
Planning and
Coordination of
Multiple Autonomous
Vehicles
Tiago Miguel Teixeira Sá Marques
Mestrado em Ciência de Computadores
Departamento de Ciência de Computadores
2016

Orientador
Luís Lopes, Professor, Faculdade de Ciências da Universidade do Porto

Coorientador
José Pinto & Paulo Dias, Investigador,
Faculdade de Engenharia da Universidade do Porto

Todas as correções determinadas

pelo júri, e só essas, foram

efetuadas.

O Presidente do Júri,

Porto, ______/______/_________

"To succeed, planning alone is insufficient. One must improvise as well"
- Isaac Asimov, Foundation

3

To my grandmother, Amélia

4

Acknowledgments

First of all, I would like to thank my parents and grandparents for the unconditional
support and trust demonstrated throughout my academic life. Without them, every
thing would’ve been much harder. To my sister Carla, for her patience in dealing with
her grumpy brother.

I would also like to extend my gratitude to my advisors, José Pinto, Paulo Dias and
Prof. Luís Lopes, for always being available to discuss ideas, provide feedback and
material without which this project couldn’t have been completed. To all the LSTS
people for welcoming me into their team and showing interest in my work.

To the friends I made at Faculdade de Ciências da Universidade do Porto, that made
this past years so much fun, in particular João Delgado for being so supportive,
patience and providing rational thoughts during tougher times.

Finally, I want to thank Ana for her dedication and support that made me keep my
head straight in the face of adversity. I could always count on you for being there
when I most needed.

5

Agradecimentos

Gostaria de agradecer, acima de tudo, aos meus pais e avós pelo apoio e confiança
incondicionais que demonstraram ao longo da minha vida académica. Sem vocês,
teria sido tudo mais difícil. À minha irmã Carla pela paciência que tem em aturar o
irmão rabugento.

Quero também estender os meus agradecientos aos meus orientadores, José Pinto,
Paulo Dias e Prof. Luís Lopes, por estarem sempre disponíveis a discutir ideias,
fornecer comentários e material sem o qual este projeto não teria sido concluído. A
todas as pessoas do LSTS por me terem acolhido na equipa e demonstrado interesse
no meu trabalho.

Aos amigos que fiz na Faculdade de Ciências da Universidade do Porto, por tornarem
estes anos incríveis, em particular ao João Delgado pelo apoio, paciência e por me
chamar à razão durante tempos mais difíceis.

Finalmente, quero agradecer à Ana pela dedicação e apoio que me fizeram manter
motivado e confiante perante todas as adversidades. Pude contar sempre contigo
quando mais precisei.

6

Abstract

An autonomous robot is one that performs tasks with a high degree of autonomy. Such
robots have proven to be very prolific and important tools on a variety of scientific
activities and even though, as a consequence, they are getting ubiquitous, their use is
still very much reduced to a single vehicle per activity.

Heterogeneous networks of autonomous vehicles offer increased functionality through
simpler interconnected robotic peers; instead of using a large monolithic vehicle,
use simpler ones which also helps improving flexibility and robustness. However,
in order to control and task such vehicular networks appropriately, one must be
aware of the state of each system, their capabilities, current configurations, details
of the area of operation, weather conditions, other vehicles operating in the area, etc.
Furthermore, it must also account for changes in the environment, in mission and
vehicles’ requirements, as well as hardware failure.

LSTS has been designing, building and operating unmanned underwater, surface and
air vehicle systems, to further develop Networked Vehicle Systems and operations. It
has successfully operated networks of vehicles in various scenarios while also employing
its software toolchain Neptus-IMC-Dune.

This dissertation proposes and describes an extension of LSTS’s toolchain, for offline
planning, and coordination of multiple autonomous vehicles, based on high-level objec-
tives, automatic reasoning and mixed-initiative methods. This way I expect to reduce
the overload on a human operator during the different stages of autonomous vehicles’
operations. This framework, called MvPlanning, has been in missions of small scale,
both in simulation (1 to 5 vehicles) and real-world scenarios (2 vehicles) such as in
the Recognized Environmental Picture - REP16 exercise and in the networking and
communication exercises of the Networked Ocean project, in Slettvika (Norway). The
approach here presented aims to be a viable solution for planning and coordination
of heterogeneous networks of vehicles, contrary to other approaches that focused on

7

the underwater version of such systems. It tries to maintain the operator aware of the
coordination and planning steps without overwhelming it, but still require the its input
so that he doesn’t get over-reliant and confident or even unaware of the automated
decisions being taken and why.

8

Contents

Abstract 7

List of Acronyms 14

List of Figures 18

1 Introduction 19

1.1 Motivation . 19

1.2 Networked Vehicle Systems . 21

1.3 Problem Statement . 22

1.4 Dissertation Structure . 22

2 Background 23

2.1 LSTS’s Software toolchain . 23

2.1.1 IMC - Inter Module Communication protocol 23

2.1.1.1 PlanSpecification . 24

2.1.1.2 PlanManeuver . 25

2.1.2 Neptus . 25

2.1.2.1 Neptus Console . 25

2.1.2.2 Mission Review and Analysis 27

2.1.3 DUNE . 27

9

2.1.4 Ripples . 27

2.2 LSTS Systems . 28

2.2.1 Vehicles . 28

2.2.1.1 LAUV - Light Autonomous Underwater Vehicle 28

2.2.1.2 X8 - Flying Wing . 29

2.2.2 Support Systems . 29

2.2.2.1 Manta - Communications Gateway 29

2.3 Planning . 30

2.3.1 Planning definitions . 31

2.3.2 Knowledge of the environment 32

2.4 Planning Languages . 32

2.4.1 PDDL - Planning Domain Definition Language 32

2.5 Coverage Area planning . 33

2.5.1 Introduction . 33

2.5.2 Algorithms classification . 34

2.5.3 Choset’s Taxonomy . 35

2.5.3.1 Exact cellular decomposition 35

2.5.3.2 Approximate cellular decomposition 36

2.5.4 Classical exact cellular decomposition 36

2.5.4.1 Trapezoidal decomposition 36

2.5.4.2 Boustrophedon decomposition 37

2.5.5 Morse-Based cellular decomposition 38

2.5.6 Grid-based cellular decomposition 38

2.5.6.1 SpiralSTC algorithm 39

2.5.6.2 Offline SpiralSTC . 40

10

2.5.6.3 Online SpiralSTC . 42

2.5.6.4 Ant-Line SpiralSTC 42

2.6 Additional Concepts . 43

2.6.1 Automatic Identification System 43

2.6.2 Ship Draught . 43

2.6.3 Sonar - Sound Navigation and Ranging 43

2.6.3.1 Sidescan Sonar . 44

2.6.3.2 Multibeam Sonar . 45

3 Solution 46

3.1 Tasks . 47

3.1.1 Task constraints . 48

3.1.2 Profile . 49

3.2 Operational area . 51

3.3 User interface . 52

3.4 Monitors and Supervisors . 53

3.4.1 VehicleAwareness . 54

3.4.2 ExternalSystemsMonitor . 56

3.4.3 Environment . 57

3.4.4 StateMonitor . 58

3.5 Plan generation . 59

3.5.1 Coverage Path Planning: SpiralSTC 60

3.6 Plan allocation . 62

3.6.1 Allocation strategy . 63

3.6.2 Replanning . 64

3.7 Internals and utility classes . 65

11

3.7.1 PlanType Java Class . 65

3.7.2 Map cells . 66

3.7.3 Map decompositions . 66

3.7.4 GridArea . 67

3.7.5 Consoles and adaptors . 68

3.7.6 External systems simulator . 69

3.7.7 Exceptions . 69

3.8 Use case . 70

4 Experiments 73

4.1 REP16 - Rapid Environment Picture 73

4.1.1 Experiment 1 - Alfeite’s navy base 74

4.1.2 Experiment 2 - Sesimbra’s coast 77

4.2 Discussion . 79

4.2.1 Tasks . 79

4.2.1.1 Awareness interfaces 79

4.2.1.2 ToSafety task’s depth 79

4.2.2 Error handling . 79

4.2.2.1 Interrupted tasks . 80

4.2.2.2 Partitioned areas to cover 81

4.2.2.3 Tasks outside the operational area 81

5 Conclusions and Future work 82

5.1 Conclusions . 82

5.2 How much automation is too much? . 83

5.3 Operator interface . 83

12

5.3.1 MvPlanning map editor . 83

5.4 Tasks . 84

5.4.1 Actions . 84

5.4.2 Allocation intermediate task . 85

5.4.3 Loiter task . 85

5.5 Improved environment awareness . 86

5.6 Planning . 86

5.6.1 Temporal planning . 86

5.6.2 Future planning . 87

5.6.3 Online Planning . 88

5.6.4 Automated Planners . 88

5.6.4.1 LPG . 88

5.6.4.2 Europa . 88

Appendices 90

A MvPlanning 91

A.1 AbstractAllocator . 91

A.2 PlanTask . 92

A.3 GridArea . 92

13

List of Acronyms

AIS Automatic Identification System

APDL Administração dos Portos do Douro, Leixões e Viana do Castelo

API Application Program Interface

AUV Autonomous Underwater Vehicle

AWT Abstract Window Toolkit

BNF Backus-Naur Form

CPP Coverage Path Planning

EUROPA Extensible Universal Remote Operations Architecture

GUI Graphical User Interface

IMC Inter Module Communication

IMU Inertial Measurement Unit

JAXB Java Architecture for XML Binding

LAUV Light Autonomous Vehicle

LSTS Laboratòrio de Sistemas e Tecnologias Subaquaticas

MER Mars Exploration Rovers

MRA Mission Review and Analysis

NVS Networked Vehicle Systems

NVL Networked Vehicles’ Language

PDDL Planning Domain Definition Language

REP Rapid Picture Environment

RPM Rotations Per Minute

SONAR Sound Navigation and Ranging

14

STC Spanning Tree Coverage

TCP Transmission Control Protocol

UAV Unmanned Aerial Vehicle

UI User Interface

XML eXtensible Markup Language

15

List of Figures

1.1 Networked vehicle systems . 21

2.1 Neptus . 26

2.2 Neptus console . 26

2.3 One of MRA’s features, a sidescan analyzer 27

2.4 Ripples . 28

2.5 LAUV - Light Autonomous Underwater Vehicle 29

2.6 X8 Flying Win . 30

2.7 Manta communications gateway . 30

2.8 Example of an approximate decomposition. 36

2.9 Exact cellular decomposition. 37

2.10 Boustrophedon decomposition and the coverage path generated. 37

2.11 Morse-based cellular decomposition with morse function h(x, y) = x2+y2. 38

2.12 Grid-based cellular decomposition . 39

2.13 Grid decomposition and Minimum Spanning Tree,as implemented in
MvPlanning . 41

2.14 Path generated (yellow) around the spanning tree (red) 41

2.15 Sidescan sonar. 44

2.16 How to achieve data redundancy with sonar sensors 45

16

3.1 General architecture . 47

3.2 Operational area displayed on the map 51

3.3 User Interface’s state machine . 52

3.4 Neptus ’s plans tree . 53

3.5 Neptus ’s notifications . 53

3.6 First VehicleAwareness version . 55

3.7 Current version of VehicleAwareness . 56

3.8 External systems monitor . 56

3.9 External system symbol in the map . 57

3.10 UML diagram of Environment . 58

3.11 Neptus and MvPlanning UI, and Waiting state. The black box is a
ParallelepipedElement provided by Neptus, to draw areas in the map 59

3.12 Plan generation state machine . 60

3.13 Complete coverage area plan . 61

3.14 Sidescan overlay . 62

3.15 PlanAllocator state machine . 63

3.16 Allocation strategy’s base behaviour . 64

3.17 PlanType definition . 65

3.18 UML diagram of MapCell . 66

3.19 UML diagram of MapDecomposition 67

3.20 UML diagram of ConsoleAdapter . 68

3.21 LSTS mission’s area to survey . 70

3.22 Different ways of approaching survey planning, by hand. On the left
the mix of "goto" and "popup" maneuvers. On the right two "rows"
maneuvers . 71

3.23 Some of the plans generated by MvPlanning 72

17

4.1 Scenario of experiment 1 at Alfeite’s Port 75

4.2 SpiralSTC: Wasted space, in blue. 76

4.3 One of the plans generated at Alfeite, as executed by Noptilus-1 77

4.4 Part of the paths covered by Noptilus-1 and Noptilus-3 at Sesimbra’s
coast, already with safe paths. 78

4.5 Area to cover, split in two . 81

A.1 UML diagram of AbstractAllocator . 91

A.2 UML PlanTask . 92

A.3 UML diagram of GridArea . 92

18

Chapter 1

Introduction

In this chapter I introduce the reader to what motivated this thesis 1.1 as well as the
problem statement 1.3. Finally, I define the thesis’ structure 1.4.

1.1 Motivation

An autonomous robot is one that performs tasks with a high degree of autonomy [1].
Some examples of autonomous robots are, MER-Mars Exploration Rover [2] - a car-
size robotic rover that’s exploring Mars - was built to investigate Martian climate and
geology, planet habitability, etc. [2, 3], Autonomous vacuum robots whose purpose is
to cover and vacuum an area efficiently, or Unmanned Aerial Vehicles tasked with fire
detection on forests.

