
View and Verify Access Control Policies

João Sá

August 5, 2016

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Aberto da Universidade do Porto

https://core.ac.uk/display/143407691?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

To Adriana.

2

Acknowledegment

I would like to express my gratitude to Professors Sandra Alves and Sabine Broda for
their guidance on this work, along with their advice and comments on this thesis.

My sincere appreciation to my employer, Alert Life Sciences Computing, for allowing
me to dedicate part of my working hours to this master.

I would like to thank my mother, sister and brother for their constant support.

4

Summary

This thesis describes the development of a prototype, the G-ACM (Graphical Access
Control Manager), which provides a graphical interface for visualization and manage-
ment of access control policies.

The main objective of this work is to explore the advantages of the graphical represen-
tation to assist users with the tasks of management of security policies.

The prototype consists of two modules. The server component uses the Drools rule en-
gine to implement the semantic of the Category Based Access Control (CBAC) model,
which generalizes several well known access controls models, such as Mandatory
Access Control (MAC), Discretionary Access Control (DAC) and Role Based Access
Control (RBAC). The client, the G-ACM Console, uses the graphical representation of
access control policies to provide an user friendly environment to describe and manage
CBAC policies.

G-ACM exposes some of the advantages of the graphical representation of policies
when compared to more traditional representations. For a more extensive analysis
some important features should be added to the prototype. Nevertheless, from this
work we may conclude that the exploration of the type of representation used by G-
ACM is a path worth exploring.

6

Sumário

Esta tese descreve o desenvolvimento de um protótipo, o G-ACM (Graphical Access
Control Manager), que disponibiliza um interface gráfica para visualização e gestão de
políticas de controlo de acessos.

Este trabalho tem como principal objectivo explorar as vantagens da representação
gráfica para apoiar os utilizadores nas tarefas de administração das políticas de segu-
rança.

Este protótipo é composto por dois módulos. A componente servidora usa o motor de
regras Drools para implementar a semântica do modelo Category Based Access Con-
trol (CBAC) que generaliza alguns modelos amplamente conhecidos como os Manda-
tory Access Control (MAC), Discretionary Access Control (DAC) e Role Based Access
Control (RBAC). A componente cliente, o G-ACM Console, usa a representação gráfica
das políticas de controlo de acessos para providenciar um ambiente de utilização
amigável para descrever e gerir políticas CBAC.

O G-ACM expõem algumas das vantagens da representação gráfica das políticas de
segurança quando comparada com representações mais tradicionais. Para elaborar
uma análise mais extensiva algumas funcionalidades importantes deveriam ser incluí-
das no protótipo. No entanto, este trabalho permite concluir que a exploração do tipo
de representação usado no G-ACM é um caminho que vale a pena explorar.

7

Contents

1 Introduction 14

2 Related Work 18

3 Preliminaries 22

3.1 The Category-Based Model . 22

3.2 Graph Representation . 25

3.3 Use Cases . 28

4 A Drools Rule Engine for CBAC 32

4.1 Drools . 33

4.2 Rule description . 35

4.2.1 Custom Facts . 37

4.2.2 Authorization . 40

5 The Graphical Access Control Manager (G-ACM) Tool 44

5.1 Conceptual model . 44

5.2 Console Usage . 46

5.2.1 Authorization Graph . 46

8

5.2.2 Custom Fact Selection . 49

5.2.3 History . 51

5.2.4 Nodes Grouping . 51

5.2.5 Settings . 52

6 Technical Implementation 54

6.1 Architecture . 54

6.2 Chosen Tools . 55

6.3 Server . 57

6.4 Console . 74

6.4.1 AngularJS . 75

6.4.2 D3 . 79

6.4.3 Structure . 81

7 Conclusion and Future Work 86

Bibliography 92

9

List of Figures

4.1 Drools Session: Rules Processing Sequence 37

4.2 Drools Session: Complete Rules Processing Sequence 43

5.1 G-ACM: Conceptual Model . 45

5.2 Detail of an authorization graph . 47

5.3 Permission . 48

5.4 Inherited Permission . 48

5.5 Inherited Prohibition . 49

5.6 Authorization Graph: Selection on Action 50

5.7 Custom Fact Selection Sequence . 50

5.8 Graphs History Menu . 51

5.9 Grouped Nodes . 52

5.10 Relations Filter . 53

6.1 High Level Architecture . 54

6.2 G-ACM Modules . 57

6.3 Classes Diagram: Base Configuration . 62

6.4 Classes Diagram: Fact Interface . 64

6.5 Classes Diagram: Custom Facts Configuration 65

10

6.6 Classes Diagram: Custom Facts Parameters Configuration 66

6.7 Classes Diagram: Rules Processing . 68

6.8 Classes Diagram: Data Transfer Objects 72

6.9 Classes Diagram: Config Model . 73

6.10 Console Controllers and Services . 83

7.1 Jenkins RBAC plugin . 87

7.2 ARCA relation as table . 88

7.3 ACM snapshot . 88

11

Acronyms

BRMS Business Rules Management System.

BTG Break The Glass.

CBAC Category-Based Access Control.

DI Dependency Injection.

DOM Document Object Model.

DTO Data Transfer Object.

G-ACM Graphical Access Control Manager.

HTML HyperText Markup Language.

HTTP Hypertext Transfer Protocol.

IoC Inversion of control.

MLS Multi Level Security.

MVC Model-view-controller.

ORBAC Organisation Based Access Control.

RBAC Role Based Access Control.

W3C World Wide Web Consortium.

12

Chapter 1

Introduction

Access control aims to restrict the access to information, or other system’s resources, to
authorized people or computer programs. The increasing number of devices connected
to the internet and the use of cloud systems demand a revision of the security proper-
ties and mechanisms used to provide security [1]. The importance of access control
enforcement increases as data and computation become more distributed, becoming a
critical issue nowadays.

Authorization is the process of verifying if a principal (e.g. a user) has access to
perform a requested operation. It relies on a previous authentication step, where the
identity of the principal is verified. In this work we focus on authorization and assume
that principals are authenticated beforehand. Authorization consists of two phases.
The first is the definition of the authorization policy that specifies if, and under which
circumstances, principals have access to resources. The second is the process of
enforcing the defined policies during system operation.

More precisely, policies specify if principals are allowed to perform actions on resources.
Resources are any type of asset on which actions are performed (e.g. printers, database
records, systems’ features, etc). Principals are the subject performing the action and
can have many forms (e.g. users, programs, systems, etc). A pair of an action and a
resource is called a permission.

Maintaining authorization data is not trivial. Policies can easily get complex and it is
often necessary to change access rules in the system. This task is increasingly difficult
in distributed systems, which makes the development of tools, to help defining and

14

managing authentication policies, an ever more important task.

Several access control models are in use nowadays, some common examples are:

• Mandatory Access Control (MAC): usually associated with the Bell-LaPadula
model of Multi Level Security (MLS) [2], can be defined as any access control
model that enforces security policies independently of user operation. This model
labels resources by their sensitivity and defines authorization levels (or clearance)
for principals. Permissions are enforced by comparing labels with authorization
levels. This method is broadly known by its use in the military context, but the
concept was also implemented in several commercial products (e.g. Oracle Label
Security in Oracle RDBMS).

• Discretionary Access Control (DAC): associates to each user a list of permissions
and prohibitions. It is widely used in file systems of common operating systems.
It was developed to implement Access Control Matrices defined by Lampson in
his paper on system protection [3]. It allows fine-grained control over system
objects which allows implementing least-privilege access. It is intuitive and mostly
invisible to users which makes it to be regarded cost-effective for small systems
[4].

• Role Based Access Control (RBAC): first proposed by Ferraiolo and Kuhn in
1992, the RBAC model is based on the notion of role to which permissions are
mapped. Principals get their permissions according to the roles they are assigned
to. Permission mapping is controlled by a security administrator, therefore users
cannot transfer their permissions to other users, which make it behave as a finer-
grained version of the Mandatory Access Control (MAC) model. Several RBAC
variations were introduced by [5] and adopted as ANSI standards. One example
is the enforcement of separation of duties by the addition of constraints for a user
to enter a role. Another is the introduction of hierarchies to define inheritance
relations among roles, which reduce administration costs (Hierarchical RBAC [5]).

Even though widely used, these models have some inherent limitations.

MAC model assumes that the policies do not change (the tranquility principle), which
prevents the dynamic alteration of the permissions. Changing the classification of
resources or subjects requires the use of "trusted subjects", which imply that large
parts of the operating system and utilities must be placed outside the access control

15

framework. Additionally, the model can hurt productivity by over-classifying data and it
does not assures fine-grained least privilege.

Using Discretionary Access Control (DAC), the verification of permissions and the main-
tenance of systems using it is extremely difficult. Additionally, since permissions are
controlled by users, it allows potential exploits by Trojan horses.

Role Based Access Control (RBAC) addresses most of the limitations of DAC. It re-
moves the control of permissions from the users, preventing the transfer of permissions
to other users. Additionally, by assigning permissions to roles, it simplifies the task of
managing permissions. Nevertheless, maintaining permission for large systems can
still be very changeling. Administration tasks, like role membership, role inheritance
and finer-grained customized privileges can become rapidly unmanageable for large
number of roles and resources.

In [6], the Category-Based Access Control (CBAC) model was proposed as a formalism
from which the other models can be derived. The motivation was to direct the research
efforts to a unifying metamodel, rather than developing new ones for specific purposes
and with limited reach.

CBAC brings together the set of core principles of access control and simplifies the
task of access control reasoning by removing the specificities of the different models.
A rewrite-based operational semantics for the model is defined in [7], which is used to
extract properties on policies, such as totality and consistency. The expressive power
of the model was illustrated by deriving the models mentioned above as instances of
CBAC.

The notion of category is central to the model, as permissions are assigned to cate-
gories of principals and not to individual principals. Categories define classes of entities
that share some property, such as an user attribute, a time or geographical constraint or
a resource property. This implies that a principal’s permission may change dynamically
due to changes of the values of these attributes. For instance, suppose an online
voting system that verifies if a person is allowed to vote. It defines a category Adult
and all users assigned to that category have permission to cast votes. Whenever a
person reaches the age of eighteen, he/she is automatically mapped to that category
and becomes automatically able to vote.

The graphical representation of the category based model in [8, 9] can be used to
simplify policy administration and verification tasks. The potential of the framework

16

is illustrated by using it to deal with emergency situations in an hospital environment,
where the global policy results from the dynamic combination of the normal policy with
a specific one for emergency contexts.

In this work we develop a prototype, called G-ACM (Graphical Access Control Man-
ager), that implements the semantics of the model and provides a graphical interface for
visualization and management of access control policies. The tool uses the graphical
representation of the CBAC model introduced in [8], and further developed in [9], to
provide a user friendly environment to describe and manage CBAC access control
policies.

This prototype has two main components. The first is a server that uses the Drools
rule engine to implement the semantics of CBAC with dynamic policies. The second
is a client application that provides the representation of the policies as graphs and
allows the simulation of authorization scenarios by changing the parameters used by
the policies.

The long term goal of this work is to evaluate the usefulness of the graphical represen-
tation to assist users on the management of security policies. We expect G-ACM to
be used for this type of analysis. Even though we do not perform a formal comparison
between this type of representation and the traditional one, we briefly discuss some
obvious advantages of the graphical representation that can be further explored.

Overview The rest of this thesis is organized as follows. In the Related Work (Chapter
2) we briefly introduce other works that explore the use of graphs to represent security
policies. In Chapter 3 we describe the CBAC model, the graphical representation of
policies, and present a set of authorization use cases that provide a concrete context.
In Chapter 4 we briefly describe the Drools rule engine and how it is used to implement
the semantics of the model. In Chapter 5 we describe the G-ACM from the conceptual
point of view, and in Chapter 6 its technical implementation. Finally, in Chapter 7 we
draw some conclusions and discuss future work.

17

Chapter 2

Related Work

This work is based on the representation of CBAC policies introduced in [8] and further
developed in [9]. Within CBAC, only textual languages have been used and have
focused mainly on the expressivity of the model, the analysis of policies, and the
techniques that can be used to enforce policies [6, 7, 10, 11, 12].

Several other access control models have been studied through the use of graph-based
languages. For example, Koch and al. [13, 14] use directed graphs to formalize RBAC.
A distinctive feature in this work is the use graph transformation rules to model role
management operations. The graphs in [13, 14] and [9] are both typed and labelled.
The typing system is similar in both cases but the label structure in [9] is richer so it can
express policies where access rights depend on data associated to the entities in the
policy. Labels in [13, 14] are simply identifiers used to encode RBAC.

The RBAC policies in [13, 14] can be represented by graphs in [9], since a role is
a particular case of a category. However, graphs used in [13, 14] represent also
session information, which is not dealt by policy graphs in [9]. Nevertheless, since
the notion of session in RBAC is similar to the same notion in CBAC, the representation
of sessions provided in [13, 14] could be easily adapted to policy graphs representing
CBAC policies.

LaSCO [15] represents policies through graphs in which nodes represent system ob-
jects and edges represent system events. In LaSCO, each policy graph represents both
the situation under which a policy applies and the constraint that must hold for the policy
to be upheld. As discussed in [9], the model proposed by Koch and al., LaSCO and

18

other models [16, 17, 5], can be represented by CBAC policies.

Another approach consists in using term rewriting systems to express general dynamic
access control policies [18, 19, 20, 21, 11]. Term rewrite rules describe particular ac-
cess control models, which can be used to verify the properties of policies by checking
the confluence and termination of sets of rewrite rules. The approach in [9] uses
rewrite rules to model the dynamics of the system and a visual graph formalism to
represent a concrete state of the system. In [20], it is shown how narrowing can be
used to solve administrator queries of the form “what if a request is made under these
conditions?”, by representing a query as a pair of a term and a first-order equational
constraint. Narrowing-based techniques could also be used in dynamic graph policies,
since the functions defining the main relevant relations are defined by sets of rewrite
rules. The extensive theory of rewriting provides an strong platform to establish security
properties [19, 22, 23]. Additionally, it allows using rewriting-based frameworks (such
as CiME, MAUDE or TOM) to reason about those properties.The work in [9] addresses
similar issues, but is based on a notion of category-based access control for distributed
environments, which uses labelled graphs to include concepts like time, events, and
histories that are not included as elements of RT or RBAC. In [24], CiME is integrated in
a tool designed to automatically check consistency and totality of RBAC access control
policies. A similar technique could be used to analyse the rewrite system in a dynamic
policy graph.

