
UNIVERSITY OF PORTO

Reconfigurable Custom Computing for
Population-Based Optimization

Metaheuristics: Accelerating Genetic
Algorithms with FPGAs

by

Pedro Manuel Vieira dos Santos

A dissertation submitted to the
Faculty of Engineering of the University of Porto

in accordance with the requirements for the degree of
Doctor in Electrical and Computer Engineering

September 2015

http://www.up.pt

Thesis Identification
Title: Reconfigurable Custom Computing for

Population-Based Optimization Metaheuristics:
Accelerating Genetic Algorithms with FPGAs

Keywords: Genetic Algorithms, Metaheuristic,
Reconfigurable Computing, FPGA,
High-Level Synthesis

Start: March 2008

Candidate
Name: Pedro Manuel Vieira dos Santos
e-Mail: pedro.vieira.santos@fe.up.pt

Supervisor
Name: José Carlos dos Santos Alves
e-Mail: jca@fe.up.pt

Co-Supervisor
Name: João Paulo de Castro Canas Ferreira
e-Mail: jcf@fe.up.pt

Educational Establishment: FEUP - Faculty of Engineering
of the University of Porto

Research Institution: INESC TEC - INESC Technology and Science

iii

Statement of Originality

The work presented in this thesis was carried out by the candidate. It has not been
presented previously for any degree, nor is it at present under consideration by any
other degree awarding body.

Candidate:

(Pedro Manuel Vieira dos Santos)

Supervisors:

(José Carlos dos Santos Alves)

(João Paulo de Castro Canas Ferreira)

v

Statement of Availability

I hereby give consent for my thesis, if accepted, to be available for photocopying and
for interlibrary loan, and for the title and summary to be made available to outside
organizations.

Candidate:

(Pedro Manuel Vieira dos Santos)

vii

“Everything has been thought of before,
but the problem is to think of it again.”

Johann Wolfgang von Goethe

ix

Acknowledgements

This work could not have been completed without the help and support of many people
to whom I would like to thank.

I wish to express my gratitude to my supervisors, Professor José Carlos Alves and Pro-
fessor João Canas Ferreira, for giving me the opportunity to perform my research work.
Their guidance, valuable advices, and hours of thoughtful discussions were undoubtedly
a driving source towards the completion of this work.

I would like to thank to Professor João Cardoso and Professor Michael Hübner for the
opportunity to work during 2 months at the Institute for Information Processing Tech-
nologies in the Karlsruhe Institute of Technology (Germany). I thank to the colleagues
at the institute for the fruitful discussions that we have had, and to Ali Azarian for his
friendship during this stay.

This work was partially funded by the PhD grant SFRH/BD/41259/2007 awarded by
the Portuguese Foundation for Science and Technology (FCT - Fundação para a Ciência
e a Tecnologia), to whom I would like to thank for the support.

I also would like to thank to Instituto de Engenharia de Sistemas e Computadores,
Tecnologia e Ciência (INESC TEC) and to Faculty of Engineering of the University of
Porto (FEUP) for providing me the necessary facilities to my research work.

I thank to my friends and colleagues at FEUP and INESC TEC, especially to Pedro
Mota, João Oliveira, Mário Pereira, Luís Pessoa and Paulo Ferreira, for their friendship
and continuous encouragement during this work.

Last but certainly not least, I am deeply grateful to my wife, Liliana, for her endless
support and comprehension during this long journey. Thank you for always believing in
me.

xi

Abstract

This thesis addresses the study of mechanisms to accelerate population-based meta-
heuristic search procedures with custom computing machines, in particular genetic al-
gorithms (GAs), implemented in field-programmable gate arrays (FPGAs). This meta-
heuristic often requires long execution times to converge to satisfactory results, thus
limiting its use in systems where the processing power is limited. To address this issue,
a scalable processor array architecture is proposed where the operations of the meta-
heuristic are parallelized to improve the execution speed of GAs while ensuring that the
quality of the optimization process is not compromised. To customize the architecture to
solve different optimization problems, a design flow based on high-level synthesis (HLS)
is developed to specify the problem-dependent operations of the algorithm.
A hardware architecture is proposed that effectively accelerates the execution of cellular
GAs (cGAs), a variant of a GA where the candidate solutions of the problem (popu-
lation) are distributed over a regular grid. With such physical distribution, several
independent memories can hold subsets of the population so that they are accessed by
processing elements (PEs) that compute locally a GA with those solutions. As a result,
the architecture can be scaled by changing the number of PEs and memories, without
introducing a degradation in performance with the size of the array due to memory
access bottlenecks. This architecture is suitable for FPGA implementation, since these
devices have a large number of memory blocks to implement the required distributed
memory system.
Although GAs are usually known for using a few simple operators, in many problems
special constraints apply and dedicated algorithms are required to encode feasible solu-
tions. Therefore, a HLS-based design flow is presented that specifies the problem-specific
operations of the algorithm to customize the architecture for the specific requirements
of each problem. Additionally, a complete scalable array solution, called cGA processor
(cGAP), is presented that implements all the infrastructure necessary to the execution
of the algorithm. As a result, the cGAP is specified by defining a set of parameters,
while the problem-specific operations are specified in a common programming language
(C++) and translated to digital hardware with HLS tools.
Finally, two optimization problems that appear in the context of wireless ad hoc networks
are addressed as case studies to demonstrate the effectiveness of the cGAP and its design
methodology. These problems are mapped to the proposed processor and implemented
in a Virtex-6 FPGA. Results have shown that the acceleration achieved by the cGAP is
near to directly proportional to the number of PEs, and that increasing the parallelism
level ensures similar (or even better) solution quality. Therefore, the cGA supported
by the architecture is efficient as it can improve the execution time of the algorithm
and, at the same time, effective as it provides good quality solutions. Additionally, the
scalability of the architecture allows exploiting trade-offs between acceleration of the
algorithm and hardware resources used to implement it.

xiii

Sumário

Esta tese aborda o estudo de mecanismos para acelerar procedimentos de pesquisa meta-
heurística baseados em populações, em particular algoritmos genéticos (GAs), usando
processadores dedicados implementados em sistemas digitais reconfiguráveis baseados
em FPGA. Esta metaheurística requer normalmente tempos de execução longos para
atingir bons resultados, o que limita a sua aplicabilidade em sistemas com capacidade
de processamento limitada. Em resposta a este problema, é proposta uma arquitetura
escalável constituída por uma matriz de processadores idênticos, onde as operações da
metaheurística são paralelizadas sem comprometer a eficácia do processo de otimização.
Para adaptar a arquitetura de forma a que esta seja aplicada a diferentes problemas de
otimização, é proposto um fluxo de projeto baseado em síntese de alto nível (HLS) onde
as operações dependentes do problema são especificadas com recurso a uma linguagem
de programação convencional.
A arquitetura de processamento proposta acelera a execução de GAs celulares (cGAs),
uma variante da metaheurística onde as soluções do problema em evolução (população)
são distribuídas de forma regular numa grelha regular abstrata. Tal distribuição pos-
sibilita que conjuntos de soluções possam ser mantidos em memórias independentes de
forma a alimentar em paralelo vários elementos de processamento (PEs), em que cada
um executa um GA com um conjunto local de soluções. Como resultado, a arquite-
tura é escalável através da alteração do número de PEs e memórias associadas, sem que
isso se traduza numa degradação de desempenho devida a estrangulamentos nos acessos
ao sistema de memória. Esta arquitetura adequa-se a uma implementação em disposi-
tivos FPGAs, uma vez que estes apresentam um grande número de blocos de memória,
conveniente para implementar o sistema de memória distribuída.
Apesar dos GAs serem conhecidos por usarem poucos e simples operadores, muitos
problemas apresentam restrições específicas que resultam na necessidade de algoritmos
dedicados para codificar e transformar soluções admissíveis. Desta forma, é proposto
um fluxo de projeto baseado em síntese de alto nível que permite especificar as op-
erações e procedimentos dependentes do problema numa linguagem de programação
padrão (C++). Para além disto, é também apresentado o mecanismo de construção e
parametrização da matriz de nós de processamento e de toda a infraestrutura de suporte
à execução do cGA.
Para validar a solução proposta e a metodologia de projeto, são abordados como casos
de estudo dois problemas de otimização que surgem no contexto de redes sem fio ad hoc.
Os dois problemas são implementados num dispositivo FPGA Virtex-6 e os resultados
demonstraram que a aceleração obtida pela arquitetura é diretamente proporcional ao
número de PEs, e que o aumento de paralelismo não degrada a qualidade da solução.
Mostra-se assim que a arquitetura paralela proposta é eficiente uma vez que permite
acelerar a execução do algoritmo e, ao mesmo tempo, é efetiva uma vez que garante
soluções de boa qualidade. Para além disso, a escalabilidade da arquitetura permite
explorar o compromisso entre aceleração do algoritmo e recursos lógicos usados para o
implementar.

xv

Contents

1 Introduction 1
1.1 Thesis organization . 4
1.2 Contributions . 5

2 Background and state of the art 9
2.1 Introduction . 9
2.2 Genetic Algorithms . 9

2.2.1 Canonical genetic algorithm . 10
2.2.1.1 Representation of solutions 11
2.2.1.2 Selection . 13
2.2.1.3 Crossover . 14
2.2.1.4 Mutation . 15
2.2.1.5 Replacement . 16
2.2.1.6 Fitness evaluation . 16
2.2.1.7 Example: OneMax problem 16

2.2.2 Decentralized GAs . 17
2.3 Hardware implementations of GAs . 19

2.3.1 GA architectures . 25
2.3.1.1 Panmictic - generational 25
2.3.1.2 Panmictic - steady-state 27
2.3.1.3 Distributed . 28
2.3.1.4 Cellular . 31
2.3.1.5 Variants of GAs . 31

2.3.2 Where is the bottleneck? . 32
2.3.3 Acceleration . 34
2.3.4 General considerations . 35

2.4 Summary . 36

3 A scalable processor array for cGAs acceleration 37
3.1 Introduction . 37
3.2 The architecture . 38

3.2.1 Comparison with a canonical cGA 43
3.2.2 Application to other population-based metaheuristics 47

3.3 Architecture simulation . 49
3.3.1 Toroidal arrays configuration . 53

3.3.1.1 Square arrays . 53
3.3.1.2 Non-square arrays . 56

xvii

xviii Contents

3.3.2 Non-toroidal arrays configuration 59
3.3.2.1 Square arrays . 60
3.3.2.2 Non-square arrays . 61

3.4 Hardware implementation: the TSP . 63
3.4.1 Processing element . 63
3.4.2 Memory access control . 66
3.4.3 Implementation and results . 67

3.5 Summary . 71

4 The cGAP architecture 73
4.1 Introduction . 73
4.2 cGA processor (cGAP) overview . 74
4.3 cGA array (cGAA) . 75
4.4 cGA cell . 77

4.4.1 Processing element (PE) . 77
4.4.2 Subpopulation memory . 78

4.5 Control infrastructure . 82
4.5.1 cGA controller (cGAC) . 82
4.5.2 Communication infrastructure . 83
4.5.3 cGAP interface . 87

4.6 RNG infrastructure . 88
4.6.1 RNG block . 91

4.7 Summary . 92

5 The cGAP design methodology 95
5.1 Introduction . 95
5.2 Specification for high-level synthesis . 95

5.2.1 Processing element . 96
5.2.1.1 Algorithm structure . 96
5.2.1.2 Interface . 98
5.2.1.3 Access arbitration to the subpopulation memory 101

5.2.2 cGA controller . 106
5.2.2.1 Algorithm structure . 106
5.2.2.2 Interface . 107

5.3 cGAP host communication . 109
5.3.1 The host interface . 109
5.3.2 Software access to cGAP . 110

5.4 Design Flow . 111
5.4.1 cGAP parameters configuration . 112
5.4.2 Hardware . 114

5.4.2.1 High-level synthesis . 114
5.4.2.2 RTL synthesis . 115
5.4.2.3 FPGA implementation 115
5.4.2.4 Verification . 116

5.4.3 Software . 116
5.4.4 Hardware platform . 116

5.5 Summary . 118

Contents xix

6 Experimental results 121
6.1 Introduction . 121
6.2 Spectrum allocation in cognitive radios . 122

6.2.1 Problem definition . 122
6.2.2 The cGA operations and control 125
6.2.3 The processing element . 126

6.2.3.1 Subpopulation memory organization 127
6.2.3.2 Coding in C++ for HLS 129
6.2.3.3 HLS optimizations . 131

6.2.4 cGAP implementation . 135
6.2.5 cGAP results . 139

6.3 Minimum energy broadcast . 145
6.3.1 Problem definition . 146
6.3.2 A memetic algorithm for the MEB problem 147

6.3.2.1 Codification of solutions 148
6.3.2.2 Local search heuristic: r-shrink 149
6.3.2.3 The cGA operations . 153

6.3.3 cGAP implementation . 154
6.3.4 cGAP results . 158

6.4 Considerations on the cGAP implementation 163
6.5 Summary . 164

7 Concluding remarks 167
7.1 Recommendations for future work . 172

References 185

A C++ classes to describe the cGAP 187
A.1 Class command_type_cGA . 187
A.2 Class request_channel . 190

B cGAP MicroBlaze access 193
B.1 Application programming interface . 193
B.2 cGAP control . 196

C Design flow libraries 199
C.1 cGAP HLS library . 199
C.2 cGAP RTL library . 200
C.3 cGAP API library . 201

List of Figures

2.1 Iterative processes of a GA. 11
2.2 Representations for GAs: (a) binary, (b) path and (c) Prüfer sequence. . . 12
2.3 Selection operators for GAs: (a) roulette-wheel and (b) binary tournament. 13
2.4 GA crossovers for binary representation: (a) 1-point and (b) uniform. . . 14
2.5 Maximal preservative crossover (MPX) for path representation. 14
2.6 Mutations operators for GAs: (a) bit-flip mutation for binary represen-

tation and (b) swap mutation for path representation. 15
2.7 Example of a fitness evolution of a GA for solving the OneMax problem

with 128 elements. 17
2.8 Panmictic GAs, distributed GAs and cellular GAs. 18
2.9 Example of a hardware architecture for a panmictic generational GA. . . 26
2.10 Example of a hardware architecture for a panmictic steady-state GA. . . . 27
2.11 Example of a hardware architecture for a distributed GA. 29
2.12 Example of a hardware architecture for a cellular GA. 30

3.1 Overall architecture of the proposed scalable processor array for cGAs. . . 39
3.2 Example of typical used neighbourhoods in cGAs. 44
3.3 cGA neighbourhood solutions of the processor array for different levels of

parallelism. 45
3.4 Application of the processor array architecture to build a distributed GA. 49
3.5 Discrete-event simulation of the cGA supported by the processor array to

emulate its time-driven update policy. 50
3.6 Example of the maximal preservative crossover applied to the TSP, and

how it implicitly performs a mutation operation. 52
3.7 Fitness evolution with the total number of generated solutions, obtained

with the SystemC model for the cGA supported by toroidal and square
processor arrays to solve a TSP. 54

3.8 Fitness evolution with number of clock cycles, obtained with the SystemC
model for the cGA supported by toroidal and square processor arrays to
solve a TSP. 57

3.9 Fitness evolution with the total number of generated solutions, obtained
with the SystemC model for the cGA supported by toroidal and non-
square processor arrays to solve a TSP. 58

3.10 Fitness evolution with the total number of generated solutions, obtained
with the SystemC model for the cGA supported by non-toroidal and
square processor arrays to solve a TSP. 61

3.11 Fitness evolution with the total number of generated solutions, obtained
with the SystemC model for the cGA supported by non-toroidal and non-
square processor arrays to solve a TSP. 62

xxi

xxii List of Figures

3.12 Organization of a shared memory in the processor array for solving the
TSP with a maximum of 252 cities. 63

3.13 Overview of the hardware pipeline implemented in the PE to compute
the MPX and fitness of a TSP solution. 64

3.14 Configuration and organization of the auxiliary memory (a BRAM from
a Virtex-6 FPGA) in a PE to solve the TSP. 65

3.15 Sequence of operations executed by a PE during a generation of a new
solution for solving a TSP with N cities (N ≤ 252). 66

3.16 Signals involved in the memory access control among two PEs and a
shared memory of the processor array architecture for solving the TSP. . 67

3.17 Fitness evolution obtained with the Verilog HDL model for a toroidal and
square processor array to solve a TSP. 69

3.18 Throughput of the processor array for the configurations of 2×2, 4×4,
and 8×8, normalized to the throughput of a single PE. Results obtained
with the Verilog HDL model for solving the TSP. 70

4.1 Overview of the cGA processor (cGAP). 74
4.2 Hardware configuration of the cGAA with (a) toroidal and (b) non-

toroidal shape. 76
4.3 Processing element (PE) hardware interface. 78
4.4 Subpopulation memory hardware interface. 79
4.5 Details of the subpopulation memory hardware block. 80
4.6 Example of the handshake protocol between a PE and a subpopulation

memory. 81
4.7 Cellular genetic algorithm controller (cGAC) hardware interface. 83
4.8 Overview of the communication infrastructure hardware used for the com-

munication among the cGAC and the PEs. 84
4.9 Command information used in the communication infrastructure. 84
4.10 Details of the FIFOs used in the communication infrastructure to ensure

the passage of commands among FIFOs, PEs and cGAC. 86
4.11 Overview of the interface circuits used to ensure the communication and

control of the cGAP by a host computer. 87
4.12 Random number generator (RNG) infrastructure hardware used in the

cGAA. 89
4.13 RNG based on a cellular automata, with a 1-dimensional ring topology

with connectivity {-7,0,11,17} and rule 50745, used to feed the RNG in-
frastructure of the cGAA. 92

5.1 Algorithmic structure used by Catapult HLS to describe the PE. 97
5.2 Algorithmic structure used by Catapult HLS to implement a selection

procedure of solutions in a PE. 103
5.3 Sequence of commands issued by two PEs to a subpopulation memory to

access the same solution. 105
5.4 Algorithmic structure used by Catapult HLS to describe the cGAC. . . . 107
5.5 Overview of the host communication with the cGAP. A MicroBlaze soft-

core processor accesses to the cGAP via AXI4-Lite protocol. 109
5.6 Overview of the hardware design flow used to build the complete cGAP,

that connects to a MicroBlaze soft-core processor running a Linux OS,
both embedded in a Xilinx Virtex-6 FPGA. 113

List of Figures xxiii

5.7 Set-up of the test bench platform used to evaluate the cGAP. A Virtex-
6 FPGA, placed in a ML605 board, integrates a MicroBlaze soft-core
processor connected to the cGAP. The processor runs a Linux OS with
its file system hosted in a PC. 117

6.1 Example of a SA problem with (a) placement of 1 primary and 3 secondary
users, (b) availability of channel A among secondary users and primary
user, (c) availability of channel B among secondary users 123

6.2 Memory codification of a solution in the SA problem (matrix A). 127
6.3 Subpopulation memory organization in the cGAP used for the SA problem.128
6.4 Area cost and computation time for the different PE implementation so-

lutions with Catapult HLS and Precision RTL to solve the SA problem. . 134
6.5 Fitness evolution with the total number of generated solutions, obtained

for an instance 20_24 of the SA problem for (a) toroidal arrays and (b)
non-toroidal arrays. 141

6.6 Speedup achieved by the cGAP with the level of parallelism for the 32_32
SA instance. 144

6.7 Example of a MEB problem with 3 nodes where (a) source node transmits
to all the remaining nodes and (b) source node transmits to the closest
node. 145

6.8 Example of a MEB solution with 6 nodes where solid edges represent the
transmission costs and dashed edges represent implicit transmissions. . . . 147

6.9 GA solution representation and codification used in the MEB problem. . . 148
6.10 Possible local search moves by (a) 1-shrink and (b) 2-shrink in the MEB

problem. 150
6.11 Subpopulation memory organization in the cGAP used for the MEB prob-

lem. 155

List of Tables

2.1 Review of dedicated hardware implementations of GA. 20

3.1 Configurations of the toroidal and square arrays used in the SystemC
model simulations. 53

3.2 Fitness values obtained with the SystemC model for the cGA supported
by toroidal and square processor arrays to solve a TSP. 56

3.3 Configurations of the toroidal and non-square arrays used in the SystemC
model simulations. 57

3.4 Fitness values obtained with the SystemC model for the cGA supported
by toroidal and non-square processor arrays to solve a TSP. 59

3.5 Configurations of the non-toroidal and square arrays used in the SystemC
model simulations. 60

3.6 Configurations of the non-toroidal and non-square arrays used in the Sys-
temC model simulations. 62

3.7 Characteristics of the toroidal processor arrays implementations on a
Virtex-6 (XC6VLX240T-1) FPGA for solving the TSP. 68

4.1 Request results of the handshake protocol among a subpopulation mem-
ory and the two PEs connected to it. 82

5.1 List of commands used during the selection procedure of a solution in
a PE to access a subpopulation memory. Commands are used with the
methods of a request_channel data type variable. 102

6.1 Genetic operations adopted in the PEs for the spectrum allocation problem.125
6.2 List of commands implemented in the PE and cGAC for solving the SA

problem. 126
6.3 Subpopulation memories accesses adopted by a PE for the different op-

erations of the GA for solving the SA problem. 130
6.4 Catapult HLS and Precision RTL results for implementing a PE for the

SA problem. 133
6.5 Optimization of Catapult HLS solution for a PE to solve the SA problem. 136
6.6 Xilinx synthesis results taking 6 PE projects generated by the HLS tools. 137
6.7 Characteristics of the Xilinx implementation for cGAPs ranging from 1×1

to 6×6 PEs and toroidal configurations to solve the SA problem. 138
6.8 Characteristics of the Xilinx implementation for cGAPs ranging from 1×1

to 6×6 PEs and non-toroidal configurations to solve the SA problem. . . 138
6.9 cGAP arrays with toroidal configurations used to solve the instance 20_24

of the SA problem. 140

xxv

xxvi List of Tables

6.10 cGAP arrays with non-toroidal configurations used to solve the instance
20_24 of the SA problem. 140

6.11 cGAP time results obtained for different SA problem instances. Array of
PEs ranges from 1×1 to 5×5 with a non-toroidal configuration. 143

6.12 Fitness results obtained for different SA problem instances with the cGAP
and the CSGC heuristic. Array of PEs ranges from 1×1 to 5×5 with a
non-toroidal configuration. 144

6.13 Genetic operations adopted in the PEs for the MEB problem. 153
6.14 Characteristics of the different projects used to implement the cGAP with

1-shrink local search for solving the MEB problem. 157
6.15 Characteristics of the different projects used to implement the cGAP with

2-shrink local search for solving the MEB problem. 158
6.16 Results performance of the cGAP-1s and cGAP-2s on 20 node MEB prob-

lems. 160
6.17 Results performance of the cGAP-1s and cGAP-2s on 50 node MEB prob-

lems. 162

A.1 Description of the C++ class command_type_cGA methods used in Cat-
apult HLS. 189

A.2 Description of the C++ class request_channel methods used in Cat-
apult HLS. 191

B.1 List of registers and their description used by the MicroBlaze to commu-
nicate with the cGAP. 194

B.2 Description of the application programming interface C functions used by
the MicroBlaze to access the cGAP as a memory mapped device. 194

C.1 High-level synthesis library developed to describe the PE and the cGAC
in C++ with Catapult HLS. 199

C.2 cGAP RTL library used to describe the cGAP. 200
C.3 cGAP API library used to communicate with the cGAP. 201

List of Listings

5.1 C++ description of the PE interface to be used by Catapult HLS. 98
5.2 C++ description of the cGAC interface to be used by Catapult HLS. . . . 108
6.1 Excerpt of the C++ code to describe a PE for solving the SA problem. . 130
A.1 C++ code of the command_type_cGA class definition used in Catapult

HLS (header file command_type_cGA.h). 187
A.2 C++ code of the command_type_cGA class implementation used in Cat-

apult HLS (file command_type_cGA.cpp). 188
A.3 C++ code of the definition of the request_channel class used in Cat-

apult HLS (header file request_channel.h). 190
A.4 C++ code of the implementation of the request_channel class used

in Catapult HLS (file request_channel.cpp). 190
B.1 C code of the functions that define the application programming interface

used by the MicroBlaze to access the cGAP as a memory mapped device. 194
B.2 C code examples of functions that use the API used by the MicroBlaze

to control the execution of the cGAP. 196

xxvii

List of Abbreviations

AMBA Advanced Microcontroller Bus Architecture
API Application Programming Interface
ASIC Application-Specific Integrated Circuit
AXI Advanced eXtensible Interface
BIP Broadcast Incremental Power
BRAM Block RAM
CA Cellular Automaton
cGA Cellular Genetic Algorithm
cGAA Cellular Genetic Algorithm Array
cGAC Cellular Genetic Algorithm Controller
cGAP Cellular Genetic Algorithm Processor
CPU Central Processing Unit
CSGC Colour-Sensitive Graph Colouring
CUDA Compute Unified Device Architecture
CX Cycle Crossover
DE Differential Evolution
dGA Distributed Genetic Algorithm
DSP Digital Signal Processing
EA Evolutionary Algorithm
EWMA Embedded Wireless Multicast Advantage
FF Flip-Flop
FIFO First In, First Out
FPGA Field-Programmable Gate Array
GA Genetic Algorithm
GPU Graphics Processing Unit
HDL Hardware Description Language
HLS High-Level Synthesis
HW Hardware
II Initiation Interval

xxix

xxx List of Abbreviations

IP Intellectual Property
LESS Largest Expanding Sweep Search
LFSR Linear Feedback Shift Register
LSB Least Significant Bit
LUT Look-Up Table
MA Memetic Algorithm
MEB Minimum energy broadcast
MPX Maximal Preservative Crossover
MSB Most Significant Bit
NDE Node-Depth Encoding
NetKeys Network Random Keys
NFS Network File System
NoC Network On Chip
OS Operating System
PE Processing Element
PSO Particle Swarm Optimization
RAM Random-Access Memory
RNG Random Number Generator
RTL Register-Transfer Level
SA Spectrum Allocation
SoC System On a Chip
SW Software
TGFSR Twisted Generalized Feedback Shift Register
TSP Travelling Salesman Problem
VHDL VHSIC Hardware Description Language
VHSIC Very High Speed Integrated Circuit

Chapter 1

Introduction

Genetic algorithms (GAs) are search methods inspired by the evolution of living species,
where the principles of natural selection and genetics are applied to solve optimization
problems. This algorithm is a metaheuristic, which means that little (or even no) knowl-
edge about be problem being solved is required, and it is based on a population since
a set of solutions (the population) is evolved during the evolutionary process. Genet-
ics-inspired operators like selection, crossover, or mutation are iteratively applied to the
population, guiding the algorithm towards better solutions.

This metaheuristic has its roots back to the 1950’s when ideas like a learning machine
based on the principles of evolution, or the use of digital computers to simulate artificial
selection of organisms were first introduced [Tur50, Fra57]. However, it was only in the
1970’s that GAs start to become popular through the work developed by John Holland,
especially with his book Adaptation in Natural and Artificial Systems: An Introductory
Analysis with Applications to Biology, Control, and Artificial Intelligence [Hol75].

Since then, and with the development of computers, GAs have become one of the best
known and widely accepted metaheuristics used to solve complex optimization problems.
Their applications include clustering in data mining and bioinformatics, path planning
for autonomous navigation, antenna design, etc. [MBM11, THC11, HGLL06]. Moreover,
the ideas behind the algorithm led to new fields of investigation like genetic program-
ming that seeks to find a computer program to perform pre-defined tasks [PK14], or
evolvable hardware where logic systems can adapt their architecture dynamically and
autonomously [HT11].

The success of GAs is due to the fact that they can effectively explore a huge search
space of a problem, as it happens with NP-hard problems, only by examining a small
fraction of it. However, GAs usually suffer from long execution times, because large

1

2 1 Introduction

numbers of generated solutions are required for evolving the population to satisfactory
results. Moreover, a trade-off between solution quality and algorithm execution time
exists and thus better quality means more time to evolve the population. Therefore,
even though the GAs’ iterative process is made of simple operations, the time needed
to reach a final convergence can be high.

Thus, solving optimization problems where time constraints apply or when the process-
ing power is restricted can limit the use of GAs. To overcome this, dedicated computing
platforms that aim to accelerate the algorithm can be developed. Over the last 20
years, continuous research in this domain has been carried out, mainly motivated by
the widespread availability of low cost reconfigurable computing platforms like field-pro-
grammable gate arrays (FPGAs), as for example in the latest works [GTL14, GTL13,
SS12, NBKHM13].

Most of the work in this field has targeted general-purpose engines for GAs, based on
the fact that the metaheuristic has a few and simple operators that can be efficiently
implemented and applied generally to any optimization problem. This is, indeed, true
since metaheuristics do make few assumptions about the optimization problem and use
their pre-defined operators to guide the search, regardless of the optimization problem.
Although GAs are often associated to a solutions’ representation with a binary encoding
where a valid solution is represented by a list of bits, others representations exist that
can be used, for example, to encode solutions for graph problems. As a result, the
genetic operators of a GA must be adapted for different representations. Additionally,
it is often the case that specific constraints apply, where the encoding scheme used to
represent a valid solution requires the application of specialized algorithms. In addition,
the evaluation of the quality of a solution is always problem dependent. Therefore,
general-purpose hardware architectures may not be so general since they can only be
applied to problems with a straight implementation in GAs.

However, even though GAs require a large number of iterations that must be sequentially
processed when emulating their evolution process with a sequential processor, they are
inherently parallel [LA11]. This is true since the algorithm uses a population of solutions
to evolve and thus, several solutions can be generated at the same time by parallelizing
the GA operations. Nonetheless, in dedicated processor implementations this parallelism
may result in memory access bottlenecks while accessing the population, thus limiting
a potential performance improvement.

Nevertheless, it is possible to decentralize the population of a GA, as happens with dis-
tributed GAs (dGAs) or cellular GAs (cGAs) [LA11, AD08]. In a dGA the solutions are
kept in different subpopulations that evolve independently from each other and occa-
sionally exchange solutions among them; whereas in a cGA the solutions are distributed

3

over a regular grid where a solution only interacts with solutions placed in its neigh-
bourhood. Regardless of which decentralized GA is adopted, their solutions can be kept
in independent memories which can avoid potential bottlenecks while accessing to them.
Therefore, it is possible to have several processing elements working in parallel with
a subset of solutions placed in different memories, thus eliminating major bottlenecks
during memory access.

Although the decentralization of the population is appealing for hardware implementa-
tion, most of the works in this field neglect it and use instead a single population where
a solution can interact with any other at any iteration of the algorithm, as for example
in [GTL14, GTL13, NBKHM13]. Therefore, the population memory access for ensuring
parallelism is often neglected, or only considered for small populations. Although a few
works have been carried out that implement dGAs, they do not achieve high levels of
parallelism as few processing elements are implemented [THC11, JKFA06, TMS+06].
Moreover, and to our best knowledge, there is no other implementation of cellular ge-
netic algorithms in FPGA devices. It is clear that there is room to create new custom
computing architectures for dGAs and cGAs. Moreover, these subclasses of GAs have
a great potential to improve the acceleration of the algorithm, as it has been often
pointed out by practitioners of these metaheuristics [LA11], but somehow ignored by
the designers of GAs in dedicated hardware.

The main goal of this thesis is to look into the design of custom computing machines
capable of accelerating genetic algorithms with FPGAs. In addition, we target a gen-
eral-purpose engine that can be used to solve different optimization problems, without
being restricted to problem-specific requirements. To allow that, we propose a design
flow based on high-level synthesis (HLS) where the problem-specific operations are de-
scribed in C++ and translated to digital hardware, thus easing the design of new en-
gines. Therefore, the core genetic operators are not part of the computing array because
a plethora of operators exist that must be adjusted to a particular optimization problem.
Instead, we specify an architecture framework built of processing elements (PEs) and
memories conveniently connected that can parallelize the algorithm without introducing
heavy memory accesses bottlenecks. Additionally, this work makes hardware develop-
ment accessible to people with little hardware knowledge, but with knowledge of the
application domain.

Our architecture implements specifically a cellular genetic algorithm with a computing
performance determined by the number of PEs to meet the desired trade-offs between
execution time and hardware resources used. Moreover, since we do not constrain the
operations implemented, the infrastructure of PEs and memories can be used for other
metaheuristic procedures based on populations.

4 1 Introduction

1.1 Thesis organization

This thesis consists of this introduction chapter, followed by five chapters, concluding
remarks, and three appendices.

In Chapter 2, an overview of genetic algorithms is presented. We detail the main opera-
tions of this metaheuristic and present the concept of GAs with a structured population.
We perform a review of the state of the art about custom computing implementations of
these algorithms and discuss the impact that the different subclasses of GAs can have on
the hardware performance, mainly the population memory organization. We also make
general considerations about the different operations of the algorithm and how they can
impact the hardware architecture.

In Chapter 3, a scalable processor array for accelerating cellular GAs is proposed. The
main architecture of this hardware engine is explained together with their characteristics.
In addition, a comparison with existing (canonical) cellular GAs in the literature is
performed so that the algorithm supported by our architecture is classified. To evaluate
the convergence of the algorithm, we perform a system-level architecture simulation
of the proposed scalable array processor for solving the travelling salesman problem
(TSP). We explore results for different configurations of the processor array, and analyse
the impact in the algorithm convergence and the potential acceleration. Additionally,
a synthesizable hardware model targeting a Virtex-6 FPGA is presented for solving
the same optimization problem. Results have shown a promising performance of this
particular engine that solves the TSP, with an acceleration proportional to the number
of PEs without compromising the quality of the solution found by the algorithm as the
parallelism level increases.

In Chapter 4, we present and specify the complete hardware architecture of the proposed
scalable array, which we call cellular genetic algorithm processor (cGAP). In particular,
the chapter focuses on specifying the hardware infrastructure required to support the
array of processors (the PEs), thus not including the blocks whose operations depend on
the optimization problem. We detail how the different processor elements can access to
the memory contents where the subsets of the population are placed. Additionally, we
explain how the algorithm execution can be globally controlled and monitored, as well
as the specification of a communication infrastructure used for this purpose. All the
hardware blocks specified in this chapter have been described at the register-transfer
level (RTL) using Verilog hardware description language (HDL), while the PEs and
global controller are built with high-level synthesis, as presented in the next chapter.

In Chapter 5, we explain how the blocks that are problem-dependent can be specified
in C++ to use a HLS-based design flow. These blocks are the PE and the algorithm

1.2 Contributions 5

controller which we call cellular genetic algorithm controller (cGAC). Additionally, we
present the interfaces required so that the cGAP can be accessed by a host processor.
We provide several examples of how the PE and cGAC can be specified, as well as
C language examples to be executed in the host so that the cGAP is accessed as a
peripheral. Finally, we define a complete design flow, which takes the blocks described
in Chapter 4, together with the PE and cGAC specified and tailored for an optimization
problem, for building the cGAP. In addition, this design flow includes a test bench
platform that implements in a Virtex-6 FPGA a MicroBlaze soft-core processor running
Linux to control and communicate with the cGAP as a peripheral.

In Chapter 6, we use two optimization problems as case studies to be implemented
with the proposed design flow. We selected two representative problems related to
wireless ad hoc networks: a spectrum allocation problem in cognitive radios and the
minimum energy broadcast problem. These problems are thus used to demonstrate how
the PE and cGAC are specified with the use of HLS tools. We present details of these
implementations and provide examples of how the cGAP architecture can be further
exploited to improve the hardware performance. Furthermore, we provide examples of
how to conveniently explore the HLS design space by tuning various optimizations of
the synthesis tools and improve the quality of the hardware system. Implementation
results are presented together with acceleration figures obtained by the cGAP.

Finally, Chapter 7 presents the concluding remarks and identifies future research work
for this thesis.

Additionally, three appendices are included. Appendix A presents the C++ classes used
to describe the cGAP for the HLS tools. Appendix B provides C language functions
used by the host processor (a MicroBlaze) to access the cGAP as a memory mapped
device. Appendix C summarizes all the files for the different libraries used in the design
flow, mainly the cGAP HLS library, the cGAP RTL library, and the cGAP API library.

1.2 Contributions

The main goal of this research work is to study mechanisms to accelerate population
based metaheuristics with configurable custom computing platforms, mainly genetic al-
gorithms with FPGAs. We propose a design flow where the problem-specific operations
are specified in HLS, thus easing the design of the hardware architecture for different
optimization problems. Specifically, we conceived a scalable architecture where an array
of processors execute a cellular genetic algorithm. All the hardware blocks described

6 1 Introduction

throughout this thesis as well as the algorithms have been entirely designed and de-
veloped from scratch. Additionally, a comprehensive state of the art about custom
computing hardware implementations of GAs has been performed to understand what
is required to build an engine that accelerates the algorithm that could be applied to
different optimization problems.

The main contributions of this thesis can be summarized as follows:

• A scalable processor array for accelerating cGAs has been proposed. This hard-
ware architecture is constituted of several processing elements that execute the
algorithm operations, and are conveniently connected to a set of shared memories
where the solutions of the problem (population) are placed. This architecture can
be built with different levels of parallelism while ensuring that no memory bottle-
necks are introduced as the size of the processor array increases. Although it has
been developed to solve cellular genetic algorithms, it can also be applied to other
population-based metaheuristics by changing the functionality of the processing
elements.

• A system-level simulation model of the proposed processor array has been imple-
mented in SystemC language. This model is used to evaluate the cGA supported
by the engine under different configurations of the array of processors.

• A specification at the register-transfer level using Verilog HDL has been done of
all the elements required to support our architecture (the cGAP). This comprises
the specification of the access to the shared memories where the solutions are
placed; the interfaces of the cGAP; a communication infrastructure to support the
transmission of commands between the controller (the cGAC) and the PEs; and
a global random number generator infrastructure to provide random numbers to
the processing elements.

• A design flow has been proposed that combines the modules specified at RTL with
the problem-specific modules which are specified in C++ and built with HLS, thus
easing the design of the cGAP for different optimization problems. A set of algo-
rithm templates in the C++ language are used to describe the PEs and the cGAC.
The interfaces of these two modules have been specified to communicate with all
the corresponding blocks described in Verilog HDL while hiding implementation
details. The design flow includes all the necessary project constraints, and a small
set of parameters that configure the array of PEs and the memories that keep
the population. Additionally, a test bench platform is included in the design flow
that implements a MicroBlaze soft-core processor running Linux to control and
communicate with the cGAP as a peripheral.

1.2 Contributions 7

• A significant contribution is also the demonstration of the effectiveness of the pro-
posed approach to two relevant problems in the domain of wireless ad hoc networks.
In the first problem, a spectrum allocation in cognitive radios, examples are given
of how the cGAP architecture, mainly the shared memories that keep the popula-
tion, can be further exploited to improve the hardware performance. Additionally,
we have explained how to conveniently constrain the designs developed by the HLS
tool so that the final results are improved. Moreover, we have analysed the con-
vergence of the algorithm running in the cGAP for different levels of parallelism
and compared the results with an existing heuristic. Additionally, for the results
obtained we have verified that the throughput of the cGAP is (almost) directly
proportional to the number of PEs. In the second problem, the minimum energy
broadcast, we have considered an existing implementation of a memetic algorithm
(i.e. GA with a local search heuristic to improve the solutions’ quality) and have
ported it to the cGAP. The algorithms used to describe the PEs with HLS are
far from the straightforward implementations of typical GA operators, and yet
they have been successfully implemented without major concerns using the design
flow. Results have shown that the cGAP can achieve superior quality solutions
and a faster execution time when compared to the original algorithm running in a
personal computer.

The contributions of this research work have led to the following publications:

• P. V. dos Santos, J. C. Alves, and J. C. Ferreira, “An FPGA Framework for Genetic
Algorithms: Solving the Minimum Energy Broadcast Problem”, 18th Euromicro
Conference on Digital System Design (DSD), pages 9-16, Funchal, Portugal, 2015.

• P. V. dos Santos, J. C. Alves, and J. C. Ferreira, “A Custom Computing Machine
for Cellular Genetic Algorithms”, 1st Doctoral Congress in Engineering (DCE),
pages 1-2, Porto, Portugal, 2015.

• P. V. dos Santos, J. C. Alves, and J. C. Ferreira, “High-level synthesis of custom
processing elements for genetic algorithms”, Proceedings of the XVIII Conference
on the Design of Circuits and Integrated Systems (DCIS), pages 74-79, San Se-
bastián, Spain, 2013.

• P. V. dos Santos, J. C. Alves, and J. C. Ferreira, “A framework for hardware cellu-
lar genetic algorithms: An application to spectrum allocation in cognitive radio”,
2013 23rd International Conference on Field Programmable Logic and Applications
(FPL), pages 1-4, IEEE, Porto, Portugal, 2013.

8 1 Introduction

• P. V. dos Santos, J. C. Alves, and J. C. Ferreira, “A scalable array for cellular ge-
netic algorithms: TSP as case study”, International Conference on Reconfigurable
Computing and FPGAs (ReConFig), pages 1-6, IEEE, Cancun, Mexico, 2012.

• P. V. dos Santos, and J. C. Alves, “A cellular genetic algorithm architecture for
FPGAs”, VIII Jornadas sobre Sistemas Reconfiguráveis (REC), pages 21-25, Lis-
boa, Portugal, 2012.

• P. V. dos Santos, and J. C. Alves, “FPGA based engines for genetic and memetic
algorithms”, 2010 International Conference on Field Programmable Logic and Ap-
plications (FPL), pages 251-254, IEEE, Milano, Italy, 2010.

Chapter 2

Background and state of the art

2.1 Introduction

In this chapter an overview of genetic algorithms (GAs) is presented, together with a
review of their dedicated hardware implementations. It starts in Section 2.2 by present-
ing the GA in its canonical form and explaining the different operations that constitute
the algorithm. Additionally, the concept of structuring the population in a GA, which
leads to the distributed GA (dGA) and cellular GA (cGA), is introduced.

With the aim of building a custom computing machine to accelerate GAs, the state of
the art about hardware implementations of GAs is presented in Section 2.3. The review
focus on the effects of structuring the algorithm’s population, and how this impacts on
the architecture of the custom hardware.

2.2 Genetic Algorithms

Solving combinatorial optimization problems has always been a research topic of great
interest in today’s world. With the development of computer science, a myriad of more
complex and harder optimization problems are continuously emerging. Exact methods
can be used to solve such problems which guarantee to find the optimum solution. Nev-
ertheless, such techniques require an execution time that grows exponentially with the
instance size for solving NP-hard problems, becoming this way impractical for handling
real-world problems. On the other hand, approximated methods do not guarantee to
find the optimum solution; instead they provide sub-optimal solutions (eventually the
optimum) in a realistic time. This is the case of metaheuristic search methods, where

9

10 2 Background and state of the art

Algorithm 1 Pseudo-code of a canonical GA.
1: P ← Generate_Initial_Population()
2: Evaluate(P)
3: while not Termination_Condition() do
4: P ′ ← Select_Parents(P)
5: P ′ ← Apply_Crossover(P ′)
6: P ′ ← Apply_Mutation(P ′)
7: Evaluate(P ′)
8: P ← Replacement(P ,P ′)
9: end while

10: return Best solution found

a higher-level procedure is responsible to provide an appropriate good solution of an
optimization problem through the use of simple heuristic methods.

Metaheuristics can be applied to a wide range of optimization problems as these tech-
niques do not rely on a previous knowledge of the problem. Instead, a high-level strategy
is used to guide the search, where a set of operations (variation operators) are applied
to explore the search space. A good metaheuristic is capable of providing a trade-off
between an exploration of all the search space, while a exploitation occurs in good
solutions. This is also known as diversification and intensification, and it represents
the key mechanism to ensure good quality solutions (an effective algorithm) in a low
computational time (an efficient algorithm) [BR03].

There exist two major classifications for metaheuristics based on the number of candidate
solutions of the optimization problem used during the algorithm evolution: trajectory
based and population based. In the first, the metaheuristic works with a single candi-
date solution, whereas in the population-based case, a set of solutions (population) are
evolved during the search. Examples of trajectory based metaheuristics are simulated
annealing [KJV83] and tabu search [GL+97]. Evolutionary algorithms [BFM97] and
particle swarm optimization [BDT99] are examples of population-based metaheuristics.

2.2.1 Canonical genetic algorithm

The genetic algorithm (GA) is a population-based metaheuristic that belongs to the
class of evolutionary algorithms where a population goes through an evolutionary process
inspired in the biological evolution of living species [Hol75]. Therefore, this metaheuristic
relies on operations that can be found in nature and consist, for example, in natural
selection and genetics-inspired operations like crossover and mutation. The population
of solutions compete and cooperate among them so that during the evolutionary process
the better solutions survive which, in turn, will propagate their genetic information to
future generations.

2.2 Genetic Algorithms 11

crossoverselection mutation

fitness

evaluation

replacement

evolution of current population
new

population

Figure 2.1: Iterative processes of a GA.

Algorithm 1 presents the canonical genetic algorithm. It starts with a population P

which is a set of tentative solutions of the optimization problem to be solved. All the
solutions are evaluated by a fitness evaluation function that quantifies their quality ac-
cording to the objective function of the optimization problem. After that, the algorithm
proceeds with an iterative process where genetics-inspired operations are applied as il-
lustrated in Figure 2.1. First a selection of solutions in P is performed to elect solutions
that will undergo some transformations to create new solutions. Typically, the selected
solutions are called parents and are combined (usually in pairs) to generate new ones
through a crossover operation. Then, the new solutions suffer a mutation operation
that induces small changes to them. The generated solutions P ′ are then evaluated
and the population for the next generation is elected among the solutions in P and P ′,
according to an evolution strategy that takes into account the fitness values to promote
the evolution towards a better population1.

2.2.1.1 Representation of solutions

The first step for using a genetic algorithm to solve a given optimization problem is to
encode the decision variables into a convenient format that codes a tentative solution to
the problem. A solution encoded in such way is called chromosome (or individual), and
its elementary data is a gene. The practical results of a GA implementation strongly
depend on the way a solution is encoded. Figure 2.2 illustrates examples of possible en-
codings, although the universe of possibilities is vast and dependent on the optimization
problem. In addition, it may be required to process/decode a given chromosome so that
it represents a valid solution to fulfil specific constraints of the problem.

1In this context, a better population means that in average the fitness values in the population tend
to improve during the evolution of the algorithm. Nevertheless and to promote diversity of solutions, it
is perfectly admissible that solutions with a worst fitness value are also included for future generations.

12 2 Background and state of the art

f(x)

x221

221 decimal

chromosome: f(211)

gene

(a)

chromosome:

(b)

chromosome:

(c)

Figure 2.2: Representations for GAs: (a) binary, (b) path and (c) Prüfer
sequence.

Figure 2.2(a) depicts an example of a chromosome with binary representation where
the different bits (genes) form a binary number, representing a solution of the problem.
A fitness value provided by a function f(x) quantifies the quality of the solution. The
binary representation can have many different interpretations depending on the encoding
scheme used. For instance, a gene can represent directly a decision variable of a problem
with binary variables.

Although the binary representation is usually the most referred encoding scheme in
genetic algorithms, there exist others like the path representation, where the chro-
mosome is a set of ordered and unique symbols [LKM+99]. In Figure 2.2(b) the list
{4, 3, 7, 1, 6, 2, 8, 5} represents the order from which the different elements, in this case
nodes of a directed graph, are traversed. This encoding scheme can be used for instance
in minimum path problems, like the travelling salesman problem (TSP) where a given
number of points must be visited exactly once in the shortest possible path [Ale05].

The case of solutions of a given problem formed by a tree (a connected graph with no
cycles) is another example where specific representations of solutions in genetic algo-
rithms can be explored, for example, to solve the degree constrained minimum spanning

2.2 Genetic Algorithms 13

fitness(s1) = 500

fitness(s2) = 240

fitness(s3) = 420

fitness(s4) = 100

fitness(s5) = 740

25%

12%

21%5%

37%

s1

s2

s3
s4

s5

(a)

s1

s2

s4 s3

s5

s5 - 740

s1- 500

s4 - 100

s2- 240

s5

s2

(b)

Figure 2.3: Selection operators for GAs: (a) roulette-wheel and (b) binary
tournament.

tree problem [KES01]. There are many different encoding schemes for tree representa-
tions and graphs in general, like characteristic vector [DOCQ93], network random keys
(NetKeys) [RGH02], and node-depth encoding (NDE) [LLHD05] each with its own char-
acteristics. One of the best known tree codification is the Prüfer numbers, where a unique
sequence is associated with a tree [PK94]. In Figure 2.2(c) the sequence {4, 4, 3, 2} is
the chromosome that represents the Prüfer sequence of the shown tree. Essentially, to
construct this sequence with a known tree we select the lowest numbered node of degree2

1 in the tree (in our example, node 1) and the node’s number that is connected to it
goes to the Prüfer sequence (node 4). The selected node with degree 1 is removed from
the tree and the step described above is repeated till only 2 nodes are left in the tree.
Details of the algorithms to construct a tree from the Prüfer sequence and vice versa
can be found in [Rot06].

2.2.1.2 Selection

The genetic algorithm starts by a selection procedure where better individuals of the
population are preferred to be combined to generate new solutions. It is expected that
the solutions with best fitness values can potentially create better solutions than the
worse ones since they have better genetic information, helping this way the evolution
of the population during the iterative process. The roulette-wheel method [SGK05] is
one of the most used in the genetic algorithm context and it consists of assigning a

2In graph theory, the degree of a node of a graph is the number of edges connected to it.

14 2 Background and state of the art

(a) (b)

Figure 2.4: GA crossovers for binary representation: (a) 1-point and (b)
uniform.

selected solution 1 selected solution 2

generated solution

Figure 2.5: Maximal preservative crossover (MPX) for path representation.

probability to each solution of being chosen that is proportional to its fitness value as
depicted in Figure 2.3(a). This way, better solutions are likely to be chosen, whereas
the worse ones are selected with a lower probability which helps to prevent premature
convergence of the algorithm. Another approach is a tournament selection where k
individuals are randomly chosen to enter into a tournament against each other. The
element with the best fitness value wins that tournament and is elected as one parent.
The process is repeated to chose the other parent. Figure 2.3(b) illustrates an example
of a binary (k = 2) tournament.

2.2.1.3 Crossover

After selecting the solutions, these individuals (or parent solutions) go through a cross-
over operation where two solutions are combined to generate a new solution. Different
representations of chromosomes may require specific crossover operators to ensure that
the genetic information is passed to the new solutions (children) and, at the same time,
to ensure that they generate feasible solutions.

Figure 2.4(a) depicts an example of a 1-point crossover applied to binary chromosomes.
This operator splits the chromosomes’ information over a randomly chosen point in a
way that the generated solution receives information from both parent solutions. The
uniform crossover is another example that can be applied to a binary codification of
solutions. In this case, each gene of the new solution is randomly chosen from one of
the two selected solutions as it can be seen in Figure 2.4(b).

2.2 Genetic Algorithms 15

(a) (b)

Figure 2.6: Mutations operators for GAs: (a) bit-flip mutation for binary
representation and (b) swap mutation for path representation.

Although the 1-point and uniform crossovers present an appropriate approach concern-
ing the passage of genetic information from parents to children, they cannot always be
applied because this transformation can result in unfeasible or even meaningless solu-
tions. In the case of the path representation (see Figure 2.2(b)), a direct copy of parts of
the chromosome parents to create a new solution can easily generate an invalid solution
as duplicate genes can occur. Therefore, specific crossover operations exist to deal with
the path representation, like cycle crossover (CX), partially matched crossover (PMX),
maximal preservative crossover (MPX), among others [LKM+99]. As an example, Fig-
ure 2.5 presents the MPX crossover [MGSK88]. This operator chooses randomly a set of
consecutive genes from the first solution that will be copied to the beginning of the new
solution’s chromosome. After this, the missing genes of the new solution are filled in the
same order as they appear in the second solution, ensuring this way that no duplicated
genes appear.

Different representations of chromosomes may require specific crossover operators to
ensure that the genetic information is passed to the children solutions and, at the same
time, to ensure that they generate feasible solutions. However, to fulfil specific problem’s
constraints it may not be possible for the crossover to generate a valid solution, and thus
a dedicated procedure must be added to correct the solution.

2.2.1.4 Mutation

Once the new solution has been created with the crossover operation, a mutation oper-
ator can be applied to it that induces random changes in the solution and thus it fosters
diversity. Figure 2.6(a) shows an example of a bit-flip mutation operator applied to a
chromosome with binary representation, where a given gene’s information is changed (a
0 is converted to 1 or vice versa). As it happens with the crossover operators, different
chromosomes representations require specific mutation operators so that they generate
valid solutions. Figure 2.6(b) depicts a swap mutation operator applied to a chromosome
with a path representation, where two randomly chosen genes are exchanged. Usually
the crossover operation is performed with a low probability (usually below 10%) and it
performs a random walk in the vicinity of the solution.

