
M2M Interoperability
António Filipe Carvalho Pinto
Mestrado Integrado em Engenharia de Redes e Sistemas
Informáticos
Departamento de Ciência de Computadores
2016

Orientador
Ana Cristina Costa Aguiar, Professor Auxiliar, FEUP

Coorientador
Rui Pedro de Magalhães Claro Prior, Professor Auxiliar, FCUP

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Aberto da Universidade do Porto

https://core.ac.uk/display/143407738?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Todas as correções determinadas

pelo júri, e só essas, foram efetuadas.

O Presidente do Júri,

Porto, ______/______/_________

António Filipe Carvalho Pinto

M2M Interoperability

Departamento de Ciência de Computadores

Faculdade de Ciências da Universidade do Porto

May 2016

António Filipe Carvalho Pinto

M2M Interoperability

Tese submetida à Faculdade de Ciências da

Universidade do Porto para obtenção do grau de Mestre

em Engenharia de Redes e Sistemas Informáticos

Orientador: Ana Cristina Costa Aguiar

Co-orientador: Rui Pedro de Magalhçães Claro Prior

Departamento de Ciência de Computadores

Faculdade de Ciências da Universidade do Porto

May 2016

3

Acknowledgments

First of all I want to express my gratitude to my supervisor Dra. Ana Aguiar for

her patience, advises, and sharing of knowledge. I'm also very grateful to my co-

supervisor Dr. Rui Prior and to Carlos Pereira for being always available to help

me. I'm thankful as well to PT Inovação, that o�ered me the opportunity of this

internship where I could practice and acquire experience in new technologies. I also

want to thank my parents and my girlfriend for their advice and for always believing

in me.

4

Abstract

Machine-to-Machine (M2M) communications are gradually becoming more important

with the today's emergence of the Internet of Things (IoT). This type of communica-

tion allows the interaction between services and devices without human intervention.

In this dissertation, we developed several M2M entities compliant with the ETSI

M2M standard. The ETSI M2M standard provides detailed documents for the im-

plementation of M2M communications and allows for interoperability between M2M

implementations from di�erent providers. In this dissertation, we analyse and improve

the performance of an existing M2M service, developed for Android OS, which allows

a smartphone to act as an M2M Gateway (GW). We also develop a Java library to

ease the deployment of M2M Network Applications (NAs) and an Android library to

help deploy M2M Gateway Applications (GAs). Finally, we present the results in an

M2M mobile pilot to prove the robustness of the implementations and the simplicity

of deployment and use of M2M ecosystems.

5

Resumo

As comunicações Máquina-a-Máquina (M2M) estão a tornar-se gradualmente mais

importantes com a emergência da Internet of Things (IoT). Este tipo de comunicações

permite a interação entre serviços e dispositivos sem intervenção humana. Nesta

dissertação, desenvolvemos várias entidades M2M de acordo com o standard ETSI

M2M. O ETSI M2M Standard disponibiliza documentação detalhada para implemen-

tação de comunicações M2M e permite interoperabilidade entre implementações M2M

de diferentes fornecedores. Ao longo desta dissertação, analisamos e melhoramos a

prestação de um serviço M2M existente, desenvolvido para o Android OS, que permite

que um smartphone atue como uma M2M Gateway (GW). Também desenvolvemos

uma biblioteca Java para facilitar o lançamento de M2M Network Applications (NA)

e uma biblioteca Android para auxiliar a criação de M2M Gateway Applications

(GA). Finalmente, apresentamos os resultados de um piloto M2M móvel para provar

a robustez das implementações e a facilidade de criação e uso de ecossistemas M2M.

6

Contents

Abstract 5

Resumo 6

List of Tables 11

List of Figures 13

1 Introduction 14

1.1 Motivation . 15

1.2 Objectives . 16

1.3 Structure . 16

2 State of Art 18

2.1 ETSI M2M Standard . 18

2.1.1 High-Level Architecture . 18

2.1.2 M2M Resource Structure . 20

2.1.3 M2M Communications . 22

2.2 M2M Use Cases . 24

2.3 M2M Interoperability . 25

2.3.1 M2M Implementations . 26

7

2.3.1.1 Cocoon Project . 26

2.3.1.2 OM2M Project . 26

2.3.1.3 OpenMTC Plataform 27

2.3.2 M2M Service APIs . 27

2.4 Smartphones in an M2M scenario . 28

3 Support for M2M Interoperability 30

3.1 M2M Ecosystem Overview . 30

3.2 GW Service Overview . 32

3.3 GALib Overview . 34

3.4 NALib Overview . 35

4 Evaluation of an M2M Mobile Gateway 36

4.1 Mobile M2M Gateway Implementation 36

4.1.1 High Level Architecture . 36

4.1.2 Resource Structure Mapping . 37

4.1.3 Work Flow . 38

4.1.3.1 Bootstrap . 38

4.1.3.2 Standby . 41

4.1.3.3 Sending . 41

4.2 M2M Mobile Gateway Performance Analysis 41

4.2.1 Experiment Strategy . 42

4.2.1.1 Experiment Tools . 42

4.2.1.2 Experiment Procedures 43

4.2.2 Experiment Results and Analysis 45

4.2.2.1 Battery Life . 45

8

4.2.2.2 Network Usage . 47

4.2.2.3 CPU Usage . 49

4.2.2.4 Memory Usage . 51

4.2.3 Experiment Conclusions . 52

5 Interoperable M2M Ecossystem Development 53

5.1 Gateway Service . 53

5.1.1 GW Service Architecture . 53

5.1.2 Resource Mapping . 54

5.1.3 Actuation on the M2M GW . 56

5.1.3.1 MgmtObjs based approach 56

5.1.3.2 Remote SCL resource's access based approach 57

5.1.3.3 Retargeting based approach 58

5.1.4 Actuation Implementation . 59

5.1.5 M2M GW accessibility . 64

5.1.6 Other minor changes . 65

5.2 Gateway Application Library . 66

5.2.1 dIa Interface . 66

5.2.1.1 Intents Method . 67

5.2.1.2 Binders method . 68

5.2.1.3 dIa Implementation 69

5.2.2 Actuation on the GA . 71

5.3 Network Application Library . 71

5.4 Tools . 72

6 Proof of Concept 74

9

6.1 EHealth Scenario . 74

6.2 Pilot Deployment . 75

6.3 Pilot Setup . 76

6.4 Results . 77

7 Conclusions 79

A Acronyms 81

B GALib guide 83

C NALib guide 88

References 93

10

List of Tables

4.1 Memory usage. 51

B.1 GatewayApplication Class Properties. 83

C.1 NetworkApplication Class Properties. 89

11

List of Figures

2.1 ETSI M2M standard high-level architecture diagram. 19

2.2 ETSI M2M standard resource structure. 22

3.1 ETSI M2M high-level network architecture 31

3.2 M2M Ecossystem example. 32

3.3 GW Service functional architecture. 33

3.4 Gateway Application library architecture. 34

3.5 Network Application library architecture. 35

4.1 Mobile M2M Gateway high-level architecture. 37

4.2 Mobile M2M Gateway Resource structure mapping for an healthcare

scenario. 38

4.3 Subscriptions method for NA actuation. 40

4.4 GW Standby experiment procedure. 44

4.5 GW Sending with external sensor experiment procedure. 44

4.6 GW Sending with internal sensor experiment procedure. 44

4.7 GW O� experiment procedure. 45

4.8 Battery Depletion on Nexus 5 with nothing running [17]. 46

4.9 Battery Life. 46

4.10 Incoming network usage. 48

12

4.11 Outgoing network usage. 48

4.12 Data encapsulation overhead. 49

4.13 Data encapsulation example. 50

4.14 CPU Time usage. 50

4.15 CPU Faults. 51

5.1 Final resource mapping. 54

5.2 Registration process. 55

5.3 MgmtObjs actuation procedure. 57

5.4 Retargeting actuation procedure. 60

5.5 Content Instance content describing the smartphone Application capa-

bilities. 61

5.6 Actuation message exchange of a bluetooth search. 61

5.7 Actuation message exchange of a bluetooth device pair. 62

5.8 Content Instance content describing the bluetooth device Application

capabilities. 63

5.9 Bluetooth device capture. 64

5.10 Intent based dIa implementation. 68

5.11 Messenger Binder based dIa implementation. 70

6.1 M2M pilot ecosystem. 75

6.2 Pilot procedures. 76

13

Chapter 1

Introduction

In the recent years the number of networked devices has grown signi�cantly and the

number electronic devices connected to the Internet is bound to surpass the number

of humans. Furthermore, besides computers, everyday objects will contain sensory

capabilities, network conectivity and electronic components. This allows them to

comunicate and exchange data with each other creating an interconnected network

called Internet Of Things(IoT). As perspective, Gartner[12] predicts the existence of

6.4 billion connected things in 2016 and 20.8 billion by 2020 [11]. Cisco1 estimates 11.6

billion connected devices and 30.6 exabytes of mobile data tra�c monthly, in 2020[3].

The Internet Of Things expects the automation of communication between capable

objects, replacing the requirement for Human-to-Human (H2H) or Human-to-Machine

(H2M) communications, with Machine-to-Machine (M2M) communications. M2M

communications allows for better scalability, e�ciency and reduced expenses, since

machines manage and cooperate with each other with minimal or no human interven-

tion.

The major challenge is that the wide variety of devices and applications from di�erent

developers and companies have to communicate each other. They must be able to

understand the protocols and communication language used by one another. This is

specially problematic considering the large amount of proprietary protocols that can

be created.

In order to enable the devices to communicate with each other seamlessly in an M2M

environment, a great amount of e�orts has been directed to the standardization of

1http://www.cisco.com/

14

http://www.cisco.com/

CHAPTER 1. INTRODUCTION 15

M2M protocols. The e�orts culminated in the M2M standard released by Euro-

pean Telecommunications Standards Institute (ETSI) 2, more recently partnered with

OneM2M3.

1.1 Motivation

The IoT has great potential to change daily life and improve life's quality. Small

sensors can capture information, that otherwise would be undetected by an human

being, anywhere at anytime and act autonomously to notify the user or a managing

system. For example, alert the authorities about an house theft when the owner is

away.

In order to interconnect various sensors, devices and services, the M2M communi-

cations will play an important role in providing interoperability. Nowadays, most

devices are not inherently M2M capable. This can be a problem for the integration

of new services, since we need specialized M2M capable devices. Another issue is the

autonomy of smaller devices, which must use technologies with shorter communication

range and be e�cient in processing and memory usage.

One of the most promising use cases of M2M Communications lies in their integration

in the smartphone market. Currently, smartphones are widely used. Most of them

are equipped with a vast range of internal sensors and are capable of communicating

with a large set of external devices through di�erent communication technologies like

Bluetooth, Wi-Fi, 3G and 4G. Smartphones are also very �exible, providing APIs for

the development and deployment of new applications and services. Users can download

and install all kinds of tools and services through online stores. Having such �exible

system, it becomes much easier to add M2M capable applications. Smartphones`

computing, communication and sensory capabilities keep growing. Being so, they

represent a great opportunity to act as a Gateway for smaller devices with limited

connection possibilities.

However, smartphones typically belong to private users who wish to have control

over their devices. As such, a successful integration of M2M communications in the

smartphone market depends on �rst obtaining their acceptance. Users` major concerns

consist in the conservation of battery life, security and control over the device activities.

2http://www.etsi.org/
3http://www.onem2m.org/

http://www.etsi.org/
http://www.onem2m.org/

CHAPTER 1. INTRODUCTION 16

In this dissertation we address M2M networks and interoperability possibilities, by

improving and adding features to an existing M2M Gateway (GW) and developing

other M2M entities, like the M2M Network Application (NA) and the M2M Gateway

Application (GA).

1.2 Objectives

The work for this dissertation was developed in the scope of a project to develop an

Mobile M2M GW, in collaboration with Instituto de Telecomunicações Porto4 and

Portugal Telecom Inovação5. Previously, an M2M GW and an M2M NA prototypes

were developed for the Android OS [20]. This dissertation had the following objectives:

• Study the ETSI M2M standard and its implementation;

• Analyse the existing M2M software and its performance;

• Apply improvements and new features to the M2M software;

• Develop support for deployment of M2M nodes;

• Apply the software developed to simple real world cases.

1.3 Structure

This dissertation is structured as follows. In Chapter 2 we analyse the M2M technol-

ogy. We make an overview of the most important aspects of the ETSI M2M standard,

analyse the uses cases provided by ETSI to contextualize the practical uses and

requirements of M2M networks. We also take a look at the existing implementations

of the standard, their strategies and capabilities.

In Chapter 3 we make a top down overview of the developed systems and their

interactions. We �rst exemplify an M2M ecosystem that can be created using the

di�erent M2M entities presented. Then we take a look at the main components of the

developed systems, their purpose and interactions.

4https://it.pt/ITSites/Index/5
5https://telecom.pt/pt-pt/inovacao/Paginas/inovacao.aspx

https://it.pt/ITSites/Index/5

CHAPTER 1. INTRODUCTION 17

In Chapter 4 we analyse the existing M2M GW that will be used as base for the

development in this dissertation. We make an overview of the implementation choices

and structure of the M2M GW. We also present an experiment to analyse and pinpoint

major performance problems.

In Chapter 5 we present possibilities, problems and solutions found during the devel-

opment phase. We go through the technical details of the improvements and features

added to the existing software, as well as the process of development of the libraries.

In Chapter 6 we present a pilot deployed to demonstrate the functionality of the

software developed in a real world scenario.

Finality, in Chapter 7 we identify the contributions and present the main conclusions

of this work.

Chapter 2

State of Art

2.1 ETSI M2M Standard

In this section we will make an overview of the ETSI M2M standard, based on the

functional architecture documentation[10].