Planning of autonomous vehicles has been, typically, done by creating a priori a plan
for them to execute, i.e. create a sequence of locations and parameters (velocity,
altitude, etc.), that define the desired path for a vehicle to traverse. This kind of
systems have proven to be very prolific and important tools on a variety of scientific
endeavors, from space exploration to maritime data collection and surveillance, and
even more so as technological advances reduce their cost and expand their autonomy,
sensory capabilities and functionality. Even though, as a consequence, such vehicles
are getting ubiquitous, their use is still very much reduced to a single vehicle per
activity, even if more are available.

Heterogeneous networks of vehicles offer advantages such as decreased systems com-
plexity; instead of using a large monolithic vehicle, use several simpler ones which

19

CHAPTER 1. INTRODUCTION 20

also helps improving flexibility and robustness. However, in order to control and
task such vehicular networks appropriately, one must be aware of the state of each
system, their capabilities, current configurations, the state of the area of operation,
weather conditions, other vehicles operating, etc. Such task becomes even more
problematic when deploying systems whose tasks in the mission makes them operate
out of communication range, for instance when an AUV goes underwater. Due to
Human cognitive limitations [4], e.g. limited reaction speed, biased decision making,
and the complexity of coordinating and planning multiple vehicles, it is critical to
divide some of this work.

To avoid a single operator getting overwhelmed with decision making in these scenar-
ios, more than one operators can be tasked with planning the missions, being each
responsible for one assigned vehicle (or some other asset division). Still, this solution
would be far from ideal, because besides n operators having to synchronize the plans
and decisions between them, it’s not cost-effective and practical to have an increasing
number of operators and their resources (computer, etc), as the missions’ complexity
grows.

Traditional approaches on planning worked by giving each system an initial state and
objective states and expecting them to create and execute the plan autonomously.
However appealing, such levels of automation might not be desirable throughout all
the systems’ domains of application.

Some studies and experiments [5–7], suggest that removing the Human factor from
path creation, leads to over-reliance on automated decisions, automation bias, compla-
cency and loss of situation awareness, which, itself, might lead to lack of appropriate
reaction from an operator, should something fail. Moreover, given the real-world
dynamic environments in which such systems are deployed, planning is characterized
by missing information, inaccurate models and changing objectives. It is not practical
to model all possible real-world events and contingencies in a domain model and thus
Human insight is required given its experience and judgment.

Considering the complexity of heterogeneous vehicular networks, the high variability
of the vehicles’ configurations, sensors and overall uncertainty, it seems very important
to couple automation with Human judgment, hence using mixed-initiative methods in
the planning process to offload work from the operator.

CHAPTER 1. INTRODUCTION 21

1.2 Networked Vehicle Systems

The LSTS - Laboratório de Sistemas e Tecnologia Subaquática (Underwater Systems
and Technology Laboratory from Porto University) - has been designing, building and
operating unmanned underwater, surface and air vehicle systems in order to build
and further develop Networked Vehicle Systems (NVS) and operations. An NVS is
a complex network composed of heterogeneous nodes (e.g. robots, sensors, routers,
consoles). Nodes in the network have specific sensing, communication and moving
capabilities and limitations which makes room for very interesting but complex system-
level coordination and planning problems.

Figure 1.1: Networked vehicle systems

The LSTS was established in 1997 with researchers mainly drawn from Electrical and
Computer Engineering, Mechanical Engineering and Computer Science backgrounds
and since the early days the group has been focusing on the coordinated operation of
vehicle networks.

During the last years, it has successfully utilized unmanned air, ground, surface and
underwater vehicles in the Atlantic and Pacific oceans, and also in the Mediterranean
sea, while also using its software toolchain Neptus-IMC-Dune. Furthermore LSTS has
also been working with and testing Delay Tolerant Network protocols and architec-
tures.

CHAPTER 1. INTRODUCTION 22

1.3 Problem Statement

LSTS has been developing software and hardware that allows the simultaneous control
of, typically heterogeneous, multiple autonomous vehicles [8, 9]. Nonetheless, plan-
ning and coordinating such varied robotic platforms requires from the operator great
amounts of attention and capacity of action, which inevitably takes its toll, leading to
errors. This dissertation gathers concepts from previous LSTS experiments [10, 11],
and with it I’m interested in building a framework that reduces the overload of Human
operators while planning, coordinating and operating multiple vehicles, by creating
an automated solution to help take complex decisions, all the while permitting the
operator to supervise and intervene when and if necessary. It’s main objectives are to
extend Neptus by means of a plugin and:

• Extract capabilities from the available vehicles;

• Generate plans based on high-level definitions, such as "area to cover", "point
to visit", etc.;

• Automatic allocation of the plans to the available vehicles, according to their
capabilities an the plan’s requirements;

• Allow multiple-vehicles to be controlled, simultaneously, towards common goals,
set by an operator;

• Improve safety by imposing global restrictions and creating safeguards.

1.4 Dissertation Structure

This dissertation is organized as follows. Chapter 2 describes most of the research done,
and background needed to understand this work, Chapter 3 illustrates in detail the
software solution designed and developed to address the problem, called MvPlanning,
Chapter 4 contains experiments in real-world scenarios designed to test the solution
developed, as well as a discussion of its results. Finally, Chapter 5 contains a discussion
of future work and developments to improve and expand MvPlanning ’s capabilities.

Chapter 2

Background

This chapter will present the background and concepts necessary to understand the
work developed and experiences conducted, that are described in later chapters. The
software toolchain 2.1 thatMvPlanning interfaces with and the systems 2.2 with which
it was tested are described. A closer attention is given to the concept of planning 2.3

2.1 LSTS’s Software toolchain

2.1.1 IMC - Inter Module Communication protocol

In this section the messaging protocol [12, 13] used between LSTS ’s systems is de-
scribed, as well as the most relevant messages for the work developed in this disserta-
tion.

LSTS operates vehicles with different capabilities and target environments (ground,
air and sea). Due to this heterogeneity, there’s the need of a means of communication
capable of abstracting the underlying configurations and hardware, allowing systems to
interact seamlessly. The Inter Module Communication Protocol is a message-oriented
protocol, developed at LSTS, understood by all vehicles and computer nodes in the
network. It provides a shared set of messages, that can be serialized and transferred
over different means. Its definition consists simply of an XML file where each message
is defined.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

23

CHAPTER 2. BACKGROUND 24

<message id="263" name="Temperature" abbrev="Temperature">
<description>

Temperature measurement.
</description>
<field name="Value" abbrev="value" type="fp32_t" unit="Â?C">

<description>
Temperature value.

</description>
</field>

</message>

IMC messages are divided into categories, according to their purpose:

• Navigation: definition of the interface for stating a vehicle’s navigation state.

• Guidance: define and report the parameters related to guidance in autonomous
maneuvering. E.g., heading, depth, velocity, etc.

• Vehicle Supervision: used to inform an external source about a vehicle’s
current state.

• Plan Supervision: define the specifications of a plan and it’s life-cycle.

• Sensors: used to report sensor reading from hardware controllers. E.g., LBL
accoustic positioning system, GPS, IMU, etc.

2.1.1.1 PlanSpecification

One of the core IMC messages is the PlanSpecification. It is sent from a Neptus console
to a vehicle and describes a plan and its parameters:

• Plan ID: The plan identifier

• Starting Maneuver: Identifier of the starting maneuver for the given plan

• Maneuvers: List of in-line messages of type PlanManeuver

• Transitions: List of in-line messages of type PlanTransitions

CHAPTER 2. BACKGROUND 25

• Start Actions: (Optional) List of messages defining which actions to be exe-
cuted on plan activation.

• End Actions: (Optional) List of messages defining which actions to be executed
immediately to plan termination

Prior to being sent to a vehicle, a PlanSpecification message is wrapped in a
PlanControl message which informs the vehicle what to do with the plan, either
to start, stop or load it (store in local database).

2.1.1.2 PlanManeuver

For the simpler "goto" behaviors - a maneuver intended to move a vehicle to a given
location - an IMC PlanManeuver message describes a waypoint in a plan. It consists
of an ID, a location (part of the "goto" behavior specification), and a list of start and
end actions. The most common start action for a PlanManeuver is to switch on or
off a payload (such as camera or sidescan sonar). For instance, in a plan to survey
an area the vehicle needs to know when to start collecting data, instead of doing it as
soon as the plan starts, wasting battery.

2.1.2 Neptus

Neptus [9] is a distributed C3I(Command, Control, Communication and Information)
Java software for operations with autonomous and semi-autonomous networked ve-
hicles, sensors and human operators. It allows operators to command and supervise
LSTS’s systems throughout a mission, by means of a visual interface (Operator Con-
sole) 2.1.

2.1.2.1 Neptus Console

A console 2.2 is the working environment of an operator inside Neptus. It is where
all plans are created, and robots’ information and telemetry displayed, allowing an
operator to control and supervise missions. This feature is designed in a adaptable
fashion which allows it to be customized and expanded through the means of plugins.
Generally all new Neptus developments occur in the form of plugins.

Typical Neptus operator consoles consist mainly of a map, whose information can vary
depending on the layers used (Open Street Maps, S57 charts, etc), plugins to interact

CHAPTER 2. BACKGROUND 26

Figure 2.1: Neptus

Figure 2.2: Neptus console

with it: MapEditor to add objects to the map, PlanEditor to create and/or edit plans,
a control panel where plans can be chosen and sent to the vehicles, etc., among other
plugins that the operator might feel are necessary.

CHAPTER 2. BACKGROUND 27

2.1.2.2 Mission Review and Analysis

One of the most important components of Neptus is the MRA - Mission Review
and Analysis which provides support for the analysis of mission data such as sensors’
data, executed plans’ specifications and goals, exchanged messages, among others.

Figure 2.3: One of MRA’s features, a sidescan analyzer

After the completion of a mission, the operator should gather its logs (both from
Neptus and the vehicles) and, if necessary, analyze them through MRA.

2.1.3 DUNE

DUNE (DUNE Uniform Navigation Environment) is the on-board software that runs
on all of LSTS ’s vehicles and communication gateways. It is independent of CPU
architectures and Operating Systems. It is modular and contains, just to name
a few, modules for interaction with sensors and actuators, control, navigation and
maneuvering. As with other nodes in the network, DUNE ’s modules (also known as
tasks) communicate using the IMC protocol.

2.1.4 Ripples

Ripples is a communications hub for data dissemination and situation awareness. It
can be accessed through the web, using REST APIs or Iridium, and provides real-

CHAPTER 2. BACKGROUND 28

time updates with asset positions, missions specifications and collected data. In sum,
Ripples can be described as a Web/Iridium communications gateway than can also be
used to for global situation awareness (as it stores all systems’ positions and plans).

Figure 2.4: Ripples

Ripples allows an user, whether it is an operator or not, to visualize what is currently
happening at different mission sites and also systems’ information and position.

2.2 LSTS Systems

This section provides an overview of the hardware systems used by LSTS.

2.2.1 Vehicles

2.2.1.1 LAUV - Light Autonomous Underwater Vehicle

LAUV ’s development aimed at creating a low-cost and lightweight vehicle that could
be easily launched, operated and recovered by a single operator.

CHAPTER 2. BACKGROUND 29

Figure 2.5: LAUV - Light Autonomous Underwater Vehicle

It’s an affordable and highly effective surveying tool, built in a modular fashion, which
allows it to be adapted to a variety of missions and scenarios, by adding to it sensors
and payload modules, such as Multibeam and Sidescan sonars, salinity sensors and
other environmental sensors (Crude and Refined Oils, and Rhodamine), among others.

2.2.1.2 X8 - Flying Wing

This low-cost COTS (Components Off-The-Shelf) vehicle is modified at LSTS and
is aimed at surveillance missions and low altitude reconnaissance scenarios. It’s able
to provide live feeds from video camera and user other remote sensors. Due to its
quick launch and recovery, it’s perfect for fast algorithm testing, terrain mapping and
operational surveillance. Besides the mentioned scenarios, it has been also used, by
LSTS, for Wi-Fi coverage expansion missions.

2.2.2 Support Systems

2.2.2.1 Manta - Communications Gateway

This device (Figure 2.7) is used to create wireless and acoustic networks in the
operations’ areas, allowing the communication between the systems and operator.

It’s also able to provide satellite links, and mobile Internet connection using 3G and

CHAPTER 2. BACKGROUND 30

Figure 2.6: X8 Flying Win

Figure 2.7: Manta communications gateway

4G networks. In some operational scenarios it’s also deployed inside boats or on-board
of autonomous vessels, this way creating a mobile network infrastructure.

2.3 Planning

Given a set of initial and goal states and possible actions, the objective of Planning is
to find a sequence of actions one must take to achieve the goal states [14]. It involves

CHAPTER 2. BACKGROUND 31

the representation of both the actions and the world as models where actions are the
set of tools an agent, i.e. the decision maker, can apply to the world in order to change
its (the world’s) state or its (the agent’s) view of the world.