16 2 Background and state of the art

2.2.1.5 Replacement

After the new solutions are created with the selection, crossover and mutation opera-
tions, it is required to introduce them in the present population. There exist several
techniques to accomplish this, like the delete-all where all the solutions of the population
are replaced by an equal number of generated new solutions. Another approach is when
n new solutions replace n old solutions, keeping the population size constant. In this
case, it must be decided the criterion to select the solutions to be deleted, which can be
by selecting the worst ones, a random choice or the selected parents [SGK05]. Despite of
the technique chosen, it is expected that in average the population improves gradually
its fitness values during the evolution of the algorithm.

2.2.1.6 Fitness evaluation

As stated previously, the fitness evaluation operation measures the quality of the solu-
tions during the evolutionary process of the GA. Therefore, it is an essential operation
in the algorithm that allows the choice of better solutions over worse solutions, so that
the algorithm evolves as desired. This operation is unique for each different optimization
problem, and thus it cannot be a generic operator.

2.2.1.7 Example: OneMax problem

As an example of an implementation of a GA, Figure 2.7 presents the fitness evolution
during the execution of the algorithm for the OneMax problem, consisting in maximizing
the numbers of ones in a binary string [AD08]. In this example, a solution for the
problem is represented by a binary vector with 128 elements and a GA chromosome
representation is a straightforward copy of such vector (binary representation). The
selection operation consists in a binary tournament as explained previously, and two
experiments were performed with the crossover: one with the uniform crossover and
the other with 1-point crossover. The mutation operator is the bit-flip where each gene
(a bit) of the generated solution has a probability of being flipped of 2%. At each
generation of the algorithm, a single solution is created by the genetic operators to
replace a randomly chosen solution from the population. This replacement only occurs
if the fitness of the new solution is better than the solution chosen to be deleted. A total
of 100 individuals exist in the population of the GA.

The results obtained show the convergence curve during 6000 new generated solutions
(or iterations of the algorithm) for the best solution in the population and the average
fitness value of the population. As it can be seen from Figure 2.7, the uniform crossover

2.2 Genetic Algorithms 17

0 1000 2000 3000 4000 5000 6000
60

70

80

90

100

110

120

128

Number of generated solutions

F
it
n
es
s
va
lu
e

1-point crossover
uniform crossover

Average fitness
Best fitness——–

— —

Figure 2.7: Example of a fitness evolution of a GA for solving the OneMax
problem with 128 elements.

converges to the optimum solution (128) faster than the 1-point crossover. Also, the
average fitness value tends to the optimum solution value, meaning that all the solutions
will eventually achieve the optimum point. Although in this simple example the uniform
crossover shows a superior performance over the 1-point crossover, this may not be true
for different problems. Knowing the best genetic operators for solving an optimization
problem requires an extensive experimentation where the different operators (selection,
crossover, mutation and replacement) are verified for their quality. Moreover, a trade-off
must also be performed between an efficient algorithm that converges faster towards an
optimum value, and an effective algorithm that converges to better solutions even if it
takes a longer time.

2.2.2 Decentralized GAs

Most genetic algorithms implement a global selection procedure, meaning that any solu-
tion can potentially mate with any other present in the population (see Figure 2.8(a)).
This type of GA is called panmictic (means random mating) and it can be essen-
tially categorized in two classes concerning the reproductive step (or replacement oper-
ation) [LA11]. The first one, called generational, a whole new population is generated
that replaces the old one at each iteration of the algorithm. The second type is called
steady-state, as one new individual replaces an existing solution in the present population

18 2 Background and state of the art

(a) (b) (c)

Figure 2.8: A panmictic GA (a) has all the solutions (black points) in the
same population. With a structured GA the population is partitioned, as it

happens with the (b) distributed and (c) cellular GA.

and, therefore, coexisting with its parents for the next iteration of the algorithm. These
classifications are identical to the replacement techniques of delete-all and delete n solu-
tions (n = 1) at each generation of the algorithm presented previously in Section 2.2.1.5.
Nevertheless, between these two opposite classes of panmictic GAs, a different number
of solutions can be generated to replace existing solutions in the population during a
reproductive step.

In contrast to the panmictic GA, in a structured GA the population is somehow de-
centralized, resulting that a given solution can only be combined with a limited set of
other solutions. It has been observed that this class of GAs is often faster and can lead
to better solutions than a panmictic GA, as it provides a better sample of the search
space [AT02]. Two major classes of structured GAs exist: the distributed and cellular
genetic algorithms.

In the distributed GA (dGA), the complete population is partitioned into smaller and in-
dependent subpopulations. During the evolution of the algorithm, solutions that belong
to a certain subpopulation sporadically migrate to another subpopulation. Figure 2.8(b)
illustrates this concept with a distributed GA with 5 subpopulations that can migrate
solutions according to a given connection topology. Besides the GA operations that
must be performed in each subpopulation, the distributed GA requires the execution of
a migration strategy which depends on the number of generations between two consec-
utive exchanges, the number of solutions to be migrated during a migration step, and
the selection/replacement criterion of the migrant solutions.

With a cellular GA (cGA) model, the solutions of the population are distributed over
a regular grid and a solution can only mate with solutions that exist in its neighbour-
hood. This approach relies on the concept of structuring the population into overlapped

2.3 Hardware implementations of GAs 19

neighbourhoods, where a single solution belongs to more than one of those neighbour-
hoods. This way, the genetic information of a given individual spreads throughout the
whole population without the need to implement explicit migration of solutions. Fig-
ure 2.8(c) illustrates this model where a given solution can interact with solutions that
are positioned in the grid at north, south, east and west from itself, although different
neighbourhoods can be used [AD08]. As it can be seen, two neighbour solutions share
solutions (two for the example) from their neighbourhoods. Usually, the distribution of
the solutions over a grid follows a toroidal shape which ensures that all the solutions
have exactly the same neighbourhood structure [AD08].

As both dGA and cGA have several (almost) independent subpopulations or solutions
running during the iterative process, these algorithms have excellent properties to be
implemented in parallel computing platforms. The dGA presents a more coarse-grained
architecture when compared to the cGA and it is suitable to be implemented in multi-
processor architectures, allocating a processor to one subpopulation or a set of subpop-
ulations. Similarly, the cGA offers the possibility to explore its regular distribution of
the solutions to be implemented in more fine-grained computing platforms like graphics
processing units (GPUs) or field-programmable gate arrays (FPGAs).

2.3 Hardware implementations of GAs

This section presents a review of the state of the art about implementations of genetic
algorithms with dedicated hardware. Since the 1990’s there has been a continuous
research activity in this subject, motivated by the widespread computing platforms like
FPGAs, GPUs or multiprocessors. Nevertheless, the majority of these works have as
main goal the acceleration of the operations of a genetic algorithm, like selection or
crossover. Although these operations are actually the common operators in GAs, they
are not in several cases the bottleneck that constrains the overall performance of the
algorithm. Therefore, there has not been paid much attention to the architecture of the
algorithm regarding the decentralization (or not) of the population, and how this can
be advantageous for implementing GAs as custom hardware specialized processors.

In Table 2.1 it can be seen an overview of the main works that implement GAs in
dedicated hardware reported in the last years. In this review, we will not address imple-
mentations of GAs that run exclusively in a central processing unit (CPU) of a computer
with the aim of accelerating the algorithm. Instead, we will focus on implementations
that target dedicated hardware platforms like FPGAs or application-specific integrated
circuits (ASICs). The table is organized according to the architecture of the GA: pan-
mictic (generational and steady-state), distributed and cellular. It refers the operations

20 2 Background and state of the art
T

ab
le

2.
1:

R
ev
ie
w

of
de

di
ca
te
d
ha

rd
wa

re
im

pl
em

en
ta
tio

ns
of

G
A
.

W
or
k

O
pt
im

iz
at
io
n

pr
ob

le
m

G
A

ar
ch
it
ec
tu
re

P
op

ul
at
io
n

si
ze

C
hr
om

os
om

e
si
ze

G
en
et
ic

op
er
at
io
ns

H
W

pl
at
fo
rm

H
W

cl
oc
k

fr
eq
ue
nc
y

Sp
ee
du

p
O
bs
er
va
ti
on

s

P
an

m
ic
ti
c
ge
ne
ra
ti
on

al
G
A
s
(s
om

e
w
or
ks

ar
e
on

ly
cl
as
si
fie
d
as

pa
nm

ic
ti
c
si
nc
e
th
ey

do
no

t
pr
ov
id
e
fu
rt
he
r
de
ta
ils
)

[G
T
L
14
]

L
oc
at
in
g

pr
ob

le
m
;

Se
t
co
ve
ri
ng

pr
ob

le
m
(1

17
×

27
);

M
at
he
m
at
ic
al

fu
nc
ti
on

s

P
an

m
ic
ti
c

(g
en
er
at
io
na

l)
12
8;

32

Se
l:

ro
ul
et
te
-w

he
el
,

to
ur
na

m
en
t

C
x:

1-
po

in
t,

m
ul
ti
-p
oi
nt
,

bl
en
di
ng

M
ut
:
bi
t-
fli
p,

re
al
-v
al
ue
d

F
P
G
A

X
ili
nx

V
ir
te
x-
6

(M
ax

el
er
’s

M
A
X
3

ca
rd
)

75
M
H
z

30
×

in
av
er
ag
e
(v
s.

P
C

@
2.

67
G
H
z)

P
ro
po

se
s
an

au
to
m
at
ed

fr
am

ew
or
k
fo
r
cr
ea
ti
ng

an
d

ex
ec
ut
in
g
ge
ne
ra
l-
pu

rp
os
es

G
A
s
in

F
P
G
A
s.

H
ar
dw

ar
e
is

cr
ea
te
d
by

a
H
L
S
to
ol

(M
ax

co
m
pi
le
r
by

M
ax

el
er
).

[G
T
L
13
]

Se
t
co
ve
ri
ng

pr
ob

le
m

(3
5

×
15

;
32

×
32

)
P
an

m
ic
ti
c

(g
en
er
at
io
na

l)
12
8

Se
l:

ro
ul
et
te
-w

he
el

C
x:

1-
po

in
t

M
ut
:
bi
t-
fli
p

F
P
G
A

X
ili
nx

V
ir
te
x-
6

(M
ax

el
er
’s

M
A
X
3

ca
rd
)

75
M
H
z

60
×

(v
s.

P
C

@
2.

67
G
H
z)

U
se
s
M
ax

el
er

sy
st
em

to
de
sc
ri
be

th
e
ha

rd
w
ar
e

(w
ri
tt
en

in
Ja
va

la
ng

ua
ge
).

[W
S1

2]

G
en
er
at
in
g
da

ily
ac
ti
vi
ty

pl
an

s
in

an
A
rt
ifi
ci
al

T
ra
ns
po

rt
at
io
n

Sy
st
em

P
an

m
ic
ti
c

(g
en
er
at
io
na

l)
51
2

Se
l:

ra
nd

om
C
x:

1-
po

in
t

M
ut
:
sw

ap

nV
id
ia

gr
ap

hi
c

ca
rd
s
T
es
la

C
20
50

1.
15

G
H
z

23
×

an
d

32
×

(v
s.

P
C

@
2.

1
G
H
z)

So
lv
es

in
a
G
P
U

th
e
pr
ob

le
m

of
ge
ne
ra
ti
ng

da
ily

ac
ti
vi
ty

pl
an

s
fo
r
in
di
vi
du

al
an

d
th
re
e-
pe

rs
on

ho
us
eh
ol
d

ag
en
ts
.

[S
S1

2]
M
at
he
m
at
ic
al

fu
nc
ti
on

s
P
an

m
ic
ti
c

32
;
16
;
5

8;
4

Se
l:

to
ur
na

m
en
t,

el
it
is
m

C
x:

1-
po

in
t,

2-
po

in
t

M
ut
:
bi
t-
fli
p

F
P
G
A

X
ili
nx

Sp
ar
ta
n-
3,

V
ir
te
x-
4,

V
ir
te
x-
5

A
ut
ho

rs
cl
ai
m

th
at

th
er
e
is

a
sh
if
t
fr
om

se
co
nd

s
to

na
no

se
co
nd

s
be

tw
ee
n
SW

an
d

H
W
.

[C
W
11
]

P
ar
am

et
er
s
of

P
ID

co
nt
ro
lle

r
P
an

m
ic
ti
c

40
48

Se
l:

to
ur
na

m
en
t

C
x.

3-
po

in
t

cr
os
so
ve
r

M
ut
.
bi
t-
fli
p

F
P
G
A

A
lt
er
a

P
re
se
nt
s
a
G
A

to
co
m
pu

te
th
e
pa

ra
m
et
er
s
of

a
P
ID

co
nt
ro
lle

r.
U
se
s
A
lt
er
a’
s
IP

co
re

ge
ne
ra
ti
on

to
ol

fo
r

bu
ild

in
g
th
e
ha

rd
w
ar
e
(o
nl
y

si
m
ul
at
io
n)
.

[P
SJ

10
]

K
na

ps
ac
k

pr
ob

le
m

(4
to

40
)

P
an

m
ic
ti
c

(d
is
tr
ib
ut
ed

G
A

w
it
h
10
24

no
de
s
bu

t
no

m
ig
ra
ti
on

).

25
6

4;
40

Se
l:

to
ur
na

m
en
t

C
x.

un
if
or
m

M
ut
:
bi
t-
fli
p

nV
id
ia

gr
ap

hi
cs

ca
rd

G
T
X

26
0

1.
24

G
H
z

13
40

×
(4
-b
it
)
an

d
13

4×
(4
0-
bi
t)

(v
s.

P
C

@
2.

66
G
H
z;

va
lu
es

co
ns
id
er
in
g

nu
m
be

r
of

so
lu
ti
on

s
pr
od

uc
ed

in
10
24

no
de
s)

[F
K
K

+
10
]

M
at
he
m
at
ic
al

fu
nc
ti
on

s
P
an

m
ic
ti
c

(g
en
er
at
io
na

l)
25
5

16
Se
l:

ro
ul
et
te
-w

he
el

C
x:

1-
po

in
t

M
ut
:
bi
t-
fli
p

F
P
G
A

X
ili
nx

V
ir
te
x-
II

P
ro

50
M
H
z

5.
16

×
(v
s.

pr
oc
es
so
r

P
ow

er
P
C

em
be

dd
ed

in
th
e
F
P
G
A
)

R
ep

or
ts

a
ge
ne
ra
l-
pu

rp
os
e

G
A

(s
ev
er
al

pa
ra
m
et
er
s
ca
n

be
ch
an

ge
d)
.
A
rc
hi
te
ct
ur
e

in
cl
ud

es
a
sp
ec
ia
liz

ed
m
od

ul
e
fo
r
di
ff
er
en
t
fit
ne
ss

fu
nc
ti
on

s.
U
se
s
a
H
L
S
to
ol

fo
r
th
e
H
W

de
sc
ri
pt
io
n.

co
nt
in
ue
d
..
.

2.3 Hardware implementations of GAs 21

T
ab

le
2.
1
–
..
.c
on

ti
nu

ed

W
or
k

O
pt
im

iz
at
io
n

pr
ob

le
m

G
A

ar
ch
it
ec
tu
re

P
op

ul
at
io
n

si
ze

C
hr
om

os
om

e
si
ze

G
en
et
ic

op
er
at
io
ns

H
W

pl
at
fo
rm

H
W

cl
oc
k

fr
eq
ue
nc
y

Sp
ee
du

p
O
bs
er
va
ti
on

s

[D
D
T
08
]

M
at
he
m
at
ic
al

fu
nc
ti
on

s;
T
SP

(8
)

P
an

m
ic
ti
c

(g
en
er
at
io
na

l)
32

16
;
32

Se
l:

ro
ul
et
te
-w

he
el

C
x:

1-
po

in
t,

2-
po

in
t,

un
if
or
m

M
ut
:
si
ng

le
-p
oi
nt
,

m
as
ke
d,

un
if
or
m
;

sp
ec
ia
l
cr
os
so
ve
r

fo
r
T
SP

F
P
G
A

X
ili
nx

Sp
ar
ta
n-
3

92
M
H
z;

91
M
H
z

(T
SP

)
11

×
(v
s.

P
C

@
3.

2
G
H
z;

M
at
la
b)

A
pa

ra
m
et
er
is
ed

G
A

co
re

is
pr
es
en
te
d
w
he
re

se
ve
ra
l

pa
ra
m
et
er
s
ca
n
be

ch
an

ge
d

in
th
e
R
T
L
de
sc
ri
pt
io
n
of

th
e
G
A
.

[N
dM

M
07
]

M
at
he
m
at
ic
al

fu
nc
ti
on

s
P
an

m
ic
ti
c

(g
en
er
at
io
na

l)
C
x:

2-
po

in
t

M
ut
:
bi
t-
fli
p

F
P
G
A

X
ili
nx

Sp
ar
ta
n-
3

12
.5
M
H
z

5×
le
ss

nu
m
be

r
cl
oc
k
cy
cl
es

co
m
pa

re
d
to

ot
he
r

ha
rd
w
ar
e

ar
ch
it
ec
tu
re

U
se
s
a
ne
ur
al

ne
tw

or
k

ha
rd
w
ar
e
to

co
m
pu

te
th
e

so
lu
ti
on

s’
fit
ne
ss
.

[S
F
02
]

T
SP

(≤
10

24
)

P
an

m
ic
ti
c

C
x:

P
ar
ti
al
ly
-m

ap
pe

d

F
P
G
A

X
ili
nx

X
C
V
81
2E

(A
D
M
-X

R
C

P
C
I

bo
ar
d)

40
M
H
z

13
×

to
50

×
(v
s.

P
C

@
80

0
M
H
z;

on
ly

cr
os
so
ve
r)

O
nl
y
th
e
cr
os
so
ve
r
is

im
pl
em

en
te
d
in

ha
rd
w
ar
e

(r
ep
re
se
nt
s
be

tw
ee
n

15
%

to
60

%
of

th
e
ex
ec
ut
io
n
ti
m
e
in

so
ft
w
ar
e)
.

[M
B
97
]

[M
B
98
]

P
an

m
ic
ti
c

(g
en
er
at
io
na

l)
Se
l:

ro
ul
et
te
-w

he
el

C
x:

un
if
or
m

M
ut
:
bi
t-
fli
p

P
ro
po

se
s
a
sy
st
ol
ic

de
si
gn

of
a
G
A

pr
ov

id
in
g
hi
gh

th
ro
ug

hp
ut

an
d

un
id
ir
ec
ti
on

al
pi
pe

lin
in
g.

F
it
ne
ss

fu
nc
ti
on

ca
lc
ul
at
io
n

no
t
in
cl
ud

ed
in

th
e

ar
ch
it
ec
tu
re
.

[S
SS

95
]

M
at
he
m
at
ic
al

fu
nc
ti
on

P
an

m
ic
ti
c

(g
en
er
at
io
na

l)
16

3
Se
l:

ro
ul
et
te
-w

he
el

C
x:

1-
po

in
t

M
ut
:
bi
t-
fli
p

3
F
P
G
A
s
X
ili
nx

X
C
40
05

(B
O
R
G

bo
ar
d)

14
.7

×
le
ss

nu
m
be

r
cl
oc
k
cy
cl
es

th
an

so
ft
w
ar
e
ve
rs
io
n

P
ro
po

se
s
a
ge
ne
ra
l-
pu

rp
os
e

G
A

en
gi
ne

th
at

ca
n
be

re
pr
og
ra
m
m
ed

(u
si
ng

V
H
D
L
)

P
an

m
ic
ti
c
st
ea
dy
-s
ta
te

G
A
s

[N
B
K
H
M
13
]

M
at
he
m
at
ic
al

fu
nc
ti
on

s;
P
ar
am

et
er

tu
ni
ng

in
fin

ge
r-
ve
in

bi
om

et
ri
cs

P
an

m
ic
ti
c

(s
te
ad

y-
st
at
e)

10
0

25
6

Se
l:

ra
nd

om
,

to
ur
na

m
en
t

C
x:

1-
po

in
t,

2-
po

in
t,

m
ul
ti
pl
e

M
ut
:
bi
t-
fli
p,

ge
ne

ty
pe

F
P
G
A

A
lt
er
a

St
ra
ti
x
II

50
M
H
z

10
2×

(v
s.

so
ft
-p
ro
ce
ss
or

N
io
s

II
@

50
M
H
z

em
be

dd
ed

in
th
e

F
P
G
A
;

m
at
he
m
at
ic
al

fu
nc
ti
on

s)

P
ro
po

se
s
a

ha
rd
w
ar
e/
so
ft
w
ar
e
co
-d
es
ig
n

m
et
ho

do
lo
gy
.

P
ro
bl
em

-d
ep

en
de
nt

op
er
at
io
ns

ru
n
in

an
em

be
dd

ed
pr
oc
es
so
r
(N

io
s

II
).

[A
T
A
H
11
]

M
at
he
m
at
ic
al

fu
nc
ti
on

P
an

m
ic
ti
c

(s
te
ad

y-
st
at
e)

Se
l:

ro
ul
et
te
-w

he
el
,

to
ur
na

m
en
t

C
x:

1-
po

in
t,

2-
po

in
t

M
ut
:
bi
t-
fli
p

F
P
G
A

X
ili
nx

Sp
ar
ta
n-
3

21
8×

(v
s.

P
C
)

U
se
s
ne
ur
al

ne
tw

or
ks

to
co
m
pu

te
th
e
fit
ne
ss

fu
nc
ti
on

.

[E
P
D
P
09
]

M
at
he
m
at
ic
al

fu
nc
ti
on

s
P
an

m
ic
ti
c

(s
te
ad

y-
st
at
e)

32
10

F
P
G
A

X
ili
nx

V
ir
te
x-
II

P
ro

12
7
M
H
z

1.
4×

co
m
pa

re
d
to

a
si
m
ila

r
H
W

ar
ch
it
ec
tu
re

A
rc
hi
te
ct
ur
e
al
lo
w
s
fo
r
th
e

ob
je
ct
iv
e
fu
nc
ti
on

to
be

up
da

te
d
th
ro
ug

h
pa

rt
ia
l

re
co
nfi

gu
ra
ti
on

te
ch
no

lo
gy

of
th
e
F
P
G
A co
nt
in
ue
d
..
.

22 2 Background and state of the art
T
ab

le
2.
1
–
..
.c
on

ti
nu

ed

W
or
k

O
pt
im

iz
at
io
n

pr
ob

le
m

G
A

ar
ch
it
ec
tu
re

P
op

ul
at
io
n

si
ze

C
hr
om

os
om

e
si
ze

G
en
et
ic

op
er
at
io
ns

H
W

pl
at
fo
rm

H
W

cl
oc
k

fr
eq
ue
nc
y

Sp
ee
du

p
O
bs
er
va
ti
on

s

[V
P
P
09
]

M
at
he
m
at
ic
al

fu
nc
ti
on

s
P
an

m
ic
ti
c

(s
te
ad

y-
st
at
e)

20
44

10
Se
l:

ro
ul
et
te
-w

he
el

F
P
G
A

X
ili
nx

V
ir
te
x-
II

P
ro

10
0
M
H
z

1.
2×

;
3.

3×
;

60
×

co
m
pa

re
d
to

ot
he
r

ha
rd
w
ar
e

im
pl
em

en
ta
ti
on

s
in

th
e
sa
m
e
F
P
G
A

fa
m
ily

(i
n

60
×

on
ly

th
e
fit
ne
ss

is
in

H
W
)

Im
pl
em

en
ta
ti
on

w
it
h
6

di
ff
er
en
t
op

ti
m
iz
at
io
n

fu
nc
ti
on

s.

[P
D
05
]

M
at
he
m
at
ic
al

fu
nc
ti
on

s
P
an

m
ic
ti
c

(s
te
ad

y-
st
at
e)

50
10

Se
l:

st
oc
ha

st
ic

sc
he
m
e;

13
×

to
53

×
le
ss

nu
m
be

r
cl
oc
k
cy
cl
es

co
m
pa

re
d
to

a
se
ri
al

un
ip
ro
ce
ss
or

A
pi
pe

lin
ed

ha
rd
w
ar
e

pl
at
fo
rm

is
de
sc
ri
be

d
(n
ot

im
pl
em

en
te
d)
.
U
se
s
th
e

co
nc
ep
t
of

po
st
fix

fu
nc
ti
on

ev
al
ua

ti
on

fo
r
th
e
fit
ne
ss
.

[V
R
G
G
A
R

+
05
]

T
SP

(≤
10

0)
P
an

m
ic
ti
c

(s
te
ad

y-
st
at
e)

19
7

Se
l:

ra
nd

om
C
x:

ed
ge

re
co
m
bi
na

ti
on

M
ut
:
in
ve
rs
io
n

F
P
G
A

X
ili
nx

V
ir
te
x-
E

11
M
H
z
to

15
M
H
z

<
1×

(v
s.

P
C

@
1.

7
G
H
z)

H
ar
dw

ar
e
de
sc
ri
be

d
in

H
an

de
l-
C

(a
H
L
S)
.
13

di
ff
er
en
t
ha

rd
w
ar
e
ve
rs
io
ns

of
th
e
G
A

ar
e
im

pl
em

en
te
d

w
it
h
in
cr
ea
se
d
pe

rf
or
m
an

ce
.

[S
SC

+
01
]

Se
t
co
ve
ri
ng

pr
ob

le
m

(9
4

×
52

0)
;

36
-r
es
id
ue

pr
ot
ei
n
fo
ld
in
g

pr
ob

le
m

P
an

m
ic
ti
c

(s
te
ad

y-
st
at
e)

25
6;

51
2

94
;
70

Se
l:

ra
nd

om
C
x:

m
ul
ti
-p
oi
nt
,

un
if
or
m

M
ut
:
bi
t-
fli
p

6
F
P
G
A
s
A
lt
er
a

E
P
F
81
18
8A

(A
pt
ix

A
X
B
-M

P
3

bo
ar
d)
(s
et

co
ve
ri
ng

);
F
P
G
A

X
ili
nx

X
V
C
30
0
(p
ro
te
in

fo
ld
in
g)

1
M
H
z;

66
M
H
z

22
00

×
(v
s.

P
C

@
10

0
M
H
z;

se
t

co
ve
ri
ng

);
32

0×
(v
s.

P
C

@
36

6
M
H
z;

pr
ot
ei
n

fo
ld
in
g)

G
A

op
er
at
io
ns

ar
e
pi
pe

lin
ed

to
ac
hi
ev
e
a
th
ro
ug

hp
ut

of
1

ne
w

ch
ro
m
os
om

e
pe

r
cl
oc
k

cy
cl
e.

C
om

pl
ex

fit
ne
ss

fu
nc
ti
on

s
m
us
t
be

fu
rt
he
r

pi
pe

lin
ed

to
m
ai
nt
ai
n

th
ro
ug

hp
ut
.

[K
A
M

+
99
]

M
at
he
m
at
ic
al

fu
nc
ti
on

;
K
na

ps
ac
k

pr
ob

le
m

P
an

m
ic
ti
c

(s
te
ad

y-
st
at
e)

8;
16

8;
30

Se
l:

ro
ul
et
te
-w

he
el

C
x:

1-
po

in
t;

un
if
or
m

M
ut
:
bi
t-
fli
p

F
P
G
A

A
T
T
2C

40
by

L
uc
en
t

T
ec
hn

ol
og
ie
s

33
M
H
z;

8.
95

M
H
z

73
0×

;
25

0×
(P

C
@

33
3
M
H
z)

H
ar
dw

ar
e
w
it
h
a
pi
pe

lin
e

th
at

ne
ve
r
st
al
ls
.

D
is
tr
ib
ut
ed

G
A
s
(s
om

e
w
or
ks

al
so

in
cl
ud

e
im

pl
em

en
ta
ti
on

s
of

pa
nm

ic
ti
c
G
A
s)

[J
ar
12
]

K
na

ps
ac
k

pr
ob

le
m

(1
00
00
)

D
is
tr
ib
ut
ed

G
A

(≤
14

no
de
s)

12
8
to

20
48

pe
r
no

de
10
00
0

Se
l:

to
ur
na

m
en
t

C
x:

un
if
or
m

M
ut
:
bi
t-
fli
p

14
nV

id
ia

gr
ap

hi
c

ca
rd
s
G
T
X

58
0

1.
54

G
H
z

<
78

1×
(s
in
gl
e

C
P
U

co
re

@
2.

6
G
H
z)
;

<
35

×
(2
4
C
P
U

co
re
s
@

2.
6
G
H
z)

Im
pl
em

en
ta
ti
on

in
a

m
ul
ti
-G

P
U

cl
us
te
r.

E
ac
h

no
de

of
th
e
di
st
ri
bu

te
d
G
A

ev
ol
ve
s
in

a
si
ng

le
G
P
U
.

[T
H
C
11
]

P
at
h
pl
an

ni
ng

D
is
tr
ib
ut
ed

G
A

(2
no

de
s)

50
Se
l:

to
ur
na

m
en
t

C
x.

1-
po

in
t

M
ut
at
io
n
ad

ap
te
d

to
th
e
pr
ob

le
m

F
P
G
A

A
lt
er
a

90
×

(v
s.

P
C

@
3.

4
G
H
z)

P
re
se
nt
s
a
G
A

to
so
lv
e
a

gl
ob

al
pa

th
pl
an

ni
ng

fo
r

au
to
no

m
ou

s
m
ob

ile
ro
bo

ts
na

vi
ga
ti
on

.
H
ar
dw

ar
e/
so
ft
w
ar
e
co
-d
es
ig
n

(fi
tn
es
s
im

pl
em

en
te
d
in

N
io
s

II
pr
oc
es
so
r)
.
C
he
ck
s

fe
as
ib
le

so
lu
ti
on

s;
sp
ec
ia
l

m
ut
at
io
n. co
nt
in
ue
d
..
.

2.3 Hardware implementations of GAs 23

T
ab

le
2.
1
–
..
.c
on

ti
nu

ed

W
or
k

O
pt
im

iz
at
io
n

pr
ob

le
m

G
A

ar
ch
it
ec
tu
re

P
op

ul
at
io
n

si
ze

C
hr
om

os
om

e
si
ze

G
en
et
ic

op
er
at
io
ns

H
W

pl
at
fo
rm

H
W

cl
oc
k

fr
eq
ue
nc
y

Sp
ee
du

p
O
bs
er
va
ti
on

s

[V
L
M
T
10
]

M
at
he
m
at
ic
al

fu
nc
ti
on

D
is
tr
ib
ut
ed

G
A

(≤
20
48

no
de
s)

12
8
pe

r
no

de

Se
l:

to
ur
na

m
en
t

se
le
ct
io
n

C
x:

2-
po

in
t

M
ut
:
ch
an

ge
1

ge
ne

nV
id
ia

gr
ap

hi
cs

ca
rd

G
T
X

28
0

1.
3
G
H
z

<
20

74
×

(v
s.

P
C

@
2.

4
G
H
z;

de
pe

nd
s

on
pr
ob

le
m

si
ze

an
d

nu
m
be

r
of

no
de
s)

Se
ve
ra
l
co
ns
id
er
at
io
ns

ar
e

ad
dr
es
se
d
ab

ou
t
m
em

or
y

lim
it
at
io
ns

of
G
P
U
s
fo
r

im
pl
em

en
ti
ng

a
di
st
ri
bu

te
d

G
A
.

[P
JS

10
]

M
at
he
m
at
ic
al

fu
nc
ti
on

s
D
is
tr
ib
ut
ed

(≤
10

24
no

de
s)

≤
13

10
72

(d
ep

en
ds

on
th
e
ca
rd

an
d

co
nfi

gu
ra
ti
on

of
G
A
)

Se
l:

to
ur
na

m
en
t

C
x:

ar
it
hm

et
ic

nV
id
ia

gr
ap

hi
cs

ca
rd
s
88
00

G
T
X
;

G
T
X

28
5
an

d
G
T
X

26
0

<
70

00
×

(v
s.

P
C

@
2.

66
G
H
z;

1
co
re
;
no

m
ig
ra
ti
on

;
de
pe

nd
s

on
nu

m
be

r
of

no
de
s)

P
re
se
nt
s
a
di
st
ri
bu

te
d
G
A

im
pl
em

en
te
d
in

G
P
U
s
us
in
g

th
e
C
U
D
A

fr
am

ew
or
k.

A
cc
el
er
at
io
n
is

m
ea
su
re
d
no

t
co
ns
id
er
in
g
th
e
m
ig
ra
ti
on

op
er
at
io
n
re
qu

ir
ed

in
a
dG

A
.

[J
K
FA

06
]

O
ne
M
ax

pr
ob

le
m
;

M
at
he
m
at
ic
al

fu
nc
ti
on

P
an

m
ic
ti
c

(s
te
ad

y-
st
at
e)
;

D
is
tr
ib
ut
ed

(2
no

de
s)

12
8

64
;
24

Se
l:

m
od

ifi
ed

to
ur
na

m
en
t

C
x:

un
if
or
m

M
ut
:
bi
t-
fli
p

F
P
G
A

A
lt
er
a

St
ra
ti
x

50
M
H
z

50
×

(O
ne
M
ax

);
20

×
(f
un

ct
io
n)

(v
s.

so
ft
-p
ro
ce
ss
or

N
io
s

em
be

dd
ed

in
th
e

F
P
G
A
)

F
it
ne
ss

fu
nc
ti
on

im
pl
em

en
te
d
in

so
ft
w
ar
e

(N
io
s
pr
oc
es
so
r
in

th
e

F
P
G
A
).

[T
M
S+

06
]

T
SP

(5
1)
;

K
na

ps
ac
k

pr
ob

le
m

(6
4)

P
an

m
ic
ti
c

(s
te
ad

y-
st
at
e)
;

D
is
tr
ib
ut
ed

(4
no

de
s)

F
P
G
A

A
lt
er
a

C
yc
lo
ne

P
ro
po

se
s
a
pi
pe

lin
ed

ba
se
d

ar
ch
it
ec
tu
re

fo
r
th
e
G
A

an
d

a
pa

ra
lle

l
co
ns
is
ti
ng

of
m
ul
ti
pl
e
co
nc
ur
re
nt

pi
pe

lin
es
.

[T
Y
04
]

M
at
he
m
at
ic
al

fu
nc
ti
on

P
an

m
ic
ti
c;

D
is
tr
ib
ut
ed

(4
no

de
s)

25
6

16

Se
l:

ro
ul
et
te
-w

he
el

C
x:

m
ul
ti
-p
oi
nt
,

un
if
or
m
e

M
ut
:
on

e-
bi
t,

m
ul
ti
-b
it
,
m
as
ke
d,

ra
nd

om

F
P
G
A
s
A
lt
er
a

F
L
E
X

60
00

an
d

F
L
E
X

10
k
(p
er

G
A

no
de
).

10
.7

×
(v
s.

P
C

@
2.

4
G
H
z;

pa
nm

ic
ti
c

G
A
).

L
in
ea
r

sp
ee
du

p
fo
r
th
e

dG
A

up
to

4.

G
A

pr
oc
es
so
r
in

a
si
ng

le
bo

ar
d
(w

it
h
2
F
P
G
A
s)
;
dG

A
re
qu

ir
es

ad
di
ti
on

al
bo

ar
ds
.

[C
C
00
]

Se
t
co
ve
ri
ng

pr
ob

le
m

(1
9

×
63

)
D
is
tr
ib
ut
ed

(2
no

de
s)

25
6

Se
l:

m
od

ifi
ed

to
ur
na

m
en
t

C
x:

1-
po

in
t,

2-
po

in
t,

un
if
or
m

2
F
P
G
A
s
A
lt
er
a

E
P
F
10
K
10
0A

(P
C
IG

E
N
10
K

bo
ar
d)

20
M
H
z

D
is
tr
ib
ut
ed

m
od

el
w
it
h
2

pr
oc
es
si
ng

no
de
s
th
at

ac
hi
ev
es

a
2×

sp
ee
du

p
to

fin
d
th
e
op

ti
m
um

so
lu
ti
on

w
he
n
co
m
pa

re
d
to

1
no

de
.

[G
N
95
]

T
SP

(2
4,

12
0)

P
an

m
ic
ti
c;

D
is
tr
ib
ut
ed

(4
no

de
s)

12
8,

25
6

Se
l:

ro
ul
et
te
-w

he
el

C
x:

or
de
r-
ba

se
d

M
ut
:
sw

ap

4
F
P
G
A
s
X
ili
nx

40
10
s
(p
er

G
A

no
de
)
(S
pl
as
h
2

bo
ar
d)

11
M
H
z

<
11

×
(v
s.

P
C

@
12

5
M
H
z;

pa
nm

ic
ti
c

G
A
)

dG
A

ha
s
sh
ow

n
a
fa
st
er

co
nv

er
ge
nc
e
w
he
n
co
m
pa

re
d

to
th
e
pa

nm
ic
ti
c
G
A

an
d

w
it
h
a
dG

A
w
he
re

th
e
no

de
s

do
no

t
in
te
ra
ct
.

[S
W
SS

95
]

C
hi
p
pa

rt
it
io
ni
ng

pr
ob

le
m

(1
00

to
50
0
co
m
po

ne
nt
s)

P
an

m
ic
ti
c

(g
en
er
a-

ti
on

al
);

D
is
tr
ib
ut
ed

(3
no

de
s)

Se
l:

ro
ul
et
te
-w

he
el
;

C
x:

un
if
or
m

se
ve
ra
l
F
P
G
A
s

X
ili
nx

X
C
40
10

(A
rm

st
ro
ng

II
I

m
ul
ti
co
m
pu

te
r)

3×
(v
s.

P
C

@
60

M
H
z;

pa
nm

ic
ti
c

G
A
);

8.
3×

(d
is
tr
ib
ut
ed

G
A
)

O
nl
y
th
e
fit
ne
ss

fu
nc
ti
on

(t
ha

t
re
pr
es
en
ts

95
%

of
th
e

ti
m
e
in

a
so
ft
w
ar
e

im
pl
em

en
ta
ti
on

)
is

im
pl
em

en
te
d
in

th
e
F
P
G
A
s.

co
nt
in
ue
d
..
.

24 2 Background and state of the art
T
ab

le
2.
1
–
..
.c
on

ti
nu

ed

W
or
k

O
pt
im

iz
at
io
n

pr
ob

le
m

G
A

ar
ch
it
ec
tu
re

P
op

ul
at
io
n

si
ze

C
hr
om

os
om

e
si
ze

G
en
et
ic

op
er
at
io
ns

H
W

pl
at
fo
rm

H
W

cl
oc
k

fr
eq
ue
nc
y

Sp
ee
du

p
O
bs
er
va
ti
on

s

C
el
lu
la
r
G
A
s

[V
A
10
]

6
be

nc
hm

ar
k
of

di
sc
re
te

an
d

co
nt
in
uo

us
pr
ob

le
m
s

C
el
lu
la
r

≤
51

2
×

51
2

Se
l:

ro
ul
et
te
-w

he
el

C
x:

2-
po

in
t

2
nV

id
ia

gr
ap

hi
c

ca
rd
s
G
T
X

28
5

1.
48

G
H
z

8×
to

77
1×

(v
s.

P
C

@
2.

67
G
H
z)

P
re
se
nt
s
a
m
ul
ti
-G

P
U

de
sk
to
p
pl
at
fo
rm

(2
P
C
s)

fo
r

im
pl
em

en
ti
ng

a
ce
llu

la
r
G
A
.

[T
A
95
]

D
is
c
sc
he
du

lin
g

pr
ob

le
m

C
el
lu
la
r

Se
l:

or
de
r-
ba

se
d

M
ut
.
sw

ap
A
SI
C

(1
.0

µm
)

Sy
st
em

ca
pa

bl
e
of

so
lv
in
g

th
e
pr
ob

le
m

in
re
al
-t
im

e
(2

m
s)
.
D
et
ai
ls
of

th
e
ce
llu

la
r

st
ru
ct
ur
e
ar
e
no

t
pr
ov

id
ed
.

[T
A
H
94
]

Im
ag
e
pr
oc
es
si
ng

in
a
vi
si
on

sy
st
em

C
el
lu
la
r

Se
l:

to
ur
na

m
en
t

C
x:

2-
po

in
t

A
SI
C

(1
.5

µm
)

8
M
H
z

Im
pl
em

en
ta
ti
on

of
a
ce
llu

la
r

G
A

in
a
A
SI
C
.
O
nl
y
de
ta
ils

of
a
pr
oc
es
si
ng

el
em

en
t
ar
e

pr
ov

id
ed

(n
ot

fr
om

th
e

ce
llu

la
r
st
ru
ct
ur
e)
.

O
th
er

al
go
ri
th
m
s
ba
se
d
on

th
e
G
A

[J
C
08
]

O
ne
M
ax

pr
ob

le
m

(3
2)
;

M
at
he
m
at
ic
al

fu
nc
ti
on

C
om

pa
ct

G
A

32
F
P
G
A

X
ili
nx

V
ir
te
x-
5

28
0
M
H
z

(2
×

2
co
nfi

g-
ur
at
io
n)

>
2×

co
m
pa

re
d
to

ot
he
rs

H
W

im
pl
em

en
ta
ti
on

s
of

co
m
pa

ct
G
A

(o
nl
y

on
e
no

de
)

P
ro
po

se
s
an

ha
rd
w
ar
e

ar
ch
it
ec
tu
re

w
it
h
a
ce
llu

la
r

lik
e
st
ru
ct
ur
e
fo
r
th
e

co
m
pa

ct
G
A
.

[Z
M
C
07
a]

[Z
M
C
07
b]

M
at
he
m
at
ic
al

fu
nc
ti
on

s

N
ov
el

al
go
ri
th
m

ca
lle

d
O
IM

G
A

A
SI
C

(0
.1

3
µm

)
30

0
M
H
z

A
no

ve
l
G
A

is
pr
op

os
ed

(O
IM

G
A
),

th
at

in
cl
ud

es
a

gl
ob

al
an

d
lo
ca
l
se
ar
ch
.

W
or
k
ta
rg
et
s
a
al
go
ri
th
m

op
ti
m
iz
ed

to
ha

rd
w
ar
e
by

us
in
g
a
si
ng

le
op

ti
m
um

so
lu
ti
on

th
us

re
du

ci
ng

m
em

or
y.

2.3 Hardware implementations of GAs 25

of the GA and the population size used in the implementation as well as the optimization
problem to be solved. Additionally, it mentions the hardware platform and the acceler-
ation achieved by the algorithm. Empty fields in the table mean that those details are
not provided by the authors.

Besides FPGAs and ASICs implementations, Table 2.1 also includes a few works that
use GPUs as a hardware platform to execute GAs. Although these devices use a pro-
cessing unit to execute the algorithm, which is programmed through software, they have
been successfully used to implement GAs by exploiting their highly parallel computing
structures.

We analyse the GA custom hardware architectures of the existing implementations
mainly concerning the organization of the population (panmictic and decentralized and
their variants). The implementations of the operations of the GA are problem-dependent
and, in general, straightforward to implement in hardware as they require simple bit ma-
nipulation. Additionally, more specific operators required by a particular optimization
problem must always be designed to target that application and thus a review of those
operators is impractical. Nevertheless and despite the operators that constitute the GA,
the organization of the population plays an important role in the performance of the
hardware. The next subsection presents an overview regarding this topic.

2.3.1 GA architectures

As discussed previously, the population of a GA can be organized and accessed in dif-
ferent ways which impacts in the hardware organization of the computing, control and
memory elements of a custom computing machine for genetic algorithms. The following
subsections present an analysis of such architectures and draws considerations about
their advantages and disadvantages from the review performed in Table 2.1.

2.3.1.1 Panmictic - generational

Figure 2.9 presents a generic hardware architecture for a panmictic GA with a genera-
tional reproductive step. At each iteration (or generation), the GA processor must be
able to access any solution present in the population memory to build a new population
that will replace the existing one. Therefore, the processor must apply the genetic op-
erations on the existing solutions to build a complete new population that will replace
the entire old population. Afterwards and in a single step, the population memory is
updated with the new population, thus eliminating the previous one.

26 2 Background and state of the art

Population

memory

GA

processor

P

(population)

P’

(new population)

se
le

ct
io

n

cr
o
ss

o
ve

r

m
u
ta

ti
o
n

fi
tn

es
s

se
le

ct
io

n

cr
o
ss

o
ve

r

m
u
ta

ti
o
n

fi
tn

es
s

New

population

memory

Figure 2.9: Example of a hardware architecture for a panmictic generational
GA. In a generation step, a GA processor creates a new population P ′ by
processing the current population P . The genetic operations can be parallelized

and pipelined.

As the operations executed by the GA processor are repeated several times in a single
iteration, it is possible to parallelize them to improve the performance of the hardware.
Furthermore, these operations can be pipelined as shown in Figure 2.9. This concept is
explored in [GTL13] and [GTL14], where the GA processor can have different levels of
parallelism and the operations are pipelined.

Although increasing the parallelism is appealing, a clear drawback appears in what
concerns the population memory access. Since the memory bandwidth is limited, the
level of parallelism will be limited by the data that this memory provides to keep all the
parallel elements working. An architecture with a parallelism level capable of producing
a new population in a single step is possible as it is shown in [NdMM07]. Nevertheless,
all the memory elements must be accessed simultaneously which may be possible to
implement only for a small population where the solutions can be kept in registers.
While the authors of this work do not provide the population size, it is clear that for
realistic GA implementations, where dozens or hundreds of solutions may be required,
the memory access bottleneck imposes a practical limit in the parallelism level.

Another issue with this architecture is that a second memory is required to keep the
new population since the GA processor requires several steps till it builds the new popu-
lation completely (a parallelism level to generate the entire population in a single step
is unrealistic). Therefore, an operation that replaces the population memory contents
with the new generated solutions must be performed as exemplified in [GN95]. To avoid

2.3 Hardware implementations of GAs 27

Population

memory

GA

processor

2 solutions

1 new

solution

se
le

ct
io

n

cr
o
ss

o
ve

r

m
u
ta

ti
o
n

fi
tn

es
s

re
p
la

ce
m

en
t

Figure 2.10: Example of a hardware architecture for a panmictic steady-state
GA. In a generation step, a GA processor creates a single solution by processing

2 solutions in the population. All the operations can be pipelined.

this, the work proposed in [VPP09] uses a single memory divided in two parts to store
both populations. From one generation to another on the GA, the hardware swaps the
accesses to the memory avoiding this way the need to explicitly copy the contents from
one memory to another.

With a generational GA it is clear that it is possible to build an hardware architecture
that exploits parallelism of the operations of the algorithm. However, to be effective in
terms of performance, the memory architecture must be designed in a way to match the
bandwidth requirements of the processing datapath.

2.3.1.2 Panmictic - steady-state

Figure 2.10 depicts an example of a hardware architecture of a panmictic GA with
a steady-state reproductive scheme. In this case, in a generation of the algorithm a
single solution is created by the GA processor that will replace one existing solution
in the population memory. Therefore, and by contrast with the generational GA, the
GA processor can write the new solutions directly in the population memory and thus
no additional memory is required. In addition, this can take advantage of pipelined
implementations to improve performance.

One of the main concerns with this architecture is the need for a high memory bandwidth
to exploit the pipelined circuit. In a single step, and to avoid stalls of the pipeline, this
memory would require three simultaneous accesses: reading the two selected solutions
and writing the new one. To overcome this, several works propose that one of the selected
solutions in a given generation of the GA comes from the previous generation [SSC+01,

28 2 Background and state of the art

TMS+06, CC00]. This way, only one solution is required to be read from the memory
instead of two.

Additionally, it is also common in this architecture to use simple algorithms in the
selection operation to cope with the single clock cycle requirement. Example of such al-
gorithms are the random selection [SSC+01, TMS+06] and tournament selection [CC00].
Moreover, often with this selection schemes the replacement operation follows a strat-
egy where the worst selected solution may be replaced by the new solution if this has a
better fitness value. This technique is performed to improve the convergence of the GA.
More complex selection algorithms, like the roulette-wheel, are possible to implement
while preserving a good pipeline performance [KAM+99]. However, this would require
a considerable increase in the hardware resources as the population size increases.

The remaining operations of the GA must also be implemented in hardware as fast
hardware blocks to improve the pipeline performance. The crossover and mutation ap-
plied to a binary representation of solutions are efficiently implemented in hardware.
Nevertheless, the fitness evaluation function, which is problem-dependent, may com-
promise the performance of the pipeline. The work proposed in [SSC+01], presents a
general-purpose steady-state GA hardware engine with a 6-stage pipeline where 1 stage
is dedicated for the fitness evaluation. For implementing a fitness evaluation circuit for
the set covering problem, the hardware resources available in the FPGA are sufficient
to maintain the pipeline without stalls. Nevertheless, for solving a 36-residue protein
folding problem, the fitness evaluation requires a much more elaborated function, which
results in a pipeline initial interval of 36 for this circuit. Although several parallel fitness
circuits could be used to avoid the stall of the GA pipeline, more hardware resources
would be required.

Although we have illustrated a pipelined hardware architecture for the steady-state GA,
some works do not follow this idea [VRGGAR+05, EPDP09]. Instead, the operations
of the algorithm are executed sequentially by different custom hardware blocks. This
approach may be interesting as a trade-off between hardware project complexity and
overall performance of the circuit.

2.3.1.3 Distributed

In a distributed GA the population is divided into small subpopulations that evolve
independently among them; during the evolution of the algorithm, these subpopulations
must occasionally exchange solutions. Figure 2.11 shows a generic hardware architec-
ture for a distributed GA with 4 subpopulations. As expected, the processing is easily
parallelized by several identical processing nodes (dGA nodes), each one holding its own

2.3 Hardware implementations of GAs 29

Sub-

population

memory

GA

processor

Migration

operator

dGA node

Sub-

population

memory

GA

processor

Migration

operator

dGA node

Sub-

population

memory

GA

processor

Migration

operator

dGA node

Sub-

population

memory

GA

processor

Migration

operator

dGA node

Figure 2.11: Example of a hardware architecture for a distributed GA (dGA)
with 4 nodes connected in ring. Each dGA node is responsible to evolve a
subpopulation of the algorithm. The dGA nodes must occasionally migrate

solutions among them.

subpopulation memory and GA processor. Additionally, the dGA node has a migration
operator that ensures the exchange of solutions among the dGA nodes. In this example,
the 4 nodes are connected in a ring topology, although other topologies are possible.

It should be noted that the GA processor and the subpopulation memory of a dGA
node are identical to a panmictic GA (either generational or steady-state). Therefore,
the same ideas discussed for the panmictic GAs are also applicable to the implementation
of a dGA node.

Several works that implement a panmictic GA, also implement a distributed GA as
essentially this can be built by replicating several panmictic GAs. By comparison with
a panmictic GA (or a dGA with 1 node), these works show a linear speedup with the
number of dGA nodes [CC00, TY04], or an almost linear speedup [SWSS95] (for this
particular example, 2.8× for 3 nodes). All of these examples are implemented in FPGA
devices and do not exceed more than 4 dGA nodes.

More recently, GPUs devices have been used with great success to implement distributed
GAs. By comparison with FPGAs, these implementations usually deal with considerable
larger populations that reach dozens of thousands of solutions [VLMT10, Jar12, PSJ10],

30 2 Background and state of the art

GA

processor

solution

GA

processor

solution

GA

processor

solution

GA

processor

solution

GA

processor

solution

GA

processor

solution

GA

processor

solution

GA

processor

solution

GA

processor

solution

GA

processor

solution

GA

processor

solution

GA

processor

solution

cGA cell

Figure 2.12: Example of a hardware architecture for a cellular GA (cGA).
Each cGA cell only processes solutions present in itself and in cells directly

connected to it.

or solutions that require more memory for their representation [Jar12]. Moreover, these
works easily achieve a high level of parallelism with a few hundreds of dGA nodes in a
single GPU device [VLMT10, PJS10]. The speedup obtained with these implementations
easily reaches a few thousands over a single CPU.

It should be stressed that in a dGA the nodes must exchange solutions among them,
otherwise the algorithm will not behave as expected. In [PJS10] and [PSJ10] it is
presented a dGA with a maximum of 1024 nodes. Nevertheless, the acceleration of
this algorithm is measured not considering the migration operation and thus the results
cannot be considered as accurate for the distributed GA (but instead for a panmictic
replicated 1024 times).

2.3 Hardware implementations of GAs 31

2.3.1.4 Cellular

Figure 2.12 presents an example of a possible hardware architecture of a cellular GA
where the solutions are distributed over a regular grid. A cGA cell, which in this example
is constituted by a single solution and a GA processor, is replicated several times to
form a 2D shape as depicted in the figure. The GA processor generates new solutions by
applying the operations of the GA to solutions present in the vicinity cells. Therefore,
each processor can access for selection five different solutions: one in the cell where
the processor is and four in the neighbour cells which the processor can communicate
with. If selected by the replacement strategy, the generated solution is written by the
processor in the solution memory present in the cGA cell, therefore deleting the existing
solution.