2.1.1 High-Level Architecture

In a simpli�ed manner, an M2M network is composed by M2M Service Capability

Layers (SCL), M2M Applications and M2M Interworking Proxies (xIP). The SCLs

provide M2M functions, exposed by a set of interfaces, which are used by M2M

Applications to implement service logic. The xIPs are optional modules used to

communicate with Non-ETSI M2M compliant entities and they can be an internal

capability of an SCL or an M2M Application communicating with the SCL.

As can be seen in the Figure 2.1, the M2M entities can belong to two domains: Network

Domain or Device/Gateway Domain. The Network Domain provides IP connectivity,

interconnection with other networks and network services to the Device/Gateway

Domain. It contains Network SCLs (NSCL), NAs and Network Interworking Proxies

(NIP). The Device/Gateway Domain contains M2M Devices and GWs and provides

the connectivity between them.The purpose of both M2M Devices and GWs is to

run M2M Applications using an SCL. The M2M GWs also act as a network proxy

between M2M Devices and the Network Domain. On the Device/Gateway Domain

the following deployment cases are possible:

18

CHAPTER 2. STATE OF ART 19

Figure 2.1: ETSI M2M standard high-level architecture diagram.

as a network proxy between M2M devices in a local network and the network domain.

• M2M Gateway

An M2M GW contains a Gateway SCL (GSCL), GAs and optionally a Gateway

Interworking Proxy (GIP).

• M2M Device

An M2M Device contains a Device SCL (DSCL), Device Applications (DA) and

optionally a Device Interworking Proxy (DIP).

• M2M Device'

An M2M Device' is a simpli�ed version of the M2M Device that only contains

DAs. A Device' may use a M2M GW as Network Proxy to access the Network

Domain or connect directly to the Network Domain.

• Non-ETSI M2M Compliant Device

A Non-ETSI M2M Compliant Device does not have M2M capabilities of any kind

CHAPTER 2. STATE OF ART 20

and is not considered an M2M entity; however, it can use the xIPs to connect

to an SCL.

In order to establish communication between the M2M entities, they should provide

one or more Reference Points. Reference Points are interfaces used to execute M2M

operations. The Reference Points can be classi�ed as:

• mIa

Reference Point between the NA and NSCL that supports procedures like reg-

istration of the NA to the NSCL, Read/Write requests, Management Actions,

Subscriptions and Noti�cations.

• dIa

Reference Point between the GA/DA and the GSCL/DSCL/NSCL that enables

mechanisms like registration of the DA to the DSCL, registration of the DA or

GA to the GSCL, registration of the DA to the NSCL, Read/Write requests,

Subscriptions and Noti�cations.

• mId

Reference Point between SCLs that supports procedures like registration of

the DSCL or GSCL to the NSCL, Read/Write requests, Management Actions,

Subscriptions, Noti�cations and Security features.

• mIm

Reference Point between NSCLs that supports procedures, across two di�erent

M2M Service Provider domains, like Read/Write requests Subscriptions and

Noti�cations.

2.1.2 M2M Resource Structure

The exchange of information between M2M entities is made using M2M resources.

The M2M resources are speci�ed in the standard as the representation of M2M data

that resides in an SCL and are structured as an hierarchical tree with parent-child

relationships. The M2M data in each resource is stored in resource-speci�c attributes.

Since the M2M resources and their attributes are quite extensive, in the following lines

we will only detail the most important ones, as depicted in Figure 2.2:

CHAPTER 2. STATE OF ART 21

• SclBase resource is the root of the resource tree and contains all other M2M

resources of the current SCL.

• Scl resource represents a remote SCL that is authorized to interact with the

current SCL. This resource is created after a successful registration of the remote

SCL on the host. It also contains a Point of Contact (PoC) attribute specifying

the URI needed to communicate with the SCL.

• Application resource stores the information of an M2M Application registered

on the current SCL.

• Container resource is used to exchange data between applications and SCLs,

acting as a data bu�er which eliminates the need for a direct connection between

two entities.

• ContentInstance resource represents the data inside a container. The content

of the data is considered opaque to the system, meaning it may be an image,

text, encrypted message, etc.

• Subscription resource represents a request of an entity to be noti�ed about

modi�cations on the subscription's parent resource. It may also be used as a

timed trigger of actions through the noti�cations sent in an expiration time

event.

• Collection resource is an abstract representation of a set of resources of the

same type. For example, a set of Application resources is stored under an

Applications resource. Other examples of Collection resources are the following:

SCLS resource, Containers resource, Subscriptions resource.

• AccessRight resource is a permission's representation associated to a resource.

It is accessible to entities external to the current SCL, in order to control "who"

can do "what" and secure privacy.

The set of attributes of each resource describe several characteristics of the resource.

The most common attributes are:

• accessRightID contains the URI of an AccessRights resource that describes

who is allowed to access the current resource;

• creationTime contains a timestamp specifying the creation of the current

resource;

CHAPTER 2. STATE OF ART 22

Figure 2.2: ETSI M2M standard resource structure.

• expirationTime contains a timestamp specifying when the current resource

will be deleted;

• lastModi�edTime contains a timestamp specifying the last time the current

resource was modi�ed.

2.1.3 M2M Communications

In order to exchange resources between M2M entities, the ETSI M2M standard spec-

i�es procedures based on a RESTful architecture style. In this manner, the M2M

CHAPTER 2. STATE OF ART 23

Applications and/or M2M SCL exchange representations of uniquely addressable re-

sources that reside on a SCL. To be uniquely addressable, each resource has a identi�er

that is di�erent from all sibling resources.

The RESTful architecture has a well know set of basic methods which act on resources,

referred as CRUD methods: CREATE, RETRIEVE, UPDATE, DELETE.

• CREATE method creates a resource;

• RETRIEVE method reads a resource's content;

• UPDATE method writes the resource's content;

• DELETE method deletes a resource.

Additionally, the standard also speci�es two extra methods, NOTIFY and EXECUTE.

The �rst one is used notify any changes on a resource and it's mapped to RESTful

architecture as an UPDATE method. The second one is used to execute a management

command and it's also mapped to a UPDATE method, however the request doesn't

contain a payload. To exchange requests and responses, the communication protocols

supported by the ETSI M2M standard are RESTful, based on Hypertext Transfer

Protocol (HTTP)[14] or Constrained Application Protocol (CoAP)[15].

In order to specify which resource is to be target, the request's URI should present

the resource's path. For example, to target the Application ApplicationID inside

the SCL SclID on host host by HTTP, the URI used for the request should be

https://host/SclID/ApplicationID. As for the CRUD methods, they are transformed

into HTTP or CoAP methods by mapping a CREATE to POST, a RETRIEVE

to GET, a UPDATE to PUT. The result of the request can be the response or

an acknowledgement of the request. The latter is used to implement asynchronous

messaging by responding with the sent request as a result, and later, when available,

send the requested data.

One important feature of M2M communications is the use of the publish-subscribe

paradigm. The traditional model for communications is request-response, where an

entity requests data and another entity responds with the data. This model makes

sense in a H2M scenario, where data is retrieved sporadically and, in most cases,

only once. However, in an M2M scenario data �ows much more continuously, and is

constantly updated. An interested entity would have to constantly request updates

CHAPTER 2. STATE OF ART 24

in order to have the most recent data. This would require constant requests and

responses that, potentially, would not even contain new data.

The publish-subscribe pattern allows an entity to make one request subscribing a

publication from another entity. After a subscription is made, following updates to

the publication will be noti�ed to the subscriber. In an environment with thousands

of devices, like an M2M scenario, this is a much more scalable communication model.

2.2 M2M Use Cases

The ETSI Fundation provides documentation for use cases of M2M Applications in

eHealth[7], Connected Consumers[9], Automotive[8] and Smart Metering[5]. We will

make an overview of this documentation, since they clarify some the practical uses

and requirements of the M2M entities.

In eHealth, we can see several examples of eHealth M2M Applications like disease

management, elderly monitoring and personal �tness. These cases assume the use

of wearable sensors that capture patient data. Since this type of sensors usually

use communications technologies with short range due to performance and battery

limitations, the collected data must be aggregated and acted upon by another more

capable device. In this instance the user should have a device acting as a M2M GW.

The M2M GW may be �xed, like a PC, or mobile, like a cell phone.

In an eHealth scenario the exchange of data will most likely occur between a patient

and a health care entity, like a clinician or an automated system of Electronic Health

Record (EHR). Considering the medical nature of the data, the major concerns are

the privacy, security and reliability of the transmitted data. In cases of disease

management like hearth monitoring, delays in data forwarding may be life threatening.

Other requirements of eHealth M2M Applications include handling M2M tra�c with

di�erent priorities, real-time streaming communication and mobile connection.

The use cases presented for Connected Consumers include content sharing and device

management and monitoring. Here we �nd cases where the M2M communications

are on demand and do not need to send a continuous �ow of critical data. The

Connected Consumers documentation describes uses for M2M capable cameras that

automatically upload photos to subscribed social networks or photoframes, download

of ebooks from di�erent providers by a M2M capable eBook reader and management

of home appliances, inventory and surveillance data. In this scenarios the major

CHAPTER 2. STATE OF ART 25

requirements are M2M management capabilities and di�erent delivery mechanisms

like periodical, scheduled and on-demand.

The automotive and transportation M2M applications involve stolen vehicle tracking,

vehicle communications and electric vehicle charging. These applications can provide

safety and security by remotely tracking and diagnosing vehicles. For example, the

vehicle owner can receive noti�cations about the vehicle state and location. In order to

do this, the vehicle's Telematic Control Unit (TCU) may act as a M2M GW for various

in-built vehicle diagnostic sensors. The major requirements presented for automotive

and transportation M2M applications are reliability and responsiveness, scheduled

measurement delivery mechanisms and mobile communications while moving at high

velocity.

The Smart Metering use cases have the main goal of enabling interoperability between

utility meters. These meters aim to inform the consumers about their energy usage

and provide monitoring tools to energy suppliers and distributors. In the scenario

presented in the documents, various Smart Metering devices are connected to a device

that acts as M2M GW communicating with a data center.

2.3 M2M Interoperability

Interoperability is arguably the main goal of the ETSI M2M standards. Previous

M2M solutions existed before standardization, however, since these were proprietary

and required speci�c hardware or software, they imposed limitations for the deploy-

ment of large networks with unique interconnecting devices. Thus, the ETSI M2M

standard was created to unify M2M solutions so they can be seamlessly deployed and

interconnected.

The ETSI foundation hosts an annual M2M Workshop where new M2M developments

are presented. In conjunction with the workshop, there is an Interoperability Demon-

stration event, in which implementations of the ETSI M2M standard from di�erent

vendors test their mutual compatibility.

The event covers scenarios like eHealth, Intelligent Transportat System, Smart Me-

tering, Home Automation, Entertainment, etc. It also includes integration with other

tecnologies, like cloud, and presentation of SDK and high level APIs.

CHAPTER 2. STATE OF ART 26

2.3.1 M2M Implementations

There are already M2M solutions based on the ETSI standard, provided by di�erent

companies. In this section we will overview the methods used by the most prominent

companies, for the implementation and deployment of M2M systems.

2.3.1.1 Cocoon Project

The Cocoon1 project by Open@Actility2 is probably the most recurrent M2M solution

in searches and references. This project provides the Object Network Gateway (ONG),

which is an Open-Source implementation in JAVA/OSGi of the M2M GW.

The Open@Actility approach to the deployment of M2M GWs is to provide a jar �le

that executes the installation of the ONG on a remote system. The user must own a

Host System that executes the �le and a target system in which the ONG is installed.

The target system must have a Linux OS, an SSH Server, ash or bash, DNS name

Resolution and at least 12MB disk space. The management and con�guration of the

software is made by console commands provided by the ONG system.

In terms of M2M capabilities, the ONG provides an implementation of the M2M

GSCL, execution of local GAs as OSGi Bundles, execution of NAs over the mId

reference Point and drivers that implement GIPs for ZigBee and IPv6 over Low

power Wireless Personal Area Networks(6LoWPAN) devices. The M2M resources are

marshaled in XML format and exchanged through HTTP with RESTful operations.

2.3.1.2 OM2M Project

The OM2M3 project is another emergent M2M solution based on the ETSI M2M

standard, brought to us by The Eclipse Foundation4. It provides an Open Source

Platform that can used to deploy NSCLs and GSCLs. Since it is composed by modules

running on top of a OSGi layer, it is also extensible by plugins.

The OM2M can be obtained by downloading the compiled versions or by cloning

and building the source code. The NSCL and GSCL can be con�gured by editing

1http://cocoon.actility.com/
2http://open.actility.com/
3http://www.eclipse.org/om2m/
4http://www.eclipse.org/

http://cocoon.actility.com/
http://open.actility.com/
http://www.eclipse.org/om2m/
http://www.eclipse.org/

CHAPTER 2. STATE OF ART 27

con�guration �les prior to their deployment. An OSGi console and a browser interface

are also provided for managing plugins and visualizing data.

The M2M capabilities provided are the implementations of the NSCL and GSCL,

execution GAs as plugins, various GIPs and NIPs for communication with vendor-

speci�c technologies. The M2M resources are marshaled in XML format and ex-

changed through HTTP or CoAP with RESTful operations.

2.3.1.3 OpenMTC Plataform

The OpenMTC5 is a M2M ETSI compliant middleware, used to integrate various

devices and applications from di�erent vertical domains with a standardized M2M

open platform to aggregate, forward and manage collected data. The software contains

the GSCL and NSCL components witch are extensible by OpenMTC's plugins.

This platform provides several communication protocols like HTTP, CoAP, Websocket,

ZigBee, FS20 and Bluetooth. It also supports various hardware platforms like Android,

Arduino and Raspberry Pi. The M2M resources can be marshaled in XML and JSON

formats.

2.3.2 M2M Service APIs

When developing M2M services or applications based in the ETSI M2M standards,

one concern is the necessity for a deep knowledge of the standards. Even though

they facilitate the interoperability between di�erent M2M service providers, their

complexity and extension can turn away adoption of this technology by new developers.

To counter this issue we can use APIs to create a layer of abstraction in the M2M

interations.

