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Resumo

O objectivo desta dissertação é a de realizar um estudo preparatório sobre a viabilidade de
sistemas híbridos de redes de neurónios e memristors.

A investigação em memristors ou dispositivos de comutação de resistência tem recentemente
sido frutífera na produção à escala nanométrica de dispositivos duráveis. Este desenvolvimento
recente juntamente com técnicas de produção em massa possibilitou a investigação de aplicações
em outras áreas. Nomeadamente, a capacidade para mudar a resistência de acordo com o histo-
rial do sinal de entrada está a ser usada para desenvolver memórias eletrónicas comerciais e ao
nível de investigação cientifica, desenvolver algoritmos e hardware que copia certas propriedades
do sistema nervoso. Investigação de ponta em bioengenharia a nível celular está a possibilitar apli-
cações de controlo da atividade elétrica de redes de neurónios biológicas e no futuro próximo, estas
áreas de investigação vão estar desenvolvidas o suficiente para testar experimentalmente estes
sistemas híbridos hipotéticos. Entre as muitas aplicações biomédicas destes sistemas híbridos, é
esperado um papel fundamental no fornecimento de tecnologia para novos elétrodos terapêuticos
adaptativos e implantáveis.

É introduzida a literatura relevante sobre a atividade elétrica de neurónios, redes de neurónios e
das propriedade gerais de dispositivos memristivos e com a base estabelecida, nesta dissertação,
analisa-se numericamente o uso de dispositivos memristivos como sinapses com modelos analíti-
cos e numéricos, procedendo com a proposta de propriedade memristivas que necessitam de ser
caracterizadas para qualquer trabalho nesta área. Porque os modelos presentemente disponíveis
não são detalhados o suficiente para retirar conclusões preditivas, também são propostos sistemas
híbridos genéricos, que aproveitam as capacidades de adaptação e sincronização.

Palavras-chave: neurónio, redes de neurónios biológicos, memristor, adaptação, aprendiza-
gem, sistemas híbridos
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Abstract

The aim of this dissertation is to conduct a preparatory study on the feasibility of hybrid systems
of biological neural networks and memristive devices.

Research in memristive or resistive switching devices has recently been fruitful in producing
nanometer scale and durable devices. This recent development coupled with mass producing
techniques has enabled to research their applications on other areas. Most notably, the ability to
change their resistance according to the input’s history is currently being used to develop commer-
cially feasible electronic memories and on research level, develop algorithms and hardware that
mimics certain characteristics of the nervous system. State of the art bioengineering research at
the cellular level is paving the way for applications that can fine control the electrical activity of
biological neural networks and in the near future, both these areas of research will be developed
enough to experimentally test these hypothetical hybrid systems. Among the many biomedical ap-
plications of these hybrid systems, it is expected that they will play a fundamental role in providing
the technology for novel implantable and adaptive therapeutic electrodes.

The relevant literature is introduced concerning the electrical activity of neurons, neural net-
works and the general properties of memristive devices. With the basis established, in this disser-
tation, it is numerically analyzed the uses of memristive devices as synapses with analytical and
numerical models and subsequently, propose memristive properties that need to be characterized
for any further work in this subject. Because the available models are not detailed enough for many
predictive conclusions, generic hybrid systems are proposed, that take advantage of adaption and
synchronization.

Keywords: neuron, biological neuronal network, memristor, adaption, learning, hybrid systems
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Chapter 1

Introduction

Over the last few decades, the accelerated development of computers has shed light on their
inherent limitations to process information efficiently over large data sets and to adapt to less than
ideal inputs or working conditions. In opposition, humans (and other living beings) have an ap-
parently disorganized structure, the nervous system, that excels at processing environmental data
and simultaneously control the rest of the body, on about the same energy consumption as a light
bulb. This efficiency coupled with a tremendous adaption capability, results from an architecture
that melds processing and memory. These types of architectures are not unique to biological sys-
tems, because artificial neural networks are a concept that has been used to model the nervous
system and in computer science, as a generic frame to develop algorithms/software that mimic
certain aspects of the brain.

Recently, the development of nanotechnology has enabled to translate this computational con-
cept into neural network chips and with state of the art biotechnology, the integration of artificial
and biological neural networks is imminent. The difficulties arise from the ubiquitous use of transis-
tors in modern electronics, that do not necessarily result in dynamics compatible with the nervous
system, either for typical magnitude of variables or for how the learning/adaption occurs. However,
the memristor is a two-terminal nanoscale device, that since its discovery, has been postulated to
have the adequate characteristics, including resistance that adapts to the input’s history, scalability
and low power consumption.

To understand how both these systems can be interfaced, the biological and electrical portions
need to be individually studied, before they can be integrated.

The goal of this dissertation is to explore and assess the necessary conditions to effectively
bridge activity and information between biological neurons andmemristive devices. This is achieved
through simulations and analysis of detailed biophysical neuronal models combined with mathe-
matical models of memristor dynamics.

The nervous system is a complex multiscale biological structure, requiring detailed knowledge
and integration of biological, chemical and physical processes. To understand how it works, it is
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useful to compare it with von Neumann architectures. In typical von Neumann architectures, pro-
cessors andmemory are critical; any action requires data transmission frommemory and processor
and back. But while in von Neumann architectures memory and processing are separate, in the
nervous system both are supported by the same substrate.

This multiscale property of the brain has strong implications in our understanding of how it
works. At sub-micrometer (down to nano) scale, ion pumps/transporters regulate the gradient of
concentrations between the intra- and extra-cellular media while being tied to the electrical activ-
ity of the cellular membrane; molecular neuroscience examines the interaction of ions and other
“small” structures in this non-uniformmedium. In practice the nervous system cannot be completely
understood using such basic components, it becomes necessary to enlarge the scale.

Taking the other extreme, cognitive neuroscience studies how psychological functions like per-
ception and emotions emerge from relatively simple building blocks and how external social or
environmental stimulus influence its subsystems. This research field relies on an array of differ-
ent techniques, including psychology, behavioral science, brain scanning and mapping, direct and
indirect electric stimulation.

This dissertation focuses on cellular and systems neuroscience, areas of research that ana-
lyze neurons and synapses and how they couple to form subsystems of the brain. Neurons and
synapses are the base units of the nervous system architecture; it basically comes down to very
simple ideas: neurons are cells that emit voltage spikes and are connected with synapses. When
these spikes travel through the synapses, they change the synapses’ state and are transmitted with
some modification. In von Neumann vocabulary, processing and memory write/read cycles occur
simultaneously and cannot be separated.

On the scale of neurons and neural networks, the intrinsic chemical reactions induced by neu-
ral dynamics are not important for the overall dynamics, meaning that, at this size scale the rele-
vant portions of neural systems are related to signal generation and transmission. Given that for
this context what matters is the electrical signals, the mentioned voltage spikes form the basis of
most results and discussions in this dissertation; they are localized in time and space and are self-
propagating waves that disperse little energy, akin to an event. It is this property that permits to
use an event-driven approach to analyze neural networks. By the same perspective, biologically
detailed simulations are impractical for large networks, due to the sheer number of variables that
need to be accounted for. With neural networks, cells can be reduced to a dimensionless structure
and replaced by a set of differential equations; in practical terms, the cell is replaced by an electric
circuit that mimics the electric activity and produces spikes with the same characteristics.

As mentioned before, the main goal of this dissertation is to find out how can these types of bio-
logical systems interact with the recently developed memristors or memristive devices, resistor-like
devices that switch their value according to the input’s history. These devices where theoretically
introduced in 1971, using group theory arguments and recognized experimentally in 2008. While
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there are a few established and/or accurate analytic models, they are developed to describe physi-
cal devices on fairly limited ranges, producing non physical results outside those ranges; I will start
by analyzing analytic models and at a later point use treated experimental data.

Current complementary metal-oxide-semiconductor (CMOS) and very-large-scale integration
(VLSI) technologies have already made advances on mimicking neural dynamics. Memristive de-
vices can be produced at nanometer scale and require little power, making them a prime candidate
for an adaptable electrical element, but biological neural networks and memristive devices do not
function within the same magnitude ranges of voltage, currents and time. Memristive models need
to be correctly parameterized to optimally interface with neurons and, with that information, some
possible schemes of memristive synapses are built and analyzed how they influence neuronal dy-
namics.

Because of the variability of devices, specific hybrid circuit applications need to be constructed
with specific types of memristors in mind. Different tests are developed/reiterated to identify several
crucial characteristics, like thresholds, sensitivity, type of device, imperfections... With those basic
elements in place, schemes of hybrid circuits are rendered: 2d arrays, 3d arrays, artificial mem-
ory banks, adaptive rectifying circuits; basically taking established electrical circuits and imprinting
memristive properties.

Currently, it is possible to interface the brain and electrical/electronic systems, being a common
occurrence for research purposes. Except for the simplest applications (like recording the electrical
activity), this interface is done via non-portable systems, at the expense of scalability and energy
efficiency. Without considering how neuronal signals could be read and transmitted to a computer,
the intended applications with in silicomodels should require at least amid rangeCPU/GPUwith 102

to 103 W power consumption, while the human body wattage averages at about 100 W; an ideal
system should be implantable (biocompatible) and require no external power supply, effectively
drawing the necessary power from the nervous system.

Eventually, these systems could be used to treat various pathologies in the nervous system: re-
place missing nerves/neural pathways from accidents or malformations, regulate excessive electri-
cal activity from epilepsy or neurodegenerative diseases. Current research level RRAM (Resistive
Random Access Memory), RAM that uses memristors, can, in principle, also be adapted to extend
our own memory and cognitive skills, with biocompatible artificial memory banks.

Chapter 2 reviews the relevant properties of the nervous system, focusing on certain aspects
of cellular membrane modeling and neuronal cable theory, following up into the biological mecha-
nisms of neural adaption. Establishing the relevant working principles of neural networks, history of
memristor devices is reviewed, generic models and uses for computer memory and neuromorphic
applications.

Chapter 3 expands on the methods used in this dissertation, namely on the simulation envi-
ronment NEURON, a combination of different programming tools/languages that is optimized for
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neurons and neural network modeling. A small revision of numerical tools and typical workflow in
this framework is done.

Finally, chapter 4 consists of the majority of the obtained results. It starts with a preamble
section, gathering some results that are not completely original and that are developed for this
context. With the basis of results to work with, possible memristive synapses are proposed and
given a scheme to implement on NEURON, ending this section with numerical results that arise
from connecting neurons and memristors.

With several characteristics and problems identified, chapter 5 expands on workarounds to dif-
ficulties (when found), how those characteristics can affect the dynamics of hybrid circuits/systems
and how they can be identified. Hybrid systems that were not implemented and therefore not ana-
lyzed numerically, are proposed for less generic uses.

Chapter 6 gathers relevant results and conclusions, and lays down the work plan for a project
in this field.
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Chapter 2

Literature Review
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2.1 Nervous system and the brain

There are many possible pathologies in the nervous system: severe neurological diseases
caused by mutated ion pumps [2, 3], neurons with incorrect morphology or wrongly positioned neu-
ral circuits [4, 5], diseases on a system level magnitude such as depression, obsessive-compulsive
disorder, Alzheimer or Parkinson. These pathologies can all affect the electrical activity of the
nervous system and undo its general operating architecture.

The brain is the center of the nervous system and it managesmany aspects of the body, contain-
ing up to 1012 neurons (and about as much nonneuronal cells [6]) with, for example, 1010 neurons
in the neocortex [7] or 105 neurons in the hippocampus [8]; and about 1014 synapses in the hu-
man neocortex [9], containing about 75% of the brain’s volume [10]. Understanding this system,
from the standpoint of electrical activity and bioelectrical circuits, is fundamental for the intended
applications with memristive devices or other electrical elements.

2.1.1 Biophysical models

In neuroscience, there are several ways to study the brain. Molecular and cellular neuroscience
characterize the chemistry and physics of neurons, synapses and propagation of signals; systems
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neuroscience already ignores the finer details of neurons, but studies how neural circuits are formed
and react; finally, at a larger scope, cognitive neuroscience studies the interactions of neural circuits
and the environment that result in psychological functions.

Figure 2.1: Complexity levels of the ner-
vous system [1]

Neurons are a necessary building block to understand the
nervous system, but in figure 2.1 they are at the middle of the
scale; 10−4 smaller than the entire system and 10−8 larger than
ion channels/pumps. Neurons are a middle ground in the size
scale, providing an effective element of the nervous system
for neural networks applications. A neuron is a cell that reacts
to electrical and chemical inputs; its cellular body connects to
other neurons through synapses, where electrochemical sig-
nals travel (see figure 2.2). The electrical signal is controlled
by ionic pumps in the cellular membrane, the chemical portion
of the dynamics that controls concentration gradients between
extra- and intra-cellular mediums.

Action potentials occur when membrane potential exhibits
fast changes, within a few milliseconds and typically crossing
zero voltage value; if connected to other neurons, such events
can induce more action potentials. A model of these signals
depends on the morphology and composition of cells, ionic
gates, propagation in non-linear media (includes diffusion, drift
and wave equations) and their interactions.

Even the simplest model of a full nervous system, in the
perspective of system neuroscience, requires a set of 1014

variables (neurons + synapses). Considering that the involved
differential equations can be nonlinear, convergence issues in-

volves iterative solutions at each instant, increasing the actual number of calculations per time step.