Although the cGA is a very interesting metaheuristic that can be exploited in a hardware
implementation of a GA, especially in what concerns the parallelization of the operations,
it has not been widely adopted and few works can be found in the literature. The
works proposed in [TAH94, TA95] present a custom ASIC that implements cGAs to
solve a image processing problem in a vision system and a disc scheduling problem.
Nevertheless, these works, which are from the 1990’s, do not provide much detail about
the parallelism achieved and how this improves the acceleration of the algorithm in
comparison with other architectures.

Recently, a cGA has been implemented in a multi-GPU platform for several benchmark
optimization problems [VA10]. In this implementation, each solution of the algorithm
is associated to a thread of the GPU, thus achieving a high level of parallelism. Re-
sults show that by comparing a implementation of the cGA in a CPU to a single-GPU
platform, the seedup ranges from 8 to 771. Nevertheless, the lowest value of this accel-
eration is for a population of 64 solutions, whereas the highest value is for a population
of 262144 solutions. Therefore, it is clear that the acceleration achieved by the GPU
does not scale in proportion to the number of solutions (more threads); an increase of
4096× in the population size leads to a best value acceleration less than 100×.

2.3.1.5 Variants of GAs

There are other algorithms that somehow resemble the GA and can be efficiently imple-
mented in hardware. The best known is the compact GA that requires a single vector to
keep the complete information present in a population of a canonical GA using a binary
representation. In this vector, it is kept a list of probabilities values for each gene of the
(non-existing) solutions in the population. The algorithm starts with a vector with 0.5

32 2 Background and state of the art

of probability for each gene and, as it evolves, these values will converge to 0 or 1 which
represent the final solution. Details of the compact GA can be found in [HLG99].

By comparison to the GA, the compact GA needs less memory as it only requires a
single memory vector (for the probability vector) instead of a complete population of
solutions. Therefore, the memory accesses required are much easily handled by a GA
processor since less data needs to be accessed. As it happens with the decentralized
GAs, in the compact GA the population can also be divided in smaller subpopulations
(in the case, the probability vector) each one assigned to a processing node. In [JC08]
a hardware architecture for a compact GA with a cellular like structure (with 4 nodes)
is built that resembles a distributed GA.

Although the compact GA has been widely adopted, especially in the research field of
evolvable hardware, it does not provide the same search power as the GA even with
several improvements [GVK04]. This happens since this algorithm was developed to
mimic the panmictic steady-state GA with a binary tournament selection and a uniform
crossover operator for solutions with binary representation [HLG99]. Therefore, the
algorithm is a particular case of the GA, where different operators cannot be used.

In [ZMC07a, ZMC07b] it can be found another algorithm inspired in the GA, named
optimal individual monogenetic algorithm (OIMGA), that targets a hardware imple-
mentation. This algorithm uses a single solution to be evolved, thus also reducing the
memory when compared to the GA, and it is based on an interaction of a global and
local search. Although this algorithm has the word ‘genetic’ in its name and the authors
claim that is a new GA, there is not a clear association with this algorithm and the
population-based metaheuristic GA.

The goal of this work is to develop a custom hardware architecture that supports the
execution of GAs in its canonical form, or variations of it as it is the case of the cellular
GA, and are well-known from the literature. Therefore, the ideas presented in this
section are not further exploited.

2.3.2 Where is the bottleneck?

The main reason to implement a GA in dedicated hardware is to accelerate it. Therefore,
it becomes important to know which of the algorithm’s operation is the most computa-
tionally demanding so that it can be further improved in hardware.

From the literature review, we cannot conclude that there is a particular operation in
the GA that is more demanding than the others. For instance, a software profile to
the GA implemented in [SWSS95] reveals that 95% of the execution time is in the

2.3 Hardware implementations of GAs 33

fitness function evaluation for a chip partitioning problem. On the other hand, the work
presented in [SF02] reveals an execution time between 15% to 60% for the crossover
operation for the travelling salesman problem. In both works, only the critical operation
has been implemented in hardware with the goal to accelerate the algorithm.

As we have already discussed, in [SSC+01] it is presented a general-purpose hardware
architecture for executing a panmictic steady-state GA, with a specialized pipelined
architecture. Implementing the hardware block for the fitness evaluation function for
the set covering problem requires a simple circuit that does not compromise the pipeline
performance. Nevertheless, for a protein folding problem, a much more complex function
to compute, the pipeline has a clear stall due to the fitness evaluation block (which takes
several clock cycles to finish).

Another example of how the complexity of a operator can impact in the performance
of the hardware is presented in [KAM+99]. In this case the selection operator chosen
is the roulette-wheel algorithm which needs to unroll its main loop and parallelize it
to achieve a pipelined circuit without stalls. Once again, this imposes limits in the
hardware needed to implement the circuit where a larger population would require more
hardware resources.

Therefore, the question where is the bottleneck in a genetic algorithm? does not have a
straight answer. It is highly dependent on the operators used by the GA that in turn
depend on the optimization problem. Many different representations and operators exist
for the GA, as we have discussed in Section 2.2.1. Although it is common to associate a
genetic algorithm to solutions coded with a binary representation where simple crossover
and mutation operators are applied, this is not always the case. Additionally, it may
be even necessary to include special operators in the algorithm so that the GA provides
feasible solutions or to improve the quality of the solutions (e.g. combine a GA with a
local search operator). In this thesis we will see two examples of real-world problems
that have these requirements.

Regardless of what has been discussed previously, it is clear that a hardware architecture
that exploits parallelism of operations will increase the potential to accelerate an algo-
rithm, although requiring more hardware resources. In this regard, the decentralized
models of GAs (distributed and cellular) are strong candidates for parallelizing all the
operations of the algorithm as we have discussed in Section 2.3.1.

34 2 Background and state of the art

2.3.3 Acceleration

As stated before, the implementation of GAs in specialized hardware is motivated by
the need to accelerate the search metaheuristic and provide solutions in less time than
conventional CPUs. Therefore, the acceleration value is a common figure provided by
hardware implementations of GAs, which tries to quantify the quality of the imple-
mentations (see Table 2.1). However, a direct comparison of these data to understand
which may be the best implementations is not advisable as there are many factors that
influence these figures.

In the majority of the works, the hardware execution time is compared to a soft-
ware counterpart of the GA running in a personal computer (PC) [DDT08, GTL13,
GTL14, SSC+01, KAM+99, VRGGAR+05, ATAH11, TY04, GN95, SWSS95, VLMT10,
Jar12, VA10]. Nevertheless, some works execute the software in an embedded pro-
cessor which exists in the same hardware platform as the GA engine (typically an
FPGA) [FKK+10, NBKHM13, JKFA06]. In this case, it is expected to achieve a higher
acceleration as these processors execute in a substantially lower clock frequency. Be-
sides a software to hardware execution time comparison, others methods are adopted
like counting the number of clock cycles in both software and hardware, irrespective of
the clock frequency used [SSS95, PD05], or a direct comparison with other hardware
implementations [NdMM07, EPDP09, VPP09].

Although most of the hardware architectures (not considering GPUs) are described at
the register-transfer level (RTL) using a standard hardware description language (HDL),
high-level synthesis (HLS) tools were also used to build the hardware [VRGGAR+05,
FKK+10, GTL14, GTL13]. The same happens with the software implementations, where
different languages with distinct performances are used like C/C++ [SSC+01, JKFA06]
or Matlab [DDT08]. In both hardware and software implementations the different tools
and techniques used to implement the algorithm can lead to incomparable acceleration
figures among all the works.

Even though it is difficult to compare the hardware performance of different works, it is
possible to draw relevant conclusions from Table 2.1. A steady-state GA usually shows
better accelerations when compared to a generational GA. From these works, clearly the
ones exploiting a high-performance pipeline circuit (each pipeline stage representing an
operation of the GA) are the ones that achieve the best results with acceleration values of
a few hundreds or even more [SSC+01, KAM+99]. Nevertheless, these architectures have
limitations in the operations of the GA as discussed in Section 2.3.1.2. The distributed
and cellular GAs, that can have several processing nodes running in parallel, clearly
increase the acceleration as the parallelism also increases. This is evident in the works

2.3 Hardware implementations of GAs 35

that implement a GA in FPGA and a direct comparison is made between one and several
processing nodes [CC00, TY04, SWSS95] . Moreover, recent GPUs implementations
exploit a very high-level of parallelism in these GAs with thousands of threads processing
in parallel [VLMT10, Jar12, VA10]. The results show accelerations values of a few
thousands.

Decentralized GAs offer the possibility of having several processing nodes, thus improv-
ing the algorithm execution time. More interestingly, although the generational GAs
can explore parallelism, there is not evidences that they provide a better performance
than steady-state GAs (that do not parallelize the GA operations) or decentralized GAs.
We can only speculate about this since although parallelism exists, the population is in
a single memory which leads to a bottleneck in the memory access required to feed all
the parallel units. Distributed and cellular GAs can easily overcome this problem by
having several memories to keep the population.

2.3.4 General considerations

There have been several hardware implementations of general-purpose GAs that claim
that can be used generically to solve any problem. However, it is clear that at least one
of the GA’s operations needs to adapt to the optimization problem: the fitness function
evaluation. To overcome this, neural network techniques have been used to estimate
efficiently the fitness of solutions [NdMM07, ATAH11]. Nevertheless, this approach
requires a training phase of the network for each different instance of the problem and
it has been applied only to simple optimization problems (mathematical functions).
Another approach, although obvious, is to develop a new hardware block to calculate the
fitness function for each different optimization problem [FKK+10, SSC+01]. Therefore,
the concept of general-purpose architecture for a GA often fails as it is not possible to
define a priori the operators of the algorithm. For instance, in [DDT08] it is proposed
a general IP core for the GA, but for implementing the crossover operator for solving a
travelling salesman problem (that requires a path representation) new hardware needs
to be specified.

A GA relies heavily in random numbers. The most common implementations of ran-
dom number generators (RNG) in hardware GAs are linear feedback shift registers
(LFSR) [JKFA06, NdMM07] and cellular automata (CA) [CC00, SSC+01, FKK+10].
These RNGs structures are simple to implement in hardware and provide fairly good
quality random numbers. Although other works implement better RNGs, like a true
RNG based on jitter effects [NBKHM13], it is not demonstrated that they improve the
GA.

36 2 Background and state of the art

It is often the case that hardware implementations of GAs use very small populations
and solutions that require just a few bits (c.f. Table 2.1). Nevertheless, a GA is a
particular useful metaheuristic to solve complex optimization problems that possess a
huge search space. This means that a large number of bits are required to represent
a solution in the GA and the population size must be large enough (e.g. hundreds of
solutions) to create diversity of the search space. Although small problems can be used
to demonstrate a GA hardware architecture, it is fundamental that these architectures
can deal with problems requiring a large solution representation.

2.4 Summary

In this chapter we have introduced the GA, a population-based metaheuristic. Different
classes of GAs were distinguished with respect to the structure of the population of
the algorithm. Subsequently, we have reviewed generic hardware architectures for the
different classes of the algorithm.

With a panmictic GA (both generational and steady-state) the population is kept in
a single memory. We have discussed that although it is possible to parallelize the op-
erations of this algorithm (generational GA), the memory access required to feed all
the processing nodes is likely to represent a bottleneck. In addition, we have also seen
that generating a single solution per iteration of the algorithm (steady-state GA), an
efficient pipelined circuit is possible to obtain. Nevertheless, in this case the hardware
implementation of the algorithm’s operations must be balanced not to compromise the
pipeline.

Decentralizing the population in a GA (distributed and cellular GAs) has a great poten-
tial for building parallel hardware architectures capable of accelerating the algorithm.
Additionally, since the population is structured, several independent memories can hold
subsets of the population that can be accessed by parallel processing units. Therefore,
no memory access bottlenecks are introduced as the level of parallelism increases in these
architectures, as it happens with a panmictic GA. In particular, cellular GAs have the
potential for the highest parallelism due to their physical distribution of the solutions,
where a processor can exist for each solution.

In Chapters 3 and 4 we will present a novel cellular GA architecture suitable for dedi-
cated hardware implementation, mainly an FPGA. Furthermore, Chapter 5 will present
a design flow based on a C++ specification of the problem-dependent operations of the
algorithm so that the architecture can be rapidly customized to solve different optimiza-
tion problems.

Chapter 3

A scalable processor array for
cGAs acceleration

3.1 Introduction

In the previous chapter genetic algorithms (GAs) were introduced together with a re-
view of dedicated hardware implementations of this metaheuristic. It was concluded
that parallelizing the operations of the algorithm can be achieved by using decentralized
populations of the algorithm, where subsets of solutions are kept in independent mem-
ories that are accessed by processing units. Therefore, the algorithm can be accelerated
by increasing the parallelism without compromising the performance of the hardware
architecture.

In this chapter a scalable processor array architecture is presented that accelerates the
execution of cellular genetic algorithms (cGAs). Section 3.2 starts by presenting the
hardware architecture followed by a classification of the cGA supported by the hardware.
Additionally, it is clarified how the processor array can be used to support the execution
of other population-based metaheuristics. In Section 3.3 an architecture simulation
with a system-level model of the hardware is performed to study the behaviour of the
algorithm with different levels of parallelism and configurations of the processor array.
Finally, in Section 3.4 a hardware implementation in an FPGA is presented to solve the
travelling salesman problem.

37

38 3 A scalable processor array for cGAs acceleration

3.2 The architecture

The goal of this work is to propose an infrastructure capable of creating dedicated
processing units, with a high level of parallelism, to support the execution of genetic
algorithms. Among the categories of GAs analysed during Chapter 2, we have concluded
that the ones where the population of solutions is decentralized, allow to exploit the
parallelism afforded by dedicated hardware implementations, without severe bottlenecks
in the memory access to the population. Essentially, by decentralizing the population it is
possible to have several processing units, each one accessing to its subset of solutions that
are placed in different hardware memory blocks. Between the distributed GA and cellular
GA, the last one provides a higher distribution of the solutions where, in the limit, a
processing unit can exist to each solution. Additionally, the target hardware device of our
architecture is an FPGA device, which currently (like Xilinx Virtex UltraScale [Xild])
have up to a few thousands of independent memory blocks. Therefore, we have elected
the cGA to be implemented in dedicated hardware, where subsets of the population are
kept on those memory blocks, while processing units access to them to compute the
algorithm.

This section presents the architecture proposed in this thesis to implement cellular ge-
netic algorithms in parallel computing platforms, targeting digital reconfigurable tech-
nologies. Figure 3.1 depicts the overall structure of this architecture, which is constituted
by replicating and connecting two different blocks: memories (MEMs) and processing
elements (PEs). Each memory holds a subset of solutions (or subpopulation) of the
algorithm and is shared between two adjacent PEs. In turn, each PE can access to four
memories, thus accessing to the solutions, and it is responsible to apply the operations of
the genetic algorithm to those solutions or other procedures necessary for the execution
of the cGA on the proposed infrastructure.

This architecture implements a cGA since each solution can only interact with a prede-
fined number of solutions in its neighbourhood. Additionally, throughout the structure
there is an overlap of different solutions’ neighbourhoods which imposes an implicit
mechanism of migration of solutions.

The complete hardware architecture presents a toroidal shape where both top/bottom
and left/right sides of the structure are connected, so that all the memories connect to
two PEs, thus leading to a complete regular structure. Nevertheless, it is also possible
to build a non-toroidal configuration, where the memories placed in the borders of the
array only connect to one PE.

As it is evident, each PE can work independently from the others while it processes
its solutions. Therefore, this architecture relies essentially on increasing the number

3.2 The architecture 39

PE

M
E

M

MEM

PE

M
E

M

MEM

PE

M
E

M

MEM

PE

M
E

M

MEM

M
E

M

PE

M
E

M
MEM

PE

M
E

M

MEM

PE

M
E

M

MEM

PE

M
E

M

MEM

M
E

M

PE

M
E

M

MEM

PE

M
E

M
MEM

PE

M
E

M

MEM

PE

M
E

M

MEM

M
E

M

PE

M
E

M

MEM

PE

M
E

M

MEM

PE

M
E

M
MEM

PE

M
E

M

MEM

M
E

M

MEM MEM MEM MEM

A processing element (PE) is responsible

to apply the GA operations.

It accesses to 4 memories.

A memory holds a subset of the

cGA solutions. It is shared by 2 PEs.

Figure 3.1: Overall architecture of the proposed scalable processor array for
cGAs.

of PEs to achieve more parallelism, thus accelerating the algorithm execution time by
increasing the rate of evolution of the population. Considering a regular shape in the
cGA architecture, the number of PEs (NPE), which is the potential acceleration of the
algorithm, is defined by

NPE = NPErows ·NPEcols
(3.1)

where NPErows and NPEcols
denote, respectively, the number of PEs in the rows and

columns of the array that builds the cGA architecture.

The number of memory blocks required to build the architecture is given by

NMEMtoroidal
= 2 ·NPE (3.2)

NMEMnon−toroidal
= 2 ·NPE +NPErows +NPEcols

(3.3)

for respectively a toroidal or non-toroidal configuration.

40 3 A scalable processor array for cGAs acceleration

It is well established that in a GA (or cGA) increasing the population size leads to a
convergence to better solutions, although slower because a larger solution space needs
to be explored. The number of solutions used by a given cGA is a parameter that
is previously studied to ensure that the algorithm obtains a solution with a desired
quality within a given execution time. Moreover, as our hardware architecture targets
an FPGA, the population size may be constrained by the available memory blocks in
the device. In the hardware architecture, as the number of PEs increases the number
of memories must also increase, which in turn leads to a growth in the total number of
solutions. Consequently, there is a maximum number of PEs that our architecture can
have to apply a cGA with a predefined population size. The following equations show
the relationship between the total number of solutions in a, respectively, toroidal and
non-toroidal configuration of the cGA architecture and the number of PEs

Nsolutionstoroidal
= k ·NMEMtoroidal

= 2 · k ·NPE (3.4)

Nsolutionsnon−toroidal
= k ·NMEMnon−toroidal

= k (2 ·NPE +NPErows +NPEcols
) (3.5)

where k denotes the number of solutions in each memory. For a given number of so-
lutions, the maximum level of parallelism is achieved by a toroidal configuration with
one solution per memory (k = 1), and it is equal to half the total number of solutions.
Therefore, we can say that our architecture can have a maximum of a PE for each two
solutions in the population.

Since the proposed scalable processor array for cGA targets FPGA devices, the memory
blocks are implemented with the built-in memory blocks of these devices (BRAMs) which
have a predefined capacity. Therefore, depending on the size of the representation of a
solution and how many solutions a subpopulation has, the number of BRAMs and their
utilization can vary in the implementation of the architecture. We define the memory
usage of a solution (solutionusage) as the amount of space that a solution requires to
be kept in a single BRAM. For instance, if a BRAM has a total of 1024 words and a
solutions requires 4 words, the solutionusage is equal to 4/1024; instead, if a solution
requires 1100 words, the solutionusage is now equal to 1100/1024 which represents more
than one BRAM to keep a single solution. The amount of BRAMs required to keep a
complete subpopulation is given by dk · solutionusagee, where k represents the number
of solutions per subpopulation. It should be emphasized that the solutionusage must
include complete memory words. For instance, if a solution requires 40 bits and the
BRAM is configured to work with 1024 words each with 32 bits, the solutionusage is

3.2 The architecture 41

equal to (1 + 1)/1024; whereas in a configuration of the BRAM of 2048 words each with
16 bits, the solutionusage is now equal to (2 + 1)/2048.

In an FPGA implementation, the number of BRAMs required to build the architecture
is given by

NBRAMtoroidal
= 2 ·NPE · dk · solutionusagee (3.6)

NBRAMnon−toroidal
= (2 ·NPE ·NPErows +NPEcols

) · dk · solutionusagee (3.7)

for respectively a toroidal or non-toroidal configuration.

One of the main advantages of the proposed architecture is its scalability since the
number of PEs can be adjusted, within certain limits, to fulfil the desired requirements.
From one side, a higher number of PEs leads to an improved throughput but it requires
more hardware resources. Situations where harsh real-time constraints are imposed may
take advantage of our architecture by increasing the parallelism. On the other side, if
there are limitations in the hardware resources available, it is possible to decrease the
parallelism to a level where both computation time and used hardware resources are
satisfied. For example, a cGA with 128 solutions can be implemented with a 8× 8
configuration (64 PEs) where each memory holds a single solution (toroidal shape), or
by a 2×2 configuration (4 PEs) with 16 solutions per memory.

Below we summarize the main characteristics of the proposed cGA architecture.

• Scalable: The number of PEs can be varied to achieve different levels of paral-
lelism. Nevertheless, since the number of memory blocks growths in proportion
to the number of PEs, the amount of solutions per memory must be decreased as
the parallelism increases so that the population size is kept near constant (Equa-
tion (3.4) and (3.5) must be satisfied, respectively, for a toroidal and non-toroidal
configuration). This imposes a maximum limit in the level of parallelism (number
of PEs) equal to half the population size, for a toroidal configuration, where only
one solution exists per memory. Scalability of the architecture is limited by the
number and configuration of the PEs in the structure’s array, and by the number
of solutions per memory so that the equations aforementioned are satisfied.

• Regular: A cGA with a toroidal structure is built by replicating a regular structure
where one PE connects to 4 memories and one memory is shared by 2 PEs. There-
fore, no additional complexity exists for building a cGA with different levels of
parallelism since only these two blocks need to be replicated as desired. For cGAs
with a non-toroidal structure, the memories placed in the borders only connect to
one PE, which can be easily constructed starting from a toroidal configuration.

42 3 A scalable processor array for cGAs acceleration

• High memory bandwidth: Changing the level of parallelism does not introduce any
potential memory access bottleneck in the architecture. A single PE always has
access to four independent memories, regardless of the number of PEs. Therefore,
since the number of memory blocks increases in proportion with the number of
PEs, the global memory bandwidth of the hardware is naturally adapted to the
parallelism level. Additionally, the hardware architecture of a PE can be designed
so that the memory bandwidth provided by the four memories is used to efficiently
feed their circuits (e.g. parallel structures or pipelined circuits) thus improving the
overall performance of a PE.

• Shared memories: Although the main goal of the shared memories of the cGA
architecture is to keep the problem’s solutions, which is essential for the algorithm,
they can also be used to store additional data. A typical example is the problem
instance parameters (often a large amount of data) required to compute the fitness
function. Nevertheless, as each memory block is seen by the two PEs connected to
it in different positions (e.g. for one PE is the top memory and for the other PE the
bottom memory), consecutive PEs in the array see the same memory contents in
different memories’ positions. To overcome this, the data can be simply duplicated
for each top/bottom and left/right pairs of memories so that all the PEs behave
similarly while reading this data. Additionally, the shared memories can also be
used exclusively by a single PE to keep its own data, or by passing information to
the adjacent PEs if, somehow, this is required.

• Independent PEs: The operation of the array of processing elements is globally
asynchronous and thus each PE works at its own pace and does not need to
synchronize with other nodes. As, in general, the processing time for an iteration
in a PE will depend on the solution data, the asynchronous operation is the natural
expected behaviour. One important advantage of an asynchronous operation of
the array of PEs is the potential reduction of simultaneous memory accesses and
consequently the reduction of stall states necessary to overcome memory access
collisions.

• Toroidal or non-toroidal: With a toroidal configuration of our cGA we guarantee a
complete regular structure where all the solutions possess the same neighbourhood
structure to interact with. Nevertheless, to build this configuration in hardware
long wires are required to form the toroid, which becomes more critical as the
parallelism increases. To avoid this, a non-toroidal configuration can be built that
ensures that critical data paths are not introduced as the cGA is scaled in number
of PEs. As a result, the solutions placed in the border memories present a different
neighbourhood structure from the remaining. Despite a toroidal or non-toroidal

3.2 The architecture 43

Algorithm 2 Pseudo-code of a canonical cGA.
1: P ← Genetate_Initial_Population()
2: Evaluate(P)
3: while not Termination_Condition() do
4: for cell← 1, Population_Size do
5: neighbours← Calculate_Neighbourhood(position(cell))
6: parents← Select_Parents(neighbours and solution in position(cell))
7: new_solution← Apply_Crossover(parents)
8: new_solution← Apply_Mutation(new_solution)
9: Evaluate(new_solution)
10: Replacement(position(cell), aux_P , new_solution)
11: end for
12: P ← aux_P
13: end while
14: return Best solution found

configuration, all the PEs have the same configuration, that is, they are connected
to four memories.

• Configurable: The cGA hardware can be easily configured by defining a small
number of parameter to control the size of the shared memories, the number of
PEs in the rows and columns of the cGA array, and the toroidal or non-toroidal
shape of the structure.

• Applied to different optimization problems and different metaheuristics: By chang-
ing the functionally of the PEs, we can apply our architecture to solve differ-
ent optimization problems. Additionally, although the architecture has been con-
ceived for cellular GAs, other population-based optimization techniques can also
be mapped to this architecture, with appropriate PEs.

3.2.1 Comparison with a canonical cGA

So far, we have presented our proposal for a architecture that supports the execution of
cGAs and can be efficiently implemented in hardware. However, how does the changes
that we have introduced in the algorithm that is supported by the architecture compare
with existing and well-known canonical cGAs?

Essentially, in a cGA the solutions are distributed over a regular grid and for each solu-
tion (or cell) the interactions needed to generate a new solution only take place within
a given neighbourhood of solutions that is centred in the cell. Algorithm 2 presents
the pseudo-code of a canonical cGA as it is described in [AD08]. For each solution in
the population, the algorithm checks the neighbourhood of solutions that will be used
during an iteration, that is, the solutions that can interact with the selected solution

44 3 A scalable processor array for cGAs acceleration

L5

(a)

L9

(b)

C9

(c)

C13

(d)

Figure 3.2: Example of typical used neighbourhoods in cGAs. Black point
represents the elected cell (a solution) and the grey points the solutions in the

neighbourhood of the cell.

(the cell). After this, the typical genetic operators (selection, crossover, mutation and
replacement) are applied to generate a new solution that is placed in that cell position
(or in one of the positions defined by the neighbourhood) to build the next population.
After all the cells have been covered, a generation of the algorithm is complete and the
new population replaces the old one. The procedure is repeated till a stop criterion is
met. We should emphasize that the neighbourhood range is not a fixed parameter that
is applied to all optimization problems and, therefore, it must be defined by the user.

Figure 3.2 illustrates four examples of the most common neighbourhoods in cGAs, where
the solution in the centre (the black point) is the cell, which is surrounded by the corre-
sponding neighbours (the grey points). The label Ln (linear) for these neighbourhoods
represents the n − 1 nearest solutions in vertical and horizontal axis, while the label
Cn (compact) represents the n − 1 nearest solutions in vertical, horizontal and diago-
nal axis [SDJ96]. It is evident that any two consecutive cells in a cGA possess shared
solutions in their neighbourhoods, which is essential for the correct behaviour of the
algorithm.

The neighbourhoods of the solutions placed in the memories of the proposed processor
array does not match exactly the regular organizations shown in Figure 3.2. Figure 3.3(a)
shows an example of a processor array with 8 solutions per memory where two solutions
are elected as cells (the black points) to interact with their respective neighbourhoods
(grey points). As it can be seen, a given solution has two distinct possible neighbour-
hoods depending on which PE selects it, represented in the figure by light or dark grey
points. The memory shared by both PEs holds solutions belonging to both neighbour-
hoods.

Figure 3.3(b) shows a modified version of the array of Figure 3.3(a) with 2 times more
PEs in both rows and columns of the array, while the solutions are kept identical. This
increment by a factor of 4 in the total number of PEs results that each memory keeps
now 4 times less solutions, so that the same population size is preserved. The cells

3.2 The architecture 45

(a)

(b)

Figure 3.3: cGA neighbourhood solutions of the processor array for different
levels of parallelism: (a) with 8 solutions per memory and (b) with 2 solutions
per memory. Black points: elected cells (solutions); dark and light grey: two

distinct possible neighbourhoods.

elected in both figures that interact with their neighbourhoods are the same, but the
neighbourhoods are now different.

Although the examples provided above consider that a PE selects all the solutions in its
4 memories for the neighbourhood, it is possible to select only a subset of these solutions
by defining the PE functionality to do that. Therefore, a PE with a larger number of
solutions per memory can emulate the same neighbourhood that an equivalent cGA with
less solutions per memory, but not the other way around.

46 3 A scalable processor array for cGAs acceleration

Another characteristic of the canonical cGA presented in Algorithm 2, is that the new
population is generated considering only solutions of the current population. This cor-
responds to a synchronous cGA where all the cells in the population, together with
their neighbour solutions, generates concurrently a new population that will replace the
previous one in an atomic step. By contrast, in an asynchronous cGA as soon as a new
solution is generated it immediately replaces (subject to the criterion used) an existing
solution of the current population. Therefore, in this class of cGAs it is required to
define an update policy that represents the sequential order that each cell is updated.
The most common policies are [ADGT06]:

• Line Sweep. It is the simplest method where each cell in the cGA is sequentially
and row by row updated.

• Fixed Random Sweep. The next cell to update is selected with a uniform proba-
bility and the same cell cannot be selected more than once for a given generation.
A fixed random order is used for all the generations.

• New Random Sweep. Identical to the fixed random sweep, with the difference of
creating a new random order for all the generations.

• Uniform Choice. The next cell is chosen with a uniform probability among all the
solutions. A cell can be visited more than once per generation.

Our cGA hardware architecture is designed to have all the PEs executing in parallel and
independently from each other. This means that each PE starts to compute a new solu-
tion as soon as the last one has been finished, without any kind of synchronization with
the remaining PEs. Therefore, this algorithm cannot be classified as a synchronous cGA,
which would require a synchronous replacement step for updating a new population.

The update policies presented above for an asynchronous cGA cannot also be applied
to our cGA hardware, since they assume that all the solutions are sequentially updated.
In the hardware implementation, a subset of solutions (eventually equal to the number
of PEs) of the population can be processed at the same time, and updated according to
the time that this processing requires to be computed.

All these classifications for cGAs are based on studies in the field of cellular automata
performed by [SdR99], where asynchronous methods are divided between step-driven or
time-driven. A step-driven updating method is characterized by the absence of a time
variable and thus it is the most natural for using in a cGA as this will be implemented
in software where each elected cell is executed one by one. The aforementioned update
policies belong to this class. Clearly, our cGA belongs to the class of time-driven where

3.2 The architecture 47

the updating of a cell (a solution) happens by a process that is independent from the
other cells. This process is characterized statistically by the time that a given solution
takes from being updated till the next time it is updated again. An example of a
time-driven method is the exponential waiting times where the occurrence of an event
follows an exponential distribution [SdR99]. Nevertheless, in the array of processors we
do not know a priori the time or the statistics that a solution takes to be updated.
Therefore, we classify our cGA as asynchronous with a time-driven update policy.

3.2.2 Application to other population-based metaheuristics

Although the hardware architecture proposed in this work has been thought to solve
cellular GAs, it can be applied to other population-based metaheuristics. In its essence,
the architecture can simply be seen as a set of processing elements that are capable to
compute a given algorithm; each PE is connected to memories that can hold candidate
solutions of an optimization problem. In addition, information necessary by the algo-
rithm can be spread throughout the PEs by using the shared memories. Therefore, by
distributing the candidate solutions of a problem over the memories, each PE can work
simultaneously in their solutions while ensuring the necessary communication with the
remaining PEs.

A possible application of the processor array is the particle swarm optimization (PSO)
algorithm that is a metaheuristic inspired by the behaviour of a bird flock [KE95]. In
this algorithm, to each candidate solution of the problem (called particle), it is assigned
a given velocity that is calculated according to the best solution (or position) found
by that particle and the best global solution among all particles. Then, the particle
is updated according to its velocity and position. This process is repeated for all the
particles.

In [SLGZ11] it is proposed a cellular PSO where the particles are distributed over a
regular grid. During the evolutionary process of the algorithm, each particle evolves by
the rules defined by the original algorithm, but the best global solution information is
only exchanged within neighbour cells. Therefore, there exists a slow information diffu-
sion through the complete population, which may promote diversity while exploitation
occurs in each particles’ local information. A similar approach is followed by [HM09]
where a cellular PSO is applied with success to solve problems whose global optimum
value and shape of the fitness function may change over time.

Another algorithm that can be easily adapted to be executed in our hardware architec-
ture is the differential evolution (DE) [SP97]. This metaheuristic, like the GA, belongs

48 3 A scalable processor array for cGAs acceleration

to the class of evolutionary algorithms (EAs) that uses mechanisms inspired by the bio-
logical evolution to evolve a population of candidate solutions. The DE is used originally
to solve problems over continuous spaces. The algorithm starts by creating a new solu-
tion (vector) by adding a weighted difference between two population vectors to a third
vector, all selected randomly. After that, a solution from the population is elected and it
is mixed with the previously generated vector by applying a crossover operation, where
the different dimensions of the vector are mixed. Then, the resulting final solution may
replace the previously elected solution according to a given criterion.

Since the DE algorithm belongs to the class of EAs, where solutions interact with each
other so that a population evolves, it is possible to decentralize the population like it
is done in a GA. Therefore, our architecture can be used to implement DE algorithms
exactly in the same way as it is done with GAs [NI10]. Moreover, recent studies have
found that using a cellular version of a DE algorithm can improve its performance to
solve dynamic optimization problems [NHM11]. This finding is consistent with several
other works that claim that a cGA is superior to a GA since a slow diffusion of solutions
is promoted by distributing them over a cellular grid [AT02].

A local search procedure is often applied to a GA that tries to improve each new solution
generated by the classical operations of the GA. This algorithm is known as memetic
algorithm (MA) and it mimics both the biological evolution, as it is done by a GA,
and cultural evolution by applying a local search [Mos89]. Therefore, the MA can be
implemented in the hardware architecture only by changing the functionally of a PE to
perform an additional local search operation to the generated solution. Cellular versions
of MAs have been successfully implemented to solve complex problems like the batch
job scheduling on grid systems [XAD+08], or the satisfiability problem [ATDA05].

Figure 3.4 illustrates a possible application of the hardware architecture to implement a
distributed GA (dGA). This can be achieved simply by assigning to each PE the task to
evolve exclusively a subset of solutions of the population (a subpopulation or island of
the dGA). Therefore, the solutions of each subpopulation start to evolve independently
from each other and, occasionally, each PE migrates solutions to the neighbour islands
which can be accomplished by using the shared memories as it is depicted in the figure.
This dGA presents a fixed connection topology among the islands that is imposed by
the hardware architecture.

Although we have discussed several applications of our architecture to different popu-
lation-based metaheuristics, we do not claim it can be, in a general way, applied to all
of them. Indeed, by distributing the solutions of a metaheuristic over several memories
that can be accessed independently by PEs, it is possible to work with several solutions
at the same time, thus improving the number of generated solutions per unit of time.

3.3 Architecture simulation 49

PE

M
E

M

MEM

PE

M
E

M

MEM

PE

M
E

M

MEM

PE
M

E
M

MEM

PE

M
E

M

MEM

PE

M
E

M

MEM

PE

M
E

M

MEM

PE
M

E
M

MEM

PE

M
E

M

MEM

An island of a distributed GA.

The PE only evolves the solutions kept within the island.

Occasionally, solutions can migrate to neighbour islands.

Figure 3.4: Application of the processor array architecture to build a dis-
tributed GA.

Moreover, the cellular structure of our architecture, where neighbour cells can interact
with each other (through the shared memories) makes this architecture conveniently
suited for cellular EAs. Additionally, any global data required by a metaheuristic can
be diffused throughout the structure by using the shared memories.

3.3 Architecture simulation

We have seen that the proposed architecture can support the execution of asynchronous
cGAs with a time-driven update policy since a set of solutions are generated (and up-
dated) in parallel with no relation among them. In addition, the neighbourhood struc-
ture of the cGA is imposed by the architecture and changes with the number of solutions
per memory. These features are specific of our cGA implementation and distinguish it
from others cGAs, and thus a simulation of the algorithm is required to study its con-
vergence for different configurations of the hardware.

In this section we analyse the convergence of the cGA considering different sizes and
shapes of the array of processors, reflecting this way possible hardware implementation
scenarios. Therefore, we will explore the scalability of the architecture to solve a given

50 3 A scalable processor array for cGAs acceleration

time

PE 1

PE 2

PE 3

PE 4

Event on the PE.

A new solution is updated.

Figure 3.5: Discrete-event simulation of the cGA supported by the processor
array to emulate its time-driven update policy.

optimization problem by fixing its population size, which results in a smaller number of
solutions per memory as the number of PEs increases. Moreover, the algorithm can be
easily compared with a panmictic GA by using a single PE.

As discussed in Section 3.2.1, our cGA has a time-driven update policy. Therefore,
each solution in the population is updated (or processed) according to a given statistical
process that defines the time between two consecutive updates. Thus, to simulate the
cGA running in the processor array it is required to perform a discrete-event simulation
to emulate the sequence of events over time. Figure 3.5 presents an example of events
thrown by 4 PEs that concurrently process their solutions. As it can be seen, although
the PEs may start simultaneously, they are not synchronized as the time between two
events is not a constant value. We should emphasize that this model of simulation is not
equal to randomly select a PE to process a solution. In such situation, for instance, a
given PE could be chosen two or more times consecutively while the remaining PEs will
not be updating solutions. This scenario does not reproduce the minimum time that a
PE takes to process a solution.

In our simulation model we emulate events in the PEs that, in turn, will emulate the
evolution of solutions present in the cellular array of the cGA. Therefore, the statistical
process that characterizes an event in a PE is different from the statistical process of
a solution in the cGA. However, these two processes are related and the time that a
solution takes to be updated is equal to the time that this solution takes to be updated
by any of the two PEs that have access to it. It is clear that the update policy of
solutions in our cGA is a consequence of the capacity that a PE has to compute its
algorithm and the sequence it uses to update its solutions.

For the discrete-even simulation we have chosen the SystemC language which is a set of
C++ classes capable of providing this kind of simulations [Ini]. This language mimics in

3.3 Architecture simulation 51

some aspects the hardware description languages (HDLs) and is oriented for system-level
modelling.

Our simulation model has been described to emulate the hardware architecture, where
the number of PEs in a row and column of the array, the number of solutions per
memory, and the toroidal and non-toroidal configuration of the array are parameters.
Each PE is capable to execute the typical operations of a GA. We have decided that
when a PE is called to compute a new solution (an event), it only updates the solution
to the cGA memory in the following event of the same PE. Therefore, an event starts
by updating the previously generated solution in that PE and afterwards by generating
a new solution. This resembles the real operation of a PE in hardware, where a new
solution is only updated to the memory at the end of that generation.

However, for simplicity, we do not simulate access conflicts when two PEs are accessing
to the same data in the same memory (a solution). The access to these memories is done
instantaneously (in the concept of a discrete-event simulation) and thus no conflicts of
data occur. This simplified model allows faster simulation times, and it is sufficient for
a first validation of the behaviour of the cGA. Later in Section 3.4, we will present a
synthesizable clock cycle accurate model described in Verilog HDL, thus representing
accurately a simulation model of its hardware implementation.

We have elected the travelling salesman problem (TSP) to evaluate the algorithm sup-
ported by the hardware. The TSP objective is to find the shortest possible route of a
salesman that, starting in a given city, has to visit every city of a list exactly once and
return to the starting city. This problem has (n−1)!/2 possible solutions where n is the
number of cities, and it is a NP-hard problem [LKM+99]. Therefore, this optimization
problem has a huge search space, ideal to be solved by a metaheuristic search method
as the cGA.

The chosen genetic operations of the algorithm are a random selection of two solutions in
the neighbourhood of a PE; the maximal preservative crossover (MPX); and a replace-
ment of the worst previously selected solution (the parents) only if the new solution has
a better fitness value. Figure 3.6 illustrates an example of the MPX operator for a 5-city
problem. This operator, that we have already presented in Section 2.2.1.3, can perform,
besides the crossover, also an implicit mutation operation [LKM+99]. The example pro-
vided in the figure shows that the generated solution presents edges (consecutive cities
to be traversed in the TSP) of the graph that are not present in both selected solutions,
thus acting also as a mutation. Therefore, we do not use an explicit mutation operator in
our cGA. Additionally, the MPX operator has been chosen since it is a simple algorithm
capable of providing good results for the TSP [NYYY07].

52 3 A scalable processor array for cGAs acceleration

1

2
3

4

5

1

2
3

4

5

1 4 52 3

Selected solution 1

12 345

Selected solution 2

12 3 45Generated solution

1

2
3

4

5

Mutated edges

Figure 3.6: Example of the maximal preservative crossover applied to the
TSP, and how it implicitly performs a mutation operation.

In the next subsections we will present several results for different configurations of
the proposed hardware architecture, mainly for square arrays with different levels of
parallelism and non-square arrays with equal parallelism. Additionally, toroidal and non-
toroidal structures of the array will be analysed. A TSP instance with 280 cities, named
a280 [TSP], will be used for all the experiments that are averaged over 50 independent
runs. We have run all the simulations till a maximum of 200×106 generated solutions in
all the PEs of the array. However, in some graphs we show less information for clarity.

Each PE takes between 35 to 45 time units (distributed uniformly) to generate a new
solution, which corresponds to the time of a new event for each PE in our simulation
model. This random interval has been chosen to emulate the real behaviour of the MPX
algorithm which takes different times to be executed as the length of the copy of the
first selected solutions is random (see Figure 3.6). Moreover, in a real implementation
of the architecture, memory access collisions will occur that must be solved, resulting
this way in an additional random waiting time. The values 35 and 45 have been chosen
considering that the selection, fitness, and replacement operations take 10 time units
each, and the crossover 5 to 15 time units. More importantly, the total time to generate
a solution in a PE ensures that no synchronization occurs among the PEs of the array.

3.3 Architecture simulation 53

Table 3.1: Configurations of the toroidal and square arrays used in the Sys-
temC model simulations.

Processor array
1×1 2×2 4×4 8×8

PEs 1 4 16 64
Memories 2 8 32 128
Solutions/memory 64 16 4 1
Population size 128 128 128 128

It should be stressed that we do not claim that the cGA operators chosen in these
experiments are the best for solving the TSP, nor that a GA is a good metaheuristic to
solve this problem. The main goal is to evaluate the cGA supported by the processor
array with different sizes and organizations, while using the same operators for solving
a given optimization problem, so that we could take conclusions about the scalability of
the architecture and how this affects the convergence of the algorithm.

3.3.1 Toroidal arrays configuration

In the following subsections we present simulation results of various organizations of a
toroidal configuration, both for square and non-square arrays, of the proposed hardware
architecture.

3.3.1.1 Square arrays

The evaluation of the cGA running with square arrays, where the number of PEs in
both rows and columns is the same, has as main objective to understand the impact
that different levels of parallelism brings to the algorithm. For that, we have chosen a
population size of 128 solutions that are distributed over the memories of the architecture
for the following array sizes: 1×1, 2×2, 4×4 and 8×8 PEs. Table 3.1 presents the details
of these configurations.

It is important to notice that the different configurations have been chosen to ensure
that the population size is kept the same in all the cases. This way, we can compare
the behaviour and performance of the algorithm without the interference of different
population sizes. In addition, the configuration with 1×1 PE is equivalent to a panmictic
GA, since the neighbourhood is the entire population.

Figure 3.7(a) presents the evolution of the best fitness value over 10 × 106 generated
solutions in all the PEs. This graph represents in the x-axis the total number of generated

54 3 A scalable processor array for cGAs acceleration

0 2 4 6 8 10

x 10
6

3000

4000

5000

6000

7000

8000

Number of generated solutions

F
it
n
es
s
va
lu
e

8× 8 PEs

2× 2 PEs

4× 4 PEs

1× 1 PE (Panmictic GA)

Zoom on
bottom figure

(a) 10× 106 new generated solutions

0 2 4 6 8

x 10
5

0.8

1

1.2

1.4

1.6

1.8
x 10

4

Number of generated solutions

F
it
n
es
s
va
lu
e

8× 8 PEs

4× 4 PEs

1× 1 PE (Panmictic GA)

2× 2 PEs

(b) Zoom on the first 800× 103 new generated solutions

Figure 3.7: Fitness evolution with the total number of generated solutions,
obtained with the SystemC model for the cGA supported by toroidal and square

processor arrays to solve a TSP.

solutions and thus it does not reflect the execution acceleration achieved by arrays with

3.3 Architecture simulation 55

a higher number of PEs. This way, we can compare how the algorithm evolution changes
for the different neighbourhoods structures (number of solutions per memory) that are
a consequence of the change in the number of PEs.

As it can be seen, for processor arrays with a higher number of PEs, the convergence rate
of the algorithm is lower in a first phase of the evolutionary process (less than 4 × 106

generated solutions), when compared to arrays with fewer PEs, leading thus to worst
quality solutions found. However, these architectures recover, and even show to achieve
a superior quality solution as the algorithm continuous to evolve. This is especially
notorious in the 8×8 architecture that has 1 single solution per memory.

Interestingly, in a very early phase of evolution of the algorithm, the arrays with higher
parallelism have a faster convergence rate than arrays with less PEs. Figure 3.7(b) illus-
trates this by zooming in the first 800×103 generated solutions. This situation happens
since the architectures with a larger number of PEs have smaller neighbourhoods in the
cGA, which leads to a more intensive search in each PE as each one of them sees a
smaller number of solutions. Therefore, the algorithm running in a PE, at this phase,
behaves somehow as a panmictic GA with a very small population, leading thus to a
faster convergence rate.

Table 3.2 shows several fitness values during the evolution of the algorithm for the maxi-
mum number of generated solutions in the complete simulation (200×106), highlighting
the best fitness for each evolution point found for the different array configurations. As
it can be seen, the final value found by the different configurations is consistently better
as the number of PEs increases.

Note that the neighbourhood of the cGA changes according to the level of parallelism
of the architecture. A higher parallelism leads to a smaller number of solutions in the
neighbourhood of the cGA, whereas a smaller parallelism leads to a higher number
of solutions in the neighbourhood of the cGA (cf. Figure 3.3). Indeed, the different
convergence rates for the different levels of parallelism are a result of this neighbourhood
change and how long a solution takes to spread its genetic information throughout the
array [SDJ96].

It is clear from the results that our cGA does not degrade the quality of the final solution
found when compared to the panmictic GA (1×1 PE). Additionally, the quality of the
final solution improves as the neighbourhood size gets smaller. This fact happens since
there exists a smooth diffusion of the solutions’ information thorough the population,
which provides a better sampling of the search space that leads to better results [AD08].

Figure 3.8 shows the same results as the previous graphics, but now reflecting the real
gain obtained by the parallelism of the architecture. Therefore, the x-axis represents the

56 3 A scalable processor array for cGAs acceleration

Table 3.2: Fitness values obtained with the SystemC model for the cGA
supported by toroidal and square processor arrays to solve a TSP.

Generations Best fitness value
1×1 2×2 4×4 8×8

5× 103 27969 27984 28028 28235
10× 103 26233 26343 26236 26416
20× 103 24183 24360 24169 24077
50× 103 20561 20624 20460 19864

100× 103 17178 17245 17000 16394
200× 103 13735 13746 13670 13227
300× 103 11861 11830 11861 11602
400× 103 10574 10601 10631 10523
500× 103 9647 9673 9698 9797
800× 103 7560 7703 7814 8227

1× 106 6585 6651 6911 7524
2× 106 4553 4653 4745 5562
3× 106 4148 4190 4205 4646
4× 106 3984 4006 3997 4185
5× 106 3862 3905 3881 3953
6× 106 3795 3828 3814 3820
7× 106 3741 3775 3758 3731

10× 106 3642 3654 3648 3582
20× 106 3508 3507 3482 3395
50× 106 3402 3364 3343 3255

100× 106 3362 3322 3303 3215
200× 106 3338 3310 3287 3200

number of abstract time units used in the context of our discrete-event simulation. As
expected, the time that each configuration takes to execute the algorithm is inversely
proportional to the number of PEs. This means, for example, that the 8×8 configuration
(64 PEs) is 4 times faster than the 4×4 configuration (16 PEs) and 64 times faster than
the configuration with a single PE. It is evident from the figure that any slower converge
rate previously observed by the arrays with higher parallelism, clearly vanishes with the
speedup achieved. Therefore, the cGA supported by the architecture not only is efficient
as it provides a mean to accelerate the algorithm, but also it is effective as it provides
good quality results for the optimization problem.

3.3.1.2 Non-square arrays

To analyse the behaviour of the cGA with non-square arrays, we have used the same
population size as previously, but now changing the arrays from 1×64 to 8×8 PEs as
shown in Table 3.3. In all these configurations we have the same parallelism and the
same number of solutions per memory which leads to the same neighbourhood structure

3.3 Architecture simulation 57

0 1 2 3 4 5

x 10
7

3000

4000

5000

6000

7000

8000

Time units

F
it
n
es
s
va
lu
e

8× 8 PEs

4× 4 PEs

2× 2 PEs

1× 1 PE (Panmictic GA)

Figure 3.8: Fitness evolution with number of clock cycles, obtained with the
SystemC model for the cGA supported by toroidal and square processor arrays

to solve a TSP.

Table 3.3: Configurations of the toroidal and non-square arrays used in the
SystemC model simulations.

Processor array
1×64 2×32 4×16 8×8

PEs 64 64 64 64
Memories 128 128 128 128
Solutions/memory 1 1 1 1
Population size 128 128 128 128

in all situations. Therefore, we investigate how the algorithm behaves by changing the
aspect ratio of the array of processors, while the remaining conditions are kept equal.

Figure 3.9 illustrates the fitness value evolution for the different arrays for 30× 106 new
generated solutions in all PEs. Additionally, in the graph we also include the panmictic
GA of the previous experiments so that we can compare it with the cGA. Note however,
that although the x-axis of the graph represents the number of generated solutions, it
can also represent the abstract time units since all the array configurations have the same
number of PEs. Therefore, the graph also represents the acceleration obtained for the
different non-square arrays (exception is the panmictic GA that is 64 times slower, which
is not shown in the graph). As it can be seen, the narrower arrays (e.g. 1×64) lead to a

58 3 A scalable processor array for cGAs acceleration

0 0.5 1 1.5 2 2.5 3

x 10
7

3000

4000

5000

6000

7000

8000

Number of generated solutions

F
it
n
es
s
va
lu
e

1× 64 PEs

2× 32 PEs

8× 8 PEs

4× 16 PEs

1× 1 PE (Panmictic GA)

Figure 3.9: Fitness evolution with the total number of generated solutions,
obtained with the SystemC model for the cGA supported by toroidal and non-

square processor arrays to solve a TSP.

slower convergence rate of the algorithm when compared to more square. This behaviour
is identical to the one previously seen for square arrays with more PEs that require a
smaller neighbourhood size. It should be noted however, that it is the same reason in
both situations that lead to this behaviour in the convergence rate of the algorithm: the
‘time’ that solutions take to spread their information throughout the array. Although
we have used the same neighbourhood structure, the narrower the configuration is for
the same number of PEs, the more difficult is to spread the solutions’ information.

Table 3.4 presents the fitness values observed in the previous figure for the different
arrays, till the maximum number of generated solution in these experiments. At an
early stage of the algorithm, the arrays where it is more difficult to spread the solutions’
information show a superior performance. After that, the less narrow arrays possess
the best results (around 5 × 106 generated solutions), and continuing to evolve the
algorithm the narrower configurations tend to show again the best results. Once again,
these observations are consistent with the ones observed for square structures. Although
the data after 200 × 106 does not show that the best array is the one with 1×64 PEs,
this array, at this point, possess the higher convergence rate when compared to the
remaining. Therefore, letting the algorithm evolve for more generations, will eventually
show that the 1×64 array leads to the best results.

3.3 Architecture simulation 59

Table 3.4: Fitness values obtained with the SystemC model for the cGA
supported by toroidal and non-square processor arrays to solve a TSP.

Generations Best fitness value
1×64 2×32 4×16 8×8

5× 103 28701 28208 28272 28235
10× 103 26907 26265 26302 26416
20× 103 24180 23615 23855 24077
50× 103 19742 19150 19603 19864

100× 103 16239 15775 16053 16394
200× 103 13173 12761 12998 13227
500× 103 9949 9424 9562 9797

1× 106 7942 7269 7273 7524
2× 106 6285 5608 5409 5562
3× 106 5510 4881 4656 4646
4× 106 5010 4477 4232 4185
5× 106 4704 4225 4034 3953

10× 106 3980 3666 3610 3582
12× 106 3857 3582 3524 3524
15× 106 3721 3485 3456 3462
20× 106 3598 3386 3385 3395
30× 106 3438 3291 3308 3320
40× 106 3353 3234 3253 3279
50× 106 3302 3198 3221 3255

100× 106 3172 3136 3147 3215
200× 106 3122 3109 3120 3200

It is evident that the change of the aspect ratio of the processor array configuration, while
keeping the same amount of PEs, does not improve the number of generated solutions
per time unit in a real hardware implementation. Therefore, it is important to keep
in mind the different behaviours that these structures produce in the convergence of
the algorithm. Narrower structures, although they may produce better quality results,
take a longer time to converge to the final solution, while a square structure produces
a good balance between convergence time and quality results. Nevertheless, the time
or the number of generated solutions that a cGA takes to be executed are ambiguous
parameters, and in a real implementation of a cGA we do not now a priori which
configuration may be the best.

