
M A P tele
DOCTORAL PROGRAMME IN TELECOMMUNICATIONS

Admission Control based on End-to-end Delay
Estimation to Enhance the Support of Real-Time

Traffic in Wireless Sensor Networks

Pedro Filipe Cruz Pinto

A dissertation submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy (PhD) in

Telecommunications

Supervisor: Manuel Alberto Pereira Ricardo (PhD)
Professor Associado da Faculdade de Engenharia da Universidade do Porto

Co-Supervisor: António Alberto dos Santos Pinto (PhD)
Professor Adjunto do Instituto Politécnico do Porto

September, 2015

c© Pedro Filipe Cruz Pinto: September, 2015

The Jury

President

Doutor Aurélio Joaquim de Castro Campilho
Professor Catedrático da Faculdade de Engenharia da Universidade do Porto

Examiners Committee

Doutor Edmundo Heitor Silva Monteiro
Professor Catedrático da Faculdade de Ciências da Universidade de Coimbra

Doutor António Manuel Raminhos Cordeiro Grilo
Professor Auxiliar do Instituto Superior Técnico da Universidade de Lisboa

Doutor Rui Luís Andrade Aguiar
Professor Catedrático da Universidade de Aveiro

Doutor Manuel Alberto Pereira Ricardo
Professor Associado da Faculdade de Engenharia da Universidade do Porto

Doutor Paulo José Lopes Machado Portugal
Professor Associado da Faculdade de Engenharia da Universidade do Porto

M A P tele
DOCTORAL PROGRAMME IN TELECOMMUNICATIONS

is a joint Doctoral Programme provided by

This work has been done in context of the

SELF-PVP project CMU-PT/SIA/0005/2009 (FCOMP-01-0124-FEDER-013070) financed by the European

Regional Development Fund (ERDF) through the COMPETE Programme and by national funds through the

Fundação para a Ciência e a Tecnologia (FCT)

and the

BEST CASE project (NORTE-07-0124-FEDER-000056) financed by the North Portugal Regional Operational

Programme (ON.2 - O Novo Norte), under the National Strategic Reference Framework (NSRF), through the

ERDF, and by national funds, through the FCT.

To Xana, Rita, David, and Henrique

Abstract

Wireless Sensor Networks (WSNs) are an essential enabler of the Internet of Things (IoT)

concept that envisions a world of interactions between objects. In a WSN, the objects are

small computers equipped with sensor, control and wireless communications capabilities. The

WSN nodes specifications are driven by energy constraints since they use batteries and may

be required to operate over long periods of time. As a consequence, these nodes’ hardware

use low-power electronics and their operation is often defined by limited processing and

communications capabilities.

This thesis considers the case study of a solar smart grid, where each solar panel is equipped

with a WSN node that may generate real-time streams towards a sink. Real-time monitoring

or video surveillance are examples of such applications. The real-time traffic generated by

WSN nodes demands from the network a service characterized by parameters such as delay,

packet loss, and throughput. In particular, we focus this work on guaranteeing a maximum

End-to-End Delay (EED) at the application layer for packets transported by the WSN. A

packet will be considered useful if delivered at the destination within the expected maximum

EED, and useless otherwise. The transmission of useless packets consumes processing and

communications resources, and contributes negatively to the congestion of the system.

The thesis aims to enhance the WSN support for real-time applications and efficiently use

the WSN resources, by exploring the hypothesis that potential useless data packets should not

be transmitted by the source node. Therefore, the thesis provides two major contributions: 1) a

real-time mechanism to estimate packet EED based on IPv6 Routing Protocol for Low-Power

and Lossy Networks (RPL); 2) a cross-layer admission control mechanism that decides if a

packet should progress towards its destination, based on the EED estimation available in each

network node.

The proposed EED estimation mechanism was evaluated and the results obtained reveal that

internal processing delays of the nodes are significant and they should be considered in order

to accurately forecast the packet EED; RPL was also found to be usable as the instrument for

i

ii

enabling the distributed estimation of EED. The packet admission control mechanism was also

evaluated and the results obtained show that it actively contributes to decrease the number of

the useless packets in transit in the WSN, consequently increasing the number of useful packets

received at the destination, and improving the energy efficiency of each node, particularly under

high network loads.

Keywords: WSN. Delay Estimation. End-to-End Delay. RPL. Admission Control.

Resumo

As Redes de Sensores Sem Fios (RSSF) potenciam o conceito da Internet das Coisas

que prevê um mundo de interações entre objetos. Numa RSSF, os objetos são pequenos

computadores equipados com sensores, controlos e recursos para comunicação sem fios. As

especificações dos nós de uma RSSF são orientadas por restrições de energia uma vez que estes

utilizam baterias e podem ter de operar por longos períodos de tempo. Como consequência, o

hardware destes nós utiliza eletrónica de baixa potência e a sua operação é geralmente definida

por capacidades limitadas de processamento e de comunicação.

Esta tese considera o caso de estudo de uma central solar inteligente, onde cada painel

solar está equipado com um nó de uma RSSF e pode gerar fluxos em tempo real para um

nó de destino. A monitorização ou a vídeo vigilância são exemplos de tais aplicações. O

tráfego em tempo real, gerado pelos nós da RSSF, exige da rede um serviço caracterizado por

parâmetros tais como atraso, perda de pacotes e taxa de transferência. Em particular, este

trabalho foi focado em garantir um Atraso Extremo-a-Extremo (AEE) máximo ao nível da

camada de aplicação para os pacotes transportados pela RSSF. Um pacote será considerado

útil se for entregue no destino dentro de um AEE máximo esperado, caso contrário, será inútil.

A transmissão dos pacotes inúteis consome recursos de processamento e de comunicação, e

contribui negativamente para o congestionamento do sistema.

A tese tem como objectivo melhorar o suporte da RSSF para aplicações em tempo real,

utilizando de forma eficiente os seus recursos, explorando a hipótese de que os pacotes

potencialmente inúteis não devem ser transmitidos pelo nó fonte. Assim, a tese apresenta

duas contribuições principais: 1) um mecanismo para estimar em tempo real o AEE de um

pacote baseado no protocolo de encaminhamento RPL; 2) um mecanismo de controlo de

admissão inter-camadas que decide se um pacote deve progredir para o seu destino, com base

na estimativa do AEE disponível em cada nó da rede.

O mecanismo proposto para a estimativa do AEE foi avaliado e os resultados obtidos

revelam que os atrasos de processamento internos aos nós são significativos e que devem

iii

iv

ser considerados na previsão do AEE de um pacote; ao mesmo tempo, o RPL também se

apresentou como um instrumento útil para permitir a distribuição da estimativa do AEE para

todos os nós da rede. O mecanismo de controlo de admissão de pacotes foi também avaliado

e os resultados obtidos mostram que este contribui ativamente para diminuir o número de

pacotes inuteis em trânsito na RSSF, aumentando consequentemente o número de pacotes úteis

recebidos no destino, e melhorando a eficiência energética de cada nó, particularmente quando

a rede está sobrecarregada.

Keywords: RSSF. Estimativa de Atraso. Atraso Extremo-a-Extremo. RPL. Controlo de

Admissão.

Acknowledgements

First, I would like to thank Prof. Manuel Ricardo for his precious guidance. His critical

insights, decisive support, and valuable advices have made this work possible. I also would like

to thank Prof. António Pinto for his continuous support and valuable suggestions that enabled

me to overcome many obstacles found during this work.

I would like to thank INESC TEC for providing me with a leading research environment

and, in particular, to all my colleagues in the Wireless Networks (WiN) research group at the

Centre for Telecommunications and Multimedia (CTM), with whom many of the ideas of this

work were discussed and improved due to their contribution.

I would like to thank Instituto Politécnico de Viana do Castelo (IPVC) for funding and

supporting, in part, my involvement in the MAP-Tele doctoral programme; I would also like

to thank my close professional colleagues that, from the start, encouraged me and provided an

extra motivation to pursue this objective.

I would like to thank my parents for their life values and neverending support, and my

extended family and close friends for their support and understanding during this journey.

Finally, I would like to specially thank and dedicate this thesis to Xana, Rita, David, and

Henrique.

Pedro Pinto

v

“Ao trabalho corresponde o fruto que se colhe.” in Cartas (1654)

Vieira, António

vii

viii

Contents

List of Figures xi

List of Tables xiii

List of Abbreviations xv

1 Introduction 1
1.1 Scope and Motivation . 2

1.2 Problem Statement . 3

1.3 Objective . 4

1.4 Contributions . 5

1.5 Publications . 6

1.6 Document Structure . 7

2 Delay Estimation and Admission Control in IP Networks 9
2.1 Delay Estimation in IP Networks . 9

2.1.1 Delays Definition . 10

2.1.2 Delays Measurement . 13

2.1.3 Delays Estimation . 20

2.1.4 Discussion . 25

2.2 Admission Control in IP Networks . 26

2.2.1 Distributed Admission Control . 28

2.2.2 On the Implementation of Admission Control 31

2.2.3 Discussion . 32

2.3 WSN Operation and Constraints . 33

2.3.1 Hardware and Operating Systems . 33

2.3.2 IEEE 802.15.4 Standard - Physical and MAC Layers 34

2.3.3 IP-based stacks . 37

ix

x CONTENTS

2.3.4 RPL Routing Protocol . 41

2.3.5 Simulation . 47

2.3.6 Discussion . 48

2.4 Summary . 49

3 EED Estimation 51
3.1 EED Estimation Mechanism . 52

3.1.1 Internal Delays . 53

3.1.2 External Delays and RPL Operation 57

3.1.3 End-to-end Delay Estimation Mechanism Output 57

3.1.4 Validation Environment . 58

3.1.5 Results . 60

3.2 RPL Modifications . 65

3.2.1 Selection of Best Parent Procedure Modifications 67

3.2.2 Update Metrics Procedure Modifications 69

3.2.3 Validation Environment . 70

3.2.4 Results . 71

3.3 Delay Accounting Optimization . 74

3.3.1 Preliminary Experiments . 75

3.3.2 Delay Accounting Optimization Procedure 76

3.3.3 Validation Environment . 77

3.3.4 Results . 77

3.4 Summary . 78

4 Distributed Admission Control 81
4.1 Cross-Layer Admission Control Mechanism 81

4.2 Validation Environment . 88

4.3 Results . 91

4.4 Summary . 99

5 Conclusion 103
5.1 Work Review . 103

5.2 Contributions Summary . 104

5.3 Future Work . 105

References 107

List of Figures

1.1 WSN with random and grid topologies . 2

1.2 Photo Voltaic Power Plant . 3

1.3 WSN topology . 4

2.1 IP Stack . 10

2.2 Typical communication between a source and a destination node 11

2.3 Delays within nodes in IP networks . 13

2.4 Reference points and delay measurement in IP networks 14

2.5 Taxonomy of delay measurement in IP networks 15

2.6 Obtaining PHD without synchronization timer 16

2.7 IETF standards initiatives regarding performance metrics measurement in the

Internet . 19

2.8 Transporting delays to the estimation points 23

2.9 Network topology providing flow Admission Control 27

2.10 Admission Control mechanisms overview . 29

2.11 Time Utility Function for an application requiring soft QoS guarantees 32

2.12 Frames structures defined in the IEEE 802.15.4 standard 36

2.13 TCP/IP and lwIP stacks . 38

2.14 uIP and uIPv6 stacks . 38

2.15 Protocol overheads in IEEE 802.15.4 standard 40

2.16 Best parent decision using MRHOF in RPL 41

2.17 DIS message format . 42

2.18 DIO message format . 43

2.19 DAO message format . 43

2.20 DAO-ACK message format . 44

2.21 RPL control messages and data flow dynamics 45

2.22 DAG Configuration option . 46

2.23 DAG Metric Container option . 47

xi

xii LIST OF FIGURES

3.1 WSN nodes and End-to-End Delay estimation scope 52

3.2 EEDEM overview . 53

3.3 Labels (EEDEM) . 54

3.4 Labels and timers (EEDEM) . 55

3.5 Average EEDError(MAE) (EEDEM) . 61

3.6 Average EEDError(MAPE) (EEDEM) . 61

3.7 Average ProcD and PathD distribution (EEDEM) (IGIs from 1 to 10 s) 62

3.8 Average ProcD and PathD distribution (EEDEM) (IGIs from 0.5 to 5 s) 63

3.9 Average number of RPL packets per node (EEDEM) 64

3.10 Average End-to-End Delay (EEDEM) . 64

3.11 Average Packet Reception Ratio (EEDEM) 65

3.12 Selection of best parent procedure (RA-EEDEM) 68

3.13 Hysteresis function graph (RA-EEDEM) . 69

3.14 Average EEDError(MAPE) (RA-EEDEM) . 72

3.15 Average number of RPL packets per node (RA-EEDEM) 72

3.16 Average End-to-End Delay (RA-EEDEM) . 73

3.17 Average Packet Reception Ratio (RA-EEDEM) 74

3.18 Average EEDError(SMAPE) using β varying from 10% to 90% 76

3.19 DAOP integration in EEDEM . 77

3.20 MAC queue usage (DAOP) (left: IGI=1 right: IGI=5) 78

3.21 Average EEDError(SMAPE) using different β values and using DAOP 79

4.1 Usefulness Preview function (CLAC) . 83

4.2 CLAC mechanism integration . 83

4.3 CLAC internal overview . 84

4.4 Data packet payload mapped into the internal packet struct (CLAC) 85

4.5 CLAC interaction with the application layer (using AppAPI) 86

4.6 CLAC interaction with the network layer (using NetAPI) 87

4.7 Average EEDError(MAPE) (CLAC) . 92

4.8 Average End-to-End Delay (CLAC) . 93

4.9 Average Packet Reception Ratio (CLAC) . 94

4.10 Average In-profile Packet Ratio and Average Out-of-profile Packet Ratio (CLAC) 96

4.11 Average Packet Usefulness Ratio (CLAC) . 97

4.12 Total Energy consumed (CLAC) . 98

4.13 Energy consumed mapped in each node (CLAC) 100

4.14 Number of in-profile packets mapped in each node (CLAC) 101

List of Tables

2.1 IP-based stacks comparison . 39

2.2 Options in RPL Control Messages DIO, DIS and DAO 45

2.3 Routing Metric/Constraint Types and Scopes 47

3.1 Relation between Labels, Functions and Contiki OS Files 54

3.2 EEDEM routing metrics mapped to ROLL metric types 57

3.3 Simulation Parameters (EEDEM) . 58

3.4 RA-EEDEM routing metrics mapped to ROLL metric types 67

3.5 Simulation Parameters (RA-EEDEM) . 70

3.6 Simulation Parameters (DAOP) . 75

4.1 Simulation Parameters . 89

4.2 Defined Power Constants . 90

xiii

List of Abbreviations

#Nodes Number of Nodes [90, 91]

#RcvdPkts Number of Received Packets [59, 60, 71, 75, 82, 88, 89]

#SentPkts Number of Sent Packets [59, 60, 89]

#UsefulPkts Number of Useful Packets [82]

6LowPAN IPv6 over Low Power Wireless Personal Network [39–41]

AC Admission Control [xi, 9, 26–32, 49, 81, 82, 103, 105]

ACK Acknowledge [xi, 16, 17, 42–45, 55, 106]

ACManager Admission Control Manager [84–88]

API Application Programming Interface [84, 85]

APP Application [10, 54, 55]

AppAPI Application API [84–86, 88]

AppID Application ID [85]

ARP Address Resolution Protocol [37]

ARQ Automatic Repeat-reQuest [16, 106]

AS Autonomous System [14, 26–29]

ASH Auxiliary Security Header [39]

BPSK Binary Phase-Shift Keying [35]

CAIDA Center for Applied Internet Data Analysis [20]

xv

xvi List of Abbreviations

CBR Constant Bit Rate [20, 58, 88]

CCA Clear Channel Assessment [36]

CDMA Code Division Multiple Access [20]

CLAC Cross-layer Admission Control [xii, 81–101, 104–106]

CP Candidate Parent [41, 44, 66, 67]

CSMA Carrier Sense Multiple Access [66]

CSMA/CA Carrier Sense Multiple Access / Collision Avoidance [36]

DAG Directed Acyclic Graph [xi, 41–47, 57, 58, 66, 67, 69, 70]

DAO Destination Advertisement Object [xi, xiii, 42–45, 66]

DAOP Dynamic Accounting Optimization Procedure [xii, xiii, 75–80, 104]

DHCP Dynamic Host Control Protocol [37]

Diffserv Differentiated Services [26, 30]

DIO DAG Information Object [xi, xiii, 42–46, 66, 67, 69, 70, 73, 88]

DIS DAG Information Solicitation [xi, xiii, 42, 44, 45, 66]

DNS Domain Name Service [37]

DODAG Destination-Oriented Directed Acyclic Graph [41]

DSSS Direct-Sequence Spread Spectrum [35]

DstID Destination ID [85]

DTSN Destination Advertisement Trigger Sequence Number [42]

EED End-to-End Delay [xii, 2, 4, 5, 7, 9, 11, 15, 18, 28, 31, 34, 51–53, 57–60, 62–66, 70,

71, 73–85, 88–91, 93, 99, 103–105]

EED_RE EED Rough Estimation [67–69]

EEDEM EED Estimation Mechanism [xii, xiii, 52–55, 57–67, 70, 71, 73, 74, 76–81, 88, 99,

103–106]

List of Abbreviations xvii

EEDError EED Estimation Error [xii, 59–61, 71, 72, 75–79, 88, 91, 92]

EstEED Estimated EED [85, 86, 88]

EstIF EED Estimation Interface [84–86, 88]

ETT Expected Transmission Time [23, 24, 59, 60, 62, 63, 65, 71, 73, 74, 78, 79]

ETX Expected Transmission Count [23, 47, 59, 63]

EWMA Exponential Weighted Moving Average [20–22, 26, 55, 74, 79]

FFD Full Function Device [35]

FIFO First-In-First-Out [32]

FwdD Forward Delay [55, 56]

FwdLinkD Forward Link Delay [56, 57]

FwdProcD Forward Processing Delay [56, 57]

GenD Generation Delay [55, 56, 86]

GenLinkD Generation Link Delay [56, 58]

GenProcD Generation Processing Delay [56, 58]

GPS Global Positioning System [15–17, 20, 25]

GTS Guaranteed Time Slot [36]

HC Header Compression [40]

HopMetric Hop Count Metric [67–70]

HystV Hysteresis Value [67, 69]

IANA Internet Assigned Numbers Authority [46, 47]

ICMP Internet Control Message Protocol [37, 40]

ID Identifier [35, 42, 43]

IEEE Institute of Electrical and Electronics Engineers [xi, 12, 18, 24, 30–37, 39, 40, 48,

106]

xviii List of Abbreviations

IETF Internet Engineering Task Force [xi, 19, 39, 41]

IGI Inter-packet Generation Interval [xii, 59, 60, 62, 63, 65, 70, 71, 73–75, 77, 78, 88, 91,

95, 99]

IGMP Internet Group Management Protocol [37]

Intserv Integrated Services [26]

IoT Internet of Things [1, 34, 37, 106]

IP Internet Protocol [xi, xiii, 1, 9–15, 18, 20, 25, 26, 32, 34, 37–43, 48, 49, 103]

IPPM IP Performance Metrics [19, 20]

IPR In-profile Packet Ratio [xii, 89, 90, 95, 96]

LLN Low-power and Lossy Network [41, 49]

LR-WPAN Low-rate Wireless Personal Area Network [34]

lwIP lightweight IP [xi, 37–39, 48]

MA Moving Average [20–22, 26]

MAC Media Access Control [xii, 11, 12, 24, 35, 39, 54, 55, 58, 68, 70, 76–79, 104]

MAE Mean Absolute Error [xii, 24, 59–61]

MAPE Mean Absolute Percentage Error [xii, 24, 25, 59–61, 71, 72, 88, 91, 92]

MaxEED Maximum EED [81, 82, 85, 86, 88, 91, 95, 99]

MBAC Measurement Based Admission Control [30, 31]

MCU MicroController Unit [33, 34, 90]

MEMS Micro-ElectroMechanical Systems [1]

MIC Message Integrity Code [39]

MinHystV Minimum Hysteresis Value [69]

MIPS Million Instructions Per Second [33]

MOP Mode of Operation [42, 66]

List of Abbreviations xix

MP2P MultiPoint-to-Point [44]

MRHOF Minimum Rank with Hysteresis Objective Function [xi, 41]

MSE Mean Square Error [24]

MTU Maximum Transmission Unit [39]

NDP Neighbor Discovery Protocol [37]

NetAPI Network API [84, 85, 87, 88]

NTP Network Time Protocol [15–17, 25]

OCP Objective Code Point [46]

OF Objective Function [41, 46, 66, 79]

OF0 Objective Function Zero [41]

OPR Out-of-profile Packet Ratio [xii, 89, 90, 95, 96]

OS Operating System [xiii, 33, 34, 41, 47–49, 54, 88]

OSI Open Systems Interconnection [10]

OWAMP One-Way Active Measurement Protocol [20]

OWD One-Way Delay [14, 15, 17–20, 22, 23, 25, 26]

OWPP One-Way Probe Packet [16, 17]

P2MP Point-to-Multipoint [44]

P2P Point-to-Point [44]

PAN Personal Area Network [34, 35, 37]

PathD Path Delay [xii, 57–59, 62, 63]

PathDMetric Path Delay Metric [57, 58, 63, 66, 67, 70]

PBAC Parameter Based Admission Control [30, 31]

PCS Path Control Size [46]

xx List of Abbreviations

PDU Protocol Data Unit [10, 39]

PHD Per-Hop Delay [xi, 14–18, 23, 25, 26]

PHY Physical [10, 11, 39, 49, 54, 58, 70]

PP Preferred Parent [41, 44, 66, 67, 69, 70]

pp percentage points [65, 71, 74, 95]

PPFC Packet Pair Flow Control [17, 23]

PPP Point-to-Point Protocol [37]

ProcD Processing Delay [xii, 11, 12, 25, 34, 57–59, 62, 63]

ProcDMetric Processing Delay Metric [57, 58, 63, 66, 67, 70]

PropD Propagation Delay [12, 16, 17, 25]

PRR Packet Reception Ratio [xii, 60, 65, 66, 71, 74, 78, 79, 82, 89–91, 94, 103, 104]

PSTN Public Switched Telephone Networks [26]

PUR Packet Usefulness Ratio [xii, 82, 89, 90, 95, 97]

QoS Quality of Service [xi, 2, 20, 26–32]

QPSK Quadrature Phase-Shift Keying [35]

QueueD Queue Delay [12, 25, 54–56, 88]

RA-EEDEM RPL Adaptation for EEDEM [xii, xiii, 65–74, 79, 80, 104]

RAM Random-Access Memory [33, 34, 37, 39, 48]

RcvD Receiver Delay [55, 56]

RcvLinkD Receiver Link Delay [56, 57]

RcvProcD Receiver Processing Delay [56, 57]

RFC Requests For Comments [19, 20, 39–42, 46, 47]

RFD Reduced Function Device [35]

RIPE NCC Réseaux IP Européens Network Coordination Centre [11]

List of Abbreviations xxi

RMSE Root Mean Square Error [24]

ROLL Routing Over Low-power and Lossy networks [xiii, 41, 47, 57, 67]

ROM Read-Only Memory [33, 34, 37, 39, 48]

RPL IPv6 Routing Protocol for Low-Power and Lossy Networks [xi–xiii, 5, 26, 34, 41–47,

49, 52, 57–59, 63–67, 70–72, 74, 78, 79, 83–85, 88, 104–106]

RPLIF RPL Interface [84, 85, 88]

RTD Round Trip Delay [14, 19]

RTT Round Trip Time [14, 18, 23]

SELF-PVP SELF-organizing power management for Photo-Voltaic Power plants [2]

SeqNr Sequence Number [85]

SICS Swedish Institute of Computer Science [34]

SMAPE Symmetric MAPE [xii, 24, 25, 75–79, 88]

SNMP Simple Network Management Protocol [37]

SrcID Source ID [85]

TCP Transmission Control Protocol [xi, 10, 32, 37, 38]

TotalDMetric Total Delay Metric [67, 69]

TransD Transmission Delay [12, 16, 17, 25, 34, 54–56, 88]

TUF Time Utility Function [xi, 31, 32]

TWAMP Two-Way Active Measurement Protocol [20]

TWD Two-Way Delay [14, 15, 17–19, 25]

TWPP Two-Way Probe Packet [17]

UDGM Unit Disk Graph Medium [58, 88]

UDP User Datagram Protocol [37, 40, 58, 70, 75, 88]

uIP micro IP [xi, 34, 37–39, 48, 66]

UP Usefulness Preview [xii, 82, 83]

WG Working Group [19]

WLAN Wireless Local Area Network [16]

WMA Weighted Moving Average [20–22, 26]

WMN Wireless Mesh Network [12, 18, 28]

WPAN Wireless Personal Area Network [34, 39]

WSN Wireless Sensor Network [xi, xii, 1–5, 7, 9, 12, 16, 18, 22, 25, 26, 30–34, 41, 47–49,

51–53, 58, 59, 74, 78, 80–83, 88, 99, 103–106]

Chapter 1

Introduction

Recent advances in the scaling of electronic circuits and in providing them with the

ability to interact with the world around, enabled the appearance of Micro-ElectroMechanical

Systems (MEMS). MEMS technology combines very small computers with sensor and control

capabilities. MEMS mass commercialization and distribution made it very cost-effective and

suitable for multiple uses. The deployment of communications capabilities in MEMS fostered

the appearance of new network architectures and their interconnection to the existing global

Internet Protocol (IP) network leaded to the birth of the Internet of Things (IoT) concept. The

IoT envisions a world of interaction and coordination between objects, with or without human

intervention, for the creation of smart environments.

Wireless Sensor Network (WSN) architectures extend the IoT concept by giving wireless

communications capabilities to MEMS. A WSN is composed of a large number of sensor

nodes, where each node can be characterized as a very small computer with a wireless interface.

These nodes generate data from their sensors, such as temperature, humidity, moisture, and

pressure, among others, and forward this data towards a gateway node. The gateway node,

in turn, connects these networks to the Internet, as shown in Figure 1.1. WSN applications

are multifold in areas such as smart metering, health care, environmental sensing, home

automation, sports and wellness.

The hardware of the sensor nodes in a WSN is designed with processing and communica-

tions constraints since these nodes have limited energy resources. Even though these hardware

limitations exist, more recently new and more complex applications and services (e.g. audio

and video streaming) are pushed to be supported by the WSNs, in order to foster the concept of

the IoT. These initiatives create new challenges in networking research areas such as routing,

management, quality of service and energy efficiency.

1

2 Introduction

Caption

Grid Topology WSNRandom Topology WSN

2

3

4

5

8

9

11

12

13

15

16

17

1

6

7

10

Internet

3

17

10

Internet

1

13

12

6

5

15

7

2

11

9

8

16

4

14

14

WSN nodeGateway node Wireless Range Data Flow

Figure 1.1: WSN with random and grid topologies

1.1 Scope and Motivation

This thesis was carried out in the scope of the SELF-organizing power management for

Photo-Voltaic Power plants (SELF-PVP) project [1] that aimed to increase the efficiency of a

photo voltaic power plant with approximately 200.000 solar panels distributed in an area of 250

hectares. The solar panels include sensor nodes that communicate with each other using a grid

topology WSN as shown in Fig. 1.2. In this scenario, we aim to deploy real-time applications,

such as monitoring or video surveillance, in a set of sensor nodes.

Real-time applications typically generate traffic flows with Quality of Service (QoS) re-

quirements that can be defined in terms of delay, jitter or packet loss. In case these applications

require strict delay boundaries from source to destination, their packets must be delivered to the

destination application within an End-to-End Delay (EED) limit in order for the information to

be considered useful. The packets delivered outside the defined EED limit will be considered

useless and discarded by these applications at the destination.

In order to enhance the operation of these applications, and since WSN nodes have relevant

1.2 Problem Statement 3

Photo Voltaic Power Plant

Caption

Sensor node

Wireless communications range

Solar panel

... ...

...

...

...

...

...

...

...

...

Power lines

sn

sn sn snsn sn

sn sn sn sn sn

sn sn sn sn sn

sn sn sn sn sn

sn snsn sn

sn

Figure 1.2: Photo Voltaic Power Plant

processing and communications constraints, we explore the idea that the WSN should avoid

processing and transporting useless packets and use its full potential to maximize the number

of delivered useful packets. Therefore, our research is oriented towards the enhancement of

the performance of a grid WSN considering the application’s viewpoint, while taking into

consideration the efficient use of the available resources.

1.2 Problem Statement

A real-time application is to be deployed on a grid WSN where each node has limited

resources in terms of processing, communications and energy. The real-time application

generates delay sensitive flows with data that is assumed to be useful for the destination only

if it is received within a strict delay boundary, and useless otherwise. In order to enhance the

support for this application, the WSN performance can be oriented to maximize the number

of delivered useful packets. At the same time, since WSN nodes have relevant processing,

transmission and energy constraints, they should avoid to process and transport the useless

packets.

The main problem to address is that the usefulness of a packet is determined at its

destination, and processing, transmission and energy resources have already been expended

4 Introduction

to transport the packet. Since the destination application may not consider all received packets

as useful, if we are able to identify, as soon as possible, which packets will likely miss the

application delay deadlines and avoid their transmission to the network, an increase in network

performance and energy efficiency is expected to be achieved.

1.3 Objective

The main objective of this thesis is to enhance the support of real-time applications in a

grid WSN topology, as shown in Fig. 1.3. In this topology, each source node generates a delay

sensitive data flow directed towards a central destination node.

