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Abstract 

 

The present Thesis belongs to the field of Computer Vision, more 

specifically segmentation and analysis of objects represented in images. While 

Computer Vision seeks to make useful decisions about real objects and scenes 

based on images through the construction of artificial systems, object 

segmentation and analysis aims to construct capable models to efficiently 

characterize objects and perform segmentation in new images. 

This Thesis aims to present computational algorithms for object 

segmentation and analysis in images suitable for application on objects such as the 

human vocal tract and silhouette. 

The main objective for studying the vocal tract in images is to better 

understand the vocal tract morphology and the involved movements during speech 

production of the European Portuguese language. Consequently, methodologies 

based on statistical deformable models, namely active shape models and active 

appearance models, were developed to represent the vocal structures from a global 

perspective in magnetic resonance images. 

The suggested models made it possible to obtain a realistic simulation of the 

vocal tract during speech production as well as efficiently perform segmentation 

of vocal tract in new images. Furthermore, the use of such image analysis 

techniques can allow for obtaining quantitative measures with higher precision 

and are particularly advantageous when speech therapists and imaging specialists 

need to analyze a large volume of data. 

Regarding the human silhouette analysis, four background subtraction 

models were studied to segment moving silhouettes in image sequences , with 

different levels of complexity. In addition, and following the same methodology 

used for modeling the vocal tract, an active silhouette model was also developed, 

using information about the contour of the silhouette together with anatomical 

stick points and combining the shape model with its gray level profiles with the 

purpose of segmenting the modeled silhouettes in new images. 
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The results obtained from the application of the background subtraction 

models in four different datasets suggested that the best model depends on the 

complexity of the images. Moreover, the good results obtained through the use of 

the active silhouette model built to perform human shape segmentation in new 

images strongly suggests that this type of deformable model can be successfully 

used in this task. The main contribution accomplished regarding the modeling of 

human silhouettes in images is that it allows for building an active shape model 

that gathers the necessary information independent of the walking direction of the 

subject. 

In conclusion, the identification and analysis of human structures are 

complex tasks, since their shapes are not constant and vary through time; 

however, techniques of Computer Vision and objects modeling can assist in their  

achievement as is demonstrated throughout this Thesis. To conclude, the 

application of the developed models in images allows realistic simulations of the 

human vocal tract and silhouette, making possible their competent segmentation 

and characterization. 

 

Keywords: Image Processing and Analysis, Human Vocal Tract, Human 

Silhouette, Object Segmentation, Object Modeling, Statistical Modeling. 
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Sumário 

 

A presente Tese pertence ao domínio da Visão por Computador, mais 

especificamente à segmentação e análise de objetos representados em imagens. 

Enquanto a Visão Computacional procura efetuar decisões sobre objetos reais e 

cenas baseado em imagens através da construção de sistemas artificiais, a 

segmentação e análise de imagem procura construir modelos capazes de 

caracterizar eficientemente objetos e efetuar segmentação em novas imagens. 

Esta Tese apresenta algoritmos computacionais para segmentação e análise 

de imagens para aplicação em estruturas como o tracto vocal e a silhueta humana. 

O objetivo do estudo do tracto vocal em imagens advém da necessidade de 

melhor compreender a morfologia do tracto vocal assim como os movimentos 

envolvidos particularmente na articulação da fala no Português Europeu. 

Consequentemente, foram desenvolvidas metodologias para representação global 

das estruturas vocais através de imagens obtidas por ressonância magnética, 

baseadas em modelos estatísticos deformáveis, nomeadamente modelos de forma 

e aparência ativa. 

Os modelos desenvolvidos permitiram simular de forma realista o tracto 

vocal durante a articulação da fala assim como efetuar a sua segmentação em 

novas imagens. Para além disso, a utilização de tais técnicas de análise de imagem 

permitiram a obtenção de medidas quantitativas de maior exatidão e são 

particularmente vantajosas quando terapeutas da fala e imagiologistas necessitam 

de analisar grandes volumes de dados. 

Em relação à análise da silhueta humana, foram estudados quatro métodos 

de subtração de fundos para segmentação de objetos em movimento em 

sequências de imagens com diferentes níveis de complexidade. Foram ainda 

desenvolvidos modelos de silhueta ativos, que utilizam a informação do contorno 

da silhueta conjuntamente com pontos anatómicos, com o objetivo de segmentar 

as silhuetas modeladas em novas imagens, através da combinação do modelo da 

forma com os seus perfis de cinzento. 



Sumário  v 

Os resultados obtidos pela aplicação dos métodos de sub tração de fundos 

em quatro bases de imagens distintas sugerem que o modelo ideal depende 

fortemente da complexidade da imagem em causa. Os bons resultados obtidos 

pela aplicação dos modelos de silhueta ativos para segmentação de silhuetas 

humanas em novas imagens demostram que este tipo de modelos deformáveis 

pode ser utilizado nesta tarefa. O principal resultado obtido em relação à 

modelação da silhueta humana através de imagens concerne ao facto do modelo 

sugerido permitir construir um modelo da forma ativo que reúne a informação da 

silhueta independentemente da direção do movimento do sujeito. 

Em conclusão, a análise automática do tracto vocal e da silhueta humana em 

imagens são tarefas complexas, pois estas estruturas apresentam formas 

complexas bem como variáveis; no entanto, a Visão por Computador e a 

modelação de objetos podem ser utilizadas de forma a auxiliar tais tarefas, como 

se demonstra ao longo desta Tese. Assim, os modelos desenvolvidos permitem 

simular a forma do tracto vocal e a silhueta humana assim como efetuar com 

sucesso a segmentação e caracterização de tais estruturas em novas imagens. 

 

Palavras-Chave: Processamento e Análise de Imagem, Tracto Vocal 

Humano, Silhueta Humana, Segmentação de Objetos, Modelação de Objetos, 

Modelação Estatística. 
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1  

Introduction 

 

The domain of Computer Vision seeks to make useful decisions about real 

objects and scenes based on images. It is a multidisciplinary domain of science 

and technology that depends on the information taken from images for designing 

artificial systems that aim to simulate human vision [Ballard et al. 1982]. 

The evolution of this domain is strongly influenced by the need for 

identifying, tracking and analyzing objects in an image or a sequence of images. 

In order to do this, it is necessary to perform tasks such as object modeling, 

segmentation, tracking and analysis [Szeliski 2010]. Segmentation and analysis of 

objects represented in images are two of the more studied and developed tasks in 

computer vision, wherein various methodologies have been used to build models 

capable of efficiently characterizing objects. 

In this Thesis, particular attention is given to the use of deformable models 

in image analysis, which include segmentation techniques such as template 

matching, active contours, deformable templates, statistical methods, level set 

methods and physical methods [Zhang 2001; Tavares et al. 2009]. 

Template matching consists of comparing the template images with the new 

image and searching for similarities between the two images [Schalkoff 1989; 

Carvalho et al. 2005]. For example, in [Carvalho et al. 2005] a template of a 

human eye is used to segment the eye into new images through image correlation. 
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The use of deformable models in image analysis and interpretation was first 

introduced by [Kass et al. 1988], in which snakes are presented. A snake is an 

active contour that adjusts to a given object through a combination of internal and 

external forces, where the internal forces translate the flexibility and stretch, and 

the point at which the external forces pull the contour towards relevant areas of 

the image. The adjustments of the active contour are stopped when a minimal 

energy state is reached, typically when it finds the object border. 

Other types of deformable models are deformable templates, which use 

templates described by parametric functions [Carvalho et al. 2007]. The 

geometrical templates are defined by parameters which describe the expected 

geometrical shape of the object and interact dynamically with the image during 

the segmentation process, similarly as with snakes. For instance, in [Yuille et al. 

1992], the authors build a model to detect eyes in images, where the eye is 

represented by a circle describing the iris, two parabolic curves describing eyelids 

and also the intensity of these regions. The combination of all these characteristics 

typically translates into a model with high number of parameters, making the 

construction of deformable templates complex whenever a new object type needs 

to be modeled [Tien et al. 2000]. 

Statistical models are also included in the category of deformable models. 

An example of such modeling technique is given in [Carvalho et al. 2007] to 

identify skin areas in an image. For this, sample images of skin are used to build a 

statistical model for posterior skin segmentation that indicates the probability of 

the pixels of the new image to be associated with human skin. Another example of 

statistical modeling are the Point Distribution Models (PDMs) that were initially 

proposed by [Cootes, Taylor, et al. 1992] to model objects based on its statistical 

analysis. These models are obtained through the analysis of the statistics of the 

coordinates of the landmarks that represent the deformable object under study: 

after aligning the object shapes, a principal component analysis is made and the 

mean shape of the object and the main modes of its variation are obtained. 

Active Shape Models [Cootes and Taylor 1992] and Active Appearance 

Models [Cootes et al. 1998] use PDMs to segment and recognize the modeled 

objects in new images. Both models use a combination of the statistical shape 

model with the gray levels of the object’s landmarks. 
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The idea of considering physical constraints in object modeling has been 

suggested and used by several authors. In [Pentland et al. 1991], the authors 

present physical-based solution for modeling objects. The approach is based on 

the finite element method and parametric solid modeling using implicit functions. 

Also in [Gonçalves et al. 2009] a physical approach based on the finite element 

method is used to segment an object and simulate its deformation. For this, an 

initial contour is manually defined that automatically evolves until it converges to 

the border of the desired object. 

Another possibility to perform image segmentation of objects is to use level 

set methods, introduced by [Osher et al. 1988]. The main idea behind these 

methods is to represent the moving contour using a signed function whose zero 

corresponds to the actual contour. Then, by tracking the zero level set of the 

function adopted in the modeling it is possible to derive a similar flow for the 

implicit surface. A survey of algorithms that combine statistical techniques with 

level set methods can be found in [Cremers et al. 2007]. For example, in [Ma et al. 

2013] a level set based algorithm is proposed to reconstruct the 3D shape of the 

bladder using cross-sectional boundaries in magnetic resonance images. 

The analysis of objects in images has been encouraged by the improvement 

of human/machine interaction in several applications, covering fields from 

industrial inspection, optical character recognition (OCR), medical imaging, 

surveillance or fingerprint recognition and biometrics. In industrial inspection it is 

used mostly for quality control purposes or defect recognition [Agin 1980; Klein 

et al. 1994; Campos et al. 2010]. Regarding OCR, examples of applications 

include reading handwritten postal codes on letters and automatic number plate 

recognition [Matan et al. 1992; Fahmy 1994; Volna et al. 2013]. Applications in 

medical imaging include performing image registration [Ayache 1998; Damas et 

al. 2011]. Computer Vision can also aid in the designing of surveillance systems 

for detecting and monitoring intruders or analyzing highway traffic [Sage et al. 

1999; Norouznezhad et al. 2008]. Fingerprint recognition and biometrics has been 

used extensively for automatic access authentication and forensic applications 

[Junta Doi et al. 2004; Garibotto 2009; Nadipally et al. 2013]. 
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1.1. Objectives 

 

The subject of object analysis in Computer Vision has been developing in 

recent decades; especially in the domains of the analysis of objects in medical 

images and the human body, two of its most active fields. 

 

The identification and analysis of human structures are complex tasks, since 

their shapes are not constant and vary through time; however, techniques of 

Computer Vision and objects modeling can assist in their achievement as one aim 

to demonstrate throughout this Thesis. 

 

This Thesis is dedicated to developing computational algorithms for object 

segmentation and analysis in images. The human vocal tract and silhouettes were 

the objects selected to be analyzed in this Thesis. Hence, the objectives defined in 

this project included: 

 Review the existing algorithms for image analysis used to characterize 

and segment the human vocal tract and the human silhouette; 

 Analyze the need to develop methods for application in objects such as 

the vocal tract and human silhouette and define suitable clues that can be 

used to enhance the segmentation; 

 Develop new computational algorithms for characterizing such objects 

in images, particularly highlighting techniques based on the modeling of 

the geometrical shape of  the object as well as its behavior; 

 Test the developed algorithms for segmenting the objects in new images 

and analyze the segmentation results, both qualitatively and 

quantitatively; compare the algorithms with existing ones and find the 

positive aspects and drawbacks of these algorithms. 
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1.2. Organization of the Thesis 

 

After this introduction, in Chapter 2 the state-of-the-art of computational 

algorithms for image analysis used for studying the human vocal tract and human 

motion analysis are reviewed. A brief description and explanation are provided for 

the vocal tract anatomy and the most common imaging techniques used to acquire 

images of the complete vocal tract. The most promising methods used to represent 

its shape, including a summary of speech production studies in various languages 

available at the moment are also provided as well as the importance of vocal tract 

modeling. Regarding application on human motion analysis, the most important 

related research is presented, together with a description of the methodologies 

used for human detection, tracking and understanding; existing applications and 

existing datasets are also referred to and challenges are pointed out. 

Chapter 3 presents the developed methodology to segment the shape of the 

vocal tract in new images for speech production assessment. A description is 

provided for the sounds of European Portuguese language and Point Distribution 

Models, Active Shape Models and Active Appearance Models. The image 

datasets and the Magnetic Resonance Imaging protocols used to build the models 

are also described. The segmentation results of the various active shape models 

developed for the study of the shape and appearance of the vocal tract shape are 

also presented and discussed, as well as an example of their application to actual 

studies. 

The methodologies developed to segment silhouettes from images 

sequences are reported in Chapter 4. Four different background subtraction 

models are addressed in this chapter and an active silhouette model built is 

presented. Different image sequences were used for testing the developed 

methods and quantitative results are presented and discussed. 

Finally, in Chapter 5 the main conclusions are drawn and suggestions for 

future research are given. 
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1.3. Contributions 

 

Throughout this project, computational algorithms for image analysis were 

developed for application on human vocal tract and silhouettes. During this 

period, one book chapter was published and another was accepted  for publication; 

six papers derived from the Thesis have been published in peer-reviewed journals; 

additionally, four papers and eight abstracts have been included in conference 

proceedings. In addition one symposium was organized during this Thesis. 

The main contributions of this Thesis can be summarized as the following: 

 A comprehensive review of the current computational algorithms for 

image analysis that have been used for the study of the human vocal 

tract during speech production and for the study of human motion; 

 The development of two methodologies based on deformable models, 

namely active shape models and active appearance models, that allow 

for characterizing the shape of the vocal tract for speech production 

assessment of European Portuguese language in magnetic resonance 

images; 

 The application of the developed methods for the modeling of the vocal 

tract, a study of the best parameters to use in each model depending on 

the quality of the images as well as the qualitative and quantitative 

evaluation of the segmentation results by using the models referred to; 

 A comparison between the performances of active shape models and 

active appearance models and discussion on the advantages and 

disadvantages of each of these models; 

 The study of models using images with quality 1.5T and 3T (super ior) 

and posterior evaluation and comparison of the segmentation results; 

 Presentation of a realistic use case of application of the previous 

methodology that helps imaging experts and speech therapists by 

effectively reducing the amount of time spent on manually segmenting 

the vocal tract in new images; 

 The study of four methodologies based on background subtraction 

models to perform segmentation of the human silhouette in new images; 



Introduction  7 

 

 

 The development of a methodology based on active shape models for 

characterizing the silhouette of a human subject from an image 

sequence, which can be used later to perform their segmentation in new 

images; in addition to information on the contour of the silhouette, the 

developed method also integrates information on specific anatomical 

points such as the position of the head, shoulders, elbows, right and left 

hip positions, knees and feet; 

 An application of the previously mentioned methods for the modeling of 

the human silhouette in four different datasets, a study of the best 

parameters to use in each model depending on the quality of the images 

as well as the qualitative and quantitative evaluation of the segmentation 

results; 

 A comparison between the performances of the models and discussion 

on the advantages and disadvantages of using each model built. 

 

1.4. List of Publications 

 

In the scope of this Thesis, the following publications were produced: 

 

1.4.1. Book Chapters 

 

 M.J.M. Vasconcelos, J.M.R.S. Tavares. Human Motion Segmentation 

using Active Shape Models. Accepted in Computational and 

Experimental Biomedical Sciences: Methods & Applications, Lecture 

Notes in Computational Vision and Biomechanics, Springer, October 

2013. 

 S.M. Rua Ventura, M.J.M. Vasconcelos, D.R.S. Freitas, I.M.A.P. Ramos, 

J.M.R.S. Tavares. Speaker-specific articulatory assessment and 

measurements during Portuguese speech production based on Magnetic 
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Resonance Images. In Language Acquisition, ISBN: 978-1-61209-569-1, 

Nova Science Publishers, Inc., pp. 117-138, May 2012. 

 

1.4.2. Journal Articles 

 

 M.J.M. Vasconcelos, S.M. Rua Ventura, D.R.S. Freitas, J.M.R.S. 

Tavares. Inter-speaker speech variability assessment using statistical 

deformable models from 3.0 Tesla magnetic resonance images. 

Proceedings of the Institution of Mechanical Engineers, Part H: Journal 

of Engineering in Medicine, ISSN: 0954-4119 (print) - 2041-3033 

(online), Professional Engineering Publishing, DOI: 

10.1177/0954411911431664, Volume 226, Issue 3, pp. 185-196, March 

2012. 

 M.J.M. Vasconcelos, S.M. Rua Ventura, D.R.S. Freitas, J.M.R.S. 

Tavares. Towards the Automatic Study of the Vocal Tract from Magnetic 

Resonance Images. Journal of Voice, ISSN: 0892-1997, Elsevier, DOI: 

10.1016/j.jvoice.2010.05.002, Vol. 25, No. 6, pp. 732-742, November 

2011. 

 M.J.M. Vasconcelos, S.M. Rua Ventura, D.R.S. Freitas, J.M.R.S. 

Tavares. Using Statistical Deformable Models to Reconstruct Vocal 

Tract Shape from Magnetic Resonance Images. Proceedings of the 

Institution of Mechanical Engineers, Part H: Journal of Engineering in 

Medicine, ISSN: 0954-4119 (print) - 2041-3033 (online), Professional 

Engineering Publishing, DOI: 10.1243/09544119JEIM767, Volume 224, 

Number 10 / 2010, pp. 1153-1163, 2010. 

 J.M.R.S. Tavares, F.J.S. Carvalho, F.P.M. Oliveira, I.M.S. Reis, MJ.M. 

Vasconcelos, P.C.T. Gonçalves, R.R. Pinho, Z. Ma. Computer Analysis 

of Objects’ Movement in Image Sequences: Methods and Applications. 

International Journal for Computational Vision and Biomechanics, 

ISSN: 0973-6778, Serials Publications, Vol. 2, No. 2, pp. 209-220, July-

December 2009. 
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 M.J.M. Vasconcelos, J.M.R.S. Tavares. Segmentation Methods for 

Human Motion Analysis from Image Sequences. ICCES, ISSN: 1933-

2815, Tech Science Press, DOI: 10.3970/icces.2009.010.003, Vol. 10, 

No. 1, pp. 3-4, 2009. 

 M.J.M. Vasconcelos, J.M.R.S. Tavares. Methods to Automatically Build 

Point Distribution Models for Objects like Hand Palms and Faces 

Represented in Images. Computer Modeling in Engineering & Sciences, 

DOI: 10.3970/cmes.2008.036.213, Tech Science Press, ISSN: 1526-1492 

(print) - 1526-1506 (online), vol. 36, no. 3, pp. 213-241, 2008. 

1.4.3. Conference Papers 

 

 S. R. Ventura, M. J. M. Vasconcelos, D. R. Freitas, I. M. Ramos, J.M.R.S. 

Tavares. Speech Articulation Assessment Using Dynamic Magnetic 

Resonance Imaging Techniques. In VipIMAGE 2011 - III ECCOMAS 

Thematic Conference on Computational Vision and Medical Image 

Processing, Real Marina Hotel & Spa, Olhão, Algarve, Portugal, 12-14 

October 2011, ISBN: 978-0-415-68395-1, e-ISBN: 978-0-203-85830-

1, Taylor and Francis, pp. 225-231. 

 M.J.M. Vasconcelos, S.R. Ventura, J.M.R.S. Tavares, D. R. Freitas. 

Analysis of Tongue Shape and Motion in Speech Production using 

Statistical Modeling. In SEECCM 2009 - 2nd South-East European 

Conference on Computational Mechanics, ISBN: 978-960-254-683-3, pp. 

96-103., 22-24 June 2009, Island of Rhodes, Greece. 

 M.J.M. Vasconcelos, J.M.R.S. Tavares. Métodos de Segmentação de 

Imagem para Análise da Marcha. In 3º Congresso Nacional de 

Biomecânica, ISBN: 978-989-96100-0-2, pp. 563-564, Instituto 

Politécnico de Bragança, Bragança, Portugal, 11-12 Fevereiro 2009. 

 M.J.M. Vasconcelos, J.M.R.S. Tavares. Human Motion Analysis: 

Methodologies and Applications. In CMBBE 2008 - 8th International 

Symposium on Computer Methods in Biomechanics and Biomedical 

Engineering, 6 pag., Porto, Portugal, 27th February-1st March 2008. 
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1.4.4. Conference Abstracts 

 

 M.J.M. Vasconcelos, J.M.R.S. Tavares. Human Motion Segmentation 

using Active Shape Models. In ICCEBS2013 - International Conference 

on Computational and Experimental Biomedical Sciences, 1 pag., Hotel 

Marina Atlântico, Ponta Delgada, S Miguel Island, Azores, October 20-

22, 2013. 

 M.J.M. Vasconcelos, J.M.R.S. Tavares. Segmentation Methods for 

Human Motion Analysis from Image Sequences. In colloquium 511 - 

Biomechanics of Human Motion, New Frontiers of Multibody, Techniques 

for Clinical Applications, pp.19, University of the Azores, Ponta Delgada, 

Azores, Portugal, March 9-12, 2011. 

 M.J.M. Vasconcelos, S.M. Ventura, D.R.S. Freitas, J.M.R.S. Tavares. 

Modelling and Segmentation of the Vocal Track during Speech 

Production by using Deformable Models in Magnetic Resonance Images. 

In 6th World Congress on Biomechanics, pp. 538, Singapore Suntec 

Convention Centre, 1-6 August 2010. 

 M.J.M. Vasconcelos, S.M. Rua Ventura, D.R.S. Freitas, J.M.R.S. 

Tavares. Segmentation of the Vocal Tract in Magnetic Resonance Images 

using Deformable Models. In ICCES'10 - International Conference on 

Computational & Experimental Engineering and Sciences, 28 March - 1 

April 2010, Las Vegas, USA. 

 J.M.R.S. Tavares, M.J.M. Vasconcelos, R.R. Pinho. Motion Tracking in 

Images based on Stochastic Filters and Optimization. In CMBBE2010 - 

9th International Symposium on Computer Methods in Biomechanics and 

Biomedical Engineering, ISBN: 978-0-9562121-3-9, Arup, 1 pag., Westin 

Hotel, Valencia, Spain, 24-27 February, 2010. 

 M.J.M. Vasconcelos, J.M.R.S. Tavares. Segmentation Methods for 

Human Motion Analysis from Image Sequences. In ICCES'09 - 

International Conference on Computational & Experimental Engineering 

and Sciences, ISBN-10: 0-9717880-9-X, ISBN-13: 978-0-9717880-9-1, 

Tech Science Press, pp. 141-142, 8-13 April 2009, Phuket, Thailand. 
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 M.J.M. Vasconcelos, J.M.R.S. Tavares. Methodologies for Human 

Detection in Image Sequences. In 3DMA-'08 - 10th Meeting of the 

technical group on '3D Analysis of Human Movement' of the International 

Society of Biomechanics, 2 pag., Santpoort-Amsterdam, the Netherlands, 

October 28th - 31st, 2008. 