Several extensions of RBAC, which deal with dynamic permissions, have been pro-
posed. These models allow permissions to change according to internal or external
conditions such as time, location, or context-based properties (see, for example, [25,
26, 27]). All these extensions can be modeled as instances of CBAC.

Even though graphs are used in several models to represent and verify the properties
of access control policies, there is almost no literature on tools that take advantage of
the visual representation of graphs to manage the policies. The only exception that we
found is the Policy Manager described in [28]. The Policy Manager implements a user
friendly representation of policies similar to the representation used in the G-ACM. On
the other hand, in the Policy Manager [28], the dynamic behaviour of CBAC policies is
achieved through the edition of Ruby code, which requires the users to have knowledge
of the language.

Most tools dealing with management of access control policies use tables to represent
permissions data. For instance, the MotOrBAC tool [29] allows to specify and simulate

19

policies using the Organisation Based Access Control (ORBAC) model. The ORBAC
model [30] defines security policies centered on the organisation. Besides permissions,
the model supports prohibitions and obligations. To address dynamism, the model
uses contexts, which express the conditions under which permissions are active. It
includes a conflict detection feature to assist the user at finding and solving conflicts.
Through its interface the user can perform all tasks related to the creation of policies and
corresponding entities, which makes it very complete. However, MotOrBAC’s usability
has some limitations, due to the tabular representation of permissions and conflicts,
which is hard to read. We believe that the usability of this kind of tool would benefit
greatly from the inclusion of a graphical representation of policies.

20

Chapter 3

Preliminaries

This chapter introduces the concepts underlying the development of the G-ACM tool.
Section 3.1 describes CBAC, the category-based model. Section 3.2 introduces the
graph representation of CBAC policies defined in [8] and later developed in [9]. Finally,
Section 3.3 describes the set of authorization scenarios that are used in the examples
throughout the rest of this thesis.

3.1 The Category-Based Model

The following description introduces the key concepts of the category-based model (for
more details we refer to [6]).

We consider the following sets of entities: a countable set C of categories, a countable
set P of principals, a countable set A of named actions, a countable set R of resource
identifiers, a finite setAUT H of possible answers to access requests (e.g., {grant, deny,
undetermined}) and a countable set S of situational identifiers to denote context data.

The model defines the following relations:

• Principal-category assignment: PCA ⊆ P×C, such that (p, c) ∈ PCA iff a principal
p ∈ P is assigned to the category c ∈ C.

• Permission-category assignment: ARCA ⊆ A×R×C, such that (a, r, c) ∈ ARCA
iff the action a ∈ A on resource r ∈ R can be performed by the principals assigned

22

to the category c ∈ C.

• Authorisations: PAR ⊆ P ×A×R, such that (p, a, r) ∈ PAR iff a principal p ∈ P
can perform the action a ∈ A on the resource r ∈ R.

Definition 3.1 (Axioms). The relation PAR satisfies the following core axiom, where
we assume that there exists a relationship ⊆ between categories; this can simply be
equality, set inclusion or a specific relation may be used.

(a1) ∀p ∈ P, ∀a ∈ A, ∀r ∈ R, (p, a, r) ∈ PAR ⇔

∃c, c′ ∈ C, ((p, c) ∈ PCA ∧ c ⊆ c′ ∧ (a, r, c′) ∈ ARCA)

Axiom (a1) states that a request by a principal p to perform the action a on a resource r

is authorised only if p belongs to a category c such that for some category c′ such that
c ⊆ c′ (e.g., c itself), the action a is authorised on r, otherwise the request is denied.
There are other alternatives, e.g., considering undeterminate as answer if there is not
enough information to grant the request. Operationally, Axiom (a1) can be realised
through the following rewrite-based specification:

par(P,A,R)→ if(A,R) ∈ arca∗(contain(pca(P))) then grant else deny (3.1)

Function par(P,A,R) above relies on functions pca, which returns the list of categories
assigned to a principal, and arca, which returns a list of permissions assigned to a
category. Function contain computes the set of categories that contain (w.r.t. relation⊆)
any category returned by pca(P). The function ∈ is a membership operator on lists, grant
and deny are answers, and arca∗ generalises the function arca to take into account lists
of categories:

To deal with prohibitions, relations Banned actions on resources (BARCA) and Prohi-
bitions (BAR), can be defined. Their definitions are equivalent to those of ARCA and
PAR respectively, but instead of defining authorizations they define prohibitions.

• Banned actions on resources: BARCA ⊆ A×R×C, such that (a, r, c) ∈ BARCA
iff the action a ∈ A on resource r ∈ R is forbidden for principals assigned to the
category c ∈ C.

• Banned access: BAR ⊆ P ×A×R, such that (p, a, r) ∈ BAR iff performing the
action a ∈ A on the resource r ∈ R is forbidden for the principal p ∈ P.

23

Definition 3.2 (Axioms). The relation BAR satisfies the following core axioms:

(a2) ∀p ∈ P, ∀a ∈ A, ∀r ∈ R, (p, a, r) ∈ BAR ⇔

∃c, c′ ∈ C, ((p, c) ∈ PCA ∧ c ⊆ c′ ∧ (a, r, c′) ∈ BARCA)

The inclusion of BARCA has yet other implications. For access requests that are
neither authorized nor denied, a function UNDET may be defined. Furthermore, it
must be assured that the same request is not simultaneously authorized and denied.
Therefore, if the relation BARCA is admitted then the following additional axioms are
needed:

(a3) ∀a ∈ A, ∀r ∈ R, ∀s ∈ S

((p, a, r) /∈ PAR ∧ (p, a, r) /∈ BAR) ⇔ (p, a, r) ∈ UNDET

(a4) PAR ∩ BAR = ∅

The rewrite-based specification of Axioms (a1), (a2), (a3) and (a4) is given by the
rewrite rule:

par(P,A,R) → if(A,R) ∈ arca∗(contain(pca(P))) then grant

else if(A,R) ∈ barca∗(isContained(pca(P))) then deny

else undeterminate

(3.2)

Function isContained computes the set of categories that are contained (w.r.t. relation
⊆) by any category returned by pca(P).

Definition 3.3 (Category-based policy with prohibitions). A CBAC policy with pro-
hibitions is a tuple 〈E ,PCA,ARCA,PAR,BARCA,BAR〉, where E = (P, C,A,R,S),
such that Axioms (a1), (a2), (a3) and (a4) are satisfied.

Note that, provided that the axioms are satisfied, relations PCA, ARCA and BARCA
can evolve in time. This means that, as the system state changes, so do allocation of
principals to categories and the mapping between categories and authorizations and
prohibitions.

A distributed version of the category-based model was proposed in [10]. It describes
a scenario in which several sites define their own policies, described by local PCAs,

24

ARCAs, BARCAs, PARs and BARs, that contribute to a global authorization. Policies
in each site must satisfy the axioms described above as well as the following:

(b1) ∀p ∈ P, ∀a ∈ A, ∀r ∈ R,

(p, a, r) ∈ OPpar({PARs,BARs|s ∈ S})PAR ⇔ (p, a, r) ∈ PAR

(b2) ∀p ∈ P, ∀a ∈ A, ∀r ∈ R,

(p, a, r) ∈ OPbar({PARs,BARs|s ∈ S})BAR ⇔ (p, a, r) ∈ PAR

(b3) PAR ∩ BAR = ∅

Axioms (b1) and (b2) describe the global operators OPpar and OPbar that compute the
final authorization from the authorizations in each site. These operators are application
specific and can be very simple, for instance, only allow access requests if the answer
is allow for all sites, or can be more complex to fulfill specific application needs.

3.2 Graph Representation

In the graph representation of CBAC policies, defined in [8] and later developed in [9],
policies are represented through labelled graphs where nodes represent entities and
paths represent relations.

Data is attached to nodes and edges through labels. For example, in [9] labels are
records that store data in the form of key-value pairs, where all records have an attribute
ent that identifies the entity it belongs to. In the following definitions we assume the
existence of a proper representation for labels. We will use the term attribute to refer to
the data stored in the labels of nodes and edges.

To represent policies without prohibitions (i.e., satisfying Axiom (a1)) the following defi-
nition is given:

Definition 3.4 (Policy graph). A policy graph is a tuple G = (V,E, lv, le), where V is a
set of nodes, E is a set of undirected edges {v1, v2}, where v1, v2 ∈ V and v1 6= v2, lv is
a labelling function for nodes, and le is a labelling function for edges.

25

Attribute type identifies the type of entity that the node represents (P for principal, C
for category, A for action and R for resource). The type of an edge derives from the
type of its adjacent nodes. For instance, an assignment of a principal to a category is
represented by an edge of type PC. More precisely, if e = {v1, v2} then the type of edge
e is the pair formed by the types T1, T2 of nodes v1, v2, respectively and it is represented
by T1T2.

The relation PAR can be computed from the paths in a graph, which are defined as
follows:

Definition 3.5. A path in G of length n, between two nodes v0, vn, is a sequence
v0, v1, ..., vn, such that, for all 1 ≤ i ≤ n, {vi−1, vi} ∈ E.

Additionally, to define paths that take into account the relation ⊆ between categories
an additional attribute target on edges is needed. It defines the direction in which
CC edges can be traversed. More precisely if vi belongs to the target of e (notation:
vi ∈ target(e)) then vi is a destination node of edge e.

Furthermore, the type of a CC edge e = {v1, v2} is denoted by
−−→
CC if v2 ∈ target(e),

and by
←−−
CC if v1 ∈ target(e). That is, type

−−→
CC means that the edge is traversed from a

category c1 to a category c2 where c1 ⊆ c2, that is, from a more specialized to a broader
category, and type

←−−
CC means that the edge is traversed in the opposite direction.

It is then possible to define a well formed policy graph and characterize its relations in
terms of paths.

Definition 3.6 (Well-formed policy graph). A policy graph is well formed if it contains
only edges of type PC, CC, CA and AR.

Proposition 3.7. In a well-formed policy graph, paths starting in a node of type P and
ending in a node of type R must start with an edge of type PC, followed by edges
of type CC, and finally edges of type CA and AR. Any path of size 3 must have the
following shape:

Using attribute target, it is possible to give a definition of path that expresses the
hierarchical relation between categories:

26

Definition 3.8. A constrained path of length n in a graph G, between two nodes v0, vn,
is a sequence v0, e1, v1, e2..., en, vn, such that for every CC edge ei = {vi−1, vi} one has
vi ∈ target(ei), i ∈ {1, . . . , n}.

Types of paths are defined from the types of their edges:

Definition 3.9 (Types for paths). Let v0, v1, ..., vn be a path of length n, such that Ti

is the type of vi for 0 ≤ i ≤ n. The type of the path is the sequence given by
the types of the edges along the path, that is T0T1, T1T2, ..., Tn−1Tn. The notation
type(v0, v1, ..., vn) = T0T1, T1T2, ..., Tn−1Tn will be used to indicate that there is a path
v0, v1, ..., vn and its edges have types T0T1, T1T2, ..., Tn−1Tn.

The following image shows a constrained path of type PC,
−−→
CC,
−−→
CC,CA,AR:

As a consequence of Definitions 3.8 and 3.9, the relation c1 ⊆ c2 between categories c1

and c2 is represented in the policy graph by a path of type (
−−→
CC)∗. The relations PCAG ,

ARCAG and PARG are defined in terms of paths of type PC, of type CA,AR, and of
type PC, (

−−→
CC)∗, CA,AR, respectively.

From the above, it follows that a well-formed policy graph defines a unique CBAC policy
and that for each policy there exists a well-formed policy graph that represents it.

To represent CBAC policies with prohibitions, relations BARCAG and BARG must also
be represented. This is achieved by using an extra attribute auth on edges CA, with
possible values A,B to represent authorization and prohibitions (banned actions). The
type of edges that represents authorizations is denoted by CAA and the type that
represents prohibitions is denoted by CAB.

To accommodate prohibitions the definition of well-formed graph is adapted as follows:

Definition 3.10 (Well-formed policy graph with prohibitions). A policy
graph with prohibitions is well formed if it contains only edges of type PC, CC, CAA,
CAB and AR.

27

Computing BARG involves traversing CC edges in the inverse direction, since prohibi-
tions are inherited from more specialized to broader categories. To do so, we consider
constrained inverse paths between nodes of type C, which are characterized by type
(
←−−
CC)∗.

In a well formed policy graph with prohibitions, relations PCAG , ARCAG , BARCAG ,
PARG and BARG are defined in terms of paths of type PC, of type CAA, AR, of type
CAB, AR, of type PC, (

−−→
CC)∗, CAA, AR, and of type PC, (

←−−
CC)∗, CAB, AR, respectively.

As before, it follows that a well-formed policy graph with prohibitions defines a unique
CBAC policy with prohibitions and that for each policy there exists a well-formed policy
graph with prohibitions that represents it.

A distributed policy graph is also defined in [8] and [9]. This graph is defined through
the extension of the well-defined policy graph with prohibitions with the inclusion of site
location identifiers in the labels.

The distributed policy graph is a tuple of graphs (Gs1, ...,Gsn,OP) where OP is the
operation on graphs that will be used to defined the global policy. For each location
s ∈ S the relations PCAs, ARCAs, BARCAs, PARs and BARs are defined as in the
non-distributed scenario.

To represent the dynamics that exist in CBAC policies, a dynamic policy graph is
defined in [9] as a well formed policy graph for which a function is defined that, given a
principal, returns the list of categories it is assigned to and, given a category, returns the
assigned lists of authorizations and prohibitions. This definition encompasses the idea
that changes in the system may lead to changes in assignment of entities. Hence, a
specific graph provides relations PCA,ARCA, BARCA, PAR and BAR for a particular
system state.

