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ABSTRACT

This thesis addresses three key issues of a real-life vibration-based structural health monitoring

system. The first is related to the estimation of the modal parameters of the monitored structures

from output-only data together with their confidence intervals. Since the source of vibration of

the monitored structures are mostly the unmeasurable ambient excitations, all estimates from

the output responses are contaminated with disturbances of statistical nature which are, in turn,

disseminated to the identified modal parameters. Hence the need to consider not only the modal

parameter estimates, but also their uncertainties in damage assessment. Therefore, apart from

discussing the strategies and techniques employed to automatically track the dynamic properties

of the monitored structures, the techniques used to estimate the confidence bounds are also

addressed and two approaches are proposed to estimate these uncertainties in the present work.

The second key issue involves the automation of the modal parameter estimation. In fact, a

successful assessment of the health condition based on modal properties is only feasible if these

parameters are automatically extracted from the vibration raw data acquired over the course of

a continuous monitoring. Given the huge amount of datasets acquired over time, such task is re-

quired to be performed by automated applications which are capable of tracking, amongst other

useful information, the modal parameters from these data. Once they are initially configured,

it is expected that such applications are capable of extracting this information with no further

intervention.

Finally, the third key issue concerns the detection of damage under varying environmental con-

ditions. In real-life applications structures are subjected to changes in such conditions (e.g.,

temperature, humidity, wind, traffic, etc.). Therefore, if the modal parameter estimates are in-

tended to be used as damage indicators, the variations induced by these conditions must be

taken into account, otherwise they may mask the changes caused by structural damage. If these

variations are not accounted, false-positive or negative damage diagnosis may occur and, there-

fore, vibration-based health monitoring becomes inefficient. In these conditions, environmental

models can be applied to such properties, so that they can be used to diagnose damage. In order

to discuss the application of such models from a practical point of view, a thorough analysis

of data from a continuous monitoring of a football stadium suspension roof is presented. The

result of this analysis indicates that a slight structural change has occurred in the roof structure.
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RESUMO

Esta tese aborda três questões-chave de um sistema real de monitorização da condição estrutural

baseado nas respostas em vibração. A primeira está relacionada com a estimativa dos parâmet-

ros modais das estruturas monitoradas a partir somente dos dados de resposta, juntamente com

seus intervalos de confiança. Uma vez que as fontes de vibração das estruturas monitorizadas

são principalmente as excitações ambientais imensuráveis, esses dados de resposta são con-

taminados com distúrbios de natureza estatística, que são, por sua vez, disseminados para os

parâmetros modais identificados. Daí a necessidade de se considerar não apenas as estimati-

vas dos parâmetros modais, mas também as suas incertezas na avaliação de danos. Portanto,

para além de discutir as estratégias e técnicas aplicadas para identificar automaticamente as

propriedades dinâmicas das estruturas monitorizadas, as técnicas usadas para estimar os inter-

valos de confiança são também analisadas e são propostas duas abordagens para estimar estas

incertezas no presente trabalho.

A segunda questão envolve a automação da estimação de parâmetros modais. Na verdade, a

avaliação da condição estrutural com base nesses parâmetros só é realizável se eles forem auto-

maticamente extraídos dos dados de vibração adquiridos ao longo da monitorização contínua.

Dado a grande volume de dados adquiridos ao longo do tempo, tal tarefa deve ser realizada por

aplicações automatizadas que sejam capazes de extrair tais parâmetros, entre outras informações

úteis relativamente a condição estrutural das estruturas monitorizadas. Uma vez configurados

inicialmente, espera-se que tais aplicações sejam capazes de extrair estas informações sem nen-

huma intervenção adicional.

Finalmente, a terceira questão diz respeito à deteção de danos em condições ambientais var-

iáveis. Uma vez que as estruturas reais estão sujeitas ás acções ambientais (como, por exemplo,

temperatura, umidade, vento, tráfego, etc.), as variações induzidas por essas acções devem ser

consideradas se as estimativas dos parâmetros modais forem utilizadas como indicadores de

dano, caso contrário, elas podem mascarar as alterações estruturais causadas por danos. Se es-

sas variações não forem contabilizadas, o diagnóstico de dano falso-positivo ou negativo pode

ocorrer e, portanto, a avaliação da condição estrutural com base nos dados de vibração torna-

se ineficiente. Nessas condições, modelos ambientais podem ser aplicados às estimativas de

parâmetros modais de modo a que eles possam ser utilizados para diagnosticar danos. De modo

a discutir a aplicação desses modelos ambientais de forma prática, a análise completa dos da-

dos de monitorização contínua da cobertura suspensa de um estádio de futebol é apresentada. O

resultado dessa análise indica que uma leve alteração permanente no comportamento estrutural

da cobertura ocorreu.
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RÉSUMÉ

Cette thèse porte sur trois questions clés d’un système de surveillance de santé structurale basée

sur les vibrations de la vie réelle. La première est liée à l’estimation des paramètres modaux

des structures contrôlées à partir des données de sortie uniquement avec leurs intervalles de

confiance. Depuis la source de vibration des structures contrôlées sont pour la plupart les exci-

tations ambiantes non mesurables, toutes les estimations des réponses de sortie sont contaminés

par des perturbations de nature statistique, à leur tour, diffusés aux paramètres modaux identi-

fiés. D’où la nécessité de tenir compte non seulement de l’estimation des paramètres modaux,

mais aussi des incertitudes dans l’évaluation des dommages. Par conséquent, en dehors de

discuter des stratégies et des techniques utilisées pour suivre automatiquement les propriétés

dynamiques des structures contrôlées, les techniques utilisées pour estimer les limites de con-

fiance sont également abordées et deux approches sont proposées pour estimer ces incertitudes

dans le présent ouvrage.

La deuxième question clé consiste à l’automatisation estimation des paramètres modaux. En

fait, une évaluation positive de l’état de santé basé sur les propriétés modales est seulement pos-

sible si ces paramètres sont automatiquement extraits des données brutes de vibration acquis au

cours d’un contrôle continu. Compte tenu de l’énorme quantité de jeux de données acquises au

fil du temps, cette tâche doit être effectuée par des applications automatisées qui sont capables

de suivi, entre autres informations utiles, les paramètres modaux de ces données. Une fois qu’ils

sont initialement configurés, il est prévu que de telles applications soient capables d’extraire ces

informations sans autre intervention.

Enfin, la troisième question clé concerne la détection des dommages dans diverses conditions

environnementales. Les structures réelles sont soumises à des évolutions de telles conditions

en (température, humidité, vent, trafic, etc.). Par conséquent, si les estimations des paramètres

modaux sont destinés à être utilisés comme indicateurs de dommages, les variations induites par

ces conditions doivent être prises en compte, sinon ils peuvent masquer les changements causés

par des dommages structurels. Si ces variations ne sont pas comptabilisés, faux-positif ou né-

gatif dommages diagnostic peut se produire et, par conséquent, la surveillance de la santé sur

la base des vibrations devient inefficace. Dans ces conditions, les modèles de l’environnement

peuvent être appliquées à ces propriétés, de sorte qu’ils puissent être utilisés pour diagnostiquer

des dommages. Afin de discuter de l’application de ces modèles à partir d’un point de vue

pratique, une analyse approfondie des données d’une surveillance continue d’un toit de sus-

pension de stade de football est présentée. Le résultat de cette analyse indique qu’une légère

modification de structure est produite dans la structure du toit.
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NOMENCLATURE

Abbreviatures
AVT Ambient Vibration Test

DFT Discrete Fourier Transform

DOF Degrees Of Freedom

EMA Experimental Modal Analysis

FDD Frequecy Domain Decomposition

FE Finite Element

GUI Graphical User Interface

LMFD Left Matrix Fraction Description

LSCF Least Squares Complex Frequency-domain

LSFD Least Squares Frequency-Domain

LS Least Squares

MFD Matrix Fraction Description

MIMO Multiple Inputs Multiple Outputs

MISO Multiple Inputs Single Output

MLE-CDM Maximum Likelihood Estimator in Common Denominator Model formula-

tion

MLE-MM single reference MLE in (pole-residue) Modal Model formulation

MLE Maximum Likelihood Estimator

ML Maximum Likelihood

MPE Modal Parameter Estimation

NLS Non-linear Least-Squares

OMA Operational Modal Analysis

PCA Principal Component Analysis

pLSCE poly-reference Least Squares Complex Exponential

pLSCF poly-reference Least-Squares Complex Frequency

pMLE-MM poly-reference Maximum Likelihood Estimator in Modal Model formula-

tion

PoGER Post Global Estimation Re-scaling

PoSER Post Separate Estimation Re-scaling

PP Pick Picking

PreGER Pre Global Estimation Re-scaling

PSD Power Spectra Density

RMFD Right Matrix Fraction Description
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NOMENCLATURE

RMS Root Mean Square

SHM Structural Health Monitoring

SIMO Single Input Multiple Outputs

SISO Single Input Single Output

SSI-COV COVariance-driven Stochastic Subspace Identification

SSI-DATA DATA-driven Stochastic Subspace Identification

SSI Stochastic System Identification

SVD Sigular Value Decomposition

ZOH Zero Order Hold

Operators
(•)† Moore-Penrose pseudo-inverse of a matrix

(•)H Complex conjugate transpose (Hermitian) of a matrix

(•)T Transpose

(•̂) Estimated quantity

|•| Absolute value of a complex number

‖•‖ Euclidian norm

L [•] Laplace transform

⊗ Kronecker product

Re(•), Im(•) Real and imaginary part of a complex number

E[•] Expected value operator

Cov(•) Covariance operator

Var(•) Variance operator

vec(•) Column stacking operator

(•)D Diagonal operator

(•)∗ Complex conjugate

Symbols
[Res]i Modal residue matrix of mode i

αi Denominator scalar polynomial coefficients of the common denominator

model at model order i

βi Numerator matrix polynomial coefficients of common denominator model

at model order i

∆t Sampling period

∆e Vector containing the contributions of the predicted errors to each measured
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NOMENCLATURE

output

∆
(o)
e Contribution of the predicted error to output o

∆ŷm Vector containing the contributions of mode m to each measured output

δŷm Total contribution of mode m to the measured outputs

∆
(o)
ŷm

Contribution of mode m to output o

∆ŷ Vector containing the contributions of the identified modes to each measured

output

∆
(o)
ŷ Contribution of the identified modes to output o

δpq Kronecker delta

ε , ν Rayleigh damping constants C1 = εK +νM

η Exponential window function

Γ Diagonal matrix having 2ξniωni as elements

γ Coherence function at frequency line f

Γref
i Reduced reversed stochastic controllability matrix of order i

Ŝ+yy(ω) Half spectra matrix

X̂i Kalman filter state sequence

ŷkm Predicted output vector containing the response of the mth mode

Λ Diagonal matrix containing the eigenvalues of the FE model λi

Λc Diagonal matrix containing the continuous-time eigenvalues λi, λ ∗i
Λd Diagonal matrix containing the discrete-time eigenvalues µi, µ∗i
λi Continuous-time eigenvalue

P ref
i Projection of the row space of the future outputs into the row space of the

past references

µi Discrete-time eigenvalue

Ω Diagonal matrix containing the circular eigenfrequencies ωni [rad/s]

ω Circular frequency [rad/s]

ωni Circular eigenfrequency [rad/s]

Φ Real eigenvector matrix of the FE model (proportional damping)

Ψ Complex eigenvector matrix of the state-space model

ψi Complex eigenvector of the state-space model

Σ State covariance matrix

σx Standard deviation of variable x

ΣY Covariance of the outputs

CL Center line of the control chart

d(α,ω) Denominator scalar polynomial

D(Θ ,ω) Denominator polynomial in matrix form
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NOMENCLATURE

LCL Lower control limit of the control chart

N(β ,ω) Numerator polynomial in matrix form

UCL Upper control limit of the control chart

Θ Complex eigenvector matrix of the FE model (non-proportional damping)

θi Complex eigenvector of the FE model (non-proportional damping)

ϒ Principal component transformation matrix

ε(Θ ,ω) Residual errors from a preliminary LS estimation

Ω(ω) Polynomial basins in Laplace domain (Ω(ω) = s) or in Z-domain (Ω(ω) = z)

ϕi Real eigenvector of the FE model (proportional damping)

Θ Model parameter vector

ξni Modal damping ratio

{1}No Column vector with No components, all equal to one

a, b, c Denominator scalar coefficients of the enhanced lower and upper residual

model

A, B, C, D Discrete-time state-space model

Ac, Bc, Cc, Dc Continuous-time state-space model

ai, bi “Modal a” and “modal b” coefficients

AR, BR, CR Numerator matrix coefficients of the enhanced lower and upper residual

model

Ca, Cb, Cd Output location matrices for acceleration, velocity and displacement

d(ω) Denominator scalar of the enhanced lower and upper residual model

E Matrix or vector containing the residual errors

f (t) Excitation force vector at time t (FE model)

F1 Input location matrix (FE model)

fni Eigenfrequency [Hz]

Fnp,np−m(α) α percentage point of the F-distribution with m and np−m DOFs

G “Next state-output” covariance matrix

Gref Reduced “next state - output” covariance matrix

Gm Discrete-time stochastic modal participation matrix

gT
di

Discrete-time stochastic modal participation vector (row of GT
m)

gi Continuous-time operational factor vector (row of GT
cm)

H(ω) FRF matrix

H(s) Transfer function matrix in Laplace-domain

Href Output data block Hankel matrix

H1, H2 H1 and H2 FRF estimators

J Jacobian matrix
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NOMENCLATURE

j Imaginary unit j =
√
−1

K Kalman gain

k Discrete time instant t = k∆t, k ∈ N
L Continuous-time modal input matrix (modal participation matrix) LT =Ψ−1Bc

Ld Discrete-time modal input matrix (modal participation matrix) LT
d = Ψ−1B

lT
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Discrete-time modal participation vector (row of LT
d )

lT
i Continuous-time modal participation vector (row of LT )

lLog−ML−CDM Logarithmic cost function of the “log-like” MLE-CDM
lLog−pML−MM Logarithmic cost function of the “log-like” pMLE-MM
lML−MM Cost function of the MLE-MM
lpML−MM Cost function of the pMLE-MM
Ls Selection matrix that selects the references from the outputs

LR, UR Lower and upper residuals

M, C1, K Mass, damping and stiffness matrix (FE model)

mγ2
o Multiple coherence function

mi, ki Modal mass and modal stiffness

n State-space model order n = 2Nm

N(ω) Numerator matrix of the enhanced lower and upper residual model

na, nb Auto-regressive and exogeneous order

Ni Number of inputs

Nk Number of time samples

nk Time delay between input and output

Nm Number of DOFs (FE model)

No Number of outputs

Nref Number of reference sensors

Oi Observability matrix of order i

P Forward state covariance matrix

Q, R Factors from a QR factorization

Q, R, S Process and measurement noise covariance matrices

q(t), q̇(t), q̈(t) Displacement, velocity and acceleration vector at time t (FE model)

qk, q̇k Displacement and velocity vector at discrete time instant k (FE model)

qm(t) Modal displacement vector

Re Covariance matrix of the innovations ek

Ri Output covariance matrix at time lag i

Ruu Input covariance matrix in case of white noise inputs

Suu(ω) Spectra matrix of the inputs
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Suy(ω) Input-output Spectra matrix

Syu(ω) Output-input spectra matrix

Syy(ω) Spectra matrix of the outputs

T Similarity transformation

t Continuous time variable
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y(t) Output at time t
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Chapter 1

INTRODUCTION

This first chapter presents the general aspects, such as, research context, motivation and main

objectives of the of the present thesis. The chapter is intended to provide a general overview of

the activities developed in context of the present research, as well as a brief description of the

following chapters. The main subjects addressed in the framework of the thesis - modal identi-

fication with uncertainty quantification, automated dynamic monitoring and damage detection

with emphasis on vibration-based methods - are discussed in Section 1.1. In Section 1.2, the

main contributions of this thesis are highlighted and in Section 1.3, the organization of the text

is finally presented.
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INTRODUCTION

1.1. Research Context

In recent years, an increasing interest on Structural Health Monitoring (SHM) in the domain

of structural and civil engineering has been observed. The growth of interest on this scien-

tific domain is explained, amongst other reasons, by the broad range of possible applications in

structural engineering, as well as by the necessity to stablish a reliable approach to assess the

health condition of the civil engineering structures which are subjected to varying operational

and environmental conditions over the time. The development of numerical methods of struc-

tural analysis allied to the improvements on the processing capacity of the digital computers

over the last decades lead to the development of more precise tools and techniques of structural

analysis, allowing engineers to simulate more accurately the static and dynamic behaviour of

these structures. These improvements, in turn, lead to construction of civil structures with more

audacious and complex architectural and structural designs.

It turns out that, given the difficulties of modelling the environmental and operational actions,

as well as the damage induced effects, the behaviour of these structures under operational con-

ditions is not easy to predict. Several examples of structures that collapsed or suffered from

serviceability problems are eventually found in literature. Perhaps, one of the most notorious

cases of structural failures is the collapse of the Tacoma Narrows suspension bridge shown in

Fig. 1.1a. Constructed to link Tacoma and Gig Harbor, Washington, USA, and inaugurated in

July, 1940, this bridge collapsed four months later due to flutter of the bridge deck. Recently,

another structural accident that has drawn the attention of civil engineering community due to

its catastrophic dimensions was the collapse of “9340” Bridge (also known as “I-35W” Bridge)

(Fig. 1.1b).

(a) (b) (c)

Fig. 1.1 – Examples of structures subjected dynamic actions: “Tacoma Narrows” Bridge, Washington,
USA, opened to public in July, 1940, and collapsed 4 months later (a), central span of the “Rio-Niteroi”
Bridge, Rio de Janeiro, Brazil (b), and “9340” Bridge (also known as “I-35W” Bridge), Minneapolis,
Minnesota, EUA, collapsed in 2007 (c).

Constructed over Mississippi River, in Minneapolis, Minnesota, USA, the structure was opened

to traffic in 1967 and collapsed in 2007 in the middle of rush hour. Subsequent investigations
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pointed to design flaws, fatigue and increase of the dead load over the years, as the main causes

of the collapse (NTSB, 2008). Apart the from the serious accidents, several cases of abnor-

mal behaviour compromising the comfort and serviceability of civil structures due to excessive

vibrations are eventually reported. As an example, Fig. 1.1c shows the central span of the “Rio-

Niteroi” Bridge, in Rio de Janeiro, Brazil. The occurrences of wind gusts with speeds not much

higher than 55 km/h were enough for the authorities to interrupt traffic on the bridge due to the

high oscillations of the central span that, in more extreme environmental conditions, came to

reach 0.6 m (Battista and Pfeil, 2000).

In this context, vibration-based SHM has been increasingly used as a reliable tool, amongst

other purposes, to reduce the risk of structural failure and prevent improper serviceability of

civil engineering structures. One of main advantages of the vibration-based SHM with regard

to the other health assessment techniques is the fact that it consists of a non-destructive and

global approach. The idea behind this technique is that both local and global damage events

can change the overall stiffness of the structures and the damage induced changes are, in turn,

reflected in the global dynamic properties of the structure. Therefore, the variation of these

properties over time can be used as indicators of the structural health condition of the monitored

structures.

Thanks to its non-destructive characteristic, vibration-based SHM been widely applied in civil

engineering to assess the structural performance under environmental conditions and detect

damage over the time. In addition to all the aforementioned applications, there are several

other circumstances in which vibration-based SHM may be required, as, for instance (Ross and

Matthews, 1995):

(i) monitoring of the modifications to an existing structure;

(ii) monitoring the structures affected by external works;

(iii) monitoring during demolition;

(iv) monitoring of structures subject to long-term movement or degradation of materials;

(v) feedback loop to improve future design based on experience,

(vi) fatigue assessment;

(vii) novel systems of construction;

(viii) assessment of post-earthquake structural integrity;

(ix) decline in construction and growth in maintenance old structures; and

(x) the move towards performance-based design philosophy.

Apart from the broad range of applications, the benefits to be gained with the employment of

25



INTRODUCTION

vibration-based monitoring systems to detect damage justifies the great interest demonstrated by

the civil engineering community over the last years on this subject area. Furthermore, if a con-

tinuous vibration-based monitoring is employed, economic benefits can also be obtained with

the reduction of the maintenance costs of the monitored structures, for example, by avoiding

unnecessary inspection activities. The positive aspects related to vibration-based health mon-

itoring allied to the encouraging results obtained with such approach have motivated several

studies all over the world (Peeters, 2000; Döhler et al., 2014).

An extensive literature review about SHM is found in Ross and Matthews (1995), Doebling

et al. (1996) and Sohn et al. (2004), and practical applications of long-term vibration-based

SHM in the context of detect damage detection of civil structures are discussed, for instance,

in Magalhães (2010), Hu et al. (2012) and Cunha et al. (2013). According to Rytter (1993), the

damage state of a structure can be categorized in five levels according to the assessment needed

to answer the following questions:

(1) Existence. Is there damage in the structure?

(2) Location. Where is the damage in the structure?

(3) Type. What kind of damage is present in the structure?

(4) Extent. How severe is the damage in the structure?

(5) Prognosis. What is remaining of life of the structure?

Practical applications of SHM have been reported worldwide. An emblematic example of con-

tinuously monitored structure is the Tsing Ma bridge, in Hong Kong, which was constructed in

1997 and came to be monitored by nearly 600 sensors (Fig. 1.2a) (Farrar et al., 1999). Another

notorious example of monitored structure is the Orensund bridge, located between the cities of

Copenhagen, Denmark and Malmo, Sweden (Fig. 1.2b) whose cables, deck and towers were

continuously monitored by a total 22 tri-axial accelerometers. More recently, a vibration-based

monitoring system was implemented in Infante D. Henrique bridge located between the cities

of Vila Nova de Gaia and Porto, Portugal (Fig. 1.2c).

In operation since September, 2007, this dynamic monitoring system is basically composed by

two digitizers and 12 force balance accelerometers, and is complemented by an independent

static monitoring system that was installed in the bridge during its construction. This static

monitoring system comprises strain gages, clinometers and temperature sensors embedded in

the concrete. The measurements provided by the 8 temperature sensors of the static monitoring

system, in combination with the data collected by means of the 12 force-balance accelerometers

of the dynamic monitoring system, has allowed for the assessment of the influence of the envi-

ronmental and operational conditions, as well as the structural health condition of the monitored
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structure over the time (Magalhães, 2010).

Given the few amount of sensors generally used in continuous monitoring of civil engineering

structures, damage assessment by means of the vibrational responses is normally based on level

1, which is suitable to detect the abnormal structural changes due to damage events and trigger

further detailed investigations that may than demand higher levels of damage assessment. In

the context of this thesis, only damage detection based on level is covered. The assessment of

damage in the present work is basically carried out in two steps. In a first step, the modal param-

eters are identified within a reference time frame and subsequently used to stablish a statistical

model for the monitored structure. Afterwards, based on this model, statistical hypothesis tests

are carried out to judge whether the parameters identified out of the reference period can still

be explained by the model derived with the reference parameters.

The main advantage of the method is that no new environmental model needs to be estimated

as new data become available.

(a) (b) (c)

Fig. 1.2 – Examples of structures monitored by several sensors: Tsing Ma bridge, Hong Kong, con-
structed in 1997 (a), Orisund bridge located between the cities of Copenhagen, Denmark and Malmo,
Sweden (b), and Infante D. Henrique Bridge, between the cities of Porto and Vila Nova de Gaia, Portugal
(c).

Since the modal parameters are used as damage indicators, the output-only modal identification

techniques play a fundamental role in vibration-based SHM and, therefore, they are extensively

discussed in this thesis. In fact, damage detection based on the modal parameters is only feasible

if accurate estimates of these parameters are tracked from the vibration responses acquired by

the dynamic monitoring systems over the time. Thanks to the recent advances in Experimental

and Operational Modal Analysis (EMA and OMA), more precise modal parameter estimates

can be obtained, fact that contributed to the consolidation of the vibration-based monitor-

ing as a reliable approach to detect damage. Amongst the main advances in the parametric

modal identification techniques, are the development of stochastic subspace methods (Overchee

and De-Moor, 1996; Peeters, 2000) in time-domain such as the COVariance-driven Stochastic

Subspace Identification (SSI-COV) and the DATA-driven Stochastic Subspace Identification
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(SSI-DATA), as well as the frequency-domain methods poly-reference Least-Squares Complex

Frequency (pLSCF) (Guillaume et al., 2003; Peeters et al., 2007) and Maximum Likelihood

Estimator (MLE) (Schoukens and Pintelon, 1991; Guillaume, 1992; El-Kafafy, 2013).

Given the importance of the Modal Parameter Estimation (MPE) in the context of damage

detection and OMA, this thesis also devotes an extensive discussion to the recent advances in

input-output and output-only identification techniques, particularly to the Maximum Likelihood

(ML) based identification methods such as the poly-reference MLE in Modal Model formula-

tion (pMLE-MM) and the MLE formulated in Common Denominator Model (MLE-CDM),

both used in EMA and OMA to track the modal parameters together with their uncertainties

intervals.

1.2. Motivation, Main Objectives and Contributions of the Thesis

The challenges involved in the implementation of a robust vibration-based monitoring system

to detect damage in civil structures, as well as the promising perspective of this approach are,

amongst others reasons, the main motivations of the present work. One of the key steps to

achieve this goal is the development of an automated monitoring application to process the

acquired vibration raw data and extract conclusive results regarding the health condition of the

monitored structures. Considerable efforts have been made towards the development of a robust,

accurate, reliable and fully automated monitoring application. One of the most important tasks

performed by such applications is the automated extraction of the modal properties from the

vibration raw data continuously acquired over course of the monitoring period.

In this context, this thesis addresses three key issues of a real-life vibration-based continuous

monitoring. The first is related to the estimation of the modal parameters of the monitored struc-

tures from output-only data together with their confidence intervals. Since the source of vibra-

tion of the monitored structures are mostly the unmeasurable ambient excitations, all estimates

from the output responses are contaminated with disturbances of statistical nature which are, in

turn, disseminated to the identified modal parameters. This disturbances occurs, amongst other

reasons, due to finite data length, colored noise, non-stationary excitations, model order reduc-

tion or other operational influences. Hence the need to consider not only the modal parameter

estimates, but also their quality in damage assessment of the monitored structures. Therefore,

apart from discussing the strategies and techniques employed to automatically extract the dy-

namic properties, the techniques used to estimate the confidence bounds are also addressed and

two approaches are proposed to estimate these uncertainties in the present work. This will be

detailed elaborated in Chapter 3.

The second key issue involves the automation of the MPE. In fact, a successful assessment of
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the health condition based on modal properties is only feasible if these parameters are automati-

cally extracted from the vibration raw data acquired over the course of a continuous monitoring.

Given the huge amount of datasets acquired over time, such task is required to be performed

by automated applications capable of tracking, amongst other useful information, the modal

parameters from these data. Once they are initially configured, it is expected that such appli-

cations are capable of extracting this information with no further intervention. In this work, an

automated procedure to track the modal parameters from the vibration raw data is presented.

This automated identification procedure is based on a new criteria to sort the physical modal

parameters from the poles tracked by the MPE techniques discussed in Chapter 3 and is detailed

described in Chapter 4.

Finally, the third key issue concerns the detection of damage under varying environmental con-

ditions. In real-life applications structures are subjected to changes in such in conditions (e.g.,

temperature, humidity, wind, traffic, etc.). Therefore, if the modal parameter estimates are

intended to be used as damage indicators, the variations induced by such conditions must be

taken into account, otherwise they may mask the changes caused by structural damage. If such

variations are not accounted in damage detection, false-positive or negative damage diagnosis

may occur and, therefore, vibration-based health monitoring becomes inefficient or unreliable.

In these conditions, environmental models can be applied to the estimated modal properties so

that they can be used to diagnose damage. In this thesis, the techniques used to address this

issue are also discussed in Chapter 4.

In synthesis, the original contributions of this work are the following:

� Some of the most widely used models of vibrating structure in EMA and OMA are

reviewed in this thesis. From this review, it was shown the relations between the fi-

nite element models of structures that are excited by measured or unmeasured forces,

and the models of vibrating structures commonly used in modal analysis: state-space

model, modal model, left and right matrix fraction description models, and common-

denominator model;

� Some of the most important state-of-the-art methods for the identification of deterministic

and stochastic systems, are reviewed. The efficiency of these methods are discussed from

a practical point of view by means of simulated and real-life examples;

� A novel non-linear parametric modal identification technique is proposed. This new ap-

proach consists of a single reference MLE formulated in (pole-residue) Modal Model

(MLE-MM). The efficiency of this novel identification method is assessed by means of

a simulated EMA and the resulting estimates are compared to those identified with the
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pMLE-MM;

� Derivation of an alternative in implementation of the pMLE-MM. One of the main ad-

vantage if this proposed approach with regard to its first implementation, is the possibility

to estimate the confidence intervals for the modal parameter estimates without the need

of explicit linearisation formulas;

� A novel strategy to estimate the confidence bounds on the modal parameters provided

by the SSI-DATA and SSI-COV techniques. In such strategy, the modal parameters

provided by both SSI methods are used as starting guess by the pMLE-MM in a second

step of the identification process to: (1) estimate the confidence intervals of the estimated

modal parameters and, optionally, (2) optimize these parameters in a non-linear least

squares sense and provide the uncertainties of the optimized modal parameters;

� Development of a new algorithm to automatically interpret stabilization diagrams con-

structed with the parametric methods SSI-DATA, SSI-COV and pLSCF;

� Overview of the underlying theory of the methods commonly used to remove the influ-

ence of environmental and operational effects from the modal parameters with the aim of

obtaining indicators of abnormal structural changes;

� Application of the combined pLSCF-pMLE-MM, SSI-DATA-pMLE-MM and SSI-
COV-pMLE-MM to a multi-patch OMA aiming at tracking the modal parameters of

a football stadium suspension roof, which was conducted in two steps. At first, the modal

parameters together with their confidence intervals were tracked from each dataset to as-

sess, on the one hand, the efficiency of these combined techniques and, on the other hand,

the modes which were more exited by the environmental and operational conditions; and,

finally, MPE with the combined pLSCF-pMLE-MM and SSI-COV-pMLE-MM using

all datasets at once to yield the modal parameters with high spatial resolution for the

mode shapes of vibration.

� Development of a dynamic monitoring software in Java® platform, called VibMonitor,

that includes several subroutines developed to: (1) manage and pre-process the raw data

files; (2) automatically track the modal parameters; (3) remove environmental and opera-

tional effects from the estimated modal parameters; and (4) automatically detect, resort-

ing to control charts, structural changes in the monitored structures;

� Improvement of a Graphical User Interface (GUI) for output-only modal analysis. Ini-

tially developed to estimate the modal parameters from a single dataset at time, this in-

terface was extended to extract the modal parameters from multiple datasets at once by

means of a single stabilization diagram;
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� Development of a GUI Toolbox in Matlabr platform, called VibMonitor Viewer, which

was developed in the framework of this thesis, amongst other purposes, to assist the

analysts on handling and analysing the results obtained with the dynamic monitoring

software VibMonitor.

� Finally, an extensive analysis of data from the continuous monitoring of tha Braga Sta-

dium suspension roof is presented. This analysis is unique in that it combines data from

a dynamic monitoring system and from a wind measurement system aiming at assessing

the influence of the wind on the structural behaviour of the suspension roof. The analysis

these data demonstrated that a slight permanent structural change in roof structure could

successfully be detected under varying environmental conditions.

Chapter 2
MATHMATICAL MODELS FOR

ANDEMA OMA

Chapter 3
INPUT-OUTPUT AND OUPUT-ONLY

MODAL PARAMETER ESTIMATION

Chapter 4
VIBRATION-BASED DAMAGE

DETECTION UNDER VARYING

ENVIRONMENTAL CONDITIONS

Chapter 5
OPERATIONAL MODAL ANALYSIS OF THE

BRAGA STADIUM SUSPENSION ROOF

Chapter 6
CONTINUOUS MONITORING OF THE BRAGA

STADIUM SUSPENSION ROOF

Chapter 7

CONCLUSIONS AND FURTURE RESEARCH

Theoretical Background

Application

Fig. 1.3 – Organization of the text of the thesis. The first part addresses the theoretical background and
second is devoted to the application of the theory to a real-life structure.
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1.3. Organization of the Text

The organization of the chapters of this thesis is illustrated in Fig. 1.3 and a overview of each

chapter is given in the following.

Chapter 1 introduces the thesis by contextualizing the research, highlighting the main contri-

butions and illustrating the organization of the text.

Chapter 2 presents a review of the state-of-the-art of the mathematical models of vibrating

structures. This chapter stablish connections between Finite Element Models of civil engineer-

ing, state-space models from electrical engineering and modal models developed in mechanical

engineering. A simulation example is introduced that illustrates the application of the these

models from a practical point of view.

Chapter 3 discusses the modal identification techniques used in the framework of this thesis.

In this chapter, it is outlined the techniques and strategies implemented to track the modal prop-

erties together with their confidence intervals by means of the input-output and output-only

identification techniques. Special emphasis is devoted in this chapter to the non-linear iden-

tification techniques based on frequency-domain maximum likelihood approach. To illustrate

the application of theory from practical point of view, all methods are applied to simulated

examples.

Chapter 4 addresses the three key issues involved in automated dynamic monitoring of civil

structures under varying environmental and operational conditions: (1) the automated interpre-

tation of stabilization diagrams to track the modal parameters together with their confidence in-

tervals; (2) the statistical methods used to model and remove the environmental and operational

effects from the estimated natural frequencies; and finally, (3) damage detection by making use

of control charts.

Chapter 5 is essentially devoted to the application of the identification methods discussed in

Chapter 3 to characterize the modal behaviour of a football Stadium Suspension Roof. This

chapter is essentially divided into two parts. The first presents results of the modal analysis

which was carried to assess the variation of the modal parameters, their corresponding uncer-

tainty bounds, as well as the modal contributions over the different acquired datasets. Apart

from this assessment, the first part also aims at demonstrating the efficiency of the combined

methods pLSCF-pMLE-MM, SSI-DATA-pMLE-MM and SSI-COV-pMLE-MM, both on

estimating the confidence intervals and on optimizing the modal parameters. The second part

presents the results of the multi-patch OMA of the suspension roof. In this latest part, the

combined techniques pLSCF-pMLE-MM and SSI-COV-pMLE-MM are applied to estimate

the modal parameters of the roof structure with high spatial resolution for the mode shapes of
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vibration.

Chapter 6 begins by describing the main characteristics of the two monitoring systems imple-

mented to assess the influence of the environmental and operational conditions, as well as to

detect damage in the roof structure. Next, an overview of the tools and applications developed

to automatically track the modal properties of the suspension roof is also presented. Finally, the

chapter ends by discussing the most relevant results acquired both monitoring systems.

Chapter 7 summarizes the main conclusions of this work and provides some suggestions for

further research.
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Chapter 2

MATHEMATICAL MODELS FOR EMA

AND OMA

In this chapter, the models of vibrating structures suitable for EMA and OMA in time and

frequency domain are discussed. The chapter is essentially divided into three parts: the first

part addresses the time-domain models of vibrating structures; the second provides an overview

of non-parametric pre-processing techniques commonly used in EMA and OMA; and finally,

in the last part of the chapter, the frequency-domain model are discussed. Special attention is

dedicated to the state space, common denominator and right fraction models as they are widely

used in the framework of this thesis.
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2.1. Introduction

Several mathematical models of vibrating structures are found in literature to describe the dy-

namic behaviour of structures. An interesting aspect about the these models is that they are

based on three different approaches: the finite element model used to simulate the structural

behaviour of civil engineering structures, the modal model originated in mechanical engineer-

ing, and the state-space models which is commonly used in electrical engineering. In fact,

although these approaches address the vibration phenomenon from different point of views, it

is verified that they are closely related among themselves. These models can be basically di-

vided according to the domain of analysis (e.g. time and frequency-domain) and to the type

of analysis, namely, EMA or OMA. Depending the relations they describe (e.g. analytical or

experimental), they are also categorized either as continuous or discrete-time models.

In this chapter, some the main parametric mathematical models in time and frequency-domain

used in MPE are discussed. The main purpose of the chapter is, on the one hand, to present an

overview of the models used in modern modal analysis and, on the other hand, to introduce the

notation used throughout the thesis.

2.2. Newton’s Equation of Motion for Vibrating Structures

In general, for simplification purposes, real-life structures are assumed to be continuous and ho-

mogeneous elastic systems with an infinite number of Degrees Of Freedom (DOF) whose dy-

namic behaviour can be approximated by the models with multiple DOFs illustrated in Fig. 2.1.

Theoretically, this approximation can be achieved by a system with finite DOFs, as many as

necessary, to reach the desired accuracy.

c1

m1

c2

m2

cNm
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q1( )t
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q2( )t

f2( )t

qNm
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( )t

fN -1m
( )t

k1 k2 kNm

Fig. 2.1 – Mechanical system with multiple DOFs.

Normally, in practical applications (e.g. in civil and mechanical engineering), only a small

subset of the structure’s DOFs is necessary to characterize its dynamic behaviour. This charac-

terization is performed by discretising the real structure into a representative mechanical system

with Nm DOFs of Fig. 2.1 by means of the Finite Element (FE) method so that the resulting

system can the be described by the so-called Newton’s equation of motion:

36



Chapter 2

Mq̈(t)+C1q̇(t)+Kq(t) = f (t) = F1u(t) (2.1)

where f (t), q(t) ∈ RNm are the input force and the output displacement vectors evaluated at

time instant t, respectively; M, C1 and K ∈ RNm×Nm are, respectively, the mass, damping and

stiffness matrices; F1 ∈RNm×Ni is a mapping matrix with ones and zeros at appropriate positions

to specify the DOFs at which the inputs are applied and u(t) ∈RNi is a vector containing the Ni

inputs. The derivation of the solution of Newton’s equation of the motion (2.1) is classical and,

therefore, can be found in several books as, for instance, Maia et al. (1998) and Ewins (1984).

As the differential equation (2.1) is linear, its solution has the following form:

q(t) = qh(t)+qp(t) (2.2)

with qp(t) denoting the particular or complementary solution and qh(t) the solution of the ho-

mogeneous form of eq. (2.1). The particular solution qp(t) depends on the force f (t), and

therefore, it is not possible to derive analytical solutions for eq. (2.1) for all input forces f (t),

nevertheless this equation can be analytically solved for few specific cases such as constant and

harmonic forces. If the input forces are neglected, eq. (2.1) reduces to its homogeneous form

which corresponds the so-called free vibration equation of motion. By solving this equation,

important conclusions are drawn regarding the dynamic properties of the structures, specially if

the specific cases of damping are taken into account as discussed in the following sections.

2.2.1. Undamped Vibration Models

In practice, it is known that real life structures dissipates energy when they vibrate and, there-

fore, the undamped models of vibrating structures are not considered realistic. Yet despite this

fact, some important conclusions are drawn with regard to the general solution of the differen-

tial equation (2.1) if this damping hypothesis is considered. When damping is neglected, the

homogeneous equation corresponding to (2.1) becomes:

Mq̈(t)+Kq(t) = 0 (2.3)

whose general solution is known to have the following form:

q(t) = ϕeλ t (2.4)

with ϕ and λ denoting a displacement amplitude vector and a scalar constant, respectively.
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Inserting eq. (2.4) into (2.3), the following eigenvalue problem is obtained:

(K +λ
2M)ϕ = 0 (2.5)

Adopting the non-trivial solution for eq. (2.5), (−λ 2
i ) ∈R and ϕi ∈RNm (∀i = 1, 2, · · · , Nm) are

found as any of the Nm real eigenvalues and eigenvectors, respectively. The eigenvalues (−λ 2)

can be expressed as:

ω
2
ni
=−λ

2
i ⇔ ωni = jλi, (2.6)

where j =
√
−1 denotes the imaginary unit and ωni the eigenfrequency (in rad/s) corresponding

to the ith eigenvalue. The complete solution of the homogeneous differential equation (2.3) can

be synthesized in matrix formulation, as:

Ω
2 =

[\
ω

2
ni\
]
=




ω2
n1

0 · · · 0

0 ω2
n2
· · · 0

...
... . . . ...

0 0 · · · ω2
nNm



∈ RNm×Nm , Φ =

[
ϕ1 ϕ2 · · · ϕNm

]
∈ RNm×Nm

(2.7)

and the eigenvalue problem (2.5) can be reformulated in matrix notation, as:

(K +Ω
2)Φ = 0 (2.8)

where Ω2 and Φ are the matrices containing all the eigenvalues and eigenvectors correspond-

ing to eq. (2.5). It is straightforward to prove that Φ is an orthogonal matrix and, by taking

advantage of this particular property, the following relations are established (Maia et al., 1998):

Φ
T MΦ =

[
\mi\

]
, Φ

T KΦ =
[
\ki\
]

(2.9)

ωni =

√
ki

mi

with
[
\mi\

]
and

[
\ki\
]

denoting the modal mass and the modal stiffness, respectively, and the

operator (•)T stands for the matrix transpose. A common practice in modal analysis is to modify
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the scale of the eigenvectors Φ such that:

Φ
T MΦ = INm , Φ

T KΦ = Ω
2 (2.10)

where Φ is now a matrix containing the mass normalized eigenvectors in its columns and INm ∈
RNm×Nm is the identity matrix. It is worth noting that, in the context of modal analysis, the

eigenvectors ϕi are physically interpreted as the deformed shapes associated to the vibration

modes of the structure. Hence, these eigenvectors are commonly referenced as mode shapes.

In the undamped case, in particular, as these eigenvectors are real, they are also referenced as

normal modal vectors.

2.2.2. Proportional Damping Models

Since it is very difficult to quantify the distribution of the damping forces over system’s DOFs
in the same way as the mass and stiffness, it is not possible to stablish a closed formulation

to computed the damping matrix C1 in eq. (2.1). In order to overpass such difficulty, other

simplified damping models can be developed to simulate the effects of these dissipative forces.

These simplified damping models tend to privilege more the mathematical convenience than the

physical representation. One of the main examples of these models is the proportional viscous

damping, which assumes that the dissipative forces are distributed over the system’s DOFs in

the same way as the mass and stiffness. This hypothesis can be adopted to model the dynamic

behaviour of most structures without significant loss of precision.

It considers that damping matrix is proportional to the stiffness or mass matrices, or is given as

linear combination of the mass and stiffness matrices. In practice, a commonly used hypothesis

in FE analysis to simulate and predict the dynamic behaviour of structural systems is known as

the Rayleigh damping (Chopra, 1995). This hypothesis considers that the damping matrix C1 in

eq. (2.1) is given as a linear combination of the mass and stiffness matrices, as:

C1 = εK +νM (2.11)

where ε and ν are two scalar constants that can be computed using the strategy found in Chopra

(1995). The assumption proportional damping implies that Φ diagonalizes the damping matrix

C1 in the same way as the mass and stiffness matrices, as expressed in (2.9). Taking into ac-

count this assumption and the definition of modal damping ratio ξni = ci/2miωni , the following

relations are easily derived:
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Φ
TC1Φ =

[
\ci\
]
=
[
\2ξniωnimi\

]
= Γ

[
\mi\

]
(2.12)

with

Γ =
[
\2ξniωni\

]
(2.13)

By Adopting the assumption of proportional damping, it is straightforward to derive a solution

for the free vibration model associated to eq. (2.1) in the same basins as for the undamped case

presented in Section 2.2.1. This derivation starts by solving the homogeneous form of eq. (2.1):

Mq̈(t)+C1q̇(t)+Kq(t) = 0 (2.14)

Since eq. (2.14) is satisfied for each eigenvector and its corresponding eigenvalue, it can be

rewritten as:

(
λ

2
i M+λiC1 +K

)
ϕi = 0 (2.15)

Pre-multiplying eq. (2.15) by ϕT
i , yields

λ
2
i ϕ

T
i Mϕi +λiϕ

T
i C1ϕi +ϕ

T
i Kϕi = 0 (2.16)

Taking into account the orthogonality properties of the eigenvectors ϕi and the definition of

proportional damping (2.12), eq. (2.16) becomes:

λ
2
i mi +λici + ki = 0 (2.17)

whose corresponding solution is given by:

λi,λ
∗
i =−ξniωni± j

√
1−ξ 2

ni
ωni, i = 1, 2, · · · , Nm (2.18)

where the operator (•)∗ denotes complex conjugate.

2.2.3. General Viscous Damping Models

In several cases where the damping is low as, for instance, in case of civil engineering structures,

it is possible to consider the assumption of proportional damping discussed in Section 2.2.2 to
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estimate the damping matrix and, therefore, to model the dynamic behaviour of these structural

systems without a significant loss in accuracy. However, when dealing with highly damped

systems or systems with localized dampers, another damping model needs to be considered. The

first step towards the derivation of such model consists of solving the equation of motion (2.1),

whose homogeneous solution has the following form:

qh(t) = θeλ t (2.19)

The parameters λ and θ denote, in this context, a constant and vector of displacement am-

plitudes, respectively. A convenient way to solve the homogeneous differential equation (2.14)

consists of rewriting such equation into a first order differential equation. By taking into account

the trivial equation q̇(t) = q̇(t), eq. (2.14) can be rewritten as:

Uẋ(t)+Wx(t) = 0 (2.20)

with

x(t) =

[
q(t)

q̇(t)

]
, U =

[
C1 M

M 0

]
W =

[
K 0

0 −M

]
(2.21)

where x(t) ∈ Rn×1 is known as the state vector evaluated at time t, and U ∈ Rn×n and W ∈
Rn×n are symmetric matrices, with n = 2Nm. Since eq. (2.20) is a system of first order linear

and homogeneous differential equations with constant matrix coefficients, the solution of such

equation is given by the following expression:

xh(t) = ψeλ t (2.22)

Such expression is composed by a complex constant λ and a complex vector ψ which rep-

resents the possible solutions of the homogeneous equation (2.20). By substituting eq. (2.22)

into (2.20), the following complex generalized eigenvalue problem is obtained:

(Uλ +W )ψ = 0 (2.23)

whose corresponding non-trivial solution is given by:
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ψi =

[
θi

θiλi

]
, ψ

∗
i =

[
θ ∗i

θ ∗i λ ∗i

]
(2.24)

where ψi ∈Cn×1 are the eigenvectors of the linear homogeneous equation (2.20), θi ∈CNm×1 the

eigenvectors related to the second order homogeneous equation (2.14) and λi the corresponding

eigenvalues. Similarly to the proportional damping models, these eigenvalues are given by

following expression:

λi,λ
∗
i =−ξniωni± j

√
1−ξ 2

ni
ωni, i = 1, 2, · · · , Nm. (2.25)

All the n eigenvalue problems (2.23) can be formulated into matrix notation, as:

(UΛ+W )Ψ = 0 (2.26)

with

Λc =

[
Λ 0

0 Λ∗

]
,

Ψ =
[
ψ1 ψ2 · · · ψNm ψ∗1 ψ∗2 · · · ψ∗Nm

]
=

[
Θ Θ∗

ΘΛ Θ∗Λ∗

] (2.27)

Λ =
[
\
λi\
]
, Θ =

[
θ1 θ2 · · · θNm

]
(2.28)

Given the orthogonality property of Ψ, it is straightforward to prove that

ΨUΨ
T =

[
\ai\
]
, ΨWΨ

T =
[
\bi\
]

(2.29)

and also that

Λc =−
[
\bi\

]−1[\ai\
]

(2.30)

where the diagonal matrices
[
\ai\

]
and

[
\bi\

]
are known, respectively, as the modal matrix a

and modal matrix b.

Example 1
In order to present the theory from a practical point of view, an example is introduced to
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illustrate the application of the models and techniques discussed throughout Chapters 2, 3
and 4. The example consists of a lattice tower structure constituted by two segments of equal
height and by variable equilateral triangular sections. The lower section is scaled with regard
to the upper one by a factor of 2. The finite element model of the tower structure is illustrated
in Fig. 2.2.

Fig. 2.2 – Finite element model of the tower example used in the simulated analysis.

(a) (b) (c) (d) (e) (f)

Fig. 2.3 – First six modes shapes of the tower structure: 1st bend mode in Y direction (BY1) (a), 1st bend
mode in X direction (BX1) (b), 1st torsion mode (T1) (c), 2nd bend mode in Y direction (BY2) (d), 2st

bend mode in X direction (BX2) (e) and 2nd torsion mode (T2) (f).

Tab. 2.1 – Modes of the FE model of the lattice structure.
Mode Type fni (Hz) ξni (%)

1 1st bending mode in Y direction (BY1) 1.2869 1.0
2 1st bending mode in X direction (BX1) 1.2937 1.0
3 1st torsional mode (T1) 2.2251 1.0
4 2nd bending mode in Y direction (BY2) 3.8713 1.0
5 2nd bending mode in X direction (BX2) 3.8932 1.0
6 2nd torsional mode (T2) 6.1745 1.0

This model is composed by beam elements with 6 DOFs per node. The nodes of the founda-
tions are clamped and the others have 3 DOFs: two translations in x and y, and one rotation
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around z-axis; and the remaining DOFs are set equal to zero. These settings result in a FE
model with a total of Nm = 18 DOFs. The symmetry of the structure was slightly broken by
defining different geometry and materials to the column elements in order to simulate the be-
haviour of tower-like structures, which normally present very close spaced of bending modes.
Once the mass and stiffness matrices, M and K, of the simulated structure have been found,
the eigenfrequencies fni = ωni/2π and the corresponding mode shapes ϕi are computed by
solving the generalized eigenvalue problem (2.8).

The first 6 modal configurations and the corresponding modal parameters of the FE model of
the lattice tower are presented in Fig. 2.3 and Tab. 2.1, respectively. The structural damping,
on the other hand, is modelled as the special case of proportional damping (discussed in
Section 2.2.2) by setting the damping coefficients of all modes equal to 1%.

2.3. Continuous-Time State-Space Models

As shown in Section 2.2.3, the solution of the homogeneous form of the equation of the mo-

tion (2.14) is easily derived when this equation is rewritten into a state equation. This approach

is commonly used in control theory and can be extended to model other phenomena of differ-

ent subject areas whose input-output relationship are synthesized by Fig. 2.4 and governed by

first-order differential equations. In mechanical and civil engineering, in particular, the state-

space models has also been used to model the dynamic behaviour of structural systems, amongst

other phenomena. In fact, a state-space representation of the dynamic system with Ni inputs,

ui(t), and No outputs, yo(t), illustrated in Fig. 2.4 comprises two sets of equations, namely, the

so-called state and observation equations.

The derivation of such equations is rather classical and is found, for instance, in Maia et al.

(1998), Peeters (2000) and Cauberghe (2004), and is also discussed in the following sections

to introduce the notation used by the system identification techniques presented in Chapter 2.

Deterministic
Dynamical

System

u t1( )

u t2( )

u tNi
( )

y t1( )

y t2( )

y tNo
( )

Fig. 2.4 – Deterministic dynamical system with Ni inputs, u(t), and No outputs, y(t).

2.3.1. The State Equation

The set of state equations is obtained by reformulating the second order differential equa-

tion (2.1) into a first order form. Considering the trivial relationship q̇(t) = q̇(t), eq. (2.1) is

easily reformulated as:
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[
q̇(t)

q̈(t)

]
=

[
0Nm INm

−M−1K −M−1C

][
q(t)

q̇(t)

]
+

[
0Nm

M−1F1

]
u(t) (2.31)

or, in a more synthetic form, as:

ẋ(t) = Acx(t)+Bcu(t) (2.32)

with

x(t) =

[
q̇(t)

q̈(t)

]
∈ Rn×1, Ac =

[
0Nm INm

−M−1K −M−1C1

]
∈ Rn×n, Bc =

[
0Nm

M−1F1

]
∈ Rn×Nm

(2.33)

where Ac ∈ Rn×n is known as the state matrix and Bc ∈ Rn×n as the input matrix. Comparing

eq. (2.33) to (2.20), yields:

Ac =−U−1W (2.34)

Isolating matrices U and W in eqs. (2.29), and inserting them into eq. (2.34) leads to the follow-

ing eigenvalue problem:

AcΨ = ΨΛc (2.35)

2.3.2. The Observation Equation

In practice, the number of DOFs measured in an experimental or operational modal analysis is

limited by the amount sensors available, which is generally well bellow the structure’s DOFs.

Therefore, only the responses of a small subset of these DOFs are measured. Moreover, the out-

put responses can be simultaneously measured at the same locations by displacement, velocity

(laser vibrometer) and acceleration sensors. Therefore, another equation needs to be formulated

in order to take into account these practical aspects. This equation is known as the observation

equation and is expressed by:

y(t) =Caq̈(t)+Cvq̇(t)+Cdq(t) (2.36)

where y ∈ RNo×1 are the measured output responses; Ca,Cv,Cd ∈ RNo×Nm are the output loca-
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tion matrices for acceleration, velocity and displacement, respectively. The observation equa-

tion (2.36) can also be reformulated into a first order differential equation by using eq. (2.1)

to eliminate q̈(t) in combination with the definition of the state vector as in eq. (2.21). Such

reformulation yields:

y(t) =Ccx(t)+Dcu(t) (2.37)

with

Cc =
[
Cd−CaM−1K Cv−CaM−1C1

]
(2.38)

and

Dc =CaM−1F1 (2.39)

where Cc ∈ RNo×n and Dc ∈ RNo×Ni are known as the output matrix and the direct transmission

matrix, respectively.

