP-based heuristic using the benchmark instances
and the results were encouraging. We were able to generate a solution for all the instances
with an average optimality gap of 0.03% in approximately two minutes on average. The
MIP-based heuristic used 88% of the time and obtained an optimality gap of 0.19%. We
also compared the solutions to hand-made planograms generated by the space managers of
Sonae MC to evaluate inventory leveling. The majority of the solutions suffered a reduc-
tion of 16.6% in terms of average days-supply values and 13.1% in terms of days-supply
standard deviation.

Chapter 4 resulted in the following research paper:



128 Chapter 6. Conclusion

• T. Bianchi-Aguiar, Maria Antónia Carravilla and José F. Oliveira. Replicating Shelf
Space Allocation Solutions Across Retail Stores. Submitted for publication, 2015.

Chapter 5 introduced GAP, the DSS that is today used on a daily basis by the space
management team of Sonae MC. GAP is built on a modular basis and two of its modules
integrate the approaches that were developed on the previous chapters (GAP Generation
and GAP Replication). This chapter also introduces a novel formulation that was devel-
oped to estimate the number of facings for the products before their placement on the
shelves. At the center of this formulation is a piecewise representation of a space-to-sales
curve that embeds the experimental findings regarding the space elasticity effect, while still
considering the objective of inventory leveling.

GAP enhanced shelf space management in three axes: process automation, by bring-
ing better processing times (54% of reduction) and a positive change of paradigm from
planogram construction to planogram evaluation; space optimization, with a potential sales
increase of 1.4%, higher space occupation rates (on average 97%) and days-supply val-
ues with 61% less variability (standard deviation); and image standardization, with less
subjectivity and a centralization of the categories’ know-how.

Although this chapter describes a real application of shelf space planning, the approach
does not explicitly integrate any company specific policies as it works by rules that are de-
fined on the fly. Therefore, it is sufficiently generic to be suitable to other retail companies
working in the grocery or similar markets. Its modular nature also enables the adaptation
and integration with other realities and IT systems.

Besides the DSS, this chapter also resulted in the following paper:

• T. Bianchi-Aguiar, Elsa Silva, Luis Guimarães, Maria Antónia Carravilla and José F.
Oliveira. Using Analytics to Enhance Shelf Space Management in a Food Retailer.
Working Paper, 2015.

6.2. Future Work

By creating awareness to this problem, we hope to stimulate further research and encourage
the use of optimization in the practice of shelf space management. We identified a set of
future research topics connected to each of the chapters of this thesis, that we will briefly
describe now.

Chapter 1 framed shelf space planning within retail operations and emphasized the
interdependency between shelf space and other planning activities such as assortment, in-
ventory and replenishment. Many opportunities lie in the integration of these activities.
Nevertheless, as they usually belong to different organizational hierarchies and responsi-
bilities, there may be some obstacles in their cooperation in practice. Therefore, besides
integration, we also suggest the use of sensitivity analysis to measure the impact of up-
stream decisions in shelf space plans.

Chapter 2 suggested many relevant extensions to the current shelf space formulations
that are worth tackling. In particular, it refers that most literature on shelf space allocation,
including this thesis, considers that the location of the shelves are given as inputs to the
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models and suggests the integration of shelf-decisions in the problems. Additionally, as
stores usually have other types of fixtures, their consideration and integration are also po-
tential research topics. Pegboards are a particularly engaging fixture type for future studies
because of their inherit complexity and the fact that they have been hardly studied in the
literature.

Chapter 3 gave emphasis to the use of merchandising rules in shelf space models. Nev-
ertheless, all rules were given as inputs to the formulation. Shelf space models could be
extended to identify the family types that should be used to group products, seeking to
increase display attractiveness.

Chapter 4 introduced the replication problem. Other replication methods can be worth-
while studying, especially with more evasive changes to the role planogram. Two possible
extensions that could benefit the current practice are: (1) allowing changes to the products’
shelf while still considering their relative positions; (2) minor variations on the product
assortments by introducing for instance regional products. From an algorithmic perspec-
tive, further work could be done to generate real-time solutions by using more traditional
heuristics.