WSN

3 15

16

9 13 17

2 146 10

1

Caption

Destination node

Source/Forwarder nodes

Data Flow

7

4 8

5

12

11

Wireless communications range

Figure 1.3: WSN topology

In each source node, the chosen strategy is to preview the EED of each packet and, as

earlier as possible, avoid packet transmissions when these are expected to not comply with the

limits given by the application. In order to pursue this strategy, the research efforts are divided

in two particular objectives:

• Provide an EED estimation mechanism to be deployed in a WSN with minimal impact

on network performance;

• Provide a WSN admission control mechanism based on the EED estimation and intended

to enhance network performance and foster energy efficiency.

1.4 Contributions 5

1.4 Contributions

This thesis provides two main original contributions:

• Novel mechanism to estimate EED based on RPL routing protocol

∗ In order to preview if a packet will be delivered within the EED limit defined

by the application, a novel EED estimation mechanism is proposed. Other delay

estimation mechanisms are proposed in literature but some of them do not provide a

real-time and per-packet delay estimation, while others introduce additional traffic

in the WSN to provide estimations. The proposed EED estimation mechanism

provides a real-time and per packet EED estimation using IPv6 Routing Protocol

for Low-Power and Lossy Networks (RPL). RPL packets are used to feedback

the EED delay of the previously sent packets to the source nodes, thus avoiding

extra traffic in the WSN. Also, to enhance EED estimation accuracy, this proposal

accounts not only with transmission delays but also with the in-node processing

delays which are relevant in the context of the limited processing resources of

the nodes. This contribution has been published in [2]. Also, a set of RPL

modifications to enhance the accuracy of EED estimation were proposed, and

published in [3]. In the context of the EED estimation mechanism and in order

to enhance EED estimation when using multiple network loads, a delay accounting

optimization procedure was also proposed, and published in [4].

• Novel cross-layer admission control mechanism based on the EED estimation

∗ In order to decide if a packet should be transmitted accordingly to their usefulness

to the destination application, a novel cross-layer packet admission control mech-

anism is proposed. The proposed admission control mechanism is distributed by

the WSN nodes and it is responsible for the decisions to transmit or drop a packet

according to the requirements defined by the application. Other admission control

mechanisms are proposed in the literature but the novelty of the proposed mecha-

nism is that it runs in a cross-layer operation mode involving the application and

network layers, while implementing interfaces with the EED estimation mechanism

and RPL routing protocol. This contribution has been accepted for publishing in

[5].

6 Introduction

1.5 Publications

• Pedro Pinto, António Pinto, and Manuel Ricardo, “Data and Path Aggregation in
Large Scale and Cluster-based Wireless Sensor Networks”, in MAPTele Workshop,

Aveiro, Portugal, May 2011.

• Pedro Pinto, António Pinto, and Manuel Ricardo, “Secure Data and Path Aggregation
in WSN (Poster)”, in MAPTele Workshop, Porto, Portugal, Jun. 2012.

• Pedro Pinto, António Pinto, and Manuel Ricardo, “End-to-end Delay Estimation
using RPL Metrics in WSN”, in Proceedings of the Wireless Days (WD’2013), IFIP,

Valência, Spain, Nov. 13-15, 2013, pp. 1–6.

• Pedro Pinto, António Pinto, and Manuel Ricardo, “RPL Modifications to Improve
the End-to-end Delay Estimation in WSN”, in Proceedings of the 11th International

Symposium on Wireless Communications Systems (ISWCS), IEEE, Barcelona, Spain,

Aug. 2014, pp. 868–872.

• Pedro Pinto, António Pinto, and Manuel Ricardo, “Reducing WSN Simulation Run-
time by using Multiple Simultaneous Instances”, in Symposium on Modelling and

Simulation in Computer Sciences and Engineering (ICNAAM 2014), Rhodes, Greece,

Sep. 2014.

• Pedro Pinto, António Pinto, and Manuel Ricardo, “Delay Accounting Optimization
Procedure to Enhance End-to-End Delay Estimation in WSNs”, in Proceedings of

the 8th International Wireless Internet Conference (WICON 2014) - Symposium on

Wireless and Vehicular Communication, Lisbon, 2014.

• Pedro Pinto, António Pinto, and Manuel Ricardo, “Reducing Simulation Runtime in
Wireless Sensor Networks: A Simulation Framework to Reduce WSN Simulation
Runtime by Using Multiple Simultaneous Instances (Book Chapter),” in Handbook

of Research on Computational Simulation and Modeling in Engineering, IGI Global,

2016. 726-741. 8 Sep. 2015. ISBN: 978-1-4666-8823-0.

• Pedro Pinto, António Pinto, Manuel Ricardo, “Delay Accounting Optimization Proce-
dure to Enhance End-to-End Delay Estimation in WSNs” (Book Chapter), Wireless

Internet Book - Lecture Notes of the Institute for Computer Sciences, Social Informatics

and Telecommunications Engineering. Revised Selected Papers of the 8th International

1.6 Document Structure 7

Conference, WICON 2014, Lisbon, Portugal, Nov. 13-14, 2014. Volume 146. May 21th,

2015. ISBN: 978-3-319-18801-0.

• Pedro Pinto, António Pinto, and Manuel Ricardo, “Cross-layer Admission Control
Mechanism to Enhance the Support of Real-time Applications”, Sensors Journal,

IEEE, vol. 15, no. 12, pp. 6945–6953, Dec. 2015.

1.6 Document Structure

The structure of this thesis is as follows. Chapter 2 reviews the related work regarding

the EED estimation and admission control research areas. It also describes specific operations

and constraints present in the WSNs. Chapter 3 details and evaluates the EED estimation

mechanism, and the implemented improvements that enhance the EED estimation. Chapter 4

details and evaluates the proposed packet admission control mechanism. Finally, Chapter 5

concludes the thesis and discusses future work.

Chapter 2

Delay Estimation and Admission
Control in IP Networks

Real-time applications require specific EED boundaries (between source and destinations

nodes) for all its packets. At the destination, if packets are delivered within the defined EED

boundary they are considered useful; by contrary, if the packets are delivered outside this time

boundary they will be considered useless and will be discarded at destination.

In order to preview the usefulness of a packet, the delay from source to destination must be

estimated in each node. Section 2.1 presents the state of the art on delay measurement and esti-

mation. In order to actively control the admission of new traffic and avoid transmitting packets

that potentially will miss the defined EED limit, an Admission Control (AC) mechanism is

necessary. Section 2.2 presents the state of the art on AC in IP networks.

Since the envisioned application must be supported by a WSN, the particular operation

procedures and relevant constraints of these networks are also described in Section 2.3. This

Chapter is summarized in Section 2.4.

2.1 Delay Estimation in IP Networks

The expansion of the packet-switched networks in early 90s facilitated the interconnection

of different network architectures. However these networks provide little control over the

packet delay at the forwarding nodes [6]. Since then, several research efforts were made in

order to characterize, measure and estimate packet delays in the Internet, or global IP network.

9

10 Delay Estimation and Admission Control in IP Networks

2.1.1 Delays Definition

To be a part of an IP network, a node must implement an IP network stack. Fig. 2.1

presents the Open Systems Interconnection (OSI) and TCP/IP models, and a TCP/IP stack

with a common combination of protocols which use IP as the center protocol. These protocols

perform functions specified in the depicted models from Physical (PHY) layer to Application

(APP) layer implemented in hardware, or software, or both. The TCP/IP model is used as

reference in this thesis.

Layer 7

Layer 6

Layer 5

Layer 4

Layer 3

Layer 2

Layer 1

TCP/IP modelOSI model

Application

Presentation

Session

Transport

Network

Data Link (MAC)

Physical (PHY)

Transport

Application (APP)

Network

Data Link (MAC)

Physical (PHY)

TCP/IP stack

UDP

APP1

IP

MAC1

PHY1

TCP

APPnAPP2

MACn

PHYn

MAC2

PHY2

...

...

…

Figure 2.1: IP Stack

When an application sends data, it uses the set of protocols of the stack to transmit it from

the source to the destination nodes according to Fig. 2.2. In this case the application APP1

passes data to lower layers which in turn send it to the PHY layer. The router de-encapsulates

the received information up to IP protocol an forwards it through another interface. The

information eventually reaches the destination node. Since this information is successively

encapsulated and de-encapsulated, different types of Protocol Data Unit (PDU) are formed (e.g.

segments, datagrams, packets, or frames). For simplicity, these different PDUs are referred as

packets for the rest of this thesis.

2.1 Delay Estimation in IP Networks 11

UDP

APP1

IP

MAC1

PHY1

UDP

APP1

IP

MAC2

PHY2

IP

MAC1

PHY1

MAC2

PHY2

IP
Network

Router

IP
Network

Destination nodeSource node

Physical media Physical media

Figure 2.2: Typical communication between a source and a destination node

By definition, a delay is a time interval which is obtained by the difference of two time

instants tA and tB, where tA < tB, as follows:

Delay = ∆t = tB− tA (2.1)

In the IP networks, the time instants are collected at reference points. When a packet

progresses from source to destination, different delay components can be accounted in each

node. Fig. 2.3 presents a source node sending a packet to a destination node where the

following four delay components can be depicted:

• Processing Delay (ProcD): is the time required to process a packet within a node.

This delay includes not only the time elapsed while performing layer 3 and above

layers tasks, but also the tasks within PHY and Media Access Control (MAC) layers

when packet is received. In the IP networks this delay depends on the number of

tasks and on the computational power available. In [7] the authors present an analysis

of EED measurements in IP networks performed by Réseaux IP Européens Network

Coordination Centre (RIPE NCC) by using probe packets where it is assumed that the

ProcD is dependent of three factors: the protocol stack, the the computational power

available at each node and the link driver. Also, the authors verified that the processing

delays are not the same for different probe-packets due to the variability of tasks

performed in the router and they split the processing delay in two parts: the stochastic and

12 Delay Estimation and Admission Control in IP Networks

the deterministic. The processing delay component is often neglected by many research

efforts when accounting delays in a IP network; however, this delay component may

be significant on scenarios characterized by wireless devices with limited processing

resources, such as those used in WSNs. As example, in [8] the authors present a delay

analysis for a Wireless Mesh Network (WMN) using IEEE 802.11 devices in which each

mesh node accounts with intra-node processing delays. In [9] and in [10] the authors

account the ProcD to provide accuracy to their delay estimation.

• Queue Delay (QueueD): is the time elapsed since the packet enters the MAC queue,

waiting for transmission, until it leaves this queue to be transmitted. This delay is

essentially dependent of the network load. Queue theory [11] can provide an estimation

for this delay component.

• Transmission Delay (TransD): is the time required to push all the packet into the physical

media. This delay is proportional to the packet’s length and can be obtained using:

TransD (s) =
length of packet (bit)

rate of transmission (b/s)
(2.2)

• Propagation Delay (PropD): is the amount of time required to move a bit of the packet

from one node to the next node. This delay is proportional to the distance between the

nodes and can be obtained using:

PropD (s) =
distance between nodes (m)

signal propagation speed (m/s)
(2.3)

The signal propagation speed is dependent of the physical media used. For instance, in

wireless networks the propagation speed is approximately the speed of light, denoted by

the constant c, which is approximately 3.00× 108 m/s; when using a copper wire the

signal propagation is around 2/3 of c, i.e. approximately 2.00×108 m/s. For a distance

of 10 m between nodes and using wireless medium, the PropD assume values around

33.3 ns and thus, in some scenarios, the PropD is neglected.

Using the delay definitions above, the total delay in a node can be obtained using the

following equation:

Total Delay (node) = ProcD+QueueD+TransD+PropD (2.4)

2.1 Delay Estimation in IP Networks 13

Router

Processing Delay

IP
Network

Router

IP
Network

...

Destination

... APP1

DestinationSource

MAC

packet

Queue Delay

Transmission Delay

Source
... MACAPP1 PHY

Propagation Delay

packet

packet

Queue Delay

Processing Delay

Propagation Delay

packet

PHY

packet

packet

packet

packet

PHY

PHYProcessing Delay

packet

Transmission Delay

Figure 2.3: Delays within nodes in IP networks

2.1.2 Delays Measurement

In order to measure packet delays in IP networks two reference points are required.

Timestamps must be collected when packets pass through these reference points and delays

are accounted in a unique location by using these timestamps. Different scales can be used for

these reference points; in a node scale these reference points may refer to code execution points;

in a macro scale these reference points may refer to two routers located in distant geographical

positions.

14 Delay Estimation and Admission Control in IP Networks

Measuring delays using Layer 3 reference points

Fig. 2.4 presents a set of layer 3 reference points and, using them, three types of delays

can be defined: Per-Hop Delay (PHD), One-Way Delay (OWD), Two-Way Delay (TWD), also

named Round Trip Delay (RTD) or Round Trip Time (RTT). The same definition is used in

[12].

Caption

Reference Points

IP
Network

Router Router

IP
Network

Source Destination

IP
Network

PHD

TWD

PHD PHD

Source Router Destination

Initial Reference Point Final Reference Point

Initial Reference Point
&

Final Reference Point

OWD

path of
packet flow

Final Reference PointInitial Reference Point

Figure 2.4: Reference points and delay measurement in IP networks

PHD accounts the delay experienced by a packet between two network reference points

distant one hop from each other, named initial reference point and final reference point. The

OWD is the delay of a one way packet between initial and final reference points involving

multiple intermediate hops and IP networks, e.g. a source and a remote destination node or two

edges of an Autonomous System (AS). In case the reference points are the packet source and

2.1 Delay Estimation in IP Networks 15

destination, the OWD can be assumed as the packet EED. The TWD is the round trip delay of

a packet, i.e, both initial and final reference points are in the same node or reference point.

Fig. 2.5 proposes a taxonomy regarding methods for measuring these delays. For each

method it is indicated if the measurement is active or passive, i.e. if the measurement procedure

generates additional traffic or not. Also, for each method it is indicated if a high or a low

overhead is introduced when measuring the delay.

Measuring Delays

Two-way delay
(TWD)

One-way delay (OWD)
(End-to-End Delay)

Reference points = 2
Collect timestamps

(GPS or NTP)

With time
synchronization

Derive OWD from TWD

Without time
synchronization

Per-Hop Delay
(PHD)

Using per hop
One-Way Probe
Packets (OWPP)
with Ack in L2

Derive OWD from PHD

Using data packets
with Ack in L2

Without time
synchronization

Two-way delay
(TWD)

Per-Hop Delay
(PHD)

Reference points = 1
Infer TransD and PropD

Without time
synchronization

Using Two-Way
Probe Packets

(TWPP)

Using source-destination
data packets with Ack in

L3 or above

Reference points = 2
Collect timestamps

(GPS or NTP)

With time
synchronization

Using data packets
with Ack in L2

Reference points = 1
Infer TransD and PropD

Using TWPP

Caption

Passive
Measurement

Active
Measurement

Low overhead High overhead

Use per-hop One-
Way Probe Packets
(OWPP) to convey

timestamps

Add timestamps to
data packets

Reference points = 1
Trigger Internal Timers

Reference points = 1
Trigger Internal Timers

Use per-hop
OWPP to convey

timestamps

Add timestamps to
data packets

Using per hop OWPP
with Ack in L2

Using source-destination
data packets with Ack in

L3 or above

Based on other
Measurement

Figure 2.5: Taxonomy of delay measurement in IP networks

To measure PHD, when Global Positioning System (GPS) or Network Time Protocol (NTP)

is available, nodes can be synchronized so that the hardware clocks of source and destination

have the same reference time. In the case of using NTP, specific probe packets are used to

transport the timestamps. The NTP is widely used in the Internet for clock synchronization

and it provides an accuracy to the order of milliseconds over time scales of hours to days;

however systematic errors can be verified as show in [13]. If GPS is used, the timestamps can

be inserted directly in the data packets which enables to minimize the measurement overhead.

Therefore, in this measurement method, a timestamp is collected in the initial reference point,

16 Delay Estimation and Admission Control in IP Networks

this timestamp is transmitted to the next hop node, and since the next node is the final reference

point, it collects another timestamp, and calculates the difference between the two collected

timestamps to obtain the PHD. Two options are available to transport the first timestamp to the

next node: to use a per hop One-Way Probe Packet (OWPP) that includes the timestamp, or

add the timestamp to a data packet. The former uses a specific packet and the latter uses normal

data packets which in general introduce less overhead in the measurement procedure.

GPS or NTP may not be available or may not work under some situations as indoor areas.

In this case, the nodes are not synchronized and the PHD must be measured within each node,

i.e. with initial and final reference points in the same reference point. This is accomplished by

measuring the delays as presented in Eq. 2.4 by using internal timers, except for the TransD

and the PropD (see Fig. 2.3) for which the delays must be inferred.

Fig. 2.6 presents a node and its next hop where PHD is to be obtained using per hop OWPP

or data packets and using a L2 stop and wait Automatic Repeat-reQuest (ARQ) procedure,

which consist in an automatic Acknowledge (ACK) in L2 when the packet is correctly received,

which is commonly used in Wireless Local Area Networks (WLANs) and WSNs.

Router

Queue Delay

Transmission Delay
of data or probe packet

(TransDdata)

Source

... MACAPP1

Propagation Delay (PropD)

packet

packet

packet

packet

Processing Delay

ACK packet

PHY

PHY

Transmission Delay
of ACK packet (TransDACK)

Propagation Delay (PropD) packet

PHD

Figure 2.6: Obtaining PHD without synchronization timer

2.1 Delay Estimation in IP Networks 17

From the Fig. 2.6, the PHD can be obtained using:

PHD = (Result of Timer 1)+TransDdata +PropD (2.5)

where TransDdata can be obtained using:

TransDdata = (Result of Timer 2)− (2×PropD+TransDACK) (2.6)

Thus, PHD can be obtained as:

PHD = (Result of Timer 1)+ (Result of Timer 2)−PropD−TransDACK (2.7)

Assuming a specific physical media the PropD can be approximated using the Eq. 2.3, and

the TransDACK can be approximated using the Eq. 2.2. This procedure is possible if ACK

is enabled in L2. An alternative approach to measure the TransD using probe packets in one

reference point is named Packet Pair Flow Control (PPFC) and is proposed in [14]. PPFC is

intended to be used in steady networks and it is based on the idea that if two probe packets are

sent directly after each other, they are also queued one after the other and the time which lies

between the end of the reception of the first packet and the start of the reception of the second

packet, can be inferred as the transmission time.

When measuring TWD, both initial and final reference points are defined in the same node,

i.e. there is a single reference point. Thus, time synchronization is not required and this type

of delay is easily measured by triggering internal timers that account for the delay since the

packet is sent, until an answer or echo is received. A Two-Way Probe Packet (TWPP), e.g.

generated by ping or traceroute utilities, or any source to destination packet with ACK in L3 or

above can be used to trigger the timers and collect the TWD.

In order to measure the OWD, the network nodes can be synchronized (using GPS or NTP)

or not. If the nodes are synchronized, the timestamps are collected at two different reference

points and OWD is measured. To transport the timestamp from one reference point to the other,

OWPPs can be used or the timestamps can be added to normal data packets. If nodes are not

synchronized, two options are available: to derive OWD from PHD1 or to derive OWD from

1Network delay tomography operates in reverse, i.e. measures OWD and infers PHD. Further reading regarding
network delay tomography can be found in [15, 16, 17, 18, 19].

18 Delay Estimation and Admission Control in IP Networks

TWD. If OWD is derived from PHD, Eq. 2.8 or Eq. 2.9 can be used.

OWD = PHD×N (2.8)

OWD =
N

∑
i=1

PHDi (2.9)

where PHDi is the PHD obtained in node i and N is the number of nodes up to the

final reference point. The accuracy provided by the Eq. 2.8 to derive OWD from PHD is

highly questionable since, in the real scenarios, individual PHDs may be different and even

uncorrelated. Eq. 2.9 should provide more accurate results but individual PHD must be

obtained in all the nodes transversed by packets.

Authors in [20] present a proposal to estimate OWDs in IP networks by conducting

measurements of transmission, propagation and queuing delays in each node. In the context

of wireless networks, in [21] the authors provide an analysis on the minimum delay in a

WSN using unslotted mode of IEEE 802.15.4, taking into account the transmission related

times, such as back off periods and inter-frame spacing. In [22] the authors propose an EED-

based routing protocol for a WMN intended to to minimize EED accounting with queuing and

transmission delays. In [9] the authors present a cross-layer mechanism to guarantee a defined

EED for time sensitive applications that uses the IP-header option field to accumulate the PHD

estimate that is used by a forwarder node to select an output priority queue.

In the case of the OWD being derived from TWD, Eq. 2.10 can be used.

OWD =
TWD

2
(2.10)

In [23] authors provide a procedure to estimate TWD in multicast scenarios by using probe

packets. Authors in [24] present a model focused on the prediction of the TWD obtained using

statistical functions over previous measurements of TWD. In [25] the authors observed that

RTT is a poor approximation of the OWD and proposed a scheme that analytically derives the

OWD, forward and reverse delay for asymmetric networks. Also, the analysis made in [26, 27]

reveals that the Internet paths have large delay asymmetries, raising doubts about the accuracy

of this method when used with real traffic.

2.1 Delay Estimation in IP Networks 19

IETF Efforts to Measure Delay in IP networks

In order to provide common understanding regarding performance and reliability metrics

that could be adopted in the Internet, Internet Engineering Task Force (IETF) has defined

frameworks and methodologies to measure metrics in the Internet such as delay, bandwidth,

throughput and packet loss. Fig. 2.7 presents the major IETF contributions in this area. They

come mainly from IP Performance Metrics (IPPM) Working Group (WG).

RFC 2330

May 1998 Set 1999

RFC 7312

Aug 2014

RFC 2681

RFC 2679

RFC 2680

RFC 2678

Nov 2002

RFC 3393

Sep 2006

RFC 4656

RFC3432

Sep 2008

RFC 5357

Framework for IP
Performance

Metrics (IPPM)

A One-Way Delay
Metric for IPPM

A Round-trip Delay
Metric for IPPM

Network performance
measurement with
periodic streams

A One-Way Active
Measurement

Protocol (OWAMP)

Advanced Stream and
Sampling Framework

for IPPM

IPPM Metrics for
Measuring Connectivity

A One-Way Packet
Loss Metric for IPPM

IP Packet Delay Variation
Metric for IPPM

A Two-Way Active
Measurement

Protocol (TWAMP)

Apr 2010

RFC 5835

Framework for
Metric Composition

Figure 2.7: IETF standards initiatives regarding performance metrics measurement in the
Internet

In RFC 2330 [28] the IPPM WG defines a general framework and concepts to which

performance metrics should comply to, and possible measurement methodologies. These

metrics can be derived from other metrics that exhibit spatial, or temporal composition.

The methodologies highlighted to measure these metrics fall in three categories: 1) direct

measurement by injecting test traffic; 2) project end-to-end metrics from measured hop metrics;

3) estimate a metric from other sets of metrics.

The RFC 2678 [29] defines a set of metrics for connectivity between a pair of Internet nodes

over a time interval and the RFC 2680 [30] defines metrics for one-way packet loss across

Internet paths. The RFC 2679 [31] defines a metric for OWD and the RFC 2681 [32] defines

a metric for TWD of packets in context of IPPM across Internet paths. Both contributions

highlight that there are scenarios where OWD measurement should be performed instead of

the RTD measurement since the path from a source to a destination can be different than the

reverse path and even when two paths are symmetric, they may have different performance

characteristics due to asymmetric queuing. Also, the performance of an application may

20 Delay Estimation and Admission Control in IP Networks

depend mostly on the performance in one direction and in the use of QoS enabled networks,

so provisioning in one direction maybe different than provisioning in the reverse direction, and

thus the QoS guarantees differ.

The RFC 3393 [33] defines a metric for characterizing the variation of packets delays across

Internet, which is based on the difference between OWD of selected packets. RFC 3432 [34]

describes a periodic sampling method and relevant metrics for assessing the performance of

IP networks using active and passive measurements and simulating applications generating

Constant Bit Rate (CBR) traffic, typically multimedia applications.

RFC 4656 [35] presents the One-Way Active Measurement Protocol (OWAMP) for uni-

directional metrics such as OWD and one-way loss using time sources such as GPS and

Code Division Multiple Access (CDMA)-based systems (e.g. cellular networks) by using

probe packets. The Center for Applied Internet Data Analysis (CAIDA) [36] uses OWAMP

to measure one-way latency. Since OWAMP does not accommodate round-trip or two-

way measurements, RFC 5357 [37] proposed the Two-Way Active Measurement Protocol

(TWAMP) that can be used to measure one-way metrics in both directions between two network

elements.

RFC 5835 [38] provides a framework for classes of metrics such as temporal aggregation,

spatial aggregation, and spatial composition, that were described in the original IPPM frame-

work (RFC 2330). RFC 7312 [39] updates the RFC 2330 with advanced considerations for

measurement methodology and testing.

2.1.3 Delays Estimation

Two types of strategies can be used to estimate delays: offline and real-time. The offline

strategy, takes advantage of theoretical models such as queuing theory or network calculus.

The real-time strategy, estimates delays using samples of packets delays.

In an IP network, the sequence of packet delays measured can be described as a time series.

The forecast methods based on time series use past data to estimate future data items and these

methods are used in areas such as business planning or weather forecast [40, 41]. Therefore,

real-time packet delay forecast or estimation comprehends two steps: 1) collect previous packet

delays and 2) based on the previous packet delays provide an estimate for future packet delays.

If the time series can be defined as stationary, i.e. no systematic change in key statistical

moments such as the mean or variance, the following estimation methods can be used: naive,

Moving Average (MA), Weighted Moving Average (WMA) and Exponential Weighted Moving

Average (EWMA).

2.1 Delay Estimation in IP Networks 21

Assuming that Dn is the delay of the n-th sample, its estimate defined as D̂n can be obtained

using naive method as follows:

D̂n = Dn−1 (2.11)

Using the MA method, the D̂n is obtained as follows:

D̂n =
1
N

N−1

∑
i=0

Dn−1−i (2.12)

where N is the number of previous delays to consider.

Using the WMA method, the D̂n is obtained as follows:

D̂n =
1
N

N−1

∑
i=0

(Wi×Dn−1−i) (2.13)

where:

Wi is the weight for the item i, where ∑
N−1
i=0 Wi = 1

N is the number of previous delays to consider

Using the EWMA, the D̂n is obtained as follows:

D̂n = β .Dn−1 +(1−β).D̂n−1 (2.14)

where β is the smoothing factor and 0 < β < 1

The naive method simply assumes that the next delay will be equal to the last one obtained,

ignoring any historical data.

The MA method is often used as it is easy to understand and compute, but the estimation

is only available when data series are equal or greater than N. The MA method also tracks the

actual data but presents it with a lag and weights the data equally, which means it is not able to

adequately represent data outliers (i.e. data points distant from other observations)[42].

In order to cope with some of this issues, WMA method can be used. WMA method counts

differently the recent data and the other periods data in order to better adjust to the properties

of the time series. Even though the result of WMA method also presents lag when compared

to the time series and, similarly to the MA method, it is highly dependent on the value of N.

22 Delay Estimation and Admission Control in IP Networks

The EWMA method is easy to compute in real-time. Older data points never leave the

estimation results but their impact is reduced for each new item in data series. Another

feature regarding the EWMA is that it does not use many memory resources. While MA and

WMA methods require the entire data set to be stored in memory, EWMA only needs the last

estimation and the last sampled value. Due to these advantages many techniques use EWMA

for forecasting. Authors in [43] propose an adaptive scheme based on EWMA to provide fault

tolerant sensor networks and balance between traffic overhead and transmission failure, using

multipath routing. In [44] authors propose a link quality monitoring mechanism where EWMA

is employed to smooth the monitoring results. In [45] and [46] the authors propose prediction

algorithms based on a moving average to be used in solar panels, and compare these methods

with EWMA. In [47] the authors propose a link quality evaluation algorithm which employ

EWMA method to adjust its sensitivity. Authors in [48] propose a prediction model to forecast

the expected energy intake in a wireless sensor node, whose performance is compared with

EWMA-based solutions. In [49] the authors propose the use of routing metrics accounting

with average queuing and transmission delays obtained using EWMA. In [50] the authors use

a data aggregation mechanism to reduce redundant packets by taking into account their current

data smoothed by a EWMA function.

Although the methods described above can be used to forecast delay values based on the

previous experienced delays, the estimate can be requested in a different network node from

that in which the estimate was obtained. In this case, after providing a delay estimate, it is

necessary to transport it to the nodes where the estimation is required. As example, when

measuring OWD the second timestamp is the final reference point (see Fig. 2.4), and thus the

delay estimate will be obtained in final node. If the source node is required to have this estimate

it is necessary to transport the estimate up to the source node.

The Fig. 2.8 presents three methods that can be used to feedback delay information to

where it is needed, here named as the estimation points. The terms active and passive feedback

are used similarly to active and passive measurement, i.e. to indicate if the method influences

more or less the traffic that is already transported in the network. The methods that use specific

messages, e.g. using their own packets, have the undesired effect of introducing additional

traffic, which in turn contributes to consume energy and processing resources, which is highly

undesirable in WSN scenarios. In order to avoid extra traffic, the delay information can be

conveyed in packets that are already transported in the network, i.e. conveyed in data plane

messages or in control plane messages. In order to feedback delays using the data plane

messages it is necessary that data packets are transported in reverse direction from source

2.1 Delay Estimation in IP Networks 23

to destination node. In case of real-time applications the traffic can be highly asymmetric or

not provide any data packets in reverse direction at all. The feedback can also be provided by

using control plane messages, more particularly using the routing protocol messages. In [51]

the authors survey routing metrics related to delays accounting that can be used in this context.

Transport delays to Estimation Points

Using data plane messages Using control plane messages

Convey info in routing
protocol packets

Using applications
packets

Using ETT-based
metrics

?