3.3 Use Cases

The following real world scenarios, gathered in an early stage of this work, are related to
the access to patient health records. Due to the complex and dynamic nature of clinical
environments, they provide many different use cases of access control. Simultaneously,
we tried to choose scenarios that represent general problems that, with the proper
adaptations, can be easily translated to other systems and environments.

28

All the examples in this thesis and implemented in the prototype application are based
in the following use cases:

• System’s actions per role: the actions users can perform in the system depend
on their professional role. For instance the set of actions physicians and nurses
can perform are different. Access control policies should be able to define which
users have access to each system actions, according to their role.

• User action allowed/denied by senior staff : senior clinicians can give/take ac-
cess to specific actions to the professionals under their supervision (either by
adding/removing them to/from categories or by adding/removing permissions from
the categories they belong to).

• Clinical record access for non responsible clinicians: clinical records are accessi-
ble to the group of physicians and nurses involved in a patient’s treatment. When a
clinician tries to access a record of a patient that is not under his care, the system
asks the user to insert a valid reason to access the record. This kind of policy
is called Break The Glass (BTG) [31, 32], this name derives from the process of
breaking the glass to pull a fire alarm. In [33], the integration of the BTG concept
in the standard RBAC is proposed. The resulting model is called BTG-RBAC.

• Critical state: under normal circumstances clinicians can only access the records
of the patients under their care, but if the patient status is set to critical then all
clinicians can access his records.

• Seal, Seal and Lock policies: in UK’s National Health System (NHS), besides
the restrictions described in the previous points, patients can request additional
restrictions:

– Seal: A patient can Seal the parts of his record that he/she feels are
more sensitive. Access to those parts of the record requires an additional
justification by the user (and corresponding log and alerts).

– Seal and Lock is a stronger version of Seal ; in this case the record will be to-
tally inaccessible except for its author. We refer to [34] “HSCOC Information
governance. Patient choices ” for further details.

A key aspect of the CBAC model described previously is the ability of authorizations
to change dynamically due to the possibility of defining categories based on system’s

29

attributes. All scenarios above, except the first, which can be dealt with a traditional
RBAC, imply some level of adaptability based on the patient status, its relation with the
user, or any other attributes in the system.

30

Chapter 4

A Drools Rule Engine for CBAC

This chapter describes the use of the Drools rule engine in the implementation of the
G-ACM tool. Section 4.1 provides a brief description of the Drools rule engine and
Section 4.2 describes the use of the Drools rule engine to compute dynamic CBAC
policy graphs.

As described in [9], the relation between entities in a dynamic CBAC policy graph
changes autonomously as a result of events in the system. A particular graph, or the
set of authorizations (PAR and BAR) that it expresses, represents a particular system
state.

In practical terms, this imposes some challenges regarding authorization verification
and maintenance:

• The policy graph must be computed for every access request.

• The set of functions that, from the events in the system, compute the mappings
principals/categories and principals/permissions are implementation specific and
may change frequently to accommodate environmental changes.

• To manage authorizations, traditional tools are not enough. A security adminis-
trator needs to be able to verify how changes in the system’s state affect permis-
sions.

These restrictions were at the base of the decision to use a Business Rules Manage-
ment System (BRMS) to describe and compute authorizations. We chose JBoss Drools

32

[35], because it is open source, well documented and under active development.

Drools simplifies the task of writing and updating the rules for a specific implementation.
Its engine provides a simple API which allows updating the rules evaluation context
to match the system’s state. In the next section we describe briefly the Drools rule
engine and in the subsequent section we describe how we use Drools rules to compute
dynamic CBAC policy graphs.

4.1 Drools

The following description introduces the main concepts of the Drools rule engine (see
[35] for the engine’s full documentation).

The Drools rule engine is based on the Rete pattern matching algorithm [36] for pro-
duction rule systems, which implements forward chaining using directed acyclic graphs
to represent rules. Forward chaining is a reasoning technique that applies inference
rules to the available data to extract more data. The inference engine iterates through
this process until a goal is reached.

We start by describing the Drools native rule language. Very briefly, a rule is a declara-
tion of the form:

rule "name"

Attributes

when

LHS

then

RHS

end

where name is the unique identifier of the rule, Attributes is a list of optional features
that can influence the behaviour of the rule, LHS (Left Hand Side) specifies a particular
set of conditions, and RHS (Right Hand Side) is a block of code specifying the actions to
be executed, should the conditions in LHS be satisfied.

The list Attributes is a (possibly empty) sequence of attributes from the following
set: no-loop, ruleflow-group, lock-on-active, salience, dialect, agenda-group,
auto-focus, activation-group, date-effective, date-expires, duration.

33

We will use attributes dialect and salience. Attribute dialect specifies the language
in use in the LHS expressions or the RHS code, which currently can be Java or MVEL. The
default value is the one specified at the package level, but this attribute allows this to
be overridden for a particular rule. Attribute salience allows to define priority between
rules. The default value for salience is zero, but rules with higher salience have priority
over rules with lower salience. This attribute can also be defined dynamically using
bound variables.

LHS consists of zero or more Conditional Elements, which determine when the rule
applies. If LHS is empty, then the conditional element is considered to be true, causing
the rule to be activated once when a new session is created (in Drools, rules are
evaluated in the context of a session into which data can be inserted and from which
process instances can be created). Conditional elements work with patterns, which
can match facts currently in the working memory. Patterns can contain zero or more
constraints. Because of the amplitude of options, we do not describe the full syntax for
conditional elements. We refer the reader to [35], for the full description.

The RHS represents the action part of the rule, whose main objective is to insert, modify
or delete data in the working memory. This part of the rule corresponds to code in
a supported dialect. It should be atomic and not contain conditional/imperative code,
since it represents what to do when LHS is valid. There are methods available for conve-
niently changing facts in memory, such as: update(object, handle), update(object),
insert(new Object()), delete(handle), etc. Again, we refer to [35] for all available
methods.

As stated before, rules are evaluated within a session, which can be of two types:
stateless or stateful. In stateless sessions, changes to the inserted facts (in the RHS) are
not available to the rule engine. Stateful sessions, on the other hand, allow inference,
i.e., whenever a fact is changed all the rules that use that fact are reactivated. The rules
are called iteratively until there are no more changes.

The G-ACM uses a stateful session, which is fed with the rules and two other kinds of
data:

Globals: Globals are objects that are made visible to the rule engine but changes in
them do not trigger reevaluation of rules. They provide context information that can be
used to evaluate rules. Furthermore, they are used as a vehicle for returning results

34

from a session.

Facts: Facts are the data objects used by rules when evaluating the LHS. The set of
facts in one session provides the evaluation context for the rules. This means that, to
compute authorizations for a particular system state, the session should be fed with a
set of facts that corresponds to the system events that influence rule evaluation.

For instance, use case User action allowed/denied by senior staff in Section 3.3 de-
scribes a scenario where some users can link/unlink other users to categories. The way
a particular system implements that capacity is out of the scope of this work, but we can
assume that the given permission is recorded somehow in the system. To compute the
set of authorizations, an object (or fact that corresponds to that information), should be
inserted in the rules session prior to computation. The rule that implements this logic is
as follows:

rule "Rule add customs Pcas"

when

$pca : SetPca()

then

insert(new Pca($pca.getPrincipal(), $pca.getCategory()));

end

Object SetPca is the fact that corresponds to the explicit mapping between principals
and categories in the system. Since its existence is the only restriction on the above
condition, then, for each SetPca fact in the session, a new Pca fact will be created and
it will have the same values for its attributes Principal and Category as SetPca.

In the next section we provide further examples on how the use cases were translated
into rules and we explain how the final set of authorizations is computed.

4.2 Rule description

As mentioned in the previous section, to compute the relations PCA,ARCA and BARCA
(and corresponding PAR and BAR), the Drools session uses the objects that represent
the system state. We will refer to those objects as custom facts.

35

Besides the custom facts, the session also needs CBAC’s base entities, principal,
category, action and resource. We designate this group of entities as base entities.

Furthermore, we may consider an initial set of relations PCA, ARCA and BARCA
(given by an RBAC system, for instance) that provides the baseline for authorizations
(these would be enough to satisfy use case System’s actions per role in Section 3.3).
We call this group base relations.

From the point of view of a Drools session, all these types of entities are facts because
they are all involved in the evaluation of rules conditions.

Computing the sets of authorizations, PAR and BAR, consists of two distinct phases.
In the first, the sets of relations PCA , ARCA and BARCA are computed from the facts.
During the second phase, the rewriting rule (3.2) is applied to these relations to obtain
the final set of authorizations. Each of these phases uses a distinct set of rules:

• Custom fact rules: This set of rules is implementation specific. Rules are written
according to the needs of a particular system and affect the resulting authoriza-
tions by modifying, inserting or deleting facts in the session.

• Authorization rules: This set of rules computes PAR and BAR from PCA,ARCA
and BARCA that resulted from applying custom fact rules. In other words, this
set of rules applies the logic defined in the rewriting rule (3.2). Since they are not
implementation dependent, they could be easily replaced by regular code. The
decision of using Drools to implement this set was made due to the simplicity of
adding such rules to an existing session.

The resulting authorization set is computed from the results of processing custom fact
rules, as illustrated in Figure 4.1. In practice, this means that authorization rules must
be applied after custom fact rules. Otherwise, the process might return wrong results,
for instance if a custom rule deletes a fact already used to build a PAR or BAR entry.

The desired order of execution is provided by the rule attribute salience. Authorization
rules have a negative salience value, which means that they are run with lower priority
than custom fact rules.

The next section illustrates, through some examples, how the custom fact rules are
written. Section 4.2.2 describes the set of authorization rules.

36

Figure 4.1: Drools Session: Rules Processing Sequence

4.2.1 Custom Facts

Custom facts are used to simulate system conditions that affect user authorizations.
Their impact in the final set of authorizations depends on the logic described by the
rules, as illustrated by the following examples.

Example 1. This scenario corresponds to the use case Critical State described in
Section 3.3. It states that access to patient records, normally only available to the
patient’s responsible physician and nurse, should become available to the whole clinical
staff if the patient is in critical condition. A simple way to achieve this is to map all
clinicians (nurses or physicians) to a special category that has reading permissions on
the record, if critical status is set. In a scenario where each session refers to a particular
patient, and using the rewriting syntax described in [7], this logic can be expressed by
the following rewriting rule:

pca(p)→ if isClinician(p) and isCritical()

then append(categ(p), read_all())
(4.1)

The same logic can be translated to the following rule:

37

rule "Rule critical state - read all"

when

CriticalState(criticalState == Boolean.TRUE)

$principal : Principal()

Category($cid : id, id == "clinician")

$pca : Pca(

principal.id == $principal.id,

categories.containsOrEquals($cid, category.id)

)

then

insert(

new Pca(

$principal,

categories.getCategoryById("read_all")

));

end

If there exists an instance of fact CriticalState, having property criticalState set
to Boolean.TRUE, then every principal, associated to a specialization of clinician, is
mapped to the category read_all (i.e. for each principal a Pca with category read_all

is inserted).

Example 2. This scenario corresponds to the use case Seal and Seal and Lock,
related to the ability of patients to restrict access to their clinical records. If a patient
requests to Seal and Lock a part of his record then nobody can access it, no matter
the circumstances. That result can be achieved by a rule that removes all mappings
category/permission for locked resources:

rule "Sealed and Locked resources"

when

SealedResource ($resource: resource, locked == Boolean.TRUE)

$arca : Arca(permission.resource.id == $resource.id)

then

delete($arca);

end

On the other hand, if a patient asks to Seal his record then data will be hidden by
default, but clinicians can break that seal (in which case that action will be logged and
the security manager notified). That process is also called Break The Glass (BTG)
[31, 32, 33], as described in Section 3.3. The rule to implement that logic is more
complex than the previous one because it has to make sure that only the principal who

38

performed the BTG gets access to the record. The following rule describes one possible
way of doing it:

rule "Sealed resources"

when

$catSealed : Category(id == "sealed_resource")

SealedResource (

$resource : resource,

locked == Boolean.FALSE

)

$arca : Arca(

category.id != $catSealed.id,

permission.resource.id == $resource.id

)

$pca : Pca(

$principal : principal,

category == $arca.category

)

BreakTheGlass(principal.id == $principal.id)

then

Permission permission =

(Permission) PermissionFactory.buildPermission(

$arca.permission.getAction(),

$resource

)

delete($arca)

insert(new Arca($catSealed, permission))

insert(new Pca($principal, $catSealed))

end

This rules uses an auxiliary category sealed_resources. All Arca on sealed resources
are removed from its original categories and mapped to this category. Then, every
Principal that performed Break the Glass and was mapped to the original category is
also mapped to sealed_resources.

Note that, even though all these rules apply very different logics, their consequences
always create, modify or update Pca, Arca and Barca, i.e. these rules affect the mapping
between principals and categories and between categories and permissions. The result
of processing these rules is a set of facts that reflects the base relations and all the
interactions introduced by the custom facts. That set is then processed by the rules that
compute the resulting PAR and BAR, as described in the next section.

39

4.2.2 Authorization

Authorization rules are used to compute PAR and BAR from the base facts in the
session. In other words, this set of rules applies the logic defined in the rewrite rule
(3.2). Since they are not implementation dependent, they could be easily replaced by
regular code.