2.3.3. The State-Space Equation

Combining the state equation (2.32) with the observation equation (2.37), yields:

ẋ(t) = Acx(t)+Bcu(t)

y(t) =Ccx(t)+Dcu(t)
(2.40)

which corresponds to the classical deterministic continuous-time estate-space model of a vibrat-

ing structure. Differently from the model represented by the equation of motion (2.1) whose

order is defined by number of DOFs Nm, the order of the state-space models is given by the

dimension of the state-vector x(t) which is n = 2Nm. The advantages of the state-space mod-

els (2.40) with regard to the vibration model (2.1) include the possibility to compute the outputs

y(t) of the dynamic system due to the inputs u(t), as well as to transform the scale of the state

vector x(t), such that

x(t) = T z(t) (2.41)

where T ∈ Cn×n is a non-singular complex square matrix. This operation is called similarity

transformation and its application results in the following state-space model:
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ż(t) = Asz(t)+Bsu(t)

y(t) =Csz(t)+Dsu(t)
(2.42)

with

As = T−1AcT

Bs = T−1Bc

Cs =CcT

Ds = Dc

(2.43)

An important property of the similarity transformation (2.41) is that, although the matrix coef-

ficients As, Bs, Cs and Ds, and the state-vector z(t) define another state-space model, the input-

output relationships remains unchanged. It is also worth mentioning that, differently from the

unscaled state vector x(t), z(t) has not the physical meaning of displacements and velocities.

2.3.4. Modal Parameters of a Continuous-Time State-Space Model

A special similarity transformation is obtained by substituting T by Ψ in eq. (2.42) and inserting

the modal decomposition of Ac (2.35) in this equation. This similarity transformation yields the

so-called modal state-space model, given as follows:

ẋm(t) = Λcxm(t)+LT u(t)

y(t) =V xm(t)+Dcu(t)
(2.44)

where xm(t) ∈ Cn×1 is the modal state vector. The matrices LT and V are known as the modal

input matrix and the modal output matrix, respectively, and are computed as:

LT = Ψ
−1Bc

V =CcΨ

(2.45)

These matrices are assumed to have, respectively, the following structures:

LT =
[
lT
1 lT

2 · · · lT
Nm

]

V =
[
v1 v2 · · · vNm

] (2.46)

with li ∈C1×Ni denoting the modal participation vector and vi ∈CNo×1 the observed mode shape

vector, both corresponding to the ith vibration mode. The matrices LT , V and Λc correspond to
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the modal parameters of the state-space models. From definitions of U , Bc and Ψ, (2.21), (2.33)

and (2.27) and taking into account the orthogonality condition of U (2.29), the modal input

matrix LT can be written as:

LT =
[\bi\

]−1
[

ΘT

ΘH

]
(2.47)

where the operator (•)H denotes the complex conjugate transpose (Hermitian) of a matrix.

The output matrix V , on the other hand, can also be expressed as a function of the complex

eigenvector Θ. Inserting Ψ (2.27) and Cc (2.38) into the definition of V (2.45), the following

relations obtained:

V =CcΨ =
[
Cd−CaM−1K Cv−CaM−1C1

][
Θ Θ∗

ΘΛ Θ∗Λ∗

]
(2.48)

If the responses are measured either by displacement, velocity or acceleration sensors at a time,

the matrix containing the observed mode shapes, V , is computed, respectively, as:

V =Cd

(
Θ Θ∗

)
(2.49)

V =Cd

(
ΘΛ Θ∗Λ∗

)
(2.50)

V =Cd

(
ΘΛ2 Θ∗Λ∗2

)
(2.51)

An important characteristic of the modal parameters LT , V and Λc is that they are insensitive

to changes of scale the state vector, which implies that, whatever the transformation matrix is

chosen to apply the similarity transformation (2.41), the scales of these modal parameters are

not affected (Peeters, 2000).

Modal Decomposition and Modal Responses

Due to the diagonal structure of the eigenvalue matrix Λc, the modal state-space model (2.44)

can be reformulated such that the total response yk can be split into contributions due to the

modes. The following reformulation is only valid if the outputs are measured in acceleration. If

such quantity is measured, the direct transmission matrix Dc can be written as:
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Dc =CcA−1
c Bc (2.52)

This expression is found by means of the definitions of the state-space matrices as in eqs. (2.33), (2.38)

and (2.38). By inserting the eigenvalue decomposition of Ac (2.35) and eqs. (2.45) into (2.52),

the following decomposition is obtained:

Dc =V Λ
−1
c LT =

n

∑
i=1

1
λi

vilT
i (2.53)

By inserting the modal decomposition (2.53) into the modal state-space model (2.44), the output

vector y(t) can be written as a sum of the n modal contributions yi(t), as follows:

y(t) =
n

∑
i=1

yi(t) (2.54)

where yi(t) ∈ Rn×1 is a vector containing the output response due to the ith vibration mode and

is computed by using the following order-one state-space model:

ẋ(i)m (t) = λix
(i)
m (t)+ lT

i u(t)

yi(t) = vix
(i)
m (t)+

1
λi

vilT
i u(t)

(2.55)

with the complex scalar x(i)m (t) standing for the ith component of the modal state vector xm(t).

Normal Mode State-Space Models

The normal mode state-space models are based on the proportional damping vibration models

and are a particular case of the general viscous damping. As discussed in Section 2.2.2, the

assumption of proportional damping implies in a mathematical simplification such that mode

shapes are real or have at least a constant phase angle that can be rescaled to real ones. The

transformation of the state-space model (2.40) into a normal mode form starts by applying the

following similarity transformation:

x(t) = Tnz(t) (2.56)

where the transformation matrix Tn is given by:
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Tn =

[
Φ 0

0 Φ

]
(2.57)

and state-space vector z(t) is given as a combination of the modal displacements and velocities:

z(t) =

[
qm(t)

q̇m(t)

]
(2.58)

The parameter qm(t) = ΦT q(t) ∈ RNm×1 in eq. (2.58) is vector containing the modal displace-

ments. By applying the similarity transformation (2.56), the following normal mode state-space

model is obtained:

ż(t) = Anz(t)+Bnu(t)

y(t) =Cnz(t)+Dnu(t).
(2.59)

where the normal mode state-space matrices An, Bn, Cn and Dn are computed as follows:

An = T−1
n AcTn =

[
0 I

−Ω2 −Γ

]

Cn =CcTn =
(

CdΦ−CaΦΩ2 CvΦ−CaΦΓ

)
Bn = T−1

n


 0[
\1/mi\

]
ΦT F1




Dn = Dc =CaΦ

[
\1/mi\

]
Φ

T F1

(2.60)

Model Reduction in Continuous Time

One of the main advantages of the normal mode state-space models is that they can be easily

reduced by selecting only the first relevant modes. Assuming Nr as the number of relevant

modes to be selected from the full model containing n vibration modes, a reduced model is

obtained by evaluating matrices Ω, Γ,
[
\1/mi\

]
and Φ, as follows:

Ωr =
[
\
ωni

2
\
]
,
[
Γr =

\2ξniωni\
]
,
[
\1/mi\

]
, Φr = (· · ·ϕi · · ·) , i = 1, 2, · · · ,Nr

Once these matrices are computed, a reduced state-space model can be obtained by eliminating

the non-relevant modes from the full model (2.44) (Peeters, 2000). The reduced state-space

model is given by:
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ẋr(t) = Λcrxr(t)+LT
r u(t)

y(t) =Vrxr(t)+Dcru(t).
(2.61)

where Λcr , Vr and Lr are matrices containing only the eigenvalues, observed mode shapes and

the operational factors of the relevant modes, and Dcr is the reduced direct transmission matrix,

which is obtained by making use of the following modal decomposition:

Dcr =VrΛ
−1
cr

LT
r (2.62)

This expression follows from the elimination of the states corresponding to the non-relevant

modes from the normal mode state-space models (2.59) and its derivation is detailed elaborated

in Peeters (2000).

2.4. Discrete-Time State-Space Models

Although the continuous-time state-space models discussed in Section 2.36 can theoretically

be used to model the dynamic behaviour of the structural systems, in practice, in experimental

modal analysis, the input and output measurements are collected in discrete rather than in con-

tinuous time. Therefore, in order to address these practical aspects, the continuous state-space

models (2.40) need to be reformulated in discrete time. Such reformulation can be derived by

considering the Zero Order Hold (ZOH) assumption, which means that the continuous time

signal is piecewise constant over a certain fixed sampling period ∆t. If this assumption is

adopted, the continuous-time state-space equation can be solved at all discrete time instants

t = k∆t (∀k ∈ N and ∀t ∈ [tk, tk+1[) and the following discrete state-space model is obtained:

xk+1 = Axk +Buk

yk =Cxk +Duk.
(2.63)

where xk = x(k∆t) =
(
q(k∆t)T q̇(k∆t)T)T

= (qT
k q̇T

k )
T is the discrete-time state vector contain-

ing the velocity and displacement vectors sampled in discrete-time, A the discrete state matrix,

B the discrete input matrix, C the discrete output matrix, D the direct transmission matrix, and

uk and yk are, respectively, the discrete input vector and the discrete output vector. The relations

between the discrete state-space matrix coefficients A, C, B and D and their corresponding coef-

ficients of the continuous-time state-space models are given by (Juang, 1996; Glad and Ljung,

2000):
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A = eAc∆t , B =
∫

∆t

0
eAcτdτ, B = (A− I)A−1

c Bc, C =Cc, D = Dc (2.64)

2.4.1. Modal Parameters of a Discrete-Time State-Space Model

The modal parameters of a discrete state-space model is derived from continuous-time state-

space model. By inserting the eigenvalue decomposition of the continuous estate matrix Ac (2.35)

into eq. (2.64) and expanding the matrix exponential function into a Taylor series, the following

relations are obtained:

A = eAc∆t = eΨΛcΨ−1∆t = ΨΛdΨ
−1 (2.65)

where Λd is the discrete eigenvalue matrix, which is given by:

Λd =
[
\
µi\
]

(2.66)

with

µi = eλi∆t ⇔ λi =
ln(µi)

∆t
(2.67)

Similarly to the continuous-time state-space models, the discrete modal participation matrix LT
d

and the discrete observed mode shapes Vd are computed as:

LT
d = Ψ

−1B

Vd =CΨ =CcΨ =V
(2.68)

where Ld matrix is assumed to have a structure similar to that of L (2.46).

Modal Decomposition and Modal Responses

Similarly to the continuous-time state-space models, if the outputs are measured in acceleration,

the modal decomposition of D is given as follows:

D = Dc =V Λ
−1
c LT =Vd(Λd− I)−1LT

d =
n

∑
i=1

1
µi−1

vdil
T
di

(2.69)

This expressions are found by using eqs. (2.64), (2.55), (2.45), (2.68) and (2.65). By making

use of the modal decomposition of D matrix (2.69), the total output vector can be split into

n modal contributions yki . Similarly to the continuous-time state-space models, yki is a vector
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containing the output response due to the ith vibration mode and is computed by using the

following order-one discrete state-space model:

ẋ(i)mk+1 = λix
(i)
mk + lT

di
uk

yki = vdix
(i)
mk +

1
λi

vdil
T
di

uk

(2.70)

where vdi is the ith column of the observed mode shapes matrix Vd , lT
di

the ith row of the opera-

tional factor matrix LT
d and the complex scalar x(i)mk stands for the ith element of the modal state

vector xmk .

Model Reduction in Discrete Time

A reduced model for the discrete-time state-space models can be obtained by following the

same strategy applied for its continuous-time counterpart (see Section 2.3.3). By adopting a

similar procedure, it is straightforward to derive the following reduced model:

ẋkr = Λdrxkr +LT
dr

uk

yk =Vdrxkr +Druk.
(2.71)

Similarly to the continuous-time state-space models, the reduced modal parameters Λdr , Vdr

and Ldr contain only the eigenvalues, observed mode shapes and the operational factors of the

relevant modes. Dr is computed in a manner similar to that of eq. (2.62).

Fig. 2.5 – Sensors and measured directions.

Example 2
The FE model of the lattice tower illustrated in Fig. 2.2 and defined by the mass, stiffness

and damping matrices M, K and C1 is transformed into a normal mode state-space model
discussed in Section 2.2.3. The structure is excited at all DOFs in both x and y-direction,
independently, with white noise inputs. The simulated responses are measured in acceleration
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at 6 DOFs as indicated in Fig. 2.5. By assuming that the two triangular sections behave as
rigid diaphragms, the measured outputs are enough to yield the deformed configurations of
the structure. The state matrices An, Bn, Cn and Dn can be computed using only the first six
modes with eqs. (2.60). Assuming a sampling period of ∆t = 0.01 s ( fs = 100 Hz) and ZOH
on the inputs, these matrices are transformed into discrete state-space matrices A, B, C and
D by means of eqs. (2.64). Once the discrete state-space matrices are computed, the modal
contributions, yki , can be computed using the one-order discrete state-space model (2.70).
The output responses of the first 6 modes measured at node 4 in x-axis direction are shown in
fig. 2.6.
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Fig. 2.6 – Modal responses with normalized amplitudes measured at node 4 in x-axis direction.

2.5. Stochastic State-Space Models

Up to now the state-space models discussed in the previous sections were addressed from a

deterministic point of view, assuming that both inputs and outputs are measurable during the

vibration tests and that the measured quantities are not affected by any disturbances. In practice,

however, these measurements may be subjected to uncertainties due to noise and unmeasured

inputs.

Stochastic
Dynamical

System

unmeasureble
inputs y t1( )

y t2( )

y tNo
( )

Fig. 2.7 – Stochastic dynamical system with unmeasurable inputs and No measurable outputs , y(t).

Moreover, in some applications (e.g. in civil engineering) it is not possible to measure the input
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forces, since the tested structures are excited by environmental and/or operational conditions

such as wind, traffic or seismic actions. Under these circumstances, the knowledge of the

deterministic inputs are replaced by stochastic processes and it is assumed that the inputs are

realizations of these processes so that the dynamic systems excited by unmeasurable inputs

illustrated in Fig. 2.7 can be modelled by the following discrete-time stochastic state-space

models:

xk+1 = Axk +wk

yk =Cxk + vk

(2.72)

The parameters wk ∈Rn×1 and vk ∈Rn×1 in eq. (2.72) are stochastic processes known as the in-

put noise process and the output noise process, respectively. These noise sequences are assumed

to have zero mean and covariance matrices:

E[

{
wp

vp

}〈
wT

q vT
q

〉
] =

[
Q S

ST R

]
δpq (2.73)

where E[•] stands for the expected value operator, δpq is the Kronecker delta which equals the

unit if p = q and zero otherwise, and p and q are two arbitrary time instants.

2.5.1. Properties of the Stochastic State-Space Models

The stochastic state-space models (2.72) are assumed to be stationary with zero mean. The

properties and definition of these models are briefly resumed as follows (Overchee and De-

Moor, 1996; Peeters, 2000):

E[xkxT
k ] = Σ, E[xk] = 0 (2.74)

where Σ represents the state covariance independent of time k. Since the noise processes wk and

vk are assumed to be zero mean and independent of the states xk, the following properties are

verified:

E[xkwT
k ] = 0, E[xkvT

k ] = 0 (2.75)

The output covariance matrices Ri ∈ RNo×No are defined as:

Ri = E[yk+iyT
k ] (2.76)
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and the next state - output covariance matrix G ∈ Rn×No as:

G = E[xk+1yT
k ] (2.77)

Based on the previous definitions, the noise properties and on the assumption that the system is

stationary, the following properties can be derived:

Σ = AΣAT +Q

R0 =CΣCT +R

C = AΣCT +S

(2.78)

The output covariance matrix Ri can be computed from the measured data, once the state ma-

trices A and C are found, as follows:

Ri =CAi−1G

R−i = GT (Ai−1)T
CT

, i = 1, 2, · · · (2.79)

The stochastic model (2.72) is defined by the system matrices A, G, C and R0. These matrices

play a role to stochastic state-space models which is equivalent to that of the deterministic

system matrices A, B, C and D to the deterministic state-space models discussed in Section 2.2.2.

By inserting the eigenvalue decomposition of A (2.65) and the definition of Vd (2.68), eq. (2.79)

can be reformulated as (Akaike, 1974; Peeters, 2000):

Ri =VdΛ
i−1
d Gm, i > 0 (2.80)

with Gm ∈ Cn×No known as the “next modal state - output” covariance matrix or stochastic

modal participation matrix. This matrix plays a role in the output-only modal analysis which is

equivalent to the modal participation matrix LT
d in input-output modal analysis (Peeters, 2000).

Moreover, similarly to LT
d , GT

m they are assumed to have the following structure:

GT
m =

[
gT

d1
gT

d2
· · · gT

dNm

]

where the vectors gdi ∈ C1×No are the so-called discrete-time stochastic modal participation

vector or discrete-time operational factor vector, which replace the modal participation factors

ldi , in case of OMA.
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2.5.2. Forward Innovation Model

The so-called forward innovation model is obtained by applying the steady-state Kalman filter

to the stochastic state-space model (2.72). The Kalman filter is widely used in control theory

and its main advantage is that it specifies how the states xk+1 are updated from xk when a new

observation yk is obtained, without needing to reprocess the sequence of observations up to time

k (y1, y2, · · · ,yk). Applying this filter to the state-space model (2.72), yields:

zk+1 = Azk +Kek

yk =Czk + ek

(2.81)

where K ∈ Rn×No is the Kalman filter gain and ek ∈ RNo×1 is called innovations (or prediction

errors) and consists of a zero mean white noise vector sequence, with covariance matrix:

E[epeT
q ] = Reδpq (2.82)

The forward innovation model (2.81) is defined by the system matrices A, K,C, Re. These

matrices are computed from the stochastic state-space system matrices A, G,C, R0 which are,

in turn, used to solve the so-called discrete Riccati equation (Arnold and Laub, 1984) for the

positive definite solution P:

P = APAT +(G−APCT )(R0−CPCT )−1(G−APCT )T (2.83)

where P = E[zkzT
k ] ∈ Rn×n is the forward state covariance matrix. Once this matrix is found,

the Kalman gain matrix is computed as:

K = (G−APCT )(R0−CPCT )−1 (2.84)

and the covariance matrix of the innovations, Re, as:

Re = R0−CPCT (2.85)

2.6. Non-parametric Pre-processing for Frequency-Domain EMA

Since frequency-domain modal identification techniques use the estimated FRFs as primary

data, the input and output signals acquired in time-domain need to be transformed into FRFs.

This transformation starts by estimating the spectra of the acquired signals. One of the most
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widely used methods to compute these spectra is the periodogram approach, also known as

Welch’s method (Mitra, 1998). The idea behind this approach is to split the measured time

data sequence into Nb overlapping segments of equal length and, for each segment, apply the

Discrete Fourier Transform (DFT) using a time window, wk (e.g. Hanning, Hamming, ...), to

minimize the leakage effects. Next, the DFTs Ub(ω) and Yb(ω) of the inputs, u(b)k , and of the

outputs, y(b)k , are computed for the bth segment, respectively, by:

Yb(ω) =
Ns−1

∑
k=0

wky(b)k e− jωk∆t (2.86)

Ub(ω) =
Ns−1

∑
n=0

wku(b)k e− jωk∆t (2.87)

where Ns is the number of sample points within each segment. The advantage of the Welch’s

method is the possibility to consider an overlapping between adjacent segments to estimate de

Power Spectra Densities (PSDs). An overlapping in the range of 50% to 75% is commonly

chosen in order to reduce the variance of the estimate. Once the DFTs of all segments are com-

puted using eqs. (2.86) and (2.87), their corresponding auto and cross PSDs can be estimated

using the following expressions:

Ŝ(b)yy (ω) =
1

Ns−1
∑

n=0
|wn|

Yb(ω)Y H
b (ω f ) (2.88)

Ŝ(b)uu (ω) =
1

Ns−1
∑

n=0
|wn|

Ub(ω)UH
b (ω) (2.89)

Ŝ(b)yu (ω) =
1

Ns−1
∑

n=0
|wn|

Yb(ω)UH
b (ω) (2.90)

Ŝ(b)uy (ω) =
1

Ns−1
∑

n=0
|wn|

Ub(ω)Y H
b (ω) (2.91)

with Ŝ(b)yy denoting the spectra matrix of the output responses, Ŝ(b)uu the spectra matrix of the input

forces, Ŝ(b)uy the input-output matrix and Ŝ(b)yu the output-input spectra matrix. In a final step, the

periodogram is estimated by computing the weighted periodogram of all segments and taking
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the average:

Ŝyy(ω) =
1

Nb

Nb

∑
b=1

Ŝ(b)yy (ω) (2.92)

Ŝuu(ω) =
1

Nb

Nb

∑
b=1

Ŝ(b)uu (ω) (2.93)

Ŝyu(ω) =
1

Nb

Nb

∑
b=1

Ŝ(b)yy (ω) (2.94)

Ŝuy(ω) =
1

Nb

Nb

∑
b=1

Ŝ(b)uu (ω) (2.95)

Once the spectra matrices are estimated, the FRFs are computed by making use of one of the

non-parametric FRF estimators. The most widely used estimator in EMA is the so-called H1

FRF estimator. This estimator is formulated based on the assumption that the inputs are noise

free and only the output measurements are affected by errors. This FRF estimator is given as:

H1 = ŜyuŜ−1
uu (2.96)

Another frequently used estimator in EMA is the H2 FRF estimator. Unlike the H1, this esti-

mator assumes that the errors are only present in the inputs and the outputs are noise free. The

H2 FRF estimator is computed by:

H2 = ŜyyŜ−1
uy (2.97)

Apart from H1 and H2, there exist other estimators, as for instance, the Hv FRF estimator. The

Hv FRF estimator assumes that: (i) the noise exists in the measured inputs and outputs; (ii) the

noise in the inputs is uncorrelated with the noise in the outputs; and (iii) the noise in both types

of signal is of equal amplitude (El-Kafafy, 2013). Detailed description and discussion about

FRF estimators are found, for instance, in Rocklin and Vold (1985); Pintelon and Schoukens

(2001); Verboven (2002) and El-Kafafy (2013). Apart from the FRF estimates, the noise in-

formation is also taken into account by some frequency-domain identification techniques. The

noise in the H1 and H2 estimators is given by the variance σ̂2
H(ω f ) at each frequency line of the

FRF. In case of Single Input Single Output (SISO) and Single Input Multiple Outputs (SIMO)
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systems, the variance of the H1 FRF estimator can be estimated by:

σ̂
2
Hoi

=
1

Nb

(
1− γ2

oi

γ2
oi

)
|Hoi|2 (2.98)

where γ2
oi is the coherence function, which is given as:

γ
2(ω f ) =

∣∣Ŝuy(ω f )
∣∣2

Ŝyy(ω f )Ŝuu(ω f )
≤ 1 (2.99)

This function is commonly used in EMA to indicate how the output is correlated with the input.

The closer to the unity this function is, the more the outputs are influenced by the inputs. On

the other hand, the closer to zero it is, the more the outputs are contaminated by noise. In case

of MISO and MIMO systems with uncorrelated outputs, the covariance matrix of the oth row

of the FRF matrix is given by:

Cov
(
Ho(ω f )

)
=

1
Ns

(
1−mγ

2
o (ω f )

)
Ŝyoyo Ŝ−1

uu (2.100)

where the subscript yo denotes the DFT spectrum of a single measured output and mγ2
o (ω f ) the

multiple coherence function that indicates the coherence between each output and all the inputs,

and is computed as:

mγ
2
o (ω f ) =

ŜyouŜ−1
uu Ŝuyo

Ŝyoyo

(2.101)

Example 3
The exact FRF of the lattice tower structure illustrated in Fig. 2.2 is compared to the H1 FRF
estimate. The inputs uk and the outputs yk sampled at 100 Hz are used to estimate the FRF
matrix. A white noise was added to each output independently, with a noise-to-signal ratio
(N/S) of 10%. The function awgn of MATLAB’s Communication Toolbox (MathWorks,
2010) allows for adding noise to a signal with a specified N/S ratio. The input and noisy
output sequences were filtered with an eight-order Chebyshev type I lowpass filter with a
cutoff frequency of 10 Hz, and the resulting data of both sequences were resampled at a lower
rate of 25 Hz.

These filtering and resampling procedures correspond to the application of the decimate
command of MATLAB’s Signal Processing Toolbox. Afterwards, the FRF matrix was esti-
mated using the H1 FRF estimator discussed in Section 2.6. The estimated FRF matrix and
its corresponding standard deviation were computed by evaluating eqs. (2.96) and (2.100),
respectively, for each frequency line f (ω = 2π f ). A typical element of the estimated FRF
matrix Ĥ(ω) together with its standard deviation and the corresponding exact FRF are shown
in Fig. 2.8.
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Fig. 2.8 – Exact and estimated elements (1,1) of the FRF matrices Hc(ω) and Ĥ(ω) together with the
estimated standard deviation. This element corresponds to the FRF between the input at node 4 (x-axis
direction) and the output at the same DOF. Absolute values of the exact (black line) and estimated (red
line) FRF with H1 estimator, and the standard deviation estimates (green line).

2.7. Non-parametric Pre-processing for Time and Frequency-Domain OMA

Apart from the periodogram, other methods exist to estimate the power and cross spectra from

the output responses measured in OMA. One of the most commonly used approaches is known

as the correlogram approach (Mitra, 1998) and consists of an indirect non-parametric technique

which estimates the spectra matrix by using the correlations of the output responses. These

correlations are defined as:

Ri = E[yi+k(yi)
T ] (2.102)

Assuming that the output responses correspond to a ergodic stochastic processes1, the defini-

tion (2.102) becomes:

Ri = lim
Nk→∞

1
Nk

Nk−1

∑
k=0

yi+kyT
i (2.103)

with Nk standing for the number of measured output data samples. In practice, when a vibration

test is performed, only a limited amount of outputs are sampled. If a sufficiently large number

of data samples is acquired, the correlations can be estimated by simply dropping the limit and

eq. (2.102) becomes:

1In a ergodic stochastic process the average over an infinite number of processes (i. e. the expected value of a
time sample) can be replaced by the average over one infinitely long record of the process
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R̂i =
1

Nk

Nk−1

∑
k=0

yi+kyT
i (2.104)

Aiming at enhancing the performance of the computation of the modal parameters estimates

by the system identification techniques, the covariances R̂i can be replaced by the reference

covariances R̂ref
i , which consists of the covariances between all outputs and only a subset of

these outputs. This reduced covariance matrix is defined by:

Rref
i = E[yi+k(yref

i )T ] = lim
Nk→∞

1
Nk

Nk−1

∑
k=0

yi+k(yref
i )T (2.105)

and estimated by:

R̂ref
i =

1
Nk

Nk−1

∑
k=0

yi+k

(
yref

i

)T
(2.106)

where yref ∈ RNref×1 is a vector containing only the responses of the well-chosen reference

sensors, with Nref denoting the number of sensors chosen as references. By Assuming the

definition of the reference outputs yref, the output vector yk can be arranged such that:

yk =

[
yref

k

y~ref
k

]
, yref

k = Lsyk (2.107)

with y~ref
k ∈ R(No−Nref)×1 denoting a vector containing the responses measured by the non-

reference sensors and Ls ∈ RNref×No a selection matrix containing zeros and ones conveniently

positioned so that the reference outputs yref
k can be extracted from the responses yk. By mak-

ing use of the definition of the reference sensors, the covariance matrix can, alternatively, be

computed by selecting the reference columns of the full covariance matrices Ri, as follows:

Rref
i = RiLT

s (2.108)

The definition of the reference sensors can be extended to define the reduced "next state - out-

put" covariance matrix Gref:

Gref = E[xi+k(yref
i )T ] = GLT

s ∈ Rn×Nref (2.109)

as well as to define the factorization properties for the reduced covariance matrix in an analogue
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manner as for the full covariance matrix (2.79):

Rref
i = RiLT

s =CAi−1Gref

Rref
−i = LsRi = (Gref)T (Ai−1)T

CT
, i = 1, 2, · · · (2.110)

Once the covariances are estimated, the weighted correlogram can be computed as the DFT of

the weighted estimated correlation sequence (2.104):

Ŝyy(ω) =
L

∑
k=−L

ηkR̂ref
k e− jωk∆t (2.111)

where L is the maximum number of time lags at which the correlations are estimated and η a

window function. In other to avoid the greater statistical variance associated with the higher

lags of the correlation estimates, L is typically much smaller than the number of data sam-

ples. In modal analysis context, it suffices to compute the so-called half spectra matrix, de-

noted by Ŝ+yy(ω), which is obtained by using only the correlations having a positive time lags in

eq. (2.111):

Ŝ+yy(ω) =
η0R̂ref

0
2

+
L

∑
k=1

ηkR̂ref
k e− jωk∆t (2.112)

The parameters η in eq. (2.112) stands for the exponential window function which is computed

by:

ηk = e−βk∆t (2.113)

where β is the exponential window constant used to reduce the noise, as well as the leakage

effects. One of the advantages of the correlogram approach with regard to the periodogram is

the possibility to remove the damping due to the time window function used (e.g. exponential

window). The additional damping of the exponential window is removed once the system poles

are estimated by using the following expression:

λcorrected = λestimated +β (2.114)

where λestimated and λcorrected are, respectively, the poles estimated by using a parametric MPE
technique and the corrected poles obtained after the removal of the additional damping due to

the exponential window.
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2.7.1. Derivation of the Noise Information

Unlike in EMA, the noise information is not available in OMA. Therefore, this information is

derived by estimating the variance of the output PSDs (Parloo et al., 2001). In case of stationary

operational conditions, the variance of the noise can be estimated by dividing the data sequence

of Nk samples into Nb non-overlapping segments of Ns samples each, such that NbNs ≤ N. If,

for each segment s (s = 1, 2 · · · ,Nb) the spectra Ŝ+(s)
yy (ω) are computed, then the mean spectra

can be estimated as:

Ŝ+yy(ω) =
1

Nb

Ns

∑
s=1

Ŝ+(s)
yy (ω) (2.115)

and the corresponding variance as (Guillaume et al., 1999; Parloo et al., 2001):

σ̂
2
S+yy(ω)

=
1

Nb

(
1

Nb

Ns

∑
s=1

∣∣∣Ŝ+(s)
yy (ω)

∣∣∣2−
∣∣Ŝ+yy(ω)

∣∣2
)

(2.116)

It turns out that, in real-life OMA, the vibration tests are performed on the structures sub-

jected to non-stationary excitations forces (e.g. traffic, wind and seismic activities). Therefore,

the employment of eq. (2.116) in such conditions can lead to an overestimation of the vari-

ance (Parloo et al., 2001) and, in turn, to an overestimation of the uncertainties on the modal

parameter estimates. Under these circumstances, another approach can be used to estimate the

variance the PSDs. This approach consists of estimating the variance of the PSDs by means of

the square absolute of residual errors from a preliminary Least Squares (LS) estimation. This

is accomplished by smoothing the these residual errors by making use of a frequency window

Wγ . Assuming that the variance σ̂2
S+yy

is almost constant over the interval ω f−∆k < ω < ω f+∆k,

an estimate for this variance can be obtained from the following weighted average:

σ̂
2
S+yy(ωk)

=
∑

f+∆k
k= f−∆k Wγ(ωk−ω f )|ε(Θ ,ωk)|2

∑
f+∆k
k= f−∆k Wγ(ωk−ω f )

(2.117)

with

ε(Θ ,ωk) = S+yy(Θ ,ωk)− Ŝ+yy(ωk) (2.118)

where S+yy(Θ ,ωk) is the parametric model synthesized after the preliminary LS estimation of

the parameters Θ and Wγ a window function (e.g. Hanning or Hamming windows) centered

around zero that slides along the frequency samples of the residual errors and is dependent

of the shape parameter γ . If a Hanning window is used to smooth the residual errors, the

parameter γ defines the number of frequency lines within the window. The optimum value
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for this parameter depends on the number of frequency lines N f of the spectra. A practical

procedure to determine this parameter is discussed in (Ljung, 1999). This procedure consists of

initially setting γ = N f /20, and then compute and plot the corresponding estimate for various

values of decreasing γ . By inspecting the differences among obtained the plots, one is able to

identify the optimum value for γ .

Example 4
The non-parametric estimates of the output covariances Ri and the half spectra matrix S+yy(ω)
of the lattice tower illustrated in Fig. 2.2 are computed from noisy contaminated outputs used
to estimate the FRF matrix and its variance in Example 3. The computation of Ri and S+yy(ω)
is accomplished by evaluating expressions (2.106) and (2.112), respectively.
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Fig. 2.9 – Element (1,1) of the output covariance matrix, Ri, which corresponds to the auto covariance
of the output response measured at node 4 (x-direction): covariance estimate before (black line) and after
the application of the exponential window (red line).
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Fig. 2.10 – Element (1,1) of the half spectra matrix, Ŝ+yy(ω), which corresponds to the auto spectrum of
the output response measured at node 4 (x-direction): absolute value (top) and the phase angle (bottom)
before (black line) and after (red line) the application of the exponential window.
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The output covariances are computed for 1024 time lags, whereas the half spectra are esti-
mated for 512 frequency lines f (ω = 2π f ) in the range of 0-10 Hz. In order to minimize
the leakage effects and the influence of the higher time lags, an exponential window function
with a decay rate of 99.99% was applied to the output covariances. Typical elements of the
noisy output covariances and spectra matrices are shown in Figs. 2.9 and 2.10, respectively.
From these figures, it is obvious the influence of the exponential window.

2.8. Continuous-Time Frequency-Domain State-Space Models

In previous sections the vibration phenomenon was addressed by using the time-domain state-

space models and it was shown how these models are related among themselves. In the follow-

ing sections, the frequency-domain models are presented, and their applicability is discussed

in the context of EMA and OMA. It is well known that the frequency-domain models allows

for a better physical interpretation of the modal behaviour of vibrating structures with regard to

the time-domain models, hence their importance in the context of modal analysis. Moreover,

another advantage of the frequency-domain models with respect to their time-domain counter-

parts is the possibility to assess the modal parameters of the tested structures suited within a

certain frequency band of interest.

Rather than the Impulsive Response Function or covariances modelled by the time-domain mod-

els, the FRF or the spectrum are the primary data to be modelled by the frequency-domain

Models. Similarly to state-space models in time-domain, these frequency domain-models can

also be formulated in a state-space basins. The derivation of such formulation starts by applying

the Laplace transform L [•] to the state-space model (2.40). Assuming zero initial conditions,

the Laplace transform of such equation reads:

sX(s) = AcX(s)+BcU(s)

Y (s) =CcX(s)+DcU(s)
(2.119)

in which

X(s) =

[
Y (s)

sY (s)

]
(2.120)

with U(s) and Y (s) are the Laplace transforms of the applied force u(t) and the displacement

y(t), respectively, and s is the Laplace variable. By eliminating the states Y (s) in eq. (2.119),

yields:

Y (s) = H(s)U(s) (2.121)

with H(s)∈CNo×Ni denoting the transfer function between the outputs and inputs. It is straight-

forward to prove that this transfer function is related to the state spaces matrices, Ac, Bc, Cc and
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Dc by means of the following expression:

H(s) =Cc(sI−Ac)Bc +Dc (2.122)

If the Laplace variable is s = jω , eq. (2.122) is redefined as:

H(ω) =Cc( jωI−Ac)Bc +Dc (2.123)

where H(ω) is the so-called FRF matrix and ω can be any frequency of interest. In fact,

the FRF is considered a particular case of the transfer function in which the tested structures

corresponds to time-invariant systems and, therefore, the Laplace variable assumes pure imagi-

nary values. By inserting the eigenvalue decomposition of Ac (2.35), and the definitions of the

participation of factors LT and observed mode shapes V (2.45) into eq. (2.123), the following

expression is obtained:

H(ω) =V ( jωI−Λc)
−1LT +Dc (2.124)

In Peeters (2000) this equation is reformulated in terms of the modal parameters of the origi-

nal FE model according to the type of the measured outputs (i.e. displacement, velocity and

acceleration).

2.8.1. Output-only Frequency-Domain State-Space Model

It can be proven that spectra Suu(ω) and Syy(ω) corresponding, respectively, to the inputs u(t)

and outputs y(t) are related to each other, as well as to the transfer function Hc(ω) defined in

eq. (2.121) by means of the following expression (Ljung, 1999):

Syy(ω) = H(ω)Suu(ω)HH(ω) (2.125)

In case of OMA, the unmeasured inputs are replaced by white noise sequences whose corre-

sponding spectrum Ruu is assumed to be constant and independent of the frequency ω . By

considering this assumption, the expression for the output spectra (2.125) can be rewritten as:

Syy(ω) = H(ω)RuuHH(ω) (2.126)

The modal form of the output spectra is obtained by inserting the modal decomposition of the

transfer function (2.124) into eq. (2.126), yielding:

Syy(ω) =
(
V ( jωI−Λc)

−1LT +Dc
)

Ruu
(
DT

c −L( jωI +Λc)
−1V T) (2.127)
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Example 5
At this point another example is introduced to illustrate the application of the frequency-
domain state-space models. The FRF and output spectra matrices of the lattice tower illus-
trated in Fig. 2.2 are computed by evaluating eqs. (2.123) and (2.126), respectively, in the
range of 0-10 Hz for each frequency line f (ω = 2π f ). Typical elements of the FRF and
output spectra matrices are shown in Figs. 2.11 and 2.12, respectively.
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Fig. 2.11 – Element (1,1) of H(ω), which corresponds to FRF between the input at node 4 (x-axis
direction) and the output at the same DOF: absolute value of the FRF (top) and the phase angle (bottom).
The black line represents the full FRF and the red line the contribution of the 4th mode to the FRF.
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Fig. 2.12 – Absolute value of the element (1,1) of the output spectra matrix Syy(ω) which corresponds
to the auto spectrum of the output response measured at node 4 (x-axis direction). The black line is the
full spectrum and the red line represents the contribution of the 4th mode to the spectrum.

2.9. The Modal Model

The modal model is one the most well-known models in frequency-domain. The advantages

of this model include the possibility to characterize the modal behaviour of the tested structure
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in terms of its modal parameters (i.e. poles, mode shapes and participation factors). The main

disadvantage of this model, however, is that it is highly non-linear in the parameters and, there-

fore, most identification techniques can not be applied directly to estimate the modal parameters.

This model is formulated by applying the Laplace transform to the equation of motion (2.1) and

assuming zero initial conditions:

Z(s)Q(s) =U(s) (2.128)

with Z(s) = Ms2 +C1s+K denoting the dynamical stiffness. Isolating Q(s) in eq. (2.128),

yields:

Q(s) = H(s)U(s) (2.129)

where H(s) = Z−1(s)∈CNo×Ni is the transfer function matrix. Similarly to the continuous-time

frequency-domain state-space models, this transfer function can be redefined as the following

FRF matrix (Maia et al., 1998; Hu et al., 2012):

H(ω) =V
[

jωI−Λ

]−1
LT +V ∗

[
jωI−Λ∗

]−1
LH (2.130)

and then reformulated in its partial fraction form:

H(ω) =
Nm

∑
i=1

vilT
i

jω−λi
+

v∗i lH
i

jω−λ ∗i
(2.131)

One of the main advantages of the models in frequency-domain is the possibility to assess

only the modal parameters suited within a certain frequency band of interest. In this case, the

influence of out-of-band modes suited bellow and above this band are treated as lower and upper

residuals. Assuming, for instance, that an EMA test is performed and that the output responses

are measured in acceleration, the transfer function matrix H(ω) is given by:

H(ω) =
Nm

∑
i=1

vilT
i

jω−λi
+

v∗i lH
i

jω−λ ∗i
+[LR]+ ( jω)2[UR] (2.132)

where LR,UR∈RNo×Ni are, respectively, the lower and upper residual terms added to eq. (2.131)

to model the influence of the out-of-band modes in the considered frequency band. These resid-

uals are defined according to the output quantity measured which can be either displacement,

velocity or acceleration, and to the type of analysis performed, namely, EMA or OMA, as

presented in Tab. 2.2 (Peeters et al., 2007).

The drawback of the lower and upper residual model as in eq. (2.132) is that it is not very
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Tab. 2.2 – Lower and upper residuals (Peeters et al., 2007).

Measured Quantity
FRFs (EMA) Full Spectra (OMA) Half Spectra (OMA)

LR UR LR UR LR UR

Displacement LR
( jω)2 UR LR

( jω)4 UR LR
jω ( jω)UR

Velocity LR
jω jωUR LR

( jω)2 ( jω)2UR LR
jω ( jω)UR

Acceleration LR ( jω)2UR LR ( jω)4UR LR
jω ( jω)UR

efficient on modelling the influence of the out-of-band modes which are suited very close to

the band of interest (El-Kafafy, 2013). In Fladung (2012), it is shown that if the in-band and

out-of-band modes are separated by a factor lower then ten, the influence of the lower and upper

modes can no longer be efficiently approximated by the residual model (2.132). Moreover, it is

verified that this situation is rather common in real life EMA and OMA. In such circumstances,

another variant of the residual model with enhanced terms proposed by El-Kafafy (2013) can be

used to minimize the influence of these modes on the band of interest and improve the accuracy

of the estimates. This modal model with enhanced lower and upper residuals is given by:

H(ω) =
Nm

∑
i=1

vilT
i

jω−λi
+

v∗i lH
i

jω−λ ∗i
+

N(ω)

d(ω)
(2.133)

with N(ω) ∈ CNo×Ni denoting the numerator matrix and d(ω) ∈ C the denominator scalar of

the new residual model given, respectively, by:

N(ω) = [AR]+ jω [BR]+ ( jω)2 [CR] , d(ω) = a+ jωb+( jω)2c (2.134)

where AR, BR,CR ∈ CNo×Ni are the numerator matrix coefficients, and a, b, c ∈ C the denomi-

nator scalar coefficients of the new upper and lower residual model (2.133). The denominator

coefficients are defined in Tab. 2.3 according to the output response measured, as well as to the

type of analysis performed (El-Kafafy, 2013).

Tab. 2.3 – Definition of the denominator coefficients of the enhanced lower and upper residual
model (2.134) according to the type of the measured output and to the analysis performed.

Measured Quantity
FRFs

Half
Spectra

(EMA) (OMA)

a b c a b c

Displacement 0 0 1 0 1 0

Velocity 0 1 0 0 1 0

Acceleration 1 0 0 0 1 0
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2.9.1. Output-only Modal Model

As the inputs are unmeasurable in frequency-domain OMA, the only available information is

the measured outputs. In this case, the inputs are assumed to be white noise sequences with

a constant spectrum and the full output spectrum matrix Syy(ω) is reformulated according to

eq. (2.126). Under the white noise input assumption, it can be proven that the modal decom-

position of the spectra matrix, Syy, is obtained by inserting eq. (2.131) into eq. (2.126) and

converting the resulting equation to the partial fraction form (Hermans and Van-Der-Auweraer,

1999; Peeters et al., 2007):

Syy(ω) =
Nm

∑
i=1

vigT
i

jω−λi
+

v∗i gH
i

jω−λ ∗i
+

givT
i

− jω−λi
+

g∗i vH
i

− jω−λ ∗i
(2.135)

where gi stands for the continuous-time stochastic modal participation vector or the operational

reference factor vector. This vector plays the same role in the continuous-time stochastic state-

space model as the vector gdi in the discrete-time stochastic state-space model. Differently from

the modal participation factor vectors li, physical interpretation of vectors gdi is less obvious as

they are a function of all modal parameters of the system and the constant input spectra matrix

Ruu. It can be shown that, in case of displacement measurements, the relation between this

vector and the model parameters of the continuous-time state-space models is given by (Peeters,

2000):

gi = lT
i RuuL(−Λc−λiI)

−1V T (2.136)

In practice, in the context of OMA, the modal parameters are usually identified by the frequency-

domain estimators using the so-called half spectra rather then the full spectra model defined by

eq. (2.135). The half spectra model, denoted by S+yy(ω), consists of the first two terms in the

right hand side of eq. (2.135):

S+yy(ω) =
Nm

∑
i=1

vigT
i

jω−λi
+

v∗i gH
i

jω−λ ∗i
(2.137)

It can be proven that the relation between the half spectra (2.137) and the full spectra (2.135) is

given as follows (Cauberghe, 2004):

Syy(ω) = S+yy(ω)+
(
S+yy(ω)

)H (2.138)
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Similarly to the case of input-output modal analysis, if one is interested to assess only the

vibration modes suited within a certain frequency band of interest, the influence of the out-of-

band modes can be modelled by making use of the upper and lower residual models. Assuming,

for instance, that the output responses are measured in acceleration, the frequency band of

interest can be modelled by:

S+yy(ω) =
Nm

∑
i=1

vigT
i

jω−λi
+

v∗i gH
i

jω−λ ∗i
+

[LR]
jω

+ jω[UR] (2.139)

or by:

S+yy(ω) =
Nm

∑
i=1

vigT
i

jω−λi
+

v∗i gH
i

jω−λ ∗i
+

N(ω)

d(ω)
(2.140)

It should be noted that the parameters of the residuals models in eqs. (2.139) and (2.140) are

defined in Tabs. 2.2 and 2.3, respectively, according to the output quantity measured.

2.10. Common Denominator Model

The Common Denominator is a rather classical frequency-domain model largely used in modal

analysis. This model is obtained by factorizing the modal model defined as in eq. (2.131) into a

rational fraction of two polynomials, as:

H(Θ ,ω) =
N(β ,ω)

d(α,ω)
(2.141)

where the numerator N(β ,ω) and the denominator d(α,ω) are given, respectively, by:

Noi(β ,ω) =
n

∑
r=0

βoirΩr(ω), d(α,ω) =
n

∑
r=0

αrΩr(ω) (2.142)

with

Θ =




β11
...

βNoNi

α



, βoi =




βoi0
...

βoin


 , α =




α0
...

αn


 , Ωr(ω) = Ω(ω)r, r = 0, 1, · · · , n (2.143)
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The polynomial basins Ω(ω) in eqs. (2.142) can be evaluated in Laplace domain (Ω(ω) = s),

for continuous-time models, or in z-domain
(
Ω(ω) = e− jω∆t), for discrete-time models. The

relation between output o and input i is such that the denominator polynomial is common for

all input-output relations. The relation between the modal model and the common-denominator

model is obtained by considering the FRF between output o and input i, as follows:

Hoi(s) =
Nm

∑
r=1

vrolri

s−λr
+

v∗ro
l∗ri

s−λ ∗r
=

Nm

∑
r=1

[Res]roi

s−λr
+

[Res]∗roi

s−λ ∗r
=

Noi(βoi,ω)

d(α,ω)
(2.144)

with

[Res]r = vrlT
r ∈ CNo×Ni (2.145)

The modal model form of the second expression in eqs. (2.144) is also known as the pole-residue

model. It is clear from eq. (2.141) that the roots of the denominator polynomial d(α,ω) corre-

sponds to the system poles. The residuals [Res]r, on the other hand, can be computed either in

a least squares sense by the so-called Least Squares Frequency-Domain (LSFD) estimator (see

Appendix A.3) or from the numerator matrix by means of the following expression (Pintelon

et al., 2007):

[Res]roi = lim
Ω(ωk)→zr

(Ω(ωk)− zr)Hoi (Ω(ωk),Θ) =
zrNoi(z−1

r ,βoi)

∏m 6=r(1− z−1
m zr)

(2.146)

where zr is the pole that corresponds to the evaluated modal residual [Res]r and zm represents

all the estimated poles which are different from zr. In eq. (2.146), it is considered that the

FRFs are evaluated in z-domain
(
Ω(ωk) = e− jωk∆t) and that a parameter constraint is applied

by imposing α0 = 1. The estimation of the modal residues, [Res]r, by means of the LSFD
estimator is performed by using the pole-residue model with lower and upper residual terms. In

case of displacement outputs, this model is given by:

H(ω) =
Nm

∑
r=1

[Res]r
jω−λr

+
[Res]∗r

jω−λ ∗r
+[LR]+ ( jω)2[UR] (2.147)

Alternatively, this estimation can be carried out by making using of the pole residue model with

enhanced lower and upper residual model:

H(ω) =
Nm

∑
r=1

[Res]r
jω−λr

+
[Res]∗r

jω−λ ∗r
+

N(ω)

d(ω)
(2.148)
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The parameters of the residual models (2.147) and (2.148) are defined according to the mea-

sured output quantities in Tabs. 2.2 and 2.3, respectively. Once these residual matrices are

calculated, the mode shapes and participation factors are computed by applying the Singular

Value Decomposition (SVD) to eq. (2.145) (Verboven, 2002; Cauberghe, 2004):

[Res]r =USV =
[
U1 U2

][S1 0

0 0

][
V T

1

V T
2

]
=U1S1V1 (2.149)

Assuming that [Res]r is a rank-one matrix (i.e. with only one singular value different from zero)

then U1 represents the mode shape vector vr and V1 the modal participation factor vector lr,

whereas the singular value S1 is used to scale these modal vectors.

2.11. Matrix Fraction Description Models

Another frequency-domain model widely used in EMA and OMA is the so-called Matrix

Fraction Description (MFD) model. This model consist of a ratio between two matrix poly-

nomials (Kailath, 1980). Two variants of this model can be used to describe the modal be-

haviour of vibrating structures in frequency domain, namely, the Right and Left MFD (RMFD
and LMFD) models. The main advantage of theses models with regard to the common de de-

nominator model is the possibility to perform what is known as poly-reference identification,

which means that multiple FRFs can be simultaneously taken into account during the paramet-

ric MPE. Therefore, compared to the common denominator, the identification with the MFD
models provides more accurate parametric estimates of very close spaced modes (Guillaume

et al., 2003). The main disadvantage of the MFD models, however, is that the parametric MPE
is generally more time-consuming than with the common denominator model.

2.11.1. Right Matrix Fraction Description Models

The RMFD considers the input-output measurements of the reference DOFs in the paramet-

ric estimation and can be considered as a poly-reference variant of the common denominator

model. In fact, in case of SIMO systems, the RMFD model reduces to the common denomina-

tor model. This verified by comparing eq. (2.141) to the definition of the RMFD model given

by:

H(Θ ,ω) = N(Θ ,ω)D(Θ ,ω)−1 (2.150)

where
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N(Θ ,ω) =
n

∑
r=0

Ωr(ω)βr (2.151)

denotes the numerator matrix and

D(Θ ,ω) =
n

∑
r=0

Ωr(ω)αr (2.152)

the denominator matrix polynomial, which is independent of the output o. The polynomial

coefficients βr ∈ CNo×Ni and αr ∈ CNi×Ni are the parameters to be estimated. In eq. (2.150) the

oth row the modelled FRFs matrix is given by:

Ho(Θ ,ω) =
n

∑
r=0

Ωr(ω)βor

(
n

∑
r=0

Ωr(ω)αr

)−1

, o = 1,2, · · · ,No (2.153)

with

Θ =




β1
...

βNo

α



, βo =




βo0
...

βon


 , α =




α0
...

αn


 (2.154)

The computation of the modal parameters with the RMFD models are performed in two steps.

The poles and modal participation factors are computed in a first step from the denominator

polynomial coefficients by reformulating D(Θ ,ω) = 0 into a generalized eigenvalue problem.

These parameters are than given as the resulting nNi eigenvalues and eigenvectors, respectively.

Once the poles and modal participation factors are computed, the mode shapes are obtained

in second step of the identification process from the numerator polynomial coefficients or in a

linear least squares sense by means of the LSFD estimator (see APPENDIX A.1).

2.11.2. Left Matrix Fraction Description Models

Unlike the RMFD model which considers the input-output measurements of the reference

DOFs, the LMFD considers the input-output measurements of all DOFs simultaneously. The

parametrization of the FRF matrix with LMFD models is given as follows:

H(Θ ,ω) = D(Θ ,ω)−1N(Θ ,ω) (2.155)
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with

N(Θ ,ω) =
n

∑
r=0

Ωr(ω)βr ∈ CNo×Ni, βr ∈ RNo×Ni

D(Θ ,ω) =
n

∑
r=0

Ωr(ω)αr ∈ CNo×No , αr ∈ RNo×No

(2.156)

The computation of the modal parameters with the LMFD is performed by following the same

strategy used by the RMFD model. The poles and mode shapes are computed in a first step from

the denominator matrix polynomial by reformulating D(Θ ,ω) = 0 into a generalized eigenvalue

problem. These parameters are than given as the resulting nNo eigenvalues and eigenvectors,

respectively. Once the poles and their corresponding mode shapes are found, the modal partic-

ipation factors can be obtained from the numerator polynomial coefficients or in a linear least

squares sense by means of the LSFD algorithm (see APPENDIX A.2). It is worth noting that,

similarly as in EMA, the modal parameters can be also estimated in OMA by using the MFD
and common denominator models. As the half spectra are parametrized in exactly the same way

as the FRFs, the output-only MPE with these models is accomplished by simply replacing the

measured FRFs by the estimated half spectra (Peeters et al., 2007).

2.12. Conclusions and Remarks

In this chapter, some of the models of vibrating structure most widely used in EMA and OMA
were discussed, and their main advantages and disadvantages were occasionally highlighted. An

interesting aspect about these models is that, although they address the vibration phenomenon

differently, it is verified that they closely related among themselves. Apart from the models

addressed in this chapter, other models are found in literature, such as the Impulse Response

Function (IRF). This model plays an important row in classical EMA and is detailed described,

for instance, in Ewins (1984) and Maia et al. (1998). Other model commonly used in OMA is

the Auto-Regressive Moving Average (ARMA). This model is also considered very important

in the context of OMA and is discussed, for instance, in Akaike (1974), Andersen (1997),

Ljung (1999) and Peeters (2000).
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INPUT-OUTPUT AND OUTPUT-ONLY

MPE

In this chapter, the state-of-the art of techniques used to identify the parametric models of

vibrating structures presented in Chapter 2 are reviewed. This review is basically divided into

two parts: the first addresses the time and the second part the frequency-domain identification

techniques. In the context of frequency-domain identification techniques, apart from the review

of the EMA and OMA estimators, it is also proposed two approaches: the first consist of

a new (single-reference) MLE formulated in pole-residual modal model which can be used

to estimate the modal parameters and their uncertainties; and the second corresponds to an

alternative implementation of the poly-reference MLE formulated in modal model. Finally,

at end of the chapter, the merging strategies suitable for multi-dataset OMA are also briefly

reviewed.
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3.1. Introduction

Over the last years a lot of efforts have been done to improve the precision of the MPE in

EMA and OMA. These efforts are reflected on the development of more precise and robust

parametric and non-parametric estimators, which represent a second generation of identification

techniques. Differently from the earliest generation which addresses the identification problem

using SISO, SIMO and MISO systems, the latest identification techniques are also suitable to

identify MIMO systems. According to the way they address the identification problem, these

techniques can be split into two different categories, i.e, the parametric and non-parametric

techniques. Amongst the non-parametric methods, a significant advance took place, particularly

with the development of the Frequecy Domain Decomposition (FDD) method (Brincker et al.,

2000, 2001), which is considered as a SVD extension of the classical Pick Picking (PP) method

(Bendat and Piersol, 1993) and has been widely used in OMA.