3.3.2 Non-toroidal arrays configuration

In the following subsections we will simulate the array with non-toroidal configurations,
both for square and non-square arrays. A non-toroidal configuration may be interesting
in a hardware implementation of the processor array since it can potentially reduce the

60 3 A scalable processor array for cGAs acceleration

Table 3.5: Configurations of the non-toroidal and square arrays used in the
SystemC model simulations.

Processor array
1×1 2×2 4×4 8×8

PEs 1 4 16 64
Memories 4 12 40 144
Solutions/memory 32 11 3 1
Population size 128 132 120 144

routing complexity required to build a toroidal array, thus leading to reduced routing
costs.

3.3.2.1 Square arrays

For non-toroidal and square arrays we have used the parameters presented in Table 3.5.
The configuration sizes have been chosen to be equal to the ones presented previously
for toroidal arrays. However, in order to ensure that all PEs work with the same number
of solutions per memory, it is not possible to have in all the configurations a population
size of 128 solutions since additional memories (and solutions) need to be introduced in
the architecture. Therefore, the number of solutions per memory has been chosen so
that Equation (3.5) is satisfied and the populations size is as close as possible to 128.

Figure 3.10 presents the fitness evolution for the different arrays analysed as well as
for the 8×8 PEs with a toroidal configuration for a total of 20 × 106 new generated
solutions. As it can be observed, the convergence behaviour is similar to the ones found
previously in the toroidal case, where more parallelism (smaller neighbourhoods) leads
to a slower convergence rate and a better quality results. Additionally, the convergence
of the algorithm with time is similar to the toroidal for square arrays (c.f. Figure 3.8)
where the acceleration of the cGA is proportional to the number of PEs. Therefore, the
increase of the number of PEs is beneficial since it produces a much faster algorithm
implementation, and capable of producing solutions with superior quality for the same
number of generations.

Comparing the two 8×8 configurations (non-toroidal and toroidal) it can be seen that
the non-toroidal shows a slower convergence rate, which is consistent to the previous
reasoning that the convergence rate is related to the potential of interaction among
the solutions in the population. However, since these two configurations have different
populations sizes (144 for non-toroidal and 128 for toroidal) we cannot make a fair
comparison between them, and the faster convergence of the toroidal array may also
include effects of a smaller population which makes the algorithm to converge faster and

3.3 Architecture simulation 61

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

x 10
7

3000

3500

4000

4500

5000

5500

6000

Number of generated solutions

F
it
n
es
s
va
lu
e

4× 4 PEs

8× 8 PEs

2× 2 PEs

8× 8 PEs (toroidal)

1× 1 PE (Panmictic GA)

Figure 3.10: Fitness evolution with the total number of generated solutions,
obtained with the SystemC model for the cGA supported by non-toroidal and

square processor arrays to solve a TSP.

for a solution with less quality (after 200× 106 generations, the toroidal array achieves
3200, while the non-toroidal array achieves 3114).

3.3.2.2 Non-square arrays

In this last experiment, we have analysed non-square and non-toroidal arrays configura-
tions. As done previously, we target the population size to 128 solutions while changing
the aspect ratio of the processor array, thus maintaining the same degree of parallelism.
Table 3.6 presents the details of these configurations. As it can be seen, the narrower
arrays present a considerable number of memories with are required to build the non-
toroidal configuration. Therefore, the number of solutions increases far above 128 (193
for the 1×64).

Figure 3.11 illustrates the fitness evolution for the different configurations analysed to-
gether with the 8×8 PEs toroidal for a maximum of 30× 106 new generated solutions.
The results obtained are as expected, with the narrower configurations showing a smaller
convergence rate that, eventually, will end in a better quality solution found by the algo-
rithm. However, the configurations show a quite different population size among them
(ranging from 193 to 144 solutions) which influences the overall performance of the cGAs
and, therefore, making them less comparable.

62 3 A scalable processor array for cGAs acceleration

Table 3.6: Configurations of the non-toroidal and non-square arrays used in
the SystemC model simulations.

Processor array
1×64 2×32 4×16 8×8

PEs 64 64 64 64
Memories 193 162 148 144
Solutions/memory 1 1 1 1
Population size 193 162 148 144

0 0.5 1 1.5 2 2.5 3

x 10
7

3000

4000

5000

6000

7000

8000

Number of generated solutions

F
it
n
es
s
va
lu
e

1× 64 PEs

2× 32 PEs

8× 8 PEs

4× 16 PEs

8× 8 PEs (toroidal)

Figure 3.11: Fitness evolution with the total number of generated solutions,
obtained with the SystemC model for the cGA supported by non-toroidal and

non-square processor arrays to solve a TSP.

It is clear that for non-toroidal configurations with narrow arrays, the architecture re-
quires a large number of memories which is less attractive in a hardware implementa-
tion than for a square structure. However, it is possible to build, for example, a 1×48
non-toroidal array with 145 solutions (1 per memory), which is comparable to a 8×8
non-toroidal array (with 144 solutions). Nevertheless, the 1×48 configuration has signif-
icantly less number of PEs and therefore does not produce the same number of solutions
per unit of time as the square structure.

3.4 Hardware implementation: the TSP 63

solution 1

city[0]

32 bit

city[1]city[2]city[3]

city[4]city[5]city[6]city[7]

8 bit8 bit8 bit 8 bit

0x000

0x001

0x03F fitness

0x03E

city[0]city[1]city[2]city[3]

city[4]city[5]city[6]city[7]

fitness

city[0]city[1]city[2]city[3]

city[4]city[5]city[6]city[7]

fitness

0x040

0x041

0x07F

0x07E

0x080

0x081

0x0BF

0x0BE

solution 2

solution 3

Figure 3.12: Organization of a shared memory in the processor array for
solving the TSP with a maximum of 252 cities.

3.4 Hardware implementation: the TSP

In this section we will present a first implementation of the proposed processor array
architecture in hardware that solves, like in the previous experiments with SystemC,
the TSP. Therefore, we have adopted the same operations for the algorithm: a random
selection of two solutions, the maximal preservative crossover (MPX), and a replacement
of the worst previously selected solutions only if the new solution has a better fitness.

The logic system has been developed in synthesizable Verilog HDL to target a Xilinx
Virtex-6 FPGA, and represents a clock cycle accurate hardware model. The next sub-
sections present the details of the implementation of a PE to solve the TSP.

3.4.1 Processing element

The processing elements (PEs) of the array architecture are responsible to execute the
operations of the algorithm. Therefore, by changing their functionality, we can adapt
the architecture to solve different optimization problems, like the TSP.

Figure 3.12 shows how the solutions are organized and coded in the shared memories of
the processor array, where a TSP solution is coded by a list if cities (path representation
as described in Section 2.2.1.1). As it can be seen, the memory has a width of 32 bits
that are equally divided to keep 4 cities of the problem. The sequence of the cities that
define a solution are contiguously kept in the memory and the last memory position of a
solutions is used to store the solution’s fitness value. Therefore and by design, we have
constrained the maximum size of a TSP instance to 252 cities.

64 3 A scalable processor array for cGAs acceleration

processor array

memories

connected to PE PE aux memory

re
a
d
 s

o
lu

ti
o
n
 1

o
r

re
a
d
 s

o
lu

ti
o
n
 2

w
ri

te
/r

ea
d
 f

la
g

a
n
d

re
a
d
 c

o
o
rd

in
a
te

s

w
ri

te
 n

ew

so
lu

ti
o
n

(c
o
n
d
it

io
n
a
ll

y)

Pipeline for MPX crossover.

At each clock cycle, a city is processed.

Pipeline for

fitness calculation.

M
E

M

M
E

M

M
E

M

M
E

M
(port 1) (port 0)

Figure 3.13: Overview of the hardware pipeline implemented in the PE to
compute the MPX and fitness of a TSP solution.

As we will see, the most time consuming operations in a generation of a new solution are
the crossover (MPX) and fitness evaluation. Therefore, we have developed a hardware
pipelined architecture to process these operations which is illustrated in Figure 3.13.
This circuit has a 3-stage pipeline to compute the MPX operator and a 4-stage pipeline
for the fitness evaluation.

The MPX algorithm builds a new solution (see Figure 3.6) starting by copying a random
consecutive sequence of cities of the first previously selected solution and, afterwards,
it fills in the missing cities of the new solution in the same order as they appear in the
second selected solution. Therefore, the MPX algorithm used has two main phases: in
the first it copies the part of the first solution to an auxiliary memory while it marks
the cities that have been copied; in the second phase all the cities are read from the
second solution and written to the auxiliary memory if they have not been previously
marked. The first stage of the pipeline corresponds to the memory read of the solutions;
the second stage to the access to the mark memory; and the third stage writes the new
solution into the auxiliary memory.

Since the hardware target of this implementation is a Virtex-6 FPGA, we have decided to
use their memory blocks (BRAMs), which have true dual-port capabilities, to implement

3.4 Hardware implementation: the TSP 65

p
o
rt

 0
p
o
rt

 1

city[0]

8 bit

Programmed to:

- write in “read first mode”

- byte write enable

- “mark” write/read access (1 byte)

- “coord” read access (3 bytes)

32 bit

city[1]city[2]city[3]

city[4]city[5]city[6]city[7]

8 bit8 bit

coord x[0]

8 bit 8 bit

coord y[0]

coord x[1] coord y[1]

mark[0]

mark[1]

12 bit 12 bit

Programmed to:

- write in “write first mode”

 (normal operation)

- byte write enable

0x000

0x1FF

0x200

0x3FF

32 bit

0x001

0x201

Figure 3.14: Configuration and organization of the auxiliary memory (a
BRAM from a Virtex-6 FPGA) in a PE to solve the TSP.

the auxiliary memory to keep both the new solution and the mark memory. Figure 3.14
shows the organization of this memory. As it can be seen, port 0 keeps the new solution
where the cities are organized in the same way as they are in the memories used to
keep the population. In turn, port 1 ensures the access to the mark memory where each
address corresponds to a city identification.

For the fitness evaluation, we have decided to calculate explicitly the distance of a
solution based on the coordinates of the cities. Therefore, each PE needs to keep the
coordinates values so that it can compute the fitness of a new solution. Although
we could use the distance between any two cities, this approach would require much
more memory to store all the distance between any two cities of a TSP instance. For
example, considering 252 cities, 16 BRAMs of a Virtex-6 FPGA are required to keep all
the information (using 16 bits for each distance value). Instead, using the coordinates’
values, a single BRAM can easily accommodate the required values. Since each PE has
its own TSP data, the use of the distance between any two points is thus impractical
for a high level of parallelism in the array.

We also have used the auxiliary memory of a PE to keep the coordinates of the TSP
instance as depicted in Figure 3.14. When a new city is read form the shared memories,
the port 1 of the auxiliary memory simultaneously accesses to the mark part of the
memory and reads the coordinates of the city that is being processed. It must be
stressed that the port 1 of this BRAM is programmed to work in ‘read first mode’ so
that it is possible to write data to the mark and simultaneously the previous data is also
read. With these techniques, we use a single BRAM per PE to keep the necessary data
to generate a new solution, while ensuring a pipelined circuit without stalls.

66 3 A scalable processor array for cGAs acceleration

crossover

and fitness

update (write)

new solution

select

solutions

Figure 3.15: Sequence of operations executed by a PE during a generation of
a new solution for solving a TSP with N cities (N ≤ 252).

The first two stages of the pipeline of the fitness evaluation circuit keep the coordinates
of the actual and previous processed city so that, in the third stage, the distance between
the two cities is calculated. The last stage accumulates the distances so that the final
value of the fitness is calculated. For simplicity, we have used the sum of the absolute
differences of the coordinates as a metric to calculate the fitness value, which is given
by

fitness =
{
N−1∑
i=1
|xi − xi−1|+ |yi − yi−1|

}
+ |xN−1 − x0|+ |yN−1 − y0| (3.8)

where N is the number of cities of the TSP instance.

Figure 3.15 illustrates the sequence of the different operations that a PE uses to compute
a complete generation of the algorithm, together with the number of clock cycles required
for each of them. The selection of solutions and update of a new solution clearly require
less time than the crossover and fitness operations. As the update of the new solutions
is conditionally (only happens if the new solution improves the fitness of the worst
selected solution) it may take only 3 clock cycles. The variables σ and ρ account for the
memory access collisions that may happen when two PEs try to get access to the same
solution. Since these access requests are random, it is not possible to quantify them. In
the following sections we will explain how these accesses are implemented and how they
impact on the performance of the algorithm implementation.

Additionally, we have implemented in each PE a random number generator (RNG) to
feed their selection and crossover modules with the necessary random numbers. In this
work, a 64-bit RNG based on cellular automata (CA) techniques has been adopted.
Section 4.6.1 provides details of this RNG.

3.4.2 Memory access control

The shared memories of the processor array architecture have been implemented with
BRAMs of the FPGA, and configured to work in dual-port mode. Therefore, each
of the two PEs connect to one of these ports so that they can access independently

3.4 Hardware implementation: the TSP 67

PE_1

request_1

write_sol_from_PE_2

M
E
M

collision_w1_r2
PE_2

request_2

write_sol_from_PE_1

collision_w2_r1

collision_w1_w2

Figure 3.16: Signals involved in the memory access control among two PEs
and a shared memory of the processor array architecture for solving the TSP.

to the memory’s contents. Nevertheless, simultaneous access to the same contents (a
solution) can occur, and thus they must be handled carefully. In general, a solution of
the problem occupies several memory locations, and thus a simultaneous write into the
same solution locations can make data incoherent. Consequently, if a PE is writing new
data, the other cannot access it, as the contents of that solution will be temporarily
incoherent. However, read operations can be performed simultaneously.

In our design, memories and PEs collaborate to avoid undesired access collisions. Each
memory module keeps track of which of its solutions are being accessed, both read and
written, by the two PEs connected to it. Figure 3.16 shows the signals involved for the
memory access control among a memory and its PEs.

During the selection phase, a PE checks continuously the signal write_sol_from_PE
that informs it about the solution (if any) being written by the other PE. Using this
information, the PE must ensure that a different solution is chosen during the selection
process. Then, the PE uses the request signal to inform the memory block which
solution will be using, together with the information that if is a writing or reading
access request. During this phase, a solution can be selected for writing even if it has
been selected for reading by the other PE. In this case, the write operation must wait
until the read finishes, as specified by the signal collision_w_r. If a memory receives
two write requests to the same solution in the same clock cycle, the memory accepts
one of the requests and uses the collision_w_w signal to inform the other PE that
the access was denied. When the solutions previously selected for reading and writing
are not needed anymore, a request command is issued to the memory to release the
corresponding solutions.

3.4.3 Implementation and results

The proposed architecture was implemented as a parameterized Verilog HDL model
to solve TSP instances up to 252 cities, and synthesized using Xilinx ISE 12.4 to run
on a Virtex-6 FPGA (XC6VLX240T-1). We have considered a population size of 128
solutions that are distributed over the array to solve a benchmark named ch150 with

68 3 A scalable processor array for cGAs acceleration

Table 3.7: Characteristics of the toroidal processor arrays implementations on
a Virtex-6 (XC6VLX240T-1) FPGA for solving the TSP.

Processor array configuration
1×1 2×2 4×4 8×8

Registers 543
(0.2%)

2020
(0.7%)

7485
(2.5%)

27591
(9.2%)

LUTs 663
(0.4%)

2605
(1.7%)

9306
(6.2%)

34855
(23.1%)

Slices 229
(0.6%)

913
(2.4%)

3727
(9.9%)

13316
(35.3%)

BRAMs 9
(2.2%)

12
(2.9%)

48
(11.5%)

192
(46.2%)

Frequency 186MHz 179MHz 152MHz 122MHz

150 cities from [TSP]. In these experiments, we have evaluated the scalable processor
array for toroidal configurations with 1×1, 2×2, 4×4 and 8×8 PEs.

Table 3.7 presents the implementation results for the different array dimensions. As
expected, the number of hardware resources required to implement the architecture in-
creases almost linearly with the number of PEs. The maximum clock frequency reported
by the timing analyser decreases from 186MHz (1 PE) to 122MHz (64 PEs). This hap-
pens due to the delays associated with the connections used to build the toroidal shape
of the array, which become more critical as the number of PEs increases.

As stated in Equation (3.2), the number of shared memories needed to build a toroidal
array is two times the number of PEs. In this implementation, each PE uses an addi-
tional memory to keep auxiliary data required to compute a new solution as explained
previously. Therefore, the different configurations need 3 times more number of BRAMs
of the FPGA as number of PEs, if a single BRAM is capable to accommodate all the
necessary solutions. In the array with 1×1 PE, the two shared memories need each one
4 BRAMs (each with 36Kbit) to keep all the solutions.

Figure 3.17(a) depicts the fitness evolution over 500 × 103 new generated solutions for
the different configurations analysed during a single run of the algorithm. As it can be
seen, the convergence rate observed is identical to the one observed with the SystemC
model (cf. Figure 3.7(a)), where more parallelism level (a smaller neighbourhood in the
solutions of the cGA) leads to a slower rate convergence rate at the beginning of the
algorithm that, eventually, will translate to a better solution found by the algorithm

3.4 Hardware implementation: the TSP 69

0 1 2 3 4 5

x 10
5

4000

6000

8000

10000

12000

14000

16000

Number of generated solutions

F
it
n
es
s
va
lu
e

2 × 2 PEs
4 × 4 PEs

8 × 8 PEs

1 × 1 PE (Panmictic GA)

(a) Fitness evolution with the total number of generated solutions.

0 0.01 0.02 0.03 0.04 0.05 0.06

4000

6000

8000

10000

12000

14000

16000

Time (seconds)

F
it
n
es
s
va
lu
e

8 × 8 PEs

4 × 4 PEs
2 × 2 PEs
1 × 1 PE (Panmictic GA)

(b) Fitness evolution with time.

Figure 3.17: Fitness evolution obtained with the Verilog HDL model for a
toroidal and square processor array to solve a TSP. Simulations stop at 500×103

new generated solutions.

as this evolve. As it can be seen, we obtain the same behaviour as the previous Sys-
temC model, and that the cGA does not degrade the quality of the final solution when

70 3 A scalable processor array for cGAs acceleration

1 4 16 64

1

3.8

13
16

41.4

64

Number of PEs

N
o
rm

a
li
ze
d
th
ro
u
g
h
p
u
t

◦ Ideal

⋄ Ideal - maximum frequency

∗ Real - maximum frequency and
memory collision

Figure 3.18: Throughput of the processor array for the configurations of 2×2,
4×4, and 8×8, normalized to the throughput of a single PE. Results obtained

with the Verilog HDL model for solving the TSP.

compared to the panmictic GA.

Figure 3.17(b) shows the same data as the previous figure, but now the fitness evolution
is measured as a function of the actual execution time required for the different arrays,
using thus the maximum clock frequency supported by each implementation. This graph
presents the real overall time improvements obtained by exploiting the parallelism level
of the architecture, as it includes the effects of a slower convergence rate for larger arrays,
clock frequency degradation, and eventual memory collisions effects. The experimental
results show that the 1×1 array produces an average of 0.75×106 solutions/second, and
for the 8×8 array the throughput is 31.09 × 106 solutions/second, which represents a
41× throughput increase.

To measure the impact that the memory access collisions have in the performance of
the architecture, we have taken the array with a single PE as a reference since in this
configuration these effects are not present. Figure 3.18 shows the normalized through-
put estimated by considering a proportional increase of the array size (ideal situation),
accounting for the effect of maximum clock frequency degradation, and the actual mea-
sured throughput that includes additionally the effects of memory collisions. The data
shows that it is mainly the degradation of the clock frequency for larger arrays that
limits the speedup, and that there is no significant additional impact of the memory
collisions. The maximum throughput decrease due to these collisions occurs for the 8×8

3.5 Summary 71

array and is less than 0.55 generations per unit of time, which is equivalent to an average
increase of 3.26 clock cycles per new generated solution (represents the value of σ + ρ

in Figure 3.15). For the 4×4 and 2×2 configurations, these values are 0.361 and 0.0423
clock cycles, respectively. These figures mean a degradation on the execution time of
the algorithm for the 8×8, 4×4 and 2×2 arrays of respectively 1.31%, 0.146% and
0.0171%.

An equivalent panmictic genetic algorithm was developed in the C language and run on
a single processor of a personal computer (PC). This software implementation does not
explore parallelism and is thus equivalent to the 1×1 cGA. The program was compiled
with GCC -O3 and executed on an Intel T8100 processor running at 2.1GHz, to solve
the same TSP instance. The PC achieved a throughput of 0.69× 106 solutions/second,
which translates to a 45× speedup for the 8×8 PEs FPGA implementation.

The same procedure was also executed on a MicroBlaze soft-core processor running at
150MHz in the same Virtex-6 FPGA. For embedded applications with limited computing
capabilities, or situations where area is constrained and integrated solutions are required,
our proposal for a custom implementation of cGAs is thus an application scenario and
the performance comparison with such processor is realistic. Results have shown a
throughput of 4.59× 103 solutions/second. This means that our hardware architecture
can achieve an impressive speedup of more than 6700× compared to a software version
running on the same hardware platform.

3.5 Summary

In this chapter we have presented a scalable hardware architecture for cGAs and others
population-based metaheuristics, that can be efficiently implemented in parallel com-
puting platforms like FPGAs. The architecture is built by repeating a regular structure,
where a PE connects to 4 memories and each memory is shared by 2 PEs; each PE
computes the operations of the algorithm and each memory holds a subset of the popu-
lation. The cGA supported by this architecture has been classified as asynchronous with
a time-driven update policy, which reflects the way the solutions in the population are
updated.

Simulation results have shown that the convergence rate of the algorithm is related
with the difficulty that a solution has to spread its information throughout the popu-
lation. Configurations where it is more difficult, lead to a slower convergence rate at
the beginning of the algorithm and produce better quality results as the number of
generations growths. In such situation are cGA architectures with increased number of

72 3 A scalable processor array for cGAs acceleration

PEs, which lead to a smaller neighbourhood size. Nevertheless, results clearly show that
the speedup obtained by increasing the parallelism is always beneficial as it produces a
more efficient algorithm (runs faster), with increased effectiveness (better solutions for
the same number of generated solutions) due to the smaller neighbourhood size.

Additionally, we have implemented the cGA hardware architecture in an FPGA to solve
the TSP. Nevertheless, the effort needed to develop a custom PE for this optimization
problem is high and time consuming using standard HDL to describe the hardware.

In the next two chapters we present all the details of an improved cGA hardware ar-
chitecture with additional infrastructures to support the execution of the algorithm. A
hardware design flow based on high-level synthesis techniques is proposed to ease the
development of the architecture so that this is applied to different optimization problems.

Chapter 4

The cGAP architecture

4.1 Introduction

In the previous chapter a scalable processor array for accelerating cellular genetic algo-
rithms (cGAs) was proposed. An architecture simulation was conducted to study the
convergence of the algorithm, for solving the traveling salesman problem, for different
levels of parallelism and configurations of the processor array. Additionally, a custom
implementation in synthesisable Verilog hardware description language (HDL) was per-
formed to solve the same problem. However, the effort needed to implement the genetic
operations executed in the processing elements (PEs) is high using standard HDL, and
thus adapting the array to solve other problems requires a similar implementation effort
as these operations are very problem-specific.

This chapter presents all the blocks used to build the common infrastructure that sup-
ports the processor array, and are not dependent of the optimization problem, nor the
metaheuristic used to solve it. Section 4.2 starts by introducing the complete hardware
architecture, named cellular genetic algorithm processor (cGAP), and defines its main
blocks. Then, Sections 4.3 and 4.4 describe all the array of PEs and shared memories,
and detail the arbitration mechanism implemented so that the PEs access to these mem-
ories. All the hardware components required for ensuring the control of the execution of
the algorithm are explained in Section 4.5. Finally, in Section 4.6 it is proposed a simple
infrastructure using a single random number generator (RNG) to feed all the PEs.

All the blocks described during this chapter have been specified in Verilog HDL, and
target a design flow where the problem-specific blocks are implemented with a high-level
synthesis flow, thus easing the customization of the cGAP to solve new problems.

73

74 4 The cGAP architecture

PE

M
E

M

MEM

PE

M
E

M

MEM

PE

M
E

M

MEM

PE

M
E

M

MEM

cGAA (cGA Array)
cGAP (cGA Processor)

cGAC

(cGA Controller)

co
n
tr

o
l/

m
em

o
ry

in
te

rf
a
ce

cGAC / cGAA

status

cG
A

 d
u
a
l-

p
o
rt

m
em

o
ry

h
o
st

 i
n
te

rf
a
ce

h
o
st

 c
o
m

p
u
te

r

Figure 4.1: Overview of the cGA processor (cGAP). A controller (cGAC)
communicates with the PEs so that the algorithm is globally controlled. The
interface circuit ensure the control and communication with the cGAP from a

host computer.

4.2 cGA processor (cGAP) overview

In the last chapter, we have presented a simulation model of a processor array for cGAs,
by connecting conveniently processing elements (PEs) and shared memories. However,
in a real hardware implementation it is required to endow the circuit with the necessary
blocks to control the execution of the algorithm, as well as to monitor the status of the
various hardware components. Figure 4.1 provides a simplified overview of the complete
hardware architecture used in this work. A block named cGA controller (cGAC) inter-
acts with the PEs so that the GA running in each of them can be individually controlled
and monitored. In addition, the cGAC is responsible to receive and process commands
sent by an external host computer. A control and memory interface circuit ensure the
communication between the host computer and the cGAC, as well as it monitors the
status of the main blocks, so that the complete hardware is controlled. Additionally,
a dual-port memory block is placed between the cGAC and the host computer so that
data can be transferred between the exterior and our architecture. In the context of
this work, we call cGA array (cGAA) to the group of PEs and shared memories as it
has been described in Chapter 3, and cGA processor (cGAP) to all the hardware blocks
required to support the execution of the algorithm (cGAC, cGAA, and others that will
be presented throughout this chapter).

4.3 cGA array (cGAA) 75

By defining the functionality of the PEs and the cGAC, we can adjust the cGAP to solve
different optimization problems. In this chapter, we present all the hardware blocks that
are independent form the optimization problem, which have been described in Verilog
HDL. The PE and the cGAC are specific of each problem and thus must be designed
according to the problem’s requirements to be solved by the cGA. Additionally, these
two blocks are specified in the C++ language for a high-level synthesis design flow as it
will be described in Chapter 5.

As we have already discussed, the shared memories of the cGAA are responsible to keep
a subset of the pool of solutions. In this work, we call this subset a subpopulation1.
Therefore, a memory (and additional hardware to control it) is called subpopulation
memory. We would like to emphasize that the target hardware device of our work is
a Virtex-6 (XC6VLX240T-1) FPGA from Xilinx. This FPGA presents a total of 416
true dual-port block RAMs (BRAMs), each with 36Kbits [Xile], which means that a
maximum of 208 PEs can exist in the cGAP, which represents the maximum allowed level
of parallelism. More recent FPGAs from the same vendor, like the Virtex UltraScale,
present already an impressive maximum number of 3780 BRAMs each one with also
36Kbits [Xild]. These numbers show that the cGAP, although requiring a considerable
number of subpopulation memories, can be implemented with current FPGA devices.

4.3 cGA array (cGAA)

The scalable processor array proposed in this work presents a regular structure of pro-
cessing elements connected to shared memories. To build this structure, a block named
cGA cell formed by a single PE and two memories is replicated several times to form
the desired rectangular shape of the cGAA.

Figure 4.2(a) depicts an example of a cGAA with 2×3 PEs (or cGA cells) with a toroidal
shape. As it can be seen, the cGA cells are distributed over a bi-dimensional space so
that a rectangular and regular structure is built. A cGA cell has four main ports: the
north and west ports connect to memories, while the south and east ports connect to
the PE of that cell. This way, by connecting the north and west ports of each cell to
the corresponding south and east ports of the neighbour cGA cells, the complete cGAA
is built. The toroidal shape of the architecture is achieved by connecting the top to the
bottom sides of the array as well as the left to the right sides, which ensures a complete
regular structure where all the PEs connect to four memories and each memory is shared
by two PEs.

1The concept of a subpopulation in the cGAP must not be confused with a subpopulation of a
distributed GA, where the solutions of a subpopulation are evolved, till a certain point, separately.

76 4 The cGAP architecture

PE

M
E

M

MEM
cGA cell

(0,1)

PE

M
E

M

MEM
cGA cell

(0,2)

PE

M
E

M

MEM
cGA cell

(1,0)

PE

M
E

M

MEM
cGA cell

(1,1)

PE

M
E

M

MEM
cGA cell

(1,2)

PE

M
E

M

MEM
cGA cell

(0,0)

cGAA

(a)

PE

M
E

M

MEM
cGA cell

(0,1)

PE

M
E

M

MEM
cGA cell

(0,2)

PE

M
E

M

MEM
cGA cell

(1,0)

PE

M
E

M

MEM
cGA cell

(1,1)

PE

M
E

M

MEM
cGA cell

(1,2)

PE

M
E

M

MEM
cGA cell

(0,0)

M
E

M
M

E
M

MEMMEMMEM

cGAA

(b)

Figure 4.2: Hardware configuration of the cGAA with (a) toroidal and (b)
non-toroidal shape.

Similarly, a non-toroidal architecture for the cGAA can be constructed with the same
cGA cell block. In this case, the opposite sides of the array are not interconnected,
and additional memories are placed both on the bottom and left sides of the cGAA as
depicted in Figure 4.2(b). This ensures that all the PEs in the array have the same

4.4 cGA cell 77

interface, which ensures that a single PE can be built and replicated in all cGA cells.
The memories placed on the borders of the cGAA (top, bottom, left and right) differ
from the remaining ones placed inside the array, as they only have a single access port.

Regardless of a toroidal or non-toroidal architecture, the aspect ratio of the rectangular
shape for the cGAA is parameterized by defining the number of PEs present in each row
and column. This way, each PE (or cGA cell) is identified by PEi,j , where i, j represents
the row and column indexes of the cGAA. Both examples of Figure 4.2 present a cGAA
with configuration of 2×3 PEs, thus with a total of 6 PEs.

4.4 cGA cell

In the previous section we have discussed how to build the cGAA with a basic block
called cGA cell. We will now describe how a PE and the subpopulation memory blocks,
the two main blocks that constitute a cGA cell and thus the cGAA, interact among each
other. Additionally, we will present an arbitration mechanism to prevent data corruption
in the shared memories due to possible simultaneous accesses to the same solution by
two PEs.

4.4.1 Processing element (PE)

The processing element block of the cGAA is responsible for executing the basic opera-
tions of a genetic algorithm like selection, crossover, mutation and the fitness function.
In our design, this block is connected to four memories that hold each one a subpop-
ulation. This way, the PE can process the data (solutions) that are present on those
memories, to generate new solutions that will replace existing ones, thus implementing
the genetic-inspired evolutionary process.

Figure 4.3 presents an overview of the complete interface of a PE. This block connects
to the shared memories that hold the subpopulations with four identical interfaces to
each one of the north, south, east, and west subpopulation memories. The interface
between a PE and a subpopulation memory comprises two main groups of ports: the
mem port that connects directly to the memory block; and the request port that ensures
the communication of a simple protocol that allows the safe access to the same memory
contents by the two PEs connected to the memory. This mechanism will be explained
in the following subsection.

Additionally, each PE has two connections that allow receiving and sending commands,
respectively PE_control_in and PE_control_out. This way, and assuming that those

78 4 The cGAP architecture

PE

E_mem

E_request

FIFO

W_mem

W_request

S
_
m
em

S
_
re
q
u
es
t

N
_
m
em

N
_
re
q
u
es
t

global_RNG_1bit

subpopulation

memory

subpopulation

memory

su
b
p
o
p
u
la
ti
o
n

m
em
o
ry

su
b
p
o
p
u
la
ti
o
n

m
em
o
ry

FIFO
PE_control_inPE_control_out

NORTH

SOUTH

EASTWEST

Figure 4.3: Processing element (PE) hardware interface.

commands are centrally processed by the cGAC, the execution of the algorithm (the
cGA) distributed by the various PEs can be controlled by exchanging information (com-
mands) among the controller and the PEs. These two interfaces are connected to FIFOs
that collect the commands and send/receive them through a dedicated communication
infrastructure. Details of the controller and the communication will be provided in
Section 4.5.

An additional port in the PE receives a single 1-bit random number coming from a global
random number generator (RNG) that feeds all the PEs. Therefore, a PE can generate
the random numbers required during the execution of the algorithm by collecting data
coming from this port (global_RNG_1bit). With this approach, it is possible to avoid
the replication of RNGs in each PE by having a global RNG feeding sequentially all the
PEs. In Section 4.6 the infrastructure of the RNG will be discussed.

4.4.2 Subpopulation memory

The subpopulation memory is responsible for keeping in memory a subpopulation and
to provide a mechanism that allows the correct access to the solutions shared by the two
PEs. In general, one solution occupies more than one memory location and thus the ac-
cess to this information by the PEs must be performed so that the data is not corrupted.
Figure 4.4 depicts the interface of the subpopulation memory with the two adjacent PEs.

4.4 cGA cell 79

subpopulation

memory

PE

d
u
a
l-

p
o
rt

m
em

o
ry

collision

detection

mem_1

request_1

PE

mem_2

request_2

Figure 4.4: Subpopulation memory hardware interface.

From the configuration of the cGAA, each subpopulation memory either accesses to the
north and south connections of a PE pair, or to the east and west connections of an-
other PE pair (c.f. Figure 4.2). The memory contents in the subpopulation memory
are directly and independently accessed by each PE connected to this block through
the mem_1 or mem_2 ports. Thereby, this memory is implemented using dual-port
memory blocks, which allow the simultaneous access to the memory contents by the PEs
without any additional circuit. To avoid situations where the same memory contents
are being accessed by the two PEs simultaneously, which may lead to the corruption of
data, a circuit block called collision detection implements a set of verifications that in
collaboration with the PEs ensure that the access to the memory is safe.

Figure 4.5(a) shows a possible organization of the subpopulation information kept in
the dual-port memory. A solution of the optimization problem handled by the cGA
comprises a set of memory words, and it is identified by an unique number in that
subpopulation memory.

Before a PE accesses to a given solution, it must undergo a handshake mechanism
with the collision detection block to ensure that the access to the memory contents is
performed safely. Figure 4.5(b) shows a simplified overview of the collision detection
circuit and its connections to the PEs.

When a PE starts the handshake, it issues a request command to the subpopulation
memory asking read or write access to a given solution present in the memory. This
request handshake mechanism is composed by the following signals: an enable to start
the request (req_en); the command requesting for access to the memory (req_cmd);
the number of the solution to which the command applies; and the acknowledge signal
granting (or not) to the PE the safe access to that solution (req_ack). As a PE can
perform either a read-only access or a write access to a given solution, it is possible

80 4 The cGAP architecture

solution #0

solution #1

solution #2

solution #n-1

slot of memory
subpopulation

dual-port

memory

mem_2mem_1

(a)

collision

detection

solutions’ index

used PE_2

read_1

read_2

write_1

solutions’ index

used PE_1

req_ack_2

req_en_2

req_cmd_2

req_num_2

req_ack_1

req_en_1

req_cmd_1

req_num_1

co
m

p
a
ra

to
rs

 c
ir

cu
it read_1

read_2

write_1

request_1 request_2

(b)

Figure 4.5: Details of the subpopulation memory hardware block: (a) possible
memory organization in the dual-port memory, and (b) collision detection circuit

used to avoid undesired accesses to the solutions’ information.

to have a simultaneous access to the same solution only if both accesses are read-only.
When a PE wants to write to a solution, the other PE must not access to the same
information, either for reading or writing, as the data may not be coherent or may
become corrupted.

In most of the cases, a genetic algorithm requires two solutions (due to the crossover
operation) from the population to generate a new one. This means that during a gen-
eration in a PE two solutions will be read from the subpopulation memories and one
will be overwritten with the new solution. Therefore, we have chosen to provide to the
collision detection circuit the capability to keep track of a maximum of two solutions
being read and one solution being written at the same time by each PE connected to the
subpopulation memory. With this approach, in a generation of a new solution, a PE can
choose freely any solution (subject to the constraints aforementioned per memory) from
any one of the 4 subpopulation memories. In Figure 4.5(b) the three registers (read_1,
read_2 and write_1) per PE connection monitor the corresponding solutions (if any)
being accessed by the two PEs. After a PE requests an access to the memory, the two

4.4 cGA cell 81

clock

req_en

req_cmd

req_ack

Safe access to the memory contents (a solution)

req_num

PE requests a read (or write)

of a solution number

Subpopulation memory

acknowledges the request

in next clock cycle

PE releases the

previous request

solution

index

request

read/write

release

read/write

Figure 4.6: Example of the handshake protocol between a PE and a subpop-
ulation memory.

groups of registers are properly compared to detect any undesired memory access request
so that the acknowledge signal is properly sent to the PE.

An example of the handshake between a PE and the subpopulation memory is depicted
in Figure 4.6. The PE starts by issuing the desired request command (read or write) to
access a particular solution in that subpopulation providing the solution index. In the
next clock cycle, the subpopulation memory acknowledges the access, granting the safe
access to that particular slot of memory. In the case where the acknowledge signal is not
asserted, the request fails and the PE must not access that solution. When the access
previously granted to a solutions is not needed anymore, a new command is issued by
the PE to release the request. In this case, it is not required to specify the number of
the solution being released as this command only cancels the operation. Additionally,
the subpopulation memory does not need to acknowledge a release command as this is
always accepted.

Table 4.1 provides the results of a request by a PE to access a given solution in the
subpopulation memory when the other PE is also accessing to the same information.
Essentially, it is possible that a read operation occurs simultaneously in both PEs, but
when a write operation is being performed by a PE, the other cannot access to the same
solution.

We should emphasize that the collision control circuit does not provide mechanisms to
avoid undesired accesses to the memory contents, which can happen if the handshake

82 4 The cGAP architecture

Table 4.1: Request results of the handshake protocol among a subpopulation
memory and the two PEs connected to it.

activity on a PE result of request
opposite PE

read write read write
0 0 accepted accepted
1 0 accepted rejected
0 1 rejected rejected
1 1 rejected rejected

mechanism between a PE and the subpopulation memory is ignored. The PE is respon-
sible to trigger and analyse the results of the handshake.

4.5 Control infrastructure

In this section we will describe how the complete cGAP is controlled during the execution
of the algorithm. We will explain how the cGAC block sends and receives commands
through a dedicated communication infrastructure to each PE, allowing this way a cen-
tralized control of the entire flow of the algorithm. Additionally, we will explain how
the cGAP communicates with the exterior.

4.5.1 cGA controller (cGAC)

The cGAC block is responsible to manage all the commands sent to the PEs and received
from the PEs, and thus it can control the evolution of the algorithm. Additionally, the
cGAC also processes the commands sent to the cGAP by an external host computer
(e.g. by programming registers via software), acting this way as a bridge between the
cGAA (the PEs) and the host.

Figure 4.7 shows an overview of the interface of the cGAC. On the right-hand side, the
two connections cmd_from_cGAA and cmd_to_cGAA are responsible to receive and to
send respectively any command to the cGAA. Both interfaces are directly connected to
FIFO hardware blocks that collect the information transferred between the cGAC and
a communication infrastructure, as it will be explained in the next subsection. On the
left-hand side, the two ports cmd_from_SW and cmd_end_ack guarantee the correct
communication of commands sent by the host to the cGAP. In this case, the cGAC
receives the commands through the first port and asserts an acknowledge signal through
the second port when that command has been processed.

4.5 Control infrastructure 83

cGAC

cG
A

 d
u
a
l-

p
o
rt

m
em

o
ry

cmd_from_cGAA

cmd_to_cGAA

cmd_from_SW

cmd_end_ack

cG
A

 a
rr

a
yFIFO

FIFO

FIFO

in
te

rf
a
ce

 H
W

/S
W

m
em

Figure 4.7: Cellular genetic algorithm controller (cGAC) hardware interface.

A dual-port memory (cGA dual-port memory) connects directly one of its port to the
cGAC and the other port to the exterior of the cGAP as depicted in Figure 4.7. By
doing so, it is possible to transfer data between the host and the cGAC without sending
that information sequentially through commands as explained previously. In addition, if
required this memory can be used by the cGAC during the execution of the algorithm,
for instance, to keep track of the evolution of the fitness value in each PE.

4.5.2 Communication infrastructure

The communication infrastructure present in the cGAA, which is a simple form of a
network on chip (NoC), allows the communication between the cGAC and all the PEs,
as it is illustrated in Figure 4.8. When sending a command from the cGAC to a given PE,
the information is guided through a sequence of routing FIFOs that route the information
till the destination. In the figure, it is shown an example of sending a command to the
PE positioned at coordinates (1, 1). First, the command moves vertically through the
cGAA configuration till it reaches the first coordinate number and then, in a similar
way, it moves horizontally till it reaches the second coordinate number where the PE is
found.

To reduce the complexity of the steering logic that implements the routing of commands,
we have opted to build this as a parallel unidirectional bus. Other solutions would be
possible, however for the target application it is only required a communication from
the cGAC to the PEs and vice versa. The direct communication among PEs using the
communication infrastructure is not implemented since it is not required by the cellular
GA. This way, we keep the logic as simple as possible.

Figure 4.9 shows the composition of a command information that traverses in the com-
munication infrastructure. The first three fields (looking from the left) constitute the

84 4 The cGAP architecture

PE PE PE

PE PE PE

PE PE PE

routing FIFO

FIFO

cG
A

C

i=1

j=1

co
m

m
a
n
d
 t

o
 P

E
 (

1
,1

)

i=2

j=0

command from PE (2,0)

Figure 4.8: Overview of the communication infrastructure hardware used for
the communication among the cGAC and the PEs.

data (32 bits)
command

code

broadcast

bit
rowcolumn

payload to PE (or to cGAC)

routing information

Figure 4.9: Command information used in the communication infrastructure.

information required to route the command till the PE of destination, where the row
and column identify the coordinates of the PE, and the broadcast bit represents a com-
mand to be broadcasted to all the PEs. The fields command code and data carry the
information (the payload) to be sent to the PE or to the cGAC. All these fields have the
minimum number of bits necessary to represent them, which are parameters during the
synthesis of the circuit; the data field is fixed to 32 bits which allows the communication
of data (via 32-bit registers) from the host computer to the cGAC and then to the PEs
without the need to split that information into several commands.

For sending a command from a given PE to the cGAC, a similar routing mechanism

4.5 Control infrastructure 85

has been adopted where the command is sent vertically and then horizontally through
the cGAA as it can be seen in Figure 4.8. However, in this case only a single possible
path exists between a command sent by the PE to the cGAC and thus the identification
of the source PE is added by the routing FIFOs blocks as depicted in the figure for
an example of a command from PE (2, 0). This way, the cGAC knows from where the
command comes from. The broadcast bit is not used with commands coming from the
PEs.

The routing FIFO blocks guarantee the correct route of the command to the next routing
FIFO according to the PE of destination and, additionally, have a register (acting thus
as a FIFO) that preserves the data if the next block has data being processed. In turn,
the blocks FIFO are positioned always at the end and beginning of any possible path
in our communication infrastructure, that is, performing the interface between a PE or
the cGAC and a routing FIFO. The two FIFOs have a set of control signals, as it is
illustrated in Figure 4.10, that allow the passage of the information from one to another
block. These signals check whether the next block is available for receiving data and, if
this is the case, the data is passed to it.

This infrastructure can easily suffer from network congestion, where commands need to
be retained in the FIFOs till the next block is available to consume the data. When
sending commands from the cGAC, this situation arises when a PE receives the data and
does not consume it immediately as it may be performing other operations. Meanwhile,
if more commands are sent to the same PE, the FIFO connecting to that PE gets
full and the commands start to be kept in the routing FIFOs throughout the path
between the cGAC and that PE. In the limit, the cGAC will not be able to write to
the communication infrastructure as the FIFO connecting to it also gets full. In such
situation, the communication will only start to unlock as the PE starts to consume the
commands. A similar situation occurs in the communication connecting the PEs to the
cGAC. Additionally, network congestion may also arise when commands to (or from)
different PEs need to traverse in the same routing FIFO at the same time.

The communication infrastructure ensures that no deadlocks occur in the commands
sent from the cGAC and PEs as there is only a single path between the source and
the destination. Moreover, despite all the network congestions that may appear, in
any circumstance a command will be lost. All the FIFO blocks use the same control
signals to check if they are receiving (or sending) to other blocks and, if congestion
occurs, the FIFO halts the passage of information till the data is consumed. Moreover,
the connections of the PEs or the cGAC to the FIFOs also have the same control
functionality (see Figure 4.10), thus ensuring the same command transfer approach.

86 4 The cGAP architecture

PE

control signals

routing FIFO

FIFO

command to FIFOcontrol

logic

co
n
tr

o
l

lo
g
ic

Figure 4.10: Details of the FIFOs used in the communication infrastructure
to ensure the passage of commands among FIFOs, PEs and cGAC.

There is an important difference in the hardware implementation between the FIFOs and
the routing FIFOs. With the FIFOs, which always connect to the PEs or the cGAC, the
control signals ensure an immediate transfer of the data (if this exists). This means that
a combinational circuit guarantees, if requested, a bypass of the command’s information
between a routing FIFO and a PE (or cGAC). On the other hand, the routing FIFOs
have a sequential circuit that requires, at least, one clock cycle delay after receiving the
information till send it to the next block. With this approach, we guarantee that the
communication infrastructure does not introduce a combinational circuit that traverses
all the cGAA. Instead, the communications among a cGA cell and its neighbours are
registered. This way, this structure does not increase the combinational path delay with
the array size, which could reduce the clock frequency, situation that could happen if a
combinational circuit could control globally all the infrastructure.

Although the architecture of the infrastructure presented in this work implements simple
routing mechanisms without features to mitigate network congestion, this is more than
sufficient for the target application. During the execution of the algorithm few com-
mands are expected to be transferred as the PEs execute the algorithm independently
from the others PEs and from the cGAC. In a nutshell, the cGAC together with the
communication infrastructure is always required to set up and to start the PEs with the
required parameters, and to stop the PEs and retrieve the best solution from the cGAA
at the end of the algorithm.

4.5 Control infrastructure 87

routing FIFO

FIFO

PE PE

PE PE

cGAC

cG
A

 d
u
a
l-

p
o
rt

m
em

o
ry

cGAA

status

control

logic

cGAA

status

cGAA

status

cGAA

status

cGAA

status

cGAA

status

cGAA

status

reset

circuit
h
o
st

 i
n
te

rf
a
ce

command

interface

status

interface

memory

interface

cGAC

status

Figure 4.11: Overview of the interface circuits used to ensure the communi-
cation and control of the cGAP by a host computer.

4.5.3 cGAP interface

Figure 4.11 illustrates the interface circuits of the cGAP that ensure the communication
and control of the cGAP by a host computer (or any other hardware block that controls
the cGAP). In our design there exist three main interface blocks: the command interface,
the status interface, and the memory interface.

The command interface ensures the passage of commands from the host to the cGAP.
Therefore, this interface allows the command communication from the host to the cGAC
that, in turn, can forward those commands to the PEs. All the commands received
through this circuit are sent to the cGAC to be processed, with the exception of the
command to reset the cGAP (defined by the macro CMD_RESET_CGAP in the description
of the hardware) which activates the reset circuit. In our design, the host must send
a new command only when the previous one has been processed by the cGAC, thus
avoiding congestion problems in this interface.

The status interface informs the host computer the activity status of the cGAP. For
that, this circuit keeps track, separately, of the activity in the cGAC and in the cGAA.

88 4 The cGAP architecture

The cGAC is considered to be in a processing state if it is processing a command sent
from the host. Therefore, the host knows when the cGAC is available to consume a
new command, which is required to avoid congestion when the host is sending a new
command to the cGAC.

The activity in the cGAA, which indicates if any PE is in a processing state and if any
command is traversing in the communication infrastructure, indicates to the host when
the cGAA has finished processing the cellular genetic algorithm. To accomplish this,
the communication infrastructure is continuously monitored to check if any command is
being transmitted from the cGAC to the PEs and vice versa. In addition, all the PEs are
monitored to verify if they are in a processing state, which can be done by checking the
control signals of the FIFOs that feed the PEs. When a PE is asking data to the FIFO
and this one is empty, the PE enters in a blocking state where it continuously waits for a
new command from the FIFO. In such situation, we know that the PE is not processing
data anymore. The blocking state of the PE will be explained in Section 5.2.1.

To check if any command is being transmitted, we verify all the FIFOs and routing
FIFOs only from the network that connects from the cGAC to the PEs. The circuit
that detects activity in the PEs has the same clock cycle delay as the network that sends
commands from the PEs to the cGAC. Therefore, in this case only the last FIFO that
connects to the cGAC needs to be checked for the desired functionality and to account
situations where network congestion happens.

Regarding the memory interface block, this ensures the communication with one of the
ports of the cGA dual-port memory as depicted in Figure 4.11. The access to this
memory can be performed simultaneously by the cGAC and by the host at any time
during the execution of the algorithm. Hence it is the responsibility of the designer of
the complete system (software running in the host and cGAP) to ensure that memory
data corruption does not occur.

4.6 RNG infrastructure

A genetic algorithm relies heavily in random numbers during its execution. As the cGAA
has several PEs that execute each one a GA, we propose an infrastructure with a single
random number generator (RNG) capable of feeding all the PEs, avoiding this way the
replication of local RNGs blocks in all the PEs. Figure 4.12 depicts the architecture of
the proposed random number infrastructure for the cGAA. A single bit random number
is generated in the RNG block that feeds a shift register where the output of each register
connects to each PE as it can be seen in the figure. When a PE requires a new random

4.6 RNG infrastructure 89

RNG

PE PE PE PE

PEPEPEPE

PE PE PE PE

PEPEPEPE

global_RNG_1bit

1 bit register

Figure 4.12: Random number generator (RNG) infrastructure hardware used
in the cGAA.

number, it must read the corresponding port of the random number as many times as
the number of bits required to form the desired random number.

In the proposed architecture there is not any control mechanism in the shift register that
carries the random numbers and therefore the RNG block is continuously generating a
new random bit at each clock cycle. By doing so, we simplify this hardware infrastructure
to a single bit register per PE, while not compromising its functionality as the target is
to feed the PEs with random generated bits.

With this infrastructure, it is clear that a correlation may exist in the random numbers
obtained among all the PEs as the same random bits carried by the shift register can be
sampled by any PE. During the evolution of the cGA all the PEs are executing each one
an identical genetic algorithm and thus it is questionable the impact that such method
of generating random numbers inside a PE may have in the quality of the final solution
obtained by the algorithm.

Nevertheless, the PEs take different processing times for generating solutions, and thus
they will not be synchronized among each other during the execution of the cGA. As
described in Section 4.4.2, a PE must undergo an handshake mechanism before accessing
a subpopulation memory to prevent undesired accesses to the same memory contents. If
we consider that the PEs select the solutions from the memories with a random algorithm
(which is the usual in a cGA), even if they sample from the shift register exactly the

90 4 The cGAP architecture

same random numbers during the initial generations, eventually an unwanted access
will occur that must be solved by one of the PEs. This results in an increase in the
processing time during the handshake phase in that PE and, as a consequence, the next
sample instants of the random numbers will change when compared to the other PEs.
Therefore, as the handshake algorithm takes different times in the PEs, the generations
will not be synchronized and a correlation among the random numbers obtained by the
PEs is reduced.

Moreover, a generation in a genetic algorithm may have different processing times de-
pending on the operators implemented and on the solutions being processed. For in-
stance, the MPX crossover operator [MGSK88] copies a random part of a solution to
generate a new one, as we have discussed in Section 3.4.1. As the extension of this copy
is variable, different processing times will be required to process this operator. Indeed,
depending on the optimization problem handled by the algorithm, potentially all the
operations may have different processing times as the solutions handled by the PEs are
different. This situation together with the handshake required to access the subpopu-
lation memories, helps to ensure that during the execution of the cGA the PEs will be
continuously out of synchronization regarding the instant when the generations of the
algorithm start.

A few studies have been performed that evaluate the influence of the quality of a RNG
in the performance of a GA. In [MF99] the authors analysed the influence of several
RNGs in the performance of the GA and found that there is not a clear correlation
between the quality of the RNG and the performance of the GA. Indeed, results have
shown that good quality RNGs can deliver better or worse performance in the GA
depending on the test suite function applied to the algorithm. Low quality RNGs also
have led to similar results. However, in [CP02] the author has found that the quality
of the RNG used to initialize the population has a critical impact on the performance
of the algorithm, but for the other operations (crossover and mutation) also does not
seem to affect the results. Another study has been performed in [TÄW11], this time
for a differential evolution (DE) algorithm, a subclass of evolutionary algorithms (EAs)
like the GA. In this work, the authors also found strong evidences that the algorithm
performs identically for several RNGs.