For example, Asma Elmangoush et al. [4] propose a set of API's to interact with their

M2M Communications Plataform, OpenMTC. The APIs proposed are divided in:

• Network API

Covers CRUD operations to manage NAs. It has mostly operations to manage

M2M Applications.

• Device API

5http://www.openmtc.org/

http://www.openmtc.org/

CHAPTER 2. STATE OF ART 28

Covers CRUD operations to discover resources of devices and M2M GWs. It

includes operations like application discovery, resource subscribing and group

resources.

• Data API

Covers CRUD operations to manage data. It has mostly operations to manage

Containers.

In this case they prove the usefulness of the APIs by integrating a service broker with

the M2M ecosystem.

Dmitry Namiot et al. [18] also propose an M2M Open API based on Web Intents.

Web Intents are used to facilitate data and action requests interchange between a

Web Client and a Web Service. Intents are also used in Android for a simpli�ed inter-

process communication. The authors state that it allows for a easy and extensible

M2M Service design and propose the creation of a JavaScript Client Side API or

M2M Browser applications.

2.4 Smartphones in an M2M scenario

So far we have seen a summary of the ETSI M2M standard. However, how does

the standard applies to the mobile smartphone scenario? A smartphone by itself is

Non-M2M ETSI complaint device but it does provides means to adapt to the M2M

requirements.

Considering the deployment cases presented in the standard, for each case the smart-

phone should have the following capabilities:

• M2M Device'

The smartphone runs one or more Android applications that act as M2M Device

Applications by communicating with an NSCl or GSCL through the dIa reference

point. This is the simplest implementation of M2M capabilities in a smartphone.

• M2M Device

The smartphone runs one or more M2M Applications, like the M2M Device', and

must also implement a local SCL. The local SCL must expose the mId and dIa

reference points to communicate with SCL and M2M Applications, respectively.

CHAPTER 2. STATE OF ART 29

Having a local SCL allows the smartphone to manage its own resources without

constantly contacting a remote SCL. Since a mobile device has limited energy

and, in most cases, limited network tra�c, a local SCL improves the device's

performance.

• M2M Gateway

The M2M GW is very similar to the M2M Device. The smartphone runs

M2M Applications, has a local SCL and exposes mId and dIa reference points.

However, other M2M Devices can use the smartphone as a proxy to communicate

with the NSCL.

As seen in the use cases provided by ETSI, the envisioned role for a smartphone is

to act as a M2M GW. Since the smartphone can connect to a large set of devices, it

is a capable mobile M2M GW. The major downside is its constrained resources since

managing many M2M operations can impact the performance of the device.

Chapter 3

Support for M2M Interoperability

The mobile Gateway allows for integration of smartphone services and applications in

an M2M environment. It is important to implement a feasible mobile Gateway, that

can be accepted by a large variety of users who will use it in their devices.

The validation of the implementation requires the deployment of a pilot M2M envi-

ronment containing the GSCL, NSCL, NAs and GAs. Considering the extent and

complexity of the ETSI M2M standard and the di�erent interpretations it can have in

di�erent scenarios, support tools to simplify the addition of other systems in an M2M

Network also needs to be created.

In this chapter we give an overview of the di�erent software components developed in

their �nal state. The development details will be presented later at Chapter 5.

3.1 M2M Ecosystem Overview

We aim to create an M2M ecosystem similar to the one represented in the Figure 3.1,

which shows a small M2M network composed by several M2M SCLs and Applications.

The NSCL provides the mId and mIa standardized interfaces. The mId is used to

communicate with the two GSCLs and the mIa is used to communicate with the two

NAs. Each GSCL is hosted in a di�erent Android device and exposes the mId and

dIa interfaces. The GSCL is managed by an Android service, called GW Service.

On the endpoints we can see the GAs and NAs. These components are likely to

be created by di�erent developers. Since the ETSI M2M standard is extensive and

30

CHAPTER 3. SUPPORT FOR M2M INTEROPERABILITY 31

Figure 3.1: ETSI M2M high-level network architecture

complex, integrating M2M technologies in existing services can result in a large e�ort.

To counter this, we wish to make the M2M network a black box that does not concern

the developer by creating two Libraries: the GA Library (GALib) and NA Library

(NALib). These libraries will hide the details of the ETSI standard behind a simpler

API that provides methods for registration, publish-subscribe, resource management

and communication with the hosting SCL.

The GALib aims to ease the creation M2M GAs on Android devices and is used to

communicate with the GSCL in the GW Service through the dIa interface. The NA

library is aimed at the development of M2M NAs and communicates with the NSCL

using the mIa interface.

For a better perspective on the dynamics of these components, we will exemplify

with the use case shown in Figure 3.2. Consider a smartphone user with the GW

Service. The user can install an Android application to capture localization data.

The application uses the GALib to communicate with the GW Service and be part of

the M2M system as a GA. On the other side of the network, a Server uses the NALib

to communicate with the NSCL and be part of the M2M system as an NA. The data

captured on the GA is sent to the GW Service, that publishes it on the NSCL. The

data becomes available for subscription by the NA. The NSCL will notify the NA with

the incoming data, so the NA can process it. Now the NA, can for example, display

the routes or the distance covered in a website for the user to see, or display the most

popular routes in a city for a study. The NA can also publish the processed data

CHAPTER 3. SUPPORT FOR M2M INTEROPERABILITY 32

Figure 3.2: M2M Ecossystem example.

back in the NSCL to be used by other M2M entities. For example, the initial GA can

subscribe the processed data and present the results to the user in the smartphone.

In the following sections we will provide an overview of the functional architecture and

capabilities of the GW Service, GALib and NALib.

3.2 GW Service Overview

The GW Service enables a smartphone to act as an M2M GW. Installing the service

in a smartphone equips it with an SCL exposing M2M capabilities to other devices,

a module to translate legacy devices communication to M2M communications and

capabilities to run M2M applications. The M2M applications may be running on the

smartphone as GAs or in other devices as DAs.

The GW Service is implemented for Android devices and runs as an Android service

almost invisible for the smartphone user. The only interaction done through the

graphical interface is to turn on and o�. All other interactions are made by M2M

Applications communicating with the GSCL.

The GW Service architecture is represented in Figure 3.3, and has the following

modules and interactions:

CHAPTER 3. SUPPORT FOR M2M INTEROPERABILITY 33

Figure 3.3: GW Service functional architecture.

Service Manager

Component that creates and manages the Android service. It is responsible for

the setup, initiation and termination of all the other Components.

GSCL

The service's local SCL. Provides and processes the M2M functions and main-

tenance. It also stores and manages the local M2M resources. It can ful�ll

requests to create and retrieve local and remote resources, and it is responsible

for cleaning expired resources.

Protocol Manager

Component that manages the communication protocols Clients and Servers. It

is used by the GSCL to translate M2M operations to HTTP, CoAP or other

protocols RESTful requests, and vice versa.

HTTP Client/Server

The communication's Client and Server used to exchange HTTP requests with

other M2M entities.

CoAP Client/Server

The communication's Client and Server used to exchange CoAP requests with

other M2M entities.

GIP

This module manages communication with legacy devices that do not support

M2M operations. It was implemented as an internal capability of the GSCL.

CHAPTER 3. SUPPORT FOR M2M INTEROPERABILITY 34

Figure 3.4: Gateway Application library architecture.

Currently, this module only supports Bluetooth devices, but it may support

others in future, for example, ZigBee or Infrared devices.

GW IPC Manager

This module is used to communicate with GAs that reside in the same Android

device, by using Inter Process Communication (IPC) capabilities.

3.3 GALib Overview

An M2M GA is an M2M Application that resides on a M2M GW and uses the GSCL.

The GALib is an Android Library used to create Android applications that act as

M2M GAs. The GALib requires the GW Service to be running to access its GSCL.

By allowing the development of Android GAs apart from the GW Service, we greatly

extend the M2M capabilities of the smartphone. Instead of having the M2M Applica-

tions included in the GW Service and, therefore, developed only by the GW Service

provider, we open the development of M2M applications to anyone with access to the

GALib.

The GALib architecture is represented in Figure 3.4 and has the following Compo-

nents:

Gateway Application API

Exposes a set of methods to setup the GA settings and make M2M requests to

the GW Service. The developer creates an Android application and interacts

with the M2M ecosystem through this module.

GA IPC Manager

Translates M2M operations to Android IPC requests. This module eliminates

the necessity of network servers and clients for communication with the GSCL.

CHAPTER 3. SUPPORT FOR M2M INTEROPERABILITY 35

Figure 3.5: Network Application library architecture.

3.4 NALib Overview

An M2M NA is an M2M application that resides on the network domain and uses

the NSCL. The NALib is a Java library used to create Java programs that act as NA

applications by exposing a set of methods to interact with the M2M ecosystem. The

NA is very similar to the GA however it connects directly to the NSCL and doesn't

reside in the same device as his SCL.

The architecture, depicted in Figure 3.5, can be divided in following components:

Network Application API

Exposes a set of methods to setup the NA and make M2M requests to the NSCL.

The developer creates the GA and interacts with M2M ecosystem through this

module.

Protocol Manager

Component that manages the communication protocols Clients and Servers. It is

used by the NA to translate M2M operations in HTTP, CoAP or other protocols

RESTful requests and vice versa.

HTTP Client/Server

The communication's Client and Server, used to exchange HTTP requests with

other M2M entities. Similar to the GW Service HTTP Client/server.

CoAP Client/Server

The communication's Client and Server, used to exchange CoAP requests with

other M2M entities. Similar to the GW Service CoAP Client/server.

Chapter 4

Evaluation of an M2M Mobile

Gateway

In this work we used an existing M2M GW as a starting point. For a close analysis of

the previously developed software, in this chapter we present an overview of the M2M

GW and the results of an experiment we conducted to identify possible performance

problems. Pinpointing these problems allowed us to �nd and implement solutions to

improve the GW service.

4.1 Mobile M2M Gateway Implementation

This section we will describe the components belonging to the initial M2M GW,

the resource structure implemented and its work �ow. We will also identify any

implementation problems.

4.1.1 High Level Architecture

The Mobile M2M Gateway High-Level Architecture, depicted in Figure 4.1, can be

divided in several di�erent components:

• Service Manager is the component that implements an Android service, run-

ning on the background, and it is responsible for managing and maintaining the

remaining components. It is also responsible for handling commands sent by a

36

CHAPTER 4. EVALUATION OF AN M2M MOBILE GATEWAY 37

Figure 4.1: Mobile M2M Gateway high-level architecture.

Network Application.

• Protocol Manager is the component that handles all communications with

the NSCL through HTTP and encapsulates the GSCL . Additionally, it is also

responsible for marshaling the data to be sent and keeping track of the device's

connectivity.

• Sensor Handler is the component responsible for searching the presence of

sensors, manage their connection and communication procedures and sending

the sensor data to the Memory Manager. The sensors may be external, accessible

by Bluetooth, or internal, residing in the Android device itself.

• Memory Manager is the component which handles data bu�ers in memory

and periodically forwards the collected data to the Protocol Manager.

• GSCL is the component responsible for maintaining the SCL resources in mem-

ory and/or storing them in a local database. This component resides inside the

Protocol Manager.

This Architecture is di�erent from that presented in Section 3.2. The di�erences are

detailed in the implementation Section 5.1.1.

4.1.2 Resource Structure Mapping

In order to implement the GSCL, the Mobile Gateway mapped the SCL resources as

seen on Figure 4.2. The resource mapping was validated in a Healthcare scenario with

the following structure:

CHAPTER 4. EVALUATION OF AN M2M MOBILE GATEWAY 38

Figure 4.2: Mobile M2M Gateway Resource structure mapping for an healthcare

scenario.

• Each SCL represents a patient smartphone;

• Sensors were categorized by types and each sensor group was mapped to an

Application resource;

• Each sensor inside a sensor group is mapped to a Container resource.

Even though this approach works on a Healthcare scenario it does not follow all the

standard's speci�cations. For example, the Application resource represents an M2M

Application, like a DA, GA or NA, which runs the M2M service logic. Using the

Application resource as a Sensor Group does not ful�l the purpose intended by the

standard, as it diminishes the resource to a category representation.

4.1.3 Work Flow

The work �ow may be divided into three distinct states. In this section we will detail

the sequence of tasks performed by the M2M Gateway.

4.1.3.1 Bootstrap

The Bootstrap is the �rst state of the M2M GW, and comprises a set of tasks executed

only when the application is turned on. The �rst task is to start all the components

described in section 4.1.1 by triggering the Main Service. In the case of the Memory

manager, the memory bu�ers and a GPS location service are initiated. In the Sensor

Handler, a Bluetooth manager is initialized and a search for available external sensors

is scheduled. Finally, the Protocol Manager initiates the GSCL and an HTTP Client

and Server. The HTTP client has then the task to authenticate itself to the NSCL

and retrieve a symmetric key to be used later for the TLS security protocol. In order

to do this, the following steps are performed:

CHAPTER 4. EVALUATION OF AN M2M MOBILE GATEWAY 39

1. Load a temporary HTTP Client with the keystore and truststore provided inside

the compiled program;

2. Request an TLS connection to the NSCL;

3. Perform the TLS Handshake Protocol between the Client and the NSCL;

4. Retrieve the symmetric key to a keystore;

5. Load the HTTP Client with the just created keystore and the truststore.

After the HTTP Client is ready, the second phase of the Bootstrap has the GSCL

perform the following steps:

1. Register the SCL on the NSCL;

2. If the SCL is already registered, then retrieve it from the local database or from

the NSCL;

3. Check whether the SCL is subscribed in the NSCL Applications resource and

NSCL Application resources;

4. If a subscription is missing in the resources above, then perform the subscription..

When all subscriptions have been correctly checked,the Standby procedure starts.

The subscriptions are used to enable other M2M entities to send commands to the

Gateway, this is called actuation. If the NA, with id appid, wishes to send a command

to the M2M GW, it only needs to create a Content Instance, containing the command,

under the m2m/applications/appId/containers/ACTIONS/contentInstances resource.