With regard to the parametric methods, the advances verified over the last years are even more

significant. Interesting discussion about the state-of-the-art of EMA and OMA identification

techniques are found, for instance, in (Andersen, 1997; Peeters, 2000; Cauberghe et al., 2004)

and in citations therein. Although not addressed in the framework this thesis, recent advances

also took place among the Operational Modal Analysis with eXogenous inputs (OMAX) iden-

tification methods (Guillaume et al., 2006; Reynders, 2009). As this thesis is mainly focused

on dynamic monitoring of civil engineering structures under environmental conditions, the

OMA identification methods are covered in more detail. Therefore, some of the state-of-the-art

OMA identification techniques are discussed in this Chapter, namely, the pLSCF (Guillaume

et al., 2003) method formulated in frequency-domain and the time-domain Stochastic System

Identification (SSI) techniques developed to estimate the modal parameters of output-only sys-

tems (Peeters, 2000; Overchee and De-Moor, 1996).

Initially formulated for input-output systems and also known by its commercial name Poly-

MAX (Peeters et al., 2004c), the pLSCF method was afterwards extended to output-only sys-

tems (Peeters et al., 2007). In fact, this technique can be considered as poly-reference variant

of the Least Squares Complex Frequency-domain (LSCF) method (Guillaume and Schoukens,

1998). One of the main features of the pLSCF method is the possibility to create clear and

precise stabilization diagrams, allowing for distinguishing between close spaced modes. An-

other advantage of the identification with the pLSCF method is that the physical poles tend to

stabilize faster over the identified model orders when compared to other MPE techniques, as,

for instance, the LSCF and the poly-reference Least Squares Complex Exponential (pLSCE)

(also known as LSCE-Prony) (Maia et al., 1998). More recently, significant improvements

on the non-linear estimators like the Maximum Likelihood (ML) Estimator (MLE) were also
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verified.

Initially, problems such as convergence not being guaranteed, convergence to local minima,

sensitivity to starting values and a high computational load were eventually related to these

estimators. However, it seems that these drawbacks are overcome and the MLE has finally

proven to be a robust method to estimate the modal parameters from noisy data (El-Kafafy

et al., 2012b). Originally intended to estimate the modal parameters from FRFs using the com-

mon denominator model (Guillaume, 1992), the method was also extended to use spectra as

primary data, so that it could also be used to estimate the modal parameters of output-only sys-

tems (Hermans et al., 1998; Guillaume et al., 1999). Afterwards, the MLE was also formulated

to estimate the invariants of the modal model (El-Kafafy et al., 2013; El-Kafafy, 2013) and the

uncertainty bounds on these estimates.

In this Chapter, apart from the review of some of the state-of-the-art modal identification tech-

niques, two ML-based approaches are proposed. The first is intended to estimate the modal

parameters and their corresponding confidence bounds, and consists of a single reference es-

timator formulated in pole-residue modal model; and the second corresponds to an alternative

implementation of the poly-reference MLE formulated in Modal Model (pMLE-MM). The

main idea behind these approaches is to optimize the estimates provided by the LSCF and

pLSCF estimators and yield their uncertainty intervals. Aiming at assessing the efficiency of

the first approach, it was applied to a simulated EMA to optimize the modal parameters and es-

timate their confidence bounds. The second approach consists of an alternative implementation

of the pMLE-MM which was originally proposed by El-Kafafy (2013).

3.2. Identification of Stochastic State-space Models

SSI techniques are examples of the recent advances in time-domain OMA. In this section, a

brief description of the DATA and COVariance-driven SSI (SSI-DATA and SSI-COV) methods

are presented. These techniques have become very popular among engineering community due

to their robustness and precision verified even when dealing with nosy data. Further details

about the background theory as well as the implementation of such techniques are found, for

instance, in Overchee and De-Moor (1996) and Peeters (2000). In these methods, as the only

available information are the outputs, its assumed that the systems (i.e. the tested structures) are

excited by white noise processes and that the outputs are realization of these processes.

3.2.1. The SSI-COV Method

The SSI-COV technique identifies the stochastic state-space models described in Section 2.5

using the covariance of the reference output responses acquired in the vibration tests. The
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identification with this technique starts by computing a Toeplitz matrix1 of these covariances:

T1|i =




Rref
i Rref

i−1 · · · Rref
1

Rref
i+1 Rref

i · · · Rref
2

...
... . . . ...

Rref
2i−1 Rref

2i−2 · · · Rref
i




(3.1)

By using the concepts of controllability and observability (Overchee and De-Moor, 1996; Son-

tag, 1998; Ljung, 1999) from control theory, the following matrices are defined:

Oi =




C

CA
...

CAi−1



, Γ

ref
i =

[
Ai−1Gref · · · AGref Gref

]
(3.2)

where Oi ∈ RNoi×n and Γref
i ∈ Rn×Nrefi are, respectively, the observability and controllability

matrices. By inserting eq. (2.110) into (3.2), it is straightforward to prove that toeplitz matrix

T1|i (3.1) can be factorized as:

T1|i = OiΓ
ref
i (3.3)

The Toeplitz matrix T1|i in eq. (3.1) can be also factorized using the SVD, as:

T1|i =USV =
[
U1 U2

][S1 0

0 0

][
V T

1

V T
2

]
=U1S1V1 (3.4)

where U1 ∈ RNoi×Noi and V1 ∈ RNrefi×Nrefi are orthonormal matrices and S1 ∈ (R+)Noi×Nrefi a

diagonal matrix with the positive singular values in ascending order. Comparing eqs. (3.3)

and (3.4), the observability and controllability matrices can be calculated, respectively, as:

Γ
ref
i =U1S1/2

1 T

Oi = T−1S1/2
1 V T

1

(3.5)

where T ∈ CNoi×Noi is a non-singular transformation matrix. As stated in Section 2.3.3, the

modal parameters of a state-space model are insensitive to the transformation matrix used in

1A Toeplitz matrix is a matrix that is constant along its main diagonal.
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the application of the similarity transformation. Given this particular property, one can simply

set T = I. Once this transformation matrix is defined, the identification of the stochastic state-

space model (2.72) with SSI-COV becomes straightforward. By taking advantage of the shift

structure of the observability and controllability matrices in eq. (3.3), the system matrices C and

Gref can be written in Matlab® notation, as:

C = Oi[1:No, :]

Gref = Γi
ref
[:,Nref(i−1)+1:Nrefi]

(3.6)

The state transition matrix A, on other hand, can be estimated in different ways, as discussed

in Peeters (2000) and Overchee and De-Moor (1996). In the present work, it was adopted

the approach proposed by Kung (1978), which calculates this matrix by taking advantage of

the shift structure of the observability matrix. According to this approach, the state transition

matrix is calculated as function of the two different partitions of the observability matrix:

A = Oi
†
[1:No(i−1), :]Oi[No+1:Noi, :] (3.7)

where (•)† denotes the Moore-Penrose pseudo-inverse of a matrix. Once the system matrices

A, C and Gref are identified by means of eqs. (3.6) and (3.7), the identification of the modal

parameters is theoretically solved. The fourth system matrix Rref
0 is found as the zero-lag output

covariance matrix (see eq. (2.110)). Because the discrete poles Λd and the observed mode

shapes V are calculated by

A = ΨΛdΨ
−1

V =CΨ

(3.8)

it suffices to compute the state-space matrices A and C to estimate these parameters. Once

these matrices are computed, the identification problem is solved and the eigenfrequencies are

computed by means of eq. (2.67).

Example 6
The FE model of the lattice tower presented in Fig. 2.2 is again used to illustrate the ap-
plication of the identification techniques discussed in this chapter. The noisy contaminated
covariance matrix estimated in Example 4 is used to compute the Toeplitz matrix accord-
ing to eq. (3.1) with a number of time lags i = 40. Afterwards this matrix was used by the
SSI-COV technique to the estimate the modal parameters of the tower structure. The stabi-
lization diagram constructed by identifying state-space models with order n ranging from 2
to 50 is shown in Fig. 3.1a. The two zooms of Figs. 3.1b and 3.1c show that it is possible
to identify the two pairs of close spaced modes around 1.29 and 3.9 Hz. The identification
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results obtained with the SSI-COV technique are summarized in Tab. 3.5 located at the end
of Section 3.5.3.
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Fig. 3.1 – Stabilization diagram created with the SSI-COV technique by identifying models with order n
ranging from 2 to 50 (a), and details of the two pairs of closed-spaced modes identified around 1.29 (b)
and 3.87 Hz (b).

3.2.2. The SSI-DATA Method

Similarly to the SSI-COV, the SSI-DATA technique identifies the stochastic state-spaces mod-

els discussed in Section (2.5). The first implementations of the SSI-DATA algorithm are found,

for instance, in Van Overschee and De Moor (1991, 1993). The original derivation of the SSI-
DATA algorithm considered all the measured output responses as references. The idea of re-

ducing the dimensions the of the system matrices by selecting just a subset of these responses as

references was introduced by Peeters and De Roeck (1999a) and (1999b). One of the main ad-

vantages of the this identification method compared to its covariance-driven counterpart and to

the frequency-domain estimators is that it identifies the modal parameters directly from the time

series acquired in the vibration tests and, therefore, does not require any additional processing,

neither to obtain the covariances nor the spectra matrices.

This particular characteristic, on its turn, implies in another advantage of the SSI-DATA with

regard to the other MPE techniques, which is the possibility to decompose the measured out-

puts into modal responses. Detailed discussion and derivation of the SSI-DATA is found, for

instance, in Overchee and De-Moor (1996), Ljung (1999) and Peeters (2000). Differently from

the SSI-COV, which uses covariances as primary inputs, the SSI-DATA addresses the identifi-

cation problem by projecting the row space of future outputs into the row space of past outputs.

In fact, these projection plays the same role in the context of the identification with the SSI-
DATA as the covariances with the SSI-COV. The idea behind this projection is to predict the

future based on the useful information retained in the past. This projection is defined as:
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P ref
i ≡ Y f

/
Y ref

p = Y f (Y ref
p )T (Y ref

p (Y ref
p )T )†Y ref

p (3.9)

where Yf ∈ RNoi×Nk and Y ref
p ∈ RNrefi×Nk are partitions of the block Hankel2 matrix Href ∈

R(No+Nref)i×Nk defined as:

Href =
1√
Nk




yref
0 yref

1 · · · yref
Nk−1

yref
1 yref

2 · · · yref
Nk

· · · · · · · · · · · ·
yref

i−1 yref
i · · · yref

i+Nk−2

yi yi+1 · · · yi+Nk−1

yi+1 yi+2 · · · yi+Nk

· · · · · · · · · · · ·
y2i−1 y2i · · · y2i+Nk−2




=

[
Y ref

0|i−1
Yi|2i−1

]
=
[

Y ref
p

Y f

]
l
l

“past”
“future” (3.10)

It is worth noting that expression (3.9) is only a definition of the projection and, therefore, it is

not intended to be used to calculate the projection P ref
i . Actually, this projection is calculated

by applying the RQ factorization to the data Hankel matrix. Such factorization is given as

follows:

Href =
[

Y ref
p

Y f

]
=




Y ref
0|i

Y ref
i|i

Y−i+1|2i−1


=




Y ref+
p

Y ref
i|i
Y−f


= RQT (3.11)

where Y ref+
p , Y ref

i|i and Y−f are calculated by shifting the past and future outputs in the Hankel

matrix by one block row; Q ∈ RNk×Nk is an orthonormal matrix that satisfies QQT = QT Q = I

and R ∈ R(Ni+No)i×Nk a lower triangular matrix. These matrices can be expressed in terms of

block rows and columns of the R and Q matrices, as follows:

Href =




R11 0 0 0

R21 R22 0 0

R31 R32 R33 0

R41 R42 R43 R44







QT
1

QT
2

QT
3

QT
4




(3.12)

From the definition (3.9) and the factorization (3.12), it is easy to derive the following orthogo-

nal projections:

2In a Hankel matrix the elements suited in the anti-diagonal are constant.
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P ref
i =




R21

R31

R41


QT

1 , P ref
i−1 =

[
R41 R42

][QT
1

QT
2

]
(3.13)

where P ref
i−1 is another projection which is calculated by shifting the past and future outputs in

the Hankel matrix by one block row. Similar to the projection defined in eq. (3.9), this new

projection is defined as:

P ref
i−1 ≡ Y−f

/
Y ref+

p ≡ Y−f (Y ref+
p )T (Y ref+

p (Y ref+
p )T )†Y ref+

p (3.14)

From eq. (3.12), the partition Y ref
i|i can also be calculated as a function of the R and Q sub

matrices:

Y ref
i|i =

[
R21 R22 0

R31 R32 R33

]



QT
1

QT
2

QT
2


 (3.15)

Together with the projections P ref
i and P ref

i−1, the partition Y ref
i|i will be also used to solve the

identification problem with SSI-DATA.

Kalman Filter States

As discussed in Section 2.5.2, the Kalman filter provides an optimal prediction of the states xk

of a stochastic state-space model. These predictions, denoted as x̂k, are estimated by using the

output measurements up to time instant k−1 (y0, y1, · · · , yk−1). If the initial state is x̂0 = 0, the

corresponding covariance is given by P0 = E[x̂0x̂T
0 ] and the steady-state Kalman filter states x̂k

are estimated by the following recursive formula:

x̂k = Ax̂k−1 +Kk−1(yk−1−Cx̂k−1)

Kk−1 = (G−APk−1CT )(R0−CPk−1CT )−1

Pk = APk−1AT +(G−APk−1CT )(R0−CPk−1CT )−1(G−APk−1CT )T

(3.16)

where Kk is the Kalman filter gain and Pk the Kalman state covariance matrix. According to

the main theorem of stochastic subspace identification, the projections P ref
i can be factorized

as (Overchee and De-Moor, 1996):
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P ref
i = OiX̂i =




C

CA

· · ·
CAi−1




[
x̂i x̂i+1 · · · x̂i+Nk−1

]
(3.17)

where Xi ∈ Rn×N is The Kalman filter state sequence. The proof of the expression (3.17) is

found in Overchee and De-Moor (1996). In eq. (3.16) it is considered that all the outputs are

used as references. If only a subset of these responses are used as references, the following

substitutions have to be made in eq. (3.16) (Peeters, 2000):

yk→ yref
k = Lsyk

G→ GLT
s

C→ LsC

R0→ R0LT
s

(3.18)

Applying the SVD to the projection matrix, P ref
i , and omitting the zero singular values and the

corresponding singular vectors, yields:

P ref
i =U1S1V T

1 (3.19)

where U1 ∈ RNoi×n and V1 ∈ RNrefi×Nii are orthonormal matrices and S1 ∈ (R+)n×n a matrix

containing the singular values in its main diagonal. The observability matrix and the Kalman

filter state sequence are calculated by splitting the SVD in two parts:

Oi =U1S1/2
1 T

X̂i = O†
i P

ref
i

(3.20)

where the similarity transformation matrix can simply be defined as T = I. Once the projection

P ref
i is computed by means of eq. (3.13), the observability matrix Oi and the Kalman state

sequence X̂i can also be calculated using eqs. (3.20). The next step towards the solution of the

identification problem consists of determining the system matrices A, G, C and R0. The fist step

to obtain these matrices is to factorize the projection P ref
i−1 defined in (3.14) into:

P ref
i−1 = Oi−1X̂i+1 (3.21)
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where observability matrix Oi−1 is obtained by suppressing the last No rows of Oi:

Oi−1 = Oi[1:No(i−1), :] (3.22)

Since the projection P ref
i−1 is obtained using eq. (3.13), the Kalman state sequence X̂i−1 can be

calculated as:

X̂i+1 = O†
i−1P

ref
i−1 (3.23)

From now on, the identification problem with SSI-DATA is straightforward. The system ma-

trices A and C can now be calculated from following overdetermined set of linear equations,

obtained by stacking the state-space models for time instants i to i+Nk−1:

[
X̂i+1

Yi|i

]
=

[
A

C

]
X̂i +

[
Wi

Vi

]
(3.24)

where Yi|i ∈ RNo×Nk is given by eq. (3.15), and Wi ∈ Rn×Nk and Vi ∈ RNo×Nk are the residuals.

As the Kalman state sequence and the residuals are uncorrelated, the system matrices A and C

can be computed in a linear least squares sense, as:

[
A

C

]
=

[
X̂i+1

Yi|i

]
X̂†

i (3.25)

These equations can be written in terms of the sub-matrices R and Q obtained with the QR

factorization of the Hankel matrix (3.12). Substituting eqs. (3.13) and (3.15) into (3.25), and

taking advantage of the orthogonality conditions of the Q factors, the system matrices A and C

can be expressed as a function of the sub-matrices of the R factor only:

[
A

C

]
=




O†
i−1R41

R21

R31







R21

R31

R41




†

Oi (3.26)

In practice, an important reduction of the computational time is verified if the Hankel matrix is

replaced by the R factor. In this condition, the projections P ref
i and P ref

i−1 can be computed using

only the partitions of this matrix and neglecting Q sub-matrices in eqs. (3.13). This strategy

avoids the calculation of the Q factors, resulting in a faster factorization of the Hankel matrix
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Href. The Matlab® function qr (MathWorks, 2010) allows for the computation of R factor only.

Once the system matrices A and C are computed by means of eq. (3.26), the covariances of the

noise Q, R and S are computed as the covariances of the least squares residuals:

[
Q S

ST R

]
=

[
Wi

Vi

][
W T

i V T
i

]
(3.27)

and the stochastic system matrices G and R0 are finally computed from the covariance matrices

Q, R, S. The computation of the these system matrices starts by solving the Lyapunov equation

for Σ:

Σ = AΣAT +Q (3.28)

and then, they are finally computed as:

R0 =CΣCT +R

G = AΣCT +S
(3.29)

At this point all the system matrices A,C, G and R0 are found. The system matrices A and C are

sufficient to compute the discrete poles Λd and the observed mode shapes V , which are given

by:

A = ΨΛdΨ
−1

V =CΨ

Once the model parameters are identified with the SSI-COV and SSI-DATA techniques, the

approach described in Döhler and Mevel (2013) can be used to estimate their confidence in-

tervals. In the context of the present thesis, however, the estimation of these uncertainties is

performed by following another strategy, which takes advantage of the statistic properties of the

pMLE-MM. This strategy will be detailed elaborated in Section 3.5.2.

3.2.3. Estimation of the Modal Responses and Prediction Errors

One of the main advantages of SSI-DATA, with regard to the other OMA estimators, is the

possibility to estimate the responses of the identified modes and their contribution to the mea-

sured output responses by making use of the Forward Innovation Model discussed in Sec-

tion 2.5.2. This approach can only be applied in conjunction with the SSI-DATA method,

as the implementation of SSI-COV does not guarantee the positive realness of the identi-
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fied covariance sequence and, therefore, it is not always possible to obtain a forward inno-

vation model (Overchee and De-Moor, 1996; Peeters, 2000). The derivation of such approach

starts by rewriting the discrete-time stochastic state-space model into the Forward Innovation

form (2.81). This is accomplished by applying the steady-state Kalman Filter to the stochastic

state-space model (2.72)(Peeters, 2000; Cara et al., 2013):

zk+1 = Azk +Kek

yk =Czk + ek

By pre-multiplying eqs. (3.2.3) by Ψ−1, the following modal state-space model is obtained:

zmk+1 = Λdzmk +Kmek

yk =V z̄k + ek

(3.30)

where zmk = Ψ−1zk ∈ Cn×No is the modal state vector containing the contributions of all modes

and Km = Ψ−1K ∈ Cn×No the modal Kalman filter gain. Isolating ek in the second set of

eqs. (3.30) and substituting the resulting equation into the first, yields:

zmk+1 = (Λd−KmV )zmk +Kmyk

ek =−V zmk + yk

(3.31)

As all matrices (Λd −Km,Km,V ) of the state-space model (3.31) are known, the modal state

vector zmk and the innovation error sequence ek are estimated using the output vector yk as

inputs. Once these vectors are estimated, it is possible to define a predicted output vector that

contains the estimated output responses due to the identified modes:

ŷk =
Nm

∑
m=1

ŷkm =V zmk (3.32)

where ŷkm ∈ CNo×1 is a predicted output vector containing the response of the mth mode. Since

Λd is a diagonal matrix containing the numerical and physical poles in complex conjugated

pairs, it is possible to define a matrix Sm ∈ Rn×n to select the modal response due to a certain

mode m. Such matrix is composed by zeros, except the diagonal elements corresponding to

eigenvalue m and its complex conjugate, which equal the unit. When the eigenvalues of matrix

A are real, as there is no complex conjugate, only the element of diagonal of matrix Sm cor-

responding to the real eigenvalue equals the unit. By making use of this matrix, it is possible

select only the set of physical the modes that contribute to the total response yk. This is ac-
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complished by reformulating eq. (3.32) into a summation of the contributions of the identified

modes, as:

ŷk =
n

∑
m=1

ŷkm =
n

∑
m=1

V Smzmk (3.33)

where m (m = 1, 2, . . . , n) corresponds to any of the n identified modes. Once the responses due

to the modes are estimated, the measured response, yk, at time instant k can be calculated as the

summation of the estimated modal responses ŷk plus the predicted error ek:

yk = ŷk + ek (3.34)

This expression can be reformulated in matrix notation for all Nk output samples, as:

Y = Ŷ +E (3.35)

with

Y =
[
y1 · · · yNk

]T
∈ RNk×No, Ŷ =

[
y1 · · · yNk

]T
∈ RNk×No, E =

[
e1 · · · eNk

]T
∈ RNk×No

(3.36)

where Y and Ŷ are matrices containing all the measured and estimated output samples, respec-

tively, and E is a matrix containing the corresponding predicted errors.

3.2.4. Contribution of the Estimated Modal Responses to the Measured Outputs

Once the responses due to each mode are estimated, it is possible to quantify the contributions

of each mode to the measured output responses. In Cara et al. (2013), an index is proposed

to quantify these contributions and its derivation starts by pre-multiplying eq. (3.35) by the

transpose of the matrix containing the measured responses, Y , yielding:

Y TY = Y T Ŷ +Y T E (3.37)

Retaining only the diagonal elements of Y TY , Y T Ŷ and Y T E which correspond, respectively,

to the auto covariance of the measured outputs, cross covariance between the measured and

estimated outputs, and cross covariance between the measured outputs and predicted errors,

eq. (3.37) becomes:
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(Y TY )D = (Y T Ŷ )D +(Y T E)D (3.38)

where (•)D stands for the diagonal operator: for a given a matrix M, the operator (M)D returns

a matrix containing the elements of the main diagonal of M in its diagonal and zeros elsewhere.

The diagonal elements of (Y T Ŷ )D and (Y T E)D correspond to the cross covariance between the

estimated and measured responses of output o, and to the cross covariance between predicted

errors and the measured responses of output o, respectively. Normalizing eq. (3.38) by (Y TY )−1
D

and retaining only the diagonal vectors of each term, yields:

{1}No = ∆ŷ +∆e (3.39)

where {1}No = (Y TY )−1
D (Y TY )D is a column vector containing No elements equal to the unit,

∆ŷ = (Y TY )−1
D (Y T Ŷ )D is a column vector containing the contribution of the identified modes to

each measured response and ∆e = (Y TY )−1
D (Y T E)D is a column vector containing the contribu-

tion of the prediction errors to each measured response. Once the contributions ∆ŷ and ∆e are

calculated, the global contribution of the modes, δŷ, and the global contribution of the error, δe,

are calculated as the mean values of the components of these vectors:

δŷ =
1

No

No

∑
o=1

∆
(o)
ŷ , δe =

1
No

No

∑
o=1

∆
(o)
e (3.40)

with ∆
(o)
ŷ ∈ R denoting the contribution of the identified modes to output o and ∆

(o)
e ∈ R the

contribution of the predicted error to output o. The global contributions (3.40) quantify the

degree of participation of the predicted responses due to the modes and the predicted errors on

the measured outputs. Other useful information that can be extracted from the predicted modal

responses is the degree of contribution of the response due to a certain identified mode to the

measured responses. For instance, in the context the OMA, the analyst might be interested on

assessing the modes which are likely to be more excited by environmental and/or operational

conditions. The derivation of such contribution follows the same idea used to derive eq.(3.40)

and starts by substituting eq. (3.32) into (3.34) and reformulating the resulting equation in ma-

trix notation, yielding:

(Y TY )D = (Y T Ŷ1)D +(Y T Ŷ2)D + · · ·+(Y T ŶNm)D +(Y T E)D (3.41)

Normalizing eq. (3.41) by (Y TY )−1
D and retaining only the diagonal vectors of the resulting
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matrices, gives:

{1}No = ∆ŷ1 +∆ŷ2 + · · ·+∆ŷNm
+∆e (3.42)

where {1}No is a column vector with No components, all equal to one and ∆ŷm ∈RNo×1 a column

vector containing the contributions of mode m to each measured output. The modal contribution

of mode m to the measured outputs, δŷm ∈R, is calculated as the mean value of the components

of ∆ŷm:

δŷm =
1

No

No

∑
o=1

∆
(o)
ŷm

(3.43)

where ∆
(o)
ŷm
∈ R is the contribution of mode m to output o. The relation between the global

contribution of the modes, δŷ, and the contribution of each mode, δŷm , is given by:

Nm

∑
m=1

δŷm +δe = δŷ +δe = 1 (3.44)

Example 7
The output responses contaminated with noise of Example 3 is used by the SSI-DATA tech-
nique to the estimate the model parameters of the tower structure. The estimation with SSI-
DATA starts by computing the Hankel matrix according to eq. (3.10). Next, the R-factor of
this matrix is computed using eq. (3.12). The R-factor sub-matrices are then used compute
the state-space matrices A and C, which are found by means of eq. (3.26). A stabilization
diagram was constructed by identifying models with order n ranging from 2 to 50, as shown
in Fig. 3.2a. The two zooms of Figs. 3.2b and 3.2c show that it is possible to identify the two
pairs of close spaced modes around 1.29 and 3.9 Hz.
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Fig. 3.2 – Stabilization diagram created with the SSI-DATA technique with i = 20 and nmax = 50 (a),
detail of the two pair of close spaced modes around 1.29 (b) and 3.9 Hz (c), and variation of contribution
of the identified modes to the total responses over the different model orders (d).
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Fig. 3.3 – Modal responses of the tower example with normalized amplitudes measured at node 4 in
x-axis direction: exact (black line) and estimated (red line) responses.
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Fig. 3.4 – Contribution of the response of each identified mode to the total responses measured at: node
4 in x (a) and y-axis (b) directions, node 6 in x-axis (c) direction, node 7 in x (d) and y-axis (e) directions,
and at node 9 in x-axis direction (f).
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Afterwards the modal responses and their respective modal contributions were estimated using
the procedure described in Section 3.2.4. The variation of the global contribution of the modes
δŷ with identified model orders is shown in Fig. 3.2d and the modal responses of DOF 4 in
x-axis direction is compared to the exact response in Fig. 3.3.

In Figs. 3.4 and 3.5 are shown the contributions of these modal responses to the output re-
sponses measured at each DOF, ∆

(o)
ŷm

, and the global contribution of the identified modes to
the measured output vector, δŷ, respectively. By inspecting these figures, it is verified that the
4th, 5th and 6th vibration modes are those which tend to be more excited by the white noise
sequences used as inputs. The identification results obtained with the SSI-DATA technique
are presented in Tab. 3.5 located at the end of Section 3.5.3.
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Fig. 3.5 – Global contribution of the identified modes to total measured responses.

3.3. Identification of Common Denominator Models

3.3.1. Least Squares Complex Frequency-domain Method

The Least Squares Complex Frequency-domain (Guillaume and Schoukens, 1998; Van-der

Auweraer et al., 2001; Verboven et al., 2005; El-Kafafy, 2013) (LSCF) is an identification

method commonly used in EMA and OMA. The basic idea of this technique is to identify the

modal parameters by fitting the FRF matrix modelled by the common denominator model to the

measured FRF matrix. As described in Section 2.10 the FRF matrix in common denominator

model is expressed by:

Ĥk(Θ ,ω) =
Nk(Θ ,ω)

d(Θ ,ω)
(3.45)

where the numerator matrix Nk(Θ ,ω f ) and the denominator scalar d(Θ ,ω) are given, respec-

tively, by:

Nk(Θ ,ω) =
n

∑
r=0

βkrΩr(ω), k = 1,2, · · · ,NoNi (3.46)

and
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d(Θ ,ω) =
n

∑
r=0

αrΩr(ω) (3.47)

where Ωr(ω) = zr, with z denoting the z-domain polynomial basins, ∆t represents the sampling

time and ω f the circular frequency. The coefficients αr and βkr are the unknown parameters to

be estimated. For identification purposes, these coefficients are stacked on the top of each other

as follows:

Θ =




β1
...

βNoNi

α



, βk =




βk0
...

βkn


 , α =




α0
...

αn


 (3.48)

The estimates of the polynomial coefficients can be obtained by minimizing the following Non-

linear Least-Squares (NLS) cost function with respect to the parameter Θ :

lNLS

NoNi

∑
k=1

N f

∑
f=1

∣∣∣ENLS
k (Θ ,ω f )

∣∣∣2 (3.49)

with the non-linear equation error ENLS
k (Θ ,ω f ) given by:

ENLS
k (Θ ,ω f ) =

Nk(Θ ,ω f )

d(Θ ,ω f )
−Hk(ω f ) (3.50)

where Hk(ω f ) is the element k (k = 1, 2, · · · , NoNi) of the measured FRF matrix, ω f = 2π f(
f = f1, f2, · · · , fN f

)
are the discrete frequencies at which FRF measurements are available,

with N f denoting the number of frequency lines. The NLS cost function (3.49) can be approxi-

mated by a linear one by:

lLS

NoNi

∑
k=1

N f

∑
f=1

∣∣∣ELS
k (Θ ,ω f )

∣∣∣2 (3.51)

with

ELS
k (Θ ,ω f ) = Nk(Θ ,ω f )−d(Θ ,ω f )H(ω f ) (3.52)

where ELS
k (Θ ,ω f ) = d(Θ ,ω f )ENLS

k (Θ ,ω f ) is the linearised equation error. Since eq. (3.52) is
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linear in the parameters, it follows that:

JHE(Θ) = JHJΘ ≈ 0, E(Θ) =




ELS
k (Θ ,ω1)

...

ELS
k (Θ ,ωN f )


 (3.53)

where J is the so-called Jacobian matrix, which is given by:

J =




X1 0 · · · 0 Y1

0 X2 · · · 0 Y1
...

... . . . ...
...

0 0 · · · XNoNi YNoNi




(3.54)

with

Xk =




Ω0(ω1) · · · Ω1(ω1) Ωn(ω1)
... . . . ...

...

Ω0(ωN f ) · · · Ω1(ωN f ) Ωn(ωN f )


 ∈ CN f×(n+1) (3.55)

and

Yk =




Ω0(ω1)Hk(ω1) · · · Ω1(ω1)Hk(ω1) Ωn(ω1)Hk(ω1)
... . . . ...

...

Ω0(ωN f )Hk(ωN f ) · · · Ω1(ωN f )Hk(ωN f ) Ωn(ωN f )Hk(ωN f )


 ∈ CN f×(n+1) (3.56)

Given the structure of the Jacobian matrix, the normal equations (3.53) can be reformulated as:




R1 0 · · · 0 S1

0 R2 · · · 0 S2
...

... . . . ...
...

0 0 · · · RNoNi SNoNi

ST
1 ST

1 · · · ST
NoNi ∑

NoNi
k=1 Tk








β1

β2
...

βNoNi

α





= 0 (3.57)

with
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Rk = Re
(
XH

k Xk
)
∈ R(n+1)×(n+1), Sk = Re

(
XH

k Yk
)
∈ R(n+1)×(n+1), Tk = Re

(
Y H

k Yk
)
∈ R(n+1)×(n+1)

(3.58)

Due to their Toeplitz structure, the normal matrices Rk, Sk and Tk can be computed in a time

efficient way by using the FFT (Cauberghe et al., 2004). Since the denominator polynomial

coefficient α is sufficient to compute the poles, this parameter can be calculated by eliminat-

ing the numerator coefficients βk from Eqs. (3.57). This elimination starts by calculating the

numerator coefficients from the first set of equations (3.57):

βk =−R−1
k Skα (3.59)

Afterwards, they are eliminated from the normal equations by substituting (3.59) into the last

equation (3.57), yielding:

NoNi

∑
k=1

(Tk−ST
k R−1

k Sk)α = 0 (3.60)

or in a more compact form

Mα = 0 (3.61)

with

M =
NoNi

∑
k=1

(Tk−ST
k R−1

k Sk) (3.62)

In order to avoid the trivial solution, a constraint has to be imposed to the α coefficients. This

can be done by imposing one of the coefficients is equal to a non-zero constant value. Assuming,

for instance, that the last coefficient is constrained to 1, eq. (3.61) becomes:

αLS =

{
−M−1

[1:n,1:n]M[1:n,n+1]

1

}
(3.63)

Once the denominator coefficients are found, back substitution based in eq. (3.59) can be done

to compute the numerator coefficients βk. At this point the identification problem is solved

with LSCF. The poles are found as the roots of the denominator polynomial, d, and the modal

96



Chapter 3

residues, [Res]r, are obtained by following either of the two strategies described in Section 2.10.

Although the confidence bounds on the LSCF estimates can be computed by using the approach

presented in De Troyer et al. (2009a), another procedure is proposed in this thesis to estimate

such uncertainties. This approach consists of using one Gauss-Newton iteration of the MLE-
MM. This will be detailed described in Section 3.5.1.

3.3.2. Maximum Likelihood Estimator

One of the advantages of the LS-based identification techniques is their ability to handle a large

amount of data and estimate the modal parameters in a reasonable computational time. Despite

this efficiency, the estimates provided by these techniques are not always accurate enough.

In such circumstances, more precise non-linear estimators as the MLE can be employed to

improve the precision of these estimates (Guillaume, 1992; Pintelon and Schoukens, 2001).

In this section, the implementation of the MLE formulated to estimate the parameters of the

common denominator models (MLE-CDM) is presented. Two variants of the MLE-CDM
exist and the difference between them relies upon the cost function to be minimized, which can

be either a linear or logarithmic cost function, and on the type of the parameters to optimized,

i.e, complex or real. Detailed discussion about these variants is found, for instance, in El-Kafafy

(2013).

In this section, the MLE-CDM with logarithmic cost function and real coefficients is addressed.

This logarithmic ML is more robust to the noise assumptions made as well as to outliers, and

can handle measurements with a large dynamic range (Guillaume, 1992). Moreover, the log-

arithmic cost function tends to be smoother than the traditional non-linear least squares cost

function resulting in a larger convergence region (Arruda, 1992). The ML estimate ΘML of

the polynomial coefficients of the common denominator model is obtained in non-linear least

squares sense using the estimated parameters from a preliminary LS identification as starting

guess. This logarithmic weighted cost function is expressed by (Guillaume and Schoukens,

1998):
NoNi

∑
k=1

N f

∑
f=1

l(Θ)Log−ML−CDM =
∣∣∣E log

k (ω f ,Θ)
∣∣∣2 (3.64)

with the logarithmic equation error E log
k (ω f ,Θ) given as:

E log
k (ω f ,Θ) =

log
(
Ĥk(ω f ,Θ)/Hk(ω f )

)

σHk(ω f )/
∣∣Hk(ω f )

∣∣ (3.65)

where Ĥk(ω f ,Θ) is the FRF to be fitted to the measured FRF Hk(ω f ) and σHk(ω f ) is the stan-
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dard deviation of the noise.

Gauss-Newton optimization

The advantage of the MLE with regard to the LS-based techniques is the possibility to take into

account the quality of the measured FRFs during the parametric identification and, therefore,

to provide the optimized modal parameters together with there uncertainty bounds. The ML
parameters ΘML is obtained by minimizing eq. (3.65) in an iterative manner. This is done by

means of a Gauss-Newton optimization algorithm, which takes advantage of the quadratic form

of the logarithmic cost function (3.65). Each Gauss-Newton iteration is performed in two steps:

1. Solve the normal equations

JH
i Ji∆Θi =−JH

i Ei for ∆Θi. (3.66)

2. Compute an update of the previous solution

Θi+1 =Θi +∆Θi (3.67)

with Ei = E(Θi) denoting the equation error and Ji =
∂E(Θi)

∂Θi
the Jacobian matrix evaluated at the

ith iteration. The equation error or so-called residual vector, E(Θ), is computed at each iteration

by:

E(Θi) =





E log
1 (Θi)

E log
2 (Θi)

...

E log
NoNi

(Θi)





∈ CNoNiN f×1, E log
k (Θi) =





log(Ĥk(ω1,Θi)/Hk(ω1))
σHk(ω1)

/|Hk(ω1)|
log(Ĥk(ω2,Θi)/Hk(ω2))

σHk(ω2)
/|Hk(ω2)|
...

log
(

Ĥk(ωN f ,Θi)/Hk(ωNf )
)

σHk(ωNf
)/
∣∣∣Hk(ωNf )

∣∣∣





∈ CN f×1, k = 1, . . . ,NoNi

(3.68)

The Jacobian matrix in eq. (3.66) has the same structure as that of (3.54). The entries Xk and Yk

in this matrix, on the other hand, are calculated, respectively, by:

Xk =




Ω0(ω1)|Hk(ω1)|
σHk(ω1)

Nk(ω1,Θ)
Ω1(ω1)|Hk(ω1)|

σHk(ω1)
Nk(ω1,Θ) · · · Ωn(ω1)|Hk(ω1)|

σHk(ω1)
Nk(ω1,Θ)

...
... . . . ...

Ω0(ωNf )
∣∣∣Hk(ωNf )

∣∣∣
σHk(ωNf

)Nk(ωN f ,Θ)

Ω1(ωNf )
∣∣∣Hk(ωNf )

∣∣∣
σHk(ωNf

)Nk(ωN f ,Θ) · · ·
Ωn(ωNf )

∣∣∣Hk(ωNf )
∣∣∣

σHk(ωNf
)Nk(ωNf ,Θ)



∈ CN f×(n+1) (3.69)
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and

Yk =




−Ω0(ω1)|Hk(ω1)|
σHk(ω1)

d(ω1,Θ)
−Ω1(ω1)|Hk(ω1)|
σHk(ω1)

d(ω1,Θ) · · · −Ωn(ω1)|Hk(ω1)|
σHk(ω1)

d(ω1,Θ)

...
... . . . ...

−Ω0(ωNf )
∣∣∣Hk(ωNf )

∣∣∣
σHk(ωNf

)d(ωN f ,Θ)

−Ω1(ωN f )
∣∣∣Hk(ωNf )

∣∣∣
σHk(ωNf

)d(ωNf ,Θ) · · ·
−Ωn(ωNf )

∣∣∣Hk(ωNf )
∣∣∣

σHk(ωN f
)d(ωNf ,Θ)



∈ CN f×(n+1) (3.70)

Given the block structure of the Jacobian matrix, the normal equations (3.66) can be reformu-

lated as:




R1 0 · · · 0 S1

0 R2 · · · 0 S2
...

... . . . ...
...

0 0 · · · RNoNi SNoNi

ST
1 ST

1 · · · ST
NoNi ∑

NoNi
k=1 Tk








∆β1

∆β2
...

∆βNoNi

∆α





=





Re
(
XH

1 E1
)

Re
(
XH

2 E2
)

...

Re
(
XH

NoNi
ENoNi

)

∑
NoNi
k=1 Re

(
Y H

k Ek
)





(3.71)

where Rk = Re
(
XH

k Xk
)
∈R(n+1)×(n+1), Sk = Re

(
XH

k Yk
)
∈R(n+1)×(n+1) and Tk = Re

(
Y H

k Yk
)
∈

R(n+1)×(n+1). By taking advantage of the block structure of the normal equations (3.71), the

numerator and the denominator coefficients can be isolated from each other and updated sepa-

rately, as follows:

∆βk = R−1
k

(
Re
(
XH

k Ek
)
+Sk∆α

)
(3.72)

NoNi

∑
k=1

(
Tk−ST

k R−1
k Sk

)
∆α =−

NoNi

∑
k=1

(
Re
(
Y H

k Ek
)
−ST

k R−1
k Re

(
XH

k Ek
))

(3.73)

Once the denominator coefficients α are calculated in the last iteration by means of (3.73),

eq. (3.72) can be used to compute the numerator coefficients β . The poles can be estimated as

the roots of the common denominator d(ω f ,Θ) with the coefficients α , and the mode shapes

and operational factors are computed by following the procedure described in Section 2.10.

Estimation of the uncertainty bounds

The MLE-CDM takes into account not only the measured FRFs, but also the noise informa-

tion during the parametric estimation of the polynomial coefficients of the common denomina-

tor model, therefore, apart from providing optimized estimates of the modal parameters, they

also yield the confidence intervals of these estimates. The estimation of these confidence inter-

vals is given as the Cramér-Rao lower bound on the estimated modal parameters (Pintelon and

Schoukens, 2001), assuming that the noise on the measured FRF is disseminated to the modal
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parameters. As shown in Schoukens and Pintelon (1991), if real coefficients are used to model

the parameters of the common denominator model, a good approximation of the covariance of

the parameters ΘML is obtained by:

Cov(Θ̂ML)'
[
2Re

(
JH

l Jl
)]−1

(3.74)

with Jl standing for the Jacobian matrix evaluated in the last iteration of the Gaussian-Newton

algorithm. In practice, one is mainly interested in the uncertainty on the natural frequencies and

the damping ratios and, therefore, only the covariance matrix of the denominator coefficients

can be used to computed these uncertainties. In this case, the computation of these uncertainties

is accomplished without significant loss in precision, but with considerable reduction of the

computational time, by means of the following expression:

Cov(α̂)' E
[
∆α(∆α)H] (3.75)

Assuming that the noise on the FRFs are uncorrelated and that no correlation exists between

the residuals El , the covariance (3.75) reduces to:

Cov(α̂)'
[

NoNi

∑
k=1

(
Tk−ST

k R−1
k Sk

)
]−1

(3.76)

This strategy avoids the inversion of full matrix in eq. (3.71), resulting in a significant reduction

of computational time. Once the covariance of the denominator coefficients are computed, the

covariance of the natural frequencies and damping ratios can be estimated using the approach

described in Pintelon et al. (2007).

Convergence of the ML Algorithm

The MLE-CDM optimizes iteratively the starting estimates provided by the LSCF. This is

accomplished by setting a maximum number of iterations and a value for the relative error be-

tween two consecutive iterations (i.e. |l(Θi+1)− l(Θi)|/l(Θi), with l denoting the cost function

to be minimized and i the iteration number). In order to avoid local minima and enlarge the

convergence region of the Gauss-Newton algorithm, the following Levenberg-Marquardt form

of eq. (3.66) should be used (Pintelon and Schoukens, 2001) to ensure that the cost function

decreases during the performed iterations:

(
JH

i Ji +λLM(JH
i Ji)D

)
=−∆ΘiJH

i Ei (3.77)
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Increasing the Levenberg-Marquardt parameter λLM in eq. (3.77) forces the cost function to de-

crease, but reduces the convergence speed. Normally λLM = 0 is used as an initial value and then

it is adapted in every iteration according to the variation of the cost function. If the cost func-

tion increases, the value of parameter λLM is increased, otherwise, it is decreased (Cauberghe,

2004).

Example 8
The half spectra matrix of the lattice tower structure estimated with the correlogram approach
(see Section 2.7) in Example 4 is used to illustrate the identification with the LSCF method
and MLE-CDM. Firstly, the parameters Θ of the common denominator model are estimated
from the measured spectra matrix by means of the LSCF technique using a model with order
n = 70. Afterwards these parameters are used as a starting guess by the MLE-CDM. The es-
timation with the MLE-CDM is only possible if the measured half spectra and their variances
are taken into account in the cost function (3.64).
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Fig. 3.6 – Convergence of the MLE-CDM cost function over the performed iterations.
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trum synthesized after 60 iterations of MLE-CDM (black line): absolute value (top) and phase (bottom).
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As the noise information is not measurable during an output-only vibration test, the variances
of the measured half spectra are estimated by using the square absolute of residual errors
from the preliminary estimation with the LSCF estimator (see Section 2.7.1). These residual
errors between the measured and modelled spectra are smoothed by making use of a Hanning
window with shape parameter γ = 41.

Once the standard deviations of the half spectra are estimated, the optimization of the starting
parameters with MLE-CDM was performed iteratively with the Guass-Newton algorithm
combined with Levenberg-Marquardt approach to ensure that the cost function decreases with
the performed iterations. A total of 60 iterations was performed to optimize the starting guess
provided by the LSCF technique. The variation of the cost function over the performed
iterations is shown in Fig. 3.6. In Fig. 3.7, the element(1,1) of measured spectra matrix is
compared to the spectrum synthesized from the estimates provided by MLE-CDM after 60
iterations (smoothed spectrum).

3.4. Identification of Right Fraction Description Models

3.4.1. Poly-reference Least Squares Complex Frequency-domain Method

The Poly-reference Least Squares Complex Frequency-domain (pLSCF) technique, also known

by its commercial name as PolyMAX (Peeters et al., 2004c), identifies the so-called RMFD
models. In fact, this technique consists of a poly-reference version of the LSCF estimator and

was initially proposed by Guillaume et al. (2003) for EMA. Afterwards the technique was also

extended to OMA (Peeters et al., 2007). More details on the implementation of this technique

are found, for instance, in (Peeters et al., 2004b,a). In case of EMA, the following equation is

assumed to model the measured FRF matrix:

Ĥ(Θ ,ω f ) = N(Θ ,ω f )D(Θ ,ω f )
−1 (3.78)

where Ĥ(Θ ,ω f )∈CNo×Ni is the FRF matrix to be estimated, N(Θ ,ω f )∈CNo×Ni and D(Θ ,ω f )∈
CNo×Ni are the numerator and the denominator polynomials, respectively. These matrices are

parametrized, respectively, as:

N(Θ ,ω f ) =
n

∑
r=0

Ωr(ω f )βr, D(Θ ,ω f ) =
n

∑
r=0

Ωr(ω f )αr (3.79)

where βr ∈CNo×Ni and αr ∈CNi×Ni are the numerator and denominator polynomial coefficients,

respectively. For a model having No outputs and Ni inputs, each row of the RMFD model is

given as:

Ĥo(Θ ,ω f ) =
n

∑
r=0

Ωr(ω f )βor

( n

∑
r=0

Ωr(ω f )αr

)−1

, o = 1, 2, · · · , No (3.80)

102



Chapter 3

with Ĥo(Θ ,ω f ) denoting the row vector containing the estimated FRFs of the output o and βor ∈
C1×Ni the row vector containing the oth row of the numerator matrix polynomial coefficient.

These numerator matrices together with the denominator matrices αr are the parameters to be

estimated by the pLSCF method. All these coefficients are stacked on the top of each other, as

follows:

Θ =




β1
...

βNo

α



, βo =




βo0
...

βon


 , α =




α0
...

αn


 (3.81)

The MPE with the RMFD models is accomplished by minimizing the following non-linear

least-squares cost function with respect to parameter Θ :

lNLS

No

∑
o=1

N f

∑
f=1

∣∣∣ENLS
o (Θ ,ω f )

∣∣∣2 (3.82)

with the non-linear equation error given as:

ENLS
o (Θ ,ω f ) = No(Θ ,ω f )D(Θ ,ω f )

−1−Ho(ω f ) (3.83)

where Ho(ω f ) denotes the row vector containing the measured FRFs of output o and No(Θ ,ω f )

the row vector containing numerator matrix polynomial of output o. The non-linear cost func-

tion (3.82) can be approximated by a linear one by:

lLS

No

∑
o=1

N f

∑
f=1

∣∣∣ELS
o (Θ ,ω f )

∣∣∣2 (3.84)

with ELS
o = ENLS

o D(Θ ,ω f ) now representing the linearised equation error given by:

ELS
o (Θ ,ω f ) = Wo(ω f )

(
No(Θ ,ω f )−Ho(ω f )D(Θ ,ω f )

)
(3.85)

where Wo(ω f ) is an optional diagonal frequency-dependent weighting matrix. Since eq. (3.85)

is linear in the parameters, it follows that:

JHE(Θ) = JHJΘ ≈ 0 (3.86)

with
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E(Θ) =




E1(Θ)

E2(Θ)
...

ENo(Θ)



∈ CNoN f×Ni, Eo(Θ) =




ELS
o (Θ ,ω1)

ELS
o (Θ ,ω2)

...

ELS
o (Θ ,ωN f )



∈ CN f×Ni, o = 1, 2, . . . , No

(3.87)

and J denoting the so-called Jacobian matrix given as:

J =




X1 0 · · · 0 Y1

0 X2 · · · 0 Y2
...

... . . . ...
...

0 0 · · · XNo YNo



∈ CNoN f×(No+Ni)(n+1) (3.88)

The entries Xo and Yo in eq. (3.88) are the derivatives of the equation error with respect to the

unknown matrix coefficients βo and α , respectively. These entries are calculated, respectively,

by:

Xo =




Wo(ω1)
(

Ω0(ω1) Ω1(ω1) · · · Ωn(ω1)
)

Wo(ω2)
(

Ω0(ω2) Ω1(ω2) · · · Ωn(ω2)
)

...

Wo(ωN f )
(

Ω0(ωN f ) Ω1(ωN f ) · · · Ωn(ωN f )
)



∈ CN f×(n+1) (3.89)

and

Yo =




−Wo(ω1)
(

Ω0(ω1) Ω1(ω1) · · · Ωn(ω1)
)
⊗Ho(ω1)

−Wo(ω2)
(

Ω0(ω2) Ω1(ω2) · · · Ωn(ω2)
)
⊗Ho(ω2)

...

−Wo(ωN f )
(

Ω0(ωN f ) Ω1(ωN f ) · · · Ωn(ωN f )
)
⊗Ho(ωN f )



∈ CN f×Ni(n+1) (3.90)

where ⊗ denotes the Kronecker product. In the case of real-valued coefficients Θ , JHJ can

be replaced by its real part Re
(
JHJ

)
. In such condition, the normal equations (3.86) can be

reformulated in matrix notation, as:
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Re
(
JHJ

)
Θ =




R1 0 · · · 0 S1

0 R2 · · · 0 S2
...

... . . . ...
...

0 0 · · · RNo SNo

ST
1 ST

1 · · · ST
No ∑

No
o=1 To








β1

β2
...

βNo

α





= 0 (3.91)

with Ro, So and To denoting the so-called normal matrices, which are computed, respectively,

by:

Ro = Re
(
XH

o Xo
)
∈ R(n+1)×(n+1)

So = Re
(
XH

o Yo
)
∈ R(n+1)×Ni(n+1)

To = Re
(
Y H

o Yo
)
∈ RNi(n+1)×Ni(n+1)

(3.92)

It is worth mentioning that these matrices have a block Toeplitz structure and, therefore, they

can be calculated using the FFT, which reduces the memory as well as computational time

required to run the pLSCF algorithm (Cauberghe, 2004). Since the denominator polynomial

coefficient α is sufficient to compute the poles and operational factors, this parameter can be

calculated by eliminating the numerator coefficients βo from eqs. (3.91), as follows:

βo =−R−1
o Soα (3.93)

Substitution of eq. (3.93) in the last set of equations (3.91) leads to the following reduced normal

equations:

[
No

∑
o=1

(To−ST
o R−1

o So)

]
α = 0 (3.94)

or, in a more compact form, to:

Mα = 0 (3.95)

where M =
[
∑

No
o=1(To−ST

o R−1
o So)

]
∈ RNi(n+1)×Ni(n+1) is computed solely from the measured

FRF. This equation is solved for the denominator polynomial α in a least-squares sense, using

the non-trivial solution which is obtained by imposing a constraint on these parameters. Such

constraint consists of setting one of the polynomial coefficients αr equal to the identity matrix

INi . More accurate estimates are obtained when the coefficient with highest order equals the

identity matrix (e.g. αn = INi) (El-Kafafy, 2013). Apart from avoiding the trivial solution, this
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strategy also removes the parameter redundancy that exists in the RMFD model. By making use

of such constraint strategy, eq. (3.95) can be solved for α in a least squares sense, as follows:

α =

[
−M−1

[1:nNi,1:nNi]
M[1:nNi,nNi+1:(n+1)Ni]

INi

]
(3.96)

Once the denominator polynomial coefficients αr are determined, the poles and modal partici-

pation factors are retrieved as the eigenvalues Λd ∈ CNin×Nin and eigenvectors Ψ ∈ CNin×Nin of

their companion matrix Ao:

AoΨ =




0 INi · · · 0 0

0 0 · · · 0 0
...

... . . . ...
...