 M.J.M. Vasconcelos, J.M.R.S. Tavares Image Segmentation for Human 

Motion Analysis: Methods and Applications. In 8th. World Congress on 

Computational Mechanics (WCCM8) / 5th. European Congress on 

Computational Methods in Applied Sciences and Engineering 

(ECCOMAS 2008), ISSN: 978-84-96736-55-9, 2 pag., Venice, Italy, June 

30 - July 5, 2008. 

 

1.5. Organization of Scientific Events 

 

During this PhD project, the following symposium was organized: 

 

 J.M.R.S. Tavares. Y. Zhang, M.J.M Vasconcelos. Image Processing and 

Analysis. Symposium within the International Conference on 

Computational Experimental Engineering & Sciences (ICCEES) 2009, 

Phuket, Thailand, April 2009. 
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2  

Image Analysis of the Human  

Vocal Tract and Silhouette 

 

The task of finding and identifying objects in an image is trivial for humans, 

despite the fact that the object image can vary depending on its viewpoint or size. 

Even if the object is occluded or the image quality is low, humans can still easily 

recognize it. It is a natural task that we are prepared for from the moment we are 

born. 

Computer vision studies how to reconstruct, interpret and understand a 3D 

scene from its 2D images in terms of the properties of the objects present in the 

scene [Schalkoff 1989]. Therefore, the ultimate goal of computer vision is to 

model and replicate human vision using computational algorithms at different 

levels. For this, it is necessary to combine the knowledge of distinct fields such as 

computer sciences, electrical engineering, mathematics and biology in order to 

understand and simulate the human vision system [Szeliski 2010]. 

In addition, the ability to extract points from an image that can characterize 

an object in an image or image sequences is of extreme importance for the 

computer vision field. These characteristics may involve many tasks in image 

analysis such as object detection, shape recognition, image registration and object 

understanding. Motivated by its wide range of applications, object analysis has 

been evolving considerably over recent decades, with various examples of 
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applications found in medical imaging, human gait analysis or surveillance 

systems [Umbaugh 2010]. 

Considering this background, this Thesis focuses on the development of 

computer algorithms for image analysis. Particular attention is given to two 

applications: the human vocal tract and human motion. Therefore, this chapter is 

dedicated to reviewing the state-of-the-art of computational algorithms for image 

analysis that have been used for both applications. 

Regarding the subject of the vocal tract, presented throughout the first 

section of this chapter, the structure is as follows. The vocal tract anatomy will be 

reviewed, followed by a review of the imaging techniques used to obtain the 

picture of the complete vocal tract. Then, models that have been used to represent 

the shape of the vocal tract are described, followed by a summary of speech 

production studies that have been developed in the various languages. The section 

ends with some examples of the importance of vocal tract modeling. 

The research available on the subject of human motion analysis will be 

described in the second section. The most current research is presented, followed 

by the methodologies used to study motion detection. Next, the techniques 

developed for human motion tracking are described. Current understanding of 

motion, along with multiple applications in human analysis is addressed next and 

the existing datasets are referred to. Finally, the challenges that human motion 

studies still have to overcome are pointed out. 

 

2.1. Vocal Tract 

 

Verbal communication is the most common, familiar and frequently used 

form of human interaction, which results from the organized and synchronized 

work of a set of anatomic organs. The articulation is a result of the activity of a set 

of organs: the vocal tract that modifies their position and shape during air 

expulsion (expiration), producing different sounds and consequently, distinct 

acoustic representations. 
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Since the beginning of studies of this nature, the process of speech 

production has attracted human interest aiming at reaching a deeper understanding 

and modeling of all the mechanisms involved by taking both morphological and 

speech acoustic aspects into consideration. The main anatomic aspects and the 

physiology of the vocal tract are common to all individuals. However, the 

mechanism engaged in human speech production is complex and unique due to 

the variety of anatomical structures that compose the vocal tract, implying that 

any computational modeling developed needs to be flexible so as to permit 

accurate individual characterizations [Stone 1991; Benesty et al. 2008]. 

 

Two different approaches have been used to determine the shape of the 

vocal tract: direct methods based on geometrical measurements of the vocal tract; 

and indirect methods based on acoustic inversion [Ball et al. 2008]. Among the 

direct measurement methods, several imaging methods have been used to obtain a 

complete picture of the vocal tract, like X-ray Radiography, Computed 

Tomography or Magnetic Resonance Imaging [Thimm et al. 1999; Ventura et al. 

2009; Bakhshaee et al. 2013]. Indirect methods, in contrast, determine the vocal 

tract shape through acoustic data, either from a speech signal or from the acoustic 

response of the vocal tract. As image analysis is the basis of this Thesis, this 

dissertation will mainly focus on works based on direct approaches. 

 

By assembling the former facts, it is straightforward that the study of the 

speech production is a multidisciplinary subject. To name a few, it involves 

subjects like: medicine, with the anatomic and functional study of the vocal tract 

organs; engineering, particularly informatics with the construction of the vocal 

tract models for speech and acoustics analysis; medical imaging, with the 

improvement and application of computational image techniques that can be used 

in the study of the vocal tract during speech production; phonetics, in the study of 

the production and perception of speech and sounds; and speech therapy, with the 

assessment of anatomic and physiological aspects related to communication 

disorders, language and speech [Beautemps et al. 1995; Baer et al. 1991; Apostol 

et al. 1999]. 
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2.1.1. Anatomy 

Various organs play important roles in the production of numerous speech 

sounds, functioning in an organized, i.e. articulated, manner in order to change the 

shape and length of a set of air cavities - the vocal tract. Most of these organs, 

named articulators, are soft-tissues that execute active movements during speech 

production, such as the lips, tongue and velum [Benesty et al. 2008; Ventura 

2012]. 

Sagittal data is particularly useful in the study of the entire vocal tract 

anatomy [Ventura et al. 2010], demonstrating the main aspects of the shape and 

positions of some articulators, Figure 2.1. The tongue is a large muscular organ 

covered by mucous membrane, located on the floor of the mouth, which is 

attached by muscles to the hyoid bone, mandible, styloid processes, and pharynx. 

Besides its key role in mastication and swallowing, the tongue has an important 

function in speech production because it is the articulator with the most mobility 

and flexibility. Its main mass is composed of a set of muscles, which permits the 

elongation and constriction of the entire tongue or of specific parts allowing the 

articulation of sounds. The tongue’s structure presents a tip, which usually rests 

against the incisors, and margin, body, dorsum, inferior surface and root.  

 

 

Figure 2.1 – Example of an MR sagittal slice 

demonstrating the vocal tract organs 

(from  [Ventura, Freitas, et al. 2011]). 
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2.1.2. Imaging Techniques 

 

Imaging techniques are methods that allow for obtaining an image of the 

interior of the vocal tract, and greater understanding of the positions and 

movements of the vocal tract organs [Stone 1991]. Two types of imaging 

techniques exist: structural, where the image of the structures is obtained; and 

tracking, where tracks are attached to important points of the vocal tract. 

Examples of structural imaging techniques are X-ray Radiography, 

Computed Tomography (CT) and Magnetic Resonance Imaging (MRI), whereas 

tracking techniques include X-ray Microbeam and Electromagnetic 

Articulography (EMA) [Ball et al. 2008]. 

 

Radiography is a classical reference technique to study speech production. 

Some years after the discovery of X-rays in 1895, radiographic images of the 

upper vocal tract were taken by phoneticians [Harshman et al. 1977]. Since then, 

many techniques have been developed, from still pictures to video. 

The advantages of using such an imaging technique include the possibility 

of obtaining the full sagittal view of vocal tract articulators during running speech 

with optimal temporal resolution, about fifty images per second. However, due to 

ethical concerns of the potential side effects of radiation exposure inflicted on the 

examiners, X-ray imaging technology is now rarely practiced [Xue et al. 2006]. 

Another limitation of this technique is related to the fact that volumetric 

information cannot be obtained, since X-ray can only take plain images of the 

speech mechanisms [Xue et al. 2006]. 

Nonetheless, studies have been developed using x-ray imaging, but they rely 

on existing images and databases previously acquired. The ATR X-ray film 

database is the largest X-ray database available for speech research [Munhall et al. 

1995], with 25 different films of 55 minutes in total, it offers nearly 100,000 

images. Other cineradiographic databases exist, such as the French database 

[Arnal et al. 2000], developed by the Strasbourg Institute of Phonetics and the 

Grenoble Institute of Speech Communication. Research by  [Thimm et al. 1999; 
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Höwing et al. 1999; Fontecave et al. 2005; Fontecave Jallon et al. 2009] are 

examples of studies that combine x-ray images to comprehend speech production 

phenomena. 

 

Another imaging technique used to acquire shape information about the 

vocal tract is Computed Tomography [Perrier et al. 1992; Inohara et al. 2010; 

Bakhshaee et al. 2013]. This imaging technique allows making the distinction 

between bones, soft tissues and air, but does not allow for discriminating different 

soft tissues. Moreover, the scanning speed of image acquisition is much higher 

than MRI. On the other hand, it has the serious disadvantage of requiring 

significant ionizing radiation doses, and for this reason, few studies adopt this 

imaging technique. 

 

From the imaging modalities that have been used to study the vocal tract’s 

shape and articulators, MRI has been the most commonly accepted. Its key 

advantages include the quality and resolution of soft-tissues and the use of non-

ionizing radiation [Avila-Garcia et al. 2004; Engwall 2003]. In addition, it allows 

for morphologic measurements in static as well as dynamic studies [Avila-Garcia 

et al. 2004; Engwall 2003]. Its main drawback is that a supine position is 

generally required that might interfere with normal position of the vocal tract 

during speech [Engwall 2000a]. 

Due to the lengthy data acquisition time of the early MR imaging systems, 

the first studies were restricted to vowels and some consonants [Baer et al. 1991; 

Narayanan et al. 1995]. The first comprehensive body of dimensional data on the 

vocal tract employing MR technology was presented by [Baer et al. 1987; Baer et 

al. 1991]. Another study [Crary et al. 1996] describes a dynamic MRI technique 

that offers several promising features for studying the configuration of the vocal 

tract. 

With cutting-edge MR improvements, a proper 3D description on the vocal 

tract geometry of a speaker can be reached, both in terms of good image contrast 

and temporal resolution. Also, with the emerging development of rapid imaging 

techniques, such as synchronized sampling methods [Bresch et al. 2006] or tagged 
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cine-MR [Parthasarathy et al. 2007; Stone et al. 2001], the acquisition of image 

data regarding articulatory movements became possible. Nowadays, the 

acquisition of three-dimensional MR image sequences has been steady [Masaki et 

al. 2008] and, consequently, there are enormous expectations for attaining of 

image data on speech production in a more efficient and repeatable manner. 

 

An X-ray microbeam is a tracking technique that uses very small doses of 

X-rays to record the movement of pellets attached to the tongue. It is a technique 

with little risk to the subject and it has also been used to investigate both normal 

and disordered speech. However, the images obtained by it show only a projection 

by volume, turning contour extraction very difficult. This technique is now rarely 

used, and like radiography, recent studies are based on previously acquired 

databases [Fujimura et al. 1973; Dang et al. 2002]. 

 

The other tracking technique, EMA, also provides information on speech 

kinematics [Perkell et al. 1992; Fitzpatrick et al. 2002; J. Kim et al. 2014]. EMA 

has the advantage of providing the same information as the X-ray microbeam, 

with higher temporal resolution but without using radiation. Another advantage is 

that it allows for a cleaner speech audio-recording environment. The main 

disadvantage, as in X-ray microbeam, is that EMA requires placing small 

connector coils in and on the speaker’s mouth, with the main problem being that 

relatively few subjects can tolerate this due to the sensitivity of the soft palate. 

2.1.3. Vocal Tract Models 

Information about the vocal tract shape and dimensions are essential to a 

full understanding of the articulatory and acoustical processes involved in speech 

production. The search for realistic and precise models to represent the vocal tract 

is long and several methods have been studied as reported below. 

In [Harshman et al. 1977], the authors present a model to describe the 

tongue shapes of English vowels for five speakers. The model is based on a full x-

ray measurement procedure that is reduced to a few underlying components by 
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means of the statistical techniques of factor and principal-component analysis. A 

year later, [Shirai et al. 1978] used statistical analysis of real data to describe the 

position of the articulatory organs. In [Maeda 1988], a factor analysis of the 

lateral shapes of the vocal tract is described. 

The procedure to obtain the vocal tract shape [Story et al. 1996] from MR 

image sets included the segmentation of the airspace from the surrounding tissue, 

shape-based interpolation to generate the reconstruction of the airspace and 

analysis of the cross-sectional area. In [Kagawa et al. 1997], the authors model the 

vocal tract wall by an assemblage of spline functions, which is deformable around 

the points of interest. Also, in [Stone et al. 1997] a principal component analysis 

was used to examine sagittal tongue contours for five English vowels constructed 

from ultrasound images. In [Thimm et al. 1999] the segmentation of the vocal 

tract is done in an iterative manner. First, the teeth were tracked using two 

specialized histogram normalization techniques combined with a pattern-matching 

algorithm that also gives the position of the palate. Then, the normalization of the 

position of the vocal tract is used to track the throat and the lips. Finally, 

background subtraction is used to enhance the contrast of the tongue and 

configure its deformation. The referred segmentation procedure was optimized for 

X-ray images showing the side view of the vocal tract. 

In 2000, a 3D tongue model was developed by [Engwall 2000b] within the 

Kungliga Tekniska Hogskolan (KTH) 3D vocal tract project using manually 

extracted tongue contours from MR images of a reference subject producing 43 

sustained Swedish articulations. The extraction of the articulatory model’s 

parameters was done by decomposing the geometrical points of the tongue in 

linear components, through a Linear Component Analysis, where the factors to be 

extracted were imposed on the model using MR images articulatory measures. 

Two years later, in [Badin et al. 2002], a database of 3D geometrical description 

of tongue, lips and face was established for a speaker sustaining a set of French 

allophones. For this, data from MRI, along with a video with and without a jaw 

splint were used. An important finding of this research was that, most 3D 

geometry of tongue, lips and face could be predicted from their midsagittal 

contours, at least for speech assessment purposes. Indeed, the knowledge acquired 

from midsagittal data and from traditional 2D models is far from obsolete. A 
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complement of the previous models was presented in [Serrurier et al. 2005] based 

on the same French subject, achieving a final articulatory model of the shape of 

the complete vocal and nasal tracts. For this research the 3D surface that defines 

each organ of the vocal tract was extracted from MRI and CT images, where the 

2D contours were manually extracted from the corresponding images and later 

expanded to 3D. Then, principal component analysis was applied to the set of 

organ surfaces to uncover the two main uncorrelated articulatory degrees of 

freedom for the velum’s movement. 

A region growing technique was also explored to model the vocal tract 

shape [Behrends et al. 2003]. Here the authors first matched teeth phantoms to the 

MRI dataset to perform the segmentation and reduce human time expense. The 

segmentation method places a seed inside the vocal tract that expands until it 

reaches its walls. The expansion is based on gray- level comparison between the 

mean gray-level value of the segmented region and the neighborhood pixels of its 

contour until a defined difference value is achieved. The vocal tract midline is 

also computed by using a modified 1D-Kohonen algorithm to calculate the 

characteristic area functions. Later in [Carbone et al. 2008], the same technique 

was used to segment 100 2D vocal tract contours over a European Portuguese 

Database achieving Pratt Indices from 84% to 100%. A recent study [Silva et al. 

2013] also uses region growing to segment the vocal tract, this time on real-time 

MR image sequences. 

In [Mollaei et al. 2008], the authors use radiography images to obtain the 

vocal tract shape and calculate the median line through center of gravity of the 

contours of the vocal tract. To obtain the vocal tract shape model, the authors 

followed the approach of [Maeda 1988; Beautemps et al. 1995] and presented a 

model based on simple polynomials. 

A semi automatic technique for facilitating the extraction of vocal tract 

contours is described in [Fontecave Jallon et al. 2009]. The method combined the 

manually acquired geometrical data for a small number of key images and used a 

similarity measure based on the low-frequency Discrete Cosine Transform 

components of the images to automatically index the other images. Finally, the 

acquired contours are combined to reconstruct the movements of the entire vocal 

tract. In [Bresch et al. 2008] an unsupervised regional segmentation technique was 
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adopted to track the contours of about a dozen tract variables, as the lip and velum 

aperture or the tongue tip constriction. 

More recently, CT images were used to create models of the vocal tract in 

[Bakhshaee et al. 2013]. The intensity contrast between air and tissue is high in 

CT images, so the vocal tract boundaries were clearly identified. A semi 

automatic segmentation procedure was used based on a region-based sectioning 

method: the threshold values were determined after an indication of the user of the 

region of interest. 

Statistical models were also used to represent the vocal tract shape. In 

[Avila-Garcia et al. 2004] active shape models and Hough transform were 

employed to extract the shape of dynamic MR images. In contrast, shape 

deformation techniques to define and extract the vocal tract in static MR images 

are presented in [Vasconcelos et al. 2010; Vasconcelos et al. 2011; Vasconcelos et 

al. 2012]. Active Shape Models (ASM) [Cootes et al. 1995] and Active 

Appearance Models (AAM) [Cootes et al. 1998] are used to define the vocal tract 

shape model. Details on these models are given in the next chapter of this Thesis. 

Last year, in [Raeesy et al. 2013] a method of automatic landmark tagging by 

recursive boundary subdivision was applied to obtain the corresponding sets of 

landmarks on the vocal tract contours. Here, an active-orientated shape model 

technique was adopted to recognize and delineate the shape of the vocal tract in 

standardized MR images. To avoid the task of manually positioning the 

landmarks, a recursive boundary subdivision approach [Rueda et al. 2011] was 

used. 

2.1.4. Studied Languages 

The study of the vocal tract has been used for speech assessment in many 

different languages, namely English [Masaki et al. 1996], Swedish [Engwall et al. 

2000], French [Soquet et al. 1996], Japanese [Takemoto et al. 2004], German, 

European Brazilian [Gregio 2006; Pontes et al. 2009] and European Portuguese 

(EP) [Martins et al. 2008; Ventura et al. 2009]. 
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For the English, [Harshman et al. 1977] describes the tongue shape of ten 

English vowels for five subjects. An inventory of speaker-specific, three 

dimensional, vocal tract air space shapes was done by [Story et al. 1996], 

corresponding to a particular set of vowels and consonants, namely 12 vowels, 3 

nasal and 3 plosives. 

 

Regarding the Swedish language, in [Engwall et al. 2000], a tongue model 

was developed for MR images of a reference subject producing 43 artificially 

sustained Swedish articulations. 

 

In [Badin et al. 2002], the geometry of vocal organs is measured on one 

subject uttering a corpus of sustained articulations in French. Later, a more 

complete study used a corpus of 46 French phonemes [Serrurier et al. 2005]. Also 

focusing on French, in [Clément et al. 2007], MR images of the vocal tract were 

obtained from one subject during sustained production of three French point 

vowels with short scanning duration. The manually traced boundaries of the vocal 

tract served to obtain estimates of the area functions, which were later used as 

input for a speech simulation system. 

 

Also, in [Takemoto et al. 2004], five sets of volume data were acquired to 

extract the vocal tract shape during sustained production of the Japanese vowels 

from one subject. Two MRI corpora of one male subject were acquired for 

German [Birkholz et al. 2006]: the first from sustained phonemes of 18 sagittal 

slices; and the second from dynamic sequences of three utterances. 

The first study concerning European Portuguese (EP) language dates back 

to 1997 [Teixeira et al. 1997], in which a software tool is presented to study 

Portuguese vowels. Since then, other studies from the same group have been 

presented [Teixeira et al. 2001; Teixeira et al. 2005; Martins et al. 2008]. 

Meanwhile, and since research on EP remained scarce, other studies have been 

presented [Ventura et al. 2008; Ventura et al. 2009; Vasconcelos et al. 2010; 

Ventura, Freitas, et al. 2011; Vasconcelos et al. 2012; Ventura 2012]. 



Image Analysis of the Human Vocal Tract and Silhouette 23 

 

 

2.1.5. Applications 

Static MRI measurements have shown to be representative of dynamic 

speech and demonstrated that the articulations in the MRI data are 

hyperarticulated [Engwall 2000a]. The hyperarticulation in artificial sustained 

articulations is a natural consequence of the subject aiming to produce as clear 

examples as possible of each articulation, thus enlarging the important distinctions 

and reducing coarticulatory effects at the tongue contour. 

In [Xue et al. 2006], the vocal tract dimensions of White American, African 

American and Chinese male and female speakers were compared. A total o f 120 

adult subjects were studied and six dimensional parameters of the speakers’ vocal 

tract cavities were measured with acoustic reflection technology. 

Another interesting result obtained from the comparison of the vocal tract 

area functions from the same speaker in 1994 and 2002 [Story et al. 1996; Story 

2008] showed that the data were not identical, suggesting a different vocal tract 

setting for producing the same sounds in distinct time lines. Differences were 

observed in the cross-sectional area variation along the vocal tract axis as well as 

differences in the vocal tract length. The obtained data showed that the vocal tract 

shape may be highly variable for the same target vowel depending on the 

particular setting used by the speaker, which is very useful for understanding 

intra-speaker variability. 

Recently, [Laukkanen et al. 2012] investigated the effects of using a straw 

in voice training and therapy. The results indicated that, in fact, exercising with a 

straw helps establish a speaker’s formant cluster, which increases loudness and 

improves vocal economy. Also, the results obtained from CT and acoustic studies 

in [Guzman et al. 2013] suggested that vocal exercises with increased vocal tract 

impedance lead to increased vocal efficiency and economy. 

The potential of using active models is highlighted in [Miller et al. 2014], by 

improving the knowledge and understanding of factors underlying structural and 

functional variations of vocal tract structures. With this, better treatments and 

therapies can be developed for those with speech difficulties as well as more 

effective strategies for improving vocal technique in professional singers.  
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2.2. Human Motion 

 

Human motion analysis usually follows a general framework: human 

detection, human tracking and human understanding [L. Wang, Hu, et al. 2003], 

as depicted in Figure 2.2. The first step involves the extraction of low-level 

features, which aims at segmenting and identifying regions corresponding to 

people or body parts from the remaining portion of the image. Only afterwards, 

through an intermediate- level, can the tracking of such objects be done. The final 

step of human motion analysis consists of understanding the behavior of the 

former features along the image sequence, where activity recognition is 

performed, such as gesture, action or interaction recognitions. 

 

 

Figure 2.2 – Human motion analysis framework. 

 

2.2.1. Surveys 

Human motion analysis has been an active topic in computer vision over the 

years and the series of survey papers in the literature confirm this. Thus, this 

section is dedicated to several surveys that have been done regarding this field. 

The first significant review on human motion analysis was probably due to  

[Aggarwal et al. 1994], who reported on the developments on non-rigid motion 

analysis examining the trends in the research of articulated and elastic motion. In 

both trends, motion recovery methods that use no a priori shape models are 

separated from those that use model based approaches. A year later, [Cedras et al. 

1995] presented the developments in the computer vision aspect of motion-based 

recognition, starting with the extraction of motion information and its 

Detection Tracking Understanding 

Human Motion Analysis  
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organization into models and continuing to the problem of matching unknown 

input with a model. After presenting overall methods for motion, the authors 

focused on methods for the tracking and recognition of human motion. Here, 

volumetric and stick figure models are described, as well as 2D and 3D tracking 

methods, and finishing the survey with human motion recognition methodologies. 