Therefore, even though there is a possible correlation among the random numbers ac-
quired by the PEs, this impact on the performance of the algorithm is expected to be
low (or even negligible). Furthermore, the proposed RNG infrastructure aims mainly to
reduce the hardware resources used by the cGAP and thus, if desired, it is possible to
build a dedicated RNG in each PE as part of its functionality.

4.6 RNG infrastructure 91

Nevertheless, this infrastructure must be used mainly during the evolution of the cGA,
namely for generating the new solutions using the known genetic operators like selection,
crossover, mutation and replacement. Regarding the generation of the initial population,
the use of this RNG architecture in the PEs can be harmful to the quality of the cGA.
As an example, if a command is issued by the cGAC to all the PEs to start calculating
their initial subpopulations, they will start to work in parallel and acquire the same
random bits from the shift register that carries the random numbers. As a result, a
strong correlation will exist in the solutions generated by each PE (eventually, some
may generate the same solutions). This situation is unacceptable for a good quality
cGA as it is important to have diversity in the initial solutions to perform a better
exploration of the search space. Therefore, the initial population can be generated
previously (e.g. by software) and sent to the cGAP at the beginning of the algorithm.
Another possible implementation, this time using the infrastructure, is to calculate the
initial population sequentially in each PE, thus avoiding unwanted correlations among
the random numbers of all the PEs.

4.6.1 RNG block

The RNG block in Figure 4.12 is responsible to feed all the PEs with the required random
numbers as explained in the previous section. There are several known RNGs like the
Combined Tausworthe [L’E99], the Mersenne Twister [MN98] or Twisted Generalized
Feedback Shift Registers (TGFSRs) [MK94]. These generators have been developed to
be implemented in software and thus they are not optimized for a hardware implemen-
tation. For the hardware RNG block of our cGAP we decided to choose a RNG based
on cellular automata (CA) techniques that is adjusted for a hardware implementation
as described in [STCS02].

Figure 4.13 depicts an overview of the implemented RNG and explains how the CA
is built to form the desired generator. This CA is formed by a 1-dimensional space
network (a ring) with 64 cells. The state of each cell (0 or 1) relates with the previous
states of the cells positioned at {-7,0,11,17} relatively to it and is defined by the rule
50745 as explained in the figure. From the 64-bit random number and as described
in [STCS02], we use the odd-numbered bits to generate a 32-bit random number. The
bits that constitute this last random number feed sequentially the 1-bit shift-register of
the RNG infrastructure of the cGAA.

According to [STCS02] this configuration of the CA passes all the DIEHARD tests which
are a battery of statistical tests for measuring the quality of a RNG [Mar95]. Addition-
ally, the cycle length of the RNG is approximately 235 if the CA starts in a state where

92 4 The cGAP architecture

truth table of

CA 50745

inputs {a,b,c,d} of a CA cell

connect to the output of the blocks positioned

at {-7,0,11,17} relatively to that cell

0000 1

0001 0

0010 0

0011 1

0100 1

0101 1

0110 0

0111 0

1000 0

1001 1

1010 1

1011 0

1100 0

1101 0

1110 1

1111 1

dcba o

output of truth table

represents value 50745(d)

a a a

CA-based random number generator

o63

global_RNG_1bit

to
 c

G
A

A

o61o59o5o3o1

CA

50745

0

o57

o0

o11

o17

b
c
d

o0 CA

50745

1

o58

o1

o12

o18

b
c
d

o1 CA

50745

63

o56

o63

o10

o16

b
c
d

o63

shift register loads a new random

number at each 32 clock cycles

CA enabled at each

 32 clock cycles

Figure 4.13: RNG based on a cellular automata, with a 1-dimensional ring
topology with connectivity {-7,0,11,17} and rule 50745, used to feed the RNG

infrastructure of the cGAA.

only a single cell is 1. Different initial states may lead to different cycles and thus they
must be avoided unless they are previously studied. For this reason, we have chosen a
single seed (1) for the implemented RNG, which is loaded when the reset signal asserts
in the cGAP.

4.7 Summary

In this chapter we have presented the details of the cGAP that are necessary to build
a generic hardware template which is independent of the optimization problem solved
by the metaheuristic. Therefore, we have specified all the hardware blocks, except
the functionality of the PEs and the cGAC, which must be adapted to the operations
required by each problem.

4.7 Summary 93

We have explained how to construct a configurable array of PEs and subpopulation
memories, and how the contents of these memories (the solutions) can be accessed si-
multaneously by two PEs. For that, a handshake protocol between a PE and a subpop-
ulation memory has been defined that allows that a PE accesses safely and at the same
time to a maximum of two solutions for reading and one for writing per memory. Addi-
tionally, we have specified a communication infrastructure that allows that commands
are transmitted between the cGAC and the PEs. Therefore, this infrastructure allows
that the algorithm execution is centrally controlled by the cGAC. Finally, a global RNG
infrastructure has been proposed capable to provide random numbers to all PEs.

In the next chapter, we will focus on the description of the PE and cGAC hardware
blocks using high-level synthesis, which concludes with a design flow of the complete
cGAP.

Chapter 5

The cGAP design methodology

5.1 Introduction

In the previous chapter all the problem independent support components that constitute
the cellular genetic algorithm processor (cGAP) were detailed. These components form
the underlying infrastructure to hold the processing elements (PEs) and the cellular
genetic algorithm controller (cGAC), and are configured with a reduced set of parameters
to define the organization of the array and the subpopulation memories.

To facilitate the design of custom and specialized PEs, a high-level synthesis (HLS)
design flow has been adopted, allowing the customization of the core genetic algorithm
implemented in a PE in the C++ programming language, accepted as input by commer-
cial HLS tools. This chapter presents in Section 5.2 a general algorithm and interface
structures that build a template model in HLS to describe a PE functionality. Besides
the PEs, the cGAC that manages the entire processor array is also customized using
the same methodology, thus implementing control specific commands required for each
problem. Additionally, Section 5.3 presents the communication from a host processor
(a MicroBlaze) to the cGAP as memory mapped device. The complete design flow that
builds the cGAP connected to the host is presented in Section 5.4, with the discussion
of the main configuration parameters to set up the cGAP framework for a new problem.

5.2 Specification for high-level synthesis

In this section, we detail how the PE and cGAC hardware blocks are described using
high-level synthesis tools, to be rapidly adapted to different optimization problems. We
focus on the interface and algorithms structures of these blocks, so that they interact

95

96 5 The cGAP design methodology

correctly with the remaining hardware blocks described in the last chapter. The target
HLS tool is Catapult HLS1 from Calypto Design Systems, which uses a subset of the
standard C++ language to describe the hardware [Cal].

5.2.1 Processing element

A PE of the cGAP implements the genetic algorithm on its local subpopulations. To
perform this, a PE must comply to the access rules established for the subpopulation
memories (see Section 4.4.2) and implement a set of behaviours in response to commands
issued by (or sent to) the cGAC.

5.2.1.1 Algorithm structure

The overall structure of the PE specification in Catapult HLS is represented by the
flow chart in Figure 5.1. Besides an initialization phase, it consists in two main stages.
First, all the parameters required for the execution of the PE are configured according to
commands sent by the cGAC. After this, the genetic algorithm is executed by entering
an iterative loop where new solutions are generated according to the specified genetic
operators. It should be emphasized that the algorithm presented in the flow chart of
the figure is the basic structure of a PE algorithm and thus it can be changed by adding
more functionalities to target specific optimization problems or different optimization
strategies.

The initialization phase happens immediately after the activation of the global reset
action, where all the variables are loaded with known initial values. After that, the PE
enters the stage where it reads and processes commands sent by the cGAC to define
a set of mandatory configurations. During this phase, the reading of a new command
is performed with blocking reads, stalling the hardware till it receives new data in the
corresponding interface port. This process is repeated so that all the necessary com-
mands are received to configure the data required to run the algorithm. These data
can comprise, for instance, definition of parameters like the number of decision variables
or the data necessary for computing the fitness function of a particular instance of the
problem.

As Catapult HLS performs a blocking read during the configuration phase of the PE,
the hardware is continuously entering into a stall state as it waits for receiving a new
command from the cGAC. A command must be issued to conclude the configuration
phase and move forward the PE for the execution of the algorithm.

1Catapult HLS is commonly known as Catapult C.

5.2 Specification for high-level synthesis 97

initialization

blocking read

command from cGAC

interpret & process

command

start

algorithm?

read, interpret &

process command

no

yes

stop

GA?

no

C
o
n
fi

g
u
ra

ti
o
n
 o

f
P

E
 p

a
ra

m
et

er
s

b
y

re
a
d
in

g
 a

n
d
 p

ro
ce

ss
in

g
 c

o
m

m
a
n
d
s

 s
en

t
b
y

th
e

cG
A

C
.

E
xe

cu
ti

o
n
 o

f
th

e
a
lg

o
ri

th
m

.

yes

end

new

command?

GA operations

(or other algorithm)

no

yes

Figure 5.1: Algorithmic structure used by Catapult HLS to describe the PE.

In the execution phase of the genetic algorithm, the PE enters an iterative loop that
makes the algorithm evolve. Usually, in each iteration the known operations of a genetic
algorithm like selection, crossover, mutation, fitness evaluation, and replacement are
applied to the solutions in the PE neighbourhood to generate a new one that may
replace existing solutions. While this procedure is executed, the PE continuously pools
the command port, performing non-blocking reads to handle commands eventually sent
by the cGAC. Example of such commands are stopping the PE, request its best fitness,

98 5 The cGAP design methodology

or modify configuration parameters.

When the PE reaches the end of the complete algorithm, by receiving a stop command or
exhausting the number of iterations, it automatically returns to the initialization phase
as it is illustrated in Figure 5.1. This is the normal behaviour of a hardware block built
by Catapult HLS, which continuously loops the sequence of C++ statements declared
in the specification of the top level function. Then and as explained previously, the PE
stalls waiting for new commands from the cGAC.

5.2.1.2 Interface

The interface of the processing element described in C++ used by Catapult HLS is
shown in Listing 5.1. This interface matches, as expected, the one used to describe the
cGA cell hardware block as discussed in Section 4.4.1. For the high-level description of
this interface in C++, four main groups of ports are used to interact with the different
types of hardware blocks: subpopulation memories (data and handshake ports), control,
and random number. We will briefly discuss them during this section, and provide basic
examples of how this ports can be accessed using the appropriate C++ methods of
Catapult HLS.

1 void PE(

2 // subpopulation memories data interface

3 ac_int<MEM_WIDTH,false> N_mem[MEM_SIZE],

4 ac_int<MEM_WIDTH,false> S_mem[MEM_SIZE],

5 ac_int<MEM_WIDTH,false> E_mem[MEM_SIZE],

6 ac_int<MEM_WIDTH,false> W_mem[MEM_SIZE],

7
8 // subpopulation memories handshake interface

9 request_channel &N_request,

10 request_channel &S_request,

11 request_channel &E_request,

12 request_channel &W_request,

13
14 // control interface

15 ac_channel<command_type_cGA> &PE_control_in,

16 ac_channel<command_type_cGA> &PE_control_out,

17
18 // random number interface

19 ac_channel<bool> &global_RNG_1bit

20)

Listing 5.1: C++ description of the PE interface to be used by Catapult
HLS.

5.2 Specification for high-level synthesis 99

Subpopulation memories data interface

This interface ensures the connections between the PE and the memories that keep
the local subpopulation of the cGA (cf. Figure 4.4). Therefore, four different memory
interfaces are required to access each memory (north, south, east and west).

In Listing 5.1 we can see that Catapult HLS performs the interface to arrays (or hardware
memories) with MEM_SIZE words of a data type ac_int<MEM_WIDTH,false>. This
data type is specific of Catapult HLS and, for the example presented, it represents an
unsigned integer variable with width equal to MEM_WIDTH bits. In the description of
the PE algorithm the access to these memories is straightforward since they can be
manipulated using the C++ operators for arrays.

Subpopulation memory handshake interface

To implement the subpopulation memory handshake interface, we have developed a
C++ class called request_channel which hides the details of the arbitration proto-
col between a PE and the subpopulation memory (see Section 4.4.2). The C++ code
implementation of this class can be found in Appendix A.2. The class contains two
data members, both ac_channel data type from Catapult HLS, which are responsible
to manage the signal transactions sent from the PE to the subpopulation memory and
vice versa. The methods of the class, with the correct design constraints in Catapult
HLS, ensure the desired protocol between the two hardware blocks. The class template
ac_channel used by Catapult HLS allows to synthesize an interface with a FIFO,
which guarantees that the compiler will not reorder the instructions (read or write ac-
cesses) as a result of optimizations and, additionally, all the instructions are executed
even if the data is not explicitly used in the algorithm.

A PE has four connections of data type request_channel, each one for the four
subpopulation memories that the PE accesses to. The subpopulation memory handshake
interface is generated by Catapult HLS by using exclusively the appropriate methods of
this class. In Section 5.2.1.3 we will discuss all the details to use correctly this interface
so that the subpopulation memories are correctly accessed while performing reading and
writing operations on the solutions.

Control interface

The control interface is responsible for the communication between the PE and the
cGAC. It comprises two distinct ports that allow the interface with the FIFOs of the
communication interface circuit: one for sending and other for receiving commands from
the cGAC (cf. Figure 4.8). Therefore, for this interface we have used the ac_channel
data type of Catapult HLS to communicate with the FIFOs.

100 5 The cGAP design methodology

A dedicated C++ class, named command_type_cGA, has been developed to imple-
ment the access to these ports. This class essentially manipulates all the required fields
(cf. Figure 4.9) that are used to ensure the communication of a command in the com-
munication infrastructure. The implementation code of this class can be found in Ap-
pendix A.1, together with a description of all the methods developed to manipulate a
command_type_cGA data type variable (see Table A.1).

Although in the command_type_cGA data type implementation we have included the
routing information of a command (the coordinates of the PE: row and column, and the
broadcast bit), these fields do not need to be specified by the PE. Indeed, all this specific
information is used only by the communication infrastructure to guide the command
to the destination. When a PE receives a command, only the payload (command code
and data) is delivered to the PE. Similarly, when a PE sends a command to the cGAC
no routing information is added by this to the command. The routing is handled by
the communication infrastructure and the PE does not need to provide any routing
information and also it will not receive any routing information. This results from the
fact that the source/destination of data is always the unique cGAC.

The class command_type_cGA is also used for describing the cGAC functionality where,
besides the payload information, the routing data needs to be defined and processed.
Therefore, we use the same class for manipulating the commands for both PE and cGAC.

In the following example in Catapult HLS we show how to write a command to the
corresponding control interface port:

command_type_cGA cmd_type;

cmd_type.set_command(1); // sets command code value

cmd_type.set_data(53); // sets data value

PE_control_out.write(cmd_type); // writes command to port

First, a command_type_cGA variable is manipulated by using the appropriate class
methods to set the command and data values. This data can then be written to the
output port by using the method write which belongs to the class ac_channel. If
the FIFO that receives the data is full, the process stalls till the FIFO has available
space to receive the data.

To read from the control interface port, the method read of the class ac_channel is
used as the following example shows:

cmd_type = PE_control_in.read();

In this case, a blocking read is implemented which means that the FIFO read process
will be blocked until data is available.

5.2 Specification for high-level synthesis 101

The implementation of a non-blocking read in Catapult HLS can be achieved by only
performing the read operation when the port has available data:

if (PE_control_in.size()>0){

cmd_type = PE_control_in.read();

}

Random number interface

The random number interface is responsible to read sequentially random bits from the
RNG hardware infrastructure as explained in Section 4.6. Although this interface is a
ac_channel data type, it does not connect with a hardware FIFO, but instead to a
register that is providing a different single random bit at each clock cycle. Thereby, the
Catapult HLS configuration of this interface is different from the one used in the control
interface where the PE interacts directly with FIFOs and control signals are added to
the circuit. The configuration of the random number interface, although of data type
ac_channel, does not have any control signals and a reading operation is performed
unrestricted when requested.

The following example shows how to read two different bits from the random number
interface port so that a 2-bit random number is built:

ac_int<2,false> rn_2bit;

rn_2bit[0] = global_RNG_1bit.read();

rn_2bit[1] = global_RNG_1bit.read();

With the configuration of this interface port, the read method performs an uncondi-
tional reading operation and thus it never stalls the hardware. Also, and for the example
provided, the ac_channel data type of this port ensures that both reading operations
are executed in two different clock cycles.

5.2.1.3 Access arbitration to the subpopulation memory

In Section 4.4.2 we have discussed how a subpopulation memory manages the accesses
to its contents (the solutions of the genetic algorithm) by the two PEs connected to this
memory. The PE created by Catapult HLS must obey to the protocol that we developed
to prevent corruption of data when conflicting accesses occur. This section provides all
the details of how to describe the PE using C++ so that a subpopulation memory is
correctly accessed.

As briefly described in the last section, the C++ class request_channel is responsible
to generate all the required interface signals between the PE and the collision detection

102 5 The cGAP design methodology

Table 5.1: List of commands used during the selection procedure of a solution
in a PE to access a subpopulation memory. Commands are used with the

methods of a request_channel data type variable.

Command Description
CMD_READ_SOL_1 Request read access to a solution (first solution).
CMD_READ_SOL_2 Request read access to a solution (second solution).
CMD_WRITE Request write access to a solution.
CMD_START_SELECTION Informs that the PE is starting a selection procedure.
CMD_RELEASE_SOL_1 Informs that read access to a solution (first solution)

has finished.
CMD_RELEASE_SOL_2 Informs that read access to a solution (second solu-

tion) has finished.
CMD_RELEASE_WRITE Informs that write access to a solution has finished.
CMD_RELEASE_ALL Informs that all read and write accesses to solutions

have finished.

hardware in the subpopulation memory. Therefore, this class generates all the required
signals that ensure the correct handshake between a PE and a subpopulation memory.

Table 5.1 shows the commands that can be sent (using a request_channel data
type variable) from the PE to a subpopulation memory. These commands can be di-
vided in two main groups: the first three commands request access to a solution in the
subpopulation memory and thus an acknowledge signal is expected; the last five com-
mands inform the subpopulation memory to take actions (an acknowledge signal is not
necessary). The class provides two methods to handle these two groups of commands,
which fundamentally are the same and only differ from each other in the parameters
that receive and in the return value.

Figure 5.2 depicts a flow chart of the algorithm structure with the sequence of com-
mands that a PE must execute to choose a given solution in a subpopulation memory.
The selection of any solution always start with the command CMD_START_SELECTION
which indicates to the subpopulation memory that the PE is about to start a selection
procedure. At this point, the PE can read the fitness value of the solutions in the sub-
population memory and take a decision, using known algorithms like roulette-wheel or
binary tournament [SGK05], from which solutions are selected from the memory. Then,
if the PE requests a read access to a given solution it must issue the corresponding
command (CMD_READ_SOL_1 or CMD_READ_SOL_2); for a write access the command
CMD_WRITE is used. These three commands allow to have simultaneous read access to
two different solutions, and one write access in the same memory, which is usually the
required to generate a new solution in a genetic algorithm (read two solutions to gener-
ate a new one). These last commands are acknowledged by the subpopulation memory
hardware that grants or not the access to the solution so that no conflicts occur between

5.2 Specification for high-level synthesis 103

CMD_START_SELECTION

CMD_READ_SOL_1

CMD_READ_SOL_2

CMD_WRITE

memory

accesses accepted?

CMD_RELEASE_SOL_1

CMD_RELEASE_SOL_2

CMD_RELEASE_WRITE

CMD_RELEASE_ALL

selection algorithm

subpopulation

memory access

no

yes

Algorithm to choose the solutions.

Often these algorithms depend

on the fitness value of the present

solutions in the subpopulations.

Issue the desired commands

(one or more) to the

subpopulation memory.

start

end

Access to the solutions

in the subpopulation memory

must be released with the

corresponding command.

Figure 5.2: Algorithmic structure used by Catapult HLS to implement a
selection procedure of solutions in a PE.

the two PEs while accessing to the same data (as specified in Table 4.1). When the
access requested is not granted by the subpopulation memory, the PE must repeat the
steps aforementioned to select again a solution (the same or other). After the solution
has been accessed, the PE must issue a command to release the access block to that
solution, so that the other PE can have a less restricted access to it.

All the commands that request and release a solution are straightforward to understand
and use, and are enough to implement any correct access to the subpopulation memory.

104 5 The cGAP design methodology

Nevertheless, the command CMD_START_SELECTION plays an important role for a
correct selection of a solution based on algorithms that depend on the fitness value of
the solutions, which often happens. The problem is that when a request command is
issued to the subpopulation memory, it requests an access to a particular solution which
has been previously chosen based on its fitness value. However, from the instant when the
fitness value is accessed till the actual request command is issued, that solution, which
is not blocked by the PE, can be accessed and changed by the other PE. Therefore, the
request will be based on a solution that does not exist anymore in memory, thus leading
to an incorrect implementation of the selection procedure of the GA.

Figure 5.3(a) depicts an example of what could happen if we developed a solution in our
hardware that did not use the command CMD_START_SELECTION when two PEs access
to the same solution (number 4 for the example) in the same subpopulation memory.
As it can be seen, during the selection algorithm in PE#2, PE#1 acquires access to the
solution and updates it. When PE#2 requests the access this is granted as the solution
is not being used anymore by the opposite PE. Nevertheless, the selection of the solution
in PE#2 is incorrect as it was based on a fitness value of a solution that is not the one
that is in memory during the read access. Figure 5.3(b) shows the similar sequence
of operations by the two PEs, but now using the command CMD_START_SELECTION.
This command informs the subpopulation memory hardware that a selection algorithm
is being processed in the PE and therefore solutions that meanwhile may be changed by
the opposite PE cannot be selected by the algorithm.

It should be emphasized that the command CMD_START_SELECTION must always be
issued before a read or write request command, even if the selection algorithm does not
depend on the solutions’ fitness values (e.g. selection of a random solution).

The following code example shows how a PE can grant a read access to a solution in a
subpopulation memory, by performing several sequential requests to different solutions
till the access is granted:

ac_int<2,false> n_sol = 3;

bool req_ack;

do{

N_request.send_request(CMD_START_SELECTION);

req_ack = N_request.send_request(CMD_READ_SOL_1, ++n_sol);

}while(!req_ack);

// safe read access to solution

// number ’n_sol’ in memory ’N_mem’

N_request.send_request(CMD_RELEASE_SOL_1);

5.2 Specification for high-level synthesis 105

read fitness

(solution #4)

CMD_READ_SOL_1(4)

selection algorithm

CMD_RELEASE_SOL_1

read solution

Request accepted.

Selection of the solution is incorrect as solution has changed.

CMD_WRITE(4) CMD_RELEASE_WRITE

write solution

temporal sequence

of commands sent to the

subpopulation memory

write fitness

(solution #4)

PE #1

PE #2

(a)

read fitness

(solution #4)

CMD_READ_SOL_1(4)

selection algorithm

CMD_WRITE(4) CMD_RELEASE_WRITE

write solution

CMD_START_SELECTION

CMD_START_SELECTION

Request fails.

CMD_START_SELECTION has created a timestamp

that allows to check if opposite PE has changed the solution.

write fitness

(solution #4)

PE #1

PE #2

temporal sequence

of commands sent to the

subpopulation memory

(b)

Figure 5.3: Sequence of commands issued by two PEs to a subpopulation
memory to access the same solution: (a) not using CMD_START_SELECTION

(not implemented); (b) using CMD_START_SELECTION.

As it can be seen, two methods send_request are used to send commands to the
subpopulation memory. To request reading or writing access it is required to send
the corresponding command (CMD_READ_SOL_1, CMD_READ_SOL_2, or CMD_WRITE)
together with the solution identification that we want to access to. This method returns
then a boolean value stating if the access was granted or not. All the other commands
require only the command code as a parameter and no return value.

In the example above, we access to a solution in the north subpopulation memory, which
is achieved by using the interface variable N_request. All the four subpopulation
memories connected to the PE are independently managed by using the corresponding
variables that must be conveniently manipulated by the designer while describing the
PE.

106 5 The cGAP design methodology

5.2.2 cGA controller

The cGAC of the cGAP is responsible to control and monitor all the activities of the
PEs. Using a dedicated communication infrastructure (see Section 4.5.2), this block
communicates individually with each PE by sending and receiving commands. The
cGAC also receives commands from the host computer to configure itself and the PEs
with appropriate parameters.

5.2.2.1 Algorithm structure

Figure 5.4 illustrates the flow chart of the overall structure that specifies in Catapult
HLS the cGAC. This algorithm implements an infinite loop, continuously checking for
commands issued by the host or by any PE in the array. When data is detected in one
of these ports, the cGAC reads and processes the command.

To allow a correct communication between the host and the cGAC, we have introduced
an acknowledge mechanism that is issued by the cGAC when the previously sent com-
mand by the host has been processed. From the host side, a new command to the
cGAC can only be sent after the acknowledge signal from the previous command has
been issued. This technique simplifies the communication between the host and the
cGAC, as it avoids a dedicated FIFO between these two elements capable of acquiring
and controlling several consecutive commands sent by the host.

During the execution of the cGAP, it is expected that in a first phase the cGAC receives
a set of parameters and data from the host to configure itself and the PEs. After that
and during the evolution of the algorithm, each PE can send to the cGAC, for instance,
the best fitness found as it evolves so that the cGAC knows which PE has the best
solution when the process finishes. At the end, the host requests the best solution by
sending the appropriate command to the cGAC which, in turn, requests the same to
the PE where the best solution is. The desired information is then retrieved to the
cGAC and then to the host. The communication with the host is performed via the
cGA dual-port memory, where the cGAC loads all the necessary data.

The previous description of the cGAC behaviour is just an example of a possible ap-
proach to implement the cellular genetic algorithm. However, the communication among
the host, the cGAC, and the PEs must be customized to each particular optimization
problem (to be solved by a genetic algorithm or other metaheuristic). With the proposed
functionality for the cGAC, the designer is able to build potentially any communication
interaction among all the PEs and the host, as well as a centralized control of all the
operations and evolution of the algorithm. Nevertheless, it must be stressed that the

5.2 Specification for high-level synthesis 107

initialization

P
ro

ce
ss

 c
o
m

m
a
n
d
 s

en
t

b
y

h
o
st

.

command

from host?

read and interpret

command

send acknowledge

to host

yes

command

 from cGAA?

read and interpret

command

yes

end

no

no

P
ro

ce
ss

 c
o
m

m
a
n
d
 s

en
t

b
y

a
 P

E
 i

n
 t

h
e

cG
A

A
.

Figure 5.4: Algorithmic structure used by Catapult HLS to describe the
cGAC.

communication among the cGAC and the PEs is carried out by an infrastructure that
imposes throughput limitations, as discussed in Section 4.5.2.

5.2.2.2 Interface

The C++ interface used to describe the cGAC is shown in Listing 5.2. It contains three
groups of interface ports that allow the communication with the principal blocks of the
cGAP, mainly: the cGA dual-port memory; the host; and the cGAA where the PEs are
placed. This section provides a brief description of how to use these groups of interfaces.
Examples of how to write C++ code to be used by Catapult HLS tools can be found in

108 5 The cGAP design methodology

1 void cGA_controller(
2 // cGA dual-port memory interface (SW/HW shared memory)
3 ac_int<32,false> mem[1024],
4
5 // Host interface
6 ac_channel<command_type_cGA> &cmd_from_SW,
7 ac_channel<bool> &cmd_end_ack,
8
9 // cGAA interface (PEs)

10 ac_channel<command_type_cGA> &cmd_to_cGAA,
11 ac_channel<command_type_cGA> &cmd_from_cGAA
12)

Listing 5.2: C++ description of the cGAC interface to be used by Cat-
apult HLS.

Section 5.2.1.2 as the techniques and the C++ classes used are the same for both the
PE and the cGAC.

cGA dual-port memory interface

This memory can be accessed (reading or writing) by the cGAC to keep any data nec-
essary to its execution, and to transfer data to the host computer. When describing
the cGAC in Catapult HLS, this memory is accessed as a normal C++ array vari-
able. In Listing 5.2 we can see an example of how Catapult HLS performs an in-
terface to a memory with 1024 words of an unsigned integer with 32 bits data type
(ac_int<32,false>).

Host interface

This interface guarantees the correct management of commands sent by the host to
the cGAC. It comprises two ports: one for reading a command and the other that
acknowledges when this command has been processed, as specified in the algorithm
structure of the cGAC (cf. Figure 5.4). The first port reads a command from the host
and therefore is a command_type_cGA data type variable.

cGAA interface

The interface to the cGAA (or the PEs) is performed by two distinct ports: one la-
belled cmd_to_cGAA to send a command to a PE (or all the PEs), and another la-
belled cmd_from_cGAA to receive a command from a specific PE. Both ports are a
ac_channel class data type from Catapult HLS that uses the methods write and
read to perform writing and reading operations according to the port. As expected,
these ports carry a data type command_type_cGA that can be manipulated using the
methods described in Appendix A.1.

5.3 cGAP host communication 109

cGAP

h
o
st

 i
n
te

rf
a
ce

(A
X

I4
-L

it
e)

h
o
st

 c
o
m

p
u
te

r

(M
ic

ro
B

la
ze

)

command

interface

status

interface

memory

interface

cGAC cGAA

cG
A

 d
u
a
l-

p
o
rt

m
em

o
ry

Figure 5.5: Overview of the host communication with the cGAP. AMicroBlaze
soft-core processor accesses to the cGAP via AXI4-Lite protocol.

5.3 cGAP host communication

This section presents the host processor communication with the cGAP. Since the target
FPGA is a Xilinx Virtex-6, a MicroBlaze soft-core processor, whose implementation is
supported by Xilinx tools, is integrated in the same FPGA to access the cGAP [Xilb].
Additionally, we provide C functions examples of how this processor can access correctly
to the cGAP as a memory mapped device.

5.3.1 The host interface

Figure 5.5 shows an overview of the communication between a host processor and the
cGAP, which is performed by ensuring that both the host interface and the cGAP
interface blocks communicate properly.

As our architecture will be implemented on a Xilinx Virtex-6 FPGA, which presently
uses ARM AMBA4 protocol for connecting and managing different blocks in a system
on chip (SoC), we have decided to use AXI4-Lite protocol for the host interface, which is
a subset of AMBA4 that allows simple and small control register-style interfaces [ARM].

The interface blocks of the cGAP communicate properly with the AXI4-Lite protocol so
that the MicroBlaze and the cGAP can communicate with each other. It should be em-
phasized that the functionality of the cGAP interface blocks belongs to the specification
of the complete architecture, as it has been presented in Section 4.5.3. Nevertheless,
these blocks may require adaptations so that they can communicate with different host
interfaces.

110 5 The cGAP design methodology

In Appendix B we provide further details on how the MicroBlaze accesses to the cGAP,
which is achieved by defining a set of registers in the interface blocks that can be accessed
by a software program running in the processor.

5.3.2 Software access to cGAP

In this section we provide examples of C functions to be used by the operating system
(OS) running in the MicroBlaze to interact with the cGAP.

Since the cGAP will be implemented in a Xilinx FPGA, together with a MicroBlaze
soft-core processor, we have decided to run a Linux OS in the MicroBlaze capable of
accessing the cGAP as a memory mapped device. This process involves two main tasks:
a project must be built using the Xilinx tools with the appropriate configurations for
the MicroBlaze to run Linux and all the required hardware peripherals (including the
cGAP); a Linux kernel configuration and compilation with the device tree file previously
generated by the Xilinx tools. These two steps create an FPGA bitstream and a kernel
image file that are used to program the FPGA and to run the Linux in the MicroBlaze.

In Appendix B.1 it can be found the C source code of a set of basic functions that
are used as an application programming interface (API) to build software applications
that can run in the MicroBlaze to access the interface circuits of the cGAP. This API
implements the mapping of the cGAP into memory, and the access to a set of registers
that allow the access to the interface circuits of the cGAP.

By using the API, we can build new C functions that can properly send commands to
the cGAC, and to monitor the status of the cGAP. The following code example shows
an excerpt of C code running in the MicroBlaze to execute an optimization process in
the cGAP.

// map cGAP hardware into memory

IP_cga_init();

// send commands to cGAP (set-up phase)

cga_reset(); // reset cGAP

cga_set_generations(1000); // define number of generations

... // other commands

// run the cGA

cga_start_all_PEs(); // command to start GA in PEs

5.4 Design Flow 111

// wait till cGAA (the PEs) stop

cga_PEs_stopped(); // check status interface circuit

// results from cGAP (best solution)

// data available in the cGA dual-port memory

best_fitness = read_BRAM(0); // read fitness value

for (i=0; i<10; i++)

best_solution[i] = read_BRAM(i+1); // read solution

// delete cGAP hardware memory mapping

IP_cga_clean();

In this example, several functions are used to send commands (e.g. cga_reset or
cga_start_all_PEs) or to check the status of the cGAP (cga_PEs_stopped).
Appendix B.2 presents the implementation of several examples of C functions that use
the cGAP API so that the hardware is correctly accessed and controlled.

Different optimizations problems may require different commands to be sent to the
cGAP. Therefore, it is expected that the software interface must be customized to each
optimization problem. Moreover, the execution of the cGAP can be controlled by the
software as desired. In the previous example, the best solution is only read after the
PEs stop their execution which is defined by a parameter in the set-up phase. However,
different methods can be adopted, like sending a specific command to stop the PEs
at any given time, or check the evolution of the best fitness till it reaches a certain
convergence criterion.

All the C functions presented in this section target a specific hardware platform where
the cGAP will be integrated. Therefore, they must be viewed as a particular example of
an application where a MicroBlaze running a Linux OS accesses the cGAP as a memory
mapped peripheral. Other application scenarios, with the cGAP attached to different
processing systems, may require other interface mechanisms.

5.4 Design Flow

The design flow proposed in this work aims to organize the development process of the
cGAP, so that it can implement a cGA or other population-based metaheuristic for
different optimization problems. Therefore, the main core of the flow is the specification
of the PE and the cGAC hardware blocks using high-level synthesis methodologies to
allow the specification of the problem-dependent blocks in a conventional programming

112 5 The cGAP design methodology

language instead of hardware description languages (HDL) at the register-transfer level
(RTL). The rest of the architecture, which is not specific of the operations of neither the
optimization algorithm nor the optimization problem, is described in Verilog HDL. The
cGAP configuration, like the dimension of the cGAA, or the number of solutions and
organization of the subpopulation memories, is defined by a set of parameters common
to the different stages of the design flow.

Figure 5.6 shows an overview of the complete design flow used in this work which targets
the implementation of a complete embedded system constituted by a MicroBlaze soft-
core processor that uses the cGAP as a peripheral. Additionally, this flow includes
the development of a software executable that can interact with the cGAP. The target
hardware is a Virtex-6 FPGA (XC6VLX240T-1) embedded in a ML605 evaluation kit
from Xilinx [Xilf].

We have used for the HLS tools Catapult HLS version 2010a (University Version) from
Calypto Design Systems [Cal], combined with RTL synthesis by Precision RTL version
2010a from Mentor Graphics [Gra]. As the target hardware is an FPGA from Xilinx,
we have used ISE Design Suite embedded edition (mainly ISE and EDK) version 13.4
from this company for generating the FPGA bitstream [Xila].

5.4.1 cGAP parameters configuration

A small set of parameters must be defined to configure the cGAP architecture as de-
sired. This allows defining the number and aspect ratio of the PE array (cGAA) with
their toroidal or non-toroidal shape, the configuration of the subpopulation memories,
the maximum number of solutions that a subpopulation memory can handle, and the
definition of all the control commands required by the cGAP.

In the following list all the parameters used in the design flow are described:

• NONTOROIDAL: Defines a toroidal or non-toroidal configuration (see Figure 4.2)
for the cGAA.

• ARRAY_DIM_I and ARRAY_DIM_J: Both define the configuration of the PEs in
the 2D regular structure of the cGAA. The parameters define, respectively, the
number of PEs in the row and column of the array.

• WIDTH_MEM_SUBPOP and DEPTH_MEM_SUBPOP: These two parameters define the
organization of the subpopulation memory (a dual-port RAM). The first param-
eter defines the width of the memory (the total number of bits), and the second
parameter the log2 of the depth.

5.4 Design Flow 113

Software

PE

C++ description

Catapult

HLS

Precision

RTL

cGAC

C++ description

Catapult

HLS

Precision

RTL

design

constraints

Xilinx ISE

synthesis

rtl_PE.v rtl_cGAC.v

Xilinx ISE

synthesis and P&R

cGAP.ngc

Xilinx EDK project

with MicroBlaze

- Test bench

- verilog tasks

Functional

verification

cycle_PE.v cycle_cGAC.v

system.bit

High-level synthesis

RTL synthesis

cGAP HLS

Library

cGAP RTL

Library

design

constraints

Verification

Design

verification

Hardware

FPGA Implementation

interfaces_PE.tcl

subpop_access.tcl

interfaces_cGAC.tcl

cGAC.v
PE.v

MicroBlaze

C cross-compiler

ip_cGAP_control.c

cGAP_main.c

cGAP API

Library

cGAP_exec

cGAP parameters

files

Hardware platform

Linux kernel

image

Linux file

system

Image.xilinx

FPGA

Figure 5.6: Overview of the hardware design flow used to build the complete
cGAP, that connects to a MicroBlaze soft-core processor running a Linux OS,

both embedded in a Xilinx Virtex-6 FPGA.

• N_BIT_COMMAND_GA_PROC: Defines the number of bits for encoding the com-
mand codes in the cGAP.

• N_BIT_MAX_SOL_PER_SUBPOP: Defines the number of bits for encoding the so-
lutions in each subpopulation memory of the cGAA.This parameter ensures that

114 5 The cGAP design methodology

an access request by two PEs to the same solution are correctly handled by
the subpopulation memory circuit (see Figure 4.5) as described in Sections 4.4.2
and 5.2.1.3. The way the solutions are organized in the memory is not defined by
this parameter and it is the responsibility of the designer of the PE to define it.

• Commands list: A list of all command codes and names must be defined as
required by the cGAP project. As an example, we can define a parameter named
CMD_START_PE with code 0 that means a command to start a PE. The defini-
tion of the parameters names and meanings must be defined by the designer and
adapted to each project. Nevertheless, a command named CMD_RESET_CGAP rep-
resenting a reset to the cGAP hardware must exist in this list since it is hard-coded
in the RTL description of the hardware.

5.4.2 Hardware

The hardware phase of the design flow targets the generation of a bitstream file to pro-
gram the FPGA with the cGAP connected to a MicroBlaze processor. In the following
subsections, we will explain the different phases of this part of the design flow.

5.4.2.1 High-level synthesis

The high-level synthesis phase allows easing the design of the PE and cGAC modules
for a specific optimization problem. For that, two independent projects must be created
using Catapult HLS, one for the PE and another for the cGAC, as depicted in Figure 5.6.

Both projects share the cGAP HLS library which includes the data types developed for
manipulating the commands sent among the cGAC and the PEs (command_type_cGA),
as well as for accessing to the subpopulation memories (request_channel). For ref-
erence, a description of all the files included in this library is presented in Appendix C.1.

Therefore, the designer must describe in C++ the algorithms for the PE and the cGAC
with the intended operations for the genetic algorithm (or other) to target a given
optimization problem. Although the algorithms are described in a current programming
language which is inherently sequentially, a correct coding style must be followed to
achieve good results, as for example, to produce the desired pipelining and parallel
hardware structures. Additionally, the subpopulation memories must be organized to
accommodate properly the solutions, or any other additional data required by the PEs.
In Chapter 6 we provide several examples that exploit the organization of the data in the
subpopulation memories so that efficient hardware structures are built. Both algorithms

5.4 Design Flow 115

must be described as C++ algorithms according to the templates explained in detail in
Sections 5.2.1 and 5.2.2 for the PE and cGAC modules respectively.

In addition, each of the two Catapult HLS projects must be constrained so that all
the ports are properly configured. For that, the PE and cGAC projects require the
specification of design constraints for configuring all existing interfaces of the hardware
modules, and for ensuring the correct synchronization used by the different ports for the
subpopulation memory handshake protocol. Additional constraints to the projects (e.g.
clock frequency, optimization efforts, loop pipelining, etc.) are also specific from each
project and must be used as required.

5.4.2.2 RTL synthesis

The RTL synthesis phase of the design flow targets the synthesis of the complete cGAP
architecture. Therefore, it requires the hardware description of the previously generated
files by the HLS phase to describe the PE and cGAC. Additionally, it requires a cGAP
RTL library with all the files describing the remaining cGAP. This library, which is
presented in Appendix C.2 for reference, is entirely described in Verilog HDL and it
includes all the hardware blocks that do not need to be adapted or changed so that the
cGAP targets different optimization problems.

In this phase is used the XST tool from Xilinx to integrate the previous blocks created
by HLS with the rest of the system to build the complete cGAP. However, we should
emphasize that only a synthesis is implemented in this phase that generates a netlist file
to describe the cGAP, and not an implementation of the circuit in the FPGA.

5.4.2.3 FPGA implementation

The FPGA implementation phase generates the bitstream file that will be used to pro-
gram the target FPGA. For that, a project with an embedded design has been created
with EDK for the Xilinx ML605 board. This design includes a MicroBlaze soft-core
processor capable of running a Linux OS, and it contains the cGAP connected to the
processor via AXI4-Lite interface as a memory mapped device. The ISE design flow is
used to implement the complete project provided by EDK, including the netlist describ-
ing the cGAP block.

116 5 The cGAP design methodology

5.4.2.4 Verification

The verification phase of the design flow targets mainly to check if the cGAP is behaving
as expected. Therefore, we perform a functional verification by using the functional mod-
els generated during the HLS phase for simulating the PE and cGAC hardware blocks,
together with the cGAP RTL library files. A set of Verilog tasks have been developed
to emulate the behaviour of the AXI4-Lite interface, thus emulating commands sent by
the host computer to the cGAP. With this technique, we provide identical stimulus to
the cGAP as the MicroBlaze does in a real hardware implementation.

After functional validation of the whole cGAP, the final verification of the complete
embedded system was performed in real hardware while running various optimizations
problems. A design verification of the complete system can also be accomplished by
simulation, requiring all the simulation models of the system, including all the external
devices of the ML605 board that the FPGA connects to.

5.4.3 Software

In the design flow, the software phase involves the creation of an executable program to
be run in the MicroBlaze to control the execution of the cGAP. For that, the cGAP API
library includes the basic functions that must be used to access the cGAP peripheral as
a memory mapped device of the processor, thus allowing the mapping of the hardware
to memory and to access the interface circuits of the cGAP. Appendix C.3 provides an
overview of the files included in this library.

For each new cGAP implementation, it may be required to develop new software func-
tions using the routines defined in the API, so that problem-specific functionalities (e.g.
commands) are implemented. In Section 5.3.2, we have already presented examples
of such functions. Additionally, Appendix B.2 provides detailed examples of how to
implement them.

5.4.4 Hardware platform

As we have already mentioned, the design flow targets the implementation of the cGAP
in a ML605 evaluation kit, with a Virtex-6 FPGA [Xilf]. A MicroBlaze soft-core proces-
sor is also implemented in the FPGA, to which the cGAP is connected via AXI4-Lite
interface. Therefore, this processor controls the execution of the cGAP by using a soft-
ware program that can be used as desired to evaluate the algorithm.

5.4 Design Flow 117

Figure 5.7: Set-up of the test bench platform used to evaluate the cGAP. A
Virtex-6 FPGA, placed in a ML605 board, integrates a MicroBlaze soft-core
processor connected to the cGAP. The processor runs a Linux OS with its file

system hosted in a PC.

To facilitate the development of the software and have access to a file system, we use
a Linux operating system to be run on the MicroBlaze. For that, we have utilized
the Xilinx Open Source Linux [Xilh], which is an open source project, that provides a
Linux OS and additional tools required for software development2. This project can
be obtained from a Git repository provided by Xilinx [Xilg]. A dedicated Linux kernel
has been properly configured and compiled using a device tree file previously generated
by the Xilinx tools during the FPGA implementation phase of the design flow, thus
including the cGAP as a peripheral of the processor. Additionally, we have configured
the kernel to boot over the network, using Network File System (NFS). This allows the
file system of the Linux OS running in the MicroBlaze to be physically in a hard disc
drive (or any other data storage element) of a PC. In a typical session to evaluate a
cGAP, the MicroBlaze is accessed from the PC using a remote shell where the software
that controls the cGAP is run.

2The Xilinx Open Source Linux has been chosen since it is an open source project. However, more
recently, PetaLinux is also available under no-charge license and it is, at the present date, the Linux
distribution more recommended and fully supported by Xilinx [Xilc].

118 5 The cGAP design methodology

Figure 5.7 shows a picture of the final hardware platform used in this work. As it
can be seen, the ML605 board connects to a PC via an ethernet cable. In the PC,
it is hosted the file system needed to boot the Linux OS of the MicroBlaze, together
with the development tools (a MicroBlaze gcc cross-compiler) used to create a software
application to communicate with the cGAP.

Since the Linux of the MicroBlaze has its file system in the PC, it is straightforward to
develop a new software application and immediately run it on the MicroBlaze. Moreover,
any additional files required to execute the cGA can be easily added to this file system
to send or to collect data from the algorithm. This approach is ideal to evaluate the
cGAP under different conditions since the PC can handle all of these files without the
need to explicitly send or receive them from the ML605 board.

Although in this phase we can create any new software application to run in the MicroB-
laze that accesses to the cGAP, if the cGAP needs to be changed the design flow must
be started from the beginning with the HLS phase to rebuild the peripheral. However,
it is not required to modify the Xilinx EDK project with the soft-core processor, nor to
compile a new Linux kernel as the MicroBlaze configuration is not changed.

5.5 Summary

In this chapter we have introduced the description of the PE and cGAC hardware mod-
ules using HLS tools, so that the cGAP is customized to solve different optimization
problems, or even using other population-based metaheuristics. We have defined three
algorithm templates that must be followed to build these hardware blocks. The first
algorithm template ensures that a PE acquires data from the cGAC so that it can be
configured as desired, and it executes iteratively the operations of the metaheuristic.
The second algorithm details the steps that a PE must follow to access safely to the
solutions kept in a subpopulation memory. Finally, the third algorithm defines how the
cGAC must handle both commands received from the host and from the PEs.

We also have provided examples of how the interface of the cGAC and PE blocks can
be accessed with the HLS tool used. To do so, we have presented C++ data types
specific from the HLS tool used, and defined new ones to manipulate specific data used
to describe the algorithms.

The host communication used by the cGAP has been described so that the hardware can
be accessed. We have explained how the cGAP can receive data or commands from the
host, while providing C code examples that can be run on a Linux OS of a MicroBlaze
soft-core processor to access the cGAP as a memory mapped device.

5.5 Summary 119

Finally, we have proposed a design flow to build the cGAP, including an experimental
hardware platform where the cGAP can be evaluated, consisting in a ML605 board with
a Virtex-6 FPGA from Xilinx that implements the cGAP together with a MicroBlaze
processor running a Linux OS. This board accesses to a PC where the file system of the
OS is placed.

In the next chapter, we will present two different implementations of the cGAP using
the proposed design flow, and show results that demonstrate the speedup potential of
the proposed architecture for cellular genetic algorithms.

Chapter 6

Experimental results

6.1 Introduction

In the previous chapters the architecture of the cellular genetic algorithm processor
(cGAP) was presented, as a scalable and dedicated processor array to solve cellular ge-
netic algorithms (cGAs). Moreover, a high-level synthesis (HLS) based design flow was
defined that allows to specify in C++ the optimization problem-dependent blocks: the
processing element (PE) where the genetic algorithm is run, and the cellular genetic
algorithm controller (cGAC) where the operations of the array are coordinated. There-
fore, by customizing these blocks we can build the cGAP to solve different optimization
problems that may require specific operators to be used by the algorithm.

In this chapter, two distinct optimization problems will be addressed as case studies to
demonstrate the effectiveness of the proposed computing array and design methodol-
ogy: the spectrum allocation (SA) problem presented in Section 6.2, and the minimum
energy broadcast (MEB) problem presented in Section 6.3. Both problems appear in
the context of wireless ad hoc networks, where the first tries to improve the usage of
the available spectrum by exploiting opportunistically unused spectrum, and the second
consists in broadcasting a message with the minimum energy consumption. These prob-
lems pose several challenges when solved with GAs, like problem-specific constraints,
special solution representations, or dedicated local search algorithms for better perfor-
mance of the GA. The specification of the PE with a HLS flow is thus helpful for easing
the design of these functionalities.

During this chapter, project details of how to build and optimize the problem-specific
blocks with the HLS tools will be presented. Implementation results and acceleration
figures are provided for the engines. General considerations on the cGAP implementation

121

122 6 Experimental results

are provided in Section 6.4. The cGAPs for the SA and MEB problems have been
successfully run in a Virtex-6 FPGA.

6.2 Spectrum allocation in cognitive radios

With the increase of the wireless devices available in our world, it becomes more im-
portant an efficient usage of the spectrum available. This is usually poorly exploited
by static spectrum assignments [TZFS13]. In this regard, cognitive radio has emerged
as a promising technology that exploits unused spectrum in an opportunistic manner.
Mobile wireless devices like smartphones, laptops, etc., can access to a portion of a free
spectrum available (via a software defined radio) and not to a specific spectrum band
like it happens in current radios like 4G and IEEE 802.11.

A cognitive radio network typically consists of a set of primary users with assigned
channels, and a set of secondary users that are allowed to access the available spectrum
in a coordinated way. It is expected that the secondary users, based on constraints
imposed by the primary users, use unused licensed spectrum on a non-interfering basis.
This way, the available spectrum can be reused resulting in an effective increase of the
system usable bandwidth.

The spectrum allocation problem is thus a good example where the proposed architec-
ture can be applied, since there is the need to continuously solve this problem in a real
environment where mobile devices normally change their position. Moreover, the prob-
lem may impose time restrictions to be solved, and solving it as fast as possible means
an increased efficiency of the spectrum used.

In this section, we present an implementation of a cGAP for solving a spectrum allocation
problem. This problem, unlike the TSP used in Chapter 3, imposes several constraints to
the solutions generated by a GA and thus additional operations must be used to correct
them. Using the design flow presented in the last chapter, we develop the necessary
hardware blocks customized to this particular problem.

6.2.1 Problem definition

The SA model adopted in this work is described in [PZZ06]. It consists of a set of N
secondary users that try to access to M non-overlapping orthogonal channels. Each
secondary user can utilize any channel, but limited to interference constraints that may
appear among secondary and primary users.

6.2 Spectrum allocation in cognitive radios 123

Secondary user

Primary user

II

I

III

I

(a)

Channel A

II

I

III

I

(b)

II

I

III

Channel B

I

(c)

Figure 6.1: Example of a SA problem with (a) placement of 1 primary and
3 secondary users, (b) availability of channel A among secondary users and

primary user, (c) availability of channel B among secondary users

Figure 6.1(a) illustrates an example of a placement of a primary user (a legacy spectrum
device) and three secondary users (unlicensed devices). The primary user utilizes always
channel A, whereas the secondary users can utilize any channel as long as no interference
appears among all users. Figure 6.1(b) shows what happens when the secondary users
utilize the same radio channel as the primary user (channel A). In our model, the
secondary users are able to adjust their maximum transmission power so that they do
not interfere with the primary user. Nevertheless, secondary users can interfere among
them, as it is depicted in the figure, which leads to an infeasible solution of the SA
problem. Since secondary user II is placed inside the range of the primary user, it
cannot use the same channel. Figure 6.1(c) depicts the usage of a different radio channel
(channel B) from the primary user in all the secondary users. In this case, and since
there is not any interference with other primary user, the secondary users transmit at
their maximum transmission power which may lead to undesired interferences. In the
example, secondary user III interferes with secondary user II and I and therefore they
cannot use the same radio channel at the same time.

A channel availability matrix L = {ln,m|ln,m ∈ {0, 1}}N×M , where N and M are respec-
tively the number of secondary users and number of channels, defines when the channel
m is available to user n by setting ln,m = 1. This constraint ensures that a given sec-
ondary user does not interfere with a primary user when it is in its range of transmission.

124 6 Experimental results

A matrix C = {cn,k,m|cn,k,m ∈ {0, 1}}N×N×M informs when the user n and k cannot use
simultaneously channel m by setting cn,k,m = 1, which happens when the two users are
in the vicinity of each other and thus interfere if using the same channel.

The spectrum allocation problem consists on finding the best channel assignment matrix
A = {an,m|an,m ∈ {0, 1}}N×M , where an,m means that channel m is assigned to user n.
The constraints of the problem are defined by the following equations:

an,m ≤ ln,m, ∀n < N,m < M (6.1)

an,m + ak,m ≤ 1, if cn,k,m = 1, ∀n, k < N,m < M (6.2)

A matrix B = {bn,m}N×M represents the channel rewards that can be acquired by user
n when using channel m. These values are related with the maximum distance that a
user can transmit when using a given channel.