0 0 · · · 0 INi

−αT
0 −αT

1 · · · −αT
n−2 −αT

n−1




Ψ = ΨΛd (3.97)

The modal participation factors L are the last Ni rows of Ψ and Λd contains the discrete-time

poles µi = e−λi∆t on its diagonal. The continuous-time poles λi are related to the eigenfrequen-

cies ωni [rad/s] and damping ratios ξni , as:

λi,λ
∗
i =−ωniξnr ± j

√
1−ξ 2

ni
ωni, i = 1, 2, · · · ,Nm (3.98)

Once the poles and participation factors are found, the mode shapes, V , are obtained in a least

squares sense by means of the LSFD estimator (see APPENDIX A.1). The confidence bounds

on the pLSCF estimates can be computed by using the approach discussed in De Troyer et al.

(2009b). In the context o the present thesis, however, another strategy is used to estimate such

uncertainties. This strategy consists of using one Gauss-Newton iteration of the pMLE-MM
and will be discussed in Section 3.5.2.

Example 9
The simulated responses of the tower structure is used to illustrate the application of the
pLSCF technique to estimated the modal parameters from output-only measurements. Rather
than using the half spectra matrix estimated with the correlogram approach in Example 4,
the half spectra matrix synthesized after the optimization with the MLE-CDM (smoothed
spectra) in Example 8 is used as primary data by the pLSCF technique to estimate the modal
parameters of the lattice tower. The combination of the MLE-CDM and pLSCF estimator is
also known by its commercial version PolyMAX Plus (Peeters et al., 2012).

This combined estimator is used in EMA to estimate the modal parameters from noisy FRFs
and is discussed in Section 3.6. The stabilisation diagram constructed with the pLSCF tech-
nique by identifying models with order n = 2, 3, . . . , 20 is illustrated in Fig. 3.8. The two
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zooms shown in Figs. 3.8b and 3.8c reveals that it is possible to distinguish the two pairs of
close spaced modes around 1.29 and 3.9 Hz.
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Fig. 3.8 – MPE of the lattice tower structure with the combined MLE-CDM-pLSCF: stabilization dia-
gram created with the pLSCF by identifying models with order n ranging from 2 to 20 (a), and details
of the two pairs of close spaced modes around 1.29 (b) and 3.9 Hz (c).

3.5. Identification of Modal Models

3.5.1. Proposed (Single-Reference) Maximum Likelihood Estimator in Modal Model Formula-

tion

In this section, a single-reference implementation of the Maximum Likelihood Estimator for-

mulated in (pole-residue) Modal Model (MLE-MM) is proposed. Differently from the poly-

reference implementation found in El-Kafafy (2013) and discussed in Section 3.5.2, the ap-

proach proposed in this section is intended to identify the model model with enhanced residual

model in pole-residue form, given by:

Ĥ(ω) =
Nm

∑
r=1

[Res]r
jω−λr

+
[Res]∗r

jω−λ ∗r
+

[AR]+ jω [BR]+ ( jω)2 [CR]
d(ω)

(3.99)

with

d(ω) = a+ jωb+( jω)2c (3.100)

As the modal model is highly non-linear in the parameters, the identification of the modal

parameters is performed in a non-linear least square sense using the estimates provided by

the LSCF method as starting guess. The optimization of these starting parameters are than

performed iteratively by minimizing the following (negative) log-like cost function:

NoNi

∑
k=1

N f

∑
f=1

l(Θ)ML−MM =

∣∣Ĥk(Θ ,ω f )−Hk(ω f )
∣∣2

σHk(ω f )
(3.101)
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where Hk(ω f ) and σHk(ω f ) are, respectively, the measured FRF and its standard deviation, and

Hk(Θ ,ω f ) is the modelled FRF; k (k = 1, 2, · · · , NoNi) denotes any of the NoNi elements of

the measured and estimated FRF matrices; N f represents the number of frequency lines and

ω f = 2π f the angular frequency evaluated at frequency line f . The parameter Θ is a column

vector containing the invariants of the pole residue modal model to be optimized by the ML
algorithm and is given as follows:

Θ =
[
θ1 θ2 · · · θNoNi θd θλ

]T
∈ R1×(2Nm+6)(NoNi+1) (3.102)

with

θk =

[
Re([Res]1k) · · · Re([Res]Nmk) Re([AR]k) Re([BR]k) Re([CR]k) · · ·
· · · Im([Res]1k) · · · Im([Res]Nmk) Im([AR]k) Im([BR]k) Im([CR]k)

]

(3.103)

θd =
[
Re(a) Re(b) Re(c) Im(a) Im(b) Im(c)

]
(3.104)

and

θλ =
[
Re( fn1) · · · Re

(
fnNm

)
Im(ξn1) · · · Im

(
ξnNm

)]
(3.105)

The ML estimates of the invariants of the modal model is given by minimizing the cost func-

tion (3.101) with respect to parameter Θ . Similarly to the MLE-CDM discussed in Sec-

tion 3.3.2, this minimization is accomplished by means of a Gauss-Newton optimization al-

gorithm combined with Levenberg-Marquardt approach to guarantee a continuous reduction of

the cost function over the performed iterations. In case of real coefficients, each Gauss-Newton

iteration is performed in two steps:

1. Solve the normal equations

Re
(
JH

i Ji
)
(∆Θi) =−Re

(
JH

i Ei
)

for ∆Θi (3.106)

2. Compute an update of the previous solution

Θi+1 =Θi +∆Θi (3.107)

with Ei = E(Θi) representing the equation error, Ji =
∂E(Θi)

∂Θi
the Jacobian matrix and ∆Θi the

perturbation on the parameters Θ evaluated at the ith iteration. The error equation or so-called
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residual vector is given by:

E(Θi) =





E1(Θi)

E2(Θi)
...

ENoNi(Θi)





∈ CN f NoNi×1, Ek(Θi) =





Ĥk(ω1,Θi)−Hk(ω1)
σHk(ω1)

Ĥk(ω2,Θi)−Hk(ω1)
σHk(ω1)

...
Ĥk(ωNf ,Θi)−Hk(ωNf )

σHk(ωNf
)





∈ CN f×1, k = 1, 2, · · · , NoNi

(3.108)

and the Jacobian matrix by:

J =




Y1 0 · · · 0 Xd
1 Xλ

1

0 Y2 · · · 0 Xd
2 Xλ

2
...

... . . . ...
...

...

0 0 · · · YNoNi Xd
NoNi

Xλ
NoNi




(3.109)

with Yk containing the derivatives of the equation error (3.108) with respect to the real and

imaginary parts of the kth element of the residue matrices [Res]r, and to the real and imaginary

parts of the of the kth element of the numerator matrix coefficients of the enhanced residual

model [AR], [BR] and [CR]; Xd
k containing the derivatives with respect to real and imaginary

parts of the denominator scalar coefficients of the enhanced residual model a, b and c; and Xλ
k

the derivatives with respect to the natural frequencies and damping ratios. The entries Yk, Xd
k

and Xλ
k are computed, respectively, as follows:

Yk =




∂Ek(Θ)
∂Re([Res]1k)

· · · ∂Ek(Θ)

∂Re([Res]Nmk)
∂Ek(Θ)

∂Re([AR]k)
∂Ek(Θ)

∂Re([BR]k)
∂Ek(Θ)

∂Re([CR]k)
· · ·

· · · ∂Ek(Θ)
∂ Im([Res]1k)

· · · ∂Ek(Θ)

∂ Im([Res]Nmk)
∂Ek(Θ)

∂ Im([AR]k)
∂Ek(Θ)

∂ Im([BR]k)
∂Ek(Θ)

∂ Im([CR]k)




(3.110)

Xd
k =

[
∂Ek(Θ)
∂Re(a)

∂Ek(Θ)
∂Re(b)

∂Ek(Θ)
∂Re(c)

∂Ek(Θ)
∂ Im(a)

∂Ek(Θ)
∂ Im(b)

∂Ek(Θ)
∂ Im(c)

]
(3.111)

Xλ
k =

[
∂Ek(Θ)

∂ fn1

∂Ek(Θ)
∂ fn2

· · · ∂Ek(Θ)
∂ fnNm

∂Ek(Θ)
∂ξn1

∂Ek(Θ)
∂ξn2

· · · ∂Ek(Θ)
∂ξnNm

]
(3.112)
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with the partial derivatives in each entry computed, respectively, by:

∂Ek(Θ)

∂Re([Res]mk)
=




1
σHk(ω1)

(
1

( jω1−λm)
+ 1

( jω1−λ ∗m)

)

...

1
σHk(ωN f

)

(
1

( jωNf−λm)
+ 1

( jωNf−λ ∗m)

)



, m = 1, 2, · · · , Nm (3.113)

∂Ek(Θ)

∂ Im([Res]mk)
=




j
σHk(ω1)

(
1

( jω1−λm)
− 1

( jω1−λ ∗m)

)

...
j

σHk(ωNf
)

(
1

( jωNf−λm)
− 1

( jωNf−λ ∗m)

)




(3.114)

∂Ek(Θ)

∂Re([AR]k)
=




1
d(ω1)σHk(ω1)

...
1

d(ωNf )σHk(ωNf
)


 ,

∂Ek(Θ)

∂Re([BR]k)
=




jω1
d(ω1)σHk(ω1)

...
jωNf

d(ωN f )σHk(ωNf
)



,

∂Ek(Θ)

∂Re([CR]k)
=




−ω2
1

d(ω1)σHk(ω1)
...

−ω2
Nf

δi1

d(ωNf )σHk(ωN f
)




(3.115)

∂Ek(Θ)

∂ Im([AR]k)
=




j
d(ω1)σHo1(ω1)

...
j

d(ωN f )σHo1(ωNf
)


 ,

∂Ek(Θ)

∂ Im([BR]k)
=




−ω1
d(ω1)σHk(ω1)

...
−ωNf

d(ωNf )σHk(ωNf
)



,

∂Ek(Θ)

∂ Im([CR]k)
=




− jω2
1

d(ω1)σHk(ω1)
...

− jω2
N f

d(ωNf )σHk(ωNf
)




(3.116)

∂Ek(Θ)

∂Re(a)
=




−Nk(ω1)
d(ω1)2σHk(ω1)

...
−Nk(ωNf )

d(ωNf )
2σHk(ωNf

)



,

∂Ek(Θ)

∂Re(b)
=




− jω1Nk(ω1)
d(ω1)2σHk(ω1)

...
− jωNf Nk(ωN f )

d(ωNf )
2σHk(ωNf

)



,

∂Ek(Θ)

∂Re(c)
=




ω2
1 Nk(ω1)

d(ω1)2σHk(ω1)
...

ω2
Nf

Nk(ωN f )

d(ωNf )
2σHk(ωNf

)




(3.117)
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∂Ek(Θ)

∂ Im(a)
=




− jNk(ω1)
d(ω1)2σHk(ω1)

...
− jNk(ωNf )

d(ωNf )
2σHk(ωNf

)



,

∂Ek(Θ)

∂ Im(b)
=




ω1Nk(ω1)
d(ω1)2σHo1(ω1)

...
ωNf Nk(ωNf )

d(ωNf )
2σHk(ωNf

)



,

∂Ek(Θ)

∂ Im(c)
=




jω2
1 Nk(ω1)

d(ω1)2σHk(ω1)
...

jω2
N f

Nk(ωNf )

d(ωNf )
2σHk(ωNf

)




(3.118)

∂Ek(Θ)

∂ fnm

=




2π

|λm|σHk(ω1)

(
[Res]kmλm
( jω1−λm)2 +

[Res]∗kmλ ∗m
( jω1−λ ∗m)2

)

...

2π

|λm|σHk(ωNf
)

(
[Res]kmλm

( jωNf−λm)2 +
[Res]∗kmλ ∗m

( jωNf−λ ∗m)2

)




(3.119)

and

∂Ek(Θ)

∂ξnm

=




j|λm|
Im(λm)σHk(ω1)

(
[Res]kmλm
( jω1−λm)2 − [Res]∗kmλ ∗m

( jω1−λ ∗m)2

)

...
j|λm|

Im(λm)σHk(ωNf
)

(
[Res]kmλm

( jωNf−λm)2 − [Res]∗kmλ ∗m
( jωNf−λ ∗m)2

)




(3.120)

By taking advantage of the block structure of the Jacobean matrix, the normal equations (3.106)

are rewritten as follows:




R1 0 · · · 0 Sd
1 Sλ

1

0 R2 · · · 0 Sd
2 Sλ

2
...

... . . . ...
...

...

0 0 · · · RNo Sd
k Sλ

NoNi

Sd
1

T Sd
2

T · · · Sd
NoNi

T
∑

NoNi
k=1 T d

k ∑
NoNi
k=1 T dλ

k

Sλ
1

T
Sλ

2
T · · · Sλ

NoNi

T
∑

NoNi
k=1 T λd

k ∑
NoNi
k=1 T λ

k








∆θ1

∆θ1
...

∆θNoNi

∆θd

∆θλ





=−





Re
(
Y H

1 E1
)

Re
(
Y H

2 E2
)

...

Re
(
Y H

NoNi
ENoNi

)

∑
NoNi
k=1 Re

((
Xd

k

)HEk

)

∑
NoNi
k=1 Re

((
Xλ

k

)H
Ek

)





(3.121)

with

Rk = Re
(
Y H

k Yk
)
∈ R2(Nm+6)×2(Nm+6)

Sd
k = Re

(
Y H

k Xd
k

)
∈ R2(Nm+6)×6

Sλ
k = Re

(
Y H

k Xλ
k

)
∈ R2(Nm+6)×2Nm

T d
k = Re

((
Xd

k

)H
Xd

k

)
∈ R6×6

T λ
k = Re

((
Xλ

k

)H
Xλ

k

)
∈ R2Nm×2Nm

T dλ
k = Re

((
Xd

k

)H
Xλ

k

)
∈ R6×2Nm

T λd
k = Re

((
Xλ

k

)H
Xd

k

)
∈ R2Nm×6
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From eqs. (3.121), the perturbation on the coefficients ∆θk (i.e. the perturbations on the real and

imaginary parts of the residues, and on the real and imaginary parts of the numerator matrices of

the enhanced residual model) can be written as a function of the perturbation on the denominator

coefficients of the enhanced residual model ∆θd and perturbation on the poles, ∆θλ , as:

∆θk =−R−1
k

(
Re
(
Y H

k Ek
)
+Sd

k ∆θd +Sλ
k ∆θλ

)
(3.122)

By making use of eq. (3.122), the perturbations ∆θk can eliminated from the normal equa-

tions (3.121), yielding:


 ∑

NoNi
k=1 T d

k −
(
Sd

k

)T R−1
k Sd

k ∑
NoNi
k=1 T dλ

k −
(
Sd

k

)T R−1
k Sλ

k

∑
NoNi
k=1 T λd

k −
(

Sλ
k

)T
R−1

k Sd
k ∑

Nk
k=1 T λ

k −
(

Sλ
k

)T
R−1

k Sλ
k



{

∆θd

∆θλ

}
=




∑
NoNi
k=1

(
Sd

k

)T R−1
k Re

(
Y H

k Ek
)
−Re

((
Xd

k

)HEk

)

∑
NoNi
k=1

(
Sλ

k

)T
R−1

k Re
(
Y H

k Ek
)
−Re

((
Xλ

k

)H
Ek

)



(3.123)

or in a more compact form

[
M1 M2

M3 M4

]{
∆θd

∆θλ

}
=

[
M5

M6

]
(3.124)

with

M1 =
NoNi

∑
k=1

T d
k −

(
Sd

k

)T
R−1

k Sd
k ,

M2 =
NoNi

∑
k=1

T dλ
k −

(
Sd

k

)T
R−1

k Sλ
k ,

M3 =
NoNi

∑
k=1

T λd
k −

(
Sλ

k

)T
R−1

k Sd
k ,

M4 =
NoNi

∑
k=1

T λ
k −

(
Sλ

k

)T
R−1

k Sλ
k ,

M5 =
NoNi

∑
k=1

(
Sd

k

)T
R−1

k Re
(
Y H

k Ek
)
−Re

((
Xd

k

)H
Ek

)

M6 =
NoNi

∑
k=1

(
Sλ

k

)T
R−1

k Re
(
Y H

k Ek
)
−Re

((
Xλ

k

)H
Ek

)

This elimination decreases the memory, as well as the time required to run the algorithm. As

for the MLE-CDM, an efficient implementation of the MLE-MM is only possible if the vari-

ances are taken into account in the cost function (3.101). Once the perturbations on the nat-

ural frequencies, damping ratios and denominator coefficients of the enhanced residual model

are calculated in the last iteration by means of eq. (3.123), then perturbations on the modal

residues and numerator matrix coefficients of the enhanced residual model are computed using

eq. (3.122).
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Estimation of the uncertainty bounds

One of the main advantages of the ML-based algorithms is the possibility to estimate the con-

fidence intervals for the identified modal parameters using the noise information measured to-

gether with the FRFs during the vibration tests. As shown in Schoukens and Pintelon (1991), a

good approximation of the covariance of the ML parameters ΘML−MM is obtained by:

Cov([Res], [AR], [BR], [CR],a,b,c,λ )'
[
2Re

(
JH

l Jl
)]−1

(3.125)

with Jl standing for the Jacobean matrix evaluated in the last iteration of the Gaussian-Newton

algorithm. Taking advantage of the structure of the Jacobean matrix and using the matrix in-

version lemma (Kailath, 1980), the covariance of the denominator scalar coefficients of the

enhanced residual model, and the covariance of the natural frequencies and damping ratios can

be estimated independently from the covariance of the residues and from the covariance of the

numerator matrix coefficients of the enhanced residual model, as follows:

Cov(a,b,c)'M−1
1 +M−1

1 M2∆
−1
1 M3M−1

1 (3.126)

Cov( fn,ξn)' ∆
−1
1 (3.127)

with

∆1 = M4−M3M−1
1 M2 (3.128)

The advantage of the parametrization used in eq. (3.102) is that the covariance of the natural

frequencies and damping ratios are computed directly from the from the normal matrices and,

therefore, the use of explicit linearisation formulas is avoided. If one is interested on the vari-

ances of the real and imaginary parts of the poles, they can be estimated means of the following

linearisation formulas:

Var(Re(λm))' 4π2

[
fnm

ξnm

]T

Cov( fnm ,ξnm)

[
fnm

ξnm

]

Var(Im(λm))' 4π2(1−ξ 2
nm
)


 1
− fnmξnm

1−ξ 2
nm




T

Cov( fnm,ξnm)


 1
− fnmξnm

1−ξ 2
nm




(3.129)
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The covariance of the residues and the numerator matrix coefficients of the enhanced residual

model are estimated as:

Cov([Res]k, [AR]k, [BR]k, [CR]k)' R−1
k +Zk (3.130)

with

Zk = Z1k

(
Sd

k

)H
R−1

k +Z2k

(
Sλ

k

)H
R−1

k

Z1k = R−1
k

[
Sd

k
(
M1−M2M−1

4 M3
)−1−Sλ

k
(
M4−M3M−1

1 M2
)−1

M3M1

]

Z2k = R−1
k

[
Sλ

k
(
M4−M3M−1

1 M2
)−1−Sd

k M−1
1 M2

(
M4−M3M−1

1 M2
)−1
]

Once the covariance of real and imaginary parts of the residues are computed, the covariance

of the mode shapes and operational factors are estimated by following the procedure presented

in Pintelon et al. (2007).

Example 10
At this point another structure is introduced to validate the proposed MLE-MM discussed
in Section 3.5.1. The structure is used to perform a simulated EMA and corresponds to a
five-DOF system illustrated in Fig. 3.9. This system was used by Böswald et al. (2006)
to compare different modal parameter estimation techniques in terms of their sensitivity to
statistical errors. It is composed by 5 masses supported by cantilever beans and connected
among themselves by arch springs. The exact natural frequencies, damping ratios and modal
masses of the system are given in Tab. 3.1, whist the real modes are shown in Tab. 3.2. These
properties were used to generate the FRFs used in simulated EMA.

Fig. 3.9 – Five-DOF system connected with arch springs (Böswald et al., 2006).

The system was exited by a white Gaussian noise at masses 1 and 2, and the responses were
measured at all DOFs, resulting in FRF matrix with two columns and five rows. These FRFs
were calculated in the frequency range of 0-80 Hz with a resolution of 0.1 Hz. Afterwards,
a colored noise was introduced in the FRF matrix with a standard deviation of 10%. The
noise was added to the real and imaginary parts independently. This was achieved by adding
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a complex random number to the FRF at each frequency line. This number is computed so
that its amplitude is a random element of a normal distribution (with σ(ω) = 10%|H(ω)|)
and phase is an uniform random number between 0 and 2π (Peeters et al., 2012).

Tab. 3.1 – Eigenfrequencies, damping ratios and modal masses of the five-DOF system.

Mode fn [Hz] ξn [%] mi [Kg]

1 26.06 2 2.52
2 36.84 2 2.97
3 51.47 2 0.90
4 56.21 2 1.09
5 62.60 2 1.05

Tab. 3.2 – Real modes of the five-DOF system.

DOF/Mode 1 2 3 4 5

1 0.7147 1.0000 -0.0911 -0.9230 -0.6083
2 0.7166 0.9999 -0.1493 1.0000 -0.1937
3 0.7981 0.2257 0.1554 -0.1518 1.0000
4 0.8518 -0.5166 1.0000 0.1231 -0.3936
5 1.0000 -0.8590 -0.5860 0.0196 -0.2041
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Fig. 3.10 – Element(1,1) of the FRF matrix contaminated with 10% noise: exact and noisy FRF, noise
standard deviation and exact natural frequencies (vertical lines) (a); and stabilization diagram constructed
with the LSCF estimator (b).
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Fig. 3.11 – Monte Carlo simulation results for the natural frequencies of the 3rd (a) and 5th modes with
10% of noise level: predicted standard deviation with the proposed MLE-MM (dots) and sample stan-
dard deviation (solid line).
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Fig. 3.12 – Monte Carlo simulation results for the damping ratios of the 3rd (a) and 5th (b) modes with
10% of noise level: predicted standard deviation with the proposed MLE-MM (dots) and sample stan-
dard deviation (solid line).

The exact and noisy element (1,1) of the FRF matrix, and the corresponding “true” standard
deviation of the noise are shown in Fig. 3.10a. A set of 300 FRFs contaminated with noise
was generated to perform Monte Carlo simulations in order to assess the efficiency of the
proposed MLE-MM. The modal parameters of each dataset were identified with the LSCF
and LSFD estimators and then used as starting values to be optimized by the MLE-MM
algorithm. The identification of each dataset was performed using the full frequency band,
i.e., with no upper and lower residual terms. A typical stabilization diagram constructed with
the LSCF method from the noisy FRF is shown in Fig. 3.10.

In a final step of the identification process, 10 iterations of the MLE-MM were performed
to optimize the modal parameters of each dataset and estimate their standard deviations. The
standard deviations of the natural frequencies and damping ratios of the 3rd and 5th modes
estimated with the proposed MLE-MM are compared to their respective sample standard de-
viations in Figs. 3.11 and 3.12. From these figures, it is verified that the standard deviations
provided by the proposed MLE-MM are in good agreement with the sample standard devi-
ations. These results are also verified in Figs. 3.13 and Tab. 3.3, where the estimated and
sample standard deviations of all the identified natural frequencies and damping ratios are
compared.
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Fig. 3.13 – Monte Carlo simulation results for the identified natural frequencies and damping ratios:
sample (black line) and estimated (red line) means and standard deviations of natural frequencies (a) and
damping ratios (b) provided by the proposed MLE-MM method after 10 iterations.
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Tab. 3.3 – Results obtained from the simulated EMA of the five-DOF system with the proposed MLE-
MM.

Mode

Sample Mean and Std. Estimated Mean and Std.

µ f̂n (Hz) σ f̂n (Hz) µ
ξ̂n

(%) σ
ξ̂n

(%) µ̂ f̂n (Hz) σ̂ f̂n (Hz) µ̂
ξ̂n(%)

σ̂
ξ̂n

(%)

×103 ×102 ×103 ×102

1 26.0602 3.31 2.0057 1.88 26.0571 4.35 1.9898 1.65

2 36.8399 3.94 2.0034 1.59 36.8345 5.37 2.0008 1.46

3 51.4682 10.80 2.0061 2.68 51.4730 12.75 2.0011 2.46

4 56.2114 7.96 2.0031 1.59 56.2026 9.63 2.0029 1.72

5 62.6011 9.04 2.0016 1.53 62.5989 10.01 2.0215 1.59

3.5.2. Poly-reference Maximum Likelihood Estimator in Modal Model Formulation

The first implementation of the of the poly-reference Maximum Likelihood in Modal Model

(pMLE-MM) formulation was derived by El-Kafafy (2013) in order to optimize the estimates

provided the pLSCF technique and yield the uncertainties on these optimized estimates. In

this derivation, the following model with enhanced residual terms is assumed to represent the

measured FRFs:

Ĥ(ω) =
Nm

∑
i=1

vilT
i

jω−λi
+

v∗i lH
i

jω−λ ∗i
+

N(ω)

d(ω)
(3.131)

with

N(ω) = [AR]+ jω [BR]+ ( jω)2 [CR] (3.132)

The idea behind the pMLE-MM is to optimize the modal parameters estimated with the pLSCF
and LSFD estimators, by fitting the parameters of the modal model as in eq. (3.131) to the mea-

sured FRF. One of the main advantages of the pMLE-MM with regard to its single-reference

counterpart, proposed in Section 3.5.1, is the possibility to retain and improve the precision of

the poly-reference estimates provided by the pLSCF estimator. The optimization of the start-

ing parameters with the pMLE-MM is accomplished by minimizing the following (negative)

log-like cost function:

No

∑
o=1

N f

∑
f=1

l(Θ)pML−MM = Eo(Θ ,ω f )EH
o (Θ ,ω f ) (3.133)

with Eo(Θ ,ω f ) denoting the row vector error between the measured and estimated FRFs for
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output o, which is given as:

Eo(Θ ,ω f ) =

〈
Ĥo1(Θ ,ω f )−Ho1(ω f )

σHo1(ω f )
. . .

ĤoNi(Θ ,ω f )−HoNi(ω f )

σHoNi(ω f )

〉
(3.134)

where Ĥo(Θ ,ω f ) ∈ C1×Ni and Ho(ω f ) ∈ C1×Ni denote the oth rows of the estimated and mea-

sured FRFs, and σHo(ω f ) ∈ R1×Ni is the standard deviation of the noise. The parameter Θ is a

column vector with all the parameters to be optimized by means of the Gauss-Newton algorithm

and is given as:

Θ =
[
θ1 θ2 · · · θNo θL θd θλ

]T
∈ R2Nm(No+Ni)+6(NoNi+1) (3.135)

with

θo =
[
θVo θAo θBo θCo

]
∈ C2Nm+6Ni, o = 1, 2, · · · , No (3.136)

The parameter θVo ∈ C2Nm is a vector with the real and imaginary parts of the mode shape

elements corresponding to the oth output, and is given by:

θVo =
[
Re(vo1) Re(vo2) · · · Re(voNm) Im(vo1) Im(vo2) · · · Im(voNm)

]
(3.137)

The parameters θAo , θBo , θCo ∈ C2Ni , in eq. (3.136), are vectors containing the real and imagi-

nary parts of the oth row of the numerator matrix coefficients of the residual model (3.132), and

are given, respectively, by:

θAo =
[
Re([AR]o1) Im([AR]o1) Re([AR]o2) Im([AR]o2) · · · Re([AR]oNi) Im([AR]oNi)

]

θBo =
[
Re([BR]o1) Im([BR]o1) Re([BR]o2) Im([BR]o2) · · · Re([BR]oNi) Im([BR]oNi)

]

θCo =
[
Re([CR]o1) Im([CR]o1) Re([CR]o2) Im([CR]o2) · · · Re([CR]oNi) Im([CR]oNi)

]

(3.138)

The parameters θd ∈ C6, θL ∈ R2Nm(Ni−1) and θλ ∈ C2Nm in eq. (3.135) are column vectors

containing, respectively, the real and imaginary parts of the denominator coefficients of the

new residual model, the real and imaginary parts of all elements of the modal participation

factor matrix L, and the real and imaginary parts of the poles. These parameters are defined,
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respectively, as:

θd =
[
Re(a) Im(a) Re(b) Im(b) Re(c) Im(c)

]
(3.139)

θL =

[
Re(l11) · · · Re

(
lNk1
)

Im(l11) · · · Im
(
lNk1
)

· · ·
· · · Re(l1Nm) · · · Re(lNkNm) Im(l1Nm) · · · Im(lNkNm)

]
(3.140)

and

θλ =
[
Re(λn1) Im(λn1) Re(λn2) Im(λn2) · · · Re

(
λnNm

)
Im
(
λnNm

)]
(3.141)

where lkm ∈C is the kth element of the modal participation factor vector corresponding to the mth

vibration mode, with k = 1, 2, · · · , Nk, and Nk = Ni−1, which means that only the operational

factors that differ from 1 are optimized by the algorithm during the performed iterations. As

each identified modal participation factor vector is normalized by its highest component in the

identification with the pLSCF, the derivatives of the elements that equals 1 are not evaluated

and, therefore, are not included in the vector defined by eq. (3.140). In fact, this works like

a constraint, since the operational factors elements that equal 1 are not updated during the

minimization of the cost function (3.133). The employment of this constraint, on the one hand,

improves the numerical stability of the normal equations and, on other the hand, reduces the

time and the memory required to run the algorithm.

Similarly to the MLE-CDM discussed in Section 3.3.2, the optimization of the parameters Θ

with the pMLE-MM is accomplished by minimizing the cost function (3.133) in a non-linear

least squares sense. This is performed by means of the Gauss-Newton optimization algorithm

combined with Levenberg-Marquardt approach (Pintelon and Schoukens, 2001) in two steps:

1. Solve the normal equations

JH
i Jivec(∆Θi) =−JH

i Ei for vec(∆Θi). (3.142)

2. Compute an update of the previous solution

Θi+1 =Θi +∆Θi (3.143)
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where vec(∆Θi) ∈ R2Nm(No+Ni)+6(NoNi+1) is the perturbation on the modal parameters, Ei is the

error between the measured quantity and the parametric model (i.e. FRF equation in modal

model formulation (3.131)), Ji is the Jacobian matrix evaluated at the ith iteration and vec(•)
stands for the column stacking operator. The equation error calculated at the ith iteration Ei =

E(Θi) is given by:

Ei =





vec(E1(Θi))

vec(E2(Θi))
...

vec(ENo(Θi))





∈ RN f NoNi×1, Eo(Θi) =




Eo(Θi,ω1)

Eo(Θi,ω2)
...

Eo(Θi,ωN f )



∈ RN f×Ni , o = 1, . . . ,No

(3.144)

and the corresponding Jacobian matrix by:

Ji =
[

∂E(Θi)
∂Θi

]
∈ RN f NoNi×2Nm(No+Ni)+6(NoNi+1) (3.145)

with Θi representing the parameters (3.135) at the ith iteration. The Jacobian matrix has the

following structure:

J =




Y1 0 · · · 0 Xd
1 XL

1 Xλ
1

0 Y2 · · · 0 Xd
2 XL

2 Xλ
2

...
... . . . ...

...
...

...

0 0 · · · YNo Xd
No

XL
No

Xλ
No




(3.146)

where XL
o , Xd

o and Xλ
o are matrices containing the partial derivatives of the equation error (3.134)

with respect to the real and imaginary parts of the modal participation factors, real and imagi-

nary parts of the denominator coefficients of the enhanced residual, and to the real and imagi-

nary parts of the poles, respectively. Yo is a matrix containing the derivatives with respect to the

real and imaginary parts of the mode shapes, and to the real and imaginary parts of the numer-

ator matrix coefficients of the enhanced residual model, [AR], [BR] and [CR]. The matrices XL
o

and Xd
o are computed, respectively, as:

XL
o =

[
X l1

o X l2
o · · · X lNm

o

]
(3.147)

and
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Xd
o =

[
Xa

o Xb
o Xc

o

]
(3.148)

with X lm
o containing the derivatives of the equation error with respect to the real and imaginary

parts of the components of the modal participation factor vector corresponding to the mth mode,

and Xa
o , Xb

o and Xc
o the derivatives with regard to the real and imaginary parts of the denominator

coefficients a, b and c of the enhanced residual model (3.100), respectively. The sub-matrices

Xλ
o is calculated as:

Xλ
o =

[
vec
{

∂Eo(Θ)

∂Re(λn1)

}
vec
{

∂Eo(Θ)

∂ Im(λn1)

}
vec
{

∂Eo(Θ)

∂Re(λn2)

}
vec
{

∂Eo(Θ)

∂ Im(λn2)

}
· · · vec

{
∂Eo(Θ)

∂Re
(

λnNm

)
}

vec
{

∂Eo(Θ)

∂ Im
(

λnNm

)
}]

(3.149)

with the partial derivatives of the equation error with respect to the real and imaginary parts of

the pole corresponding to the mth mode given, respectively, as follows:

∂Eo(Θ)

∂Re(λm)
=




1
σHo1(ω1)

(
voml1m

( jω1−λm)2 +
v∗oml∗1m

( jω1−λ ∗m)2

)
· · · 1

σHoNi
(ω1)

(
vomlNim

( jω1−λm)2 +
v∗oml∗Nim

( jω1−λ ∗m)2

)

...
...

...

1
σHo1(ωNf

)

(
voml1m

( jωN f−λm)2 +
v∗oml∗1m

( jωN f−λ ∗m)2

)
· · · 1

σHoNi
(ωNf

)

(
vomlNim

( jωNf−λm)2 +
v∗oml∗Nim

( jωNf−λ ∗m)2

)




(3.150)

and

∂Eo(Θ)

∂ Im(λm)
=




j
σHo1(ω1)

(
voml1m

( jω1−λm)2 − v∗oml∗1m
( jω1−λ ∗m)2

)
· · · j

σHoNi
(ω1)

(
vomlNim

( jω1−λm)2 −
v∗oml∗Nim

( jω1−λ ∗m)2

)

...
...

...
j

σHo1(ωNf
)

(
voml1m

( jωN f−λm)2 − v∗oml∗1m
( jωN f−λ ∗m)2

)
· · · j

σHoNi
(ωNf

)

(
vomlNim

( jωNf−λm)2 −
v∗oml∗Nim

( jωNf−λ ∗m)2

)




(3.151)

The sub-matrices X lm
o in eq. (3.147) are computed as:

X lm
o =

[
vec
{

∂Eo(Θ)
∂Re(l1m)

}
· · · vec

{
∂Eo(Θ)

∂Re(lNkm)

}
vec
{

∂Eo(Θ)
∂ Im(l1m)

}
· · · vec

{
∂Eo(Θ)

∂ Im(lNkm)

}]

(3.152)

with Nk = Ni− 1. It is worth noting that the same constraint strategy used in the definition
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of eq. (3.140) must be used to calculate the derivatives in eq. (3.152). Therefore, only the

derivatives with respect to the elements of the participation factor which are different from 1

are included in this equation. In eq. (3.152), the partial derivatives of the equation error with

respect to the real and imaginary parts of each component of the mth participation factor vector

are given, respectively, by:

∂Eo(Θ)

∂Re(lkm)
=




δk1
σHo1(ω1)

(
vom

( jω1−λm)
+

v∗om
( jω1−λ ∗m)

)
· · · δkNi

σHoNi
(ω1)

(
vom

( jω1−λm)
+

v∗om
( jω1−λ ∗m)

)

...
...

...
δk1

σHo1(ωNf
)

(
vom

( jωNf−λm)
+

v∗om
( jωNf−λ ∗m)

)
· · · δkNi

σHoNi
(ωNf

)

(
vom

( jωNf−λm)
+

v∗om
( jωNf−λ ∗m)

)




(3.153)

and

∂Eo(Θ)

∂ Im(lkm)
=




jδk1
σHo1(ω1)

(
vom

( jω1−λm)
− v∗om

( jω1−λ ∗m)

)
· · · jδkNi

σHoNi
(ω1)

(
vom

( jω1−λm)
− v∗om

( jω1−λ ∗m)

)

...
...

...
jδk1

σHo1(ωNf
)

(
vom

( jωNf−λm)
− v∗om

( jωNf−λ ∗m)

)
· · · jδkNi

σHoNi
(ωNf

)

(
vom

( jωNf−λm)
− v∗om

( jωNf−λ ∗m)

)




(3.154)

where δki is the Kronecker delta which equals unity if k = i (i.e., where the derivative is eval-

uated) and zero otherwise. In eq. (3.148), the sub-matrices Xa
o , Xb

o and Xc
o are defined, respec-

tively, as follows:

Xa
o =

[
vec
{

∂Eo(Θ)
∂Re(a)

}
vec
{

∂Eo(Θ)
∂ Im(a)

}]
(3.155)

Xb
o =

[
vec
{

∂Eo(Θ)
∂Re(b)

}
vec
{

∂Eo(Θ)
∂ Im(b)

}]
(3.156)

Xc
o =

[
vec
{

∂Eo(Θ)
∂Re(c)

}
vec
{

∂Eo(Θ)
∂ Im(c)

}]
(3.157)

The partial derivatives in entries Xa
o , Xb

o , Xc
o are given by:
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∂Eo(Θ)

∂Re(a)
=




−No1(ω1)
d(ω1)2σHo1(ω1)

· · · −NoNi(ω1)

d(ω1)2σHoNi
(ω1)

...
...

...
−No1(ωNf )

d(ωN f )
2σHo1(ωNf

)
· · · −NoNi(ωNf )

d(ωN f )
2σHoNi

(ωNf
)




(3.158)

∂Eo(Θ)

∂ Im(a)
=




− jNo1(ω1)
d(ω1)2σHo1(ω1)

· · · − jNoNi(ω1)

d(ω1)2σHoNi
(ω1)

...
...

...
− jNo1(ωN f )

d(ωN f )
2σHo1(ωNf

)
· · · − jNoNi(ωN f )

d(ωN f )
2σHoNi

(ωNf
)




(3.159)

∂Eo(Θ)

∂Re(b)
=




− jω1No1(ω1)
d(ω1)2σHo1(ω1)

· · · − jω1NoNi(ω1)

d(ω1)2σHoNi
(ω1)

...
...

...
− jωNf No1(ωNf )

d(ωN f )
2σHo1(ωNf

)
· · · − jωNf NoNi(ωNf )

d(ωN f )
2σHoNi

(ωNf
)




(3.160)

∂Eo(Θ)

∂ Im(b)
=




ω1No1(ω1)
d(ω1)2σHo1(ω1)

· · · ω1NoNi(ω1)

d(ω1)2σHoNi
(ω1)

...
...

...
ωN f No1(ωNf )

d(ωN f )
2σHo1(ωNf

)
· · · ωN f NoNi(ωNf )

d(ωN f )
2σHoNi

(ωNf
)




(3.161)

and

∂Eo(Θ)

∂Re(c)
=




ω2
1 No1(ω1)

d(ω1)2σHo1(ω1)
· · · ω2

1 NoNi(ω1)

d(ω1)2σHoNi
(ω1)

...
...

...
ω2

N f
No1(ωNf )

d(ωN f )
2σHo1(ωNf

)
· · ·

ω2
Nf

NoNi(ωNf )

d(ωN f )
2σHoNi

(ωNf
)




(3.162)

∂Eo(Θ)

∂ Im(c)
=




jω2
1 No1(ω1)

d(ω1)2σHo1(ω1)
· · · jω2

1 NoNi(ω1)

d(ω1)2σHoNi
(ω1)

...
...

...
jω2

Nf
No1(ωNf )

d(ωN f )
2σHo1(ωNf

)
· · ·

jω2
Nf

NoNi(ωNf )

d(ωN f )
2σHoNi

(ωNf
)




(3.163)

with No(ω f ) corresponding to the oth row of the numerator matrix and d(ω f ) the denominator

of the enhanced residual model. In eq. (3.146), Yo is given by:
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Yo =
[
YV

o Y A
o Y B

o YC
o

]
(3.164)

where YV
o is a sub-matrix containing the derivatives of the equation error with respect to the real

and imaginary parts of the oth mode shape elements, and Y A
o , Y B

o and YC
o sub-matrices containing

the derivatives with regard to the real and imaginary parts of the oth row of the numerator resid-

ual matrices [AR], [BR] and [CR], respectively. These sub-matrices are computed, respectively,

as follows:

YV
o =

[
vec
{

∂Eo(Θ)
∂Re(vo1)

}
· · · vec

{
∂Eo(Θ)

∂Re(voNm)

}
vec
{

∂Eo(Θ)
∂ Im(vo1)

}
· · · vec

{
∂Eo(Θ)

∂ Im(voNm)

}]

(3.165)

Y A
o =

[
vec
{

∂Eo(Θ)
∂Re([AR]o1)

}
· · · vec

{
∂Eo(Θ)

∂Re([AR]oNi)

}
vec
{

∂Eo(Θ)
∂ Im([AR]o1)

}
· · · vec

{
∂Eo(Θ)

∂ Im([AR]oNi)

}]

(3.166)

Y B
o =

[
vec
{

∂Eo(Θ)
∂Re([BR]o1)

}
· · · vec

{
∂Eo(Θ)

∂Re([BR]oNi)

}
vec
{

∂Eo(Θ)
∂ Im([BR]o1)

}
· · · vec

{
∂Eo(Θ)

∂ Im([BR]oNi)

}]

(3.167)

YC
o =

[
vec
{

∂Eo(Θ)
∂Re([CR]o1)

}
· · · vec

{
∂Eo(Θ)

∂Re([CR]oNi)

}
vec
{

∂Eo(Θ)
∂ Im([CR]o1)

}
· · · vec

{
∂Eo(Θ)

∂ Im([CR]oNi)

}]

(3.168)

with

∂Eo(Θ)

∂Re(vom)
=




1
σHo1(ω1)

(
l1m

( jω1−λm)
+

l∗1m
( jω1−λ ∗m)

)
· · · 1

σHoNi
(ω1)

(
lNim

( jω1−λm)
+

l∗Nim
( jω1−λ ∗m)

)

...
...

...

1
σHo1(ωNf

)

(
l1m

( jωNf−λm)
+

l∗1m
( jωNf−λ ∗m)

)
· · · 1

σHoNi
(ωNf

)

(
lNim

( jωN f−λm)
+

l∗Nim
( jωN f−λ ∗m)

)




(3.169)
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∂Eo(Θ)

∂ Im(vom)
=




j
σHo1(ω1)

(
l1m

( jω1−λm)
− l∗1m

( jω1−λ ∗m)

)
· · · j

σHoNi
(ω1)

(
lNim

( jω1−λm)
− l∗Nim

( jω1−λ ∗m)

)

...
...

...
j

σHo1(ωNf
)

(
l1m

( jωNf−λm)
− l∗1m

( jωNf−λ ∗m)

)
· · · j

σHoNi
(ωN f

)

(
lNim

( jωNf−λm)
− l∗Nim

( jωNf−λ ∗m)

)




(3.170)

∂Eo(Θ)

∂Re([AR]oi)
=




δi1
d(ω1)σHo1(ω1)

· · · δiNi
d(ω1)σHoNi

(ω1)

...
...

...
δi1

d(ωNf )σHo1(ωNf
)
· · · δiNi

d(ωNf )σHoNi
(ωNf

)




(3.171)

∂Eo(Θ)

∂ Im([AR]oi)
=




jδi1
d(ω1)σHo1(ω1)

· · · jδiNi
d(ω1)σHoNi

(ω1)

...
...

...
jδi1

d(ωNf )σHo1(ωNf
)
· · · jδiNi

d(ωNf )σHoNi
(ωNf

)




(3.172)

∂Eo(Θ)

∂Re([BR]oi)
=




jω1δi1
d(ω1)σHo1(ω1)

· · · jω1δiNi
d(ω1)σHoNi

(ω1)

...
...

...
jωNf δi1

d(ωNf )σHo1(ωNf
)
· · · jωNf δiNi

d(ωNf )σHoNi
(ωNf

)




(3.173)

∂Eo(Θ)

∂ Im([BR]oi)
=




−ω1δi1
d(ω1)σHo1(ω1)

· · · −ω1δiNi
d(ω1)σHoNi

(ω1)

...
...

...
−ωNf δi1

d(ωNf )σHo1(ωNf
)
· · · −ωNf δiNi

d(ωNf )σHoNi
(ωNf

)




(3.174)

∂Eo(Θ)

∂Re([CR]oi)
=




−ω2
1 δi1

d(ω1)σHo1(ω1)
· · · −ω2

1 δiNi
d(ω1)σHoNi

(ω1)

...
...

...
−ω2

Nf
δi1

d(ωNf )σHo1(ωN f
)
· · ·

−ω2
Nf

δiNi

d(ωNf )σHoNi
(ωNf

)




(3.175)

∂Eo(Θ)

∂ Im([CR]oi)
=




− jω2
1 δi1

d(ω1)σHo1(ω1)
· · · − jω2

1 δiNi
d(ω1)σHoNi

(ω1)

...
...

...
− jω2

Nf
δi1

d(ωNf )σHo1(ωN f
)
· · ·

− jω2
Nf

δiNi

d(ωNf )σHoNi
(ωNf

)




(3.176)
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Given the block structure of the Jacobean matrix, the normal equations (3.142) are rewritten as

follows:




R1 0 · · · 0 Sd
1 SL

1 Sλ
1

0 R2 · · · 0 Sd
2 SL

2 Sλ
2

...
... . . . ...

...
...

...

0 0 · · · RNo Sd
No

SL
No

Sλ
No

Sd
1

T Sd
2

T · · · Sd
No

T
∑

No
o=1 T d

o ∑
No
o=1 T dL

o ∑
No
o=1 T dλ

o

SL
1

T SL
2

T · · · SL
No

T
∑

No
o=1 T Ld

o ∑
No
o=1 T L

o ∑
No
o=1 T Lλ

o

Sλ
1

T
Sλ

2
T · · · Sλ

No

T
∑

No
o=1 T λL

o ∑
No
o=1 T λd

o ∑
No
o=1 T λ

o








vec(∆θ1)

vec(∆θ1)
...

vec(∆θNo)

vec(∆θd)

vec(∆θL)

vec(∆θλ )





=−





Re
(
Y H

1 vec(E1)
)

Re
(
Y H

2 vec(E2)
)

...

Re
(
Y H

No
vec(ENo)

)

∑
No
o=1Re

(
Xd

o
Hvec(Eo)

)

∑
No
o=1Re

(
XL

o
Hvec(Eo)

)

∑
No
o=1Re

(
Xλ

o
H

vec(Eo)
)





(3.177)

with

Ro = Re
(
Y H

o Yo
)
∈ R2(Nm+3Ni)×2(Nm+3Ni)

Sd
o = Re

(
Y H

o Xd
o

)
∈ R2(Nm+3Ni)×6

SL
o = Re

(
Y H

o XL
o
)
∈ R2(Nm+3Ni)×2Nm(Ni−1)

Sλ
o = Re

(
Y H

o Xλ
o

)
∈ R2(Nm+3Ni)×2Nm

T d
o = Re

(
Xd

o
H

Xd
o

)
∈ R6×6

T L
o = Re

(
XL

o
H

XL
o

)
∈ R2Nm(Ni−1)×2Nm(Ni−1)

T λ
o = Re

(
Xλ

o
H

Xλ
o

)
∈ R2Nm×2Nm

T dL
o = Re

(
Xd

o
H

XL
o

)
∈ R6×2Nm(Ni−1)

T dλ
o = Re

(
Xd

o
H

Xλ
o

)
∈ R6×2Nm

T Ld
o = Re

(
XL

o
H

Xd
o

)
∈ R2Nm(Ni−1)×6

T Lλ
o = Re

(
XL

o
H

Xλ
o

)
∈ R2Nm(Ni−1)×2Nm

T λd
o = Re

(
Xλ

o
H

Xd
o

)
∈ R2Nm×6

T λL
o = Re

(
Xλ

o
H

XL
o

)
∈ R2Nm×2Nm(Ni−1)

From eqs. (3.177), the perturbation on the coefficients vec(∆θo) (i.e. the perturbations on the

real and imaginary parts of the mode shape elements, and on the real and imaginary parts of the

numerator matrices of the residual model) can be written as a function of the perturbation on

the denominator coefficients of the residual model vec(∆θd), operational factors vec(∆θL) and

on the poles vec(∆θλ ), as:

vec(∆θo) =−R−1
o

(
Re
(
Y H

o vec(Eo)
)
+Sd

ovec(∆θd)+SL
ovec(∆θL)+Sλ

o vec(∆θλ )
)

(3.178)

By making use of eq. (3.178), the perturbations vec(∆θo) can be eliminated from the normal

equations (3.177), yielding:
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


∑
No
o=1 T d

o −Sd
o

T R−1
o Sd

o ∑
No
o=1 T dL

o −Sd
o

T R−1
o SL

o ∑
No
o=1 T dλ

o −Sd
o

T R−1
o Sλ

o

∑
No
o=1 T Ld

o −SL
o

T R−1
o Sd

o ∑
No
o=1 T L

o −SL
o

T R−1
o SL

o ∑
No
o=1 T Lλ

o −SL
o

T R−1
o Sλ

o

∑
No
o=1 T λd

o −Sλ
o

T
R−1

o Sd
o ∑

No
o=1 T λL

o −Sλ
o

T
R−1

o SL
o ∑

No
o=1 T λ

o −Sλ
o

T
R−1

o Sλ
o








vec(∆θd)

vec(∆θL)

vec(∆θλ )





=




∑
No
o=1 Sd

o
T R−1

o Re
(
Y H

o vec(Eo)
)
−Re

(
Xd

o
Hvec(Eo)

)

∑
No
o=1 SL

o
T R−1

o Re
(
Y H

o vec(Eo)
)
−Re

(
XL

o
Hvec(Eo)

)

∑
No
o=1 Sλ

o
T

R−1
o Re

(
Y H

o vec(Eo)
)
−Re

(
Xλ

o
H

vec(Eo)
)




(3.179)

or in a more compact form:




M1 M2 M3

M4 M5 M6

M7 M8 M9








vec(∆θd)

vec(∆θL)

vec(∆θλ )





=




M10

M11

M12


 (3.180)

with

M1 =
No

∑
o=1

T d
o −Sd

o
T

R−1
o Sd

o ,

M2 =
No

∑
o=1

T dL
o −Sd

o
T

R−1
o SL

o ,

M3 =
No

∑
o=1

T dλ
o −Sd

o
T

R−1
o Sλ

o ,

M4 =
No

∑
o=1

T Ld
o −SL

o
T

R−1
o Sd

o ,

M5 =
No

∑
o=1

T L
o −SL

o
T

R−1
o SL

o ,

M6 =
No

∑
o=1

T Lλ
o −SL

o
T

R−1
o Sλ

o ,

M7 =
No

∑
o=1

T λd
o −Sλ

o
T

R−1
o Sd

o ,

M8 =
No

∑
o=1

T λL
o −Sλ

o
T

R−1
o SL

o ,

M9 =
No

∑
o=1

T λ
o −Sλ

o
T

R−1
o Sλ

o ,

M10 =
No

∑
o=1

Sd
o

T
R−1

o Re
(
Y H

o vec(Eo)
)
−Re

(
Xd

o
H

vec(Eo)
)

M11 =
No

∑
o=1

SL
o

T
R−1

o Re
(
Y H

o vec(Eo)
)
−Re

(
XL

o
H

vec(Eo)
)

M12 =
No

∑
o=1

Sλ
o

T
R−1

o Re
(
Y H

o vec(Eo)
)
−Re

(
Xλ

o
H

vec(Eo)
)

This elimination decreases the memory and computational time required to run the algorithm.

As for the MLE-CDM, an efficient implementation of the frequency domain MLE in modal

model formulation is only possible if the variances are taken into account in the cost func-

tion (3.133). Once the perturbation on the poles, participation factors and on the denominator

residuals are calculated in the last iteration by means of eq. (3.179), then the perturbations on

the mode shapes and numerator residuals are computed using eq. (3.178).

Estimation of the uncertainty bounds

A good approximation of the covariance of the ML parameters ΘML−MM is obtained by invert-

ing the Fisher information matrix (Pintelon and Schoukens, 2001):

Cov(V, [AR], [BR], [CR],a,b,c,L,λ )'
[
2Re

(
JH

l Jl
)]−1

(3.181)

with Jl the Jacobean matrix computed in the last iteration of the Gaussian-Newton algorithm.

