
Recommender System

for an e-learning

platform

Ricardo Jorge Mendes Oliveira
Mestrado Integrado em Engenharia de Redes e Sistemas Informáticos
Departamento de Ciência de Computadores

2016

Orientador
Alípio Mário Jorge, Professor Associado,

Faculdade de Ciências da Universidade do Porto

Coorientador
José Paulo Leal, Professor Auxiliar,

Faculdade de Ciências da Universidade do Porto

Todas as correções determinadas

pelo júri, e só essas, foram efetuadas.

O Presidente do Júri,

Porto, ______/______/_________

I want to thank all of my friends for their endless and tireless support throughout

all of these years. Their impact in my life changed a great deal in me.

I owe thanks to my family. Specially my mother, who has been a beacon and has

given me unwavering support my whole life.

Thank you to both my supervisors, Professor Alípio Jorge and Professor Zé Paulo

for allowing me to undergo this journey with them and learn from them. I also

want to deeply thank them for their understanding, their humanity, their help and

their seeming limitless patience.

Many Thanks, tudo é Kanimambo. (João Maria Tudella)

i

ii

Abstract

Technology Enhanced Learning (TEL) provides learners all over the world a customisable, rich in

content, learning experience. Because of this, TEL has been experiencing a world wide growth and

usage, both from learning institutions of every level, as well as corporations that need to provide

constant training to their employees with a reliable and consistent tracking system. Information

retrieval is a vital (and non trivial) task in a TEL environment, given the large libraries of

content currently in existence. We are also faced with the need to adapt the learning process

to the progress of the student, his preferences or handicaps, as well as existing competencies,

to ensure that the system is both effective and efficient, especially considering the multitude

of learning objects in existence. To this end, Recommendation Systems(RSs) are one of the

possible solutions. Despite RSs being widely used and very extensively researched for commercial

applications, where their purpose is to increase the volume of sales of products, their usage in

TEL is still rudimentary, mostly due to the fact that both the goals to fulfil and the environment

are more complex. In this dissertation we describe our solution to the adaptability issue of

an existing e-learning platform. Our solution consists of a RS that provides recommendations

using a hybrid technique of collaborative filtering and a precedence graph (formed of weighted

precedences between pairs of Learning Objects (LOs), defined by educational experts).

iii

iv

Resumo

Technology Enhanced Learning (TEL) fornece a alunos de todo o mundo uma experiência de

aprendizagem personalizável e rica em conteúdo. Visto isto, TEL tem tido um crescimento e

uma utilização a nível global, quer por parte de instituições de ensino de todos os níveis, quer

por empresas que precisam de providenciar formação constante aos seus funcionários, com um

sistema de acompanhamento constante e fiável. A obtenção de informação é uma tarefa vital (e

não trivial) num ambiente TEL, dadas as vastas bibliotecas de conteúdo existentes atualmente.

Com isto em mente, sistemas de recomendação (RSs) são uma de várias soluções possíveis.

Apesar de RSs serem muito usados e extensivamente pesquisados em aplicações comerciais, cujo

proposito é aumentar o volume de vendas de produtos, o uso deles em TEL é ainda rudimentar,

maioritariamente devido à diferença de objetivos a atingir e à maior complexidade do ambiente

de ensino. Nesta dissertação descrevemos a nossa solução para o problema de adaptabilidade de

uma plataforma de e-learning existente. A nossa solução é constituída por um RS que fornece

recomendações recorrendo a uma técnica híbrida composta por filtragem colaborativa e um grafo

de precedências (construído por precedências com pesos entre pares de objetos de aprendizagem,

pesos estes definidos por peritos na área educacional).

v

vi

Contents

Abstract iii

Resumo v

List of Tables xi

List of Figures xiii

Listings xv

Acronyms xviii

1 Introduction 1

1.1 Motivation . 1

1.2 Goals . 2

1.3 Structure . 2

2 State of the art 3

2.1 Technology Enhanced Learning . 3

2.1.1 Learning Object Metadata . 4

2.2 Intelligent Tutoring Systems . 5

2.3 Data Mining . 6

vii

2.4 User modelling . 7

2.5 Adaptive Educational Hypermedia . 7

2.6 Recommender Systems . 8

2.6.1 Content-based recommendation techniques 9

2.6.2 Collaborative-filtering recommendation techniques 11

2.6.2.1 User-based collaborative filtering 12

2.6.2.2 Item-based collaborative filtering 13

2.6.3 Hybrid recommendation techniques . 13

2.6.3.1 Weighted . 13

2.6.3.2 Switching . 14

2.6.3.3 Mixed . 14

2.6.3.4 Cascade . 14

2.7 Web Services . 14

2.7.1 Architectural style - Simple Object Access Protocol 16

2.7.2 Architectural style - Representational State Transfer 17

2.8 Chapter Summary . 17

3 Design 19

3.1 Abstract Data Model . 21

3.2 Recommendation strategy . 22

3.2.1 Cognitive Profile . 22

3.2.2 Negative Border . 23

3.2.3 Graph Based Recommendation Algorithms 23

3.2.3.1 Scoring . 25

viii

3.2.3.2 Node Tree . 28

3.2.4 Collaborative Filtering Recommendation Algorithm 28

3.2.5 Hybrid scoring . 28

3.3 API . 29

3.4 Chapter Summary . 29

4 Implementation 31

4.1 API . 32

4.1.1 URI matching . 32

4.1.2 Stateless EJBs . 33

4.2 ORM . 33

4.2.1 Entity EJBs . 34

4.3 Recommendation Engine . 34

4.3.1 Negative border generator . 34

4.3.2 Graph based recommendation engine . 34

4.3.3 Collaborative filtering recommendation engine 34

4.4 Chapter Summary . 35

5 Validation 37

5.1 Offline tests . 38

5.2 Usability Tests . 40

5.3 Chapter Summary . 41

6 Conclusion 43

6.1 Future work . 44

ix

x

List of Tables

3.1 Users HTTP Request . 29

3.2 Users HTTP Body . 29

5.1 Offline Test Results . 39

5.2 Users’ efficacy and efficiency . 41

xi

xii

List of Figures

2.1 CF Ratings Matrix . 12

2.2 Message Oriented Model . 15

2.3 Service Oriented Model . 15

2.4 Resource Oriented Model . 16

2.5 Policy Model . 16

3.1 Service Interaction Scheme . 20

3.2 Users HTTP Request . 21

3.3 Topic Graph . 23

4.1 Implementation Scheme . 31

5.1 Artificial Data Set . 38

5.2 Usability Tests . 40

5.3 Linear Regression Graph . 41

xiii

xiv

Listings

4.1 Path Annotated Class . 32

xv

xvi

Acronyms

ADL Advanced Distributed Learning

AEH Adaptive Educational Hypermedia

ANB Anterior Negative Border

API Applicational Programming

Interface

ASIST Association for Science and

Technology

AWS Adaptive Web Service

BFS Breadth First Search

CAI Computer Aided Instruction

CB Content-Based

CD Compact Disk

CF Collaborative-Filtering

CP Cognitive Profile

DB DataBase

DCMI Dublin Core Metadata Initiative

EJB Enterprise Java Bean

HTTP Hypertext Transfer Protocol

IEEE Institute of Electrical and

Electronics Engineers

ITS Intellingent Tutoring Systems

JAX-RS Java API for RESTful Services

JEE Java Platform, Enterprise Edition

JPA Java Persistance API

JSON JavaScript Object Notation

KNN K Nearest Neighbours

LO Learning Object

LOM Learning Object Metadata

MOM Message Oriented Mode

NB Negative Border

ORM Object-Relational Mapping

PM Policy Model

PNB Posterior Negative Border

POJO Plain Old Java Object

REST Representational State Transfer

ROM Resource Oriented Mode

xvii

RS Recommender System

SCORM Sharable Content Object Reference

Model

SOAP Simple Object Access Protocol

SOM Service Oriented Mode

TEL Technology Enhanced Learning

URI Uniform Resource Identifier

W3C World Wide Web Consortium

WS Web Service

WSDL Web Service Definition Language

WWW World Wide Web

XML eXtensible Markup Language

xviii

Chapter 1

Introduction

Technology Enhanced Learning (TEL) is a field of increasing popularity and usage. More

companies and faculties on multiple countries adopt TEL environments to facilitate learning for

students or training for professionals [1]. This is due to the fact that TEL environments are very

customisable and rich in content, making them usable in most scenarios. However, the opulence

of content present in these environments is also one of their greatest downsides. Information

retrieval is a very time consuming task, which chips away at the quality of the learning experience

if not automatised. Retrieving the right type of content for the active user, considering the user’s

strengths, flaws, preferences and psychological profile is a complex task to perform. To this

problem, a multitude of possible solutions are under research and constant development, from

Intelligent Tutoring Systems (ITSs) to the implementation of Recommender Systems (RSs) in

the TEL platforms. This dissertation and our solution focus on the latter.