Since the M2M GW subscribed this resource, it will receive a noti�cation with the NA

command.

To keep the subscriptions updated, the M2M GW and the NSCL exchange of messages

presented in the Figure 4.3. The Check Subscription Procedure in the �gure requests

one by one the subscriptions present in a certain resource, until a subscription referring

the Gateway's current address is found. In case the last condition is not met, the

Gateway creates a new subscription.

Even though this method works properly for a small use case, it is not scalable for a

large number of devices. There are two major problems with this approach. The �rst

one is that one command requested by one NA is sent to all the gateways. The other

CHAPTER 4. EVALUATION OF AN M2M MOBILE GATEWAY 40

Figure 4.3: Subscriptions method for NA actuation.

one is that when the gateway starts it will make a number of requests that grows with

the number of M2M devices in the M2M network. As an example, we will consider

a set of m GW's and n NA's and, since the M2M GW is mobile and it will change

its address frequently, we also consider that the Subscription Check Procedure will

need to loop all existing subscriptions. The number of requests is when the M2M GW

starts is:

• m requests for m2m/applications/subscritpions/subID;

• n requests for applications/appID/subscriptions;

• nm requests for applications/appID/subscriptions/subID;

• n requests for applications/appID/containers/subscriptions;

• nm requests for applications/appID/containers/subscriptions/subID;

• n requests for applications/appID/containers/ACTIONS/

contentInstances/subscriptions;

• nm requests for applications/appID/containers/ACTIONS/

contentInstances/subscriptions/subID.

Excluding requests that only happend once, we get:

numberOfRequests = m+ 3n+ 2mn

CHAPTER 4. EVALUATION OF AN M2M MOBILE GATEWAY 41

This means that using only 10 GW's and 10 NA's, it is necessary to make 240 requests

when starting the M2M GW.

4.1.3.2 Standby

The Standby is the state in which the Gateway is not connected to any device. It is

expected that the Gateway spends most of it's execution time in this state.

When in standby the Gateway has the responsibility to search for new sensors period-

ically, check sensor data in memory periodically, keep the track of the mobile device

location, and maintain the HTTP Server and Client.

If the Sensor Handler �nds a new sensor from which data will be sent, Gateway enters

a Sensor Sending state.

4.1.3.3 Sending

The Sending state happens when the Gateway is sending sensor data. When using an

external sensor the Sensor Handler must start a Bluetooth connection and, depending

on the sensor, execute a handshake procedure with the sensor and starts receiving its

data.

If the connection is successful the Gateway registers the sensor in the NSCL, initiates

a data bu�er and requests the sensor data. In case the bu�er is full, a new ContentIn-

stance containing the sensor data gathered is created in the NSCL; otherwise, even

if the bu�er never gets full, the Gateway will periodically send the data contained in

the bu�er.

The sensor sending state ends and returns to standby when the sensor is disconnected.

4.2 M2M Mobile Gateway Performance Analysis

In this section we present an experiment to analyse the performance of the existing

gateway. With the analysis we hope to pinpoint any major problems, since we aim to

have a large number of users adopting this technology.

CHAPTER 4. EVALUATION OF AN M2M MOBILE GATEWAY 42

4.2.1 Experiment Strategy

In order to analyse the performance of the Gateway application, we need to track the

battery, Wi-Fi, CPU and RAM usage. Note that at the time of this experiments the

android studio tools was not available for performance analysis. In some cases, since

the Android API methods didn't o�er the means to gather the desired data, it was

necessary to create a periodic reading of some important Linux �les in the Android

OS core. The intervals between readings were made as small as possible, to make sure

that the values gathered were relevant. However, the constant capture of data created

a large delay in the Gateway application. With this problem in mind, we created

a second standalone application to handle the periodic readings. This application is

referred as the Andralyser and the inner analyser is referred as the Gwanalyzer.

The Andralyser also has the extra function of monitoring the device's overall battery

usage, since once again there were no methods in the Android 4.4 (KitKat) API that

allowed the analysis of the energy used by a single application. The solution found

was to gather the data concerning the battery with the Gateway application on and

o�. The results were later compared to infer the battery life.

Additionally, to capture the packets in more detail, the Shark for Root1 capture tool

was used. The captured packets could later be viewed in programs, such as Wireshark.

4.2.1.1 Experiment Tools

• Andralyser

When the Gateway Application starts, it sends an intent containing its process

ID. When Andralyser receives the intent, it accesses the Linux �les containing the

desired information for the analysis and reads them periodically. The periodic

reading has a rate of 100 samples per second and is in charge of capturing the

Wi-Fi, CPU and RAM usage. Moreover, the Andralyser listens for changes in

the battery state and register the values received through its intents. In all of the

samples there is a capture timestamp associated for chronological organization

purposes.

If we suppose that the Gateway Application process Identi�cation is PID, the

�le corresponding to the CPU statistics is located at the /proc/PID/stat folder,

the Wi-Fi statistics are located at the proc/PID/net/dev and RAM statistics

1https://play.google.com/store/apps/details?id=lv.n3o.shark&hl=pt_PT

https://play.google.com/store/apps/details?id=lv.n3o.shark&hl=pt_PT

CHAPTER 4. EVALUATION OF AN M2M MOBILE GATEWAY 43

are located at the /proc/PID/statm.

• Gwanalyser

The Gwanalyser is an inner class of the Gateway Application, initiated along

side the Main Service component. After initiated, it can be accessed by any of

the application's components to log events and resource usage values. Like the

Andralyser, in all of the samples there is a capture timestamp associated for

chronological organization.

• Shark for Root

The Shark for Root application is a tra�c sni�er based on tcpdump for android

that supports capture on Wi-Fi and mobile networks. In order to be functional,

the root access must be unlocked. After �nishing the capture it saves a .pcap

�le which is compatible with programs like Wireshark.

The Android device used was the Google Nexus 5. When choosing the device for

the experiment the requirement was that the device should be powerful. Otherwise

the additional applications like Andralyser and Shark for Root would stop due to the

limited resources in low end devices. This case was observed in another testing device,

the Samsung Galaxy Europa GT-15500.

The device's speci�cations relevant for the experiment are:

• Battery: 2300 mAh;

• CPU: Qualcomm Snapdragon 800, 2,26 GHz;

• Wi-Fi: Dual-band (2.4G/5G) 802.11 a/b/g/n/ac;

• Bluetooth: 4.0;

• RAM: 2 GB;

• Sensors: GPS, Accelerometer.

4.2.1.2 Experiment Procedures

The procedures for the experiment were divided in four cases: GW standby, GW

sending with external sensor, GW sending with internal sensor and GW turned o�.

CHAPTER 4. EVALUATION OF AN M2M MOBILE GATEWAY 44

Figure 4.4: GW Standby experiment procedure.

Figure 4.5: GW Sending with external sensor experiment procedure.

Figure 4.6: GW Sending with internal sensor experiment procedure.

The Bootstrap was not analysed since it is a one-time procedure making it is harder

to analyse.

The standby case, seen in Figure 4.4, tested the state in which the M2M GW is

turned on but is not connected to any sensor or sending data. The performance in

this case should be optimized to the maximum to allow the M2M GW to be running

on the background of the Android device without leaving a large footprint in the

device's resources. The data originated from this block was gathered by running the

application in an area without any sensor active.

The sending cases with internal sensors, seen in Figure 4.5, and external sensors, seen

in Figure 4.6, were used to test the state in which the M2M GW is sending continuous

data. For example, a weighing scale only sends one set of data to be forwarded, so

it will not waste many resources. However, a Heart Rate Sensor, like a Zephyr, will

send continuous sets of data, which can use too many resources for a mobile device.

Using internal and external sensors in di�erent cases allowed for a better analysis

of the network and Bluetooth performance impact. Furthermore, each sending case

was also divided into two di�erent cases, with and without a Bu�er, to study the

performance impact of data aggregation. Using a bu�er, the data was sent in intervals

of 10 seconds; otherwise, the data was sent every second.

Finally, the GW turned o� case, shown in Figure 4.7, serves as comparison by capturing

CHAPTER 4. EVALUATION OF AN M2M MOBILE GATEWAY 45

Figure 4.7: GW O� experiment procedure.

the normal smartphone's usage of resources.

In all cases the battery was �rst charged to 100% of the capacity and the Wi-Fi and

bluethooth were turned on. After that, for the case using an external sensor, we

started the zephyr. On the next step, in all cases the performance data capture tools,

Andralyser and Shark for Root, were initiated and the battery charge stopped. In the

GW o� case, the screen is immediately turn o� and the smartphone is left in standby.

In the other cases the the M2M GW is started, the screen is turned o� immediately

and the application is left running. After at least 1 hour, the M2M GW, Andralyser

and Shark for Root were stopped and the performance data retrieved. For each case

the procedure was repeated 3 times.

4.2.2 Experiment Results and Analysis

In this section we analyse the data obtained in the experiment for energy consumption

and network, CPU and memory usage.

4.2.2.1 Battery Life

On Figure 4.9 we �nd the approximated time, in hours, it took for the battery to go

from 100% to 10% of its capacity. We refer to this time as the smartphone's battery

life. To avoid the large amount of time needed to deplete the battery from 100% to 10%

in all the experiment's cases, we assumed the battery depletion is linear. We validated

this assumption with the results, seen in Figure 4.8, obtained by another team in

the scope of Sense My City project[17]. The �gure depicts the battery percentage at

each second during a full battery depletion. Since the battery depletion is linear, we

registered the time interval of the �rst and last drop of the battery level and we used

a linear model to extrapolate the results to calculate how much time it would take for

the battery to reach 10% of its capacity.

Starting with the GW O� values, we can see that the device has 115 hours of battery

life. This value is reduced to 45 hours when we leave the Gateway in standby, which

is a large drop in battery duration. The reason may have been the fact the service

CHAPTER 4. EVALUATION OF AN M2M MOBILE GATEWAY 46

Figure 4.8: Battery Depletion on Nexus 5 with nothing running [17].

Figure 4.9: Battery Life.

is constantly running on background and requires the existence of an HTTP server

listening for requests, a client securely connected to the NSCL, a periodic search for

Bluetooth sensors and the constant use of location services.

CHAPTER 4. EVALUATION OF AN M2M MOBILE GATEWAY 47

When comparing the battery life with the Network usage, let us �rst look at the cases

of GW Standby and GW Internal Sensor Sending, in which Bluetooth is not used.

Since the major di�erence between these cases is the processing and transmission

of data, we can assume that the battery variation comes from either the CPU and

Memory or Network usage.

If we analyse the Table 4.1 and Figure 4.14, some variations are visible in memory

and CPU usage. We cannot consider memory usage to have great variation, but the

CPU Time usage is 2 times larger for the bu�ered case and 10 times larger for the

unbu�ered case. The increase in CPU time is obviously explained by the constant

reading, parsing, marshalling, storing and sending of data. However, the CPU time

usage still does not reach 1%, so we cannot attribute the battery depletion to the

processor, since the simple top command in the android shell uses about 2% of the

CPU time. We then consider that the di�erence of battery life is due to the network

usage.

In the cases in which an external sensor is used, it is possible to see the Bluetooth

footprint, since, in relation to the internal sensor cases, the only change in the exper-

iment was the usage of Bluetooth to communicate with the sensors. The di�erence

in values is smaller than the one caused by the network, but it still is a considerable

drop and it may be a target for optimization.

4.2.2.2 Network Usage

The next important �eld to study is the network usage, since it is known for its high

depletion of battery. As we can see in �gures 4.10 and 4.11, the values for the GW

O� case are very small and mostly related to the android services, so we will ignore

the extra network used by the device alone. In the case of the GW Standby there is

a small increase in network usage which is related to a periodic TLS handshake from

the HTTP Client.

Regarding the sensor sending cases, the upload reaches higher values than the down-

load which is normal when using the M2M ETSI standard. In the cases of data

sending, the response generated by the NSCL always contains the payload sent. Even

though these messages are required by the M2M ETSI standard, they are not used

by the Gateway in a meaningful away and present a great source of overhead in the

upload usage.

Another interesting aspect that can be observed is the impact a bu�er has in the

CHAPTER 4. EVALUATION OF AN M2M MOBILE GATEWAY 48

Figure 4.10: Incoming network usage.

Figure 4.11: Outgoing network usage.

network usage. When the bu�er is active, the quantity of bytes sent and received is

highly reduced. The main reason for this di�erence consists in overhead caused by

the data encapsulation. For a better understanding, in the Figure 4.12, the bytes per

second exchanged were divided in JSON and HTTP overhead. Furthermore, the last

�gure also represents the number of bytes containing sensor data encoded in base 64,

which are extracted from the bodies. The di�erence between encoded and decoded

data in base 64 is always a constant overhead of approximately 33%.

Comparing the columns from each experience, the relation between sensor data and

encapsulation bytes is easily visible. On the non bu�ered cases, most of the bytes are

used in JSON and HTTP encapsulation. On the other hand, if we analyse the bu�ered

cases, it is noticeable that, in relation to the encapsulation bytes, a higher percentage

of data bytes is exchanged. We may also notice that the quantity of data base 64 bytes

sent are smaller for the bu�ered cases. This is due to the fact that the encoded sensor

CHAPTER 4. EVALUATION OF AN M2M MOBILE GATEWAY 49

Figure 4.12: Data encapsulation overhead.

data also contains another layer of JSON which is sent repeatedly in every message,

causing overhead. The Figure 4.13 exempli�es the encapsulation scheme.

Considering the impact of the encapsulation overhead exempli�ed in this section we

believe that an e�ort to reduce the size and frequency of headers would improve the

network usage as well as the battery life. Besides the headers, there is also an overhead

added by ACK packets implemented by the TCP layer. Finally, another improvement

could be to re-evaluate the necessity of the repetitive response messages imposed by

the ETSI M2M standard.