A state space is a pivotal aspect of any Planning problem. It models the different
states the world can be in and is used by the agent when searching for a solution.
It can be discrete if finite or countably infinite, or continuous if uncountable
infinite. E.g. if a state represents a chess board after a piece was moved, then the
state space represents all the permutations of moving the available chess pieces.
The state space of a problem can easily grow beyond the level where a solution can
be efficiently computed, and thus some heuristics might be needed to filter out the
non-optimal states. The definition of non-optimal will be dependent on the Planning
problem and the heuristics used. [14]

2.3.1 Planning definitions

Depending on the field of application, Planning might have different meanings. When
studying Artifical Intelligence the planning problem might be to solve a Rubik’s cube,
the shortest path between point A and B, according to some heuristic, or any other
task that can be modeled discretely. In Robotics the agent might be trying to solve
the problem of deciding which path to take to reach a goal, or the best sequence of
movements to achieve a desired robotic arm pose. Furthermore, in Robotics, there exist
several types of problems one can solve with Planning. For instance, Motion, Path
and Trajectory planning. This terms are often confused or used interchangeably in the
literature. [14] It’s also important to notice that most planning problems in Robotics
are closely related or analogous to Computer Science ones such as Path planning and
shortest-path computation.

• Path planning is concerned with finding, geometrically, the path to take from
the initial to the final state, while avoiding possible obstacles;

• Trajectory planning, on the other hand, uses a path and represents it as a
function of some variables, such as time, velocity, angle, etc. I.e where a robot
needs to be in each instance of time and with a certain velocity;

• Motion planning is used to plan the actual motion of a robot having into
account its kinematic and dynamic restrictions.

CHAPTER 2. BACKGROUND 32

Because in the plan generation section of this thesis we’re concerned with solving
both types of problems, we’ll use the term Path planning to mean both Path
and Trajectory Planning. This is because when a final path is generated it will
take into account both the path to take and its constraints/parameters.

2.3.2 Knowledge of the environment

Planners and planning algorithms can be classified according to their knowledge of
the working environment, as:

• Offline: When the planning is done with apriori knowledge of the environment’s
state. This state is assumed to be static. These planners tend to be much simpler
to implement but are more fragile to changes because the plan is generated
against the current state of the environment and no longer changed.

• Online: There is limited or no apriori knowledge of the environment and
thus the robot must use its sensors to acquire the environment’s state (which
is assumed to be dynamic, i.e. moving obstacles). In contrast with offline
planners, these planners should account for changes in the environment and re-
plan accordingly, which makes their implementation more complex but also more
robust to dynamic environments.

2.4 Planning Languages

2.4.1 PDDL - Planning Domain Definition Language

PDDL is a standard encoding language for Artificial Intelligence planning, whose
syntax is based on Lisp [15]. It is a simple standardization of a syntax to express
semantics of actions, with pre and post-conditions that represent requirements and
effects of actions. It’s used both to describe the domain, (1) domain description,
and planning problems, (2) problem description, within that domain, where (1)
presents the components of the planning tasks, i.e. functions, predicates and actions,
whereas (2) describes the specific problem to solve making use of the domain, i.e
objects, initial conditions/state and goal-states. It can be used only to describe plan-
ning domains or in conjunction with a Planner to solve planning problems. PDDL’s
notation is an Extended BNF (EBNF) where each rule is of the form

CHAPTER 2. BACKGROUND 33

<syntactic element> ::= expansion

Furthermore, each file may only contain one PDDL definition of a domain or problem.
The format of a PDDL domain is as follows

(define (domain DOMAIN_NAME)
(:requirements [:strips] [:equality] [:typing] [:adl])
(:predicates (PREDICATE_1_NAME ?A1 ?A2 ... ?AN)

(PREDICATE_2_NAME ?A1 ?A2 ... ?AN)
...)

(:functions (FUNCTION_1_NAME ?A1 ?A2 ... ?AN)
(FUNCTION_2_NAME ?A1 ?A2 ... ?AN)

...)

(:action ACTION_1_NAME
[:parameters (?P1 ?P2 ... ?PN)]
[:precondition PRECOND_FORMULA]
[:effect EFFECT_FORMULA]

)
(:action ACTION_2_NAME

...)
...)

Further work [16–18] has introduced durative-action, and a :duration element, allowing
planners to tackle temporal planning. Following this development, in PDDL, plans
are now interpreted as concurrent instead of sequential.

2.5 Coverage Area planning

2.5.1 Introduction

The mobile robot covering problem is defined as: Let a tool of a specific planar shape
be attached to a mobile robot, and let A be a continuous planar world-area bounded by
obstacles [19,20]. Then the mobile robot has to move the tool along a path such that
every point of A is covered by the tool along the path. [20–22] With this, we can define
Coverage Area planning as the computation of a path that takes an agent to pass over

CHAPTER 2. BACKGROUND 34

all points of a given area or volume while avoiding any obstacle. This is a common
scenario in Robotics with applications in lawn mowers, vacuum cleaning robots and
autonomous underwater vehicles, among others. Even though these applications of
Coverage Area planning are different they all share the same criteria: [20]

1. The robot must move through all the points in the target area, covering it
completely

2. The whole region must be filled, by the robot, without overlapping paths

3. Continuous and sequential operation without any repetition of paths is required

4. All obstacles must be avoided

5. For simplicity in control, simple motion trajectories should be employed (e.g.
straight lines or circles)

6. Aim for an "optimal" path.

Depending on the conditions and constraints, some of this criteria might be unattain-
able. In order to achieve coverage it is common, among CPP algorithms, to discretize
the working space by decomposing it into sub-areas/cells.

2.5.2 Algorithms classification

Coverage Path Planning algorithms can be classified according to the decomposition
applied to the working area. This is known as the Choset’s Taxonomy [19]. Besides
this classification, algorithms can also be classified according to their knowledge of the
working environment, as offline or online.

They can be further classified as Heuristic or Complete depending on whether or not
they provably guarantee complete coverage of a given area.

One alternative to finding the best path is to use, besides heuristics, randomization,
randomly select the next location of the path. This technique is commonly employed
in vacuum cleaning robots with good results, but for the scenarios where, for instance,
autonomous underwater vehicles are used it might not be good enough due to battery
and area size constraints. E.g 3D environments are too large for randomization to be
useful and a vehicle might run out of battery before it covers the whole area. Also,

CHAPTER 2. BACKGROUND 35

besides not being a complete method, because of the abundance of overlapping paths
that it usually generates, the quality of data might get compromised.

An algorithm to solve this problem tries to find the largest Hamiltonian cycle in the
given area, i.e find the longest closed path which visits every node of the graph exactly
once. The problem of finding an Hamiltoninan cycle for a general grid-like graph is
known to be NP-Complete, but for certain grid-graphs, and for covering purposes, this
can be achieved in O(N) by first constructing a finer-grained grid in O(N) time and
then constructing an Hamiltonian cycle for this grid in additional O(N) time, for an
N total number of cells. [19]

2.5.3 Choset’s Taxonomy

As mentioned before, CPP algorithms can be classified according to the way they
decompose the working space. Here, the ones reviewed fit into the class of exact and
approximate cellular decomposition. Such algorithms break the working space
into non-overlapping cells and their adjacencies are represented as a graph or matrix
with cells being the nodes and their adjacencies, the edges or entries. Coverage plans
based on this techniques often work in 2 steps:

1. Divide the working space into cells

2. Compute an exhaustive walk through the cells

Step 2 only gives the robot the sequence of nodes to traverse. Typically it has no
information on how to actually do the coverage. Except for Grid-based methods, each
cell needs then to be covered, before proceeding to the next one, with an explicit path.

2.5.3.1 Exact cellular decomposition

Exact cellular decomposition methods partition the free space into simple, smaller and
non-overlapping regions (cells). Their union forms an exact representation of the free
space.

CHAPTER 2. BACKGROUND 36

2.5.3.2 Approximate cellular decomposition

Here, the free space and target area are decomposed into cells of the same size and
shape, whose union is only an approximation of the original space. This is because
it might not represent exactly the physical free space. Only a fraction of a given cell
needs to be "obstructed" for it to be considered as an obstacle and thus "wasting"
free space. Typically, when the robot enters a cell, it is considered as covered. Their
size tends to be the same as that of the robot’s footprint or sensor/effector’s range.
Complete coverage, if possible, is achieved by traversing every cell of the area.

Figure 2.8: Example of an approximate decomposition.

2.5.4 Classical exact cellular decomposition

These are the foundational methods for cellular decomposition. Cells are generated
by sweeping a line, from left to right, through the working space and every time
something interacts with the line a new cell boundary is defined. For instance, when
the line intersects an obstacle’s vertice it marks the end of one cell and the beginning
of the next one.

2.5.4.1 Trapezoidal decomposition

Trapezoidal decomposition is, perhaps, the simplest of the exact cellular decomposition
methods. It generates a complete coverage path and each cell takes the form of a
trapezoid. The exhaustive walk finds the path to traverse the cells and then the actual
paths to traverse each cell are generated, typically using zigzag motion. Because this
method relies on obstacle’s vertices to define the cells, it only works in planar and
polygonal obstacles and spaces.

CHAPTER 2. BACKGROUND 37

Figure 2.9: Exact cellular decomposition.

2.5.4.2 Boustrophedon decomposition

The way Trapezoidal decomposition decomposes the working space makes it generate
several small cells that could be merged together to form bigger ones.

By creating a cell only when the sweep line encounters a vertex and it can be extended
both above and bellow it (called critical points) the Boustrophedon decomposition
reduces the number of cells and shorter paths are obtained. This method also assumes
polygonal obstacles and apriori knowledge of the environment.

Figure 2.10: Boustrophedon decomposition and the coverage path generated.

CHAPTER 2. BACKGROUND 38

2.5.5 Morse-Based cellular decomposition

Morse-Based cellular decomposition is a generalization of boustrophedon decomposition
for non-polygonal areas and obstacles and can be used both online and offline. This
method can also generate different coverage area patterns and cells shapes by changing
the morse function that defines the sweep line. For the boustrophedon decomposition
this morse function is h(x, y) = x.

Figure 2.11: Morse-based cellular decomposition with morse function h(x, y) = x2+y2.

2.5.6 Grid-based cellular decomposition

Grid-based cellular decomposition methods divide the working area into uniform, and
usually square cells. Each cell contains a "flag" that informs if it has an obstacle or
not. This flag can be a boolean value (obstructed or not) or a number which states
how probable it is that the given cell has an obstacle. According to Choset’s taxonomy,
Grid-based decomposition fits in the approximate cellular decomposition methods.
As a consequence, this methods’ completeness depend on the grid’s resolution, i.e.
"resolution-complete".

In figure 2.12, it’s clear that instead of the vehicle going around/avoiding the obstacles’
borders it uses an approximation formed by the cells that have an obstacle, and then
a path is generated around them. This techniques are generally easy to implement
but if a low resolution is used, one risks to leave some portions of the area uncovered.
On the other hand, using a high resolution will vastly improve the amount of area
that is covered, though, it is more memory-expensive and can cause some problems
with the vehicles control and maneuverability. If there is a high number of small cells,
due to the vehicles’ dynamics it might not have the capability to maneuver through

CHAPTER 2. BACKGROUND 39

Figure 2.12: Grid-based cellular decomposition

them easily (difficult to do very fine movement adjustments). When choosing the
cell’s width, one should also have in mind the robot’s task and tool used. The tool
is what the robot uses to complete the task, e.g. a sidescan sonar. If planning for
the typical vacuum cleaning robot, with omnidirectional locomotion and whose tool’s
range is short, the cell’s can be, roughly, the size of the robot. On the other hand,
when dealing with autonomous underwater vehicles that have less maneuverability
and tools with greater range, the cells’s size need to be much larger.

Some examples of such methods are SpiralSTC, Hexagonal Grid and Neural Networks-
based coverage algorithms [20].

2.5.6.1 SpiralSTC algorithm

SpiralSTC, or spiral spanning-tree coverage, is a grid-based method, used both online
and offline, that computes a Minimum Spanning Tree from the grid, to determine a
high-level representation of the vehicle’s path. Then, the actual path that the vehicle
will traverse is computed, following the spanning tree edges. In the online approach
the vehicle ’builds’ the grid and spanning tree incrementally, using sensor information,
while in the offline approach a "complete" tree and path are generated. Besides
dividing the area into a grid, each cell (also called mega-cell) will be further divided
into 4 smaller cells. The algorithm works as follows:

1. Divide the area into a grid

CHAPTER 2. BACKGROUND 40

2. Divide each mega-cell into 4 smaller cells

3. Generate a minimum spanning tree where each node is a mega-cell

4. From a given start mega-cell compute a path that follows the spanning tree
through the smaller cells, i.e. the vehicle moves along-side the spanning tree
edges.