Using specific messages

?

Using own
application packets

Caption

Passive TransportActive Tranport

High overhead Low overhead To explore

?

Figure 2.8: Transporting delays to the estimation points

The research proposals that use routing protocol messages to feedback previous delays, use

Expected Transmission Time (ETT) or ETT-related metrics, which can be derived from metrics

such as the Expected Transmission Count (ETX) as shown in [52]. The ETT can be derived

from ETX by using Eq. 2.15, where ETX is the expected number of transmission attempts

required for successfully transmitting a packet, S is the packet size, and D is the data rate of the

link.

ETT = ETX× S
D

(2.15)

Authors in [53] provide studies to derive the OWD from the PHD or from the RTT. This

work also used a wireless testbed to compare the performance of RTT and PPFC when used

as link quality routing metrics against the performance of the ETX and hop count. The results

provided showed that only ETX was able to outperform the hop count metric, whereas the

24 Delay Estimation and Admission Control in IP Networks

two delay based metrics performed poorly. In [54] the authors propose a ETT-based metric

intended to provide routing efficiency under various link conditions. In the proposed metric the

MAC layer overheads are taken into account for calculating the data transmission time, instead

of simply using packet/bandwidth. Authors claim the new metric outperforms the normal ETT

metric in terms of network throughput and average packet delay. In [55] the authors present

a novel ETT derived metric which takes into account the time between transmissions in each

node in order to increase average network throughput in Wireless Mesh Networks. In [56] the

ETT metric is adapted to improve the estimation of transmission time by including the actual

load of different nodes. In [57] the authors introduce a new routing metric based on ETT metric

to incorporate bandwidth adaptability in IEEE 802.11a networks.

After estimating or forecasting delays, and then obtaining the real delay values for those

estimates, an accuracy evaluation could be conducted. The accuracy evaluation is based on

the comparison of the estimated value with the real value. Different methods to evaluate the

accuracy of an estimation have been proposed in literature. These methods can be [58] scale-

dependent, based on percentage errors, or based on relative errors. The latter method is out of

scope and thus, it will not be addressed.

In the scale-dependent errors, the result has the same scale of the data and the following

examples can be depicted: Mean Absolute Error (MAE), Mean Square Error (MSE), and Root

Mean Square Error (RMSE). For a real delay item Di and its estimate D̂i (both expressed in

seconds), the MAE, MSE and RMSE are obtained as:

MAE (s) =
1
N

N

∑
i=1

∣∣∣D̂i−Di

∣∣∣ (2.16)

MSE (s) =
1
N

N

∑
i=1

(D̂i−Di)
2

(2.17)

RMSE (s) =

√
1
N

N

∑
i=1

(D̂i−Di)
2

(2.18)

where N is the number of data items in data series

The percentage errors methods have the advantage of being scale independent. Two of the

most common methods are Mean Absolute Percentage Error (MAPE) and Symmetric MAPE

(SMAPE) (or Adjusted MAPE). The percentage error between Di and D̂i using MAPE can be

2.1 Delay Estimation in IP Networks 25

obtained as:

MAPE (%) =
1
N

N

∑
i=1

∣∣∣D̂i−Di

∣∣∣
Di

(×100) (2.19)

where N is the number of data items in data series

MAPE compares the difference between D̂i and Di with the Di and thus, the results are

expressed in a percentage from 0 to +∞, and it implies a different error representation if the

estimate is under or over the real value. In order to tackle this effect, SMAPE can be used.

SMAPE compares the difference between D̂ and D with the mean of these two values, and it is

obtained as:

SMAPE (%) =
1
N

N

∑
i=1

∣∣∣D̂i−Di

∣∣∣
(D̂i +Di)/2

(×100) (2.20)

where N is the number of data items in data series

SMAPE has a lower bound of 0% and an upper bound of 200% and it intends to treat

over and under estimations equally, avoiding distortion on the average value. Indeed, some

contributions, e.g. [59], argue that SMAPE is not as symmetric as it may suggest, and variations

of SMAPE should be used. In [58] and in [59] the methods above are compared and discussed

around real scenarios.

2.1.4 Discussion

Section 2.1.1 started with a characterization of the delays components observed within an

IP network node. QueueD is a component that depends on the network and traffic conditions;

ProcD depends on the processing power available and on the stack implemented at each node;

TransD and PropD are components that depend respectively on the transmission characteristics

and physical media. In some research works, delays such as the ProcD and PropD are neglected

since they are said to represent a small part of the total delay. However, ProcD should be

accounted particularly in scenarios where nodes have limited processing resources as those

employed in WSNs where ProcD can represent a relevant part of the total delay.

Section 2.1.2 has provided an overview on methodologies to measure delays in IP networks,

and three types of delays were defined: PHD, OWD and TWD. These three types of delays

can be measured using GPS or NTP. However, if these options are unavailable, the nodes

should measure these delays using a single reference point, that is, use TWD to infer PHD or

OWD. The OWD estimations inferred from TWD may not be credible when in the presence

26 Delay Estimation and Admission Control in IP Networks

of asymmetric traffic. If OWD is derived from PHD, multiple delays components should be

accounted. In WSNs that have limited processing resources, the processing delay can be highly

relevant and should be accounted.

Finally, Section 2.1.3 has provided an overview on methods to estimate delays based on

previous measurements. From the methods discussed, it was observed that EWMA considers

the data series history and requires lower memory resources than MA or WMA. The delay

estimation process is performed on a particular node but since the delay estimates may be

required in other nodes, they need to be transported through the network. A possible solution

is to use control plane messages, for instance using routing packets. In a WSN, the RPL can be

used and adapted for that purpose.

2.2 Admission Control in IP Networks

In order to provide QoS to an application or flow in a network, a group of mechanisms such

as admission control, resource reservation, scheduling, classification, policing, or shaping may

be used. AC, in particular, can be used to control the amount of traffic entering in a network.

AC mechanisms were used in the Public Switched Telephone Networks (PSTN). When a call is

to be established, the AC mechanism is performed and decides if the call is accepted (resources

available in the network), or if the call is rejected (no resources available in the network for the

call). In these networks the main objective of the AC is to help determine if the network has

enough resources for the incoming request.

In packet switched IP networks, the AC is also used to provide QoS through Integrated

Services (Intserv) [60] and Differentiated Services (Diffserv) [61] architectures. Intserv is

based on per-flow reservations in the network to provide per-flow QoS guarantees. This

approach requires maintenance of individual flow states in the routers, and its signaling

complexity grows with the number of flows; here the AC is used to decide if new flows are

or not accepted. Diffserv relies on packet markers, policing functions at the edge routers, and

different per-hop behaviors at core routers to provide QoS to aggregated traffic; here the AC

may not be used, but its deployment is recommended to control real-time traffic at the ingress

node [62] (for instance, for traffic classified with an Expedited Forwarding Per-Hop-Behavior).

Intserv and Diffserv implementations in the IP global network are not used since the Internet is

composed of multiple AS with different network administrations. Thus, these implementations

are only applied in a set of IP networks under a unique administration.

2.2 Admission Control in IP Networks 27

The desired levels of QoS can also be provided using the over provisioning technique which

consists in the deployment of enough resources to handle all the estimated offered traffic.

Although over provisioning strategy maintains network simplicity, it does not provides the

desired levels of QoS in scenarios such as network congestion or in scenarios with “greedy

applications” (applications that consume always all the available network resources). In

general, the over provisioning technique cannot provide any QoS guarantees.

AS

Ingress Router

Core Router

Destination

Core Router Core Router

Egress Router

Core Router

Core Router

Core Router

Source

new flow

Figure 2.9: Network topology providing flow Admission Control

In Figure 2.9 is presented an example of a network topology where an AC mechanism is

implemented within an AS area. Here, a source node generates a new flow intended to be

delivered at a destination node. The new flow enters the AS area through an ingress router and

in the AS exists one AC mechanism. This AC mechanism evaluates if the network can admit

this new flow without affecting the level of service already assured to accepted flow(s). In

order to make this decision, AC considers the traffic characteristics and the QoS requirements

of the new flow and of the flows for the path to destination. This decision is valid through

all the path from ingress router to the egress router; it is then communicated to the ingress

28 Delay Estimation and Admission Control in IP Networks

router to admit or deny the new flow towards destination. Wrong decisions can be made by AC

mechanism, i.e. to accept a flow without having enough resources to comply its or other flows’

requirements, which is commonly named as a false positive, or to deny a flow that would have

enough resources to be accepted, which is commonly named as a false negative.

A general and common criteria used to distinguish the wide range of AC proposals in

the literature is given by the location where the AC decision is made. Two categories can

be distinguished: the centralized AC which assumes a unique entity (e.g. one of the core

routers of Fig. 2.9) that performs the AC decisions and exchanges signaling packets with the

ingress nodes when new flows arrive; and the distributed AC which assumes that the decision

is performed in multiple points within the network in a distributed manner (e.g. all the routers

in Fig. 2.9 implement the AC mechanism).

The centralized AC mechanism assumes that the unique entity that has the complete and

up-to-date knowledge of entire network topology and the usage of its resources. An example

of a centralized AC mechanism is proposed in [63] where decisions are taken based on the

measurement of the EED in a WMN. However, a centralized AC mechanism may not adequate

for large and highly dynamic networks since the unique entity may have to process high

volumes of information, what may imply bottlenecks, and in some cases, it may stands for

a single point of failure.

The distributed AC mechanisms avoid the single point of failure and the scalability con-

cerns of the centralized approach. However, since they have multiple AC decision points, they

may not have the same view of resources occupancy and different decisions may be taken for

flows competing for the same resources. These decisions may lead to violations of QoS and

inefficiency of resources usage.

Considering the characteristics and limitations of the centralized and distributed AC mech-

anisms, the latter seems more adequate for the scenario of this thesis and thus, the focus of the

next section will be directed to distributed AC mechanisms.

2.2.1 Distributed Admission Control

Figure 2.10 presents a classification for the different types of distributed AC mechanisms

proposals in the literature. These proposals are organized in two groups according to their

operation in the AS: the Edge-to-Edge and Hop-by-Hop operation. Similar classification can

be found in [64].

In Edge-to-Edge operation only the ingress and egress nodes participate in the AC mech-

anism. The AC decision is taken on the egress node based on measurements and the decision

2.2 Admission Control in IP Networks 29

Measurement Based
Admission Control

(MBAC)

Parameter Based
Admission Control

(PBAC)

Distributed
Admission Control

Edge-to-edge Hop-by-hop

Hybrid
(PBAC and MBAC)

Active Measurement
Based AC

Passive Measurement
Based AC

Figure 2.10: Admission Control mechanisms overview

is transported back to the ingress (see Fig 2.9). So, only these routers exchange control plane

(signaling or measurement) packets and the decision taken is valid to the entire path from the

ingress router to egress router. The advantage of Edge-to-Edge operation is that intermediate

nodes (core routers in the Fig. 2.9) do not have to maintain any reservation state, since they are

not participating in the AC mechanism. Two types of proposals can be found in this operation

mode: the active measurement-based AC and the passive measurement-based AC proposals. In

the active measurement-based proposals a probing flow is used to test entire path and to provide

means for an AC decision on the egress node. In the passive measurement-based proposals, the

QoS of the aggregate of accepted flows is continuously measured at the egress and used to

provide an decision in the egress node.

In Hop-by-Hop operation all the nodes participate in the AC mechanism. Each of the

routers in an AS (see Fig. 2.9) implement an independent AC mechanism that take a local

decision about a new flow. The local decision is not valid for all the path from source to

destination, and if a flow is accepted in a specific node it will progress to the next node and

it will be evaluated again. Thus, the complete decision happens only in the last node (egress

router) if the flow is accepted in all nodes up to this point. In case a router rejects a flow, this

decision is propagated to the other nodes, ideally up to the ingress router in order to reject

the flow prior is entrance in the AS area. Thus, in the Hop-by-Hop operation all the nodes of

the path communicate with each other and each node has to maintain the state for the actual

aggregated reservation. AC decisions are taken simultaneously in different nodes, which may

lead to concurrency problems such as Thrashing [65]. The Trashing occurs when one flow is

30 Delay Estimation and Admission Control in IP Networks

accepted in a node and the respective resource reservation is performed only in that node; if

this flow is rejected later, other flows in the previous nodes may have been false rejected, since

the resources were, in fact, available.

Using a Hop-by-Hop operation three types of proposals can be found in literature: the Pa-

rameter Based Admission Control (PBAC), Measurement Based Admission Control (MBAC),

or a hybrid of both. PBAC (also known as Traffic Descriptor-based AC) proposals are

based on the assumption that the traffic characteristics of the new flows are known prior to

their establishment. There are no measurements and no resource estimation, and the traffic

characteristics are conveyed by traffic descriptors as the only input for the AC mechanism

to provide a decision. Also, in these proposals it is assumed that each node has a complete

knowledge of currently admitted requests and current available network resources. The major

disadvantage of these mechanisms is that it is difficult to have an accurate knowledge of each

flow service request before it is established. In [66] the authors present a PBAC to provide hard

QoS guarantees using a Diffserv architecture. In [67] the authors present a PBAC mechanism

implemented in a peer-to-peer network for real-time video streaming applications; the decision

of the AC mechanism is performed by a service provider, and is based on traffic descriptors that

characterize the applications and their contract with service provider and the network resources.

MBAC proposals make the AC decision based on real-time measurements on the network.

The AC mechanism attempts to capture the characteristics and requirements of flows admitted

and bases its decisions on this knowledge. When compared with PBAC, the MBAC has the

advantage to dispense the a priori knowledge about the flow characteristics and to predict

characteristics of aggregate flows is usually easier that to predict in a per-flow basis. The major

disadvantage of MBAC is that its decision to accept or deny a flow depends on measurements

which have always associated errors that could lead to false negatives or false positives. In [68]

the authors propose a MBAC that uses only measurements of aggregate bandwidth and does

not need to keep the flow state in each node. Authors in [69] present an MBAC mechanism

for WSNs based on direct measures of packet loss ratio, inter-arrival jitter and throughput,

to be used by real-time applications; the authors estimate these performance parameters by

using probing packets. In [70] the authors implemented two AC mechanisms, one using on

PBAC and the other using MBAC and they evaluated the efficiency of their network utilization.

When tested bursty traffic patterns, the authors concluded that MBAC provided a more efficient

network utilization than PBAC. In [71] authors proposed a analytical model for node delay

distribution in IEEE 802.11 wireless networks and developed an admission control mechanism

scheme for traffic with stochastic QoS guarantees to be applied in a source node.

2.2 Admission Control in IP Networks 31

The hybrid proposals basically have been developed to address the problems highlighted

with PBAC and MBAC approaches. These hybrid proposals use both knowledge of submitted

traffic descriptors and measurements taken from the network to predict future service levels

required by a flow. In [72] authors propose a hybrid approach using bandwidth measurements

that, when compared to PBAC and MBAC proposals, provides better network utilization

efficiency. In [73] the authors present a hybrid proposal that directly estimates effective

bandwidth from available traces, and use these estimates in conjunction with peak rate values

(given by a traffic descriptor) to take a AC decision about a new flow. In [74] authors propose

an hybrid admission control mechanism for real-time traffic that takes both delay and reliability

into account, and a fairness-aware rate control algorithm for non-real-time traffic, both to use in

WSNs and tested in IEEE 802.11. The admission control mechanism is deployed in the source

node and the delay estimation is not addressed.

2.2.2 On the Implementation of Admission Control

The type of AC mechanism to implement can also be defined according to the QoS

guarantees requested by the application flows that will be transported in the network. The flows

requesting a defined service level to an AC mechanism can have very diverse QoS requirements

in terms of data rates, delay bounds, or maximum loss ratios. Particularly regarding delay,

the authors in [75] provide an helpful study to define different types of QoS guarantees.

Critical control applications demand some degree of reliability and timely delivery of control

commands, thus, they require deterministic or hard QoS guarantees. Multimedia applications

can tolerate some degree of QoS violation, so probabilistic or soft QoS guarantees should be

provided [76][77]. These type of constraints can be defined as a Time Utility Function (TUF)

[75] as shown in Fig. 2.11, where EEDp is the time elapsed by packet p since its generation at

the application in the source node, until it arrives at application in the destination node.

According to [78], the PBAC mechanisms are used to provide hard real-time services

that are based on worst case bounds derived from the parameters describing the flow; these

algorithms typically result in low network utilization in the face of bursty network traffic. The

MBAC mechanisms can use less stringent admission control algorithms and thus, they are used

to provide soft real-time services. More generally, the type of AC mechanism should always be

adequate to network and applications specifications, and also to the trade-off between network

resource utilization and the conflicting requirement to maintain the QoS of current flows.

Although commonly the AC mechanisms take decision in a per-flow basis, other granularities

can be defined for the unit which is the target of an AC mechanism decision such as per-packet,

32 Delay Estimation and Admission Control in IP Networks

EEDp

TUF(EEDp)

Acceptable EED (Soft)
Maximum EED (Hard)

Maximum EED (Soft)

useful

useless

Hard guarantees (Hard)

Soft guarantees (Soft)

Figure 2.11: Time Utility Function for an application requiring soft QoS guarantees

per-TCP-session, or per-user AC [79]. In [80] an example of a per-packet admission control

where its decision is based on resource tokens instead of bandwidth measurements.

The operation of single traditional IP networks are based in First-In-First-Out (FIFO)

queues with tail drop, which means that the implementation of AC mechanisms could turn the

network administration and operation more complex and costly. Thus, the deployment of AC

has to be performed maintaining network simple and efficient. In particular, the deployment of

an AC mechanism in a wireless network such as a WSN implies tackling specific challenges:

when compared to structured networks, the wireless networks usually has less usable spectrum,

less reliability, and typical wireless medium phenomena such as interference or multipath

fading. Thus, the effects of a congestion can be more severe in these type of networks and

an AC mechanism may be helpful. Nevertheless, the AC mechanism must also be carefully

designed in performance and efficiency in order to cope to these networks’ limited energy and

communications resources.

2.2.3 Discussion

This section provided an overview on the state-of-art regarding the AC with a special focus

on the actual distributed AC proposals in the literature. Also, considerations regarding the

implementation of the AC mechanisms are provided.

When compared to the centralized AC mechanisms, the distributed AC mechanisms are

more adequate to large and highly dynamic networks. Focusing on the actual distributed AC

proposals it can be remarked that they perform per flow decisions and most of them imply

sending extra control plane messages to distribute their decisions. Thus, they are not optimized

to the constraints of a WSN where nodes use IEEE 802.15.4 standard and have limited energy

2.3 WSN Operation and Constraints 33

resources. Also, in order to prevent processing useless packets as soon as possible, the

admission control should be deployed in source and forwarding nodes and operating in a cross

layer approach.

2.3 WSN Operation and Constraints

In a WSN, sensor nodes have limited energy, processing and communications resources.

Energy constraints influence the hardware and software they use for operation. This section

describes hardware, Operating System (OS), and standards and protocols, from the point of

view of key constraints and behavior.

2.3.1 Hardware and Operating Systems

The WSNs can be deployed in a range of hardware products including the Seed-Eye [81],

the WiSMote [82], the Z1 [83], the MICAz [84], the Telos [85, 86], and the Tmote Sky [87].

All these hardware platforms are compatible with IEEE 802.15.4 standard. This overview is

focused on the Tmote Sky [88] platform which is the successor of the Telos motes2.

The Tmote Sky [88] comprises a TI MSP430F1611 MicroController Unit (MCU), a TI

CC2420 radio chip, 10 kBytes of RAM, 48 kBytes of ROM (flash), and an external flash of

1024 kBytes. The MSP430 MCU family used in these motes is announced for their ultra

low power consumption. For instance, the MSP430F1611 [90] is a 16 bit MCU which is

announced to have a power consumption of 330 µA (at 1 MHz using 2.2 V), 1.1 µA in standby

mode and 0.2 µA in Off Mode (RAM retention). Also, according to [91], the MSP430F1611

MCU processor runs at 8 MHz, and when using 3 V as supply voltage it executes 0.33 Million

Instructions Per Second (MIPS) which is much less than the 1186 MIPS per core executed by

a Raspberry Pi [92] (according to [93]). Tmote Sky uses the CC2420 [94] radio chip which

is compliant with the IEEE 802.15.4 standard. This radio chip is designed for low power and

low voltage wireless applications and has power consumptions of 18.8 mA when receiving, and

of 17.4 mA when transmitting. It operates at 2.4 GHz, and achieves data rates of 250 kbit/s.

When CC2420 is installed in a Tmote Sky, an integrated onboard antenna enables an indoor

range of approximately 50 m and 125 m for outdoors, according to [88]. When comparing

2The Telos motes are available in two versions: the Telos Revision A (or Telos RevA) [85] and the Telos
Revision B (also known as Telos RevB or TelosB) [86]. The RevA comprises a MSP430F149 MCU, a TI CC2420
radio chip, 2 kBytes of RAM, and 60 kBytes of flash. The RevB comprises the TI MSP430F1611, the same radio
chip of RevA, 10 kBytes of RAM, and 48 kBytes of ROM (flash). Both Telos RevA and RevB include sensors for
light, temperature, and humidity. Other minor differences between Telos RevA and RevB are detailed in [89].

34 Delay Estimation and Admission Control in IP Networks

CC2420 to CC3200 (single-chip MCU with built in Wi-Fi connectivity) pointed as an IoT

solution, the latter enable data rates of 54 Mbit/s when in mode 802.11g and 72 Mbit/s when

in mode 802.11n. These limitations in processing and communication capabilities are relevant

when evaluating the EED in a sensor node. The reduced processing power, increases the time

to execute programming routines, i.e. the ProcD, and the reduced data rate of the radio chip

increases the time to transmit a packet, i.e. the TransD.

Multiple OSs specific for the WSNs are available. Examples of open source are the Tiny OS

[95], the Contiki OS [96, 97], the RIOT OS [98, 99, 100], and the Lite OS [101]. From these,

an overview on Contiki OS is provided. The Contiki OS has been developed at the Swedish

Institute of Computer Science (SICS) and counts with a wide number of developers that provide

support, new features and fixes. It was the first operating system for wireless sensor nodes to

implement the micro IP (uIP) stack [102, 103, 104], and, in 2008, it also incorporated the uIPv6

[105]. Contiki uses the protothread programming abstraction [106] and both the Contiki OS

and its applications are implemented in the C programming language. Contiki OS has been

ported to multiple microcontroller architectures, including the Texas Instruments MSP430 and

the Atmel AVR. According to [87], the typical contiki OS memory footprint using full IPv6

networking and RPL requires 10 kBytes of RAM and 30 kBytes of ROM, which represents

100% of available RAM and 62.5% of available ROM of Tmote Sky sensor node.

2.3.2 IEEE 802.15.4 Standard - Physical and MAC Layers

WSNs can be deployed using different physical and data link layer standards such as

IEEE 802.15.4 or IEEE 802.113. Since WSNs are usually limited in transmission and energy

resources, they are deployed as a Personal Area Network (PAN), i.e, a computer network

organized around a personal area, using short range communications to interconnect with other

devices. The IEEE 802.15 Working Group develops standards for the Wireless Personal Area

Network (WPAN) and namely the IEEE 802.15.4 standard defines both physical and data link

layers in the context of a Low-rate Wireless Personal Area Network (LR-WPAN). A LR-WPAN

is a WPAN that is characterized by using low-cost devices, with low data rates that have a low-

power operation. The IEEE 802.15.4 standard has been developed since 2003, with relevant

updates in 2006 [110] and in 2011 [111].

3Recent advances in IEEE 802.11 based standards, namely in the IEEE 802.11ah [107] standard, are being
developed to adapt 802.11 standard to the IoT concept and to the WSN requirements assuming low power and wide
range sensor nodes. The IEEE 802.11ah Draft4.0 was released in February 2015 and the IEEE 802.11ah Draft5.0
was released in April 2015. Further reading providing an overview on 802.11ah can be found in [108] and [109].

2.3 WSN Operation and Constraints 35

The IEEE 802.15.4 standard defines the networks as PANs, where each PAN is composed

of one coordinator and one or more members. The PANs can be interconnected, in this case

the PAN coordinator will also be a member of another PAN. The packets may use a 16 bit PAN

identifier in order to identify its own PAN and the destination PAN.

The standard specifies two types of devices: the Full Function Device (FFD), that can

communicate with every other node and support the full protocol, and the Reduced Function

Device (RFD) that can only communicate with the FFDs. A PAN coordinator must first be

defined from the list of FFDs devices present in the PAN. Each node will use two address: a

long address (64 bit length), the global Identifier (ID); a short address (16 bit length), the PAN

specific address that is assigned by the PAN coordinator when the device joins the PAN.

Regarding the physical layer, the IEEE 802.15.4 standard defines three, license-free,

frequency bands using Direct-Sequence Spread Spectrum (DSSS) modulation, each one con-

taining a set of channels as follows [112, 110, 111]:

• 868.0-868.6 MHz: usable in Europe with one channel using Binary Phase-Shift Keying

(BPSK) and providing a bit rate of 20 kbit/s;

• 902-928 MHz: usable in North America initially with up to ten channels, later extended

to thirty, using 2 MHz of channel spacing, BPSK and providing a bit rate of 40 kbit/s;

• 2400-2483.5 MHz: usable Worldwide with up to sixteen channels using 5 MHz of

channel spacing, Quadrature Phase-Shift Keying (QPSK) and providing a bit rate of

250 kbit/s.

The latter frequency band is shared with the IEEE 802.11 radio frequency at the 2.4 GHz

band and significant interference is expected.

In the MAC layer, two modes of operation are defined in the IEEE 802.15.4 standard:

the beacon-enabled mode and the beacon-less mode. When in the beacon-enabled mode, the

PAN coordinator assigns time slots to each receiver and enforces a transmission schedule using

explicit beacon messages. The access to the channel is slotted and, thus, this mode enables

devices to consume less power because the receivers can be switched off. In this mode, the

PAN coordinator broadcasts a periodic beacon message containing information about the PAN.

The period between two consecutive beacons is defined as a superframe, which is divided into

an active and an inactive part, during which the coordinator may enter power saving mode.

In the beacon-less mode no beacon messages are transmitted by the coordinator and the

receivers must be listening all the time. This mode uses more battery, but it is easier to

36 Delay Estimation and Admission Control in IP Networks

configure. In this mode, if the node wants to send a frame it checks if the channel is free,

and, if so, it sends the frame. If the channel is busy the node waits for a random period of time

before trying to access the channel again. Medium access control is performed with Carrier

Sense Multiple Access / Collision Avoidance (CSMA/CA) that may be combined with Clear

Channel Assessment (CCA), depending on the selected mode. The available access control

modes are threefold: 1) beacon-less mode with unslotted CSMA/CA 2) beacon-enabled mode

with slotted CSMA/CA 3) beacon-enabled mode with slotted CSMA/CA integrated with

Guaranteed Time Slot (GTS).

1 bit 1 bit 1 bit 1 bit 3 bit 2 bit 2 bit

Caption
BytesBytesBytes Bytes bits

0/5/6/10/142 1 2/4/10 2/4/10 2variable4 1 1

Data Frame

0/5/6/10/142 1 2/4/10 2/4/10 2variable4 1 1

Auxiliary
Security
Header

Frame
Control

Seq.
Number

Destination
Address

Source
Address

Frame Payload FCSPreamble
Start

Frame
Delimiter

Frame
Length

Beacon Frame

2 1 2/4/10 2/4/10 2variable4 1 1

Auxiliary
Security
Header

Frame
Control

Seq.
Number

Destination
Address

Source
Address

Beacon
payload

FCSPreamble
Start

Frame
Delimiter

Frame
Length

Command Frame

Auxiliary
Security
Header

Frame
Control

Seq.
Number

Destination
Address

Source
Address

Command payload FCSPreamble
Start

Frame
Delimiter

Frame
Length

Acknowledgement
Frame

2 1 24 1 1

Frame
Control

Seq.
Number

FCSPreamble
Start

Frame
Delimiter

Frame
Length

1

Command
Type

2

Superframe
Specification

variable

GTS
Fields

variable

Pending
Address

0/5/6/10/14

Layer 1
Header

Layer 2
Header

Payload
Sub

Fields

2 bit3 bit

Frame
Type

Security
Enabled

Frame
Pending

ACK
Request

Intra-PAN Reserved
Destination
Addressing

Mode
Reserved

Source
Addressing

Mode

Figure 2.12: Frames structures defined in the IEEE 802.15.4 standard

2.3 WSN Operation and Constraints 37

The IEEE 802.15.4 standard defines four types of frames, shown in Fig. 2.12. The

Data frame is the one that conveys the data payload. The Acknowledgment frame is used

to acknowledge the correct reception of another frame. The Beacon frame is used by the

coordinator to transmit the beacons messages and organize the PAN. The Command frame

is used for association, disassociation, data and beacon requests, conflict notification, among

others. Further information about frame types and formats are available in IEEE 802.15.4

standard [112, 110, 111].

2.3.3 IP-based stacks

Fig 2.13 shows the standard TCP/IP stack and the lightweight IP (lwIP) [113] stack

implementations. The standard TCP/IP the stack implementation usually includes multiple

options for layer 1 and 2, can use both IPv4 and IPv6, supports protocols such as the Internet

Control Message Protocol (ICMP), and implements both the Transmission Control Protocol

(TCP) and User Datagram Protocol (UDP) transport modes. lwIP is an open source and

lightweight implementation of the TCP/IP stack, developed to be used in resource constrained

equipment. Regardless of its low memory and code footprints, it still implements all the

functions of the main protocols used in a typical TCP/IP stack, such as the Address Resolution

Protocol (ARP) the Point-to-Point Protocol (PPP), the ICMP, the Internet Group Management

Protocol (IGMP) the IP, the UDP, the TCP, the Domain Name Service (DNS), the Simple

Network Management Protocol (SNMP) and the Dynamic Host Control Protocol (DHCP)

protocols. A lwIP installation typically requires about 20 kBytes of ROM and 40 kBytes of

RAM. An implementation of lwIP over the Ethernet II standard is described in [114].