Taking advantage of the structure of the Jacobean matrix and using the matrix inversion lemma

(Kailath, 1980), the covariance of the denominator coefficients of the residual model, the covari-

ance of the participation factors and the covariance of poles can be estimated, independently, as

follows:
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Cov(a,b,c)'M−1
1 +M−1

1

[
M2 M3

][Z1 Z2

Z3 ∆
−1
1

][
M4

M7

]
M−1

1 (3.182)

Cov(L)' Z1 (3.183)

Cov(λ )' ∆
−1
1 (3.184)

with

Z1 =−(M5−M4M−1
1 M2)

−1

[
I2Nm(Ni−1)+(M6−M4M−1

1 M3) −∆1

[
M4

M7

]
(M5−M4M−1

1 M2)
−1

]

∆1 =
(
M9−M7M−1

1 M3
)
−
(
M8−M7M−1

1 M2
)(

M5−M4M−1
1 M2

)−1 (
M6−M4M−1

1 M3
)

Z2 =−
(
M5−M4M−1

1 M2
)−1 (

M6−M4M−1
1 M3

)
∆
−1
1

and

Z3 =−∆
−1
1
(
M8−M7M−1

1 M2
)−1 (

M5−M4M−1
1 M2

)

The covariance of the mode shapes and numerator matrices of the residual model, on the other

hand, is estimated by means of the following expressions:

Cov(Vo, [AR]o, [BR]o, [CR]o)' R−1
o +

(
αoSd

o
T
+βoSd

o
T
+ γoSλ

o
T)

R−1
o (3.185)

where αo, βo and γo are given, respectively, as follows:

αo = R−1
o

(
Sd

oZ4 +SL
oZ5 +Sλ

o Z6

)

βo = R−1
o

(
Sd

oZ7 +SL
oZ1 +Sλ

o Z3

)
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and

γo = R−1
o

(
Sd

oZ8 +SL
oZ2 +Sλ

o ∆
−1
1

)

with

Z4 = M−1
1 +

[(
M−1

1 M2Z1 +M−1
1 M3Z3

)
M4M−1

1 +
(
M−1

1 M2Z2 +M−1
1 M3∆

−1)M7M−1
1
]

Z5 =−(Z1M4 +Z2M7)M−1
1 , Z6 =−

(
Z3M4 +∆

−1
1 M7

)
M−1

1

Z7 =−
(
M−1

1 M2Z1 +M−1
1 M3Z3

)
, Z8 =−

(
M−1

1 M2Z2 +M−1
1 M3∆

−1)

The strategy used for partitioning the normal matrices in eq. (3.177) was proposed by El-Kafafy

(2013) to improve the conditioning of these matrices and, therefore, the precision of the es-

timates provided by the pMLE-MM. Once the covariance of the poles are estimated using

eq. (3.184), the covariance of corresponding natural frequencies and damping ratios can be esti-

mated using the following linearisation formulas (Guillaume et al., 1989; Pintelon et al., 2007):

Var( fnm)'
1

(2π)2

[
0 1

]
Cov((λm)re)

[
0

1

]

Var(ξnm)'
(Im(λm))

2

|λ |6
[
−Im(λm) Re(λm)

]
Cov((λm)re)

[
−Im(λm)

Re(λm)

] (3.186)

with

(λm)re =

{
Re(λm)

Im(λm)

}
(3.187)

3.5.3. Proposed Implementation of the pMLE-MM

In this section, another implementation of the pMLE-MM is proposed as an alternative to

the derivation introduced by El-Kafafy (2013) and discussed in Section 3.5.2. The alternative

implementation of the pMLE-MM proposed in this section addresses optimization process in

a similar manner, but with the derivatives of the equation error taken directly with respect to the

natural frequencies and damping ratios, real and imaginary parts of the denominator coefficients

of the residual model, real and imaginary parts of the participation factors, real and imaginary

parts of mode shapes, and to the real and imaginary parts of the numerator coefficients of the

residual model.
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One of the main advantages of this alternative strategy is the possibility to estimate the un-

certainties on the identified modal natural frequencies and damping ratios directly from the

Jacobian matrix, avoiding the necessity of estimating these uncertainties in a second step, i.e.

by means of explicit linearization formulas. The data flow of this alternative implementation of

the pMLE-MM is compared to the original implementation proposed by El-Kafafy (2013) in

Fig. 3.14.

pMLE-MM Estimator

Datail of the pMLE-MM estimator (original implementation)

optimized modal parameters
together with the uncertainty bounds

of the poles, operational factors, mode
shapes, and upper and lower

residuals

confidence bounds of the natural
frequencies and damping ratios

Linearization Formulas

(a)

pMLE-MM Estimator

pMLE-MM estimator (Alternative implementation)

optimized modal parameters
together with the uncertainty bounds

of the natural frequencies, damping ratios,
operational factors, mode shapes, and

upper and lower residuals

Linearization Formulas

confidence bounds of the real
and imaginary parts of the poles

(b)

Fig. 3.14 – Data flows of the implementation of the algorithm of the pMLE-MM introduced by El-
Kafafy (2013) (a) and of the proposed algorithm (b).

In this proposed implementation the invariants of the modal model are parametrized as follows:

Θ =
[
θ1 θ2 · · · θNo θd θL θλ

]T
∈ R2Nm(No+Ni+1)+6NoNi+6 (3.188)

where the parameter θλ is now given by:

θλ =
[

fn1 fn2 · · · fnNm
ξn1 ξn2 · · · ξnNm

]
(3.189)

and the entries Xλ
o of the Jacobian matrix (3.146) given by:

Xλ
o =

[
vec
{

∂Eo(Θ)
∂ fn1

}
vec
{

∂Eo(Θ)
∂ fn2

}
· · · vec

{
∂Eo(Θ)
∂ fnNm

}
vec
{

∂Eo(Θ)
∂ξn1

}
vec
{

∂Eo(Θ)
∂ξn2

}
· · · vec

{
∂Eo(Θ)
∂ξnNm

}]

(3.190)

with

∂Eo(Θ)

∂ fnm

=




2π

|λm|σHo1(ω1)

(
voml1mλm
( jω1−λm)2 +

v∗oml∗1mλ ∗m
( jω1−λ ∗m)2

)
· · · 2π

|λm|σHoNi
(ω1)

(
vomlNimλm

( jω1−λm)2 +
v∗oml∗Nim

λ ∗m
( jω1−λ ∗m)2

)

...
...

...

2π

|λm|σHo1(ωNf
)

(
voml1mλm

( jωNf−λm)2 +
v∗oml∗1mλ ∗m

( jωNf−λ ∗m)2

)
· · · 2π

|λm|σHoNi
(ωN f

)

(
vomlNimλm

( jωNf−λm)2 +
v∗oml∗Nim

λ ∗m
( jωNf−λ ∗m)2

)




(3.191)
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∂Eo(Θ)

∂ξnm

=




j|λm|
Im(λm)σHo1(ω1)

(
voml1mλm
( jω1−λm)2 − v∗oml∗1mλ ∗m

( jω1−λ ∗m)2

)
· · · j|λm|

Im(λm)σHoNi
(ω1)

(
vomlNimλm

( jω1−λm)2 −
v∗oml∗Nim

λ ∗m
( jω1−λ ∗m)2

)

...
...

...
j|λm|

Im(λm)σHo1(ωN f
)

(
voml1mλm

( jωNf−λm)2 − v∗oml∗1mλ ∗m
( jωNf−λ ∗m)2

)
· · · j|λm|

Im(λm)σHoNi
(ωNf

)

(
vomlNimλm

( jωNf−λm)2 −
v∗oml∗Nim

λ ∗m
( jωNf−λ ∗m)2

)




(3.192)

The remaining entries Yo, Xd
o , XL

o are computed in the same way as in eqs. (3.164), (3.148)

and (3.147). Once all entries of the Jacobian matrix are computed, the perturbations ∆Θo, ∆Θd ,

∆ΘL and ∆Θλ are computed in the same way as that described in Section 3.5.2.

Estimation of the uncertainty bounds

Despite the different parametrization adopted in the alternative implementation of pMLE-MM,

the covariance of the invariants of the modal model can be computed independently from each

other by following the same strategy as for the pMLE-MM discussed in Section 3.5.2. Due

to the different parametrization chosen, however, the covariance of the natural frequency and

damping ratios are computed directly from the normal matrices by means of the following

expression:

Cov( fn,ξn)' ∆
−1
1 (3.193)

The main advantage of this alternative implementation of the pMLE-MM is that the uncertain-

ties on the natural frequencies and damping ratios are computed directly from the Jacobian ma-

trix, without using the explicit linearisation formulas found in Pintelon and Schoukens (2001).

Instead, the linearisation are performed implicitly during the computation of the Jacobian ma-

trix. If one is interested on the covariance of the poles, they can be estimated using the following

expressions:

Var(Re(λm))' 4π2

[
fnm

ξnm

]T

Cov( fnm,ξnm)

[
fnm

ξnm

]

Var(Im(λm))' 4π2 (1−ξ 2
nm

)

 1
− fnmξnm

1−ξ 2
nm




T

Cov( fnm,ξnm)


 1
− fnm ξnm

1−ξ 2
nm




(3.194)
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Logarithmic pMLE-MM

Another variant of the proposed implementation of the pMLE-MM can be derived by minimiz-

ing the following logarithmic cost function:

l(Θ)Log−pML−MM =
No

∑
o=1

N f

∑
f=1

E log
o (Θ ,ω f )E logH

o (Θ ,ω f ) (3.195)

where E log
o (Θ ,ω f ) ∈ C1×Ni is the logarithmic equation error given by:

E log
o (Θ ,ω f ) =

〈
log(Ĥo1(Θ ,ω f ))− log(Ho1(ω f ))

σ
log
Ho1(ω f )

. . .
log(ĤoNi(Θ ,ω f ))− log(HoNi(ω f ))

σ
log
HoNi(ω f )

〉
(3.196)

with σ
log
Ho(ω f )

denoting the standard deviation of the logarithmic FRF matrix. The relationship

between this standard deviation and the measured one is given as follows:

σ
log
Hoi(ω f )

=
σHoi(ω f )∣∣Hoi(ω f )

∣∣ , i = 1, 2, . . . , Ni. (3.197)

The strategy used to minimize the cost function (3.133) can be employed to eq. (3.195) and the

partial derivatives of the logarithmic error equation (3.196) with respect to the invariants of the

modal model, are calculated as follows:

∂Eo(Θ)

∂ fnm

=
2π

|λm|




|Ho1(ω1)|
Ĥo1(Θ ,ω1)σHo1(ω1)

(
voml1mλm
( jω1−λm)2 +

v∗oml∗1mλ ∗m
( jω1−λ ∗m)2

)
· · · |HoNi(ω1)|

ĤoNi(Θ ,ω1)σHoNi
(ω1)

(
vomlNimλm

( jω1−λm)2 +
v∗oml∗Nim

λ ∗m
( jω1−λ ∗m)2

)

...
...

...∣∣∣Ho1(ωNf )
∣∣∣

Ĥo1(Θ ,ωNf )σHo1(ωN f
)

(
voml1mλm

( jωNf−λm)2 +
v∗oml∗1mλ ∗m

( jωNf−λ ∗m)2

)
· · ·

∣∣∣HoNi(ωNf )
∣∣∣

ĤoNi(Θ ,ωNf )σHoNi
(ωNf

)

(
vomlNimλm

( jωN f−λm)2 +
v∗oml∗Nim

λ ∗m
( jωN f−λ ∗m)2

)




(3.198)

∂Eo(Θ)

∂ξnm

=
|λm|

Im(λm)




j|Ho1(ω1)|
Ĥo1(Θ ,ω1)σHo1(ω1)

(
voml1mλm
( jω1−λm)2 − v∗oml∗1mλ ∗m

( jω1−λ ∗m)2

)
· · · j|HoNi(ω1)|

ĤoNi(Θ ,ω1)σHoNi
(ω1)

(
vomlNimλm

( jω1−λm)2 −
v∗oml∗Nim

λ ∗m
( jω1−λ ∗m)2

)

...
...

...
j
∣∣∣Ho1(ωNf )

∣∣∣
Ĥo1(Θ ,ωNf )σHo1(ωNf

)

(
voml1mλm

( jωNf−λm)2 − v∗oml∗1mλ ∗m
( jωNf−λ ∗m)2

)
· · ·

j
∣∣∣HoNi(ωNf )

∣∣∣
ĤoNi(Θ ,ωN f )σHoNi

(ωNf
)

(
vomlNimλm

( jωNf−λm)2 −
v∗oml∗Nim

λ ∗m
( jωNf−λ ∗m)2

)




(3.199)
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∂Eo(Θ)

∂Re(lkm)
=




δk1|Ho1(ω1)|
Ĥo1(Θ ,ω1)σHo1(ω1)

(
vom

( jω1−λm)
+

v∗om
( jω1−λ ∗m)

)
· · · δkNi|HoNi(ω1)|

ĤoNi(Θ ,ω1)σHoNi
(ω1)

(
vom

( jω1−λm)
+

v∗om
( jω1−λ ∗m)

)

...
...

...
δk1

∣∣∣Ho1(ωNf )
∣∣∣

Ĥo1(Θ ,ωNf )σHo1(ωNf
)

(
vom

( jωNf−λm)
+

v∗om
( jωNf−λ ∗m)

)
· · ·

δkNi

∣∣∣HoNi(ωNf )
∣∣∣

ĤoNi(Θ ,ωN f )σHoNi
(ωNf

)

(
vom

( jωNf−λm)
+

v∗om
( jωNf−λ ∗m)

)




(3.200)

∂Eo(Θ)

∂ Im(lkm)
=




jδk1|Ho1(ω1)|
Ĥo1(Θ ,ω1)σHo1(ω1)

(
vom

( jω1−λm)
− v∗om

( jω1−λ ∗m)

)
· · · jδkNi|HoNi(ω1)|

ĤoNi(Θ ,ω1)σHoNi
(ω1)

(
vom

( jω1−λm)
− v∗om

( jω1−λ ∗m)

)

...
...

...
jδk1

∣∣∣Ho1(ωN f )
∣∣∣

Ĥo1(Θ ,ωNf )σHo1(ωNf
)

(
vom

( jωNf−λm)
− v∗om

( jωNf−λ ∗m)

)
· · ·

jδkNi

∣∣∣HoNi(ωNf )
∣∣∣

ĤoNi(Θ ,ωN f )σHoNi
(ωNf

)

(
vom

( jωNf−λm)
− v∗om

( jωNf−λ ∗m)

)




(3.201)

∂Eo(Θ)

∂Re(a)
=




−No1(ω1)|Ho1(ω1)|
d(ω1)2Ĥo1(Θ ,ω1)σHo1(ω1)

· · · −NoNi(ω1)|HoNi(ω1)|
d(ω1)2ĤoNi(Θ ,ω1)σHoNi

(ω1)

...
...

...
−No1(ωNf )

∣∣∣Ho1(ωNf )
∣∣∣

d(ωNf )
2Ĥo1(Θ ,ωN f )σHo1(ωNf

)
· · ·

−NoNi(ωN f )
∣∣∣HoNi(ωNf )

∣∣∣
d(ωNf )

2ĤoNi(Θ ,ωNf )σHoNi
(ωNf

)




(3.202)

∂Eo(Θ)

∂ Im(a)
=




− jNo1(ω1)|Ho1(ω1)|
d(ω1)2Ĥo1(Θ ,ω1)σHo1(ω1)

· · · − jNoNi(ω1)|HoNi(ω1)|
d(ω1)2ĤoNi(Θ ,ω1)σHoNi

(ω1)

...
...

...
− jNo1(ωNf )

∣∣∣Ho1(ωNf )
∣∣∣

d(ωNf )
2Ĥo1(Θ ,ωN f )σHo1(ωNf

)
· · ·

− jNoNi(ωNf )
∣∣∣HoNi(ωNf )

∣∣∣
d(ωNf )

2ĤoNi(Θ ,ωNf )σHoNi
(ωNf

)




(3.203)

∂Eo(Θ)

∂Re(b)
=




− jω1No1(ω1)|Ho1(ω1)|
d(ω1)2Ĥo1(Θ ,ω1)σHo1(ω1)

· · · − jω1NoNi(ω1)|HoNi(ω1)|
d(ω1)2ĤoNi(Θ ,ω1)σHoNi

(ω1)

...
...

...
− jωNf No1(ωNf )

∣∣∣Ho1(ωNf )
∣∣∣

d(ωNf )
2Ĥo1(Θ ,ωN f )σHo1(ωNf

)
· · ·

− jωN f NoNi(ωNf )
∣∣∣HoNi(ωNf )

∣∣∣
d(ωNf )

2ĤoNi(Θ ,ωNf )σHoNi
(ωNf

)




(3.204)

∂Eo(Θ)

∂ Im(b)
=




ω1No1(ω1)|Ho1(ω1)|
d(ω1)2Ĥo1(Θ ,ω1)σHo1(ω1)

· · · ω1NoNi(ω1)|HoNi(ω1)|
d(ω1)2ĤoNi(Θ ,ω1)σHoNi

(ω1)

...
...

...
ωNf No1(ωNf )

∣∣∣Ho1(ωNf )
∣∣∣

d(ωNf )
2Ĥo1(Θ ,ωN f )σHo1(ωNf

)
· · ·

ωNf NoNi(ωNf )
∣∣∣HoNi(ωNf )

∣∣∣
d(ωNf )

2ĤoNi(Θ ,ωNf )σHoNi
(ωNf

)




(3.205)
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∂Eo(Θ)

∂Re(c)
=




ω1
2No1(ω1)|Ho1(ω1)|

d(ω1)2Ĥo1(Θ ,ω1)σHo1(ω1)
· · · ω1

2NoNi(ω1)|HoNi(ω1)|
d(ω1)2ĤoNi(Θ ,ω1)σHoNi

(ω1)

...
...

...
− jωNf No1(ωNf )

∣∣∣Ho1(ωNf )
∣∣∣

d(ωNf )
2Ĥo1(Θ ,ωNf )σHo1(ωNf

)
· · ·

ωNf
2NoNi(ωN f )

∣∣∣HoNi(ωNf )
∣∣∣

d(ωNf )
2ĤoNi(Θ ,ωNf )σHoNi

(ωNf
)




(3.206)

∂Eo(Θ)

∂ Im(c)
=




jω1
2No1(ω1)|Ho1(ω1)|

d(ω1)2Ĥo1(Θ ,ω1)σHo1(ω1)
· · · jω1

2NoNi(ω1)|HoNi(ω1)|
d(ω1)2ĤoNi(Θ ,ω1)σHoNi

(ω1)

...
...

...
jω2

Nf
No1(ωNf )

∣∣∣Ho1(ωNf )
∣∣∣

d(ωNf )
2Ĥo1(Θ ,ωNf )σHo1(ωNf

)
· · ·

jω2
N f

NoNi(ωNf )
∣∣∣HoNi(ωNf )

∣∣∣
d(ωNf )

2ĤoNi(Θ ,ωNf )σHoNi
(ωNf

)




(3.207)

∂Eo(Θ)

∂Re(vom)
=




|Ho1(ω1)|
Ĥo1(Θ ,ω1)σHo1(ω1)

(
l1m

( jω1−λm)
+

l∗1m
( jω1−λ ∗m)

)
· · · |HoNi(ω1)|

ĤoNi(Θ ,ω1)σHoNi
(ω1)

(
lNim

( jω1−λm)
+

l∗Nim
( jω1−λ ∗m)

)

...
...

...∣∣∣Ho1(ωNf )
∣∣∣

Ĥo1(Θ ,ωNf )σHo1(ωNf
)

(
l1m

( jωNf−λm)
+

l∗1m
( jωNf−λ ∗m)

)
· · ·

∣∣∣HoNi(ωNf )
∣∣∣

ĤoNi(Θ ,ωNf )σHoNi
(ωN f

)

(
lNim

( jωNf−λm)
+

l∗Nim
( jωNf−λ ∗m)

)




(3.208)

∂Eo(Θ)

∂ Im(vom)
=




j|Ho1(ω1)|
Ĥo1(Θ ,ω1)σHo1(ω1)

(
l1m

( jω1−λm)
− l∗1m

( jω1−λ ∗m)

)
· · · j|HoNi(ω1)|

ĤoNi(Θ ,ω1)σHoNi
(ω1)

(
lNim

( jω1−λm)
− l∗Nim

( jω1−λ ∗m)

)

...
...

...
j
∣∣∣Ho1(ωNf )

∣∣∣
Ĥo1(Θ ,ωNf )σHo1(ωNf

)

(
l1m

( jωNf−λm)
− l∗1m

( jωNf−λ ∗m)

)
· · ·

j
∣∣∣HoNi(ωN f )

∣∣∣
ĤoNi(Θ ,ωNf )σHoNi

(ωN f
)

(
lNim

( jωNf−λm)
− l∗Nim

( jωNf−λ ∗m)

)




(3.209)

∂Eo(Θ)

∂Re([AR]oi)
=




δi1|Ho1(ω1)|
d(ω1)Ĥo1(Θ ,ω1)σHo1(ω1)

· · · δiNi|HoNi(ω1)|
d(ω1)ĤoNi(Θ ,ω1)σHoNi

(ω1)

...
...

...
δi1

∣∣∣Ho1(ωNf )
∣∣∣

d(ωNf )Ĥo1(Θ ,ωN f )σHo1(ωNf
)
· · ·

δiNi

∣∣∣HoNi(ωN f )
∣∣∣

d(ωNf )ĤoNi(Θ ,ωNf )σHoNi
(ωNf

)




(3.210)

∂Eo(Θ)

∂ Im([AR]oi)
=




jδi1|Ho1(ω1)|
d(ω1)Ĥo1(Θ ,ω1)σHo1(ω1)

· · · jδiNi|HoNi(ω1)|
d(ω1)ĤoNi(Θ ,ω1)σHoNi

(ω1)

...
...

...
jδi1

∣∣∣Ho1(ωNf )
∣∣∣

d(ωNf )Ĥo1(Θ ,ωN f )σHo1(ωNf
)
· · ·

jδiNi

∣∣∣HoNi(ωNf )
∣∣∣

d(ωNf )ĤoNi(Θ ,ωNf )σHoNi
(ωNf

)




(3.211)
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∂Eo(Θ)

∂Re([BR]oi)
=




jω1δi1|Ho1(ω1)|
d(ω1)Ĥo1(Θ ,ω1)σHo1(ω1)

· · · jω1δiNi|HoNi(ω1)|
d(ω1)ĤoNi(Θ ,ω1)σHoNi

(ω1)

...
...

...
jωNf δi1

∣∣∣Ho1(ωNf )
∣∣∣

d(ωNf )Ĥo1(Θ ,ωNf )σHo1(ωNf
)
· · ·

jωNf δiNi

∣∣∣HoNi(ωNf )
∣∣∣

d(ωNf )ĤoNi(Θ ,ωN f )σHoNi
(ωNf

)




(3.212)

∂Eo(Θ)

∂ Im([BR]oi)
=




−ω1δi1|Ho1(ω1)|
d(ω1)Ĥo1(Θ ,ω1)σHo1(ω1)

· · · −ω1δiNi|HoNi(ω1)|
d(ω1)ĤoNi(Θ ,ω1)σHoNi

(ω1)

...
...

...
−ωNf δi1

∣∣∣Ho1(ωNf )
∣∣∣

d(ωNf )Ĥo1(Θ ,ωNf )σHo1(ωNf
)
· · ·

−ωN f δiNi

∣∣∣HoNi(ωNf )
∣∣∣

d(ωNf )ĤoNi(Θ ,ωN f )σHoNi
(ωNf

)




(3.213)

∂Eo(Θ)

∂Re([CR]oi)
=




−ω2
1 δi1|Ho1(ω1)|

d(ω1)Ĥo1(Θ ,ω1)σHo1(ω1)
· · · −ω2

1 δiNi|HoNi(ω1)|
d(ω1)ĤoNi(Θ ,ω1)σHoNi

(ω1)

...
...

...
−ω2

Nf
δi1

∣∣∣Ho1(ωN f )
∣∣∣

d(ωN f )Ĥo1(Θ ,ωNf )σHo1(ωN f
)
· · ·

−ω2
Nf

δiNi

∣∣∣HoNi(ωNf )
∣∣∣

d(ωNf )ĤoNi(Θ ,ωNf )σHoNi
(ωNf

)




(3.214)

∂Eo(Θ)

∂ Im([CR]oi)
=




− jω2
1 δi1|Ho1(ω1)|

d(ω1)Ĥo1(Θ ,ω1)σHo1(ω1)
· · · − jω2

1 δiNi|HoNi(ω1)|
d(ω1)ĤoNi(Θ ,ω1)σHoNi

(ω1)

...
...

...
− jω2

Nf
δi1

∣∣∣Ho1(ωNf )
∣∣∣

d(ωN f )Ĥo1(Θ ,ωNf )σHo1(ωN f
)
· · ·

− jω2
Nf

δiNi

∣∣∣HoNi(ωNf )
∣∣∣

d(ωNf )ĤoNi(Θ ,ωNf )σHoNi
(ωNf

)




(3.215)

Example 11
The five-DOF system introduced in Example 10 is again used to validate the implementation
of the pMLE-MM presented in Section 3.5.3. A set of 200 FRFs contaminated with noise
was generated to perform Monte Carlo simulations in order to assess the proposed implemen-
tation and compare its efficiency with the implementation introduced by El-Kafafy (2013)
presented in Section 3.5.2. The noisy FRFs were generated by following the procedure de-
scribed in Example 10.
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Fig. 3.15 – Typical stabilization diagram constructed with the pLSCF from the noisy FRFs.
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Fig. 3.16 – Monte Carlo simulation results for the natural frequencies of the 3rd and 5th modes with
10% of noise level: predicted standard deviation (dots) and sample standard deviation (solid line) with
the proposed implementation of the pMLE-MM ((a) and (c)) and the implementation proposed by (El-
Kafafy, 2013) ((b) and (d)).
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Fig. 3.17 – Monte Carlo simulation results for the damping ratios of the 3rd and 5th modes with 10%
of noise level: predicted standard deviation (dots) and sample standard deviation (solid line) with the
proposed implementation of the pMLE-MM ((a) and (c)) and the implementation proposed by (El-
Kafafy, 2013) ((b) and (d)).
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The modal parameters of each dataset were identified with the pLSCF and LSFD estimators
and then used as starting values to be optimized by both implementations of the pMLE-MM.
Similarly to Example 10, the identification of each dataset was performed by using the full
frequency band, i.e., with no upper and lower residuals.

A typical stabilization diagram constructed with the pLSCF method from the FRFs contam-
inated with noise is shown in Fig. 3.15. This diagram was created by identifying models with
order n ranging from 2 to 36. In a final step of the identification process, 15 iterations of the
pMLE-MM were performed to optimize the modal parameters of each dataset and estimate
their standard deviations. The standard deviations of the 3rd and 5th natural frequencies and
damping ratios estimated with both algorithms of the pMLE-MM are compared in Figs. 3.16
and 3.17. In these figures, the standard deviations of the parameters estimated for each of the
200 simulated FRFs are compared to their respective sample standard deviations.
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Fig. 3.18 – Monte Carlo simulation results obtained with the proposed implementation of the pMLE-
MM (top) and with the implementation proposed by (El-Kafafy, 2013) (bottom): comparison of the
sample (black line) and estimated means and standard deviations (red line) of the natural frequencies (a
and c) and damping ratios (b and d).

Comparing the standard deviations estimated with both implementations of the pMLE-MM
shown in such figures, it is verified that they are in very good agreement with each other. It
is also verified, from these figures, that both implementations provide good estimates of the
sample standard deviations. The results of the analysis carried out with both implementa-
tions of pMLE-MM, as well as with the proposed MLE-MM introduced in Section 3.5.1 are
summarized in Tab. 3.4. In this table, the estimated standard deviations of the natural fre-
quencies and damping ratios identified with both implementations of the pMLE-MM and of
the MLE-MM are compared to each other, as well as to their corresponding sample standard
deviations.

As seen in this table, the results provided by both pMLE-MM algorithms are very similar,
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which demonstrates that the proposed implementation is as efficient and accurate as the im-
plementation proposed by El-Kafafy (2013). With regard to the estimation of the uncertainties
on the modal parameters, it is verified in Tab. 3.4 that the 3rd mode presents the highest un-
certainties, since this mode is poorly exited compared to the other identified modes.

Tab. 3.4 – Comparison of the results from the simulated EMA of the five-DOF system obtained with the
proposed implementation of the pMLE-MM to those provided by the implementation proposed by El-
Kafafy (2013) and by the proposed MLE-MM.

MLE-MM Mode
Sample Mean and Std. Estimated Mean and Std.

µ f̂n (Hz) σ f̂n (Hz) µ
ξ̂n

(%) σ
ξ̂n

(%) µ̂ f̂n (Hz) σ̂ f̂n (Hz) µ̂
ξ̂n

(%) σ̂
ξ̂n

(%)

×103 ×102 ×103 ×102

Proposed pMLE-MM

1 26.0598 3.39 1.9995 1.27 26.0580 4.28 1.9927 1.63

2 36.8402 4.18 1.9991 1.07 36.8362 5.21 1.9861 1.43

3 51.4708 11.24 2.0003 2.06 51.4776 11.63 1.9948 2.26

4 56.2081 8.55 1.9930 1.52 56.2191 7.72 2.0058 1.37

5 62.6003 8.86 2.0059 1.46 62.6106 8.92 1.9935 1.41

pMLE-MM (El-Kafafy, 2013)

1 26.0598 3.40 1.9995 1.27 26.0580 4.28 1.9927 1.63

2 36.8403 4.18 1.9992 1.07 36.8362 5.21 1.9861 1.43

3 51.4709 11.25 2.0003 2.06 51.4776 11.63 1.9948 2.26

4 56.2081 8.59 1.9932 1.53 56.2192 7.72 2.0058 1.37

5 62.6004 8.88 2.0061 1.45 62.6106 8.92 1.9935 1.41

Proposed MLE-MM

1 26.0602 3.31 2.0057 1.88 26.0571 4.35 1.9898 1.65

2 36.8399 3.94 2.0034 1.59 36.8345 5.37 2.0008 1.46

3 51.4682 10.80 2.0061 2.68 51.4730 12.75 2.0011 2.46

4 56.2114 7.96 2.0031 1.59 56.2026 9.63 2.0029 1.72

5 62.6011 9.04 2.0016 1.53 62.5989 10.01 2.0215 1.59

3.6. The Combined MLE-CDM-pLSCF-pMLE-MM Method

3.6.1. Introduction

Recently, new improvements were added to the estimation with the pLSCF to overpass the loss

of precision and robustness observed when dealing with very noisy FRFs and poorly exited

modes (El-Kafafy et al., 2012a; El-Kafafy, 2013; Peeters et al., 2012). It is verified that, un-

der these circumstances, the pLSCF is not so robust and tends to overestimate the damping

ratios. This new variant of the pLSCF technique consists of a 3-step approach proposed by El-

Kafafy (2013) to address these issues and is also known by its commercial name as PolyMAX

Plus (Peeters et al., 2012).

In fact, this approach consists of a combination of three different estimators, namely, the MLE-
CDM, the pLSCF and the pMLE-MM. The combination of these three estimators enhances

the MPE by taking advantage of the specific features of each one of them, as, for instance,

the statistical features of the of the MLE-CDM in the first step of the identification process,

the fast and clear stabilization diagrams provided by the pLSCF method, and the precision and
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numeric stability of the pMLE-MM which is used to improve the accuracy of the identified

modal parameters and estimate their confidence intervals.

3.6.2. Structure of the Combined MLE-CDM-pLSCF-pMLE-MM Method

The identification process with the combined MLE-CDM-pLSCF-pMLE-MM basically con-

sists of the following steps: (1) smoothing the noisy FRF (EMA) or half spectrum (OMA)

with the MLE-CDM; (2) identification of the poles and operational factors from the smoothed

spectrum in the first step with the pLSCF estimator, and estimation of the corresponding mode

shapes of vibration together with the lower and upper residuals in a least squares sense with the

LSFD estimator; and, finally, (3) optimization of the model parameters provided by the pLSCF
and LSFD estimators, and estimation of the their uncertainty bounds with the pMLE-MM. The

structure of the combined MLE-pLSCF-pMLE-MM is synthesized in Fig.3.19.

Measured FRF and Noise Std

MLE Estimator
Stochastic approach

ML Synthesized FRF

First step: Smoothing of the spectrum matrix with
stochastic MLE (Common denominator formulation)

pLSCF Identification
(PolyMAX)

Natural frequencies, damping ratios
and operational factors

LSFD algorithm

Mode shapes

Second step: identifitcation of the natural frequencies,
damping ratios and operational factors with pLSCF, and the
mode shapes with LSFD.

pMLE-MM Estimator

Third step: Improvement of the precision of the estimated
modal parameters and direct estimation of their confidence
bounds

optimized modal parameters together
with their uncertainty bounds

Natural frequencies, damping ratios
and operational factors

Natural frequencies, damping ratios
and operational factors

MLE-CDM-pLSCF-pMLE/MM

Fig. 3.19 – Data flow of the implementation of the combined MLE-CDM-pLSCF-pMLE-MM.
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In the first step of the identification, the MLE-CDM is applied in a “blind” way, i.e. a fixed

model order is specified for the common-denominator model and the FRFs are synthesized

without prior selection of the physical modes. The third step of the of this combined estimator

was originally proposed by (El-Kafafy et al., 2012b) and is described in Section 3.5.2. The

alternative implementation ot the pMLE-MM introduced in Section 3.5.3 can also be used in

the third step of this combined estimator to optimize the modal parameters provided by the

pLSCF technique and estimate their confidence intervals. One of the main advantages of this

alternative strategy is the possibility to estimate the uncertainties on the identified modal natural

frequencies and damping ratios directly from the normal matrices, avoiding the necessity of

estimating these uncertainties in a second step, by means of explicit linearisation formulas.

Moreover, in practical EMA and OMA, one is more interested on the confidence intervals of the

estimated natural frequency and damping ratios rather than on the uncertainties on the estimated

poles.

3.6.3. Lack of Prior Noise Information

When the noise information is not available, a residual error approach can be adopted to estimate

the variance of the measured FRFs (EMA) or half spectra (OMA). This approach estimates

the noise on the FRFs by smoothing the residual errors between the measured FRFs and the

estimated (synthesized) FRFs by making use of a window function (see Section 2.7.1). These

estimated FRFs are, for instance, obtained from a preliminary LS estimation with the LSCF
technique. It is also possible to perform some MLE-CDM iterations without taking into account

the variance, then calculate the variances by means of the residual error approach from the

difference between the measured and modelled FRFs, and finally, perform some more MLE
iterations with noise weighting. The advantage of the residual error approach is that it can also

be applied to OMA.

3.7. The Combined SSI-DATA-pMLE-MM and SSI-COV-pMLE-MM

Following the same idea of the combined MLE-CDM-pLSCF-pMLE-MM discussed in Sec-

tion 3.6, two other combined estimators are proposed in the present work. These approaches

consist of combinations of the SSI-DATA and SSI-COV techniques with the pMLE-MM. In

such approaches both SSI methods are used to estimate the poles and mode shapes, which are

subsequently used to estimate the operational factors by means of the LSFD estimator in the

first step of the identification process. Next, these estimates are used as starting guess by the

pMLE-MM, which optimizes iteratively these parameters in frequency-domain and provides

their uncertainty bounds, in a second step of the identification process.
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Similarly to the combined MLE-CDM-pLSCF-pMLE-MM, the variance of the measured half

spectra can be estimated by making use of the residual error approach discussed in Section 2.7.1.

The data flows of the MPE with the combined SSI-DATA-pMLE-MM and SSI-COV-pMLE-
MM are illustrated in Figs. 3.20a and 3.20b, respectively.

LSFD algorithm

Firts step: identifitcation of the natural frequencies, damping
ratios and operational factors with SSI-DATA, and the mode
operational factors with the LSFD estimator.

pMLE-MM Estimator

Second step: Improvement of the precision of the estimated
modal parameters and estimation of their confidence
bounds

optimized modal parameters together
with their uncertainty bounds

Combined SSI-DATA-pMLE-MM

Measured Time
Histories and Half Spectra Std

SSI-DATA
Identification

Natural frequencies, damping ratios
and mode shapes

Operational Factors

(a)

LSFD algorithm

Firts step: identifitcation of the natural frequencies, damping
ratios and operational factors with SSI-COV, and the mode
operational factors with the LSFD estimator.

pMLE-MM Estimator

Second step: Improvement of the precision of the estimated
modal parameters and estimation of their confidence
bounds

optimized modal parameters together
with their uncertainty bounds

Combined SSI-COV-pMLE-MM

Measured Covariances
and Half Spectra Std

SSI-COV
Identification

Natural frequencies, damping ratios
and mode shapes

Operational Factors

(b)

Fig. 3.20 – Data flow of the implementation of the combined SSI-DATA-pMLE-MM (a) and SSI-COV-
pMLE-MM (b).

Example 12
The proposed implementation of the pMLE-MM is now applied to the lattice tower structure
introduced in Example 1. The modal parameters estimated with the SSI-DATA, SSI-COV
and combined MLE-CDM-pLSCF in Examples 6, 7 and 9 are now used as starting guess
by the pMLE-MM to estimate their uncertainties, improve their precision and estimate the
confidence intervals of the optimized estimates. Firstly, one iteration of the pMLE-MM was
applied to estimate the confidence intervals of the estimates provided by such identification
techniques. Afterwards, a total of 50 iterations of the Gauss-Newton algorithm was performed
to optimize these estimates and compute the standard deviations of the optimized parameters.

As the optimization with the pMLE-MM is only possible if the noise information is taken into
account in the cost function (3.133), the same residual error variance estimated in Example 8
was taken into account in the optimization of the SSI-DATA and SSI-COV estimates. The
optimization of the starting estimates provided by the pLSCF, SSI-DATA and SSI-COV
techniques was performed within the frequency range of 0.1-10 Hz. The variations of the cost
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function value computed over the iterations performed to optimize the parameters estimated
with SSI-DATA, SSI-COV and combined MLE-CDM-pLSCF are shown in Fig. 3.21.
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Fig. 3.21 – Variation of the pMLE-MM cost function value over the performed iterations computed
from the starting estimates provided by the SSI-DATA (a), SSI-COV (b) and MLE-CDM-pLSCF (c)
identification techniques.
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Fig. 3.22 – Comparison of element (1,1) of measured half spectra matrix, S+yy, to the spectrum synthesized
from the estimates provided by the SSI-DATA (a), SSI-COV (b) and combined MLE-CDM-pLSCF (c),
as well as to the spectrum synthesized after 50 Gauss-Newton iterations of the pMLE-MM.

In Figs. 3.22, element (1,1) of the measured half spectra matrix, S+yy, is compared to the spectra
synthesized from the parameters identified with SSI-DATA, SSI-COV and combined MLE-
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CDM-pLSCF, as well as to the spectra synthesized after 50 Gauss-Newton iterations of the
pMLE-MM. As seen in these figures, the spectrum synthesized from the parameters opti-
mized with the pMLE-MM are in very good agreement with the measured spectrum. The
natural frequencies and damping ratios together with their standard deviations estimated be-
fore and after the optimization with the pMLE-MM are shown in Figs. 3.23 and 3.24, re-
spectively.

Comparing these parameters to their optimized counterparts, it is verified that, whist no sig-
nificant variation is observed for the natural frequencies, a noticeable difference is seen for
the damping ratios estimates. The identification results obtained with the three different tech-
niques combined with pMLE-MM shown in Figs. 3.23 and 3.24 are summarised in Tab. 3.5.
Comparing the results presented in such table, it is verified that they are consistent with each
other.

1 2 3 4 5 6
−2

0

2

4

6

8

10

Mode [#]

f̂ n
,
σ̂
f̂
n

( ×
1
0
4
) [H

z]

 

 

SSI−DATA
pMLE−MM

(a)

1 2 3 4 5 6
−2

0

2

4

6

8

Mode [#]

f̂ n
,
σ̂
f̂
n

( ×
1
0
4
) [H

z]

 

 

SSI−COV
pMLE−MM

(b)

1 2 3 4 5 6
−2

0

2

4

6

8

Mode [#]

f̂ n
,
σ̂
f̂
n

( ×
1
0
4
) [H

z]
 

 

pLSCF
pMLE−MM

(c)

Fig. 3.23 – Natural frequencies identified with the SSI-DATA (a), SSI-COV (b) and combined MLE-
CDM-pLSCF (c) together with their standard deviation before (black line) and after the optimization
with pMLE-MM. The standard deviations are multiplied by a factor of 104 to improve their visibility
within the figure.
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Fig. 3.24 – Damping ratios identified with the SSI-DATA (a), SSI-COV (b) and combined MLE-CDM-
pLSCF (c) together with their standard deviation before (black line) and after the optimization with
pMLE-MM. The standard deviations are multiplied by a factor of 10 to improve their visibility within
the figure.
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Tab. 3.5 – Results obtained for the simulated OMA of the tower structure with the SSI-DATA, SSI-COV
and MLE-pLSCF combined with the alternative implementation of the pMLE-MM.

Method Mode

pMLE-MM Estimates (1 iteration) pMLE-MM Estimates (50 iterations)

f̂n [Hz] σ̂ f̂n [Hz] ξ̂n [%] σ̂
ξ̂n
[%] f̂n [Hz] σ̂ f̂n [Hz] ξ̂n [%] σ̂

ξ̂n
[%]

(
×104) (

×102) (
×104) (

×102)

SSI-DATA

1 1.28763 1.01 1.0553 0.79 1.28662 0.85 1.0316 0.66

2 1.29615 1.82 1.4457 1.41 1.29652 1.69 1.4291 1.31

3 2.22752 1.17 1.0178 0.53 2.22802 1.16 0.9401 0.52

4 3.87063 2.22 1.0016 0.57 3.86998 3.36 0.9993 0.87

5 3.89552 1.42 1.1286 0.36 3.89222 2.78 1.1339 0.73

6 6.17518 2.28 1.0479 0.37 6.18328 2.33 1.0710 0.38

SSI-COV

1 1.28697 0.69 1.0418 0.54 1.28667 0.62 1.0268 0.49

2 1.29661 1.40 1.4630 1.09 1.29676 1.30 1.4450 1.02

3 2.22724 1.06 0.9765 0.48 2.22785 1.04 0.9388 0.47

4 3.86926 2.13 0.9934 0.55 3.86986 2.93 1.0079 0.74

5 3.89435 1.26 1.1613 0.32 3.89257 1.96 1.1212 0.50

6 6.18498 1.23 1.1195 0.20 6.18384 1.21 1.0754 0.20

MLE-CDM-pLSCF

1 1.28693 0.86 1.0560 0.67 1.28665 0.75 1.0348 0.59

2 1.29621 1.85 1.4229 1.44 1.29646 1.80 1.4201 1.41

3 2.22751 0.95 0.9753 0.43 2.22792 0.94 0.9376 0.42

4 3.86970 2.24 1.0310 0.58 3.86873 2.35 1.0330 0.61

5 3.89393 1.33 1.1229 0.34 3.89424 1.49 1.1255 0.38

6 6.18418 0.91 1.0691 0.15 6.18410 1.03 1.0755 0.17

3.8. Merging Strategies For Multi-dataset OMA

In this section the mode shape re-scaling strategies used in multi-dataset non-stationary OMA
is discussed. These strategies are often used in multi-dataset EMA and OMA to glue the mode

shape parts of each dataset and provide the global modal configurations of the tested structures.

The difference between these strategies relies, essentially, on when the rescaling is applied in

order to uniform the different scales of the mode shapes ordinates of each dataset, which can

take place either before or after the estimation of the modal parameters. There exist three ap-

proaches for this purpose: the Pre Global Estimation Re-scaling (PreGER), the Post Separate

Estimation Re-scaling (PoSER) and the Post Global Estimation Re-scaling (PoGER), and the

their advantages and drawbacks are briefly discussed in the following sections. Further details

about these merging strategies are found, for instance, in Parloo (2003), Reynders et al. (2009)

and Döhler et al. (2010).

3.8.1. Post-Separate Estimation Re-scaling (PoSER) Approach

The PoSER, also known as the “classic” approach, consists of a merging strategy in which

the spectrum or the covariance of each dataset is identified independently. Once the modal
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parameters are estimated, the mode shapes of each dataset are re-scaled with regard to one

these mode shapes, which is previously chosen as reference. In practice, the mode shapes of the

first the dataset is usually chosen reference. The re-scaling procedure with PoSER is illustrated

in Fig. 3.25. The main drawback of this approach is that the number of identified modes may

differ from dataset to dataset due to the non-stationary character of the operational excitations

and to the few DOFs measured during the test.

Syy( )w patch 1 Estimation

Syy( )w patch 2 Estimation

Syy( )w patch N Estimation

V1

V2

VN

Re-scaling

Re-scaling

Re-scaling

VG

Fig. 3.25 – Merging partial mode shape estimates Vk, k = 1, ..., N into a global mode shape estimate VG

using the PoSER approach.

In such conditions, it may be not possible to yield the global mode shapes of all the identified

modes in the frequency band of interest. Another disadvantage of this merging approach is

that the analyst needs to identify each dataset separately. If the number of datasets collected in

vibration tests is large, this task may be very tiresome and time consuming. Moreover, the mode

pairing between different datasets is only possible if the modes to be merged are identified in all

datasets. When dealing with close spaced modes, however, the mode pairing between different

datasets may be very difficult, since these modes may not be identified in all datasets. Given

these difficulties, the PoGER and PreGER can be used to the estimate the global mode shapes

using a single stabilization diagram.

3.8.2. Pre-Global Estimation Re-scaling (PreGER) Approach

The idea behind the PreGER approach is to yield the re-scaled global mode shapes directly

from the global spectrum matrix. This is accomplished by re-scaling the spectrum matrix

of each dataset prior to stacking and assembling the global spectrum matrix as illustrated in

Fig. 3.26. One of the main advantages of this approach is that it provides the re-scaled global

mode shapes directly from the global spectrum matrix and no further post-processing is required

after the identification of the modal parameters. The main drawback, however, is that it is not so
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robust to non-stationary excitations from dataset to dataset (Reynders et al., 2009), particularly

if used in conjunction with the time-domain identification techniques such as SSI-COV.

In such circumstances, a different strategy discussed in Mevels et al. (2002) and Döhler et al.

(2010) can be used in conjunction with the correlation-driven identification methods to overpass

this limitation.

Estimation VG

Syy( )w patch 1 Re-scaling

Syy( )w patch 2 Re-scaling

Syy( )w patch N Re-scaling

Syy( )w Global

Fig. 3.26 – Merging partial mode shape estimates Vk, k = 1, ..., N into a global mode shape estimate VG

using the PreGER approach.
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Syy( )w patch 1 Stacking

Syy( )w patch 2 Stacking

Syy( )w patch N Stacking

Syy(w)Global

Fig. 3.27 – Merging partial mode shape estimates Vk, k = 1, ..., N into a global mode shape estimate VG

using the PoGER approach.

3.8.3. Post-Global Estimation Re-scaling (PoGER) Approach

In the PoGER merging strategy, the re-scaling is applied to the mode shape parts of each dataset

only after the identification of the modal parameters. In this merging strategy, the global spectra

or covariance matrices are constructed by stacking the spectrum or covariance of each dataset on
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the top of each order. Afterwards, these matrices are used as primary data by the system iden-

tification techniques to estimate the modal parameters. Once these parameters are estimated,

the mode shapes parts of each dataset are than re-scaled with regard to one of the parts previ-

ously chosen as reference. The purpose of this procedure is to uniform the scales of each mode

shape part to yield the global mode shapes of the tested structure. The main advantage of this

approach is that it is more robust to the non-stationary inputs. The data flow of the identification

with the PoGER merging strategy is illustrated in Fig. 3.27.

3.9. Conclusions

In this Chapter, some of the state-of-the-art input-output and output-only identification tech-

niques were reviewed. Especial attention was dedicated to the time-domain estimators SSI-
DATA and SSI-COV, as well as to the frequency-domain techniques pLSCF, MLE-CDM,

MLE-MM, pMLE-MM. The main characteristics, advantages and drawbacks of these tech-

niques were occasionally highlighted. Apart from this review, two approaches were proposed

in the framework of the ML estimators. The first consists of a single reference ML-based

identification technique formulated in pole-residual modal model and the second corresponds

to an alternative implementation of the pMLE-MLE originally proposed by El-Kafafy (2013).

Aiming at assessing the efficiency of the first approach, the proposed estimator was applied to

a simulated EMA of a five-DOF system and the results obtained have demonstrated that the

single reference MLE-MM can be efficiently used to optimize the modal parameters provided

by the LSCF and estimate their uncertainty bounds.

With regard to the second approach, the same five-DOF system was used to assess the efficiency

of the proposed implementation of the pMLE-MM. The modal parameters of this system and

their respective standard deviations provided by such implementation were in very good agree-

ment with the estimates obtained with the pMLE-MM proposed by (El-Kafafy, 2013), which

demonstrates that the alternative approach can be used without loss of efficiency and precision.

One of the main advantages of this alternative approach is the possibility to estimate the un-

certainties on the identified natural frequencies and damping ratios directly from the normal

matrices, avoiding the use of explicit linearisation formulas in a final step of the identification

process.

Comparing the poly-reference implementation of the ML-MM estimator to its single reference

counterpart, it is verified that main advantage of the former is the possibility to retain and im-

prove the poly-reference precision provided by the pLSCF estimator. The main disadvantage,

however, is that it demands a much longer time to compute the normal matrices. The main

benefit of using the single reference MLE-MM is that it results in a faster algorithm. The main
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disadvantages, on the other hand, are, in fact, related to the modal model in its pole residue form,

as well as to the shortcomings of a single reference method. These disadvantages include: (1)

difficulty of distinguishing between close spaced modes; and (2) impossibility to synthesize the

spectrum, once the mode shapes and operational factors are estimated from the residue matrices

by means of the SVD.

In Döhler and Mevel (2013) is presented an efficient approach to estimate the confidence inter-

vals of the modal parameters provided by the SSI-based identification methods. In this Chapter,

however, a new strategy in frequency-domain was followed to the estimate the uncertainties on

the SSI-COV and SSI-DATA estimates. This strategy follows the same idea of the combined

MLE-CDM-pLSCF-pMLE-MM and consists of: (1) compute the variance of the measured

half spectra by making use of the residual error approach (see Section 2.7.1); (2) identifying

the poles and the observed mode shapes by means of the stabilization diagrams; (3) comput-

ing the reference operational factors with the LSFD estimator; and, finally, (4) estimating the

confidence intervals of the estimated modal parameters with the pMLE-MM. This strategy was

applied to a simulated tower structure and it was shown that the confidence intervals estimated

for the modal parameters provided by the SSI-DATA and SSI-COV were in good agreement

with those estimated for the pLSCF estimates (see Example 12).
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VIBRATION-BASED DAMAGE

DETECTION UNDER VARYING

ENVIRONMENTAL CONDITIONS

In this chapter, the main procedures and techniques used to detect damage from data acquired

by vibration-based monitoring systems are discussed. The first part of the chapter is dedicated

to the strategies applied to vibration data to automatically identify the modal properties of the

monitored structures, which are subsequently used as observed features to detect structural

damage. The final part of the chapter discusses some of the techniques commonly used to

model the environmental and operational effects and remove their influence from the observed

features used as indicators of structural change and damage.
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4.1. Introduction

The benefits to be gained in detecting damage by monitoring the structural dynamic responses

of structures justifies the great interest shown by the civil, mechanical, and aerospace engineer-

ing communities over the last years in this subject area. These benefits include the possibility to

detect early stage structural change and damage, to avoid unnecessary inspections and to reduce

the overall maintenance costs of civil structures. The main obstacle to stablish a reliable moni-

toring system to assess the health condition of civil structures based on the vibration responses

is the identification of structural changes in presence of varying environmental and operational

conditions.

One of the key steps to achieve this goal is the development of reliable autonomous applica-

tions which are capable of transforming the raw data measurements continuously collected in

such monitoring into useful and conclusive information regarding the health condition of the

monitored structures. In previous chapters, the MPE was addressed with the assumption of

constant environmental and operational conditions. In practical situations, however, structures

are subjected to changes in such in conditions (e.g., temperature, humidity, wind, traffic, etc.).

Therefore, if the these properties are intended to be used as damage indicators, the variations

induced by such conditions must be taken into account, otherwise they may mask the structural

changes caused by damage.

If such variations are not accounted in damage assessment, false-positive or negative damage di-

agnosis may occur so that vibration-based health monitoring becomes inefficient or unreliable.

Accordingly, during the last years, several strategies have been proposed to assess the compo-

nent of variation of these properties due to environmental conditions. A detailed overview of

these strategies is found, for instance, in Doebling et al. (1996). In the context of civil engi-

neering, a commonly used strategy consists of detecting damage by monitoring the variations

in modal features extracted from vibration measurements permanently acquired over the course

of the monitoring campaigns. Such strategies are based on the fact that damage is characterised

by changes in the modal parameters, i.e., natural frequencies, modal damping ratios and mode

shapes.

Given the few amount of sensors generally used in SHM of civil structures, in the context of

civil engineering, these strategies are normally applied to model the influence of the environ-

mental and operational effects on the modal features. Such application aims at removing this

influence, so that the changes in these features due to damage can be efficiently detected. Such

strategies have yet proven to be very effective as verified, for instance, in Peeters (2000), and

have been increasingly used to detect damage in civil engineering (Magalhães, 2010; Hu, 2011).
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In this context, this chapter discusses some of the most relevant techniques used to transform

the vibration data acquired under varying environmental and operational conditions into useful

information regarding the health condition of the monitored structures.

4.2. Automated OMA

The automated OMA plays a fundamental role in the context of damage detection based on

vibration responses. In fact, a successful assessment of the health condition based on this ap-

proach is only possible if the modal properties are accurately extracted from the raw vibration

data acquired over the course of the monitoring period. Given the huge amount of datasets ac-

quired in such monitoring, this task needs to be performed by automated applications which are

capable of tracking, amongst other useful information, the modal properties from these data.

Once they are initially configured, it is required that such applications are capable of extracting

these information with no further intervention. The automation of this procedure depends on the

identification techniques applied to estimate the modal parameters from the collected datasets,

which can be non-parametric and parametric techniques.

With regard to the non-parametric techniques, the FFD method has been often used in au-

tomated OMA. The application of the automated FFD in the context of damage detection is

discussed, for instance, in Magalhães (2010) and Hu (2011). In the case of parametric tech-

niques, this automation can be achieved by making use of different algorithms to automat-

ically interpret the stabilization diagrams by separating the physical modal parameters from

the numerical ones. Some of the most widely used techniques for this purpose are, for in-

stance the Genetic Algorithm GA (Chou and Ghabouss, 2001; Gomes and Silva, 2008), Fuzzy

C-Means (FCM) (Carden and Brownjoh, 2008) clustering and Hierarchical Clustering (HC)

algorithm (Magalhães, 2010; Reynders et al., 2012).
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Fig. 4.1 – Schematic example of an agglomerative clustering: raw data (left) and hierarchical clustering
dendrogram (right).
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4.2.1. Hierarchical Clustering for Automated OMA

Hierarchical clustering is one of the most popular algorithms applied to cluster multi-dimensional

data. Detailed description about this clustering technique is found, for instance in Olson (1995).