Step 4 is crucial for the algorithm because it makes the vehicle move in a spiral
and guarantees that each smaller cell is covered only once. This also has the
advantage, over other grid-based methods, of not yielding situations where the
vehicle moves to a "dead-end cell", where the it gets stuck and needs to go
back through already visited nodes until it finds a new one, hence causing more
overlapping paths and increasing the implementation’s complexity.

The original authors [19] described 3 versions of the algorithm:

1. Offline SpiralSTC

2. Online SpiralSTC

3. Ant-Line STC

All three implementations need O(N) time to complete a covering path, however, both
1. and 3. need only O(1) additional memory for this task.

2.5.6.2 Offline SpiralSTC

This approach for coverage area tasks 3.1, assumes a priori and total knowledge of
the working environment and thus a full path can be generated and sent to the robot,
according to the environment’s state.

Figure 2.13 shows an example of a decomposed area with the respective grid and, in
red, its Minimum Spanning Tree. As already mentioned, in order to avoid obstacles
(objects in yellow) the path/spanning tree completely avoids any obstructed cells, even
if just a small portion of the cell is "obstructed" the path won’t go near the obstacle.

After the working area is decomposed and a spanning tree is computed, one needs to
generate the actual path to do the coverage. One example of such a path is figure
2.14 where everything computed by the algorithm is shown. The path in yellow (with

CHAPTER 2. BACKGROUND 41

Figure 2.13: Grid decomposition and Minimum Spanning Tree,as implemented in
MvPlanning

Figure 2.14: Path generated (yellow) around the spanning tree (red)

green and red waypoints) is the path the vehicle will traverse in order to go through
every cell of the given area.

To generate the path that traverses the spanning tree through smaller cells, the

CHAPTER 2. BACKGROUND 42

algorithm starts at the first mega-cell and chooses, at each iteration, a new direction
by choosing the first free mega-cell, from its neighbors, in an anti-clockwise fashion.
This way, the vehicle will move on the right side (according to its direction) of the
spanning-tree edges, creating a spiraled path, i.e. through the center locations of the
sub-cells. After the completion of the plan, the vehicle will find itself back in the
initial mega-cell, as desired.

Depending on the way the spanning-tree is computed one can influence the working-
area’s space that is covered by altering the weights of the edges between each cell.
By giving, suitable, weights and using an algorithm such as Prim’s [23], specific areas
along a particular coordinate can be covered.

2.5.6.3 Online SpiralSTC

This version assumes no apriori knowledge of the working environment except that the
obstacles are stationary. In order to traverse the working area, the robot needs to use
sensory information to detect the obstacles and plan accordingly, and other sensors in
order to know its position and orientation and also recognize the grid cells. The way
the algorithm works is similar to the offline version, except that it works incrementally.
The robot subdivides every cell it encounters, into four sub-cells. Then, it selects the
next cell to move into, according to the rules specified previously, and a spanning-tree
is constructed incrementally, until the whole area is covered. As the other versions,
each neighbor of a given cell is scanned in a counter-clockwise fashion which makes
the robot circumnavigate the spanning-tree also in the counter-clockwise direction. If
the opposite direction was used, the path would also be generated in that direction.

Finally, contrary to the offline version, PRIM’s algorithm cannot be used in the given
problem, because it builds the spanning-tree by selecting discontinuous edges, while
the robot needs information about the next physically continuous cell, to move into.

2.5.6.4 Ant-Line SpiralSTC

The Ant-Line SpiralSTC works the same way as the online version, but uses markers,
e.g, color, odor, heat or other physical markers, to signal a visited sub-cell. By
inspecting a sub-cell the robot can detect the marker and know that it has been visited
already. The O(1) additional memory, contrary to online’s O(n), is a consequence of
the behavior described previously. Using physical markers frees the robot from "having

CHAPTER 2. BACKGROUND 43

to remember" which cells have been visited. This can be confirmed by the robot, by
sensing if all four sub-cells, of a given mega-cell, have markers. If this is the case,
it means that the mega-cell has been completely covered and another one should be
chosen, among the current neighbors.

2.6 Additional Concepts

2.6.1 Automatic Identification System

Automatic Identification System is a tracking system used on ships as means of iden-
tifying and locating them. It works by electronically exchanging data between nearby
nodes, i.e. ships, AIS bases and satellites, through a standardized VHF transceiver. A
ship broadcasting information through AIS informs other nodes about its Navigation
status, true heading and bearing, name, type of ship and cargo, dimensions to the
nearest meter, draught of the ship, among other important characteristics.

Neptus ’s plugin ExternalSystemsHolder contains information about AIS systems that
are nearby, as long as an AIS transceiver is available to the operator and other vessels.
To note that a vessel might have an AIS transceiver but not having it functioning.
When an AIS system is detected, it’s displayed in the Neptus console’s map.

2.6.2 Ship Draught

A ship’s draught (also known as draft) is the distance between the waterline and the
bottom of the hull. In practice, it tells how much of the ship’s hull is underwater.
This is an important feature to know when operating Unmanned underwater vehicles
in order to avoid damage to the systems.

2.6.3 Sonar - Sound Navigation and Ranging

The propagation of sound waves and their echo is the means by which a sonar
works. It has applications in navigation, communication or detection of obstacles by,
mostly maritime vehicles [24]. Typically the deployment of Sonar technology occurs
underwater, where sound waves propagate faster than in air (at around 1.5 Km/s).

CHAPTER 2. BACKGROUND 44

Contrary to most electromagnetic waves, acoustic waves are able to traverse long
distances, underwater, without dispersing or losing too much energy to heat. Such
characteristics makes sound waves perfect for underwater applications.

2.6.3.1 Sidescan Sonar

Sidescan is a type o sonar that transmits one beam of sound waves (pulse), per
transducer, and analyzes the energy of the return signal (called echo) that bounces
from the seafloor, fish, boats, etc. The roughness and hardness of the seafloor result
in different energy variations of the return signal. With sidescan sonar it is possible
to detect and estimate the materials, texture and morphology of the seafloor. A
sidescan’s transducer generally uses low-frequency signals, typically less than 20 kHz,
transmitted in short pulses (< 2 ms). The greater the frequency the better resolution
will be achieved but with the consequence of shorter range.

Figure 2.15: Sidescan sonar.
1Image adapted from https://en.wikipedia.org/wiki/Side-scan_sonar

In figure 2.15, the areas marked, in red, as A and B are areas where, typically,
the return signal is weaker or has more noise, furthermore, the area C is called the

https://en.wikipedia.org/wiki/Side-scan_sonar

CHAPTER 2. BACKGROUND 45

sidescan’s nadir. The nadir is a blind area right below the vehicle where there’s absence
or very low quality data (due to the way sound propagates from the transducers). By
moving the sensor in a spiraled or row path it is possible to achieve data redundancy
and better results on those areas. This technique is better described in figure 2.16:

Figure 2.16: How to achieve data redundancy with sonar sensors

During the first pass, the sensor acquires data between A0 and B0, but not at C0. On
the next pass, in this case in the opposite direction, the vehicle’s path is so that the
sensor’s beam still reaches some of the areas already surveyed in the previous pass.
Consequently B0 and C0 will be correctly surveyed and any possible noise reduced.

2.6.3.2 Multibeam Sonar

Contrary to sidescan, multibeam sonar transmits several, narrower, beams (sometimes
north of 240), and measures time differences between emission and reception, rather
than energy variation. This way it can derive information about the seafloor’s depth
for each sound beam.

Chapter 3

Solution

The solution here described consists of a mixed-initiative coordination and high-level
task-oriented planning framework such that the tasks to complete are added by the
operator, forming a planning problem that is then solved by planning strategies. Its
intention is to allow a single Neptus console (or any other type of console on the
toolchain) and operator to easily setup a mission comprised of goals/tasks to be
performed by a collection of heterogeneous vehicles connected and operated over radio
and underwater communication networks.

This implementation aims to be a viable solution for planning and coordination of
multiple heterogeneous vehicles , i.e. Underwater, Surface and Aerial autonomous
vehicles, contrary to other approaches that focused on the underwater version of such
systems. It tries to maintain the operator aware of the coordination and planning
steps without overwhelming it, and balance the level of automation with the operator’s
input so that it doesn’t get over-reliant and confident or even unaware of automated
decisions. In sum, MvPlanning ’s core notion is that operators can create or edit
missions and plans by adding, editing, moving and deleting high-level objectives.

It’s mainly composed of a module where the operator can add high-level objectives
such as survey location at X, and obstacles, a generator to create plans 3.7.1, accord-
ing to the defined objectives, and an allocator/planner that chooses which vehicles
perform which plans. Furthermore, it has monitors and supervisors that allow both
MvPlanning and the operator to be more aware of the planner and vehicles’ states,
e.g. VehicleAwareness and Environment modules pictured in Figure 3.1.

The software is built on top of LSTS ’s toolchain 2.1 in the form of a Neptus plugin
calledMvPlanning, and using IMC to communicate with the systems, that are running

46

CHAPTER 3. SOLUTION 47

Figure 3.1: General architecture

the on-board software, DUNE. Its architecture (Figure 3.1) was designed "having in
mind" the requirements defined at section 1.3. Sections 3.1 and 3.2 analyze some core
MvPlanning concepts such as the definition of a Task.

3.1 Tasks

Tasks are the common denominator between MvPlanning ’s modules. It is an abstrac-
tion of a plan 3.7.1 which can be seen as a sequence of maneuvers and its parameters
(speed, altitude, etc).

When the user interacts with the GUI and adds a task, a new PlanTask object is
created with all the information needed for generating the corresponding plan, and
then it is sent for allocation, and so on until the actual plan is sent to the vehicle.
A PlanTask consists mainly of an id, profile, duration, a PlanType object, a list of
constraints and any additional data that other modules might need about the task.

CHAPTER 3. SOLUTION 48

Currently, the following tasks are supported:

• VisitPoint: Task used to move the vehicle to a given point, to survey it or
perform any other job;

• CoverageArea: Given an area, try to cover it by passing through all its
locations;

• NeptusPlan: Wrapper around plans made in Neptus (PlanType)

• ToSafety: Special task used, internally, to move vehicles in a safe manner, i.e.
avoiding obstacles, between two locations.

When creating a new task type, the abstract PlanTask and its methods need to
be extended and implemented.

3.1.1 Task constraints

For a task to be allocated and completed successfully, some constraints have to be
checked and validated. What these constraints are, depends on the task type. All
tasks have predefined, and common constraints, but others can be created. All tasks
share the following constraints:

• IsAvailable: Meaning that a vehicle is ready to start a new task

• HasPayload: If a given vehicle has the necessary payload, i.e sensors, to execute
the task

• HasTcpOn: This task needs to be sent through a TCP connection, hence the
vehicle must provide a TCP service for receiving IMC messages.

• BatteryLevel: The necessary value(s) of battery level needed for safe task
completion. Currently the value(s) is/are predefined, but in the future, estimates
of the vehicle’s movement and payload’s battery cost could be used to estimate
how much battery a given vehicle will need to perform the task.

• HasSafeLocationSet: If a vehicle’s safe location is set. The safe location is
where the vehicle will return after finishing its assigned tasks. This is required
so that safe paths can be computed.

CHAPTER 3. SOLUTION 49

The abstract class TaskConstraint can be extended by a sub-class in order to
create a new constraint. The abstract method isValidated(), with the following
prototype

public abstract <T> boolean isValidated(T. . . value);

must be implemented and used to validate the constraint, given any needed
parameters.

In case the source used to load tasks constraints of a given task type fails,
PlanTask ’s method

public List<TaskConstraint> setDefaultTaskConstraints();

will be called, ensuring that a task type always has a set of constraints defined.

One way of defining and loading a task’s constraints, besides the default method,
is through a domain file containing a set of of predicates, objects and actions that
describe a constraint. The following example is such a domain defined in PDDL:

(:durative-action CoverageArea
:parameters (?v - vehicle ?t - task)
:duration (= ?duration 15)
:condition (and (at start (IsAvailable ?v))

(at start (IsActive ?v))
(at start (HasPayload ?t ?v))
(at start (HasTcpOn ?v))
(at start (HasSafeLocationSet ?v))
(at start (>= (BatteryLevel ?v) 60))
)

)

3.1.2 Profile

Another important aspect of a task is its Profile. The profile has information about
all the sensors, and corresponding parameters’ values needed to perform the task, as
well as the speed (in meters per second or RPM) and Z (depth or altitude) values.

CHAPTER 3. SOLUTION 50

It consists of a simple XML file and needs to be defined a priori by an operator in
accordance to the mission and tasks’ needs. What usually happens is that, for each
vehicle there is a set of optimal payload profiles (e.g. sidescan low frequency, sidescan
and for the most part, these parameters don’t change much, which means that once a
profile is created it won’t likely need to be changed.