Years later, [Aggarwal et al. 1999] presented another overview of the tasks 

involved in human motion analysis, covering the work prior to 1998. The work 

focused on three major areas related to interpreting human motion such as motion 

analysis involving human body parts, tracking of human motion using single or 

multiple cameras, and recognizing human activities from image sequences. In the 

same year, [Gavrila 1999] published a survey on visual analysis of gestures and 

whole-body movement, where both involved articulated objects. The work was 

organized according to the dimensionality of the tracking space, 2D or 3D, and 

the type of models used, with or without explicit shape models. 

Later, [Moeslund et al. 2001] presented a survey on computer vision based 

on human motion capture from 1980 into the first half of 2000. The focus was on 

a general overview based on the four primary functionalities of motion cap ture 

processing, including initialization, tracking, pose estimation and recognition. 

Throughout the paper, a number of general assumptions used in this field were 

identified and suggestions for future research were offered. Considering the 

substantial progress towards human motion tracking and reconstruction, the same 

authors presented a sequel of their former work, based on more than three hundred 

papers, while maintaining the same functional taxonomy [Moeslund et al. 2006]. 

A survey of the various studies related to the human tracking and body parts 

was presented by [J. J. Wang et al. 2003] in addition to approaches related to 

modeling behavior using motion analysis. In the same year, [L. Wang, Hu, et al. 

2003] presented another review of the subject giving special emphasis to human 

detection, tracking and activity understanding. The authors also discussed some 

research challenges and future directions. Later in [Poppe 2007] the author 

summarized the characteristics of markerless vision-based human motion 

analysis, dividing the analysis into a modeling and an estimation phase.  
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More recently, [Aggarwal et al. 2011] presented another review, this time 

concentrating on high- level activity recognition methodologies designed for the 

analysis of human actions, interactions and group activities. Finally, the most 

recent survey comes from [Nissi Paul et al. 2014], now focused on human 

walking motion. It presents approaches used for human detection, various tracking 

methods, with different approaches for pose estimation and pose ana lysis. It also 

includes the use of unsupervised systems to understand walking motion. 

 

In [Jaimes et al. 2007], a broader view of the state-of-the-art of multimodal 

human-computer interaction is given. Motivated by the multidisciplinary nature of 

this field, the authors discussed major approaches and issues from a computer 

vision perspective, discussing topics from large-scale body movement, gesture 

recognition and gaze detection, to facial expression or emotion analysis. On the 

contrary, a survey specifically directed to human motion tracking for 

rehabilitation is given in [Zhou et al. 2008]. The work reviewed the development 

of human tracking systems and their application in stroke rehabilitation.  

 

Recently, Human Behavior Analysis and Understanding (HBA/HBU) has 

been increasingly of interest to computer vision researchers, [Chaaraoui et al. 

2012] dealing with state-of-the-art HBA/HBU from an Ambient Intelligence 

perspective, focusing especially on indoor scenarios and techniques designed for 

Ambient-Assisted Living purposes. [Metaxas et al. 2013] focused on reviewing 

research in the area of human Nonverbal Communication Computing, and, 

particularly, motion analysis developed to address this problem. 

 

So far the surveys presented only consider images acquired from a 

conventional camera; however, recently, depth sensors have made a new type of 

data available and researchers have been on top of it. In [Chen et al. 2013], a 

review with the advantages of this type of imaging is presented as well as the 

main published research for analyzing human activity. 
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2.2.2. Motion Detection 

The process of extracting from a sequence of images the regions 

corresponding to humans is commonly called segmentation. This process is 

usually based on either temporal or spatial information [L. Wang, Hu, et al. 2003; 

Moeslund et al. 2006]; however, efforts have been made to use both types of 

information in order to obtain enhanced results. 

Temporal Information 

In most cases, temporal information is used when background and camera 

are static, thus it is possible to obtain the movement of the subjects in analysis 

through the differences between images from a sequence. The simplest method of 

motion segmentation consists of subtracting the current image from the previous 

one. 

One of the most typical methods for motion segmentation is background 

subtraction, which consists of subtracting the intensity or gradient of each pixel of 

an image sequences from a reference background image. This methodology 

usually presents good results in controlled environments but is quite sensitive in 

outdoor environments, illumination changes and presence of shadows. Therefore, 

in order to overcome these limitations several techniques have been presented 

ever since [Piccardi 2004]. 

Another type of methodology for motion segmentation based on temporal 

differencing uses a pixel-wise difference between two or three consecutive frames 

in an image sequence to extract moving regions. For instance, [Zhao et al. 2006] 

presented a method that extracts contours of moving objects mainly by combining 

gradient information with three-frame-differencing and connectivity-testing-based 

noise reduction. The former method has the advantage of being very adaptable to 

environments that are dynamic and has low computational complexity. 

Optical flow is also another interesting alternative method to detect moving 

objects and consists of detecting of interesting points, features or blobs based on 

pixel values and further linkage using flow vectors. In [Min et al. 2004], the 

authors presented a method for extraction and temporal segmentation of multiple 
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motion trajectories in human motion. They begin by detecting candidate motion 

locations in every frame and then obtain the motion trajectories by combining the 

significant motion points with the color optical flow based tracker results. Optical 

flow methods have the advantage that they can be used in the presence of camera 

motion. 

 

Spatial Information 

Motion detection using spatial information can be done either through 

threshold or statistical approaches. 

Thresholding relies on a simple process based on special environmental 

assumptions. For instance, it can be used when: the subject wears dark clothes 

against a different background; an infra-red camera is used, like in [Goubet et al. 

2006]; or the subject wears special markers on key points. 

Statistical approaches, instead, use appearance assumptions together with 

subtraction methods. As an example of a statistical approach, Wren et al. [Wren et 

al. 1996] first proposed a running Gaussian average method. The idea of this 

method is to fit a Gaussian probability density function on the last N pixel values, 

updating independently each pixel by running a cumulative average. Another 

technique reported by [Stauffer et al. 1999; KaewTraKulPong et al. 2002] consists 

of using a mixture of Gaussians to model the background with a shadow detection 

scheme incorporated into it. This statistical method seems to learn faster and more 

accurately and adapts well to changing environments. 

Other authors, like [Elgammal et al. 2003], explored the use of a non-

parametric model based on kernel density estimation with the fast Gauss 

transform to model the background distribution. The disadvantage of this method 

is related to the high associated computational cost. 

In [Oliver et al. 2000] the authors adaptively built an eigenspace to model 

the background, where the eigenspace model describes the range of appearances 

observed in the image sequences, such as the lighting or weather variations 

throughout the day. 
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Spatio-Temporal Information 

Some researchers have been developing methods for human detection that 

use both spatial and temporal information to obtain better results [Amer 2003; 

Ahmed et al. 2006]. 

In [Rui et al. 2000], the authors presented an algorithm that takes input 

video sequences, computes frame to frame optical flow, projects the flow fields 

into a basis set using singular value decomposition analysis and detects temporal 

discontinuities in the trajectories of the basis coefficients over time. 

In [L. Liu et al. 2005], the authors proposed a video segmentation method 

that integrates two major components: short-based video segmentation and object-

based segmentation. The key-frame extraction is used to provide a compact video 

representation that contains the salient and video content objects, and then a joint 

spatiotemporal video segmentation is used to extract the objects through a 

generative clustering method. 

The authors in [Dimitrijevic et al. 2006] presented a template-based 

approach to detect human body poses, in which the templates consist of short 

sequences of 2D silhouettes obtained from motion capture data. The method 

combines silhouette matching with motion information and statistical relevance. 

The technique presented good results in both indoor and outdoor sequences 

though they were acquired with a moving camera. 

 

2.2.3. Motion Tracking 

Tracking unconstrained movement of a human in image sequences is 

extremely challenging [Ning et al. 2004]. It is a difficult but important task in 

human motion analysis. 

Most of the methodologies used for human motion analysis are model-

based, for example, shape models like stick figures, 2D contours or volumetric 

models [Aggarwal et al. 1999]. Other examples of methodologies include active 

contour-based and feature-based, which will be described in this section. 
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Model-based Tracking 

The most simple and useful model that represents the human body structure 

is the stick figure model, which connects sticks through joints. In [Guo et al. 

1994], a model with ten sticks articulated with six joints is constructed, using 

silhouettes as image features. It classifies the stick figure motion into walking, 

running and other motions through a neural network. In this work, only one 

moving object, the person, exists in the scene and also a stationary background 

and parallel projection are assumed. A independent tracking view of the human 

figure is achieved in [Karaulova et al. 2002], where a stick figure representation is 

used to model the human body, and Hidden Markov Models are used to encode 

the model dynamics. 

In [Mikić et al. 2003], the authors presented an integrated system for 

automatic acquisition of the human body model and motion tracking using input 

data acquired from multiple synchronized video streams. The system performs the 

tracking on the 3D voxel reconstructions computed from the 2D foreground 

silhouettes. The human body model used consists of ellipsoids and cylinders and 

is described using a twisted framework resulting in a non-redundant set of model 

parameters. 

In [L. Wang, Tan, et al. 2003], the authors described a method for automatic 

person recognition from body silhouette and gait, which combines a background 

subtraction procedure with a simple correspondence method to segment and track 

spatial silhouettes of a walking figure. In order to reduce the computational cost 

during training and recognition, simple feature selection and parametric 

eigenspace representation are used. 

A different possibility is to use a motion model to accomplish human 

tracking. For example, in [Ning et al. 2004], a motion model was constructed 

from the semi-automatically acquired training data and motion constraints were 

explored by analyzing the dependency of joints. Both of them were later 

integrated into a dynamic model to reduce the size of the sample set. 

[Cheung et al. 2005] constructed a body model from scratch using simple 

joint connection knowledge of the body without using any a priori shape model. 

The skeletal structure is registered using video sequences of the person moving 
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their limbs and shape information is extracted from the body parts directly from 

the silhouette and color images. The tracking algorithm works very well for 

relatively simple motions, but for complex motions it suffers from the problem of 

local minima. 

A markerless tracking algorithm of human motion from multiple camera 

views was proposed in [Kehl et al. 2006], their solution integrates features such as 

edges, color and volumetric reconstruction capable of correctly categorizing self 

and partial occlusions. A stochastic optimization is later used to find the best 

match between the articulated body model and the computed features. 

Another type of methodology consists of using the appearance to construct 

the human model. In [Ramanan et al. 2007] an automatic system to track the 

articulations of persons from a video sequence is presented. It starts by 

constructing a model of appearance of each person in a video and then tracks it by 

detecting this model in each frame. It describes two approaches that learn their 

appearance: the first is a bottom-up algorithm that groups together candidate body 

parts found throughout a sequence and the second is a top-down approach that 

constructs appearance models from convenient poses. The system can count 

distinct individuals, is capable of identifying and tracking different people, and is 

able to recover when it loses their track as well. Results are shown in frames of 

unscripted indoor and outdoor activity, a feature- length film and legacy sports 

footage. 

The authors in [Rius et al. 2008] used a stick figure model which learns the 

3D variability of human posture using a set of training sequences. They developed 

a matching algorithm based on Dynamic Programming to estab lish mapping 

between postures from different motion cycles. Then, the model is trained, a mean 

walking performance is automatically learnt and the statistics about the observed 

variability of the postures and motion direction are also computed. As an 

alternative, in [Meeds et al. 2008], a probabilistic stick-figure model is presented 

that uses a nonparametric Bayesian distribution over trees for its prior structure. 

Also, 2D contours are often used to detect humans in image sequences; for 

example, in [Korč et al. 2008] a three-step algorithm was presented, which detects 

human candidates, validates the model of a human and finally tracks the model in 
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consequent frames. The model adopted is a six- link model with an articulated 

head that can cope with a frontal view of a person. It starts using simple means to 

find a human candidate within a region of interest and afterward validates it using 

an extended biped human model. 

In [Freifeld et al. 2010], a contour person model is defined, that captures 

natural shape and pose variations. The deformations from a training template are 

used to describe changes in shape due to camera view, body shape and articulated 

pose. In this study, only frontal bodies were used in the 2D model and the 

inclusion of other views require an inference method to search the discrete set of 

views. 

 

Another type of algorithm is the articulated Iterative Closest Point (ICP) 

such as the one presented by [Corazza et al. 2010]. An articulated subject-specific 

model was created from direct measurement of the subject outer surface using 

either a laser scan or visual hull frame. The tracking approach employed a 

minimization scheme over an ICP algorithm with six degrees of freedom for each 

body joint. 

 

In [Straka et al. 2011], the authors use silhouette images to construct a 

volumetric model of the human body and extract a skeletal graph from it. Then, 

by using a matching algorithm based on geodesic distances, they assign labels to 

the end-nodes of the graph and later determine the inner-nodes. At the moment, 

they are working on handling cases in which the skeletal graph becomes corrupt 

as a result of the arms being too close to the upper body. 

Recently, [Yoo et al. 2011] explains a markerless system to describe, 

analyze and classify human gait motion. The authors use a sequential set of 2D 

stick figures to represent the motion. Features based on motion parameters are 

determined and measured in order to characterize the gait patterns. This research 

began back in 2002 [Yoo et al. 2002], when the authors explored the possibility of 

extracting the gait signature and kinematic features guided by known anatomy. 
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Active-Contour-based Tracking 

Active contours use boundary detectors that iteratively move towards the 

final solution according to the combination of image and optional user-guidance 

forces  [Terzopoulos et al. 1988; Blake et al. 1998; Szeliski 2010]. These models 

consider the object boundary as a single, connected structure with underlying 

geometric representations. 

An example of active contours, snakes, which were first introduced by 

[Kass et al. 1988], represent a salient image feature as a parametric curve that can  

move under the influence of internal forces and aims to minimize the energy 

associated with the curve. The main drawbacks of these models were the failure to 

detect nonconvex objects and its sensitivity to initialization. 

An alternative model for edge detection, derived from the classical active 

contour model, is the geodesic active contour model, introduced by [Caselles et al. 

1997]. These models are derived from geometric functional models and are non-

linear, leading to inefficient implementations. For instance, explicit Euler schemes 

for the geodesic active contour limit the numerical step for stability. The former 

drawback was overcome in [Goldenberg et al. 2001] and [Paragios et al. 2000], 

who also improved the model by using level sets to describe contours and a 

gradient descent algorithm to optimize it. 

In [Kwon et al. 2007], the authors combine geodesic active contour models 

with a mean-shift algorithm. The initial curve in each frame is re- localized near 

the human region and resized enough to include the target object, to reduce the 

number of iterations and handle large object motion. 

An active model which characterizes regional and structural features of a 

target object such as shape, texture and color is presented in [Jang et al. 2000]. 

The model is capable of adapting itself dynamically to an image sequence in order 

to track a non-rigid moving object. 

Level set techniques were presented in [McInemey et al. 1999; McInerney 

et al. 2000].  They are a development of the conventional snakes in the sense that 

they enable topological flexibility among other features. While many methods 

rely on edges, this method [Chan et al. 2001] optimally fits a two-phase piecewise 
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constant model to the given image, where the boundary is represented with a level 

set function, which can handle topological changes more easily than explicit snake 

models. 

In [Xin et al. 2004], a contour tracking algorithm for video captured  using 

mobile cameras of different modalities is proposed. The algorithm used Bayesian 

inference based on the probability density functions of texture and color features. 

In addition, it adopted the features of both object and background regions in the 

level set evolution model. The limitation of this model is that pixel values are 

treated as if they were independent for posterior probability estimation, making 

the contour sensitive to disturbances caused by similarities of color or texture 

between the object and the background. 

In [Cremers 2006], the authors develop dynamic statistical shape models for 

implicitly represented shapes, capable of capturing the temporal correlations 

which characterize deforming shapes such as the consecutive silhouettes of a 

walking person. A Bayesian formulation for level set based image sequence 

segmentation imposes the statistically learned dynamic model as a shape prior to 

segmentation processes. 

More recently, [Hu et al. 2013] also presented a framework for active 

contour-based visual tracking using level sets. The framework includes: contour-

based tracking initialization for the first frame; a color-based contour evolution 

algorithm to achieve tight and smooth contours; adaptive shape-based contour 

evolution to make the shape model flexible; dynamic shape-based contour 

evolution to obtain more accurate contours; and abrupt motion handling, by 

incorporating particle swarm optimization into level set evolution. The proposed 

method can be used to track object contours, regardless of whether the camera is 

stationary or moving, and it can deal effectively with videos with abrupt motions. 

Active shape models can be also applied to the tracking of non-rigid objects, 

as human models, in a video sequence. These models are a compact form for 

which the shape variety and the color distribution of an object class can be both 

taught in a training phase [Cootes et al. 1995]. Its compactness results from 

principal component analysis and a priori shape information from the training set. 

In [Koschan et al. 2003], a hierarchical realization of an enhanced active shape 
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model for color video tracking is presented and performances of  hierarchical and 

non-hierarchical implementations are studied. Active shape models are also used 

by [D. Kim et al. 2006], this time for a panoramic image obtained from multiple 

sensors. In [Dou et al. 2007], an ASM-based people tracking system is 

implemented in a reconfigurable hardware to accelerate the ASM algorithm, since 

it requires great computational power for real time people tracking. 

In [Rathi et al. 2005], the authors formulate a particle filtering algorithm in 

the geometric active contour framework that can be used for tracking moving and 

deforming objects. Occlusion is dealt with by incorporating shape information 

into the weights of the particles. Experiments of a walking couple sequence are 

shown. 

 

Feature-based Tracking 

 [Comaniciu et al. 2000] present an approach based on visual features such 

as color and texture, whose statistical distributions characterize the objec t of 

interest. Mean shift iterations are then employed to find the target candidate most 

similar to a given object model. 

In [Gonzalez et al. 2003], the authors presented a robust feature-based 

tracking method of human motion. The approach presented enables tracking 

motions of different body parts without articulated body models and their 

initialization by using a standard point-wise tracker modified for robustness and 

grouping image points undergoing the same rigid motions. 

 

An approach that combines prior knowledge regarding a person’s motion 

with human body kinematics constraints was presented in [Sappa et al. 2005]. The 

approach computes feature point trajectories and uses the peaks and valleys of 

these to detect key frames, where both legs are in contact with the floor, and those 

key frames allow the association of the motion models with each joint. The 

authors also presented experimental results considering different video sequences. 
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In the work of [Ekinci et al. 2005], the authors begin modeling the 

background to obtain the silhouettes of the moving objects and identify persons 

according to some shape features, like the bounding box ratio or the second 

moment of the silhouette. Then, the person’s center of mass is calculated as well 

as the local maxima of the filtered signal from the distances between the center 

and the silhouette. In the tracking process, correspondences are established by 

using the minimum cost criteria. In addition, this work also presents results for 

motion classification, namely normal walking and running. 

The problem of probabilistic modeling of human motion is addressed in 

[Rogez et al. 2006], by combining several 2D views. A multi-view Gaussian 

Mixture Model (GMM) is fitted to a feature space made of shapes and stick 

figures manually labeled. The temporal and spatial constraints are considered to 

construct a probabilistic transition matrix, which is used to limit the feature space 

only to the most probable models from the GMM. 

In [Tanaka et al. 2007], the authors extracted the skeleton from the captured 

volume data using the thinning process and then converted it into an attributed 

graph using an exemplar based-approach. Body parts are identified from each 

curved line in the skeleton through a graph-matching algorithm. 

[Sundaresan et al. 2008] propose a method of articulating objects tracking in 

the Laplacian Eigenspace. It is shown that Laplacian Eigenmap transform is 

suitable for extracting the 1D object and for segmenting the different chains in the 

joints and then k-dimensional splines are used to model these smooth 1D curves 

in the eigenspace. After segmentation has been performed, the skeleton is 

estimated using the registration of the nodes along the 1D curve. 

In [Nascimento et al. 2008], the authors represent the human body by its 

center of mass and a bank of switched dynamic models is used to describe the 

trajectory of the pedestrian in the image sequence. The models are trained offline 

from hand segmented video sequences in a supervised way. 

In [G. Liu et al. 2010], the authors present a computer vision system capable 

of automatically tracking the movements of skaters on a large-scale complex and 

dynamic rink. The authors chose to use Scale Invariant Feature Transformation 

(SIFT) features, due to its invariance to viewpoint changes, large geometric 
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transformation and changes in illumination. The tracking system incorporated the 

hierarchical model based on contextual knowledge into the unscented Kalman 

filter. 

[Saini et al. 2012] presented vision based human motion tracking using a 

non- linear dimension reduction charting technique. The human body structure was 

extracted using a Gaussian mixture model based silhouette descriptor and joint 

configuration in manifold space belonging to low-dimensional space. The 

mapping between the two spaces was done with a relevance vector machine. The 

main goal of the descriptor is to reflect a silhouette as a set of intelligible regions 

in the 2D space like foreground pixel locations. 

In [Barbu 2014], the authors determine what moving image objects 

represent pedestrians by testing several conditions related to human bodies by 

detecting the skin regions from the movie frames. A Histogram of Orientated 

Gradients (HOG) based template matching process was used in the tracking stage. 

While most methods use HOG in the detecting stage of human motion, the work 

referred to uses it in the tracking stage and found that it works better than other 

template matching approach. 

 

2.2.4. Motion Understanding 

The improvement of the interaction between men and machines is essential 

for the growth of human motion analysis. A wide variety of disciplines, from 

surveillance to medicine, have been interested in this subject as described next. 

 

For instance, in surveillance systems, human motion analysis can be used to 

identify suspicious movements of persons in a parking lot or to monitor the 

actions of individuals and classify their nature in a commercial space. These types 

of activity can require a considerable effort from human operators, since it is 

common to have several cameras in a parking lot or a shopping area that must be 

analyzed simultaneously. 
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In [Nascimento et al. 2005], the authors proposed an algorithm to model, 

segment and classify human activities in a constrained environment by using 

switched dynamic models. In [Cucchiara et al. 2005], the authors analyze human 

behaviors by classifying the posture of the monitored person and consequently 

detecting corresponding events and emergency situations, like a fall. The former 

approach can be applied to monitor people at home, especially the elderly with 

limited autonomy, and define potential emergency situations. 

 

In sports, a biomechanical analysis of movements of athletes can help them 

understand and improve their performances or even facilitate the recovery process 

after injuries.  

In [Krosshaug et al. 2007], the authors present a model-based image 

matching technique to extract kinematic characteristics of three typical anterior 

cruciate ligament (ACL) injury situations, which can provide valuable information 

on the mechanisms for ACL injuries in sports. Another example, is the Football 

Interaction and Process Model system (FIPM), which can acquire action models, 

infer action-selection criteria and determine player and team strengths and 

weaknesses [Beetz et al. 2005]. 

 

Another application area where human motion analysis plays an important 

role is Gait Analysis. Gait can be defined by motor behavior consisting of 

integrated movements of the human body. The cyclical pattern of corporal 

movements can be linked to a specific individual, allowing human recognit ion 

through it. 

In [Begg et al. 2005], the authors show results that support vector machines 

are able to automatically recognize gait patterns of elderly and young people. 

Both histogram and Poincaré plot diagram features are effective in discriminating 

the two age groups, which can indicate that such plots might be useful in detecting 

movement abnormalities or for monitoring improvements in walking 

performances because of treatment or intervention in a clinical procedure. 

In [Rius et al. 2008], the authors propose an action specific model which 

automatically learns the variability of 3D human postures observed in a set of 
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training sequences. Dynamic Programming techniques are used to synchronize the 

training sequences and, as a result, they obtain an action model with a 

representative manifold for the action; namely, the mean performance, the 

standard deviation from the mean performance and the mean observed direction 

vectors from each motion subsequence of a given length. The resulting model can 

be used for gait recognition applications such as in the identification of a subject 

when performing an action by observing only a reduced motion portion of it. 