Authorizations are computed, from the results of applying custom fact rules, by the
following pair of rules:

rule "Auth PAR"

salience -100

when

$principal : Principal($pid : id)

$category : Category($cid : id)

$pca : Pca(principal.id == $pid, category.id == $cid)

$arca : Arca(categories.containsOrEquals(category.id, $cid))

then

pars.add(

new Par(

$principal,

categories.getPermissionChain($cid, $arca.category.id),

$arca.permission

))

end

rule "Auth BAR"

salience -100

when

$principal : Principal($pid : id)

$category : Category($cid : id)

$pca : Pca(principal.id == $pid, category.id == $cid)

$barca : Barca(categories.containsOrEquals($cid, category.id))

then

pars.add(

new Par(

$principal,

categories.getProhibitionChain($cid, $barca.category.id),

$barca.permission

))

end

The first rule computes the authorizations and the second computes the prohibitions.
Their conditions ensure that all Pca and Arca (Barca for prohibitions) with matching
categories are found (like a database join). Their consequences insert a new Par in
Pars for each match (Pars is the provided instance of Pars() that allows retrieving the

40

results from the engine).

Function categories.containsOrEquals(a,b) returns true if a and b are the same
or if a is a superset of b. This function provides the hierarchical logic applied to
categories. Parent categories are more general than their children (defining an “is a”
relation between child and parent). This means that if a parent has an authorization
then its children inherits it. Prohibitions, on the other hand, are propagated from more
specific to more general categories, therefore the same function in rule Prohibitions,
has the parameters switched (semantically equivalent to “is contained or equals”).

The pair of functions getPermissionChain(a,b) and getProhibitionChain(a,b) as-
sures that Pars include the hierarchy for authorizations that are propagated. For in-
stance, a Par in the form {P, [C1, C2], Perm} means that principal P is mapped to
category C1, which has permission Perm but that permission was inherited from C2.

The two rules above implement almost directly the operational realisation of Axioms (a1),
(a2), (a3) and (a4) given by the rewriting rule (3.2).

There is, however, a subtle but important difference between the rewrite specification
and the rules above. The if clause in the rewrite specification implies that there are
no conflicting authorizations in the result, i.e. an access request can not be authorized
and prohibited, simultaneously.

This type of conflicts can be solved by either removing the conflicting authorization
or the conflicting prohibition. The preferred solution depends on the implementation.
We opted by adding two rules, Auth conflict - Remove Arca and Auth conflict -

Remove Barca, that can be prioritized by configuration.

rule "Auth conflict - Remove Arca"

salience configs.getSalienceConflictRemoveArca()

when

Category($cId : id)

Action($aId : id)

Resource($rId : id)

$arca : Arca(categories.containsOrEquals(category.id, $cId),

permission.action.id == $aId, permission.resource.id == $rId)

Barca(category.id == $cId, permission.action.id == $aId,

permission.resource.id == $rId)

then

delete($arca)

end

41

rule "Auth conflict - Remove Barca"

salience configs.getSalienceConflictRemoveBarca()

when

Category($cId : id)

Action($aId : id)

Resource($rId : id)

$barca : Barca(categories.containsOrEquals($cId, category.id),

permission.action.id == $aId, permission.resource.id == $rId)

Arca(category.id == $cId, permission.action.id == $aId,

permission.resource.id == $rId)

then

delete($barca)

end

The salience value is configurable (as described in Section 6.3): value arca prioritizes
authorizations over prohibitions and barca has the opposite effect.

If this configuration is set to barca, getSalienceConflictRemoveArca() returns a value
bigger than getSalienceConflictRemoveBarca(), which means that rule Auth conflict

- Remove Arca will run before Auth conflict - Remove Barca and conflicts will be
resolved by removing authorizations. If the configuration is set to arca the result will
be the exact opposite.

The conflict rules above, must be executed after custom fact rules and before pars rules.
Therefore, getSalienceConflictRemoveArca and getSalienceConflictRemoveBarca

must return negative values (but higher than the salience of Auth PAR and Auth BAR).
The rules processing sequence can be now illustrated in more detail by Figure 4.2.

The conflict rules above can also be seen as the implementation of the operation (OP),
described in the distributed CBAC model and discussed in Sections 3.1 and 3.2, which
is responsible for providing a single result from the composition of the results from
different sites.

In fact, rules derived from different use cases should be treated as different sites even
if they do not correspond to actual physical sites. Requirements for use cases, as the
examples above, can have different “owners”. And specific entities may differ in different
cases.

In the distributed approach, each site (or set of rules) is responsible for answering to
access requests on its actions and permissions according to its requirements. The
composition of answers from the different sites is delegated to a central point. This
layered approach simplifies the task of rule management.

42

Figure 4.2: Drools Session: Complete Rules Processing Sequence

The implementation of the distribution version implies being able to define which custom
rules are used at each site and which entities are mapped to each site. Even though the
distributed version is not yet implemented in this work, the separation of the composition
logic provided by the conflict rules is a good starting point for that evolution.

43

Chapter 5

The G-ACM Tool

The G-ACM was developed to fulfill the main goal of this work, which consists of the
development of a tool to visualize CBAC policies as a graph, following [8].

Besides the graphical tool, or G-ACM Console, it also includes an engine to compute
dynamic policy graphs as defined in [9], which we call G-ACM Server. Used together,
these two components not only provide a way of visualizing static policy graphs but also
provide some clues about how a policy managing tool can be used in systems that use
dynamic policies.

The G-ACM prototype is accessible online at the following address:

http://acm-joaosa.rhcloud.com/app/#/main

The following Subsection describes the system from the conceptual point of view. Sec-
tion 5.2 gives a brief explanation of the console’s usage.

5.1 Conceptual model

As mentioned, the G-ACM Server implements the rewrite based semantics of the CBAC
model. It uses the Drools engine to compute authorizations (PAR and BAR) and
relations PCA,ARCA and BARCA from the base entities and a set of custom facts
(and an optional set of base relations PCA, ARCA and BARCA). It exposes its logic
through a set of services that allow client applications to:

44

• Get the list of principals, categories, actions and resources configured in the
system.

• Get the list of configured custom facts and the possible values for their parame-
ters.

• Compute PCA, ARCA, BARCA, PAR and BAR from a set of facts applying the
configured rules described in Chapter 4.

The G-ACM Console provides a graphical representation of relations PCA, ARCA,
BARCA, PAR and BAR, showing authorizations for a specific system state. Addition-
ally, it uses the above services to expose available custom facts that correspond to the
system parameters that affect authorizations. The user can simulate authorizations for
different system states by choosing the input facts for the authorization service.

Figure 5.1: G-ACM: Conceptual Model

Figure 5.1 shows the two components from a conceptual perspective. The numbers in
the diagram represent the sequence of events for a typical interaction between the two
components:

45

1. The console uses the services to get the base entities and the custom facts
configured in the system.

2. The authorization service is called, generating a Drools session that is fed with
the custom facts chosen by the user, the base entities, the base relations and the
configured rules.

3. The console displays the resulting authorizations and relations.

5.2 Console Usage

This section describes how authorizations are represented in the G-ACM Console and
the main features available.

5.2.1 Authorization Graph

The G-ACM Console explores the representation of access control policies, presented
in [8], where authorizations are represented as a graph having nodes of types P, C, A
and R corresponding to entities principal, category, action and resource, respectively.
A path of length three with edges PC, CA and AR represents an authorization, i.e. the
set of paths in this form represents the relation PAR.

Note that, not all entities are part of an authorization or prohibition. For instance, a
principal may not be assigned to any category or a category may not be linked to any
principal or permission. The same is true for relations PCA, ARCA and BARCA.
Even though PAR and BAR may be inferred from these relations, that does not mean
that all elements in these relations are part of an authorization or prohibition (e.g., a
principal may be linked to a category that has no permissions or a category may have
permissions but no principals assigned).

Furthermore, due to the dynamic behaviour of the model, elements not included in
permissions or prohibitions may change with the changes in context.

From the authorization management perspective, it is useful to have a complete view
of entities and relations. Therefore the graph displays all entities and relations PCA,
ARCA and BARCA, as shown in Figure 5.2, using colours to tell apart nodes and

46

Figure 5.2: Detail of an authorization graph

links in authorizations from the rest. Colours of nodes and links in the graph have the
following meanings:

• The light grey nodes and edges represent the set of base entities and relations
that are not part of any authorization.

• Nodes included in any authorization are displayed in colours, the edges in autho-
rization graphs are represented in a darker shade of grey.

• The nodes in the selected path are shown in brighter colours (in this example,
the path [P.Cox, Specialist, Resident, Create, Lab Order]).

• Edges in the selected path are represented in a even darker shade of grey.
Except for edges of type CA and AR that have specific rules:

– Authorizations are represented in green.

– Prohibitions are represented in red.

– If the link is representing simultaneously an authorization (or more) and a
prohibition (or more) than it is represented in grey such as all other edge
types.

According to these rules, authorizations are represented as shown in Figure 5.3:

The ⊆ relation between categories can be represented as a directed path between
two nodes CC. Therefore valid authorizations can have any number of CC edges, as

47

Figure 5.3: Permission

shown in Figure 5.4. This representation provides information on authorizations but
also on their propagation through the ⊆ relation between categories. In this case, the
permission is transmitted to principal P. Cox through the chain Specialist ⊆ Resident ⊆
Intern. Note that, Specialist is a specialization of Resident, which specializes Intern.
More broadly, this relation is defined semantically as an is a relation between categories
(in this case a ⊆ relation), as required by Axiom (a1).

Figure 5.4: Inherited Permission

Prohibitions (relation BAR) are represented in a similar way, but the links CA and AR
are displayed in a different colour as depicted in Figure 5.5.

48

Figure 5.5: Inherited Prohibition

This graph results from the following pair of authorizations:

[C.Turk, Resident, Create, Lab Order] : Authorization

[C.Turk, Resident, Create, Prescription] : Prohibition

This, following the rules of inheritance described in 4.2.2, generates the additional pair:

[P.Cox, [Specialist, Resident], Create, Lab Order] : Authorization

[J.Dorian, [Intern, Resident], Create, Prescription] : Prohibition

Note that prohibitions are propagated in the inverse direction of authorizations. In this
case the prohibition is propagated from the Specialist to the Intern, if the former is not
allowed to create prescriptions then neither is the latter.

The selected path is the authorization subgraph that contains the node selected by the
user (the node with a large grey circle around it). Figure 5.6 shows the same example
as in Figure 5.5 with the difference that the selected node is now the action Create.

All nodes and links are now selected because the selected node, action Create, is part
of all authorizations. Furthermore, link (Resident, Create) is shown in grey because it
is representing both a prohibition and a authorization.

5.2.2 Custom Fact Selection

As mentioned, in the dynamic CBAC, the assignment of principals and permissions
to categories can depend on the system’s state. This characteristic provides great

49

Figure 5.6: Authorization Graph: Selection on Action

flexibility, but introduces some degree of complexity when managing and verifying au-
thorizations. The effective set of authorizations depends on the system’s state at that
moment and on the logic associated to each of the parameters used by the authorization
engine. Different system parameters can have cross effects making it difficult to predict
which will be the authorizations for a specific set of parameter values.

The G-ACM console helps dealing with that complexity by providing a form of simulating
scenarios for the different parameters involved in the authorization evaluation. The left
pane, accessible through the button in the top left corner of the screen, gives access
to the list of available custom facts. Figure 5.7 shows the steps needed to select a
fact and the values of its parameters (for details on the configuration of custom facts
please consult Section 6.3). After selection, the button UPDATE submits the chosen
facts and parameter values to the engine and updates the graph with the new set of
authorizations.

Figure 5.7: Custom Fact Selection Sequence

50

5.2.3 History

This feature was introduced to help the user to analyze the effects of context changes
on authorizations.

When a graph is updated the data from the previous graph is stored in a list. This list
is available in menu HISTORY in the pane on the right side of the screen, as shown in
Figure 5.8.

Figure 5.8: Graphs History Menu

If the user selects two entries/graphs from the list, then the buttons below become
active. SHOW ADDED displays the authorizations and relations that exist in the most
recent graph and did not exist in the older one. SHOW REMOVED does the opposite:
the resulting graph displays the set of authorizations and relations that existed in the
older one and do not exist in the most recent.

A double click on an item in the list will show the corresponding graph (the list of selected
facts is also updated to the set that was used to generate that graph). Pressing RESET

is equivalent to double click on the Current item in the list, restoring the most recent
graph.

5.2.4 Nodes Grouping

Nodes Grouping improves graphs readability, in particular in large graphs, when there
are many entities with the same set of links.

Button GROUP ALL groups all nodes that have the same type and the same exact set

51

of neighbours (have links to the same set of nodes).

Figure 5.9: Grouped Nodes

The set of nodes in the same group (or cluster) is represented by a larger circle than
regular nodes. Figure 5.9 shows the detail of a graph with two regular nodes and two
clusters. The cluster label lists the name of its elements. For clusters with more than
four elements the list can be made visible by double clicking on the node.

Button UNGROUP ALL replaces the cluster nodes by their elements, restoring the orig-
inal form of the graph .

5.2.5 Settings

The right pane includes some additional settings:

• Type of Layout : this option allows changing between a regular graph layout and
a D3 force layout. In the normal layout nodes are positioned according to their
types and hierarchy (for categories). In the force layout nodes are positioned by
gravitational forces. This is part of the study on variations of the form of displaying
the graph and is still work in progress.

• Show Labels: this check box shows/hides the labels next to nodes.

• Conflict priority : this configuration allows changing the conflict resolution strategy,
described in Section 4.2.2. Option ARCA means that in case of a conflict, autho-
rizations have priority over prohibitions and BARCA has the opposite effect. This
is a server side configuration, it becomes active only after pressing the UPDATE

button and will only affect next updates to the graph.

52

• Menu FILTER: This menu (Figure 5.10) allows hiding/showing the relation in the
graph by type. This is useful to improve the graph readability when the number of
nodes and links increases.

Figure 5.10: Relations Filter

53

Chapter 6

Technical Implementation

This section describes in detail the technical implementation of the G-ACM. First, we
portrait the system’s architecture, then we describe the tools used in its implementation,
and finally we provide a detailed description of the technical aspects of each compo-
nent.

6.1 Architecture

The G-ACM has two main components: the server that computes the dynamic policy
graphs, and the console that provides the user interface of the system and displays the
policies in a graphical format.

Figure 6.1: High Level Architecture

The console uses web technologies so that it can run in a web browser. The engine

54

was developed in Java and uses the Drools rule engine to compute the authorizations.
Figure 6.1 resumes the technologies used in each layer.