Fig 2.14 shows the uIP and the uIPv6 stack implementations. The uIP stack [102, 103]

implements the main protocols in TCP/IP, using IPv4, and was developed for embedded

systems with even more restricted ROM and RAM specifications than those targeted by the

lwIP stack. uIP implementation includes the ARP, the ICMP, the IP, the UDP and the TCP

protocols. With the advent of the IoT, where multiple sensors are meant to communicate with

each other while also being connected to the Internet, the IPv6 was considered as crucial. The

uIPv6 [105] stack was developed with this scenario in mind. The uIPv6 stack implementation

reduced the TCP/IP stack to only implement the essential IPv6 protocols. It is claimed to be the

world’s smallest IPv6 stack and it implements the IPv6, the ICMPv6, the Neighbor Discovery

Protocol (NDP), the TCP, and the UDP protocols.

38 Delay Estimation and Admission Control in IP Networks

Layer 4
Transport

Layer 3
Network

Layer 2
Data Link

Layer1
PHY

Layer 5
Application

TCP/IP stack

TCP

IPv4

802.15.4
MAC

802.15.4
PHY

UDP

Ethernet II
MAC

Ethernet II
PHY

802.11
PHY

802.11
MAC

Application

IPv6

lwIP stack

TCP

IPv4

UDP

DNSApplication

IGMPICMP

ARP

SNMP DHCP

PPP

…

...

…

...
Ethernet II

MAC

Ethernet II
PHY

802.11
PHY

802.11
MAC

...Application...

802.15.4
MAC

802.15.4
PHY

...

...

ICMP ICMPv6

Caption

Not Implemented
Under study

lwIP
code implementation

Fully implemented

IPv6

Figure 2.13: TCP/IP and lwIP stacks

Caption

Layer 4
Transport

Layer 3
Network

Layer 2
Data Link

Layer1
PHY

Layer 5
Application

6LowPAN
compression range

uIP stack

TCP

802.15.4
MAC

802.15.4
PHY

UDP

Ethernet II
MAC

Ethernet II
PHY

802.11
PHY

802.11
MAC

uIPv6 stack

TCP

IPv6

802.15.4
PHY

UDP

Ethernet II
MAC

Ethernet II PHY

802.11
MAC

6LowPAN
802.15.4

MAC

Application ... Application

802.11 PHY

802.11
MAC

6LowPAN
Ethernet II

MAC

6LowPAN

ApplicationApplication

IPv4 ICMP ICMPv6 NDP

…

...

…

...

...

Not Implemented
Under study

uIP
code implementation

Fully implemented
uIPv6

code implementation

Figure 2.14: uIP and uIPv6 stacks

2.3 WSN Operation and Constraints 39

Table 2.1 compares the discussed IP-based stacks implementations in terms of release

date, code size and of required RAM. These stacks, particularly the uIPv6, are extending

their support for new features while still being able to meet the requirements of new low cost

motes. Research efforts have been made to extend the operation of the uIPv6 to other layer 2

technologies. For instance, in [115] the uIPv6 stack is implemented over IEEE 802.15.4, IEEE

802.11 and IEEE 802.3 PHY and MAC layers. In [116] the uIPv6 stack is implemented over

IEEE 802.11 PHY and MAC layers.

Table 2.1: IP-based stacks comparison

Release date Code ROM size
(kBytes)

Required RAM
(kBytes)

lwIP 2000 40 20
uIP 2001 4 1

uIPv6 2008 11.5 2

The uIPv6 implementation may not cope with the IPv6 functionality required in the current

platforms. The IEEE 802.15.4 standard can only handle a Maximum Transmission Unit (MTU)

of 127 Bytes, forcing nodes to fragment and encapsulate their IPv6 PDUs or IPv6 packets,

which can have up to 1280 Bytes, into the IEEE 802.15.4 small frames. The RFC 2460 [117]

defines that the IPv6 requires that every link must have a MTU of 1280 Bytes or greater. If

the link cannot convey packets with 1280 Bytes in length in one piece, it must provide link-

specific fragmentation and reassembly (below IPv6). Fig. 2.15 compares the protocol overhead

while using IPv6 over IEEE 802.15.4, spanning from the best case scenario to the worst case

scenario. In the best case scenario, the use of protocol headers is lower and these leave 70 Bytes

available to be used to convey the data payload. In contrast, with higher protocol overheads

the space available for data payload is only 28 Bytes. According to experimental evaluation in

[118], if the CBC_MAC_16 security mode is enabled, the Auxiliary Security Header (ASH)

and Message Integrity Code (MIC) fields must be inserted, thus leaving only 2 Bytes for the

payload. A detailed analysis about MAC security overhead in the IEEE 802.15.4 standard can

be found in [119].

This leaded IETF to form the IPv6 over Low power WPAN Working Group that later

proposed IPv6 over Low Power Wireless Personal Network (6LowPAN) [120]. 6LowPAN

is an adaptation layer that enables the transport of IPv6 packets over IEEE 802.15.4 links by

performing packet fragmentation and reassembly. Packets larger than the IEEE 802.15.4 frame

payload are fragmented at the source, and reassembled at the destination. 6LowPAN also

40 Delay Estimation and Admission Control in IP Networks

40

10

CBC_MAC_16 security mode,
IPv6, and TCP

Caption

BytesBytes

Bytes

Data Frame with
minimum overhead

Data Frame with
maximum overhead

2 1 2 2 118 24 1 1

2 1 10 10 2884 1 1

40

Frame
Control

Frame Payload
Seq.

Number
Destination

Address
Source

Address
FCS

Frame
Control

Seq.
Number

Destination
Address

Source
Address

Frame Payload FCS

Preamble
Start

Frame
Delimiter

Frame
Length

Preamble
Start

Frame
Delimiter

Frame
Length

Data Payload

IPv6 and TCP

IPv6 and UDP

28

Data Payload

70840

IPv6 Header
UDP

Header
Data Payload

IPv6 and TCP

IPv6 and UDP

582040

IPv6 Header
TCP

Header
Data Payload

Layer 1
Header

Layer 2
Header

Layer 3
Header

Layer 4
Header

Bytes

hi
gh

er
 p

ro
to

co
l

ov
er

he
ad

lo
w

er
 p

ro
to

co
l

ov
er

h
ea

d

ASH

2

Data
Payload

IPv6 Header

40

IPv6 Header

16

MIC

8

UDP
Header

40

IPv6 Header

Bytes

Security
Overhead

Maximum = 127 Bytes

20

TCP
Header

20

TCP
Header

Figure 2.15: Protocol overheads in IEEE 802.15.4 standard

performs header compression. It compresses the IPv6, the ICMP and the UDP headers (see

Fig. 2.14). New fields were added, namely the Dispatch Code field, the Header Compression

(HC)1 which used to convey compressed IPv6 header, and the HC2 which is used to convey

the compressed UDP header, among others. The compression provided by 6LowPAN is

stateless, not requiring nodes to maintain compression related state information. RFC 4919

[121] provides an overview and presents the problem statement, while the base specification

is in RFC 4944 [120], later updated by the RFC 6282 [122] and by the RFC 6775 [123].

Although 6LowPAN was initially intended to be used only with the IPv6, in [124] a proposal

for its use with IPv4 is described. The project SICSlowpan [125] provides an implementation

2.3 WSN Operation and Constraints 41

of 6LowPAN for the Contiki OS.

6LowPAN is implemented in Tiny OS and Contiki OS. The implementation of IPv6 and

6LowPAN in the Tiny OS is provided by Blip [126]. In the Contiki OS, the implementation of

6LowPAN is known as SICSlowpan provided by the SICSlowpan Project [125].

2.3.4 RPL Routing Protocol

Routing is one of the functions of the network layer. RPL standard is defined in the RFC

6550 [127] and it consists of a routing protocol that was designed for Low-power and Lossy

Networks (LLNs) such as the WSNs. RPL is defined by the IETF Routing Over Low-power

and Lossy networks (ROLL) and it is developed for devices with limited processing, memory

and energy resources. Multiple instances of RPL can be run in a single network topology,

where the nodes are organized in distinct tree topologies named Destination-Oriented Directed

Acyclic Graph (DODAG), or simply Directed Acyclic Graph (DAG). Each DAG has a DAG

root, the node where all paths terminate.

Within a given DAG, the Objective Function (OF) defines how to the metrics/constraints are

converted into a rank value, i.e. a value representing the distance/cost to the DAG root. The OF

also defines how a node selects its Preferred Parent (PP) from a set of Candidate Parents (CPs).

ROLL defined two OFs: Objective Function Zero (OF0) in RFC 6552 [128], and Minimum

Rank with Hysteresis Objective Function (MRHOF) in RFC 6719 [129]. When using the OF0,

the node will always select the parent with the lowest rank. When using the MRHOF, the

node, in the parent selection process, considers the lowest rank combined with a hysteresis

value. Fig. 2.16 depicts how the best parent selection is made when using MRHOF. Fig. 2.16

assumes that a best parent p1 already exists, and that p1 and another CP, p2, advertise their

ranks to a specific node. This node will select p2 only if its rank is lower than the rank of p1

by at least a given hysteresis value.

p2 rank

p1 ra
nk

HystV

Rank

bestparent=p1 bestparent=p2

p1

node

p2
 ra

nk
p1 rank

p2

time

Figure 2.16: Best parent decision using MRHOF in RPL

42 Delay Estimation and Admission Control in IP Networks

RFC 6550 [127] defines multiple control messages to create and maintain routing infor-

mation in each node: DAG Information Solicitation (DIS), DAG Information Object (DIO),

Destination Advertisement Object (DAO), DAO-ACK, secure versions of the previous mes-

sages and a Consistency Check message.

The format of the DIS message is shown in Fig. 2.17. The Flags and Reserved field of

the DIS messages are always initialized to zero by the sender and ignored by the receiver. The

Options field is used to transport multiple options inside DIS and is common to DIS, DIO,

DAO and DAO-ACK messages.

1 Byte 1 Byte 1 Byte 1 Byte

Flags Reserved Option(s) ...

Figure 2.17: DIS message format

The format of the DIO message is shown in Fig. 2.18. The RPL Instance ID field indicates

the ID of the RPL Instance. The Version Number field contains a sequential counter that is

incremented by the DAG root to form a new Version of a DAG. The Rank field indicates the

DAG rank of the node sending the DIO message. The Grounded (G) field contains a flag that

indicates whether the advertised DAG can satisfy the goal defined by the application. The

Mode of Operation (MOP) field identifies the mode of operation of the RPL Instance. All

nodes who join the DAG must be have the same MOP which is encoded using the following

values:

• 0: No Downward routes maintained by RPL

• 1: Non-Storing MOP

• 2: Storing MOP with no multicast support

• 3: Storing MOP with multicast support

The DAG Preference (PRF) field defines how preferable the root of this DAG is compared

when to other roots within the same instance. The Destination Advertisement Trigger Sequence

Number (DTSN) field is used as part of the procedure to maintain the downward routes. The

Flags and Reserved fields are always initialized to zero by the sender and ignored by the

receiver. The DAG ID field conveys the IPv6 address of the DAG root. The Options field

is used to transport multiple options inside DIS and is common to DIS, DIO, DAO and DAO-

ACK messages.

2.3 WSN Operation and Constraints 43

Option(s) ...

1 Byte 1 Byte 1 Byte 1 Byte

RPL Instance ID Version Number

G

Rank

DTSN Flags Reserved

DAG ID
(128bits)

PRFMOP0

Figure 2.18: DIO message format

The format of the DAO message is shown in Fig. 2.19. The RPL Instance ID field indicates

the ID of the RPL Instance. The K flag indicates if the recipient is expected to send back

a DAO-ACK. The D field indicates whether the DAG ID field is present or not. The DAO

Sequence field is incremented whenever a DAO message is transmitted by a node and repeated

in the DAO-ACK message.

1 Byte 1 Byte 1 Byte 1 Byte

RPL Instance ID K

DAG ID
(128 bits)

(not always present)

D Flags Reserved DAO Sequence

Option(s) ...

Figure 2.19: DAO message format

The format of the DAO-ACK message is shown in Fig. 2.20. The RPL Instance ID field

transports the ID of the RPL Instance. The D flag indicates if the DAG ID field is present.

The Flags field are always initialized to zero by the sender and ignored by the receiver. The

DAO Sequence is incremented at each unique DAO message from a node and repeated in the

DAO-ACK message. The Status conveys information about the role that the parent is willing

to accept. The DAG ID conveys the IPv6 address of the DAG root (when flag D is set).

44 Delay Estimation and Admission Control in IP Networks

1 Byte 1 Byte 1 Byte 1 Byte

RPL Instance ID

DAG ID
(128 bits)

(not always present)

D Flags DAO Sequence Status

Option(s) ...

Figure 2.20: DAO-ACK message format

The secure versions of DIS, DIO and DAO messages have the same structure as the ones

presented above and the Consistency Check message is used to check secure message counters

and to issue challenge-responses.

Fig. 2.21 shows an example of an exchange of RPL control messages between nodes in

order to form a DAG (for simplicity, the DAO-ACK is not shown in this figure). The DAG root

multicasts a DIO message comprising the RPL instance and the DAG configuration parameters.

This allows other nodes to join the DAG, to select a parent and to participate in the DAG. A

node, instead of waiting for a DIO message in order to join an already formed DAG, can

multicast a DIS message requesting information (DIOs) from other RPL nodes. After receiving

a DIO from a candidate parent, the node can calculate the path cost up to this parent and up

to the DAG root, taking into account the path cost information conveyed in the DIO. When

multiple CPs are available, a PP is elected based on the lowest cost for the path up to the

DAG root. After joining a DAG, a node can send or forward data in the upwards direction,

towards the DAG root. Although RPL was initially intended to only support MultiPoint-to-

Point (MP2P) upwards communications between the multiple devices and the DAG root, Point-

to-Multipoint (P2MP) and Point-to-Point (P2P) communications are also supported in reverse

direction. In order to support downward routes, unicast DAO messages can be sent from a

child node, to its PP, in order to propagate destination information (addresses and prefixes) in

the upward direction of the DAG. In this case, a DAO-ACK unicast message is sent in response

to the DAO message.

2.3 WSN Operation and Constraints 45

Caption

node

root

DAG root

node in DAG

U
p
w

ar
d

D
ow

n
w

ar
d

node

D
AO

data

node

D
IO

node

da
ta

node

DIO

DA
O

data

RPL messages

D
AO

D
IS node to join DAG

D
A

Oda
taDIO

DIO

data flow

D
IOD

A
O

DAG

node

node

root

Figure 2.21: RPL control messages and data flow dynamics

DIO, DIS, DAO and DAO-ACK messages support one or multiple fields for options. Table

2.2 shows options which are allowed for each type of RPL control messages. The Pad1

and PadN options are used to insert one or more padding octets in order to align the option

fields. The DAG Metric container is the only option used to convey metrics/constraints within

the DAG. The DAG Metric Container can only be used in DIO and DAO messages and it

can be used multiple times within these messages. The Route information option is used

to indicate the prefixes available through the DAG root. The DAG configuration is used to

distribute DAG configurations. The RPL Target is used to specify a reachable target address

or prefix in the DAG. The Transit Information is used to indicate attributes for a path to one or

more destinations. Solicited information option is used to request DIO messages. The Prefix

Information option carry the prefix in use in the DAG for nodeś address auto configuration.

The RPL Target Descriptor is used to qualify a determined target.

Table 2.2: Options in RPL Control Messages DIO, DIS and DAO

Type Options DIO DIS DAO
0x00 Pad1 X X X
0x01 PadN X X X
0x02 DAG Metric Container X X
0x03 Route Information X
0x04 DAG Configuration X
0x05 RPL Target X
0x06 Transit Information X
0x07 Solicited Information X
0x08 Prefix Information X
0x09 RPL Target Descriptor X

46 Delay Estimation and Admission Control in IP Networks

Two of these options perform a center role: the DAG Configuration and the Metric

Container options. The DAG Configuration option format is shown in Fig. 2.22; this option is

used to distribute the configuration information of the DAG. The information here conveyed is

generally static and, therefore, it is not necessary to include it in all DIO messages. The Option

Type field is set to 0x04 (DAG Configuration). The Option Length field conveys the length of

the DAG Configuration in bytes. The Flags field is always initialized to zero by the sender and

ignored by the receiver. The Authentication Enabled (A) field indicates whether the control

messages are secured (bit set to “1”) or not (bit set to “0”). The Path Control Size (PCS) is

used to configure the number of bits that may be allocated to the Path Control field, a field that

allows nodes to request or allow for multiple Downward routes. The DIO Interval Doublings,

DIO Interval Min, and DIO Redundancy Constant fields are used to configure the DIO Trickle

timer, which controls the rate of the DIO control messages, and are defined in RFC 6206 [130].

The Max Rank Increase field is used to configure the allowable increase in Rank in support of

local repair. The Min Hop Rank Increase is used to configure the minimum increase in Rank

between a node and any of its DAG parents. The Objective Code Point (OCP) identifies the

OF (managed by the IANA). The Default Lifetime field specifies the default lifetime of all

RPL routes. The Lifetime Unit field provides the unit, in seconds, that is used to express route

lifetimes in RPL.

1 Byte 1 Byte 1 Byte 1 Byte

Type = 0x04 Option Length Flags DIO Interval DoublingsA PCS

DIO Interval Min DIO Redundancy Constant Max Rank Increase

Min Hop Rank Increase OCP

Reserved Default Lifetime Lifetime Unit

Figure 2.22: DAG Configuration option

The DAG Metric Container option format is shown in Fig. 2.23. It transports the values

of the metrics along the DAG. This option may appear multiple times in the same RPL control

message. The Option Type field is set to 0x02 (DAG Metric Container). The Option Length

field indicates the length of the Metric Data, in bytes. The Metric Data field includes the order,

the content, and the coding of the DAG Metric Container data as specified by the RFC 6551

[131].

2.3 WSN Operation and Constraints 47

1 Byte 1 Byte 1 Byte 1 Byte

Metric DataType = 0x02 Option Length

Figure 2.23: DAG Metric Container option

In RFC 6551 [131], ROLL defines a set of routing metrics/constraints types, managed

by IANA. Table 2.3 shows these types and classifies them as being either node or link related

(defined as the scope). ROLL defines that these metrics/constraints can be addictive, maximum,

minimum or multiplicative.

Table 2.3: Routing Metric/Constraint Types and Scopes

Type Metric/Constraint Scope
1 Node State and Attribute Node
2 Node Energy Node
3 Hop Count Link
4 Link Throughput Link
5 Link Latency Link
6 Link Quality Level Link
7 Link ETX Link
8 Link Color Link

The RPL implementation in Contiki OS is named ContikiRPL [132]. The performance of

this implementation is evaluated in [133] and a detailed analysis of its interoperability can be

found in [134].

2.3.5 Simulation

A WSN deployment is preceded by design and test steps. In this context, the simulation

tools are useful for developers in order to evaluate design, configurations and behaviors of a

WSN prior to its deployment.

Multiple simulators are available for WSNs. Simulators such as OMNeT++ [135], ns-2

[136] or ns-3 [137] assume simplified versions of the real software and hardware of the motes,

while other simulators as J-Sim [138] and Sensor Network Package, SENS [139], TOSSIM

[140], ATEMU [141] and Cooja [142] allow the simulation of the WSN devices and networks

at different levels of abstraction, from physical to application; in some extent, they enable the

emulation of particular WSN nodes. In particular, TOSSIM [140] was designed to emulate Tiny

OS [95] motes, ATEMU [141] was designed for MICA [84] platform and Cooja was designed

48 Delay Estimation and Admission Control in IP Networks

for Contiki OS platform motes. The Cooja allows the emulation of Z1 [83], the MICAz [84], or

the Tmote Sky [87]. In scenarios using Contiki OS the developers may rely on a development

environment named InstantContiki which consists of an Ubuntu Linux running in a VMWare

[143] virtual machine with a set of developer tools. Up to date, the latest version of Contiki is

2.7 and it includes the Cooja simulator [142].

Simulators such as ns-2 [136] or ns-3 [137] assume that motes are simplified versions of

the real hardware, while Cooja uses full Contiki’s source code and real hardware emulation

to obtain close-to-real results and enables the fast deployment of the simulated experiments

directly over the real motes. Cooja simulator is considered as a well suited validation tool for

WSN experiments where contiki OS is used.

In Cooja, the emulation of hardware nodes, the use of the full source code, and the demand

for detailed output logs, lead to large simulation times. The simulation times increase when

developers need to run multiple simulations in order to obtain statistically sound results. Cooja

runs as single-threaded and this means that it uses a single process and a single core at

each instant of time, thus if Cooja runs within a machine where a multi-core processor is

available, these cores will be underused. This Cooja limitation motivated the development of

a simulation framework proposed in [144] and [145] in order to reduce simulation runtimes by

using multiple simultaneous Cooja instances.

2.3.6 Discussion

This section provided an overview on the WSN operation and constraints. The hardware

and the OS used in a WSN are intended to operate over a long period of time, using batteries

and, in some cases, harvesting energy from the surrounding environment. Thus, these devices

are designed with processing and communications constraints in order to cope to their limited

energy resources.

Considering the specific hardware limitations of WSNs, the IEEE 802.15.4 standard was

proposed. This section has detailed the main characteristics of this standard its mode of

operation.

This section also provided an overview of the IP-based stacks proposed to be deployed in

WSNnodes. These stacks require minimal specifications in terms of memory and processing

capabilities, while providing the major IP and IPv6 functionalities. lwIP, uIP, and uIP6 were

detailed and their requirements regarding ROM and RAM resources are compared.

2.4 Summary 49

The operation of a WSN as a LLN requires a routing protocol, and RPL was designed

specifically for the LLNs. This section has provided an overview regarding the operation of

this routing protocol as well as its implementations in different nodes pl.

Finally, this section has provided an overview of the available simulators for WSNs with a

special emphasis on the Cooja simulator. Cooja simulator provides a close-to-real simulation

by using the full Contiki’s OS source code, however, this often implies long simulation

runtimes which can take up to several hours or even days when performing multiple rounds

of simulations.

2.4 Summary

The initial part of this chapter was dedicated to delay measurement and estimation. Section

2.1 provided a detailed characterization of the delays that can be accounted in IP networks

and revised the methods available to measure these delays in different network points. Finally,

this section described methods that can be used to evaluate the accuracy of a delay estimation

process.

In Section 2.2 is provided an overview on actual techniques to perform admission control

in IP networks with emphasis on distributed AC proposals. The challenges that emerge when

these AC mechanisms are deployed in processing and energy constrained WSN nodes are also

depicted.

In Section 2.3 is described the operation and the constraints associated to the sensor nodes

in WSNs, regarding hardware, operative systems, and the implemented stacks from the PHY

layer to the application layer. A description of RPL operation is also presented. Finally, is

provided a general overview of available WSN simulators.

Chapter 3

EED Estimation

The real-time application to be deployed in a WSN generates packets which are assumed to

have a maximum EED to reach destination. The main purpose of providing an EED estimation

is to anticipate if a packet will be delivered within the EED limit defined by its application.

The state of the art solutions on EED measurement and estimation described in Chapter

2 do not provide a real-time and per-packet delay estimation that is oriented for the WSNs

operation and constraints. An EED estimation suitable for a WSN must provide a minimal

overhead and avoid the introduction of extra traffic, while still enabling the delay estimation to

be available at the source node.

This Chapter proposes a novel EED estimation mechanism intended to provide a per-

packet delay estimate from source to destination, avoiding negative impacts on the network

performance. This estimation mechanism was defined for the particular scenario of a grid

topology WSN, shown in Fig. 1.3; this topology includes three types of nodes: the source, the

forwarder and the destination nodes.

The source node generates packets to be sent to destination node; the forwarder node

forwards packets from other nodes and can also generate its own packets; the destination node,

the network sink, is the destination of all generated packets. These nodes are represented in

Fig. 3.1 where the source node s uses the forwarder node f to reach the destination node d.

Node f also generates its own packets towards the destination node. Therefore, for the adopted

scenario, the EED is the delay comprehended between the application at the source node and

the application at the destination node.

51

52 EED Estimation

Caption

Destination node
d

Layer
Data Flow

Source node
s

Source/Forwarder node(s)
f

End-to-End Delay

DelayWSN node

Application ApplicationApplication

Network

Figure 3.1: WSN nodes and End-to-End Delay estimation scope

3.1 EED Estimation Mechanism

Our proposed EED Estimation Mechanism (EEDEM) estimates the EED for each packet

based on the delay experienced by previous data packets sent along the path from the appli-

cation layer at the source node to the destination’s node application layer. An overview of

the EED estimation mechanism is presented in Fig. 3.2; for simplicity the figure shows only

functions above network layer. The EED estimation is performed by using two functional

components: the Internal Delays and the External Delays. The Internal Delays accounts for

delays inside the node, while the External Delays captures other nodes’ Internal Delays values

transported via the RPL routing protocol.

3.1 EED Estimation Mechanism 53

Forwarder f1

RPL

IPv6-fwd

Internal
Delays Destination d

APP-receive

Source s

APP-send

End-to-End Delay

IPv6-in

Internal Delays

Forwarder f2

IPv6-fwd

Internal
Delays

RPL

EED Estimation

RPL
out Route

Processor

IPv6-in/fwd/out

RPL
in

Internal
Delays

External
Delays

Caption

Block Delays RPL
EED

Estimation

RPL

RPL

Figure 3.2: EEDEM overview

3.1.1 Internal Delays

EEDEM estimates the EED by measuring all the delays between the labels where the data

passes through, from the application in the source node to the application in the destination

node. Fig. 3.3 presents the layered communications architecture of WSN nodes, a data flow and

a set of rounded-corner boxes inside each layer which represent labels characterizing relevant

states in the data communications process. Delay accounting is accomplished by using timers

that measure delays between labels inserted into parts of the code where the data flow passes

through, ranging from the source application node to the application in the destination node.

EEDEM assumes that the WSN nodes run the ContikiOS 2.5 [96] and thus, the labels above

were inserted in the ContikiOS code files, according to Table 3.1. In order for all defined

timers to have a millisecond precision, the time stamps are saved using 2 Bytes, i.e. with

values ranging from 0 to 65535 ms.

54 EED Estimation

Caption

Destination d

APP

UDP

IP

MAC

PHY

Forwarder f

APP

UDP

IP

MAC

PHY

IPv6-in

APP-receive

MAC-queueing

PHY-receive

MAC-send

Layer Code
Label

Data Flow

PHY-receive

IPv6-in/fwd/out

MAC-receive MAC-receive

Source s

APP

UDP

IP

MAC

PHY

MAC-send

IPv6-out

APP-send APP-send

PHY-send PHY-send

MAC-queueing

Figure 3.3: Labels (EEDEM)

Table 3.1: Relation between Labels, Functions and Contiki OS Files

Label Function in code OS file

APP-send send_packet() udp-client.c

APP-receive receive_packet() udp-server.c

uIP6-fwd/out
uip_process() uip6.c

uIP6-in

MAC-receive input_packet() contikimac.c

MAC-queuing send_packet()

csma.c
MAC-send

transmit_queued_packet()
PHY-send

PHY-receive mac_call_sent_callback()

The Internal Delays account the time elapsed while the packet is processed within the stack

of the source node, the time elapsed while in the MAC layer queuing and the time elapsed

in packet transmissions. These internal paths and associated timers are shown in Fig. 3.4.

The LxLyD format represents the delays between layer x and layer y, the MAC QueueD is

the interval between the time the packet is inserted into the MAC queue until its removal,

and the TransD is the time interval required for the packet successful transmission, including

3.1 EED Estimation Mechanism 55

the ACK reception (frames used are configured to acknowledge reception, that is, the ACK

Request subfield depicted in Fig: 2.12 is set to "1"). The Internal Delays includes the link

related delays, (QueueD and TransD), and the processing related delays (LxLyD). It takes into

account the time elapsed while packets are being processed inside the nodes.