A gait recognition system for human identification is proposed by [Rani et 

al. 2010], using a modified independent component analysis (MICA). Background 

modeling is done in order to segment the moving objects and then a skeleton 

operator is used to track the moving silhouettes of a walking figure. The sequence 

of silhouette images is used to train the MICA based on eigenspace transformation 

and the gait features are recognized based on a self-similarity measure. The work 

of [Arantes et al. 2011] presents a framework that merges four different models of 

human movement, using a fusion model to improve classification. Each model 

was based on specific image segmentation of the human silhouette and extracted 

global information on tri-dimensional, bi-dimensional, boundary and skeleton 

motion. The results suggest that the framework is capable of recognizing people 

by their gait. 

 

In medicine, the study of human motion can also be extremely valuable. In 

[Davis III et al. 1991] the authors described a clinical gait analysis system used at 

the Newington Children’s Hospital, and also presented the clinical testing 

protocol and the algorithms used. Over ten years later, in [Šimšík et al. 2005], 

motion analysis was used in the study of spondylolisthesis. [Schubert et al. 2005] 

also carried out a motion study in patients with Parkinson’s disease. In 

[Goulermas et al. 2005], the authors present tests of an extensive range of 

dimensionality reduction and robust classification techniques for linking 

pathological plantar hyperkeratosis and functional biomechanical foot data. 

Another area of application of human motion analysis is Computer 

Graphics. In [Remondino et al. 2004], the authors present a framework for the 

modelling and animation of human characters from monocular videos.  [Nguyen 
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et al. 2005] describes a real-time system for capturing humans in 3D and placing 

them into a mixed reality environment, where the images of the subject are 

constructed using a robust and a fast shape-from-silhouette algorithm. 

 

2.2.5. Motion Datasets 

In the last 20 years, several datasets dedicated to human motion have been 

created to serve as input data for various research problems. In this section, a brief 

review on available datasets for video-based human activity and action 

recognition is presented. 

 

A summary of the most relevant datasets used to date for human analysis is 

provided in Table 2.1 and explained next. A human motion analysis dataset 

should gather three conditions to be complete, these being: 1) to have sufficiently 

high-resolution images to capture details; 2) a high frame rate to detect 

movements; 3) multiple cameras to see the subject from varying viewpoints  

[Chaquet et al. 2013]. For more detailed information about the subject it is also 

important to have a motion capture (MoCap) system, to capture their movement. 

The first dataset on human data was created in 1998 by Visual Computing 

Group, University of California, San Diego (UCSD) [Little et al. 1998].  It is an 

outdoor sequence where the subjects walk parallel to a homogenous wall and 

perpendicular to the camera. Later, a more complete set, with more subjects and 

more walking directions, appears with the Institute of Automation Chinese 

Academy of Sciences (CASIA)-A dataset [L. Wang, Tan, et al. 2003], the former 

National Laboratory of Pattern Recognition (NLPR) gait database. Here, the 

subjects walk on a straight- line path at free cadences and in three different 

viewing angles with respect to the camera. 

The Carnegie Mellon University Motion of Body database (CMU MoBo) 

[Gross et al. 2001], focuses on biometric identification of humans from their 

individual characteristics. The database contains four different styles of walking 

(slow, fast, inclined and carrying a ball) performed on a treadmill by 25 subjects. 
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Table 2.1 – Summary of most relevant datasets for video-based human analysis. 

Dataset Name Year 
Video  

#(cams,fps) 
Resolution 

# (Subjects, 

Actions,Sequences) 
Ground truth 

UCSD 1998 1 30 640x480 6 1 42 Outdoor 

CASIA-A 2001 1 25 352x240 20 1 240 Outdoor 

CMU-MoBo 2001 6 30 640x480 25 1 100 - 

CMU-Mocap 2001 1 15 320x240 144 109 2605 
Mocap 

12cams, 41mpp 

NADA 2004 1 25 160x120 25 6 2391 - 

CASIA-B 2005 11 25 320x240 124 1 13640 Indoor 

HumanID 2005 2 30 720x480 122 1 1870 Outdoor 

HDM05 2005 1 25  5 >70 1500 
MoCap 

12cams,~40mpp 

HumanEva 2009 7 60 640x480 4 6 56 
MoCap 

12cams,195mpp 

MuHAVi 2009 8 25 720x576 7 17 119 
Manual 

annotation 

MPI08 2010 8 40 1004x1004 4 14 54 
3D laser scan 

5 sensors 

UMPM 2011 4 50 644x484 30 >15 36 
MoCap 

14cams, 37mpp 

 

The CMU motion capture database [CMU Graphics Lab 2001] is the most 

extensive dataset of publicly available motion capture data. The only drawback of 

this database is related to the lack of calibration information, required to project 

the 3D models into the images, rendering it unsuitable for evaluating video-based 

tracking performance. 

In 2004, the department NADA from the Computer Science and 

Communication at Stockholm University introduced the NADA database by 

[Schuldt et al. 2004], containing 6 types of different actions (walking, jogging, 

running, boxing, hand waving and hand clapping) in four different scenarios, three 

outdoors and one indoor with homogeneous backgrounds. The drawback of this 

database is the image resolution of only 160x120 pixels. 

A massive multiview gait database was created in 2005, called CASIA-B 

[Yu et al. 2006]. With 124 subjects, it is the most complete database mentioned 

here, with data captured from 11 views and two variations, namely clothing and 

carrying positions. The data is captured indoors and only for walking action. 

Besides the video files, the database also provides human silhouettes extracted 

from the videos. A similar dataset is the HumanID [Sarkar et al. 2005]. The 

difference is that data is acquired outdoors and only two video cameras are used. 

Also in the same year, motion capture data was recorded at the Hochschule der 
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Medien (HDM05) [Muller et al. 2007], being a very well structured dataset, with 

the same action being performed many times. 

The HumanEva dataset [Sigal et al. 2010] provides ground-truth data to 

assist in the evaluation of algorithms for estimating pose and tracking human 

motion. The database contains six different actions performed by four subjects 

wearing natural clothes. The motivation for wearing natural clothes, instead of 

using the typically tight-fitting motion capture suits, is to obtain natural images, 

containing the complexity posed by moving clothing. However, a drawback is that 

natural clothes provide ground truth motion caption data that is less accurate 

compared with data collected by traditional methods. 

The Multicamera Human Action Video Dataset (MuHAVi) dataset [Singh et 

al. 2010] provides multi-camera human action video data with manually annotated 

silhouette data. The advantage of this dataset is that the data has been collected in 

a site with challenging lighting conditions provided by multiple sources of night 

streetlights [Singh et al. 2010]. 

The Indoor Motion Capture (MPI08) dataset [Pons-Moll et al. 2010], 

constructed by the University of Hannover, contains a wide variety of human 

motion. The database is recorded in an indoor setup and consists of 4 subjects 

performing 14 different motion patterns, such as walking, jumping or throwing. 

As a complementary data source to visual information, 5 inertial sensors were 

fixed to the body extremities to obtain accurate limb orientations. 

The Utrecht Multi-Person Motion (UMPM) benchmark [Van der Aa et al. 

2011] includes synchronized motion capture data and video sequences from 

multiple viewpoints for multi-person motion including multi-person interaction. 

This dataset has also the advantage of including static objects in the scene like a 

table or a chair, in order to allow testing methodologies regarding occlusion cases. 

Another differentiator aspect of this dataset is that the video cameras do not face 

each other directly, to prevent similar silhouettes. In addition to this, 

supplementary data such as background images and the assignment of 3D MoCap 

data to a specific subject are provided.  

For a more complete survey on video-based human action and recognition, 

[Chaquet et al. 2013] is the most appropriate reading suggestion where a total of 
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68 datasets are referred to, with 28 belonging to heterogeneous and 40 to specific 

human actions. Comparison and classification of such datasets are also provided. 

 

2.2.6. Challenges 

Image segmentation methods related to human motion must deal with 

several challenges [Nissi Paul et al. 2014] such as: 

 dynamic backgrounds: for instance, when the camera is moving; 

illumination conditions that can vary throughout the image sequences;  

 visibility problems: when the subject does not remain inside the 

workspace or is partially occluded by other elements of the scene;  

 image sequences with more than one subject in the workspace at the 

same time. 

The development of methods that can deal with all these problems 

simultaneously is not a straightforward task so it is common to make some 

assumptions. However, each day increasingly robust and accurate methods are 

being developed. 

If human segmentation in video sequences is challenging, the tracking task 

is no different. A few of these challenges that are worth mentioning are: 

 the complex non-rigid structure of the human body, with its high 

number of degrees of freedom [Ning et al. 2004]. It has many joints and 

each body part can move in a wide range around its corresponding joint; 

 dealing with frequent self-occlusion of body parts due to ambiguity 

inherent in 3D to 2D projection [L. Wang, Tan, et al. 2003], which will 

provide valuable information about hidden motion; 

 usage of markers for motion capture are only suitable for well-controlled 

environments [Kolahi et al. 2007; Sandau et al. 2014]; 

 shape and appearance variation of the human movements due to clothes; 

 abrupt motion handling; 

 tracking response in practical time [Nikolaidis et al. 2009]. 
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3  

Vocal Tract Active Models: 

Application to the European Portuguese 

Language 

 

The application of statistical models, such as deformable and active models, 

to characterize and reconstruct the vocal tract during speech production was taken 

into consideration in the present Thesis. The development of active models to 

represent the vocal structures from a global perspective is here presented. 

Actually, the studies regarding the analysis of the vocal tract during the 

production of European Portuguese sounds are still scarce. Hence, the motivation 

to extend the knowledge of this particular language from the representation of the 

vocal tract trough active models during speech production was also here explored. 

In this chapter, active models were built to segment the shape of the vocal 

tract in new images for speech production assessment of the European Portuguese 

language.  The first section provides an explanation about the sounds of European 

Portuguese language. The second section briefly describes Point Distribution 

Models, Active Shape Models and Active Appearance Models. In section three, 

one describes the image datasets used as well as the Magnetic Resonance Imaging 

protocols. The fourth section presents the implementation and the various models 

constructed for the study of the shape of the vocal tract and appearance during 

speech production and an example of their application to real studies. Finally, in 

section five, the results are discussed and conclusions are presented. 
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This chapter contains work and results of the article “Analysis of Tongue 

Shape and Motion in Speech Production using Statistical Modelling” by Maria 

João M. Vasconcelos, Sandra R. Ventura, João Manuel R. S. Tavares and 

Diamantino R. Freitas published in June 2009 in the Proceedings of 2nd South-

East European Conference on Computational Mechanics. It also contains work 

and results of the journal paper “Using Statistical Deformable Models to 

Reconstruct Vocal Tract Shape from Magnetic Resonance Images” by Maria João 

M. Vasconcelos, Sandra M.R. Ventura, Diamantino R. S. Freitas and João Manuel 

R.S. Tavares published in 2010 in the Proceedings of the Institution of 

Mechanical Engineers, Part H: Journal of Engineering in Medicine. It also 

contains work and results of the journal paper “Towards the Automatic Study of 

the Vocal Tract from Magnetic Resonance Images” by Maria João M. 

Vasconcelos, Sandra M. R. Ventura, Diamantino R. S. Freitas and João Manuel 

R.S. Tavares published in November 2011 in Journal of Voice. At last, it contains 

work and results of the journal paper “Inter-speaker speech variability assessment 

using statistical deformable models from 3.0 Tesla magnetic resonance images” 

by Maria João M. Vasconcelos, Sandra M. R. Ventura, Diamantino R. S. Freitas  

and João Manuel R. S. Tavares published in March 2012 in the Proceedings of the 

Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine. 

 

3.1. European Portuguese Language 

 

According to the International Phonetic Alphabet (IPA), the European 

Portuguese (EP) language consists of a total of 30 sounds: nine vowels, two 

diphthongs and nineteen consonants[International Phonetic Association 1999]; in 

addition, EP is one of the most widely spoken languages. 

In the sound productions of both EP vowels and diphthongs, the articulators 

remain sufficiently spaced out allowing air flow to pass freely and almost without 

obstacles. The main difference between the oral vowels configuration comes from 

the position of the lips and tongue. Vowels are classified in four different classes: 

open, close, mid and central, according to the position of the tongue, lip’s 
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projection and the mouth aperture [International Phonetic Association 1999; 

Ventura 2012]. The tonic system of Portuguese European is composed by nine 

oral vowels: 

- Open front unrounded vowel [a]: from the Portuguese word /casa/ 

(home); 

- Mid central unrounded vowel [ɐ]: from the Portuguese word /cada/ 

(each); 

- Open-mid front unrounded vowel [ɛ]: from the Portuguese word /pé/ 

(foot); 

- Close-mid front unrounded vowel [e]: from the Portuguese word /medo/ 

(scare); 

- Open-mid back rounded vowel [ɔ]: from the Portuguese word /pó/ (dust); 

- Close-mid back rounded vowel [o]: from the Portuguese word /força/ 

(strength); 

- Close front unrounded vowel [i]: from the Portuguese word /riso/ 

(laughter); 

- Close back rounded vowel [u]: from the Portuguese word /tu/ (you); 

- Mid central unrounded vowel [ɨ]: from the Portuguese word /sede/ 

(thirst). 

With regards to the production of the EP vowels [i, e], the tongue moves to 

higher frontal positions, and in the case of the EP vowels [o, u], the tongue moves 

to more elevated backward positions. The EP sound [a] is produced when the 

tongue is to be found in a central and mid-low position. 

 

A diphthong is formed by one vowel that is pronounced stronger (the vowel 

itself) and one that is pronounced weaker (identified semivowel) [International 

Phonetic Association 1999; Ventura 2012]. The sounds [a, e, o] regularly work as 

vowels, and the sounds [i] and [u] regularly work as semivowels. 

Phonetically, the EP vowels and diphthongs are regarded as being long and 

somewhat continuous sounds, classified from the front to the back of the mouth 

and from the higher to the lower tongue positions. 

 



Vocal Tract Active Models  47 

 

 

There are two main classes of consonants: plosives and fricatives 

[International Phonetic Association 1999; Ventura 2012]. Plosive consonants 

consist on sounds in which air stream from the lungs are interrupted by a complete 

closure in some part of the vocal tract. The occlusion may be done with the tongue 

(blade [t], [d]), or body [k], [ɡ]), lips ([p], [b]), or glottis ([ʔ]). Plosives consonants 

contrast with nasals, where the vocal tract is blocked but airflow continues 

through the nose, as in /m/ and /n/. In fricatives sounds, on the contrary, the air 

usually passes through a narrow constriction that causes the air to flow turbulently 

and thus create a noisy sound.  

The other classes of consonants that are found in the majority of languages, 

namely nasals, "liquids" and vowel- like approximants, are voiced in the 

overwhelming majority of cases. 

 

Consonants can be classified according along three major dimensions: (1) 

place of articulation, (2) manner of articulation and (3) voicing [International 

Phonetic Association 1999; Ventura, Freitas, et al. 2011; Ventura 2012]. One of 

the major differences among consonants is in the accompanying action of the 

larynx, with the most larynx settings that allow air to flow freely between the 

vocal folds versus one in which the vocal folds vibrate to produce regular voicing. 

In this manner, it is relatively easy to identify the distinctive features o f the 

sounds produced. As far as the EP fricative consonants are concerned, the places 

of articulation are: 

- Voiceless labiodental [f]: from the Portuguese word /fé/ (faith) 

- Voiced labiodental [v]: from the Portuguese word /vê/ (see) 

- Voiceless alveolar [s]: from the Portuguese word /sol/ (sun) 

- Voiced alveolar [z]: from the Portuguese word /casa/ (home) 

- Voiceless post-alveolar [ʃ]: from the Portuguese word /já/ (already) 

- Voiced post-alveolar [ʒ]: from the Portuguese word /chave/ (key) 

Nasality, by opposite, is a complex feature, defined by the lowering of the 

velum to open the velopharyngeal port, which induces strong and complex 

changes in the vocal tract acoustical behavior. The EP Language is especially rich 

in nasal sounds – both vowels and consonants. 
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3.2. Point Distribution Model 

 

Point Distribution Models (PDM) have been widely used in the statistical 

modeling of objects to analyze its shape configurations from a set of training 

images [Cootes, Taylor, et al. 1992]. Thus, it describes the mean shape of the 

object modeled together with admissible variations in relation to the same mean 

shape. 

In the building process of a PDM, each shape of the object to be modeled, 

presented in the training set, should be represented by a set of labeled landmark 

points. These points should reflect important aspects of the object’s boundaries or 

interior. In order to study the variation of the coordinates of the landmark points 

of the training shapes it is necessary that they are aligned [Cootes, Taylor, et al. 

1992]. An example of an alignment method to be used is given in [Oliveira et al. 

2008], based on dynamic programming. 

Hence, given the co-ordinates (𝑥𝑖𝑗, 𝑦𝑖𝑗) of each landmark point 𝑗  of the 

shape 𝑖 of the modeled object, the shape vector is 

𝒙𝒊 = (𝒙𝒊𝟏 , 𝒙𝒊𝟐, … , 𝒙𝒊𝒏 , 𝒚𝒊𝟏, 𝒚𝒊𝟐 , … , 𝒚𝒊𝒏
)𝑻,  3.1 

where 𝑖 = 1,… , 𝑁, with 𝑁 representing the number of shapes in the training set 

and 𝑛 the number of landmark points. Once the shapes are aligned, the mean 

shape and the variability can be found. The modes of variation characterize the 

manners in which the landmarks of the shape tend to move together and can be 

obtained by applying Principal Component Analysis (PCA) to the deviations from 

the mean. Thus, it is possible to rewrite each shape vector 𝑥𝑖 as  

𝑥𝑖 = 𝑥̅ + 𝑃𝑠𝑏𝑠 , 3.2 

where x  represents the n landmark points of the new shape of the modeled object, 

 ,
k k

x y  is the position of landmark point k , x  is the mean position of landmark 

points,  1 2s s s s t
P p p p  is the matrix of the first t  modes of variation, 

s i
p  

corresponds to the most significant eigenvectors in a PCA of the position 

variables, and  1 2

T

s s s s t
b b b b  is a vector of weights for each variation mode 
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of the shape. Each eigenvector describes the manner in which linearly correlated 

𝑥𝑖  move together over the training set. Equation 3.2 represents the Point 

Distribution Model of an object and can be used to generate new shapes of it. 

Further details about the construction of PDM can be found in references [Cootes, 

Taylor, et al. 1992; Cootes and Taylor 1992]. 

The local gray level environment of each landmark point can also be 

considered in the modeling of an object [Cootes and Taylor 1992]. Thus, 

statistical information is obtained about the mean and covariance of the gray level 

values of the pixels around each landmark point. This information is used in the 

PDMs variations: to evaluate the match between landmark points in Active Shape 

Models (ASM) and to construct the appearance models in Active Appearance 

Models (AAM), as it will be explained next. 

 

3.2.1. Active Shape Model 

The combination of PDM and the gray level profiles for each landmark of 

an object can be used to segment this object in new images through the Active 

Shape Models, which is an iterative technique for fitting flexible models to 

objects represented in images [Cootes and Taylor 1992]. 

The referred technique is an iterative optimization scheme for PDMs 

allowing initial estimates of pose, scale and shape of an object to be refined in a 

new image. The used approach is summarized on the following steps: 1) at each 

landmark point of the model calculate the necessary movement to displace that 

point to a better position; 2) calculate changes in the overall position, orientation 

and scale of the model which best satisfy the displacements; 3) finally, through 

calculating the required adjustments to the shape parameters, residual differences 

are used to deform the shape of the model [Cootes et al. 1995]. 

In [Cootes et al. 1994] the authors presented an improved active shape 

model using multiresolution. So, the proposed method first constructs a 

multiresolution pyramid of the input images by applying a Gaussian mask, and 

afterwards studies the gray level profiles on the various levels of the pyramid 

built, making active models faster and more reliable. 
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3.2.2. Active Appearance Model  

This approach was first proposed in [Cootes et al. 1998] and allows for the 

building of texture and appearance models. These models are generated by 

combining a model of shape variation (a geometric model), with a model of the 

appearance variations in a shape-normalized frame. The statistical model of the 

shape used it is also described by Equation 3.2. 

To build a statistical model of the gray level appearance, each example 

image is deformed so that its landmark points match the mean shape of the object, 

by using a triangulation algorithm. Then the gray level information, 
im

g , is 

sampled from the shape-normalized image over the region covered by the mean 

shape. In order to minimize the effect of global light variation, this vector is 

normalized in order to obtain g . After applying a Principal Component Analysis 

to this data, a linear model called the texture model is obtained: 

g g
g g P b 

, 3.3 

where g  is the mean normalized gray level vector, 
g

P  is a set of orthogonal modes 

of gray level variation and 
g

b  is a set of gray level model parameters. Therefore, 

the shape and appearance of any example of the modeled object can be defined by 

vectors 
s

b  and 
g

b . 

Since there may exist correlation between the shape and gray levels 

variations, a further Principal Component Analysis is applied to the data. Thus, 

for each training example the concatenated vector is generated: 

 

 

T

s s s s

T

g g

W b W P x x
b

b P g g

   
    

 
    , 

3.4 

where 
s

W  is a diagonal matrix of weights for each shape parameter, allowing the 

adequate balance between the shape and the gray models. Then, a Principal 

Component Analysis is applied on these vectors, giving a further model: 

b Q c , 3.5 
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where Q  is the eigenvectors of b  and c  is the vector of appearance 

parameters controlling both shape and gray levels of the model. In this way, an 

example object can be obtained for a given c  by generating the shape-free gray 

level object, from the vector g , and be deformed using the landmark points 

described by x . 

 

3.3. Image Datasets 

 

For the analysis of the vocal tract configurations during sustained 

articulations of EP speech sounds, three datasets from two different MR 

acquisition systems were used, 1.5T and 3T [Ventura 2012]. Next, the description 

of each dataset and the corresponding MRI protocols are presented. 

According to the safety procedures for MR, a questionnaire was performed 

for screening patients before any procedure [Ventura, Freitas, et al. 2011; Ventura 

2012]. In addition, patients were previously informed and instructed about the 

study to be performed and informed consents were obtained. 

 

3.3.1. 1.5T Dataset 

Image acquisition was performed using a Siemens Magneton Symphony 1.5 

Tesla (1.5T) system and a head array coil, with the subject lying in the supine 

position [Ventura et al. 2012; Ventura 2012]. Due to this experimental setup, the 

T1-weighted sagittal slices of 5 mm thickness were obtained by using Turbo Spin 

Echo Sequences, with the acquisition duration of approximately 10 s. The 

decrease of the slice thickness entails a low signal noise ratio, making the 

posterior segmentation process more complex. Subsequently, this protocol has 

resulted from a compromise between the signal noise ratio, the number of slices 

acquired and the time needed for subjects to sustain articulation successfully 

during image acquisition process. The acquisition parameters adopted were: field 
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of view equal to 150 mm; image matrix of 128x128 pixels and image resolution 

equal to 0.853 px/mm. 

The speech corpus of the 1.5T Dataset consisted of a set of 25 MR images 

collected during sustained articulations of 25 EP speech sounds; that is, one 

sagittal image was acquired per each sound considered. The images were acquired 

from one young male subject in a similar manner to that which has been formerly 

used by other studies that use MRI to analyze the vocal tract [Serrurier et al. 2005; 

Badin et al. 2006; Story 2008]. The training of the subject was performed to 

ensure the proper production of the intended EP speech sounds and to reduce 

speech subject variability. Moreover, the subject in question had a vast knowledge 

of EP speech therapy. Additionally, the images were provided in JPEG format, 

with 256x256 pixels. 