The console was developed in HyperText Markup Language (HTML) and JavaScript
and uses two main frameworks: Angular JS [37] and D3.js [38]. Angular JS is a Model-
view-controller (MVC) and an Inversion of control (IoC) platform and D3.js is used to
draw the main graph.

The server side, developed in Java, uses Spring [39] for IoC and for exposing services
and uses the Drools rule engine to compute authorizations.

6.2 Chosen Tools

Spring The Spring Framework is an open source application framework and IoC
container for Java. Spring was developed as replacement of Enterprise JavaBeans
(EJB) and became popular in the Java community.

Besides the IoC container, which is central to the framework, Spring offers many differ-
ent features, such as: aspect-oriented programming, data access, transaction manage-
ment, MVC framework, among others.

The G-ACM uses the IoC container for Dependency Injection (DI) and the MVC frame-
work to create the services that are used to communicate with the server.

• IoC container : the IoC container is central to the framework, it provides a mech-
anism for configuring and managing Java objects. Applications that use Spring
rely on the container for managing object lifecycles: configuring objects, creating
them, calling their initialization methods, and wiring them together.

Objects configured by the framework are also called managed objects or beans.
Beans definitions are provided to the container either by XML or code annotations.

Beans can be accessed through dependency lookup or DI. Dependency lookup
allows requesting objects from the container by name or type. DI, on the other
hand, is a pattern where the container passes objects by name to other objects,
via either constructors, properties, or factory methods.

The G-ACM Server uses extensively Spring’s DI mechanism that largely reduces
the coupling between components and simplifies their replacement.

55

• Spring’s Web MVC: the Spring’s Web MVC [40] component is used to expose
the Hypertext Transfer Protocol (HTTP) services used to communicate with the
server. This framework is request-driven, a central Servlet receives requests and
dispatches them to controllers.

Controllers are defined through an annotation-based programming model and do
not have to extend specific base classes or implement specific interfaces.

Section 6.3 describes, in detail, how this component is used.

AngularJS AngularJS (or Angular) is a framework to build dynamic web applications.
It uses HTML as a template language and extends HTML’s syntax to express applica-
tion’s components. It provides a way of building applications in a well-defined structure
and avoids having to write all the Document Object Model (DOM) and AJAX code
by hand. The main features include: data-binding, basic templating directives, form
validation, routing, deep-linking, reusable components and DI.

The level of abstraction of Angular makes it a good fit for CRUD applications. The
authorization graph in the G-ACM requires intensive DOM manipulation, which is not
something at which Angular excels. For that reason a specific library (see paragraph
D3, below) was used to build the authorization graph and Angular is used in the rest of
the application.

D3 D3 [38] is a JavaScript framework that allows binding data to a DOM and apply
data driven transformation to the document.

The G-ACM uses D3 to draw the authorization graph.

56

6.3 Server

The G-ACM’s server component is a web application developed in Java. Maven [41]
is used for build management. The project is divided in four modules organized as
depicted in the following diagram:

Figure 6.2: G-ACM Modules

This organization derives from the role that each module plays in the application:

• ACM-Core loads the rules and base entities into memory and provides the logic
responsible for the computation of authorizations.

• ACM-CustomFacts allows configuring the available parameters that affect rules
evaluation.

• ACM-Services provides the services that allow interaction with the application.

• ACM-Web contains the web application configuration, namely the web.xml de-
ployment descriptor that initializes Spring’s listener and dispatcher Servlet.

To compile the project using Maven, one should run the following command from the
project’s root directory:

mvn clean install -U

The resulting war (web application archive) file is written to the folder /ACM-Web/target.

As mentioned before, the server component of the G-ACM uses Drools to implement
the rewrite based semantics of the CBAC model and provides services that expose

57

the system’s configuration and allow requesting the computation of authorizations for a
specific set of parameters. It can be divided in the following set of high level features:

• Base configuration: loads into memory the base configuration (principals, cate-
gories, actions and resources).

• Custom facts configuration: configures the implementation specific parameters
that affect rule evaluation (i.e., configure the possible set of parameters that define
the rule execution context).

• Rule processing: computes PAR, BAR, ARCA,BARCA and PCA according to
implementation specific rules, the provided context and Axioms (a1)-(a4).

• Services API: provides a set of services that expose the base configuration, the
custom facts configuration and the services to compute authorizations.

In the remaining of this section we describe in detail the implementation of these fea-
tures. Since they all rely on Spring’s DI mechanism, we start by describing how that
mechanism is used.

Spring container and Spring beans Spring container is initialized by the inclusion
of the listener ContextLoaderListener in the applications web.xml file.

<context-param>

<param-name>contextConfigLocation</param-name>

<param-value>classpath:spring/application-config.xml</param-value>

</context-param>

<listener>

<listener-class>org.springframework.web.context.ContextLoaderListener</listener-class>

</listener>

Parameter contextConfigLocation provides the location of the Spring’s configuration
file, named application-config.xml in this case. That file includes the following entry:

<context:property-placeholder

location="classpath:acm-application.properties, classpath:acm-facts.properties" />

The context:property-placeholder entry provides a way of loading key-value prop-
erty files to the container, which can be later used in other configurations. The rest of the

58

lines of the application-config.xml are responsible for importing other configuration
files, where the actual Spring beans are configured.

Spring beans, or beans, are the Java objects that are managed by the Spring container.
These are normal Java classes that are initialized through the Spring configuration and
that can be used by Spring’s DI mechanism.

Beans can be declared by annotation or in XML files. In the G-ACM, the configuration
through XML was used.

The following example shows the configuration file used in the G-ACM to define the
beans related to custom facts. The beans that hold the lists of principals and categories
are defined in the first two bean blocks. Since the constructors of the corresponding
classes need the name of the file containing the data, both have a constructor-arg

attribute that is used to inject the name of the configuration files that hold the lists of
principals and categories.

...

<bean id="principals" class="acm.core.fact.Principals">

<constructor-arg type="java.lang.String" value="${file.principal}"/>

</bean>

<bean id="categories" class="acm.core.fact.Categories">

<constructor-arg type="java.lang.String" value="${file.category}"/>

</bean>

...

<bean id="pcas" class="acm.core.fact.Pcas">

<constructor-arg type="java.lang.String" value="${file.pca}"/>

<constructor-arg ref="principals"/>

<constructor-arg ref="categories"/>

</bean>

...

This configuration makes sure that, at the application startup, beans principals and
categories are created. In Spring, beans are singletons by default, so this will also
make sure that only a single instance of each class will be available in the system.

The third bean block describes how the class Pcas, which holds the initial mapping
between principal and categories should be instantiated. In this case, the constructor
of class Pcas has three parameters: besides the file name, as in principals and
categories, it has one parameter of type Principals (acm.core.fact.Principals)
and another of type Categories. Therefore instead of providing values, the configura-
tion provides references to beans principals and categories defined previously.

59

The values of the parameter of type String are in the form ${key}, this means that
the Spring container will replace those keys by the corresponding values loaded by the
context:property-placeholder configuration described above.

Base configuration On startup the core module loads the base entities (Principal,
Category, Action and Resource). These entities are described in a set of JSON files.
For instance, the list of principals is defined in the file principal.json, which contains a
list of objects of the form:

{ "id": "000001",

"name": "P. Cox",

"title": "MD" }

These lists are loaded to singletons Principals, Categories, Actions and Resources,
which are initialized through the following Spring configuration (file fact-config.xml):

<bean id="principals" class="acm.core.fact.Principals">

<constructor-arg type="java.lang.String" value="${file.principal}"/>

</bean>

<bean id="categories" class="acm.core.fact.Categories">

<constructor-arg type="java.lang.String" value="${file.category}"/>

</bean>

<bean id="actions" class="acm.core.fact.Actions">

<constructor-arg type="java.lang.String" value="${file.action}"/>

</bean>

<bean id="resources" class="acm.core.fact.Resources">

<constructor-arg type="java.lang.String" value="${file.resource}"/>

</bean>

Note that the constructor of each of these classes accepts the file name for the corre-
sponding JSON configuration file.

Besides the initial entities, the system allows configuring initial sets for the relations
principals/categories, categories/permissions and categories/prohibitions. These con-
figurations define a base set of PCA,ARCA and BARCA as in a RBAC system (more
specifically an Hirearchical RBAC since categories can be described in a hierarchical
fashion).

The file for PCA contains a list of pairs principal/category. For example, the fact that
principal with id 000001 is mapped to the category physician_specialist, is repre-
sented by:

60

{ "principal": "000001",

"category": "physician_specialist" }

Mapping category/permission and category/prohibition have similar layouts. For exam-
ple, the following configuration defined in the file for ARCA expresses the members of
the category clinician are authorized to read prescriptions. The same configuration
in the file for BARCA means that the members of category clinician are prohibited to
read prescriptions.

{ "category": "clinician",

"action": "read",

"resource": "prescription" }

These configurations are loaded from a set of JSON files to the singletons Pcas, Arcas
and Barcas through a Spring configuration in file fact-config.xml:

<bean id="pcas" class="acm.core.fact.Pcas">

<constructor-arg type="java.lang.String" value="${file.pca}"/>

<constructor-arg ref="principals"/>

<constructor-arg ref="categories"/>

</bean>

<bean id="arcas" class="acm.core.fact.Arcas">

<constructor-arg type="java.lang.String" value="${file.arca}"/>

<constructor-arg ref="categories"/>

<constructor-arg ref="actions"/>

<constructor-arg ref="resources"/>

</bean>

<bean id="barcas" class="acm.core.fact.Barcas">

<constructor-arg type="java.lang.String" value="${file.barca}"/>

<constructor-arg ref="categories"/>

<constructor-arg ref="actions"/>

<constructor-arg ref="resources"/>

</bean>

Like base entities, the constructor of each class also receives the name of the config-
uration file. In this case, however, those constructors receive additional parameters:
bean principals and bean categories are injected in Pcas; Arcas and Barcas receive
beans categories, actions and resources.

It is important to note that the implementations of Principals, Categories, Actions,
Resources, Pcas, Arcas and Barcas can be changed by updating the attribute class and
constructor arguments in the configurations above. A plausible scenario for replacing

61

these implementations would be reading the base configurations from different data
sources (e.g. a database or a RBAC system). As shown in Figure 6.3, the only
restrictions on new implementations is to implement the interface FactsListInterface.

Figure 6.3: Classes Diagram: Base Configuration

Custom facts configuration In Drools, the data used in the evaluation of rules are
instances of regular Java objects and are called facts (see Section 4.1 for further detail).

The G-ACM defines three types of facts: instances of the base entities (Principal,
Category, Action, Resource), the base relations (Pca, Arca and Barca), and a set of
configurable entities that we call custom facts. Upon user input, custom facts are added
to the rules execution context affecting the resulting authorizations. This provides the
dynamic behaviour in the G-ACM.

Unlike base entities and base relations, which are part of the definition of the CBAC
model, custom facts are implementation specific, therefore available custom facts, their
parameters, and their possible values must be configurable.

Property file.custom.fact.config specifies a JSON file that describes the custom
facts available in the system. The following sample exemplifies the configuration for the
fact RESPONSIBLE_PHYSICIAN:

62

{

"id": "RESPONSIBLE_PHYSICIAN",

"description": "Principal is the physician responsible for the patient",

"label": "Responsible Physician",

"single": false,

"className": "acm.core.fact.custom.ResponsiblePhysician",

"parameters": [

{

"type": "SELECTION",

"index": 0,

"label": "Responsible physician",

"description": "Responsible physician",

"valuesType": "PRINCIPAL"

}

]

}

Property id identifies the custom fact type and has to be unique (if there are two config-
urations with the same id then the second one will overwrite the first). Property label

is the human readable identifier for the custom fact type and description provides
its meaning. Property single indicates if multiple instances or just a single one are
acceptable in each session. Property className specifies the object that this fact
corresponds to.

Array parameters defines the list of parameters of a fact (a single one, in this case).
The type SELECTION indicates that the property accepts a value from a predefined set
(typically displayed as a drop-down list). Property index, identifies the position in the
list of parameters, the first parameter must have index 0, the second 1 and so on.
Property valuesType indicates the type of values that the parameter accepts. These
values are also implementation specific, therefore value types are also configurable.
Property file.custom.fact.parameterValues.config specifies a JSON file to config-
ure available value types, which are defined as entries of the form:

{

"id": "PRINCIPAL",

"bean": "principalValues"

}

Property id identifies the type of value, and valuesType in the custom fact configuration
must refer to one of these ids. Property bean is the bean that implements the class as
defined in Spring’s configuration file customFacts-config.xml:

<bean id="principalValues" class="acm.core.fact.custom.config.param.values.PrincipalValues">

63

<constructor-arg ref="principals"/>

</bean>

Parameter values beans are obtained at runtime by their name through the method
getParameterValuesBean in the helper class ParameterValuesBeanHelper.

Figure 6.4 shows the classes diagram for base facts and for two examples of custom
facts: CriticalState and SealedResource. It is possible to see that both types imple-
ment the interface FactInterface, which has a single method: getId(). That method
is used during rule evaluation to identify fact instances, therefore it must return a unique
identifier for each instance of a fact.

Figure 6.4: Classes Diagram: Fact Interface

Classes CustomFactsConfig and ParameterValuesConfig load the respective JSON
files on startup. These classes are instantiated by the following Spring configuration,
which also creates a singleton for CustomFactFactory:

<bean id="parameterValuesConfig"

class="acm.core.fact.custom.config.param.values.ParameterValuesConfig">

<constructor-arg type="java.lang.String" value="${file.custom.fact.parameterValues.config}"/>

</bean>

64

<bean id="customFactsConfig" class="acm.core.fact.custom.config.CustomFactsConfig">

<constructor-arg type="java.lang.String" value="${file.custom.fact.config}"/>

<property name="parameterValuesBean" ref="parameterValuesBeanHelper" />

<property name="parameterValuesConfig" ref="parameterValuesConfig" />

</bean>

<bean id="customFactFactory" class="acm.core.fact.custom.CustomFactFactory">

<property name="customFactsConfig" ref="customFactsConfig" />

<property name="parameterValuesConfig" ref="parameterValuesConfig" />

</bean>

CustomFactFactory, as shown in Figure 6.5, uses these configurations to build new
custom fact instances at runtime: from property className it instantiates the class
using reflection and uses function setParamValues from CustomFactInterface (shown
in Figure 6.4) to set the values for the parameters.