Figure 2.2: Propagation of signal within a axon [11] and from axon to dendrite [12]
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At such a high number of variables a detailed analytical analysis is impossible but physics has
since long employed statistical tools (statistical mechanics, thermodynamics, among others) to
evaluate the characteristics of large systems. But there are actually two reasons why it fails in this
case: system size and homogeneity, and precision of spike time (temporal coding). To correctly
describe systems with statistical tools, the brain would need to meet certain requirements of size,
homogeneity and equilibrium. The timing of each spike needs to be known to window of a few
milliseconds. Take for example a set of experiments published in 1996, where subjects need to
recognize a given property in an image shown for 20 ms; a clear sign of recognition happens after
150 ms [13]. Figure 2.3 shows the general features of a visual system and with 18 layers (plus
feedback), there is less than 10 ms for spikes to pass from one layer to the other; typical firing rates
have an upper value of around 100 Hz, meaning that each layer can fire once in that time window.
This shows that the information content of a single spike, largely encoded in its precise spike time,
is very large.

Figure 2.3: Generic visual system ([14], Section 11.6.3)
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Taking direct inspiration from statistical physics, the thermodynamic limit requires a system that
can be extended to infinity by approximation or by use of its geometry and symmetry and that is
sufficiently homogeneous. But the nervous system is separated into many different subsystems,
for example, to see, to regulate variables like concentrations or temperature, to make muscles
react and more; the system as a whole performs these functions simultaneously, therefore it is an
heterogeneous system.

2.2 Neurons

The basic description of a neuron includes a soma, the neuronal membrane, axons, synapses
and dendrites ([11], pp. 29-46 and pp. 111-114).

Figure 2.4: Possible configurations of neurons [12]

The soma (or cellular body) is an approximately
spherical structure with a radius on the magnitude
of micrometers; in terms of organelles, the contents
of the soma are similar to other cells. While the cel-
lular body plays an important role in maintaining the
homeostasis of the cell, the neuronal membrane has
most of the properties that allow the typical spiking
activity of neurons, through pumps and ion channels
in its surface which control the intra-cellular ionic
concentrations and the ionic currents across the cell
membrane; they are distributed non-uniformly and
make the propagation of action potentials possible.

To best understand axons, synapses and dendrites, in this context, they can be reduced to their
ability to transmit signals between cells. Axons extend outwards from the soma, generally many
orders of magnitude above the typical soma size, up to a meter, and are the longest structure of
neurons, akin to a wire; they can branch out to multiple axons, with each propagating the original
signal and along axons, the membrane properties can change, assuming a bulgy disk shape that
maximizes the contact with other structures. The point of contact is a synapse, which contains
a high concentration of small structures, the most relevant of those structures to neural transmis-
sion are vesicles that release neurotransmitters (chemical messengers) to dendrites; synapses can
be chemical or electrical (or gap junctions). Just like axons, dendrites extend outwards from the
soma but are normally shorter; the dendritic membrane contains receptors that detect the neuro-
transmitters, which allows to transmit the signal outwards to the soma. These signals can be back
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propagated [15] and annihilate if they collide with other signals [16].
The generic neuron contains these four elements, but the signal can be spatially directed, like

schemes A or B in figure 2.4, or have an amorphous structure, akin scheme C.

The signals that characterize the electrical activity of the nervous systems are called voltage
spikes or action potentials, and are transverse waves where the ionic current is between the intra-
and extra-cellular medium. By the properties of membrane’s depolarization, when an action po-
tential travels in a patch of membrane, it does not recover immediately, which drives the spike into
areas of the membrane that have not been depolarized within a specific time window, the refractory
period; it is this transient characteristic of the membrane that turns the current orthogonal to a net
current parallel to the membrane.

Except in very basic situations, this model for signal transmission is too complex to handle
analytically and too numerically intensive for network simulations. At this point, any model needs
to be simpler, with neuronal cable theory becoming very useful.

2.2.1 Hodgkin-Huxley model

Figure 2.5: Patch of membrane that follows the
Hodgkin-Huxley model ([1], p.50)

Figure 2.6: Ions near the membrane ([11], p.68)

Because the thickness of the neuronal membrane is on the order of a few nanometers, the
electrostatic interaction between intra- and extra-cellular ions attract each other to this layer (figure
2.6). Storing electric charge like this allows to identify the capacitance of the membrane, Cm;
the membrane tries to maintain a chemical equilibrium through a reversal potential (EL) with ions
flowing through it against a membrane resistance (Rm). The reversal potential is a value of voltage
at which a particular type of ion or set of ions have no net current across the membrane.
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In 1952, Hodgkin and Huxley published a model describing the electrical activity of giant squid
fibers [17], modeling the membrane with three resistances: one leakage resistance (Rm → 1/gL)
with a reversal potential (EL), a sodium resistance (gNa = gNam

3h) with another reversal potential
(ENa) for Na+ and a similar resistance for potassium, K− (gK = gKn4 and EK). This can also be
referred as the HH model, with the circuit exemplified in figure 2.5. Summing all currents, including
an electrode (Ie, not in figure 2.5), results in:

Cm
dV

dt
= −gL (V − EL)− gNam

3h (V − ENa)− gKn4 (V − EK) + Ie (t) (2.1)

with

Cm = 1µF cm−2

ENa = 50mV gNa = 120mS cm−2

EK = −77mV gK = 36mS cm−2

EL = −54.4mV gL = 0.3mS cm−2

The variables m, h and n are probabilities of the ionic pumps opening and are adimensional
state variables between 0 and 1, referred as gating variables and are voltage controlled by the rate
constants α and β, with the following differential equations:

dA
dt = αA(1− A)− βAA A = m,h,n (2.2)

For sodium, one has:

αm = 0.1 V+40
1−exp(−(V+40)/10) αh = 0.07exp (− (V + 65) /20)

βm = 4 exp (− (V + 65) /18) βh = 1
1+exp(−(V+35)/10)

While for potassium:

αn = 0.01 V+55
1−exp(−(V+55)/10) βn = 0.125exp (− (V + 65) /80)

Figure 2.7: Typical electrical activity of a realistic neuron ([11], p.85)
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The shape of the spike is dependent on the gating variables, causing the sudden decrease
in voltage when above 0. Figure 2.7 exemplifies the dependency of firing rate of spikes on Ie,
where the capacitive properties are magnified when below a set threshold value and the resistive
properties are magnified when above the threshold.

This set of equations, four ordinary differential equations, can be numerically too taxing to incor-
porate in a neural network, requiring major simplifications. The most used of these simplifications
is the integrate and fire (IF) model and variations, used in computational cellular neural networks
research [18, 19], taking into account only the passive properties (leakage current and capacitance)
and a numerical approximation:

τm
dV

dt
= Em − V +RmIe and τm = RmCm. (2.3)

The numeric approximation includes a threshold and reset voltage with the following condition:
ifV (t) = Vthreshold → V (t+∆t) = Vreset.

The quantity τm = RmCm has time units; this is the typical decay time of the voltage spike,
when the neuron is in its refractory period. While it does not have many biophysical details, in
some applications, this model is acceptable.

The previous models describe patches of neuronal membrane, but are not enough to explain
the spatial characteristics of neural networks. A problem of particular importance in the spatial
domain is understanding the spatial range of locally produced voltage perturbations, as well as un-
derstanding signal propagation. Neuronal cable theory was created for this purpose, but it does not
describe the chemical processes that happen in the membrane, it models, instead, an approximate
circuit that mimics the passive electrical properties of a cylindrical portion of membrane. The re-
sulting equation is a 1D diffusion partial differential equation (same as an heat equation), similar to
Eq.2.4. In addition to the membrane time constant τ , this equation introduces also the membrane
space constant λ which defines the spatial scale for how far a local perturbation can reach in the
membrane. In simulations, the continuous cable equation is replaced by a spatial discretization of
the neuronal fibers, either axon or dendrites (figure 2.8).

τ
dV

dt
=

[
Model specific
current channels

]
+ λ2∂

2V

∂x2
(2.4)

Figure 2.8: Discretized axon ([1], p.36)

In each of the smaller segments, an electrical circuit is associated, akin figure 2.9, where these
segments of membrane only have the most basic of features that allow signal propagation.
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Figure 2.9: Equivalent circuit of discretized axon ([1], p.36)

Notice that neural circuits do not have solely electrical properties, but also need to be considered
in the medium of the nervous system. Each equivalent circuit (soma, axon, dendrite or patch
of cellular membrane) is grounded because structures in the nervous system are not electrically
isolated from the rest, effectively grounding everything to the same reference.

2.2.2 Synapses

There are two important features that distinguishes electrical and chemical synapses: speed of
transmission and effect on the postsynaptic neuron. With respect to the transmission speed, chem-
ical synapses are slower than electrical synapses; depending on the type of chemical synapse,
neurotransmitters can induce post-synaptic membrane responses (PSR) within milliseconds while
electrical synapses are “nearly instantaneous” [20].

The reason for this difference comes from the biophysical mechanisms in place; in gap junctions
the synaptic cleft is about 2-4 nanometers, allowing direct transmission of the ions that produce
PSR; while in chemical synapses, synaptic vesicles are stimulated by action potentials and release
neurotransmitters that traverse a 20-40 nanometer gap [21].

The effects of the different synapses can be classified in three categories [20]:

• Electrical synapses are two-way connections that synchronize neurons (also regulate inner
cell processes);

• Chemical synapses are one-way electric connections and can be inhibitory or excitatory:

– excitatory synapses stimulate the postsynaptic neuron to produce depolarizing PSR;

– inhibitory synapses inhibit possible action potentials in the postsynaptic neuron by pro-
ducing hyperpolarizing PSR.

Chemical synapses can modify the amplitude of the signal (synaptic strength) allowing mecha-
nisms of cooperation/competition between neurons and, very importantly, allowing mechanisms of
adaptation and learning, also know as plasticity.
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2.2.3 Plasticity

Barring cellular death, neuronal activity is susceptible to homeostasis, where neurons and
synapses are actively regulated. This regulation of activity is an umbrella term for a variety of
biological mechanisms, that on the scale of neural networks, adjusts the firing rate to a target
value.

Synaptic plasticity

For the context of this dissertation, synapses form an important basis for comparison and in-
spiration terms for some of the results that will be shown later. Like other structures in the nervous
system, they are regulated by plasticity mechanisms, in this case, to adjust the effect on the post-
synaptic neuron.

Figure 2.10: Simple model of neural network [12]

For the output (post-synaptic neuron) in figure 2.10, the differential equation is

C
dv

dt
= [Model dependent current] + f (v,u,w) ,

where v and u are the output and input activities and w is the synaptic weight of the connection,
and it is the dynamic behavior of w that is believed to represent the formation of memories and
learning [22, 23]. The function f (an unspecified current source) and the equation that rules the
evolution of w reflect the fact different types of plasticity occur in the nervous system [24, 25, 26].

The simplest plasticity type is referred as Hebbian theory [12]:

dw
dt

= vα · u. (2.5)

According to this theory, synchronous events (that is v · ui ̸= 0) change the strength of the
connection. The signal of α determines whether the synapse is strengthened or weakened. If αi is
positive, long-term potentiation (LTP) increases the strength of the synapse; for negative αi, long-
term depression (LTD) decreases the strength of the synapse. However, synapses do not have an
infinite retention time, that in this perspective, means that the value of w is not constant, even if
v · u = 0. Adding an exponential term, −β ·w, to the right side of Eq.(2.5) simulates volatility.

Additive/Subtractive learning allows for LTD and LTP within the same model:

dw
dt

= α (v − u) . (2.6)
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The relative difference of electrical activity also influences the synaptic process. This is an
important learning mechanism, because in electrical systems, an adaptive element takes into con-
sideration potential difference between its terminals, just like in Eq.(2.6).

More complex models take into consideration timing between spikes, producing significant
strength change only if within a certain time window. For example, experimental data (figure 2.11)
shows spike timing dependent plasticity (STDP) within a window of 100 milliseconds, using rat
hippocampal neurons [27].

Figure 2.11: Synaptic strength typically increases if the post-synaptic spike occurs after the pre-synaptic spike, decreases
the timing is reversed [27]

These different types of plasticity support different adaption mechanisms and in the context of
synapses, it is how the neural network learns. If one of the input neuron fires and within a certain
time window the output also fires the strength should change. This learning process changes the
set of parameters in the neural network, but what matters are the two possible outcomes:

• if the synaptic strength increases, the synapse is potentiated;

• if the synaptic strength decreases, the synapse is depressed.

Hebbian learning refers to the simplest learning scheme and can be stated as “neurons that fire
together, wire together” [12]. In a more realistically manner and using more complex models, neu-
rons that fire within a specific time window, connect in a different way. And in a system where
in average each neuron connects to other 102-103 neurons, the neural pathways that have been
potentiated matter the most and depressed pathways are less relevant. These competition based
mechanisms affects the development of neural circuitry [28] and after growth [29]; correlation-based
or covariance rules enable to map these changes to simple changes in synaptic strength, useful for
artificial neural networks [30, 31] but do not have enough biophysical details to exhibit true effects
of competition/cooperation in biological systems [32].
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Homeostatic plasticity

While synaptic plasticity can explain neuronal adaptation at short term and partially at long term,
the nervous system has other mechanisms in place. Hebbian type mechanisms are not enough to
explain plasticity because they tend to destabilize neuronal networks [33], saturating the synapses
and deviating from target firing rates [34].