4.2.2.3 CPU Usage

In Section 4.2.2.1 we saw that CPU usage is not signi�cant, but there is a curious

behaviour with the process faults values in Figure 4.15. The values presented represent

the sum of major and minor faults from the process and its children. Most of the faults

are major and originated from the process's children which means that they are caused

CHAPTER 4. EVALUATION OF AN M2M MOBILE GATEWAY 50

Figure 4.13: Data encapsulation example.

Figure 4.14: CPU Time usage.

by the children trying to access data that is not mapped in the physical memory.

We can see that the number of faults per hour grows for the cases in which there is

data sending with bu�er and that it grows even larger when a bu�er is not used. Since

the major di�erence between these cases is the presence of the bu�er, we can assume

that the faults are caused by the data sending. When data is sent almost all threads

exchange messages through their queues, so the problem may be related to high rate

of messages exchange between the threads.

CHAPTER 4. EVALUATION OF AN M2M MOBILE GATEWAY 51

Figure 4.15: CPU Faults.

Experience Total Resident Shared Data/stack

GW Standby 884069 41722 11294 22757

GW External Sensor Sending 887036 42219 11528 25724

GW External Sensor Bu�er Sending 886285 41945 11414 24973

GW Internal Sensor Sending 885473 42425 11435 24161

GW Internal Sensor Bu�er Sending 884786 42012 11405 23474

Table 4.1: Memory usage.

4.2.2.4 Memory Usage

In Table 4.1 we �nd the mean values for the memory usage. The values concerning

the total column demonstrate a large memory footprint. However these values only

represent the physical and virtual memory reserved, that is, not all of it is being used.

Then, the most important values to be aware are those in the resident column, which

represent the physical memory occupied.

The values captured in the experiment are quite constant. All sending cases use

about 42 Mb of memory and the standby case uses 41 Mb. The variation is not large

and the values are consistent with a normal android service. For example, in the

smartphone used in this experiment, the Google calendar service uses about 880 Mb

of total memory and 36 Mb of resident memory.

CHAPTER 4. EVALUATION OF AN M2M MOBILE GATEWAY 52

4.2.3 Experiment Conclusions

In the implementation overview we found that the actuation relies on a series of

subscriptions that are not scalable and can rapidly grow in an environment with a

large number of devices. We also found some inconsistencies with the M2M resource

mapping that will require a rework that impacts the registration and actuation pro-

cedures.

During the measurements, it was clear the network communications performance

requires more attention. For example, the implementation of CoAP and DTLS could

be a great improvement, since they are targeted at constrained devices. Moreover we

can also reduce the exchanged data by reducing the messages overhead or eliminate

irrelevant data received from the NSCL. In the case of memory and CPU usage,

the behaviour was normal, aside from some variation in page faults. The battery

consumption can be improved by optimizing the overall mechanisms and procedures

of the M2M GW.

Chapter 5

Interoperable M2M Ecossystem

Development

Considering the results obtained in the last chapter we implemented some changes to

improve the GW Service. We also developed the two libraries discussed in Chapter 3

to deploy NAs and GAs, NALib and GALib.

In this chapter, we will describe problems and solutions found during the development

and the implementation choices of the GW Service, GALib and NALib.

5.1 Gateway Service

In this section we will describe the modi�cations made to the GW service, intended

to solve some of the problems identi�ed in last chapter's experiment. We are mainly

concerned with the resource mapping and actuation, but we also take into account

other changes to improve performance.

5.1.1 GW Service Architecture

As stated before, the initial architecture from Figure 4.1 was altered to the architecture

in Figure 3.3.

The main di�erences are the following:

53

CHAPTER 5. INTEROPERABLE M2M ECOSSYSTEM DEVELOPMENT 54

Figure 5.1: Final resource mapping.

• The Sensor Handler was replaced with the GIP Component. Their function

is similar, however the sensor handler would only connect to a limited set of

Bluetooth devices that needed speci�c support in the GW Service. The GIP

allows the GW Service to connect to any Bluetooth device compatible with

Android devices. Support for other communication technologies can also be

added.

• In the most recent architecture, the GSCL was separated from the Protocol

Manager. This allows the GSCL to act independently from the communication

protocol being used. The GSCL simply delegates the management of network

communications to the protocol manager.

• In the newer version, the Memory Manager was merged with the GIP instead of

running on its own thread. Since the Memory Manager was only used to bu�er

data from sensors, this task was moved to the GIP.

The changes made to the architecture allow for clearer separation of modules and

easier improvement and implementation of new features.

5.1.2 Resource Mapping

To better �t the resources` properties and purposes, it is necessary to rework their

mapping, discussed in Section 4.1.2. For example, the Application resource has

the Application Point of Contact (APoC) attribute[10, 84], which may contain a

communication address to access an external device, e.g. a ZigBee device. We decided

that the Applications resources would represent external sensors available to the M2M

GW and GAs using the M2M GW. The resultant resource mapping can be seen in

Figure 5.1 for a speci�c device.

As we observe, the major di�erence is that the sensors, which were mapped to the

Container resource, are now mapped to the Application resource. This was imple-

CHAPTER 5. INTEROPERABLE M2M ECOSSYSTEM DEVELOPMENT 55

Figure 5.2: Registration process.

mented because most sensors will use the GIP, which is also a GA. Since we want to

distinguish the di�erent sensors connected by the GIP, we register them as di�erent

applications. Furthermore, the smartphone should also be mapped as an Application

resource, due to its sensor-like capabilities, like Bluetooth device discovery.

Inside each M2M Application there are two containers: DATA and DESCRIPTOR.

The DATA Container contains the data captured by the M2M Application and the DE-

SCRIPTOR Container contains information concerning the application. This strategy

is inspired by the M2M implementation of Actility's Cocoon project [1] and on the

ETSI Technical Report [6] .

In order to accommodate these changes, the registration process was also modi�ed to

the procedure depicted in Figure 5.2.

When the M2M GW device is registered in the NSCL, it is necessary to create an SCL

and an M2M Application representing the smartphone. Since each M2M Application

should have the containers DATA and DESCRIPTOR , they are also immediately

created in the registration Process. Finally, the Gateway publishes a Content Instance

in the DESCRIPTOR Container, describing the smartphone Characteristics and ca-

pabilities. The importance of the new resource mapping and registration process will

become clearer in the next section, since we make use of the DATA and DESCRIPTOR

Containers and the M2M Application APoC attribute.

CHAPTER 5. INTEROPERABLE M2M ECOSSYSTEM DEVELOPMENT 56

5.1.3 Actuation on the M2M GW

It was necessary to implement an Actuation procedure that required fewer mes-

sages in a large scale M2M network and that was able to target one single M2M

GW device. To solve this problem, three approaches were explored, based on the

MgmtObjs resources[10, 104], the Remote SCL resource's access and the Retargeting

mechanism[10, 238].

5.1.3.1 MgmtObjs based approach

The MgmtObjs is a collection of <MgmtObj> and <MgmtCmd> described by the

ETSI M2M standard as resources which hold management data and commands.

This resource may be located in branches of the SCLS, <SCL>, Applications and <At-

tachedDevice> resources, providing a considerable �exibility for the implementation

of the Actuation mechanism.

Regarding the <MgmtObj> and <MgmtCmd> resources, the second is the most

suitable resource for the intended purposes, since its mechanisms enable an NA to

trigger management commands or RPCs de�ned in the BBF TR-069 document[19].

In addition, it contains useful attributes like the following:

• cmdType - used to identify a command;

• execReqArgs - used to specify arguments;

• execEnable - used to execute a command or to specify an URI to execute a

command.

The <MgmtCmd> resource also contains a collection <execInstance> resource, each

one representing an ongoing instance of an execution request. This resource provides

atributes to describe the execution state and result, and to cancel an execution.

Furthermore, the requester can subscribe an <execInstance> to be noti�ed of the

execution results. Based on the ETSI M2M standard guidelines, we created a proce-

dure for the Actuation on a M2M GW, depicted in Figure 5.3. This procedure can be

described by the following steps:

1. The GSCL creates a <mgmtCmd> resource which represents an available com-

mand;

CHAPTER 5. INTEROPERABLE M2M ECOSSYSTEM DEVELOPMENT 57

Figure 5.3: MgmtObjs actuation procedure.

2. The NA requests an execution targeted to the desired <mgmtCmd> resource;

3. The NSCL processes the request, forwards it to the GSCL, creates an <execIn-

stance> and responds to the NA execution request;

4. The NA subscribes the new <execInstance>;

5. The GSCL processes the request, executes the necessary procedures and updates

the <execInstance> on the NSCL;

6. The NSCL noti�es the NA with the updated <execInstance > containing the

results.

5.1.3.2 Remote SCL resource's access based approach

In order to have a functional actuation on an M2M GW, the NA must in some way

be able to contact the targeted M2M GW. The most straightforward method found

consisted in using the ETSI speci�cation to access resources on di�erent SCLs. The

standard states that an M2M Application may access remote resources with zero to

three SCL hops. Then, using the one hop case, if the an M2M entity requests a GSCL

resource which is not present in the NSCL, the NSCL will forward the request to the

GSCL, so that it can respond to the NA itself.

However, the GSCL must have a customized interpretation of the received requests

that is not de�ned in the standard. This does not require that the standardized request

interpretation be ignored, but rather extended. As such, when the GSCL receives a

CHAPTER 5. INTEROPERABLE M2M ECOSSYSTEM DEVELOPMENT 58

request, it will try to resolve the request in the standardized way. If it is not able to

do so, it will then interpret the request as an actuation command.

5.1.3.3 Retargeting based approach

The Retargeting is de�ned in the ETSI M2M standard as a mechanism to enable an

SCL to route messages to an M2M Application. This mechanism is achieved by using

two attributes of the Application resource: APoC and Application Point of Contact

Paths (APoCPaths). The APoC attribute contains an URI that can be used to contact

the registered application and the APoCPaths contains a list of paths allowed for use,

in retargeting.

A Retargeting procedure is then triggered if the target resource, in a received request,

is not present in the receiving SCL and the target URI matches or is pre�xed by the

combination of the registered Application resource path and one of the aPoCPaths.

When this happens, the registered Application resource path, in the targeted URI, is

substituted by the Application's aPoC and the request is forwarded.

In the scope of the actuation, the various actions available in an M2M Application

can be listed as retargeting paths in the aPoCPaths attribute. When an M2M entity

makes a request for one of the aPoCPaths, the NSCL should retarget the request to

the Gateway Device. The Gateway then interpreters the request and executes the

desired action.

Figure 5.4, shows an example of an M2M Application registration, prepared for

retargeting, and the outcome of three di�erent requests. The example has the following

steps:

1. The M2M GW creates a new Appplication "appId";

2. The Application has the APoC attribute targeting the M2M GW's URI and

Port and two APoCPaths;

3. The M2M GW creates a Container "contId1";

4. Outcome one:

• The NA requests the Container "contId1";

• The NSCL has the resource;

• The NSCL responds with the resource;

CHAPTER 5. INTEROPERABLE M2M ECOSSYSTEM DEVELOPMENT 59

5. Outcome two:

• The NA requests the Container "contId2";

• The NSCL doesn't have the resource;

• The NSCL doesn't �nd a match in the APoCPaths;

• The NSCL responds with an error;

6. Outcome three:

• The NA requests the APoCPath "allowed/retarget/path1/anything/else";

• The NSCL doesn't have the resource;

• The NSCL �nds a match in the APoCPaths;

• The NSCL forwards the request, replacing the pre�x with the M2M GW

URI in APoC;

• The M2M GW interprets the request and sends the result to the NSCL;

• The NSCL responds the NA with the result received.

As in the case of the Remote SCL resources access, the GSCL also needs a customized

interpretation of the received requests. The used method is the same: if it is not able

to resolve the request normally, it will interpret the request as an actuation command.

5.1.4 Actuation Implementation

To implement the Actuation procedure, the most favorable options are Retargeting

and Remote SCL resource's access. However, the �rst option was created to provide

access to M2M Application resources, so we implemented it on the GA, which we will

see later. For the actuation on a M2M GW we will use the second option.

One of the bene�ts of the actuation consists, for example, in eliminating the need

for the automatic Bluetooth searches and sensor data captures. As such, to explain

the actuation process, in the following lines we will exemplify a use case scenario to

capture data from a generic Bluetooth device. The entity requesting the data is a

generic Network Application.

The �rst requirement is to register the Gateway and provide other M2M nodes the

information about the smartphone M2M Application capabilities. In order to do

so, the registration follows the steps in section 5.1.2 and uses the DESCRIPTOR

CHAPTER 5. INTEROPERABLE M2M ECOSSYSTEM DEVELOPMENT 60

Figure 5.4: Retargeting actuation procedure.

Container of the smartphone M2M Application to publish a Content Instance whose

content describes the supported actuation commands, as shown in Figure 5.5.

Other M2M nodes can then retrieve the latest Content Instance or subscribe the

DESCRIPTOR Container to acquire the information about the available actuation

commands. In this case the commands are BTPAIR and BTSEARCH.

The next requirement, is to discover the Bluetooth devices in the smartphone sur-

roundings. In order to do that, the following steps are executed, as depicted in Figure

5.6:

1. The NA retrieves the latest Content Instance in the Container DESCRIPTOR,

to obtain the available commands;

2. The NA subscribes the DATA Container, to be noti�ed of the commands results;

3. The NA sends a BTSEARCH command by targetting the request to an inexistent

resource;

CHAPTER 5. INTEROPERABLE M2M ECOSSYSTEM DEVELOPMENT 61

Figure 5.5: Content Instance content describing the smartphone Application

capabilities.

Figure 5.6: Actuation message exchange of a bluetooth search.

4. The NSCL does not recognize the resource and forwards the request to the

Gateway;

5. The GSCL does not recognize the resource and interprets the request as a

command;

6. The Bluetooth search is performed on the smartphone;

7. The M2M GW creates a Content Instance in the DATA container listing the

CHAPTER 5. INTEROPERABLE M2M ECOSSYSTEM DEVELOPMENT 62

Figure 5.7: Actuation message exchange of a bluetooth device pair.

available devices and their paired state;

8. The NSCL noti�es the NA with the search result.

At this point, the devices found are not paired. When the NA is noti�ed with the

search results, it can select from the list the device to be paired with the smartphone.