Caption

Destination d

APP

UDP

IP

MAC

PHY

Forwarder f

APP

UDP

IP

MAC

PHY

IPv6-in

APP-receive

MAC-queueing

PHY-receive

MAC-send

Layer
Code
Label

Data Flow

PHY-receive

L5L3D

L3L2D

QueueD

L2L3D

L3L5D

TransD

Processing
Delay

Link
Delay

IPv6-in/fwd/out

FwdL2L3D

MAC-receive MAC-receive

Source s

APP

UDP

IP

MAC

PHY

MAC-send

L5L3D

L3L2D

QueueD

IPv6-out

TransD

Generation Delay Forward Delay Receiver Delay

APP-send APP-send

PHY-send PHY-send

MAC-queueing

Figure 3.4: Labels and timers (EEDEM)

All the delays accounted in the Internal Delays (i.e. L5L3D, L3L2D, FwdL2L3D, L2L3D,

L3L5D, QueueD, TransD) are obtained by using EWMA. Whenever a new delay item (Delayi)

is accounted, a delay estimation for a future packet p (Delayp) is obtained using all delay

history items as follows:

Delayp = β .Delayi +(1−β).Delayp−1 (3.1)

According to the nodes’ role, from packet generation until packet reaches destination,

three types of Internal Delays are considered: the Generation Delay (GenD), registered when

packets are generated, from the APP-send label down to the MAC-queuing label; the Forward

Delay (FwdD), registered when packets are being forwarded, from MAC-receive label until

the MAC-queueing label; the Receiver Delay (RcvD), registered when packets are received

in the destination node, since MAC-receive label until they are delivered to the APP-receive

label. Each of these Internal Delays, are obtained by the processing delay component (namely

56 EED Estimation

Generation Processing Delay (GenProcD), Forward Processing Delay (FwdProcD), and Re-

ceiver Processing Delay (RcvProcD)) and the link delay components Generation Link Delay

(GenLinkD), Forward Link Delay (FwdLinkD), and Receiver Link Delay (RcvLinkD). The

processing delay component includes delays related to the processing time within the stack,

i.e. all LxLyD, and the link delay component includes delays related to and dependent on the

link (i.e. QueueD and TransD). For a source node s with a forwarder node f and a destination

node d, the GenD estimated for a future packet p is obtained as follows:

GenDs f
p = GenProcDs

p +GenLinkDs f
p (3.2)

where:

GenProcDs
p = L5L3Ds

p +L3L2Ds
p (3.3)

GenLinkDs f
p = QueueDs

p +TransDs f
p (3.4)

The FwdD is obtained as follows:

FwdD f d
p = FwdProcD f

p +FwdLinkD f d
p (3.5)

where:

FwdProcD f
p = FwdL2L3D f

p +L3L2D f
p (3.6)

FwdLinkD f d
p = QueueD f

p +TransD f d
p (3.7)

The RcvD is obtained as follows:

RcvDd
p = RcvProcDd

p +RcvLinkDdd
p (3.8)

where:

RcvProcDd
p = L2L3Dd

p +L3L5Dd
p (3.9)

RcvLinkDdd
p = 0 (3.10)

3.1 EED Estimation Mechanism 57

3.1.2 External Delays and RPL Operation

In order to obtain the delay of the path up to the destination node in the source nodes,

without imposing extra traffic, which would consume more processing and energy resources,

the EEDEM conveys the External Delays using the RPL messages. EEDEM uses the following

RPL metrics: the Path Delay Metric (PathDMetric) which represents the cumulative link delays

up to the DAG root, and the Processing Delay Metric (ProcDMetric) which represents the

cumulative processing delays up to the DAG root. Table 3.2 presents the mapping between the

metrics used by EEDEM and the metric types defined by ROLL in [131].

Table 3.2: EEDEM routing metrics mapped to ROLL metric types

Type Scope Mapped to
Metric/Constraint Type

PathDMetric Link Link Latency 5
ProcDMetric Node Node State and Attribute 1

Both metrics are addictive and used to obtain a node rank. According to Fig. 3.4 a node s

with an RPL preferred parent f and destination d, advertises the following PathDMetric:

PathDMetricsd = FwdLinkDs f
p +PathDMetric f d (3.11)

and advertises the following ProcDMetric:

ProcDMetricsd = FwdProcDs
p +ProcDMetric f d (3.12)

The destination node d advertises to its neighbors the following metrics:

PathDMetricdd = RcvLinkDdd
p = 0 (3.13)

ProcDMetricdd = RcvProcDd
p (3.14)

3.1.3 End-to-end Delay Estimation Mechanism Output

Based on the previous operations with Internal and External Delays, the EED estimate

(ÊED) is obtained using two major components: Path Delay (PathD) composed of the end-to-

end path delay which corresponds to the sum of all link delays; ProcD which corresponds to the

sum of all processing delays. Therefore, for a source s with parent f, the PathD and ProcD for

58 EED Estimation

future packet p sent to the destination d are obtained, respectively, using Eq. 3.15 and Eq. 3.16.

PathDsd
p = GenLinkDs f

p +PathDMetric f d (3.15)

ProcDsd
p = GenProcDs

p +ProcDMetric f d (3.16)

The procedure to obtain the ÊED is implemented in all nodes of the WSN, except the

in DAG root. When a node s needs to send a data packet p it estimates the EED towards

destination d using PathD and the ProcD as follows:

ÊED
sd
p = PathDsd

p +ProcDsd
p (3.17)

3.1.4 Validation Environment

A test scenario was deployed and the Cooja Simulator [142] was used to validate EEDEM.

The network topology used is shown in Fig. 1.3 and the simulation parameters are presented

in Table 3.3.

Table 3.3: Simulation Parameters (EEDEM)

Parameter Value

Number of nodes 16 + sink node

Deployment area 100 m x 100 m

Transmission range 30m

Channel Unit Disk Graph Medium

Packet size 100 Bytes

Transport/Application UDP/CBR

Each node was simulated as a Tmote Sky [88] composed of a MSP430F1611 micro-

controller and a CC2420 radio with a data rate of 250 kbit/s using IEEE 802.15.4 MAC and

PHY layer specifications, with transmission and interference ranges of 30 m, and using the

Unit Disk Graph Medium (UDGM) as physical channel model. The nodes run the Contiki OS

2.5 [96] and were programmed to enable the debug of application and RPL messages. Extra

code was programmed to implement the timers in each node and the respective processing

delay was measured, having an impact of 16 ms per processed packet. The application layer

uses UDP as transport layer and it generates packets of 100 Bytes in a CBR by using constant

3.1 EED Estimation Mechanism 59

Inter-packet Generation Intervals (IGIs). Each simulation was configured to stop when the sink

has received 500 packets from each node. Multiple simulations were conducted; in each round,

the simulations were repeated 10 times using random seeds.

EEDEM was compared against an EED estimate provided by an ETT-based solution. The

latter is based on Eq. 2.15 where RPL is configured to use the ETX metric, S is the packet size

of 100 Bytes, and D is the data rate of the link of 250 kbit/s, as follows:

ETT = ETX× S
D

= ETX× (100∗8) (bit)
250 (kbit/s)

= ETX×3.2 (ms) (3.18)

In order to characterize the EED estimation accuracy, the EED Estimation Error (EEDEr-

ror) for both solutions was compared. When a packet is generated each WSN node obtains an

ÊED. Also, simulator was configured to output the time instant when a packet is generated and

when a packet reaches the destination application, obtaining the real packet’s EED. Both ÊED

and EED per each packet are saved, and compared with the EED. EEDError was obtained per

each packet p according to Eq. 3.19.

EEDError (ms) =
∣∣∣ÊEDp−EEDp

∣∣∣ (3.19)

At the end of each simulation, the Number of Received Packets (#RcvdPkts) and the

Number of Sent Packets (#SentPkts) were collected and using #RcvdPkts the EEDError using

MAE, i.e. EEDError(MAE), was obtained per simulation according to Eq. 2.16, as follows:

EEDError(MAE) (ms) =
1

#RcvdPkts

#RcvdPkts

∑
p=1

∣∣∣ÊEDp−EEDp

∣∣∣ (3.20)

Also, the EEDError(MAPE) was obtained according to Eq. 2.19, as follows:

EEDError(MAPE) (%) =
1

#RcvdPkts

#RcvdPkts

∑
p=1

∣∣∣ÊEDp−EEDp

∣∣∣
EEDp

(×100) (3.21)

In order to evaluate the distribution of both delay components (ProcD and PathD) in the

total delay estimation, their weight was accounted and compared with ÊED. To measure the

RPL overhead introduced by both solutions, the average number of RPL packets per node was

also accounted. In order to measure impact on network performance, the average EED and

60 EED Estimation

Packet Reception Ratio (PRR) were also obtained. The average EED was obtained as follows:

Average EED (ms) =
1

#RcvdPkts

#RcvdPkts

∑
p=1

EEDp (3.22)

The PRR was obtained as follows:

PRR (%) =
#RcvdPkts
#SentPkts

(×100) (3.23)

The average values of EEDError(MAE), EEDError(MAPE), EED, and PRR were obtained for

each round of simulations as well as their respective confidence intervals of 90%.

3.1.5 Results

Fig. 3.5 shows the average EEDError(MAE) and respective confidence intervals for ETT-

based solution and EEDEM, for IGIs ranging from 1 to 10 s. The results show that, for

IGIs below 2 s the EEDError(MAE) for EEDEM is higher than the obtained for the ETT-

based solution. For IGIs equal or larger than 2 s (smaller traffic loads), EEDEM presents

an EEDError(MAE) below the ETT-based solution. For an IGI higher than 3 s, the difference

obtained from the both solutions is approximately constant, having a value around 250 ms.

Both solutions present high values for the confidence intervals and they always overlap each

other in the tested IGIs. This happens because the nodes closer to the sink (e.g. node 8) have

an estimation error smaller than the nodes more distant from the sink (e.g. node 5). Also,

for the nodes far from the destination node, the difference between the estimations using the

ETT-based solution and EEDEM is higher.

Fig. 3.6 shows the average EEDError(MAPE) for both solutions, for IGIs ranging from 1 to

10 s. The results show that, for IGIs shorter than 2 s, EEDEM presents an higher estimation

error than the ETT-based solution. For IGIs equal or above to 2 s, the average EEDError(MAPE)

for both solutions are approximately constant, with EEDEM presenting lower percentage error

of around 57%, against around 87% obtained for the ETT-based solution.

3.1 EED Estimation Mechanism 61

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000
 1100
 1200
 1300
 1400
 1500
 1600
 1700
 1800
 1900
 2000

 1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 E
E

D
E

rr
or

(M
A

E
) (

m
s)

Inter-packet Generation Interval (s)

Average EEDError(MAE)

ETT-based Solution
EEDEM

Figure 3.5: Average EEDError(MAE) (EEDEM)

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50
 55
 60
 65
 70
 75
 80
 85
 90
 95

 100
 105

 1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 E
E

D
E

rr
or

M
A

PE
 (%

)

Inter-packet Generation Interval (s)

Average EEDErrorMAPE

ETT-based Solution
EEDEM

Figure 3.6: Average EEDError(MAPE) (EEDEM)

62 EED Estimation

Fig. 3.7 shows the average PathD and ProcD components distribution for EEDEM when

IGIs range from 1 to 10 s. For IGI of 1 s, the ProcD represents approximately 15% of the total

EED estimated while ProcD is the major component with around 75%. For IGIs larger than 1

s, the ProcD component becomes approximately constant and it accounts for about 40% of the

EED estimation.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 P
ro

cD
 a

nd
 P

at
hD

 D
is

tr
ib

ut
io

n
(%

)

Inter-packet Generation Interval (s)

Average Processing Delay (ProcD) and Path Delay (PathD) Distribution

ProcD
PathD

Figure 3.7: Average ProcD and PathD distribution (EEDEM) (IGIs from 1 to 10 s)

The Fig. 3.8 zooms Fig. 3.7 and shows the average PathD and ProcD distributions of the

EED estimation, for EEDEM for IGIs ranging from 0.5 to 5 s. For IGIs ranging from 0.5 to

2.5 s, the ProcD component accounts 5% of the total EED estimation and it increases gradually

up to 35%. For IGIs larger than 2.5 s, the ProcD component becomes approximately constant

and it accounts for about 35% of the EED estimation. From the results shown in Figs. 3.8

and 3.7 it can be concluded that, for IGIs below 1.5 s, the PathD has an impact higher than the

ProcD. For these high network loads, the PathD suffers from the links instability and it turns

highly unpredictable making the EED estimation less accurate. For IGIs above 1.5 s, the ProcD

represents around 30% of the EED estimation and EEDEM presents higher accuracy than the

obtained by the ETT-based solution, benefiting from the consideration of processing delays.

3.1 EED Estimation Mechanism 63

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

A
ve

ra
ge

 P
ro

cD
 a

nd
 P

at
hD

 D
is

tr
ib

ut
io

n
(%

)

Inter-packet Generation Interval (s)

Average Processing Delay (ProcD) and Path Delay (PathD) Distribution

ProcD
PathD

Figure 3.8: Average ProcD and PathD distribution (EEDEM) (IGIs from 0.5 to 5 s)

Fig. 3.9 presents the average number of RPL packets sent by both solutions, per node and

per simulation, for IGIs ranging from 1 to 10 s. The results show that, for all IGIs, the number

of RPL packets generated by EEDEM is always higher than those generated by the ETT-based

solution. From the results shown it can be concluded that the RPL metrics used by EEDEM lead

to an higher advertisement rate due to the ProcDMetric and PathDMetric changes that occur

more often than the ETX metric. Thus, for shorter IGIs (high network loads), EEDEM has

higher estimation errors than the ETT-based solution. This high advertisement rate becomes a

benefit for EEDEM for IGIs larger than 1 s, since it enables a more accurate estimation.

Fig. 3.10 presents the average EED for both solutions, for IGIs ranging from 1 to 10 s.

The results show that, for all IGIs, the average EED obtained for EEDEM is higher than the

obtained for ETT-based solution. The difference between both solutions is more accentuated

for IGIs smaller than 3 s. For IGIs equal or larger than 3 s, the difference is smaller and

approximately constant.

64 EED Estimation

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 #
 o

f R
PL

 p
ac

ke
ts

 p
er

 n
od

e

Inter-packet Generation Interval (s)

Average # of RPL packets per node

ETT-based Solution
EEDEM

Figure 3.9: Average number of RPL packets per node (EEDEM)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 6000

 6500

 1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 E
E

D
 (m

s)

Inter-packet Generation Interval (s)

Average EED

ETT-based Solution
EEDEM

Figure 3.10: Average End-to-End Delay (EEDEM)

3.2 RPL Modifications 65

Fig. 3.11 presents the average PRR for both solutions, for IGIs ranging from 1 to 10 s.

The results show that for IGIs shorter than 7 s, the average PRR of EEDEM is lower than the

average PRR obtained for the ETT-based solution, with a constant difference of approximately

10 percentage points (pp). The results presented in Figs. 3.10 and 3.11 indicate that EEDEM

has no significant impact on these performance items for an IGI higher than 7 s. For IGI shorter

than 3 s, the average EED increases significantly when compared to ETT-based solution; for

an IGI shorter than 7 s, the average PRR is affected in approximately 10 pp. This impact is due

to the higher refresh rates of the RPL metrics used in EEDEM, as explained above.

 30

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 P
R

R
 (%

)

Inter-packet Generation Interval (s)

Average PRR

ETT-based Solution
EEDEM

Figure 3.11: Average Packet Reception Ratio (EEDEM)

3.2 RPL Modifications

EEDEM estimates the EED based on the internal delay experienced by previously sent

packets and delay information from other nodes through the use of RPL. Therefore, EEDEM

depends on the RPL operation; a high refresh rate of routing messages increases the estimation

accuracy, but it also increases the RPL overhead causing EED to become less predictable.

This section presents RPL Adaptation for EEDEM (RA-EEDEM), a set of modifications

made to RPL in order to improve the EED estimation accuracy. The RA-EEDEM modifica-

66 EED Estimation

tions were applied and tested within ContikiRPL [132], an open-source RPL implementation

integrated in the ContikiOS [96]. ContikiRPL was used with the uIPv6 stack [105] and, at layer

2, with Carrier Sense Multiple Access (CSMA) and ContikiMAC [146].

Since routing protocol overhead has impact in EEDEM results, RA-EEDEM aims to

balance the rate of RPL control messages. High rates, namely those providing feedback of

the delays in downwards direction, will allow for higher estimation accuracy. Also, since these

control messages compete with data messages for the available network resources, high rates

of control messages cause the undesirable effect of increasing the average EED of data packets

and degradation of average PRR.

The real-time application to be deployed is assumed only to generate data packets in

upwards direction towards the DAG root. Thus, the RPL support for downward routes was

disabled (using the MOP with value 0; see Section 2.3.4) and DAO messages were suppressed.

Also, node mobility was not considered and therefore, DIS messages were neglected since they

are only sent during an initial phase, before nodes join the DAG. The efforts were focused on

balancing the rate of the DIO messages, taking into account the following conditions presented

by order of importance:

• Maintain the regular routing process for the data packets - The RPL function and stability

should not be compromised.

• Assume no specific application data rate - Prior to the deployment, the application data

rate is taken as unknown.

• Maximize the accuracy of EED estimation - Improve EED estimation reducing the

overhead of the routing protocol.

• Minimize the impact on performance - Minimize the impact on average EED and on

average PRR performance.

Since application data rate is taken as unknown, the default configuration regarding DIO

messages was not changed and the values defined in ContikiRPL were used. DIO messages

are sent downwards and are mainly used to transport routing metrics. Such metrics will then

be used by OF in order to select the PP, from a set of CPs. The metrics already defined in

EEDEM (namely PathDMetric and ProcDMetric) are dynamic metrics and assume values with

a millisecond precision which may cause fast oscillations on parent selection.

Based on these conditions, RA-EEDEM includes changes in two OF procedures: Selection

of Best Parent and Update Metrics Procedures, detailed in next subsections.

3.2 RPL Modifications 67

3.2.1 Selection of Best Parent Procedure Modifications

Since parent selection instability imposes higher generation rate of DIO messages, the

selection of best parent procedure was changed. This procedure is recursive and tests all the

CPs within sets of two (p1 and p2), returning the best one in each round. After testing multiple

pairs of CP this procedure outputs a PP. The PP is recurrently compared with new pairs of

CPs. The selection of best parent procedure was changed operate according to the Fig. 3.12.

The first condition imposes this procedure to select parents with existing ProcDMetric values

in favor of parents without ProcDMetric. This allows all nodes to quickly obtain processing

delays, and thus improve estimation and reduce convergence time. After that, a Total Delay

Metric (TotalDMetric) for each CP is calculated. If neither of both CPs is the PP, this procedure

returns the parent with lowest TotalDMetric. If one of the parents is the PP, a latter comparison

is performed using a variable Hysteresis Value (HystV) returned by the hysteresis function.

The HystV depends on the node’s EED Rough Estimation (EED_RE) towards the DAG

root. In order to obtain the EED_RE, a new metric, named Hop Count Metric (HopMetric) was

added to those already defined in the initial EEDEM proposal (ProcDMetric and PathDMetric).

The metrics defined were mapped according to the metric types defined by ROLL according to

Table 3.4.

Table 3.4: RA-EEDEM routing metrics mapped to ROLL metric types

Type Scope
Mapped to

Metric/Constraint Type

PathDMetric Link Link Latency 5

ProcDMetric Node Node State and Attribute 1

HopMetric Link Hop Count 3

The HopMetric counts the hops up to the DAG root and thus a forwarding node f with an

RPL Preferred Parent f and destination d, will advertise the following HopMetric:

HopMetricsd = HopMetric f d +1 (3.24)

The destination node d advertises, to its neighbors, the following HopMetric:

HopMetricdd = 0 (3.25)

68 EED Estimation

(p1==PP) || (p2==PP)
false

best_parent (p1, p2)

(p1→ProcDMetric == 0)
&&

(p2→ProcDMetric > 0)

true

HystV = hysteresis(PP→TotalDMetric)

return p2

p1→TotalDMetric = p1→ProcDMetric + p1→PathDMetric
p2→TotalDMetric = p2→ProcDMetric + p2→PathDMetric

false

(p1→ProcDMetric > 0)
&&

(p2→ProcDMetric == 0)

false

true

return p1

p1→TotalDMetric
<

p2→TotalDMetric

true

false

p2→TotalDMetric
<

PP→TotalDMetric – HystV

true
p1==PP

true

return p2
true

p1→TotalDMetric
<

PP→TotalDMetric – HystV
return p1

false

true false

false

Figure 3.12: Selection of best parent procedure (RA-EEDEM)

The algorithm behind the hysteresis function is shown in Algorithm 1. The EED_RE is

obtained using HopMetric multiplied by a constant value K that is assumed to be the worst

transmission delay value per hop experienced by a sender node. The K value is obtained

using a constant value of 125 ms, which is the default receiver wake-up interval defined in

ContikiMAC [146] doubled to include MAC queue delay. The graph of the hysteresis function

3.2 RPL Modifications 69

is presented in Fig. 3.13. If the PP→TotalDMetric is less than EED_RE, a negative slope line

is used. Otherwise, the Minimum Hysteresis Value (MinHystV) is assumed to be 50 ms. The

lower the PP→TotalDMetric value is, the higher the HystV will be, making the parent change

less probable. Since a parent change will reset the DIO message timer, this algorithm controls

the rate of DIOs in the network and avoids parent selection instability.

Algorithm 1: Hysteresis function (RA-EEDEM)
hysteresis(TotalDMetric){

K = 250;

EED_RE = K × HopMetric;

i f (TotalDMetric < EED_RE){

HystV= (EED_RE
2)−MinHystV
0−EED_RE ×TotalDMetric+ EED_RE

2 ;

}else{

HystV= MinHystV;

}
return HystV;
}

HystV

EE
D
_R
E

EED_RE/2

MinHystV

TotalDMetric

Figure 3.13: Hysteresis function graph (RA-EEDEM)

3.2.2 Update Metrics Procedure Modifications

In order to provide more accurate metrics to the remaining nodes, with delay information

that starts from the DAG root, minor changes were also applied to the update metric procedure,

70 EED Estimation

which updates the metrics that are used in the DIO. As a result, each node will only advertise

its metrics (ProcDMetric, PathDMetric and HopMetric) if these are already available from its

PP. Whenever a node receives the metrics from a parent it should assume that all metric values

in the metric container account the entire path to the DAG root.

3.2.3 Validation Environment

RA-EEDEM was evaluated in the grid topology shown in Fig. 1.3 with simulation

parameters presented in Table 3.5.

Table 3.5: Simulation Parameters (RA-EEDEM)

Parameter Value

Number of nodes 16 + sink node

Deployment area 100 m x 100 m

Transmission range 30m

Channel Unit Disk Graph Medium

Packet size 100 Bytes

Transport/Application UDP/CBR

The Cooja simulator [142] was used and each node was simulated as a Tmote Sky [88]. The

destination node is defined as the DAG root. IEEE 802.15.4 MAC and PHY layer specifications

were applied. The nodes ran the Contiki OS 2.5 and were programmed to enable both the

debug of application and RPL messages. The application layer used UDP and it generates

packets of 100 Bytes in a constant bit rate implemented with a constant IGI. Simulations

were configured to stop whenever the destination received 200 packets from each node. Each

simulation was configured to stop when the sink has received 500 packets from each node.

Multiple simulations were conducted; in each round, the simulations were repeated 10 times

using random seeds. The EED estimations obtained with RA-EEDEM were tested against

those obtained with EEDEM.

The simulator was configured to output the instant of time when a packet is generated and

when the packet reaches the destination application. In order to characterize the accuracy of the

EED estimation, when a packet is generated the ÊED was obtained, saved, and later compared

3.2 RPL Modifications 71

with the EED. EEDError was obtained using MAPE according to Eq. 2.19 as follows:

EEDError(MAPE)(%) =
1

#RcvdPkts

#RcvdPkts

∑
p=1

∣∣∣ÊEDp−EEDp

∣∣∣
EEDp

(×100) (3.26)

In order to measure the RPL overhead introduced by each solution, the average number

of RPL packets per node was accounted. To evaluate the impact on network performance, the

average EED was accounted using Eq. 3.22, and the average PRR was accounted using Eq.

3.23.

3.2.4 Results

Fig. 3.14 shows the average EEDError(MAPE) and its standard deviation for the three

solutions (ETT-based solution, EEDEM and RA-EEDEM) using different IGIs. The results

show that the EEDError(MAPE) tends to be higher for shorter IGIs. For IGIs larger than 2 s,

both RA-EEDEM and EEDEM solutions present an EEDError(MAPE) lower than that obtained

with the ETT-based solution. For an IGI equal or larger than 3 s, RA-EEDEM and EEDEM

present estimation errors (values ranging from 50% to 60%) lower than the estimation error

from the ETT-based solution (values ranging from 85% to 90%). RA-EEDEM presents errors

which are 35 pp lower than the estimations obtained by the ETT-based solution, and 5 pp lower

than the obtained with EEDEM.

Fig. 3.15 shows the average number of RPL packets generated per node and per simulation.

The results show that for IGIs of 1 s all solutions generate almost the same number of RPL

packets. For IGIs larger than 1 s, the ETT-based solution uses a lower number of RPL packets,

when compared with the other two solutions. When comparing RA-EEDEM against EEDEM,

RA-EEDEM presents a lower number of RPL messages in all circumstances. Combining the

results from Figs. 3.14 and 3.15, it can be concluded that RA-EEDEM provides a more accurate

EED estimation while reducing the overhead of the routing protocol.

72 EED Estimation

 40
 45
 50
 55
 60
 65
 70
 75
 80
 85
 90
 95

 100
 105
 110

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A
ve

ra
ge

 E
E

D
E

rr
or

(M
A

PE
) (

%
)

Inter-packet Generation Interval (s)

Average EEDError(MAPE)

ETT-based Solution
EEDEM

RA-EEDEM

Figure 3.14: Average EEDError(MAPE) (RA-EEDEM)

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50
 55
 60
 65

1 2 3 4 5 6 7 8 9 10 15 20

A
ve

ra
ge

 #
 o

f R
PL

 p
ac

ke
ts

 p
er

 n
od

e

Inter-packet Generation Interval (s)

Average # of RPL packets per node

ETT-based Solution
EEDEM

RA-EEDEM

Figure 3.15: Average number of RPL packets per node (RA-EEDEM)

3.2 RPL Modifications 73

Fig. 3.16 shows the average EED for all solutions. The results show that RA-EEDEM and

EEDEM present a higher EED, on average, when compared with the ETT-based solution. This

is due to the variation of metrics used in RA-EEDEM and EEDEM which impose higher rate of

DIO messages. Considering IGI values between 1 and 3 s, the RA-EEDEM solution presents

a lower average EED, when compared to EEDEM. For IGIs larger than 3 s, both RA-EEDEM

and EEDEM present approximately the same results, differing from the ETT-based solution

by roughly 200 ms. With these results it can be concluded that the RA-EEDEM estimation

present better results in terms of average EED in high network loads than those obtained using

EEDEM.

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500
 5000
 5500
 6000
 6500

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A
ve

ra
ge

 E
E

D
 (m

s)

Inter-packet Generation Interval (s)

Average EED

ETT-based Solution
EEDEM

RA-EEDEM

Figure 3.16: Average End-to-End Delay (RA-EEDEM)

74 EED Estimation

Fig. 3.17 shows the average PRR for all solutions. For IGIs shorter than 7 s, the average

PRR obtained by RA-EEDEM is about 5 pp higher than the average PRR obtained using

EEDEM, and closer to the results obtained using ETT-based solution. For IGIs higher than 9 s,

PRR of RA-EEDEM and EEDEM is higher than that obtained using the ETT-based solution.

Combining the results shown in Figs. 3.15, 3.16 and 3.17, it can be concluded that the average

EED and PRR will benefit from the reduction of the RPL overhead in high network loads.

 30
 35
 40
 45
 50
 55
 60
 65
 70
 75
 80
 85
 90
 95

 100

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A
ve

ra
ge

 P
R

R
 (%

)

Inter-packet Generation Interval (s)

Average PRR

ETT-based Solution
EEDEM

RA-EEDEM

Figure 3.17: Average Packet Reception Ratio (RA-EEDEM)

3.3 Delay Accounting Optimization

EEDEM accounts delays using timers that make use of an EWMA function shown in Eq.

3.1, where the smoothing factor (β) is constant and defined prior to the WSN deployment.

Later experiments showed that, in order to enhance the estimation results, such smoothing

factor should be defined as a function of the network load. In this section is detailed an opti-

mization procedure for EEDEM that works by evaluating the network load and by adapting the

smoothing factor (β) of the EWMA function accordingly. Results show that this optimization

leads to a more accurate EED estimation for different network loads.

3.3 Delay Accounting Optimization 75

3.3.1 Preliminary Experiments

Preliminary experiments were performed in order to better understand how the EEDEr-

ror(SMAPE) changes in relation to different β values. The Cooja simulator [142] was used and

all nodes were simulated as Tmote Sky [88] with the simulation parameters presented in Table

3.6.

Table 3.6: Simulation Parameters (DAOP)

Parameter Value
Number of nodes 16 + sink node
Deployment area 100 m x 100 m

Transmission range 30m
Channel Unit Disk Graph Medium

Packet size 100 Bytes
Transport/Application UDP/CBR

The application layer used UDP and it generated packets of 100 Bytes in a constant rate

here defined as IGI. Each simulation was configured to stop whenever the destination node

received 100 packets from each node and, in each round, the simulations were repeated 10 times

using random seeds. The simulator was configured to output the instant of time when a packet

was generated and when a packet reached the destination application. For each generated

packet, the ÊED was collected and later compared with the EED. Finally, when the simulation

ended, the EEDError for a set of #RcvdPkts was obtained using the difference between ÊED

and EED calculated using the SMAPE according to Eq. 2.20, expressed in a value between

0% and 200%. SMAPE compares the difference between ÊED and EED with the mean of

these two values, thus treating over and under estimations equally. Thus, EEDError(SMAPE) is

obtained as:

EEDError(SMAPE)(%) =
1

#RcvdPkts

#RcvdPkts

∑
p=1

∣∣∣ÊEDp−EEDp

∣∣∣
(ÊEDp +EEDp)/2

(×100) (3.27)

The results obtained for the average EEDError(SMAPE) and its confidence interval are shown

in Figure 3.18. Different β values were used for IGIs of 1, 2.5, 5, and 10 s. The results show

that for high network loads (lower IGIs) a high β value provided the lowest EEDError(SMAPE),

while for low network loads (IGI above 2.5 s) a lower β value should be used. Whenever a

node is experiencing a high network load, the EED values will vary with a higher amplitude,

76 EED Estimation

thus, in order to enhance EED estimation, the last EED sample must have a higher weight than

the EED history. In short, a high β value should be used in high network loads.