 

3.3.2. 3.0T Sounds Dataset 

The image data was acquired using a Magneton Trio 3.0 Tesla (3.0T) MR 

system and two integrated coils (a 32-channel head coil and a 4-channel neck 

matrix coil), with the subjects in supine position [Vasconcelos et al. 2012; 

Ventura 2012]. A T1-weighted midsagittal slice of 3 mm thickness was acquired 

using turbo spin echo 2D sequence, and adopting the following parameters: a 

repetition time of 400 ms, an echo time of 10 ms, an echo train length of 5, a 

square field of view of 240 mm, a matrix size of 512x512 pixels, a resolution of 

2.133 px/mm and a 0.469x0.469 pixel size. 

The speech corpus of the 3T Dataset consisted in 25 sounds of European 

Portuguese language, including oral and nasal vowels, and consonants. Images 

were acquired from two young volunteers, one male and one female, that were 

trained before the MR exam to ensure the proper production of the intended 

sounds [Vasconcelos et al. 2012; Ventura 2012]. In order to reduce intra-speaker 

variability and to ensure consistency of results, 3 measurements (i.e. 3 slices per 

sound) were performed during the sustained sound with an overall acquisition 

time of approximately 8.07 seconds, resulting in 75 images for each subject. 

Additionally, the images were provided in JPEG format, with 512x512 pixels. 
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3.3.3. 3.0T Sequences Dataset 

For the 3.0T Sequences Dataset, the speech corpus consisted on two 

sequences of sounds of European Portuguese language, in two different 

articulatory contexts: 

- Vowel-vowel articulation; 

- Set of consonant-vowel articulation during a word utterance. 

The image data was acquired using a Magneton Trio 3.0 Tesla MR system 

and two integrated coils (a 32-channel head coil and a 4-channel neck matrix 

coil), with the subjects in supine position [Ventura, Vasconcelos, et al. 2011]. A 

Flash Gradient-Echo Sequence was used to acquire 100 midsagittal WT1 slices 

during 48 seconds for each repeated utterance, the followed parameters were 

adopted: 6 mm slice thickness, a repetition time of 6.4 ms, an echo time of 2.44 

ms, a field of view of 178x220 mm, a matrix size of 156x192 pixels, a resolution 

of 0.873 px/mm and a 1.146x1.146 mm pixel size. 

The first articulatory context included the five oral vowels [a ɛ i ɔ u] and the 

second, the utterance Portuguese word /pato/ (duck), with the IPA phonetic 

transcription [patu]. Images were acquired from two young female volunteers, 

without articulatory disorders, that were trained before the MRI exam to ensure 

the proper production of the intended sounds. The 3.0T sequence Dataset is 

constituted by a total of 400 images, 100 images per each sequence and from each 

subject [Ventura, Vasconcelos, et al. 2011]. Additionally, the images were 

provided in TIFF format, with 156x192 pixels. 

Examples of the MR images from the datasets acquired are depicted in 

Figure 3.1. From these images, one may observe different vocal tract 

configurations for EP vowels and consonant production, as well as for some oral 

and nasal sounds. Comparing the several vocal tract configurations of the subjects 

during the articulation of the EP sounds, individual differences of vertical length 

and of organs morphology are revealed, although the main configurations are 

similar. 
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Oral Vowels (i,a,u) 

  
Nasal Vowels (i,a,u) 

  
Consonants (ch, L, v) 

Figure 3.1 – Examples of images from the 1.5T (left) and 3.0T (right) datasets. 

3.4. Models 

In the present section one describes the implementation and the various 

models built for the study of the shape of the vocal tract and appearance during 

speech production as well as an example of their application to real studies. 

3.4.1. Implementation 

The algorithms to create the statistical deformable models were developed 

in MATLAB (http://www.mathworks.com), namely PDMs and ASMs, which 

integrates the Active Shape Models software [Hamarneh 1999] as basis. 

Additionally, in the case of the appearance models, the Modelling and Search 

Software [Cootes 2004] was used, which was built in C++ with VXL computer 

vision libraries (http://vxl.sourceforge.net). 

An implementation for segmentation quality assessment using the Active 

Shape Models and Active Appearance Models built was also developed in 

MATLAB. In the referred implementation, the values of mean and standard 

deviation of the Euclidean distances between the landmark points of the final 

shape of the models and the desired segmentation shapes were calculated as well 

as the minimum and maximum values. 

http://www.mathworks.com/
http://vxl.sourceforge.net/
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3.4.2. Tongue Shape Model 

The first analysis focused on the tongue shape configuration during the 

articulation of the nine oral vowels. Thus, a statistical model, PDM, on MR 

images was constructed to extract the main characteristics of the tongue shape 

configuration using the 1.5T dataset. 

A PDM was built from a set of nine images manually annotated with sixteen 

points along the tongue boundary, as depicted in Figure 3.2: 

- Two points in the lingual frenulum (anterior and posterior); 

- One point in the tongue’s tip; 

- One point in the tongue’s root; 

- Seven points along tongue’s body; 

- Five points along the inferior surface of the tongue. 

 

Figure 3.2 – Landmark points considered to build  

the tongue shape model. 

 

From Table 3.1 one can observe that the first three modes of the shape 

model built could explain 90% of all shape variance of the tongue. The first five 

modes explain 95% of all shape variance and with only seven modes of variation 

it is possible to explain 99% of all shape variance of the tongue.  

The effects of varying the first four modes of variation are visible in Figure 

3.3. From the observation of this figure, one can depict that the first mode is 

associated to movements of the whole tongue along the vertical to horizontal 

direction. In the second mode of variation, it is possible to observe the rise of the 

inferior surface and of the tongue body towards the palate. The third mode of 



Vocal Tract Active Models  56 

 

 

variation translates the lowering of the tongue’s tip and the advance of the tongue 

body simultaneously. The fourth mode of variation translates the rise and 

backward of the tongue dorsum. The fifth mode is related with the vertical rise of 

the tongue body towards the palate. The sixth mode translates the backward of the 

tongue’s tip and finally the seventh mode is related with the diagonal movement 

of the whole tongue from high to lower positions. 

Table 3.1 – First seven modes of variation of the model 

 obtained and their retained percentages. 

Mode of 

variation 

Retained 

Percentage 

Cumulative 

Retained 

Percentage 

1


 
5 6 .4 5 3 %  5 6 .4 5 3 %  

2


 
2 3 .3 6 2 %  7 9 .8 1 5 %  

3


 
1 0 .6 2 3 %  9 0 .4 3 8 %  

4


 
3 .3 3 1 %  9 3 .7 6 9 %  

5


 
2 .4 5 4 %  9 6 .2 2 3 %  

6


 
1 .7 8 7 %  9 8 .0 1 0 %  

7


 
1 .3 7 8 %  9 9 .3 8 8 %  

 

 
1

st
 mode of variation 

 
2

nd
 mode of variation 

 
3

rd
 mode of variation 

 
4

th
 mode of variation 

Figure 3.3 – Effects of varying each of the first four modes of variation of the tongue model 

(mean ± 2 standard deviation). 
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The PDM for the tongue model only for the EP oral vowels allowed a better 

understanding of the dynamic speech events involved during sustained 

articulations. It can be useful for speech rehabilitation purposes, namely, to 

recognize the compensatory movements of the articulators during speech 

production. 

After the obtained results, it was important to explore this research towards 

a more complete analysis, considering the whole vocal tract anatomy and using 

more images, as explained in next subsection. 

3.4.3. Vocal Tract Model and Sounds Reconstruction 

A vocal tract model was built trough a PDM using all the 25 images from 

the 1.5T dataset and considering 25 manually extracted anatomical points from 

the vocal tract articulators, see Figure 3.4. Images were annotated by a medical 

imaging specialist and further cross-checked by the author, to detect possible 

inconsistencies or missed landmarks. 

The labelling process adopted the following landmark points: 

- Four points in the lips (front and back of the lip margins); 

- Three points corresponding to the lingual frenulum and tongue’s tip; 

- Seven points equally spaced along the surface of the tongue; 

- Seven points along the surface of the hard palate (roof of the oral cavity) 

placed in symmetry with the tongue points; 

- One point at the velum (or soft palate); 

- Three points equally spaced at the posterior margin of the oropharynx 

(behind the oral cavity). 

   

a) b) c) 

Figure 3.4 – a) Training image, b) landmark points selected, c) image labeled with the  

overlapped landmark points selected. 
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Through the analysis of Table 3.2, one may notice that the initial 7 modes of 

the statistical deformable model built are capable of explaining 90% of all 

variance of the shape of the vocal tract, while the first ten modes illustrate 95% of 

all variance, and to explain 99% of all variance it is necessary to use 16 modes of 

variation. This indicates that the PDM that has been built is capable of 

considerably reducing the data set that is required to represent all shapes that the 

vocal tract held in the images training set. 

 

Table 3.2 – First 16 modes of variation of the model 

 built and their retained percentages. 

Mode of 

variation 

Retained 

Percentage 

Cumulative 

Retained 

Percentage 

1


 
4 3 .5 9 8 %  4 3 .5 9 8 %  

2


 1 2 .3 4 0 %  5 5 .9 3 8 %  

3


 
1 0 .9 8 8 %  6 6 .9 2 6 %  

4


 9 .3 4 5 %  7 6 .2 7 1 %  

5


 
6 .9 4 7 %  8 3 .2 1 8 %  

6


 
4 .7 2 4 %  8 7 .9 4 2 %  

7


 
2 .6 7 5 %  9 0 .6 1 7 %  

8


 
1 .9 7 3 %  9 2 .5 9 0 %  

9


 
1 .4 2 8 %  9 4 .0 1 8 %  

1 0


 
1 .3 1 2 %  9 5 .3 3 0 %  

1 1


 
0 .9 7 8 %

 
9 6 .3 0 8 %

 

1 2


 
0 .7 9 7 %

 
9 7 .1 0 5 %

 

1 3


 
0 .6 5 4 %

 
9 7 .7 5 9 %

 

1 4


 
0 .5 3 7 %

 
9 8 .2 9 6 %

 

1 5


 
0 .4 4 1 %

 
9 8 .7 3 7 %

 

1 6


 
0 .3 3 4 %

 
9 9 .0 7 1 %

 

 

The effects of varying the initial four modes of variation are depicted in 

Figure 3.5. The first mode is associated with movements from the high front to the 

lower back of the tongue in the oral cavity. With regards to the second mode of 

variation, it is possible to observe the vertical movement of the body of the tongue 

towards the palate. On the other hand, the variations of the third mode have been 

noticed to be related with the lip movements. Finally, the fourth mode of variation 

reflects the approximation of the tip of the tongue to the upper alveolar region. 
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Following the construction of the vocal tract model, some sounds were 

chosen to be reconstructed by using the statistical deformable model built, namely 

five EP oral vowel sounds and the EP fricative consonants, in order to infer about 

the quality of the reconstruction. The main goal of the present study in this second 

phase was to conclude whether the modes of variation of the statistical deformable 

model built could be combined in order to successfully reconstruct, that is, 

reproduce, an EP speech sound. 

  
1

st
 mode of variation 2

nd
 mode of variation 

 
 

3
rd

 mode of variation 4
th

 mode of variation 

Figure 3.5 – Effects produced by the variation of each of the first four modes  

of variation of the vocal tract model built (mean ± 2 standard deviation). 

 

In Figure 3.6, the resultant reconstructions of the shape of vocal tract related 

to the EP consonants [s] and [z] and the vowels [u] and [i] are depicted. In order 

to assess the quality of the reconstruction of the shape of the vocal tract in the 

articulation of EP speech sounds, the minimum, maximum and mean errors and 

the standard deviation of the Euclidean distances between the landmark points of 

the original shape and reconstructed ones must be calculated. Table 3.3 indicates 

such values. 
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Consonant [s] 

   
Consonant [z] 

   
Vowel [u] 

   
Vowel [i] 

a) b) c) 

Figure 3.6 – Reconstruction of the EP speech sounds [s], [z], [u] and [i]: a) original shape, 

b) reconstructed shape and c) both shapes overlapped. 

 

Table 3.3 – Errors obtained of the reconstructed shapes. 

 Minimum error 

[pixels] 

Maximum error 

[pixels] 

Mean error and 

standard deviation 

[pixels] 

Consonant [s] 1 .7 2  1 6 .2 2  7 .2 2 4 .1 3  
Consonant [z] 1 .0 4  1 8 .2 5  7 .1 1 5 .1 9  
Vowel [u] 2 .5 1  1 3 .9 7  7 .5 7 3 .5 8  
Vowel [i] 1 .9 1  1 8 .6 4  9 .1 0 4 .2 0  

 

The sounds that revealed to be the easiest to reconstruct were the vowels [i] 

and [o] and the consonant [j], as it only required the combination of two variation 
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modes of the model built. Thus, in order to obtain the shape of the vocal tract 

when articulating the vowel [i], it was necessary to merge the 1 st and the 4th 

modes. On the other hand, the reconstruction of the vowel [o] meant that the 1st 

and the 3rd modes needed to be united. Finally, the combination of the 1st and 8th 

modes enabled the reconstruction of the EP sound of the consonant [j]. 

Through the union of three variation modes of the statistical deformable 

model built, it was possible to reconstruct the shapes of the vocal tract when 

articulating the EP consonants [ch] and [f]. Thus, the combination of the 1st, 3rd 

and 7th modes permitted the reconstruction of the shape of the vocal tract 

associated with the consonant [ch], and by using the 1st, 2nd and 3rd modes, the 

shape of the vocal tract related to the consonant [f] was reproduced. 

In order to obtain the shape of the vocal tract when articulating the EP 

consonant [v], it was necessary to bring together the 1st, 2nd, 3rd and 5th modes of 

variation of the statistical deformable model built whereas the consonant [s], 

implied the union of the 1st, 2nd, 3rd and 8th modes. On the other hand, the 

reconstruction of the EP vowel [a], required the combination of the 1st, 3rd, 5th, 7th 

and 8th modes. In the case of the EP vowel [e], the articulation of 1st, 3rd, 5th, 8th 

and 9th modes was adopted. Finally, the reconstruction of the EP consonant [z], 

implied the union of the 1st, 2nd, 4th, 6th and 8th modes, Figure 3.6. 

Contrary to all expectations, the EP vowel [u] required the combination of 

the highest number of variation modes to reconstruct the related shape of the 

vocal tract. Before initiating a reconstruction study, the ones held the belief that 

the EP vowels were the easiest sounds to be (re)produced since that the air flows 

without any obstruction on the vocal tract. However, this was proven not to be the 

case. In fact, in order to reconstruct the sound of the EP vowel [u], the 

combination of the first ten modes of variation of the statistical deformable model 

built was required. This indicates that, from a morphological and dynamic point of 

view, the EP vowel [u] is not as simple to reconstruct as one would initially 

believe. 

In terms of phonation, fricative consonants are classified as either being 

voiceless or voiced, implying that the sounds are produced with or without the 

vibration of the vocal cord. The process of reconstruction used throughout this 
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work has also proven that the dynamics associated with the production of these 

sounds are distinct: on the one hand, the articulatory points are located in diverse 

positions; on the other hand, the combination of the variation modes has been 

proven to be a more complex phenomenon. This may be exemplified by the fact 

that the reconstruction of the voiceless consonant [s] implied the combination of 4 

variation modes (1st, 2nd, 3rd and 8th) whereas the voiced sound [z] required five 

variation modes (1st, 2nd, 4th, 6th and 8th). 

3.4.4. Vocal Tract Active Models on 1.5T MR Images 

The suitability of active models to segment the shape of the vocal tract in 

new images is explored in the present section. 

From the 1.5T dataset, 21 images were considered in the building of the 

statistical models, ASM and AAM, of the vocal tract’s shape by using one MR 

image per each sound. Additionally, the other 4 MR images, related with other 4 

EP speech sounds, were later used to evaluate the quality of the segmentation 

obtained by the Active Models built. The anatomical points considered were the 

ones from previous section, namely 25 manually extracted anatomical points from 

the vocal tract articulators, annotated by a medical imaging specialist and further 

cross-checked by the author, Figure 3.4 [Vasconcelos et al. 2011]. 

For the sensibility analysis of the Active Shape Models in terms of the 

percentage of the retained variance and on the dimensions of the profile adopted 

for the gray levels [Vasconcelos et al. 2010], ASMs were built with 95% and 99% 

of retained variance and with profiles for the gray levels of 7, 11 and 19 pixels. In 

the same way, Active Appearance Models were built with 95% and 99% of 

retained variance and considering 50000 and 10000 pixels for the texture model. 

As stopping criterion of the segmentation process, a maximum of 5 iterations on 

each resolution level was considered. As 4 resolution levels were defined based 

on the dimensions of the images, this criterion means that from the moment that 

the segmentation process starts to its end a maximum of 20 iterations can occur 

[Vasconcelos et al. 2010]. This maximum number of iterations was chosen 

because with the images considered it leads to excellent segmentation results. 

Additionally, it was verified that a lower value was not always sufficient to obtain 
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satisfactory segmentations and a higher value constantly leads to the same 

segmentation results. 

In Table 3.4, the first 15 modes of variation of the active shape model built 

and their retained percentages are indicated. From the values presented one may 

conclude that the initial 7 modes are capable of explaining 90% of all variance of 

the vocal tract’s shape under study. Additionally, one may conclude that the first 

10 modes represent 95% of all variance and that the first 15 modes provide an 

explanation for 99% of all variance. The former results indicate that the ASM 

built is able to considerably reduce the data required to represent all shapes that 

the vocal tract assumes in the training images set. 

Table 3.4 – First 15 modes of variation of the model built for the 

vocal tract’s shape and their retained percentages. 

Mode of 

variation 

Retained 

Percentage 

Cumulative 

Retained 

Percentage 

1


 
4 5 .3 4 9 %  4 5 .3 4 9 %  

2


 1 3 .5 6 3 %  5 8 .9 1 2 %  

3


 
9 .6 7 2 %  6 8 .5 8 4 %  

4


 
9 .1 2 3 %  7 7 .7 0 7 %  

5


 
6 .7 1 6 %  8 4 .4 2 3 %  

6


 
4 .6 7 4 %  8 9 .0 9 7 %  

7


 
2 .2 6 2 %  9 1 .3 5 9 %  

8


 
1 .8 7 2 %  9 3 .2 3 1 %  

9


 
1 .4 4 2 %  9 4 .6 7 3 %  

1 0


 
1 .3 6 7 %  9 6 .0 4 0 %  

1 1


 
0 .9 7 9 %

 
9 7 .0 1 9 %

 

1 2


 
0 .7 0 1 %

 
9 7 .7 2 0 %

 

1 3


 
0 .5 0 7 %

 
9 8 .2 2 7 %

 

1 4


 
0 .4 9 4 %

 
9 8 .7 2 1 %

 

1 5


 
0 .3 9 6 %

 
9 9 .2 2 7 %

 

 

The effects of varying the first 6 modes of variation are depicted in Figure 

3.7. This figure allows one to become aware that the first mode is associated with 

the movements of the tongue from the high front to the back positions at the oral 

cavity. With regards to the second mode of variation, it is possible to observe the 

vertical movement of the body of the tongue towards the palate. On one hand, the 

variations of the third mode are related with the opening of the lips and tongue’s 
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movement to backward. On the other hand, the fourth mode of variation reflects 

the tongue’s tip movement from the central position of the tongue to the alveolar 

ridge of the palate. Additionally, the fifth mode of variation translates the opening 

of the lips and the overall lateral enlargement of the vocal tract. Finally, the sixth 

mode is related with the movement of the tongue’s body from back to front and 

down positions. 

   
1

st
 mode of variation 2

nd
 mode of variation 3

rd
 mode of variation 

   
4

th
 mode of variation 5

th
 mode of variation 6

th
 mode of variation 

Figure 3.7 – Effects of varying each of the first six modes of variation of the  

model built for the vocal tract’s shape (mean ± 2 standard deviation). 

 

Afterwards, 4 MR images of 4 distinct EP speech sounds, which were not 

considered in the set of training images used, were segmented by the active shape 

models built. Figure 3.8 depicts an example the segmentations obtained for one 

image. Thus, in this figure it is possible to observe some of the iterations of the 

segmentation process by the active shape model built: it starts with a raw 

estimation on the localization of the vocal tract in the image (1st iteration), 

downwards each multiresolution level (4th and 9th iteration) until converges into 

the final the vocal tract’s shape after 14 iterations. This segmentation was 

obtained considering an active shape model able to explain 95% of all variance of 

the vocal tract’s shape under study and adopting a gray level profile of 7 pixels 

long, that is considering 3 pixels from each side of the landmark points 

[Vasconcelos et al. 2010]. Likewise, the segmentation results using this model on 

all the 4 testing MR images are shown in Figure 3.9. 
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In Table 3.5, the values of the mean and standard deviation that translate the 

quality of the segmentation obtained in each testing MR image by the active shape 

models built are presented. (For a better understand of the data indicated in this 

table, the models are named as: Asm_varianceretained_profiledimension). As it 

was said earlier, active shape models with gray level profile of dimensions equal 

to 11 and 19 pixels were also built. However, these active shape models were not 

able to segment successfully the modeled organ in the testing images. This fail 

was due to the size of the images considered, namely 256x256 pixels, which is 

relatively small: during the segmentation process, at each landmark point is 

considered a segment of 22 (or 38) pixels long in the active search and 

consequently the model built can easily diverge. 

  
Original image with mean shape 

of the model built 
4

th
 iteration 

  
9

th
 iteration 14

th
 iteration 

Figure 3.8 – Testing image with the initial position of the mean shape of the 

 model built overlapped and after 4, 9 and 14 iterations of the segmentation  

process by an active shape model. 

Table 3.5 – Mean and standard deviation (mean ± std) errors of the segmentations obtained 

 from the testing images by the statistical models built. 

Models Image 1 Image 2 Image 3 Image 4 

Asm_95_p7 9 .9 9 5 .7 6  9 .8 9 4 .4 3  1 1 .5 4 6 .3 6  1 4 .2 3 7 .6 6  
Asm_99_p7 9 .9 7 6 .2 7  1 0 .6 5 3 .4 5  fail 1 2 .2 5 5 .8 6  
Aam_95_5000 4 .9 0 2 .4 2  1 0 .2 1 5 .0 9  8 .9 8 4 .8 0  9 .9 1 3 .9 5  
Aam_99_5000 6 .7 7 3 .1 8  9 .7 3 4 .5 6  8 .8 0 4 .8 8  9 .8 3 4 .4 8  
Aam_95_10000 4 .9 4 2 .4 5  1 0 .1 9 5 .0 7  8 .9 8 4 .7 8  1 0 .5 6 4 .0 0  
Aam_99_10000 4 .3 5 2 .3 0  9 .7 1 4 .6 0  8 .8 0 4 .8 9  1 0 .0 6 4 .5 8  



Vocal Tract Active Models  66 

 

 

  

  

  

  

Figure 3.9 – Testing images with the initial position of the mean shape 

 model built overlapped (left) and the final results of the segmentation 

 process by an active shape model (right). 

 

As previously stated, active appearance models can also segment objects 

modeled in new images. By considering 95% of all the shape’s variance and 

10000 pixels in the construction of the texture model, 9 modes of shape variation, 

17 texture modes and 13 appearance modes were extracted. Additionally, for an 

active appearance model built using 99% of all the shape variance and considering 

the same number of pixels, then 15 shape modes, 20 texture modes and 18 

appearance modes were obtained. 
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The effects of varying the initial 3 modes of variation of texture and 

appearance of the active appearance models built are depicted in Figure 3.10 and 

Figure 3.11. Both figures allow one to become aware that the first mode is 

associated with tongue’s movements from the high front to back positions. 