1.1 Motivation

Our project was born from a company’s need to improve their existing e-learning platform, from

its current static model, to an adaptable and customisable e-learning platform. The company

wanted their system to be adaptable, but have the adaptability module decoupled from the

e-learning platform.

1

FCUP 2

Chapter 1. Introduction

1.2 Goals

Our goal is to provide prompt, accurate and relevant recommendations to the users of the

e-learning platform, taking into consideration their existing knowledge as well as their difficulties

and the curricular goals to be achieved, through the use of the learning platform’s content

metadata and the users’ usage history, as to improve the usability of the learning platform as

well as the users’ experiences while on it. We aim to achieve this by designing a recommendation

algorithm using the platform’s existing content prerequisite metadata as well as a collaborative

filtering algorithm over interaction data of users with resources.

1.3 Structure

We initially cover the current state of the art of TEL, RSs, related technologies, as well as the

methods and algorithms used in such systems and software architecture standards followed in

Chapter 2. In Chapter 3 we detail the design choices made for our solution. Next we present the

implementation of our chosen design, detailing used libraries and APIs as well as justifying our

choices in Chapter 4. Then, we proceed to present the validation evidence to our solution and

corresponding test results in Chapter 5. Finally, in Chapter 6 we conclude this dissertation and

present possible future work.

Chapter 2

State of the art

Recommender Systems (RSs), and RSs in Technology Enhanced Learning (TEL) environments,

are broadly researched topics[2]. The focus of this chapter is the current state of the art in TEL,

Data Mining, RSs and Web Services (WSs), as these are the most relevant technologies to our

work. In this chapter we initially present the current state of TEL and underlying technologies.

Then we discuss data mining and user modelling. We continue with discussion on adaptivity,

from intelligent tutoring systems to recommender systems. Lastly, we conclude this chapter with

the subject of web services.

2.1 Technology Enhanced Learning

Technology Enhanced Learning (TEL) is defined as “the study and ethical practice of facilitating

learning and improving performance by creating, using, and managing appropriate technological

processes and resources”[3]. It encompasses both physical and theoretical tools used to enhance

learning. These tools can range from multimedia content to entire systems. TEL evolved from

physical media, with its size restrictions and distribution constraints, to the World Wide Web

(WWW). This allowed changes to occur, such as the appearance of Collaborative Learning[4],

where users help each other learn, and Virtual Learning Environments[5], where a class occurs

virtually. TEL aims to facilitate learning through the use of technological features and learning

theories. Despite the apparent simplicity of the concept, TEL is a field of extent and continuous

research and debate, under constant change[3] where various scientific fields converge.

Different learning theories lead to different existing TEL environments. An ongoing shift from

3

FCUP 4

Chapter 2. State of the art

traditional and more formal teacher/course centred environments, such as Moodle[6], to more

personalised and informal student centred environments is noticeable. This shift is supported not

only by technical innovations, but by the development of new theories on epistemology, cognitive

science, education theory and other areas of psychology. Linear learning environments, are still

predominant [7] (Khan Academy [8] is an example). In these environments all students are

subject to a single pedagogy with a specific starting point, ending point and a flow between

these points, predetermined by the instructor. Linear environments remain predominant despite

the change in focus to more non-linear, adaptable learning environments, where the learner is

responsible for the mastery of the subject at his own pace and chooses his own flow of information,

receiving at most some guidance from an instructor[7].

TEL is used both in formal and informal learning settings. A formal setting is offered by

educational institutions, is well structured and leads to specific accreditation, being supervised

by experts of the respective domain in order to ensure quality, who usually provide content to the

users[9]. However, in an informal setting, the user is responsible for his own education in every

aspect and has to sift through content found in repositories, provided by the online community[9].

This leads to usability issues for the user, being the most relevant ones to our work, the costly

and non trivial content selection, and the lack of guidance/supervision.

The shift from linear to non-linear learning environments also introduces new problems:

• Content must be designed to accommodate different learning styles and levels of difficulty;

• Users with different abilities and knowledge background need to be considered;

• Platform requires context sensitivity to provide the necessary information to the user,

regardless of the user’s choice, allowing users to chose their own path and learn at their

own pace.

In the remainder are described some of the most popular solutions to this problem, relevant

technologies and definitions, as well as RSs which we use in this project.

2.1.1 Learning Object Metadata

With the evolution of TEL from physical media, such as CDs, to the WWW, centralised

repositories for storing Learning Objects (LOs) appeared. These repositories developed tools to

5 FCUP

2.2. Intelligent Tutoring Systems

facilitate access to their own LOs by their own users, which led to issues in the interoperability of

content. Different content providers would use multiple different techniques and representations,

each specific to their own unique platforms. Such diversity led to little to no interoperability

as well as complicated and expensive setup and maintenance of learning environments. These

issues led to the standardising LOs representation and development. Learning Object Metadata

was developed as a solution to the before mentioned issues. It is a specific type of metadata

that focuses on the standardisation of the representation of LOs. This allows learning content

interoperability between different TEL environments and facilitates LO cataloguing, selection

and utilisation. Different entities have developed different standards. For instance, IEEE[10]

developed LOM[11], ADL[12] developed SCORM[13] and ASSIS&T[14] is currently responsible

for the DCMI[15]. All of these standards have different levels of detail and features. Despite this,

some entities, such as ourselves, develop their own metadata representation of learning objects to

fit their own needs[16], due to the unnecessary complexity and detail of the existing standards.

2.2 Intelligent Tutoring Systems

Intelligent Tutoring System (ITS) usually refers to “any computer program that contains some

form of intelligence and can be used for learning” and has evolved from the early Computer

Aided Instruction (CAI) model[17]. The aim of these systems is to work as an automated tutor,

to facilitate TEL environments to provide immediate feedback and achieve individualisation.

This way the system can accurately respond to each individual user’s needs, such as lack of

previous knowledge or a slower learning rate, without needing intervention from a human tutor.

Development of ITSs relies on multiple scientific areas such as psychology, education theory and

computer science. Traditionally, the ITS model is composed of:

• the domain/cognitive model;

• the student model;

• the teaching/tutoring model;

• the learning environment/user interface.

Any or all of these components may contain intelligence[18][17]. We briefly describe each of these

components below.

FCUP 6

Chapter 2. State of the art

The domain/cognitive model “contains the concepts, rules, and problem solving strategies of

the domain to be learned. It can fulfil several roles: as a source of expert knowledge, a standard

for evaluating the student’s performance or for detecting errors, etc.”[19]. This model relies

heavily on epistemology since it needs to accurately formalise what represents knowledge for

a particular domain. Different domains have different mechanisms and values at play. The

model must be capable of providing accurate answers to students’ questions, as well as solve the

problems it presents to the students.

The student model usually represents student’s content skills (what the student knows),

knowledge about learning (how the student learns), affective characteristics (how the student

is/feels) and other relevant characteristics. Some of these details, such as the affective ones,

cannot be easily determined and must be inferred over the course of time through long term

observation[19]. This model is used to supply data to other models and allow the ITS to adapt

to the student.

The teaching/tutoring model is responsible for the interaction and adaptability, which

differentiate the act of tutoring from lecturing, of the ITS. It analyses information from the

domain and student models and adapts to the student in question, through the usage of tutoring

strategies. The model is also responsible for providing the student with feedback, be it upon the

student’s request during problem solving or when the system detects deviations from the path

by the student.

The learning environment/user interface “integrates three types of information that are

needed in carrying out a dialogue: knowledge about patterns of interpretation (to understand

a speaker) and action (to generate utterances) within dialogues; domain knowledge needed for

communicating content; and knowledge needed for communicating intent”[18].

2.3 Data Mining

DM techniques are typically used in RSs as part of other techniques and methodologies. The

data mining process is divided in three iterations, in the following order: Data Preprocessing,

Data Analysis and Result Interpretation. Data preprocessing consists of preprocessing data into

a computer processable format to be used in Data Analysis. In the data anlysis iteration, the

preprocessed data is subject to techniques (such as classification) where relevant patterns are

sought. Finally, result interpretation is the extraction of relevant and useful information from

7 FCUP

2.4. User modelling

the previously analysed data.

2.4 User modelling

User modelling consists of building a computational representation of a user, according to features

found relevant. This representation is then used by algorithms that produce user specific responses.

User models can be produced implicitly through observation of user interactions with the system

and analysis and storage of the relevant data derived from those observations, or explicitly through

the filling of questionnaires or preferences set by the users[20]. They may also be of either static

(initially formed and not subject to changes) or dynamic (constantly updated with information)

design. They can also be mix of both having static user model with information such as date

of birth and name, and a dynamic user model containing system interaction information[21].

Which data is relevant is heavily dependant on the goal of the system. For instance, an adaptive

system usually requires information from interface navigation and functionality usage from the

user, while a RS may rely on information about user preferences. For this same reason, there is

no universal template for a user model, and migration and interoperability of models between

systems is a major challenge.