This method starts with a set of distinct points, each of which is considered an individual clus-

ter. Next, the two clusters which are closest according to a metric distance, are merged into

a single cluster, originating an agglomerate. This procedure is repeated until all of the points

are agglomerated into one hierarchically constructed cluster, as illustrated in Fig. 4.1. The final

hierarchical cluster structure is called dendogram and consists of a tree that shows the clusters

which were agglomerated at each generation. An example of a typical dendogram is illustrated

in Fig. 4.2.
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Fig. 4.2 – Typical dendogram showing how the clusters are merged hierarchically.

Different variants of the hierarchical clustering algorithm can be used to select the physical

modal parameters from the poles of stabilisation diagrams. One of the main differences among

these variants relies upon the criteria used to measure the degree of similarities of the mean

properties of two clusters. Several strategies are found in literature to measure these similarities,

as for instance, in Magalhães et al. (2009a) and Reynders et al. (2012). Despite the good results

obtained with these strategies, in the autonomous application developed in the framework of this

thesis it was followed a similar approach, but adopting slightly different criteria to measure the

similarities between two cluster centres. These criteria are defined by the following expressions:

F( fi, f j) = 2
| fi− f j|
fi + f j

V (vi,v j) = 1−MAC(vi,v j),

(4.1)

where F( fi, f j) and V (vi,v j) are scalars that measure the degree of similarity between the mean
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natural frequencies and mean modal vectors of two distinct clusters denoted by indexes i and

j, and fi and f j are the mean natural frequencies of these clusters. MAC(vi,v j) is the modal

assurance criterion used to calculate the correlation between two modal vectors by means of the

following equation:

MAC(vi,v j) =
|vH

i v j|2
(vH

i vi)(vH
j v j)

(4.2)

where vi and v j are, respectively, the mean modal vectors of the clusters i and j. The summation

of eqs. (4.1) yields:

Si j = F( fi, f j)+V (vi,v j) (4.3)

where Si j is a value that measures the total degree of similarity between the mean properties of

clusters i and j. The closer this value is to zero, the more similar the clusters of poles denoted

by indexes i and j are. An interesting property of the equation used to calculate the differences

in the natural frequencies is the fact of providing a quantification of the relative difference that

does not depend on the order of comparison of the evaluated clusters (e.g., order i j or ji). It is

believed that this stability may provide more accurate results on gathering the clusters of poles

with similar modal properties.

4.2.2. Fuzzy C-Means clustering for Automated OMA

The Fuzzy C-Means (FCM) clustering is another algorithm widely used to automatically inter-

pret stability diagrams and separate the physical from the numerical modes (Verboven, 2002;

Scionti and Lanslots, 2005; Carden and Brownjoh, 2008). It was originally developed by Bezdek

(1981) and is the essentially concerned with the separation of a dataset into overlapping subsets.

The number of subsets is specified by the analyst a priori and is typically denoted by C, hence

the name of the clustering technique. The algorithm begins by assuming a set of cluster centers

denoted by vi and minimizing the following cost function:

lFCM =
C

∑
i=1

Nd

∑
k=1

um
ik(xk− vi)

T (xk− vi) (4.4)

where uik denotes the elements of the membership matrix U, Nd is the number of members

within the dataset and m is an exponent that determines the fuzziness of the clusters or degree

of membership of data points to multiple clusters. A typical value chosen for m is 2. The goal

of the algorithm is to update the cluster centres and the membership function iteratively to find
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a minimum. The implementation of FCM is found in the Matlab Fuzzy Logic Toolbox (Math-

Works, 2010).

Example 13
In order to illustrate the clustering technique used in this thesis from a practical point of view,
the poles of the stabilisation diagram constructed with the pLSCF method presented in Ex-
ample 9 are used as raw data to be clustered. These poles are hierarchically clustered using the
criteria defined by eqs. (4.1). The triplet functions pdist, linkage and cluster of
MATLAB’s Statistic Processing Toolbox can be used for this purpose. The function pdist
allows for computing the pairwise distance between two clusters by making use of a cus-
tomized function with additional criteria. A dendogram tree is constructed from the poles of
the stabilization diagram illustrated in Fig. 3.8 is shown in Fig. 4.3. This dendogram is cut
using a threshold distance Smax

i j = 2.1 as indicated in such figure and only the nodes formed at
or bellow this limit are retained.
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Fig. 4.3 – Dendogram tree (black line) constructed from the poles of the stabilization diagram illustrated
in Fig. 3.8 and cut with a threshold distance Smax

i j = 2.1 (red line).
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Fig. 4.4 – Automated MPE of the lattice tower structure: natural frequencies and damping ratios of the
poles within the each agglomerate cluster (dots), and mean natural frequencies and damping ratios of the
physical poles (cross).

The natural frequencies of the poles within each retained cluster are plotted against their cor-
responding damping ratios in Fig. 4.4. The variation of number of poles within each retained
cluster as a function of the cluster’s mean natural frequency is illustrated in 4.5. It is verified
from this figure that, since the physical poles tend to stabilize over the different model orders,
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the clusters with higher number of elements are those containing the physical poles, whereas
the clusters with fewer elements are those which agglomerate the numerical poles. By defin-
ing a minimum number of elements within each agglomerate cluster as a criterion, the clusters
with the physical poles can be sorted out from those with the numerical ones.

As indicated in Fig. 4.5, in other to retain only the clusters with physical poles, this number
was set equal to 10. The centres of clusters with physical natural frequencies and damping
ratios are marked with crosses in Fig. 4.4. The result of the automated identification of the
physical poles of the lattice tower structure with the hierarchical cluster algorithm is illustrated
by vertical lines in the stabilisation diagram of Fig. 4.6. These lines represents the natural
frequencies of the identified physical modes.
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Fig. 4.5 – Automated interpretation of the stabilization diagram constructed for the tower structure with
the pLSCF technique: number of elements as a function of the mean natural frequency of each agglom-
erate cluster (a), and details of the poles agglomerated around 1.29 (b) and 3.875 Hz (c).
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Fig. 4.6 – Automated interpretation of the stabilization diagram constructed for the tower structure with
the pLSCF technique: physical modes automatically identified with hierarchical cluster algorithm (a),
and details of the close spaced modes identified around 1.29 (b) and 3.875 Hz (c).
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4.3. Removal of the Environmental and Operational Effects from the Identified Natural
Frequencies

Apart from the applications developed to automatically identify the model properties of the

monitored structures discussed in previous section, another key step towards the development

of a reliable SHM application based on the vibration responses consists of removing the in-

fluence of the environmental effect from the modal parameters identified over the course of

the monitoring period. Such step relies upon the application of environment models to the es-

timated modal properties so that the damage events can be distinguished from environmental

effects. The basic idea is that, if the monitored structure has changed due to damage, its cor-

responding modal parameters estimates will significantly deviate from those estimated in its

undamaged state. Several strategies can be used to mitigate the influence of the environmental

effects on the modal properties of the monitored structures and assess damage. Detailed de-

scription about these strategies are found, for instance, in Doebling et al. (1996), Doebling et al.

(1998) and Sohn et al. (2004).

The application of these strategies depends on the level of damage assessment which are basi-

cally divided into four categories: (1) damage detection, (2) damage localization, (3) damage

quantification, and (4) prediction of the remaining life time of the structure. Given the few

amount of sensors generally used in SHM of civil engineering structures, the damage assess-

ment by means of the permanent monitoring of the vibration responses is normally based on

level 1, which is suitable to detect the abnormal structural changes due to damage events and

trigger further detailed investigations that may then demand higher levels of damage assessment.

A commonly used approach to mitigate the influence of the environmental and operational ef-

fects in this level of damage assessment is the application of environmental models directly to

the modal properties identified over the course of the monitored period, in order to remove the

component of the deviation due to these effects.

4.3.1. Input-Output Methods

The input-output models is widely used in SHM to mitigate the influence of the environmental

and operational conditions. These models are commonly based in linear regression analysis

between the environmental or operational actions (inputs) and the estimated natural frequen-

cies extracted from the vibration responses permanently acquired by the dynamic monitoring

systems (outputs). The main difference among these models relies upon the complexity of

the linear regressions used to model the input-output relationships. Apart from these models,

other input-output models based on non-linear regressions or based on the statistic learning the-

ory (Vapnik, 1999) are found in literature review, as, for instance, the Support Vector Machine
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(SVM) or Neural Networks (NN). The efficiency of SVM algorithm and of the non-linear re-

gression models in the context of the structural health monitoring are discussed, for instance,

in Ni et al. (2005) and Steenackers and Guillaume (2005).

Multiple Linear Regressions

The linear regression models are based on a statistical technique used to analyse the relation

between a single dependent variable and several independent variables. The basic concept of

a regression analysis is to stablish the relation between the observed feature, yk (the output

quantity to be modelled), and the entire set of np variables zk1, zk2 and zknp that best achieves

the objective of the specific multivariate analysis (inputs). This relations can be mathematically

expressed by the following linear combination:

ŷk = θ1zk1 +θ2zk2 + . . .+θnpzknp (4.5)

where θp (p = 1, 2, . . . ,np) are the parameters to be determined by the multivariate technique,

zknp denotes the inputs, np the model order and k (k = 1, 2, , . . . , Nk) designates the modelled

sample, with Nk denoting the number of observed samples. The main objective of regression

analysis is then to estimate the parameters θp. Once these parameters are obtained, the model

can be used to predict the outputs yk for any given set of inputs. In the context of SHM, the

environmental models based on multivariate linear regression can be used to predict the natural

frequencies (output) by making use of the measured environmental actions such as temperature,

wind velocity, humidity, etc., which are used as inputs. The estimation of the parameters θp are

performed by minimizing the following equation error in a least squares sense:

E(Θ) = Y − Ŷ = Y −ZΘ (4.6)

with

Z =




Z1

Z2
...

ZNk



∈ RNk×np Θ =





θ1

θ2
...

θnp





∈ Rnp×1 Ŷ =





ŷ1

ŷ2
...

ŷNk





∈ RNk×1 Y =





y1

y2
...

yNk





∈ RNk×1

(4.7)

where Z is a matrix containing the inputs, Ŷ a matrix containing the modelled features (predicted

quantities) ŷk, Y a matrix containing the observed features yk and Zk a row vector with predictors
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(inputs) corresponding to sample k, which is given by:

Zk =
〈

zk1 zk2 . . . zknp

〉
∈ R1×np, k = 1, 2, . . . , Nk (4.8)

It is straightforward to solve eq. (4.6) for Θ , which is obtained as:

Θ̂ =
(
ZT Z

)−1
ZTY (4.9)

Once the parameters of the environmental model (4.5) are found, the estimated residuals Ê, i.e.

the difference between the observed and predicted quantities, are computed as:

Ê =
(

I−Z
(
ZT Z

)−1
ZT
)

Y (4.10)

These estimated residuals are assumed to have the following properties:

µÊ = E[Ê] = 0, Cov(Ê) = σÊ

(
I−Z

(
ZT Z

)−1
ZT
)
, E

[
ÊT Ê

]
= (Nk−np)σÊ (4.11)

with the unbiased estimate of σ2
Ê

given by:

σ
2
Ê =

1
Nk−np

Nk

∑
k=1

ê2
k (4.12)

The quality of the model can be measured by means of the coefficient of multiple determination,

R2, which is estimated as:

R2 = 1− ∑
Nk
k=1 ê2

k

∑
Nk
k=1 (yk− ȳ)2 =

∑
Nk
k=1 (ŷk− ȳ)2

∑
Nk
k=1 (yk− ȳ)2 (4.13)

The coefficient R2 indicates the proportion of the variability in the observed features that can be

attributed to changes in the predictor variables. It ranges from zero, when the predictor variables

have no influence on the dependent variable, to one, when the fitted equation passes through all

data points. Once the parameters Θ are estimated using eq. (4.9), the model (4.5) can be used to

predict values of future observations. The predicted observations, denoted as ŷ0, are estimated

by:
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ŷ0 = Z0Θ̂ , Z0 =
〈

z01 z02 · · · z0np

〉
(4.14)

where Z0 designates the input values not considered in the construction of the model. The future

observations, y0 at Zk = Z0, are expected to fall within the confidence interval given by:

ŷ0± tNk−np,α/2

√[
1+ZT

0 (Z
T Z)−1Z0

]
σ̂2

E (4.15)

or in a more synthetic form by:

ŷ0± IZ0, with IZ0 = tNk−np,α/2

√[
1+ZT

0 (Z
T Z)−1Z0

]
σ̂2

E (4.16)

where tNk−np,α/2 is the upper 100(α/2) percentile of a t-distribution with Nk− np degrees of

freedom. When Nk− np is greater than 30 the t-distribution tends to approximate the normal

distribution. If the future observed natural frequency, y0, falls in the confidence interval esti-

mated with eq. (4.16), then it is considered to be related to the structure in its undamaged state,

otherwise it may be associated either to a frequency incorrectly identified or to a frequency in-

fluenced by other events not predictable by regression model, such as structural change due to

damage.

If each row of matrix Z containing the inputs is normalized with regard to the inputs suited in the

first column, then the first model parameter, θ1, becomes the mean of the predicted observations,

i.e. µŷ0 , and the confidence interval expressed by eq. (4.16) can be rewritten as:

µŷ0− IZ0 < y0−
np

∑
p=2

θ̂pz0p < µŷ0 + IZ0 (4.17)

Multivariate Linear Regressions Models

The linear regression model (4.5) can be extended to a multivariate model, i.e., to the situation

where No outputs Y1, Y2 . . . , YNo are observed at the same time. In a multivariate model, each

response Yo (o = 1, 2, . . . , No) follows its own regression model, which is given by the following

expression:

Ŷ = ZΘ (4.18)

where Y and Θ are now given by:
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Ŷ =
[
Ŷ1 Ŷ2 · · · ŶNo

]
∈ RNk×No, Θ =

[
Θ1 Θ2 · · · ΘNo

]
∈ Rnp×No (4.19)

with

Ŷo =





ŷo1

ŷo2
...

ŷoNk





∈ R1×Nk , Θo =





θ1o

θ2o
...

θnpo





∈ R1×np (4.20)

Similarly to the univariate linear regression models, the parameters Θ are estimated in a linear

least squares sense, as:

Θ̂ =
(
ZT Z

)−1
ZTY (4.21)

After the estimation of the model parameters, the residuals are estimated by:

Ê = Y − Ŷ =
(

I−Z
(
ZT Z

)−1
ZT
)

Y ∈ R∈R
Nk×No

(4.22)

The prediction of future observations and the estimation of uncertainty intervals for the mul-

tivariate case are accomplished by following the same strategy used for the univariate linear

regression models.

Dynamic regression models

Depending on the type of relation they describe, the regression models can be categorized into

two types: static and dynamic regression models. Differently from the static models discussed

in Section 4.3.1, which consider that the dependent variables estimated at a certain time instant

are only influenced by the inputs observed at the same instant, the dynamic models assume that

these variables can also be influenced by the inputs observed at previous time instants. The

application of the dynamic regression models are particularly more efficient on modelling, for

instance, the deviations dynamically induced on the natural frequencies by the daily temperature

variations.

The ARX Models

Auto-Regressive output and an eXogeneous (ARX) input part consists of a dynamic regression

model that can be used to predict the observed features considering also previous values of the

dependent variables Ljung (1999). A detailed description of this model and its application in
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the context of SHM of civil engineering is found, for instance, in Peeters (2000) and Zhang

(2007). If a multiple-input and single output relationship is described, this model is expressed

by:

ŷk =−(a1yk−1 + . . .+anayk−na)+b1zk−nk +b2zk−nk−1 + . . .+bnbzk−nk−nb+1 + εk (4.23)

where ai (i = 1, 2, . . . , na) and b j ( j = 1, 2, . . . , nb) are the model parameters to be found;

na is the auto-regressive order, nb the exogeneous order and nk the pure time delay between

input and output; and εk is the residual error term modelling the disturbances that act on the

input-output process. This residual error is not known, but it is assumed that it is white noise,

with zero mean (E [εk] = 0) and covariance E [εkεk−i] = Rεδi, with δi denoting the Kronecker

symbol (i.e., i= 0⇒ δi = 1, i 6= 0⇒ δi = 0). Aiming at establishing confidence intervals for the

predicted observations, it is assumed that εk is normally distributed. Writing down eq. (4.23) for

the Nk input-output samples and formulating the resulting relations in a single matrix equation,

yields:

Ŷ = ZΘ +E (4.24)

where

Z =
[
ZT

1 ZT
2 · · · ZT

Nk

]T
∈ RNk×(na+nb)

Θ =
[
a1 · · · ana b1 · · · bnb

]T
∈ R(na+nb)×1

(4.25)

with

Zk =
[
−yk−1 · · · −yk−na zk−nk · · · zk−nk−na−1

]
(4.26)

The model parameters, Θ , are found by solving eq. (4.24) in linear least squares sense. Once

the ARX model is obtained, future observations and their corresponding confidence intervals of

are estimated by following the procedure described in Peeters (2000) and Ljung (1999).

4.3.2. Output Only Methods

One of the main advantages of the output-only environmental models with regard to the their

input-output counterparts is that they do not require to measure environmental actions to re-
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move their influence from the modal properties. The output-only model commonly used in the

framework of damage detection is based on the Principal Component Analysis (PCA). The ap-

plication of this technique has proven to be very efficient on removing the environmental and

operational effects from the natural frequencies as verified in Yan et al. (2005a,b) and Derae-

maekera et al. (2008).

Principal Components Analysis

The PCA consists of an output-only multivariate statistical method which is also known as

Karhunen-Loève transform or proper orthogonal decomposition (Krzanowski, 2000). Applica-

tions of PCA in the context of SHM are found, for instance, in Manson (2002), Manson et al.

(2004), Yan et al. (2005a), Yan et al. (2005b), De Boe and Golinval (2003), as well as in the

monitoring campaigns of the Pedro and Inês footbridge (Hu, 2011), and Infante D. Herinque

bridge (Magalhães, 2010). Essential to stablish a environmental model based on PCA is the

definition of the so-called score matrix X ∈ RNk×np . This matrix results from the linear trans-

formation of the measured or observed data to be modelled into a new coordinate system. This

score matrix contains new values expressed in the principal component base and is defined as:

X = Y ϒ (4.27)

where Y ∈RNk×np is a matrix containing the observed features in its columns and ϒ∈Rnp×np the

loading matrix. Similarly to the linear regression models, the dimension np can be interpreted

as the number of combined environmental factors that may represent important influence on

the observed features and, therefore, are significantly correlated with their deviations. The

loading matrix ϒ can be computed as the eigenvector of the covariance of the matrix containing

the observed features. Since the data covariance ΣY ∈ Rnp×np is symmetric, its eigenvalue

decomposition is given as follows:

ΣY = Cov(Y ) = E[Y TY ] = Y TY = ΨΛΨ
T (4.28)

where Λ ∈ Rnp×np is a diagonal matrix containing the eigenvalues of the covariance matrix

ΣY and Ψ ∈ Rnp×np is a orthogonal matrix
(
ΨΨT = ΨT Ψ = I

)
with the corresponding eigen-

vectors. Generally, matrix ϒ may be calculated by extracting the main m eigenvectors of the

covariance matrix ΣY . Alternatively, a more practical method to compute this matrix is to per-

form a SVD of ΣY :

Y TY =US2UT (4.29)
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with

UUT =UTU = I, S =

[
S1 0

0 S2

]
(4.30)

where U ∈Rnp×np is an orthonormal matrix and S ∈Rnp×np a matrix containing the np singular

values in its diagonal. The diagonal terms of S1 (σ1, σ2, . . . , σm) are assumed to represent

the active energy of the associated principal components, whereas the terms in the diagonal of

S2 (σm+1, σm+1, . . . ,σnp) are likely to be less significant than the diagonal elements of S1, but

they are not equal to zero due to the effect of noise and/or the presence of non-linear effects.

The idea is that only few of these elements, i.e. the first m singular values, have significant

influence on the vibration features and, therefore, should be taken into account. The other

singular values whose influence is not so significant (e.g., noise and non-linearities) can be

simply neglected. The number of significant singular values m can be theoretically obtained

by plotting all the singular values of S in ascending order and looking for a gap in the plot. In

practical applications, however, it is not always easy to identify this gap. Therefore, a more

practical procedure used to determine this value consists of computing the following ratio:

Im =
∑

m
p=1 sp

∑
np
p=1 sp

(4.31)

where Im can be set equal to a certain value used as criterion that accounts for the most signifi-

cant components of the variance of the observed data and m is determined such that the sum of

the first singular values match this criterion. In some applications, the temperature is the most

significant effect to be considered as principal components in the context of damage detection

based on frequency shifts. In such circumstances, the number of principal components with sig-

nificant influence, m, is simply chosen as 1 (Yan et al., 2005a). The matrix ϒ can be obtained as

the eigenvectors associated to the first m principal components. Once this matrix is computed,

it can be used to estimate the observed features by re-projecting data back to the original space:

Ŷ = Xϒ
T = Y ϒϒ

T (4.32)

where Ŷ denotes the feature to be modelled (e.g. the natural frequencies). The loss of informa-

tion in the linear transformation (4.27) can be assessed by the residual error matrix E, which is

computed by:
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Ê = Ŷ −Y = Y
(
ϒϒ

T − I
)

(4.33)

Once the observed features are estimated with eq. (4.32), they can be subsequently used to

remove the influence of environmental and operational effects from the observed features. This

procedure will be described in Chapter 6 using a real-life application of the PCA technique.

From the prediction equation (4.33), the error vector Ek obtained for the sample unit k can be

used to define a Novelty Index used to detect abnormal changes on the monitored structures that

might be associated to the existence of a structural damage. The application of such index in

the context of damage detection is discussed in Section 4.3.3 and described from practical point

of view in Chapter 6.

4.3.3. Control Charts

Control charts are very useful in the context of damage detection to distinguish between the en-

vironmental effects and the events not predictable by the environmental models, such as damage

events. They are a tool of statistical quality control suitable to detect if the processes are out

of control. In these charts, the quality characteristic of the controlled features are plotted as a

function of the evaluated samples. When an unpredictable event occurs, the variability of the

sample unit associated to this event is expected to be plotted out of the range previously defined

as control limits. In these situation, an alarm can be triggered to indicate that an abnormal event

has occurred. Several control charts for damage detection are found in literature. The basic

difference among them relies on statistics used to control the abnormal occurrences.

An extensive discussion about different types of control charts and their applications is found

in Montgomery (2005). The application of these control charts in the context of damage detec-

tion is discussed in Kullaa (2003) and their efficiency in the context of SHM is demonstrated,

for instance, in Deraemaekera et al. (2008), Magalhães (2010), as well as in Hu et al. (2012).

Amongst the most commonly used control charts in damage detection, are the X̄-Chart (or

X-bar chart) and the so-called Shewhart or T 2-Chart. The X̄-Chart is constructed by plotting

the individual observations or the mean of sub-samples of observations in time order and by

drawing three horizontal lines parallel to each other: a Centre Line (CL) and two lines that cor-

respond to the Upper and Lower Control Limits, usually labelled UCL and LCL, respectively.

These upper and lower control limits as well as the central line are defined by the following

expressions:
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UCL = ¯̄x+ασ

LCL = ¯̄x−ασ

CL = ¯̄x

(4.34)

where x is generally used either to designate the observed feature itself, if a single features is

controlled, or a Novelty Index (NI), if several features are controlled at once; the coefficient

α is usually taken equal to 3, which corresponds to a confidence interval of 99.7% with the

assumption of a normal distribution; and ¯̄x denotes the sample mean and σ the sample standard

deviation when single observations are controlled. When the means of sub-samples containing

r samples are controlled, however, σ equals the sample standard deviation divided by
√

r. If X̄-

Chart is used after the application of PCA to control the observations of a single feature, than,

apart from designating the feature itself, variable x can also be used to control the NI, which is

normally computed either as the Euclidian norm of the residues:

xE
k = ‖Ek‖ (4.35)

or as the Mahalanobis norm:

xE
k =

√
ET

k R−1Ek, R =
1

Nk
Y TY (4.36)

with R ∈ R representing the covariance of the matrix containing the observed features. If a

multivariate model is used, the T 2-Chart can be used to control the observations of the set of

features. Similarly to X-Chart, the T 2-Chart can be used either to control a single observation or

a sub-sample of observations at once. In both situations, the observed features are controlled by

means of the so-called T 2-statistic. If a single observation is controlled at a time, the T 2-statistic

is computed by:

T 2 =
Nk

Nk +1
(x− ¯̄x)R−1(x− ¯̄x)T (4.37)

where Nk is the number of observations collected during the reference period (i.e. period within

which the observations were obtained with the monitored structure in its undamaged condition).

Since CL and LCL are not used in the construction of T 2-Charts, these horizontal lines are

considered to be coincident with x-axis. The UCL, on the other hand, is given by the following

expression:
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UCL =
(Nk−1)m

Nk−m
Fnp,np−m(α) (4.38)

with Fm,np−m(α) denoting the α percentage point of the F-distribution with m and np −m

degrees of freedom. If sub-samples containing r observations of x are controlled, the T 2-statistic

is computed by:

T 2 = r(x̄− ¯̄x)R−1
ss (x̄− ¯̄x)T (4.39)

where x̄ is the is the sub-sample average; ¯̄x is the process average, i.e, the mean over the sub-

sample averages computed within the reference period at which the process is under control;

and Rss is the matrix consisting of the average of the sub-sample variances and covariances. The

UCL, on the other hand, is computed by:

UCL =
m(ns +1)(r−1)
nsr−ns−m+1

Fm,nsr−ns−m+1(α) (4.40)

with ns denoting the number of sub-samples observed during the reference period. A practical

application of X̄ and T 2-Charts in the context damage detection of civil engineering structures

is described in Chapter 6.

4.4. Conclusions

In this chapter, the main procedures and techniques used to detect damage in civil engineer-

ing structures under varying environmental conditions were discussed. In the first part of the

chapter, it was presented the automated strategy used in the framework of this thesis to auto-

matically track the modal parameters. A simulated example was used to assess the efficiency

and robustness of such strategy and it was shown the identification procedure was capable of

automatically interpreting the stabilization diagram and tracking the physical modes of the sim-

ulated structure. In the final part of the chapter the techniques used to remove the environmental

effects from the identified modal parameters were discussed. Special attention was dedicated

to PCA as this technique is applied to remove the environmental effects from the identified

natural frequencies and detect damage in the context of the present work. The application of

PCA technique to detect damage- induced structural changes in a real structure will be covered

in detail in Chapter 6.
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OPERATIONAL MODAL ANALYSIS OF

THE BRAGA STADIUM SUSPENSION

ROOF

In this chapter, the modal identification techniques discussed in Chapter 3 are applied to the

data acquired in an ambient vibration test of a real structure. The main purposes of the test were

to perform a multi-patch OMA to estimate the modal properties of the tested structure together

with their uncertainty bounds, as well as to assess the modes which were more sensitive to the

underlying environmental and operational conditions. The chapter is divided into three parts:

the first discusses the strategy used to pre-process the data recorded in each patch; the second

addresses the time and frequency-domain analyses performed to extract the dynamic properties

from each dataset; and the third part presents the results of the OMA performed to estimate

the modal parameters of the tested structure with high spatial resolution for the mode shapes of

vibration.
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5.1. Introduction

In operational modal analysis engineers are usually confronted with the challenge of extracting

as much information as possible from the data collected in the Ambient Vibration Tests (AVTs)

in order to characterize the modal behaviour of the tested structures under environmental and

operational conditions. In this context, this chapter describes the strategies and techniques

employed, and the results obtained from the OMA performed to identify the modal properties

of a football stadium suspension roof. Aiming at extracting relevant information regarding the

dynamic behaviour of the roof structure, the state-of-the-art modal identification techniques

discussed in Chapter 3 were applied to estimate the modal parameters of the roof structure

with high spatial resolution for the mode shapes of vibration together with their uncertainties

bounds. Apart from the modal identification, a sensitivity analysis based on the estimated modal

responses was carried to assess the modes which are likely to be more sensitive to the underlying

environmental and operational conditions during the test.

One of the main purposes of the test was to create a baseline reference result to be used by

the autonomous monitoring system installed in one of the slabs of the roof in the beginning of

2009, by the Laboratory of Vibrations and Structural Monitoring (ViBest, www.fe.up.pt/vibest)

of the Faculty of Engineering of University of Porto (FEUP) (Magalhães et al., 2009b). The

test was carried out by measuring the vertical responses induced by environmental sources (e.g.

wind and the traffic in the surroundings of the stadium) with two different acquisition systems.

The employment of robust pre-processing techniques to synchronize the data collected by both

acquisition systems, as well as of the combination of some of the state-of-art parametric OMA
techniques, provided an accurate estimation of a large number of modes of the roof structure

in the frequency range of 0-2 Hz with high spatial resolution for the corresponding modes

shapes of vibration and with confidence intervals for the estimated natural frequencies and

modal damping ratios.

5.2. Description of the Structure

The tested structure is located in the city of Braga, Portugal, and corresponds to one of the stadia

that were constructed to host some of the matches of the European Football Championship that

took place in 2004, in Portugal (Fig. 5.1). The structure is known for its innovative architectural

design elaborated by the design office of the Portuguese architect Eduardo Souto Moura, who

has won the Pritzker prize of architecture in 2011, in collaboration with the structural design

office AFA Consult (Furtado et al., 2005). The stadium is considered a masterpiece of architec-

ture not only because of its innovative concepts and architectonic characteristics, but also for

the perfect integration in the surrounding environment. The structure was constructed in the
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slopes of a hill known as “Monte Castro” which is located in a peaceful rural area.

(a)

(b)

(c)

(d)

Fig. 5.1 – Braga Municipal Sports Stadium: top view of the stadium (a); lateral view from the East side
(b); top view of the roof from the West side (c); and lateral view of the East stand (d).
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(b)

Fig. 5.2 – Braga Municipal Sports Stadium: distribution of the suspension cables of the roof structure (a)
and cross section (b).
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The stadium has capacity of accommodating 30000 spectators and is essentially composed by

two stands located in both side of the pitch and a concrete roof suspended by cables. The

most interesting element of the stadium, from the structural engineering point of view, is the

suspension roof which is composed by two concrete slabs suspended by a set of 34 pairs of

cables with diameters ranging from 80 to 86 mm. The distance between the cables in each

pair and the distance between adjacent pairs of cables are, respectively, of 0.35 and 3.75 m

as illustrated in Fig. 5.2a. The two concrete slabs of 127×57.3×0.245 m are suspended by

cables spanning a distance of 202 m, therefore, the remaining 88.4 m of the central part are free

(Fig. 5.2b). The roof cables are anchored in two large beams at the top of both stands - East and

West.

The East stand is structurally formed by 50 m high concrete walls, whose geometry was de-

fined in order to minimize the unbalanced moments at the level of the foundation, induced by

the combination of the gravitational action of the stand and the high forces transmitted by the

roof cables. In the West stand, the concrete walls are anchored to the rock and the roof ca-

bles’ tension forces are transmitted to the foundation by pre-stressing tendons embedded in the

concrete (Magalhães et al., 2008).

5.3. Ambient Vibration Test

The acquisition of the operational responses of the suspension roof took place on the 6th of

July, 2011 on the West slab as indicated in Fig. 5.2a, and was carried out by using two different

data acquisition systems to collect the vertical acceleration of the slab: the first consists of a set

of 6 tri-axial seismographs and the second comprises a data acquisition system and a set of 6

accelerometers that was installed on the roof in the beginning of 2009 and that has been used to

assess the long term health condition of this structure by means of the variation of the dynamic

properties over the time. The test was conducted with a total of 15 datasets, which were used to

measure vertical acceleration of 90 points on the slab, as indicated in Fig. 5.3a.

The seismographs were used as moving sensors and were placed on the tested slab according to

each of the 15 different setups adopted in the ambient vibration test, as illustrated in Figs. 5.3a

and 5.3b. The accelerometers of the dynamic monitoring system, on the other hand, were used

as reference sensors and remained at the same position throughout the test. One of the main

advantages of using both systems is that more sensors are available, allowing the test to be

conducted in a rather shorter time period than with using only the sensors of the seismographs.

The drawback of using different acquisition systems, however, is that the acquisition of the

measured responses are triggered differently, requiring the signals acquired by both systems to

be synchronized prior to the employment of the normal procedures used in ordinary multiple
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dataset OMA.

The signals were acquired with sampling frequencies of 100 and 20 Hz for the moving sensors

and reference sensors, respectively, and the sampling period was set 20 minutes for each of the

15 acquired datasets. Despite these differences in acquisition characteristics, a good synchro-

nization of the signals acquired by both systems could be established thanks to the very precise

built-in clocks, which are constantly updated by means of the GPS receivers embedded in both

systems.

(a) (b)

Fig. 5.3 – Test plan: Distribution of the datasets along the tested slab (a) and placement of the sensors in
one of these datasets (b).

5.4. Pre-processing and Non-parametric Estimation of the Spectrum Matrix of Each Setup

The different acquisition and triggering mechanisms available in each data acquisition system

used in the test implies that the acquisition of the signals acquired by these systems start dif-

ferently, resulting in a time delay between two types of time series acquired. This delay, on its

turn, resulted in a phase between the corresponding PSDs that needed to be reduced, as much

as possible, prior to use the time series acquired by both systems to identify the modal param-

eters of the slab. In order to correct this time delay, the acceleration time series acquired at the

same point by a seismograph and an accelerometer were assessed. These sensors were placed,

approximately, in the middle of the longer edge of the West slab, as indicated in Fig. 5.3.

As the sampling frequency of all seismographs was set to 100 Hz, the time series acquired by

this type of acquisition system were filtered out using a low pass filter with a cut-off frequency

equal to one half of the sampling frequency of the fixed acquisition system (i.e., 20 Hz). Once

the sampling frequencies of both types of signals were evenly adjusted with regard to each other,

the time delay was estimated by calculating the phase angle of the estimated transfer function
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between the assessed signals. The transfer function was evaluated by means of the following

equation:

Txy(ω) =
Syx(ω)

Sxx(ω)
(5.1)

where Sxy(ω) stands for the cross PSD between the signals acquired by the moving and ref-

erence sensor, and Sxx(ω) for the auto PSD of the signal acquired by a moving sensor. These

cross and auto PSDs were calculated with the periodogram approach by making use of Hanning

window to reduce the leakage and adopting 50% of overlapping between adjacent segments. In

the context of the present OMA, the time series used to estimate the time delay between two

types of signals were split in 18 time data segments with 1024 points.
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Fig. 5.4 – Correction of the existing phase angle between the signals acquired by reference and moving
sensors: phase angle before (a) and after the correction (b), and the time series measured at the same
point by the reference and moving sensors before (c) and after (d) correction.

The phase angle of the transfer function estimated by means of eq. (5.1) in the range of 0-

10 Hz is shown in Fig. 5.4a. This estimated phase angle corresponds, approximately, to 0.4057

seconds, and was used to correct the time data signals collected by the seismographs with regard

to those acquired by the reference sensors. As the time series obtained by the seismographs were

acquired at a sampling interval of ∆t = 0.01 sec, these time series were simply shifted towards

left in time scale by 4∆t to reduce the existing time delay between the two types of signals. The

phase angle of the transfer function estimated after the correction of the time delay is shown in
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Fig. 5.4b. Although this time delay could not be completely removed, a good synchronization

could be established between both type of signals as seen in the time series acquired before and

after the delay correction shown in Figs. 5.4c and 5.4d. Since the OMA of the suspension roof

was carried out in the frequency range of 0-2 Hz, the residual phase of 0.057 sec corresponds

to 11.4% of the period associated to the upper frequency limit (i.e. 0.5 sec). Therefore, it is not

expected that this residual phase influence significantly the estimation of the modal parameters

suited in frequency band of interest.

5.5. Modal Parameter Estimation of Each Dataset

5.5.1. Identification of the Modal Parameters and Their Uncertainties

The identification of the modal parameters was performed from the acceleration responses of

each dataset in time and frequency-domain using the modal identification techniques discussed

in Chapter 3, namely, the SSI-DATA, SSI-COV, pLSCF and pMLE-MM. This identification

was carried out aiming at accurately estimating the modal parameters together with their confi-

dence intervals, as well as to assess the variation of these estimates over the test duration. The

MPE of each dataset was performed in two steps. Firstly, these parameters were identified with

the SSI-DATA, SSI-COV and pLSCF methods. Afterwards the estimates obtained with such

techniques were used by the pMLE-MM to yield their confidence intervals.

The variance of the measured half spectra were estimated by making use of the residual error

approach discussed in Section 2.7.1. Such estimation was carried out in three steps: (1) the

numerator and denominator polynomials of the common denominator model were estimated

with the LSCF technique from the measured half spectra using a model with order n = 70; (2)

The half spectra were synthesized in a “blind” way from the estimated numerator and denom-

inator polynomials, i.e., without prior classification of the physical and numerical poles; and

(3) the variance, σ2
S+yy

, was computed by smoothing the residual error between the measured and

synthesized half spectra with a Hanning window defined by the shape parameter γ = 21.

The MPE from each dataset was carried out in the frequency range of 0-1 Hz, using only the

reference responses collected, i.e., the accelerations measured by sensors A1, A2, A3, A4, A5
and A6 (see Fig. 5.3a). The time series of each setup were filtered with a cutoff frequency of

1.14 Hz. The correlation matrices used to obtain the modal properties with SSI-COV were

estimated for each dataset with 1024 correlation points. The identification with both SSI tech-

niques was performed by means of stabilization diagrams constructed by identifying models

with time lag i = 20 and order n ranging from 2 to 70. In the identification with SSI-DATA,

apart form the modal parameters, the modal responses and their corresponding contributions to

the measured outputs were also computed in order to assess the modes which were more excited
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by the operational conditions.

0 0.2 0.4 0.6 0.8 1 1.1
0

10

20

30

40

50

60

70

Frequency [Hz]

M
o
d
el

o
rd
er

 

 

(a)

0.515 0.56
0

10

20

30

40

50

60

70

Frequency [Hz]

M
o
d
el

o
rd
er

 

 

(b)

0 50 100
0

10

20

30

40

50

60

70
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Fig. 5.5 – Stabilization diagram created with the SSI-DATA technique from the reference responses
acquired with setup 2 (a), and detail of the close spaced modes around 0.53 Hz (b) and variation of
contribution of the identified modes to the total responses over the different model orders (c).
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Fig. 5.6 – Stabilization diagram created with the SSI-COV technique from the reference responses ac-
quired with setup 2 (a), and detail of the close spaced modes around 0.53 Hz (b).
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Fig. 5.7 – Stabilization diagram created with the pLSCF technique from the reference responses acquired
with setup 2 (a), and detail of the close spaced modes around 0.53 Hz (b).

The stabilization diagram constructed with SSI-DATA from the vibration responses acquired

with setup 2 is shown in Figs. 5.5a. As seen in this figure, a total of 12 vibration modes were
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clearly identified in the frequency range of 0-1 Hz, three of which closely concentrated around

0.53 Hz, as shown in Fig. 5.5b. The variation of the contribution of the modal responses to

the measured outputs over the identified model orders is shown in Fig. 5.5c. Analysing such

figure, it is verified that the responses of the modes identified with model orders greater than 30

represent more than 90% of the measured responses, which suggests that a model order of 30

could be chosen to estimate the modal parameters and the responses due to the modes, ŷm, as

well as the contributions ∆ŷm , δŷm and δŷ.

In Figs. 5.6a, it is shown the stabilization diagram constructed with the SSI-COV technique. As

seen in such figure, 12 modes were also clearly identified in the frequency range of 0-1 Hz, in-

cluding the three closed spaced modes around 0.53 Hz as shown in Fig. 5.5b. The identification

with the pLSCF was performed by using a half spectra matrix containing 512 frequency lines

as primary data. This matrix was computed by means of the correlogram approach described in

Section 2.7 and using an exponential window with a decay rate of 99.99%, in order to minimize

the leakage and the spurious effects of the higher covariance lags. Afterwards, a stabilization

diagram was constructed by identifying models with orders n ranging from 2 to 25, as illustrated

in Fig. 5.7. The same 12 vibration modes were clearly identified from this diagram with aid of

the automated application described in Section 4.2.1, including the three close spaced modes

suited around 0.53 Hz, as seen in the zoom illustrated in Fig. 5.7b.
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Fig. 5.8 – Variation of the pMLE-MM cost function value over the performed iterations computed
from the starting estimates provided by the SSI-DATA (a), SSI-COV (b) and pLSCF (c) identification
techniques.

Once the modal parameters of the suspension roof were automatically identified from the stabi-

lization diagrams of Figs. 5.5a, 5.6a and 5.7a, they were used as starting values by the pMLE-
MM to estimate their uncertainty bounds, which were obtained with only one iteration Gauss-

Newton algorithm. Next, 50 iterations of the pMLE-MM were used to optimize these starting

values and compute confidence intervals of the optimized modal parameters. The optimization

was carried out in the frequency range of 0.01-1.1 Hz. The variation of the cost function value
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over the iterations performed to optimize the starting parameters obtained with the SSI-DATA,

SSI-COV and pLSCF methods are shown in Figs.5.8a, 5.8b and 5.8c, respectively.

−250

−200

−150

−130

|S
+ y
y
(ω

)|
[d
B
]

 

 

0 0.2 0.4 0.6 0.8 1 1.2
−100

−50

0

50

100

Frequency [Hz]

P
h
as
e( S

+ y
y
(ω

)) [◦
]

pMLE−MM
SSI−DATA
Measured

(a)

−250

−200

−150

−130

|S
+ y
y
(ω

)|
[d
B
]

 

 

0 0.2 0.4 0.6 0.8 1 1.2
−100

−50

0

50

100

Frequency [Hz]

P
h
as
e( S

+ y
y
(ω

)) [◦
]

pMLE−MM
SSI−DATA
Measured

(b)

−250

−200

−150

|S
+ y
y
(ω

)|
[d
B
]

 

 

0 0.2 0.4 0.6 0.8 1 1.2
−100

−50

0

50

100

Frequency [Hz]

P
h
as
e( S

+ y
y
(ω

)) [◦
]

pMLE−MM
pLSCF
Measured

(c)

Fig. 5.9 – Comparison of element (1,1) of the measured half spectra matrix, S+yy, to the corresponding
spectrum synthesized from the parameters identified with the SSI-DATA (a), SSI-COV (b) and pLSCF
(c), as well as to the spectrum synthesized after 50 Gauss-Newton iterations of the pMLE-MM.

As observed in these figures, considerable reductions of the cost function values are verified

after 50 Gauss-Newton iterations of the pMLE-MM, outcome of the approximation of the

spectra matrices synthesized after every iteration to the measured spectra. These results are

seen in Figs. 5.9a, 5.9b and 5.9c where the element (1,1) of the measured half spectra matrix,

S+yy, is compared to the corresponding spectrum synthesized before and after the optimization of

the starting parameters with the pMLE-MM. As verified in these figures, the spectrum synthe-

sized after the optimization of the starting parameters are in good agreement with the measured

spectrum, which demonstrates the efficiency of the optimization carried out with the pMLE-
MM.
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Fig. 5.10 – Natural frequencies (a) and damping ratios (b) identified with SSI-DATA together with their
standard deviation estimated before (black line) and after (red line) the optimization with the pMLE-
MM. The standard deviations of the natural frequencies and damping ratios are multiplied by 104 and
10, respectively, to improve their visibility within the figure.
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Fig. 5.11 – Natural frequencies (a) and damping ratios (b) identified with SSI-COV together with their
standard deviation estimated before (black line) and after (red line) the optimization with the pMLE-
MM. The standard deviations of the natural frequencies and damping ratios are multiplied by 104 and
10, respectively, to improve their visibility within the figure.
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Fig. 5.12 – Natural frequencies (a) and damping ratios (b) identified with pLSCF together with their
standard deviation estimated before (black line) and after (red line) the optimization with the pMLE-
MM. The standard deviations of the natural frequencies and damping ratios are multiplied by 104 and
10, respectively, to improve their visibility within the figure.
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Tab. 5.1 – Identification results obtained from setup 2 with the SSI-DATA, SSI-COV and pLSCF meth-
ods combined with the alternative implementation of the pMLE-MM.

Method Mode

pMLE-MM Estimates (1 iteration) pMLE-MM Estimates (50 iterations)

f̂n [Hz] σ̂ f̂n [Hz] ξ̂n [%] σ̂
ξ̂n
[%] f̂n [Hz] σ̂ f̂n [Hz] ξ̂n [%] σ̂

ξ̂n
[%]

(
×104) (

×102) (
×104) (

×102)

SSI-DATA

1 0.27456 0.19 0.1298 0.69 0.27452 0.19 0.1290 0.69

2 0.28940 0.12 0.2604 0.43 0.28928 0.12 0.2524 0.42

3 0.52654 0.20 0.1478 0.37 0.52651 0.19 0.1376 0.37

4 0.54315 0.30 0.2061 0.55 0.54305 0.31 0.2314 0.58

5 0.54984 0.33 0.2620 0.60 0.54959 0.33 0.2592 0.59

6 0.63285 0.42 0.4742 0.66 0.63300 0.41 0.4169 0.64

7 0.65172 0.71 0.2940 1.09 0.65126 0.67 0.2685 1.03

8 0.67942 0.90 0.2158 1.33 0.67877 0.87 0.2003 1.28

9 0.69613 0.60 0.2318 0.87 0.69539 0.57 0.1823 0.82

10 0.73150 0.37 0.1565 0.50 0.73107 0.36 0.1271 0.49

11 0.85662 0.89 0.5711 1.03 0.85657 0.97 0.6762 1.13

12 1.00090 0.27 0.4053 0.27 1.00045 0.30 0.4157 0.30

SSI-COV

1 0.27458 0.20 0.1555 0.73 0.27452 0.20 0.1314 0.72

2 0.28943 0.13 0.2471 0.46 0.28928 0.13 0.2517 0.46

3 0.52649 0.18 0.1489 0.34 0.52651 0.18 0.1363 0.33

4 0.54303 0.25 0.2237 0.45 0.54305 0.25 0.2273 0.46

5 0.54972 0.29 0.2830 0.53 0.54956 0.29 0.2590 0.52

6 0.63224 0.50 0.4327 0.78 0.63296 0.50 0.4130 0.78

7 0.65141 0.53 0.2719 0.81 0.65121 0.52 0.2691 0.81

8 0.67873 0.61 0.2400 0.90 0.67872 0.60 0.2116 0.89

9 0.69556 0.47 0.2517 0.68 0.69533 0.43 0.1809 0.62

10 0.73085 0.23 0.1289 0.31 0.73100 0.23 0.1316 0.31

11 0.85578 0.90 0.5915 1.05 0.85657 1.01 0.6829 1.18

12 1.00073 0.25 0.4474 0.25 1.00045 0.27 0.4226 0.27

pLSCF

1 0.27452 0.18 0.1322 0.67 0.27454 0.19 0.1259 0.67

2 0.28932 0.12 0.2888 0.42 0.28929 0.12 0.2535 0.41

3 0.52651 0.24 0.1451 0.46 0.52650 0.24 0.1317 0.46

4 0.54300 0.31 0.2239 0.57 0.54306 0.32 0.2240 0.59

5 0.54978 0.37 0.2614 0.67 0.54957 0.36 0.2530 0.66

6 0.63294 0.37 0.3896 0.59 0.63300 0.39 0.4111 0.61

7 0.65124 0.60 0.2675 0.92 0.65116 0.60 0.2754 0.93

8 0.67878 0.92 0.2145 1.36 0.67876 0.91 0.1955 1.34

9 0.69546 0.38 0.1928 0.54 0.69528 0.37 0.1691 0.53

10 0.73106 0.33 0.1254 0.45 0.73101 0.34 0.1332 0.46

11 0.85553 0.81 0.7559 0.95 0.85615 0.83 0.7076 0.97

12 0.99845 0.57 0.4485 0.57 1.00032 0.59 0.4214 0.59

The identification results obtained for setup 2 before and after the optimization with this esti-
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mator are shown in Figs. 5.10, 5.11 and 5.12. In these figures, the starting estimates provided

by the SSI-DATA, SSI-COV and pLSCF methods, and their uncertainty bounds are compared

to the estimates obtained after 50 iterations of the pMLE-MM. As seen in such figures, the

main noticeable differences between the starting and optimized estimates are verified on the

damping ratios and their corresponding standard deviations, fact that is explained by the higher

uncertainty generally involved on the estimation of the damping coefficients by the LS-based

techniques like SSI-DATA, SSI-COV and pLSCF. The identification results obtained from

setup 2 are summarized in Tab. 5.1. Comparing these results, one verifies a clear tendency of

the starting estimates obtained with the three different identification techniques to converge to

the same results after the optimization with the pMLE-MM.
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Fig. 5.13 – Variation of the natural frequencies experimentally identified in the range of 0-1 Hz with the
pLSCF (a) and combined pLSCF-pMLE-MM (b) methods over the acquired datasets.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0.52

0.53

0.54

0.55

0.56
pLSCF (Modes 3, 4 and 5)

Setup [#]

f̂
n
[H

z]

(a)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0.52

0.53

0.54

0.55

0.56
Combined pLSCF−pMLE−MM (Modes 3, 4 and 5)

Setup [#]

f̂
n
[H

z]

(b)

Fig. 5.14 – Detail of the variation of natural frequencies of the 3rd, 4th and 5th modes experimentally
identified in the frequency range of 0-1 Hz with the pLSCF (a) and combined pLSCF-pMLE-MM (b)
methods over the acquired datasets.
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The procedures and settings previously described to estimate and optimize the modal parame-

ters from data acquired with setup 2 were applied to all datasets collected in the test. In order to

avoid figure redundancies, only the overall results obtained with the pLSCF method combined

with the pMLE-MM will be presented, since these results are very similar to those obtained

with the SSI-DATA and SSI-COV methods. The variations of the natural frequencies esti-

mated with the pLSCF and the combined pLSCF-pMLE-MM in the range of 0-1 Hz over the

15 acquired datasets are shown in Figs. 5.13a and 5.13b. From these figures, one verifies no

significant differences in the variation of the natural frequencies.
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Fig. 5.15 – Variation of the damping coefficients with the natural frequencies identified in the range of
0-1 Hz with the pLSCF (a) and the combined pLSCF-pMLE-MM (b).
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Fig. 5.16 – Variation of the mean values of the damping coefficients identified from the reference re-
sponses of the 15 setups with the pLSCF and the combined pLSCF-pMLE-MM methods.

Inspecting the details of variation of modes 3, 4 and 5 in Figs. 5.14a and 5.14b , however, it is

observed that the estimate of the 4th natural frequency provided by the optimization algorithm

from dataset 13 is more consistent with the estimates associated with the adjacent datasets. With

regard to the damping ratios estimates, comparing the patterns of variation of these parameters
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to those of the natural frequencies in Figs. 5.15, it is verified that they exhibit a significant scat-

ter, even after the optimization with the pMLE-MM. In Fig. 5.16 is represented the variation of

the mean values of the damping coefficients estimated with pLSCF and the combined pLSCF-
pMLE-MM over the 15 setups. Analysing these results, it is verified that a slight reduction on

the optimized damping ratio estimates has occurred, which also demonstrates the efficiency of

the optimization with the pMLE-MM algorithm.

5.5.2. Modal Responses and Their Contributions to the Measured Responses

The approaches described in Sections 3.2.3 and 3.2.4 were used to estimate the modal responses

of the Braga Stadium suspension roof and assess their contributions to the outputs measured

during the vibration test. In order to evaluate the variation of the modal responses and their re-

spective contributions over the different datasets, only the responses acquired with the reference

sensors were taken into account in these analyses (see Fig. 5.3a).

Fig. 5.17 – Contribution of the modal responses of the identified modes to the total response measured
by sensor A3 acquired with setup 2.
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The main objective of this analysis was to determine the modes which were more excited by the

operational conditions during the test. For this purpose, the estimated responses, ŷ and ŷm, and

the contributions ∆
(o)
ŷ , ∆

(o)
ŷm

, δŷ and δŷm were estimated according to the procedures discussed

in Sections 3.2.3 and 3.2.4. The poles and observed mode shapes obtained from a model with

order n = 30 were used to compute these estimates.

Next, the modal responses of each identified mode were sorted out from the responses due to

the numerical modes. The modal responses, ŷ(o)m , estimated for the output measured by sensor

A3 is represented in Fig. 5.17. Based on these estimates, the modal contributions, ∆
(o)
ŷm

, were

computed to analyse the degree of participation of the identified modes on the outputs measured

by each reference sensor used in setup 2. The result of this analysis is shown in Figs 5.18 where

it is verified that modes 2, 11 and 12 are those which contributed more to the responses measured

with setup 2. The results presented in Fig. 5.18 are synthesized by the global contributions of

the modes, δŷm , shown in Fig. 5.19.
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Fig. 5.18 – Modal contributions of each identified mode to the responses measured in setup 2 by sensors
A1(a), A2(b), A3(c), A4(d), A5(e) and A6(f).
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As seen in this figure, the responses due to modes 2, 11 and 12 contributed more to the responses

measured with setup 2. The analysis carried out to assess the modal responses and their contri-

butions to the outputs measured with setup 2 was extended to all setups adopted in the vibration

test and the results obtained are synthesized in Fig. 5.19b. This figure shows the variation of the

modal contributions, δŷm , over the different setups adopted in the test. Analysing these results,

it is observed that modes 1 and 2 played a dominant role on the measured responses, which

reveals that these modes were more excited by the operational conditions during the test.
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Fig. 5.19 – Modal contribution, δŷm , to the outputs measured with setup 2 (a) and its variation over the
identified datasets (b).