Global synaptic scaling adjusts the strength of all synapses for activity rates to meet some target
firing rate [34]. This mechanism causes a multiplicative change (α) in synaptic weights: at reduced
activity, α > 1 and with increased activity, α < 1. Structural synaptic plasticity refers to the formation
and elimination of synapses, changing the structural models of networks in the visual and motor
systems [35, 36].

Homeostatic plasticity plays a relevant role on neuronal dynamics and should be mentioned
to show that synapses are not the only necessary element, but it will not be discussed in this
dissertation.

2.3 Memristors

Figure 2.12: Graphical demonstration of memristor exis-
tence [37]

Memristors or resistive switching devices
are a novel concept in material science [37, 38,
39, 40], neuromorphic engineering [41, 42] and
RAM (Random Access Memory) applications
[43, 44, 45].

Memristors were theoretically introduced by
Chua in 1971 [46], with figure 2.12 graphically
completing the group of passive electrical ele-
ments with the memristor, by group theory ar-
guments, and first experimentally recognized in
2008 on metal-insulator-metal devices [37]. It is a two-terminal electric component, similar to a re-
sistor with a variable resistance that is controlled by one or more state variables, exemplified by
figure 2.13 with two different models when subject to sinusoidal inputs. Since the first reference
of memristors by Chua, the definition has been changed many times to accommodate for different
experimental results and presently the more inclusive models are generic memristors [47]:

y(t) = g(x, u, t)u(t)
dx
dt = f(x, u, t),

(2.7)

where y(t) and u(t) are all the possible fundamental circuit variables (current, charge, voltage or
flux), g the function that connects the two circuit variables, for example, with g = resistance if y =

voltage and u = current, and x a vector of internal state variables. In this general form, Eq.(2.7)
describe many fundamental electronic elements: sources, resistors, inductors, capacitors...

To specifically represent memristors, extended models have two extra conditions:
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y(t) = g(x, u, t)u(t)
g(x, 0, t) ̸= ∞

dx
dt = f(x, u, t)

(2.8)

and all hysteresis loops are pinched at the origin, (y, u) = (0, 0).

Figure 2.13: Examples of current-voltage curves of simple analytical memristive models

These devices are interesting because the set of Eqs. (2.2) and (2.7) share a few similarities,
namely on the gating and state variable. Currently, the research is still centered on improving
performance requirements [48] and due to limitations, there are three main areas of research on
memristive devices: material science, resistive random access memory and neuromorphic appli-
cations.

Material science

Experimental results since 2008 suggest that the memristor has been found [37], but are still
objections about the possibility to obtain the originally proposed device [49]. Those objections
come partially from divergences between the original formulation and currently available devices,
partially from electrodynamical principles and from fabrication issues that cause device variability
[50], constraining the applications [51].

More recently, it has been discussed whether memristors can only exist as binary [52, 53] or
multilevel/continuous devices [54, 55].

Resistive random access memory or RRAM

At a more commercial level, there are structures called crossbar arrays which store 0’s or 1’s
(bits), acting as a memory/data storage [56, 48]. The interest lies on the reading and writing times
of these structures, in the scale of nanoseconds [57], allowing to create faster memory devices.
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Figure 2.14: a - Cross section of crossbar memristor arrays; b - Schematical representation of the same; can be very
dense; c - On and off state, each crossing point is a storage bit; adapted from [48] and [37]

Neumorphic applications

In this area there are many possibilities: computing that differs from the usual von Neuman
architecture [56]; fuzzy logic in contrast to Boolean logic [58, 59]; hardware visual systems with
fast detection times [60, 61], neural networks and neural computing [62, 63] (as in circuitry that
mimics the highly parallel, highly redundant architecture of the nervous system) and neuro-inspired
content-addressable memory systems [64].

Besides all of the above, memristors can be fabricated at nanometer scale [65] and very low
power (hundreds of femto to tens of pJ [66] or 10−1 to 10−3 W during switching process), compared
to its digital counterparts.

In another section it will show how ionic pumps and memristive devices are similar, focusing on
the capacity to retain information and plasticity, with short term memory for ionic pumps and long
term memory for memristors.

Figure 2.15: Comparison of theoretical model (left) with experimental data (right) [37]

Correctly speaking, memristors were not developed experimentally in 2008, they were just not
recognized as such until then [37]. Typically, memristive properties emerge from the electrical
properties of stacks of materials [67, 68, 69, 70]: electrodes between some insulating material.
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2.3.1 Memristive models

From a physical standpoint, a detailed model depends heavily on the type of device, making
the development of generic models difficult. However, for circuit applications there are simplified
models that exhibit resistance switching characteristics, without considering the finer details (see
figure 2.15).

For RRAM applications, because resistive switching devices are used as a storage bit, the mod-
els for these memories do not need to take into account all physical details and primarily emphasize
the binary values of resistance.

Figure 2.16: Possible physical representation of resistance switching [71]

In figure 2.16, model a represents a moving wall between the blue region (low resistance vol-
ume) and the yellow region (high resistance), with the following state equations:

V (t) = M(x, I, t)I(t)

M(x, I, t) = RONx+ROFF (1− x)
dx
dt = a · f (x) · I(t)

(2.9)

Eqs. (2.9) represent one of the simpler models of resistance switching, with the linear transfor-
mation from Ron to Roff . This is referred as the linear memristor, acting as variable resistance or
memristance (M ) and relating voltage (V ) and current (I). The state variable (x) linearly controls
the memristance between a high (Roff ) and low (Ron) value. The entire dynamical information is
in the window function: f (x) = 1 for the originally proposed device, f (x) some function for simple
models (figure 2.17) and a given parametrized function for real devices.
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Figure 2.17: Examples of memristor models with the same moving wall logic [72]

To correctly parametrize memristive devices, more physically detailed models are required. Ex-
perimental results indicate that most memristive devices exhibit resistance switching with ion mi-
gration, forming filaments of material with different conductivity [48, 73, 74]; less common results
also identify interfacial and bulk transitions in certain devices [75, 76].

Work developed on filamentary memristor models [77, 78, 79, 80, 81] relies on ion migration
considerations (figure 2.18), having a more accurate representation on schemes b and c.

Figure 2.18: Ion migration between the electrodes (TE and BE) when applied differently signed voltages [77]

As is shown further, the plasticity of memristors is very sensitive to the models that are being
used; fine tuning and sensitivity makes the study of possible applications difficult. In that perspec-
tive, a temporary shift from voltage-current models is necessary, which are easy to implement in
circuit based simulations (ie SPICE), to flux-charge (φ − q) models. These models are the equiv-
alent of voltage-current models in the integral form, but have a simpler form. The following model
shows exemplifies the differences:

V = MI

M = Ronx+Roff (1− x)
.
x = αI
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Not including a window function simplifies the math, and integrating the V − I state equation,
the model results in:

φ =
∫
V dt

q =
∫
I dt

φ = Roffq +
Ron−Roff

2 αq2 + φ0

But when considering window functions or more complex V − I models, it is difficult to present
the model on an analytic closed form. Even though the linear model (without window functions)
is represented by an injective relationship in the φ − q plane, realistic devices generally cannot.
However, in this plane, it is easier to match experimental data to a numerical function or table.

2.4 Neuromorphic applications

So far, it has been presented the nervous system and memristors with separate mathematical
representations, briefly touching upon the similarities. Namely, in terms of formalism, Eqs. (2.1)
and (2.2), except capacitive effects, fall under the type described by Eq. (2.7). However, because
real devices do not spontaneously emit spikes without the use of other electrical elements, the
generic memristor is not used, alone, to describe neurons. It is nevertheless, an extraordinary
neuromorphic match for voltage-gated ion channels and synapses.

The similarities are revealed by the electrical equivalence of a neuronal excitable membrane,
because it introduces variable resistors controlled by membrane potential’s history. The gating and
state variables, of neurons and memristors, are the clear parallel between these two systems.

2.4.1 Memristive plasticity

It is useful to now focus on how memristors imitate biological properties. While gating and state
variables have similar mathematical models, state variables and synaptic weights are akin in terms
of plasticity.

Simulation results takes into account a simple moving wall model and input different signals
(spikes) at both terminals with a time difference ∆T [82]. In figure 2.19 it is clear that memristors
allow for distinct plasticity rules, like the nervous system also has [26]. The main point that needs
to be stressed is that, in the nervous system, different plasticity rules are tied to different synaptic
models, that rely on different biophysical foundations, while the signal shape is not reliable enough
to select one of the rules. I will show later that this causes a fine tuning issue that constraints the
intended applications.

2.4.2 Artificial cells

Using computational and numerical tools it is possible to demonstrate that memristive devices
can manifest adaption mechanisms that mimic biological processes. Neuromorphic engineering
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Figure 2.19: ξ (∆T ) is a measure of state/resistance variability after the pre- and postsynaptic signal [82]

is an umbrella term for the intersection of several areas of research, including biology, electrical
engineering (with focus on electronics), chemistry and others. This area results in designs that
mimic the nervous system and neural networks, whether it being circuits that model an neuron (IF
[83], HH [84] or others), whole subsystems of the nervous system, like the visual or auditory system
[85] and eventually a brain on a chip.

Starting from simple building blocks, resistance switching devices provide a basis for IF neurons,
because both integrate the input that they receive. For example, a neuristor [86] is a memristor
based artificial neuron [84] that mimics the dynamics of a HH neuron.

Figure 2.20: Left - memristor based neuristor; Right - Voltage-current curves of the memristors [84]

Notice on figure 2.20 that this circuit, excluding the capacitors (that introduce latency), is a vari-
ation of a memristive voltage divider. While Vd.c. is a constant input (after being turned on) to set the
state of each memristor, the input is characterized as a solitary square wave that destabilizes both
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switching devices for a limited time window, creating a spike profile similar to an action potential.

Other cells can be copied, like sensory cells, to mimic adaption to repeated input and for ex-
ample, amoeba-like cells can adapt to periodic inputs, implying that these cells have memory [87].
A circuit involving a resistor, inductor, capacitor and memristor exhibits the same type of memory
[88], where the inductor and capacitor regulate the total change the memristor’s state.

2.5 Cellular neural networks

Figure 2.21: A 4 by 4 two dimensional cellular neural network, with C (i, j) acting as cells connect with all its neighbors
[89]

On a larger scope, biological neural network and electrical circuits can be tied together in the
context of cellular neural network [89, 90], a type of artificial neural networks. Introduced by Chua
and Yang in 1988, it is a large scale analog circuit composed of dynamical systems connected
locally and can be used for image processing/analysis, like edge or pattern detection.

The hybrid circuits that are introduced in this dissertation are a type of cellular neural networks,
exemplified by figure 2.21, with the cells modeled as realistic HH neurons and the connections as
memristive devices.
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Chapter 3

Numerical methods
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Due to their complexity, bioelectrical systems cannot be addressed analytically in general, and
due to current experimental limitations it is hard to set up long term hybrid circuits. Numerical simu-
lations provide a goodmiddle ground to low cost in silico neuron/memristor systems, but biologically
detailed neuron models can still be too numerically taxing and to compensate for that, a special-
ized simulation environment called NEURON is used, to simulate biologically detailed neurons and
neural networks.

To construct such models the user performs two different jobs at once: modeler and program-
mer. The first is obvious, because you need to parametrize the system by some set of dynamical
variables or decide which models are more adequate for the intended applications. As a program-
mer, you need to go from the mathematical model to the numeric model and more often than not,
it requires simplifying and/or modifying equations so that they are numerically stable.

3.1 NEURON

From a physics and engineering view, themost intuitive way to understand the nervous system is
to start with neurons, that can be modeled in a simple way but still exhibit some complex dynamics.
However, detailed analytical models are hard to obtain in neuroscience, meaning that simulations
provide the best solution.

NEURON is a simulation environment that incorporates some C derived languages, with C’s
speed but allowing to be written in a higher level syntax; it is a simulation tool to model individual



24 FCUP
24 Simulation and analysis of neuro-memristive hybrid circuits

neurons and networks of neurons. NEURON is a well established tool in the field of in silico/com-
putational neuroscience, have been used in hundreds of scientific publications, and is the core
simulation engine of the Human Brain Project (HPB). The best way to understand how it works is
by modeling a simple cell.

Figure 3.1: From “real” neuron ([11], p.48) to computational model

Like other computational methods, modeling a system as a set of numerical equations and
conditions requires special care, with the modeling often being a collection of guidelines. Figure 3.1
shows the typical progression from realistic systems to computational systems, when considering
biological neural networks or individual neurons. Scheme A represents an unipolar neuron. From
A to B, the user chooses how accurate the model needs to be. The simplest model needs only
one compartment (one box) representing the soma (or cellular body), some equation dictates when
and how it spikes. Scheme B is a multi compartment model and the neurite (projection from the
cellular body) is separated from the soma, with each box having an indexed set of equations. Each
individual does not need to have identical equations. From B to C, how small the compartments
should be depends on what needs to be studied, but like any other simulation method, increasing
the resolution can limit the numeric error, if the integration is robust, at expense of time and possible
convergence issues. Finally, schemeC shows synapses (the triangles) that are added to themodel,
in order to integrate the cell in a network.