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

 90

 1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 E
E

D
E

rr
or

(S
M

A
PE

)(%
)

Inter-packet Generation Interval (s)

Average EEDError(SMAPE)

EEDEM with β=10%
EEDEM with β=30%
EEDEM with β=50%
EEDEM with β=70%
EEDEM with β=90%

 76

 78

 80

 82

 84

 86

 1

Figure 3.18: Average EEDError(SMAPE) using β varying from 10% to 90%

3.3.2 Delay Accounting Optimization Procedure

In order to minimize the EEDError(SMAPE), the preliminary experiments demonstrated that

each node must be aware of its network load. Thus, the Dynamic Accounting Optimization

Procedure (DAOP) infers the network load by monitoring the real-time usage of the MAC

queue and then, based on the size of the queue, selects the best β value and applies it in all

internal timers. Figure 3.19 shows how the DAOP is integrated within the EEDEM. The DAOP

assumes 4 intervals within the MAC-queueing block: i1, i2, i3, and i4. In interval i1 (from 0

up to 2 packets in the MAC queue) the DAOP assumes a low network load, in interval i2 (3 or

4 packets) and i3 (5 or 6 packets) the DAOP assumes a medium network load, and in interval

i4 (from 7 up to the queue limit, i.e. 8 packets) it assumes a high network load. When a node

sends a packet the queue usage is monitored and for intervals i1, i2, i3, or i4, a β value of

10%, 30%, 50% or 70% is applied, respectively, in all internal timers (β of 90% was not used

since it introduces higher EEDError(SMAPE) using DAOP). Since β values are calculated when

3.3 Delay Accounting Optimization 77

packets are sent, the computational cost of DAOP will grow linearly with the sent packets, i.e.,

the procedure complexity is O(n).

Caption

Data Flow

RPL Info

Delay Info

Source/Forwarder node

Internal
Delays

APP-send

DAOP info

MAC & PHY
Send

IPv6-in/fwd/out

PHY & MAC
Receive

DAOP

MAC-queueing

12345678

RPL

EED Estimation
Mechanism (EEDEM)

pkt
p-3

pkt
p-2

pkt
p-1

i2
β=30%

i1
β=10%

i4
β=70%

i3
β=50%

pkt
p

Figure 3.19: DAOP integration in EEDEM

3.3.3 Validation Environment

In order to evaluate DAOP, it were used all parameters described in Section 3.3.1. EED-

Error(SMAPE) was obtained and compared with the EEDErrors obtained in the preliminary

experiments, when multiple constant β values were used. Also, to relate the EED accuracy

to the network load, the MAC queue usage for each node was collected.

3.3.4 Results

The proposed solution monitors the MAC queue usage to infer the network load in real-

time. Figure 3.20 shows the usage of the MAC queue for two cases: when the IGI is equal to

1 s, and when the IGI is equal to 5 s. The values were obtained in a node one hop away from

to the destination, whenever a packet is to be sent. The results show that, for lower IGIs, the

78 EED Estimation

MAC queue has roughly 6 or more packets, on average, and for an IGI equal to 5 s, the MAC

queue has roughly 1 packet during all the simulated time.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 20 30 40 50 60 70 80 90 100 110

M
A

C
 q

ue
ue

 s
iz

e
(p

ac
ke

ts
) (

M
A

X
=8

)

Simulation time (seconds)

MAC queue size (packets) in node 7 (IGI=1)

Queue usage (IGI=1)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 50 100 150 200 250 300 350 400 450 500 550

M
A

C
 q

ue
ue

 s
iz

e
(p

ac
ke

ts
) (

M
A

X
=8

)

Simulation time (seconds)

MAC queue size (packets) in node 7 (IGI=5)

Queue usage (IGI=5)

Figure 3.20: MAC queue usage (DAOP) (left: IGI=1 right: IGI=5)

Figure 3.21 compares the EEDError(SMAPE) obtained using the DAOP with those obtained

with constant β values of 10%, 30%, 50%, 70% and 90%, for different IGI values. The

results show that, by monitoring the MAC queue usage, the proposed DAOP dynamically infers

network load and applies a β value that matches the best ones for each IGI in the preliminary

experiments. Thus, DAOP presents the lowest EEDError(SMAPE) for all the different network

loads.

3.4 Summary

Section 3.1 presented a novel real-time mechanism named EEDEM to estimate EED in a

WSN. EEDEM estimates per-packet EED based on the delays obtained by previous packets

and by combining internal timers with two cumulative RPL metrics. Also, EEDEM accounts

not only transmission related delays, but also processing delays, which revealed to be important

in a WSN where nodes have limited processing resources. EEDEM was compared to an ETT-

based solution and the results show that it produces a more accurate EED estimation for the

tested network loads, without impacting significantly on the network performance, namely

regarding the average EED and the PRR values.

3.4 Summary 79

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

 90

 1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 E
E

D
E

rr
or

(S
M

A
PE

) (
%

)

Inter-packet Generation Interval (s)

Average EEDError(SMAPE)

EEDEM with β=10%
EEDEM with β=30%
EEDEM with β=50%
EEDEM with β=70%
EEDEM with β=90%
EEDEM using DAOP

 76

 78

 80

 82

 84

 86

 1

Figure 3.21: Average EEDError(SMAPE) using different β values and using DAOP

EEDEM depends highly on the RPL operation. The refresh rate of routing messages

increases the estimation accuracy, but simultaneously increases the RPL overhead causing EED

to become less predictable. Section 3.2 presented RA-EEDEM that consists of a set of modifi-

cations to RPL aimed to improve the accuracy of the EEDEM. RA-EEDEM comprises changes

in OF procedures, namely in the selection of best parent and in the update metrics procedures.

RA-EEDEM estimation results were compared to EEDEM and ETT-based solution and the

results show that RA-EEDEM improves the accuracy of the EED estimation when compared

to the other solutions. When compared to EEDEM, RA-EEDEM improves EED estimation,

presents better average PRR, and less average EED for higher network loads.

In order to estimate the EED, EEDEM accounts internal delays obtained using an EWMA

function, where the smoothing factor (β) is constant and defined a priori. Experiments showed

that the best EED estimation error results are obtained by varying the β value as a function of

the network load. Section 3.3 presented DAOP that dynamically adapts the β value by inferring

the network load through actively monitoring the node’s MAC queue size. The results obtained

show that DAOP provides a more accurate EED estimation for different network loads than

those obtained in EEDEM.

80 EED Estimation

EEDEM and its subsequent improvements (RA-EEDEM and DAOP) intend to provide

a WSN node with the most accurate EED estimation when requested. Further, an admission

control mechanism interfacing with EEDEM is required in order to drop useless packets, reduce

useless network usage and improve the overall performance of the network, while saving

energy.

Chapter 4

Distributed Admission Control

Chapter 3 described EEDEM that provides an EED estimate per packet in a WSN. This

mechanism is useful to preview, at a source node, if the packet will likely be received at

the destination within the EED limit defined by the application. The real-time application

envisioned to be deployed in the WSN is assumed to generate delay sensitive packets; each

packet will be considered useful if it is delivered within the EED defined by the application,

and useless otherwise.

An AC mechanism may be adopted in order to decide if the packets should be transmitted or

not according to their potential usefulness. This AC mechanism should accept or drop a packet

based on the packet’s expectation to comply or miss the EED deadline previously defined by the

application. The decision should be taken in real-time at each WSN node and, as consequence,

a distributed AC mechanism should be designed.

None of the mechanisms surveyed in Chapter 2 provides a per-packet distributed admission

control mechanism using a cross-layer approach in order to control the generation and forward-

ing functions of a WSN node. In this context, a novel AC distributed mechanism is proposed

and evaluated in this chapter.

4.1 Cross-Layer Admission Control Mechanism

The Cross-layer Admission Control (CLAC) is a distributed mechanism running in each

WSN node that intercepts packets, requests EED estimations and decides if the node should

accept or reject the packets, according to their usefulness estimation regarding the destination

application. This decision is taken per packet and it is based on information provided by

application regarding the Maximum EED (MaxEED) allowed for its packets, and the real time

81

82 Distributed Admission Control

information conveyed by the network regarding the EED estimation; thus, this mechanism is

classified as an hybrid of parameter based and measurement based AC proposal, according to

classification presented in Section 2.2.1. CLAC is designed to enhance network performance

while fostering energy efficiency in a grid WSN.

Since not all received packets are useful for the destination, in alternative to the common

PRR, it is defined Packet Usefulness Ratio (PUR) as the Number of Useful Packets (#UsefulP-

kts) per #RcvdPkts as follows:

Packet Usefulness Ratio (PUR) (%) =
#UsefulPkts
#RcvdPkts

(×100) (4.1)

The #UsefulPkts can be accounted as follows:

#UsefulPkts =
#RcvdPkts

∑
p=1

U(p) (4.2)

where U(p) is 1 if packet p is useful, or 0 otherwise, expressed as follows:

U(p) =


1→ EEDp ≤MaxEED

0→ EEDp > MaxEED

(4.3)

In order to preview U(p), CLAC uses the Usefulness Preview (UP) function for packet p

expressed as follows:

UP(p) =


progress→ ÊEDp ≤MaxEED

drop→ ÊEDp > MaxEED

(4.4)

where ÊEDp is the estimated EED for each packet p, i.e. the result of Eq. 3.17. Fig. 4.1

depicts the UP function defined as a binary result for the hard deadline MaxEED. A packet

having ÊED below MaxEED is an in-profile packet and should progress; above MaxEED it is

an out-of-profile packet and should be dropped.

4.1 Cross-Layer Admission Control Mechanism 83

EEDp

UP(p)

M
ax

EED

progress

drop

In-profile pkts Out-of-profile pkts

^

Figure 4.1: Usefulness Preview function (CLAC)

Fig. 4.2 shows the integration of the CLAC mechanism in the WSN. CLAC assumes two

types of nodes: the source/forwarder node that generates packets or forwards packets from

other nodes, and the destination node which consumes the packets. CLAC is deployed only in

the source/forwarder nodes with the support of the EED estimation mechanism that, in turn,

depends on delay information conveyed by RPL control messages.

Source s Destination dSource/Forwarder f

EED Estimation

RPL

APP-send

IPv6-outIPv6-in IPv6-fwd

APP-receive

IPv6 In

RPLRPL

APP-send

IPv6-out

Internal
Delays

External
Delays

Internal
Delays

CLAC

EED Estimation

Internal
Delays

External
Delays

CLAC

Caption

Communication
Block

Routing ProtocolDelays

Data Flow

RPL Flow

CLAC Flow

Delay Info

EED Estimation

CLAC

Figure 4.2: CLAC mechanism integration

84 Distributed Admission Control

Caption

Source/Forwarder s

RPL

EED Estimation

APP-send

IPv6-out

Communication
Block

Routing ProtocolDelays

CLAC

Admission
Control
Manager

(ACManager)

Application API
(AppAPI)

Network API
(NetAPI)

External
Delays

Data Flow

RPL Flow

CLAC Flow

Delay Info

EED Estimation

CLAC

EED
Estimation
Interface
(EstIF)Internal

Delays

IPv6-in IPv6-fwd

RPL
Interface
(RPLIF)

Figure 4.3: CLAC internal overview

Fig. 4.3 presents the internal building blocks of CLAC. In order for the CLAC mechanism

to intercept and evaluate the usefulness of each packet, as earlier as possible, it defines two

stages for packet interception: after the packet generation at the application layer, and when

a packet is being forwarded at the network layer. Two Application Programming Interfaces

(APIs) were defined for this purpose: the Application API (AppAPI) and the Network API

(NetAPI). Additionally, two interfaces were also defined: the EED Estimation Interface (EstIF),

and the RPL Interface (RPLIF). EstIF handles the delay estimation requests issued to the EED

estimation mechanism. The RPLIF is used to trigger the sending of RPL control messages

when necessary. The core block, named Admission Control Manager (ACManager), receives

requests from AppAPI and NetAPI and, according to the caller API, issues requests for delay

estimations to the EstIF. Then, the ACManager provides a decision (accept or drop) regarding

4.1 Cross-Layer Admission Control Mechanism 85

the progress of a packet and communicates this decision back to the caller API (AppAPI or

NetAPI). If the caller API is the NetAPI, the ACManager can also request the sending of RPL

control messages to the RPLIF.

In order to support the operation of CLAC, data packets must have a payload format that

contains a set of fields that can either be generated by the application or added later by a middle

layer. In the adopted scenario, it is assumed that the data packets are generated with the fields

shown in Fig. 4.4 a). The data packet payload includes a Source ID (SrcID), a Destination ID

(DstID), an Application ID (AppID), a Sequence Number (SeqNr) which enables the per packet

EED registering, and a MaxEED which indicates the maximum amount of delay allowed by

the application. The MaxEED is defined when the packet is generated and updated while in

progress to its destination. In each data packet interception performed at the application layer

or at the network layer, the data packet payload (see Fig. 4.4 a)) is mapped to an internal data

structure representing the packet according to Fig. 4.4 b), where Estimated EED (EstEED)

value represents the ÊED. For each instance of such data structure, the ACManager requests

an EstEED to the EstIF. The returned value will be stored in EstEED field and it will be

evaluated by the ACManager which, in turn, decides whether the packet is to be accepted

or to be dropped, and stores a value of 1 or 0, respectively, in the Decision field. The EstEED

and the Decision fields added to the packet payload are saved in the internal data structure and,

according to the Decision field returned by the ACManager, the APIs will map the internal data

structure into the packet payload again and allow the data packet to proceed, or not, according

to the decision value.

1 Byte1 Byte 1 Byte 1 Byte 2 Bytes

DstID SeqNrAppID MaxEED Data

2 Bytes2 Bytes

DstID

2 Bytes 2 Bytes 2 Bytes

SeqNrAppID

2 Bytes

EstEED

1 Byte

Decision

packet
payload

SrcIDa)

b) struct pkt SrcID MaxEED

Caption

Packet fields to
support CLAC

CLAC Internal
fields

Data

Data

Figure 4.4: Data packet payload mapped into the internal packet struct (CLAC)

86 Distributed Admission Control

A flow diagram of the detailed interaction between the application layer and the CLAC

mechanism is shown in Fig. 4.5. The application layer requests a decision to the AppAPI where

the packet is mapped into the internal data structure of CLAC. The ACManager requests an

EstEED to the EstIF and stores it in the EstEED field. These requests may have a L5 argument,

if one wants the EstEED from the Layer 5 up to destination application, or it may have a L3

argument, if the EstEED wanted is the one from Layer 3. The ACManager checks if EstEED

is smaller than the value defined for MaxEED. If EstEED does not meet this condition, the

ACManager writes a zero in the Decision field and the packet is later dropped by the AppAPI.

If the EstEED is below the defined MaxEED, the MaxEED is updated by subtracting the GenD

(obtaining using Eq. 3.2 in Section 3.1.1) of the current node, and a one is written in the

Decision field. The AppAPI will then return the packet towards its destination.

AppAPI

EstIF

ACManager

AppAPI

map(packet, struct pkt)

pkt→EstEED=get_EstEED(L5)

pkt→EstEED < pkt→MaxEED ?

true

pkt→MaxEED = pkt→MaxEED – (GenD)

false

pkt→decision=0

AppAPI(packet)

return(packet)

return(0)

pkt→decision=1

map(struct pkt, packet)

Figure 4.5: CLAC interaction with the application layer (using AppAPI)

4.1 Cross-Layer Admission Control Mechanism 87

RPLIF

ACManager

NetAPI

EstIF

ACManager

NetAPI

NetAPI(packet)

pkt→EstEED=get_EstEED(L3)

pkt→SrcID == NodeID ?
||

pkt→DstID == Multicast ?

false

true

pkt→EstEED < pkt→MaxEED ?

true

pkt→MaxEED = pkt→MaxEED – (L3L2D+QueueD+TransD)

false

pkt→decision=0pkt→decision=1

map(struct pkt, packet)

return(packet)

return(0)

map(packet, struct pkt)

pkt→MaxEED = pkt→MaxEED – FwdL2L3D

send_RPL(DIO)

Figure 4.6: CLAC interaction with the network layer (using NetAPI)

Fig. 4.6 presents a flow diagram of the interactions within the CLAC mechanism when a

packet is forwarded at the network layer. The NetAPI maps the packet into an internal data

structure and then the ACManager checks if the packet has been generated in the current node

or if the destination address is a multicast address. If true, the Decision field is set to one

88 Distributed Admission Control

and later, NetAPI will map the data structure back into the packet to be forwarded. If not,

the ACManager updates the MaxEED by subtracting the FwdL2L3D value. The ACManager

then requests an EstEED to EstIF and checks if the returned value is smaller than the current

MaxEED. If true, the MaxEED value is updated again by subtracting the values L3L2D,

QueueD and TransD. The ACManager sets Decision field to one and NetAPI will map the data

structure to the packet in order to be forwarded towards destination. If false, the ACManager

sets the Decision field to 0 in order NetAPI to drop the packet. Right after the decision taken

by the ACManager, the RPLIF is ordered to send an RPL DIO message to feedback delay

information to the previous nodes (forwarders or generators), forcing them to update their

delay estimation. Ideally, nodes would not have to discard any packets at the NetAPI, as they

should all be discarded at the generation (the AppAPI).

4.2 Validation Environment

CLAC mechanism proposal was tested in the grid topology WSN shown in Fig. 1.3

with the simulation parameters presented in Table 4.1. The simulated scenario consists of

16 source/forwarder nodes placed within a distance of 25 m from each other plus a destination

node, deployed in a WSN area of 100 m2. Each node was simulated as a Tmote Sky [88], with

a transmission range of 30 m and an interference range of 60 m, using the UDGM as physical

channel model. The nodes ran the Contiki OS 2.5 [96] and were programmed to enable the

debug of application and RPL messages. Extra code was inserted to implement the EEDEM

estimation and CLAC mechanisms. The application layer uses UDP as transport layer and

it generates packets of 100 Bytes in a CBR by using constant IGIs. The simulations were

configured to stop when every source has sent 100 packets and were repeated 10 times using

different seeds.

The accuracy of the EED estimation was assessed and CLAC was evaluated regarding a set

of network performance items and energy savings.

In order to assess the EED estimation accuracy, the ÊED for each packet was collected

and later compared with the EED of that packet. When the simulation ended, the estimation

accuracy was evaluated using the EEDError for a set of #RcvdPkts samples obtained using the

MAPE (according to Eq. 2.19) and using SMAPE (according to Eq. 2.20). The average for

EEDError(MAPE) and EEDError(SMAPE) were obtained, as well as their respective confidence

intervals of 90%.

4.2 Validation Environment 89

Table 4.1: Simulation Parameters

Parameter Value
Number of nodes 16 + sink node
Deployment area 100 m x 100 m

Transmission range 30 m
Interference range 60 m

Channel Unit Disk Graph Medium
Packet size 100 Bytes

of sent packets per node 100 packets
Total # of sent packets (#SentPkts) 1600 packets

Transport/Application UDP/CBR

CLAC’s network performance was evaluated regarding the following items: average EED

delay, PRR, in-profile versus out-of-profile packets, and PUR.

The Average EED was obtained using the EED for each packet and, at the end of the

simulation, using the following equation:

Average EED (ms) =
1

#RcvdPkts

#RcvdPkts

∑
p=1

EEDp (4.5)

The PRR was obtained using the following equation:

PRR (%) =
#RcvdPkts
#SentPkts

(×100) (4.6)

It was defined In-profile Packet Ratio (IPR) and Out-of-profile Packet Ratio (OPR), respec-

tively obtained using number of in-profile packets and out-of-profile packets, per #SentPkts

(constant in all cases), according to Eq. 4.7 and Eq. 4.8.

In-profile Packet Ratio (IPR) (%) =
Number of in-profile packets

#SentPkts
(×100) (4.7)

Out-of-profile Packet Ratio (OPR) (%) =
Number of out-of-profile packets

#SentPkts
(×100) (4.8)

The PUR was obtained using the following equation.

Packet Usefulness Ratio (PUR) (%) =
Number of in-profile packets

#RcvdPkts
(×100) (4.9)

90 Distributed Admission Control

The average values of EED, PRR, IPR, OPR, and PUR, were obtained for each round of

simulations.

CLAC was evaluated also for energy savings. The energy consumed by a device in Joules

was obtained using the following equation:

Energy (Joules) = Power (Watts)× time (s) (4.10)

Since a Tmote Sky device was used, three different power constants were defined using the

values shown in Table 4.2 (obtained from the TMote Sky datasheet [88]).

Table 4.2: Defined Power Constants

Operating
Conditions

Voltage
(V)

Current
Nom. (mA)

Power Constant
Name Value (mW)

MCU on
Radio RX

3 21.8 PowerRx 65.4

MCU on
Radio TX

3 19.5 PowerT x 58.5

MCU on
Radio off

3 0.18 PowerMCUon 0.54

The Powertracker plugin for Cooja was used to collect the time in milliseconds that each

node n was in the monitored state (Timen
Monitored), the time it was in the on state (Timen

On), and

the time it was either transmitting (Timen
T x), receiving (Timen

Rx) or interfered (Timen
Int). Using

these times and the power constants defined in Table 4.2, three types of energy components

were calculated per each node n: the reception component (Energyn
Rx), the transmission

component (Energyn
T x), and the MCU on component (Energyn

MCUon), respectively obtained

using Eqs. 4.11, 4.12, and 4.13.

Energyn
Rx = PowerRx× (Timen

Rx +Timen
Int) (4.11)

Energyn
T x = PowerT x×Timen

T x (4.12)

Energyn
MCUon = PowerMCUon× (Timen

Monitored−Timen
On) (4.13)

The total energy spent for the Number of Nodes (#Nodes) used per simulation was

4.3 Results 91

calculated as follows:

Total Energy (Joules) =
#Nodes

∑
n=1

(Energyn
Rx +Energyn

T x +Energyn
MCUon) (4.14)

In order to test the CLAC performance for different network loads, three types of appli-

cations were defined with different MaxEED. The application 1 (app1) was defined with a

MaxEED of 500 ms, the application 2 (app2) with a MaxEED of 1000 ms and the application

3 (app3) with a MaxEED of 2000 ms. Each of these applications was tested separately.

4.3 Results

Fig. 4.7 presents the EEDError(MAPE) for applications app1, app2, and app3. The results

show that, for high network loads (lower IGIs), the EEDError(MAPE) when using app1 with

CLAC off is higher than that obtained with CLAC on (between 1000% and 1700%). With

CLAC on, the EEDError(MAPE) is reduced to values below 100%.

Fig. 4.8 shows the average EED with CLAC on and with CLAC off for all applications

(app1, app2, and app3), as well as their standard deviations. The left side graphics show the

results obtained for IGIs up to 15 s and, the right side ones, show the same results but only

up to 5 s. These results show that, for IGIs below 5 s the average EED is lower with CLAC

on. For IGIs up to 4 s, the average EED reaches approximately 23000 ms with CLAC off. The

results show that, for IGIs higher than 2 s the average EED with CLAC on is lower than the

MaxEED defined by each application. For IGIs below 2 s with CLAC on, the average values

are above the MaxEED defined by each application, but still lower than the ones obtained with

CLAC off.

Fig. 4.9 presents the average PRR for applications app1, app2, and app3 and for IGIs up

to 15 s. The results show that the average PRR with CLAC on is always smaller than the one

obtained with CLAC off. The difference of results between CLAC on and CLAC off is larger

for app1, shorter for app2 and app3, and it is more pronounced when the network load is high

(lower IGI values).

92 Distributed Admission Control

 0
 250
 500
 750

 1000
 1250
 1500
 1750
 2000
 2250
 2500
 2750
 3000
 3250
 3500

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A
ve

ra
ge

 E
E

D
E

rr
or

(M
A

PE
) (

%
)

Inter-packet Generation Interval (s)

Average EEDError(MAPE) - app1 (MaxEED=500 ms)

CLAC off
CLAC on

 0
 250
 500
 750

 1000
 1250
 1500
 1750
 2000
 2250
 2500
 2750
 3000
 3250
 3500

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A
ve

ra
ge

 E
E

D
E

rr
or

(M
A

PE
) (

%
)

Inter-packet Generation Interval (s)

Average EEDError(MAPE) - app2 (MaxEED=1000 ms)

CLAC off
CLAC on

 0
 250
 500
 750

 1000
 1250
 1500
 1750
 2000
 2250
 2500
 2750
 3000
 3250
 3500

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A
ve

ra
ge

 E
E

D
E

rr
or

(M
A

PE
) (

%
)

Inter-packet Generation Interval (s)

Average EEDError(MAPE) - app3 (MaxEED=2000 ms)

CLAC off
CLAC on

 0
 25
 50
 75

 100
 125
 150
 175
 200
 225
 250

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

 0
 25
 50
 75

 100
 125
 150
 175
 200
 225
 250

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

 0
 25
 50
 75

 100
 125
 150
 175
 200
 225
 250

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Figure 4.7: Average EEDError(MAPE) (CLAC)

4.3 Results 93

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000
 16000
 18000
 20000
 22000
 24000

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A
ve

ra
ge

 E
E

D
 (m

s)

Inter-packet Generation Interval (s)

a) Average EED - app1 (MaxEED=500 ms)

CLAC off
CLAC on

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000
 16000
 18000
 20000
 22000
 24000

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A
ve

ra
ge

 E
E

D
 (m

s)

Inter-packet Generation Interval (s)

b) Average EED - app2 (MaxEED=1000 ms)

CLAC off
CLAC on

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000
 16000
 18000
 20000
 22000
 24000

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A
ve

ra
ge

 E
E

D
 (m

s)

Inter-packet Generation Interval (s)

c) Average EED - app3 (MaxEED=2000 ms)

CLAC off
CLAC on

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Figure 4.8: Average End-to-End Delay (CLAC)

94 Distributed Admission Control

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A
ve

ra
ge

 P
R

R
 (%

)

Inter-packet Generation Interval (s)

a) Average PRR - app1 (MaxEED=500 ms)

CLAC off
CLAC on

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A
ve

ra
ge

 P
R

R
 (%

)

Inter-packet Generation Interval (s)

b) Average PRR - app2 (MaxEED=1000 ms)

CLAC off
CLAC on

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A
ve

ra
ge

 P
R

R
 (%

)

Inter-packet Generation Interval (s)

b) Average PRR - app3 (MaxEED=2000 ms)

CLAC off
CLAC on

Figure 4.9: Average Packet Reception Ratio (CLAC)

4.3 Results 95

Fig. 4.10 presents the IPR (left) and OPR (right) with CLAC on and off, for the three

applications, obtained for IGIs up to 15 s. The results show that for all applications, the IPR

with CLAC on is higher than the IPR with CLAC off, except in the case IGI equals to 15 s

where, nonetheless, using app2 and app3 their standard deviation intervals overlap. For IGIs

up to 5 s, for all applications the difference between CLAC on and CLAC off is about 10 pp.

Regarding OPR, for all applications, the results show lower values with CLAC on than those

obtained with CLAC off. For IGIs up to 5 s, the OPR with CLAC off increases up to 40% while

with CLAC off the OPR values are below 10%. In the worst case, for IGIs of 4 s and using

app1 and app2, the OPR with CLAC off is 45% while with CLAC on is less than 5%. For all

IGIs and applications, with CLAC on, the IPR is always higher than the OPR. This is not true

with CLAC off ; using app1 the OPR never overpasses IPR, using app2 the IPR overpasses the

OPR for the IGI of 10 s, and using app3 the same is verified for IGI of 7.5 s.

Fig. 4.11 presents the PUR using applications app1, app2, and app3, for IGIs ranging from

1 to 15 s. The results show that the PUR is higher with CLAC on for both high and low network

loads, with values ranging approximately from 75% to 90%, whenever the IGI is above 1 s. The

difference of the PUR between when CLAC is on and off is higher for high network loads and,

in case of low network loads it depends on the application (in app1 the difference is about

35 pp, for app2 is about 15 pp, and for app3 the difference is residual). These results show

that network performance is improved when CLAC is turned on, mainly in low network loads

where the scenario with CLAC off presents lower network performance.

Fig. 4.12 presents the total energy consumed per simulation, where the number of sent

packet is constant for all simulations, using the three applications with IGIs up to 15 s. The

results show that the energy spent with CLAC on is lower than the energy spent with CLAC off.

The difference is higher in app1 when compared to app2 and app3. A greater impact on the

spent energy is obtained for lower MaxEED values. A combined analysis of the results shown

in Figs. 4.10, 4.11 and 4.12 leads to the conclusion that, when CLAC is on, a higher number

of in-profile packets and less number of out-of-profile packets are measured and this is done

while using less energy than when CLAC is off.