2.5 Adaptive Educational Hypermedia

Adaptive Educational Hypermedia (AEH) is a type of Adaptive Web System (AWS) and,

therefore, a top-down approach. AWSs aim to solve the problems inherent to the use of a single

solution in a Web Service (WS), by investigating possible ways in which to adapt the WS’s

characteristics in function of the different characteristics of the WS’s different users, through

user modelling. A system is considered adaptive if “it is able to change its own characteristics

automatically according to the user’s needs”[22]. More specifically “an interactive system that

adapts its behaviour to individual users on the basis of processes of user model acquisition

and application that involve some form of learning, inference, or decision making.”[23]. An

adaptive system aims at improving the users’ experience through a series of functions. Firstly,

adaptive systems provide users with support in system usage, support which can be given in

multiple different ways, from taking over part of the users’ time consuming routine tasks to

adapting the system’s interface to better fit the users’ models[23]. More relevant to our work

are the functions of supporting information acquisition and obtaining information about users.

FCUP 8

Chapter 2. State of the art

Supporting information acquisition reduces the impact that information overload has on the users

by helping the users find the desired information in a helpful manner. One way of achieving this is

by filtering content that fits the user model and providing it to the user. This is applicable to web

browsing, query-based search and even spontaneous provision of information[23]. Another means

to support information acquisition is by supporting learning. The system can adapt to each user

in the learning content, problems and tests that are presented and how they are presented[23].

Obtaining information about users is strongly connected with user modelling . AEHs tackle

these same issues in a more restrict setting, specifically in educational applications. Most of

AEH systems are used in a formal learning setting[24][25]. In these settings there are predefined

curricula, accreditation procedures and student/teacher profiles, dependencies between learning

resources, all very well defined and structured through the use of metadata. This provides more

useful information for the adaptive technologies as well as recommendation systems. In informal

learning settings much of this information is lacking and there is no formal accreditation, which

makes the learning process itself much more open ended at the expense of requiring additional

effort in information gathering to allow the use of AEH. Being a top down approach, AEHs

require plenty design work in preparation and during maintenance of the TEL environment, since

knowledge domains having to be described in detail.

2.6 Recommender Systems

RSs are a subclass of information filtering systems with the purpose of successfully predicting

the standing of a user towards an item.

These systems assist users by selecting potentially interesting choices within a vast set of

alternatives. The initial focus of RSs was to deal with the overload of information, initially

through the use of collaborative, content-based and demographic based techniques[26], being

later researched and implemented for commercial purposes.

The principle here is that a user might buy an item that is recommended to him, that he

would not buy nor actively seek otherwise.

In commercial domains, the most widespread use of RSs, is to ensure more sales of a certain

product or more consumption from a certain user. For RSs in TEL, the goal is to provide

learning objects and fulfil an array of tasks to improve the user’s learning experience, taking in

consideration many factors and particularities that are exclusive to TEL[9][27].

9 FCUP

2.6. Recommender Systems

These particularities may range from the type of learning that is desired to the user’s prior

knowledge and even the complex nature of learning. For instance, RSs in TEL should take

context (such as the learner’s competencies and the time investment required for an object) into

consideration as to provide the user with content in the best degree of detail, or abstraction,

according to different learner settings, to ease learning[28]. Another factor to account for is

the important role that recapitulation and reiteration take in the learning process and how

that differentiates RSs in TEL in comparison to RSs in a commercial environment. Another

particularity of RSs in TEL stems from the cold start problem and the way it has to be handled.

Unlike products or movies that a user can rate early to build a profile, either because he has

seen/used them or has a positive impression of them from reading/hearing about them, the

same cannot happen in a learning context, where it is improbable that a user has had contact

with certain learning objects before[27]. RSs in this setting are also very platform specific, and

consequently it is very hard to migrate one RS from one learning platform to another without

having to undergo major adjustments. In short, a RS in TEL has more complex goals that

need to meet the users’ pedagogical needs as well as their characteristics and more subjective

information to consider. RSs generally rely on techniques that can be divided in three categories,

which we describe below.

2.6.1 Content-based recommendation techniques

Content-based (CB) recommendation techniques produce recommendations of items similar to

ones that the users have liked in the past. A profile of user interests is built based on previous

ratings the user gave to items, and that profile is then used to recommend new items that match

the characteristics desired by the user, which can be very effective if the profile is accurately

built[9]. For this reason, item representation is a very important factor in content-based RSs.

Items are represented by attributes or proprieties[9]. These can be described through the same

set of attributes with a known set of values or through textual features extracted from Web

pages, news, product descriptions and more[9]. In the first case, the use of machine learning

algorithms to improve recommendations is possible since attributes are well defined making

machine interpretation straightforward. In the later, though we are faced with a greater challenge,

since textual features are not well defined and are subject to the ambiguous nature of language.

Traditional keyword based profiles work mainly by string matching, which do not allow for

semantic comprehension of the users’ interests[9]. This poses a problem because one same word

can have multiple meanings in different contexts (polysemy) and multiple words can have one

FCUP 10

Chapter 2. State of the art

same meaning (synonymy). These phenomena lead to the possibility of a profile containing

different words for the same characteristic or different characteristics characterised by one word,

making string matching ineffective and insufficient. One of the most popular technique to deal

with this problem is semantic analysis, which is done by adopting knowledge bases for both

annotating items and representing profiles to obtain a semantic aware representation of users’

needs[9].

A content-based RS is composed by three separate components, each with different functions[9]:

Content analyser analyses the content of objects (items) through feature extraction techniques,

in order to appropriately extract structured relevant information to feed as input to the

other two components;

Profile learner aims to construct the user’s profile by using generalisation strategies to infer a

model of user interests from items the user (dis)liked;

Filtering component matches the user’s profile representation to the items to be recommended,

obtaining a relevance judgement (may be binary or continuous) which determines if an

item should be recommended or hidden.

Using content-based techniques have great advantages. For instance, these techniques are

user independent. This means that only the ratings given by the user are accounted for when

building its profile and producing recommendations. Another beneficial characteristic of these

systems resides in recommendations being given based on the characteristics of the items that

match the users profiles and new items can promptly be recommended without having to be

previously rated by users.

On the downside, content-based techniques suffer from the limitation of available domain

knowledge regarding items, since not every aspect that can make an item of interest to a user may

be described or defined, therefore making recommendations less accurate than desirable. These

techniques also suffer from the over-specialisation problem, which regards the lack of ability of

the system to recommend something that resides outside of the user’s profile, since only items

that match the user’s interests will be recommended. New users also pose a challenge to this

approach, since a number of ratings must be recorded before recommendations become accurate

towards the user’s interests.

11 FCUP

2.6. Recommender Systems

2.6.2 Collaborative-filtering recommendation techniques

Collaborative-filtering (CF) recommendation techniques produce recommendations based on the

user ratings matrix. Early recommender systems relied on this matrix directly to compute a

neighbourhood. With the evolution in this field, recommendation started being treated as a

classification problem, and most techniques now use the user ratings matrix indirectly to induce

a collaborative model. Based on the tradition of people resorting to friends, family or even

coworkers with similar taste to obtain recommendations on what movies to watch, content to

view, places to eat, these techniques assume that if different user ’s rate items similarly, then

they will probably rate other items similarly as well[29]. Generally, these ratings on items a user

has used/bought are considered his history. These ratings may be:

Unary depicts an interaction with an item such has having bought or seen said item, which

may be simply observed by the system;

Binary one of two possible values, may be the user (dis)liking an item or have added said item

to a wish/watch or exclusion list;

Discrete a value from an array of possible values, may be a number of stars between zero to

five stars or a numeric value between zero and ten, either integer or real.

The collection of these values from every user are compiled into a matrix, called ratings matrix in

which each entry corresponds to the rating a certain user gave to a certain item, if there is any as

seen in Figure 2.1. Early CF recommender systems were distance based. These systems used the

ratings matrix and calculate a user’s neighbourhood through the use of similarity functions[29].

Possible recommendations are produced by filling the ratings for the items that the user has no

ratings for, based on its neighbourhood and then listing the N best scored items, where score can

be influenced by other variables besides ratings. From its start in neighbourhood/distance based

algorithms, CF has evolved. We now have CF algorithms categorised as either memory or model

based. Memory based algorithms requires that all ratings, users and items are stored in memory at

all times. Model based algorithms periodically create a summary of ratings patterns offline. Since

memory based algorithms suffer from scalability issues, most systems currently are either purely

model based or have some form of pre-computation. Because of this, a much better organisation

is organising algorithms as probabilistic or non-probabilistic. Probabilistic algorithms, as the

name indicates, are based on some form of probabilistic model while non-probabilistic algorithms

FCUP 12

Chapter 2. State of the art

Figure 2.1: CF Ratings Matrix

are not. In this section we’ll present the more classic, non-probabilistic neighbourhood based CF

algorithms.