Besides modeling cells, NEURON allows user-defined compartments, point compartments (e.g.
memristors) and has some basic circuit simulation capabilities.

Due to its specific purpose, NEURON is not written/executed like generic programming lan-
guages. Designed to test models, most of its basic numeric tools are hidden from the end user, like
the integration methods and model projection to matrix form; in a basic program in NEURON, the
user only setups themodel’s equations and possible interactions, letting the simulation environment
take care of linking all equations and their dynamics. Or in another perspective, the programmer’s
job is separated from the modeler’s job and maintained by the numerical engine. NEURON is
also two languages at the same time: NMODL (Neuron MOdel Description Language) refers to
compiled .mod files describing model’s equations, and like C it has a somewhat rigid syntax; HOC
(High Order Calculator) is an interpreted language and a more fluid syntax. In addition, there is a
graphical interface (GUI) that allows to construct simple models without writing code.
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3.2 Building the system of equations

So far there has been a focus on the electrical aspects, that requires continuous connections
between all elements. As a biological system, the nervous system can also be simulated with event-
based methods, where each node can advance independently in some global (or independent)
time, and only synchronize when they interact; this paradigm comes from how chemical synapses
can be modeled.

Simple models describe synapses as a current source (same as an ion channel) with a time
varying weight:

dVi
dt = [Current sources] +

∑
j
wij (E

syn
i − Vi) ,

dwij

dt = αijδ(t− tij).

The subscripts i and j refer to the individual index of the neurons: V the membrane potential,
Esyn the synaptic driving potential, w the synapse’s conductivity, α is the synapse’s strength and tij

is the spike time from neuron j to neuron i. The previous portion shows that on the point of view of
neuron i, other neurons are not relevant; in fact, apart from tij these neurons are isolated systems;
chemical synapses connecting to neuron i only require the time (or temporal distribution) of spike
from spike j. It should be noted that not all models of synapses contribute to this paradigm, but
excluding gap junctions andmore detailedmodels, neurons can be consideredmostly independent.

What does this mean to the numerical model? If node i only depends on node i’s history, then
the line of the matrix reserved to node i is only occupied in the i− th column. Considering only the
voltage dynamics with chemical synapses, then the differential equation becomes: d

dt

−→
V = F

[−→
V
]
,

where F is a completely diagonal matrix; the matrix of weights w remains to be determined at all
times.

Even when considering gap junctions, certain applications do not destroy the matrix sparsity,
because in many situations neural circuits can be considered feed-forward networks, meaning that
there are no loops. This allows to construct the matrix from some generic point in the net and gap
junctions are the other non-zero elements in the row. The following situations involving two neurons
connected electrically shows the partial destruction of sparcity:

−→
V = [...Vi...Vj ...] and conductivity

gij = gji = g:

dVi
dt = gij (Vj − Vi)

dVj

dt = gji (Vi − Vj)
⇔ d

−→
V
dt =


...

... −gij ... gij ...

...

... gji ... −gji

...


−→
V ⇔ d

−→
V
dt = −g

−→
V +

[
off diagonal
elements

]
.

Sparcity is important because matrix operations can be very efficient when most of the elements
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are on or near the diagonal. The previous cases are the best case scenarios, with no or few gap
junctions, where the model can be easily solved. As is presented later, user defined mechanism or
processes can alter this generic construction.

3.3 Numerical integrators

With the numerical model built, the system can advance in time and, from an end user per-
spective, there are several possibilities: fixed global, adaptive global and adaptive local time step
methods.

Fixed time step methods

Like the name implies, the integration occurs at predetermined instants, multiples of the time
step (dt), without considering error propagation; while they are not unconditionally stable, some
options can be enabled to stagger the method and increase accuracy. In that case, this Crank-
Nicolson method staggers the time step so that voltage is solved at t+ dt, ionic concentrations at
t+ dt

2 and ionic currents at t− dt
2 . It is suitable for individual neurons or small networks.

Figure 3.2: To stay within tolerance, the step size only
decreases around voltage spikes.

Figure 3.3: On the top, the white neuron delivers
events to the red and black neuron.
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Adaptive methods

In this case, the user does not control the time step, but the tolerance criteria (figure 3.2); the
typical dynamics of neurons (idle time, interspersed with intense activity periods) does not need
to be fitted to an arbitrarily small step. There are two possible modes, global and local simulation
time; both modes use variable time step Backwards Differentiation Formula methods.

When NEURON is set to global time step, the entire network/cell setup has a global simulation
time. When the derivative of variables increases, typically at action potentials, the time step de-
creases enough to stay within tolerance. But in a big enough network, there will be few periods of
time without action potentials, meaning that the time step needs to be always small. With local time
step, it is important to go back to section 3.2 where it is explained that neurons aremostly indepen-
dent, because each cell do not directly interact at all times, meaning that they can be advanced in
time at different time rates, and only synchronized at interaction times.

In figure 3.3, the event based process becomes clearer. Only at the height of action potentials (or
spike time) both neurons really interact. Furthermore, because they do not interface electrically and
the shape of the spike does not change when receiving another event. In this case, the interaction
happens from the black to the red neuron, at the spike times and if they are both outside their
refractory periods.

3.4 Standard run system

From the programmer point of view, most applications only require knowledge of the “standard
run system”, a specific order of commands/procedures that the simulation environment executes
in NEURON:

1. run()

2. stdinit()

3. init()

4. finitialize()

5. continuerun() or steprun()

6. step()

7. advance()

8. fadvance()

When the user types in HOC run(), many automatic processes occur. From steps 2 to 4 all variables,
sections or pointers are being initialized to their default or user defined values, where step 3 (init)
has a simple enough structure to allow user additions; these are executed once per run. Steps 5
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to 8 are executed at each time step, where step 7 (advance) also has a simple structure for user
manipulation. Steps 3 and 7 are implemented as programming hooks.

3.5 NMODL

NMODL is an object-oriented modeling language that standardizes model construction to be
translated to computer readable code, in this case C code. Each object is a self contained module
separated into specific blocks: declaring variables, setting up equations, etc. Abstracting the pro-
cess from modeling concerns, an NMODL object workflow will typically follow the example given by
figure 3.4. NMODL is used to extend the repertoire of mechanisms available in NEURON. It was
therefore the modeling language used to encode the memristor dynamics which were then used in
circuits of HH neurons.

Figure 3.4: Typical workflow on a NEURON module
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Chapter 4

Results
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4.1 Preamble to results

Before reviewing results on hybrid circuits, details that are useful in this context, not usually
explained in the literature, are examined.

4.1.1 Biologically detailed voltage spikes

The archetypal voltage spike has a duration of a few milliseconds and depolarizes the mem-
brane. In figure 4.1, the spike is assumed to be restricted to a duration of 2-3 milliseconds, an am-
plitude of ∼ 100 mV, almost symmetric rising and falling phase and a undershoot period of about
1 millisecond. Using NEURON, figure 4.2 is the action potential generated in a single cylindrical
compartment of 20 µm diameter and height with Hodgkin-Huxley properties. Unless otherwise
stated, the parameters used to model the HH neuron (including compartment size), for the rest of
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this dissertation, are:

EL = −54.3mV gL = 0.3mS cm−2

EK = −77mV gK = 36mS cm−2

ENa = 50mV gNa = 12mS cm−2

Cm = 1µF cm−2

Figure 4.1: Basic features of a biological voltage spike ([11], p.84)

Figure 4.2: Hodgkin-Huxley action potential

While the refractory period is a fixed membrane property, the undershoot period depends on
the injected current and the rising/falling phase are asymmetric, and contributes for some nontrivial
effects on memristive plasticity with well synchronized spikes.

4.1.2 Neuronal current range

Another important feature of biologically detailed neurons is the range of currents that can be
applied. In the IF model the input is integrated, meaning that the higher the current, the larger the
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firing rate; while in more realistic HH neurons the firing rate has an upper ceiling. Increasing the
current causes the neuron’s voltage to stabilize at a value different from the resting potential, losing
its active properties. With a neuron with similar properties as the one used in the previous section,
figures 4.3 and 4.4 display under and over saturation, as a function of input current.

Barring transient behavior at points of discontinuity of current, the membrane voltage tends to
stabilize around some value if the injected current is outside the cell activation range.

4.1.3 Inhibitory/excitatory synapses

It has been previously stated that chemical synapses are one way connections (page 12), stim-
ulating or inhibiting the post-synaptic neuron. Previously, they have been presented as generic
current sources, but for this dissertation purpose, can be modeled as current sources that drive the
membrane potential to a given value; furthermore, to simplify this model, spikes are detected in the
instant at which voltage crosses 0 from negative to positive values.

The IF model with such synapses results in:

dVi
dt =

EL
i −Vi+V input

i +
∑
j
wij(Esyn

i −Vi)

τi

(4.1)

and

dwij

dt
= αijδ(t− tij) (4.2)

In Eqs. (4.1) and (4.2), a single subscript refers to the index of the neuron: V is the voltage,
EL is the reversal potential, τ = RmCm, with Rm is the resistance and Cm the capacitance of
the membrane, V input is the voltage induced by the electrode and Esyn the reversal potential of
the synapse. The interaction occurs through the matrix w, representing the strength of connection
between neurons i and j, α is a fixed matrix and tij represents the spike time between the i-th and
j-th neuron. In this formalism, w is not necessarily symmetric or anti-symmetric, imposing in this
model a behavior typical of chemical synapses. In contrast, the equivalent matrix for gap junctions
needs to obey w = −wT .

FromEq. (4.2) both neurons interact from the action of tij , but neuron A is inhibited only if neuron
B is active; this means that an inhibitory synapse is useless by itself. Homeostatic plasticity mech-
anisms should induce inactive neurons to activity, but in this neural network level and inhibitory/ex-
citatory perspective, chemical synapses need to be coupled with direct stimulation mechanisms
and/or reciprocal synapses (direct or indirectly).

What classifies a synapse as excitatory or inhibitory, at this complexity level, is the synaptic
reversal potential:

• Esyn > Vreset −→ inhibitory synapse;

• Esyn < Vreset −→ excitatory synapse.
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Figure 4.3: Under and over saturation of a HH neurons, simulated in NEURON

Figure 4.4: Saturation is reached at ~0.4 nA (step like behavior comes from analyzing discrete events on a limited
continuous domain, in this case, time)
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In this setup, there are two IF neurons (A and B). Neuron A is connected to neuron B with an
inhibitory synapse, is stimulated with a given amplitude of V input

i (in mV) and neuron B is connected
to neuron A with an excitatory synapse.

Figure 4.5: Neuron A on the left (inhibed) and neuron B on the right (excited); results are smoothed.

Figure (4.5) displays the need for coupled sets of inhibitory and excitatory synapses. For null
strength of connection, akin to no synapses, neuron B is never active (smoothing of numerical data
hides the behavior near the axis) meaning that neuron A is not inhibited; while a stronger connection
(greater αij) transfers the electrical activity (voltage spikes) from neuron A to B. Note that the total
electrical activity of the pair is not completely inhibited, but reduced, with a firing rate about 0.5 kHz
with no synapses and 0.25 kHz when αij ≫ 0.

4.1.4 Tightening of memristive curves

While current and voltages can be rescaled in hardware applications (at the cost of scalabil-
ity), neurons and memristive devices should have time scales in the same magnitude. For these
types of one variable models, the state dynamic is generally dictated by ẋ = a · f (x, V, I) and
|f (x, V, I) |max ∼ 1, meaning that a determines how much should the device react to any given
input. For periodic inputs, as a increases, the total state change per period decreases; and for non
periodic inputs, decreases the elapsed time to saturation.

Under the a sinusoidal input, figure (4.6) exemplifies the dynamics of a linear (or linear ion
drift) memristor with a Prodromakis window function [91] (one type of window function that is well
behaved under NEURON numerical engine), with the following set of equations and parameters:

V = [Ronx+Roff (1− x)] I
dx
dt = α

[
1−

(
(x− 0.5)2 + 0.75

)p]
I

and
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Ron = 40Ω

Roff = 500Ω

α = 1A−1s−1

p = 1

Figure 4.6: Tightening of hysteresis cycle at higher frequencies

4.1.5 Energy associated with neuronal transmission

Generally, voltage and current magnitudes of neuronal signals are insufficient to affect mem-
ristive devices and memristors’ switching energy consumption can be on the order of hundreds of
fJ [66] or lower. In the nervous system it is not as easy to measure the energy consumption of
neurons, but it is possible to estimate the ATP cost per bit of information transmission:

• 1 bit of information transmission in a synapse costs ∼ 104 ATP molecules [92, 93];

• the Gibbs free energy released in ATP hydrolysis is about 30 kJ / mol [94];

• 1 bit of information costs around 10−16 J to transmit.

Given that memristors can store at least a bit (high or low resistance), the ratio between bit trans-
mission in synapses and bit storage in memristors is r . 10−13

10−16 = 103. For devices that require
more energy, the ratio is even larger.

4.1.6 Voltage divider as spike generator

Taking inspiration from the concept of neuristor [84] and stripping the proposed circuit to its
most basic ideas, what remains is a simple memristive voltage divider. In an attempt to introduce
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non-linearities to the simple linear memristor and more specifically, non-linear effects into the state
variable at the I − V relation, the nonlinear ion drift model is used (see figure 2.17 on page 19).