The objective of this problem is to maximize a given utility function U . In this work, we
consider the maximum sum reward defined by Equation 6.3, which maximizes the total
spectrum utilization of the system, although others functions can be considered [PZZ06].

Usum =
N−1∑
n=0

M−1∑
m=0

an,m · bn,m (6.3)

It has been demonstrated that the previous formulation of the SA leads to a NP-hard
problem [PZZ06], and therefore evolutionary algorithms are a good approach for solving
them [ZPZS09].

During this section several instances of the SA problem are used to evaluate the cGAP,
that have been generated by us according to the algorithm for modelling a network
conflict graph provided by [PZZ06]. We could not use known instances for this SA
problem because there is no knowledge of a database with such problem. However, with
the aforementioned algorithm, we have distributed randomly a set of primary users and
secondary users over a 10× 10 square (of an abstract distance unit) and generated the
required matrices for the SA formulation. As used by default in the instances of [PZZ06],
the number of primary users has been fixed to 20, the maximum and minimum transmis-
sion distance of a secondary user is 4 and 1 respectively, and the transmission distance
for the primary users is 2. The generated instances are labelled with the name N_M
where N is the number of secondary users and M the number of available channels.

6.2 Spectrum allocation in cognitive radios 125

Table 6.1: Genetic operations adopted in the PEs for the spectrum allocation
problem.

Parent selection binary tournament
Crossover uniform
Mutation bit-flip (probability < 5%)
Replacement select random solution and replace if better

6.2.2 The cGA operations and control

In this subsection we present the genetic algorithm operations that each PE is going
to compute, and the list of all the commands that the cGAP recognizes, that is, the
commands used by the PEs and the cGAC.

Table 6.1 provides the list of the genetic operations used by each PE. Since a solution of
the SA problem is defined by the binary matrix A, a solution is encoded with a binary
representation that codes the complete matrix. Therefore, we have used the uniform
and bit-flip operators that can be applied to binary representations of solutions. For
the selection we have elected two binary tournaments to elect two solutions, and in the
replacement a solution is randomly selected and replaced if the generated solution has
a better fitness value. These operations are often used in cGAs [AD08].

To control the algorithm and to define new instances to be solved by the cGAP, we
have defined a list of commands, as it can be seen in Table 6.2. As we have already
explained, the cGAC can send a command to a specific PE or it can broadcast it to all
the PEs. Therefore and as required, problem parameters that are common to all PEs,
are broadcasted to configure the PEs simultaneously, whereas PE specific commands are
sent only to one PE.

The commands implemented in the cGAC and in the PEs must be defined so that
these blocks can communicate with each other while ensuring that all the information
is correctly passed. For instance, the command to define an initial subpopulation in a
PE requires several consecutive commands to send all the information (a subpopulation
requires much more than 32 bits, which is the maximum for a single command). There-
fore, when the cGAC sends this information, the PE is prepared to receive it in the
same order as the cGAC sends it. Another example is the command to retrieve the best
solution (CMD_GET_BEST_SOL), where the cGAC asks to a specific PE its best solution
and waits till the requested information is sent back.

During the evolution of the algorithm, each PE notifies the cGAC when it finds a best
solution, sending the newest fitness found. This way, the cGAC knows the best fitness
value among all the PEs, which is used to track which PE has the best solution at the

126 6 Experimental results

Table 6.2: List of commands implemented in the PE and cGAC for solving
the SA problem.

Command
Name Code Description

CMD_START_PE 0 Starts execution of GA in a PE.
CMD_STOP_PE 1 Stops execution of GA in a PE.
CMD_N_SU 2 Defines number of secondary users (N).
CMD_N_CH 3 Defines number of channels (M).
CMD_MATRIX_L 4 Defines matrix L.
CMD_MATRIX_B 5 Defines matrix B.
CMD_MATRIX_C 6 Defines matrix C.
CMD_WRITE_SUBPOP 7 Writes subpopulation in a subpopulation memory.
CMD_RESET_FITNESS 8 Resets fitness value in all subpopulations.
CMD_N_SOL_SUBPOP 9 Defines number of solutions per subpopulation

memory.
CMD_GET_BEST_SOL 10 Retrieves best solution in the cGAP.
CMD_SET_MAX_ITER 11 Defines maximum number of generated solutions

in cGAA (only cGAC).
CMD_SET_FIT_STOP 12 Defines fitness value to stop cGAA (only cGAC).
CMD_RESET_CGAP 15 Command to reset the cGAP (defined in the HDL

of the cGAP).

end of the algorithm. Additionally, this can also be used by the cGAC to stop the cGAA
if the criterion is to evolve the algorithm till a certain fitness value is achieved.

Each PE also informs the cGAC when it generates a certain number of solutions, so
that the cGAC can monitor the total number of solutions generated. Therefore, the
cGAC can stop the cGAA till a given number of solutions are generated in all the PEs.
This approach is followed since the PEs are not synchronized and thus different PEs can
generate a different number of solutions for the same processing time. Although this
does not guarantee an exact number of generations, it ensures that a requested number
of solutions is reached.

6.2.3 The processing element

In this section we present a PE custom design for the SA problem. By distributing
appropriately all the necessary data required by this problem (e.g. matrices L, C, and
B) among the four subpopulation memories, we take advantage of this large memory
bandwidth so that efficient pipeline and parallel hardware structures are built with HLS.
We provide several examples of how a PE can be described in C++ for synthesis with
Catapult HLS and how design constraints must be used to achieve good speed/area
trade-offs.

6.2 Spectrum allocation in cognitive radios 127

0

1

1

2

3

0 1 2 3 4 5 6 7 24 25 26 27 28 29 30 31

1111

11

11

1

11 1

0 00 0

0

0

0

0

0 00 0

0

0

0

0

0

1 11 1 1

111 111

111

1 11

11 1

00 0 0 0

00 0 0

00

0 00

28

29

30

31

1 0100

10

01

1

01 0

1 11 0

0

1

0

1

1 10 0

0

1

1

0

1

0 11 0 0

010 000

011

1 11

00 0

01 0 0 0

01 0 1

01

1 00

channels

(memory data width)

se
co

n
d
a
ry

 u
se

rs

(m
em

o
ry

 a
d
d
re

ss
)

Figure 6.2: Memory codification of a solution in the SA problem (matrix A).

6.2.3.1 Subpopulation memory organization

For the spectrum allocation problem presented the binary matrix A defines a solution
of the problem. Figure 6.2 depicts the memory data organization for this matrix, for a
maximum of 32 secondary users and channels. This way, a memory word keeps all the
channels for a given user n in the matrix A. The memory addresses are thus assigned
to secondary users (index n of the element an,m in matrix A) and the data word to
channels (index m of the element an,m in matrix A).

Although the major role of the subpopulation memories is to hold the solutions evolved
by the algorithm, they can also be used to keep additional data. This avoids the need to
use extra block RAMs (BRAMs) of the FPGA, which may limit the maximum number
of PEs (and subpopulation memories) in the cGAA. Additionally, by choosing a careful
positioning of all the data in the 4 subpopulation memories, it is possible to exploit the
memory bandwidth provided by these memories to build efficient hardware structures.
The distribution of the data in matrices A, L, B and C of the SA problem among the
subpopulation memories, has been chosen to explore this idea.

The 3 dimensional binary matrix C and the 2 dimensional matrix B are the ones that
require more space. In total, and with a limit of 32 both for N and M (number of
secondary users and channels), matrix C occupies 1024× 32 bits and matrix B a total
of 256× 32 bits considering that each element bn,m (the cost of user n using channel m)
occupies 8 bits. Therefore, we have divided the information of these matrices among
the 4 subpopulation memories connected to each PE. Additionally and by realizing that
cn,k,m = ck,n,m and cn,n,m = 0, only less than half of the elements of C need to be kept.

128 6 Experimental results

0x000

0x3FF

0x020

Matrix A

(only west PE)

Matrix A

(only east PE)

Best solution

(only west PE)

Fitness values

Matrix B
1

Matrix C
1

Subpopulation

0x040

0x060

0x100

0x200

0x080

0x000

0x3FF

0x020

Matrix A

(only west PE)

Matrix A

(only east PE)

Best solution

(only west PE)

Fitness values

Matrix B
1

Matrix C
1

Subpopulation

0x040

0x060

0x100

0x200

0x080

0
x0

0
0

0
x3

F
F

0
x0

2
0

M
a
tr

ix
 A

(o
n
ly

 n
o
rt

h
 P

E
)

M
a
tr

ix
 A

(o
n
ly

 s
o
u
th

 P
E

)

M
a
tr

ix
 L

F
it

n
es

s
va

lu
es

M
a
tr

ix
 B

0

M
a
tr

ix
 C

0

S
u
b
p
o
p
u
la

ti
o
n

0
x0

4
0

0
x0

6
0

0
x1

0
0

0
x2

0
0

0
x0

8
0

0
x0

0
0

0
x3

F
F

0
x0

2
0

M
a
tr

ix
 A

(o
n
ly

 n
o
rt

h
 P

E
)

M
a
tr

ix
 A

(o
n
ly

 s
o
u
th

 P
E

)

M
a
tr

ix
 L

F
it

n
es

s
va

lu
es

M
a
tr

ix
 B

0

M
a
tr

ix
 C

0

S
u
b
p
o
p
u
la

ti
o
n

0
x0

4
0

0
x0

6
0

0
x1

0
0

0
x2

0
0

0
x0

8
0

PE

Subpopulation memories

north/south

w
es

t

ea
st

north

south

ea
st

PE

w
es

t

north

PE

PE

south

PE

Subpopulation memories

east/west

Figure 6.3: Subpopulation memory organization in the cGAP used for the SA
problem.

Figure 6.3 depicts all the data organization in the 4 subpopulation memories: north,
south, east and west. Both matrices B and C have their data divided between two
slots: B0, B1 and C0, C1. The first part of these matrices (B0 and C0) is replicated
in the north and south memories, while the second part (B1 and C1) in the east and
west memories. With this configuration every PE accesses to the same memory contents
regardless of their position in the cGAA. This happens as the north memory of a given
PE is the south memory of the PE above it. The same reasoning applies to the east
and west memories. Although a division of the data among the 4 memories could be
implemented, it would require different memory accesses for different PEs, depending
on their position in the cGAA. Therefore, this approach would require more than one
PE block to be built with HLS.

6.2 Spectrum allocation in cognitive radios 129

Matrix L is positioned and replicated in subpopulation memories north and south. As
matrix A (the solution built at each generation) requires read and write accesses, each
PE has its own memory space reserved to these data. Therefore, two different slots are
allocated in each subpopulation memory, so that the PEs do not interfere with each
other (see Figure 6.3). Additionally, the possible use of the matrix A in any one of
the subpopulation memories, targets to increase the efficiency of pipeline structures for
the different operations in the PE, since these data can be accessed from any of the
memories.

With the proposed data organization in the subpopulation memories, it is possible to
use a single BRAM of the Virtex-6 FPGA for each subpopulation memory to keep a
maximum of 16 solutions per subpopulation and the auxiliary matrices required by the
SA problem, as it is depicted in Figure 6.3. More solutions per subpopulation can be
added, but this requires more than 1 BRAM per subpopulation memory. The fitness
values of the corresponding solutions are kept in a different memory slot.

6.2.3.2 Coding in C++ for HLS

The subpopulation memory data organization described in the previous subsection has
been exploited to improve the memory accesses as a PE can access to the same data from
different memories. Table 6.3 shows the memory accesses used by the main operations
computed by a PE to generate a solution.

For instance, the crossover operation requires a read of two solutions coming from any
of the 4 subpopulation memories and a write to generate a new solution (matrix A). In
this case, we have chosen the south memory to store the generated solution. In turn,
the mutation operation reads the matrix A passed by the crossover and processes it
to another matrix A location (west memory). This procedure is followed by all the
operations so that the memory bandwidth provided by the subpopulation memories is
exploited to generate more efficient hardware structures. An exception to this is the
constraint of the generated solution according to matrix C, since the algorithm requires
two nested loops accessing to the same data and thus it is more convenient to keep the
data in the same memory.

Listing 6.1 provides some excerpts of the implemented code, mainly the read and process
of two commands (start the GA, and define a variable value), the crossover operation,
and the correction of a solution according to matrix L (as defined by Equation (6.1)).

130 6 Experimental results

Table 6.3: Subpopulation memories accesses adopted by a PE for the different
operations of the GA for solving the SA problem.

Subpopulation memories
north south east west

Operations read write read write read write read write

Crossover Sub-
pop. - Sub-

pop. A
Sub-
pop. - Sub-

pop. -

Mutation - - A - - - - A

Constraint
Matrix L L - - - - A A -

Constraint
Matrix C C0 - - - A A C1 -

Fitness B0 - - - A - B1 -
Replace-
ment - Sub-

pop. - Sub-
pop. A

Sub-
pop. - Sub-

pop.
Best
solution - - - - A - - Best

sol.

1 // p o i n t e r s to access the d i f f e r e n t memories s e c t i o n s
2 static ac_int <32,false> ∗mat_A_N = &N_mem[0 x000] ;
3 static ac_int <32,false> ∗mat_A_W = &W_mem[0 x000] ;
4 static ac_int <32,false> ∗mat_A_S = &S_mem[0 x020] ;
5 static ac_int <32,false> ∗mat_A_E = &E_mem[0 x020] ;
6 static ac_int <32,false> ∗mat_L_N = &N_mem[0 x040] ;
7 . . .
8
9 // read and process commands
10 while (read_cmd_flag){
11 command_type_cGA command_in = PE_control_in . read () ;
12 ac_int <4,false> cmd_code = command_in . get_command () ;
13 ac_int <32,false> cmd_data = command_in . get_data () ;
14 switch (cmd_code){
15 case CMD_START_PE: // s t a r t the GA
16 stop_ga = 0 ; read_cmd_flag = 0 ; break ;
17 case CMD_N_SU: // d e f i n e number secondary users
18 n_su = cmd_data ; break ;
19 . . .
20 }
21
22 // process GA
23 while (! stop_ga){
24 // s e l e c t i o n
25 . . .
26
27 // uniform crossover
28 for (int n=0; n<n_su ; n++){
29 // genera te s a 32− b i t random number

6.2 Spectrum allocation in cognitive radios 131

30 ac_int <32,false> rng_num = RNG_32bit . exec (global_RNG_1bit . read ()) ;
31 // ptr_P1 and ptr_P2 are p o i n t e r s to the s o l u t i o n s s e l e c t e d
32 ac_int <32,false> data32_1 = ptr_P1 [n] ;
33 ac_int <32,false> data32_2 = ptr_P2 [n] ;
34 ac_int <32,false> data32_3 ;
35 LOOP_CX_32: // loop l a b e l
36 for (int m=0; m<32; m++){
37 if (rng_num [m] == 0)
38 data32_3 [m] = data32_1 [m] ;
39 else

40 data32_3 [m] = data32_2 [m] ;
41 }
42 mat_A_S[i] = data32_3 ;
43 }
44
45 // mutation
46 . . .
47
48 // c o r r e c t i o n o f s o l u t i o n (c o n s t r a i n t matrix L)
49 for (int n=0; n<n_su ; n++)
50 mat_A_E[n] = mat_A_W[n] & mat_L_N[n] ; // ensures t h a t : a (n , n) <= l (n ,m)
51
52 // c o r r e c t i o n o f s o l u t i o n (c o n s t r a i n t matrix C)
53 // f i t n e s s e v a l u a t i o n
54 // replacement
55 // b e s t s o l u t i o n
56 . . .
57 }

Listing 6.1: Excerpt of the C++ code to describe a PE for solving the
SA problem.

The code is written having in mind that a data word coming from a subpopulation
memory is processed in parallel, if possible. For this reason and in general, the innermost
loops are indexed to the channels of the SA problem and are limited to 32 regardless
of the real number of channels for a given problem instance. In turn, the outer loops
are indexed to the secondary users (the address of the memory) and are limited by
the maximum number of secondary users for a particular instance (variable n_su in
Listing 6.1).

6.2.3.3 HLS optimizations

The C++ description of the PE algorithm has been synthesized using different optimiza-
tion strategies, mainly those concerning with unrolling and pipelining of loops. The first
strategy is the basic mechanism to add parallelism to a design by scheduling multiple
iterations of a loop in parallel. The second strategy consists of starting a loop iteration
at every predefined number of clock cycles, called initiation interval (II) of a pipelined
circuit.

132 6 Experimental results

In this work, the unroll of the loops is generally performed in the inner loops which
are associated with the processing of the channels of the SA problem (e.g. of label
LOOP_CX_32 in line 35 of Listing 6.1). The outer loops are pipelined with the mini-
mum possible initiation interval of each iteration, so that the latency of the circuit is
minimized. For instance, the crossover has a minimum II=3 since in each iteration 3
simultaneous access may occur in the same subpopulation memory. In the operation
to correct the solution according to matrix L, an II=1 is possible since all the data
required comes from different memories and can be accessed in parallel (see Table 6.3).
If an initiation interval is set to a value less than the admissible, the HLS tool fails in
the scheduling phase.

A total of 14 systems have been synthesized with the HLS tool by setting cumulatively
the following design constraints (e.g. design #6 includes all the constraints from #1 to
#6):

• #1: Initial project without constraints.

• #2: Random number of 32 bits implemented with registers instead of BRAMs
(used by default by Catapult HLS).

• #3: Shift-registers associated with all random numbers unrolled.

• #4: Unroll of crossover operation (inner loop).

• #5: Pipeline with II=3 in crossover operation.

• #6: Mutation with II=3 in mutation operation. 3 accesses to the global 1-bit
random number limit the pipeline II.

• #7: Pipeline with II=1 in constraint matrix L.

• #8: Unroll of constraint matrix C (inner loop).

• #9: Pipeline with II=2 in constraint matrix C.

• #10: Unroll of fitness operation (inner loop). Loop generates 4 adders in parallel.

• #11: Pipeline with II=1 in fitness operation.

• #12: Pipeline with II=2 in replacement (copy of a new solution).

• #13: Pipeline with II=1 in copy best solution operation.

• #14: Change in C++ code so that 8 adders are parallelized in the fitness operation
by unrolling the corresponding loops. Possible since matrix B is divided between
two memories allowing the read of 64 bits in 1 clock cycle (resulting in 8 adders of
8 bits each).

6.2 Spectrum allocation in cognitive radios 133

Table 6.4: Catapult HLS and Precision RTL results for implementing a PE for
the SA problem. The different solutions represent added constraints in Catapult

HLS. Target frequency of 100MHz in all solutions.

Catapult HLS Precision RTL

Solution Area
cost

Latency
(cycles) LUTs FFs Slices Frequency

(MHz)
#1 5865.03 196930 3439 2509 860 144
#2 6398.19 101506 3743 2680 936 149
#3 5502.42 43360 3618 2417 905 160
#4 5204.75 42271 3382 2289 846 162
#5 5114.76 42238 3595 2284 899 161
#6 5231.63 42238 3480 2329 870 166
#7 5313.44 42174 3538 2327 885 172
#8 4939.47 10461 3146 2188 787 151
#9 4944.93 9531 3465 2168 867 153
#10 4769.32 8475 3161 2097 791 138
#11 4994.45 7850 3289 2213 823 142
#12 4953.72 7818 3279 2209 820 149
#13 4944.17 7754 3361 2207 841 142
#14 4977.12 7622 3300 2189 825 150

Table 6.4 presents the results obtained by Catapult HLS and Precision RTL for the
different experiments previously enumerated. Catapult HLS provides an area metric
required to implement a solution and the number of clock cycles required to complete
a call to the function (latency). The latency value provided by the tool, in the context
of this project, must be interpreted qualitatively and not quantitatively. The reason for
this, is that the complete function that implements the PE has several while cycles
that are ended till a certain condition is met. Therefore, it is impossible for the tool
to know how many iterations (and thus how many clock cycles), these loops will take1.
Additionally, several loops are only executed once during the execution of the function
(e.g. the configuration of a subpopulation memory), and thus they do not have the same
impact as the loops used to generate a new solution which are repeated for each new
generation of the GA. Therefore, a lower value for the latency must be interpreted always
as a better solution in the sense that it executes with less clock cycles. Quantifying this
gain can be done, although the results must be carefully analysed taking in consideration
the changes or constraints imposed to the circuit. Regarding Precision RTL synthesis
results, the number of look-up tables (LUTs), flip-flops (FFs) and slices required by the
target FPGA are presented as well as an estimation of the maximum clock frequency.

1It is possible to constrain a loop in Catapult HLS so that the tool knows the maximum number of
iterations of the loop. However, for the GA implemented we did not provide these constraints (to while
loops) since we do not specify these values. When Catapult HLS cannot determine a maximum number
of iterations for a loop, the tool considers that it executes only once.

134 6 Experimental results

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14
4500

5000

5500

6000

6500

A
re
a
co
st

Solution
#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14

0

50

100

150

200

250

300

T
im

e
(µ
s)

Figure 6.4: Area cost and computation time for the different PE implemen-
tation solutions with Catapult HLS and Precision RTL (in Table 6.4) to solve

the SA problem.

Figure 6.4 presents a bar chart for the different solutions implemented with the area cost
provided by Catapult HLS and the time that a solution takes to complete the execution
of a PE (considering the latency and the frequency achieved by the circuit).

The target of all the constraints imposed by us to Catapult HLS has as objective a faster
execution of the PE, although more hardware resources may be required to implement
it. Therefore, we have set the design goal to latency in Catapult HLS. However, results
clearly show the tool is not able to provide the desired results when compared to a design
manually constrained by the user. Each new constraint adds an additional reduction in
the latency value, which indicates that the tool does not optimize the loops by default.

As an example, solution #3 unrolls all the random numbers implemented as shift-
registers, which represents a high decrease in the circuit latency. This happens since
several random numbers exist in the circuit that were not implemented as shift-registers,
thus affecting the circuit performance. Also, in solution #8 a large latency reduction
exists when the loop unroll of the operations associated with matrix C correction is
performed. This operation is the one that consumes more time in a GA generation.

An interesting result is that although the level of parallelism is augmented by unrolling
loops, the area required to implement the final solution decreases. This result can be
explained as the parallelized operations represent simpler circuits when compared to the

6.2 Spectrum allocation in cognitive radios 135

ones required for multiplexing the data for sequential processing. Most of the parallelized
circuits are simple hardware functions (e.g. 32 parallel 2-input and operations for matrix
L constraint).

Taking the constraints imposed in the final solution of Catapult HLS to implement the
PE (solution #14 in Table 6.4), which provided the lowest latency circuit, we have
performed a frequency sweep for several target frequency values as shown in Table 6.5.
Additionally, each project was then synthesized by Precision RTL with three different
optimization levels: no optimization, area optimization, and speed optimization.

From the results, we verify that there is not a meaningful change in the latency value for
the different circuits generated by Catapult HLS. Also, the Precision RTL with speed
optimization does not seem to provide improved results over the solutions with no op-
timizations. For instance, the best solution regarding the maximum frequency achieved
is 155MHz in both situations. When setting Precision RTL with area optimization, the
generated circuits introduce additional digital signal processing (DSP) blocks to reduce
the overall hardware resources used by the FPGA. However, in this situation the circuits
generated achieve a lower frequency value than the other circuits with no optimizations
or speed optimizations. In Table 6.5 we highlight 6 different projects (2 per each Pre-
cision RTL optimization level) that we elected as candidates to be synthesized with the
Xilinx tools to build a complete cGAP with a single PE.

From the results in this section, it is clear that it is very important to describe properly
the hardware block in C++ so that the tools can provide the best results. Moreover, by
providing the appropriate constraints to Catapult HLS, the tool is guided to produce
the best results, mainly in what concerns the unrolling and pipelining of loops.

6.2.4 cGAP implementation

In this section we present the results of the implementation in hardware of the cGAP,
which includes the PE project described in the previous section together with the cGAC,
both using HLS methodologies. This implementation corresponds to the RTL synthesis
phase of the design flow (cf. Figure 5.6).

A cGAC project was also developed with Catapult HLS and Precision RTL, achieving a
hardware utilization of 961 LUTs, 659 FFs, and 241 slices of the FPGA for a maximum
frequency of 160MHz. This project, by comparison with the PE to solve the SA problem,
is much simpler to implement and require much less hardware resources. Therefore,
during its development we have provided to Catapult HLS the necessary constraints so
that the generated hardware unrolls and pipelines conveniently the loops, and no further

136 6 Experimental results

T
ab

le
6.

5:
O
pt
im

iz
at
io
n

of
C
at
ap

ul
t
H
LS

so
lu
tio

n
fo
r
a
PE

to
so
lv
e
th
e
SA

pr
ob

le
m

(#
14

in
Ta

bl
e
6.
4)
.

A
fre

qu
en

cy
sw

ee
p

is
pe

rfo
rm

ed
an

d
di
ffe

re
nt

op
tim

iz
at
io
n
le
ve
ls

by
Pr

ec
isi
on

RT
L
ar
e
ex
pe

rim
en
te
d.

C
at
ap

ul
t
H
LS

Pr
ec
isi
on

(n
o
op

tim
iz
at
io
ns
)

Pr
ec
isi
on

(a
re
a
op

tim
iz
at
io
n)

Pr
ec
isi
on

(s
pe

ed
op

tim
iz
at
io
n)

Ta
rg
et

A
re
a

co
st

La
te
nc

y
(c
yc
le
s)

LU
Ts

FF
s

Sl
ic
es

Fr
eq
.

(M
H
z)

LU
Ts

FF
s

Sl
ic
es

Fr
eq
.

(M
H
z)

D
SP

s
LU

Ts
FF

s
Sl
ic
es

Fr
eq
.

(M
H
z)

20
M
H
z

49
40

.7
9

76
21

32
20

21
05

80
5

85
31

12
20

95
77

8
68

5
31

82
21

05
79

6
84

30
M
H
z

49
40

.7
9

76
21

32
20

21
05

80
5

86
31

12
20

95
77

8
68

5
31

82
21

05
79

6
84

40
M
H
z

49
40

.7
9

76
21

32
20

21
05

80
5

86
31

12
20

95
77

8
68

5
31

82
21

05
79

6
84

50
M
H
z

49
40

.7
9

76
21

32
20

21
05

80
5

86
31

12
20

95
77

8
68

5
31

82
21

05
79

6
84

60
M
H
z

49
19

.6
8

76
22

32
38

21
15

81
0

11
6

30
85

21
05

77
2

10
4

5
31

70
21

15
79

3
11

4
70

M
H
z

49
22

.4
4

76
22

32
17

21
24

80
5

12
2

32
25

21
14

80
7

10
3

5
31

48
21

24
78

7
13

7
80

M
H
z

49
27

.2
0

76
22

31
53

21
34

78
9

13
3

30
67

21
24

76
7

10
0

5
32

70
21

34
81

8
14

1
90

M
H
z

49
88

.1
2

76
22

31
81

21
35

79
6

13
8

31
06

21
25

77
7

97
5

31
94

21
35

79
9

13
7

10
0M

H
z

49
77

.1
2

76
22

33
00

21
89

82
5

15
0

32
40

21
79

81
0

99
6

33
92

21
89

84
8

15
5

11
0M

H
z

50
26

.8
2

76
23

33
64

21
86

84
1

15
5

32
13

21
44

80
4

12
1

7
33

24
21

86
83

1
14

7
12

0M
H
z

50
06

.4
0

76
23

33
43

22
25

83
6

15
1

30
44

22
15

76
1

11
4

6
33

16
22

25
82

9
14

8
13

0M
H
z

63
34

.0
9

76
23

37
04

39
20

92
6

14
4

34
53

38
78

86
4

11
2

7
35

67
39

20
89

2
14

6
14

0M
H
z

C
at
ap

ul
t
H
LS

fa
ils

to
m
ee
t
cl
oc
k
co
ns
tr
ai
nt
.

15
0M

H
z

C
at
ap

ul
t
H
LS

fa
ils

to
m
ee
t
cl
oc
k
co
ns
tr
ai
nt
.

16
0M

H
z

C
at
ap

ul
t
H
LS

fa
ils

to
m
ee
t
cl
oc
k
co
ns
tr
ai
nt
.

6.2 Spectrum allocation in cognitive radios 137

Table 6.6: Xilinx synthesis results taking 6 PE projects generated by the HLS
tools (at bold in Table 6.5). Final implementation includes the complete cGAP

with 1 PE and non-toroidal configuration of the cGAA.

Xilinx synthesis

Precision RTL solution Registers LUTs BRAMs DSPs Frequency
(MHz)

no opt. / 80MHz 3635 4701 5 0 121.0
no opt. / 110MHz 3687 4976 5 0 119.6
area opt. / 80MHz 3625 4613 5 5 99.1
area opt. / 120MHz 3716 4649 5 6 106.8
speed opt. / 70MHz 3629 4794 5 0 105.5
speed opt. / 100MHz 3694 4962 5 0 102.0

optimizations were performed. Moreover, the cGAC is a single hardware block in the
cGAP, unlike the PE which is replicated several times, and thus it is not as critical as
the PE.

In the last section we have elected 6 different projects developed with HLS tools for
the PE. Since this block requires a considerable number of hardware resources and it
is replicated several times, we have performed a synthesis of the cGAP with the Xilinx
tools to determine which one is the best solution to be implemented. By doing so, we
are also comparing the results provided by Precision RTL against the Xilinx tools.

Table 6.6 shows the results of the 6 mentioned PE circuits synthesized by the Xilinx tools.
Moreover, we have included in the circuit synthesized the complete cGAP, which includes
the 2 HLS projects (the PE and the cGAC) together with all the necessary blocks to
support the cGAP. Since the only difference of these circuits is the PE, we can conclude
which one is the best solution that has been previously generated by Precision RTL. We
have chosen a cGAA with a single PE with non-toroidal configuration. As it can be seen,
the solutions with optimization (both area and speed) provided by Precision RTL show a
clear degradation in the maximum clock frequency when compared to the solutions with
no optimizations. Additionally, the solutions with no optimizations require, in general,
less hardware resources (including DSP blocks) than the others. Therefore, we have
elected the final solution for the PE, the Precision RTL solution with no optimization
and targeting 80MHz, which provides the best maximum frequency and with reduced
number of hardware resources. Also, the results show that the optimizations performed
by Precision RTL (both in speed/area or target frequency) may not produce the expected
results.

With the selected HLS projects, we have implemented the complete cGAP with the
Xilinx tools. Tables 6.7 and 6.8 show the implementation results (after placement and

138 6 Experimental results

Table 6.7: Characteristics of the Xilinx implementation for cGAPs ranging
from 1×1 to 6×6 PEs and toroidal configurations to solve the SA problem.

Target FPGA is a Virtex-6 (XC6VLX240T-1).

cGAP array (toroidal)
1×1 2×2 3×3 4×4 5×5 6×6

Registers 3738
(1.2%)

11423
(3.8%)

24182
(8.0%)

41986
(13.9%)

64899
(21.5%)

92841
(30.8%)

LUTs 4245
(2.8%)

13579
(9.0%)

29166
(19.4%)

51133
(33.9%)

78994
(52.4%)

113656
(75.4%)

Slices 1826
(4.8%)

5971
(15.8%)

11833
(31.4%)

20438
(54.2%)

30337
(80.5%)

34435
(91.4%)

BRAMs 3
(0.7%)

9
(2.2%)

19
(4.6%)

33
(7.9%)

51
(12.3%)

73
(17.5%)

Frequency
(MHz) 115.2 95.6 74.0 66.9 78.1 75.7

Table 6.8: Characteristics of the Xilinx implementation for cGAPs ranging
from 1×1 to 6×6 PEs and non-toroidal configurations to solve the SA problem.

Target FPGA is a Virtex-6 (XC6VLX240T-1).

cGAP array (non-toroidal)
1×1 2×2 3×3 4×4 5×5 6×6

Registers 3606
(1.2%)

11159
(3.7%)

23786
(7.9%)

41458
(13.8%)

64239
(21.3%)

92049
(30.5%)

LUTs 4097
(2.7%)

13294
(8.8%)

28666
(19.0%)

50348
(33.4%)

78021
(51.8%)

112468
(74.6%)

Slices 1740
(4.6%)

4727
(12.5%)

11665
(31.0%)

21056
(55.9%)

29218
(77.5%)

35578
(94.4%)

BRAMs 5
(1.2%)

13
(3.1%)

25
(6.0%)

41
(9.9%)

61
(14.7%)

85
(20.4%)

Frequency
(MHz) 120.3 83.5 83.0 82.9 77.1 69.3

routing) for, respectively, toroidal and non-toroidal configurations of the cGAA. Also,
we have focused on cGAA arrays with square configurations ranging from 1×1 to 6×6
PEs. Larger arrays have failed to implement in the target FPGA, since this device does
not have enough hardware resources to implement them. Between the two groups of
implementations, the toroidal configurations consume slightly more registers and LUTs
than the non-toroidal. This happens since although a non-toroidal array presents more
subpopulation memories for the same number of PEs, the memories that are placed in
the borders of the array only connect to one PE. Therefore, the collision detection circuit

6.2 Spectrum allocation in cognitive radios 139

(cf. Figure 4.4) is simplified by the tools, resulting in less logic required by the cGAP.

The maximum frequency that a non-toroidal array can achieve decreases from 120MHz
to 69MHz as the number of PEs increases from 1 to 6 × 6 = 36. These results are
expected since as a project increases in size, it becomes more difficult for the tools to do
the routing which results in a consequent decrease of the maximum frequency. Regarding
the toroidal arrays, the configurations with 5×5 and 6×6 PEs achieve a higher frequency
than smaller configurations. It is clear, that the tool should be able (by applying different
constraints) to perform better in these situations. All these experiments have been
performed by applying a constraint of 125MHz to the tool, and by setting its effort level
to maximum.

Since the design flow used to evaluate the cGAP uses a MicroBlaze soft-core processor
connected to the cGAP, we have implemented this complete solution in the target FPGA.
Due to this, we were able to accommodate together with the processor a cGAA with
a maximum of 5×5 PEs. The maximum frequency target for this new solution is now
75MHz for both toroidal and non-toroidal arrays at their maximum level of parallelism.
It should be emphasized that this frequency is imposed by the global frequency of the
complete system (the MicroBlaze project with its peripherals) and other values may not
be admissible. Therefore, we have chosen to target all the projects presented in the
following sections to 75MHz, although smaller arrays could achieve a higher frequency.

6.2.5 cGAP results

In this section we analyse the results obtained by the algorithm running on the cGAP
to solve the SA problem. The problem instances are labelled with the name N_M ,
where N represents the number of secondary users and M the number of channels. All
the experiments have been averaged over 100 independent runs, with different initial
populations, and different random numbers generated by the global RNG of the cGAP.

We first focus on the algorithm convergence for a 20_24 SA instance for different levels
of parallelism, ranging from 1× 1 to 5× 5 PEs with both toroidal and non-toroidal
configurations of the cGAA. Tables 6.9 and 6.10 show the parameters used to configure
these cGAA so that the total population is as close as possible to 200 solutions. Since the
projects described in the last section target a maximum of 16 solutions per subpopulation
memory, we had to develop new cGAPs capable of accommodate the desired number of
solutions for specific arrays that require more solutions.

Figure 6.5 illustrates the converge of the cGA for 10×106 new generated solutions in all
the PEs. These graphs represent in the x-axis the total number of generated solutions,

140 6 Experimental results

Table 6.9: cGAP arrays with toroidal configurations used to solve the instance
20_24 of the SA problem.

cGAP array (toroidal)
1×1 2×2 3×3 4×4 5×5

PEs 1 4 9 16 25
Subpopulation
memories 2 8 18 32 50

Solutions/sub-
population 100 25 11 6 4

Population size 200 200 198 192 200

Table 6.10: cGAP arrays with non-toroidal configurations used to solve the
instance 20_24 of the SA problem.

cGAP array (non-toroidal)
1×1 2×2 3×3 4×4 5×5

PEs 1 4 9 16 25
Subpopulation
memories 4 12 24 40 60

Solutions/sub-
population 50 16 8 5 3

Population size 200 192 192 200 180

and thus they do not reflect the acceleration obtained with cGAPs with more PEs. As
it can be observed, all the cGAAs have an identical behaviour during the evolution of
the algorithm, and there is not a clear difference among them. In addition, and by
comparison with the TSP analysed during Chapter 3, there is not a clear pattern of
the convergence rate for the different levels of parallelism. Also, both the toroidal and
non-toroidal configurations lead to similar results.

An important observation that can be made with these results is the fact that the quality
of the solutions obtained with larger arrays is not degraded when compared to the arrays
with less PEs. As we have already discussed in Section 4.6, a global RNG feeds all the
PEs which may result in correlated random numbers acquired by the different PEs. The
array with 1×1 PE is not affected by this, and it does not show a superior performance
over the remaining arrays. Therefore, we can conclude that for the SA instance analysed,
the procedure used to generate random numbers does not affect negatively the rate of
convergence in cGAAs with several PEs. This shows evidences that our approach of
generating random numbers in the PEs can provide good results.

The results of the algorithm convergence have been obtained by sampling several points
during the evolution of the algorithm, where the cGAP is stopped and the values are

6.2 Spectrum allocation in cognitive radios 141

0 2 4 6 8 10

x 10
6

1.1

1.105

1.11

1.115

1.12

1.125

1.13

1.135

1.14
x 10

4

Number of generated solutions

F
it
n
es
s
va
lu
e

5 × 5 PEs

3 × 3 PEs
4 × 4 PEs

2 × 2 PEs

1 × 1 PE

(a)

0 2 4 6 8 10

x 10
6

1.1

1.105

1.11

1.115

1.12

1.125

1.13

1.135

1.14
x 10

4

Number of generated solutions

F
it
n
es
s
va
lu
e

5 × 5 PEs

3 × 3 PEs
4 × 4 PEs

2 × 2 PEs

1 × 1 PE

(b)

Figure 6.5: Fitness evolution with the total number of generated solutions,
obtained for an instance 20_24 of the SA problem for (a) toroidal arrays and

(b) non-toroidal arrays.

acquired by the MicroBlaze. Therefore, we do not see a smooth shape in the curves
observed in Figure 6.5, as it was observed with the TSP in Chapter 3.

142 6 Experimental results

To evaluate the acceleration of the cGAP, we have focused on non-toroidal configurations
of the cGAA since these require less hardware resources to be implemented when com-
pared to toroidal configurations, and both toroidal and non-toroidal have led to similar
results for solving the SA instance previously analysed. We have measured the speedup
obtained with the different levels of parallelism when compared to a panmictic GA run-
ning on a processor of a PC, an Intel T8100 processor at 2.1GHz, and the MicroBlaze
soft-core processor implemented together with the cGAP in the same FPGA which runs
at a clock frequency of 150MHz. The implemented software was described in C and
compiled with GCC -O3. Table 6.11 presents these results for 6 different instances of
the SA problem, all run for 106 generated solutions. As it can be observed, for the
maximum level of parallelism (5×5 PEs) the cGAP achieves a minimum acceleration of
2086× when compared to the MicroBlaze and 21.8× when compared to the PC.

For the different levels of parallelism, we also present in Table 6.11 the time and the
throughput (measured in number of generated solutions in all PEs per µs), and the
normalized throughput in percentage. This last figure has been calculated considering
the throughput per PE (and not in all the PEs) and considering the cGAA with 1×1
PE as reference for the different instances. As it can be seen, the throughput of a cGAP
is almost directly proportional with the number of PEs. The results show a very small
degradation (< 0.4%) for the cGAP with the highest number of PEs, which represents
the capacity of processing loss by these arrays when compared to a single PE. This
slight lost happens due to the subpopulation memory access collisions that exist when
the PEs access to these memories. Moreover, these values become more significant as
the number of PEs increases, since smaller subpopulation sizes are used which lead to
a higher probability of memory collisions. Additionally, the smaller instances are more
affected by this, since the algorithms used to select the solutions (which are independent
from the instance size) have more computational weight in a generation of a solution than
with larger instances. Furthermore, as the 1×1 array is not affected by memory access
collisions, we can conclude that these effects are almost negligible for the performance
of the cGAP with larger arrays.

Figure 6.6 presents the speedup achieved for the different cGAPs compared to the 1×1
PE for the 32_32 instance. As it can be observed, an almost directly proportional
acceleration is obtained with the level of parallelism.

We have also measured the quality of the final solution obtained by the cGAP at the end
of 106 generations and compared it against a known heuristic based on a variant of the
graph colouring problem, named colour-sensitive graph colouring (CSGC) [PZZ06]. Ta-
ble 6.12 presents the results of the fitness values obtained by the different arrays together
with the CSGC heuristic. As it can be seen, the cGAP in most of the cases surpasses the

6.2 Spectrum allocation in cognitive radios 143

Table 6.11: cGAP time results obtained for different SA problem instances.
Array of PEs ranges from 1×1 to 5×5 with a non-toroidal configuration. A

total of 106 solutions is generated for each trial.

cGAP Speedup over SW

Instance cGAA Time
(s)

Throughput
(solutions/µs)

Normalized
throughput

MicroB-
laze PC

5_6

5× 5 0.082 12.129 99.62% 2086 21.8
4× 4 0.129 7.776 99.80% 1337 14.0
3× 3 0.228 4.379 99.92% 753 7.9
2× 2 0.513 1.948 99.98% 335 3.5
1× 1 2.054 0.487 100.00% 84 0.9

8_16

5× 5 0.139 7.171 99.82% 3657 52.8
4× 4 0.218 4.592 99.89% 2342 33.8
3× 3 0.387 2.585 99.94% 1318 19.0
2× 2 0.870 1.149 99.98% 586 8.5
1× 1 3.480 0.287 100.00% 147 2.1

16_16

5× 5 0.331 3.017 99.93% 3050 48.2
4× 4 0.518 1.931 99.96% 1953 30.8
3× 3 0.920 1.087 99.98% 1099 17.3
2× 2 2.070 0.483 99.99% 488 7.7
1× 1 8.281 0.121 100.00% 122 1.9

16_32

5× 5 0.349 2.869 99.92% 5296 85.6
4× 4 0.545 1.836 99.95% 3390 54.8
3× 3 0.968 1.033 99.97% 1907 30.8
2× 2 2.177 0.459 99.98% 848 13.7
1× 1 8.708 0.115 100.00% 212 3.4

20_24

5× 5 0.464 2.156 99.94% 3909 67.3
4× 4 0.725 1.380 99.96% 2502 43.1
3× 3 1.288 0.776 99.98% 1408 24.2
2× 2 2.898 0.345 99.98% 626 10.8
1× 1 11.588 0.086 100.00% 156 2.7

32_32

5× 5 0.955 1.047 99.95% 4781 70.1
4× 4 1.492 0.670 99.96% 3060 44.9
3× 3 2.652 0.377 99.97% 1721 25.3
2× 2 5.966 0.168 99.97% 765 11.2
1× 1 23.856 0.042 100.00% 191 2.8

quality of this heuristic (a higher value means a better result). An exception to this is
the largest instance (32_32) where the cGAP achieves systematically a lower vale. This
happens since the algorithm has stopped before it had time to converge to a satisfactory
solution. From the graph in Figure 6.5(b) (for the 20_24 instance) it is evident that
the algorithm continues to improve after 106 generations. Evolving the largest instance
for a total of 2× 106 generations shows already a superior fitness value than the CSGC
heuristic.

144 6 Experimental results

1 4 9 16 25

1

3.999

8.997

15.994

24.989

Number of PEs

S
p
ee
d
u
p

Figure 6.6: Speedup achieved by the cGAP with the level of parallelism for
the 32_32 SA instance.

Table 6.12: Fitness results obtained for different SA problem instances with
the cGAP and the CSGC heuristic. Array of PEs ranges from 1×1 to 5×5 with
a non-toroidal configuration. A total of 106 solutions is generated for each trial.

Instance
5_6 8_16 16_16 16_32 20_24 32_32

CSGC 1130 6090 6959 15197 11209 22882
1× 1 cGAA 1130 6101 6965 15236 11268 22584
2× 2 cGAA 1130 6117 6951 15234 11275 22645
3× 3 cGAA 1130 6121 6939 15207 11254 22754
4× 4 cGAA 1130 6112 6942 15192 11232 22746
5× 5 cGAA 1130 6113 6946 15198 11265 22757

Although it is not our goal to develop and optimize the cGA to solve the SA problem
by tuning several parameters of the algorithm (e.g. different crossover and mutation
strategies), the results observed show already promising results as the algorithm provides
good quality results. Moreover the speedup of the cGAP is scaled with the number of
PEs and thus, with a larger FPGA, it could be possible to improve further the execution
time of the algorithm.

Even though a fair comparison with other works is difficult to accomplish because there
is not enough information on the details of the benchmarks used, the work presented
in [ZPZS09] implements a GA for a 5_5 instance. The results reported show that a

6.3 Minimum energy broadcast 145

(a) (b)

Figure 6.7: Example of a MEB problem with 3 nodes where (a) source node
transmits to all the remaining nodes and (b) source node transmits to the closest

node.

single solution takes an average of 547 µs (0.093 s for running 10 iterations of the GA
with 17 solutions each), running in a PC at 1.66GHz with Matlab. With our 5×5 cGAP
and a slightly larger instance (5_6), the average time for generating one solution is only
82 ns, which represents a speedup of 6670× over the reported implementation for the
throughput (number of generated solutions per time) of both algorithms. Once again,
although this comparison is not fair since different instances are solved with different
GAs and there are no details about the software implementation, it gives us an idea
about the potential speedup that the cGAP can achieve.

6.3 Minimum energy broadcast

The minimum energy broadcast (MEB) problem is another optimization problem that
arises with the use of the wireless networks. This problem consists in a set of nodes
(wireless devices) where one of them has to broadcast a message to all the remaining
nodes in that network with the minimum energy consumption.

Unlike in a wired network, in a wireless network a single transmission can be reached
by several nodes, which means that when a node i transmits to node j, all the nodes
placed near to i than j will also receive the transmission. Therefore, it is possible to
increase/decrease a transmission range of a node so that more/less nodes are covered.
For example and as shown in Figure 6.7(a), if a node a has to transmit to node b and
c, it can transmit with enough energy so than both nodes are covered. Instead, a can
transmit to the closest node, that in turn transmits to the last node, as depicted in

146 6 Experimental results

Figure 6.7(b). Although in the second case two consecutive transmissions are required,
together they may consume less energy when compared to a single transmission.

The MEB problem is NP-hard [CCP+01] and thus metaheuristic procedures can be
applied to solve this problem. For example in [MGD05] and [HCF12] the authors use
respectively simulated annealing and particle swarm optimization (PSO) procedures to
solve this problem. Additionally, different heuristics have also been developed like the
algorithms called broadcast incremental power (BIP) [WNE00], embedded wireless mul-
ticast advantage (EWMA) [ČHE02], or largest expanding sweep search (LESS) [KP04].

In this section we present an adaptation of the work developed in [SB11], that proposes
an hybrid GA, so that this is implemented in the cGAP. This algorithm consists of a
combination of a GA where each solution is improved by applying a local search operator
called r-shrink [DMES+03]. Although the authors name the algorithm as a hybrid GA,
this combination of a GA with a local search is also known as memetic algorithm (MA).
Therefore, we call it simply as MA. As in the original work, we will develop two solutions
for different levels of the r-shrink heuristic: 1-shrink and 2-shrink, with increased levels
in the intensity of the local search.

6.3.1 Problem definition

The MEB problem is specified as follows: given a direct graph G = (V,E), where V
denotes the set of nodes and E the set of edges of G, and a source node s ∈ V that has to
form a directed path (broadcast a message) to all other nodes in V . Therefore, this must
be accomplished by creating an arborescence2 of G rooted at s. For the MEB problem
the nodes represent wireless devices, and the edges represent the transmission energy
required for the communication between two devices. For a node in the arborescence, the
transmission energy is determined by the longest edge among all the edges from which
that node communicates to. The energy required by a leaf node in the arborescence is
zero. The MEB problem consists in minimizing the total energy required to broadcast
a message from s to all nodes in V , or to find an arborescence T ⊆ E rooted at s that
minimizes: ∑

i∈V
max

(i,j)∈T
dαi,j (6.4)

where di,j is the Euclidean distance between nodes i and j, and α is the channel loss
exponent that takes a value in the range of 2 ≤ α ≤ 4 depending on the characteristics
of the communication medium.

2An arborescence in graph theory is a directed graph in which a vertex u, called the root, and any
other vertex v there is exactly one directed path from u to v.

6.3 Minimum energy broadcast 147

1

2

3

4

5

0

5

source node

1
2

6

3

total transmission cost = 5 + max{1,6,2} + 3 = 14

Figure 6.8: Example of a MEB solution with 6 nodes where solid edges repre-
sent the transmission costs and dashed edges represent implicit transmissions.

Considering α = 2, as it is typically done, and knowing that the di,j is given by:

di,j =
√

(xi − xj)2 + (yi − yj)2 (6.5)

where (xi, yi) and (xj , yj) are the coordinates of nodes i and j respectively, the objective
function of the MEB is now to minimize:

∑
i∈V

max
(i,j)∈T

{
(xi − xj)2 + (yi − yj)2

}
(6.6)

Figure 6.8 presents an example of a MEB solution with 6 nodes. As it can be seen, the
source node (root) is node 0 and it transmits to node 3. In turn, node 3 transmits to
node 4, and since nodes 1 and 5 are closer to 3 than node 4 (3→ 1 ≤ 3→ 5 ≤ 3→ 4),
they are implicitly covered by the transmission of node 3, as it is depicted by the dashed
edges. Finally, node 4 transmits to node 2 to complete the arborescence of the MEB
solution.

6.3.2 A memetic algorithm for the MEB problem

The algorithm used to solve the MEB problem has been adapted from [SB11], where
a memetic algorithm (MA) is used. The metaheuristic consists in a GA with a local
search procedure (or heuristic) that tries to improve the quality of all generated solu-
tions during the evolution of the algorithm. Therefore, during a generation of a solution
the MA applies the selection, crossover and mutation operations and, before the fit-
ness evaluation and replacement, it improves the solution with the local search. Two

148 6 Experimental results

1

2

3

4
5

source node

0

MEB solution = [3 4 1 5 2]

Figure 6.9: GA solution representation and codification used in the MEB
problem.

different levels in the intensity of the local search (more solutions searched) have been
implemented, namely 1-shrink and 2-shrink which are based on the improved procedure
k-shrink proposed originally in [DMES+03].

In this section we will describe the algorithm used and how it has been adapted to the
cGAP to solve the MEB problem.

6.3.2.1 Codification of solutions

As in any GA (or MA), a solution must be encoded to represent a tentative solution of the
optimization problem, so that the genetics-inspired operators are applied. In [SB11] the
path representation (or permutation encoding) is used to represent an MEB solution.
Since this encoding scheme consists in a list of unique elements, it cannot be used
directly to represent a solution (an arborescence), as it happens, for example, with the
travelling salesman problem as discussed in Section 2.2.1.1. Therefore, a decoder is used
to transform the solution representation to a valid MEB solution.

Figure 6.9 depicts an example of a MEB solution coded with the path representation
and the corresponding arborescence. The algorithm used to decode the solution starts
by selecting the first node on the list (node 3) and introduce it in the arborescence that,
at the beginning, is formed only by a leaf node represented by the source node (node 0).
Therefore, node 0 will transmit to node 3. Node 3 is then removed from the solution.
After that, it is checked if there is any node from the remaining in the solution list that
is implicitly covered by the previous transmission (in the example none is covered). The
algorithm then proceeds in the same way: the first node on the list is chosen (node 4)
and it is inserted in the arborescence so that a leaf node (node not transmitting) will
transmit to the selected node with the minimum cost, which is node 3 (node 4 is closer to
node 3 than node 0). The transmission from 3 to 4 is formed and implicit transmissions
are cheeked that, for the example, are formed by 3 → 5 and 3 → 1. Nodes 4, 5 and 1

6.3 Minimum energy broadcast 149

Algorithm 3 Pseudo-code of a MEB solution decoder and fitness evaluation.
1: solution . GA’s MEB solution to be decoded and evaluated
2: leaves_list← [source_node] . list with all non-transmitting nodes
3: non_leaves_list← [] . list with all transmitting nodes
4: fitness← 0
5: i← 0
6: while not all nodes of solution processed do
7: selected_node← solution[i]
8: selected_leaf ← select from leaves_list node that leads to less cost transmission
9: update leaves_list and non_leaves_list

10: fitness← fitness+ power transmission from selected_node to selected_leaf
11: for all nodes in solution not processed do
12: if node covered by transmission from selected_node to selected_leaf then
13: update leaves_list
14: end if
15: end for
16: increment i to next node in solution not processed
17: end while

are removed from the solution list. Finally the transmission from node 4 to 2 is formed
with the same procedure.