2.6.2.1 User-based collaborative filtering

We begin with user-based CF, or user-user CF or neighbourhood-based CF, where we resort to

ratings users give on items. The assumption is that users that rated the same items similarly

have similar preferences and are classified as neighbours[9]. It recommends unseen items to a

user that have been positively rated by his neighbours. This approach requires the use of a

similarity function to compute the neighbourhood. It suffers from the cold-start problem, which

occurs when: not enough users have rated enough items; when a new user has not rated enough

items to have his neighbours computed; and even when a item is new or has not been rated

enough times. This approach also has the problem of recommending only popular content, which

may not be the best for every student, leaving other quality items out of the pool. Scalability

issues are another concern. A large user base causes increases in data, which in turn leads to

difficult or inaccurate computation of neighbourhoods. This is particularly problematic since

similarities between users can very quickly shift with new ratings or changes of previous ones

and are therefore computed when recommendations are requested. These issues lead to the next

13 FCUP

2.6. Recommender Systems

algorithm.

2.6.2.2 Item-based collaborative filtering

In item-based CF, also item-item CF, we focus on item rating patterns. The principle followed is

that the items that a set of users rate similarly are similar, and recommendations are produced

taking into consideration that similar users tend to have similar preferences[9]. Much like user-

based CF, this approach requires the use of a similarity function to compute the neighbourhood.

Therefore, it is susceptible to the cold-start problem when an item is new and hasn’t received

enough ratings and recommends only the most popular content. The advantage of this approach is

the scalability. Although it is still required to find the closest items to produce recommendations,

pre-computing of the ratings matrix becomes possible in systems with a high user to item ratio,

since in such systems a user chantging or adding a new rating to an item should not be enough

to change similarity between items with any significance. This characteristic allows for the

pre-computation of similarities in an item-item similarity matrix. Despite the similarity matrix

not being always up to date, staleness should have no major impact in the quality of obtained

recommendations as seen before.

2.6.3 Hybrid recommendation techniques

Hybrid recommendation techniques involve, as the name suggests, the joining of multiple

techniques. This is done to produce recommendations with better performance, while overcoming

some of the weaknesses of the individual techniques. These techniques are a common approach

to dealing with cold start or scalability problems. There are multiple categories of hybrid

recommendation techniques, some of which we describe below.

2.6.3.1 Weighted

This technique uses the scoring of all the different recommendation techniques within the system

to produce a recommendations (for instance, a linear combination of all the different techniques’

recommendation scores). The benefit here is that all the techniques are used in a fairly simple

way and adjustments to the hybrid system are easy to perform. The downfall lies on the fact

that this technique is based on the principle that the different techniques do not differ much in

value and usefulness across multiple scenarios, which we know not to be true[30].

FCUP 14

Chapter 2. State of the art

2.6.3.2 Switching

In this case the technique used is switched on the fulfilment of certain criteria. For instance,

a recommender system that provides content based recommendations initially but switches to

collaborative filtering recommendations if the content based ones do not have the desired degree

of certainty. Switching hybrid recommendation techniques allow to take great advantages of the

strengths of each of the underlying techniques, while overcoming their weaknesses, with the right

parameters defined (which is their greatest fault, the need for additional parametrisation)[30].

2.6.3.3 Mixed

In a mixed strategy recommendations from multiple different techniques are presented simultan-

eously. This can be particularly useful if a large volume of recommendations is needed[30].

2.6.3.4 Cascade

The cascade hybridisation method implies the sequential use of techniques. The first technique

produces a set of ranked candidates to be refined by a second technique[30].

2.7 Web Services

The W3C[31] defined a web service (WS) as " a software system designed to support interoperable

machine-to-machine interaction over a network. It has an interface described in a machine-

processable format (specifically WSDL). Other systems interact with the WS in a manner

prescribed by its description using Simple Object Access Protocol (SOAP) messages, typically

conveyed using HTTP with an XML serialization in conjunction with other Web-related

standards"[32]. This definition was later changed[33] to accommodate Roy Fielding’s proposal of

the Representational State Transfer (REST) architectural style[34]. Web services are designed

to standardise communication between distributed systems, through the use of well defined

technologies, where each participating side may be on a different platform or system, with different

specifications. To better define a desired web service there are four different architectural models

for web services: the Message Oriented Model (MOM); the Service Oriented Model (SOM); the

Resource Oriented Model (ROM); and the Policy Model (PM)[32]. Each model has different

15 FCUP

2.7. Web Services

Figure 2.2: Message Oriented Model

Figure 2.3: Service Oriented Model

focuses on different parts of the web services, as to adequately detail every aspect of the web

service. The Message Oriented Model has messages and their processing as its focus, from

protocol used to message body standardisation, as seen in Figure 2.2. To the Service Oriented

Model pertain the aspects of the services provided by the agent to their agent and the requests

made, as shown in Figure 2.3. SOM is an increment on the MOM. The Resource Oriented Model

explicits resources and their properties as well as their interactions with everything relevant to the

service, as depicted on Figure 2.4. Finally, the Policy Model portrays the policy related aspects

of the service, from security to quality of service, viewable on Figure 2.5. In this section, we

focus on presenting some of the Simple Object Access Protocol (SOAP) and the Representational

State Transfer (REST) guidelines.

FCUP 16

Chapter 2. State of the art

Figure 2.4: Resource Oriented Model

Figure 2.5: Policy Model

2.7.1 Architectural style - Simple Object Access Protocol

Simple Object Access Protocol (SOAP), according to the W3C[31], is "a lightweight protocol

intended for exchanging structured information in a decentralised, distributed environment.

It uses XML technologies to define an extensible messaging framework providing a message

construct that can be exchanged over a variety of underlying protocols. The framework has been

designed to be independent of any particular programming model and other implementation

specific semantics."[35]. It operates through the exchange of messages from an initial SOAP

sender - the originator of the SOAP message at the starting point of a SOAP message path - to

an ultimate SOAP receiver through any number of SOAP intermediaries. SOAP senders, SOAP

receivers and SOAP intermediaries are all SOAP nodes, which behave differently according to

the SOAP processing model. Each SOAP node is identified by an URI.

17 FCUP

2.8. Chapter Summary

2.7.2 Architectural style - Representational State Transfer

The standard for Representational State Transfer (REST) states that a service should be stateless

and operate through the use of HTTP messages and verbs (GET,PUT,POST,DELETE) from

Client to Server. Each verb has very well defined functionality and purpose, as defined for HTTP

1.1 [34]. Every message contains a header and body. The header contains basic information

describing the message, such as the HTTP verb used, as well as having specific fields that can

describe the message body, the format used, if any multimedia is attached, etc. The body may

contain textual information, in specific languages or models (as signaled in the header) to be

sent to the receiving party. The HTTP verbs and their behaviour are as follows:

GET should not trigger any changes on the Server. It only serves the purpose of obtaining data

from the Server, as is;

PUT is a destructive writing operation. It can be used to create a new entry or overwrite a

previously existing one;

POST functionality is to create new entries, as well as to perform incremental changes and/or

insertions to already existing entries;

DELETE is used specifically to signal the Server which data should be removed.

Since there’s no state synchronisation, each transaction is processed as a unit, independent of

every other one. Any service that fully complies to these guidelines is called RESTful.

2.8 Chapter Summary

In this chapter we presented a study of technologies related to TEL and adaptability in TEL

systems to better understand how to tackle the problem we were tasked with solving. We

discussed several technologies, of which RSs and WSs are the most relevant ones for our work,

and the ones we will use in the remainder of this dissertation.

FCUP 18

Chapter 2. State of the art

Chapter 3

Design

The existing e-learning platform was a linear, static learning environment. Learning objects

(LOs) were catalogued as rigid sequences within a topic, leaving no room for adaptability. When

users entered the platform, they were given the choice to be taught a given subject or to be

evaluated on what they had previously learned. If the user chose to be taught, he was presented

with a static content structure to chose from. Despite the topic he chose to start from, he would

always be presented with a static sequence of LOs. The sequence began with expository (contain

information in video, audio or text format about the subject to be taught) LOs and it would end

with evaluative (a quiz to evaluate what the user has apprehended about the subject at hand)

LOs. When a sequence was completed the user could chose to follow the content’s predetermined

order or jump to another unit by manually navigating the menus. Users could freely backtrack

within the sequence. If the user chose to be evaluated, he is subject to a set of quizzes chosen by

the system at random and given a grade at the end.

The company chose to improve their e-learning platform by changing the content cataloguing

schema and introducing adaptability features. The changes to the cataloguing schema allowed

to re-use LOs as well as to introduce adaptability into the system. These cataloguing schema

changes were handled by a team of e-learning specialists. To potentiate these changes, we were

tasked with adding adaptability features to the e-learning platform. The updated e-learning

platform was being developed simultaneously with our solution. The company wanted to add

adaptability to their platform, but maintain it functional even without the adaptability features.