Furthermore, one can verify that the second mode of variation is related to the 

vertical movement of the tongue towards the palate. Finally, the third mode of 

variation appears to translate the lips’ movement together with the tongue’s 

movement to backward. It should be noticed that these modes of variation also 

contain information about the appearance, meaning that the intensity profiles 

associated with each structure of the vocal tract are considered. 

 

Figure 3.12 presents an example of the segmentation result using one active 

appearance models built on a MR testing image. In this figure, it is possible to 

observe 4 of all the iterations of the active search needed to correctly segment the 

organ modeled: it starts with a raw estimation on the localization of the vocal tract 

in the image (1st iteration), downwards each multiresolution level (7th and 12th 

iteration) until converges into the desired vocal tract’ shape after 20 iterations. 

Similarly, the segmentation results using the same model on the all testing MR 

images are shown in Figure 3.13. Additionally, the obtained values of the mean 

and standard deviation that translate the quality of the segmentation obtained in 

each testing MR image by the active appearance models built are presented in 

Table 3.5. (Again, for a better understand of the data indicated, the models are 

named as: Aam_varianceretained_npixelsused). 

 

Through an analysis of the data presented in the Table 3.5, one may 

conclude that the active appearance models obtain superior results than the active 

shape models. Furthermore, the use of more modes of variation lead to better 

results when the active appearance models are used, in contrast with the 

segmentation results obtained by using the active shape models, where the use of 

more modes of variation (retained percent) not always translated in improved 

results. 
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Figure 3.10 – First three modes of texture variation of the active appearance  

model built for the vocal tract’s shape (mean ± 2 standard deviation). 
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Figure 3.11 – First three modes of appearance variation of the active appearance  

model built for the vocal tract’s shape (mean ± 2 standard deviation). 
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Figure 3.12 – Results after the 1
st

, 7
th

, 12
th

 and 20
th

 iterations of the segmentation  

process using one active appearance model built for the vocal tract. 

 

Summarizing, statistical deformable models, ASM and AAM, were applied 

in Magnetic Resonance Images to study the shape of the vocal tract in the 

articulation of European Portuguese sounds as well as used to segment the vocal 

tract’s shape in new MR images. 

 

While active shape models consider the information around each landmark 

point of the modeled object, active appearance models use also the gray level 

information of the object. Consequently, the former type of models tends to be 

less efficient than the latter, being this information confirmed in this work. 

Nevertheless, both active shape models and active appearance models obtained 

remarkable results, either in terms of translating the movements and 

configurations involved in speech production, as well as in the segmentation of 

the vocal tract in new images. 

 

The models built could fruitfully extract the main characteristics of the 

movements of vocal tract from 1.5T MR images. Furthermore, the low mean 

errors obtained in the segmentation of new MR images, from 4 to 10 pixels for 

256x256 pixels images, proved that these models can be accurate and efficient 

tools to be used towards the automatic study of the vocal tract from magnetic 

resonance images during speech production. 

 



Vocal Tract Active Models  70 

 

 

  

  

  

  

Figure 3.13 – Testing images with the initial position of the mean shape model built  

overlapped (left) and the final results of the segmentation process obtained  

by an active appearance model (right). 
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3.4.5. Vocal Tract Active Models on 3.0T MR Images 

The study presented in this section is similar to the previous one, with the 

difference that images with much higher quality, from the 3.0T sounds dataset, 

were used in the building of the statistical models of the vocal tract. These models 

were later used to evaluate the quality of the segmentations in new images 

[Vasconcelos et al. 2012]. 

For the construction of the models, 25 sounds have been considered by 

using 3 MR images per each one from the 3.0T sounds dataset. The localization of 

the landmarks was consistent with the 1.5T dataset: 25 landmark points were 

manually extracted anatomical points from the vocal tract articulators by a 

medical imaging specialist, Figure 3.14. 

 

   
a) b) c) 

Figure 3.14 – a) Training image, b) landmark points selected, c) image labeled with the  

overlapped landmark points selected. 

 

The sounds considered included the most representative sounds of the EP 

speech language. Additionally, 2 other MR images for the EP speech sounds /f/, 

/v/ and /a/ for each subject (making a total of 12 new images) were used to be 

segmented. The selection of the sounds to be segmented considered that: the 

associated sounds were easy to sustain, required slight efforts to the subjects and  

ensured the steadiness of the shape of the vocal tract; also, included the two 

classes of sounds under study, namely two fricative consonants, one voiced and 

another one voiceless and one vowel (/a/). 
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Again, the ASM models built had the same characteristics of the models 

from the previous section [Vasconcelos et al. 2010]. So, ASMs were built 

adopting 90%, 95% and 99% of retained variance and profiles of 7, 11 and 15 

pixels. Similarly, Active Appearance Models were built adopting equal values of 

retained variance and the following values of 5000 and 10000 pixels were 

considered for building the texture model. These parameters were defined based 

on the previous experience concerning the statistically modeling of vocal tract 

using these models [Vasconcelos et al. 2008; Vasconcelos et al. 2010; 

Vasconcelos et al. 2011]. 

Following the building of the ASMs and AAMs from the training set 

constituted by 138 images, the models were used to segment the vocal tract in 12 

new images. As a stopping criterion of the segmentation process, a maximum of 6 

iterations on each resolution level was taken into consideration. Due to the fact 

that 5 resolution levels were defined and based on the dimensions of the images 

under study, the criterion means that, from the beginning of the segmentation 

process to its end, a maximum of 30 iterations can occur. This maximum number 

of iterations was chosen as a result of the fact that in the experiments done it led 

to excellent segmentation results. 

From Table 3.6, one may observe that the initial 11 modes of variation of 

the Active Shape Model built are capable of explaining 90% of all variance of the 

vocal tract. Moreover, one may conclude that the first 17 modes provide an 

explanation for 95% of all variance and the initial 33 modes of variation illustrate 

99% of all variance. Once more, these findings clearly indicate the ability of the 

built ASM to considerably condense the data that is required to represent all 

configurations that the vocal tract assumes in the image training set. 

The effects on varying the first 6 modes of variation of the built models are 

depicted in Figure 3.15. From this figure, one can realize that the first mode is 

related to the movements of the tongue from the front to the back in the oral 

cavity associated with the rise of the larynx. With regard to the second mode of 

variation, it is possible to observe the movements of the tongue from the front-

high to the back-down in the oral cavity associated with the lips opening and 

narrowing. The third mode of variation describes the velum’s lowering associated 

with the enlargement/narrowing of the pharynx cavity and the tongue’s tip 
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movement. The vertical movement of the body of the tongue towards the palate is 

revealed by the fifth mode of variation. The variations of the sixth mode illustrate 

the open/close of the lips associated with the vertical movement of the tongue. 

After this mode of variation, all the remainder modes represent more particular 

movements, such as the larynx height adjustment, the tongue’s tip movement, the 

opening and closing of the lips, the vertical rise of the tongue’s body towards the 

palate and the pharynx narrowing. 

 

Table 3.6 – Retained percentages along the initial 17 modes  

of variation of the model built for the vocal tract. 

Mode of 

variation 

Retained 

Percentage 

Cumulative 

Retained 

Percentage 

1


 
40.893 40.893 

2


 
16.348 57.241 

3


 
8.065 65.306 

4


 
7.404 72.710 

5


 
4.595 77.305 

6


 
3.920 81.225 

7


 
2.515 83.740 

8


 
2.115 85.855 

9


 
1.703 87.558 

1 0


 
1.397 88.955 

1 1


 
1.296 90.251 

1 2


 
1.108 91.359 

1 3


 
1.021 92.380 

1 4


 
0.787 93.167 

1 5


 
0.677 93.844 

1 6


 
0.632 94.476 

1 7


 
0.562 95.038 

 

After the analysis on the ability of the built statistical models to render the 

real behavior of the vocal tract during the production of EP language sounds, 12 

new MR images of the 3 distinct EP speech sounds previously selected (/ f/, /v/ 

and /a/), i.e. of images not included in the used training image set, were 

automatically segmented by the same models. 
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Figure 3.15 – Effect on the vocal tract by varying (±2standard deviation) each of the first six 

 modes of variation of the model built. 

 

In Figure 3.16, one MR image of each subject articulating the EP speech 

sound /f/ is presented as well as the evolution of the correspondent segmentation 

by the active shape model built: the segmentation begins with a rough estimate for 

the vocal tract in the input image and then deforms it towards the desired 

segmentation. Analogously, the segmentation results obtained by using this model 

on other 4 new MR images are presented in Figure 3.17, where the first two 

images concerns to one subject and last image to the other subject articulating the 

EP speech sounds /v/ and /a/, respectively. 

    
Beginning 4

th
 iteration 7

th
 iteration 13

th
 iteration 

    
Beginning 3

rd
 iteration 5

th
 iteration 11

th
 iteration 

Figure 3.16 – Test image of female (top row) and male (bottom row) subjects overlapped  

 with the mean shape model built and after some iterations of the  

segmentation process of the active shape model built. 
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Figure 3.17 – Four test images overlapped with the mean shape model built (left) and after the 

conclusion of the segmentation process by the active shape model built (right). 

 

The segmentation results depicted in Figure 3.16 and Figure 3.17 were 

obtained considering an ASM capable of explaining 90% of all variance of the 

vocal tract under study and adopting a gray level profile length of 11 pixels, that is 

by considering 5 pixels from each side of the landmark points. 
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In Table 3.7, the values of the mean and standard deviation that reflect the 

quality of the segmentations obtained by the active shape models built in each 

testing MR image are indicated. (As previously adopted, the models are named as 

Asm_varianceretained_profiledimension  and cases of segmentation failures are 

indicated by a dash.) The results concerning the built ASMs considering 99% of 

all variance were not included in this table, since the models were not able to 

successfully segment the modeled organ in most of the testing images. This 

failure is precisely due to the percentage of retained variance used, 99% that led to 

an extremely rigid model and, because of that, had a very low ability to be 

adapted to new configurations. 

 

Table 3.7 – Mean and standard deviation (mean ± std) errors of the shapes  

segmented by the deformable models built. 

Female subject 

Models Image 1 Image 2 Image 3 Image 4 Image 5 Image 6 

Asm_90_p7 8 .9 9 5 .4 5  8 .0 5 4 .9 2  1 6 .0 2 1 4 .9 3  1 0 .7 8 7 .2 3  1 3 .3 9 7 .6 5  1 2 .6 1 7 .0 1  
Asm_95_p7 1 0 .4 0 5 .7 7  9 .2 3 5 .9 2  1 4 .6 3 8 .1 6  1 1 .0 7 9 .8 0  1 4 .2 9 8 .7 0  1 3 .2 1 8 .1 3  
Asm_90_p11 7 .5 0 4 .8 0  7 .2 5 4 .4 2  1 6 .9 3 1 4 .2 9  8 .7 0 4 .4 6  1 7 .2 9 1 0 .6 2  1 4 .4 9 8 .3 3  

Asm_95_p11 9 .8 9 6 .1 1  1 0 .4 2 7 .4 8  1 7 .7 2 1 4 .4 0  8 .7 0 5 .1 1  - - 

Asm_90_p15 8 .2 8 4 .4 1  8 .2 9 3 .4 4  1 6 .7 7 1 5 .5 0  8 .3 8 4 .6 8  1 6 .5 4 8 .0 5  1 4 .3 4 8 .1 7  

Asm_95_p15 8 .2 9 4 .5 6  8 .1 9 3 .7 8  1 6 .4 0 1 5 .7 9  8 .6 7 4 .2 9  1 6 .4 0 8 .7 3  1 4 .1 9 8 .4 1  
Aam_90_5000 6 .7 5 4 .0 9  7 .8 1 4 .7 4  1 3 .6 1 1 5 .6 7  9 .3 7 6 .0 7  9 .5 4 8 .3 6  9 .2 8 8 .5 9  
Aam_95_5000 - 6 .8 7 5 .8 9  1 3 .5 3 1 5 .0 6  - 8 .8 9 6 .5 3  - 
Aam_90_10000 7 .0 4 4 .5 5  7 .9 3 4 .7 6  1 3 .1 6 1 5 .8 4  9 .0 5 5 .9 1  9 .5 4 8 .5 0  9 .4 2 8 .6 7  
Aam_95_10000 6 .4 3 5 .2 1  6 .9 2 4 .9 1  1 3 .1 0 1 4 .7 2  9 .6 3 6 .3 8  8 .6 6 5 .1 5  5 .3 4 2 .8 2  

Male subject 

Models Image 1 Image 2 Image 3 Image 4 Image 5 Image 6 

Asm_90_p7 9 .3 5 5 .1 8  9 .2 3 7 .3 1  1 1 .1 1 7 .4 8  1 5 .3 5 1 1 .3 4  7 .6 8 3 .5 3  1 1 .0 5 6 .3 9  

Asm_95_p7 8 .9 3 6 .2 1  1 0 .9 0 8 .4 8  1 4 .9 2 8 .2 3  1 0 .2 0 6 .5 7  - 1 1 .0 2 9 .1 0  
Asm_90_p11 6 .5 1 3 .1 2  6 .8 3 4 .1 2  1 2 .8 1 7 .4 1  9 .8 0 7 .5 0  7 .8 3 4 .6 5  9 .6 6 4 .7 3  

Asm_95_p11 9 .0 8 4 .5 5  8 .7 1 5 .7 1  1 3 .8 7 7 .7 7  9 .6 5 6 .0 9  8 .1 3 4 .5 3  1 0 .3 0 5 .5 5  
Asm_90_p15 6 .5 3 3 .8 5  9 .2 5 4 .5 4  1 1 .7 5 6 .8 6  1 0 .3 3 5 .5 5  8 .5 6 5 .9 1  1 0 .1 1 7 .0 1  
Asm_95_p15 6 .2 5 4 .0 9  8 .8 4 5 .0 7  1 1 .5 9 7 .0 5  1 0 .4 6 5 .3 6  8 .4 7 6 .1 1  9 .9 4 7 .3 6  

Aam_90_5000 6 .7 5 6 .8 4  1 1 .2 2 7 .1 3  1 1 .6 1 7 .2 3  1 0 .0 5 5 .6 5  7 .6 2 5 .6 8  8 .8 1 5 .5 1  
Aam_95_5000 5 .0 6 4 .4 0  1 0 .0 5 7 .2 9  9 .2 8 6 .5 2  5 .3 2 2 .9 8  - 5 .3 2 4 .4 5  

Aam_90_10000 6 .9 3 7 .0 6  1 1 .8 2 7 .4 7  1 1 .9 9 7 .4 6  1 0 .3 7 5 .9 3  7 .7 8 5 .7 8  8 .2 4 5 .1 9  
Aam_95_10000 4 .9 1 4 .1 9  1 1 .2 0 7 .5 9  9 .7 9 6 .8 1  7 .9 6 3 .9 7  6 .1 9 4 .8 1  4 .9 7 3 .5 5  

 

As aforementioned, active appearance models are also proficient in 

modeling objects in images and to segment the modeled objects into new images. 
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Texture and appearance modes of variation are more difficult to analyze because 

some motion artifacts (“blur effect”) are presented as a result of some 

inconsistencies of the female subject to sustain the sound, and also because of the 

inter-subjects differences of vocal tract morphologies. The effects of varying the 

initial 3 modes of variation in terms of texture and appearance of one of the active 

appearance models built are depicted in Figure 3.18 and Figure 3.19, respectively. 

From these figures, it is possible to observe a noticeably number of movements, 

which are mostly related to the tongue. The first mode of texture depicts the 

movement of the lower lips and tongue’s enlargement in the oral cavity. Whereby, 

the second mode of variation describes the tongue’s tip movement to the alveolar 

region, and the same movement is observed in association with a backward 

movement of the tongue in the third mode of variation. On the other side, the first 

mode of variation of appearance describes the tongue’s enlargement in vertical 

and horizontal directions in the oral cavity. On the other hand, the variation of the 

second mode demonstrates the forward and backward movements of the tongue 

associated with the rise of the larynx. Finally, the third mode of variation depicts 

the forward and backward movements of the tongue in direction to the palate. 

These results were obtained considering an AAM capable of explaining 95% of 

all variance of the vocal tract under study and using 10000 pixels in the 

construction of the texture model. 

 

 

 

1
st

 mode of variation 

 

 

2
nd

 mode of variation 

 

 

3
rd

 mode of variation 

Figure 3.18 – Influence of the first 3 modes of texture variation of the  

active appearance model built (mean ± 2 standard deviation). 
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Figure 3.19 – Influence of the first 3 modes of appearance variation of the  

active appearance model built (mean ± 2 standard deviation). 

 

Figure 3.20 presents the segmentation result obtained using one of the active 

appearance models built on one testing MR image of each subject articulating the 

consonant /f/. In this figure, one may observe the evolution of the segmentation 

process through the same active appearance model: the process begins with a 

rough estimate of the vocal tract in the input image and then deforms it into the 

final vocal tract configuration. Similarly, the segmentation results obtained by 

using the model on other 4 testing MR images are depicted in Figure 3.21, where 

the first two images concerns to the female subject and the last images to the male 

subject during the articulation of the EP speech sounds /v/ and /a/, respectively. 

Additionally, the values obtained for the mean and standard deviation in order to 

translate the quality of the segmentation obtained in each testing MR image by the 

active appearance models built are included in Table 3.7. (Again, for a clearer 

understanding of the data indicated, the models have been named as 

Aam_varianceretained_npixelsused and cases of segmentation failures are 

indicated by a dash.) Similarity as had occurred with the active shape models 

used, the active appearance models built considering 99% of all variance were not 

able to successfully segment the modeled organ in most of the testing images and, 

hence, their results were not included in Table 3.7. 
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Figure 3.20 – Segmentation process of two test images by the active appearance model 

 built for the vocal tract. 

 

Through the analysis of the data presented in Table 3.7, one may conclude 

that in comparison to the active shape models, the active appearance models 

obtained better results, in other words, inferior errors of segmentation. 

Furthermore, it is possible to realize that the use of more modes of variation not 

always assure the best results. While ASMs presented enhanced performance 

when 90% of all variance was addressed, AAMs addressing 95% of all variance 

had a superior performance when compared with the ones attaining 90% of the 

variance. Another significant result is that the use of 99% of modes regarding all 

variance translates in an extraordinary rigid model that it is not capable of be 

adapted to different configurations, and consequently leading to fail in the 

segmentation of new images. 

The experimental findings are also depicted in Figure 3.22 and Figure 3.23, 

from which one may verify that the active appearance models performed better 

than the active shape models. The mean errors obtained for the female subject by 

the active shape models varied from 7.25 (Asm_90_p11-Image 2) to 17.72 

(Asm_95_p11-Image 3) pixels, 2 situations had occurred in which the  

segmentation failed. In the other hand, the mean errors obtained b y the active 

appearance models vary from 5.34 (Aam_95_10000-Image 6) to 13.63 

(Aam_90_5000-Image 3) pixels, and 3 unsuccessfully segmentation had occurred. 

The mean errors obtained for the male subject using the active shape models 
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varied from 6.25 (Asm_95_p15-Image 1) to 15.35 (Asm_90_p7-Image 4) pixels, 

and one unsuccessful case had occurred; while using the active appearance 

models, the mean errors varied from 4.91 (Aam_95_10000-Image 1) to 11.99 

(Aam_90_10000-Image 3) pixels and the model failed to successfully segment 

one image. 

 

   

   

   

   

Figure 3.21 – Four test images overlapped with the mean shape model built (left), 

 final results of the segmentation process by the active appearance model built  

(middle) and correspondent original images (right). 
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To summarize, 25 out of 30 possible EP speech sounds were modeled for 

two subjects, being used three measurements (slices) for each sound. Thus, using 

a training image set of 138 MR images, with more efficient and accurate models 

than the ones built so far could achieve, as was verified by the experimental 

findings obtained. Moreover, the images studied were acquired by a 3.0T MR 

system and, with the higher signal-to-noise ratio and resolution, it was expected 

that better segmentation results can be obtained when compared to the ones 

achieved in 1.5T MR images, from the previous section. Indeed, in the previous 

experiment mean errors rounding 10 pixels were achieved when 256 x 256 pixels 

1.5T MR images were used, whilst the segmentation results using the 3.0T MR 

images led to similar mean errors but in double sized images (512 x 512 pixels). 

 

Figure 3.22 – Mean errors (in pixels) and standard deviations of the segmentations obtained 

 by the deformable models built for the vocal tract of the female subject. 

 

Figure 3.23 – Mean errors (in pixels) and standard deviations of the segmentations obtained  

 by the deformable models built for the vocal tract of the male subject. 
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3.4.6. Application Example 

 

The aforementioned models proved to be capable of successfully segment 

vocal tract articulators in new images. Thus, a use case of the importance of the 

previous results is here presented [Ventura, Vasconcelos, et al. 2011]. 

The 3.0T Sequence Dataset is composed by a total of 400 midsagittal MR 

images, more specifically 100 images for two sequences and for two subjects. For 

a proper speech articulation assessment, obtained from the quantification of seven 

articulatory parameters, it was necessary to label the following pairs of landmark 

points, see Figure 3.24: 

- Lips aperture (1); 

- Tongue tip constrict location (2); 

- Tongue body contrict location (3); 

- Velic aperture (4); 

- Pharynx width (5); 

- Epiglottis distance (6); 

- Glottal aperture (7). 

Giving a total of 14 landmark points to extract, for each of the 400 images.  

 

   
a) b) c) 

Figure 3.24 – a) Landmark points positions, b) landmark points selected,  

c) image labeled with the overlapped landmark points selected. 
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In order to compare the speech articulatory measurements of this large set of 

images it was necessary to manually annotate each of the 400 images, which is an 

obviously time consuming task and subsequently highly subjected to errors. 

The construction of active vocal tract appearance models, with only 20 

images manually annotated per sequence, allowed drastically improving this time 

consuming step by automatically segment the other images of the sequence, and 

further obtain the corresponding trajectory distances. 

 

3.5. Discussion and Conclusion 

 

Along this chapter, the automatic study of the vocal tract from 1.5T and 

3.0T MR images was assessed through the application of statistical deformable 

models, namely active shape models and active appearance models. The primary 

goal consisted on the analysis of the vocal tract during the articulation of 

European Portuguese sounds, followed by the evaluation of the results concerning 

the automatic segmentation of the modeled vocal tract in new images. 

From the experimental results obtained, one may conclude that the statistical 

deformable models built are capable of efficiently characterizing the behavior of 

the vocal tract modeled from the MR images studied. In fact, the modes of 

variation of the models built could provide an explanation of the actual actions 

involved in the EP speech sounds considered, such as: the movement of the 

tongue in the oral cavity, the lip movements or the approximation of the tip of the 

tongue to the alveolar region. Additionally, it has been verified that the modeling 

performed could reduce the data set needed to characterize all variations of the 

shape of the vocal tract during the production of the EP speech sounds. 

These models have also revealed that they could easily be used to 

reconstruct the shape of the vocal tract in the articulation of speech sound. For 

example, EP speech sounds such as the vowels [i] and [o] or the consonant [j] 

may be obtained through the combination of just two variation modes, whist the 

vowel [u] required a combination of the first ten modes of variation to be 
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successfully reproduced. Also, as a result of the assessment carried out on the 

reconstructions obtained through the use of the statistical deformable model built, 

one could analytically prove their elevated quality as all mean errors were inferior 

to 9 pixels. 

Prior to this study, it was believed that EP speech vowels were the easiest 

sounds to be reproduced as the air flows through the vocal tract without any 

obstruction. However, the sound that was the most difficult to be successfully 

reconstructed was the vowel ([u]), thus indicating that it is morphologically more 

complex to reconstruct this vowel by using the model built. 

While active shape models consider the information around each landmark 

point of the modeled object, active appearance models use also the gray level 

information of the object. Consequently, the former type of models tends to be 

less efficient than the latter, being this information confirmed in this work. 