Algorithm 3 presents the pseudo-code of the MEB solution decoder that has been im-
plemented in the PEs of the cGAP. This algorithm is also used to evaluate the fitness
value of the solution by adding the transmission costs of the nodes.

In a MEB solution representation list, we do not include the source node as it is done
in [SB11], since this specific node has always the same position in the arborescence
(the root). From the example in Figure 6.9, the nodes are labeled from 0 to 5, and
any solution representation must include all the nodes except the source node (node 0).
With this, we avoid the need to force the source node to be always the first element on
the representation of the solution as it is done in the original work [SB11]. Moreover,
any known crossover or mutation operator can be applied to our codification (path
representation) and produce always a valid MEB solution.

6.3.2.2 Local search heuristic: r-shrink

The local search heuristic applied to the solutions generated by the crossover and mu-
tation operations is the r-shrink proposed in [DMES+03]. This heuristic is based on
shrinking the transmission energy of a node so that the arborescences disconnected
from the original solution (nodes to which the broadcast is not performed due to the
shrinking) is reassigned to other nodes by increasing their transmission energy. If the
reduced energy is superior to the incremented energy for the resulting assignment, a

150 6 Experimental results

1

2

3

4
5

source node

0

Original solution:

1

2

3

4
5

source node

0

transmission from 4 reduced (2 uncovered)

transmission from 3 increased (2 covered)

(a)

1

2

3

4
5

source node

0

transmission from 3 reduced (4 and 5 uncovered)

transmission from 1 increased (5 covered)

transmission from 1 increased (4 covered)

(b)

Figure 6.10: Possible local search moves by (a) 1-shrink and (b) 2-shrink in
the MEB problem.

better solution is obtained. The r in the name r-shrink means the number of reduction
steps performed by the algorithm. Therefore, in 1-shrink for each transmitting node
a reduction on the energy is performed so that one node (with its corresponding ar-
borescence) is left for reassigning to other node. With 2-shrink, a transmitting node
(if transmitting to 2 or more nodes) reduces its energy so that two nodes are left for
reassigning to other nodes. As in [SB11], we implement in the cGAP two solutions, both
1-shrink and 2-shrink.

Figure 6.10(a) illustrates an example of a possible 1-shrink move, where node 4 is elected
to reduce its transmission. With this energy reduction, node 2 is left disconnected from
the arborescence and thus it must be reassigned to other node by incrementing its
transmission energy. The node elected to increase its transmission energy is the one
that leads to the minimum energy increase among all possible nodes. For the example,
all nodes (except nodes 2 and 4) are elected to transmit to node 2, but the one that
leads to the minimum energy increase is node 3. Therefore, the transmission energy of
3 is increased so that it now transmits to node 2.

Algorithm 4 shows the pseudo-code of the 1-shrink procedure implemented in the cGAP.
The algorithm starts by selecting one node that is transmitting and then it finds the best
possible move that leads to the minimum energy increase. At the same time, it verifies

6.3 Minimum energy broadcast 151

Algorithm 4 Pseudo-code of 1-shrink local search for the MEB problem.
1: non_leaves_list . list with all transmitting nodes (created by Alg. 3)
2: fitness . MEB fitness value (created by Alg. 3)
3: number_nodes . Total number of nodes
4: total_fitness_gain← 0
5: while true do
6: improvement_found← 0
7: for all nodes in non_leaves_list (from last element to first) do
8: node_reduce← node from non_leaves_list
9: node_sel← node to which node_reduce transmits

10: node_improvement_found← 0
11: for i← 0, number_nodes− 1 do
12: if can node i transmit to node_sel then . avoid cycles in arborescence
13: calculate decremental_cost and incremental_cost
14: if incremental_cost < decremental_cost then
15: node_improvement_found← 1
16: if best gain cost of all i nodes then
17: node_fitness_gain← decremental_cost− incremental_cost
18: end if
19: end if
20: end if
21: end for
22: if node_improvement_found then
23: improvement_found← 1
24: total_fitness_gain← total_fitness_gain+ node_fitness_gain
25: end if
26: end for
27: if not improvement_found then
28: break
29: end if
30: update non_leaves_list
31: end while
32: fitness← fitness− total_fitness_gain

if this move improves the solution fitness. If an improvement occurs, the algorithm
starts again; if not, another transmitting node is selected for the same procedure. The
algorithm stops when it cannot find any possible better solution.

According to the 1-shrink algorithm described in [SB11], the transmitting nodes are
selected randomly. With our approach, we define the selection of these nodes by the
inverse order as they appear in non_leaves_list, which is constructed by Algorithm 3.
This was done since it simplifies the algorithm implementation and, at the same time,
also ensures some randomness as the nodes order in this list is dependent on each MEB
solution.

Figure 6.10(b) shows an example of a 2-shrink move. In this example, node 3 reduces its
transmission energy so that 2 nodes (and the nodes to which they transmit to) are left

152 6 Experimental results

Algorithm 5 Pseudo-code of 2-shrink local search for the MEB problem.
1: non_leaves_list . list with all transmitting nodes (created by Alg. 3)
2: fitness . MEB fitness value (created by Alg. 3)
3: number_nodes . Total number of nodes
4: while true do
5: do 1-shrink as defined in Alg. 4
6: total_fitness_gain← 0
7: for all nodes in non_leaves_list (from last element to first) do
8: node_reduce← node from non_leaves_list
9: node_sel_i← node to which node_reduce transmits

10: node_sel_j ← farthest node to which node_reduce implicitly transmits
11: if node_reduce transmits to more than 1 node then
12: for i← 0, number_nodes− 1 do
13: for j ← 0, number_nodes− 1 do
14: if can node i transmit to node_sel_i and j to node_sel_j then
15: if inc_cost < dec_cost then
16: node_improvement_found← 1
17: if best gain cost of all i and j nodes then
18: node_fitness_gain← dec_cost− inc_cost
19: end if
20: end if
21: end if
22: end for
23: end for
24: if node_improvement_found then
25: improvement_found← 1
26: total_fitness_gain← total_fitness_gain+ node_fitness_gain
27: end if
28: end if
29: end for
30: if not improvement_found then
31: break
32: end if
33: update non_leaves_list
34: end while
35: fitness← fitness− total_fitness_gain

disconnected from the original arborescence, in the case, nodes 4 and 5. Then, two nodes
are elected to increase their transmission energy so that nodes 4 and 5 are reintroduced
in the solution. Once again, these nodes must be chosen so that the incremental energy
is the minimum possible. For the example, node 1 is the one that leads to the minimum
incremental energy while ensuring the desired transmission coverage. It should be em-
phasized, that we can choose two different nodes or the same node for the incremental
transmission, as it happens in this example. Therefore, node 1 now transmits to node 4
and implicitly covers node 5.

Algorithm 5 presents the pseudo-code of the 2-shrink procedure implemented in this

6.3 Minimum energy broadcast 153

Table 6.13: Genetic operations adopted in the PEs for the MEB problem.

Parent selection probabilistic binary tournament (75% to accept best solution)
Crossover maximal preservative crossover
Mutation swap 2 nodes (maximum 3 swaps with probability 75% each)
Local search 1-shrink or 2-shrink
Replacement select random solution and replace if better

work. The core algorithm is identical to the 1-shrink, but instead of moving 1 node
from one place to another in the MEB solution, now 2 nodes are moved. As proposed
in [SB11], the 2-shrink starts first with the 1-shrink procedure to improve the solution.

6.3.2.3 The cGA operations

Even though our implementation is based on the algorithm implemented in [SB11],
we adapted some operations of the original algorithm so that it could be executed in
the cGAP. Additionally, we also used a different crossover operation that improved the
quality of the final solution found.

Table 6.13 shows all the operations used by the cGA, and thus implemented in the
PEs, that we have used to solve the MEB problem. Both the selection and mutations
operators are identical to the original work. The local search operation, as described in
the previous section, is also identical to the original.

Nevertheless, the GA in [SB11] is a steady-state GA, where a single solution replaces
an existing one at each generation of the algorithm. In addition, it is ensured that
no duplicate solutions appear in the population, and thus if the generated solution
is already in the population, this is discarded. With our cGAP, this feature is not
possible to implement since a PE only connects to its subpopulations and not to the
entire population. Consequently, we have neglected this feature during the replacement
operation. Moreover, it is not a common practice in a GA to verify if the generated
solution is unique, unless the generation of solutions (crossover and mutation) is not
capable of providing new solutions so that the entire search space is explored. Therefore,
we have chosen for the replacement operation a known strategy used in cGAs, which
consists in randomly pick up a solution (from all the subpopulations connected to the
PE) and replace it with the new generated solution if this has a better fitness value.

With the described genetic operations, we have implemented in software the MA with
two different crossovers operators: the maximal preservative crossover (MPX), and the
cycle crossover which has been used originally in [SB11]. This implementation has tar-
geted to perform a quick evaluation of these two crossovers using a panmictic MA to

154 6 Experimental results

solve the MEB problem. From the results, the MPX has consistently obtained better
results. This is not surprising since the cycle crossover algorithm ensures that a gen-
erated solution keeps always the nodes position as they appear in the list of the two
selected solution (the parent solutions). However, and from what we have discussed in
Section 6.3.2.1, it is not the position of the nodes in the list of the MEB solution coded
with the path representation that defines the solution, but instead the relative positions
of the nodes placed in that list. On the other hand, the MPX operator ensures that the
order of the nodes in the parents’ solutions are preserved (till a certain limit) when the
new solution is generated, thus preserving part of the original solutions. Therefore, we
have elected the MPX to be implemented in the PEs of the cGAP.

6.3.3 cGAP implementation

This section presents the implementation details of the cGAP for solving the MEB prob-
lem. As described previously, the metaheuristic used is a MA and two distinct solutions
are implemented for the local search heuristic: 1-shrink and 2-shrink. Although we could
develop a single hardware solution with the 2-shrink (which includes the 1-shrink algo-
rithm), the hardware resources required for a dedicated implementation of the 1-shrink
are inferior, thus leading to an increase in the number of PEs implemented in the target
FPGA.

As opposite to the SA problem (cf. Figure 6.3), we have developed a solution for the
MEB where the variables that require hardware memory (arrays) are not kept in the
subpopulation memories. The reason for this is that the algorithm implemented in the
PE is not as simple as the one used in the SA problem, and the number of arrays required
to manipulate an arborescence (especially during the 1- and 2-shrink algorithms) is large
as we will see. Therefore, and since a PE is limited to four subpopulation memories,
the access to them may limit the initiation interval of the pipelined circuits, which
decreases the performance of the PE. In addition, by reducing the number of accesses
in different parts of the PE algorithm to the subpopulation memories, the hardware
resources required to access them (multiplexers) become simpler. Nevertheless, it is
evident that with this approach a large number of block RAMs (BRAMs) will be required
to implement a PE.

Figure 6.11 depicts the subpopulation memory organization used to solve the MEB
problem, both for the 1-shrink and 2-shrink implementations, which is identical in all
the four subpopulation memories (north, south, east and west) that connect to a PE.
As it can be seen, we only have kept the nodes’ coordinates of the MEB problem as
additional data besides the solutions. With this, we can have a maximum of two parallel

6.3 Minimum energy broadcast 155

0x000

0x7FF

0x080

Node

coordinates

Fitness values

solution #0

solution #1

solution #13

0x100

0x180

0x780

0x200

coord x[0] 0x000

0x001

coord y[0]

coord x[1]coord y[1]

coord y[127] coord x[127]

solution[0]

solution[1]

solution[127]

0x100

0x101

32 bit

0x07F

0x17F

S
u
b
p
o
p
u
la

ti
o
n

Figure 6.11: Subpopulation memory organization in the cGAP used for the
MEB problem.

blocks to calculate each one the cost between two nodes, where the 4 memories are read
simultaneously to provide the coordinates of the 4 nodes. The information kept in the
subpopulation memories does not stall the pipelined circuits since the solutions and the
nodes’ coordinates are accessed in different parts of the PE algorithm, mainly during
crossover and replacement for the solutions, and during fitness/decoder and local search
for the coordinates.

We would like to emphasize that, as in the TSP discussed in Section 3.4.1, we could have
keep the cost between two nodes in memory, instead of the coordinates and calculate
their distance cost. However, this leads to a huge increase in memory space required to
keep this information.

To keep the subpopulation memories with two BRAMs, we have limited our implemen-
tation to a maximum of 128 nodes and subpopulations with a maximum of 14 solutions.
These memories have been configured with a width of 32 bits, which is required for the
coordinates (a maximum of 16 bits per x or y coordinate as depicted in Figure 6.11).
Additionally, we also keep a node of a solution per memory address (which requires 7
bits). Once again, with this approach we simplify the algorithm description and thus
the algorithm hardware implementation, although memory is being wasted as it is not
used.

As stated previously, we have used several arrays (memories) to describe the PE al-
gorithm. All of these use the minimum width required to keep the information and a
length of 128. The following list describes briefly these memories:

• solution: List with solution of the MEB problem generated by crossover and
mutation to be decoded and evaluated.

156 6 Experimental results

• leaves_list: List with all nodes that do not transmit in a MEB solution (leaves
in the arborescence).

• nonleaves_list: List with all nodes that transmit in a MEB solution (non-
leaves in the arborescence).

• mem_parent_nodes: For all nodes, it provides which node is transmitting to it.
For example, if node 1 transmits to node 5, then mem_parent_nodes[5] = 1.
Used by 1-shrink and 2-shrink to avoid cycles in the arborescence when nodes are
moved.

• mem_child_nodes_1: It provides the farthest node (if any) to which a node
transmits to. Therefore, it presents a decoded solution. For example, if node
1 transmits to node 5, then mem_child_nodes_1[1] = 5. Used during the
calculation of the decremental cost of the 1- and 2-shrink algorithms, and to avoid
cycles in the arborescence when nodes are moved in these algorithms.

• mem_child_nodes_2: It provides the second farthest node (if any) to which
a node transmits to. For example, if node 1 transmits to node 5, and it im-
plicitly covers node 2 and this node is the farthest implicitly covered by 1, then
mem_child_nodes_2[1] = 2. Used only by 2-shrink to avoid cycles in the
arborescence when nodes are moved.

• cost_1_trans_nonleaves: It provides the transmission cost for all the nodes.
The array is constructed during the decoder/fitness algorithm and it is used by
the 1- and 2-shrink algorithms so that these transmissions costs are not explicitly
recalculated.

• cost_2_trans_nonleaves: Same as cost_1_trans_nonleaves, but the
array keeps the transmission costs required for the second farthest node reached
by the transmitting node.

• cost_3_trans_nonleaves: Same as cost_1_trans_nonleaves, but the
array keeps the transmission costs required for the third farthest node reached by
the transmitting node. Used only by the 2-shrink algorithm.

• best_sol: It keeps the best solution found by the PE. The solution is saved
after the decoder and local search operations are applied (format equal to the
array mem_child_nodes_1).

• flag_cx: Auxiliary memory (1 bit width) used during the calculation of the
MPX algorithm.

6.3 Minimum energy broadcast 157

Table 6.14: Characteristics of the different projects used to implement the
cGAP with 1-shrink local search for solving the MEB problem. Target FPGA

is a Virtex-6 (XC6VLX240T-1).

Registers LUTs Slices BRAMs DSPs Frequency
(MHz)

Precision RTL
(PE)

3060
(1.0%)

3996
(2.7%)

999
(2.7%)

5
(1.2%)

17
(2.2%) 87.6

ISE synthesis
(cGAP - 5×5)

90214
(29.9%)

116093
(77.0%) - 246

(59.1%)
425

(55.3%) 80.3

ISE (cGAP +
MicroBlaze)

115759
(38.4%)

130943
(86.9%)

37212
(98.8%)

207
(49.8%)

431
(56.1%) > 75

• flag_fitness: Auxiliary memory (1 bit width) used during the decoder/fitness
algorithm.

In the implementation we have used a total of 14 bits for each coordinate of a MEB node
which is sufficient for the instances used in this work. Therefore, the cost to transmit
from one node to other requires a total of 28 bits. The maximum fitness values have
been limited to a 32-bit representation, with a saturated adder to avoid overflow errors
during the fitness calculation.

We have developed the PE and cGAC hardware blocks with Catapult HLS and Precision
RTL with an identical approach as the one presented in Sections 6.2.3.3 and 6.2.4. We
have pipelined all the innermost loops of the algorithms and, in the majority of the cases,
we could achieve pipelined circuits with an initial interval of 1. This was possible since we
have used independent memories to describe the algorithm as stated previously. In this
PE project we did not implement parallel structures (besides the ones required to ensure
the II=1 of the pipelines) and thus no unrolling of loops was performed. Moreover, this
was not possible due to the memory organization followed which provides a single data
value to be processed in a clock cycle.

At the end of the Catapult HLS project, we have reached a circuit with a latency value
that reaches more than 2×106 clock cycles for the 1-shrink, and more than 200×106 clock
cycles for the 2-shrink projects. As stated in the SA project, the latency value provided
by Catapult HLS must not be interpreted as a real value for our projects to implement
a GA in a PE. However, these figures show the increased temporal complexity of the
algorithm when compared to the SA problem, which reached only more than 7 × 103

clock cycles.

Tables 6.14 and 6.15 provide the implementation details of the main projects used for
implementing, respectively, the MEB with 1-shrink and 2-shrink local search heuristics.

158 6 Experimental results

Table 6.15: Characteristics of the different projects used to implement the
cGAP with 2-shrink local search for solving the MEB problem. Target FPGA

is a Virtex-6 (XC6VLX240T-1).

Registers LUTs Slices BRAMs DSPs Frequency
(MHz)

Precision RTL
(PE)

3738
(1.2%)

5992
(4.0%)

1498
(4.0%)

7
(1.7%)

4
(0.5%) 104.8

ISE synthesis
(cGAP - 4×4)

68974
(22.9%)

106437
(70.6%) - 185

(44.5%)
64

(8.3%) 95.8

ISE (cGAP +
MicroBlaze)

94695
(31.4%)

114090
(75.7%)

37374
(99.2%)

165
(39.7%)

70
(9.1%) > 75

The PE projects provided by Precision RTL have been optimized/constrained so that
they could implement the cGAP together with the MicroBlaze in the target FPGA. As
it can be seen, the cGAP for the 1-shrink MA achieves a maximum of 5×5 PEs, while
the 2-shrink MA achieves 4×4 PEs. Both projects have an impressive level of slice
utilization in the FPGA that is approximately 99%.

The 1-shrink Precision RTL project has been optimized for area and therefore it has
used a higher number of DSP blocks (and less slices than without this optimization)
targeting a frequency of 140MHz, whereas the 2-shrink project has been implemented
with no optimizations and targeting a frequency of 90MHz. It should be emphasized
that several projects with similar constraints have been tried to implement the final
circuit. Both cGAPs run at 75MHz.

6.3.4 cGAP results

The cGAPs described in the last section have been used to solve the same instances of
the MEB problem reported in [SB11]. Mainly, we have considered two sets of instances,
one with 20 nodes and other with 50 nodes, each with a total of 30 different instances. As
in the original work, the results are averaged over 30 independent runs for each instance.

The initial populations used in all the experiments have been built offline (in a PC) and
have been loaded to the subpopulation memories during the initialization phase of the
algorithm. With this, we ensure good quality initial populations, which is important
in a GA, avoiding thus the use of the global RNG of the cGAP to calculate these
data. It should be emphasized that we want to evaluate the cGA by averaging several
runs of an instance. Therefore, it is essential to ensure that the initial populations are
generated randomly and with no correlation. Moreover, in a real application scenario
of the cGAP it is not expected to execute several times the algorithm for the same

6.3 Minimum energy broadcast 159

instance, especially if time constraints are applied where a solution must be obtained as
fast as possible. Nevertheless, a possible final implementation of the cGAP can use the
subpopulation memories, for example, to keep the initial population of the algorithm
previously generated in a PC.

The execution times reported in this work do not include the initialization phase. This
way, we avoid to measure access times required by the MicroBlaze processor to access,
via NFS, to a PC where the file system is hosted. This configuration was used in this
work to evaluate the cGAP and thus it does not reflect a real scenario application.
However, the initialization requires loading a few parameters to configure the PEs (e.g.
number of nodes, number of solutions per subpopulation, stop criterion), and assuming
this data is in the cGA dual-port memory (see Figure 4.11) its execution time is negligible
when compared to the complete execution time of the algorithm. As stated previously,
the initial subpopulations, which represent a large amount of data transfer during the
initialization, can be kept in the subpopulation memories. When the algorithm starts
for solving an instance of the problem it must load the initial population to a memory
location where they will then be evolved. In a real scenario, the same initial population
can be used for different instances. This further reduces the time of the initialization of
the algorithm.

A total population size of 400 solutions has been used in [SB11]. For the cGAPs using the
1-shrink and 2-shrink (cGAP-1s and cGAP-2s respectively) we have kept, approximately,
the same amount of solutions. For the cGAP-1s, which uses an array of 5×5 PEs with a
non-toroidal configuration, a total of 7 solutions is used per subpopulation, which results
in a population of 420 solutions. In turn, the cGAP-2s, which has 4×4 PEs also with a
non-toroidal configuration, requires 10 solutions per subpopulation to achieve exactly a
total of 400 solutions.

The stop criterion used to finish the algorithm is to have more than 1000 · n generated
solutions, where n is the number of nodes, without improving the best solution, as
described in [SB11]. To implement this feature in the cGAP, the PEs notify the cGAC
when they found a local best solution, and when a certain number of generations has
been elapsed. With this information, the cGAC knows what is the best solution in the
cGAA and, approximately, how many generations have elapsed in all the PEs since the
last best solution was found. Therefore, the cGAC realizes when the stop criterion has
been met and broadcasts a command to stop all the PEs, thus stopping completely the
cGAP.

Tables 6.16 and 6.17 present the results obtained for the two groups of instances of
the MEB problem with 20 and 50 nodes respectively. We provide for each instance the
average excess which measures in percentage the distance that the solutions obtained are

160 6 Experimental results

Table 6.16: Results performance of the cGAP-1s and cGAP-2s on 20 node
MEB problems. Data is compared against software versions of the algorithms

developed by [SB11].

GA-1s cGAP-1s GA-2s cGAP-2s

Instance Time (s) Time (s) Acceler-
ation Time (s) Time (s) Acceler-

ation
p20.00 0.45 0.022 20.0 0.60 0.082 7.3
p20.01 0.60 0.029 20.7 0.79 0.164 4.8
p20.02 0.56 0.024 23.7 0.80 0.118 6.8
p20.03 0.76 0.030 25.1 1.19 0.164 7.3
p20.04 0.54 0.028 19.6 0.81 0.143 5.7
p20.05 0.43 0.021 20.8 0.59 0.108 5.4
p20.06 0.48 0.022 22.2 0.70 0.102 6.9
p20.07 0.60 0.029 20.8 0.80 0.108 7.4
p20.08 0.71 0.036 19.6 1.35 0.298 4.5
p20.09 0.61 0.034 18.2 1.01 0.219 4.6
p20.10 0.61 0.022 27.8 1.04 0.141 7.4
p20.11 0.40 0.024 16.7 0.61 0.094 6.5
p20.12 0.50 0.033 15.1 0.62 0.122 5.1
p20.13 0.41 0.022 18.9 0.90 0.157 5.7
p20.14 0.61 0.026 23.0 1.18 0.192 6.1
p20.15 0.46 0.024 19.6 0.69 0.118 5.8
p20.16 0.74 0.031 23.6 1.20 0.153 7.8
p20.17 0.64 0.025 25.1 1.01 0.129 7.8
p20.18 0.49 0.025 19.5 0.66 0.095 6.9
p20.19 0.67 0.029 23.0 1.20 0.201 6.0
p20.20 0.61 0.028 21.8 0.81 0.120 6.8
p20.21 0.54 0.024 22.9 0.67 0.075 8.9
p20.22 0.46 0.026 17.4 0.57 0.091 6.3
p20.23 0.56 0.021 26.9 0.78 0.091 8.5
p20.24 0.65 0.028 22.9 1.07 0.157 6.8
p20.25 0.45 0.023 19.2 0.62 0.135 4.6
p20.26 0.55 0.027 20.0 0.96 0.155 6.2
p20.27 0.54 0.022 24.1 0.83 0.090 9.2
p20.28 0.56 0.024 23.4 0.89 0.100 8.9
p20.29 0.65 0.021 31.4 0.89 0.092 9.7

Averages 0.56 0.026 21.8 0.86 0.134 6.7

from the optimum, the number of times the optimum solution is found out of 30 trials,
and the average execution time. Since for the 20 node instances the optimum solutions
was always achieved by the cGAP and by the software, we only report on Table 6.16
the figures concerning the execution time. All the results are compared against the
ones found in the original GAs (GA-1s and GA-2s, respectively for the 1- and 2-shrink),
which were implemented in C and executed on a Pentium 4 system running at 3.0GHz.

6.3 Minimum energy broadcast 161

Additionally, we measure the acceleration of the cGAPs over the corresponding version
of the software GAs.

As it can be seen from Table 6.16, for the 20 node problems the cGAP-1s executes in
average 21.8× faster than the GA-1s, whereas the cGAP-2s achieves an acceleration of
6.7×. For the instances with 50 nodes (Table 6.17), the cGAP-1s founds in average the
optimum 17.37 times out of 30, while the original algorithm provides a slightly better
result of 19.27 out of 30. However, the excess figure is better for the cGAP-1s, with
0.63%, against 0.81% of the GA-1s. Therefore, even though the cGAP-1s achieves less
times the optimum, in average it achieves better quality solutions. For the cGAP-2s
both the excess and the number of times the optimum is achieved, is in average better
than the GA-2s, with 0.10% against 0.25%, and 25.87/30 against 22.9/30 for these
figures.

However, the acceleration is degraded as the number of nodes increases, both for the
cGAP-1s and cGAP-2s. Moreover, the cGAP-2s achieves a smaller acceleration than
the cGAP-1s when compared to their software counterparts. Nevertheless, it should
be emphasized that the cGAP-2s has a total of 16 PEs, whereas the cGAP-1s has 25
PEs. Therefore, the cGAP-1s can produce 25/16 = 1.56 times more solutions than the
cGAP-2s for the same time interval. Additionally, it should be emphasized that the
algorithms implemented in both the cGAPs and in software [SB11] are slightly different.
As described in Section 6.3.2.3, the original algorithm is a steady-state GA while our
is a cGA. Moreover, we have used the maximal preservative crossover instead of the
cycle crossover, since it has produced better results. Also, in the original algorithm it is
checked if a generated solution is unique in the population, and if the algorithm does not
find a new solution for 20 consecutive generations, it stops. In our cGAP, this stopping
criterion is not implemented since we do not check for uniqueness in the population.
This could help to explain why we achieve a slower acceleration figures for the 2-shrink
version than for the 1-shrink. As the 2-shrink is a more intensive local search, it is
likely to map more generated solutions by crossover and mutation to a single final and
improved solution. Therefore, in the GA-2s the criterion of the 20 consecutive iterations
without generating a new and unique solution in the population happens more frequently
than in the GA-1s.

Additionally, the 2-shrink HLS project is more complex than the 1-shrink since it has a
higher level of nested loops (cf. Algorithms 4 and 5). Since the constraints imposed by us
to the HLS tool to the initiation interval of a loop were performed to the innermost loops
(the others cannot be constrained), it is likely that the implementation of the 2-shrink
is not as optimized as the 1-shrink and therefore results are worst in the cGAP-2s when
compared to the cGAP-1s.

162 6 Experimental results

T
ab

le
6.

17
:
R
es
ul
ts

pe
rfo

rm
an

ce
of

th
e
cG

A
P-

1s
an

d
cG

A
P-

2s
on

50
no

de
M
EB

pr
ob

le
m
s.

D
at
a
is
co
m
pa

re
d
ag

ai
ns
ts

of
tw

ar
e
ve
rs
io
ns

of
th
e
al
go

rit
hm

s
de

ve
lo
pe

d
by

[S
B1

1]
.

G
A
-1
s

cG
A
P
-1
s

G
A
-2
s

cG
A
P
-2
s

In
st
an

ce
E
xc
es
s

(%
)

Fo
un

d
T
im

e
(s
)

E
xc
es
s

(%
)

Fo
un

d
T
im

e
(s
)

A
cc
el
er
-

at
io
n

E
xc
es
s

(%
)

Fo
un

d
T
im

e
(s
)

E
xc
es
s

(%
)

Fo
un

d
T
im

e
(s
)

A
cc
el
er
-

at
io
n

p5
0.
00

1.
2

0/
30

7.
12

1.
52

0/
30

0.
39

18
.4

0.
88

6/
30

12
.8
2

0.
74

4/
30

7.
57

1.
69

p5
0.
01

0.
2

26
/3
0

7.
88

0.
02

28
/3
0

0.
59

13
.2

0.
36

9/
30

20
.1
8

0.
18

18
/3
0

8.
08

2.
50

p5
0.
02

0.
36

26
/3
0

6.
01

0.
06

29
/3
0

0.
38

15
.7

-
30
/3
0

9.
76

-
30
/3
0

4.
93

1.
98

p5
0.
03

0.
7

20
/3
0

10
.4
7

1.
14

2/
30

0.
58

18
.1

-
30
/3
0

15
.2
8

0.
01

23
/3
0

7.
08

2.
16

p5
0.
04

0.
49

2/
30

7.
59

0.
17

20
/3
0

0.
43

17
.5

0.
4

8/
30

13
.1
5

-
30
/3
0

5.
97

2.
20

p5
0.
05

0.
06

29
/3
0

5.
1

-
30
/3
0

0.
26

19
.4

-
30
/3
0

9.
61

-
30
/3
0

3.
46

2.
78

p5
0.
06

0.
3

20
/3
0

7.
17

-
30
/3
0

0.
32

22
.3

-
30
/3
0

9.
2

-
30
/3
0

3.
35

2.
74

p5
0.
07

1.
21

6/
30

7.
72

0.
19

27
/3
0

0.
55

14
.2

1.
46

1/
30

13
.2
4

0.
10

28
/3
0

5.
70

2.
32

p5
0.
08

-
30
/3
0

3.
51

-
30
/3
0

0.
27

13
.2

-
30
/3
0

6.
71

-
30
/3
0

4.
63

1.
45

p5
0.
09

2.
45

10
/3
0

10
.2
5

1.
71

5/
30

0.
74

13
.9

1.
24

17
/3
0

21
.8
4

0.
32

22
/3
0

15
.1
5

1.
44

p5
0.
10

0.
67

20
/3
0

6.
59

0.
48

17
/3
0

0.
49

13
.3

-
30
/3
0

14
.1
4

0.
04

27
/3
0

6.
84

2.
07

p5
0.
11

3.
31

1/
30

5.
39

2.
70

1/
30

0.
40

13
.6

0.
32

25
/3
0

15
.0
5

0.
10

26
/3
0

6.
81

2.
21

p5
0.
12

5.
75

0/
30

9.
37

1.
09

0/
30

1.
07

8.
8

0.
9

20
/3
0

18
.5
7

0.
07

27
/3
0

8.
75

2.
12

p5
0.
13

0.
05

27
/3
0

12
.4
2

0.
16

5/
30

1.
29

9.
6

0.
09

11
/3
0

25
.5
5

-
30
/3
0

9.
52

2.
69

p5
0.
14

0.
19

27
/3
0

2.
71

-
30
/3
0

0.
29

9.
4

-
30
/3
0

4.
12

-
30
/3
0

2.
52

1.
63

p5
0.
15

0.
31

18
/3
0

7.
22

0.
09

23
/3
0

0.
52

14
.0

-
30
/3
0

13
.0
9

-
30
/3
0

4.
62

2.
83

p5
0.
16

2.
73

0/
30

13
.5
6

1.
92

1/
30

1.
46

9.
3

1.
24

1/
30

30
.1
9

0.
34

14
/3
0

18
.8
2

1.
60

p5
0.
17

0.
03

28
/3
0

7.
72

0.
16

17
/3
0

0.
50

15
.4

0.
03

28
/3
0

14
.3
7

-
30
/3
0

4.
31

3.
33

p5
0.
18

≤
0.
00

29
/3
0

8.
66

0.
13

20
/3
0

0.
77

11
.3

≤
0.
00

24
/3
0

16
.1
7

≤
0.
00

25
/3
0

6.
34

2.
55

p5
0.
19

-
30
/3
0

6.
3

-
30
/3
0

0.
28

22
.8

-
30
/3
0

10
.5
7

-
30
/3
0

3.
70

2.
85

p5
0.
20

0.
17

0/
30

6.
37

0.
16

0/
30

0.
44

14
.6

0.
13

4/
30

10
.2
9

0.
01

27
/3
0

4.
98

2.
06

p5
0.
21

0.
28

27
/3
0

6.
18

-
30
/3
0

0.
33

19
.0

-
30
/3
0

10
.6
1

-
30
/3
0

4.
02

2.
64

p5
0.
22

-
30
/3
0

4.
82

-
30
/3
0

0.
24

20
.0

-
30
/3
0

8.
32

-
30
/3
0

3.
89

2.
14

p5
0.
23

1.
7

17
/3
0

10
.6
9

2.
02

1/
30

0.
78

13
.7

-
30
/3
0

12
.4
9

0.
18

25
/3
0

8.
54

1.
46

p5
0.
24

0.
05

28
/3
0

6.
52

0.
29

18
/3
0

0.
55

11
.9

-
30
/3
0

12
.8
2

-
30
/3
0

5.
34

2.
40

p5
0.
25

-
30
/3
0

4.
15

-
30
/3
0

0.
27

15
.3

-
30
/3
0

6.
37

-
30
/3
0

3.
32

1.
92

p5
0.
26

0.
79

22
/3
0

9.
18

3.
65

1/
30

0.
50

18
.4

0.
3

27
/3
0

15
.2
6

1.
01

4/
30

10
.4
7

1.
46

p5
0.
27

-
30
/3
0

6.
87

0.
03

26
/3
0

0.
38

18
.0

0.
01

29
/3
0

9.
85

-
30
/3
0

4.
36

2.
26

p5
0.
28

1.
39

15
/3
0

10
.8
4

1.
23

10
/3
0

0.
67

16
.1

0.
16

27
/3
0

23
.6
9

0.
03

26
/3
0

8.
01

2.
96

p5
0.
29

-
30
/3
0

6.
29

-
30
/3
0

0.
28

22
.6

-
30
/3
0

8.
1

-
30
/3
0

3.
47

2.
34

Av
er
ag
es

0.
81

19
.2
7/
30

7.
49

0.
63

17
.3
7/
30

0.
53

15
.4

0.
25

22
.9
/3
0

13
.7
1

0.
10

25
.8
7/
30

6.
49

2.
23

6.4 Considerations on the cGAP implementation 163

To conclude, we achieve an average acceleration of, at least, 2.23× for the cGAP-2s
when compared to the GA-2s in software for the instances analysed. However, since we
have a less constrained stopping criterion we obtain superior quality solutions.

More importantly, these results show that it is possible to port an existing GA to our
cGAP using the proposed HLS design flow. The MEB problem is an optimization
problem that to be solved with a GA requires more complex algorithms than the ones
found in typical GA operators. Indeed, for this example, the difficulty is clearly in the
local search procedure algorithms and in the decoder of a solution.

6.4 Considerations on the cGAP implementation

The HLS-based design flow has proven to successfully implement the PE and the cGAC
blocks required for building the cGAP. However, it should be kept in mind that when
describing a hardware block in C++ the code must be carefully structured so that good
results are achieved. This way, it will be possible for the tools to infer the desired
hardware structures, like pipelined circuits and parallelization of operations, and thus
provide good results. Therefore, a straight coding style, like the one used to describe
software in a sequential language, may not produce the best results in HLS. Moreover, the
organization of the data arrays, and their consequent mapping to hardware memories,
plays an important role to successfully implement the desired hardware structures. From
our experience with Catapult HLS, it is crucial to structure the code, while applying the
correct design constraints so that the tool implements the desired architecture. Although
HLS raises the abstraction level when describing the hardware, design space exploration
and architecture optimization, often require changes in the source code [MVBG+12].

The cGAP can achieve an acceleration that is proportional to the number of PEs. The
impact in the performance of the architecture as the level of parallelism increases, for
example due to the access to the subpopulation memories, is almost negligible. This
happens since the majority of the computational effort in the GAs executed by the PEs
(for the examples analysed in this chapter) do not involve accesses to the subpopulations.
However, in algorithms requiring a high demand for accesses to the subpopulations (es-
pecially if the subpopulations have a small number of solutions) can reduce the expected
acceleration of the cGAP.

The results have shown that the solution’s quality found by the algorithm supported by
the cGAP is not affected due to changes in the level of parallelism. Therefore, the archi-
tecture can be scaled to fulfil the desired requirements, both in the expected acceleration

164 6 Experimental results

and in the hardware resources required to implement it. Additionally, toroidal and non-
toroidal configurations of the array of processors have also led to similar results in the
solutions found by the algorithm. In this case, a non-toroidal array leads to a slight
decrease in the logic required to implement it when compared to a toroidal array for
the same number of PEs, although it requires more subpopulation memories. However,
we must be aware that the changes in the number of PEs and in the configuration of
the array, leads to changes in the neighbourhood of the solutions of the cellular genetic
algorithm (while keeping the same population size), which alters the convergence rate
of the algorithm as it has been discussed in Sections 3.2 and 3.3 of Chapter 3.

6.5 Summary

In this chapter we have used two real-world optimization problems to be implemented
and solved by the cGAP, mainly the spectrum allocation problem and the minimum
energy broadcast problem.

For the SA problem, we have exploited the subpopulation memories connected to the
PEs so that they could be used to keep auxiliary data so that the performance of the
PE is improved without using more hardware resources. Moreover, we have verified
that it is essential to give to Catapult HLS tool the proper constraints so that the final
hardware implementation is optimized. With the correct constraints of loop unrolling
and pipelining, we have obtained not only a circuit that requires less hardware resources
but, more importantly, a circuit with a substantially lower latency.

The results for the SA problem have shown that the use of the global RNG, which
provides random numbers to all PEs, does not show to degrade the quality of the fi-
nal solution found by the algorithm. Also, the cGAP achieves an acceleration of the
algorithm that is directly proportional to the number of PEs. A degradation of the
throughput due to the memory access collision is negligible for the arrays with more
PEs. Acceleration figures for the problem instances analysed have shown a speedup of
the cGAP with 5×5 PEs over 21× and 2086× when compared, respectively, to a PC
and the MicroBlaze soft-core processor, both running a panmictic GA.

Regarding the MEB problem, we have ported to our cGAP an existing algorithm with
two versions for a local search procedure in the GA: 1-shrink and 2-shrink. These
algorithms, which manipulate tree data structures, have been successfully implemented
in the PE using the HLS flow. We have focused in achieving the best quality algorithm,
both in execution time and quality of the final solution obtained, by replicating, with
a few changes, the original algorithms. Arrays with a maximum of 5× 5 PEs and

6.5 Summary 165

4×4 PEs have been implemented in the target Virtex-6 FPGA for respectively the
1-shrink and 2-shrink versions (cGAP-1s and cGAP-2s). For the instances analysed, the
cGAP-1s achieves an average acceleration over 15.4× when compared to the original
algorithm, while maintaining similar quality solutions. The cGAP-2s obtains an average
acceleration over 2.2×, but it finds better quality solutions.

Chapter 7

Concluding remarks

The main goal of this work was to study and develop high performance custom comput-
ing machines that support the execution of genetic algorithms (GAs). We have conceived
a scalable processor array, which implements a cellular genetic algorithm (cGA), that
parallelizes the operations of the algorithm so that its execution time is improved. By
distributing the population of the cGA over several independent memories, we do not
compromise the memory accesses as the parallelism increases since more (and smaller)
memories are added to the architecture. Moreover, a high-level synthesis (HLS) based
design flow has been proposed to describe the problem-specific operations of the algo-
rithm, thus easing the design of the proposed architecture to solve different optimization
problems.

During the evolutionary process of a GA, the candidate solutions of a problem (the popu-
lation) must interact among them by using genetics-inspired operators. In a dedicated
hardware implementation of a GA, these operators can be parallelized so that several
new solutions are generated at the same time. However, and as discussed in Chapter 2,
this can lead to bottlenecks while accessing to the memory that keeps the population,
with negative impact on the performance of the hardware. Nevertheless, it is possible
to structure the population of a GA so that a given solution only interacts (till a certain
point) with a given subset of solutions, as it happens with a cellular GA where the
solutions are distributed over a regular grid and a solution only interacts with solutions
placed in a given neighbourhood. By doing so, the population can be distributed over
several independent memories that are accessed by processing nodes that implement the
GA. Although a cGA has a great potential to be implemented in dedicated hardware,
this has not been an active subject of research.

Additionally, GAs are known for using few and simple operators, where solutions are
encoded by a binary sequence. However, this not always holds true and often different

167

168 7 Concluding remarks

encoding schemes are required to represent a valid solution (e.g. a graph). Moreover, if
specific constraints are applied to the problem, operators must be added to deal with
this. Also, the evaluation of a solution quality is always problem dependent. Therefore,
dedicated hardware solutions that offer a set of the best known GA operators as tem-
plates to solve generally any optimization problem, only succeed in a restricted set of
problems.

With this is mind, our work focused on building a dedicated hardware architecture
that supports the execution of cGAs, while being able to specify the problem-dependent
operations so that different problems could be solved. Moreover, the target hardware
technology is field-programmable gate arrays (FPGAs) devices, which currently present
a significant amount of distributed on-chip memory, which can be used to keep subsets
of the population (a subpopulation) that are independently accessed by processing units,
thus accelerating the execution of the algorithm.

The overall architecture proposed in this work is built by replicating processing elements
(PEs) and subpopulation memories that are conveniently connected, as described in
Chapter 3. Each subpopulation memory holds a subset of the cGA’s solutions and is
shared between two PEs, whereas a PE accesses to four subpopulation memories so that
it evolves the algorithm with that solutions. Moreover, the architecture can be scaled
by changing the number and configuration of the PEs in the array, and by adapting the
number of solutions in each subpopulation memory to achieve a given population size.

This architecture supports the execution of cGAs since a solution can only interact with
a predefined set of solutions, and the solutions’ information is naturally diffused to the
entire population without an explicit operator for doing so. This cGA is asynchronous
since each PE generates and updates a solution to the subpopulation memories as soon
as it is computed, and there is no synchronization in the update step among all the
solutions. In addition, the order in which each solution is updated is given by the time
that a PE takes to perform such operation. Therefore, we have classified our cGA as
asynchronous with a time-driven update policy.

We have specified, in Chapter 4, a complete hardware infrastructure that supports the
execution of the cGA in the proposed architecture. This complete solution, called cel-
lular genetic algorithm processor (cGAP), is comprised, besides the array of processor
and subpopulation memories, of a controller module named cellular genetic algorithm
controller (cGAC), the interface of the cGAP, a communication infrastructure that sup-
ports the change of commands among the cGAC and the PEs, and a global random
number generator (RNG) that feeds all the PEs with the necessary random numbers.

169

To develop the cGAP we have presented a HLS-based design flow where the problem-spe-
cific operations of the algorithm are specified in C++ and translated to hardware by
using commercial HLS tools as described in Chapter 5. Therefore, the PE and the
cGAC, which are the blocks that need to be changed according to the optimization
problem, are rapidly customized with HLS to the problem’s requirements so that they
can be integrated with the remaining infrastructures to generate the complete cGAP
with the desired level of parallelism. We have developed C++ classes and defined algo-
rithms templates that can be used when building these two blocks and ensure a correct
interface with the remaining hardware blocks.

Two distinct real-world problems that appear in the context of wireless ad hoc networks
have been addressed in Chapter 6 as case studies to demonstrate the proposed architec-
ture and design methodology. These problems, the spectrum allocation (SA) and the
minimum energy broadcast (MEB), pose several implementation challenges when solved
with GAs like problem-specific constraints, special representation for the solutions, or
dedicated local search heuristics to improve the solutions.

We have seen that when describing the PE and cGAC in C++ for HLS, it is crucial to
structure conveniently the code so that the tool is able to infer the desired hardware
structures. Furthermore, the memory data organization of the arrays needed by the
algorithm, which are mapped to hardware memories, must be organized in a way that
efficient structures can be implemented. With this approach the HLS tool can then be
guided by applying design constraints to implement the architecture. It is clear that
although HLS raises the abstraction level when describing hardware, it does not provide
automated mechanisms to build efficient hardware structures without a careful coding
style.

Results have shown that the cGAP achieves an acceleration that is directly proportional
to the level of parallelism, i.e., the number of PEs. Although memory access conflicts
to the subpopulation memories happen, which becomes more critical as the number of
solutions per subpopulation decreases, the performance degradation due to this is almost
negligible. Therefore, even tough cGAPs with more PEs require a smaller number of
solutions per subpopulation (not to increase the population size), the performance of
the engine is not degraded.

We have observed that the change in the level of parallelism in the cGAP does not
compromise the quality of the solutions found by the algorithm. Indeed, by altering the
number of PEs we change the number of solutions per subpopulation which results in
changes in the neighbourhood of the solutions of the cGA, which affects the convergence
rate of the algorithm as we have observed from the architecture simulation performed in
Chapter 3. The convergence rate of a cGA is related with the difficulty (the distance)

170 7 Concluding remarks

that a solution has to spread its information throughout the array, and in configurations
where this difficulty is increased (smaller subpopulations and higher number of PEs) lead
to a slower convergence rate at the beginning of the algorithm while producing better
quality results as the number of generations growths. Nevertheless, it is clear that a
higher number of PEs, produces better results as it achieves an increased acceleration
of the algorithm.

Besides the neighbourhood of the solutions in a cGA, the aspect ratio of the processor
array or its toroidal or non-toroidal configuration, also change the way the solutions
spread their information with the remaining solutions. For the same number of PEs,
narrower arrays by comparison with square arrays, and non-toroidal compared with
toroidal arrays, lead to an increased distance when a solution spreads its information
throughout the population. Therefore, the same convergence rate behaviour is observed
as the one found for arrays with more PEs. However, in these cases the cGAP does not
have an acceleration gain as the same number of PEs exist for the different cases. Since
we do not have a clear acceleration due to an increase in the number of PEs, we cannot
say which of these configurations is the best, since it depends when the algorithm stops
its evolutionary process.

Nonetheless, a non-toroidal implementation of the cGAP leads to a slightly smaller
number of logic required to implement the architecture, although it requires more sub-
population memories. In addition, this configuration is interesting since no long data
paths are required to build the toroid, which can be and advantage for a hardware
implementation.

The architecture of the cGAC has proven to be effective for monitoring globally the
processor array. It should be emphasized that this block is not necessary to ensure
the implementation of the cellular genetic algorithm, since the architecture of the PEs
and subpopulation memories are by themselves sufficient to implement the algorithm.
However, with few commands sent among the cGAC to each PE and vice versa, it is
possible to control the algorithm as required, which can be used, for instance, to stop
the PEs based on a global stop criterion or to retrieve the best solution at the end of
the algorithm. These functionalities are essential for the cGAP as a complete solution
that supports the execution of a cGA while providing effective mechanisms to configure
the PEs and monitor the algorithm evolution.

The proposed global RNG infrastructure aims to feed all the PEs with random numbers
while using the minimum possible of hardware resources. Although a correlation among
random numbers acquired by the different PEs may exist, for the examples analysed
this has not shown to affect negatively the quality of the results obtained by the cGAP,

171

particularly when the parallelism is increased. Therefore, this infrastructure shows evi-
dences that it can provide good results for generating random numbers that are required
by the genetics-inspired operations of the algorithm.

The HLS-based design flow proposed in this work has demonstrated to be effective as
a means to rapidly specify new functionalities so that the cGAP can be used to solve
different optimization problems. Moreover, the two problems used in this work show
that applying a GA to solve them requires customized operations so that the algorithm
produces valid solutions. Additionally, in the MEB problem, a local search heuristic is
introduced to improve the solution’s quality. Therefore, our approach of customizing all
the operations executed by the PE and cGAC so that it fulfils the problem’s requirements
allows addressing any optimization problem without being restricted by a set of generic
operators supported by the architecture. Additionally, since we do not constrain the
operations of the GA in the PE, the cGAP can be used to support other population-based
metaheuristics that may take advantage of such architecture.

Moreover, the implementations of the cGAP in the Xilinx Virtex-6 FPGA have targeted
cGAs with realist population sizes. The level of parallelism achieved by the implemen-
tations was constrained by the amount of hardware resources required to implement the
PEs, and not by the memory. Therefore, there is space to increase further the dimension
of the population, which can result in higher number of solutions in the population, or
solving problems that require more memory space to represent a solution. Addition-
ally and as the technology evolves, new families of FPGAs arrive to the market with
increased hardware resources. Therefore, the cGAP can be implemented in such devices
with an increased level of parallelism to accelerate the algorithm further. This means
that our architecture can be used in the coming years while taking advantage of the level
of integration that those devices will provide.

Nonetheless, we do not claim that the proposed architecture is the best in all circum-
stances and for all the problems. Parallelizing the operations of a GA to increase its
performance can be simply achieved by having several parallel processing units that
access a single memory where the solutions are kept. However, for a high level of paral-
lelism these memory accesses are difficult to manage. In our architecture, that supports
cellular genetic algorithms, this issue does not happen and the parallelism can be in-
creased without bottlenecks while accessing to the solutions. Additionally, the cGAP
requires that all the population of the algorithm is distributed in the internal mem-
ory of the FPGA. If these data or any other data required for the algorithm cannot
be accommodated in the on-chip memory, the current cGAP architecture may not be
employed.

172 7 Concluding remarks

To conclude, the cGAP and its design methodology provide an effective framework so
that different optimization problems are solved by the metaheuristic, where different
levels of parallelism can be adjusted to fulfil the requirements, mainly the trade-off
between the acceleration of the algorithm and the hardware resources used to imple-
ment it. Moreover, the architecture can be exploited to support other population-based
metaheuristics by specifying proper PEs, or even to study different approaches to popu-
lation-based metaheuristics that can combine heterogeneous PEs, for example, PEs that
execute GAs while others execute a local search procedure or simulated annealing.

7.1 Recommendations for future work

Based on the presented work, in the following items we highlight several research direc-
tions for future work.

• One feature of this architecture is the distribution of solutions in various memories.
The implementation done in this work used an uniform distribution of the solutions
among the memories local to a PE, thus causing an uniform propagation of the
genetic information throughout the array. By distributing the generated solutions
in a PE to the different memories according to their fitness value, it is possible
to structure the population during the evolution of the algorithm so that the
solutions are organized in the array according to their fitness values. For example,
this can be accomplished by assigning different probabilities to the 4 subpopulation
memories connected to a PE to receive a new solution that improves (or not) the
average fitness value of all the solutions accessed by the PE. Therefore, the best
solutions will be concentrated on a given set of PEs, whereas the worst ones on
other (opposite) set of PEs. This type of cGA is known as hierarchical cGA and
it has been proved to improve the quality of the metaheuristic [JADM06].

• Exploit the partial reconfiguration capability of the FPGAs to change the func-
tionality of the PEs in run-time. Study the benefits of having changes in the
operators of the PEs during the evolution of the algorithm so that the metaheuris-
tic improves the solution found. For example, change a set of PEs near the end of
the evolutionary process so that they execute an intensive local search heuristic.
Therefore, those PEs first execute a GA, like the remaining PEs, and then a local
search on solutions that have been evolved. The partial reconfiguration of FPGAs
allows saving hardware resources since these are shared in time.

• Although the cGAP has been conceived to be implemented in a single FPGA de-
vice, it can be extended to implementations in multi FPGA devices, thus allowing

7.1 Recommendations for future work 173

a higher level of parallelism. The cellular structure of the cellular genetic algo-
rithm array (the cGAA) can be divided so that each part is assigned to an FPGA.
Therefore, each FPGA supports the execution of a cGA, as it was presented in
this work, while the different FPGAs are interconnected among them to form the
complete array of processors. Each FPGA evolves independently its solutions,
and occasionally exchanges solutions with neighbour FPGAs, resembling thus a
distributed GA. This model of GA is known as cellular distributed GA [LA11].

• Combine a GA in a CPU and FPGA to solve problems that exceed the memory
capacity of an FPGA. By doing so, it is possible for the cGAP to evolve a subset of
the population, while the CPU keeps the remaining. Occasionally, the CPU sends
new solutions to the cGAP and receives new ones.

References

[AD08] Enrique Alba and Bernabé Dorronsoro. Cellular genetic algorithms,
volume 42. Springer, 2008.

[ADGT06] Enrique Alba, Bernabé Dorronsoro, Mario Giacobini, and Marco
Tomassini. Decentralized cellular evolutionary algorithms. In J. Fager-
berg, D.C. Mowery, and R.R. Nelson, editors, Handbook of Bioinspired
Algorithms and Applications. CRC Press, 2006.

[Ale05] S. Alexander. On the history of combinatorial optimization (till 1960).
Handbooks in Operations Research and Management Science: Discrete
Optimization, 12:1, 2005.