The process for pairing a device, represented in Figure 5.7, consists on the following

steps:

1. The NA sends a BTPAIR command, with the arguments sensorId and pin as a

query string, by targeting the request to an inexistent resource;

2. The NSCL does not recognize the resource and forwards the request to the

Gateway;

3. The GSCL does not recognize the resource and interprets the request as com-

mand;

4. The Bluetooth device pairing is performed on the smartphone;

5. The Gateway registers the sensor Application containing the containers DATA

and DESCRIPTOR;

6. The Gateway creates a Content Instance, describing the Sensor Application

properties and available actuation commands, in the Container DESCRIPTOR;

CHAPTER 5. INTEROPERABLE M2M ECOSSYSTEM DEVELOPMENT 63

Figure 5.8: Content Instance content describing the bluetooth device Application

capabilities.

7. The Sensor Application provides the commands BTSEND, BTCAPTURE and

CONFIG;

8. The M2M GW creates a Content Instance in the smartphone DATA container,

updating pair state of the available devices list;

9. The NSCL noti�es the NA with the updated available devices list.

The �nal requirement is that the NA informs the Gateway about its interest in

the Bluetooth data. At this time, it needs to use the commands provided by the

Bluetooth device M2M Application. As seen before, it can retrieve the latest Content

Instance, depicted in Figure 5.8, or subscribe the DESCRIPTOR Container of an

M2M Application, to acquire the information about the available actuation commands.

Then, the process to receive the Bluetooth data , depicted in 5.9,has the following

steps:

1. The NA retrieves the latest Content Instance in the Bluetooth device Container

DESCRIPTOR, to obtain the available commands;

2. The NA subscribes the Bluetooth device DATA Container, to be noti�ed of the

commands results;

CHAPTER 5. INTEROPERABLE M2M ECOSSYSTEM DEVELOPMENT 64

Figure 5.9: Bluetooth device capture.

3. The NA sends a BTCAPTURE command, with the arguments /textitdura-

tion_d, duration_h, /textitduration_m as a query string, by targetting the

request to an inexistent resource;

4. The NSCL does not recognize the resource and forwards the request to the

Gateway;

5. The GSCL does not recognize the resource and interprets the request as com-

mand;

6. Whenever the sensor is available, the gateway captures and sends its data, for the

time interval of duration_d days, duration_h hours and duration_m minutes;

7. The NSCL noti�es the NA with the captured data.

5.1.5 M2M GW accessibility

The GW Service will probably be running inside a private network when using the

WiFi connection, so it can not be contacted unless the user con�gures a public IP or

maps the router ports. However, the user may not have the knowledge or permissions

CHAPTER 5. INTEROPERABLE M2M ECOSSYSTEM DEVELOPMENT 65

to do this. In order to solve this issue, three options were found: UPnP1, NAT-PMP[2]

and Long Polling.

UPnP and NAT-PMP are two protocols that allow the remote con�guration of port

mapping and port forwarding in a routing device. Routers distributed by network

vendors usually support one of these protocols. Most support UPnP since it is an

older protocol.

In order to provide accessibility to the GW Service, during the con�guration of the

HTTP Client and Server the Protocol Manager attempts �rst to setup the UPnP. If

the UPnP is not available, the GW Service proceeds to setup the NAT-PMP. If both

Port Mapping protocols fail, the M2M GW should use Long Polling.

5.1.6 Other minor changes

We added other minor changes to the GW Service to improve its performance. We

present them next.

NSCL Responses

When creating resources the NSCL sent the resource created in the response.

This feature was removed, since it is optional in the ETSI M2M standard. This

change greatly reduces the incoming tra�c.

Bluetooth Raw Data

Bluetooth data was processed and encapsulated in JSON. Now the Bluetooth

data is sent in raw bytes as it is captured, delegating the data processing to the

data subscriber. This reduces the JSON overhead in the outgoing tra�c and

the processing performed in the M2M GW. Furthermore, this also allows the

M2M GW to connect to any Bluetooth device with Android support and gather

their data without any prior device speci�c preparation. However, this approach

can increase the load of the subscriber, so we assume the subscriber is a an NA

capable of handling the extra processing time.

Local Resources

1http://upnp.org/

http://upnp.org/

CHAPTER 5. INTEROPERABLE M2M ECOSSYSTEM DEVELOPMENT 66

When creating and retrieving resources the M2M GW would always contact

the NSCL. In the current version, the M2M GW tries to minimize the network

communications whenever possible, checking for local resources before contacting

the NSCL.

Redundant Threads

Some threads were considered unnecessary since they were mostly idle. Usually

those threads would only forward messages. They would receive messages from

one thread and send them to another thread. These redundant threads were

removed.

Data Compression

In order to improve the Outgoing Network Usage we also added a compression

feature. However, compressing resources sent would make them unrecognisable

to other M2M entities and, therefore, not M2M compliant. So we could only

use compression in the data inside the Content Instance resources. To compress

and decompress we used the De�ater and In�ater classes, respectively, provided

by Java.

5.2 Gateway Application Library

In this section, we describe the implementation problems and solutions found during

the development of the library used to create Gateway Applications in an Android

environment, the GALib. The purpose of the GALib is to provide easy means to

develop Android M2M Applications.

We will focus mainly in the implementation strategies of the dIa Interface and actua-

tion. A guide can be found in Appendix B.

5.2.1 dIa Interface

The standard states that this component communicates with a GSCL through the dIa

reference point, using a RESTful architecture style. A GA to GSCL interaction can be

easily made, using the already existent HTTP server in the GSCL, which interpreters

CHAPTER 5. INTEROPERABLE M2M ECOSSYSTEM DEVELOPMENT 67

M2M RESTful requests. Since the GA is located in the same device as the GSCL,

it only needs to create an HTTP client and send messages to the GSCL port on the

localhost. However, the GSCL also needs to be able to contact the GA. Thus, if a

smartphone user has �ve Android applications acting as GA, the device will have six

HTTP servers running. This can create an unnecessary load in the smartphone, so

other approaches were considered using the Android IPC capabilities. There are two

options provided by the Android system itself: Intents and Binders.

5.2.1.1 Intents Method

The Android Intents are messaging objects, used to request actions across application

components. They are mainly used to start activities and services and deliver system

event broadcasts. There are two types of intents: Explicit and Implicit. The �rst is

used to target the action to a component contained in the application. The second

does not specify the component, so it can declare a general action to be handle by any

other application in the system.

In order to use Intents to implement the dIa reference point, a broadcaster and receiver

must be implemented in both the GSCL and GA. The intent's action attribute will

describe the M2M operation to be performed and the extras attribute will contain any

objects relevant to the operation. An example of the registration process can be seen

in the Figure 5.10, with the following steps:

• Booth GA and GSCL have a Broadcast Listener setup to �lter dIa requests and

responses;

• The GA marshals an Object representing an M2M Application;

• The GA broadcasts an intent with the Action corresponding to an M2M Appli-

cation creation request and the marshaled Application resource in the Extras;

• The Android System searches all applications and �nds a matching intent �lter

in the GSCL service;

• The GSCL receives the intent, extracts the Application resource and starts

application creation procedure;

• The GSCL sends to the GA an Intent with the operation results;

CHAPTER 5. INTEROPERABLE M2M ECOSSYSTEM DEVELOPMENT 68

Figure 5.10: Intent based dIa implementation.

• The results are described by an HTTP/CoAP status code integer and description

string.

5.2.1.2 Binders method

The Android API provides means to create a communication channel between an

application component and an android service. This type of services are called Bound

Services and act as servers in a Client-Server relationship with other components.

There are three options to bind to a service: extending a Binder, using a Messenger

and creating an Android Interface De�nition Language (AIDL). The �rst option is

used when the service runs in the same process as the binding component, so it does

not apply to GA/GSCL communication channel. The other two options are more

adequate.

The AIDL provides means of decomposing objects into primitives that the operating

system can understand and send them across processes. This method allows the

creation of a programming interface, de�ned by an .aidl �le. This �le is used by the

sdk tools which automatically creates an abstract class to handle the IPC calls. The

.aidl �le must be present in the service and in the binding component.

The Messenger is a class provided by the Android API and it is based in the AIDL

structure. The major di�erence is that the AIDL requires the service to be able to

handle multiple requests at the same time and the messenger has a queue of requests

to handle one at a time. To use this method it is only required that a message handler

is speci�ed when the Messenger is created.

CHAPTER 5. INTEROPERABLE M2M ECOSSYSTEM DEVELOPMENT 69

5.2.1.3 dIa Implementation

To decide which method to use, between the Android Binders and Intents, we consulted

the poster by Hsieh et al. [13], where performance of the Android IPC is evaluated by

latency, memory footprint and CPU usage. In all three cases the use of Intents has

a similar performance for small payloads but it quickly becomes much worse as the

payload size grows.

The poster also evaluates the use of SQL-like Content Provider, which could be

implemented by having a SQLite database shared between the GAs and the GSCL.

However, this method doesn't apply easily to the dIa implementation, due to the lack

of synchronization or noti�cation mechanisms.

For this implementation, the chosen method was the Messenger. The major factor

for this decision to the fact that the Android API Guides recommend Messenger over

AIDL. Moreover, the GA would also need to be multi-threading capable and thread-

safe, increasing the complexity of the GA library integration. Since there is no evident

necessity for simultaneous request handling, using the Messenger maintains the dIa

simplicity and functionally.

The Messenger shares data by sending Message objects. To adapt this object to the

dIa Reference Point, the following attributes are used:

• what - integer describing the M2M operation to be executed;

• replyTo - messenger used by the GSCL to contact the GA;

• data - contains an android Bundle, with data relevant to the operation.

Depending on the situation, the Bundle may contain the following data:

• source - An unique identi�er representing the Android application, which allows

several M2M Applications to be mapped to one single Android application and

Messenger;

• status - The request results, represented by an HTTP/CoAP status code Inte-

ger;

• desc - The request results described in an human readable string;

CHAPTER 5. INTEROPERABLE M2M ECOSSYSTEM DEVELOPMENT 70

Figure 5.11: Messenger Binder based dIa implementation.

• scl/application/container - The resource being created or retrieved, mar-

shaled as string;

• sclId/applicationId/containerId - The resources identi�ers in the path of

the targeted resource.

In Figure 5.11 is represented an example of the GA registration on the GSCL service,

with the following steps:

1. The GA requests a Service Connection to the GSCL service;

2. If the GSCL service is running, it returns a Messenger IBinder;

3. The GA receives the IBinder and creates a Messenger connection Channel to the

GSCL;

4. The GA sends a message corresponding to the M2M Application creation re-

quest;

5. The GSCL starts the application creation procedure;

6. The GSCL sends to the GA a message with the operation results.

CHAPTER 5. INTEROPERABLE M2M ECOSSYSTEM DEVELOPMENT 71

5.2.2 Actuation on the GA

Another important feature is that other M2M nodes are able to contact the GA. In

other words, it is necessary to extend the Actuation discussed in section 5.1.3 to enable

it to reach a GA.

Fortunately, the solution is already discussed in the Retargeting method, in section

5.1.3.3. Since the purpose of Retargeting is to route M2M messages to M2M Appli-

cations, it aligns perfectly with this problem.

To use the retargeting in this dIa implementation, only one minor change has to be

made: when the Applications' APoC property is the localhost, then the dIa through

IPC is used. When the GSCL receives a request, the following steps are taken:

• The GSCL receives a request targeted to an Application resource;

• When the targeted resource exists:

� The GSCL responds with resource;

• When the targeted resource does not exist:

� The GSCL responds with an error;

• When the targeted resource matches an APoCPath:

� If Application APoC is the localhost:

∗ Use IPC;

� Application APoC is not the localhost:

∗ Use HTTP Client.

5.3 Network Application Library

The other library developed, the NALib, is used to deploy NAs. The library was

implemented in Java, to target stationary devices. In the ETSI M2M standard, the

NA is connected to an NSCL through the mIa reference point. Unlike the GAs created

with the GA Library, the NA will not be running on the same device as the hosting

SCL. So, in this case, we used the HTTP protocol for the communications between

CHAPTER 5. INTEROPERABLE M2M ECOSSYSTEM DEVELOPMENT 72

the NALib and the NSCL, similar to the communications between the GW and the

NSCL.

The library exposes a set of methods that can be used to trigger M2M requests and

manage the NA settings. When a method is called, the library uses the Protocol Man-

ager to create an M2M request in a RESTful format and send it through the available

communication protocols. The Protocol Manager manages the communication clients

and servers, currently only with support for the HTTP protocol. A guide for the

NALib can be found in the Appendix C.

5.4 Tools

In order to implement the GW Service and Libraries, some external tools were used

to help the development. In this section we will describe the tools used to this end.

HttpComponents

The HttpComponents2 project is a toolset of Java components, provided by

the Apache Software Foundation3. This toolset o�ers means for creating and

managing HTTP client and server applications. It also supports other associated

protocols like TLS. The tools are mainly aimed at Java applications, but the

project also provides support for Android OS in some releases.

In our development phase, we used HttpComponents to implement the HTTP

clients and servers and the TLS authentication, present in the GW Service and

NALib.

Jackson

The Jackson4 is a Java library, also supported in the Android OS, that provides

tools to process JSON data. We used Jackson, in the GW Service and NALib,

to process Java objects representing M2M resources into JSON and vice versa.

Tomp2p

2https://hc.apache.org/
3http://apache.org/
4https://github.com/FasterXML/jackson

https://hc.apache.org/
http://apache.org/
https://github.com/FasterXML/jackson

CHAPTER 5. INTEROPERABLE M2M ECOSSYSTEM DEVELOPMENT 73

The TomP2P5 is a library with a set of tools for deployment of Peer-to-Peer

(P2P) networks. One of this tools provides means to set up automatic port for-

warding using UPNP or NAT-PMP. We used this library to provide accessibility

to the GW Service by using UPNP or NAT-PMP.