96 Distributed Admission Control

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A
ve

ra
ge

 IP
R

 (%
)

Inter-packet Generation Interval (s)

a) Average IPR (left) and Average OPR (right) - app1 (MaxEED=500 ms)

CLAC off
CLAC on

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A
ve

ra
ge

 IP
R

 (%
)

Inter-packet Generation Interval (s)

b) Average IPR (left) and Average OPR (right) - app2 (MaxEED=1000 ms)

CLAC off
CLAC on

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A
ve

ra
ge

 IP
R

 (%
)

Inter-packet Generation Interval (s)

b) Average IPR (left) and Average OPR (right) - app3 (MaxEED=2000 ms)

CLAC off
CLAC on

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 0
 10
 20
 30
 40
 50
 60
 70
 80
 90
 100

A
ve

ra
ge

 O
PR

 (%
)

CLAC off
CLAC on

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 0
 10
 20
 30
 40
 50
 60
 70
 80
 90
 100

A
ve

ra
ge

 O
PR

 (%
)

CLAC off
CLAC on

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 0
 10
 20
 30
 40
 50
 60
 70
 80
 90
 100

A
ve

ra
ge

 O
PR

 (%
)

CLAC off
CLAC on

Figure 4.10: Average In-profile Packet Ratio and Average Out-of-profile Packet Ratio (CLAC)

4.3 Results 97

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A
ve

ra
ge

 P
U

R
 (%

)

Inter-packet Generation Interval (s)

a) Average PUR - app1 (MaxEED=500 ms)

CLAC off
CLAC on

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A
ve

ra
ge

 P
U

R
 (%

)

Inter-packet Generation Interval (s)

a) Average PUR - app1 (MaxEED=1000 ms)

CLAC off
CLAC on

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A
ve

ra
ge

 P
U

R
 (%

)

Inter-packet Generation Interval (s)

b) Average PUR - app3 (MaxEED=2000 ms)

CLAC off
CLAC on

Figure 4.11: Average Packet Usefulness Ratio (CLAC)

98 Distributed Admission Control

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T
ot

al
 E

ne
rg

y
(J

)

Inter-packet Generation Interval (s)

a) Total Energy - app1 (MaxEED=500 ms)

CLAC off
CLAC on

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T
ot

al
 E

ne
rg

y
(J

)

Inter-packet Generation Interval (s)

b) Total Energy - app2 (MaxEED=1000 ms)

CLAC off
CLAC on

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T
ot

al
 E

ne
rg

y
(J

)

Inter-packet Generation Interval (s)

c) Total Energy - app3 (MaxEED=2000 ms)

CLAC off
CLAC on

Figure 4.12: Total Energy consumed (CLAC)

4.4 Summary 99

Fig. 4.13 shows the energy consumed by each node, for the three applications and for IGIs

up to 15 s. Node 1 (central point of the graphic) consumes the most energy due to being the

destination node, constantly receiving data packets from the others nodes and sending routing

packets in reverse direction at a high rate. Not considering node 1, the nodes that use more

energy are those closer to the destination (node 7, 8, 11, and 12) and can be identified by their

position in the grid topology shown in Fig. 1.3. The results also show that the energy savings

for all nodes are greater with CLAC on, when comparing with the ones obtained with CLAC

off.

The Fig. 4.14 presents the number of in-profile packets in each node mapped on the grid

topology, for the three applications and for an IGI of 5 s. The results show that with CLAC

on the number of in-profile packets is higher than those obtained with CLAC off. This effect

is mainly verified on the nodes closer to the destination (central point) as their packets have a

lower EED and can meet the imposed deadline. With CLAC off and if the application demands

a lower MaxEED, almost no in-profile packets are obtained. A combined analysis of Figs. 4.13

and 4.14 leads to the conclusion that CLAC improves performance in low network loads and,

at the same time, enables energy savings.

4.4 Summary

This chapter presented the CLAC mechanism that was designed to enhance network

performance and to increase the energy efficiency of a WSN, in a grid topology, by avoiding

the transmission of potentially useless packets. The CLAC mechanism uses the EEDEM to

preview packets EED and performs a decision to accept or drop each packet if it is expected to

comply or miss the EED deadline previously defined by the application. The CLAC mechanism

was tested using different network loads and the results show that the CLAC enhances the

overall network performance by decreasing the number of useless packets and, consequently,

increasing the number of useful packets. As a side effect, the CLAC mechanism also improves

the WSN energy efficiency, particularly in high network loads.

100 Distributed Admission Control

 0
 2
 4
 6
 8

 10
 12
 14

E
ne

rg
y

(J
)

a) Energy consumed mapped in each node - app1 (MaxEED=500 ms IGI=5 s)

 Node #

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

CLAC off

E
ne

rg
y

(J
)

 0
 2
 4
 6
 8
 10
 12
 14

 0
 2
 4
 6
 8

 10
 12
 14

E
ne

rg
y

(J
)

 Node #

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

CLAC on

E
ne

rg
y

(J
)

 0
 2
 4
 6
 8
 10
 12
 14

 0
 2
 4
 6
 8

 10
 12
 14

E
ne

rg
y

(J
)

b) Energy consumed mapped in each node - app2 (MaxEED=1000 ms IGI=5 s)

 Node #

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

CLAC off

E
ne

rg
y

(J
)

 0
 2
 4
 6
 8
 10
 12
 14

 0
 2
 4
 6
 8

 10
 12
 14

E
ne

rg
y

(J
)

 Node #

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

CLAC on

E
ne

rg
y

(J
)

 0
 2
 4
 6
 8
 10
 12
 14

 0
 2
 4
 6
 8

 10
 12
 14

E
ne

rg
y

(J
)

c) Energy consumed mapped in each node - app3 (MaxEED=2000 ms IGI=5 s)

 Node #

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

CLAC off

E
ne

rg
y

(J
)

 0
 2
 4
 6
 8
 10
 12
 14

 0
 2
 4
 6
 8

 10
 12
 14

E
ne

rg
y

(J
)

 Node #

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

CLAC on

E
ne

rg
y

(J
)

 0
 2
 4
 6
 8
 10
 12
 14

Figure 4.13: Energy consumed mapped in each node (CLAC)

4.4 Summary 101

 0
 10
 20
 30
 40
 50
 60

of

 in
-p

ro
fi

le
 p

ac
ke

ts

a) Number of in-profile packets mapped in each node - app1 (MaxEED=500 ms IGI=5 s)

 Node #

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

CLAC off

of

 in
-p

ro
fi

le
 p

ac
ke

ts

 0
 10
 20
 30
 40
 50
 60

 0
 10
 20
 30
 40
 50
 60

of

 in
-p

ro
fi

le
 p

ac
ke

ts

 Node #

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

CLAC on

of

 in
-p

ro
fi

le
 p

ac
ke

ts

 0
 10
 20
 30
 40
 50
 60

 0
 10
 20
 30
 40
 50
 60

of

 in
-p

ro
fi

le
 p

ac
ke

ts

b) Number of in-profile packets mapped in each node - app2 (MaxEED=1000 ms IGI=5 s)

 Node #

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

CLAC off

of

 in
-p

ro
fi

le
 p

ac
ke

ts

 0
 10
 20
 30
 40
 50
 60

 0
 10
 20
 30
 40
 50
 60

of

 in
-p

ro
fi

le
 p

ac
ke

ts

 Node #

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

CLAC on

of

 in
-p

ro
fi

le
 p

ac
ke

ts

 0
 10
 20
 30
 40
 50
 60

 0
 10
 20
 30
 40
 50
 60

of

 in
-p

ro
fi

le
 p

ac
ke

ts

c) Number of in-profile packets mapped in each node - app3 (MaxEED=2000 ms IGI=5 s)

 Node #

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

CLAC off

of

 in
-p

ro
fi

le
 p

ac
ke

ts

 0
 10
 20
 30
 40
 50
 60

 0
 10
 20
 30
 40
 50
 60

of

 in
-p

ro
fi

le
 p

ac
ke

ts

 Node #

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

CLAC on

of

 in
-p

ro
fi

le
 p

ac
ke

ts

 0
 10
 20
 30
 40
 50
 60

Figure 4.14: Number of in-profile packets mapped in each node (CLAC)

Chapter 5

Conclusion

The main goal of this thesis was to enhance the WSN support for real-time traffic by

exploring the hypothesis that potential useless data packets should not be transmitted by the

source node. This thesis considers the scenario of a solar smart grid, where each solar panel

is equipped with a WSN node that generates real-time streams towards a sink. The real-time

traffic generated by the WSN nodes demands a service characterized by parameters such as

delay, packet loss, and throughput. In particular, the work focused on guaranteeing a maximum

EED at the application layer for packets transported by the WSN. A packet is considered useful

if delivered to the application layer of the destination node within the expected maximum EED.

5.1 Work Review

Chapter 2 summarized the state of the art on delay measurement and estimation. It starts by

characterizing delays in IP networks and surveys the methods available for measuring delays

in different network points. Chapter 2 continues, presenting the state of the art regarding AC

mechanisms where special focus was given to distributed AC mechanisms. Then, the operation

and constraints of sensor nodes regarding hardware, operative systems, and communications

stacks were described.

Existing solutions for EED measurement and estimation do not provide real-time, per-

packet delay estimation, with measurement information in the source node and using low

overhead. The EEDEM, described in Chapter 3, was proposed to provide an accurate per-

packet end-to-end delay estimation and, at the same time, to avoid negative impact on the

network performance namely regarding average packet EED and PRR. To provide an EED

estimate, EEDEM combines the delays suffered by previous packets with internal timers

103

104 Conclusion

and RPL. As internals delays EEDEM accounts not only for transmission delays, but also

considers processing delays which revealed to be important in WSNs where nodes have

limited processing resources. Results showed that it produces an accurate EED estimation

without having a significant impact on network performance in terms of EED and PRR values.

In addiction, two improvements regarding EEDEM were implemented. EEDEM is highly

dependent on the operation of the RPL and, in order to improve its estimation accuracy, RA-

EEDEM was proposed. RA-EEDEM consists of a set of modifications to RPL aimed to

improve the accuracy of EEDEM. When compared to EEDEM, RA-EEDEM improves the

EED estimation, presents a better average PRR, and a smaller average EED for high network

loads. Finally, DAOP was also proposed to improve EEDEM accuracy regarding different

network loads. DAOP dynamically infers network load by monitoring node’s MAC queue

size and it applies the best smoothing factor to the estimation function. The results obtained

showed that DAOP provides a more accurate EED estimation for different network loads than

those obtained by EEDEM.

Chapter 4 proposed the CLAC mechanism that is a distributed per-packet admission control

mechanism that inter operates with the EEDEM. CLAC decides if a packet should progress or

be dropped, and intercepts packets, in a cross-layer mode, at either application’s or network’s

layer; it uses an RPL interface to automatically adjust the accuracy of each node’s decision.

Results showed that CLAC enhances the overall network performance by discarding the useless

packets and that it increases the number of useful packets. As a side effect, it also improves the

overall WSN energy efficiency, particularly in high network loads.

5.2 Contributions Summary

This thesis provides two major original contributions:

• A novel mechanism to estimate EED based on the RPL routing protocol: a novel

EED estimation mechanism was proposed in order to preview the EED of a packet from

source to destination, at the application layer. Other delay estimation mechanisms are

proposed in literature but some of them do not provide a real-time and per-packet delay

estimation, while others introduce additional traffic in the WSN to provide estimations.

The proposed EED estimation mechanism provides a real-time and per packet EED

estimation using RPL packets to feedback the EED delay to the source nodes of the

previously sent packets, thus avoiding extra traffic in the WSN. To enhance EED estima-

tion accuracy this proposal accounts not only with transmission delays but also with the

5.3 Future Work 105

in-node processing delays which are relevant in limited processing sensor nodes. This

contribution has been published in [2]. Furthermore, the accuracy of the EED estimation

mechanism was improved by applying a set of modifications to RPL. This improvement

proposal was published in [3]. Also, in the context of the EED estimation mechanism

and in order to enhance EED estimation when using multiple network loads, a delay

accounting optimization procedure was also proposed, and published in [4].

• A novel cross-layer admission control mechanism based on the EED estimation: in

order to decide the transmission of the packets according to their usefulness to the desti-

nation application, a novel cross-layer packet AC mechanism, named CLAC is proposed.

CLAC is a distributed mechanism to be deployed in WSN nodes, which is responsible

for decision of sending or dropping a packet according to the requirements defined by

the application. Other admission control mechanisms are proposed in literature but the

novelty of the proposed mechanism is that it operates in a cross-layer operation, namely

in application and network layers, and it implements interfaces with the EED estimation

mechanism and RPL routing protocol. CLAC proposal was submitted and accepted for

publication in [5].

5.3 Future Work

Future work related to this work may include the following topics:

• Multiple real-time applications: EEDEM and CLAC consider only one real-time

application running on the WSN at the same time. Both mechanisms can be extended

to support multiple real-time applications simultaneously. Per packet priorities can be

defined according to the remaining time each packet has before its associated deadline.

An additional distributed packet scheduling mechanism based on the packet priorities

defined can also be implemented and used to enhance the network support for these

applications.

• Data aggregation: Data aggregation is a common topic in WSNs as sensors tend to read

and transmit the same or similar information multiples times. Data aggregation can then

be applied to reduce redundant transmissions and save energy. Such transmissions may

occur in different time instants hindering the possibility of data aggregation. If a packet

can wait more time within a node for other packets, the aggregation ratio may increase.

Using the estimation mechanism here proposed, it can be estimated a maximum delay

106 Conclusion

that any packet can suffer in multiple network points and thus, the this proposal can be

extended to cooperate with a data aggregation mechanism in order to improve the data

aggregation. Further research efforts can be used to identify the best trade off between

minimizing processing delay and maximizing the aggregation ratio.

• Feedback information: RPL was used to feedback the delays estimated by EEDEM to

the source nodes. Other techniques may be used and should be evaluated as alternatives.

The use of ACK packets at the L2 using stop and wait ARQ procedure or at data plane

may be a viable alternative. Hybrid operation, combining multiple approaches may also

be studied.

• Low power IEEE 802.11: Wi-Fi networks are widely available and, in most cases,

already interconnected to the Internet. Although the Wi-Fi power consumption can be

an issue for WSN, the latest IEEE 802.11ah Low power Wi-Fi standard addresses this

issue. Therefore, this low-power Wi-Fi standard may be emerging as an alternate to

IEEE 802.15.4 regarding the IoT. The deployment of both EEDEM and CLAC in this

new standard arises as another interesting research topic.

References

[1] “SELF-PVP Project,” Accessed: 17-Jul-2015. [Online]. Available: http://www.
cmuportugal.org/tiercontent.aspx?id=3374

[2] Pedro Pinto, António Pinto and Manuel Ricardo, “End-to-end Delay Estimation using
RPL Metrics in WSN,” in Wireless Days (WD), 2013 IFIP, Nov. 2013, pp. 1–6.

[3] Pedro Pinto, António Pinto and Manuel Ricardo, “RPL Modifications to Improve the
End-to-end Delay Estimation in WSN,” in 2014 11th International Symposium on
Wireless Communications Systems (ISWCS), Aug. 2014, pp. 868–872.

[4] Pedro Pinto, António Pinto and Manuel Ricardo, “Delay Accounting Optimization
Procedure to Enhance End-to-End Delay Estimation in WSNs,” in 8th International
Wireless Internet Conference (WICON 2014) - Symposium on Wireless and Vehicular
Communication, Lisbon, 2014.

[5] Pedro Pinto, António Pinto and Manuel Ricardo, “Cross-Layer Admission Control to
Enhance the Support of Real-Time Applications in WSN,” Sensors Journal, IEEE,
vol. 15, no. 12, pp. 6945–6953, Dec. 2015.

[6] Jean-Chrysostome Bolot, “Characterizing end-to-end packet delay and loss in the
internet,” Journal of High Speed Networks, vol. 2, pp. 305–323, 1993.

[7] C. J. Bovy, H. T. Mertodimedjo, G. Hooghiemstra, H. Uijterwaal, and P. Van Mieghem,
“Analysis of End-to-End Delay Measurements in Internet,” in ACM Conference on
Passive and Active Measurements (PAM), fort Collins, Colorado, USA, 2002.

[8] A. Mohammad, X. Hong, M. Islam, and K. Zunnurhain, “Delay analysis of Wireless
Ad Hoc networks: Single vs. multiple radio,” in 2010 IEEE 35th Conference on Local
Computer Networks (LCN), Oct. 2010, pp. 814–820.

[9] J. Li, Z. Li, and P. Mohapatra, “Adaptive Per Hop Differentiation for End-to-end Delay
Assurance in Multihop Wireless Networks,” Ad Hoc Netw., vol. 7, no. 6, pp. 1169–1182,
Aug. 2009. [Online]. Available: http://dx.doi.org/10.1016/j.adhoc.2008.10.005

[10] B. Staehle, D. Staehle, R. Pries, M. Hirth, P. Dely, and A. Kassler, “Measuring One-way
Delay in Wireless Mesh Networks: An Experimental Investigation,” in Proceedings of
the 4th ACM Workshop on Performance Monitoring and Measurement of Heterogeneous

107

http://www.cmuportugal.org/tiercontent.aspx?id=3374
http://www.cmuportugal.org/tiercontent.aspx?id=3374
http://dx.doi.org/10.1016/j.adhoc.2008.10.005

108 REFERENCES

Wireless and Wired Networks, ser. PM2HW2N ’09. New York, NY, USA: ACM,
2009, pp. 31–38. [Online]. Available: http://doi.acm.org/10.1145/1641913.1641918

[11] L. Kleinrock, Theory, Volume 1, Queueing Systems. Wiley-Interscience, 1975.

[12] P. Svoboda, M. Laner, J. Fabini, M. Rupp, and F. Ricciato, “Packet delay measurements
in reactive IP networks,” IEEE Instrumentation Measurement Magazine, vol. 15, no. 6,
pp. 36–44, Dec. 2012.

[13] V. Paxson, “On Calibrating Measurements of Packet Transit Times,” in Proceedings
of the 1998 ACM SIGMETRICS Joint International Conference on Measurement
and Modeling of Computer Systems, ser. SIGMETRICS ’98/PERFORMANCE
’98. New York, NY, USA: ACM, 1998, pp. 11–21. [Online]. Available:
http://doi.acm.org/10.1145/277851.277865

[14] S. Keshav, “Packet-Pair Flow Control,” IEEE/ACM Transactions on Networking, 1994.

[15] M. Coates and R. Nowak, “Network tomography for internal delay estimation,” in 2001
IEEE International Conference on Acoustics, Speech, and Signal Processing, 2001.
Proceedings. (ICASSP ’01), vol. 6, 2001, pp. 3409–3412 vol.6.

[16] Y. Tsang, M. Coates, and R. Nowak, “Network delay tomography,” IEEE Transactions
on Signal Processing, vol. 51, no. 8, pp. 2125–2136, Aug. 2003.

[17] Y. Sun, D. Li, and H. Sun, “Network Tomography and Improved Methods for
Delay Distribution Inference,” in The 9th International Conference on Advanced
Communication Technology, vol. 2, Feb. 2007, pp. 1433–1437.

[18] K. Nakanishi, S. Hara, T. Matsuda, K. Takizawa, F. Ono, and R. Miura,
“Synchronization-Free Delay Tomography Based on Compressed Sensing,” IEEE
Communications Letters, vol. 18, no. 8, pp. 1343–1346, Aug. 2014.

[19] Y. Gao, W. Dong, C. Chen, J. Bu, T. Chen, M. Xia, X. Liu, and X. Xu, “Domo:
Passive Per-Packet Delay Tomography in Wireless Ad-hoc Networks,” in 2014 IEEE
34th International Conference on Distributed Computing Systems (ICDCS), Jun. 2014,
pp. 419–428.

[20] O. Gurewitz, I. Cidon, and M. Sidi, “One-way delay estimation using network-wide
measurements,” IEEE Transactions on Information Theory, vol. 52, no. 6, pp. 2710–
2724, Jun. 2006.

[21] B. Latré, P. D. Mil, I. Moerman, B. Dhoedt, P. Demeester, and N. V. Dierdonck,
“Throughput and delay analysis of unslotted ieee 802.15.4.” JNW, vol. 1, no. 1, pp.
20–28, 2006. [Online]. Available: http://dblp.uni-trier.de/db/journals/jnw/jnw1.html#
LatreMMDDD06

[22] H. Li, Y. Cheng, C. Zhou, and W. Zhuang, “Minimizing End-to-End Delay: A Novel
Routing Metric for Multi-Radio Wireless Mesh Networks,” in IEEE INFOCOM 2009,
Apr. 2009, pp. 46 –54.

http://doi.acm.org/10.1145/1641913.1641918
http://doi.acm.org/10.1145/277851.277865
http://dblp.uni-trier.de/db/journals/jnw/jnw1.html#LatreMMDDD06
http://dblp.uni-trier.de/db/journals/jnw/jnw1.html#LatreMMDDD06

REFERENCES 109

[23] V. Ozdemir, S. Muthukrishnan, and I. Rhee, “Scalable, low-overhead network delay
estimation,” in IEEE INFOCOM 2000. Nineteenth Annual Joint Conference of the IEEE
Computer and Communications Societies. Proceedings, vol. 3, Mar. 2000, pp. 1343–
1350 vol.3.

[24] Rafael Camilo Lozoya Gámez, Pau Martí, Manel Velasco and Josep M. Fuertes,
“Wireless Network Delay Estimation for Time-Sensitive Applications,” Automatic
Control Department, Technical University of Catalonia, Research report ESAII RR-06-
12, Jul. 2006. [Online]. Available: http://esaii.upc.edu/people/pmarti/nde_06.pdf

[25] J.-H. Choi and C. Yoo, “One-way Delay Estimation and Its Application,”
Comput. Commun., vol. 28, no. 7, pp. 819–828, May 2005. [Online]. Available:
http://dx.doi.org/10.1016/j.comcom.2004.11.010

[26] V. Paxson, “End-to-end Routing Behavior in the Internet,” IEEE/ACM Trans.
Netw., vol. 5, no. 5, pp. 601–615, Oct. 1997. [Online]. Available: http:
//dx.doi.org/10.1109/90.649563

[27] M. Allman and V. Paxson, “On Estimating End-to-end Network Path Properties,”
in Proceedings of the Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communication, ser. SIGCOMM ’99. New York, NY, USA:
ACM, 1999, pp. 263–274. [Online]. Available: http://doi.acm.org/10.1145/316188.
316230

[28] V. Paxson, G. Almes, J. Mahdavi, and M. Mathis, “Framework for IP Performance
Metrics,” RFC 2330 (Informational), Internet Engineering Task Force, May 1998,
updated by RFC 7312. [Online]. Available: http://www.ietf.org/rfc/rfc2330.txt

[29] J. Mahdavi and V. Paxson, “IPPM Metrics for Measuring Connectivity,” RFC 2678
(Proposed Standard), Internet Engineering Task Force, Sep. 1999. [Online]. Available:
http://www.ietf.org/rfc/rfc2678.txt

[30] G. Almes, S. Kalidindi, and M. Zekauskas, “A One-way Packet Loss Metric for IPPM,”
RFC 2680 (Proposed Standard), Internet Engineering Task Force, Sep. 1999. [Online].
Available: http://www.ietf.org/rfc/rfc2680.txt

[31] G. Almes, S. Kalidindi, and M. Zekauskas, “A One-way Delay Metric for IPPM,”
RFC 2679 (Proposed Standard), Internet Engineering Task Force, Sep. 1999. [Online].
Available: http://www.ietf.org/rfc/rfc2679.txt

[32] G. Almes, S. Kalidindi, and M. Zekauskas, “A Round-trip Delay Metric for IPPM,”
RFC 2681 (Proposed Standard), Internet Engineering Task Force, Sep. 1999. [Online].
Available: http://www.ietf.org/rfc/rfc2681.txt

[33] C. Demichelis and P. Chimento, “IP Packet Delay Variation Metric for IP Performance
Metrics (IPPM),” RFC 3393 (Proposed Standard), Internet Engineering Task Force,
Nov. 2002. [Online]. Available: http://www.ietf.org/rfc/rfc3393.txt

http://esaii.upc.edu/people/pmarti/nde_06.pdf
http://dx.doi.org/10.1016/j.comcom.2004.11.010
http://dx.doi.org/10.1109/90.649563
http://dx.doi.org/10.1109/90.649563
http://doi.acm.org/10.1145/316188.316230
http://doi.acm.org/10.1145/316188.316230
http://www.ietf.org/rfc/rfc2330.txt
http://www.ietf.org/rfc/rfc2678.txt
http://www.ietf.org/rfc/rfc2680.txt
http://www.ietf.org/rfc/rfc2679.txt
http://www.ietf.org/rfc/rfc2681.txt
http://www.ietf.org/rfc/rfc3393.txt

110 REFERENCES

[34] V. Raisanen, G. Grotefeld, and A. Morton, “Network performance measurement with
periodic streams,” RFC 3432 (Proposed Standard), Internet Engineering Task Force,
Nov. 2002. [Online]. Available: http://www.ietf.org/rfc/rfc3432.txt

[35] S. Shalunov, B. Teitelbaum, A. Karp, J. Boote, and M. Zekauskas, “A One-way
Active Measurement Protocol (OWAMP),” RFC 4656 (Proposed Standard), Internet
Engineering Task Force, Sep. 2006. [Online]. Available: http://www.ietf.org/rfc/
rfc4656.txt

[36] “CAIDA - Center for Applied Internet Data Analysis,” Accessed: 17-Jul-2015.
[Online]. Available: http://www.caida.org

[37] K. Hedayat, R. Krzanowski, A. Morton, K. Yum, and J. Babiarz, “A Two-Way
Active Measurement Protocol (TWAMP),” RFC 5357 (Proposed Standard), Internet
Engineering Task Force, Oct. 2008, updated by RFCs 5618, 5938, 6038. [Online].
Available: http://www.ietf.org/rfc/rfc5357.txt

[38] A. Morton and S. V. den Berghe, “Framework for Metric Composition,” RFC 5835
(Informational), Internet Engineering Task Force, Apr. 2010. [Online]. Available:
http://www.ietf.org/rfc/rfc5835.txt

[39] J. Fabini and A. Morton, “Advanced Stream and Sampling Framework for IP
Performance Metrics (IPPM),” RFC 7312 (Informational), Internet Engineering Task
Force, Aug. 2014. [Online]. Available: http://www.ietf.org/rfc/rfc7312.txt

[40] H. W. Shin and S. Y. Sohn, “Application of an EWMA combining technique to the
prediction of currency exchange rates,” IIE Transactions, vol. 39, no. 6, pp. 639–644,
Mar. 2007. [Online]. Available: http://dx.doi.org/10.1080/07408170600899474

[41] D. Jing-rong, “Combining Stock Market Volatility Forecasts Using an EWMA
Technique,” in International Conference on Wireless Communications, Networking and
Mobile Computing, 2007. WiCom 2007, Sep. 2007, pp. 5277–5280.

[42] R. S. Tsay, “Outliers, level shifts, and variance changes in time series,”
Journal of Forecasting, vol. 7, no. 1, pp. 1–20, 1988. [Online]. Available:
http://dx.doi.org/10.1002/for.3980070102

[43] C. Yan-ming, X. Yong-jun, W. Qiu-guang, and X. Lei, “An Adaptive Fault-
tolerant Scheme for Wireless Sensor Networks,” in WRI International Conference on
Communications and Mobile Computing, 2009. CMC ’09, vol. 2, Jan. 2009, pp. 32–36.

[44] J. Shu, L. Liu, and R. Zhang, “An Energy-Effective Link Quality Monitoring Mechanism
for Event-driven Wireless Sensor Network,” in WRI International Conference on
Communications and Mobile Computing, 2009. CMC ’09, vol. 2, Jan. 2009, pp. 111–
115.

[45] J. Piorno, C. Bergonzini, D. Atienza, and T. Rosing, “Prediction and management in
energy harvested wireless sensor nodes,” in 1st International Conference on Wireless

http://www.ietf.org/rfc/rfc3432.txt
http://www.ietf.org/rfc/rfc4656.txt
http://www.ietf.org/rfc/rfc4656.txt
http://www.caida.org
http://www.ietf.org/rfc/rfc5357.txt
http://www.ietf.org/rfc/rfc5835.txt
http://www.ietf.org/rfc/rfc7312.txt
http://dx.doi.org/10.1080/07408170600899474
http://dx.doi.org/10.1002/for.3980070102

REFERENCES 111

Communication, Vehicular Technology, Information Theory and Aerospace Electronic
Systems Technology, 2009. Wireless VITAE 2009, May 2009, pp. 6–10.

[46] Z. Jiang, X. Jin, and Y. Zhang, “A Weather-Condition Prediction Algorithm for Solar-
Powered Wireless Sensor Nodes,” in 2010 6th International Conference on Wireless
Communications Networking and Mobile Computing (WiCOM), Sep. 2010, pp. 1–4.

[47] M. Xue, Z. Hai, and Z. Jian, “Research on EWMA based link quality evaluation
algorithm for WSN,” in Cross Strait Quad-Regional Radio Science and Wireless
Technology Conference (CSQRWC), 2011, vol. 1, Jul. 2011, pp. 757–759.

[48] A. Cammarano, C. Petrioli, and D. Spenza, “Pro-Energy: A novel energy prediction
model for solar and wind energy-harvesting wireless sensor networks,” in 2012 IEEE
9th International Conference on Mobile Adhoc and Sensor Systems (MASS), Oct. 2012,
pp. 75–83.

[49] H. Li, Y. Cheng, C. Zhou, and W. Zhuang, “Routing Metrics for Minimizing End-to-End
Delay in Multiradio Multichannel Wireless Networks,” IEEE Transactions on Parallel
and Distributed Systems, vol. 24, no. 11, pp. 2293–2303, Nov. 2013.

[50] L. Abhilash, D. Goenka, and C. Kumar, “Dynamic data aggregation for energy opti-
mization in multi-hop Wireless Sensor Networks,” in Advance Computing Conference
(IACC), 2014 IEEE International, Feb. 2014, pp. 143–148.

[51] R. Baumann, S. Heimlicher, M. Strasser, and A. Weibel, “A survey on routing metrics,”
TIK Report 262, ETH-Zentrum, 2007.

[52] R. Draves, J. Padhye, and B. Zill, “Routing in multi-radio, multi-hop wireless mesh
networks,” in In ACM MobiCom. ACM Press, 2004, pp. 114–128.

[53] R. Draves, J. Padhye, and B. Zill, “Comparison of Routing Metrics for Static
Multi-hop Wireless Networks,” in Proceedings of the 2004 Conference on Applications,
Technologies, Architectures, and Protocols for Computer Communications, ser.
SIGCOMM ’04. New York, NY, USA: ACM, 2004, pp. 133–144. [Online]. Available:
http://doi.acm.org/10.1145/1015467.1015483

[54] S. Biaz, B. Qi, and Y. Ji, “Improving Expected Transmission Time Metric in Multi-
Rate Multi-Hop Networks,” in Consumer Communications and Networking Conference,
2008. CCNC 2008. 5th IEEE, Jan. 2008, pp. 533 –537.