To this end, they provided us with information on how and when the system should be adaptive

to the user, without any knowledge of the inner working of their platform. These constraints

19

FCUP 20

Chapter 3. Design

Figure 3.1: Service Interaction Scheme

led us to design our recommender system (RS) a RESTful web service (WS). The proposed

architecture follows the design showed in Figure 3.1.

In this chapter we present the design goals and the actual design of the proposed solution. The

recommender system is required to work as a standalone platform, separate from the e-learning

platform. It will be able to receive data and recommendation requests from the e-learning

platform. The data received is vital to build the recommendation models. The data received

must be stored and its manipulation should be as simple as possible, in order to keep it updated,

as it is necessary in order to provide accurate recommendations. The recommender system will

be able to consider users’ knowledge background and precedence relationships within the learning

content to process recommendations.

To this end we began by designing an abstract data model, to simplify the excessively detailed

information of the e-learning platform. This helps us focus on information that’s pertinent to

build a recommendation model and simplify the communication process. We then designed a

RESTful API to facilitate data transaction and manipulation from the e-learning platform our

service. The API also handles recommendation requests, taking into consideration the previously

designed data model. Next we tackled the recommendation strategy, designing user profiles

models and strategies to effectively use the learning content’s precedence relationships, as well as

algorithms to generate recommendations.

We describe our design choices in further detail in the following sections.

21 FCUP

3.1. Abstract Data Model

Figure 3.2: Users HTTP Request

3.1 Abstract Data Model

We designed an abstract data model to simplify the excessively (for a RS) detailed data from the

e-learning platform and to allow data transactions from it to our recommendation service through

our API. This model aims to encapsulate the vital metadata of the learning platform’s content

and users, disregarding irrelevant information for our recommendation service. The content is

organised in a hierarchy composed of three different levels: parts, topics and resources as shown

in Figure 3.2. Parts are the highest of the hierarchy and contain other parts and topics. Different

parts may contain one same topic. Topics are collections of resources. Resources belonging to one

topic cannot belong to another topic. Precedence relations can be established between topics and

its weight is represented by a real value named relevance. The value of the relevance variable is

directly proportional to the importance of the topic in order to understand the topic it precedes.

This precedence relationship can exist between topics contained by different parts. Resources are

the atomic element in the hierarchy, and each correspond to a learning object. These resources

may be of an expository type, exposing users to a subject in any form of multimedia, or of an

evaluative type, in order to determine the mastery of a user over a subject.

FCUP 22

Chapter 3. Design

3.2 Recommendation strategy

Our system aims to produce recommendations for the following cases:

• Recommend a prerequisite topic to a student in order to address his flaws;

• Recommend a subsequent topic to a student who is ahead and seeking to learn new subjects;

• Recommend a list of sorted topics that compose a part.

With the mentioned use cases in mind, we consider two different recommendation scenarios:

• Metadata based recommendation, where we:

– Analyse user metadata (his position on the curricular plan);

– Analyse content metadata (the precedence relationships in the content);

– Compute recommendations from this information.

• Usage history based recommendation, where we:

– Analyse evaluation results;

– Analyse content observation history;

– Compute the user’s neighbourhood;

– Recommend items that similar users have been successful with.

Regardless of scenario, we reduce every recommendation to a topic recommendation. The

assumption is that every recommendation is correlated to determining which are the relevant

topics to recommend to a student in a given moment. Throughout the recommendation process,

we assume that topics have a predefined partial order, which is established by the learning

platform. We also have the assumption that the data about the student’s knowledge is potentially

incomplete. We tackle this issue in subsection 3.2.1.

3.2.1 Cognitive Profile

We define the user’s Cognitive Profile (CP) as the set of topics he has comprehended. This

profile is built either by implicit observation of the user’s interactions with the system, through

23 FCUP

3.2. Recommendation strategy

Figure 3.3: Topic Graph

exposure to or evaluation of topics, or inference over topics the user might have comprehended,

despite the lack of observation of the interaction. A formal definition is as follows:

CPstudent = {T | topic T has been learned successfully by student}

3.2.2 Negative Border

We define the Negative Border (NB) as the set of topics immediately preceding (Anterior Negative

Border - ANB) or succeeding (Posterior Negative Border - PNB) a given set of topics. Applying

this concept to the user’s cognitive profile allows us to determine topics that the user should

revise to overcome his difficulties or topics he can advance into. We define the anterior and

posterior negative borders as follows:

ANBstudent = {T ′ | topic T ′ precedes topic T in CP and T ′ not in CP}

PNBstudent = {T ′ | topic T precedes topic T ′ in CP and T ′ not in CP}

3.2.3 Graph Based Recommendation Algorithms

These algorithms produce recommendations using information from the above described cognitive

profiles and precedence relations. Through the precedence graph, we have the ability to produce

FCUP 24

Chapter 3. Design

recommendations that fulfil specific pedagogical goals, either introducing new content to allow

the student to progress or recommend content which the student should already know and might

improve his comprehension of the subject. If we add the information from the user’s cognitive

profile we can infer what the user may already know, therefore avoiding recommending topics

the student has comprehended. We now proceed to describe the three algorithms that produce

recommendations purely based on the precedence graph and cognitive profile information.

Algorithm 1 is direct at the first use case and produces recommendations of topics which

precede a given position in a cognitive profile. It starts by expanding the directly preceding

neighbours of the topics in the StartList, denominated Preceding. At each recursion of the

algorithm, for each topic p in Preceding we add the pair (p,relevance) to the list of results

(ResultList) and add p to the auxiliary list NextList, that will be the starting list on the next

recursion. The relevance mapped in the pair (p , relevance) corresponds to the minimum

between the relevance of the currently observed precedence relationship and the relevance of the

relationship of the topic seen in the last iteration. After all the topics in Preceding have been

processed the algorithm takes a recursive step with NextList as the starting list argument. The

result of the recursive call is appended to ResultList When then maximum number of recursions

is reached, ResultList is scored and then the scored results are returned.

Algorithm 2 produces recommendations of topics which succeed a given position in a cognitive

profile and aims to satisfy the second use case. To achieve this, the neighbours directly succeeding

the topics in the StartList, named Succeeding, are expanded. In every recursion of the algorithm,

for every topic s in Succeeding we add the pair (s , relevance) to the list of results (ResultList)

and add s to the auxiliary list NextList, which is the starting list for the next recursion step. Upon

having processed all the topics in Succeeding, the algorithm recurses on NextList as the starting

list argument. The result of the recursive call is appended to ResultList. Similarly, ResultList is

scored and the scored results are returned after all the recursions have been completed.

With algorithm 3 we tackle the third use case. It recommends Topics within a Part, sorted

by the order of the precedence relations. The recommendations consist of the topics contained in

that part, sorted by their order in the precedence graph. This fulfils the purpose of obtaining the

starting point(s) for the user when starting a session on a new part. Unlike the cases above, the

StartList here is composed of the topics that are contained within a part that is identified on the

input, much like a SCORM Organization [36]. It starts by finding every topic in the part and

their precedence relations with each other. Topics that don’t belong in the part are not accounted

25 FCUP

3.2. Recommendation strategy

Algorithm 1 Obtain Preceding Topics
Input:

RT return type,

Context: recommendation context,

OID: object ID,

OT : object type,

UID: user ID,

Size: num. of return objects

procedure GenerateAnte(Niter,StartList)

Niter ← Size / 2

ResultList← empty list

if Niter == 0 then

return ResultList

NextList← empty list

for each Topic entity t in StartList do

for each Precedence p in t do

if p is not validated then

Append p to ResultList and NextList

Append GenerateAnte(Niter−1,NextList) to ResultList

ResultList← Scoring(ResultList,Size)

Return: ResultList

for. Then, for every topic found by the algorithm a Node containing it is created and mapped.

The algorithm also maps the topics’ preceding and succeeding relations with other topics into

two maps, MapPreceding and MapSucceeding respectively. A tree is built with all the mapped

nodes and their respective relations. Starting from the tree’s toots (nodes without precedences

within the collection) the nodes are visited, breadth first, and coloured to avoid repeated visits.

The Size first visited nodes that haven not been validated by the user are returned.

3.2.3.1 Scoring

Scoring occurs as the final step of the algorithms. For scoring, every occurrence of a Topic is

accounted for. For instance, if Topic A precedes both Topic B and Topic C, then the relevance

FCUP 26

Chapter 3. Design

Algorithm 2 Obtain Succeeding Topics
Input:

RT return type,

Context: recommendation context,

OID: object ID, OT : object type,

UID: user ID,

Size: num. of return objects

procedure GeneratePost(Niter,StartList)

Niter ← Size / 2

ResultList← empty list

if Niter == 0 then

return ResultList

NextList← empty list

for each Topic entity t in StartList do

for each Succeeding p in t do

if p is not validated then

Append p to ResultList

else

Append p to NextList

Append GeneratePost(Niter−1,NextList) to ResultList

ResultList← Scoring(ResultList,Size)

Return: ResultList

in both precedences is considered. For Topics that are not a direct precedence to those in the

StartingList, the score is equal to the sum of the minimum value between the Topic’s weight as a

precedence, for a Topic X, and the weight of the precedence of the Topic it precedes, for a Topic

Y, where X precedes Y.