The XML definition is mapped to an actual Profile class through JAXB (Java API
for XML Bindings). The following is an example of a profile for a Bathymetry task.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<Profile Type="Bathymetry">

<Z>3.0</Z>
<Z_Units>DEPTH</Z_Units>
<Speed>1.0</Speed>
<Speed_Units>m/s</Speed_Units>
<Payloads>

<Payload type="Sidescan">
<parameters>

<parameter name="Active" value="True"/>
<parameter name="Frequency" value="770"/>
<parameter name="Range" value="30"/>

</parameters>
</Payload>

</Payloads>
<vehicles>

<vehicle>lauv-noptilus-1</vehicle>
<vehicle>lauv-noptilus-2</vehicle>
<vehicle>lauv-noptilus-3</vehicle>

</vehicles>
</Profile>

The profile above defines, in the root element <vehicles>, that Noptilus 1, 2 and 3 are
supported, and a task should be performed with the sidescan sensor activated with a
frequency of 770 and a range of 30 meters.

CHAPTER 3. SOLUTION 51

3.2 Operational area

When the planner starts, and before any task is added and allocated, an operational
area needs to be computed. An operational area consists of a grid decomposition,
with a predefined size, of the area of operation. It is centered in a mark with id of
mvpoparea. Though the high-level representation of this area (in the map) is a grid, its
low-level one is of a grid-like graph where each grid cell is a node in the graph, and
the edges represent boundaries between neighboring cells. Its size can be customized
by an operator prior or after the area has been created.

Figure 3.2: Operational area displayed on the map

It is used to compute safe paths between any two locations, allowing the vehicle to move
safely, i.e. without colliding with obstacles, to and from the plans, thus representing
the area of operation of the vehicles. Its grids’ size shouldn’t be neither too small
so that the vehicle can’t maneuver easily through it, nor too big so that a lot of free
space will be wasted in case the area has obstacles (because the grid is an approximate
decomposition). In case the area doesn’t cover all the necessary locations, it has to be
re-sized.

CHAPTER 3. SOLUTION 52

Figure 3.3: User Interface’s state machine

3.3 User interface

The user interface is responsible for receiving and displaying the tasks defined by the
operator. Tasks are added to the console’s map in the form of map objects, provided
by Neptus’ API through a plugin called MapEditor. There’s also a window where
tasks’ name will be displayed and a button to send them for allocation. When doing
so, the operator can choose which profile to associate to the task. To add NeptusTask
tasks, the operator needs to select the plan from Neptus ’s plans’ tree (figure 3.4) and
then click the allocate button on this window. NeptusTask task are handled differently
because their plans are already generated. This window has other functionalities that
are discussed on upcoming sections.

The objects added through MapEditor, when creating tasks, need to have their IDs
prefixed by the string mvp_, e.g. mvp_coverage_area or mvp_random_id,
so that MvPlanning knows exactly which map objects are meant to be tasks, and act
accordingly. Otherwise, if not obstacles, they will be ignored. ParallelepipedEle-
ment objects (figure 3.11) are used to represent tasks of type CoverageArea, while
VisitPoint tasks are added through Mark elements. Here the user can also add the
vehicles’ safe locations. After the completion of a task or if a vehicle’s integrity is in
danger, it will be moved to these locations.

Another important aspect of MvPlanning ’s user interface are Neptus ’s notifications,
3.5, i.e popup messages that appear in the console. This is used by MvPlanning to
keep the operator in the loop by making him/her aware of the vehicle’s state and
which tasks are allocated to which vehicles.

CHAPTER 3. SOLUTION 53

Figure 3.4: Neptus ’s plans tree

Figure 3.5: Neptus ’s notifications

3.4 Monitors and Supervisors

Other important features of MvPlanning are the concepts of Monitor and Supervisor
classes. A Monitor class is responsible for keeping track of certain variables and,
possibly, having a public interface where other modules can query the variables’ values.
A Supervisor works also as a monitor but should take initiative of informing other
modules of its readings, or even to take action if needed.

To give an example, consider a module A which might be responsible for monitoring
the distance of a vehicle, currently doing a task, to an obstacle, and inform another

CHAPTER 3. SOLUTION 54

module if this distance goes below a certain threshold. On the other hand, another
module B might just be monitoring how much of a task has been completed at any
moment in time. In order for a monitor class to be made a supervisor, it needs only
to extend the class AbstractSupervisor.

Currently, supervisors can only interact with PlanAllocator and PlanGenerator (be-
cause those are the current needs of the application) but if other supervisors are
added that need to interact with other modules, this can simply be done by adding a
"reference" to it in AbstractSupervisor and create or modify constructors as needed.

3.4.1 VehicleAwareness

VehicleAwareness is the monitor responsible for maintaining and providing informa-
tion about the current vehicles’ state as well as use its information to validate task’s
constraints, when requested. During the life-cycle of a vehicle’s operation, there are
several operational states that it can be in. This states are attributed and provided
only by Neptus and describe what the vehicle is currently doing:

• Service: The vehicle is connected, stationary and able to execute a plan;

• Calibration: Prior to the start of a plan, when the vehicle needs to turn on or
calibrate sensors, etc;

• Error: The vehicle is in a state of error due to external or internal factors;

• Maneuver: When a plan is currently in execution;

• Disconnected: There’s no connection to the vehicle;

• Connected: Currently connected but not yet able to execute a plan. Just prior
to Service mode;

• Boot: Boot mode means that the vehicle is performing boot operations;

• Finished: When the vehicle is moving to the last waypoint of a plan or already
arrived at the final location.

For planning purposes, in MvPlanning 2 new states were created: Available and
Unavailable. This states are only used internally and inform if the corresponding
vehicle is apt to start a task/plan.

CHAPTER 3. SOLUTION 55

Figure 3.6: First VehicleAwareness version

Initially, for a vehicle to be considered as Available, only two metrics were used:
an operational state of Service or Finished, and the possibility to establish
a TCP connection to the vehicle. Every time a vehicle changed its operational
state or a module queried a vehicle’s availability, this metrics would be checked.

For more complex planning problems, a different approach is needed. For
instance, the fact that a vehicle can communicate through TCP and is apt
to start executing a task, doesn’t say anything about the sensors it has and if
they are suitable for the tasks created by the operator. Furthermore, it doesn’t
take into account vehicle’s battery level, payload required, etc.

A new approach was used, where every task type has associated to it a list of
constraints/pre-conditions (TaskConstraint) and the states Available and Un-
available are attributed only according to the vehicle’s operational state. Then,
when some module queries if a vehicle is available for a given task, VehicleAware-
ness evaluates all the constraints, and in case of success the task is allocated.

CHAPTER 3. SOLUTION 56

Figure 3.7: Current version of VehicleAwareness

3.4.2 ExternalSystemsMonitor

ExternalSystemsMonitor is a supervisor responsible for monitoring external systems’
(detected by Neptus’s ExternalSystemsHolder) positions according to the vehicles, and
inform PlanAllocator in case they get too close to one another.

Figure 3.8: External systems monitor

Initially this module checked only if any of the known external systems was too close
to any of the vehicles/systems in control by MvPlanning, but further optimization

CHAPTER 3. SOLUTION 57

were done so that it could be more precise. For instance, even if an external system
is too close to a vehicle, if its draught is not as deep as the vehicle’s Z, it doesn’t pose
a problem. It’s also not problematic, in the same distance scenario, if the external
system’s bearing is not directed to the vehicle.

Because external systems are detected by means of an AIS system 2.6.1 this module is
fallible, as it will only detect and warn about other ships provided that they are using
such an identification system and that the captain has turned on the transponder (e.g.
fishermen usually turn it off while fishing). If no ships in the area have their AIS system
working, then ExternalSystemsMonitor won’t be available to provide information.

Figure 3.9: External system symbol in the map

3.4.3 Environment

This simple supervisor maintains a list of all the obstacles added to the map and
provides a set of methods that can be used to check if given map objects/elements
(AbstractElement) or an area (Java AWT’s Area) intersect with any obstacle.

This module is subscribed to Neptus ’s events bus and listens to MapChangeEvent
events to know everytime an object was added, removed or simply changed in the
console’s map. Every time this object is an obstacle, then the list gets updated and
PlanGeneration is asked to update the operational area accordingly.

CHAPTER 3. SOLUTION 58

Figure 3.10: UML diagram of Environment

3.4.4 StateMonitor

StateMonitor informs the operator, through the GUI, about the current state of the
application, or when it gets changed:

• Running: When tasks, if they exist, are currently being allocated;

• Paused: State triggered by the user, to stop momentarily task allocation

• Waiting: State used only by MvPlanning, when some computations or config-
urations need to be carried out before task allocation is possible.

The application starts in waiting state, and transitions to paused only after the oper-
ational area is computed. This is because task allocation is not possible without the
computation of safe paths. As soon as the operator is ready, it can start MvPlanning
by changing its state to running. At any time the state can be put into Paused,

CHAPTER 3. SOLUTION 59

halting any future allocations. In this state any monitor and supervisor will still be
working, maintaining security and consistency of the systems and environment’s state.
The reason that MvPlanning goes from waiting to paused instead of running, is that
otherwise vehicles would start performing tasks right away, and the operator might
not be paying attention or be ready to supervise the mission.

Figure 3.11: Neptus and MvPlanning UI, and Waiting state. The black box is a
ParallelepipedElement provided by Neptus, to draw areas in the map

In figure 3.11 it’s possible to see that there’s no operational area yet, andMvPlanning ’s
state is Waiting. Also depicted is a coverage area added by an operator, in the map,
soon to be generated and allocated if any vehicle is available, and when the state
changes to Running.

3.5 Plan generation

PlanGenerator ’s role, Figure 3.12, is to receive a PlanTask object, generate the
corresponding plan and complete the task by adding to it the generated PlanType. In
other words, PlanGenerator maps high-level objective to a sequence of locations and
parameters, so that the target vehicles can understand and execute them. Depending
on the task type and its characteristics, the generated plan might be divided in several
smaller ones, resulting that more PlanTask objects are created. For instance, the
generated plans for coverage area tasks tend to have long completion times, sometimes

CHAPTER 3. SOLUTION 60

more than one or two hours. If it is expectable that more than one vehicle will be
available and able to execute the plan, it makes sense to divide it, for example, in
smaller plans of 15 minutes. Another reason to divide a plan is if it’s completion time
is bigger than a pre-defined value by an operator. After the PlanType is divided, the
resulting ones are added to new PlanTask objects and passed on to PlanAllocator.

Figure 3.12: Plan generation state machine

When a new PlanTask type is defined, PlanGenerator needs to know how to handle
it, so a new method needs to be created, that implements the plan generation for tasks
of that type.

This module also computes and holds the operational area used when closing a task.
The operational area is used to compute the safe paths necessary for the completion
of this request.

3.5.1 Coverage Path Planning: SpiralSTC

Even though the implementation is modular and allows other algorithms to be used
instead, offline SpiralSTC algorithm was chosen and implemented to generate coverage

CHAPTER 3. SOLUTION 61

paths. Besides permitting a simple decomposition of the map 2.5.6 and selection of
the cells to traverse, a simple path can also be generated easily by computing and
following a Spanning-tree.

Most other algorithms, not Grid-based, require that after the cells to traverse are
selected, an actual path needs to be generated to cover said cell. On the contrary,
with SpiralSTC when a robot moves inside the cell, due to its size, it gets covered.
Finally, because SpiralSTC makes the robot move around a cell’s center location, it
handles naturally complex situations like reaching a dead-end cell, i.e. a cell with no
neighbors besides the one the robot just moved from, requiring it to move back again,
which removes complexity from the implementation. Another major advantage of this
algorithm is that the way it generates paths is in line with LSTS vehicles’s dynamics.
In no situation a path is generated so that a vehicle needs to move backwards or turn
around in order to reach the next location.

Figure 3.13: Complete coverage area plan

In this thesis we’re not concerned with shaping or selecting specific areas to be covered
,hence each edge has a weight of 1 between two adjacent cells. Then, a simple Depth-
First search algorithm [25] is employed to find the spanning-tree. Finally, after a plan
that covers the whole area can be generated, one can split and allocate it to several
robots, according to the ones available.

Figure 3.13 shows an example of a, large, coverage area plan generated using Spi-
raSTC’s algorithm, and Figure 3.14 shows the sidescan data acquired during a coverage
plan, overlayed on top of its path.

CHAPTER 3. SOLUTION 62

Figure 3.14: Sidescan overlay

3.6 Plan allocation

The PlanAllocator module is what’s often called the Planner. Besides holding an
object responsible for employing an allocation strategy, a subclass of AbstractAllocator ,
it also receives and parses PlanTask’s from the UI module and replanning "events"
from ExternalSystemsMonitor or other supervisor module.

When a new PlanTask arrives at PlanAllocator it uses PlanGenerator to generate the
corresponding plan, stores it in the PlanTask itself, in the form of a PlanType, and
then it’s set as ready for allocation. After that, the allocator object will decide when
to send the plan to a given vehicle.

It can also happen that a task needs to be allocated right away, bypassing the allocation
strategy. This happens, for instance, when ExternalSystemsMonitor informs PlanAl-
locator that an External system (Ships, etc) may collide with one of the autonomous
vehicles currently performing a task. In result of that, a ToSafety task is created
(and the corresponding plan generated) in order to move the vehicle from its current
location to a pre-defined safe location set by the operator.