Last but not the least, Chapter 5 presented a successful implementation of analytics in
the practice of shelf space management. Additional work can be done to further enhance
the DSS and for a better alignment between the theory and practice of shelf space man-
agement. We suggest the creation of shelf space solutions taking into account the current
planogram implemented in the stores in order to trade-off potential profit and the costs of
changes, namely, handling costs.





Appendix A

Notation

A.1. Shelf Space Allocation Problem

Indices
k shelves

i, j products

u,m product families

Parameters
K number of shelves

M number of product families

N number of products to display

wk width of shelf k

hk height of shelf k

ai width of product i

bi height of product i

pi profit of product i

li minimum number of facings of product i

ui maximum number of facings of product i

γk effectiveness of shelf k to generate revenue

v maximum deviation of product families between shelves

wmax
m width of the largest product from each block m

Sets
K set of shelves
N set of products
M set of family products (also known as blocks)
Nu set of products belonging to each family u
Mu set of downstream families belonging to each family u
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SH set of families that should have their downstream blocks with horizontal shape
SV set of families that should have their downstream blocks with vertical shape
Vu set of blocks from the immediate downstream level, either product families (m,n ∈

Mu) or products (m,n ∈ N)

Decision Variables
Wik the integer number of facings of product i ∈ N on shelf k ∈ K
Xs

i the continuous horizontal location of product i ∈ N , measured from the lower-left
corner of the planogram to the lower-left corner of the first facing of the product

Tmnk = 1 if block m is displayed immediately after block n on shelf k ∈K , u ∈M,m,n ∈
Vu∪{0}

Ymk = 1 if block m ∈ V is located on shelf k ∈ K
Fmnk the continuous flow from block m to block n on shelf k ∈K , u ∈M, m,n ∈Vu∪{0}
Lik shelf length assigned to product i ∈ N on shelf k ∈ K
Xs

m the horizontal location of the block m ∈ V (left coordinate)
Xe

m the horizontal location of the block m ∈ V (right coordinate)
FLmk = 1 if k ∈ K is the first shelf of block m ∈ V
LLmk = 1 if k ∈ K is the last shelf of block m ∈ V

A.2. Shelf Space Replication Problem

Indices
k levels
o segments
i, j products
m family alignments (left and right)
p facings
u minimum space share requirements

Parameters
K number of level
O number of segments
W total width of the planogram
N number of products
Nk number of products of level k
ML number of left (right) alignments
MR number of right alignments
Q number of minimum space share requirements
wok width of shelf (o,k)
hok height of shelf (o,k)
eok (=1) if shelf (o,k) exists in the planogram. (=0 otherwise)
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cok (=1) if shelf (o,k) is aligned with the following shelf (o + 1,k) (=0 otherwise)
nok (=1) segment of the next existing shelf of level k after shelf (o,k) (if there is no

next shelf, nok = −1)
ai width of product i
bi height of product i
li lower bound (upper bound) on the number of facings of product i
ui upper bound on the number of facings of product i
si total stock of product i for each facing
Ki number of shelves where product i is
qu minimum percentage of space to allocate to the products belonging to the space

share requirement u
v maximum deviation between
Di daily demand of product i
γi scale parameter that reflects the variation in demand with respect to the number

of facings of product i
αk scale parameter that reflects the variation in demand with respect to the shelf k

where the product is placed
Rip the days-supply value of product i prior to introducing the pth facing
Fip the replenishment frequency of product i prior to introducing the pth facing (Fip =

1/Rip)

Sets
K set of levels
O set of segments
N set of products
Nk set of products of level k, ordered by order of appearance
N−k set of products of level k, ordered by order of appearance, except the last product
MR set of left alignments
MR set of right alignments
NL

m set of products of each left alignment m
NR

m set of products of each right alignment m
Q set of minimum space share requirements
N