The nonlinear ion drift model is described by the following equations:

I = xnβ sinh (αV ) + χ [exp (γV )− 1] (4.3)

and

dx

dt
= a · f (x) · V m (4.4)

Eq.(4.3) can be linearized to V → 0:

I ∼ xnαβV + γχV

= (xnαβ + γχ)V

≡
[
xn

(
R−1

on −R−1
off

)
+R−1

off

]
V

≡ M−1V

While this altered model does not have the original asymmetric conductance, the exponent in
the state variable (greater than 1 and integer) causes the device to be in the off state unless x → 1,
meaning that the resistance transition is not linear.

Figure 4.7: Generic memristive voltage divider circuit

Like the normal voltage divider, the voltage in each device is:

Vi = V (t)
M−1

i∑
i
M−1

i
.

With the following parameters:

n = 14

R−1
on = 18Ω−1

R−1
off = 0.04Ω−1

m = 1

a = 4V −1s−1

and the Joglekar window function [39]: f (x) = 1 − (2x− 1)2p with p = 1 (another type of window
function that is well behaved under NEURON numerical engine).
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To generate biphasic spikes the voltage source needs to introduce sharp discontinuities, in this
case a square wave, causing the sudden change in memristance; both memristors need to have
the same polarity and the initial states/resistances tunes how distributed the spike is (figure (4.8)).
For equal initial states, both memristors spike in an equal way and for |x1(t = 0) - x2(t = 0)| → 1,
the spike is concentrated in one of the devices.

Figure 4.8: Dynamic of memristive voltage divider

Those spikes also occur for any series ensemble of N memristors, with the initial memristive
state dictating the spread the spike amplitude on the devices. In particular, for N = 3 and 4 with
∆x = 0.05 between neighbors (with equal parameters), all the devices display biphasic spike with
variable amplitude.

Figure 4.9: Biphasic spike generation for series ensemble for 3 memristors

Generalizing for any N , the devices need only be current controlled. Figure 4.9 and 4.10 ex-
emplify the spike distribution of these generic configurations, where the initial memristance config-



FCUP 37
Simulation and analysis of neuro-memristive hybrid circuits 37

Figure 4.10: Biphasic spike generation for series ensemble for 4 memristors

uration rules the amplitude distribution1.

4.2 Memristive synapses schemes

Towards the goal of designing, simulating and analyzing simple hybrid systems, different con-
figurations of neuron-memristor circuits will be addressed.

one memristor connections

This is simplest and easiest configuration. Because of the current status of memristor fabrication
techniques, variability and non reliability makes most of the discussed features impractical for mass
applications.

multi memristor connections

Still within the context of connecting two neurons, ensembles of multiple devices can be reduced
to simple equivalent devices; in linear models, for example, there are equivalence relations for
composite memristive circuits: series → Meq =

∑
all i

Mi; parallel → M−1
eq =

∑
all i

M−1
i . But there are

ensembles that enhance or take advantage of certain features.
Because current research focuses on RRAM/crossbar arrays, memristive devices are mostly

developed for fast transitions (nanoseconds), making them binary resistive devices in the context
of neural networks, but multi level or continuous devices would replicate synaptic behavior more
closely.

1The numerical results of the memristive voltage divider are obtained with a Python script, in page 81. These results
can be verified on NEURON simulation environment, but due to time constraints, are left as part of future work.
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Figure 4.11: Left - Y configuration; Right - Equivalent ∆ configuration

Taking inspiration from crossbar arrays (memory implementations) and focusing in lines or
columns, the obvious simplification is series or parallel ensemble controlled by one input and
one output neuron. Assuming that memristors can be this fine tuned in the a parameter (reaction
strength) or in Ron/Roff , ensembles of series or parallel devices can be used to create multi-level
resistance devices, from binary devices.

The series ensemble takes advantage of voltage divider effect, spreading the voltage drop un-
evenly: Vi = Vinput

Mi
N∑

j=1
Mj

, i = index of all elements in the ensemble. For voltage controlled devices,

if their switching characteristics and Ron/Roff are different enough then state transitions (high to
low or vice-versa) do not occur simultaneously. And for the parallel ensemble: Ii = V

Mi
; current

controlled devices are ideal for this scheme. Just as crossbar arrays form N × M bit memories,
these series/parallel lines form N/M bit memories, but more importantly produce an equivalent
multi-level resistance device or a continuous device, in the limit of N orM → ∞.

This is not necessarily a problem free scheme, because it does not solve the problem of volt-
age/current scaling and linearly increases the energy requirements of these ensembles. Other pub-
lications [95] suggest that anti-parallel and anti-serial arrangements screens the devices to small
amplitude signals, requiring even larger gains to neuronal signals. But these connections schemes
rely on the basis of device variability, which is compatible with current research standards.

multi memristor with multi neuron

Taking a further step on generalizing these artificial synapses schemes, M neurons can be
connected with N devices. One possible arrangement are crossbar arrays, but to illustrate the
problems in employing circuit analysis for hybrid circuits the connection of three neurons with three
memristors is studied.

The left circuit can be analyzed with Kirchoff’s circuit laws, given that memristors are variable
resistors it is possible to use the Y−△ transformation to compute the resistance between the three
pairs of neurons:
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MAC = M1M2+M2M3+M3M1
M2

MAB = M1M2+M2M3+M3M1
M3

MBC = M1M2+M2M3+M3M1
M1

.

But the dynamics of the three devices’ state variables remain to be determined. While in this
case it is still possible to infer the signal at all memristors, because the signal in the neuron A, B,
C is equal to the signal at device 1, 2 and 3, inferring from combinations of the currents IAC , IAB

and IBC , but for more complex circuits this is not necessarily true. It is important to remember that
hybrid circuits can not be easily analyzed by circuit laws and that each particular synaptic scheme
require different algorithms/tools2. It is of note that, in general, neurons as circuit nodes do not
conserve current, when considered as multi-compartment structures.

It is important to note that this Y−△ configuration is one of the simpler example of memristive
crossbar arrays, with obvious applications for information storage but signal transmission guaran-
tees the potentiation/depression of current paths in this setup.

one memristor/one other electrical element

• Inductor + Memristor

An inductor (L) in series with a memristor results in the following differential equation: dI
dt = V (t)−MI

L

+ state dynamic equation, where V (t) is the potential between terminals and M
L = τ a characteristic

time scale of signal spreading; τ changes with signal input. Typical RL circuits are characterized
by exponential decay, smoothing the current output, but in this context, it increases the causality
window, with the increased overlap of pre- and post-synaptic signals.

• Diode + Memristor

The addition of a diode results in a memristive synapse that behaves like a chemical synapse, that
is, it becomes a device where current only travels in one way.

• Source + Switch + Memristor

A problem of using memristors as a substitute of biological synapses is that electrical elements
always transmit current from one neuron to another, exciting/inhibiting in pairs. Including diodes
result in a device that resembles an excitatory synapse, but a purely inhibitory synapse is harder
to achieve.

2In this case, using the same type of implementation explained in section 4.3, requires that at each time step of the
simulation various transformations to occur. {M1,M2,M3} needs to be transformed to {MAC ,MAB ,MBC} in order to
determine the currents {IAC , IAB , IBC}, which can be used to determine the currents that are being applied to cells 1,2
and 3 and finally determine the changes in each of the state variables. But more importantly, generalizing this algorithm
structure in NMODL code is impractical, because it requires the usage of several generic matricial transformations
(not implemented in NMODL) with variable number of parameters, which would be written as C code, without special
numerical libraries, on top of all NMODL memristive modules. This would vastly increase development time, even then it
is unknown if the numerical engine could scale these types of hypothetical modules to a large network and would remain
as an ad hoc implementation.
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Figure 4.12: “Self” synapse

Figure 4.12 shows how to create a self-excitatory/inhibitory
devices with voltage controlled switches. In both cases I =

V/M is small enough to not produce spikes, so that it can act
as a driving force to saturate the memristor in its low or high
resistance state, and the switch is on A or B, depending on
some activity threshold.

1. The memristor is set up so that if connected to B it sat-
urates in its low resistance state, in a self-excitatory de-
vice;

2. To create a self-inhibitory device, the memristor satu-
rates in high resistance state when connected to B.

In case 1, when the neuron (N) is spiking from the action of other synapses (on A), the self-
synapse transits to high resistance and becomes irrelevant to the dynamics; after a given period of
time, the neuron stops spiking and the switch connects to B, decreasing M and inputting enough
current to produce spikes. In case 2, when the neuron is above threshold it connects to A, decreas-
ing M , creating the least resistance path for current and slowly inhibiting spikes.

4.3 Possible implementations of memristors in NEURON

A good implementation of memristors in NEURON would behave like any electrical element in
circuit simulation environments, but there are several reasons why it cannot be done in a simple
way; there are default equations and quantities that cannot be changed in the environment. For
example, a section in NEURON created with the statement “create section”, has by default the IF
equation and assigned variables that cannot be overwritten (like voltage), making any implemen-
tations of electrical elements harder.

Gap junctions (or electrical synapses) provide a guide to implement memristors. In NEURON,
gap junctions can be implemented with point processes or linear mechanisms, both having advan-
tages and disadvantages.

Figure 4.13: Double point processes (squares) implementation of gap junction connecting neurons (circles)



FCUP 41
Simulation and analysis of neuro-memristive hybrid circuits 41

Point processes are not distributed in space and cannot affect sections other than the one it
was placed (at least without C verbatim code); this simple implementation doubles the amount of
calculations that need to be done, while causing convergence issues. It is very flexible, because it
permits many types of calculations within the same block.

But this approach is not adequate because point processes can only be placed in sections,
interfacing only with that section. In figure (4.13), point process A connects to neuron 2 with a
pointer and point process B connects to neuron 1; if the elements are replaced by memristors all
equations need to be repeated, including the state differential equation, with no guarantee that both
equation evolve in the same way.

On the other hand, linear mechanisms correctly add elements to equation matrix, but only when
it can be expressed in following way: cdydt + gy = b, y and b are vectors and c and g are matrices,
and to describe a gap junction, g represents the conductance of the junction and y the voltage, with
all other elements null.

(current balance equation) +

[
G −G

−G G

][
V1

V2

]
= 0

⇔

(current balance equation) +G

[
V1 − V2

V2 − V1

]
= 0

As it as been mentioned by the developers [96], this is the proper way to add gap junctions to
models; the problem is that it does not permit state dependent elements.

Because neither are particularly useful for the intended use, ideas are taken from both and used
to create a mixed version.

Figure 4.14: NEURON implementation of memristive devices

In figure 4.14, the box is more a convenience feature than a necessity, but it acts as an iso-
lated object that boxes up a placeholder neuron and a point process that contains all memristive
equations, anchoring it to the neuron. From limitations of the language all sections have passive
properties and all point processes need to be associated to a section, therefore a “free” memristor
that can be placed in the simulation environment is not possible; but using a passive cell, adding
little computational complexity to the model, and anchoring a point process to it achieves the same
purpose; the result from the equations is then pointed to perfect electrodes at either terminal of
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Figure 4.15: Above - Comparison between numerical and analytical current-voltage curves; Below - Relative error
introduced in numerical algorithm

this object. The entire implementation is wrapped in a template, NEURON’s version of objects
(pseudo-code implementation on page 76).

With this implementation, the set objectives of the language are being tested (in this case
NMODL), potentially adding unchecked error to the full equations. The following setup is done
on NEURON: 3 HH neurons connected with flux-charge memristors, in a chain like manner, and
one end of the chain stimulated; two cases are tested:

• q (φ) = 0

This case is trivial and NEURON outputs no current from this connection.

• q (φ) = αφ ⇒ d
dt [q (φ) = αφ] ⇒ I = αV

In this case it reduces to a simple gap junction, providing a good testing ground.
To understand the importance of this result, the algorithm that is used in the .mod file needs to

be explained. All calculations are done on a specific block called DERIVATIVE, which is useful to
integrate variables but no block in NMODL can automatically compute derivatives. The steps in the
algorithm are:

1. φ =
∫
V (t) dt, in NEURON expressed as φ′ = V
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• Because the DERIVATIVE block is specialized to make these calculations, the main part
of the error should not come from here

2. q = q (φ), can be a function or a linearly interpolated table

• Ideally the assignment of charge can be done with a closed form expression, resulting
in minimal error; otherwise the resolution of the numerical table needs to be adequately
chosen, usually decreased to minimize error

3. Creation of four variables: t0, t0 − dt, q (t0) and q (t0 − dt)

(a) Each time the block is executed t0 = simulation time and q (t0) = charge at simulation
time

(b) With the purpose of using first order derivatives: t0− dt = t0 and q (t0 − dt) = q (t0), two
queues of two elements

(c) I (t0) =
q(t0)−q(t0−dt)
(t0)−(t0−dt)

• Of all steps, first order approximations can be problematic, introducing first order error

In the second case, for both memristors in the model, the error remains within the same range
10−5 to 10−4%; an error source that makes some results harder to validate. Let me analyze how
HH equations propagates errors:

dV
dt ∝ ....+ I and if I → I +∆I ⇒ dV

dt ∝ ....+ I +∆I.