This module is also responsible for saving and loading, any task that isn’t completed.
It can happen sometimes, for various reasons, that the vehicle will stop executing its

CHAPTER 3. SOLUTION 63

Figure 3.15: PlanAllocator state machine

current plan. If this plan originated from a PlanTask, then MvPlanning will add that
task for allocation, again. In case the task doesn’t get allocated or completed until
MvPlanning closes it, PlanAllocator will marshal it into an XML file, so that the next
time MvPlanning is started, the task is loaded and added for allocation. It should be
noted that only essential information contained in PlanTask will be marshaled and
any information contained in its sub-classes will be lost.

When this saved tasks are loaded, at MvPlanning ’s start up, they will be seen as
NeptusPlan tasks, because any information that could be used to identify it, was not
saved. This is not problematic for the planner because that additional information
was only used to generate the plans and, at this point, that has already happened.

3.6.1 Allocation strategy

The abstract class AbstractAllocator A.2 sets the common behavior for all the alloca-
tion strategies. It can be a periodic strategy, meaning that periodically it will check
if there are any new tasks to be allocated and any vehicle to take them, or it can
be event-based where its behavior will be triggered by events. Also, by extending

CHAPTER 3. SOLUTION 64

this class, all sub-classes will be forced to allocate tasks to the vehicle through TCP
connections, thus providing better feedback on the tasks’ allocation status.

Figure 3.16: Allocation strategy’s base behaviour

Before allocating a task to a vehicle, the allocator needs to check if all the task’s
constraints are met by the vehicle. For instance, if the task is to survey/cover an area
with a sensor, the vehicle needs to have both the sensors and battery to perform the
task. Then, if a vehicle is deemed as available, the allocator asks PlanGenerator to
close the plan. This step computes two safe paths and adds them to the, already,
generated plan: one from the current vehicle’s location to the task’s first location, and
another one from the task’s last location to the pre-defined vehicle’s safe location.

Finally, the closed plan (PlanSpecification) is sent to the vehicle using the available
means of communication, preferably Wi-fi and through a TCP connection.

3.6.2 Replanning

Currently, a replanning event consists of a simple call to a PlanAllocator method

public void replan(String vehicle);

that a Supervisor class makes and its behavior is the same independently of the reason
why the replanning is needed. When PlanAllocator receives it from a module, e.g.

CHAPTER 3. SOLUTION 65

ExternalSystemsMonitor, it creates a ToSafety task for the given vehicle and it gets
allocated to it.

One problem with this approach is that the speed and Z values are fixed. The task
created makes the vehicle return to the safe location while underwater and if there’s
loss of underwater communications or low battery levels (among other things). We
refer to it as Replanning because its future intent is that once the targeted vehicle can
operate safely again, it resumes executing its plan, continuing from where it was left
of.

3.7 Internals and utility classes

In this section the most important data structures and classes used internally, are
analyzed.

3.7.1 PlanType Java Class

When a plan is created in Neptus, its information is stored in the form of a PlanType
object. When a plan is sent to a vehicle, the selected PlanType is converted into a
PlanSpecification message and then sent.

Figure 3.17: PlanType definition

CHAPTER 3. SOLUTION 66

3.7.2 Map cells

Most of the algorithms used to generate paths, from coverage area to safe paths, need
a discretization of the working space. MapCell is an abstract class that can be used
to create the atomic unit of this discretizations, the cell. By extending this class,
cells of any size and shape can be created. For instance, the algorithm SpiralSTC
uses squared cells to represent the space as a grid, while to use the Boustrophedon
decomposition, a trapezoidal representation of the space would be needed.

Figure 3.18: UML diagram of MapCell

A MapCell object consists of an id, its center location, a list of neighbour cells and a
flag that signals if the cell has an obstacle or not. When creating new types of cells,
further information can be added, if needed.

3.7.3 Map decompositions

A map decomposition, MapDecomposition class, is simply an interface that enforces
sub-classes to aglomerate MapCell objects, and provides functionalities to interact
with them. Classes that implement it, are responsible for implementing the way the
decomposition of the space takes place. MapDecomposition allows the other modules
to use a discrete representation of the space without caring about its shape or internals.

MapDecomposition objects can be painted in the console’s map, for debugging or in-
formational purposes, so sub-classes also need to implement how such decompositions
are displayed.

CHAPTER 3. SOLUTION 67

Figure 3.19: UML diagram of MapDecomposition

3.7.4 GridArea

The main map decomposition used in MvPlanning to represent the operational area,
is the GridArea A.3 which is a grid-like decomposition, and uses GridCell objects, a
sub-class of MapCell, to represent the squared cells. GridArea decomposition can also
be used in area coverage algorithms (figure 2.13).

CHAPTER 3. SOLUTION 68

3.7.5 Consoles and adaptors

ConsoleAdapter is an interface whose role is to abstract the interaction of the modules
with the console where the operator will be adding tasks, and where obstacles are
identified. This can happen through a Neptus console, as well as through Ripples.

Figure 3.20: UML diagram of ConsoleAdapter

Currently, only NeptusConsoleAdapter is implemented which abstracts the interaction
with Neptus ’s consoles, ConsoleLayout. The set of functionalities provided by this
interface range from sending messages to vehicles, subscribing to IMC and event
buses, as well as publishing, among others.

CHAPTER 3. SOLUTION 69

3.7.6 External systems simulator

The supervisor ExternalSystemsMonitor relies on the AIS system to detect maritime
vehicles, operated by humans, that might be crossing the working area of the mission.
Because not all of this vehicles have such a system, or might not have it turned on, they
will go by undetected by MvPlanning. Module ExternalSystemsSimulator allows the
operator to add, by hand, external systems to the map, or move them, simulating any
real vehicle that might be present, and this way triggering ExternalSystemsMonitor
to check the vehicles safety. Currently, this supervisor doesn’t support the definition
of a draught and bearing values.

An external system is added to the map, as all MvPlanning ’s interactions through
the map, using Neptus ’s plugin MapEditor. By adding a mark element with its id
prefixed by ext_, ExternalSystemsSimulator will identify it as a simulation of an
external system and handle it. Likewise the Environment monitor, this module listens
to MapChangeEvent events to be informed when a map object is changed.

To simulate and add an external system 3.9 to the map, one adds a Neptus ’s mark
element (first image) and give it an adequate name with the needed prefix.

After this, the external system can be re-positioned by moving the mark element (that
is sitting bellow the system’s symbol).

3.7.7 Exceptions

The following exceptions were created to handle possible errors:

• BadPlanTaskException: This exception is thrown when something is wrong
with a PlanTask object that was created/instantiated, for instance, when the
object is null, the task type is not recognized, or any of the data needed by
PlanGenerator is missing or corrupted.

• NoSafePathFoundException: As with the previous exception, this one is
handled by PlanGenerator. It is thrown by the implementation of the A*
algorithm in case the operational area is null or a safe path between the two
given points cannot be found. This can happen both because a MapCell node
is null or has no neighbours.

CHAPTER 3. SOLUTION 70

3.8 Use case

In the beginning, when doing research for this thesis, I participated in a LSTS mission
whose objective was to deploy 2 Noptilus vehicles at APDL’s port, in order to survey
its bay. Two operators would handle the vehicles, one each, and to best use the
resources available, and because the area’s size permitted, the area would be split in
2, one for each vehicle. The area was roughly split "by eye" and marked in the map,
in order to guide the operators. Then, each operator would create a plan by using the
maneuvers provided by Neptus and setup its parameters. While planning the mission
it was clear that it was a strenuous endeavour trying to synchronize all the details
between operators, guaranteeing for instance that the vehicles wouldn’t collide with
each other, the shore or any obstacles, and minimizing overlap between plans.

Figure 3.21: LSTS mission’s area to survey

The maneuvers need to be configured according to the sidescan sensor used. In this
case the sensor was configured to a range of 30 meters and a frequency of 770Hz.
Besides this, the rows have to be spaced right, so that it exists some overlap in
the sensors’ readings (because of the loss of quality discussed in the Background
chapter), but not so much that the vehicles take too long to perform the task while
gaining nothing from data redundancy. Another problem associated with surveys is
the accumulation of navigational error while underwater. This can be reduced by
using an tactical-grade IMU - Inertial Measurement Unit which improves navigation,

CHAPTER 3. SOLUTION 71

but still accumulates error that is typically noticeable (on LSTS ’s missions) in areas
larger than 200x300 meters.

In the current scenario, the area has a dimension of 485x570 meters and, by the
way it is divided, gives each operator an area of 485x243 meters to survey. Because
the objectives require that the vehicles move underwater, in order not to take risks
of incurring too much navigation error, the operators have two options: either use
several row maneuvers or use a combination of goto and popup maneuvers, like it is
shown in figure 3.22.

Figure 3.22: Different ways of approaching survey planning, by hand. On the left the
mix of "goto" and "popup" maneuvers. On the right two "rows" maneuvers

Either way, these plans are generally created apriori of the arrival at the mission area,
which makes this task less stressful and less error-prone. The complications occur
when something in the scenario changes. Sometimes the vehicles change, and thus
some of the sensor parameters might change too, some more obstacles that need to be
accounted for, or simply the area’s positioning or dimensions are not correct. All of
these problems have happened and are prone to happen again while there’s a Human
operator as the main piece on this mission’s stage, due to its complexity.

MvPlanning and its algorithms for coverage area plans reduce all these steps to simply
adding the obstacles and target area to the map (with an appropriate ID). With
this, the operator doesn’t have to care, also, about navigation error because larger
plans are split into smaller ones (typically 15 minutes long) reducing the chances
of error accumulation. Furthermore, MvPlanning allows the operator to change the

CHAPTER 3. SOLUTION 72

Figure 3.23: Some of the plans generated by MvPlanning

payload/sensors and parameters of the plan very quickly, whereas with the typical
planning process the operator needs to apply the changes to all waypoints where this
changes were needed. MvPlanning reduces many of the points of failure, due to human
weaknesses, that occur during planning.

Chapter 4

Experiments

4.1 REP16 - Rapid Environment Picture

REP is an annual exercise organized by LSTS and the Portuguese Navy whose pur-
pose is to test and demonstrate the cooperation and synergy between aerial, surface
and underwater robotic vehicles, with a high focus on multi-vehicle operations both
homogeneous and heterogeneous in nature. Some exercises and experiments developed
at REP16, to name a few, were:

• Search & Rescue with an UAV equipped with IR camera;

• Control and Monitoring through multi-hop acoustic network;

• Swarm planning on AUVs;

• AVS + UAV as communication relays for AUVs.

At REP16 the exercise named "Multi-Vehicle’s Network planning and control" had
the following objectives:

1. Access how wellMvPlanning aided an inexperienced operator to create objectives
and have multiple vehicles performing them;

2. Validate MvPlanning ’s architecture in a real-world scenario;

73

CHAPTER 4. EXPERIMENTS 74

3. Access SpiralSTC algorithms’ performance on scenarios with a high number of
obstacles, like navy base pontoons and its stationary ships. Also access the
vehicles performance while traversing the spiral paths created;

4. Understand, in a real-world scenario, the difficulties of replanning, with MvPlan-
ning, in case a mission’s requirements changes;

5. Fix any issues found while using MvPlanning in the field.

The experiments were divided into 2 days, the 11th and 18th of June, and the areas
of operation were at Alfeite’s Portuguese Navy Base and off Sesimbra, respectively.
To note that even though in the survey plans the vehicles had their sidescan sensors
collecting data, its validity was not the purpose of any of the exercises.

4.1.1 Experiment 1 - Alfeite’s navy base

The following vehicles were involved in the experiment:

• LAUV Noptilus-1

• LAUV Noptilus-2

Five tasks were added to the map, a priori, so that MvPlanning could distribute them:
4 points to visit (with no sensor) and 1 area of 218x224 meters to cover with a sidescan
sonar. The scenario is displayed in Figure 4.1

All the map objects colored yellow are obstacles or restricted areas signaled by the
operator; the marks prefixed by mvp\visit are the locations to visit and the black
squared area is the area to survey. The green triangle signals a docked ship (whose
area was exaggerated for safety reasons), which was only detected after the arrival at
the operation area, hence added a posteriori to the mission.

For the survey mission a profile was created with the following parameters:

• Speed: 1.0 m/s

• Z: 0 meters of depth

• Sidescan sensor:

CHAPTER 4. EXPERIMENTS 75

Figure 4.1: Scenario of experiment 1 at Alfeite’s Port

– Range: 30 meters

– Frequency: 770 Hz

and the tasks to visit the other locations had the same parameters except for the
sidescan sensor.

After the vehicles were configured and ready to start the experiment, MvPlanning
received all tasks and generated the respective plans. At this stage it was clear that
SpiralSTC, as expected, was not a very good choice to generate a coverage plan in
such a scenario with lots of obstacles:

From the area to survey, only a small fraction was considered "usable" by the algorithm

CHAPTER 4. EXPERIMENTS 76

Figure 4.2: SpiralSTC: Wasted space, in blue.

and to be covered by the vehicles. The solution here was to reduce the size of the cells
from 60 to 15 meters, meaning that more data redundancy would be achieved, but
the vehicle would have to perform tighter curves (which could be achievable or not,
depending on the vehicles’ dynamics). Smaller cells also reflect in greater number of
generated plans for the same area, and more time that the vehicles are deployed with
their sensors draining battery.