Figure 6.5: Classes Diagram: Custom Facts Configuration

The values for the custom fact parameters are chosen by the user from the set of
acceptable values, which are provided by the method getValues() defined in interface
ParameterValuesInterface (see Diagram 6.6). For example, class PrincipalValues

returns the list of principals’ ids configured in the system whereas BooleanValues return
a list with values true and false.

The other method in the same interface, getObjectByValue(String value) is used by
CustomFactFactory to get the object instance for the selected value. For instance, in
class PrincipalValues it returns the instance of class Principal that has the provided
id.

65

Figure 6.6: Classes Diagram: Custom Facts Parameters Configuration

It is important to note that a new custom fact, using available value types, can be added
in two steps: create an implementation for CustomFactInterface and add a new entry
to the custom fact configuration file.

New value types can be added in three additional steps: provide a new implementation
for ParameterValuesInterface; add a new bean entry for that class in the Spring
configuration file customFacts-config.xml; and add the new parameter value to the
JSON file file.custom.fact.parameterValues.config.

Rule processing Class ParsCore is responsible for the orchestration of the rule pro-
cessing sequence. It includes properties that store the list of rule files and hold ref-
erences to the sets of base facts and relations. This class is instantiated, and its
properties are set by the following Spring configuration:

<bean id="parsCore" class="acm.core.ParsCore">

<property name="configs" ref="configs"/>

<property name="principals" ref="principals"/>

<property name="categories" ref="categories"/>

<property name="actions" ref="actions"/>

<property name="resources" ref="resources"/>

66

<property name="pcas" ref="pcas"/>

<property name="arcas" ref="arcas"/>

<property name="barcas" ref="barcas"/>

<property name="rulesFiles">

<list value-type="java.lang.String">

<value>${file.rules.pars}</value>

<value>${file.rules.custom}</value>

</list>

</property>

</bean>

Properties file.rules.pars and file.rules.custom specify the files that contain the
rules described in Section 4.2. The first contains authorization rules and the second
custom fact rules.

Method runRules, shown below, accepts a list of custom facts and triggers the process
of rules evaluation.

public Pars runRules(List<FactInterface> customFacts) {

ParsCoreThread parsCoreThread = new ParsCoreThread(configs, principals,

categories, actions, resources, pcas, arcas, barcas,

customFacts, rulesFiles);

// Observer for results

parsCoreThread.addObserver(this);

Thread tParsCore = new Thread(parsCoreThread);

tParsCore.run();

return getResults();

}

This method, creates a thread ParsCoreThread, providing the list of facts, custom facts,
and rule files and uses Java’s pattern observer/observable to get the results from the
thread when the processing is finished.

ParsCoreThread constructor builds a ParsRuleSet, that groups the data as required by
the Drools session API:

• List<FactInterface> facts: a list that holds all facts to be inserted in the
session.

• String[] rules: an array containing the names of all rule files.

67

• HashMap<String, Object> globals: this map includes all data needed to eval-
uate rules that are not facts (i.e. do not affect the computed results). In this case
those are the base entities, configurations and an instance of acm.core.fact.Pars
that is used to retrieve the results.

ParsCoreThread run method creates an instance of StatefulRuleRunner that creates
a Drools stateful session to process the rules (for more information on Drools stateless
and stateful sessions consult Drools documentation [35]).

Upon completion, the results are retrieved using ParsRuleSet method getResults().
Figure 6.7 shows the main classes used to process rules in the G-ACM.

Figure 6.7: Classes Diagram: Rules Processing

68

Services API As mentioned in Section 6.2, G-ACM services are implemented on top
of Spring MVC. This framework is request-driven: a central Servlet receives requests
and dispatches them to controllers. The DispatcherServlet is a regular servelt (in-
herits from the HttpServlet base class) and, as such, is declared in the application’s
web.xml:

<servlet>

<servlet-name>dispatcherServlet</servlet-name>

<servlet-class>org.springframework.web.servlet.DispatcherServlet</servlet-class>

<init-param>

<param-name>contextConfigLocation</param-name>

<param-value>/WEB-INF/mvc-config.xml</param-value>

</init-param>

<load-on-startup>1</load-on-startup>

</servlet>

<servlet-mapping>

<servlet-name>dispatcherServlet</servlet-name>

<url-pattern>/</url-pattern>

</servlet-mapping>

The url-pattern attribute is set to �/� which means that this servlet handles all incom-
ing requests. Parameter contextConfigLocation specifies the location of the configu-
ration file for the beans to be loaded at the servlet startup. Controllers are configured
as any other beans (see paragraph Spring container and Spring beans, above). In
the G-ACM this file contains the configuration for the controller classes that handle re-
quests related to base entities, custom facts configuration, authorizations, and configu-
rations, (BaseModelController, CustomFactsController), AuthorizationController,
and ConfigController, respectively)

These controllers are instantiated by Spring through the following configuration in file
mvc-config.xml:

<bean id="baseController" class="acm.services.base.BaseModelController">

<property name="sites" ref="sites"/>

<property name="principals" ref="principals"/>

<property name="categories" ref="categories"/>

<property name="actions" ref="actions"/>

<property name="resources" ref="resources"/>

</bean>

<bean id="customFactController" class="acm.services.fact.CustomFactController">

<property name="customFactsConfig" ref="customFactsConfig"/>

</bean>

69

<bean id="authorizationController" class="acm.services.auth.AuthorizationController">

<property name="customFactFactory" ref="customFactFactory"/>

<property name="parsCore" ref="parsCore"/>

</bean>

<bean id="configsController" class="acm.services.config.ConfigController">

<property name="configs" ref="configs"/>

</bean>

Spring provides an annotation-based programming model to implement MVC controllers.
Controllers implemented in this style do not have to extend specific base classes or
implement specific interfaces.

Annotation @Controller is used to indicate that a class serves the role of a controller.
The dispatcher scans classes with this annotation and detects the methods annotated
with @RequestMapping and maps them to HTTP requests.

Consider, for instance, method getParamOptions in class CustomFactController that
provides the possible values for the parameters configured for each custom fact:

...

@Controller

public class CustomFactController {

@RequestMapping("/customFacts/{factId}/params/{rank}/options")

public @ResponseBody OptionDTO getParamOptions(@PathVariable String factId,

@PathVariable int rank) {

CustomFactEnum customFact = CustomFactEnum.getEnumByName(factId);

return new OptionDTO(factId, rank, customFactsConfig.getOptionsList(

customFact, rank));

}

/* Other methods... */

}

...

Besides the annotation @Controller that defines this class as a controller, annotation
@RequestMapping above ensures that the HTTP requests are mapped to the controller’s
methods. For instance, calls to the url /customFacts/{factId}/params/{rank}/options
are mapped to the method getParamOptions().

The URL in @RequestParam supports parameters. This pattern, called URI templates,
provides a way to access parts of the URL. In this case, it has variables factId and
rank.

70

Annotation @PathVariable on a method argument binds it to the value of a URI tem-
plate variable, e.g.: /customFacts/CRITICAL_STATE/params/0/options maps parame-
ter factId to CRITICAL_STATE and rank to 0. Those variables are then used in calls
to methods. A @PathVariable argument can be of any simple type such as int, long,
Date, etc. Spring automatically converts to the appropriate type. If the conversion fails,
it throws an exception TypeMismatchException.

@ResponseBody annotation is used to bind a function return value to the value of the
HTTP response body. In the G-ACM, objects in the body of requests and responses
are transmitted in JSON format. For instance, the following object is return by the call
to URL /customFacts/SEALED_RESOURCE/params/0/options:

{

"fact":"SEALED_RESOURCE",

"rank":0,

"options":[

{ "value":"ehr_observation_lab",

"text":"Lab result" },

{ "value":"ehr_action_administration",

"text":"Administration" }

]

}

To assure decoupling between application modules, the controllers do not include ap-
plication logic besides converting internal objects to Data Transfer Objects(DTOs) and
vice-versa. DTOs are simple objects that have no behaviour and are used to transfer
data between applications. Figure 6.8 shows Principal and Pca objects and their
counterparts DTOs PrincipalDTO and PcaDTO.

To convert between Java objects and JSON, the G-ACM uses Spring’s message conver-
sion support. This mechanism requires the inclusion of the Jackson libraries databind,
core and annotations [42] to the project. It is activated through the following entry in
Spring’s configuration file:

<mvc:annotation-driven>

<mvc:message-converters>

<bean class="org.springframework.http.converter.StringHttpMessageConverter"/>

<bean class="org.springframework.http.converter.json.MappingJackson2HttpMessageConverter"/>

</mvc:message-converters>

</mvc:annotation-driven>

This configuration assures that these conversions are done automatically at all points

71

Figure 6.8: Classes Diagram: Data Transfer Objects

with annotation @ResponseBody or @RequestBody.

The complete list of services provided by the G-ACM Server is as follows:

• BaseModelController:

– /principals: get the list of principals.

– /principals/{principalId}: get principal with id {principalId}.

– /categories: get the list of categories.

– /categories/{categoryId}: get category with id {categoryId}.

– /actions: get the list of actions.

– /actions/{actionId}: get action with id {actionId}.

– /resources: get the list of resources.

– /resources/{resourceId}: get resource with id {resourceId}.

• CustomFactsController:

– /customFacts: get the list of configured custom facts.

– /customFacts/{factId}/params/{index}/values: get the list of accept-
able values for the parameter at index {index} for custom fact with id {factId}.

72

• AuthorizationController:

– /pars (POST): get the computed list of assignments principal/category (PCA),
assignments category/permission (ARCA), assignments category/prohibition
(BARCA), and authorizations (PAR and BAR) for the provided list of facts.
As input, this service receives a list of CustomFactInputDTO containing the
set of facts and their parameters values to be used when computing au-
thorizations. Then, it uses the CustomFactFactory, described in paragraph
Custom facts configuration, to build the corresponding custom fact objects
from that input, and calls the method that processes the rules, described in
Rule processing, above. Finally, it converts the results back to the corre-
sponding DTOs and returns them to the caller.

• ConfigController:

– /configs: get the list of available server configurations and acceptable list
of values for each configurations.

– /configs (POST): set configurations.

Server configuration This component derived from the need to configure the priority
between authorizations and prohibitions in case of conflict, as described in Sections
4.2.2 and 5.2.5. Since the need for additional configurations was expected, it was
decided to create a specific model, depicted in Figure 6.9, for this purpose.

Figure 6.9: Classes Diagram: Config Model

Each value of ConfigEnum represents a configuration and has three attributes: label

and description to explain the purpose of the configuration to users, and type that
defines how the possible values for the configuration should be represented. Presently,
ConfigEnum has only one entry:

73

CONFLICT_RESOLUTION_PRIORITY(

ConfigTypeEnum.SINGLE_CHOICE,

"Conflict priority",

"Define if the system should give priority to

authorizations or prohibitions in case of conflict.");

Type ConfigTypeEnum.SINGLE_CHOICE means that the values for this configuration should
be displayed as a radio button. Additionally, ConfigEnum includes the method getOptions

that returns the list of possible values for the configuration. For SINGLE_CHOICE it returns
values arca and barca as described in the previous section.

Class Configs is initialized by the following Spring configuration:

<bean id="configs" class="acm.core.config.Configs">

<property name="configs">

<map>

<entry key="CONFLICT_RESOLUTION_PRIORITY"

value="${default.conflict.resolution.priority:barca}" />

</map>

</property>

</bean>

Note that the configuration’s map is filled with the default values for the configuration.
For ${default.conflict.resolution.priority:barca} the value equals the value of
property default.conflict.resolution.priority, but if that property is not set then
barca is used.

6.4 Console

The G-ACM Console is developed in HTML and JavaScript and uses the Angular
framework [37] to provide modularity and dependency management. D3 [38] is used
to draw the graph. We start by describing through some examples how these tools are
used in the G-ACM. Finally, we provide a brief description of the different modules and
the way they interact with each other.

74

6.4.1 AngularJS

The main purpose of using Angular in the G-ACM is to provide a structure to support the
application development and testing. Angular achieves this through a MVC philosophy
to separate concerns and a DI mechanism. In this section we provide some examples
of the use of the main features of Angular in the G-ACM.

Templates Templates are HTML documents with embedded Angular-specific elements
and attributes. Angular combines the template with information from the model and
controller to render the dynamic view that a user sees in the browser. The following
code is part of the G-ACM’s template for the dropdown used to choose custom facts:

<ng-form>

<select ng-options=

"cs as cs.getLabel() for cs in factsConfig.getFactsConfig()"

ng-model="selectedFact">

</select>

</ng-form>

Expressions beginning with ng- are Angular specific and are called directives.

Scope The scope corresponds to the application model, providing a context against
which expressions are evaluated. Directives add watchers to the scope, which allow
them to receive notifications on property changes.

Controllers and the view (or directives) do not have access to each other. This sepa-
ration is important, since it simplifies the introduction of changes in the view and the
controller, allows reusing the logic, and makes the code much easier to test. The scope
provides the link between the controller and the view.

The scope is accessible to the special service $scope which detects changes to the
model section and modifies HTML expressions in the view via a controller. The following
excerpt shows this service being injected in the MainController:

controller('MainController', ['$scope', 'Drawer', 'LayoutController', 'Configs',

'SelectedConfigs', 'Sites', 'Principals', 'Categories', 'Actions', 'Resources',

'Pcas', 'Arcas', 'Barcas', 'Permission', 'Pars', 'AcmServices', 'FactsConfig', 'Facts',

function($scope, Drawer, LayoutController, Configs, SelectedConfigs,

Sites, Principals, Categories, Actions, Resources, Pcas, Arcas, Barcas,

Permission, Pars, AcmServices, FactsConfig, Facts) {

75

Controllers Controllers are JavaScript constructor functions used to add behaviour to
the application by providing methods to manipulate the model (or scope).