5.6. MPE with High Spatial Resolution for the Mode Shapes of Vibration

In this section, the procedures and techniques applied to estimate the global modal parameters

of the suspension roof are described. The main goal of this analysis was to estimate the modal

parameters of this structure with high spatial resolution for the mode shapes in the frequency

range of 0-2 Hz. Since the number of identified modes within the frequency band of 1-2 Hz

differed from dataset to dataset, the identification with PoSER merging strategy was not pos-

sible. Therefore, the PreGER and PoGER merging strategies discussed in Section 3.8 were

used in combination with the SSI-COV, pLSCF and pMLE-MM to estimate the global modal

parameters of suspension roof by means of a single stabilization diagram and then obtain their

uncertainty bounds. For this purpose, the spectra and covariance matrices of each dataset were

estimated by following the approaches described in Sections 2.7.

Aiming at estimating the modal parameters of the suspension roof in the frequency range of

0-2 Hz, two covariance and two spectra matrices were estimated from the vibration raw data
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acquired with each setup. The two covariance matrices were estimated with 1024 and 2048

lags, whist the two half spectra matrices were estimated with 512 and 1024 spectral lines by

means of the correlogram approach discussed in Section 2.7. In order to minimize the leakage

and the influence of the higher covariance lags, an exponential window with a decay rate of

99.99% was used to estimate the spectra matrix. The residual error variances of both spectra

matrices were estimated according to the procedure described in Section 5.5.1 by making use

of a Hanning window with shape parameter γ = 21.

The strategies applied to identify the modal properties of the suspension roof together with their

confidence intervals with the aforementioned techniques are detailed described in the following

sections.

5.6.1. pLSCF with PreGER Approach

In the OMA carried out with the combined PreGER-pLSCF the spectra matrix of each dataset

was re-scaled with regard to a common spectra matrix. In this analysis, the spectra matrix of

the first dataset was chosen as reference to re-scale the matrices of the other datasets. Once

all matrices were re-scaled, they were stacked on the top of each other to construct the global

spectra matrix, which was subsequently used as primary data by the pLSCF estimator. Next,

the identification of the modal parameters was performed in the frequency range of 0-2 Hz in

two steps. At first, a stabilization diagram was constructed in the frequency range of 0-1 Hz to

identify the vibration modes suited in this frequency band. This first diagram was constructed

by identifying models with order n ranging from 2 to 30.
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Fig. 5.20 – Stabilization diagram constructed with the PreGER and pLSCF techniques in the frequency
range of 0-1 Hz (a) and detail of the three closed spaced modes concentrated around 0.53 Hz (b). The
vertical lines indicate the natural frequencies of the identified vibration modes.

.

Afterwards, the modes with natural frequencies in the band of 1-2 Hz were identified by means
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of a second stabilization diagram constructed in the frequency range of 0-2 Hz by identifying

models with order n ranging from 2 to 60. The stabilization diagram constructed in range of

0-1 Hz is shown in Fig. 5.20. Although this diagram is not very clear, it was possible to identify

the expected 12 vibration modes. These modes were successfully identified with the aid of the

automated algorithm described in Section 4.2.1, as indicated by the vertical lines in Figs. 5.20a

and 5.20b. Due to the high computational load and memory demanded by the pMLE-MM
algorithm, only the confidence intervals of the first twelve modes were estimated with one

Gauss-Newton iteration of the pMLE-MM.

Moreover, due to the few number of modes identified in the band of 1-2 Hz, it was not possible

to derive a good starting guess to estimate the confidence intervals for the modal parameters

identified in this frequency band.

f1 = 0.27404±1.10×10−5Hz
ξ1 = 0.6062±4.01×10−3%.

f2 = 0.28953±5.43×10−6Hz
ξ2 = 0.4025±4.01×10−3%.

f3 = 0.52721±1.67×10−5Hz
ξ3 = 0.4758±3.17×10−3%.

f4 = 0.54367±2.27×10−5Hz
ξ4 = 0.3974±4.18×10−3%.

f5 = 0.54715±3.70×10−5Hz
ξ5 = 0.6752±6.76×10−3%.

f6 = 0.63082±1.67×10−5Hz
ξ6 = 0.4370±4.18×10−3%.

f7 = 0.65121±7.78×10−5Hz
ξ7 = 0.9962±1.19×10−2%.

f8 = 0.67691±6.06×10−5Hz
ξ8 = 0.7792±8.94×10−3%.

f9 = 0.69484±2.58×10−5Hz
ξ9 = 0.3562±3.71×10−3%.

f10 = 0.73036±4.95×10−5Hz
ξ10 = 0.7555±6.78×10−3%.

f11 = 0.85674±4.26×10−5Hz
ξ11 = 0.8735±4.96×10−3%.

f12 = 1.00082±2.04×10−5Hz
ξ12 = 0.6208±2.04×10−3%.

Fig. 5.21 – Natural frequencies, damping coefficients and the corresponding modal configurations of the
West slab experimentally identified in the range of 0-1 Hz with the PreGER merging strategy and the
pLSCF identification technique.

The identification results obtained with the combination of the PreGER merging strategy and

the pLSCF method in the frequency range of 0-1 Hz are shown in Fig. 5.21. A total of 24

modes were identified by means of the two stabilization diagrams. The modes identified in

the band of 1-2 Hz by means of the second stabilization diagram are presented in Fig. B.1 of

APPENDIX B.1.

5.6.2. SSI-COV with PoGER approach

The estimation of the global modal parameters using the PoGER strategy and the SSI-COV
identification technique was performed in the frequency band of 0-2 Hz by following a strat-

egy similar to that used in the identification with the combined PreGER-pLSCF described in
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Section 5.6.1. Two stabilization diagrams were created: the first used to identify the modal

parameters in the frequency range of 0-1 Hz and the second, in the range 0-2 Hz, to estimate the

modes with natural frequencies suited within the band of 1-2 Hz. The first diagram was con-

structed by identifying models with the number of time lags i = 20 and model order n ranging

from 2 to 40, and the second with i = 50 and n ranging from 2 to 120. As shown in Figs. 5.22a

and 5.22b, 12 modes were clearly identified with the first diagram. The modes with natural

frequencies in the band of 1-2 Hz were identified by means of the second stabilization diagram

created in the frequency range of 0-2 Hz.
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Fig. 5.22 – Stabilization diagram constructed with the PoGER and SSI-COV techniques in the frequency
range of 0-1 Hz (a) and detail of the three closed spaced modes concentrated around 0.53 Hz (b). The
vertical lines indicate the natural frequencies of the identified vibration modes.

.

f1 = 0.2741Hz ξ1 = 0.497%. f2 = 0.2890Hz ξ2 = 0.372%. f3 = 0.5276Hz ξ3 = 0.219%. f4 = 0.5437Hz ξ4 = 0.210%.

f5 = 0.5464Hz ξ5 = 0.453%. f6 = 0.6309Hz ξ6 = 0.297%. f7 = 0.6512Hz ξ7 = 0.420%. f8 = 0.6767Hz ξ8 = 0.213%.

f9 = 0.6947Hz ξ9 = 0.871%. f10 = 0.7290Hz ξ10 = 0.218%. f11 = 0.8565Hz ξ11 = 0.450%. f12 = 1.0007Hz ξ12 = 0.479%.

Fig. 5.23 – Natural frequencies, damping coefficients and the corresponding modal configurations of the
West slab experimentally identified in the range of 0-1 Hz with the PoGER merging strategy and the
SSI-COV identification technique.
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Although several modes were estimated from both stabilization diagrams, only 26 modes pre-

sented well defined modal configurations. The first 12 vibration modes identified in the range

of 0-1 Hz by means of the first diagram are shown in Fig. 5.23. The modes identified in the

frequency range of 1-2 Hz are shown in Fig. B.2 (see APPENDIX B.2). It should mentioned

that, given the dimensions of the global spectra matrix computed with the PoGER approach, it

was not possible to estimate the operational factors by means of the LSFD algorithm due to the

heavy computational load involved in such operation. Therefore, it was not possible the syn-

thesize the global spectra matrix and the confidence bounds on the modal parameters estimated

with the combined PoGER-SSI-COV were not computed.

5.6.3. pLSCF with PoGER approach

Similarly to the identification with combined the PreGER-pLSCF and PoGER-SSI-COV, the

MPE of the suspension roof with the PoGER combined with the pLSCF method was carried

out by means of two stabilization diagrams: one constructed in the frequency range of 0-1 Hz to

identify the first vibration modes and the other to estimate the modes with natural frequencies

suited in the range of 1-2 Hz. The first 12 vibration modes were clearly identified by means of

the first diagram, as shown in Fig. 5.24a and in the detail of Fig. 5.24b. Several modes were

identified in the range of 0-2 Hz, but only 30 modes presented well defined mode shapes.
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Fig. 5.24 – Stabilization diagram constructed with the PoGER and pLSCF techniques in the frequency
range of 0-1 Hz (a) and detail of the three closed spaced modes concentrated around 0.53 Hz (b). The
vertical lines indicate the natural frequencies of the identified vibration modes.

.

The modes with undefined modal configurations might be related to the modes of the slab which

are not well excited, to the modes that only involve the slab that was not instrumented and/or

to individual modes of the cables. Once identified, these modes were used as starting guess to

compute their confidence intervals by means of one Gauss-Newton iteration of the pMLE-MM.

187



OPERATIONAL MODAL ANALYSIS OF THE BRAGA STADIUM SUSPENSION ROOF

The first 12 modes identified in the band of 0-1 Hz by means of the first stabilization diagram

together with their confidence intervals are shown in Fig. 5.25. The overall identification re-

sults obtained with the PoGER merging strategy and the pLSCF identification technique in the

frequency range of 0-2 Hz are shown in Fig. B.3 (see APPENDIX B.3).

f1 = 0.27387±1.07×10−5Hz
ξ1 = 0.4992±3.91×10−3%.

f2 = 0.28943±1.06×10−5Hz
ξ2 = 0.7470±3.68×10−3%.

f3 = 0.52734±1.36×10−5Hz
ξ3 = 0.4086±2.57×10−3%.

f4 = 0.54325±2.04×10−5Hz
ξ4 = 0.3937±3.75×10−3%.

f5 = 0.54745±3.75×10−5Hz
ξ5 = 0.7977±6.85×10−3%.

f6 = 0.63151±1.99×10−5Hz
ξ6 = 0.5653±3.16×10−3%.

f7 = 0.65086±2.72×10−5Hz
ξ7 = 0.3823±4.18×10−2%.

f8 = 0.67625±3.71×10−5Hz
ξ8 = 0.5344±5.48×10−3%.

f9 = 0.69517±2.11×10−5Hz
ξ9 = 0.3306±3.03×10−3%.

f10 = 0.72933±2.78×10−5Hz
ξ10 = 0.4826±3.81×10−3%.

f11 = 0.85814±3.37×10−5Hz
ξ11 = 0.7274±3.92×10−3%.

f12 = 1.00064±2.21×10−5Hz
ξ12 = 0.6359±2.21×10−3%.

Fig. 5.25 – Natural frequencies, damping coefficients and the corresponding modal configurations of the
West slab experimentally identified in the range of 0-1 Hz with the PoGER merging strategy and the
pLSCF identification technique.

5.7. Correlation with FE Results

In order to assess the experimental results obtained with the high spatial resolution OMA of the

suspension roof presented in previous sections, these results are compared to those obtained by

means of a numerical model of the structure. This model is based on three-dimensional finite

elements and was developed during the early stage of the structural design of the roof structure,

amongst other purposes, to assess its structural behaviour during the construction process (Cae-

tano et al., 2010). Afterwards this model was refined based on the experimental results obtained

from the AVT of the suspension roof performed in 2007 (Magalhães et al., 2008). The model

is formed by a total of 34 cables spaced at 3.75 m intervals, which were idealised as 89 truss

elements each. These are linked by shell elements, simulating the slabs, which were only acti-

vated after full application of the corresponding weight, and are also connected by transversal

truss girders at the ends of the slabs, simulating the lattice structures used to accommodate the

floodlights and loudspeakers.

The sliding between the cables and slabs permitted by the materialised connection was simu-

lated by the definition of different layers of nodes for the cables and slabs, which were con-

strained to identical vertical displacements. The 1% slope along the transversal direction to
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drain the rain water was achieved by gradual modification of successive cables lengths. The

modal parameters (natural frequencies and mode shapes) were calculated using the tangent

stiffness matrix of the global structure after application of permanent loads, which was eval-

uated taking into account the geometric non-linear characteristics of this cable structure and

simulating the progressive application of loads during the construction phase (Magalhães et al.,

2009b). The first six mode shapes are represented in Figs. 5.26.

Comparing these results to those obtained from the high spatial OMA of the suspension roof

represented in Figs. 5.21, 5.23 and 5.25, it is verified a very good correlation for the first vibra-

tion modes, both in terms of natural frequencies and modal configurations.

f1 = 0.27896 Hz. f2 = 0.30763 Hz. f3 = 0.52564 Hz.

f4 = 0.53910 Hz. f5 = 0.59289 Hz. f6 = 0.62624 Hz.

f7 = 0.67485 Hz. f8 = 0.68639 Hz. f9 = 0.71927 Hz.

f10 = 0.76624 Hz. f11 = 0.92226 Hz. f12 = 0.95418 Hz.

Fig. 5.26 – Natural frequencies and the corresponding modal configurations of the suspension roof pro-
vided by the FE model.

5.8. GUI-Toolbox For Multi-patch OMA

The identification of the modal parameters of the Braga stadium suspension roof was performed

by using a Matlab GUI-Toolbox created for multi-patch OMA of civil engineering structures,

which is called Operational Modal Analysis Studio (OMA Studio) (Fig. 5.27). Initially de-

signed for multi-patch OMA using the PoSER approach (Amador, 2007), this GUI-Toolbox
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was afterwards extended to estimate the modal parameters of civil engineering structures by

using the PreGER and PoGER merging strategies (Amador, 2010).

(a) (b)

(c) (d)

Fig. 5.27 – OMA Studio 2010: Main (a) and sensors (b) windows, and identification (c) and results (d)
windows.

The GUI-Toolbox is basically composed by five main windows:

(i) pre-processing window: intended for analysis and pre-processing of the raw data files

collected in the AVTs, and for estimation of the covariances and spectra matrices used as

primary data by the modal identification methods implemented in the Toolbox;

(ii) settings window: used to configure the criteria, methods and parameters used to track the

modal parameters from the raw data files collected in the AVTs;

(iii) sensors window: used to define the position and direction of measurement of the sensors

used in the AVT within a schematic model of the tested structure previously created in

order to yield global modal configurations of the identified modes;

(iv) identification window: comprises several tools used to estimate the modal parameters and

their confidence intervals from the raw data acquired in vibration tests by means of the

identification methods SSI-COV and pLSCF, and of the combined techniques MLE-
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CDM-pLSCF-pMLE-MM and SSI-COV-pMLE-MM; and

(v) results window: used to visualize the modal parameters experimentally estimated with

the identification window.

5.9. Conclusions

The procedures and strategies employed to estimate the modal parameters of the Braga stadium

suspension roof with high spatial resolution for the mode shapes of vibration were described in

this chapter. Two different acquisition systems and a total of 12 sensors were used to collect the

vibration responses of one of the slabs of the roof structure. These sensors were used in a way

such that the tested slab could be covered by a minimum number of setups, allowing the test to

be conducted in rather shorter time period than with using only the sensors of the seismographs.

It turns out, though, that this strategy demanded the employment of additional pre-processing

techniques due to the differences in the built-in acquisition characteristics of data acquisition

systems, which, in turn, implied a delay in the time series acquired by the seismographs with

regard to those collected by the fixed acquisition system.

Despite the differences in acquisition characteristics, a good synchronization of the signals ac-

quired by both systems could be established. Concerning the analysis performed individually on

each of the 15 acquired datasets, it was verified that modes 1 and 2 were those which were more

excited by the environmental actions during the test. Apart from these conclusions, the analysis

of the optimized identification results obtained with the combined techniques pLSCF-pMLE-
MM, SSI-DATA-pMLE-MM and SSI-COV-pMLE-MM revealed that, whist no significant

variation on the natural frequencies were verified with respect to the starting estimates, a no-

ticeable difference was observed on the damping ratio estimates and their standard deviations.

Furthermore, comparing the starting estimates to their optimized counterparts, one verifies a

clear tendency of the parameters provided by the three identification techniques to converge to

the same results after the optimization with the pMLE-MM.

With regard to the multi-patch OMA, several modes were clearly identified in the frequency

range of 0-2 Hz using PreGER and PoGER merging approaches combined with the SSI-COV
and pLSCF identification techniques, but not all of them presented well defined modal config-

urations. The modes with undefined shapes be related to the modes of the slab which are not

well excited, to the modes that only involve the slab that was not instrumented or to individual

modes of the cables. Despite the heavy computational load demanded to process the global

spectra matrix containing the merged setups, the alternative implementation of the pMLE-MM
introduced in Chapter 3 was successfully applied to compute the confidence intervals for modal

parameters estimated with the pLSCF identification technique.
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Chapter 6

CONTINUOUS MONITORING OF THE

BRAGA STADIUM SUSPENSION ROOF

In this Chapter, the techniques discussed in Chapter 4 to estimate the dynamic properties and

assess the health condition of civil structures under varying environmental conditions are ap-

plied to a real structure. The Braga Stadium Suspension Roof described in Chapter 5 has been

continuously monitored by two different monitoring systems with the aim of assessing its health

condition and its structural behaviour under operational conditions over the time. The chapter

is organized as follows. The motivation of the study is discussed in Section 6.1. In Sections 6.2

and 6.3, the main characteristics of the two monitoring systems installed on the suspension roof

are described. The capabilities and results provided by these systems are discussed in Sec-

tion 6.4 and 6.5. In Section 6.6, the application of a environmental model based on PCA to

detect structural changes on the roof structure is demonstrated from a practical point of view.

Finally, Section 6.7 concludes the chapter.
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6.1. Introduction

One of the main obstacles to assess the structural condition of civil engineering structures by

means of vibration responses relies on the transformation of the data continuously collected

by the monitoring systems into relevant information regarding the structural condition of the

monitored structures. The most important step to achieve this goal is the implementation of a

robust and accurate automated monitoring application to process the raw data files and extract

such information from the large amount of data collected over the monitoring period. Consider-

able efforts have been made towards the development of robust and fully automated monitoring

systems as seen, for instance, in Magalhães (2010), Hu (2011) and Reynders et al. (2012). In

this context, this chapter discusses the main features of the autonomous monitoring system

implemented to assess the structural condition of the suspension roof described in Chapter 5.

Given the particular characteristics of this structure, several studies were carried out to assess its

structural behaviour under varying environmental conditions since the beginning of the struc-

tural design (Magalhães et al., 2008; Caetano et al., 2010; Magalhães et al., 2009b). The results

provided by such studies, as well as those obtained from the numerical simulations and wind

tunnel tests performed during the early stage of the structural design have demonstrated that the

structure could be susceptible to aero-elastic instabilities (Caetano and Cunha, 2001). These

conclusions suggested a strict control of the influence of the environmental factors on the struc-

tural behaviour which, in turn, led to the installation of static, dynamic and wind monitoring

systems during the construction of the structure (Furtado et al., 2005).
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Fig. 6.1 – Location of components of the two monitoring systems installed for wind measurements and
acquisition of vertical accelerations on the Braga stadium suspension roof (top view of the west slab).

These systems were essential during the construction, particularly the static monitoring sys-
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tem which comprised a series of load cells installed in the cable anchorages, embedded instru-

mentation of the concrete structure (strain gauges, inclinometers and thermometers) and the

instrumentation of the rock massifs and foundations with load cells installed in the anchors to

the earth and in-place inclinometers. Aiming at investigating the sensitivity of the structure

to ambient effects, ViBest/FEUP has installed two complementary monitoring systems on the

West slab. One of which consists of a dynamic system installed to measure the acceleration

responses (Magalhães et al., 2009b; Amador et al., 2011) and the other of a system to collect

wind and temperature data (Martins et al., 2012).

The analysis of the data provided by the latter, in combination with the data from former, pro-

vided interesting results regarding the effects of wind on the dynamic properties of the sus-

pension roof (Amador et al., 2012; Martins et al., 2014). The installation of both monitoring

systems comprised several elements as described in Fig. 6.1.

6.2. Description of the Dynamic Monitoring System

The permanent dynamic monitoring system consists of a data acquisition system installed on

the West slab of the suspension roof and of a autonomous monitoring application which was

specially developed to automatically handle the great volume of data available in a perma-

nent dynamic monitoring. One of the key elements the permanent monitoring system is the

autonomous monitoring application which was initially developed in Matlab® platform and,

afterwards converted into a java® platform application (Oracle, 2012), fact that is justified by

the well-known robustness and flexibility on performing database and remote operations of

this platform. The monitoring system, shown in Fig. 6.2 (Magalhães, 2010) is composed by

a digitizer, a robust field processor and six force balance accelerometers with the following

characteristics: dynamic range of 145 dB, frequency range from DC to 200 Hz, user-selectable

measuring range that can vary from +/-0.25 to +/-4 g and extremely low levels of noise.

In the dynamic monitoring of the roof structure, the measuring range was fixed to +/-0.25 g,

aiming at optimising the sensitivity (80 V/g for the used configuration) of the sensors and con-

sequently reduce the effect of the noise introduced by the measuring chain, while keeping a

conservative acceleration range. The digitizers allow the connection of six dynamic channels

and 4 auxiliary static channels. This digitizer comprises 4 data ports that permit simultaneous

real-time telemetry of the acquired data to a central site and transference to local recording

units, and are equipped with a 24-bit analogue-to-digital converter, to take profit from the large

dynamic range of the accelerometers. The field processor is a rugged, ultra-low power, multi-

purpose processor designed for field deployments in extreme operating conditions.

This field processor gathers the data packets produced by the digitizer to create text files with the
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acceleration time series of all sensors. In order to allow for the creation of a local data backup,

the used unit has a storage capacity of 15 Gbytes, materialized by Compact Flash cards, which

can be accessible from FEUP by File Transfer Protocol (FTP) connection (Magalhães et al.,

2009b). The system is set to acquire the vertical acceleration at six points on the West slab with

a sampling frequency of 20 Hz (see Fig. 6.1).

Fig. 6.2 – Main components of the acquisition system installed to measure and collect the vertical accel-
eration of the Braga stadium suspension roof.
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Fig. 6.3 – Typical time series acquired on 24/01/2011 at 16:00.

Once it is configured, the acquisition system is capable of continuously measuring the ver-

tical accelerations with no further user interaction. In the present application, the system is

programmed to gather the measured data and save it in text files containing one hour length ac-

celeration time series, which corresponds to 72.000 measured samples. Once each of these

text files are completed, they are sent to ViBest/FEUP, where they are automatically pro-

cessed and stored in a database previously created for the monitored structure (Magalhães et al.,
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2009b; Amador, 2009). A typical acceleration time series obtained with this system is shown

in Fig. 6.3.

6.2.1. Automated Tracking of the Dynamic Properties of the Roof Structure

Due to the large amount of data involved in the continuous monitoring of the roof structure, an

autonomous monitoring application was developed to automatically process and extract rele-

vant information from the raw data files. The automatic identification of the modal parameters

is one of the most important tasks executed by this autonomous application. In the continu-

ous monitoring of the roof structure, the automatic identification of the modal parameters is

accomplished by following the approach discussed in Chapter 4.

6 force-balance
accelerometers

24 bits digitizer

Router

Local
backup

Braga Stadium (West Slab)

Backup
of the raw
data files

Managing
software

ViBEST/FEUP

Internet
connection

Automatic pre-processing
of the raw data files

(detrending, filtering, etc.)

Automatic processing
(tracking of the dynamic

properties and assessing the
health condition)

Database of
results

GUI Toolbox
for visualization,

post-processing and
assessing the

results

Data aquisition system Autonomous monitoring application

Fig. 6.4 – Data flow of the dynamic monitoring system installed on the West slab of the Braga stadium
suspension roof.

The whole process for transformation of the measured responses into relevant information re-

garding the evolution of the structural condition of the suspension roof is depicted in Fig. 6.4.

The autonomous monitoring package is composed by several algorithms that are organized in

three main applications: (i) the data managing software, which can be configured to establish a

remote connection through the internet with the data acquisition system, transfer the available

raw data files, check their validity, store these files in a backup hard disk and pre-process them

in order to remove the trends, filter the signals according to a specified cutoff frequency, etc.;

(ii) the automatic processing software, which is actually responsible for transforming the accel-

eration responses acquired by the data acquisition system into relevant information regarding

the health condition of the monitored structure; and (iii) the visualization software developed

as GUI-Toolbox in Matlabr platform to allow the visualization and analysis of the results

automatically tracked by the processing software.
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(a) (b) (c)

Fig. 6.5 – Autonomous monitoring application developed in Javar platform: main pop-up menu of the
tray application (a); window showing the continuously updated time evolution of the natural frequencies
(b); and settings window (c).
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Fig. 6.6 – Automated identification of the stabilization diagrams constructed with the SSI-DATA (a),
SSI-COV (b) and pLSCF (c) techniques from the time series acquired on 24/06/2011 at 22:00.
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Fig. 6.7 – Automated estimation of the confidence intervals of the natural frequencies identified with the
SSI-DATA (a), SSI-COV (b) and pLSCF (c) techniques from the time series acquired on 24/06/2011
at 22:00. The standard deviations are multiplied by factor of 104 to improve their visibility within the
figure.
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Fig. 6.8 – Automated estimation of the confidence intervals of the damping ratios identified with the
SSI-DATA (a), SSI-COV (b) and pLSCF (c) techniques from the time series acquired on 24/06/2011 at
22:00. The standard deviations are multiplied by a factor of 103 improve their visibility within the figure.

The acquisition and data processing are executed by the same software in the latest release
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of the autonomous monitoring application illustrated in Figure 6.5. This application is called

VibMonitor and consists of a software that was designed to run as a tray application on the

windows operating system and it was developed to consume as minimum processing resources

of the hosting computer as possible. One of the main advantages of tray applications like this

is that it runs in background, allowing the user of the host computer to perform other tasks

while the application runs minimized in the tray. The software is set to automatically identify

the modal properties of the monitored structures by means of four state-of-the-art (MPE) tech-

niques, namely, the SSI-COV, SSI-DATA and pLSCF methods. These techniques are used in

combination with the pMLE-MM to yield the confidence intervals of their estimates.
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Fig. 6.9 – Automated estimation of the modal responses, ŷm, from the output measured on 24/06/2011 at
22:00 by sensor A1.

In the case of the permanent monitoring of the Braga Stadium suspension roof, the autonomous

monitoring application can be set to automatically establish a connection every hour with the

router available in the data acquisition system, check whether there are new acquired raw data

files, transfer and process and extract the modal properties of latest raw data files, and, finally,

save the obtained results in the database. Once these properties are stored in the database, they

can be visualized by using the GUI-Toolbox that will be described in Section 6.2.2. As a result
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of the autonomous processing and modal identification of the raw data files, a set of dynamic

properties is obtained, i.e., the modal parameters together with their confidence intervals, the

maximum and Root Mean Square (RMS) values of the measured accelerations, and the modal

responses and their corresponding contributions to the measured outputs. The identification

of the modal parameters is basically performed in three steps. Firstly, stabilisation diagrams

are constructed with the SSI-DATA, SSI-COV and pLSCF methods. Next, the poles of these

diagrams are used as raw data by the hierarchical cluster algorithm discussed in Chapter 4 which

automatically selects the physical poles and compute their mean modal parameters.

Finally, these parameters are used as starting guess by the pMLE-MM to estimate their uncer-

tainty intervals, which is performed by using one iteration of the Gauss-Newton algorithm. This

three-step automated procedure is illustrated in Fig. 6.6, 6.7 and 6.8. These figures illustrate the

automatic identification of the modal properties from the poles of the stabilisation diagrams

constructed with the SSI-DATA, SSI-COV and pLSCF methods from the dataset acquired on

24/06/2011 at 22:00. The modal responses estimated for the output measured by sensor A1 and

their contributions are illustrated in Figs. 6.9 and 6.10.
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Fig. 6.10 – Automated estimation of the modal contributions to the outputs acquired on 24/06/2011 at
22:00.

6.2.2. Application for Visualization and Analysis of the Results

Since a large amount of data is collected in a long term monitoring, the analysis and manage-

ment of the results obtained over the time can demand a long time and hard work (Maeck,

2003; Magalhães, 2010), specially if this analysis is carried out using algorithms executed in

command line of the Matlab® platform. These difficulties have motivated the development a

GUI-Toolbox intended to assist the analysts in managing, handling and analysing the large vol-

ume of data and results obtained over the course of a continuous dynamic monitoring, allowing

them to perform several types of analysis and, therefore, extract as much information as pos-

sible regarding the structural and dynamical behaviour of the monitored structures. One of the

main advantages of the GUI-Toolboxes like this is that the analysis of the monitoring results is

performed by basically clicking on the elements of the graphical interface (Amador, 2009).
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The GUI-Toolbox is basically composed by the main window (main program), shown in Fig.

6.11, and 13 independent auxiliary windows specially designed to manage and allow for the

visualization of a specific dynamic property available in the database. Once a time period is

selected using the table available in the main window, the data files within the selected period

are displayed in the list box located at the right hand side of this window so that the user can

access any of the secondary windows by means the tool bar suited in the upper part of the

main window and perform the desired analysis. The main available secondary windows in the

GUI-Toobox are shown in the command flow illustrated in Fig. 6.12.

The functionality of these secondary windows are basically divided in two groups according

to type of analysis performed, which can be either a single or a multiple dataset analysis. The

analysis carried out in the first group comprises, for instance, the visualization of the modal pa-

rameters together with their uncertainty bounds and of the responses of the identified modes and

their corresponding contributions to the measured responses. The second group permits, for ex-

ample, to analyse the time variation of the modal parameters and their uncertainty bounds over

the selected period, the variation the of contributions of the identified modes to the measured

responses and to analyse the variation of the RMS and maxima values of the measured accel-

eration within the selected period. This second group of analysis also comprises the secondary

windows used to assess the correlations among the modal properties and the cross correlations

with the results provided by other monitoring systems as, for instance, wind velocity and direc-

tion, temperature and cable forces (measured by load cell sensors).

Fig. 6.11 – Overview of the database containing the datasets automatically processed by the autonomous
application..
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Fig. 6.12 – Command flow of the GUI-Toolbox developed to manage, visualize and analyse the results
obtained during the permanent dynamic monitoring of civil engineering structures.
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6.3. Wind Monitoring System

This system is completely independent of the dynamic monitoring system described in Sec-

tion 6.2 and was initially installed to characterize a wind model based on the observations

collected by the wind monitoring system, and afterwards, it was used to assess the correla-

tions between dynamic responses and the wind actions. It was installed on the West slab of

the suspension roof and started to acquire the wind data at the beginning of December, 2011.

It comprehends two three-dimensional ultrasonic anemometers which allow for the character-

ization of the wind through time averaged statistics of speed, direction and incidence angles,

spectra and co-spectra of velocity components, and ambient temperature. These quantities were

subsequently used to assess the influence of the wind loading on the dynamic behaviour of the

roof structure.

According to the scheme and picture presented in Fig. 6.1, the two anemometers, denoted as

Wind Sensor 1 (WS1) and Wind Sensor 2 (WS2), were placed on the top of the West slab,

both along its longer inner edge (see Fig. 6.1). The anemometer WS1 was installed in the

northernmost point, and WS2 in the middle of the longer edge of the slab (Martins et al., 2012,

2014), just next to accelerometers A3 and A2 of the dynamic monitoring system. Both sensors

are supported by masts that are 3 m high in order to reduce the influence of the structure in the

flow. As the wind observation is made at just one level, the wind sensors were mounted on top

of the masts to avoid direct mast “shadowing” (Kaimal and Finnigan, 1994). In this application,

the wind system is set to acquired the wind measurements at a sampling rate of 10 Hz in order

to efficiently measure the turbulent component of the wind flow (Kaimal and Finnigan, 1994).

6.4. Monitoring Results

6.4.1. Characterisation of the Wind Measurements

The three-dimensional ultrasonic anemometers were configured to record the wind speed as

three wind speed components, each along one the directions of the sonic’s coorinate system

defined by the orthogonal axes x, y and z. Since these orthogonal axes do not coincide with the

directions of interest, a coordinate rotation was applied in order to obtain the mean wind speed,

direction and elevation angles, as well as the turbulent component time series in longitudinal,

lateral and vertical directions. In this study, a double coordinate rotation scheme was used. This

coordinate transformation is detailed described, for instance, in Kaimal and Finnigan (1994)

and Wilczak et al. (2001). According to this approach, the block time series are initially aver-

aged in sonic’s coordinate system (x, y, z), yielding a vector containing the components of the

mean wind speed ûm, v̂m and ŵm.
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Afterwards this vector is transformed by making use of the double rotation method. The goal

of this method is to impose v̄ = w̄ = 0, so that the total velocity vector is expressed in terms of

a streamline mean speed plus three orthogonal turbulent speed components ((Ū +u′), v′, w′) of

a mean direction angle (γ) and of a mean elevation angle (β ). This approach was applied to the

wind measurements registered by the two sonic anemometers installed on the suspension roof.

Mean wind speed, direction and elevation angles

The analysis herein presented corresponds to approximately eight months of continuous mea-

surements, between mid-December 2011 and the first days of August 2012. Fig. 6.13 shows

the variation of the 10-min mean wind speed measured by the two sonic anemometers since the

installation of the wind measurement system. From this representation, one can verify that the

evolutions of the mean wind speeds provided by both sensors over the measurement time frame

are generally coherent with the values measured by WS1 being commonly higher. The observed

mean wind speed shows maximum values of 9.37 m/s and 7.22 m/s for ultrasonic anemometers

WS1 and WS2, respectively.
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Fig. 6.13 – Time-history of 10-min mean wind speed measured by the two sonic anemometers over the
period of 8 months.

N NE E SE S SW W NW N
25

20

15

10

5

0

5

10

15

20

25

Mean wind direction [cardinal points]

M
e

a
n

 w
in

d
 i
n

c
id

e
n

c
e

 [
d

e
g

]

 

 

4

5

6

7

8

9

10

1

W

E

N

(a)

N NE E SE S SW W NW N
25

20

15

10

5

0

5

10

15

20

25

Mean wind direction [cardinal points]

M
e

a
n

 w
in

d
 i
n

c
id

e
n

c
e

 [
d

e
g

]

 

 

4

5

6

7

8

9

10

2

W

E

N

2

(b)

Fig. 6.14 – Distribution of 10-min mean wind speed with direction and incidence angles measured by
sonic anemometers WS1 (a) and WS2 (b).
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Fig. 6.15 – Wind rose histograms of 10-min mean speed and corresponding direction for sonic anemome-
ters WS1 (a) and WS2 (b).
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Fig. 6.16 – Variation of the turbulence intensity with the mean wind direction: WS1 Longitudinal Iu (a);
WS1 Lateral Iv (b); WS1 Vertical Iw (c); WS2 Longitudinal Iu (d); WS2 Lateral Iv (e); and WS2 Vertical
Iw (f).

Nevertheless, it is possible to conclude that the mean wind speed measured is generally low,
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with most of the measurements below 4 m/s. Henceforward just the data points with a signifi-

cant wind speed will be considered and all measurements with 10-min mean wind speed below

4 m/s will be discarded.

Turbulence intensity

Turbulence intensity describes the characteristics of the fluctuating wind speed. The longitu-

dinal, u, lateral, v, and vertical, w, turbulence intensities can be determined by the following

equations:

Iu =
σu

Ū
, Iv =

σv

Ū
, Iw =

σw

Ū
(6.1)

where σu, σv and σw are the standard deviations or the RMS values of each fluctuating velocity

component and U is the wind mean speed for the same time period. In this study, the same 10-

minute period used before was adopted for the calculation of these parameters. Fig. 6.16 shows

the variations of the longitudinal, lateral and vertical turbulence intensities as a function of

the mean wind speed, calculated independently of directions and incidence angles, for sensors

WS1 and WS2. A general trend for Iu > Iv > Iw is noticed across both sensors data. The

three components of turbulence intensity measured by sonic anemometer WS1 represented in

Figs. 6.16a-6.16c reveal a standard pattern of variation of the turbulence intensities with wind

speed.

In these figures, it is verified a clear trend of the turbulence intensity to decrease and reduce

its deviation for higher mean wind speeds. The mean values found for the longitudinal, lateral

and vertical turbulence intensities were 0.296, 0.266 and 0.165, respectively, which result in a

relative ratio of σu:σv:σw = 1:0.900:0.556. The variation of the turbulence intensities registered

by sonic anemometer WS2, on the other hand, shows a very scattered distribution, as seen in

Figs. 6.16d-6.16f. Despite this scattered behaviour, the same downward trend can be identified

for the three turbulence intensities components (σu, σv, σw), although less pronounced.

The ratios between the averaged values of the turbulence intensity in the three directions for

this sensor are σu:σv:σw = 1:0.789:0.543. The σw/σu values are very close to the ratio pro-

posed by Solari and Piccardo (2001) of E[σw/σu] = 0.5. The ratio σw/σu obtained for WS1
differs from the ration proposed by this author of E[σw/σu] = 0.75, but is well approximated

by WS2. The turbulence intensity is simply related to the surface roughness (Holmes, 2001),

and therefore, to the wind incoming direction. The representation of the turbulence intensities

from all incoming directions, in Fig. 6.16, reveals a wide spread distribution of these values,

especially in the case of sensor WS2. The variation of the longitudinal, lateral and vertical
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turbulence intensities as a function of the 10-min mean wind direction, and the respective mean

wind speed are represented in Figs. 6.17. From these figures, characteristic turbulence intensi-

ties can be identified by direction and a consistent evolution through direction is perceived.
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Fig. 6.17 – Variation of the turbulence intensity with the mean wind direction: WS1 Longitudinal Iu (a);
WS1 Lateral Iv (b); WS1 Vertical Iw (c);WS2 Longitudinal Iu (d); WS2 Lateral Iv (e); and WS2 Vertical
Iw (f).

Fig. 6.18 shows the variation of the averaged longitudinal, lateral and vertical turbulence inten-

sities as a function of the 10-min mean wind direction, categorised in sixteen 22.5◦ directional

sectors. Analysing the result obtained from sensor WS1 in Fig. 6.18a, it noticed that the three

component turbulent intensities are rather homogeneous across all directions, except for the two
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upward trends: one between SE and SSW; and the other between N and WNW. With regard

to the results from sensor WS2 shown in Fig. 6.18b, it is verified the formation of two rather

distinct clusters: the first, centred on the South direction, with an upward trend from SSE to

SSW and a very narrow deviation in direction; and the second, centred on the North direction,

with turbulence intensities generally greater than those of the first cluster.
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Fig. 6.18 – Variation of averaged longitudinal, lateral and vertical turbulence intensities with 10-min
mean wind direction measured by sonic anemometers: WS1 (a) and WS2 (b).

N NE E SE S SW W NW N
0

0.25

0.5

0.75

1

1.25

Mean wind direction [cardinal points]

T
u

rb
u

le
n

c
e

 i
n

te
n

s
it
y
 r

a
ti
o

 

 

σ
v
/σ

u
σ

w
/σ

u

0

75

150

225

300

375

N
o

. 
o

f 
d

a
ta

p
o

in
ts

1

W

E

N

(a)

N NE E SE S SW W NW N
0

0.25

0.5

0.75

1

1.25

Mean wind direction [cardinal points]

T
u

rb
u

le
n

c
e

 i
n

te
n

s
it
y
 r

a
ti
o

 

 

σ
v
/σ

u
σ

w
/σ

u

0

75

150

225

300

375

N
o

. 
o

f 
d

a
ta

p
o

in
ts

W

E

N

2

(b)

Fig. 6.19 – Variation of averaged turbulence intensities ratios σv/σu and σw/σu as a function of 10-min
mean wind direction: WS1 (a) and WS2 (b).

The variation of the averaged turbulence intensity ratios σv/σu and σw/σu as a function of

mean direction, categorised in 16 directional sectors, is represented in Fig. 6.19. The overlaid

histogram also represented in such figure expresses number of data points measured for each

direction sector. Analysing these results, it is noticed that both WS1 and WS2 σw/σu ratios

show a rather uniform variation across all analysed sectors, with values close to the ration

proposed by Solari and Piccardo (2001) of 0.5. The σv/σu ratio, on the other hand, shows a

fairly distinct variation between the two sonic anemometers measurements and, in most cases,

very different values from that proposed by Solari and Piccardo (2001) of 0.75. The highest
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ratios found for WS1 surpass the unit and refer to the two sectors around North. The two

sectors around the South direction, on the other hand, present ratios close to 0.75. Furthermore,

two peaks can be identified in Fig. 6.19: the higher, around North, and a lower, around ESE.

With regard to sensor WS2, the maximum average ratio σv/σu was 1.09 for the SW-SWW
sector, although just two data points were identified for this direction. Sectors around North and

South show values fairly close to 0.75, whereas the other sectors exhibit slightly higher values.

Moreover, σv/σu ratios greater than 1 which indicates a lateral turbulence greater than the

longitudinal turbulence, phenomenon rather unusual, but possible in the some circumstances,

as discussed in Shiau and Chen (2002).

Power Spectrum of Wind Speed

PSD functions display the energy distribution of the wind speed fluctuating components. Dif-

ferent representations of these functions have been proposed in the literature. The spectrum

model proposed by von Kármán (von Kármán, 1948) remains as one of the most widely ac-

cepted (Tamura et al., 2005). This model is particularly suitable for conditions where the low-

frequency region is of greater importance, which is the case of the Braga stadium suspension

roof. The von Kármán reduced auto power spectrum for the along-wind component is defined

as:

nSu(n)
σ2

u
=

4nLu
Ū[

1+70.8
(

nLu
Ū

)2
]5/6 (6.2)

where n is the frequency, Su(n) is the along-wind auto power spectrum, σu is the standard

deviation of the longitudinal turbulence, u, U is the mean wind speed and Lu is the estimated

turbulence integral length scale of the longitudinal wind speed component. For the cross-wind

and vertical components, the von Kármán model has the following form:

nSε(n)
σ2

ε

=

4nLε

Ū

[
1+755.2

(
nLε

Ū

)2
]

[
1+283.2

(
nLε

Ū

)2
]11/6 , ε = v, w (6.3)

where Sv(n) and Sw(n) are the cross-wind and vertical auto power spectra, σv and σw are

the standard deviation of the lateral and vertical turbulences and Lv and Lw are the integral

length scales of the cross-wind and vertical turbulence, respectively. Two samples of wind data

with very distinct characteristics were selected for spectral analysis, both measured by sonic
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anemometer WS1. The criterion for this selection was the extraction of two-hour records with

relatively high mean wind speed, but with opposite mean direction and incidence angles.

10
4

10
3

10
2

10
1

10
0

10
3

10
2

10
1

10
0

n/U

n
S

u
(n

)/
σ

2

 

 

Lu = 110.4 m

U = 7.73 m/s γ = 15.9 deg β = 6.85 deg Iu = 0.298

Field measurement von Karman

(a)

10
4

10
3

10
2

10
1

10
0

10
3

10
2

10
1

10
0

n/U

n
S

v
(n

)/
σ

2

 

 

Lv = 41.85 m

U = 7.73 m/s γ = 15.9 deg β = 6.85 deg Iv = 0.27

Field measurement von Karman

(b)

10
4

10
3

10
2

10
1

10
0

10
3

10
2

10
1

10
0

n/U

n
S

w
(n

)/
σ

2

 

 

Lw = 8.896 m

U = 7.73 m/s γ = 15.9 deg β = 6.85 deg Iw = 0.157

Field measurement von Karman

(c)

10
4

10
3

10
2

10
1

10
0

10
3

10
2

10
1

10
0

n/U

n
S

u
(n

)/
σ

2

 

 

Lu = 40.95 m

U = 4.69 m/s γ = 193 deg β = 2.94 deg Iu = 0.459

Field measurement von Karman

(d)

10
4

10
3

10
2

10
1

10
0

10
3

10
2

10
1

10
0

n/U

n
S

v
(n

)/
σ

2

 

 

Lv = 11.99 m

U = 4.69 m/s γ = 193 deg β = 2.94 deg Iv = 0.342

Field measurement von Karman

(e)

10
4

10
3

10
2

10
1

10
0

10
3

10
2

10
1

10
0

n/U

n
S

w
(n

)/
σ

2

 

 

Lw = 3.817 m

U = 4.69 m/s γ = 193 deg β = 2.94 deg Iw = 0.226

Field measurement von Karman

(f)

Fig. 6.20 – PSD of wind data measured by ultrasonic anemometer WS1: North - 8/2/2012: along-wind
(a); cross-wind (b); vertical wind (c); South - 25/4/2012 along-wind (d); cross-wind (e); vertical wind
(f).

Apart from this criterion, the wind sample should exhibit stationary characteristics, i.e., the

mean wind speed from each segment should not differ more than 25% from the mean wind
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speed of the full time series and, additionally, the corresponding direction angle must not vary

by more than 15◦ (Cremona and Foucriat, 2002). The first sample chosen, with a North direction

(15.9◦) and an upward incidence (6.85◦), was collected on 8 February 2012 between 11:50 and

13:50, and shows a mean wind speed of 7.73 m/s. The second sample, measured on the 25

April 2012 between 13:30 and 15:30, is characterised by a South direction (193◦), a downward

incidence (-2.94◦) and a mean wind speed of 4.69 m/s.

In order to obtain the PSD function for each turbulent component, the time series are divided

into data segments with 8192 points and a 50% overlap over the previous and following seg-

ments. After applying a Hanning window to all segments, the FFT was used to compute individ-

ual PSDs. Global auto PSD function are obtained by averaging all individual PSDs previously

obtained. The procedure previously described corresponds to the estimation of the PSD with

the periodogram approach described in Section 2.6. The reduced auto power spectra computed

from both wind samples for each turbulent component are depicted in Fig. 6.20.

Turbulent Scales

The turbulence length scales define the average size of the turbulent eddies of the flow. Several

criteria can be used to estimate these parameters. In the approach used in this study, the turbu-

lence integral length scales were estimated by fitting the parameters of eqs. (6.1) and (6.2) to the

observed velocity spectra. The von Kármán spectra fitted to the PSD functions are represented

in Fig. 6.20, together with the resulting integral length scale. The von Kármán spectrum appears

to fit relatively well the spectra obtained from the field measurements, especially to the points

of the spectra of the southern winds suited within the lower frequency range. The values of

the turbulence integral length scale obtained for the along-wind, cross-wind and vertical wind

directions are, respectively, 110.4 m, 41.85 m and 8.896 m for northern winds and 40.45 m,

11.99 m and 3.817 m for southern winds. A prominent distinction is found between the param-

eters obtained for the two opposite prevailing directions. Turbulence integral length scales from

northern winds present values 2-3.5 times greater than those measured from southern winds.

Based on many field measurements, Solari and Piccardo (2001) proposed that the turbulence

integral length scales can be estimated by:

Lε = 300λε(z/200)ν , ν = 0.67+0.05ln(z0) (ε = u, v, w) (6.4)

where Lε is the integral length scale for the given direction (u, v or w), z is the height above

the ground (z ≤ 200 m) and z0 is the roughness length, all in meters. λε is a random variable

that assumes values of 1, 0.25 and 0.10 for the three orthogonal directions u, v and w. Taking

into account that the ultrasonic anemometer WS1 is placed at approximately 35 m high and
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assuming a terrain roughness of z0 = 0.15 m, value in between categories I and II from Eurocode

1 - Part 1-4 (CEN, 2005), the turbulence integral length scales were assessed based on eq. (6.4).

The values obtained with such equation were 110.1 m, 27.52 m and 11.01 m for the along-wind,

cross-wind and vertical wind direction, respectively.

While these estimates approximate rather well the along-wind and vertical wind turbulence in-

tegral length scales measured for the northern winds, they fail to assess the southern winds

values. Considering that the wind from the South direction flows through the West slab and

from the terrain behind it at the same level, it is reasonable to consider different height from the

ground, z, and terrain roughness, z0 (see Figs. 5.1 and 5.2). Assuming the ultrasonic anemome-

ter elevation above the West slab at the height z = 3 m and a upstream roughness characteristic

of smoother terrains z0 = 0.02 m, the following length scales are obtained from eq. (6.4): Lu =

40.91 m, Lv = 10.23 m and Lw = 4.09 m. Comparing these with the measured parameters from

the South wind sample, a rather good match is noticed for all three directions.

6.4.2. Time Evolution of the Modal Parameters

The modal parameters (natural frequencies, modal damping ratios, mode shapes and operational

factors) of the suspension roof have been continuously tracked from the 60-minute acceleration

files acquired by the dynamic acquisition system since March, 2009. The modal parameters

together with their confidence intervals and modal contributions are automatically estimated

by the autonomous application described in Section 6.2.1. In the case of the continuous mon-

itoring of the Braga stadium suspension roof, this application is configured to automatically

identify the first 12 vibration modes suited within the frequency range of 0.0-1.1 Hz. These

modes are automatically identified by means of the hierarchical clustering algorithm discussed

in Chapter 4.

Fig. 6.21 shows the evolution of the daily mean values of the first 12 identified natural frequen-

cies of the roof structure over four years of monitoring and a detail of the evolution of the natural

frequencies of modes 3, 4, 5 and 12 is represented in Fig. 6.22. Analysing the yearly pattern of

variation of each identified natural frequencies, it is verified that, whilst no significant variation

is noticed over the monitored years for modes 3 and 4, it is clearly seen a slightly decreasing

pattern of the other modes over the time, as shown in Fig. 6.22. These results are synthesized in

Tab. 6.1, where the mean and standard deviation of the natural frequencies obtained within the

first year of monitoring is compared to those from the last year.

Another interesting conclusion drawn from the analysis of the time variation of the natural fre-

quencies is that the underlying environmental conditions affect differently the identified modes

of the suspension roof, i.e., the pattern of variation of the natural frequencies of modes 3 and 4
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is contrary to that of the other identified modes.
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Fig. 6.21 – Time evolution of the daily mean values of first 12 natural frequencies of the suspension
roof automatically identified with the pLSCF technique in the range of 0− 1.1 Hz along four years of
monitoring (from 01/04/2009 to 31/03/2013).
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Fig. 6.22 – Time evolution of the daily mean values of the natural frequencies identified with the pLSCF
technique for modes 3 (a), 4 (b), 5 (c) and 12 (d), along 4 years of monitoring (from 01/04/2009 to
31/03/2013).

This result is illustrated in Fig. 6.23, where the detail of a five-day evolution of the natural

frequencies of modes 3, 4, 5 and 12 together with their corresponding confidence intervals is
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represented. From these figures, it is observed the daily variation of these natural frequencies

and their estimated standard deviations due to the influence of the environmental conditions.

Although the environmental and operational conditions affect differently the evolution of the

natural frequencies, a well defined cyclic pattern of variation is observed in Figs. 6.23 mostly

due to the daily temperature variation. Fig. 6.24 represents the variation of the damping ratios

of modes 3, 4, 5 and 12 together with their corresponding standard deviations over the same

time frame of five days.

Tab. 6.1 – Mean (µ f̂n
) and standard deviation (σ f̂n

) values of the natural frequencies estimated from
01/04/2009 to 31/03/2010 and from 01/04/2012 to 31/03/2013 with the pLSCF technique.

Mode From 01/04/2009 to 31/03/2010 From 01/04/2012 to 31/03/2013

µ f̂n (Hz) σ f̂n (×102) (Hz) µ f̂n (Hz) σ f̂n (×102) (Hz)

1 0.2752 0.0664 0.2746 0.0490

2 0.2907 0.0949 0.2902 0.0779

3 0.5256 0.1410 0.5261 0.1368

4 0.5421 0.1259 0.5422 0.1236

5 0.5541 0.2699 0.5496 0.2330

6 0.6329 0.1977 0.6305 0.1662

7 0.6544 0.1428 0.6532 0.1155

8 0.6811 0.2195 0.6798 0.1785

9 0.6983 0.1957 0.6959 0.1574

10 0.7332 0.2572 0.7310 0.2074

11 0.8670 0.4095 0.8616 0.3414

12 1.0145 0.6336 1.0026 0.5157
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Fig. 6.23 – Time evolution of the natural frequencies together with their standard deviations automatically
identified with the pLSCF technique for modes 3 (a), 4 (b), 5 (c) and 12 (d), along 5 days of monitoring
(from 01 to 5/08/2011). The standard deviations of the natural frequencies in these figures are multiplied
by a factor of 102 in order to improve their visibility within the figure.
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Fig. 6.24 – Time evolution of the modal damping ratios together with their standard deviations automat-
ically identified with the pLSCF technique for modes 3 (a), 4 (b), 5 (c) and 12 (12), along 5 days of
monitoring from 01 to 05/08/2011. The standard deviations of the modal damping ratios in these figures
are multiplied by a factor of 10 in order to improve their visibility within the figure.
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Fig. 6.25 – Dispersion of the damping ratios for the first 12 modes identified over the year of 2011 with
the SSI-DATA (a), SSI-COV (b) and pLSCF (c).
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Compared to the well defined evolution of the natural frequencies, the modal damping ratios

exhibit a significant scatter. This is not only due to the higher uncertainty associated with the

estimation of these parameters, but also to the significant dependence on other factors, as, for

instance, wind, temperature and vibration amplitude. Nevertheless, a faint daily pattern can be

observed, outcome of temperature and wind speed variation. Fig. 6.25 characterises, resorting

to histograms, the dominant values and variability of the identified modal damping ratios during

the year of 2011 with the SSI-DATA, SSI-COV and pLSCF, showing consistency of the results

provided by the three methods.
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δŷm [%]

M
o
d
e
2

0 50 100
0

200

400
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Fig. 6.26 – Dispersion of the modal contributions for the first 12 modes identified with the SSI-DATA.