Q
u set of products of each minimum space share requirement u

Decision Variables
Ri days-supply value of product i
Wi the integer number of facings of product i ∈ N on each of the shelves where the

product is located
Xi the continuous horizontal location of product i ∈ N , measured from the lower-left

corner of the planogram to the lower-left corner of the first facing of the product,
Wip (=1) if product i ∈ N has the pth facing on the planogram, p = 1, . . . ,ui
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Li shelf length assigned to product i ∈ N on each of the shelves where the product is
located

XL
m the horizontal location of left alignment m ∈ML

XR
m the horizontal location of right alignment m ∈MR

Lio shelf length assigned to product i ∈ N in segment o ∈ O, on each of the levels
where the product is located,

Yio (=1) if product i ∈ N is located in segment o ∈ O
Xio the continuous horizontal location of product i ∈ N in segment o ∈ O, measured

from the lower-left corner of the planogrammytablesmalllinespace

A.3. Target Facings Problem

Indices
i products
n days-supply intervals

Parameters
N number of products
T number of days-supply intervals
wi width of product i
C planogram overall linear capacity

Sets
N set of products
T set of days-supply intervals

Decision Variables
γn (=1) if the days-supply interval n is selected to all products
Wn

i the number of facings of product i if the days-supply interval is γn
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Planogram Solutions

B.1. Example 1

Category A

Subcategory A.1

1st  Criterion

2nd Criterion

Main criteria

Family-type 2 – Vertical

Family-type 1 – Horizontal

3rd Criterion Family-type 3 – Horizontal

Figure B.1 – Merchandising Rules from Example 1

Figure B.2 – Highlight family-type 1 from Example 1
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Figure B.3 – Highlight family-type 2 from Example 1

Figure B.4 – Highlight family-type 3 from Example 1

B.2. Example 2

Category B

Subcategory B.1

1st  Criterion

2nd Criterion

Main Criteria

3rd Criterion

Subcategory B.2 Subcategory B.3

Family-type 1 – Vertical

Family-type 2 – Horizontal

Family-type 2 – Horizontal

Family-type 3 – Vertical

Family-type 3 – Vertical

Family-type 3 – Vertical

Figure B.5 – Merchandising Rules from Example 2
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Figure B.6 – Highlight subcategory from Example 2

Figure B.7 – Highlight family-type 1 from Example 2

Figure B.8 – Highlight family-type 2 from Example 2
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Figure B.9 – Highlight family-type 3 from Example 2

B.3. Example 3

Category C

Subcat. C.1

1st  Criterion

2nd Criterion

Main Criteria

Family-type 1
Vertical

Subcat. C.2

Family-type 1
Horizontal

Subcat. C.3 Subcat. C.4 Subcat. C.5 Subcat. C.6 Subcat. C.7

Family-type 1
Horizontal

Family-type 1
Vertical

Family-type 1
Vertical

Family-type 1
Vertical

Family-type 1
Vertical

Family-type 2
Horizontal

Family-type 2
Horizontal

Family-type 2
Horizontal

Family-type 2
Horizontal

Family-type 2
Horizontal

Figure B.10 – Merchandising Rules from Example 3

Figure B.11 – Highlight subcategory from Example 3
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Figure B.12 – Highlight family-type 1 from Example 3

Figure B.13 – Highlight family-type 2 from Example 3

B.4. Example 4

Category D

Subcategory D.1

1st  Criterion

2nd Criterion

Main Criteria Subcategory D.2 Subcategory D.3

Family-type 2 – Vertical

Family-type 1 – Horizontal Family-type 1 – Horizontal Family-type 1 – Horizontal

Family-type 2 – Horizontal Family-type 2 – Vertical

Figure B.14 – Merchandising Rules from Example 4
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Figure B.15 – Highlight subcategory from Example 4

Figure B.16 – Highlight family-type 1 from Example 4

Figure B.17 – Highlight family-type 2 from Example 4
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