Ignoring the gating variables, integrating this equation results in V (t) ∝ ...+ (I +∆I) · t, which
means that with two identical HH neurons injected with I and I + ∆I, the temporal mismatch
between signals should increase linearly with time (∆V = ∆I · t).

Figure 4.16 simulates the activity of two HH neurons, single section with 20x20µm; one of them
is injected with 1 nA and the other with

(
1 + 10−6

)
nA. After some initial transient behavior, the

relative error between voltages exemplifies the mismatch that increases linearly with time at spike
times; the difference from the predicted result comes from the action of the gating variables. Each
maximum is actually a double maximum, where the time difference between those maximum is a
measure of spike time difference; after 27 spikes the mismatch is still sub millisecond, but the linear
increase ensures that the mismatch becomes more relevant with the increase of simulation time.
Just like there is an initial transient behavior, the undershoot is a transient behavior in the action
potential (see figures (4.1) and (4.2)) that also causes an accumulation of error and after the period
of stimulation produces a final spike of relative error, of lesser amplitude.
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Figure 4.16: Local maxima point to mismatch between spikes

4.4 Memristive plasticity

According to the literature, synaptic plasticity of memristive devices can mimic biological plas-
ticity. To study plasticity on these devices, the input signal is

f (t;∆T ) = spike

(
t− ∆T

2

)
− spike

(
t+

∆T

2

)
;

for a simple integration model with ẋ ∝ V → x ∝ φf + φ0, all possible values of ∆T the state
variation is always null, because φf =

∫ [
spike

(
t− ∆T

2

)
− spike

(
t+ ∆T

2

)]
dt = φ∆−φ−∆ = φ∆−

φ∆ = 0; meaning that for the V − I presented models the entire dynamical properties are on the
window function. It needs to be stressed that these windows do not have physical significance
and are parametrized to more closely resemble real devices. At software/hardware level the spike
profile is tunable, but when considering biological neuron networks it is not an easily accessible
parameter. For the intention of a simple estimation, spikes have 100mV amplitude in a time window
of 2-3ms, thereforeφspike ∼ 100mV ms = 100µWb; a subsequent numerical integration of a typical
signal results in φspike ≃ 113µWb.

If the spike profile is not tunable, then the plasticity can only be changed if the memristor’s model
is changed; three cases are analyzed, all with x (t = 0) = 0.5:

1. Control case: ẋ = a · V
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2. Voltage controlled case: ẋ = a · window (x) · V

3. Linear ion drift case: ẋ = a · window (x) · I = a · window (x) · V

x+
Roff
Ron

(1−x)

Case 1

Figure 4.17: State change with a = 5 · 101 V −1s−1; for the control case on the left and the voltage controlled case on
the right

In this simple model, a memristor is a voltage integrator, it is possible to obtain the analytical
solution as x (t) = φ (t) + φ0; but for symmetry reasons for all f (t;∆T ) the state change should
always be zero. As a numerical engine, NEURON cannot maintain null error and grows non-linearly
(left side of figure (4.17)).

Case 2
The introduction of a symmetric window function (Jogleakar window function, centered on x =

0.5) changes how the memristive devices detect the input, where the window function acts as
a time variable reparameterization of a. While it exhibits STDP with a “causality window”, even
two opposing non causal spikes cause the device to change; this model scales not linearly with
|∆x|max ∼ 2|∆x (∆T ≫ 0) |.

With a = 5 · 101 V −1s−1 , the maximum in the control case is ∼ 10−11, which gives an estimated
error of the order of 10−7%.

Case 3

Figure 4.18: State change with a = 5 · 101 V −1s−1 and Roff

Ron
= 1 · 101; the graph on the right is a zoom in to ∆T → 0

from the graph on the left

In this current controlled model, the linear ion drift memristor, introducing memristance into the
dynamic breaks the time symmetry and generates a version of LTD (figure (4.18)). For this model,
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a controls the symmetry around ∆T = 0, with d
da |

∆x(−∆T )
∆x(∆T ) | > 0. Figure 4.19 represents the phase

space of all the memristor’s final configurations, when plotted to a range of∆T and a values, which
permits to visualize the symmetry around ∆T = 0. Note that for a → 30V −1s−1 case 3 resembles
case 2.

Figure 4.19: Phase space of state change for different values of a and ∆T

4.5 Memristive dynamics

Figure 4.20: Generic hybrid chain (with each circle representing a neuron)

So far I have exemplified that memristive devices are plastic enough to neuronal signals if
current experimental devices characteristics can be relaxed, but have not described in detail any
hybrid circuit. The simpler non trivial circuit is a single memristive device connecting two neurons
(figure 4.20).

There are two very clear phases to synapse: low current and high current. If the state of the
synapse is at high resistance, then current output is insufficient to provoke and action potential
in the post synaptic neuron; in figure 4.21 until 200 ms the device is effectively just reading the
voltage and does not contribute with above threshold current to the overall dynamic of the neural
network; on the other extreme, if the resistance is low enough to provoke action potentials, then the
connection synchronizes neurons. Also note the orange box, showing inhibition through saturation.
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Figure 4.21: Time evolution of memristive synapse (note the saturation after approximately 230 ms)

4.6 Range of interaction

From a standpoint of plasticity and transmission of signals, memristive devices provide a straight-
forward framework for electrical synapses to combine resistive and chemical characteristics; but
the transmission of signals is not guaranteed for all hybrid circuit topologies. To test this character-
istic, it is implemented in NEURON an one dimensional chain of neurons connected with realistic
flux-charge memristive devices, characterized by a numerical table of flux and current values, for
two stimulation schemes with one end of the chain stimulated with 0.5 nA for 200 ms (figure (4.22)):

• the total stimulation time is continuous;

• the total stimulation time is broken into 100 ms chunks, intermittent with 0 nA and 0.5 nA.

Extending the previous scheme to a total stimulation time of 5000 ms, a chain of 10 neurons and
9 memristive devices. In figure 4.23 the mean and standard deviation measure how far the initial
stimulus reaches in the chain:

< r > (t) =
∑

i=neuron index

i·si(t)
si(t)

σr (t) =
√
< r2 > (t)− < r >2 (t)

and si (t) counts how many spikes have generated in neuron i, until time t.
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Figure 4.22: Differences between intermittent and continuous stimulation to memristive dynamics

Figure 4.23: Mean and standard deviation of interaction range

Figure 4.23 shows how saturation can be used to inhibit neuronal activity. The next section
demonstrates the reason for the local maximum of interaction range, that after approximately 2
seconds of stimulation, the first memristor in the chain reaches a value of resistance low enough
to conduct saturating current.

4.7 Memristive learning and timing in generic hybrid circuits

From figure 4.23, the local maximum of interaction range at about 500 ms of stimulation remains
to be determined. The most relevant difference between real and simplified devices is the resis-
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Figure 4.24: Realistic memristive device connecting
two HH neurons; the pre-synaptic neuron is continu-
ously stimulated with 0.5 nA (red line and orange box
highlight important features)

Figure 4.25: Decrease of activity on post-synaptic
neuron, with about 1 mV difference between the
largest and smallest relative maximum (zoom to or-
ange box region in figure 4.24)

tance trajectory, when subjected to neuronal activity; figure 4.21 shows a linear memristor steadily
decreasing its resistance, but figure 4.24 shows how the low resistance state is not necessarily a
stable configuration.

Before the red line, in figure 4.24, the post-synaptic neuron initiates a series of failed action
potentials due to the particular memristor state and timing of the post- and pre-synaptic spikes.
Around 800 ms (orange box), the memristance increases to levels that previously have produced
failed action potentials, and the timing of spikes is favorable. However, figure 4.25 demonstrates
that the height of the post-synaptic spike decreases roughly 1%, when the low resistance state
reaches its maximum. For the chain of the previous section, the local maximum of < r > is caused
by a particular temporal sequence of spikes, causing the second neuron in the chain to produce
failed action potentials for a given period of time and effectively stop the propagation of the initial
stimulus.
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Chapter 5

Discussion
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5.1 Signal shape and synaptic plasticity

So far I have assumed that the electrodes are perfect. In electrophysiology the electrical prop-
erties of cells can be recorded with intra-cellular or extra-cellular methods, resulting in different
signals.

Intra-cellular techniques pierce the membrane and record directly the potential; these types
of techniques are unsuitable for long-term applications, because the damage eventually causes
cellular death. On the other hand, extra-cellular techniques rely on the placement of electrodes
on the surface or near the membrane, measuring other physical properties of the nervous system
and noise. Typically for extra-cellular recordings the action potential (figure 4.1 on page 30) is a
biphasic signal.

Depending on the location of the electrode the action potential’s flux changes, approaching
zero when closer to the cell, which causes ∆x (|∆T | → 0) → 0 (in figures 4.17 and 4.18). And any
noise causes problems on the cases of synchronous signals, because∆x (∆T → 0) ̸= 0 due to the
noise’s net flux; considering all the variables of signal amplification, shape and memristor model,
the noise’s net flux (on average is null) can cause the artificial synapse to transition from high to
low resistance or vice versa.
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Figure 5.1: Intra-cellular vs extra-cellular
recording (scale of extra-cellular signal in
µV ; intra-cellular signal inmV and time in
ms) [97]

Figure 5.2: Extra-cellular signal as a func-
tion of distance (simulation data from [98])

5.2 Modeling devices

For the illustrative purposes of this section I analyze the dynamical behavior for two devices,
composed by several layers of different composition and thickness in nanometers (e.g. composition
(thickness)).

• SiO/Si/SiO/Ti (25)/Pt (150)/Si (25)/TiW (100); the V − I curve is the left graph on figure 5.3

• SiO/Si/SiO/Ti (25)/Pt (150)/MgO (30)/Ta (20)/Ru (5); the V − I curve is the right graph on
figure 5.3

It should be clear by now that hybrid circuits are sensitive to the models of neurons and memristors,
and it should have a set of desirable characteristics to be integrated into hybrid circuits. Instead of
analyzing models, some stereotypical experimental data is shown and with that important features
are extracted. Any data presented is not representative of memristive dynamical behavior, but
instead is a particular type of detail that should be more closely examined.

There are many details to analyze in figure 5.3; in the following list, each item is increasingly
speculative:

• Endurance;

• Stochasticity;

• Resistance transitions;

• Voltage and/or flux threshold;

• Asymmetric switching;

• Window function.
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Figure 5.3: Voltage-current curves for two memristive devices, for several cycles of triangular induced voltage

It needs to be noted that the previous items were not studied in detail, but gleaned from models
and experimental data, with increasing sensibility to simulation results of hybrid neuro-memristive
circuits.

Endurance and stochasticity

Figure 5.4: Transition from loss of adaption capability, after about 100 cycles (in the red box)

In figure 5.3 the last few cycles show that memristive devices can have very limited endurance.
The transition that comes from the loss of adaption capability and from the numerical standpoint
of the previously mentioned models, the transition occurs in the state variable differential equation,
with

dx

dt
̸= 0 −→ dx

dt
= 0.

Endurance varies immensely from a few hundred to 1012 cycles [99, 100], but is generally ana-
lyzed from the standpoint of high/low resistance states, ignoring the finer details that are needed for
multi-level/continuous applications. Endurance is also tied to the number of cycles, and because
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Figure 5.5: Jumps in resistance for two different devices

neuronal dynamics is generally noisy with many zero voltage crossings, it could make current mem-
ristive devices unsuitable for the intended applications.

Generally, high and low resistance states are not fixed values and vary stochastically within
some device specific range. For example, in figure 5.3, within a cycle the left graph exhibits contin-
uous changes in resistance, making the identification of high and low resistance states hard, while
the right graph clearly shows fast transitions (1st and 3rd quadrants), at a variable threshold. The
slope of the curve (resistance) after these transitions, in both devices, is also not constant, which
introduces further stochastic properties into what is high and low resistance range of states.

Resistance transitions, voltage and flux thresholds

Contrary to the shown models, memristive devices can also exhibit sudden jumps in resistance.
Figure 5.5 zooms into the positive portion of cycles of two different devices, showing the two

extremes of possible dynamics; on the left side, there is typically a large resistance jump from low
to high with a fast transition (binary memristor) and on the right the transition is spread out and/or
composed of smaller jumps. But what is relevant for this section are how those jumps can occur,
explained in the following paragraphs.

Thresholds

In figure 5.6, there is clearly some stochastic threshold between resistive and memristive be-
havior. There are two possibilities:

• Transition occurs between [0.05; 0.40] V;

• Transition occurs between [12; 300] mWb.

The total flux of a generic voltage spike is about 100 µWb and has a maximum amplitude of 100
mV, meaning that in many cases (with this device) a single spike does not change the memristance,
due to threshold properties.

These transitions can be numerically implemented in a few ways: different types of threshold
can be introduced into the state variable dynamic or by introducing a new dummy state variable.
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Figure 5.6: Zoom in to positive portion of cycle for continuous memristor

Threshold can be hard or soft, that is, the transition can occur sharply between two domains
or there is an intermediate region between the two domains. For hard thresholds, ẋ −→ ẋ · f (y)

where f (y) =

1 outside range

0 inside range
, with y = voltage or flux; and for soft thresholds, where f (y) is

at least a C0 function.