For every occurrence of T’, the weight of the occurrence is calculated as shown in Equation

3.2.3.1.

WEIGHTtopic = {min(relevance(T ′, T),WEIGHTT)) | topic T ′ precedes topic T}

27 FCUP

3.2. Recommendation strategy

Algorithm 3 Obtain Sorted Topics
Input:

RT return type,

Context: recommendation context,

OID: object ID,

OT : object type,

UID: user ID,

Size: num. of return objects

procedure BuildGraph(OID)

TopicSet← GetChildren(OID)

PrecedingMap← empty precedence map

SucceedingMap← empty precedence map

NodeMap← empty node map

for each Topic entity t in TopicSet do

BeforeList← empty precedence list

AfterList← empty precedence list

TempNode← CreateNode(t)

PrecedingList← GetPreceding(t)

SucceedingList← GetSucceding(t)

for each Preceding p in t do

TempTopic← GetTopic(p)

if TopicSet contains TempTopic then

Append TempTopic to BeforeList

for each Succeeding s in t do4

TempTopic← GetTopic(s)

if TopicSet contains TempTopic then

Append TempTopic to AfterList

PrecedingMapgets <t,BeforeList>

SucceedingMapgets <t,AfterList>

NodeMapgets <t,TempNode>

Tree← LinkNodes(NodeMap)

Roots← nodes without precedences in Tree

ReturnList← first SizenonvalidatedNodesobtainedfromBFS(Roots)

Return: ResultList

FCUP 28

Chapter 3. Design

SCOREtopic = {sum(WEIGHTtopic) | for every occurrence of topic found}

3.2.3.2 Node Tree

Each Node is composed of the Topic it refers to in the graph, a list of its preceding and a list of

its succeeding Nodes and a boolean value that signals if the Node has been visited during the

Breadth First Search (BFS). A Tree is composed of a list of its root Nodes - or nodes without

precedences.

3.2.4 Collaborative Filtering Recommendation Algorithm

Our choice for the collaborative filtering algorithm was the cosine similarity measure. We measure

the distance between two users with the given formula:

sim(u, v) = cos(u, v) =
|CPu ∩ CPv|√
|CPu| × |CPv|

After calculating all the similarity between every pair of users, we can build their neigh-

bourhoods, which consist of the K most similar users, and use said neighbourhoods to score

recommendations of Topics for the user in question with:

ScoreuT ′ =

∑
v∈Ku

sim(u, v)IvT ′∑
v∈Ku

sim(u, v)

, where IvT ′ is an indicator function, valued 1 if the user has comprehended T ′ (T ′ ∈ CPv) or

0 otherwise.

3.2.5 Hybrid scoring

We use a cascade based strategy, where the results of the CF algorithm are matched to the

results of the graph based algorithms. The ones with the highest scores that are present in both

sets of recommended topics are presented.

29 FCUP

3.3. API

3.3 API

We chose to use a RESTful design in the API, since it is only used to perform requests in which

data is transitioned or recommendations are obtained. Data can be updated through an HTTP

message with an URI indicating the resource(s) to be changed, the HTTP verb that determines

how to change and JSON on the HTTP message body describing the structures to be updated,

if necessary. Each transaction is unique and independent of others and has to be fully completed,

being rolled back otherwise. We created URLs for different types of data, as well as different

sized sets of data and defined the fields of each entity as seen in the examples displayed in Tables

3.1 and 3.2 for the Users entity.

3.4 Chapter Summary

In this chapter we presented the design choices for the components in our solution. The solution

is a RS designed as a RESTful WS. An abstract data model was designed to be used in

communication between the e-learning platform and our service. Our solution is comprised of a

RESTful API, recommendation model builders and recommendation algorithms.

Table 3.1: Users HTTP Request
Method HTTP Request Description

put put /users/[id] creates or rewrites the data belonging to the user identified by the ID in the URL

post post /users[id] updates or increments the data belonging to the user identified by the ID in the URL

post post /users/set inserts the user(s) data as described in the message body

delete delete /users/[id] eliminates all the data belonging to the user identified by the ID in the URL

Table 3.2: Users HTTP Body

Name Type Description

id String User’s ID

year Integer User’s school year

group String ID of the Group the user is in

FCUP 30

Chapter 3. Design

Chapter 4

Implementation

This chapter describes the implementation of our service, which is comprised of an Application

Programming Interface (API), Object-Relational Mapping (ORM), recommendation engine and

relational database (DB). In Figure 4.1 we show how these components interact with each other.

Each of the parts was built and integrated in a modular fashion, taking in consideration the

possibility future work, additions and tweaks to the service, as well as adaptation to other

platforms. Despite all of the components working with each other, they remain independent of

each other and are usable in other settings. The entirety of the service was developed using JEE

and deployed on a JBoss Application Server (AS) 7.1 servlet container. We chose JEE due to the

standards and APIs it provides out of the box. Every request goes through a Controller class,

which in turn invokes a Resource class (Stateless Enterprise Java Bean (EJB)) and finally the

requests are fulfilled through the use of Entity classes to query and manipulate data. Below, we

describe in further detail the implementation details of the different components.

Figure 4.1: Implementation Scheme

31

FCUP 32

Chapter 4. Implementation

4.1 API

The API is the interface through which the Client (the company’s service) can request recom-

mendations and changes to the Server’s (our service) database in order to maintain data updated

for the recommendations to be accurate. It is a RESTful Web Service developed with the use of

the JAX-RS API (the Java API for RESTful Web Services)[37]. Through the use of the JAX-RS

API we are allowed to use Plain Old Java Objects (POJOs) as RESTful Web resources. Every

request processing begins with URI matching and message body processing, and finally Stateless

EJBs are invoked to deal with the logic of the request. We describe all these steps in further

detail below.

4.1.1 URI matching

When a request is received by the server, URI matching is made by the JAX-RS API through

path annotated classes. Path annotated classes are Java POJOs with declarative annotations.

The path annotation defines the URI that the class corresponds to. Besides defining the URI path

that the class should respond to, it is possible to define what type of data should be expected

in the HTTP message. The classe’s methods can be annotated with the path annotation as

well, allowing for partially different URLs to invoke different methods. To respond to the HTTP

requests for a determined URI, the classe’s methods are annotated with the HTTP request. All

of these details are showed in Listing 4.1.

We defined different classes for the different data that the client could send to our server and

one to process recommendation requests. All of these classes are path annotated, making use

of the JAX-RS API. Each of the classes’ methods are annotated to respond to specific HTTP

requests and sub paths from the classes’ main paths. All of the classes receive the client-side

information in the HTTP body messages in JSON, which is automatically parsed and built as

a POJO through the use of the Java API for JSON Processing [38], so we defined classes for

the different types of expected data to be received. Having the URI matched and the message

body turned into the respective POJOs, the respective method from the corresponding Stateless

EJB[39] is invoked.

Listing 4.1: Path Annotated Class

package pt.sea.service.controllers;

33 FCUP

4.2. ORM

import pt.sea.service.objects.UsersObject;

import pt.sea.service.resources.UsersRS;

import javax.inject.Inject;

import javax.ws.rs.*;

@Path("users")

public class UsersController {

@Inject

private UsersRS usersRS;

@Path("{id}")

@PUT

@Consumes("application/json")

public void putUser(@PathParam("id") String id, UsersObject usersObject)

{

usersRS.put(usersObject);

}

}

4.1.2 Stateless EJBs

Stateless EJBs are one type of Session EJBs which’s lifecycle is tied to the duration of the

invoked method, making them ideal to implement the business logic in a RESTful Web Service.

Upon invocation, they implement the logic tied to the specific HTTP request that triggered their

invocation and perform the adequate consultations or alterations to the server-side database

through the use of the Entity Manager transactions.

4.2 ORM

To aid the implementation of the business logic we use ORM. More specifically, we use the Java

Persistance API (JPA) [40]. JPA facilitates a POJO persistence model for ORM, through the

use of Entity EJBs. Entities are a type of EJB which are managed by the Entity Manager[41].

Through the use of the JPA, DB manipulation is simplified, since every transaction and its

FCUP 34

Chapter 4. Implementation

integrity (and necessary rollbacks) are managed by the persistence framework.

4.2.1 Entity EJBs

An entity EJB is a lightweight persistance domain object. Each entity EJB generally represents

a database table, and each instance of an entity EJB corresponds to a row in said table.

4.3 Recommendation Engine

The recommendation engine consists of a negative border generator, a collaborative filtering

recommendation engine, graph based recommendation engine and a data model trainer.