Throughout the experiment Noptilus-2 kept entering in error mode and right after,
in service mode, due to internal errors (not due to MvPlanning). As a consequence
Noptilus-2 kept stopping and consuming new tasks that would get allocated to it. This
happended because at this point MvPlanning was not yet able to understand when
a plan was completed successfully or not. In the end Noptilus-1 was able to perform
only one task while the other vehicle started and stopped all the other ones, helping, at
least, validate some of MvPlanning ’s features and modules such as VehicleAwareness
and PlanAllocator. During this mishaps VehicleAwareness identified correctly the
states of Noptilus-2 (as available or unavailable) and PlanAllocator selected new tasks

CHAPTER 4. EXPERIMENTS 77

to allocate to it, as it should.

Finally, even though changing SpiralSTC’s parameters helped improve the amount
of area that could be covered, the tighter curves and paths proved to be difficult for
Noptilus-1 to execute which would most likely reflect on the quality of the sonar data
collected.

Figure 4.3: One of the plans generated at Alfeite, as executed by Noptilus-1

4.1.2 Experiment 2 - Sesimbra’s coast

The second experiment conducted at Sesimbra’s coast, intended to conclude the pre-
vious experiment by having both vehicles survey most of the area selected, test bug
fixes such as task-interruption handling, and test safe paths (which were implemented
but not being deployed until then). The vehicles deployed were:

CHAPTER 4. EXPERIMENTS 78

• LAUV Noptilus-1

• LAUV Noptilus-3

There were no obstacles in the area of operation (besides the coast), but there was a
number of vessels crossing it which encumbered the operator with being attentive to
the vehicle’s safety. When an incoming ship was estimated to cross the UAVs path,
the operator had to pause MvPlanning, stop the vehicle’s plan and send it back near
the coast. After the area was clear MvPlanning would be resumed and the interrupted
tasks handled, by setting them for allocation again.

This experiment helped understand that, with MvPlanning the operator needs to
perform an additional step when handling ships crossing the vehicles’ path, which
is to pause MvPlanning, instead of just taking control of the vehicle. The modules
ExternalSystemsMonitor and ExternalSystemsSimulator were then created in order to
test new ideas and ways of dealing with this scenario. The profile used in the survey
task was the same as in the previous experiment, except that now the vehicles would
be performing the plan at 3 meters of depth, instead of at the surface.

Figure 4.4: Part of the paths covered by Noptilus-1 and Noptilus-3 at Sesimbra’s
coast, already with safe paths.

When starting a plan the vehicles moved through a safe path to the first location in the
plan, generated by MvPlanning, and at the end of it another safe path was traversed,
but this time to the safe location set by the operator.

CHAPTER 4. EXPERIMENTS 79

4.2 Discussion

After many experiments (real-world experimentation and simulations) some improve-
ments toMvPlanning were identified. The results and possible improvements discussed
in these sections entail more direct and small changes to the architecture, whereas the
ones at Future work chapter do need more research and might need more developments.

4.2.1 Tasks

4.2.1.1 Awareness interfaces

Some more information could be displayed to the operator, such as what’s the state
of the currently connected vehicles, which tasks are available and their state (e.g.
allocated, not allocated, in error or finished). Even though this information is im-
portant for the operator’s awareness, special care needs to be given on how it would
be displayed. A recurrent problem of software like Neptus is cluttering of the console
with information and graphical windows, to a point that it gets in the way and the
operator gets overwhelmed.

4.2.1.2 ToSafety task’s depth

Like it was discussed in Chapter 3, when a task’s plan is generated, safe paths are
computed guaranteeing that the vehicle moves without colliding with known obstacles.
Currently, it is not possible to define at which depth the vehicle should travel during
this plans, it being a hard-coded value of depth 0.

There should be a way of deciding which value to set, either autonomously by Mv-
Planning, or by the operator, for instance, in a profile’s file.

4.2.2 Error handling

There are a lot of variables that the operator and MvPlanning can’t control. Some-
times the vehicle goes into an error state because of its environment, e.g. water
currents too strong, unexpected obstacles, etc., or internal mishaps, e.g. some DUNE
task/module or sensor that failed, wrong configurations, etc.. For safety reasons, the
vehicle cannot be left unattended after it stops the assigned task. It might not be

CHAPTER 4. EXPERIMENTS 80

problematic if the vehicle is within radio range and there’s already a new task to be
allocated to it, but that cannot be guaranteed.

4.2.2.1 Interrupted tasks

MvPlanning ’s way of dealing with these errors is to send the vehicle back to its assigned
safe location, by means of a ToSafety task, and then proceed with task allocation, for
that vehicle, if any tasks are available. This is a simple and safe strategy, that works,
but not very optimal. While the vehicle is traveling to the safe location it won’t be
able to receive any other tasks because its operational state is Maneuvering, hence
MvPlanning will see it as unavailable. The first improvement to be made should be:

• Differentiate when the vehicle is doing a ToSafety task, from other tasks. This
way, while the vehicle is en-route, back to base, PlanAllocator can try to allocate
other tasks.

There’s, still, a problem to this solution: if the vehicle stopped due to errors it can
happen that it will stop again, every time a new task is allocated to it. The proposed
solution is:

• Keep a counter on how many times a vehicle has failed. In case it failed more than
a pre-defined value, ground the vehicle and consider it unavailable. This can be
done permanently or until the operator fixes the issues (if they are fixable).
MvPlanning could consider that the problems are fixed when the vehicle is
restarted (hard or soft reboot).

Another interesting feature to implement would be the ability to resume a plan where
it was interrupted. For instance, if a survey was interrupted with 63% of completion it
would be more efficient to task a vehicle to survey the other 37% of the area, instead
of all of it.

In case the vehicle’s survey was on the surface, PlanAllocator could use the information
of tasks’ completion, by listening to PlanControlState IMC messages that are sent by
vehicles, and adapt the PlanTask before sending it for allocation again. Sidescan and
Multibeam surveys are not usually performed at the surface, meaning that PlanCon-
trolState messages would not be received by Neptus, defeating the previous solution.
In this case the task completion would need to be estimated based on the known
conditions, e.g of speed, currents and elapsed time.

CHAPTER 4. EXPERIMENTS 81

4.2.2.2 Partitioned areas to cover

In case the operator defines an area to cover that has an obstacle partitioning it,
MvPlanning will only consider the first partition and ignore the other(s). This is
inefficient and forces the operator to define n separate areas in order to accomplish
the coverage of the whole area.

Figure 4.5: Area to cover, split in two

For this reason, MvPlanning should understand when an area is partitioned and then
create several tasks to cover them. The image above shows, in blue, an obstacle
partitioning an area to be covered, and at red the spanning tree used to generate
coverage area plans, only on the first partition.

4.2.2.3 Tasks outside the operational area

If the operator defines a task that in some way makes the vehicle move outside of the
operational area, MvPlanning will stop plan generation but no warning or notification
will be displayed, except for an exception that is thrown. During simulation and
testing this proved to be a bad solution.

Chapter 5

Conclusions and Future work

5.1 Conclusions

This dissertation addressed the problem of planning and coordination of multiple
autonomous vehicles. The objectives defined at 1.3 were achieved and the solution
was tested both in simulated and real-world scenarios 4.2.1.1 helping to validate the
implemented architecture and understanding which changes and new features needed.
In order to accomplish the objectives the following milestones were achieved:

1. Study of LSTS’s toolchain;

2. Design and validation of MvPlanning ’s architecture;

3. Awareness about capabilities from the available vehicles (creation of profiles 3.1.2
and VehicleAwareness);

4. Implementation of a Round-robin allocator to allocate tasks to the available
vehicles 3.6;

5. Development of a simple UI for the operator to create high-level objectives;

6. Create facilities to allow more variety of high-level objectives, such as Coverage
area tasks 3.1, and and their generation;

7. First round of real-world scenario’s tests, to validate work developed until then;

8. Creation of task’s restrictions and safeguards such as safe-paths and task’s
constraints, and additional monitors and supervisors 3.4;

82

CHAPTER 5. CONCLUSIONS AND FUTURE WORK 83

9. Final round of real-world tests at REP16.

Finally, as it happens with most scientific and engineering work, there’s always im-
provements to make, features to implement and new ideas to research and test. The
work presented in this dissertation is no exception. The following sections provide
some discussion on future work.

5.2 How much automation is too much?

Further testing needs to be made in order to access if the automation implemented
defeats in some way the purpose of MvPlanning of improving the operator’s capability
in handling multiple vehicles during a mission. After thorough use of MvPlanning by
different operators in different scenarios, it’s expected that some of the flaws or missing
features are detected and it can converge to the ideal solution.

Such experiments, initially, would be structured very much like the ones for this
dissertation: 2 to 3 similar vehicles performing several tasks, in order to get all the
operators accustomed to MvPlanning ’s workflow. Further tests could, then, jump to
more complex scenarios such as usage of multiple heterogeneous vehicles.

5.3 Operator interface

The biggest improvement to be made concerns the interaction between the operator
and MvPlanning.

5.3.1 MvPlanning map editor

Currently the operator needs to interact with MvPlanning by means of Neptus ’s
MapEditor and having to use specific feature id ’s prefixes, such as mvp_ and ext_, to
do it. This calls for a specialized map editor to facilitate the adding of map objects
related to MvPlanning. The prefixes would still be used to differentiate MvPlanning ’s
map objects from others (since they use the same API) but only internally. Some of
the objects available would be:

• Cover area: For coverage area tasks;

CHAPTER 5. CONCLUSIONS AND FUTURE WORK 84

• Visit point: Create task to survey a single location;

• External system: Signal an external system’s position, heading, etc.;

• Area obstacle: Obstacles whose area is significant;

• Path obstacle: This would allow the operator to "draw" an obstacle freely by
means of line segments.

• Mark obstacle: Obstacles that can be represented as a point, e.g buoys, fishing
traps, stationary ships.

5.4 Tasks

5.4.1 Actions

Even though most of the tasks share the same behaviour: start with a safe path to
the initial point (FollowPath maneuver), execute the task-specific maneuver, finish
with a safe path to the safe location, it might make sense to have more complex tasks.
Perhaps a vehicle needs to upload data in a location l2 after surveying location l1. The
current way of achieving this would be to create two tasks: one to make the vehicle
wait at l2 and another one to survey l1. The problem with the current approach,
though, is that because the goal is divided into two tasks, and nothing guarantees
that the tasks will be allocated in the correct order to the vehicle, or at all. Another
problem is that if more than one vehicle is able to perform the tasks, then it could
happen that each task is allocated to separate vehicles, instead of just one as desired.
Temporal planning (5.6.1) could solve the out-of-order allocation but not the problem
of each task being allocated to different vehicles.

A possible solution would be to describe what each task entails, i.e. the sequence of
maneuvers that the task consists of. This description would then be mapped to a list
of actions, held by each PlanTask type, and "parsed" by PlanGenerator in order to
generate the plan according to the description. This description could be written in
an XML or a formal language like NVL [26]. For instance, the CoverageArea task
could be described by:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<Task Id="CoverageArea">

CHAPTER 5. CONCLUSIONS AND FUTURE WORK 85

<Action id="SafePath"/>
<Action id="CoverageArea"/>
<Action id="SafePath"/>

</Task>

while the more complex task’s description could be:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<Task id="CoverageArea">

<Action id="SafePath"/>
<Action id="CoverageArea"/>
<Action id="SafePath"/>
<Action id="Wait" duration="5"/>

</Task>

Such a solution also eases the process of creating a new PlanTask ’s. In this iteration of
MvPlanning if a new PlanTask is added, its behavior has to be programmed and hard-
coded, whereas when defining a list of actions, at most, what needs to be programmed
is the specific maneuver of each task type.

5.4.2 Allocation intermediate task

There might be some cases where a vehicle finishes its plan in a location where it
doesn’t have communication range to the base, and possibly with MvPlanning. As
this location is known (because the plan is known) an available vehicle, for instance
an X8 aerial vehicle (Section 2.2.1.2), could be tasked with going to that location and
allocating a task to another vehicle. This way there would be no need to wait for the
vehicle to be in communications range to allocate a new task.

5.4.3 Loiter task

A PlanTask where the vehicle is tasked to loiter (an actual Neptus maneuver) in a
given location for a certain amount of time, would be a requirement for plans such as
networks’ range extension or even surveys . The latter scenario could be, for instance,
to film or photograph small shipwrecks whose location is known.

CHAPTER 5. CONCLUSIONS AND FUTURE WORK 86

5.5 Improved environment awareness

Currently all the obstacles need to be added by the operator. This has proven, during
missions and tests, to be cumbersome, error-prone and not an optimal solution, i.e.
some space is wasted.

Using Open Street Maps XML API, the obstacle detection could be improved, by
passing most of this work to the API. The operator would still need to add some
obstacles by hand, for instance, buoys, garbage, stationed ships/boats, etc., and would
still need to validate that MvPlanning parsed correctly the obstacles’ geometry.