However, whether the threshold is hard or soft, these transitions can introduce unchecked error
that makes the system diverge from its analytical solution. The two variable model is an approxi-
mation where a second variable is added to the model in the following way:

V (t) = M (z) I (t)

z = h (x)

dx
dt = f(x, u, t)

and V = voltage, I = current, M = memristance.

Like the originally presented models, x is a bounded variable that changes under non-null in-
put, but in this case, f(x, u, t) can absorb the window function, a time dependent function and a
dependency on voltage, flux, current or charge (u). The new variable is introduced (z) to copy the
original state under certain conditions:

z = x if y−threshold > y > y+threshold
·
z = 0 else

.

The new variable z is the state variable that affects the memristance, where any discontinuity
(transition) occurs in the variable z but the variable x changes continuously.
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Asymmetric switching

If the electrodes of the device are not equal, filament formation is not symmetric, translating into
asymmetric switching. Assuming that the electrodes are ohmic (I = V/R), then the asymmetry is
easy to translate into a numerical approximation:

V →


V

V −
rescale

if V < 0

V
V +
rescale

if V > 0

To the analyzed one state models, so far, it makes the device change faster or slower depending
on the signal of applied voltage and can adjusted from the voltage rescale values (Vrescale).

Device example

It has been mentioned that window functions were one of the first theoretical approaches to real
devices, but are now regarded as an over simplification, while still useful for circuit or large scale
applications; the advantage of using window functions comes from the fact that most numerical
approximations can be hidden in this artificial property.

The following analytical device exemplifies different characteristics that were explained so far:

• linear device;

• voltage threshold (= th), screening the device from small amplitude random noise;

• unequal electrodes;

• two variable model, flux (φ) controlled, to implement resistance transitions without numerical
problems from discontinuities.

V = [Ronz +Roff (1− z)] I

f (V ) =


V−V +

th

V +
rescale

if V > V +
th

V+V −
th

V −
rescale

if V < V −
th

0 else

ẋ = α · window (x) · f (V )

z = x if φ−
th > φ > φ+

th
·
z = 0 else

No simulation data of this device is shown, because the addition of voltage thresholds causes
numerical instability. More specifically, numerical stability in NEURON after V = V +

th or V −
th is not

guaranteed.

5.3 Memristive tests

The intended application restricts what characteristics are desirable: binary, multi-level or con-
tinuous memristive synapses result in different hybrid dynamics. Current experimental memristors
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can function under distinct principles (section 2.3), with each type adequate for certain applications.
For any hybrid circuit application, tests need to be performed to determine what are the device’s
characteristics.

Endurance

This is already a standard test in the area, being obtainable through a periodic signal of large
enough amplitude; the resistance transitions eventually destroy the flexibility of the device, but
helps determine the endurance cycle of the device.

Threshold

To identify the type or types of threshold in the devices there are some battery of tests that can
be employed.

• Linear (or otherwise) voltage/current sweeps

Changing the time scale of these sweeps it should be possible to identify the type of threshold;
at the start of each sweep the device should always be on the same state (high or low). If the data
shows transitions between resistive and memristive behavior at a consistent range of voltages/cur-
rents then there is a voltage/current threshold and if the transition range increases with decreasing
slope (or vice versa) then there is a flux/charge threshold.

The problem with this set of measures comes from transient dynamics of these devices, which
can hide the transition.

• Beat

General measures of memristors use periodic signals to test high/low resistance states, en-
durance, etc; using the scheme with a sum of two signals of approximate frequency it should pos-
sible to identify the type of threshold. The smaller frequency ensures that the flux/charge is zero
periodically, and the larger frequency makes the state transits periodically but with different values
of flux/charge.

The phase between null flux/charge and null voltage/current (after the transient period) should
enable to identify the type of threshold: if at each zero voltage/current crossing the device be-
comes resistive then there is voltage/current threshold, but if the transition between resistive and
memristive (and vice versa) occurs once per period of the beat’s envelope then there is flux/charge
threshold.

Imbalance of electrodes and other characteristics

To analyze how both electrodes compare, it is not as simple as interchanging the sign of the
input signal. While it is possible to saturate the memristor in the high or low resistance state, it
is not clear that an halfway symmetric state (xhalf ) exists in all devices; this state needs to obey
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the following: window (xhalf + ε) = window (xhalf − ε) for ε → 0. In practical terms, this state is
impossible to detect because any number of factors, for example, minute changes in the window
function, can hide this from the experimental point of view.

5.4 NiM nodes

Going back to section 4.1.2, HH neurons can show signs of being under or overstimulated, both
resulting in a relative lack of electrical activity. However, under any stimulation, the neuron does
not remain in its resting potential, which causes voltage differences between nodes on the system,
and therefore, causes the electrical connections to pass some current. In figure 4.4 a HH neuron
with 20 µm radius becomes saturated at less than 0.4 nA and requires more than 0.08 nA to spike.

So far, only the effect of one memristor on one neuron has been analyzed, but apart from
experimental limitations, it should be possible to connect several devices to the same neuron. But
in the same perspective, a neuron connected to a memristor has a different dynamic from a neuron
connected to several memristors.

It is useful to conceptualize hybrid circuits as networks where nodes are neurons and the edges
are the artificial synapses (in this case edges are dynamic elements); at each node the dynamic
is determined by the number of edges that are connected, being distinguished by the term NiM =

(# edges that are depressed from node’s action)node index(# edges that are potentiated from node’s
action).

Given that voltage spikes have an amplitude of around 100 mV, an estimate of a spike at half
height should be able to induce action potentials in the post-synaptic neuron, with the following
memristance range (R):

0.4nA & 50mV
R ⇒ R & 108Ω = R1

0.08nA . 50mV
R ⇒ R . 6 · 109Ω = R2

The actual range of memristance depends on the application, but to activate node i if P (≤N+M)
pre-synaptic spikes are needed, on average, the memristance should be on the following range:
R ∈ P · [R1;R2]. If node i emits a voltage spike, it is distributed to all P artificial synapses.

Regardless of the resistance of all memristors in the NiM node, the sum of the input signals has
a cumulative effect that even if no action potentials reach this node, like noise or uninitiated voltage
spikes, can still induce neuron (or node) i to become active for a given period time.

5.5 Workaround for threshold and energy requirements

In section 4.1.5 there is a mention that real memristors have a minimum energy requirement for
full resistance switching, on the order of magnitude of femtoJoules, and voltage/current thresholds
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screen devices for small signal amplitudes; these characteristics are not favorable for resistance
switching controlled by neuronal dynamics. Amplifying the voltage of a cell is capable of solving
these problems, but at the expense of further noise and with a single action potential switching
the resistance, whether it is a spurious spike or within a train spike. Signal-to-noise ratio can
be controlled (to a point) by the quality of components and by the experimental conditions, but
controlling spurious electrical activity is not feasible for a large scale systems. However, summing
the membrane voltage of several neurons can solve the problem of spurious activity, by taking
advantage of synchronous neural populations, where at any time there is electrical activity, but only
when several neurons are active does it represent a definite event.

5.6 Applications

Throughout this dissertation, some tentative attempts to link structures of the nervous system
and memristive devices have been proposed and to some extent, other electrical elements. Sec-
tion 2.2 elaborates on the electrochemical principles of spike generation and transmission, that
results in an event-driven dynamics, while electrical circuits depend on electromagnetic fields; this
means that equating the synapses/neurons and memristors comes with a few caveats. The dif-
ference between synaptic and memristive plasticity is one of the most visible: synaptic plasticity
is based on homeostatic principles that neurons will fire within some range of frequency, without
saturation or stop generating spikes, correlating the causality of the same spikes, while memristive
plasticity is related to the timing of pre- and post-synaptic signals (not necessarily spikes) and the
net flux/charge, both of them dictating the resistance change. Another difference between hybrid
systems and electrical circuits is on the nodes, that comes is three varieties: NiM nodes, electrical
nodes and neuronal nodes. Electrical nodes are analyzed by Kirchoff’s laws, neuronal nodes are
the nodes of neuronal networks, ruled by biological principles and NiM nodes are a combination of
the previous that can be expanded to equivalent circuits, but it is not feasible for detailed neurons,
either for morphological or electrochemical details.

There is, however, common ground between electrical and neuronal networks. Gap junctions
are useful to synchronize neurons, their electrical behavior enables to identify neural populations
that show closely correlated firing and fast propagation, enabling “knee-jerk” reactions. The gener-
alization of these information/spikes “highways” are synfire chains, structures of neuronal popula-
tions connected with feed forward excitatory and few recurrent connections, that synchronize neu-
rons. Memristive devices take advantage of these characteristics, with adaption and non-symmetry
in input sign, and while it is not explicitly feed forward, back propagation inhibition can be engineered
into the device, through device parameters or by the use of other electrical elements. Taking these
characteristics/applications in mind, the primary element of hybrid circuits are hybrid chains (see
section 4.6); each node of this chain is stimulated by the previous node, or in a way, each node
copies the electrical activity to its neighbors, propagating the initial stimulus. The obvious gener-
alization is N interconnected chains, in 2d or 3d setups, connecting different neuronal populations
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Figure 5.7: Generic scheme for a artificial biphasic neuron

and creating an adaptive conductive bridge, with or without asymmetric conductance. Besides the
obvious electrical conductance use, organizing these chains in this meld of electrical and biological
could, hypothetically, be used to create hybrid memory “banks”. These memories are the hybrid
equivalent of memristive crossbar arrays.

These hybrid chains and bridges can be used to construct adaptive control systems and con-
ceptualizing these systems on the basis of input and output layers, the input layer signals can be
spatially directed into different output layers, while also interacting with other analog/digital sys-
tems. A hybrid system using these elements can be further conceptualized as a control system,
or part of one, processing the input information, dynamically changing its parameters and relaying
the processed information. If these types of systems can be made biocompatible, the interaction
between biological tissue and electric circuits is possible, paving a way for biorobotics.

However, this is an ambitious objective and requires the careful analysis of simpler applications.
It has been exemplified, so far, of memristive devices as artificial surrogates to synapses because it
is themost obvious use and enables to identify most of the possible problems and generic dynamical
properties. Neuromorphic research has produced several theoretical and experimental artificial
neurons, most using transistors but also memristors [84], and depending on the use, resulting in
variable accuracy of spike profile. It is now proposed a generic setup to mimic a spatially distributed
neuron recorded by extra-cellular electrodes (section 5.1), using the simple concept of voltage
dividers (section 4.1.6).

In figure 5.7, it is represented an artificial neuron, as a projection of a biological neural network,
by way of memristance dynamic. From left to right: the neuronal population is a set of live/recorded
signals, being used to control memristance values in the setup; the diode symbol indicates that
the connection between neurons and memristor is asymmetric, with the forward direction from
neuronal population to memristive array; the memristive voltage divider is a general array of series
memristors, controlled by the input signal V(t)= square wave, generating biphasic spikes at each
device once per period of the input; the output layer organizes the signal spatially.
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The concept of hybrid chains is still retained on this artificial neuron, because the connection of
the neuronal population and the memristive array can be engineered to change certain properties of
the input signal. This connection takes a distributed set of signals from the neural population and
cellular neural networks, a general type of network that includes hybrid circuits, can be used for
edge detection in image processing, for example, and, with some generalization, to detect spatial
patterns in neuronal activity, via electrical spikes. Other types of neural networks, like convolution
[101] or recurrent [102] neural networks, can be used to reduce noise in input signal.
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Chapter 6

Conclusions

The integration of biological and electrical systems is an emerging field with important applica-
tions in many areas of medicine and neuroscience. The potential of this field in the construction
of innovative therapeutic strategies is vast, and so is the demand for producing real word appli-
cations which need to be scalable, lightweight and efficient. However, like other emerging fields,
the long term effects of these applications are still unknown, and for the nervous system arguably
the most important portion of the human body this becomes an enormous barrier for any potential.
This means that any candidate application needs to be thoroughly explored by a combination of
theoretical, computational and experimental work. Because models are still not developed enough
to explain many emerging characteristics of the nervous system, interfacing this gray box (combi-
nation of black and white box systems) with other types of systems can lead to many unknown side
effects and endanger any potential application. The work here presented is an important step to-
wards the understanding and assessment of the conditions to effectively bridge memristive devices
and real neurons.

On the larger scope of scientific literature, hybrid systems fall into the broad category of cellular
neural networks, which so far, have proven useful in image processing, pattern recognition and
analysis, modeling of certain physical processes or even as sensors. Historically, the cells of these
networks have interesting biology-like properties (e.g. neuromorphic) but technological constraints
have directed these systems into entirely electronic applications, that while using the same ideas
as the nervous system, turns into a different system. And replacing the cells by realistic neurons
brings a whole ensemble of design constraints and unexpected effects.

The main concern that needs to be considered in any further study comes on model sensitiv-
ity. Hybrid systems are a combination of biological networks (event-driven, timing sensitive) and
electrical circuits (dynamic, sensitive to voltage differences), not necessarily producing compatible
dynamics. For example, a NiM node with N+M ̸=0 will at any instant receive a variety of signals
that do not qualify as action potentials, whether it is uninitiated action potentials or just noise, and
the sum of all inputs can cross the current threshold that the neuron needs to fire, cause adaption
in the system’s parameter space and if the system is an unstable equilibrium, diverge it into an
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unexpected direction. In addition, over stimulation can also inhibit electrical activity, because of
saturation properties in realistic neurons.