The controller can add methods to the scope, which can be used by the view to react
to events. For instance, the following excerpt from mainScreenController, adds to the
scope the method addSelectedFact, which is used to add facts to the list of selected
facts:

$scope.addSelectedFact = function () {

/* Logic to store the selected fact */

}

In the template (main.html), the button to add facts calls that method when it is clicked:

<div class="parameter">

<button ng-click="addSelectedFact()"> Add </button>

</div>

Services and Dependency Injection Controllers should be simple, providing the
logic for a single view. To reduce complexity and avoid code duplication, services should
be used to share logic across controllers.

Services are registered by providing a service name and factory function in an Angular
module. The following code registers the service FactsConfig used to hold the list of
custom facts:

angular.module('AccessControlManager.entity', [])

.factory('FactsConfig',

function(AccessControlServices, FactConfig, FactConfigParam) {

var constructor = function () {

// Constructor properties and methods

}

// Other methods

return constructor;

})

The service factory function creates a single instance of the service. All components
that depend on the service receive a reference to that instance. The function returned
by the service can be injected in any controller or service. Angular injector resolves the
dependencies and instantiates components as needed.

76

There are several ways to annotate which services to inject in a function. The recom-
mended way is the Inline Array Annotation that consists of passing an array with the
service names, as well as parameters in the constructor function. For example, service
Principals depends on services Principal, Graph and Vertex:

angular.module('acm.relation', [])

.factory('Principals', ['Principal', 'Graph', 'Vertex', function(Principal, Graph, Vertex) {

/* Service constructor, attributes and methods */

return constructor;

}])

Injected services are now accessible in Principals’ scope. For instance, method
getGraph() instantiates service Graph and calls its method setVertices():

var graph = new Graph();

graph.setVertices(this.getVertices());

Besides providing a way of organizing the code, Services and DI promote components
decoupling, code reuse, and make it easy to replace and test individual components.

$http service The G-ACM uses $http, an Angular built in service, to communicate
with the server. The $http service is a function that takes a single argument and returns
a promise [43] with two methods: success and error.

AccessControlServices define a series of functions to call the services provided by the
server. For instance, the following method calls the service that returns the available
options for the provided fact and parameter:

accessControlServices.getValues = function(fact, param) {

return $http({

method: 'GET',

url: urlBase + 'customFacts/' + fact + '/params/' + param + '/options'

});

}

Since the returned value is a promise, it is possible to define the function to be called
on service completion. The above service is used by the mainScreenController as
follows:

77

AccessControlServices.getValues(factConfig.getType(), paramConfig.getRank())

.success(function (data, status, headers, config) {

$scope.factsConfig.getFactConfigByType(factConfig.getType())

.getParameter(paramConfig.getRank())

.setOptions(data.options);

});

The provided function is called if the HTTP call is successful (response codes between
200 and 299). The parameter data is the object that represents the HTTP response
body. In this example, no callback is provided in case the call fails.

The $http service provides default data transformations. In this case, it detects a JSON
and automatically deserializes to the corresponding JavaScript objects. Service $http

have additional features. For further reading we refer to [37].

Data binding This is the automatic synchronization of data between the model and
view components. Data binding in Angular is bidirectional. Data changed in the model
is immediately reflected in the view and vice versa. For instance, the following excerpt
shows the code for the dropdown for selection of custom facts:

<select ng-options="cs as cs.getLabel() for cs in factsConfig.getFactsConfig()"

ng-model="selectedFact"

ng-change="initializeDefaults(selectedFact)">

</select>

The directive ng-model ensures that the variable $scope.selectedFact in the applica-
tion model will have the current custom fact selected by the user.

DOM control structures DOM control structures are used for repeating, showing and
hiding DOM fragments. The following code segment is responsible for displaying the
list of facts already selected by the user:

<div ng-repeat="fact in selectedFacts.getFacts()" class="fact">

<p>{{factsConfig.getFactConfigByType(fact.getType()).getLabel()}}</p>

<div ng-repeat="param in fact.getParameters()" class="parameter">

<div ng-repeat="value in param.getValues()" class="value">

<p>{{ factsConfig.getFactConfigByType(fact.getType())

.getParameter(param.getRank())

.getOptionText(value) }}

</p>

78

</div>

</div>

The directive ng-repeat ensures that the inner segment will be repeated in the compiled
view (or live view). The code above has three clauses ng-repeat: the first creates a
<div> element for each selected fact; the second creates a <div> for each parameter;
and the third creates a <p> to display the selected value for the parameter.

6.4.2 D3

The graph shown in the main screen of the G-ACM demands intensive manipulation of
elements in the DOM. D3 is a Javascript library that provides functions to create, style
and manipulate SVG objects. Next, we give a brief description of D3’s main features.
For the complete reference see [38].

Selectors D3 provides a declarative API based on selectors to simplify the task of
performing transformations on DOM elements. For example, the code to change the
text colour of paragraph elements in an imperative style is as follows:

var paragraphs = document.getElementsByTagName("p");

for (var i = 0; i < paragraphs.length; i++) {

var paragraph = paragraphs.item(i);

paragraph.style.setProperty("color", "white", null);

}

This can be replaced by the following code, using D3 selectors:

d3.selectAll("p").style("color", "white");

The Selectors API [44], is defined by the World Wide Web Consortium (W3C) and is
supported natively by modern browsers, which make it fast even for large datasets.

D3 provides numerous methods for mutating DOM nodes: setting attributes or styles;
registering event listeners; adding, removing or sorting nodes; and changing HTML
or text content. These suffice for the vast majority of needs. Direct access to the
underlying DOM is also possible, as each D3 selection is simply an array of nodes.

79

Dynamic Properties D3 allows specifying styles, attributes, and other properties as
functions of data in D3, not just simple constants. For example, to alternate shades of
gray for even and odd nodes:

d3.selectAll("p").style("color", function(d, i) {

return i % 2 ? "#fff" : "#eee";

});

Computed properties often refer to bound data. Data is specified as an array of values,
and each value is passed as the first argument (d) to selection functions. With the
default join-by-index, the first element in the data array is passed to the first node in the
selection, the second element to the second node, and so on. For example, an array of
numbers can be bound to paragraph elements to compute dynamic font sizes:

d3.selectAll("p")

.data([4, 8, 15, 16, 23, 42])

.style("font-size", function(d) { return d + "px"; });

Enter and Exit Enter and exit selections are used to create new nodes for incoming
data and remove outgoing nodes that are no longer needed.

When data is bound to a selection, each element in the data array is paired with the
corresponding node in the selection. If there are fewer nodes than data, the extra data
elements form the enter selection, which can be instantiated by appending to the enter
selection. For example:

d3.select("body").selectAll("p")

.data([4, 8, 15, 16, 23, 42])

.enter().append("p")

.text(function(d) { return "I'm number " + d + "!"; });

Updating nodes is the default selection of the data operator. Thus, when the enter
and exit selections are omitted, the selected elements are those for which there exist
corresponding data. A common pattern is to break the initial selection into three parts:
the updating nodes to modify, the entering nodes to add, and the exiting nodes to
remove.

// Update...

80

var p = d3.select("body").selectAll("p")

.data([4, 8, 15, 16, 23, 42])

.text(String);

// Enter...

p.enter().append("p")

.text(String);

// Exit...

p.exit().remove();

The operations run on the specified nodes, by handling these three cases separately.
This improves performance and offers greater control over transitions.

6.4.3 Structure

This section describes the main components of the G-ACM Console, their interaction
and the role that each one plays in the application.

The console follows the structure of Angular applications. File index.html, besides
importing all needed JavaScript files, specifies the AngularJS module to load through
the directive ng-app.

...

<body ng-app="AccessControlManager">

<ng-view></ng-view>

...

Directive ng-view simply includes the current rendered template in the indicated place.
File app.js declares AccessControlManager as the main module of the application and
defines the modules that the main module depends on:

angular.module('AccessControlManager', [

'acm.drawer',

'acm.entity',

'acm.relation',

'acm.graph',

'acm.layout.controller',

'acm.layout.data',

'acm.services',

'acm.controllers',

81

'acm.config',

'acm.fact',

'acm.layout.tooltip',

'ngRoute'

]).

(...)

Angular’s $routeProvider.when method defines the G-ACM routes. Since we have a
single screen it has only one entry:

config(['$routeProvider', function($routeProvider) {

$routeProvider.

when("/main", {templateUrl: "partials/main.html", controller: "MainController"}).

otherwise({redirectTo: '/main'});

}]);

This code states that, when the URL includes the fragment /main, the application
screen will be built from partials/main.htm template and MainController.

Figure 6.10 shows how the MainController relates to the remaining services and how
these relate with each other.

Each module/service plays a specific role in the application:

• MainController orchestrates the various services used by the application.

• AcmServices contains all the methods used to contact with the G-ACM Server.

• Services in module acm.entity represent the base entities and relations.

• Module acm.relation contains the services that hold the list of base entities,
base relations and authorizations. Relation services include methods to build
graph objects from relations.

• Services Vertex, Edge and Graph are used to represent relations as graphs.

• Module acm.fact contains services to hold the custom facts configuration and
the list of user selected facts.

• Services in acm.config hold the list of available configurations.

• LayoutController contains all the logic related to the graph creation and update
(mostly using the D3 API).

82

• Service LayoutData builds the graph data from the graphs that represent the
relations. It converts the provided graphs to the data that is actually used in the
graphical representation. It includes methods to compute node positions in the
screen, finds paths in the graph, etc.

Figure 6.10: Console Controllers and Services

83

On application start up, MainController is loaded and the following sequence of events
take place:

• MainController uses AcmServices to get the base entities, base relations and
the list of authorizations from the server (when the service is called for the first
time, no custom facts are provided, thus the set of authorizations returned is the
one derived from the relations defined statically by configuration, as described in
Section 6.3).

• MainController converts base entities and relations to Graph objects (graph.js)
and creates an instance of LayoutController providing those graphs, the set
of authorizations and the list of custom facts selected by the user (empty in the
beginning).

• LayoutController creates an instance of LayoutData from the graphs and au-
thorizations. LayoutData contains the actual data that is used to draw the graph.
Besides data for entities, relations and authorizations, it includes visualization
data, e.g. the nodes position in the display area, the flag that indicates if a node
is selected, etc.

To simulate scenarios, the user should use the menu on the left pane. The button
UPDATE invokes the authorization service providing the chosen facts and parameters.
This triggers a sequence that updates the graph:

• MainController invokes the method updateData on LayoutController providing
the new set of graphs, authorizations and the list of custom facts selected by the
user.

• LayoutController stores the previous data in the history list and creates a new
instance of LayoutData from the graphs and authorizations.

• LayoutController builds the graph from the new instance of LayoutData.

84

Chapter 7

Conclusion and Future Work

This work describes the implementation of a prototype, the G-ACM tool, for the vi-
sualization and analysis of access control policies following the CBAC model. The
tool comprises a server to compute the permissions in the system and a user-friendly
graphical console. The G-ACM Server uses the Drools rule engine to implement the
dynamic aspects of the CBAC model. The system allows the configuration of custom
facts, and rules that depend on them, to simulate specific access control requirements.
The G-ACM Console provides a graphical representation of policies, which exposes the
benefits of this representation for access control policy management.

The G-ACM tool allows the user to add or remove custom facts and change the values of
their parameters. This provides an intuitive way of simulating environmental conditions,
which is essential to understand how changes in the system state affect authorizations.
It is also possible to compare graphs for two different simulation scenarios. Some ad-
ditional features improve graph readability: types of edges in the graph (corresponding
to CBAC relations) can be hidden/shown; nodes that have the same set of connections
can be grouped, etc.

Security administrators query policies to extract information related to status of the
system in terms of permissions and prohibitions, for instance, get the set of permissions
for a certain principal, the mapping between principals and categories, etc. They
also query policies about their correctness, in this case to verify if policies are well
written. For instance, to look for categories without permissions or resources that are
not accessible.

86

In [45], analysis queries are classified into policy metadata queries, policy content
queries and policy effect queries. In [9] it is shown how a graph representation of
policies can be used to answer to common queries of these types.

The G-ACM Console exemplifies, in practice, how such queries can be answered. It
can be observed that the graph representation has some inherent advantages when
compared to the traditional tabular representation.

Traditional RBAC systems represent the mapping between users and roles in one table
and the mapping between roles and permissions in a different set of tables (one for
each role). The graphical representation used by G-ACM, on the other hand, displays
the full set of CBAC relations in a single graph. This provides a single view that displays
the complete state of the system in terms of permissions. Naturally, for large numbers
of entities, the ability of reading the graph also decreases but this can be compensated
by a proper set of filters.

Figure 7.1 shows the RBAC plugin of the popular Jenkins open source continuous
integration tool [46]). This application uses a variation of a role/permission table which,
by adding additional columns, can represent the mappings for all profiles in the same
table. This solution has its own drawbacks. In real scenarios it is likely that a given
permission is only applicable to a small set of profiles. With this solution a column for
each permission will always be represented whether it is applicable to the profile or not.
Additionally, actions must be repeated for each resource that they are applicable to.

Figure 7.1: Jenkins RBAC plugin

It is easy to see that this solution does not scale for increasing number of resources
and/or actions, the number of columns increases rapidly making it very difficult to read
the permissions. Furthermore, the mapping between users and roles is provided by a
different table making it difficult to verify the actual set of permissions for a given user.

In G-ACM, on the other hand, only the existing relations are represented and an action

87

is represented by a single node no matter how many resources it is mapped to.

Figure 7.2 shows an example of mapping between categories and permissions (ARCA)
in a tabular fashion. Figure 7.3 displays a snapshot of G-ACM for the same set ofARCA
values. In the tabular form, the representation of the relation ARCA requires 105 cells,
whether in G-ACM the same information is represented by 33 links.