[55] D. Teng, S. Yang, D. Wang, and Y. Hu, “NQETT: Node Quality Adjusted ETT
for Wireless Mesh Networks,” in Wireless Communications, Networking and Mobile
Computing, 2008. WiCOM ’08. 4th International Conference on, Oct. 2008, pp. 1 –4.

[56] H. Zhou, C. Huang, Y. Cheng, and G. Wang, “A New Multi-metric QoS Routing
Protocol in Wireless Mesh Network,” in Networks Security, Wireless Communications
and Trusted Computing, 2009. NSWCTC ’09. International Conference on, vol. 1, Apr.
2009, pp. 459 –467.

http://doi.acm.org/10.1145/1015467.1015483

112 REFERENCES

[57] V. Raman and M. Caesar, “A Practical Approach for Providing QoS in Multichannel
Ad-Hoc Networks Using Spectrum Width Adaptation,” in Global Telecommunications
Conference, 2009. GLOBECOM 2009. IEEE, Dec. 2009, pp. 1 –6.

[58] R. J. Hyndman and A. B. Koehler, “Another look at measures of forecast accuracy,”
International Journal of Forecasting, vol. 22, no. 4, pp. 679–688, Oct. 2006. [Online].
Available: http://www.sciencedirect.com/science/article/pii/S0169207006000239

[59] M. V. Shcherbakov, A. Brebels, N. L. Shcherbakova, A. P. Tyukov, T. A. Janovsky, and
V. A. Kamaev, “A survey of forecast error measures,” World Applied Sciences Journal
- Information Technologies in Modern Industry, Education & Society, vol. 24, pp. 171–
176, 2013.

[60] R. Braden, D. Clark, and S. Shenker, “Integrated Services in the Internet Architecture:
an Overview,” RFC 1633 (Informational), Internet Engineering Task Force, Jun. 1994.
[Online]. Available: http://www.ietf.org/rfc/rfc1633.txt

[61] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss, “An
Architecture for Differentiated Services,” RFC 2475 (Informational), Internet
Engineering Task Force, Dec. 1998, updated by RFC 3260. [Online]. Available:
http://www.ietf.org/rfc/rfc2475.txt

[62] J. Babiarz, K. Chan, and F. Baker, “Configuration Guidelines for DiffServ Service
Classes,” RFC 4594 (Informational), Internet Engineering Task Force, Aug. 2006,
updated by RFC 5865. [Online]. Available: http://www.ietf.org/rfc/rfc4594.txt

[63] D. Gupta, D. Wu, C. Chen, C.-N. Chuah, P. Mohapatra, and S. Rungta, “Experimental
Study of Measurement-based Admission Control for Wireless Mesh Networks,” in IEEE
International Conference on Mobile Adhoc and Sensor Systems, 2007. MASS 2007, Oct.
2007, pp. 1–9.

[64] L. Fàbrega and T. Jové, “A review of the architecture of admission control schemes in
the internet,” Network Protocols and Algorithms, vol. 5, no. 3, pp. 1–32, 2013.

[65] D. Mitzel, D. Estrin, S. Shenker, and L. Zhang, “A study of reservation dynamics in
integrated services packet networks,” in Proceedings IEEE INFOCOM ’96. Fifteenth
Annual Joint Conference of the IEEE Computer Societies. Networking the Next
Generation, vol. 2, Mar. 1996, pp. 871–879 vol.2.

[66] M. Fidler and V. Sander, “A parameter based admission control for differentiated
services networks,” Computer Networks, vol. 44, pp. 463–479, 2004.

[67] M. Mushtaq and T. Ahmed, “End-to-End QoS Provisioning for Real-Time Video
Streaming over SP-Driven P2p Networks Using Admission Control,” in IEEE
International Conference on Communications, 2009. ICC ’09, Jun. 2009, pp. 1–5.

[68] S. Georgoulas, P. Trimintzios, G. Pavlou, and K. Ho, “Heterogeneous real-time traffic
admission control in differentiated services domains,” in IEEE Global Telecommunica-
tions Conference, 2005. GLOBECOM ’05, vol. 1, Nov. 2005, pp. 6 pp.–.

http://www.sciencedirect.com/science/article/pii/S0169207006000239
http://www.ietf.org/rfc/rfc1633.txt
http://www.ietf.org/rfc/rfc2475.txt
http://www.ietf.org/rfc/rfc4594.txt

REFERENCES 113

[69] I. Orhan and T. Lindh, “Measurement-Based Admission Control in Wireless Sensor
Networks,” in Sensor Technologies and Applications (SENSORCOMM), 2010 Fourth
International Conference on, Jul. 2010, pp. 447 –452.

[70] O. Brewer and A. Ayyagari, “Comparison and analysis of measurement and parameter
based admission control methods for Quality of Service (QoS) provisioning,” in Military
Communications Conference, 2010 - MILCOM 2010, Oct. 2010, pp. 184–188.

[71] W. Jiao, M. Sheng, K.-S. Lui, and Y. Shi, “End-to-End Delay Distribution Analysis for
Stochastic Admission Control in Multi-hop Wireless Networks,” IEEE Transactions on
Wireless Communications, vol. 13, no. 3, pp. 1308–1320, Mar. 2014.

[72] S. Y. Yerima, “Implementation and evaluation of measurement-based admission control
schemes within a converged networks qos management framework,” International
Journal of Computer Networks and Communications, IJCNC, vol. 3, No.4, 2011.
[Online]. Available: http://http://airccse.org/journal/cnc/0711cnc10.pdf

[73] A. Davy, D. Botvich, and B. Jennings, “Empirical Effective Bandwidth Estimation
for IPTV Admission Control,” in Real-Time Mobile Multimedia Services, ser.
Lecture Notes in Computer Science, D. Krishnaswamy, T. Pfeifer, and D. Raz,
Eds. Springer Berlin Heidelberg, 2007, no. 4787, pp. 125–137. [Online]. Available:
http://link.springer.com/chapter/10.1007/978-3-540-75869-3_11

[74] X. Yin, X. Zhou, M. Pan, and S. Li, “Admission control with multi-constrained QoS
providing in Wireless Sensor Networks,” in Networking, Sensing and Control (ICNSC),
2010 International Conference on, Apr. 2010, pp. 524 –529.

[75] E. D. Jensen, C. D. Locke, and H. Tokuda, “A Time-Driven Scheduling Model for Real-
Time Operating Systems,” RTSS, vol. 85, pp. 112–122, 1985.

[76] D. Wu, “Providing quality-of-service guarantees in wireless networks,” Ph.D. disserta-
tion, Carnegie Mellon University, 2003.

[77] R. Yu, H. Shu, and W. Jiang, “Low-Complexity Packet Scheduling Algorithms for
Streaming Scalable Media Based on Time Utility Function,” IEEE Transactions on
Multimedia, vol. 16, no. 8, pp. 2270–2280, Dec. 2014.

[78] L. Breslau, S. Jamin, and S. Shenker, “Comments on the performance of measurement-
based admission control algorithms,” in IEEE INFOCOM 2000. Nineteenth Annual Joint
Conference of the IEEE Computer and Communications Societies. Proceedings, vol. 3,
Mar. 2000, pp. 1233–1242 vol.3.

[79] L. Macpherson, “Overload protection for commodity network appliances,” in Advances
in Computer Systems Architecture, ser. Lecture Notes in Computer Science, C. Jesshope
and C. Egan, Eds. Springer Berlin Heidelberg, 2006, vol. 4186, pp. 203–218. [Online].
Available: http://dx.doi.org/10.1007/11859802_17

[80] I. Stoica and H. Zhang, “Lira: An approach for service differentiation in the internet,” in
In Proc. of NOSSDAV’98, 1998, pp. 115–128.

http://http://airccse.org/journal/cnc/0711cnc10.pdf
http://link.springer.com/chapter/10.1007/978-3-540-75869-3_11
http://dx.doi.org/10.1007/11859802_17

114 REFERENCES

[81] “SeedEye,” Accessed: 17-Jul-2015. [Online]. Available: http://www.evidence.eu.com/
products/seed-eye.html

[82] “WiSMote,” Accessed: 17-Jul-2015. [Online]. Available: http://wismote.org

[83] “Z1 mote,” Accessed: 17-Jul-2015. [Online]. Available: http://zolertia.com/products/z1

[84] “MICAz,” Accessed: 17-Jul-2015. [Online]. Available: http://www.openautomation.
net/uploadsproductos/micaz_datasheet.pdf

[85] “Telos Rev A Datasheet,” Accessed: 17-Jul-2015. [Online]. Available: https:
//sites.google.com/site/pedrofcpinto/Home/links/Telos-RevA-Datasheet.pdf

[86] “Telos Rev B Datasheet,” Accessed: 17-Jul-2015. [Online]. Available: https:
//sites.google.com/site/pedrofcpinto/Home/links/Telos-RevB-Datasheet.pdf

[87] “Tmote Sky Project,” Accessed: 17-Jul-2015. [Online]. Available: http://www.snm.
ethz.ch/Projects/TmoteSky

[88] “Tmote Sky Datasheet,” Accessed: 17-Jul-2015. [Online]. Available: https:
//sites.google.com/site/pedrofcpinto/Home/links/Tmote-Sky-Datasheet.pdf

[89] “MoteIV Application Note 001 - Telos Rev.A, Telos Rev.B and Tmote Sky differences,”
Accessed: 17-Jul-2015. [Online]. Available: https://sites.google.com/site/pedrofcpinto/
Home/files/moteiv-an-001.pdf

[90] “MSP430F15x, MSP430F16x and MSP430F161x Microcontroller Datasheet,”
Accessed: 17-Jul-2015. [Online]. Available: http://www.ti.com/lit/gpn/msp430f1611

[91] M. Kuorilehto, M. Kohvakka, J. Suhonen, P. Hämäläinen, M. Hännikäinen, and
T. D. Hämäläinen, Ultra-Low Energy Wireless Sensor Networks in Practice: Theory,
Realization and Deployment. Wiley Publishing, 2008.

[92] “Raspberry Pi Foundation Web site,” Accessed: 17-Jul-2015. [Online]. Available:
https://www.raspberrypi.org/

[93] “Benchmarking the Raspberry PI 2,” Accessed: 17-Jul-2015. [Online]. Available:
http://hackaday.com/2015/02/05/benchmarking-the-raspberry-pi-2/

[94] “CC2420 RF Transceiver Datasheet,” Accessed: 17-Jul-2015. [Online]. Available:
http://www.ti.com/lit/gpn/cc2420

[95] “TinyOS,” Accessed: 17-Jul-2015. [Online]. Available: http://www.tinyos.net/

[96] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki - a lightweight and flexible operating
system for tiny networked sensors,” in 29th Annual IEEE International Conference on
Local Computer Networks, 2004. IEEE, 2004, pp. 455–462.

[97] “Contiki OS Webpage,” Accessed: 17-Jul-2015. [Online]. Available: http:
//www.contiki-os.org/

http://www.evidence.eu.com/products/seed-eye.html
http://www.evidence.eu.com/products/seed-eye.html
http://wismote.org
http://zolertia.com/products/z1
http://www.openautomation.net/uploadsproductos/micaz_datasheet.pdf
http://www.openautomation.net/uploadsproductos/micaz_datasheet.pdf
https://sites.google.com/site/pedrofcpinto/Home/links/Telos-RevA-Datasheet.pdf
https://sites.google.com/site/pedrofcpinto/Home/links/Telos-RevA-Datasheet.pdf
https://sites.google.com/site/pedrofcpinto/Home/links/Telos-RevB-Datasheet.pdf
https://sites.google.com/site/pedrofcpinto/Home/links/Telos-RevB-Datasheet.pdf
http://www.snm.ethz.ch/Projects/TmoteSky
http://www.snm.ethz.ch/Projects/TmoteSky
https://sites.google.com/site/pedrofcpinto/Home/links/Tmote-Sky-Datasheet.pdf
https://sites.google.com/site/pedrofcpinto/Home/links/Tmote-Sky-Datasheet.pdf
https://sites.google.com/site/pedrofcpinto/Home/files/moteiv-an-001.pdf
https://sites.google.com/site/pedrofcpinto/Home/files/moteiv-an-001.pdf
http://www.ti.com/lit/gpn/msp430f1611
https://www.raspberrypi.org/
http://hackaday.com/2015/02/05/benchmarking-the-raspberry-pi-2/
http://www.ti.com/lit/gpn/cc2420
http://www.tinyos.net/
http://www.contiki-os.org/
http://www.contiki-os.org/

REFERENCES 115

[98] H. Will, K. Schleiser, and J. Schiller, “A real-time kernel for wireless sensor networks
employed in rescue scenarios,” in IEEE 34th Conference on Local Computer Networks,
2009. LCN 2009, Oct. 2009, pp. 834–841.

[99] E. Baccelli, O. Hahm, M. Wählisch, M. Günes, and T. Schmidt, “RIOT: One OS
to Rule Them All in the IoT,” INRIA, Research Report, No. RR–8176, Dec. 2012.
[Online]. Available: https://hal.inria.fr/hal-00768685/document

[100] E. Baccelli, O. Hahm, M. Günes, M. Wählisch, and T. Schmidt, “RIOT OS: Towards an
OS for the Internet of Things,” in 2013 IEEE Conference on Computer Communications
Workshops (INFOCOM WKSHPS), Apr. 2013, pp. 79–80.

[101] Q. Cao, T. Abdelzaher, J. Stankovic, and T. He, “The LiteOS Operating System:
Towards Unix-Like Abstractions for Wireless Sensor Networks,” in International
Conference on Information Processing in Sensor Networks, 2008. IPSN ’08, Apr. 2008,
pp. 233–244.

[102] A. Dunkels, “Full TCP/IP for 8-bit architectures,” in Proceedings of the 1st international
conference on Mobile systems, applications and services. ACM, 2003, pp. 85–98.

[103] A. Dunkels, J. Alonso, and T. Voigt, “Making TCP/IP viable for wireless sensor
networks,” SICS Research Report, 2003.

[104] T. V. Chien, H. N. Chan, and T. N. Huu, “A comparative study on operating system for
Wireless Sensor Networks,” in 2011 International Conference on Advanced Computer
Science and Information System (ICACSIS), Dec. 2011, pp. 73–78.

[105] M. Durvy, J. Abeillé, P. Wetterwald, C. O’Flynn, B. Leverett, E. Gnoske, M. Vidales,
G. Mulligan, N. Tsiftes, N. Finne, and A. Dunkels, “Making sensor networks IPv6
ready,” in Proceedings of the 6th ACM Conference on Embedded Network Sensor
Systems, ser. SenSys ’08. New York, NY, USA: ACM, 2008, p. 421–422.

[106] A. Dunkels, O. Schmidt, T. Voigt, and M. Ali, “Protothreads: simplifying event-driven
programming of memory-constrained embedded systems,” in Proceedings of the 4th
international conference on Embedded networked sensor systems. ACM, 2006, pp.
29–42.

[107] “IEEE Draft Standard for Information Technology - Telecommunications and Informa-
tion Exchange Between Systems - Local and Metropolitan Area Networks - Specific
Requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical
Layer (PHY) Specifications: Amendment- Sub 1 GHz License-Exempt Operation,”
IEEE P802.11ah/D4.0, January 2015 (Amendment to IEEE Std 802.11REVmc/D3.0),
pp. 1–626, April 2015.

[108] Y. Zhou, H. Wang, S. Zheng, and Z. Lei, “Advances in IEEE 802.11ah standardization
for machine-type communications in sub-1ghz WLAN,” in Communications Workshops
(ICC), 2013 IEEE International Conference on, June 2013, pp. 1269–1273.

https://hal.inria.fr/hal-00768685/document

116 REFERENCES

[109] T. Adame, A. Bel, B. Bellalta, J. Barcelo, and M. Oliver, “IEEE 802.11AH: the WiFi
approach for M2M communications,” Wireless Communications, IEEE, vol. 21, no. 6,
pp. 144–152, December 2014.

[110] “IEEE Standard for Information technology – Local and metropolitan area networks–
Specific requirements– Part 15.4: Wireless Medium Access Control (MAC) and
Physical Layer (PHY) Specifications for Low Rate Wireless Personal Area Networks
(WPANs),” IEEE Std 802.15.4-2006 (Revision of IEEE Std 802.15.4-2003), pp. 1–320,
Sep. 2006.

[111] “IEEE Standard for Local and metropolitan area networks–Part 15.4: Low-Rate
Wireless Personal Area Networks (LR-WPANs),” IEEE Std 802.15.4-2011 (Revision
of IEEE Std 802.15.4-2006), pp. 1–314, Sep. 2011.

[112] “IEEE Standard for Information Technology - Telecommunications and Information
Exchange Between Systems - Local and Metropolitan Area Networks Specific
Requirements Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer
(PHY) Specifications for Low-Rate Wireless Personal Area Networks (LR-WPANs),”
IEEE Std 802.15.4-2003, pp. 1–670, 2003.

[113] “A lightweight TCP/IP stack - lwIP Project,” Jan 2001, Accessed: 17-Jul-2015.
[Online]. Available: http://savannah.nongnu.org/projects/lwip/

[114] J. Shang and H. Ding, “Application of lightweight protocol stack LwIP on embedded
Ethernet,” in 2011 International Conference on Electrical and Control Engineering
(ICECE), Sep. 2011, pp. 3373–3376.

[115] “Arduino IPv6 stacks,” Accessed: 17-Jul-2015. [Online]. Available: http://departements.
telecom-bretagne.eu/rsm/logiciels/arduino-ipv6-stacks/

[116] I. Glaropoulos, V. Vukadinovic, and S. Mangold, “Contiki80211: An IEEE 802.11
Radio Link Layer for the Contiki OS,” in 2014 IEEE Intl Conf on High Perfor-
mance Computing and Communications, 2014 IEEE 6th Intl Symp on Cyberspace
Safety and Security, 2014 IEEE 11th Intl Conf on Embedded Software and Syst
(HPCC,CSS,ICESS), Aug. 2014, pp. 621–624.

[117] S. Deering and R. Hinden, “Internet Protocol, Version 6 (IPv6) Specification,” RFC
2460 (Draft Standard), Internet Engineering Task Force, Dec. 1998, updated by
RFCs 5095, 5722, 5871, 6437, 6564, 6935, 6946, 7045, 7112. [Online]. Available:
http://www.ietf.org/rfc/rfc2460.txt

[118] R. Daidone, G. Dini, and M. Tiloca, “On experimentally evaluating the impact of
security on ieee 802.15.4 networks,” in Distributed Computing in Sensor Systems and
Workshops (DCOSS), 2011 International Conference on, June 2011, pp. 1–6.

[119] Y. Xiao, H. Chen, B. Sun, R. Wang, and S. Sethi, “MAC security and
security overhead analysis in the IEEE 802.15.4 wireless sensor networks,”
EURASIP J. Wireless Comm. and Networking, vol. 2006, 2006. [Online]. Available:
http://dx.doi.org/10.1155/WCN/2006/93830

http://savannah.nongnu.org/projects/lwip/
http://departements.telecom-bretagne.eu/rsm/logiciels/arduino-ipv6-stacks/
http://departements.telecom-bretagne.eu/rsm/logiciels/arduino-ipv6-stacks/
http://www.ietf.org/rfc/rfc2460.txt
http://dx.doi.org/10.1155/WCN/2006/93830

REFERENCES 117

[120] G. Montenegro, N. Kushalnagar, J. Hui, and D. Culler, “Transmission of IPv6
Packets over IEEE 802.15.4 Networks,” RFC 4944 (Proposed Standard), Internet
Engineering Task Force, Sep. 2007, updated by RFCs 6282, 6775. [Online]. Available:
http://www.ietf.org/rfc/rfc4944.txt

[121] N. Kushalnagar, G. Montenegro, and C. Schumacher, “IPv6 over Low-Power Wireless
Personal Area Networks (6LoWPANs): Overview, Assumptions, Problem Statement,
and Goals,” RFC 4919 (Informational), Internet Engineering Task Force, Aug. 2007.
[Online]. Available: http://www.ietf.org/rfc/rfc4919.txt

[122] J. Hui and P. Thubert, “Compression Format for IPv6 Datagrams over IEEE
802.15.4-Based Networks,” RFC 6282 (Proposed Standard), Internet Engineering Task
Force, Sep. 2011. [Online]. Available: http://www.ietf.org/rfc/rfc6282.txt

[123] Z. Shelby, S. Chakrabarti, E. Nordmark, and C. Bormann, “Neighbor Discovery
Optimization for IPv6 over Low-Power Wireless Personal Area Networks
(6LoWPANs),” RFC 6775 (Proposed Standard), Internet Engineering Task Force, Nov.
2012. [Online]. Available: http://www.ietf.org/rfc/rfc6775.txt

[124] C.-Y. Yum, Y. S. Beun, S. Kang, Y. R. Lee, and J. Song, “Methods to use 6lowpan
in IPv4 network,” in The 9th International Conference on Advanced Communication
Technology, vol. 2, Feb. 2007, pp. 969–972.

[125] “SICSlowpan - Internet for low-power, low-cost Wireless Project,”
Accessed: 17-Jul-2015. [Online]. Available: https://www.sics.se/projects/
sicslowpan-internet-for-low-power-low-cost-wireless

[126] J. Ko, S. Dawson-Haggerty, O. Gnawali, D. Culler, and A. Terzis, “Evaluating the
Performance of RPL and 6LoWPAN in TinyOS,” in Proceedings of Extending the
Internet to Low power and Lossy Networks (IP+SN 2011), April 2011.

[127] T. Winter, P. Thubert, A. Brandt, J. Hui, R. Kelsey, P. Levis, K. Pister, R. Struik,
J. Vasseur, and R. Alexander, “RPL: IPv6 Routing Protocol for Low-Power and
Lossy Networks,” RFC 6550 (Proposed Standard), Mar. 2012. [Online]. Available:
http://www.ietf.org/rfc/rfc6550.txt

[128] P. Thubert, “Objective Function Zero for the Routing Protocol for Low-Power and
Lossy Networks (RPL),” RFC 6552 (Proposed Standard), Internet Engineering Task
Force, Mar. 2012. [Online]. Available: http://www.ietf.org/rfc/rfc6552.txt

[129] O. Gnawali and P. Levis, “The Minimum Rank with Hysteresis Objective Function,”
RFC 6719 (Proposed Standard), Internet Engineering Task Force, Sep. 2012. [Online].
Available: http://www.ietf.org/rfc/rfc6719.txt

[130] P. Levis, T. Clausen, J. Hui, O. Gnawali, and J. Ko, “The Trickle Algorithm,” RFC 6206
(Proposed Standard), Internet Engineering Task Force, Mar. 2011. [Online]. Available:
http://www.ietf.org/rfc/rfc6206.txt

http://www.ietf.org/rfc/rfc4944.txt
http://www.ietf.org/rfc/rfc4919.txt
http://www.ietf.org/rfc/rfc6282.txt
http://www.ietf.org/rfc/rfc6775.txt
https://www.sics.se/projects/sicslowpan-internet-for-low-power-low-cost-wireless
https://www.sics.se/projects/sicslowpan-internet-for-low-power-low-cost-wireless
http://www.ietf.org/rfc/rfc6550.txt
http://www.ietf.org/rfc/rfc6552.txt
http://www.ietf.org/rfc/rfc6719.txt
http://www.ietf.org/rfc/rfc6206.txt

118 REFERENCES

[131] J. Vasseur, M. Kim, K. Pister, N. Dejean, and D. Barthel, “Routing Metrics
Used for Path Calculation in Low-Power and Lossy Networks,” RFC 6551
(Proposed Standard), Internet Engineering Task Force, Mar. 2012. [Online]. Available:
http://www.ietf.org/rfc/rfc6551.txt

[132] N. Tsiftes, J. Eriksson, and A. Dunkels, “Low-power wireless IPv6 routing with
ContikiRPL,” in Proceedings of the 9th ACM/IEEE International Conference on
Information Processing in Sensor Networks, ser. IPSN ’10. New York, NY, USA:
ACM, 2010, p. 406–407.

[133] J. Ko, J. Eriksson, N. Tsiftes, S. Dawson-haggerty, A. Terzis, A. Dunkels, and D. Culler,
“ContikiRPL and TinyRPL: Happy Together,” in In Proceedings of the Workshop on
Extending the Internet to Low power and Lossy Networks IP+SN, 2011.

[134] L. Guan, K. Kuladinithi, T. Potsch, and C. Goerg, “A deeper understanding of
interoperability between tinyrpl and contikirpl,” in Intelligent Sensors, Sensor Networks
and Information Processing (ISSNIP), 2014 IEEE Ninth International Conference on,
April 2014, pp. 1–6.

[135] A. Varga et al., “The omnet++ discrete event simulation system,” in Proceedings of the
European simulation multiconference (ESM’2001), vol. 9, no. S 185, 2001, p. 65.

[136] “NS-2,” Accessed: 17-Jul-2015. [Online]. Available: http://www.isi.edu/nsnam/ns/

[137] “NS-3,” Accessed: 17-Jul-2015. [Online]. Available: http://www.nsnam.org/

[138] “J-Sim Web site,” 2015, Accessed: 17-Jul-2015. [Online]. Available: https:
//sites.google.com/site/jsimofficial/

[139] S. Sundresh, W. Kim, and G. Agha, “SENS: a sensor, environment and network
simulator,” in Simulation Symposium, 2004. Proceedings. 37th Annual, Apr. 2004, pp.
221–228.

[140] P. Levis, N. Lee, M. Welsh, and D. Culler, “Tossim: Accurate and scalable simulation
of entire tinyos applications,” in Proceedings of the 1st International Conference on
Embedded Networked Sensor Systems, ser. SenSys ’03. New York, NY, USA: ACM,
2003, pp. 126–137. [Online]. Available: http://doi.acm.org/10.1145/958491.958506

[141] D. Blazakis, J. McGee, D. Rusk, and J. Baras, “Atemu: a fine-grained sensor network
simulator,” in Sensor and Ad Hoc Communications and Networks, 2004. IEEE SECON
2004. 2004 First Annual IEEE Communications Society Conference on, Oct 2004, pp.
145–152.

[142] F. Osterlind, A. Dunkels, J. Eriksson, N. Finne, and T. Voigt, “Cross-Level Sensor
Network Simulation with COOJA,” in Proceedings 2006 31st IEEE Conference on Local
Computer Networks, 2006, pp. 641–648.

[143] “VMware,” Accessed: 17-Jul-2015. [Online]. Available: https://www.vmware.com/

http://www.ietf.org/rfc/rfc6551.txt
http://www.isi.edu/nsnam/ns/
http://www.nsnam.org/
https://sites.google.com/site/jsimofficial/
https://sites.google.com/site/jsimofficial/
http://doi.acm.org/10.1145/958491.958506
https://www.vmware.com/

REFERENCES 119

[144] Pedro Pinto, António Pinto and Manuel Ricardo, “Reducing WSN Simulation Runtime
by using Multiple Simultaneous Instances,” in Symposium on Modelling and Simulation
in Computer Sciences and Engineering (ICNAAM 2014), Rhodes, Greece, 2014.

[145] Pedro Pinto, António Pinto and Manuel Ricardo, “Reducing Simulation Runtime in
Wireless Sensor Networks: A Simulation Framework to Reduce WSN Simulation
Runtime by Using Multiple Simultaneous Instances (Book Chapter) - accepted for
publishing in april, 2015,” in Handbook of Research on Computational Simulation and
Modeling in Engineering, 2014.

[146] A. Dunkels, “The ContikiMAC radio duty cycling protocol,” Dec. 2011, Accessed: 17-
Jul-2015.

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	List of Abbreviations
	1 Introduction
	1.1 Scope and Motivation
	1.2 Problem Statement
	1.3 Objective
	1.4 Contributions
	1.5 Publications
	1.6 Document Structure

	2 Delay Estimation and Admission Control in IP Networks
	2.1 Delay Estimation in IP Networks
	2.1.1 Delays Definition
	2.1.2 Delays Measurement
	2.1.3 Delays Estimation
	2.1.4 Discussion

	2.2 Admission Control in IP Networks
	2.2.1 Distributed Admission Control
	2.2.2 On the Implementation of Admission Control
	2.2.3 Discussion

	2.3 WSN Operation and Constraints
	2.3.1 Hardware and Operating Systems
	2.3.2 IEEE 802.15.4 Standard - Physical and MAC Layers
	2.3.3 IP-based stacks
	2.3.4 RPL Routing Protocol
	2.3.5 Simulation
	2.3.6 Discussion

	2.4 Summary

	3 EED Estimation
	3.1 EED Estimation Mechanism
	3.1.1 Internal Delays
	3.1.2 External Delays and RPL Operation
	3.1.3 End-to-end Delay Estimation Mechanism Output
	3.1.4 Validation Environment
	3.1.5 Results

	3.2 RPL Modifications
	3.2.1 Selection of Best Parent Procedure Modifications
	3.2.2 Update Metrics Procedure Modifications
	3.2.3 Validation Environment
	3.2.4 Results

	3.3 Delay Accounting Optimization
	3.3.1 Preliminary Experiments
	3.3.2 Delay Accounting Optimization Procedure
	3.3.3 Validation Environment
	3.3.4 Results

	3.4 Summary

	4 Distributed Admission Control
	4.1 Cross-Layer Admission Control Mechanism
	4.2 Validation Environment
	4.3 Results
	4.4 Summary

	5 Conclusion
	5.1 Work Review
	5.2 Contributions Summary
	5.3 Future Work

	References
	Index