The range of stimulation in these nodes, between under and over stimulation, changes the
timing of signal transmission in hybrid circuits and when those signals are the typical voltage spike
of neuronal activity, a slight change in the connection (e.g. resistance) can completely stop the
signal’s propagation. However, through careful consideration of the hybrid circuit’s design, these
timing issues or parameter variation causing unwanted inhibition or excitation are relegated to the
quality of the biological and electrical engineering.

The design of hybrid circuit is dependent on the type of memristive device used, where symme-
try of conductance, switching speed, threshold or endurance restrict what applications are possible.
For example, chemical and electrical synapses can be mimicked by tuning the symmetry of con-
ductance: symmetric conductances can mimic electrical synapses and asymmetric conductances
can mimic chemical synapses. Other tunable parameters can be exploited to create a diverse set
of elements in the context of hybrid circuits, like switches, artificial synapses or spiking devices.

Overall, this work shows that hybrid systems composed of neuronal connections mediated
by memristive devices have an enormous potential in neuroscience and medicine. Furthermore,
it shows that the constraints imposed to effectively bridge neurons and memristive devices are
amenable by today’s technological standards. The time is therefore ripe to explore and construct
possible applications.
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Chapter 7

Future work

I have shown in a general manner that hybrid circuits can be integrated into neuronal or electrical
networks, but it remains be to proved by a proof of concept. Before this proof of concept can be
done, some basis work still needs to be done, mostly on the characterization of memristive devices.

Either by an extensive review of literature or by experimental work, a sufficiently diverse set
of memristive devices need to be characterized when subjected to periodic (already extensively
done) and non-periodic signals (less common). These tests will measure a variety of different
properties, ranging from thresholds, endurance, resistance range/symmetry and change speed,
because different applications call for different memristors.

When this database of properties for different devices is collected, a specific application can
be studied and to simplify any future work, these applications should start by proving toy model
concepts: hybrid chains, the simplest hybrid circuit, and artificial biphasic neurons.

In previous sections, I have argued that hybrid chains are one of the basic elements of hybrid
circuits, and if they are proven to function in experimental conditions, it paves the way for the
development of control systems between the nervous system and electronic applications. Still
using the concept of hybrid chains and other more generic concepts in artificial neural networks,
the proposed setup of artificial biphasic neuron presents the first non trivial application of the work
developed so far, where the objective is to create a memristive array that can emit spikes.
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Appendix 1 - Pseudo-code of memristor implementation in NEURON

Object initialization {
Type of object memristive device
Pointer pre- and post-synaptic neurons

}

Parameters {
pre-synaptic neuron’s voltage
post-synaptic neuron’s voltage
extra arguments

}

States {
device state

}

Initial {
initial configuration

}

Numerical equations {
memristor’s model

}

Exit point of object {
Current output from model equations

}

Algorithm 1: Memristive device model

Algorithm 1 is the generic template for implementing a memristive (or other electric elements)
in NEURON, via NMODL syntax, with the electrodes of this module is implemented by another
template in HOC.

The block of the template Numerical equations { ... } contains the numerical model that de-
fines the memristive device. In this block, flux-charge and voltage-current devices are supported.

The following block of code are illustrative of the typical code structure in NEURON (in ver-
sion 7.4), implementing an hybrid chain of HH neurons and flux-charge memristors defined by a
numerical table of sufficiently continuous experimental data.

/ / p repara to ry l i n e s
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l o a d _ f i l e ( ” t a bu l a t i n g . hoc ” )
l o a d _ f i l e ( ” memo_template . hoc ” )

/ *
SETUP:

( 1 )−−−( memr_1 ) − . . .−( memr_N−1 )−−−( N )

1 to N are HH neurons ( s i ng l e compartement ) and due to coding
Sect ionRefs need to created and used ins tead of the o r i g i n a l ob jec ts

memr i s an ” r ea l ” memrist ive device
on user l eve l , new memo( neuron A, neuron B) i s the one necessary

command needed .
Here ’ swhat ’ s happening :
− p laceho lder neuron (named i n t e r ) i s created
− i n s e r t s a dens i t y mechanism tha t i n t eg ra t e s vo l tage d i f f e r ence

between neuron A and B, corresponds a charge to f l u x value
− t h a t charge i s der i va ted i n t ime w i t h i n .mod ( w i th reassigment o f

s ta tes )

− p laceho lder neuron i s not necessary , but i s use fu l f o r p iggybacking
* /

/ / se t o f N neurons
N = 10
create soma [N]
f o r a l l { L=20 diam=20 i n s e r t hh }
/ /NECESSARY sec t i on r e f s
ob j r e f s [N]
for i =0 ,N−1 {soma [ i ] s [ i ] = new Sect ionRef ( ) }

/ / memristor ob jec ts
ob j r e f memr [N−1]
/ /memo(A,B, x , y ) creates the memristor ob jec t
/ / x and y are sca l i ng parameters dependent on the exper imenta l data
for j =0 ,N−2 {memr [ j ] = new memo( s [ j ] , s [ j +1] ,1e10 ,7e2 ) }
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/ / s t imu lus f o r one the neurons , square wave between 0 and 0.5 nA
ob j r e f e lec t rode
s [ 0 ] . sec e lec t rode = new duty_cyc le_e lec t rode ( 0 . 5 )
{ e lec t rode . per iod = 100} / / per iod i s i n m i l l i seconds

/ / c rea t i on o f record ing ob jec ts and of f i l e to s to re data
ob j r e f data
data = new F i l e ( ” dynamic . t x t ” )

o b j r e f t ime , vo l tage [N]
t ime = new Vector ( )
t ime . record (& t )
for i =0 ,N−1 {

vo l tage [ i ] = new Vector ( )
vo l tage [ i ] . record (&soma [ i ] . v ( 0 . 5 ) )

}

/ / t o t a l s imu la t i on t ime ( m i l l i seconds )
t s t op = 1000
run ( ) / /

/ / w r i t i n g r e su l t s to f i l e
wopen ( ” dynamic . t x t ” )
for i =0 , t s t op / dt−1 {

f p r i n t ( ”%f \ t ” , t ime . x [ i ] )
for j =0 ,N−1 {

f p r i n t ( ”%f \ t ” , vo l tage [ j ] . x [ i ] )
}
f p r i n t ( ” \ n ” )

}
wopen ( )

Listing 7.1: HOC level implementation of hybrid chains, with flux-charge devices

NEURON {
SUFFIX i n t g r _ f l u x
POINTER v_p , v_m, sca le_f , scale_q

}
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PARAMETER {
v_p ( )
v_m ( )
sca le_ f ( )
scale_q ( )

}

STATE { chrg_t0 chrg_t0_dt f l x t0 t0_d t cu r ren t res i s tance div_v }

INITIAL {
chrg_t0 = 0
chrg_t0_dt = 0
f l x = 0
t0 = 0
t0_d t = 0
cu r ren t = 0
res i s tance = 0
div_v = 0

}

BREAKPOINT {
SOLVE s ta te METHOD cnexp

}

FUNCTION_TABLE c ( x )

UNITSOFF
DERIVATIVE s ta te {

d iv_v = ( v_p − v_m) /1000

f l x = ( v_p − v_m) /1000

chrg_t0_dt = chrg_t0
chrg_t0 = c ( sca le_ f * f l x ) / scale_q

t0_d t = t0
t0 = t
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cu r ren t = ( chrg_t0 − chrg_t0_dt ) / ( t0 − t 0_d t )

i f ( cu r ren t <= 1e−12) {
res i s tance = res i s tance

} else {
res i s tance = ( v_p − v_m) / (1000* cu r ren t )

}

}
UNITSON

Listing 7.2: Example of algorithm 1 flux-charge device
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Appendix 2 - Voltage divider

# −*− coding : u t f−8 −*−
” ” ”
Created on Tue Mar 01 15:50:45 2016

@author : Joao_Alexandre
” ” ”

#necessary l i b r a r i e s
from numpy import *
from sc ipy import s i gna l
from pylab import *
from sc ipy . i n t eg r a t e import ode

#device parameters
#r_on = inverse o f low res i s tance s ta te
# r _ o f f = inverse o f high res i s tance s ta te
#n = non− l i n e a r i t y o f s t a t e va r i ab l e
#a = constant i n s ta te va r i ab l e d i f f e r e n t i a l equat ion (V^−1 s^−1)
#p = exponent i n Jog lekar window func t i on
#m = non− l i n e a r i t y i n i npu t o f s t a t e va r i ab l e d i f f e r e n t i a l equat ion
r_on = ar ray ( [ 1 8 , 18 ] )
r _ o f f = ar ray ( [ 0 . 0 4 , 0 . 0 4 ] )
n = 14
a = 4
p = 1
m = 1

amp = 3 #ampl i tude of i npu t s i gna l (V)
pol = ar ray ( [ 1 , 1 ] ) # po l a r i z a t i o n o f devices

# i n i t i a l i z a t i o n o f t ime ar ray
t _ i n i t = 0
t _ f i n = 1.2
d t = 0.001
t ime=arange ( t _ i n i t , t _ f i n , d t )
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# inpu t s i gna l
per iod = 0.5
vo l tage = amp* ( s i gna l . square (2* p i * t ime / per iod , duty =0.5) )

# s ta te va r i ab l e d i f f e r a n t i a l equat ion
def kerne l ( t , x ) :

return a*(1−(2*x−1) * * ( 2 * p ) ) * ( po l * ( r _ o f f +( r_on−r _ o f f ) * x * * n ) **(−1) *
vo l tage [ t / d t ] /sum ( ( r _ o f f +( r_on−r _ o f f ) * x * * n ) **(−1) ) ) * *m

# i n i t i a l i z a t i o n o f so l u t i o n ar rays and i t e r a t i v e progress ion i n t ime
ar ray

y _ i n i t = ar ray ( [ 0 . 8 5 , 0 . 9 ] )
r = ode ( kerne l )
r . s e t _ i n t eg r a t o r ( ’ dopr i5 ’ )
r . s e t _ i n i t i a l _ v a l u e ( y _ i n i t , t _ i n i t )
y_dom = zeros ( ( len ( t ime ) ,2 ) )
y_dom [ 0 , : ] = y _ i n i t
for j in range (1 , len ( t ime ) ) :

y_dom [ j , : ] = r . i n t eg r a t e ( r . t +d t )

# p l o t t i n g o f r e s u l t s and expor t to f i l e ( i n d i r e c t o r y o f s c r i p t )
f i g u r e ( f i g s i z e =(10 ,5) )
cu r ren t = vo l tage /sum ( ( r _ o f f +( r_on−r _ o f f ) *y_dom* * n ) **(−1) )
subp lo t (221)
p l o t ( t ime , y_dom [ : , 0 ] , ’ b ’ , l a be l = ’ x1␣ ( adimensional ) ’ )
p l o t ( t ime , y_dom [ : , 1 ] , ’ r ’ , l a be l = ’ x2␣ ( adimensional ) ’ )
g r i d ( )
legend ( loc= ’ upper␣ center ’ , bbox_to_anchor = (0 .5 , 1 .45) , nco l =1)
x l abe l ( ’ t ime␣ / ␣seconds ’ , f o n t s i z e =15)
y l im ( [ −0 .1 , 1 . 1 ] )

subp lo t (222)
v1=cu r ren t * ( r _ o f f [ 0 ] + ( r_on [0]− r _ o f f [ 0 ] ) *y_dom [ : , 0 ] * * n ) **(−1)
v2=cu r ren t * ( r _ o f f [ 1 ] + ( r_on [1]− r _ o f f [ 1 ] ) *y_dom [ : , 1 ] * * n ) **(−1)
maxi = max(max(abs ( v1 ) ) ,max(abs ( v2 ) ) )
p l o t ( t ime [ : : 5 0 ] , cu r ren t [ : : 5 0 ] /max(abs ( cu r ren t ) ) , ’ . ’ , \
l a be l = ’ I ␣ / ␣ ’ +st r ( round (max(abs ( cu r ren t ) ) ,4 ) ) + ’ ␣A ’ , markersize =1)
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p l o t ( t ime , vo l tage /max(abs ( vo l tage ) ) , ’−− ’ , \
l a be l = ’V␣ / ␣ ’ +st r ( round (max(abs ( vo l tage ) ) ,5 ) )+ ’ ␣V ’ )
p l o t ( t ime , v1 / maxi , ’ b ’ , l a be l = ’V1␣ / ␣ ’ +st r ( round ( maxi , 3 ) ) + ’ ␣V ’ )
p l o t ( t ime , v2 / maxi , ’ r ’ , l a be l = ’V2␣ / ␣ ’ +st r ( round ( maxi , 3 ) ) + ’ ␣V ’ )
y l im ( [ −1 .1 , 1 . 1 ] )
legend ( loc= ’ upper␣ center ’ , bbox_to_anchor = (0 .5 , 1 .5 ) , nco l =2)
x l abe l ( ’ t ime␣ / ␣seconds ’ , f o n t s i z e =15)
g r i d ( )

save f ig ( ” b iphas i c_a r t_sp i ke . png ” , dp i =800 , bbox_inches= ’ t i g h t ’ )

Listing 7.3: Simulation of memristive voltage divider (with 2 linearized devices); code ran on Anacoda 1.1.0 distribution
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