Figure 7.2: ARCA relation as table

Figure 7.3: ACM snapshot

Even though, the graphical representation may look complex it is important to note that it
shows much more information than the table in Figure 7.2. Besides the ARCA relation

88

it also shows the mapping between principals and categories (PCA), the categories
hierarchy, and the complete set of authorizations and prohibitions (PAR and BAR).
After overcoming the apparent complexity of the screen, a user can easily verify the set
of permissions for a specific user simply by selecting the node corresponding to that
user.

The representation used by G-ACM has some additional benefits. The ability of group-
ing the nodes that have the same set of neighbors can greatly simplify the graph and,
therefore, its interpretation. This feature, which is not easily translatable to the tabular
representation, is important because in real world scenarios it is common to have many
principals assigned to the same categories.

Another important feature in G-ACM is the ability of simulating how the system state af-
fects the permissions. Without the single view provided by the graphical representation
this feature would be seriously limited since users would have to look at several different
tables to verify how the permissions were affected by each change in the values of the
parameters.

From the above, we consider that the exploration of the graphical representation of
policies to help users with the tasks related to the management of security policies is
a worthwhile endeavor. Nevertheless, more definitive conclusions will require a more
extensive analysis and, to do so, several important features should be added to the
G-ACM prototype.

The distributed version of the CBAC model, which would allow to configure more real-
istic scenarios where multiple policies, under the responsibility of different agents, are
combined to provide a unified answer to access requests. The inclusion of obligations
[47, 48, 49], would allow the definition of actions that the user or the system have to
execute so that an authorization is conceded.

To improve G-ACM’s usability, several additional developments can be considered. The
node grouping feature can be improved by allowing the user to choose which nodes to
group. The inclusion of filters to select the entities to show in the graph would increase
its readability.

To give a better understanding on how the custom facts affect authorizations, the in-
formation about the facts responsible for the creation of edges should be visible. At
the time of this writing that information is already returned by the server, but not yet
displayed.

89

To explore new ways of displaying the graph, the D3’s force layout is being used. This
type of layout positions nodes through the simulation of physical forces. This feature is
still under development but the first version can already be seen in the prototype [50].

The simulation of authorization scenarios in the G-ACM is intuitive. To use the G-
ACM Console, a basic understanding of the CBAC model is enough. Editing rules, on
the other hand, requires a high degree of technical knowledge. The CBAC Console
should provide a simpler way of creating and editing the rules. Editing code directly,
the approach used in the Policy Manager, has some weaknesses. It implies that the
user must know how to write the rules, and introduces security risks. The chosen
approach should define a language that simplifies the process of editing rules and,
simultaneously, imposes limits on the actions that the rules can perform. An interesting
possibility is to use the Drools Workbench [35], the rules authoring and management
module of Drools, to provide a graphical interface for editing rules.

90

Bibliography

[1] Lujo Bauer and Florian Kerschbaum. What are the most important challenges
for access control in new computing domains, such as mobile, cloud and cyber-
physical systems? In Proceedings of the 19th ACM Symposium on Access Control
Models and Technologies, SACMAT ’14, pages 127–128, New York, NY, USA,
2014. ACM.

[2] David Elliott Bell and Leonard J. LaPadula. Secure computer systems: A
mathematical model, volume II. Journal of Computer Security, 4(2/3):229–263,
1996.

[3] Butler W. Lampson. Protection. Operating Systems Review, 8(1):18–24, 1974.

[4] Ryan Ausanka-crues. Methods for access control: Advances and limitations, 2001.

[5] Richard Kuhn Ravi Sandhu, David Ferraiolo. The NIST Model for Role-Based
Access Control: Towards A Unified Standard. In Proceedings, 5th ACM Workshop
on Role Based Access Control, pages 47–63, 2000.

[6] Steve Barker. The Next 700 Access Control Models or a Unifying Meta-model?
In Proceedings of the 14th ACM Symposium on Access Control Models and
Technologies, SACMAT ’09, pages 187–196, New York, NY, USA, 2009. ACM.

[7] C Bertolissi and M Fernandez. Category-Based Authorisation Models: Operational
Semantics and Expressive Power, volume 5965 LNCS, pages 283 – 301. Springer-
Verlag, 2010.

[8] Sandra Alves and Maribel Fernández. A Framework for the Analysis of Access
Control Policies with Emergency Management. Elsevier Science, B.V., 2014.

92

[9] Sandra Alves and Maribel Fernández. A Graph-Based Framework for the Analysis
of Access Control Policies. 2015. submitted for publication. http://www.dcc.fc.
up.pt/~sandra/papers/AF2015.pdf.

[10] Maribel Fernández Clara Bertolissi. Rewrite specifications of access control
policies in distributed environments. In Proceedings of the 6th international
conference on Security and trust management, STM’10. Springer-Verlag, 2011.

[11] Clara Bertolissi and Maribel Fernández. A metamodel of access control for
distributed environments: Applications and properties. Inf. Comput., 238:187–207,
2014.

[12] Asad Ali and Maribel Fernández. Hybrid enforcement of category-based access
control. In Security and Trust Management - 10th International Workshop, STM
2014, Wroclaw, Poland, September 10-11, 2014. Proceedings, pages 178–182,
2014.

[13] Manuel Koch, Luigi V. Mancini, and Francesco Parisi-Presicce. A graph-based
formalism for RBAC. ACM Trans. Inf. Syst. Secur., 5(3):332–365, 2002.

[14] Manuel Koch, Luigi V. Mancini, and Francesco Parisi-Presicce. Graph-based
specification of access control policies. J. Comput. Syst. Sci., 71(1):1–33, 2005.

[15] James A. Hoagland. Specifying and Implementing Security Policies Using LaSCO,
the Language for Security Constraints on Objects. CoRR, cs.CR/0003066, 2000.

[16] Allan Heydon, Mark W. Maimone, J. D. Tygar, Jeannette M. Wing, and Amy Moor-
mann Zaremski. Miró: Visual Specification of Security. IEEE Trans. Software Eng.,
16(10):1185–1197, 1990.

[17] David E. Bell and Leonard J. Lapadula. Secure Computer System: Unified
Exposition and MULTICS Interpretation. Technical Report ESD-TR-75-306, The
MITRE Corporation, 1976.

[18] Steve Barker and Maribel Fernández. Term rewriting for access control. In Data
and Applications Security XX, 20th Annual IFIP WG 11.3 Working Conference on
Data and Applications Security, Sophia Antipolis, France, July 31-August 2, 2006,
Proceedings, pages 179–193, 2006.

[19] A. Santana de Oliveira. Réécriture et Modularité pour les Politiques de Sécurité.
PhD thesis, Université Henri Poincaré, Nancy, France, 2008.

93

[20] Claude Kirchner, Hélène Kirchner, and Anderson Santana de Oliveira. Analysis of
rewrite-based access control policies. Electr. Notes Theor. Comput. Sci., 234:55–
75, 2009.

[21] Clara Bertolissi, Maribel Fernández, and Steve Barker. Dynamic Event-Based
Access Control as Term Rewriting. In Data and Applications Security XXI, 21st
Annual IFIP WG 11.3 Working Conference on Data and Applications Security,
Redondo Beach, CA, USA, July 8-11, 2007, Proceedings, pages 195–210, 2007.

[22] Tony Bourdier, Horatiu Cirstea, Mathieu Jaume, and Hélène Kirchner. Formal
specification and validation of security policies. In Foundations and Practice of
Security - 4th Canada-France MITACS Workshop, FPS 2011, Paris, France, May
12-13, 2011, Revised Selected Papers, pages 148–163, 2011.

[23] Clara Bertolissi and Maribel Fernández. A rewriting framework for the composition
of access control policies. In Proceedings of the 10th International ACM SIGPLAN
Conference on Principles and Practice of Declarative Programming, July 15-17,
2008, Valencia, Spain, pages 217–225, 2008.

[24] Clara Bertolissi and Worachet Uttha. Automated analysis of rule-based access
control policies. In Proceedings of the 7th Workshop on Programming languages
meets program verification, PLPV 2013, Rome, Italy, January 22, 2013, pages
47–56, 2013.

[25] Suroop Mohan Chandran and James B. D. Joshi. LoT-RBAC: A location and time-
based RBAC model. In Web Information Systems Engineering - WISE 2005, 6th
International Conference on Web Information Systems Engineering, New York, NY,
USA, November 20-22, 2005, Proceedings, pages 361–375, 2005.

[26] James Joshi, Elisa Bertino, Usman Latif, and Arif Ghafoor. A generalized temporal
role-based access control model. IEEE Trans. Knowl. Data Eng., 17(1):4–23,
2005.

[27] Devdatta Kulkarni and Anand Tripathi. Context-aware role-based access control
in pervasive computing systems. In SACMAT 2008, 13th ACM Symposium on
Access Control Models and Technologies, Estes Park, CO, USA, June 11-13,
2008, Proceedings, pages 113–122, 2008.

[28] H. Mirzapour-Aghdaghi and M. Fernández. Policy Manager: a tool to analyse
category-based access control policies. http://policymanager.herokuapp.com,
2014. [Online; accessed 24-August-2015].

94

[29] Fabien Autrel, Frédéric Cuppens, Nora Cuppens-Boulahia, and Céline Coma-
Brebel. MotOrBAC 2: a security policy tool. In SARSSI’08 : 3ème conférence
sur la Sécurité des Architectures Réseaux et des Systèmes d’Information, 13-17
octobre, Loctudy, France, 2008.

[30] Anas Abou El Kalam, Salem Benferhat, Alexandre Miège, Rania El Baida, Frédéric
Cuppens, Claire Saurel, Philippe Balbiani, Yves Deswarte, and Gilles Trouessin.
Organization based access contro. In 4th IEEE International Workshop on Policies
for Distributed Systems and Networks (POLICY 2003), 4-6 June 2003, Lake Como,
Italy, page 120, 2003.

[31] NEMA/COCIR/JIRA Security and Privacy Committee (SPC). Break-Glass – An
Approach to Granting Emergency Access to Healthcare Systems. Technical report,
NEMA (National Electrical Manufacturers Association), 1300 North 17th Street,
Suite 1847, Rosslyn, VA 22209 USA, December 2004.

[32] HIPAA. Break Glass Procedure: Granting Emergency Access to Critical
ePHI Systems – HIPAA Security. http://hipaa.yale.edu/security/

break-glass-procedure-granting-emergency-access-critical-ephi-systems,
2015. [Online; accessed 01-September-2015].

[33] Ana Margarida Ferreira, David W. Chadwick, Pedro Farinha, Ricardo João Cruz
Correia, Gansen Zhao, Rui Chilro, and Luis Filipe Coelho Antunes. How
to securely break into RBAC: the BTG-RBAC model. In Twenty-Fifth Annual
Computer Security Applications Conference, ACSAC 2009, Honolulu, Hawaii, 7-
11 December 2009, pages 23–31, 2009.

[34] Health and Patient Care Information Center. Patient choices. http://systems.

hscic.gov.uk/infogov/confidentiality/choices, 2015. [Online; accessed 2-
March-2015].

[35] Red Hat. Drools. http://www.drools.org, 2015. [Online; accessed 27-May-
2015].

[36] Charles Forgy. Rete: A Fast Algorithm for the Many Patterns/Many Objects Match
Problem. Artif. Intell., 19(1):17–37, 1982.

[37] Google. AngularJS. https://angularjs.org/, 2015. [Online; accessed 01-June-
2015].

[38] Mike Bostock. D3.js. http://d3js.org/, 2015. [Online; accessed 01-June-2015].

95

[39] Inc. Pivotal Software. Spring. https://spring.io/, 2015. [Online; accessed
01-June-2015].

[40] Inc. Pivotal Software. Spring MVC. http://docs.spring.io/spring/docs/4.2.0.
RC1/spring-framework-reference/htmlsingle/#mvc, 2015. [Online; accessed
20-June-2015].

[41] The Apache Software Foundation. Apache Maven. https://maven.apache.org/,
2015. [Online; accessed 29-August-2015].

[42] FasterXML. Jackson. http://wiki.fasterxml.com/JacksonRelease20, 2015.
[Online; accessed 20-June-2015].

[43] Mozilla Developer Network. Promise. https://developer.mozilla.org/pt-PT/

docs/Web/JavaScript/Reference/Global_Objects/Promise, 2015. [Online; ac-
cessed 2-August-2015].

[44] W3C. Selectors. http://www.w3.org/TR/selectors-api/, 2015. [Online;
accessed 14-June-2015].

[45] Elisa Bertino, Carolyn Brodie, Seraphin B. Calo, Lorrie Faith Cranor, Clare-Marie
Karat, John Karat, Ninghui Li, Dan Lin, Jorge Lobo, Qun Ni, Prathima Rao, and
Xiping Wang. Analysis of privacy and security policies. IBM Journal of Research
and Development, 53(2):3, 2009.

[46] Jenkins. AngularJS. https://jenkins.io/index.html, 2015. [Online; accessed
01-Nov-2015].

[47] Gansen Zhao, David W. Chadwick, and Sassa Otenko. Obligations for role
based access control. In 21st International Conference on Advanced Information
Networking and Applications (AINA 2007), Workshops Proceedings, Volume 1,
May 21-23, 2007, Niagara Falls, Canada, pages 424–431, 2007.

[48] Dirk Jonscher. Extending access control with duties - realized by active mecha-
nisms. In Database Security, VI: Status and Prospects. Results of the IFIP WG
11.3 Workshop on Database Security, Vancouver, Canada, 19-21 August 1992,
pages 91–112, 1992.

[49] Naftaly H. Minsky and Abe Lockman. Ensuring integrity by adding obligations to
privileges. In Proceedings, 8th International Conference on Software Engineering,
London, UK, August 28-30, 1985., pages 92–102, 1985.

96

[50] João Sá. G-ACM - Graphical Access Control Manager. http://acm-joaosa.

rhcloud.com/app/, 2015. [Online; accessed 25-September-2015].

97