4.3.1 Negative border generator

The negative border generator searches for all the topics the user has apprehended, the Cognitive

Profile(CP), and seeks all preceding and/or succeeding topics of the CP that the user has not

apprehended. This last set of topics forms the negative border, which is used in the graph based

recommendation engine.

4.3.2 Graph based recommendation engine

The graph based recommendation engine implements all of the three algorithms described in

subsection 3.2.3. Depending on the context of the recommendation request, one of the three

implementations is invoked. In case of a request of a preceding or succeeding recommendation,

the negative border generator is used and an implementation of 1 or 2 is called. In the case of a

request to obtain a list of topics contained by a part, a implementation of 3 is invoked, which

seeks the root topics within the part and creates a graph by expanding the topics preceded by

them in a breadth first manner.

4.3.3 Collaborative filtering recommendation engine

The collaborative filtering recommendation, which was designed and implemented by a member

of our team, is an implementation of the K Nearest Neighbours classifier with the cosine

35 FCUP

4.4. Chapter Summary

similarity measure described in 3.2.4. It is composed of a data model trainer, which uses the

e-learning platform’s usage data to create the neighbourhoods for each user, and a user KNN

recommendation engine. We persist the data model in memory, eliminating the need for constant

disk access, therefore increasing the speed of the recommendation process, through the use of a

Singleton EJB[39].

4.4 Chapter Summary

We described the implementation of our solution. We used JEE and related technologies to deploy

a RESTful API. Data transactions are managed by JPA. All the recommendation algorithms are

implemented in Java. The recommendation model is persisted through the use of EJBs.

FCUP 36

Chapter 4. Implementation

Chapter 5

Validation

Our recommender system (RS) was subject to two types of tests. Offline validation tests, and

validation and usability tests. The offline validation tests aimed to validate the precision of the

recommendations. Precision is very important but not sufficient to measure the success of a

recommender system within a learning platform. With this in mind validation and usability

tests were conducted by specialists in the validation of e-learning tools, who were part of the

team. In these tests the precision of the recommendations as well as the efficacy, efficiency and

satisfaction of the users while using the e-learning platform in conjunction with our system were

tested. The efficacy corresponds to the capability of the users when it comes to completing

tasks using the system, as well as their quality in doing so. Efficiency is related to the amount

of resources consumed during the tasks performed. The satisfaction metric is based on the

subjective reactions of the users while using the system. In total four metrics were analysed, but

only three are relevant for our work. These are:

Precision if the recommendations obtained match the expected recommendations;

Efficacy how many topics the user validates during the session, and how high his mark while

doing so;

Efficiency how many resources the user consumed during the session.

37

FCUP 38

Chapter 5. Validation

Figure 5.1: Artificial Data Set

5.1 Offline tests

Offline validation tests were performed during development and integration of the recommender

system with the company’s platform development and content provider teams to ensure the RS’s

correct operation and precision. We also conducted our own validation tests. We created a set of

artificial CPs from an artificial set of topics and precedences shown in Figure 5.1. In this set,

all the topics have the same weight in every relation they are a part of. This simplifies human

comprehension of the results. The nodes that are visited the most in the recursion steps are the

ones with the highest score.

Based on this data set we requested recommendations of 3 items, for different users with

different cognitive profiles. For each different user, we requested either:

a preceding topics based on the user’s CP;

b succeeding topics based on the user’s CP;

c topics preceding topic 9, considering the user’s CP;

d topics succeeding topic 9, considering the user’s CP.

Requests a and c use Algorithm 1 while requests b and d use Algorithm 2.

The test results confirmed that all the recommendations obtained were as expected, for every

scenario tested. The results are shown in Table 5.1. The return for request a is always empty

because the student has no observed yet unvalidated topic in his history.

39 FCUP

5.1. Offline tests

Table 5.1: Offline Test Results
Case Topics in CP Returned recommendation

1 [4,6,7,9]

a: []

b: [12,11,10]

c: []

d: [11,12]

2 [4,6,9]

a:[]

b: [12,11,7]

c: [7,5]

d: [11,12]

3 [4,5,9]

a:[]

b: [7,9,8]

c: [7]

d: [11,12]

4 [4,6,7,10]

a: []

b: [9,12,13]

c: []

d: [12,11]

5 [7]

a: []

b: [10,9]

c: [6,4]

d: [12,11]

6 [4,6,10]

a: []

b: []

c: [4,6,7]

d: []

7 [11,12,13]

a: []

b: []

c: [4,6,7]

d: []

8 [2]

a: []

b: [5,4]

c: [4,6,7]

d: [11,12]

FCUP 40

Chapter 5. Validation

Figure 5.2: Usability Tests

5.2 Usability Tests

The usability tests were conducted in real time with a group of young pre-university students

interacting with the system, as seen in Figure 5.2.

The usability tests were done by having multiple users using the e-learning platform in either

a learning mode or a testing mode. In the learning mode, the users were presented with a set of

expository learning objects pertaining a topic. At the end of this set they were tested on what

they apprehended during the session. In the testing mode, the users were subjected to a set of

quizzes in order to validate their existing knowledge. Despite the mode the user was subject to,

efficacy and efficiency where measured. Efficacy corresponds to the number of tasks a student

successfully completed (number of Topics comprehended). In other words, it’s the amount of

topics the user validates during the session. Efficiency is the amount of recommended resources

the user consume during the test.

The usability tests revealed a visible correlation between the efficacy and efficiency of the

students, which can be seen in Table 5.2. We represent the best fit regression curve between

efficiency and efficacy in Figure 5.3, where we can see that the trend suggests that the increase

in success is related to the number of recommendations followed by the student.

41 FCUP

5.3. Chapter Summary

Table 5.2: Users’ efficacy and efficiency

User Mode Efficacy Efficiency

S3 T 2 2

S4 T 1 2

S5 L 2 4

S6 L 3 4

S9 L 3 4

S10 T 1 2

S11 T 3 2

S12 L 4 8

Figure 5.3: Linear Regression Graph

5.3 Chapter Summary

We described the test environments and how the tests were conducted. From the results of the

tests we were able to validate the correct functioning of the recommender system and its positive

impact in the e-learning platform.

FCUP 42

Chapter 5. Validation

Chapter 6

Conclusion

The purpose of our work was the development of a recommender system for an e-learning platform,

that would improve the platform’s usability and adaptability, and the user’s experience along

with it. Our finished work meets all the specifications we detailed and achieves the goals we set.

We started by investigating the state of the art of the technologies related to the scope of our

project. From ITS to RSs in TEL, during this investigation we were able to realise that adaptivity

in TEL is a very discussed and ample subject, with multiple possible solutions available.

We designed several aspects of the recommendation solution, such as the recommendation

algorithms, the API and the abstract data model.

The solution we proposed uses JEE and underlying technologies such as JPA and EJBs

along with a MySQL DB for data storage. We implemented our hybrid recommender system

as a RESTful web service. Our DB and every transaction with it is managed by ORM, which

ensures the security and integrity of the transactions. Our solution is completely modular so

that future updates are easy to perform, previous features are easy to tweak and new features

easy to integrate.

The validation to our solution showed that the recommender system was working as expected.

They also revealed a visible correlation between usage of recommended resources and success in

the validation of topics.

43

FCUP 44

Chapter 6. Conclusion

6.1 Future work

A possible improvement in terms of time performance would be to not use ORM. Using a driver,

code all the queries and the process of handling every transaction with the database reduces DB

query time. But it is a very time costly solution, since it requires the programming of every

query and fallback, while ORM eases DB operation and deals with transactions with minor

intervention necessary. The recommendation engine can certainly be improved, but we need

more tests with a large user base and data sets to discern what those may be, which will only be

available when the platform’s published.

Bibliography

[1] eLearning Industry. The Top eLearning Statistics and Facts For 2015 You Need To Know -

eLearning Industry. https://elearningindustry.com/elearning-statistics-and-facts-for-2015.

Visited on 2016-09-15.

[2] Gediminas Adomavicius and Alexander Tuzhilin. Toward the next generation of recommender

systems: A survey of the state-of-the-art and possible extensions. IEEE Trans. on Knowl.

and Data Eng., 17(6):734–749, June 2005.

[3] Rhonda Robinson, Michael Molenda, and Landra Rezabek. Facilitating learning. Educational

technology: A definition with commentary, pages 15–48, 2008.

[4] Gerry Stahl, Timothy Koschmann, and Dan Suthers. Computer-supported collaborative

learning: An historical perspective. Cambridge handbook of the learning sciences, 2006:409–

426, 2006.

[5] Martin Weller. Virtual learning environments: Using, choosing and developing your VLE.

Routledge, 2007.

[6] Moodle. Moodle. https://moodle.org/, 2016. Visited on 2016-06-01.

[7] Ronald Robberecht. Interactive nonlinear learning environments. The Electronic Journal of

e-Learning, 5(1):59–68, 2007.

[8] Khan Academy. Khan academy. https://www.khanacademy.org/, 2016. Visited on 2016-06-

01.