Nevertheless, both active shape models and active appearance models obtained 

remarkable results, either in terms of translating the movements and 

configurations involved in speech production, as well as in the segmentation of 

the vocal tract in new images. 

From the experimental results obtained, one may state that the point 

distribution model built can fruitfully extract the main characteristics of the 

movements of vocal tract from magnetic resonance images. Furthermore, one can 

verify that the active shape models and the active appearance models can be used 

to segment the modeled vocal tract in new MR images in a successful and 

automatically manner. Therefore, the models built can be accurate and efficient 

tools to be used towards the automatic study of the vocal tract from magnetic 

resonance images during speech production. 

One of the premises for acquiring an efficient deformable model, and 

consequently obtaining good results concerning the segmentation of the modeled 

object, is extremely related to the quality of the images to be studied. In this 

chapter, datasets with different image qualities were analyzed, acq uired by a 1.5 

Tesla and a 3.0 Tesla MR systems. Indeed, for the 1.5T dataset, where 256 x 256 

pixels 1.5 Tesla MR images were used, mean errors rounding 10 pixels were 
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achieved; whilst the segmentation results using the 3.0 Tesla MR images led to 

similar mean errors but in double sized images, 512 x 512 pixels. 

Another major contribution accomplished concerns to the amount of data 

studied. For the 3.0T sounds dataset, 25 out of 30 possible EP speech sounds were 

modeled for two subjects, being used three measurements (slices) for each sound. 

Thus, using a training image set of 138 MR images, with more efficient and 

accurate models than the ones built so far could achieve, as was verified by the 

experimental findings obtained. 

As a final remark, and after realizing the suitability of this statistical 

modeling technique to segment the vocal tract in new images, the one presented 

an use case to prove that these models can, indeed, help imaging experts and 

speech therapists in this task. By constructing vocal tract active models with the 

manual annotation of only a one fifth of the dataset, it was possible to rapidly 

segment the others four fifths of the dataset, instead of manually annotating all 

images. 

To conclude, from the work here described, one should emphasize that the 

recent MR imaging systems, in particular the 3.0 Tesla, and the use of the adopted 

statistical modeling technique have made possible the automatically and realist 

simulation of the vocal tract during speech production as well as the efficient  

segmentation of vocal tract in new images. Therefore, the assessment of the 

articulators’ positions and movements can be facilitated, contributing, for example 

to: speech rehabilitation, as a supplementary tool for the therapeutic planning and 

follow-up for physicians and speech therapists; simulation purposes, namely to 

recognize and simulate the compensatory movements of the articulators during 

speech production; and construct improved computational speech models and 

devices.
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4  

Silhouette Models 

 

Human motion is one of the most interesting subjects of image analysis due 

to its promising and important applications in many key fields. The study of 

human motion can be divided into three different but interconnected steps: the 

first deals with the segmentation, or identification, of the subject in the images; 

the second is related to tracking; and finally, the third, in which human motion 

understanding is performed. Each one of these steps is highly complex and 

numerous studies have been done to develop methodologies capable of 

performing such actions, as demonstrated in the second chapter of this Thesis. 

This chapter will focus on the first step of human motion analysis, in which 

the segmentation of a subject is performed. Different methods of image 

segmentation are reviewed here and applied to different image sequences, from 

basic methods that model the background to extract the subject in the scene to 

more complex ones which learn to adapt to changes throughout the image 

sequences in order to obtain better segmentation results. Since our focus of 

motion segmentation is a human subject, we present a model that describes the 

possible silhouettes to be obtained from image sequences with a subject normally 

walking together with specific landmarks that represent important anatomical 

points. The model presented can also be used to segment the subject in new 

images in order to, for instance, further analyze the subject’s motion. 
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The first section of this chapter presents the different image sequences used 

throughout this study. In the second section, a description of the four different 

background subtraction models is given and, in the third section, the active 

silhouette model is explained. The error segmentation measures adopted are 

described in the fourth section and the details on implementations developed 

during this work are provided in the fifth section. The sixth section contains the 

segmentation results obtained with the different methods. Finally, in the seventh 

section, the results are discussed and conclusions are drawn.  

4.1. Image Sequences 

Different image sequences were used to evaluate the aforementioned 

models. The majority of the image sequences belong to widely known datasets 

that were referred to previously in the second chapter of this Thesis. 

A brief description of the image quality, number and position of the subjects 

as well as the surrounding environment where the sequences were acquired are 

given in the following subsections. 

4.1.1. NADA 

The first image sequence used belongs to the NADA database indicated in 

[Schuldt et al. 2004]. In this sequence a male subject is walking parallel to the 

camera view in an outdoor environment with a homogeneous background. It is a 

22-second video, with 25 frames per second and with image resolution of 

160x120 pixels. In Figure 4.1 some examples of images from this sequence are 

illustrated. 

 

   

Figure 4.1 – Examples of images extracted from the NADA image sequence. 
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4.1.2. CASIA-A 

The second image sequence used belongs to the CASIA-A dataset [L. 

Wang, Tan, et al. 2003], the former NLPR gait database. One male subject walks 

parallel to the camera in an outdoor environment more complex than the previous 

sequence. The sequence is provided in a 27-second video, with 25 frames per 

second and with image resolution of 320x240 pixels. Examples of images from 

this sequence are shown in Figure 4.2. 

 

   

Figure 4.2 – Examples of images extracted from the CASIA-A image sequence. 

4.1.3. CAVIAR 

The other image sequence used belongs to the CAVIAR Test Case 

Scenarios [Fisher et al. 2003], which was taken from a Shopping Center in 

Portugal and shows a frontal view of the scenario with people walking along a 

corridor. In this sequence a female subject is walking parallel to the camera view 

in an outdoor environment with a heterogeneous background. A 16-second video 

was considered in this study, with 15 frames per second and with image resolution 

of 320x240 pixels. In Figure 4.3 examples of images from this sequence are 

shown. 

 

   

Figure 4.3 – Examples of images extracted from the CAVIAR image sequence. 
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4.1.4. CASIA-B 

The final image sequences considered in this work belong to the CASIA 

Gait Database (CASIA-B) [Yu et al. 2006]. Information was used from 11 

subjects walking in four different directions (0º, 36º, 54º and 90º) in relation to the 

image camera in an indoor environment, such as the portrait in Figure 4.4. All 

image sequences are stored as video files encoded with MJPEG, a frame rate of 

25 fps and a frame size of 320x240 pixels. 

 

   

0º 

   

36º 

   

54º 

   

90º 

Figure 4.4 – Examples of images extracted from the CASIA-B image sequence,  

with different subjects and images taken from different views. 
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4.2. Background Subtraction Models 

The use of an edge detection algorithm, by itself, is obviously not sufficient 

for identifying an object in an image sequence. Thus, more complex models, 

capable of learning the background and segment moving objects were developed. 

Four different models were implemented, in the scope of this Thesis, which are 

described in this section. 

4.2.1. Simple Difference Model 

Background subtraction is the fundamental method of image segmentation 

[Piccardi 2004]. It involves the calculi of a reference image followed by the 

subtraction of each frame of the image sequence from the reference and further 

threshold of the result. 

Here, instead of using the difference between two frames, three frames fro m 

different phases of the sequences were used to obtain three difference frames from 

each other; afterwards, the background image was designed based on all the pixels 

classified as background from the three threshold difference frames. The 

foreground is detected by subtracting the present image from the reference 

background and final threshold of the result. 

4.2.2. Running Average Model 

Another basic method to obtain the background uses the running average 

[Wren et al. 1996]. Here, a pixel is classified as background when the pixel value 

belongs to the corresponding distribution of the background; otherwise, the mean 

of the distribution is updated. The updated background is then used in the next 

image. The following equation presents the running average background update 

method used in this Thesis: 

𝜇𝑖+1 =  𝛼 × 𝑝𝑖 + (1 − 𝛼)𝜇𝑖, 4.1  

where 𝑝𝑖 is the pixel value at a given frame 𝑖 , 𝜇𝑖 is the current average value and 

the parameter α is the learning rate that defines the influence of the current pixel 

over the currently estimated background. 
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4.2.3. Mixture of Gaussians Model  

This approach was based on the study of [Stauffer et al. 1999], where the 

authors introduce a method to model each background pixel by a combination of 

K Gaussian distributions, with K being a small number between three and five and 

the different Gaussians are assumed to represent different colors. The weight 

parameters of the combination represent the time proportions that these colors 

remain in the scene, so background components will be the ones with the highest 

probable colors. In other words, the Gaussians of the combination that correspond 

to background colors are determined based on the persistence and the variance of 

each of the Gaussians. To allow the model to adapt to changes in illumination, an 

update scheme is applied based on selective updating. Finally, pixel values that do 

not fit the background distributions are considered foreground until there is a 

Gaussian that includes them with sufficient evidence supporting it. According to 

the authors, only two parameters are necessary to set the system: one defining the 

time constant that determines the speed at which the distribution’s parameters 

change and another that indicates the minimum portion of data that should 

account for the background. 

To overcome some limitations of the previous approach, such as slow 

learning in the initial frames, especially in complex environments and difficulty in 

distinguishing moving shadows from moving objects, the study of 

[KaewTraKulPong et al. 2002] presents a solution to these problems. The authors 

reinvestigate the update equations and use different equations at different phases 

in order to allow the system to learn faster. In addition, the authors incorporate a 

shadow detection scheme to the model. 

4.2.4. Foreground Object Detection Model  

Another possibility is the use of the method based on Bayes decision theory 

to detect foreground objects from complex image sequences presented in [Li et al. 

2003]. In the first step of this method, non-change pixels in the image stream are 

filtered out by simple background and temporal differences. Then, the detected 

changes are separated as pixels belonging to stationary and moving object 

according to inter- frame changes. After this, the pixels associated with stationary 
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or moving objects are classified as background or foreground based on the learned 

statistics of colors through the use of the Bayes decision rule. The foreground 

objects are segmented by fusing the results from both stationary and motion 

pixels. At last, the background model is updated.  

The reason of choosing this methodology to test in this project is because it 

showed to work well in complex backgrounds including sequences with variable 

light conditions and shadows of moving objects. 

 

4.2.5. Human Silhouette Extraction 

After applying the four background subtraction models, post-processing was 

performed in the segmented images in order to obtain only the human silhouette. 

First, noise was removed from the resulting images by performing erosion, then 

all object contours from the image were obtained and the object with larger area 

was considered the human silhouette. 

Besides the normal contour points extracted directly from the silhouette, 

another silhouette contour was obtained with 100 landmarks defined according to 

the following distribution:  

- 45 points from the left side of the contour (equally spaced); 

- 45 points from the right side of the contour (equally spaced); 

- 10 points between the feet of the subject (equally spaced); 

where the separation of the contour is dictated by three fixed landmark points 

corresponding to the head and feet. The head is considered the highest left contour 

point from the silhouette and the feet are obtained as the left and right more 

distant points from the head.  

Figure 4.5 shows an example of the silhouette obtained from an image (a), 

the silhouette contour (b) and the silhouette contour with 100 landmark points (c), 

where the red * indicates the head and feet. 
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a) b) c) 

Figure 4.5 – A silhouette example a); silhouette contour extracted from a), b); and 100 contour 

points extracted from the silhouette a). 

4.3. Active Silhouette Model 

A Point Distribution Model (PDM) expresses the mean shape of the 

modeled object in addition to the admissible variations in relation to the same 

mean shape [Cootes, Taylor, et al. 1992]. Also if, in addition to the geometrical 

information, gray level information is used, then it is possible to build Active 

Shape Models (ASM) to segment the modeled object in new images. These 

methods were explained in detail in the previous chapter and taking into account 

the successful results, one decided to also explore this methodology also for 

human silhouette modeling. 

In this work, the contour together with the anatomical landmark points of 

the human shape was modeled by an ASM from a set of 2734 images. The images 

include various shape configurations of different persons walking, namely, 

information from 11 subjects walking in four different directions (0º, 36º, 54º and 

90º) in relation to the image camera, as illustrated in Figure 4.4.  

Table 4.1 shows the number of images employed in the construction of the 

models built, as well as the number of images used to further test their 

segmentation accuracy. 

Table 4.1 – Summarized table of the data used  

to build and test the ASM. 

Direction Training images Test images 

00 746 73 

36 696 52 

54 695 65 

90 597 25 

Total 2734 215 
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In order to obtain a robust PDM, the images used in the training process 

ought to adequately represent the variability of the human shape during walking. 

Moreover, each shape of the silhouette presented in the training set should be 

described by a group of labeled landmark points conveying important aspects of 

the body contour. Hence, 100 contour points were chosen to be extracted from the 

silhouettes available on the image dataset and further manually annotate 13 extra 

points indicating the anatomical points from the human stick figure, leading to a 

total of 113 landmark points to represent the human body structure.  

 

The 100 contour points were obtained as explained in the previous section 

and the 13 extra points correspond to: 

- 1 point in the center of the head (1); 

- 1 point on each shoulder (2); 

- 1 point on each elbow (2); 

- 1 point on each hand (2); 

- 1 point on the left and right of the hip (2); 

- 1 point on each knee (2); 

- 1 point on the backside of each foot (2). 

The 13 anatomical landmark points corresponding to the stick figure of the 

human shape were manually extracted from each frame, and the associated 

coordinates were concatenated with the contour related landmarks. 

 

In all images to be presented in this chapter, the landmark points 

corresponding to the human contour appear connected by fictitious line segments 

to enhance their visualization, while the anatomical landmark points appear 

represented by the “x” sign. Figure 4.6 show examples of some images used with 

the corresponding extracted landmark points. 
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0º 36º 54º 90º 

Figure 4.6 – Example of landmark points considered in the four  

directions (0º, 36º, 54º and 90º) to build the model. 

 

The Active Shape Model was built adopting 95% of all object shape 

variance in the geometrical modeling (i.e. in PDM) and a profile wid th of 7 pixels 

for the gray level modeling. As a stopping criterion for the segmentation process, 

a maximum of 6 iterations for each resolution level was taken into consideration. 

Hence, due to the fact that 3 resolution levels were defined based on the 

dimensions of the images under study, a maximum of 18 iterations could be 

performed. Other Active Shape Models were built to model the human silhouette, 

with different retained percentages and profile lengths, with the previously 

referred to being the more robust and presenting the best results and thus explored 

in detail here. 
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From Table 4.2 one can observe that the first 11 modes of the shape model 

built could explain 90% of all shape variance of the silhouette. The first 20 modes 

explain 95% of all shape variance, and with only 62 modes of variation, it is 

possible to explain 99% of all shape variance of the silhouette.  

 

Table 4.2 – Retained and cumulative percentage of the modes 

 of variation of the silhouette model. 

Mode of 

variation 
Retained % 

Cumulative 

Retained % 

1
  

40.817% 40.817% 

2
  13.198% 57.014% 

3
  11.018% 68.032% 

4


 6.3333% 74.365% 

5


 4.4633% 78.829% 

6


 3.1392% 81.968% 

…   

λ11 1.0350% 90.289% 

…   

λ20 0.2997% 95.231% 

…   

λ62 0.0264% 99.002% 

 

Through the observation of the first four modes of variation with more 

significance of the PDM built, i.e. the modes shown in Figure 4.7, one can foresee 

the adequacy of the modeling process for characterizing the human shape. For 

instance, it is well known that the first mode of variation gathers the information 

on the walking stance of the subjects, while the second and third modes of 

variation gather information on the direction in which the subject is walking. In 

contrast, smaller and more specific variations can be seen in the fourth mode. 
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Figure 4.7 – First four modes of variation of the PDM built (mean shape ± 1 std). 

 

4.4. Segmentation Quality Assessment 

In order to assess the segmentation quality of the presented methods, in 

addition to the subjective evaluation from the observation of the segmented 

images, three objective measures were taken into consideration throughout this 

work. The first measure, the F-measure, considers the entire image, while the 

second and third measures, Euclidean and Hausdorff distance, only consider the 

silhouette contours, or landmark points, instead. 
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4.4.1. F-measure 

While the true positives (TP) provide the number of correctly identified 

foreground pixels, the true negatives (TN) provide the number of correctly 

detected background pixels. On the contrary, the false negatives (FN) are pixels 

wrongly classified as background, whereas false positives (FP) are wrongly 

classified as foreground. Typical measures for two class problems are: the recall 

R, which is the ratio between the TP with the number of relevant pixels in the 

ground truth data (TP+FP); and precision P, which is the ratio between the TP to 

the total number of pixels (TP+FN). The F-measure combines these two 

complementary measures with equal weights by calculating: 

𝐹 =
2×𝑃×𝑅

𝑃+𝑅
. 4.2  

 

4.4.2. Euclidean Distance 

The simplest distance to compare shapes is the Euclidean distance. 

Considering 𝑎 and 𝑏  as points of the segmented and ground truth silhouettes, 

respectively, the Euclidean distance 𝑑(𝑎, 𝑏) is given by: 

𝑑(𝑎,𝑏) = √(𝑥𝑎 − 𝑥𝑏)2 + (𝑦𝑎 − 𝑦𝑏)2, 4.3  

where (𝑥𝑎 ,𝑦𝑎) and (𝑥𝑏 ,𝑦𝑏) correspond to the co-ordinates of the landmark points. 

The Euclidean distance is calculated to each point of the silhouette and the mean 

and standard deviation of all distances are computed to define the segmentation 

quality. 

Since this measure can only be obtained when the number of points of the 

segmented silhouette and the ground truth are equal, the next measure was taken 

into account in order to cope with this drawback. 
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4.4.3. Hausdorff Distance 

The Hausdorff distance has been widely used to compare images 

[Huttenlocher et al. 1993]. It is the maximum distance of a set to the nearest point 

in the other set [Rote 1991]. Thus, the Hausdorff distance from a set A to a set B 

is defined as: 

ℎ(𝐴, 𝐵) = 𝑚𝑎𝑥𝑎∈𝐴 {𝑚𝑖𝑛𝑏 ∈𝐵{𝑑(𝑎, 𝑏)}}, 4.4  

where 𝑎 and 𝑏 are points of sets 𝐴 and 𝐵 respectively, and 𝑑(𝐴, 𝐵) is any metric 

between these points. In this Thesis, one considers 𝑑(𝐴, 𝐵)  as the Euclidean 

distance between 𝑎 and 𝑏. 

 

4.5. Implementations 

The algorithms to create the background subtraction models were 

implemented using the programming language C++ with the open-source toolkit 

OpenCV (http://opencv.org), while the active silhouette model was developed 

using MATLAB (www.mathworks.com), based on the Active Shape Models 

software presented in [Hamarneh 1999]. 

For the extraction of the 100 landmark points from the silhouette contours, 

an algorithm in MATLAB was developed to automatically identify and extract the 

coordinates of the 100 contour points according to the previously described rule in 

section 4.2.5. 

In addition, an implementation for segmentation quality assessment was 

also developed in MATLAB. Therefore, the three objective measures referred  to 

in the previous section were implemented, namely F-measure, Hausdorff distance 

and Euclidean distance. For the F-measure, instead of considering the complete 

image, the bounding box that contained the ground truth silhouette was considered 

in order to exclude the image area that only contains the background. 

 

 

http://opencv.org/
http://www.mathworks.com/
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4.6. Segmentation Results 

In this section, one presents the segmentation results obtained using the 

background subtraction models as well as the silhouette models. 

 

4.6.1. Background Subtraction Models 

For the image sequence NADA, the last 25 images of the sequence in which 

the subject silhouette was completely present were used to evaluate the four 

background subtraction segmentation models previously described. 

 

Figure 4.8 shows three of the images belonging to the 25 test images, 

together with the ground truth silhouette provided with the dataset and the 

segmentation results obtained using each one of the four background models: 

simple difference, running average, mixture of Gaussians and foreground object 

detection models. At first glance of the figure, it is clear that simple difference 

model has the worst results, as expected, and the foreground object detection has 

some issues with the last test images, probably due to illumination differences 

noticed in the right side of the scene. Regarding the running average and the 

mixture of Gaussians models the subjective evaluation, meaning taking into 

consideration only the observation of segmentation images obtained, provides 

quite similar results. 

 

Passing to a more thorough evaluation, namely by an objective evaluation, 

the mean F-measures, Hausdorff and Euclidean distances for each tested image 

are present in Figure 4.9, Figure 4.10 and Figure 4.11, respectively. In addition, 

Table 4.3 presents the mean results of the segmentation errors of all tested images 

together with its standard deviation. 
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Original images 

   
Ground truth segmentation 

   
Simple difference model 

   
Running average model 

   
Mixture of Gaussians model 

   
Foreground object detection model 

Figure 4.8 – Three images from the NADA image sequence, the respective silhouette ground truth 

and segmentation results using the different background subtraction models. 
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Figure 4.9 – Mean F-measures obtained using the different studied segmentation 

 models for each test image of the NADA image sequence. 

 

 

Figure 4.10 – Mean Hausdorff distances obtained using the different studied segmentation  

 models for each test image of the NADA image sequence. 

 

 

Figure 4.11 – Mean Euclidean distances obtained using the different studied segmentation  

 models for each test image of the NADA image sequence. 
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The objective evaluation confirmed that the simple difference method had 

the worst performance with an F-measure of 69.15%. So, by analyzing the other 

three methods, another clear result arises; that is, the foreground object detection 

method fails in the last 5 test images and is genera lly outperformed by the other 

two methods. The method with better results is the running average, with the best 

F-measure, mean of 87.46% and standard deviation of 0.95%; however, it is worth 

mentioning that the mixture of Gaussians model also provides very good results, 

with a mean F-measure of 86.06% and standard deviation of 1.25%.  

For every tested image, considering all segmentation error measures, the 

winning method is without a doubt the running average method. The mean 

Hausdorff segmentation error of contour extracted from the silhouette rounds 1.08 

pixels with standard deviation of 0.07, for images with size 160x120 pixels. The 

Euclidean mean error, obtained from the 100 specific extracted points of the 

human contour is 2.35 pixels with standard deviation of 0.54. From these results, 

one can conclude that the running average method is capable of successfully 

segmenting the NADA image sequences with high quality results. 

 

Table 4.3 – Mean and standard deviation (mean ± std) errors of the segmentations 

obtained using the NADA image sequence for different segmentation models. 

Models F-measure (%) Hausdorff Euclidean 

Simple difference 69.15 ± 3.61 4.08 ± 1.16 8.52 ± 2.91 

Running average 87.46 ± 0.95 1.08 ± 0.07 2.35 ± 0.54 

Mixture of Gaussians 86.06 ± 1.25 1.47 ± 0.15 3.27 ± 0.63 

Foreground object detection 76.00 ± 9.25 2.03 ± 0.32 7.33 ± 7.30 

 

 

For the CASIA-A image sequence, 26 images were used to test the 

background subtraction models. 

Figure 4.12 presents examples of three images of the tested images, the 

ground truth segmentation and the segmentation images obtained using the four 

background subtraction models. It is straightforward that the simple difference 

model cannot deal with a more complex background presenting weak 

segmentation results. The mixture of Gaussians model also has problems to 
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correctly segment the human legs, probably due to their shadows, while the other 

two methods seem to obtain satisfactory segmentation results. 

Figure 4.13, Figure 4.14 and Figure 4.15 present the mean segmentation 

errors of the F-measure, Hausdorff and Euclidean distances, for each tested image 

for the three best models, namely the running average, mixture of Gaussians and 

the foreground detection models. 