5http://tomp2p.net/

http://tomp2p.net/

Chapter 6

Proof of Concept

In this chapter we present scenarios where the M2M system was integrated with other

projects. A mobile eHealth pilot was proposed to evaluate the end-to-end latency in

an IoT environment[16]. The pilot required the deployment of several M2M nodes

which make use of the M2M entities developed in the scope of this dissertation. We

will use the mobile eHealth pilot as proof of concept. The experiments in Chapter

4 were not repeated due to the NSCL being heavily used by other projects, slowing

down the operations. Therefore, the conditions of the �rst experiment could not be

recreated.

6.1 EHealth Scenario

The eHealth scenario consists on a set of users advised to have their daily routine

remotely monitored by a healthcare entity. The users put on a wearable Bluetooth

device that monitors their heart rate and mobility and start an application on their

smartphone every morning. The application is stopped and the device is removed

every evening.

The data captured by the wearable device is aggregated by the smartphone's appli-

cation. Periodically, the application sends the data to a Data Processor system. To

send the data, the smartphone has a constant Internet connection using a cellular data

plan.

On the Data Processor system, relevant physical indicators are extracted from the

data received and are marshaled in a format recognizable by an EHR service. The

74

CHAPTER 6. PROOF OF CONCEPT 75

Figure 6.1: M2M pilot ecosystem.

marshaled data is then sent to an EHR provided by a Healthcare entity. The EHR is

then able to store and display the processed health data to the interested parties.

6.2 Pilot Deployment

As stated before, this scenario was composed by several M2M nodes that create an

ETSI M2M ecosystem, represented in Figure 6.1. The only non-M2M ETSI compliant

nodes were the wearable devices. As such, they were interconnected with the M2M

network by a GIP. The users' smartphones contained the GW Service, thus the

smartphones acted as M2M proxies, providing a GIP, GSCL and connection to the

M2M network.

The EHR service was hosted at CINTESIS, FMUP, and followed the OpenEHR1

non-proprietary standard architecture provided by the OpenEHR Fundation. This

standard aims to enable interoperability and openness in eHealth. It also de�nes

models that specify how clinical data should be stored, designated archetypes.

The data captured by the M2M GWs was sent as bluethooth raw bytes. The Data

Processor was created to parse and format that data, since the EHR service did not

have such capabilities.

1http://www.openehr.org/

http://www.openehr.org/

CHAPTER 6. PROOF OF CONCEPT 76

Figure 6.2: Pilot procedures.

Both the EHR Service and Data Processor interacted with the M2M ecossystem as an

NA, using the NALib. The M2M GWs and the NAs communicated with each other

by publishing and subscribing resources in the NSCL. As such, the NSCL, provided by

PT Inovação and hosted at FEUP's servers, acted as a broker for the communications

between the di�erent entities.

6.3 Pilot Setup

The pilot was set to run for 3 weeks with the participation of 10 volunteers, acting as

patients. Each volunteer was provided with a Moto g2 smartphone with the Android

4.4.4 OS and a Zephyr HxM BT sensor. They should use the Zephyr connected to the

smartphone's GW Service at least from Monday to Friday, and preferably for 8 hours

a day. The procedures can be separated into two phases, as seen in Figure 6.2.

The setup phase occurred, as a preparation, before delivering the devices to the

volunteers. All the M2M GWs were started, in conjunction with the Zephyr devices,

to trigger the registration procedure and to make their resource tree available on the

NSCL.

CHAPTER 6. PROOF OF CONCEPT 77

Next, booth NAs were also started and registered in the NSCL. In the Data Processor

NA registration, a DATA container was created to latter be used for data publication.

After the registration, the Data Processor NA subscribed, in the NSCL, the DATA

containers belonging to the Zephyr M2M Applications under each one of the smart-

phones SCLs. The OpenEHR NA subscribed, in the NSCl, to the DATA container

under the Data Processor M2M Application.

The execution phase occurred repeatedly every day during the pilot. At the beginning

of each day, all users should equip their Zephyr and start the GW Service in their

smartphones. When starting the GW Service, the in-built GIP searched for Bluetooth

devices. If the Zephyr device was found, the GIP would connect to it automatically.

During each day, each M2M GW continually captured heart rate, distance and speed

measurements from the Zephyr, and published the data periodically in intervals of

1 minute. With each publication, the NSCL would notify the Data Processor, that

parsed and stored the incoming data.

At the end of each day, the users turned o� the M2M GW and stopped publishing

data. The Data Processor processed the data of each user and published it in the

NSCL as a JSON object in accordance with an EHR archetype compatible with the

EHR Service. The NSCL then noti�ed the EHR Service with the processed data for

storage, display and analysis.

In order to obtain the performance data, the M2M GWs were monitored mainly in

their network usage. We used a method similar to that presented in Section 4.2.

6.4 Results

During the pilot, the M2M GWs were collecting and sending data for 479 hours making

a total of 22759 publications. The total amount of sensor data collected reached 430

MB; however, data was compressed before being sent by M2M GWs, amounting only

to 43.3 MB in total sensor data sent. Considering the HTTP encapsulation size, the

M2M GWs, in total, transmitted 65.6 MB and received 6.3 MB of data.

In the scope of this dissertation, the major concern in this pilot was the reliability

and ease of deployment of the M2M network. In the case of the EHR service, the

integration was made by a developer not familiar or trained with M2M technologies.

The developer was only informed about the library capabilities and the M2M resource

CHAPTER 6. PROOF OF CONCEPT 78

tree, to be able to locate the desired resources. The integration su�ered only from

minor problems related to the system in which it was running, e.g., system security

blocking communication ports.

In the case of GW Service users, there were reports of some sensor device malfunc-

tioning, unrelated to the M2M service itself, in which the Zephyr was not charging

correctly. The GW Service was also easy to use since it had reduced human interven-

tion. It facilitated the participation of the volunteers, only requiring them to turn the

service on and o�.

Chapter 7

Conclusions

Throughout this dissertation we studied the internetworking and applications of the

M2M communications based on the ETSI M2M standard. The main objective was

to produce and recreate an operational and interoperable M2M network containing

di�erent M2M entities. In order to achieve this goal, we made the following contribu-

tions:

• We analyzed the ETSI M2M standard, the use cases provided by ETSI and the

implementations of other developers.

• We analyzed the implementation of an existing M2M GW and design an exper-

iment to pinpoint performance issues.

• To improve the M2M GW, we updated the the resource mapping and regis-

tration procedures, formulated a new method for actuation, added accessibility

possibilities with port forwarding, and applied other smaller changes.

• We developed an Android library to ease the deployment of GAs in smartphones

equipped with the GW Service. In this library, we implemented a dIa interface

though IPC, to make it more viable to have several GAs.

• We developed a Java library to ease the deployment of NAs.

• We deployed a pilot using several M2M GWs and two NAs. All elements worked

as intended during the pilot and were easily used by users and developers not

acquainted with M2M technologies.

79

CHAPTER 7. CONCLUSIONS 80

The NALib was also used in other projects with di�erent developers. Since September

2015, it is being used to publish data from UrbanSense1 sensors and by two partners

to subscribe that data. It was also used, in the scope of a dissertation at FEUP, for a

Smart Cities API benchmarking.

Some features were not implemented, as was the case of the CoAP and DTLS. These

protocols would have improved the communication e�ciency. However, the NSCL did

not have support for them and we did not �nd a library that supported both protocols

for android devices. Other feature that was not implemented was the long polling,

mostly due to time constraints, but also because we did not �nd an e�cient strategy

to implement it. In any case, the M2M GW already supports UPnP and NAT-PMP,

which are supported by most routers. ssss Finally, there is the matter of security which

was not fully accomplished. As of now, the implemented HTTP clients support TLS;

however, the servers do not, meaning that incoming messages are readable by everyone.

We were also not able to implement the security provided by using the AccessRights

resources. Using AccessRights permission to perform operations on M2M resources

within an SCL can be granted or denied to an M2M Entity.

Overall, the ETSI M2M standard can be integrated in several applications, and it

can be adapted to di�erent use cases and requirements. It can be implemented in

all kinds of programmable devices, like smartphones, and it is not dependent on

the OS or programming languages. However, to have this kind of �exibility, the

standard speci�cations are abstract and complex. In our implementation, for example,

there are still resources and properties that are unexplored. In conclusion, the ETSI

M2M standard has many capabilities and opens up a lot of possibilities for future

technologies and services.

1http://futurecities.up.pt/site/hybrid-sensor-networking-testbed/

http://futurecities.up.pt/site/hybrid-sensor-networking-testbed/

Appendix A

Acronyms

6LoWPAN IPv6 over Low power Wireless Personal Area Networks

AIDL Android Interface De�nition Language

APoC Application Point of Contact

APoCPaths Application Point of Contact Paths

CoAP Constrained Application Protocol

DA Device Application

DIP Device Interworking Proxy

DSCL Device Service Capability Layer

EHR Electronic Health Record

ETSI European Telecommunications Standards Institute

GA Gateway Application

GALib GA Library

GIP Gateway Interworking Proxy

GSCL Gateway Service Capability Layer

GW Gateway

HTTP Hypertext Transfer Protocol

IoT Internet of Things

IPC Inter Process Communication

H2M Human-to-Machine

H2H Human-to-Human

M2M Machine-to-Machine

NA Network Application

NALib NA Library

NIP Network Interworking Proxy

81

APPENDIX A. ACRONYMS 82

NSCL Network Service Capability Layer

SCL Service Capability Layer

OGN Object Network Gateway

P2P Peer-to-Peer

PoC Point of Contact

TCU Telematic Control Unit

xIP Interworking Proxy

Appendix B

GALib guide

The GA library provides a simple way to create ETSI M2M Applications in An-

droid.The only M2M knowledge needed, is to get acquainted with the resource struc-

ture, simpli�ed in Figure 2.2. This is important to be able to target the desired

resources, respecting the ETSI M2M Structure. The Android device must also have

GW Service running when using the Application.

The main methods of the GA Library can be found in the GatewayApplication class.

To get an instance of the GatewayApplication, use the method getInstance(). The

properties seen in table B.1 are accessible through the classes' get and set methods.

Property Type Description

scl Scl M2M SCL resource to which the GA is connected

objectMapper ObjectMapper Used to map resources to JSON and vice-versa

requestHandler RequestHandler Handles incoming requests or noti�cations

Table B.1: GatewayApplication Class Properties.

The GA may be initialized by using the methodinit(Application app,Context con-

text,RequestHandler requestHandler). Notice that we need to specify an Application,

the Android application Context, and a RequestHandler.

The Application object will be used to register the GA. An example of creating an

Application is:

Application application=new Application();

//define the Unique Identifier of the GA

application.setAppId("ExampleApp");

83

APPENDIX B. GALIB GUIDE 84

//define where the GA server can be contacted. If it is set to localhost,

the Gw Service server will be used.

application.setAPoC("localhost");

//define when the NA will expire

application.setExpirationTime("2020-12-31T23:59:59.000Z");

The RequestHandler will be used to handle the messages that arrive at the GA. This

is an abstract class so we have to override its methods. An example of creating a

Noti�cationHandler is:

RequestHandler requestHandler = new RequestHandler() {

@Override

// method called when the GA is ready for use

public void onRegistrationComplete(int status, String description, Scl

scl) {

//log results

Log.i(TAG,"Registration Complete: "+status+" "+description);

}

@Override

// method called when a request for the GA arrives.

public void handleRequest(String target, String payload) {

Log.i(TAG,"request received...");

// log target

Log.i(TAG,target);

// log payload

Log.i(TAG,payload);

}

}

The GA initialization connects to the GW Service and automatically registers the

new Application on the GW and NSCL. Now that the M2M Gateway Application is

running, we can use a set of methods to perform M2M operations. In the following

lines, Some examples of the most important operations are presented.

Containers hold several instances of content. An example of a Container creation is:

Container container=new Container();

//define the Unique Identifier of the Container

container.setId(contId);

APPENDIX B. GALIB GUIDE 85

//define the expiration time of the Container

container.setExpirationTime("2020-12-31T23:59:59.000Z");

//define the maximum number of data instances in the Container

container.setMaxNrOfInstances((long) 10000000);

//define the maximum Byte size of the Container

container.setMaxByteSize((long) 100000000);

//create the container inside Application "appId" and the SCL of the Gateway

Service

GwResponse gwResponse=gatewayApplication.CreateContainer(container,

gatewayApplication.scl.getSclId(), "appId");

//log results

Log.i(TAG,gwResponse.resource);

Log.i(TAG,gwResponse.status);

Log.i(TAG,gwResponse.description);

ContentInstances hold one instance of content inside the container. An example of a

ContentInstance creation is:

//create Content Instance inside the Container "ExampleCont", inside

Application "ExampleApp" on the SCL of the Gateway Service

GwResponse gwResponse=gatewayApplication.CreateContentInstance("example of

content for content instance",

gatewayApplication.scl.getSclId(),"ExampleApp","ExampleCont");

//log results

Log.i(TAG,gwResponse.resource);

Log.i(TAG,gwResponse.status);

Log.i(TAG,gwResponse.description);

Subscriptions are used when we wish to be noti�ed about resources alterations. We

only need to subscribe a resource once, unless the expiration time is reached. An

example of a Subscription creation is:

Subscription subscription = new Subscription();

//define the expiration time of the Subscription

subscription.setExpirationTime("2020-12-31T23:59:59.000Z");

//define Subscription type

subscription.setSubscriptionType(SubscriptionType.ASYNCHRONOUS);

//define URI to be notified

APPENDIX B. GALIB GUIDE 86

subscription.setContact("localhost");

//Subscribe ContentInstances inside the Container "ExampleCont", inside

Application "ExampleApp"on the SCL of the Gateway Service.