[9] Nava Tintarev and Judith Masthoff. Recommender Systems Handbook, volume 54. 2011.

[10] IEEE-SA. Ieee-sa - the ieee standards association. http://standards.ieee.org/index.html.

Visited on 2016-06-02.

45

https://elearningindustry.com/elearning-statistics-and-facts-for-2015
https://moodle.org/
https://www.khanacademy.org/
http://standards.ieee.org/index.html

FCUP 46

Bibliography

[11] IEEE-SA. Ieee sa - 1484.12.1-2002 - ieee standard for learning object metadata. https:

//standards.ieee.org/findstds/standard/1484.12.1-2002.html. Visited on 2016-06-02.

[12] ADL. Adl net – advanced distributed learning. https://www.adlnet.gov/. Visited on

2016-06-02.

[13] ADL. Scorm – adl net. https://www.adlnet.gov/adl-research/scorm/. Visited on 2016-06-02.

[14] ASSIST. Asist | the information association for the information aget. https://www.asist.org/.

Visited on 2016-06-02.

[15] ASSIST. Dcmi home: Dublin core metadata initiative (dcmi). http://dublincore.org/.

Visited on 2016-06-02.

[16] Keith Harman. Learning objects: standards, metadata, repositories, and LCMS. Informing

Science, 2007.

[17] Reva Freedman, Syed S Ali, and Susan McRoy. Links: what is an intelligent tutoring system?

intelligence, 11(3):15–16, 2000.

[18] Indira Padayachee. Intelligent tutoring systems: Architecture and characteristics. In

Proceedings of the 32nd Annual SACLA Conference.(Cité p. 2), August, 2002.

[19] Roger Nkambou, Riichiro Mizoguchi, and Jacqueline Bourdeau. Advances in intelligent

tutoring systems, volume 308. Springer Science & Business Media, 2010.

[20] Addie Johnson and Niels Taatgen. User modeling. The handbook of human factors in web

design, pages 424–438, 2005.

[21] Jatinder Hothi and Wendy Hall. An evaluation of adapted hypermedia techniques using

static user modelling. In Proceedings of the second workshop on adaptive hypertext and

hypermedia, pages 45–50, 1998.

[22] Reinhard Oppermann. Adaptively supported adaptability. International Journal of Human-

Computer Studies, 40(3):455–472, 1994.

[23] Anthony Jameson. Adaptive interfaces and agents. Human-Computer Interaction: Design

Issues, Solutions, and Applications, 105:105–130, 2009.

[24] Milos Kravcik, Marcus Specht, and Reinhard Oppermann. Evaluation of winds authoring

environment. In International Conference on Adaptive Hypermedia and Adaptive Web-Based

Systems, pages 166–175. Springer, 2004.

https://standards.ieee.org/findstds/standard/1484.12.1-2002.html
https://standards.ieee.org/findstds/standard/1484.12.1-2002.html
https://www.adlnet.gov/
https://www.adlnet.gov/adl-research/scorm/
https://www.asist.org/
http://dublincore.org/

47 FCUP

Bibliography

[25] LM Aroyo, Riichiro Mizoguchi, and CK Tzolov. Ontoaims: ontological approach to

courseware authoring. 2004.

[26] Michael J Pazzani. A framework for collaborative, content-based and demographic filtering.

Artificial Intelligence Review, 13(5-6):393–408, 1999.

[27] Hendrik Drachsler, Hans GK Hummel, and Rob Koper. Personal recommender systems for

learners in lifelong learning networks: the requirements, techniques and model. International

Journal of Learning Technology, 3(4):404–423, 2008.

[28] Katrien Verbert, Nikos Manouselis, Xavier Ochoa, Martin Wolpers, Hendrik Drachsler,

Ivana Bosnic, and Erik Duval. Context-aware recommender systems for learning: a survey

and future challenges. IEEE Transactions on Learning Technologies, 5(4):318–335, 2012.

[29] Michael D Ekstrand, John T Riedl, and Joseph A Konstan. Collaborative filtering

recommender systems. Foundations and Trends in Human-Computer Interaction, 4(2):81–

173, 2011.

[30] Robin Burke. Hybrid recommender systems: Survey and experiments. User Modeling and

User-Adapted Interaction, 12(4):331–370, November 2002.

[31] W3C. World Wide Web Consortium (W3C). http://www.w3.org/. Visited on 2015-11-15.

[32] W3C. Web Services Architecture. http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/.

Visited on 2015-11-15.

[33] W3C. Relationship to the World Wide Web and REST Architectures. http://www.w3.org/

TR/2004/NOTE-ws-arch-20040211/#relwwwrest. Visited on 2015-11-15.

[34] Roy Thomas Fielding. Architectural styles and the design of network-based software

architectures. PhD thesis, University of California, Irvine, 2000.

[35] W3C. SOAP Version 1.2 Part 1: Messaging Framework (Second Edition). http://www.w3.

org/TR/soap12-part1/. Visited on 2015-11-15.

[36] Rustici Software. SCORM Content Packaging. http://scorm.com/scorm-explained/

technical-scorm/content-packaging/. Visited on 2015-10-10.

[37] Oracle Corporation. Java API for RESTful Services (JAX-RS). https://jax-rs-spec.java.net/.

Visited on 2015-10-29.

http://www.w3.org/
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/#relwwwrest
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/#relwwwrest
http://www.w3.org/TR/soap12-part1/
http://www.w3.org/TR/soap12-part1/
http://scorm.com/scorm-explained/technical-scorm/content-packaging/
http://scorm.com/scorm-explained/technical-scorm/content-packaging/
https://jax-rs-spec.java.net/

FCUP 48

Bibliography

[38] Oracle Corporation. The Java Community Process(SM) Program - JSRs: Java Specification

Requests - detail JSR# 353. https://jcp.org/en/jsr/detail?id=353. Visited on 2015-10-29.

[39] Oracle Corporation. Entities - The Java EE 7 Tutorial. https://docs.oracle.com/javaee/7/

tutorial/ejb-intro002.htm#GIPJG. Visited on 2015-10-29.

[40] Oracle Corporation. Java Persistence API. http://www.oracle.com/technetwork/java/

javaee/tech/persistence-jsp-140049.html. Visited on 2015-10-29.

[41] Oracle Corporation. 37.3 Managing Entities - Java Platform, Enterprise Edition: The Java

EE Tutorial (Release 7). https://docs.oracle.com/javaee/7/tutorial/persistence-intro003.htm.

Visited on 2015-10-29.

https://jcp.org/en/jsr/detail?id=353
https://docs.oracle.com/javaee/7/tutorial/ejb-intro002.htm#GIPJG
https://docs.oracle.com/javaee/7/tutorial/ejb-intro002.htm#GIPJG
http://www.oracle.com/technetwork/java/javaee/tech/persistence-jsp-140049.html
http://www.oracle.com/technetwork/java/javaee/tech/persistence-jsp-140049.html
https://docs.oracle.com/javaee/7/tutorial/persistence-intro003.htm

	Abstract
	Resumo
	List of Tables
	List of Figures
	Listings
	Acronyms
	1 Introduction
	1.1 Motivation
	1.2 Goals
	1.3 Structure

	2 State of the art
	2.1 Technology Enhanced Learning
	2.1.1 Learning Object Metadata

	2.2 Intelligent Tutoring Systems
	2.3 Data Mining
	2.4 User modelling
	2.5 Adaptive Educational Hypermedia
	2.6 Recommender Systems
	2.6.1 Content-based recommendation techniques
	2.6.2 Collaborative-filtering recommendation techniques
	2.6.2.1 User-based collaborative filtering
	2.6.2.2 Item-based collaborative filtering

	2.6.3 Hybrid recommendation techniques
	2.6.3.1 Weighted
	2.6.3.2 Switching
	2.6.3.3 Mixed
	2.6.3.4 Cascade

	2.7 Web Services
	2.7.1 Architectural style - Simple Object Access Protocol
	2.7.2 Architectural style - Representational State Transfer

	2.8 Chapter Summary

	3 Design
	3.1 Abstract Data Model
	3.2 Recommendation strategy
	3.2.1 Cognitive Profile
	3.2.2 Negative Border
	3.2.3 Graph Based Recommendation Algorithms
	3.2.3.1 Scoring
	3.2.3.2 Node Tree

	3.2.4 Collaborative Filtering Recommendation Algorithm
	3.2.5 Hybrid scoring

	3.3 API
	3.4 Chapter Summary

	4 Implementation
	4.1 API
	4.1.1 URI matching
	4.1.2 Stateless EJBs

	4.2 ORM
	4.2.1 Entity EJBs

	4.3 Recommendation Engine
	4.3.1 Negative border generator
	4.3.2 Graph based recommendation engine
	4.3.3 Collaborative filtering recommendation engine

	4.4 Chapter Summary

	5 Validation
	5.1 Offline tests
	5.2 Usability Tests
	5.3 Chapter Summary

	6 Conclusion
	6.1 Future work