[ARM] ARM. AMBA specifications. http://www.arm.com/products/

system-ip/amba-specifications.php.

[AT02] Enrique Alba and José M Troya. Improving flexibility and efficiency
by adding parallelism to genetic algorithms. Statistics and Computing,
12(2):91–114, 2002.

[ATAH11] Fariborz Ahmadi, Reza Tati, Soraia Ahmadi, and Veria Hossaini. New
hardware engine for genetic algorithms. In International Conference on
Genetic and Evolutionary Computing., pages 122–126. IEEE, 2011.

[ATDA05] Enrique Alba Torres, Bernabé Dorronsoro, and Hugo Alfonso. Cellular
memetic algorithms evaluated on SAT. In XI Congreso Argentino de
Ciencias de la Computación, 2005.

[BDT99] Eric Bonabeau, Marco Dorigo, and Guy Theraulaz. Swarm intelligence:
from natural to artificial systems, volume 4. Oxford University Press,
1999.

[BFM97] Thomas Back, David B. Fogel, and Zbigniew Michalewicz. Handbook of
evolutionary computation. Oxford University Press, 1997.

175

http://www.arm.com/products/system-ip/amba-specifications.php
http://www.arm.com/products/system-ip/amba-specifications.php

176 References

[BR03] Christian Blum and Andrea Roli. Metaheuristics in combinatorial op-
timization: Overview and conceptual comparison. ACM Computing
Surveys (CSUR), 35(3):268–308, 2003.

[Cal] Calypto. Catapult: Product family overview. http://calypto.

com/en/products/catapult/overview/.

[CC00] Yun-Ho Choi and Duck Jin Chung. VLSI processor of parallel genetic
algorithm. In Proceedings of the Second IEEE Asia Pacific Conference
on ASICs., pages 143–146. IEEE, 2000.

[CCP+01] Andrea E.F. Clementi, Pilu Crescenzi, Paolo Penna, Gianluca Rossi,
and Paola Vocca. On the complexity of computing minimum energy con-
sumption broadcast subgraphs. In Proceedings of the 18th Annual Sym-
posium on Theoretical Aspects of Computer Science (STACS), pages
121–131. Springer, 2001.

[ČHE02] Mario Čagalj, Jean-Pierre Hubaux, and Christian Enz. Minimum-
energy broadcast in all-wireless networks: NP-completeness and distri-
bution issues. In Proceedings of the 8th annual international conference
on Mobile computing and networking, pages 172–182. ACM, 2002.

[CP02] Erick Cantú-Paz. On random numbers and the performance of genetic
algorithms. In GECCO, pages 311–318, 2002.

[CW11] Yajuan Chen and Qinghai Wu. Design and implementation of PID con-
troller based on FPGA and genetic algorithm. In International Con-
ference on Electronics and Optoelectronics., volume 4, pages 308–311.
IEEE, 2011.

[DDT08] K. M. Deliparaschos, G. C. Doyamis, and S. G. Tzafestas. A pa-
rameterised genetic algorithm IP core: FPGA design, implementa-
tion and performance evaluation. International Journal of Electronics,
95(11):1149–1166, 2008.

[DMES+03] Arindam Kumar Das, Robert Jackson Marks, Mohamed El-Sharkawi,
Payman Arabshahi, Andrew Gray, et al. r-shrink: A heuristic for im-
proving minimum power broadcast trees in wireless networks. In Global
Telecommunications Conference., volume 1, pages 523–527. IEEE, 2003.

[DOCQ93] Lawrence Davis, David Orvosh, Anthony Cox, and Yuping Qiu. A
genetic algorithm for survivable network design. In Proceedings of the
5th International Conference on Genetic Algorithms, pages 408–415,
San Francisco, CA, USA, 1993. Morgan Kaufmann Publishers Inc.

http://calypto.com/en/products/catapult/overview/
http://calypto.com/en/products/catapult/overview/

References 177

[EPDP09] Charalampos Effraimidis, Kyprianos Papadimitriou, Apostolos Dollas,
and Ioannis Papaefstathiou. A self-reconfiguring architecture support-
ing multiple objective functions in genetic algorithms. In International
Conference on Field Programmable Logic and Applications., pages 453–
456. IEEE, 2009.

[FKK+10] Pradeep R. Fernando, Srinivas Katkoori, Didier Keymeulen, Ricardo
Zebulum, and Adrian Stoica. Customizable FPGA IP core implementa-
tion of a general-purpose genetic algorithm engine. IEEE Transactions
on Evolutionary Computation., 14(1):133–149, 2010.

[Fra57] Alex S. Fraser. Simulation of genetic systems by automatic digital
computers. i. introduction. Australian Journal of Biological Sciences,
10(4):484–491, 1957.

[GL+97] Fred Glover, Manuel Laguna, et al. Tabu search, volume 22. Springer,
1997.

[GN95] Paul Graham and Brent Nelson. A hardware genetic algorithm for the
traveling salesman problem on splash 2. In Field-Programmable Logic
and Applications, pages 352–361. Springer, 1995.

[Gra] Mentor Graphics. Precision RTL. http://www.mentor.com/

products/fpga/synthesis/precision_rtl/.

[GTL13] Liucheng Guo, David B. Thomas, and Wayne Luk. Customisable archi-
tectures for the set covering problem. SIGARCH Computer Architecture
News, 41(5):101–106, 2013.

[GTL14] Liucheng Guo, David B. Thomas, and Wayne Luk. Automated frame-
work for general-purpose genetic algorithms in FPGAs. In Applications
of Evolutionary Computation, pages 714–725. Springer, 2014.

[GVK04] John C. Gallagher, Saranyan Vigraham, and Gregory Kramer. A family
of compact genetic algorithms for intrinsic evolvable hardware. IEEE
Transactions on Evolutionary Computation, 8(2):111–126, 2004.

[HCF12] Ping-Che Hsiao, Tsung-Che Chiang, and Li-Chen Fu. Particle swarm
optimization for the minimum energy broadcast problem in wireless ad-
hoc networks. In Congress on Evolutionary Computation (CEC), pages
1–8. IEEE, 2012.

[HGLL06] Gregory S. Hornby, Al Globus, Derek S. Linden, and Jason D. Lohn. Au-
tomated antenna design with evolutionary algorithms. In Proc. AIAA
Space Conference, page 8, 2006.

http://www.mentor.com/products/fpga/synthesis/precision_rtl/
http://www.mentor.com/products/fpga/synthesis/precision_rtl/

178 References

[HLG99] Georges R. Harik, Fernando G. Lobo, and David E. Goldberg. The
compact genetic algorithm. IEEE Transactions on Evolutionary Com-
putation, 3(4):287–297, 1999.

[HM09] Ali B. Hashemi and Mohammad Reza Meybodi. Cellular PSO: A PSO
for dynamic environments. In Advances in computation and intelligence,
pages 422–433. Springer, 2009.

[Hol75] John H. Holland. Adaptation in natural and artificial systems: An
introductory analysis with applications to biology, control, and artificial
intelligence. University Michigan Press, 1975.

[HT11] Pauline C. Haddow and Andy M. Tyrrell. Challenges of evolvable hard-
ware: past, present and the path to a promising future. Genetic Pro-
gramming and Evolvable Machines, 12(3):183–215, 2011.

[Ini] Accellera Systems Initiative. SystemC. http://www.accellera.

org/downloads/standards/systemc.

[JADM06] Stefan Janson, Enrique Alba, Bernabé Dorronsoro, and Martin Mid-
dendorf. Hierarchical cellular genetic algorithm. In Evolutionary Com-
putation in Combinatorial Optimization, pages 111–122. Springer, 2006.

[Jar12] Jiri Jaros. Multi-GPU island-based genetic algorithm for solving the
knapsack problem. In Congress on Evolutionary Computation (CEC),
pages 1–8. IEEE, 2012.

[JC08] Yutana Jewajinda and Prabhas Chongstitvatana. FPGA implementa-
tion of a cellular compact genetic algorithm. In NASA/ESA Conference
on Adaptive Hardware and Systems., pages 385–390. IEEE, 2008.

[JKFA06] Mehdi Salmani Jelodar, Mehdi Kamal, Sied Mehdi Fakhraie, and Ma-
jid Nili Ahmadabadi. SOPC-based parallel genetic algorithm. In IEEE
Congress on Evolutionary Computation., pages 2800–2806. IEEE, 2006.

[KAM+99] Osamu Kitaura, Hideaki Asada, Motoaki Matsuzaki, Takamitsu Kawai,
Hideki Ando, and Toshio Shimada. A custom computing machine for
genetic algorithms without pipeline stalls. In IEEE International Con-
ference on Systems, Man, and Cybernetics., volume 5, pages 577–584.
IEEE, 1999.

[KE95] J. Kennedy and R. C. Eberhart. Particle swarm optimization. In Pro-
ceedings of IEEE International Conference on Neural Networks, pages
1942–1948, 1995.

http://www.accellera.org/downloads/standards/systemc
http://www.accellera.org/downloads/standards/systemc

References 179

[KES01] Mohan Krishnamoorthy, Andreas T. Ernst, and Yazid M. Sharaiha.
Comparison of algorithms for the degree constrained minimum spanning
tree. Journal of heuristics, 7(6):587–611, 2001.

[KJV83] Scott Kirkpatrick, D. Gelatt Jr., and Mario P. Vecchi. Optimization by
simulated annealing. Science, 220(4598):671–680, 1983.

[KP04] Intae Kang and Radha Poovendran. Broadcast with heterogeneous node
capability [wireless ad hoc or sensor networks]. In Global Telecommu-
nications Conference, volume 6, pages 4114–4119. IEEE, 2004.

[LA11] Gabriel Luque and Enrique Alba. Parallel Genetic Algorithms: Theory
and Real World Applications, volume 367. Springer, 2011.

[L’E99] Pierre L’Ecuyer. Tables of maximally equidistributed combined LFSR
generators. Mathematics of Computation of the American Mathematical
Society, 68(225):261–269, 1999.

[LKM+99] Pedro Larranaga, Cindy M. H. Kuijpers, Roberto H. Murga, Inaki Inza,
and Sejla Dizdarevic. Genetic algorithms for the travelling salesman
problem: A review of representations and operators. Artificial Intelli-
gence Review, 13(2):129–170, 1999.

[LLHD05] Giampaolo L. Libralao, Telma W. Lima, Karen Honda, and Alexan-
dre CB Delbem. Node-depth encoding for directed graphs. In The
2005 IEEE Congress on Evolutionary Computation., volume 3, pages
2196–2201. IEEE, 2005.

[Mar95] George Marsaglia. DIEHARD. http://www.stat.fsu.edu/pub/
diehard/, 1995.

[MB97] Graham M. Megson and Ian M. Bland. Generic systolic array for ge-
netic algorithms. IEE Proceedings - Computers and Digital Techniques,
144(2):107–119, 1997.

[MB98] G.M. Megson and I.M. Bland. Synthesis of a systolic array genetic
algorithm. In International Parallel Processing Symposium, pages 316–
0320. IEEE Computer Society, 1998.

[MBM11] Ujjwal Maulik, Sanghamitra Bandyopadhyay, and Anirban Mukhopad-
hyay. Multiobjective Genetic Algorithms for Clustering: Applications in
Data Mining and Bioinformatics. Springer, 2011.

http://www.stat.fsu.edu/pub/diehard/
http://www.stat.fsu.edu/pub/diehard/

180 References

[MF99] Mark M. Meysenburg and James A. Foster. Randomness and GA per-
formance, revisited. In Proceedings of the Genetic and Evolutionary
Computation Conference, volume 1, pages 425–432, 1999.

[MGD05] Roberto Montemanni, Luca Maria Gambardella, and Arindam Kumar
Das. The minimum power broadcast problem in wireless networks: a
simulated annealing approach. In Wireless Communications and Net-
working Conference, volume 4, pages 2057–2062. IEEE, 2005.

[MGSK88] Heinz Mühlenbein, Martina Gorges-Schleuter, and Ottmar Krämer.
Evolution algorithms in combinatorial optimization. Parallel Comput-
ing, 7(1):65–85, 1988.

[MK94] Makoto Matsumoto and Yoshiharu Kurita. Twisted GFSR genera-
tors II. ACM Transactions on Modeling and Computer Simulation
(TOMACS), 4(3):254–266, 1994.

[MN98] Makoto Matsumoto and Takuji Nishimura. Mersenne twister: a 623-
dimensionally equidistributed uniform pseudo-random number gen-
erator. ACM Transactions on Modeling and Computer Simulation
(TOMACS), 8(1):3–30, 1998.

[Mos89] Pablo Moscato. On evolution, search, optimization, genetic algorithms
and martial arts: Towards memetic algorithms. Caltech concurrent
computation program, C3P Report, 826, 1989.

[MVBG+12] Wim Meeus, Kristof Van Beeck, Toon Goedemé, Jan Meel, and Dirk
Stroobandt. An overview of today’s high-level synthesis tools. Design
Automation for Embedded Systems, 16(3):31–51, 2012.

[NBKHM13] Vishnu P. Nambiar, Sathivellu Balakrishnan, Mohamed Khalil-Hani,
and Muhammad N. Marsono. HW/SW co-design of reconfigurable
hardware-based genetic algorithm in FPGAs applicable to a variety of
problems. Computing, 95(9):863–896, 2013.

[NdMM07] Nadia Nedjah and Luiza de Macedo Mourelle. An efficient problem-
independent hardware implementation of genetic algorithms. Neuro-
computing, 71(1):88–94, 2007.

[NHM11] Vahid Noroozi, Ali B. Hashemi, and Mohammad Reza Meybodi. Cel-
lularde: a cellular based differential evolution for dynamic optimization
problems. In Adaptive and natural computing algorithms, pages 340–
349. Springer, 2011.

References 181

[NI10] Nasimul Noman and Hitoshi Iba. Cellular differential evolution algo-
rithm. In AI 2010: Advances in Artificial Intelligence, pages 293–302.
Springer, 2010.

[NYYY07] Hung Dinh Nguyen, Ikuo Yoshihara, Kunihito Yamamori, and Mori-
toshi Yasunaga. Implementation of an effective hybrid GA for large-
scale traveling salesman problems. IEEE Transactions on Systems,
Man, and Cybernetics, 37(1):92–99, 2007.

[PD05] Malay K. Pakhira and Rajat K. De. A hardware pipeline for function
optimization using genetic algorithms. In Proceedings of the 2005 con-
ference on Genetic and evolutionary computation, pages 949–956. ACM,
2005.

[PJS10] Petr Pospíchal, Jiri Jaros, and Josef Schwarz. Parallel genetic algorithm
on the CUDA architecture. In Applications of Evolutionary Computa-
tion, pages 442–451. Springer, 2010.

[PK94] Charles C. Palmer and Aaron Kershenbaum. Representing trees in
genetic algorithms. In Proceedings of the First IEEE Conference on
Evolutionary Computation., pages 379–384. IEEE, 1994.

[PK14] Riccardo Poli and John Koza. Genetic Programming. Springer, 2014.

[PSJ10] Petr Pospíchal, Josef Schwarz, and Jiri Jaros. Parallel genetic algorithm
solving 0/1 knapsack problem running on the GPU. In 16th Interna-
tional Conference on Soft Computing MENDEL, volume 2010, pages
64–70, 2010.

[PZZ06] Chunyi Peng, Haitao Zheng, and Ben Y. Zhao. Utilization and fair-
ness in spectrum assignment for opportunistic spectrum access. Mobile
Networks and Applications, 11(4):555–576, 2006.

[RGH02] Franz Rothlauf, David E. Goldberg, and Armin Heinzl. Network ran-
dom keys - a tree representation scheme for genetic and evolutionary
algorithms. Evolutionary Computation, 10(1):75–97, 2002.

[Rot06] Franz Rothlauf. Representations for genetic and evolutionary algo-
rithms. Springer, 2006.

[SB11] Alok Singh and Wilson Naik Bhukya. A hybrid genetic algorithm for
the minimum energy broadcast problem in wireless ad hoc networks.
Applied Soft Computing, 11(1):667–674, 2011.

182 References

[SDJ96] Jayshree Sarma and Kenneth De Jong. An analysis of the effects of
neighborhood size and shape on local selection algorithms. In Parallel
Problem Solving From Nature - PPSN IV, pages 236–244. Springer,
1996.

[SdR99] Birgitt Schönfisch and André de Roos. Synchronous and asynchronous
updating in cellular automata. BioSystems, 51(3):123–143, 1999.

[SF02] Iouliia Skliarova and António B. Ferrari. FPGA-based implementation
of genetic algorithm for the traveling salesman problem and its indus-
trial application. In Tim Hendtlass and Moonis Ali, editors, Develop-
ments in Applied Artificial Intelligence, volume 2358 of Lecture Notes
in Computer Science, pages 77–87. Springer Berlin Heidelberg, 2002.

[SGK05] Kumara Sastry, David Goldberg, and Graham Kendall. Genetic algo-
rithms. In Search Methodologies, pages 97–125. Springer, 2005.

[SLGZ11] Yang Shi, Hongcheng Liu, Liang Gao, and Guohui Zhang. Cellular
particle swarm optimization. Information Sciences, 181(20):4460–4493,
2011.

[SP97] Rainer Storn and Kenneth Price. Differential evolution–a simple and ef-
ficient heuristic for global optimization over continuous spaces. Journal
of global optimization, 11(4):341–359, 1997.

[SS12] A. Swarnalatha and A.P. Shanthi. Optimization of single variable
functions using complete hardware evolution. Applied Soft Computing,
12(4):1322–1329, 2012.

[SSC+01] Barry Shackleford, Greg Snider, Richard J. Carter, Etsuko Okushi,
Mitsuhiro Yasuda, Katsuhiko Seo, and Hiroto Yasuura. A high-
performance, pipelined, FPGA-based genetic algorithm machine. Ge-
netic Programming and Evolvable Machines, 2(1):33–60, 2001.

[SSS95] Stephen D. Scott, Ashok Samal, and Shared Seth. HGA: a hardware-
based genetic algorithm. In International symposium on Field-
programmable gate arrays, pages 53–59. ACM, 1995.

[STCS02] Barry Shackleford, Motoo Tanaka, Richard J. Carter, and Greg Snider.
FPGA implementation of neighborhood-of-four cellular automata ran-
dom number generators. In Proceedings of the 2002 ACM/SIGDA tenth
international symposium on Field-programmable gate arrays, pages 106–
112. ACM, 2002.

References 183

[SWSS95] Nathan Sitkoff, Mike Wazlowski, Aaron Smith, and Harvey Silverman.
Implementing a genetic algorithm on a parallel custom computing ma-
chine. In IEEE Symposium on FPGAs for Custom Computing Ma-
chines., pages 180–187. IEEE, 1995.

[TA95] Brian C.H. Turton and Tughrul Arslan. A parallel genetic VLSI ar-
chitecture for combinatorial real-time applications-disc scheduling. In
International Conference on Genetic Algorithms in Engineering Sys-
tems: Innovations and Applications, pages 493–498. IET, 1995.

[TAH94] Brian C.H. Turton, Tughrul Arslan, and David H. Horrocks. A hardware
architecture for a parallel genetic algorithm for image registration. In
IEE Colloquium on Genetic Algorithms in Image Processing and Vision,
pages 11/1–11/6. IET, 1994.

[TÄW11] Ville Tirronen, Sami Äyrämö, and Matthieu Weber. Study on the effects
of pseudorandom generation quality on the performance of differential
evolution. In Adaptive and Natural Computing Algorithms, pages 361–
370. Springer, 2011.

[THC11] Ching-Chih Tsai, Hsu-Chih Huang, and Cheng-Kai Chan. Parallel elite
genetic algorithm and its application to global path planning for au-
tonomous robot navigation. IEEE Transactions on Industrial Electron-
ics., 58(10):4813–4821, 2011.

[TMS+06] Tatsuhiro Tachibana, Yoshihiro Murata, Naoki Shibata, Keiichi Ya-
sumoto, and Minoru Ito. General architecture for hardware implementa-
tion of genetic algorithm. In IEEE Symposium on Field-Programmable
Custom Computing Machines., pages 291–292. IEEE, 2006.

[TSP] TSPLIB. http://www.iwr.uni-heidelberg.de/groups/

comopt/software/TSPLIB95/.

[Tur50] Alan M. Turing. Computing machinery and intelligence. Mind, pages
433–460, 1950.

[TY04] Wallace Tang and Leslie Yip. Hardware implementation of genetic al-
gorithms using FPGA. In MWSCAS: Midwest symposium on circuits
and systems, volume 1, pages 549–52. IEEE, 2004.

[TZFS13] Elias Z. Tragos, Sherali Zeadally, Alexandros G. Fragkiadakis, and
Vasilios A. Siris. Spectrum assignment in cognitive radio networks: A
comprehensive survey. IEEE Communications Surveys and Tutorials,
15(3):1108–1135, 2013.

http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/
http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/

184 References

[VA10] Pablo Vidal and Enrique Alba. A multi-GPU implementation of a
cellular genetic algorithm. In Congress on Evolutionary Computation,
pages 1–7. IEEE, 2010.

[VLMT10] Thé Van Luong, Nouredine Melab, and El-Ghazali Talbi. GPU-based
island model for evolutionary algorithms. In Proceedings of the 12th
annual Conference on Genetic and Evolutionary Computation, pages
1089–1096, 2010.

[VPP09] Michalis Vavouras, Kyprianos Papadimitriou, and Ioannis Papaefs-
tathiou. High-speed FPGA-based implementations of a genetic algo-
rithm. In International Symposium on Systems, Architectures, Model-
ing, and Simulation., pages 9–16. IEEE, 2009.

[VRGGAR+05] Miguel A. Vega-Rodriguez, Raul Gutierrez-Gil, Jose M. Avila-Roman,
Juan Manuel Sanchez-Perez, and Juan A. Gomez-Pulido. Genetic algo-
rithms using parallelism and FPGAs: the TSP as case study. In Inter-
national Conference Workshops on Parallel Processing., pages 573–579.
IEEE, 2005.

[WNE00] Jeffrey E. Wieselthier, Gam D. Nguyen, and Anthony Ephremides. On
the construction of energy-efficient broadcast and multicast trees in
wireless networks. In Nineteenth Annual Joint Conference of the IEEE
Computer and Communications Societies, volume 2, pages 585–594.
IEEE, 2000.

[WS12] Kai Wang and Zhen Shen. A GPU-based parallel genetic algorithm
for generating daily activity plans. IEEE Transactions on Intelligent
Transportation Systems, 13(3):1474–1480, 2012.

[XAD+08] Fatos Xhafa, Enrique Alba, Bernabé Dorronsoro, Bernat Duran, and
Ajith Abraham. Efficient batch job scheduling in grids using cellular
memetic algorithms. In Metaheuristics for Scheduling in Distributed
Computing Environments, pages 273–299. Springer, 2008.

[Xila] Xilinx. ISE design suite. http://www.xilinx.com/products/

design-tools/ise-design-suite.html.

[Xilb] Xilinx. MicroBlaze soft processor core. http://www.xilinx.com/
products/design-tools/microblaze.html.

[Xilc] Xilinx. Petalinux. http://www.wiki.xilinx.com/PetaLinux.

http://www.xilinx.com/products/design-tools/ise-design-suite.html
http://www.xilinx.com/products/design-tools/ise-design-suite.html
http://www.xilinx.com/products/design-tools/microblaze.html
http://www.xilinx.com/products/design-tools/microblaze.html
http://www.wiki.xilinx.com/PetaLinux

References 185

[Xild] Xilinx. Ultrascale architecture and product overview. http:

//www.xilinx.com/support/documentation/data_sheets/

ds890-ultrascale-overview.pdf.

[Xile] Xilinx. Virtex-6 family overview. http://www.xilinx.com/

support/documentation/data_sheets/ds150.pdf.

[Xilf] Xilinx. Virtex-6 FPGA ML605 evaluation kit. http://www.xilinx.
com/products/boards-and-kits/ek-v6-ml605-g.html.

[Xilg] Xilinx. Xilinx github. https://github.com/xilinx.

[Xilh] Xilinx. Xilinx open source linux. http://www.wiki.xilinx.com/
Open+Source+Linux.

[ZMC07a] Zhenhuan Zhu, David Mulvaney, and Vassilios Chouliaras. A novel
genetic algorithm designed for hardware implementation. International
Journal of Computational Intelligence, 3(4):281–288, 2007.

[ZMC07b] Zhenhuan Zhu, David J. Mulvaney, and Vassilios A. Chouliaras. Hard-
ware implementation of a novel genetic algorithm. Neurocomputing,
71(1):95–106, 2007.

[ZPZS09] Zhijin Zhao, Zhen Peng, Shilian Zheng, and Junna Shang. Cognitive
radio spectrum allocation using evolutionary algorithms. IEEE Trans-
actions on Wireless Communications, 8(9):4421–4425, 2009.

http://www.xilinx.com/support/documentation/data_sheets/ds890-ultrascale-overview.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds890-ultrascale-overview.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds890-ultrascale-overview.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds150.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds150.pdf
http://www.xilinx.com/products/boards-and-kits/ek-v6-ml605-g.html
http://www.xilinx.com/products/boards-and-kits/ek-v6-ml605-g.html
https://github.com/xilinx
http://www.wiki.xilinx.com/Open+Source+Linux
http://www.wiki.xilinx.com/Open+Source+Linux

Appendix A

C++ classes to describe the
cGAP

This appendix presents the C++ classes used in Catapult HLS to describe the processing
element (PE) and the cellular genetic controller (cGAC). The source code is presented
as well as a description of the methods used by the classes.

A.1 Class command_type_cGA

The class command_type_cGA, used to manipulate a command data type in Catapult
HLS, is presented in this section. This data type is used when describing the PE and
cGAC to process the commands that are transferred among them using the communi-
cation infrastructure of the cellular genetic algorithm processor (cGAP).

Listings A.1 and A.2 show the C++ source code of the class and Table A.1 presents a
description of its methods.

1 #ifndef _COMMAND_TYPE_CGA_H
2 #define _COMMAND_TYPE_CGA_H
3
4 #include "cGA_parameters.h"
5 #include "ac_int.h"
6 #include "log2ceil.h"
7
8 // member of the class (contain all the fields in commands used by the cGAP):
9 // ’data’ - 32-bit data

10 // ’command’ - command code
11 // ’cmd_all_PEs’ - broadcast bit
12 // ’coord_i’ - row of PE in cGAA
13 // ’coord_j’ - column of PE in cGAA
14 class command_type_cGA{
15 private:
16 ac_int<32,false> data; // LSB
17 ac_int<N_BIT_COMMAND_GA_PROC,false> command;

187

188 A C++ classes to describe the cGAP

18 bool cmd_all_PEs;
19 ac_int<LOG2_CEIL<ARRAY_DIM_I>::val,false> coord_i;
20 ac_int<LOG2_CEIL<ARRAY_DIM_J>::val,false> coord_j; // MSB
21 public:
22 command_type_cGA(){}
23 ac_int<N_BIT_COMMAND_GA_PROC,false> get_command();
24 ac_int<32,false> get_data();
25 ac_int<LOG2_CEIL<ARRAY_DIM_I>::val,false> get_coord_i();
26 ac_int<LOG2_CEIL<ARRAY_DIM_J>::val,false> get_coord_j();
27 void set_command(ac_int<N_BIT_COMMAND_GA_PROC,false> cmd);
28 void set_data(ac_int<32,false> data_value);
29 void set_cmd_all_PEs(bool cmd_all_PEs_value);
30 void set_coord_i(
31 ac_int<LOG2_CEIL<ARRAY_DIM_I>::val,false> coord_i_val);
32 void set_coord_j(
33 ac_int<LOG2_CEIL<ARRAY_DIM_J>::val,false> coord_j_val);
34 };
35
36 #endif

Listing A.1: C++ code of the command_type_cGA class definition used
in Catapult HLS (header file command_type_cGA.h).

1 #include "command_type_cGA.h"
2
3 ac_int<N_BIT_COMMAND_GA_PROC,false> command_type_cGA::get_command()
4 {
5 return command;
6 }
7
8 ac_int<32,false> command_type_cGA::get_data()
9 {

10 return data;
11 }
12
13 void command_type_cGA::set_command(ac_int<N_BIT_COMMAND_GA_PROC,false> cmd)
14 {
15 command = cmd;
16 }
17
18 void command_type_cGA::set_data(ac_int<32,false> data_value)
19 {
20 data = data_value;
21 }
22
23 void command_type_cGA::set_cmd_all_PEs(bool cmd_all_PEs_value)
24 {
25 cmd_all_PEs = cmd_all_PEs_value;
26 }
27
28 void command_type_cGA::
29 set_coord_i(ac_int<LOG2_CEIL<ARRAY_DIM_I>::val,false> coord_i_val)
30 {
31 coord_i = coord_i_val;
32 }
33
34 void command_type_cGA::
35 set_coord_j(ac_int<LOG2_CEIL<ARRAY_DIM_J>::val,false> coord_j_val)
36 {
37 coord_j = coord_j_val;
38 }
39
40 ac_int<LOG2_CEIL<ARRAY_DIM_I>::val,false> command_type_cGA::get_coord_i()
41 {
42 return coord_i;
43 }
44
45 ac_int<LOG2_CEIL<ARRAY_DIM_J>::val,false> command_type_cGA::get_coord_j()
46 {

A.1 Class command_type_cGA 189

47 return coord_j;
48 }

Listing A.2: C++ code of the command_type_cGA class implementa-
tion used in Catapult HLS (file command_type_cGA.cpp).

Table A.1: Description of the C++ class command_type_cGA methods used
in Catapult HLS.

ac_int<N_BIT_COMMAND_GA_PROC,false> get_command()
description: Gets command code. Used by cGAC or PEs.
parameters: None.
return value: Command code value.

ac_int<32,false> get_data()
description: Gets the data member data. This value and the command code constitute

the payload to a PE or cGAC. Used by cGAC or PEs.
parameters: None.
return value: 32-bit data value (used together with the command code).

ac_int<LOG2_CEIL<ARRAY_DIM_I>::val,false> get_coord_i()
description: Gets the data member coord_i, the row identification of the PE in the

cGAA. Used by cGAC to identify the PE where the command comes from.
parameters: None.
return value: Row identification of the PE in the cGAA.

ac_int<LOG2_CEIL<ARRAY_DIM_J>::val,false> get_coord_j()
description: Gets the data member coord_j, the column identification of the PE in the

cGAA. Used by cGAC to identify the PE where the command comes from.
parameters: None.
return value: Column identification of the PE in the cGAA.

void set_command(ac_int<N_BIT_COMMAND_GA_PROC,false> cmd)
description: Sets the command code. Used by cGAC and PEs.
parameters: cmd: Command code.
return value: None.

void set_data(ac_int<32,false> data_value)
description: Sets the data member data. Used by cGAC and PEs.
parameters: data_value: 32-bit data value (used together with the command code).
return value: None.

void set_cmd_all_PEs(bool cmd_all_PEs_value)
description: Sets the data member cmd_all_PEs. Used by cGAC to broadcast a com-

mand to all PEs.
parameters: cmd_all_PEs_value: Boolean value to enable the broadcast of a com-

mand.
return value: None.

void set_coord_i(ac_int<LOG2_CEIL<ARRAY_DIM_I>::val,false> coord_i_var)
description: Sets the data member coord_i. Used by cGAC to send a command to a

specific PE in the cGAA.
parameters: coord_i_var: Row identification of the PE in the cGAA.
return value: None.

void set_coord_j(ac_int<LOG2_CEIL<ARRAY_DIM_J>::val,false> coord_j_var)
description: Sets the data member coord_j. Used by cGAC to send a command to a

specific PE in the cGAA.
parameters: coord_j_var: Column identification of the PE in the cGAA.
return value: None.

190 A C++ classes to describe the cGAP

A.2 Class request_channel

The class request_channel is presented in this section. This data type implements
the interface that ensures the handshake mechanism between a PE and a subpopulation
memory. Therefore, this class is used by a PE to request a access to a solution in the
subpopulation.

Listings A.3 and A.4 show the C++ source code of the class and Table A.2 presents
a description of its methods. Section 5.2.1.3 provides further details of the algorithm
structure that must be followed to ensure the correct implementation of the access
arbitration to the subpopulation memories.

1 #ifndef _REQUESTS_CHANNEL_H
2 #define _REQUESTS_CHANNEL_H
3
4 #include <ac_int.h>
5 #include <ac_channel.h>
6 #include "cGA_parameters.h"
7
8 struct request_type{
9 ac_int<3,false> command; // LSBs

10 ac_int<N_BIT_MAX_SOL_PER_SUBPOP,false> solution; // MSBs
11 };
12
13 class request_channel{
14 private:
15 ac_channel<request_type> request; // request from PE to subpopulation mem.
16 ac_channel<bool> req_ack; // acknowledge from subpopulation mem.
17 public:
18 request_channel(){}
19 bool send_request(ac_int<3,false> cmd,
20 ac_int<N_BIT_MAX_SOL_PER_SUBPOP,false> sol);
21 void send_request(ac_int<3,false> cmd);
22 };
23
24 #endif

Listing A.3: C++ code of the definition of the request_channel class
used in Catapult HLS (header file request_channel.h).

1 #include "request_channel.h"
2
3 bool request_channel::send_request(ac_int<3,false> cmd,
4 ac_int<N_BIT_MAX_SOL_PER_SUBPOP,false> sol)
5 {
6 request_type new_request;
7
8 new_request.command = cmd;
9 new_request.solution = sol;
10 request.write(new_request); // send request
11 return req_ack.read(); // acknowledge
12 }
13
14 void request_channel::send_request(ac_int<3,false> cmd)
15 {
16 request_type new_request;
17
18 new_request.command = cmd;
19 request.write(new_request); // send request

A.2 Class request_channel 191

20 req_ack.read(); // to avoid undesired schedules
21 }

Listing A.4: C++ code of the implementation of the request_channel
class used in Catapult HLS (file request_channel.cpp).

Table A.2: Description of the C++ class request_channel methods used
in Catapult HLS.

bool send_request(ac_int<3,false> cmd,
ac_int<N_BIT_MAX_SOL_PER_SUBPOP,false> sol)

description: Sends a request to the subpopulation memory to allocate a solution (a
memory slot). Returns a boolean value if request has been accepted or
not. This method should be used with the commands CMD_READ_SOL_1,
CMD_READ_SOL_2 or CMD_WRITE depending on the desired access to the
solution.

parameters: cmd: Command code.
sol: Solution number.

return value: Boolean value if request command has been accepted or not by subpopula-
tion memory.

void send_request(ac_int<3,false> cmd)
description: Sends a request to the subpopulation memory to release a solution

(a memory slot). This method should be used with the commands
CMD_RELEASE_SOL_1, CMD_RELEASE_SOL_2, CMD_RELEASE_WRITE or
CMD_RELEASE_ALL for the solution to be released (last command
releases all the allocated solutions). Additionally, the command
CMD_START_SELECTION must be used to start a selection procedure. The
request command to the subpopulation memory is always accepted.

parameters: cmd: Command code.
return value: None.

Appendix B

cGAP MicroBlaze access

This appendix presents the application programming interface (API) used by the Mi-
croBlaze soft-core processor to access the cellular genetic algorithm processor (cGAP).
Additionally, C code examples that use the API are provided that run in the processor
to control the cGAP.

B.1 Application programming interface

As the MicroBlaze accesses to the cGAP as a memory mapped device using AXI4-Lite
protocol, which is a register-style interface, we have defined a set of 32-bit registers in
the interface circuits of the cGAP (c.f. Figure 5.5) that allow the communication from
the processor to the cGAP. Table B.1 presents a list and description of these registers,
where the number associated with each name’s register is used by the processor as the
offset address to access them.

Table B.1 presents a description of the C functions that constitute the API (defined in
the file ip_cGAP_interf.c of the cGAP API library), and Listing B.1 provides their
code implementation.

193

194 B cGAP MicroBlaze access

Table B.1: List of registers and their description used by the MicroBlaze to
communicate with the cGAP.

Register Description Access

reg0[0] Indicates if cGAC is processing a command sent by the host
processor. Equal to 1 is processing, 0 otherwise.

Read

reg0[1] Indicates if cGAA (any PE) is processing. Equal to 1 is process-
ing, 0 otherwise.

Read

reg1 Issues a new command to the cGAC. Write
reg2 General purpose register used when command is sent to cGAC

(reg1). Carries any 32-bit additional data required by the com-
mand.

Write

reg3 Issues a read/write operation to the cGA dual-port memory.
Memory address is defined from bit numbers 15 to 0 (MSB to
LSB). Bit 16 defines operation: 1 for writing, 0 for reading.

Write

reg4 32-bit data read/written from the cGA dual-port memory. Used
with reg3.

Read/Write

Table B.2: Description of the application programming interface C functions
used by the MicroBlaze to access the cGAP as a memory mapped device.

void IP_cga_init()
description: Maps the cGAP into memory.
parameters: None.
return value: None.

void IP_cga_clean()
description: Deletes mapping of the cGAP into memory.
parameters: None.
return value: None.

void write_reg(int reg_num, int value)
description: Writes value to register in the cGAP.
parameters: reg_num: Register number; value: Value (32 bits) to be written.
return value: None.

int read_reg(int reg_num)
description: Reads value from register in the cGAP.
parameters: reg_num: Register number.
return value: Register value (32 bits).

void write_BRAM(int addr, int value)
description: Writes value to cGA dual-port memory.
parameters: addr: memory address; value: Value (32 bits) to be written.
return value: None.

int read_BRAM(int addr)
description: Reads value from cGA dual-port memory.
parameters: addr: memory address.
return value: Value (32 bits) read from memory.

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <fcntl.h>
4 #include <unistd.h>
5 #include <sys/mman.h>
6 #include "ip_cga_interf.h"
7
8 #define MEM_BASE_ADDRESS 0x87000000
9 #define MAP_SIZE 0x00001000

10 #define MAP_MASK (MAP_SIZE - 1)

B.1 Application programming interface 195

11
12 static int memfd;
13 static off_t dev_base = MEM_BASE_ADDRESS; // address defined on EDK (Xilinx)
14 static void *mapped_base; // address returned by mmap
15 static void *mapped_dev_base; // address returned by mmap with
16 // page alignment correction
17
18 void IP_cga_init()
19 {
20 memfd = open("/dev/mem", O_RDWR | O_SYNC);
21 if (memfd == -1) {
22 fprintf(stderr,"Can’t open /dev/mem.\n");
23 exit(0);
24 }
25
26 mapped_base = mmap(0, MAP_SIZE, PROT_READ | PROT_WRITE, MAP_SHARED, memfd,
27 dev_base & ~MAP_MASK);
28
29 if (mapped_base == (void *) -1) {
30 fprintf(stderr,"Can’t map the memory to user space.\n");
31 exit(0);
32 }
33
34 mapped_dev_base = mapped_base + (dev_base & MAP_MASK);
35 }
36
37 void IP_cga_clean()
38 {
39 if (munmap(mapped_base, MAP_SIZE) == -1) {
40 fprintf(stderr,"Can’t unmap memory from user space.\n");
41 exit(0);
42 }
43 close(memfd);
44 }
45
46 void write_reg(int reg_num, int value)
47 {
48 *((volatile unsigned long *)(mapped_dev_base + 4*reg_num)) = value;
49 }
50
51 int read_reg(int reg_num)
52 {
53 return (*((volatile unsigned int *) (mapped_dev_base + 4*reg_num)));
54 }
55
56 void write_BRAM(int addr, int value)
57 {
58 int addr_2_IP;
59
60 addr_2_IP = addr & 0x0000ffff;
61 addr_2_IP = addr_2_IP | 0x00010000;
62
63 write_reg(4, value);
64 write_reg(3, addr_2_IP);
65 }
66
67 int read_BRAM(int addr)
68 {
69 int addr_2_IP;
70
71 addr_2_IP = addr & 0x0000ffff;
72
73 write_reg(3, addr_2_IP);
74 return read_reg(4);
75 }

Listing B.1: C code of the functions that define the application program-
ming interface used by the MicroBlaze to access the cGAP as a memory

mapped device.

196 B cGAP MicroBlaze access

B.2 cGAP control

With the API that grants to the MicroBlaze the access to the cGAP hardware, new C
functions can be built to control the cGAP and the algorithm supported by it. These
functions, that are defined in the file ip_cGAP_control.c in the design flow, must be
adapted to fulfil the requirements of each optimization problem and how the processor
controls the cGAP. Listing B.2 provides several C code examples of such functions.

1 #include <stdio.h>
2
3 #include "ip_cga_control.h"
4 #include "ip_cga_interf.h"
5
6 #define CMD_RESET_CGAP 0
7 #define CMD_START_PE 1
8 #define CMD_SET_PARAMETER 2
9

10
11 /* cga_cmd_ready:
12 * Waits till cGAC can receive a new command.
13 */
14 void cga_cmd_ready()
15 {
16 int value;
17
18 // waits till cGAC can receive new command (reg0[0] = 0)
19 do {
20 value = read_reg(0);
21 value = value & 0x00000001;
22 } while (value == 0x00000001); // reg0[0] = 1 -> busy
23 }
24
25
26 /* cga_PEs_stopped:
27 * Waits till cGAA (all PEs) are stopped (idle state).
28 */
29 void cga_PEs_stopped()
30 {
31 int value;
32
33 // waits till all PEs stop (reg0[1] = 0)
34 do {
35 value = read_reg(0);
36 value = value & 0x00000002;
37 } while (value == 0x00000002); // reg0[1] = 1 -> PEs running
38 }
39
40
41 /* cga_reset:
42 * Sends reset command do the cGAP.
43 */
44 void cga_reset()
45 {
46 int value;
47 value = CMD_RESET_CGAP & 0x00007fff;
48
49 write_reg(1, value);
50 }
51
52
53 /* cga_start_all_PEs:
54 * Command to start the genetic algorithm in all the PEs.
55 * parameter: number of generations (’max_itr’) to run in each PE.
56 *
57 * This function shows how to send a command to the cGAC that

B.2 cGAP control 197

58 * targets all the PEs:
59 * 1st: wait till (or check if) previous command has been processed by
60 * the cGAC (cga_cmd_ready()).
61 * 2nd: write in reg2 the required 32-bit data (only if required).
62 * 3rd: write in reg1 the command code (bits 14-0) and set as a command
63 * to all PEs (bit 15).
64 * Note: It is the responsibility of the cGAC to forward correctly
65 * the command to the PEs.
66 * This sequence of operations can also be used to send commands
67 * whose recipient is the cGAC (and not the PEs). In this
68 * case, bit 15 of reg1 can be neglected.
69 */
70 void cga_start_all_PEs(unsigned int max_itr)
71 {
72 int value;
73
74 cga_cmd_ready();
75 write_reg(2, max_itr);
76
77 value = CMD_START_PE & 0x00007fff;
78 value = value | 0x00008000;
79 write_reg(1, value);
80 }
81
82
83 /* cga_set_parameter_PE:
84 * Command to send a parameter to a specific PE in the cGAA.
85 * parameter: coordinates {i,j} of the PE (’coord_i’ and ’coord_j’) and
86 * parameter value (’param’).
87 *
88 * This function shows how to send a command to the cGAC that targets
89 * a single PE:
90 * 1st: wait till (or check if) previous command has been processed by
91 * the cGAC (cga_cmd_ready())
92 * 2nd: write in reg2 the required 32-bit data (only if required).
93 * 3rd: write in reg1 the command code (bits 14-0) and the coordinates
94 * of the PE (bits 31-24 and 23-16 for the {i,j} PE coordinates).
95 * Bit 15 must be 0.
96 * Note: It is the responsibility of the cGAC to forward correctly
97 * the command to the PE.
98 */
99 void cga_set_parameter_PE(int coord_i, int coord_j, int param)
100 {
101 int value;
102 int value_i, value_j;
103
104 value_i = coord_i & 0x000000ff;
105 value_j = coord_j & 0x000000ff;
106 value_i = value_i << 24;
107 value_j = value_j << 16;
108
109 value = CMD_SET_PARAMETER & 0x00007fff;
110 value = value_i | value_j | value;
111
112 cga_cmd_ready();
113 write_reg(2, param);
114 write_reg(1, value);
115 }

Listing B.2: C code examples of functions that use the API used by the
MicroBlaze to control the execution of the cGAP.

Appendix C

Design flow libraries

This appendix presents the libraries used in the design flow to build the cellular genetic
algorithm processor (cGAP).

C.1 cGAP HLS library

Table C.1 presents a description of the files that constitute the cGAP HLS library. This
library is used to describe the PE and cGAC in the C++ language so that they are
translated to hardware with Catapult HLS tool.

Table C.1: High-level synthesis library developed to describe the PE and the
cGAC in C++ with Catapult HLS.

File Description

command_type_cGA.cpp
command_type_cGA.h

Define the C++ class command_type_cGA. This class is used for
manipulating the data type that defines the commands sent among
the PEs and the cGA controller. Details can be found in Ap-
pendix A.1.

request_channel.cpp
request_channel.h

Define the C++ class request_channel. Used by the PEs for
the interface between a PE and a subpopulation memory. Details
can be found in Appendix A.2.

log2ceil.h Given an integer, it provides the logarithmic to the base 2 rounded
to the smallest following (ceiling) integer number. Used mainly to
manipulate parameters.

pow2.h It provides the 2 raised to the power of a given integer number.
Used mainly to manipulate parameters.

199

200 C Design flow libraries

C.2 cGAP RTL library

Table C.2 presents a description of the files that constitute the cGAP RTL library.
This library contains all the hardware module that describe the cGAP infrastructure
(except the PE and cGAC that are implemented with HLS), and are described at the
register-transfer level (RTL) using Verilog hardware description language.

Table C.2: cGAP RTL library used to describe the cGAP.

File Description

ca50745.v Implements the RNG described in Section 4.6.1. Requires the file
rule_50745.v.

cellular_ga.v Builds the cGAA (Fig. 4.2) and the communication infrastructure
(Fig. 4.8). Requires the files ga_cell.v, cmd_to_cgac_line.v,
cmd_from_cgac_line.v, and subpopulation.v (last one only
for non-toroidal configurations of the cGAA).

channel_control.v Implements a FIFO that communicates with a ac_channel data
type interfaces produced by a Catapult HLS hardware module
(Fig. 4.3 or 4.7).

cmd_from_cgac.v Implements a routing FIFO that sends a command from the cGAC
to a PE along the horizontal axis of the cGAA configuration
(Fig. 4.8).

cmd_from_cgac_line.v Implements a routing FIFO that sends a command from the cGAC
to a PE along the vertical axis of the cGAA configuration (Fig. 4.8).

cmd_to_cgac.v Implements a routing FIFO that sends a command from a PE to the
cGAC along the vertical axis of the cGAA configuration (Fig. 4.8).

cmd_to_cgac_line.v Implements a routing FIFO that sends a command from a PE to
the cGAC along the horizontal axis of the cGAA configuration
(Fig. 4.8).

DP_RAM.v Describes the cGA dual-port memory (Fig. 4.7).

ga_cell.v Defines a cell used to build the regular shape of the cGAA
(Fig. 4.2). Requires the files pe_wrapper, subpopulation.v,
cmd_from_cgac.v, and cmd_to_cgac.v.

pe_wrapper Implements the interface (a wrapper) to the PE module produced by
Catapult HLS. Requires the files channel_control.v and PE.v
(last one from HLS).

rule_50745.v Implements a single cell used to build the RNG using CA techniques
(Fig. 4.13).

subpopulation.v Describes a subpopulation memory of the cGAP (Fig. 4.4). Re-
quires the file subpopulation_ram.v.

subpopulation_ram.v Describes a dual-port RAM used for implementing a subpopulation
memory (Fig. 4.4).

user_logic.v cGAP top level module that implements the complete cGAP.
Includes the interface to the cGAC module produced by Cat-
apult HLS. Additionally, it describes the required logic for the
AXI4-Lite interface so that the cGAP communicates with a
host computer. Requires the files DP_RAM.v, cellular_ga.v,
channel_control.v, ca50745.v, and cGA_controller.v
(last one from HLS).

C.3 cGAP API library 201

C.3 cGAP API library

Table C.3 presents a description of the files that constitute the cGAP API library.
This library includes the C functions that build the application programming interface
(API) and are used to ensure the access to the interface of the cGAP. Therefore, a host
computer uses this API to access the cGAP (as memory mapped device).

Table C.3: cGAP API library used to communicate with the cGAP.

File Description

ip_cga_interf.c
ip_cga_interf.h

Define the API to access the cGAP, mainly mapping the hardware
to memory and access to the registers of the cGAP. Appendix B.1
provides the details of these functions.

ip_cga_mem_addr.h Defines the macros used to set the memory addresses needed to map
the cGAP as a memory mapped peripheral of the MicroBlaze.

	Thesis Identification
	Statement of Originality
	Statement of Availability
	Acknowledgements
	Abstract
	Sumário
	Contents
	List of Figures
	List of Tables
	List of Listings
	List of Abbreviations
	1 Introduction
	1.1 Thesis organization
	1.2 Contributions

	2 Background and state of the art
	2.1 Introduction
	2.2 Genetic Algorithms
	2.2.1 Canonical genetic algorithm
	2.2.1.1 Representation of solutions
	2.2.1.2 Selection
	2.2.1.3 Crossover
	2.2.1.4 Mutation
	2.2.1.5 Replacement
	2.2.1.6 Fitness evaluation
	2.2.1.7 Example: OneMax problem

	2.2.2 Decentralized GAs

	2.3 Hardware implementations of GAs
	2.3.1 GA architectures
	2.3.1.1 Panmictic - generational
	2.3.1.2 Panmictic - steady-state
	2.3.1.3 Distributed
	2.3.1.4 Cellular
	2.3.1.5 Variants of GAs

	2.3.2 Where is the bottleneck?
	2.3.3 Acceleration
	2.3.4 General considerations

	2.4 Summary

	3 A scalable processor array for cGAs acceleration
	3.1 Introduction
	3.2 The architecture
	3.2.1 Comparison with a canonical cGA
	3.2.2 Application to other population-based metaheuristics

	3.3 Architecture simulation
	3.3.1 Toroidal arrays configuration
	3.3.1.1 Square arrays
	3.3.1.2 Non-square arrays

	3.3.2 Non-toroidal arrays configuration
	3.3.2.1 Square arrays
	3.3.2.2 Non-square arrays

	3.4 Hardware implementation: the TSP
	3.4.1 Processing element
	3.4.2 Memory access control
	3.4.3 Implementation and results

	3.5 Summary

	4 The cGAP architecture
	4.1 Introduction
	4.2 cGA processor (cGAP) overview
	4.3 cGA array (cGAA)
	4.4 cGA cell
	4.4.1 Processing element (PE)
	4.4.2 Subpopulation memory

	4.5 Control infrastructure
	4.5.1 cGA controller (cGAC)
	4.5.2 Communication infrastructure
	4.5.3 cGAP interface

	4.6 RNG infrastructure
	4.6.1 RNG block

	4.7 Summary

	5 The cGAP design methodology
	5.1 Introduction
	5.2 Specification for high-level synthesis
	5.2.1 Processing element
	5.2.1.1 Algorithm structure
	5.2.1.2 Interface
	5.2.1.3 Access arbitration to the subpopulation memory

	5.2.2 cGA controller
	5.2.2.1 Algorithm structure
	5.2.2.2 Interface

	5.3 cGAP host communication
	5.3.1 The host interface
	5.3.2 Software access to cGAP

	5.4 Design Flow
	5.4.1 cGAP parameters configuration
	5.4.2 Hardware
	5.4.2.1 High-level synthesis
	5.4.2.2 RTL synthesis
	5.4.2.3 FPGA implementation
	5.4.2.4 Verification

	5.4.3 Software
	5.4.4 Hardware platform

	5.5 Summary

	6 Experimental results
	6.1 Introduction
	6.2 Spectrum allocation in cognitive radios
	6.2.1 Problem definition
	6.2.2 The cGA operations and control
	6.2.3 The processing element
	6.2.3.1 Subpopulation memory organization
	6.2.3.2 Coding in C++ for HLS
	6.2.3.3 HLS optimizations

	6.2.4 cGAP implementation
	6.2.5 cGAP results

	6.3 Minimum energy broadcast
	6.3.1 Problem definition
	6.3.2 A memetic algorithm for the MEB problem
	6.3.2.1 Codification of solutions
	6.3.2.2 Local search heuristic: r-shrink
	6.3.2.3 The cGA operations

	6.3.3 cGAP implementation
	6.3.4 cGAP results

	6.4 Considerations on the cGAP implementation
	6.5 Summary

	7 Concluding remarks
	7.1 Recommendations for future work

	References
	A C++ classes to describe the cGAP
	A.1 Class command_type_cGA
	A.2 Class request_channel

	B cGAP MicroBlaze access
	B.1 Application programming interface
	B.2 cGAP control

	C Design flow libraries
	C.1 cGAP HLS library
	C.2 cGAP RTL library
	C.3 cGAP API library