GwResponse gwResponse=gatewayApplication.CreateSubscription(subscription,

gatewayApplication.scl.getSclId(), "ExampleApp", "ExampleCont", true,

true, true);

//log results

Log.i(TAG,gwResponse.resource);

Log.i(TAG,gwResponse.status);

Log.i(TAG,gwResponse.description);

We can also retrieve resources. To retrieve all the containers in an Application we

may use:

//Retrieve Containers in the Application "ExampleApp"

GwResponse gwResponse=

gatewayApplication.RetrieveContainers(gatewayApplication.scl.getSclId(),

"ExampleApp");

List<ReferenceToNamedResource> conts= ((Containers)gwResponse.resource).

getContainerCollection().getNamedReferences();

//for each reference, obtain the container

for(ReferenceToNamedResource ref:conts){

//print results

Log.i(TAG,"Container id "+ref.getId()+" ref " +ref.getValue());

// retrieve the Container

Container container=networkApplication.retrieveContainer(

"/m2m/applications/ExampleApp/containers/" + ref.getId());

//log results

Log.i(TAG,ref.getId());

Log.i(TAG,ref.getValue());

}

To retrieve all the Content Instances in a Container we may use:

//retrieve the ContentInstances resource in Application "ExampleApp" and

container "ExampleCont".

gwResponse=gatewayApplication.RetrieveContentInstances(

APPENDIX B. GALIB GUIDE 87

gatewayApplication.scl.getSclId(), "ExampleApp", "ExampleCont");

List<ContentInstance> contints = ((ContentInstances)gwResponse.resource).

getContentInstanceCollection().getContentInstances();

//For each ContentInstance

for(ContentInstance contint:contints){

//log result

Log.i(TAG," ContentInstance id:"+ref.getId()+"

content:"+ref.getContent().getValue());

}

To stop the GA use the method �nish().

Appendix C

NALib guide

The NA Library provides a simple way to create and use an ETSI M2M Application.

The only M2M knowledge needed, is to get acquainted with the resource structure,

simpli�ed in Figure 2.2. This is important to be able to target the desired resources,

respecting the ETSI M2M Structure.

The main methods of the NA Library can be found in the NetworkApplication class.

To get an instance of the NetworkApplication, use the method getInstance(). After

getting an instance of the class, we may want to use the default con�gurations or

customize some. The properties seen in table C.1 are accessible through the classes'

get and set methods.

After setting our preferences, the NA may be initialized by using the method init(

Application application, Noti�cationHandler noti�cationHandler, int naPort). Notice

that we need to specify an Application and Noti�cationHandler objects and the port

in which the NA can listen to noti�cations.

The �rst will be used to register the NA. An example of creating an Application is:

Application application=new Application();

//define the Unique Identifier of the NA

application.setAppId("ExampleApp");

//define where the NA server can be contacted

application.setAPoC("http://mobilelab.fe.up.pt:9090");

//define when the NA will expire

application.setExpirationTime("2020-12-31T23:59:59.000Z");

88

APPENDIX C. NALIB GUIDE 89

Property Type Description

application application
M2M Application resource

representing the NA

nsclProtocol Protocols
De�nes which protocol used in

the NA Client

nsclUri String De�nes the URI to contact NSCL

nsclPort int De�nes the Port to contact NSCL

naProtocol Protocols
De�nes which protocol used in

the NA Server

m2mServiceBootStrapURL String
De�nes the URI used to obtain

the TLS keys

debugMode Boolean De�nes if debug output is active

keystore InputStream De�ne the pre-shared keystore

truststore InputStream De�ne the pre-shared truststore

Table C.1: NetworkApplication Class Properties.

The second will be used to handle the messages that arrive at the NA server. This

is an abstract class so we have to override its methods. An example of creating a

Noti�cationHandler is:

NotificationHandler notificationHandler=new NotificationHandler() {

@Override

public Boolean handleNotification(NsclMessage nsclMessage) {

System.out.println("Received a notification from NSCL");

//print the request target URI

System.out.println("Target:" + nsclMessage.getTarget());

//print the request payload

System.out.println("Payload:" + nsclMessage.getPayload());

return true;

}

};

The NA initialization, automatically register a new Application on the NSCl and starts

the NA Server and Client. Now that the M2M Network Application is running, we

can use a set of methods to perform M2M operations. In the following lines, Some

examples of the most important operations are presented.

Containers hold several instances of content. An example of a Container creation is:

APPENDIX C. NALIB GUIDE 90

Container container = new Container();

//define the Unique Identifier of the Container

container.setId("ExampleCont");

//define the expiration time of the Container

container.setExpirationTime("2020-12-31T23:59:59.000Z");

//define the maximum number of data instances in the Container

container.setMaxNrOfInstances((long) 10000000);

//define the maximum Byte size of the Container

container.setMaxByteSize((long) 100000000);

//create container inside Application "ExampleApp"

nsclMessage = networkAplication.create(container,

"/m2m/applications/ExampleApp/containers/");

//print nscl response

System.out.println("Response: status "+nsclMessage.getStatus()+" payload

"+nsclMessage.getPayload());

ContentInstances hold one instance of content inside the container. An example of a

ContentInstance creation is:

ContentInstance contentInstance = new ContentInstance();

//Create the Content held by the Content Instance

Content content = new Content();

//Set the Content data

content.setValue("Example content to send".getBytes());

//Set the Content type

content.setContentType("plain/text");

//Add the Content to the ContentInstance and state his size

contentInstance.setContent(content);

contentInstance.setContentSize((long)content.getValue().length);

//create Content Instance inside the Container "ExampleCont", inside

Application "ExampleApp"

nsclMessage = networkAplication.create(contentInstance,

"/m2m/applications/ExampleApp/containers/ExampleCont/contentInstances/");

//print nscl response

System.out.println("Response: status "+nsclMessage.getStatus()+" payload

"+nsclMessage.getPayload());

Subscriptions are used when we wish to be noti�ed about resources alterations. We

APPENDIX C. NALIB GUIDE 91

only need to subscribe a resource once, unless the expiration time is reached. An

example of a Subscription creation is:

Subscription subscription = new Subscription();

//define the expiration time of the Subscription

subscription.setExpirationTime("2020-12-31T23:59:59.000Z");

//define Subscription type

subscription.setSubscriptionType(SubscriptionType.ASYNCHRONOUS);

//define URI to be notified

subscription.setContact("https://mobilelab.fe.up.pt:9090");

//Subscribe all ContentInstances inside the Container "ExampleCont", inside

Application "ExampleApp"

nsclMessage = networkAplication.create(subscription,

"/m2m/applications/ExampleApp/containers/ExampleCont/

contentInstances/subscriptions/");

//print nscl response

System.out.println("Response: status "+nsclMessage.getStatus()+" payload

"+nsclMessage.getPayload());

The noti�cations arrive encapsulated in multiple layers of JSON and Base64. To easily

extract the Content Instances from the NSCLMessage, we may use:

@Override

public Boolean handleNotification(NsclMessage nsclMessage) {

// Extract a list of strings representing the data contained in the

ContentInstances

String[] contentInstances =

NaUtils.extractContentInstanceContent(nsclMessage.getPayload());

return true;

}

We can also retrieve resources. To retrieve all the containers in an Application we

may use:

//Retrieve Containers in the Application "ExampleApp"

Containers containers = networkApplication.retrieveContainers(

"/m2m/applications/ExampleApp/containers/");

//for each reference, obtain the container

for (ReferenceToNamedResource ref:

APPENDIX C. NALIB GUIDE 92

containers.getContainerCollection().getNamedReferences()) {

//print results

System.out.println("Container id "+ref.getId()+" ref " +ref.getValue());

// retrieve the Container

Container container=networkApplication.retrieveContainer(

"/m2m/applications/ExampleApp/containers/" + ref.getId());

//print results

System.out.println("Response ID "+ container.getId()+" Max number of

instances "+container.getMaxNrOfInstances());

}

To retrieve all the Content Instances in a Container we may use:

//retrieve the ContentInstances resource in Application "ExampleApp" and

container "ExampleCont".

ContentInstances contentInstances =

networkApplication.retrieveContentInstances(

"/m2m/applications/ExampleApp/containers/ExampleCont/contentInstances/");

//For each ContentInstance

for (ContentInstance ref:

contentInstances.getContentInstanceCollection().getContentInstances()) {

//print result

System.out.println(" ContentInstance id:"+ref.getId()+"

content:"+ref.getContent().getValue());

}

To stop the NA use the method end().

References

[1] Actility SA. User Guide: ZigBee ETSI M2M REST Interface. 2013.

[2] M. Cheshire, S.Krochmal. Rfc 6886 - nat port mapping protocol (nat-pmp).

https://tools.ietf.org/html/rfc6886, 2016-1-20.

[3] Cisco. Cisco visual networking index: Global mobile data tra�c forecast

update, 2015-2020 white paper. http://www.cisco.com/c/en/us/

solutions/collateral/service-provider/visual-networking-index-vni/

mobile-white-paper-c11-520862.html, 2016.

[4] Asma Elmangoush, Thomas Magedanz, Alexander Blotny, and Niklas Blum.

Design of RESTful APIs for M2M services. 2012 16th International Conference

on Intelligence in Next Generation Networks, pages 50�56, 2012.

[5] ETSI. ETSI TR 102 691 - V1.1.1 - Machine-to-Machine communications (M2M);

Smart Metering Use Cases. 1:1�49, 2010.

[6] ETSI. ETSI TR 102 966 - V0.9.3 - Machine to Machine Communications

(M2M); Interworking between the M2M Architecture and M2M Area Network

technologies. Technical report, 2013.

[7] ETSI. Machine-to-Machine Communications (M2M): Use Cases of M2M appli-

cations for eHealth. 1:1�29, 2013.

[8] ETSI. TR 102 898 - V1.1.1 - Machine to Machine communications (M2M); Use

cases of Automotive Application in M2M capable networks. 1:1�15, 2013.

[9] ETSI. Use Cases of M2M applications for Connected Consumer. 1:1�19, 2013.

[10] European Telecommunications Standards Institute. Etsi ts 102 690 Machine-to-

Machine communications (M2M); Functional architecture. 1:1�332, 2013.

93

https://tools.ietf.org/html/rfc6886
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.html
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.html
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.html

REFERENCES 94

[11] Gartner. Gartner says 6.4 billion connected. http://www.gartner.com/

newsroom/id/3165317, 2016.

[12] Gartner. Technology research | gartner inc. http://www.gartner.com/

technology/home.jsp, 2016.

[13] Cheng-kang Hsieh, Hossein Falaki, Nithya Ramanathan, Hongsuda Tangmu-

narunkit, and Deborah Estrin. Performance Evaluation of Android IPC for

Continuous Sensing Applications IPC Requirements of Continuous Sensing

Applications.

[14] IETF. Rfc 2616. https://datatracker.ietf.org/doc/rfc2616/, 2014.

[15] IETF. Rfc 7252. https://datatracker.ietf.org/doc/rfc7252/, 2014.

[16] Carlos Pereira, António Pinto, Duarte Ferreira, and Ana Aguiar. Experimental

characterisation of iot service composition latency using a mobile ehealth pilot.

Submitted to IEEE Transctions on Network and Service Management, pages 1�13.

[17] João G. P. Rodrigues, Ana Aguiar, and João Barros. SenseMyCity: Crowdsourc-

ing an Urban Sensor. https://arxiv.org/pdf/1412.2070v1.pdf, pages 1�10,

2014.

[18] Manfred Sneps-Sneppe and Dmitry Namiot. About M2M standards and their

possible extensions. 2012 2nd Baltic Congress on Future Internet Communica-

tions, pages 187�193, apr 2012.

[19] The Broadband Forum. TR-069 CPE WAN Management Protocol. (November),

2013.

[20] Ricardo Jorge Travanca Morgado. Mobile Healthcare on a M2M Mobile System.

Master's thesis, FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO

PORTO, 2014.

http://www.gartner.com/newsroom/id/3165317
http://www.gartner.com/newsroom/id/3165317
http://www.gartner.com/technology/home.jsp
http://www.gartner.com/technology/home.jsp
https://datatracker.ietf.org/doc/rfc2616/
https://datatracker.ietf.org/doc/rfc7252/
https://arxiv.org/pdf/1412.2070v1.pdf

	Abstract
	Resumo
	List of Tables
	List of Figures
	Introduction
	Motivation
	Objectives
	Structure

	State of Art
	ETSI M2M Standard
	High-Level Architecture
	M2M Resource Structure
	M2M Communications

	M2M Use Cases
	M2M Interoperability
	M2M Implementations
	Cocoon Project
	OM2M Project
	OpenMTC Plataform

	M2M Service APIs

	Smartphones in an M2M scenario

	Support for M2M Interoperability
	M2M Ecosystem Overview
	GW Service Overview
	GALib Overview
	NALib Overview

	Evaluation of an M2M Mobile Gateway
	Mobile M2M Gateway Implementation
	High Level Architecture
	Resource Structure Mapping
	Work Flow
	Bootstrap
	Standby
	Sending

	M2M Mobile Gateway Performance Analysis
	Experiment Strategy
	Experiment Tools
	Experiment Procedures

	Experiment Results and Analysis
	Battery Life
	Network Usage
	CPU Usage
	Memory Usage

	Experiment Conclusions

	Interoperable M2M Ecossystem Development
	Gateway Service
	GW Service Architecture
	Resource Mapping
	Actuation on the M2M GW
	MgmtObjs based approach
	Remote SCL resource's access based approach
	Retargeting based approach

	Actuation Implementation
	M2M GW accessibility
	Other minor changes

	Gateway Application Library
	dIa Interface
	Intents Method
	Binders method
	dIa Implementation

	Actuation on the GA

	Network Application Library
	Tools

	Proof of Concept
	EHealth Scenario
	Pilot Deployment
	Pilot Setup
	Results

	Conclusions
	Acronyms
	GALib guide
	NALib guide
	References