Another improvement that could be added to the Environment module would be a
parser for S57 nautical charts. By extracting information about the depths of the area
of operation, areas where the vehicle’s operational Z (defined in the task profile) was
invalid, could be filtered and the plans adjusted in accordance. E.g. If the vehicle’s
profile defined a Z value of 3 meters of depth and certain locations of an area to cover
had a maximum depth of 2 meters, they would be set as obstacles. This feature could
be coupled with Neptus ’s tides level estimator.

Also, a way of defining obstacles’ depth or altitude would prove to be useful. Some
obstacles are underwater while others are on the surface, and in the latter case, the
obstacle would not be a problem for a vehicle operating at 3 meters of depth. It would
lead to safer and more efficient plans, and, in some cases, better data quality (the
vehicle would turn less).

5.6 Planning

5.6.1 Temporal planning

One flaw of MvPlanning is that PlanTask ’s are decoupled from time, not allowing the
operator, for instance, to create tasks that have a topological ordering (e.g. Task A
cannot be executed before Task B) By not taking into account task’s completion time
(during the planning phase) it’s also not possible to use time as a planning metric, e.g
sort plans so that the shorter ones are allocated first. The practical example given in
section 5.4.1 is a clear example of tasks that are time dependent: data collection and
data dissemination (to the operator). Temporal planning could be easily achieved by
coupling MvPlanning with automated planners such as LPG or Europa, which LSTS

CHAPTER 5. CONCLUSIONS AND FUTURE WORK 87

already has experience with.

5.6.2 Future planning

The advantage of an a priori approach is in the amount of information available
during the planning and coordination phases, either to optimize its decisions or make
new ones. At LSTS missions the operator(s) might be forced to be onboard a boat
(or at least have one in the water) because if the operational area is big enough and
the objectives are spread, the vehicles might lose Wifi or acoustic communication.
With MvPlanning, there’s the safety that comes from ensuring that the vehicle won’t
stop after task completion, and knowing that it will travel to a position where better
communication conditions exist (if the operator defined the safe locations correctly).
This, again, may cause inefficiencies because if the majority of tasks happen further
from the operator, the vehicle will be traveling great distances going back and forward,
wasting battery.

As this is information that is available to MvPlanning during its life-cycle, it could
make use of other vehicles, such as UAVs to perform out-of-sight task allocation to
AUVs. Knowing that an AUV will be available at time x and will be out of reach
of communication, a UAV could be tasked to fly to the location where the AUV is
expected to be, at x, and allocate a task to it. An alternative approach would consist
on tasking the UAV of extending the network (if possible) by flying in circles in-
between the vehicle(s) and the operator. Besides the implementations at MvPlanning,
i.e. in Neptus, it would also require changes in DUNE. Either:

• A DUNE task to run on the UAV (in the scenario above) to send a PlanSpeci-
fication message to the AUV ;

• Change UAV ’s networking configuration so that it could behave as a network
range extender.

Besides these features, MvPlanning would also need to support temporal plan-
ning, which is already discussed in this chapter, and a new PlanTask to assign
the target vehicle to send plans to other vehicles.

CHAPTER 5. CONCLUSIONS AND FUTURE WORK 88

5.6.3 Online Planning

MvPlanning follows a paradigm of offline planning, making it more fragile to dynamic
environments. For instance, if an operating vehicle enters in error state somewhere
where it has no communication with the base, it will stay adrift (in case of a maritime
vehicle) or move in a straight line (in case of an aerial vehicle), because MvPlanning
won’t be able to handle the situation.

A possible solution would be to take on a hybrid paradigm and allow online planning,
inside the vehicles. This way, even though it could occur problems of synchronization
of information, some decision-making role would be passed on to the vehicles, and
perhaps make the planning and coordination process less bound to static environments.
For example, to tackle the problem described above, the vehicles could have a DUNE
task on-board with information regarding the environment, e.g. operational area,
obstacles, etc., (that could be synchronized with MvPlanning or not) and generate
and execute a ToSafety task, taking the vehicle back to its defined safe-location.

5.6.4 Automated Planners

Like mentioned already MvPlanning could be coupled with automated planners in
order to solve more complex problems. Both planners suggested next have been
already tested and used by LSTS.

5.6.4.1 LPG

LPG is described by the authors as a fast planner that works by using local search
to solve planning graphs, and is based on Walksat, an algorithm to efficiently solve
SAT-problems. It can solve both problems of plan generation and plan adaptation.
For LPG to be used in MvPlanning the planning problems would have to described
in PDDL and a "wrapper" class, implemented as an allocation strategy, would have
to be created.

5.6.4.2 Europa

Europa - Extensible Universal Remote Operations Architecture, is a planning frame-
work developed at NASA [27], under NASA’s Open Source Agreement (NOSA). Europa

CHAPTER 5. CONCLUSIONS AND FUTURE WORK 89

is generally used by embedding it in a host application. The planning and scheduling
strategies it provides follow a Constraint-based Temporal Planning paradigm. It
has been thoroughly used in observation scheduling for the Hubble Telescope, and
autonomous controls of several spacecrafts such as MER - Mar Exploration Rover
(Spirit and Opportunity). It’s also used in the TREX framework, used in AUV ’s
planning, which itself is used by LSTS for in-situ planning in its vehicles. Among
others, one of the most advantageous features of Europa is that it permits a Mixed-
Initiative paradigm to planning.

Further developments would be needed to couple Europa into MvPlanning so that
planning problems and PlanTask ’s could be described in the NDDL domain language,
and then used by the planner.

Appendices

90

Appendix A

MvPlanning

A.1 AbstractAllocator

Figure A.1: UML diagram of AbstractAllocator

91

APPENDIX A. MVPLANNING 92

A.2 PlanTask

Figure A.2: UML PlanTask

A.3 GridArea

Figure A.3: UML diagram of GridArea

References

[1] G. A. Bekey, Autonomous Robots - From Biological Inspiration to Implementation
and Control.

[2] J. L. Bresina, A. K. Jónsson, P. H. Morris, and K. Rajan, “Activity Planning for
the Mars Exploration Rovers,” pp. 1–10, 2005.

[3] J. Bresina, A. Jońsson, P. Morris, and K. Rajan, “Mixed-initiative activity
planning for Mars Rovers,” IJCAI International Joint Conference on Artificial
Intelligence, pp. 1709–1710, 2005.

[4] M. Cummings, J. Marquez, and N. Roy, “Human-automated path planning
optimization and decision support,” International Journal of Human-Computer
Studies, vol. 70, no. 2, pp. 116–128, 2012.

[5] Chen, T.L. and Prichett, A. R., “Development and evaluation of a cockpit
decision-aid for emergency trajectory generation,” Journal of Aircraft.

[6] K. Johnson, L. Ren, J. Kuchar, and C. Oman, “Interaction of automation
and time pressure in a route replanning task,” Proceeding of the International
Conference on Human-Computer Interaction in Aeronautics (HCI-Aero, 2002.

[7] C. Layton and M. C. Smith, P.J, “Design of a cooperative problem-solving system
for en-route flight planning-ane empirical evaluation,” Human Factors, vol. 36(1),
pp. 96–116.

[8] P. Sousa Dias, S. Loureiro Fraga, R. M.F. Gomes, G. M.Goncalves,
F. Lobo Pereira, J. Pinto, and J. Borges Sousa, “Neptus - A framework to support
Multiple Vehicle Operation,” 206.

[9] J. Pinto, P. Sousa Dias, R. Goncalves, and E. Marques, “Neptus - A framework
to support the mission life cycle,” 2006.

93

REFERENCES 94

[10] L. Chrpa, J. Pinto, M. A. Ribeiro, F. Py, J. a. Sousa, and K. Rajan, “On Mixed-
Initiative Planning and Control for Autonomous Underwater Vehicles On Mixed-
Initiative Planning and Control for Autonomous Underwater,” no. October, 2015.

[11] F. Py, J. Pinto, M. A. Silva, T. Arne Johansen, J. Sousa, and K. Rajan, “On
Mixed-initiative Coordination for Oceanographic Experiments,”

[12] “IMC v5.4.6 Specification.”

[13] R. Martins, P. S. Dias, E. Marques, J. Pinto, J. B. Sousa, and F. L. Pereira,
“IMC: A communication protocol for networked vehicles and sensors,” OCEANS
- Aberdeen, Scotland, pp. 1–6, 2009.

[14] S. M. LaValle, Planning Algorithms, vol. 2006. 2006.

[15] T. L. Mccluskey, “PDDL : A Language with a Purpose ?,” Computing, no. 1.

[16] M. Fox and D. Long, “PDDL2.1: An extension to PDDL for expressing temporal
planning domains,” Journal of Artificial Intelligence Research, vol. 20, pp. 61–124,
2003.

[17] W. Cushing, S. Kambhampati, K. Talamadupula, D. S. Weld, and Mausam,
“Evaluating Temporal Planning Domains,” International Conference on Auto-
mated Planning and Scheduling (ICAPS), pp. 1–8, 2007.

[18] W. Cushing, S. Kambhampati, and D. S. Weld, “When is Temporal Planning
Really Temporal ?,” 2006.

[19] H. Choset, “Coverage for robotics - A survey of recent results,” Annals of
Mathematics and Artificial Intelligence, vol. 31, pp. 113–126, 2001.

[20] E. Galceran and M. Carreras, “A survey on coverage path planning for robotics,”
Robotics and Autonomous Systems, vol. 61, no. 12, pp. 1258–1276, 2013.

[21] E. Galceran, “Coverage Path Planning for Autonomous Underwater Vehicles,”
2014.

[22] E. Galceran and M. Carreras, “Planning coverage paths on bathymetric maps
for in-detail inspection of the ocean floor,” Proceedings - IEEE International
Conference on Robotics and Automation, pp. 4159–4164, 2013.

[23] R. Prim, “Shortest connection networks and some generalizations,” Bell System
Technical Journal, vol. 36(6), pp. 1389–1401.

REFERENCES 95

[24] P. Blondel, The Handbook of Sidescan Sonar. 2010.

[25] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to
Algorithms.

[26] E. R.B. Marques, M. Ribeiro, J. Pinto, J. B. Sousa, and F. Martins, “NVL: a
coordination language for unmanned vehicle networks,”

[27] J. Barreiro, M. Boyce, M. Do, J. Frank, M. Iatauro, T. Kichkaylo, P. Morris,
J. Ong, E. Remolina, T. Smith, and D. Smith, “EUROPA: A Platform for AI
Planning, Scheduling, Constraint Programming, and Optimization,”

	Abstract
	List of Acronyms
	List of Figures
	Introduction
	Motivation
	Networked Vehicle Systems
	Problem Statement
	Dissertation Structure

	Background
	LSTS's Software toolchain
	IMC - Inter Module Communication protocol
	PlanSpecification
	PlanManeuver

	Neptus
	Neptus Console
	Mission Review and Analysis

	DUNE
	Ripples

	LSTS Systems
	Vehicles
	LAUV - Light Autonomous Underwater Vehicle
	X8 - Flying Wing

	Support Systems
	Manta - Communications Gateway

	Planning
	Planning definitions
	Knowledge of the environment

	Planning Languages
	PDDL - Planning Domain Definition Language

	Coverage Area planning
	Introduction
	Algorithms classification
	Choset's Taxonomy
	Exact cellular decomposition
	Approximate cellular decomposition

	Classical exact cellular decomposition
	Trapezoidal decomposition
	Boustrophedon decomposition

	Morse-Based cellular decomposition
	Grid-based cellular decomposition
	SpiralSTC algorithm
	Offline SpiralSTC
	Online SpiralSTC
	Ant-Line SpiralSTC

	Additional Concepts
	Automatic Identification System
	Ship Draught
	Sonar - Sound Navigation and Ranging
	Sidescan Sonar
	Multibeam Sonar

	Solution
	Tasks
	Task constraints
	Profile

	Operational area
	User interface
	Monitors and Supervisors
	VehicleAwareness
	ExternalSystemsMonitor
	Environment
	StateMonitor

	Plan generation
	Coverage Path Planning: SpiralSTC

	Plan allocation
	Allocation strategy
	Replanning

	Internals and utility classes
	PlanType Java Class
	Map cells
	Map decompositions
	GridArea
	Consoles and adaptors
	External systems simulator
	Exceptions

	Use case

	Experiments
	REP16 - Rapid Environment Picture
	Experiment 1 - Alfeite's navy base
	Experiment 2 - Sesimbra's coast

	Discussion
	Tasks
	Awareness interfaces
	ToSafety task's depth

	Error handling
	Interrupted tasks
	Partitioned areas to cover
	Tasks outside the operational area

	Conclusions and Future work
	Conclusions
	How much automation is too much?
	Operator interface
	MvPlanning map editor

	Tasks
	Actions
	Allocation intermediate task
	Loiter task

	Improved environment awareness
	Planning
	Temporal planning
	Future planning
	Online Planning
	Automated Planners
	LPG
	Europa

	Appendices
	MvPlanning
	AbstractAllocator
	PlanTask
	GridArea