The statistics of the natural frequencies, damping ratios and their respective confidence inter-

vals estimated with the SSI-DATA, SSI-COV, pLSCF and pMLE-MM over the course of the

aforementioned period are summarized in Tab. C.1 presented in APPENDIX C. The higher

variability in the estimation of damping ratios, in contrast with the natural frequencies, is evi-

dent in this table. Furthermore, the very low values estimated for the damping ratios, patent in

Figs. 6.25, are coherent with results from the AVT presented in Chapter 5. In Figs. 6.26, the
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histograms of the modal contributions for the 12 identified modes estimated along the year of

2011 are presented.

It is obvious from these results that modes 1 and 2 are those which were more excited by

the operational conditions. Moreover, comparing the dispersion of mode 1 to that of 2, one

also verifies that the second mode tends to be more sensitive to such conditions, fact that is

also corroborated by the results obtained in the AVT of the West slab of the suspension roof

presented in Chapter 5.

6.5. Influence of Wind and Temperature on Modal Parameters and Structural Response

6.5.1. Wind Induced Response

In order to assess the influence of wind speed on structural response, relationship between

the 10-min RMS acceleration and the mean wind speed and direction for the same period of

time was investigated. The vertical accelerations measured by the six accelerometers of the

dynamic monitoring system were analysed for time periods at which the 10-min mean wind

speed measured by sensor WS1 (Fig. 6.1) was greater than 4 m/s.
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Fig. 6.27 – Relationship between mean wind speed from 3 dominant wind directions and 10-min RMS
acceleration measured by accelerometers A1 (a), A2 (b), A3 (c), A4 (c), A5 (d) and A6 (f).
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Furthermore, the analysis took into account the 10-min mean wind direction, dividing acceler-

ation responses according to sixteen 22.5◦ directional sectors. Fig. 6.27 shows the relationship

between the mean wind speed measured by WS1 and the RMS vertical accelerations measured

by each accelerometer according to the three dominant wind directions. From the performed

analysis, only the three directional sectors between 315◦ (NW) and 22.5◦ (NNE) showed a

reasonable amount of observations.

Tab. 6.2 – Maximum acceleration and regression curves parameters of the acceleration responses by wind
direction sector.

Accel. Direction Max. RMS accel. Max. accel. c1 c2

[◦]
[
×10−2 m/s2] [

×10−2 m/s2] [
×10−5]

A1
0 - 22.5 2.05 9.69 8.35 2.45

315 - 337.5 1.53 8.87 7.41 2.46

337.5 - 360 1.83 7.87 5.27 2.62

A2
0 - 22.5 1.15 5.43 4.47 2.48

315 - 337.5 0.9 4.8 4.15 2.48

337.5 - 360 0.93 5.87 3.33 2.58

A3
0 - 22.5 2.73 13.04 8.69 2.52

315 - 337.5 2.57 9.86 11.6 2.45

337.5 - 360 2.73 11.02 8.58 2.55

A4
0 - 22.5 1.39 6.39 5.25 2.48

315 - 337.5 1.09 5.23 4.73 2.49

337.5 - 360 1.28 5.43 3.89 2.58

A5
0 - 22.5 0.79 3.31 3.08 2.44

315 - 337.5 0.55 2.77 2.49 2.49

337.5 - 360 0.63 2.58 2.05 2.58

A6
0 - 22.5 2.12 9.07 6.64 2.51

315 - 337.5 2.25 8.63 9.37 2.45

337.5 - 360 2.27 7.74 7.03 2.52
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Fig. 6.28 – Variation of peak factor with RMS acceleration at channel A3 and 10-min mean wind speed.

The results presented in Fig. 6.27 clearly shows the similarities in acceleration magnitude be-

tween accelerometers in the same suspension roof longitudinal direction (A1-A4, A2-A5 and
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A3-A6) (see Fig. 6.1). It is also noticed that sensors placed near the inner edge of the slab

(A1, A2 and A3) show higher RMS accelerations than the correspondent sensors placed along

the middle of the slab (A4, A5 and A6). The acceleration levels observed for each of the six

accelerometers, and the relation between them, reflect the modal shapes of the first vibration

modes (see Section 5.6). Tab. 6.2 lists the maximum RMS and the maximum acceleration

obtained for each direction in each accelerometer.

The accelerometers placed on the Northwest border of the slab (A3 and A6) show the highest

magnitudes of acceleration, with nearly 0.03 m/s2 RMS and 0.13 m/s2 maximum for the higher

wind speeds. The accelerometers A2 and A5, set on the middle of the slab, on the other hand,

measure the lowest acceleration values. From Fig. 6.27, one can also observe a general trend

of increase of the vertical RMS acceleration response with the mean wind speed. This trend

appears clearer for individual directions. The observed response is characteristic of a turbulence

buffeting effect, where the vibration mechanism is controlled by turbulent random pressure

fluctuations (Shigehiko et al., 2008). This is further enhanced by the values of the acceleration

peak factors at channel A3 (see Fig. 6.1) represented in Fig. 6.28 as a function of the RMS
acceleration and the 10-min mean wind speed. According to Li et al. (2007) the regression

curves of such response can be expressed by:

aRMS = c1Ūc2 (6.5)

where aRMS is the 10-minute RMS acceleration response, Ū is the 10-min mean wind speed, and

c1 and c2 are the curve fitting parameters. A non-linear least-squares curve fitting was applied

to the field measurements of each accelerometer for the three prevalent directions. Tab. 6.2 lists

the resulting c1 and c2 parameters.

6.5.2. Influence of Temperature and Mean Wind Speed on Natural Frequencies

The modal parameters identified by the dynamic monitoring system reflect the influence of envi-

ronmental and operational factors. Amongst the various possible factors, temperature and wind

have been identified as the those with dominant influence on the variability of these parameters.

To understand the corresponding effect, it should be kept in mind the following: rising temper-

atures causes the elasticity modulus of the concrete of the slabs to decrease and the length of

cables to increase. These effects, on their turn, lead to an increment of the sag of the cables

and reduction of tension, simultaneously with an increase of the slab bending stiffness. The

combination of the two effects may result in increasing or decreasing frequencies for different

vibration modes, depending on the relative participation of slab bending and cable deformation.
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In order to analyse the dependence between the mean wind speed, the ambient temperature

variation and the values of the identified natural frequencies, the Pearson’s correlation coeffi-

cients (r) were computed. Tab. 6.3 summarises the correlations found between the identified

natural frequencies, the mean wind speed and temperature. The analysis of the wind effects,

in particular, shows that positive incidence, typical from northern directions, leads to a sag re-

duction with consequent decrease of the cable tension and, possibly, frequency, whilst negative

incidence, typical from Southern directions, has an opposite effect. It is evident from the re-

sults presented such table that, apart from mode 3 and 4, the estimated natural frequencies tend

to vary inversely with both mean temperature and mean wind speed. The correlations for the

natural frequencies of modes 3, 4, 5 and 12 with temperature are shown in Figs. 6.29.

Tab. 6.3 – Pearson correlation coefficients (r) between the natural frequency values and the mean wind
speed and mean sonic temperature.

Mode

1 2 3 4 5 6 7 8 9 10 11 12

T̄ -0.631 -0.759 0.780 0.646 -0.562 -0.036 -0.447 -0.720 -0.815 -0.820 -0.406 -0.301

Ū -0.304 -0.335 0.067 0.127 -0.501 -0.328 -0.454 -0.408 -0.314 -0.313 -0.390 -0.377
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Fig. 6.29 – Correlation between the natural frequencies identified for modes 3 (a), 4 (b), 5 (c) and 12 (d),
and the mean sonic temperature.

Analysing these figures, it is noticed that, whist the natural frequencies of modes 5 and 12 tend
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to decrease with increasing ambient temperature, an opposite trend is observed for the natural

frequencies of modes 3 and 4. These results are believed to be due to the geometrical non-linear

behaviour of the suspension roof. In a attempt to interpret these results, the FE model of the roof

structure described in Section 5.7 was used to simulate the variation of the natural frequencies

with temperature. Assuming a reference temperature of 20◦C, a temperature variation from -20

to 20◦C was applied to the model in order to assess the corresponding influence on the natural

frequencies.
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Fig. 6.30 – Variation of the natural frequencies of modes 3, 4 and 5, experimentally identified under vary-
ing environmental conditions with the pLSCF technique (a) and obtained with a simulated temperature
variation using the numerical model (b).
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Fig. 6.31 – Correlation between the natural frequencies identified for modes 3 (a), 4 (b), 5 (c) and 12 (d),
and the mean sonic temperature.
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Comparing the results from the numerical simulation, shown in Fig. 6.30a, to those from the

continuous monitoring, represented in Fig. 6.30b, it is verified that a similar pattern of variation

was obtained for the natural frequencies of modes 3, 4 and 5, which reveals that, in fact, the

temperature has a dominant influence on the variation of these parameters. With regard to the

influence of wind, it is verified in Tab. 6.3 that, whist almost no correlation exists between the

natural frequency of modes 3 and 4, and the mean wind speed, a noticeable influence of this

environmental action on the natural frequencies of the other identified modes is observed.

These results are clearly seen in Figs. 6.31 where the correlations of the natural frequencies of

modes 3, 4, 5 and 12 with the 10-min mean wind speed are represented.

6.5.3. Influence of Temperature and Mean Wind Speed on Modal Damping Ratios

As previously discussed, compared to the natural frequencies, the identified damping ratios

show a significant scatter. Despite this scattered variation, a slight evidence of a daily pat-

tern variation associated with the wind speed and temperature changes (Fig. 6.24) is perceived.

To study the relationship between damping ratios, and the mean temperature and wind speed,

Pearson’s coefficients (r) between these variables were also calculated. Tab. 6.4 summarises the

most important results of the correlation analysis. The coefficients shown in this table reveals

a tendency of the identified damping ratios to vary proportionally with both mean wind speed

and mean temperature, the only exception being the almost null correlation coefficient obtained

between the mean temperature and the damping ratio of mode 11.

Tab. 6.4 – Pearson correlation coefficients (r) between the damping ratios and the mean wind speed and
mean sonic temperature.

Mode

1 2 3 4 5 6 7 8 9 10 11 12

T̄ 0.181 0.153 0.160 0.142 0.190 0.145 0.152 0.204 0.141 0.214 -0.039 0.184

Ū 0.370 0.359 0.391 0.306 0.219 0.331 0.327 0.372 0.212 0.355 0.271 0.289

The main conclusion is that, for all investigated modes, the variation of the damping ratio is

more associated with the change of mean wind speed than with the mean temperature. For this

reason, only the relationship between damping ratios and mean wind speed has been considered

in subsequent analyses. Figs. 6.33 present the variation of the damping ratios of modes 3, 4, 5

and 12 with the mean wind speed. The approximate linear relationship observed in the range

of measured mean wind speed is common to all identified modes and reflects the wind induced

added damping to the total identified damping ratio. The damping estimates corresponding to

periods of very low wind speeds (lower than 2 m/s) were averaged for each mode in order to

obtain an estimate of the structural damping (∆ξstruct).
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Fig. 6.32 – Correlation between the damping coefficients identified for modes 3(a), 4(b), 5(c) and 12(d),
and the mean sonic temperature.
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Fig. 6.33 – Correlation between the damping coefficients identified for modes 3(a), 4(b), 5(c) and 12(d),
and the mean wind speed.
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In a different approach, least-squares linear fit was applied to the damping coefficient associ-

ated with mean wind speed higher than 2 m/s. The constant term of the fitted line provides

an alternative estimation of the structural damping, while the slope parameter expresses the

wind induced added damping gradient
(
∆ξaerodyn

)
(Macdonald, 2002). Tab. 6.5 summarises the

obtained results for all identified modes and the fitted lines shown in Figs. 6.33 were used to

estimate the structural and aerodynamic damping coefficients.

A reasonable agreement of the estimated structural damping values is found across all modes,

with a general trend for higher values of structural damping (∆ξstruct) estimated with the av-

eraging approach. The computed values for wind induced added damping range from 0.02%

(m/s)−1, for mode 9, to 0.06% (m/s)−1, for mode 11, and correspond to an average of 20% of

the structural damping per m/s. The quality of the least-square linear fits is generally low, due to

the significant scatter of the identified damping ratios. Damping ratios for the Braga suspension

roof have been previously estimated based on forced and free vibration tests (Magalhães et al.,

2006). The main results of those tests are shown in Tab. 6.5 for comparison with the present

estimates.

Tab. 6.5 – Summary of measured damping coefficients.

Mode

ξstruct Linear regression Free Vib. Free Vib. Harmonic

(Ū ≤ 2m/s) ξstruct ξaerodyn
r

Filter SSI-COV Excitation

[%] [%] [%(m/s)−1] [%] [%] [%]

1 0.24 0.20 0.05 0.34 - 0.29 0.28

2 0.19 0.14 0.05 0.38 - 0.37 0.27

3 0.24 0.19 0.04 0.36 0.28 0.33 0.22

4 0.20 0.18 0.02 0.26 0.25 0.22 -

5 0.40 0.32 0.04 0.31 - 0.44 -

6 0.30 0.24 0.04 0.37 0.34 0.36 0.43

7 0.28 0.21 0.03 0.31 - 0.29 -

8 0.18 0.15 0.03 0.32 - 0.11 0.2

9 0.18 0.14 0.02 0.28 - 0.18 -

10 0.18 0.16 0.03 0.29 0.2 0.18 -

11 0.35 0.23 0.06 0.44 - - -

12 0.42 0.37 0.04 0.30 - - -

It is observed that the damping ratios identified from forced and free vibration tests are gen-

erally greater than the corresponding values obtained under ambient vibration, fact that can be

explained by the larger vibration amplitudes induced during the former tests. Nevertheless,

structural damping estimates identified in the present study have the same order of magnitude

of previous estimates and should be considered as reasonable approximations.
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6.6. Removal of the Environmental Effects and Damage Detection

As shown in previous sections, the variation of the identified natural frequencies is highly influ-

enced by the environmental and operational effects and, therefore, the component of variation

due to these effects should be eliminated so that the natural frequencies shifts over the moni-

toring period can be effectively used as damage indicators. As the temperature of the structure

has not been measured over the course of monitoring period, an output-only linear regression

based on PCA was used to model and remove the effect induced by the environmental and op-

erational conditions on the observed natural frequencies of the suspension roof. As discussed

in Section 4.3.1, the first step to stablish such environmental models consists of computing the

covariance of the observed features (i.e., the estimated natural frequencies).

In the case of the Braga stadium suspension roof, the computation of such matrix was per-

formed by using the natural frequencies hourly estimated from 01/04/2009 to 31/03/2010 with

the pLSCF identification technique. This time frame corresponds exactly to one year of moni-

toring and was taken as a reference period within which the natural frequencies were assumed

to be observed in the undamaged condition of the suspension roof. Therefore, these observa-

tions are used to compute the reference covariance matrix, which was subsequently employed

to remove the environmental and operational effects from future observations. Once the covari-

ance matrix was computed, the next step towards the establishment of an environmental model

for the monitored structure consisted of computing the score matrix X . A number of principal

components m = 6 was chosen to compute this matrix, which corresponds to 99.89% of the 12

available components.
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Fig. 6.34 – Time evolution of the natural frequencies of modes 3 (a), 4 (b) 5 (c) and 12 (d) observed
(black line) and estimated with the PCA approach (red line) from 01/04/2009 to 31/03/2010.
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In order to enhance the precision of the PCA model, the estimates of the natural frequencies

with higher uncertainties (i.e., σ̂ f̂n > 3σσ̂ f̂n
, with σ̂ f̂n denoting the standard deviations estimated

with one iteration of the pMLE-MM) were not considered in the computation of the score ma-

trix X . Once this matrix was computed, the natural frequencies were estimated and compared

to their observed counterparts identified with the pLSCF technique. As shown in Fig. 6.34,

the natural frequencies of modes 3, 4, 5 and 12 synthesized with PCA model along the month

of August, 2009, are in good agreement with those observed within the same period. After-

wards, the PCA estimates were used to remove the component of the deviation of the natural

frequencies related to environmental and operational factors.
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Fig. 6.35 – Time evolution of the natural frequencies of modes 3 (a), 4 (b), 5 (c) and 12 (d) tracked
from 01/04/2009 to 31/03/2010 before (black dots) and after (red dots) removal of the environmental and
operational effects with the PCA approach.

As shown in Figs. 6.35, the deviations of the natural frequencies of these modes after removal

of the environmental and operational factors are significantly reduced compared to those of the

observed natural frequencies. This is also verified in Tab. 6.6, where the standard deviations

of all the 12 identified modes estimated before and after removal of the environmental effects

are quantified. As seen in this table, the reduction is more significant for the modes with higher

frequency deviations. At this point the effects of environmental and operational conditions were

removed from the observed frequencies and, therefore, these features were ready to be used as

damage indicators. Aiming at assessing the structural damage of the suspension roof, X-bar

and T 2-chart were constructed to control the natural frequency shifts. The idea is that: if the

observed frequencies exceed the confidence intervals previously defined and are not character-

ized as random outliers, these observations are considered to be related to structural change that
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may, for instance, be caused by damage events.

Tab. 6.6 – Standard Deviations of the natural frequencies observed from 01/04/2009 to 31/03/2010 before
and after removal of the environmental effects with the PCA model.

Mode
Before Application of PCA After Application of PCA

σ f̂n

(
×102) [Hz] σ f̂n

(
×102) [Hz]

1 0.664 0.326

2 0.949 0.313

3 1.410 0.261

4 1.259 0.307

5 2.699 0.064

6 1.977 0.063

7 1.428 0.182

8 2.195 0.393

9 1.957 0.379

10 2.572 0.247

11 4.095 0.006

12 6.336 0.019

Tab. 6.7 – Comparison between the outliers rates, Io, of the observed natural frequencies estimated from
01/04/2009 to 31/03/2010 and from 01/04/2012 to 31/03/2013.

Mode
from 01/04/2009 to 31/03/2010 from 01/04/2012 to 31/03/2013

Io (%) Io (%)

1 1.06 0.68

2 1.14 0.87

3 0.77 0.99

4 0.89 2.10

5 0.72 4.21

6 0.76 2.77

7 0.74 1.32

8 0.89 20.18

9 0.75 11.67

10 0.80 1.14

11 0.79 1.50

12 0.75 15.28

Once these charts were constructed, the main issue was then to distinguish whether a frequency

point suited out of the confidence interval corresponds to a random outlier or, in fact, to a struc-

tural change. The outlier statistics is an efficient tool that can be used to distinguish random

outliers associated to erroneous identification of the natural frequencies from the repeated out-

liers associated to abnormal events like structural changes. In the present study, the X̄-Charts

were constructed considering a confidence interval of 95.0% and with the assumption of a nor-

mal distribution. These charts were used to control the structural changes by monitoring the

frequency shifts of the 12 modes identified over the course of the continuous monitoring of the
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Braga stadium suspension roof. In Tab. 6.7 it is summarized the comparison between the out-

liers rates, Io, estimated from the frequency samples observed from 01/04/2009 to 31/03/2010

(reference period) and those observed from 01/04/2012 to 31/03/2013.
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Fig. 6.36 – Time evolution of the observed natural frequencies of modes 5 (a), 8 (b), 9 (c) and 12 (d)
tracked from 01/04/2009 to 31/03/2010 (gray dots) and from 01/04/2012 to 31/03/2013 (black dots) after
removal of the environmental and operational effects with the PCA model.
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Fig. 6.37 – T 2-Chart constructed with the identified natural frequencies from 01/04/2009 to 31/03/2010
(gray dots) and from 01/04/2012 to 31/03/2013 (black dots) after the removal of the environmental and
operational effects with the PCA model.

Inspection of this table reveals that significant increments in outliers rate of the latter period took

place with regard to those computed for the former (from 01/04/2009 to 31/03/2010). These

increments are particularly more significant for modes 5, 8, 9, 12, whose outliers rate climbed

from previous 0.72, 0.89, 0.75 and 0.75% to 4.21, 20.18, 11.67 and 15.28%, respectively. The

frequency shifts associated to these increments are clearly seen in X̄-Charts of Figs. 6.36, which

suggests that a structural change may have occurred in the monitored structure. It should be

mentioned that, since the PCA environmental model is given as a linear transformation based

229



CONTINUOUS MONITORING OF THE BRAGA STADIUM SUSPENSION ROOF

on the covariance of the observed features, the natural frequency shifts represented in Fig. 6.36

do not necessarily reflect the physical amount of variation on the natural frequencies over the

time, but essentially indicate that a change took place. These results are in accordance with

T 2-Chart shown in Fig. 6.37.

Differently from the X̄ charts, which were built to detect damage from each identified natural

frequency, the T 2-Chart illustrated in Fig. 6.37 was constructed to detect damage by means

of a novelty index which considers the deviations of all natural frequencies at once and was

computed by using the Mahalanobis norm (see Section 4.3.3). In order to control the deviation

of such index, the UCL was put equal to 25.68. This control limit was computed considering

a F-distribution with m = 6 and np−m = 6 degrees of freedom, and a confidence interval of

95%. By comparing the evolution of the T 2 index within 01/04/2012 and 31/03/2013 to that

observed within the reference period (from 01/04/2009 and 31/03/2010), one also verifies that a

significant variation took place. Such variation is synthesized by the outliers rates, Io, estimated

for both assessed periods presented in Fig. 6.37.

6.7. Conclusions

The modal properties of the Braga stadium suspension roof have been monitored since March,

2009, by an autonomous monitoring application specially designed for this purpose. This ap-

plication was set to automatically track the modal properties of the suspension roof in the fre-

quency range of 0-1.1 Hz along four years of monitoring by means of 3 different identification

techniques. The characterization of the variation of modal properties over the time demon-

strates the reliability, robustness and precision of the automated application. The assessment of

the time evolution of the modal properties of the suspension roof showed that, differently from

other identified modes, the natural frequencies of modes 3 and 4 vary proportionally with the

daily and seasonal environmental temperature variations. This unexpected pattern of variation

is believed to be due to the complex non-linear structural behaviour of the suspension roof.

Other interesting conclusion drawn from such assessment was obtained from the analysis of

the evolution of the modal contributions over the monitored period. The results of this analysis

revealed that, although the first and second modes tend to be more excited by the operational

actions and, therefore, to contribute more to the measured output responses, no relevant changes

on the natural frequencies of these modes were verified over the time. Concerning the analysis

of wind measurements, the data registered by two anemometers over the course of 8 months

was analysed. The main purposes of the analyses carried out from these measurements were:

(1) to obtain a characterisation of the wind action, (2) to establish correlations with the modal

parameters and structural responses and (3) to assess the influence of wind and temperature on
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the variations of the natural frequencies and modal damping ratios of the suspension roof.

The main conclusions drawn from the analysis of measured wind data are: (1) during the mea-

surement time frame, the mean wind speeds recorded were relatively low; (2) wind sensor WS1
(located on the slab corner) registered the highest mean wind speeds, with a predominance of

the North-Northwest direction, whilst wind sensor WS2 measured much smaller mean wind

speeds with North and South directions; and (3) the wind flows measured by wind sensor WS2
tend to be more influenced by the stadium structure, fact that can be observed in the very wide

spread from the positive wind incidence angle and by the higher turbulence intensities asso-

ciated to the lower wind speeds. With regard to damage detection based on natural frequency

shifts, two periods of analysis were investigated. The first, from 01/04/2009 to 31/03/2010, con-

sidered as reference period within which the natural frequencies were assumed to be estimated

in the undamaged condition of the roof structure, and the second period, from 01/04/2012 to

31/03/2013, to verify if a permanent structural change has occurred in such structure.

For this purpose, an environmental model based on PCA was obtained by using the natural fre-

quencies estimated with the pLSCF technique along the reference period as observed features.

The precision of this model was then assessed by comparing its estimates with the observed

natural frequencies. Aiming at detecting structural changes on the roof structure, this environ-

mental model was applied to the natural frequencies estimated during both periods of analysis

to mitigate the influence of the environmental and operational condition on these features. Com-

paring the results obtained for both periods of analysis, it was concluded that a slight structural

change may have occurred in the suspension roof, which suggests that further detailed investi-

gations can be conducted in order to determine the cause of such a change.
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7.1. Conclusions

This thesis discussed several practical and theoretical aspects regarding the MPE techniques,

continuous monitoring and damage detection in civil engineering. One of the most significant

aspect of the present work is that it is not restricted to the discussion and application of the

existing available theory concerning the input-output and output-only MPE, but proposes new

theoretical developments in this subject area. The main conclusions of this thesis are highlighted

as follows:

� Several models of vibrating structures suited to EMA and OMA were discussed in the

framework of this thesis. An interesting aspect about these models is that, although they

address the vibration phenomenon differently, it is verified that they are closely related

among themselves.

� From the literature review of the state-of-the-art identification methods it was concluded

that pLSCF and SSI-based techniques are some of the most commonly used identifica-

tion techniques in OMA. The robustness and easiness to be adapted to automated OMA
verified in the context of this thesis also corroborates this conclusion.

� In Döhler and Mevel (2013) an efficient approach to compute the confidence intervals

of the estimates provided by the SSI-COV is presented. In context of the present thesis,

however, a new strategy was followed to compute the uncertainties on the SSI-COV and

SSI-DATA estimates. This strategy consists of: (1) identifying the poles and the observed

mode shapes by means of stabilization diagrams; (2) computing the reference operational

factor with the LSFD estimator; and, finally, (3) computing the confidence intervals of

the estimated modal parameters by making use of the pMLE-MM. This strategy was

applied to simulated and real-life structures and it was shown that the standard devia-

tions estimated for the SSI-DATA and SSI-COV modal parameters were in very good

agreement with those estimated for the pLSCF estimates (see Chapters 3, 5 and 6).

� Concerning the alternative implementation of the pMLE-MM, it was shown that the

modal parameters and their respective standard deviations provided by such implemen-

tation were in very good agreement with the estimates obtained with the implementation

proposed by (El-Kafafy, 2013), which demonstrates that it can be used in EMA and

OMA without any loss of efficiency and precision. One of the main advantages of this

alternative approach is the possibility to estimate the uncertainties on the identified nat-

ural frequencies and modal damping ratios directly from the normal matrices, avoiding

the use of explicit linearisation formulas in a final step of the identification process.
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� Comparing the poly-reference implementation of the ML estimator to its single reference

counterpart, it is verified that main advantage of the former is related to the possibility to

retain the poly-reference information and improve the estimates provided by the pLSCF
estimator. The main disadvantage, however, is that it demands a much longer time to

compute the normal matrices. The main benefit of the single reference ML estimator

is that it results in an algorithm significantly faster. The main disadvantages, however,

are, in fact, related to the limitations of modal model in pole residue form, as well as

to the shortcomings of a single-reference identification technique. These disadvantages

include: (1) difficulty of distinguishing between close spaced modes; (2) tendency of

overestimating the confidence bounds of close spaced modes; and (3) impossibility to

synthesize the spectrum, once the mode shapes and operational factors are estimated

from the modal residuals by means of SVD.

� When dealing with reasonably separated modes, however, it is observed that the estimates

of the uncertainty intervals provided by the single-reference ML estimator approximates

the uncertainties estimated with its poly-reference counterpart.

� Despite the differences in acquisition of the systems used in the multi-patch operational

modal analysis of the Braga stadium suspension roof, a good synchronization of the sig-

nals acquired by both systems could be established, thanks to the strategy used to remove

the phase between these signals. With regard to the estimation of the modal parameters

of the suspension roof, several modes were clearly identified in the frequency range of

0-2 Hz using PoGER merging approach combined with pLSCF identification technique,

but only 30 modes presented well defined configurations. The other modes might be re-

lated to the modes of the slab that are poorly excited, to the modes that only involve the

slab that was not instrumented or to the individual modes of the cables. Concerning the

results of the analysis performed in time-domain, a significant influence of the 1st and 2nd

modes on the total responses was verified, which reveals that these modes tend to be more

excited by the environmental and operational conditions compared to the other identified

modes.

� The autonomous monitoring application developed in the context of this thesis was able

to automatically identify the modal parameters of the Braga stadium suspension roof in

the frequency range of 0-1 Hz along four years of monitoring by means of 3 different

MPE techniques with very few identification failures. The robustness and precision of

the developed application permitted to characterize the variation the modal properties of

the suspension roof and detect changes in its structural condition over the time.
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� Concerning the wind measurements, although the results presented in this thesis corre-

sponds to a time frame of only 8 months, some important conclusions were drawn from

the analysis of the data collected within this period. It was verified from this analysis,

for instance, that: (1) the mean wind speeds recorded during this time frame were rel-

atively low; (2) the wind sensor located on the slab corner registered the highest mean

wind speeds, whist the wind sensor located at the middle of longest edge measured much

smaller mean wind speeds; and (3) the wind flows at middle of slab tend to be more

influenced by the stadium structure.

� The damage assessment of suspension roof based on the variation of natural frequen-

cies revealed that these modal properties are highly influenced by the environmental and

operational conditions, fact that was evidenced by the cross correlations between the nat-

ural frequencies and modal damping ratios, and the wind measurements. Despite this

influence, an output-only environmental model based on PCA was efficiently applied to

these features to remove the component of deviation due to the environmental and opera-

tional conditions, as well as to detect structural changes. The assessment of the variation

of these features over the course of four years of monitoring indicates that a slight per-

manent change has occurred in the roof structure. This conclusion suggests that further

detailed investigation can be performed in other to determine and localize the cause of

such a change.

7.2. Future Research

This thesis contains useful contributions in the context of EMA, OMA, automated MPE and

vibration-based damage detection, particularly in the framework of optimization and uncer-

tainty quantification of the modal parameter estimates. Nevertheless, future research is certainly

needed to improve such contributions.

� Although the automated modal analysis application developed in the context of this thesis

has proven to be very robust and efficient, new strategies and techniques can be added to

improve the performance of this application, particularly when dealing with modes whose

natural frequencies cross among themselves over the course of monitoring period. Such

improvements can be added, for instance, by taking into account uncertainty intervals

of the estimates optimized with the pMLE-MM. This can be done by taking advantage

of the fact the numerical poles tend to have higher standard deviation compared to the

physical ones.

� In this thesis, a new strategy was applied to estimate confidence intervals of the modal
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parameters estimated with the SSI techniques (e.g. SSI-DATA and SSI-COV). The ef-

ficiency of this strategy was assessed by comparing the estimated uncertainties to those

provided by the combined pLSCF-pMLE-MM technique. It would be interesting, how-

ever, to compare such strategy to the approach described in Döhler and Mevel (2013) in

order to assess the efficiency of both strategies in terms of computational performance

and precision.

� Following the lines of Vuerinckx et al. (2001), analyse for the (single) reference ML
estimator, as well as for its poly-reference counterpart discussed in Chapter 3, whether

the strongly non-linear relationship between the transfer function coefficients and the

modal parameters results in non-ellipsoidal 95% uncertainty bounds, for a number of

practical modal analysis problems.

� In context of the high spatial OMA of the Braga stadium suspension roof, due to the lim-

ited computational resources available, the pMLE-MM was only applied to estimate the

confidence intervals of the modal parameters provided by the pLSCF method. Therefore,

it would be interesting to apply the pMLE-MM algorithm to fully optimize the modal

parameters estimates obtained with PreGER-pLSCF, PoGER-SSI-COV and PoGER-
pLSCF, and then assess the gain in precision with respect to the starting estimates.

� In the context of the continuous dynamic monitoring of the Braga Stadium suspension

roof discussed in Chapter 6, the pMLE-MM was only used to compute the uncertainty

bounds on the modal parameters estimated from the continuously collected datasets with

the pLSCF, SSI-DATA and SSI-COV identification techniques. Since the pMLE-MM
algorithm is time consuming and requires a high computational processing load, it was

not possible to fully optimize the starting estimates obtained from each measured dataset

due to the limited time and computational resources available. Therefore, it would be

interesting to assess the gain in precision in terms of monitoring results if the modal

parameters are fully optimized with the pMLE-MM.

� In this thesis, only a level 1 damage assessment based on natural frequencies was ad-

dressed. It would be interesting to extend the assessment capabilities by including mode

shape estimates and/or a numerical model of the monitored structure to assess its struc-

tural condition, to localize and to quantify the damage in a automated manner.

� In the context of the continuous monitoring of the Braga stadium suspension roof, verify

if the variations observed for the natural frequencies are, in fact, associated to a permanent

structural change and, with the aid of a refined analytical model of the structure, try
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localize and qualify the source of such change.
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A.1. Estimation of the Mode Shapes with LSFD

The LSFD estimator is frequently used in conjunction with other frequency-domain identi-

fication techniques to estimate either the mode shapes, the operational factors or the modal

residuals. If the operational factors, L ∈ CNi×n, the denominator coefficients of the enhanced

upper and lower residual model, a,b,c ∈R, and the poles, λr ∈C, are known a priori, the modal

shapes, V ∈ CNo×n, and the numerator matrix coefficients, AR, BR,CR ∈ RNo×Ni , can be deter-

mined in a least-squares sense using the modal model with enhanced residual model (3.131).

This is accomplished by minimizing the following equation error with respect to the unknown

parameters:

Eo(Θ ,ω) =
Nm

∑
r=1

vorlT
r

jω−λr
+

v∗orl
H
r

jω−λ ∗r
+

[AR]o + jω [BR]o +( jω)2 [CR]o
d(ω)

−Ho(ω) (A.1)

where Eo(Θ ,ω) ∈ C1×Ni and Ho(ω) ∈ C1×Ni are row vectors containing the elements of the

equation error and of the measured FRFs corresponding to output o (o = 1, 2, · · · , No), re-

spectively; [AR]o , [BR]o , [CR]o ∈R1×Ni stand for the oth row of the numerator residual matrices

AR, BR,CR, respectively; and d(ω) = a+ jωb+( jω)2c the denominator of the enhanced resid-

ual model. This equation error can be parametrized as:

Θ =
〈

Re(Vo) Im(Vo) [AR]o [BR]o [CR]o
〉
∈ R1×(2Nm+3Ni) (A.2)

Writing down eq. (A.1) for each frequency line f ( f = 2, 3, . . . , N f ) and reformulating the

obtained equations into a single matrix expression, yields:

Eo(Θ) =ΘJ−Ho (A.3)

with

Eo(Θ) =
〈

Eo(Θ ,ω2) · · · Eo(Θ ,ωN f )
〉
∈ C1×Ni(N f−1)

Ho =
〈

Ho(ω2) · · · Ho(ωN f )
〉
∈ C1×Ni(N f−1)

(A.4)

and J ∈ C(2Nm+3Ni)×Ni(N f−1) denoting the so-called Jacobian matrix. It is straightforward to

solve eq. (A.3) for Θ in a linear least squares sense. Yet, in order to guarantee the realness of

Θ , J and Ho are replaced in eq. (A.3), respectively, by:

240



Appendix A

(J)re =
[
Re(J) Im(J)

]
, (Ho)re =

[
Re(Ho)

Im(Ho)

]
(A.5)

and, after some manipulations of the resulting expression, the following equation can be derived

to compute the mode shapes and residuals:





Re(Vo)
T

Im(Vo)
T

[AR]To
[BR]To
[CR]To





=
(
Re
(
J∗JT))−1

Re
(
J∗HT

o
)

(A.6)

A.2. Estimation of the Operational Factors with LSFD

If the poles, mode shapes and denominator coefficients of the enhanced residual model are the

known parameters, the operational factors, L, and the numerator matrix coefficients AR, BR,CR

of the enhanced residual model (3.131) are found in linear least squares sense by following a

strategy similar to the one used to estimate the mode shapes in Section A.1. In this case, the

following equation error is minimized with respect to the unknown parameters:

Ei(Θ ,ω) =
Nm

∑
r=1

vrlri

jω−λr
+

v∗r lri

jω−λ ∗r
+

[AR]i + jω [BR]i +( jω)2 [CR]i
d(ω)

−Hi(ω) (A.7)

where Ei(Θ ,ω) ∈ CNo×1 and Hi(ω) ∈ CNo×1 are column vectors containing the elements of

the equation error and of the measured FRFs corresponding to input i (i = 1, 2, · · · , Ni), re-

spectively; and [AR]i , [BR]i , [CR]i ∈ RNo×1 stand for the ith columns of the numerator residual

matrices AR, BR,CR, respectively. This equation error can be parametrized as:

Θ =
〈

Re(Li) Im(Li) [AR]Ti [BR]Ti [CR]Ti
〉T
∈ R(2Nm+3No)×1 (A.8)

Reformulating equation error (A.7) for all frequency lines into a single expression, yields:

Ei(Θ) = JΘ −Hi (A.9)

with
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Ei(Θ) =





Ei(Θ ,ω2)
...

Ei(Θ ,ωN f )




∈ CNo(N f−1)×1, Hi =





Hi(ω2)
...

Hi(ωN f )




∈ CNo(N f−1)×1 (A.10)

and J ∈ CNo(N f−1)×(2Nm+3No) denoting the Jacobian matrix. Once the Jacobian matrix is com-

puted, eq. (A.9) can be solved by making use of the same strategy applied in Section A.1 in

order to guarantee the realness of Θ . By applying such strategy to eq. (A.9), the following

solution is obtained for Θ :





Re(Li)

Im(Li)

[AR]i
[BR]i
[CR]i





=
(
Re
(
JHJ

))−1
Re
(
JHHi

)
(A.11)

A.3. Estimation of the Modal Residuals with LSFD

A similar strategy can be applied to estimate the modal residues using the modal model in pole

residue form with enhanced upper and lower residual terms as in eq. (2.148). By making of this

model, the following equation error is obtained:

Eo(Θ ,ω) =
Nm

∑
r=1

[Res]ro
jω−λr

+
[Res]∗ro
jω−λ ∗r

+
[AR]o + jω [BR]o +( jω)2 [CR]o

d(ω)
−Ho(ω) (A.12)

with [Res]ro representing the oth row of the modal residual matrix corresponding to the rth mode

and Θ a row vector containing the unknown parameters:

Θ =
[
Re([Res])T

1o · · · Re([Res])T
Nmo Im([Res])T

1o · · · Im([Res])T
Nmo [AR]To [BR]To [CR]To

]T
∈ R(2Nm+3)×Ni

(A.13)

writing down eq. (A.12) for each frequency line f , yields:

Eo(Θ) = JΘ −Ho = 0 (A.14)

with Eo(Θ) and Ho given now by:
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Eo(Θ) =




Eo(Θ ,ω2)
...

Eo(Θ ,ωN f )


 ∈ C(N f−1)×Ni, Ho =




Ho(ω2)
...

Ho(ωN f )


 ∈ C(N f−1)×Ni (A.15)

and J ∈C(N f−1)×(2Nm+3) representing the Jacobian matrix. Since the parameters Θ are assumed

to be real coefficients, they are found by following the same strategy used to derive eq. (A.6),

yielding:





Re([Res])1o
...

Re([Res])Nmo

Im([Res])1o
...

Im([Res])Nmo

[AR]o
[BR]o
[CR]o





=
(
Re
(
JHJ

))−1
Re
(
JHHo

)
(A.16)
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B.1. Identification Results Obtained with PreGER and pLSCF

f1 = 0.27404±1.10×10−5Hz
ξ1 = 0.6062±4.01×10−3%.

f2 = 0.28953±5.43×10−6Hz
ξ2 = 0.4025±4.01×10−3%.

f3 = 0.52721±1.67×10−5Hz
ξ3 = 0.4758±3.17×10−3%.

f4 = 0.54367±2.27×10−5Hz
ξ4 = 0.3974±4.18×10−3%.

f5 = 0.54715±3.70×10−5Hz
ξ5 = 0.6752±6.76×10−3%.

f6 = 0.63082±1.67×10−5Hz
ξ6 = 0.4370±4.18×10−3%.

f7 = 0.65121±7.78×10−5Hz
ξ7 = 0.9962±1.19×10−2%.

f8 = 0.67691±6.06×10−5Hz
ξ8 = 0.7792±8.94×10−3%.

f9 = 0.69484±2.58×10−5Hz
ξ9 = 0.3562±3.71×10−3%.

f10 = 0.73036±4.95×10−5Hz
ξ10 = 0.7555±6.78×10−3%.

f11 = 0.85674±4.26×10−5Hz
ξ11 = 0.8735±4.96×10−3%.

f12 = 1.00082±2.04×10−5Hz
ξ12 = 0.6208±2.04×10−3%.

f13 = 1.276 Hz ξ13 = 0.329%. f14 = 1.318 Hz ξ14 = 0.343%. f15 = 1.392 Hz ξ15 = 0.293%. f16 = 1.510 Hz ξ16 = 0.475%.

f17 = 1.556 Hz ξ17 = 0.224%. f18 = 1.583 Hz ξ18 = 0.297%. f19 = 1.596 Hz ξ19 = 0.453%. f20 = 1.613 Hz ξ20 = 0.328%.

f21 = 1.670 Hz ξ21 = 0.637%. f22 = 1.758 Hz ξ22 = 0.457%. f23 = 1.815 Hz ξ23 = 0.513%. f24 = 1.880 Hz ξ24 = 0.499%.

Fig. B.1 – Natural frequencies, damping coefficients and the corresponding mode shapes of vibration of
the West slab experimentally identified in the range of 0-2 Hz using PreGER merging strategy and the
pLSCF technique.
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Appendix B

B.2. Identification Results Obtained with PoGER and SSI-COV

f1 = 0.2741Hz ξ1 = 0.497%. f2 = 0.2890Hz ξ2 = 0.372%. f3 = 0.5276Hz ξ3 = 0.219%. f4 = 0.5437Hz ξ4 = 0.210%.

f5 = 0.5464Hz ξ5 = 0.453%. f6 = 0.6309Hz ξ6 = 0.297%. f7 = 0.6512Hz ξ7 = 0.420%. f8 = 0.6767Hz ξ8 = 0.213%.

f9 = 0.6947Hz ξ9 = 0.871%. f10 = 0.7290Hz ξ10 = 0.218%. f11 = 0.8565Hz ξ11 = 0.450%. f12 = 1.0007Hz ξ12 = 0.479%.

f13 = 1.1952 Hz ξ13 = 0.507%. f14 = 1.2504 Hz ξ14 = 0.715%. f15 = 1.2776 Hz ξ15 = 0.173%. f16 = 1.3191 Hz ξ16 = 0.221%.

f17 = 1.3937 Hz ξ17 = 0.192%. f18 = 1.5114 Hz ξ18 = 0.278%. f19 = 1.5592 Hz ξ19 = 0.116%. f20 = 1.5853 Hz ξ20 = 0.177%.

f21 = 1.5961 Hz ξ21 = 0.260%. f22 = 1.6131 Hz ξ22 = 0.221%. f23 = 1.6696 Hz ξ23 = 0.323%. f24 = 1.7603 Hz ξ24 = 0.317%.

f25 = 1.8154 Hz ξ25 = 0.291%. f26 = 1.8752 Hz ξ26 = 0.230%.

Fig. B.2 – Natural frequencies, damping coefficients and the corresponding mode shapes of the West slab
experimentally identified in the range of 0-2 Hz using the PoGER approach and the SSI-COV technique.
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HIGH SPATIAL RESOLUTION OMA OF THE BRAGA STADIUM SUSPENSION ROOF

B.3. Identification Results Obtained with PoGER and pLSCF

f1 = 0.27387±1.07×10−5Hz
ξ1 = 0.4992±3.91×10−3%.

f2 = 0.28943±1.06×10−5Hz
ξ2 = 0.7470±3.68×10−3%.

f3 = 0.52734±1.36×10−5Hz
ξ3 = 0.4086±2.57×10−3%.

f4 = 0.54325±2.04×10−5Hz
ξ4 = 0.3937±3.75×10−3%.

f5 = 0.54745±3.75×10−5Hz
ξ5 = 0.7977±6.85×10−3%.

f6 = 0.63151±1.99×10−5Hz
ξ6 = 0.5653±3.16×10−3%.

f7 = 0.65086±2.72×10−5Hz
ξ7 = 0.3823±4.18×10−2%.

f8 = 0.67625±3.71×10−5Hz
ξ8 = 0.5344±5.48×10−3%.

f9 = 0.69517±2.11×10−5Hz
ξ9 = 0.3306±3.03×10−3%.

f10 = 0.72933±2.78×10−5Hz
ξ10 = 0.4826±3.81×10−3%.

f11 = 0.85814±3.37×10−5Hz
ξ11 = 0.7274±3.92×10−3%.

f12 = 1.00064±2.21×10−5Hz
ξ12 = 0.6359±2.21×10−3%.

f13 = 1.18955±1.24×10−4Hz
ξ13 = 0.4376±1.04×10−2%.

f14 = 1.19876±1.35×10−4Hz
ξ14 = 0.2424±1.13×10−2%.

f15 = 1.22813±1.04×10−4Hz
ξ15 = 0.2090±8.45×10−3%.

f16 = 1.24891±9.44×10−5Hz
ξ16 = 0.4775±7.56×10−3%.

f17 = 1.27599±4.65×10−5Hz
ξ17 = 0.2362±3.64×10−3%.

f18 = 1.27907±1.69×10−4Hz
ξ18 = 0.3289±1.32×10−3%.

f19 = 1.31228±1.35×10−4Hz
ξ19 = 0.4967±1.03×10−3%.

f20 = 1.31932±7.03×10−5Hz
ξ20 = 0.2634±5.33×10−3%.

f21 = 1.39205±3.30×10−5Hz
ξ25 = 0.2344±2.37×10−3%.

f22 = 1.51014±5.00×10−5Hz
ξ26 = 0.3417±3.31×10−3%.

f23 = 1.5579±4.60×10−5Hz
ξ23 = 0.2052±2.95×10−3%.

f24 = 1.58271±8.26×10−5Hz
ξ24 = 0.3069±5.22×10−3%.

f25 = 1.59599±7.13×10−5Hz
ξ25 = 0.4915±4.47×10−3%.

f26 = 1.61201±5.28×10−5Hz
ξ26 = 0.2932±3.28×10−3%.

f27 = 1.66968±1.57×10−4Hz
ξ27 = 0.7169±9.42×10−3%.

f28 = 1.75706±7.00×10−5Hz
ξ28 = 0.6306±3.98×10−3%.

f29 = 1.81710±8.59×10−5Hz
ξ29 = 0.4798±4.73×10−3%.

f30 = 1.87732±6.69×10−5Hz
ξ30 = 0.6046±3.56×10−3%.

Fig. B.3 – Natural frequencies and damping coefficients with their respective confidence bounds, and the
corresponding mode shapes of vibration of the West slab experimentally identified in the range of 0-2
Hz using the PoGER approach and the pLSCF technique.
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STATISTICS OF THE NATURAL FREQUENCIES AND DAMPING RATIOS MONITORED
OVER THE YEAR OF 2001

Tab. C.1 – Mean and standard deviation values of the natural frequencies and damping ratios estimated
with SSI-DATA, SSI-COV and pLSCF, and standard deviations of their uncertainties intervals estimated
with the pMLE-MM over the year of 2011.

MPE Technique Mode

Estimated Parameters Estimated Standard Deviations

µ f̂n (Hz) σ f̂n (Hz) µ
ξ̂n

(%) σ
ξ̂n

(%) µσ̂ f̂n
(Hz) σσ̂ f̂n

(Hz) µσ̂
ξ̂n

(%) σσ̂
ξ̂n

(%)
(
×103) (×10)

(
×104) (

×104) (
×102) (

×102)

SSI-DATA

1 0.27455 0.58 0.24518 1.57 0.18 0.26 0.65 0.96

2 0.29008 0.92 0.21625 1.49 0.09 0.13 0.31 0.45

3 0.52602 1.49 0.22809 1.32 0.29 0.47 0.55 0.89

4 0.54213 1.35 0.19270 1.06 0.35 0.37 0.64 0.68

5 0.55009 2.80 0.44480 1.88 2.25 2.96 4.07 5.35

6 0.63090 2.10 0.30324 1.49 0.36 0.41 0.57 0.65

7 0.65304 1.25 0.23983 1.17 0.49 0.60 0.75 0.92

8 0.67942 2.12 0.18420 1.20 0.37 0.46 0.54 0.68

9 0.69584 1.99 0.18314 1.04 0.68 0.82 0.98 1.18

10 0.73064 2.75 0.18119 1.35 0.33 0.38 0.45 0.52

11 0.86303 4.09 0.51886 3.17 1.59 1.25 1.84 1.44

12 1.00482 5.37 0.50148 2.71 0.54 0.60 0.54 0.60

SSI-COV

1 0.27456 0.58 0.23383 1.48 0.14 0.20 0.52 0.73

2 0.29007 0.93 0.23602 1.52 0.10 0.14 0.35 0.49

3 0.52605 1.51 0.34848 2.00 0.41 0.42 0.77 0.80

4 0.54216 1.35 0.23470 1.22 0.35 0.36 0.65 0.66

5 0.55019 2.92 0.40550 1.86 2.06 2.54 3.73 4.59

6 0.63088 2.11 0.31958 1.88 0.34 0.39 0.54 0.61

7 0.65299 1.23 0.21128 1.69 0.39 0.43 0.60 0.66

8 0.67938 2.14 0.20906 1.46 0.36 0.38 0.53 0.56

9 0.69581 2.00 0.17431 1.07 0.62 0.63 0.89 0.90

10 0.73059 2.76 0.12610 0.96 0.25 0.24 0.34 0.33

11 0.86222 4.36 0.43810 2.29 1.45 1.10 1.68 1.27

12 1.00445 5.49 0.45461 1.50 0.45 0.46 0.45 0.46

pLSCF

1 0.27457 0.59 0.28523 1.85 0.10 0.17 0.36 0.61

2 0.29007 0.93 0.21662 1.46 0.06 0.09 0.20 0.31

3 0.52614 1.51 0.27273 2.03 0.14 0.25 0.27 0.48

4 0.54222 1.35 0.22994 1.24 0.20 0.26 0.36 0.49

5 0.55029 2.96 0.43288 1.85 1.14 1.65 2.06 2.99

6 0.63084 2.11 0.33461 1.86 0.21 0.26 0.33 0.41

7 0.65323 1.31 0.27934 2.03 0.26 0.33 0.40 0.50

8 0.67954 2.15 0.20243 1.24 0.22 0.36 0.33 0.53

9 0.69585 2.02 0.18938 0.97 0.39 0.52 0.57 0.75

10 0.73061 2.75 0.20029 1.34 0.20 0.37 0.28 0.50

11 0.86217 4.36 0.40029 2.17 1.62 1.62 1.87 1.87

12 1.00437 5.41 0.45799 1.81 0.61 0.96 0.61 0.95
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MODAL PROPERTIES OF THE LATTICE TOWER STRUCTURE USED IN SIMULATION
EXAMPLES

Appendix D

MODAL PROPERTIES OF THE LATTICE

TOWER STRUCTURE USED IN

SIMULATION EXAMPLES

In this appendix, the modal properties of the lattice tower structure used in Chapters 2, 3 and

4 is presented. The exact natural frequencies, damping ratios and modal masses are presented

in Tab. D.1, whist the real modes are shown in Tab. D.2. The purpose of this appendix is to

allow for reproducibility of the identification results obtained throughout this thesis by other

researchers.
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MODAL PROPERTIES OF THE LATTICE TOWER STRUCTURE USED IN SIMULATION
EXAMPLES

Tab. D.1 – Natural frequencies, damping ratios and modal masses of the lattice tower structure used in
simulation examples.

Mode fn [Hz] ξn [%] mi [Kg]

1 1.2869 1.0 2608.8271
2 1.2937 1.0 2592.8286
3 2.2250 1.0 281.0965
4 3.8712 1.0 1431.1279
5 3.8932 1.0 1410.8619
6 6.1745 1.0 54.2551
7 14.3476 1.0 14.2185
8 14.4828 1.0 19.2943
9 16.1054 1.0 48.3293
10 16.1452 1.0 48.2533
11 20.2652 1.0 11.7349
12 21.9314 1.0 1620.9371
13 26.4391 1.0 5.0991
14 26.6597 1.0 5.1761
15 38.5221 1.0 5.2109
16 38.7803 1.0 6.0801
17 45.6078 1.0 341.6011
18 46.0007 1.0 4.1369

Tab. D.2 – Real modes of the lattice tower structure used in simulation examples.

DOF/Mode 1 2 3 4 5 6

1 0.4468 -0.6874 0.3127 0.3392 0.6939 0.1024
2 -0.6972 -0.4527 -0.1825 -0.6996 0.3094 -0.0583
3 -0.1535 0.0972 0.6919 0.1836 0.1287 -0.0468
4 0.4489 -0.6965 0.0014 0.3186 0.6843 0.0022
5 -0.7059 -0.4370 0.3573 -0.7115 0.3235 0.1151
6 0.1269 0.1106 0.6946 -0.1849 0.0980 -0.0492
7 0.4530 -0.7100 -0.3104 0.3150 0.7140 -0.0984
8 -0.6964 -0.4554 -0.1829 -0.6918 0.3326 -0.0586
9 -0.0022 -0.1295 0.7165 0.0280 -0.1924 -0.0271

10 0.6378 -0.9859 0.1808 -0.4521 -0.9673 -0.1968
11 -0.9953 -0.6416 -0.1021 0.9861 -0.4612 0.1132
12 -0.0783 0.0693 0.9832 0.2200 0.2015 -0.9721
13 0.6400 -0.9925 0.0078 -0.4557 -0.9801 -0.0036
14 -1.0000 -0.6303 0.1976 1.0000 -0.4387 -0.2217
15 0.0457 0.0748 0.9851 -0.1705 0.1656 -0.9768
16 0.6426 -1.0000 -0.1654 -0.4619 -1.0000 0.1901
17 -0.9952 -0.6422 -0.1022 0.9853 -0.4654 0.1135
18 -0.0115 -0.0249 1.0000 0.0530 -0.1247 -1.0000
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