From Figure 4.13 it is possible to observe that the mixture of Gaussians 

model has lower results in the 11th and 12th images used in testing, and the 

running average has lower results in the 16th to 19th images. The 11th test image 

corresponds to the central images of Figure 4.12, where mixture of Gaussians 

model fails to correctly segment the legs of the subject, and this failure is clearly 

seen in the quantitative errors. The 16th to 18th images and the resulting 

segmentation images using the running average method are presented in Figure 

4.16, in which the model fails to segment the upper part of the human body. While 

the mixture of Gaussians blends the black band of the ground with the person, the 

running average has same difficulty in separating the upper body from the dark 

window of the background. However, it is important to mention that, once the 

subject passes by these obstacles, both models are capable of obtaining complete 

and accurate silhouettes again. On the contrary, the previous ly mentioned errors 

cannot be seen in Figure 4.14, because the Hausdorff distance does not compare 

the contours point by point but by the point of the ground truth contour with the 

closest point of the segmentation contour, which can induce small Hausdorff 

distances even when the contours are not so similar. The Euclidean distances, 

point by point, as presented in Figure 4.15, partially overcome this problem; 

however, it is important to remember that the extracted 100 contour points, with 

45 points belonging to the left side of the subject, another 45 points belonging to 

the right side and 10 points are extracted from the contour between the feet of the 

subject. Therefore, the mean Euclidean segmentation errors of the running 

average model for the 16th to 18th images are very high because they refer to upper 

body contours, but the mean segmentation errors of the mixture of Gaussians 

models for the 11th and 12th images are only slightly worse than the other models, 

because only 10 out 100 contour points have bad results corresponding to the 

contour points between feet. 



Silhouette Models  105 

 

 

   
Original images 

   
Ground truth segmentation 

   
Simple difference model 

   
Running average model 
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Foreground object detection model 

Figure 4.12 – Three images of the CASIA-A image sequence, the respective silhouette ground 

truth and segmentation results using the different background subtraction models. 
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Figure 4.13 – Mean F-measures obtained using the different studied segmentation 

 models for each test image of the CASIA-A image sequence. 

 

 

Figure 4.14 – Mean Hausdorff distances obtained using the different studied segmentation  

 models for each test image of the CASIA-A image sequence. 

 

 

Figure 4.15 – Mean Euclidean distances obtained using the different studied segmentation  

 models for each test image of the CASIA-A image sequence. 
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Original images 

   
Running average model 

Figure 4.16 – 16
th

, 17
th

 and 18
th

 test images of the CASIA-A image sequence and the respective 

segmentation results using the running average model. 

 

Table 4.4 shows the mean segmentation errors and standard deviations for 

the four models in the study. Since the simple difference model obtained weak 

results regarding the F-measure, we did not calculate the Hausdorff and Euclidean 

distances as it would not add useful information. 

 

Taking into consideration all the presented results, one can conclude that the 

foreground object detection model provides the best results for the CASIA-A 

image sequence. This model is able to obtain mean Euclidean errors of 3.16 pixels 

with standard deviation of 1.11 pixels, from images of size 320x240 pixels. 

 

Table 4.4 – Mean and standard deviation (mean ± std) errors of the segmentations 

obtained using the CASIA-A image sequence for different segmentation models. 

Models F-measure (%) Hausdorff Euclidean 

Simple difference 66.31 ± 8.18 - - 

Running average 85.97 ± 6.74 1.96 ± 0.65 6.24 ± 5.18 

Mixture of Gaussians 89.09 ± 4.05 1.99 ± 0.66 3.59 ± 1.09 

Foreground object detection 90.34 ± 3.20 1.75 ± 0.57 3.16 ± 1.11 
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The third image sequence in study was the CAVIAR image sequence where 

a woman is walking through a corridor in a shopping center and the background 

shows the interior of a shop. A total of 22 images were used to test the 

segmentation results in this image sequence. 

 

Examples from three images randomly selected of the test set are shown in 

Figure 4.17, together with the ground truth segmentation and the segmentation 

results using the four background models. The only model able to obtain complete 

silhouettes during most of the test images is the mixture of Gaussians model, 

while all the remaining models fail. Thus, we present the mean values of F-

measures in Figure 4.18 for all models and the mean values of Hausdorff and 

Euclidean distances for the mixture of Gaussians model in Figure 4.19 and Figure 

4.20, respectively. In addition, the mean and standard deviation from the mean 

errors of all tested images are presented in Table 4.5. 

 

In the first test images, the four models have similar behaviors, as shown in 

Figure 4.18. However, when the subject approaches the center of the image, the 

segmentation accuracy decreases drastically in all models with the exception of 

the mixture of Gaussians model. In fact, the background is very complex in the 

center of the image and most models cannot deal with this complexity level 

translating into less robust segmentations where the human silhouette appears 

fractioned. As a result, and because the silhouette is fractioned, the final silhouette 

for these three models only considers the larger area, as dictated by the rule 

presented in section 4.2.5. 

 

Taking into consideration all the presented results, one can conclude that the 

mixture of Gaussians model provides the best results for the CAVIAR image 

sequence. This model is able to obtain mean Euclidean errors of 6.86 pixels with 

standard deviation of 3.24 pixels, from images of size 320x240 pixels. The results 

are not as accurate as those obtained with the previous image sequences, but it 

should be noted that this image sequence is more complex than the others. 
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Original images 

   
Ground truth segmentation 

   
Simple difference model 

   
 Running average model 

   
Mixture of Gaussians model 

   
Foreground object detection model 

Figure 4.17 – Three images from the CAVIAR image sequence, the respective silhouette ground 

truth and segmentation results using the different background subtraction models. 
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Figure 4.18 – Mean F-measure obtained using the different studied segmentation  

 models for each test image of the CAVIAR image sequence. 

 

Figure 4.19 – Mean Hausdorff distances obtained using the mixture of Gaussian  

models for each test image of the CAVIAR image sequence. 

 

 

Figure 4.20 – Mean Euclidean distances obtained using the mixture of Gaussian  

models for each test image of the CAVIAR image sequence. 
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Table 4.5 – Mean and standard deviation (mean ± std) errors of the segmentations  

obtained using the CAVIAR image sequence for different segmentation models. 

Models F-measure (%) Hausdorff Euclidean 

Simple difference 67.77 ± 11.05 - - 

Running average 73.76 ± 10.50 - - 

Mixture of Gaussians 84.79 ± 10.65 2.18 ± 1.33 6.86 ± 3.24 

Foreground object detection 56.95 ± 17.18 - - 

 

 

The last image sequence used to test the background subtraction models was 

the widely used CASIA-B. Image sequences with a subject walking in a 

controlled environment were captured from 4 different view angles (0º, 36º, 54º 

and 90º).  Sequences from 11 subjects were considered for this study. 

Figure 4.21 shows segmentation results obtained for an image sequence 

with the subject walking in direction 0º. The original images and the ground truth 

segmentation are presented as well as the results using the four background 

subtraction models. From the observation of these three example images one can 

conclude that the simple difference model has issues in controlling the shadows. 

In relation to the remaining models and because the subject is walking in direction 

to the camera, the models tend to consider the subject as part the background. 

The former problem does not occur when different directions are 

considered, namely 36º, 54º and 90º, as depicted in  Figure 4.22. The simple 

difference model continues to fail, not being able to control shadows, but the 

remaining models, from a subjective analysis, obtain very good segmentation 

results. 

An objective analysis is made and the results obtained for one subject are 

presented in Table 4.6.  For the direction 0º, where the subject is walking towards 

the camera, the model with better segmentation results is the running average 

model, obtaining a mean F-measure of 89.91% and 5.01% of standard deviation 

with the other models having much worse results. For the other directions, the 

behavior of the models is similar, with simple difference models achieving the 

worst results, followed by the foreground object detection model. The running 

average model and the mixture of Gaussians obtain the best results, with the 

former outperforming the latter. 



Silhouette Models  112 

 

 

   
Original images 

   
Ground truth segmentation 

   
Simple difference model 

   
Running average model 

   
Mixture of Gaussians model 

   
Foreground object detection model 

Figure 4.21 – Three images from the CASIA-B image sequences from one direction, 0º, 

 the respective silhouette ground truth and segmentation  

results using the background subtraction models. 
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Original images 

   
Ground truth segmentation 

   
Simple difference model 

   
Running average model 

   
Mixture of Gaussians model 

   
Foreground object detection model 

36º 54º 90º 

Figure 4.22 – Three images from the CASIA-B image sequences from different directions  

 (36º, 54º and 90º), the respective silhouette ground truth and segmentation  

results using the background subtraction models. 
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Table 4.6 – Mean and standard deviations (mea n± std) of the F-measures (%) obtained 

using the different segmentation models for different directions studied. 

Models 0º 36º 54º 90º 

Simple difference 82.15 ± 2.11 74.68 ± 5.74 67.75 ± 6.52 59.46 ± 5.85 

Running average 89.91 ± 5.01 97.18 ± 1.80 98.45 ± 0.44 98.70 ± 0.29 

Mixture of Gaussians 72.45±14.44 94.52 ± 2.53 96.47 ± 1.36 96.85 ± 1.11 

Foreground object detection 70.75±17.73 91.50 ± 2.15 90.04 ± 1.40 88.60 ± 1.17 

 

To sum up, the model with best segmentation results for the CASIA-B 

image sequences is the running average model. Although it also has problems in 

segmenting the silhouettes when the subject is walking towards the camera, it is 

able to achieve satisfactory results. In relation to the other directions studied, the 

running average model is capable of attaining very accurate results compared with 

the ground truth silhouettes. 

 

4.6.2. Active Silhouette Model 

Here the segmentation results are presented, obtained using the active 

silhouette model described in section 4.3. The model was built using 2734 images, 

and 215 images were used to test the accuracy of the segmentation. 

Figure 4.23 shows several steps of the active search performed in order to 

segment an image from the testing set, not included in the tra ining set used. The 

adaptation of the ASM built throughout the iteration process to reach an optimal 

result can be seen in Figure 4.23. Other examples, in this case, just showing the 

final position, are represented in Figure 4.24. From the observation of these 

images, one can perceive that the landmarks corresponding to contour points have 

more reliable behavior than those corresponding to the anatomical points. In fact, 

this behavior was expected since the ASM searches for the gray level information 

around the point positions, and the anatomical landmark points are more likely to 

have similar neighbors around them, making it more difficult to choose the correct 

position compared with the landmark contour points. 



Silhouette Models  115 

 

 

  

Iteration process of ASM 

 

Initial position 

 

Final position 

Figure 4.23 – Example of the iteration process using an active shape model in  

a new image in the first row (different image sizes correspond to 

different resolutions), and, in the second row, the initial and final 

(i.e. the segmentation result) positions of the model. 

 

 

0º 

 

36º 

 

54º 

 

90º 

Figure 4.24 – Examples of segmentation results obtained in images  

 for the 4 directions studied. 
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In order to conclude on the variation errors of the model, besides the mean 

Euclidean error distribution calculation for all 113 points, one also decided to 

study the mean Euclidean error distribution for each subgroup of points: the 

contour landmarks and the anatomical landmarks (i.e. from the stick figure), 

separately. In other words, the error distribution was calculated using 113, 100 

and 13 points, corresponding to the all the points, the contour points and the stick 

model. 

As expected, from the observation of data distribution obtained, see Figure 

4.25, one can confirm that the mean error distribution is slightly worse for the 

subgroup of the stick points. If we take into account that the images under study 

have 320x240 pixels in size, it is worth noting that the results achieved with the 

suggested segmentation model are extremely satisfactory, within the 25th to 75th 

percentile interval ranging from 4 to 7 pixels, which translates into very accurate 

segmentation results. Even the mean error distribution considering only the stick 

points achieves good results, with the 25th to 75th percentile ranging from 4 to 8 

pixels. 

 

Figure 4.25 – Mean error distribution according the landmark point  

set (red lines are the median values and red + the outliers). 

 

We have also studied the segmentation quality in terms of the direction in 

which the subjects are walking, Figure 4.26 to Figure 4.28. Analyzing these 
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figures, an interesting conclusion can be drawn: considering all directions against 

each separated direction, equivalent error ranges were achieved. This behavior is 

repeated independently of the landmark points. 

One point it is worth noticing is in regards to error distribution of the stick 

figures in the 90º direction, in Figure 4.28, with the 25th to 75th percentile ranging 

from 8 to 13 pixels; meaning that the active silhouette model is less capable of 

adapting to these shapes; this result was also expected. The active silhouette 

model was built for the mean silhouette shape to be able to vary around one 

standard deviation from the mean, see Figure 4.7, meaning that the model shape is 

restricted. This restriction essentially translates into poor quality segmentation for 

images where the silhouette shapes vary more, as is the case in the 90º direction. 

Table 4.7 presents a summary of the previous results, the mean and standard 

deviations of the mean Euclidean distances considering all landmark points or 

each subgroup of points and the direction of the subjects and results, once more, 

confirming our statements. 

Briefly, it can be concluded that active silhouette models could successfully 

segment human shapes from images independent of the walking direction of the 

subjects, which is an important achievement in efficient human segmentation. 

 

Figure 4.26 – Mean error distributions according to the direction of the  

subjects and considering all the 113 landmark points  (red lines  

are the median values and red + the outliers). 
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Figure 4.27 – Mean error distributions according to the direction of the subjects  

and considering only the landmark points from the contour (red lines  

are the median values and red + the outliers). 

 

 

 

Figure 4.28 – Mean error distributions according to the direction of the subjects  

 and considering the anatomical landmark points  (red lines  

are the median values and red + the outliers). 
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Table 4.7 – Mean and standard deviation (mean ± std) errors of the mean Euclidean 

distributions according the direction of the subjects and the considered points. 

Directions 
All points 

(113) 

Contour points 

(100) 

Stick points 

(13) 

All 5.58 ± 2.26 5.48 ± 2.36 6.32 ± 3.32 

0º 4.84 ± 2.02 4.77 ± 2.14 5.41 ± 2.11 

36º 5.77 ± 2.42 5.77 ± 2.57 5.84 ± 3.06 

54º 5.85 ± 2.32 5.80 ± 2.41 6.21 ± 3.46 

90º 6.62 ± 1.81 6.15 ± 2.03 10.26 ±  0.79 

 

4.7. Discussion and Conclusion 

Throughout this chapter, four background subtraction models were studied 

to segment humans in motion, with different levels of complexity. The first model 

performs differences throughout the image sequence to obtain the objects in 

motion; the second, more complex, applies the running average method to 

segment moving objects; the third, model the background with a mixture of 

Gaussians; and, finally, the last model uses both temporal and background 

differences followed by a Bayesian decision rule to classify pixels as belonging to 

foreground or background. 

An active silhouette model was also presented in this chapter, which uses 

information about the contour of the silhouette together with anatomical stick 

points and combines the shape model with its gray level profiles for the purpose 

of segmenting the modeled silhouettes in new images. 

Four distinct image sequences were used to apply and evaluate the 

abovementioned models, namely NADA, CASIA-A, CAVIAR and CASIA-B, in 

which the majority of sequences are part of broadly known image datasets. In the 

first three datasets, one subject is walking along the scene with a fixed direction of 

90º in relation to the camera, while in CASIA-B the subjects are walking in four 

different directions. Moreover, different levels of background complexity are 

present throughout the datasets: the first is an outdoor scene with a homogeneous  

background; the second image sequence was also recorded outdoors where the 

background had a higher level of complexity; the third was taken inside a 

shopping center where an interior of a clothes shop can be seen in the background; 

and finally, the fourth is an indoor sequence. 
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With the purpose of assessing the segmentation quality of the presented 

methods, besides the subjective evaluation from the observation of the segmented 

images, three objective measures were taken into consideration throughout this 

work. The first measure, the F-measure, considers the equivalent rectangle that 

contains the ground truth silhouette image, while the second and third measures, 

Euclidean and Hausdorff distance, consider only the silhouette contours, or 

landmark points, instead. 

Regarding the NADA image sequence, the running average model proved 

capable of successfully segmenting the human silhouettes, attaining high quality 

results. The mean Hausdorff segmentation error of the contour extracted from the 

silhouette was 1.08 pixels with standard deviation of 0.07, for images with 

160x120 pixels in size. In addition, the mean Euclidean segmentation error was 

2.35 pixels with standard deviation of 0.54 pixels. 

About the CASIA-A image sequence, the foreground object detection model 

provided the best segmentation results, with the model being able to obtain mean 

Euclidean errors of 3.16 pixels with standard deviation of 1.11 pixels, from 

images of size 320x240 pixels. 

As regards to CAVIAR image sequence, the mixture of Gaussians model 

attained the best segmentation performance. The model was able to obtain mean 

Euclidean errors of 6.86 pixels with standard deviation of 3.24 pixels, from 

images of size 320x240 pixels. The results are of inferior quality compared with 

the segmentation errors of the previous image sequences, but it should be noted 

that this image sequence is more complex than the others. 

Regarding the CASIA-B image sequences, they differ from the previous 

ones in the sense that the subject is walking in four different directions in re lation 

to the camera view, meaning one single direction in each image sequence. In 

addition, there are different subjects while in the other three datasets only a single 

subject is present. Concerning the results obtained for these image sequences, the 

model with best segmentation results was the running average model. The 

aforementioned background model was capable of attaining highly accurate 

results in three of the four directions, namely, 36º, 54º and 90º, however it had 
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some problems to segment the silhouettes and to achieve satisfactory results when 

the subject was walking towards the camera. 

Our intention in using of the CASIA-B dataset was to be able to build a full 

model of the human silhouette that could gather the shape information of the 

silhouette and characterize its possible variations. Therefore, the one developed 

active silhouette model, which could not only model the human silhouette but also 

be used for segmentation purposes. In addition to the information on the 

silhouette, one could also infer on the position of 13 important anatomical points 

such as the head, shoulders, elbows, right and left hip positions, knees and feet. 

As a result, the active silhouette model presented here was able to achieve mean 

Euclidean segmentation results of 5.58 pixels with a standard deviation of 2.26 

pixels, in images with 320x260 pixel size. 

In conclusion, the good results obtained through the use of the active 

silhouette model built to perform human shape segmentation in new images 

strongly suggest that this type of deformable model can be used in this task. In 

addition, it was confirmed that just one segmentation model gathers the necessary 

information to segment human body structures independent of the walking 

direction of the subjects. 
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5  

Conclusion and Future Work 

 

This Thesis aimed to present computational algorithms for object 

segmentation and analysis in images suitable for application in objects such as the 

human vocal tract and the human silhouette in images. 

The first challenge of this project consisted of reviewing and understanding 

the most appropriate and efficient methods to successfully segment objects in 

images. The search was directed to two objects to be modeled for the human vocal 

tract and silhouette, and a detailed review of the state of the art was performed 

towards this ends. 

 

5.1 Application in Studying the Human Vocal Tract 

 

The main aim for studying the vocal tract in images is to provide a better 

understanding of the vocal tract morphology and the movements involved in 

speech production. Thus, the algorithms developed to represent the vocal objects 

from a global perspective were based on statistical deformable models, namely 

active shape models and active appearance models. The primary objective 

consisted of the analysis of the vocal tract during the articulation of European 

Portuguese (EP) sounds, followed by the evaluation of the results concerning the 

automatic segmentation of the modeled vocal tract in new images. 
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The most commonly accepted imaging technique used to study the shape of 

the vocal tract and its articulators is magnetic resonance imaging (MRI), with the 

key advantages being the quality and resolution of soft-tissues and the use of non-

ionizing radiation. In addition, and taking into consideration that an efficient 

deformable model is strictly related to the quality of the images, two datasets with 

different image qualities were analyzed in this Thesis, one acquired using a 1.5 

Tesla (1.5T) MRI system and another using a 3.0 Tesla (3.0T) MRI system, with 

the latter having higher resolution. 

From the experimental results obtained, one may conclude that the statistical 

deformable models built are capable of efficiently characterizing the behavior of 

the vocal tract modeled from MR images. Moreover, the modes of variation of the 

models constructed were able to provide further explanation of the actual actions 

involved in the EP speech sounds considered. 

While active shape models consider the information around each landmark 

point of the modeled object, active appearance models also use the gray level 

information of the object under study. Consequently, the former types of models 

tend to be less efficient than the latter, which was consistent with our findings in 

this Thesis. Nevertheless, both models obtained remarkable results,  either in terms 

of translating the movements and configurations involved in speech production, as 

well as in the segmentation and characterization of the vocal tract in new images. 

Regarding the segmentation results with respect to image quality, for the 

1.5T dataset, where 256 x 256 pixels images were used, mean errors rounding 10 

pixels were achieved; while the segmentation results using the 3.0T MR images 

led to similar mean errors but in double-sized images, 512 x 512 pixels. Thus, the 

results obtained confirm that segmentation is more accurate when images with 

better quality are used, such as the dataset acquired with 3.0T MRI. 

Another contribution accomplished in this Thesis concerns the amount of 

data used to characterize and segment the vocal tract during speech production. 

For the 3.0T sounds dataset, 25 out of 30 possible EP speech sounds were 

modeled for two subjects, male and female, in addition to using three 

measurements (slices) for each sound, translating in a dataset with  a total of 150 
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images, in which 138 images were used for training the model and 12 images used 

for testing. 

To conclude, the usage of active shape models and active appearance 

models made possible the automatic and realistic simulation of the vocal tract 

during speech production as well as the efficient segmentation and 

characterization of vocal tract in new images. Furthermore, the use of such 

automatic image analysis techniques can allow for obtaining quantitative 

measures with higher precision, being particularly advantageous when a large 

volume of data must be analyzed. 

 

5.2 Application on Human Silhouette 

 

In this Thesis, four background subtraction models were studied to segment 

human silhouettes in image sequences, with different levels of complexity. The 

simplest model calculates differences throughout the image sequence to obtain the 

objects in motion; the second, being more complex, applies the running average 

method; the third, models the background with a mixture of Gaussians; and, 

finally, the last model uses both temporal and background differences followed by 

a Bayes decision rule to classify pixels as belonging to foreground or background. 

In addition to the background subtraction models, and following the 

methodology used for modeling the vocal tract, an active silhouette model was 

also developed, using information about the contour of the silhouette together 

with anatomical stick points and combining the shape model with its gray level 

profiles with the aim of segmenting the modeled silhouettes in new images. 

Four distinct image sequences were used to built and evaluate the 

abovementioned models, namely NADA, CASIA-A, CAVIAR and CASIA-B, 

where the majority of sequences are part of broadly known datasets. In all datasets 

only one subject is present in the images, whereas in the first three the subject 

walks in one fixed direction while in the last dataset the subject walks in four 
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different directions in the sequences. Furthermore, different levels of background 

complexity are present throughout the datasets. 

Both subjective and quantitative assessment was used for the obtained 

segmentation results. Regarding the NADA image sequence, the running average 

model attained the best segmentation results compared with the other models.  As 

to the CASIA-A image sequence, the background subtraction model that obtained 

better results was the foreground object detection model. As regards to CAVIAR 

image sequence, the mixture of Gaussians model achieved the best segmentation 

performance. Concerning the CASIA-B image sequences, the model with best 

segmentation results was the running average model. This background model was 

capable of obtaining very accurate results in three of the four directions, namely, 

36º, 54º and 90º; however, it had some issues in segmenting the silhouettes when 

the subject was walking towards the camera, achieving only satisfactory results. 

Besides testing the segmentation results obtained by background subtraction 

models, an active silhouette model was developed that was not only capable of 

modeling the human silhouette but was also able to be used for segmentation 

purposes. A particular feature of this model is the possibility of inferring the 

position of 13 important anatomical points such as the head, shoulders, elbows, 

right and left hip positions, knees and feet, in addition to information on the 

silhouette. 

Since different background subtraction achieved best segmentation results, 

no consensus exists on choosing the best segmentation method based on 

background subtraction for segmenting silhouettes in images. The choice greatly 

depends on the level of complexity of the images. On the contrary, the excellent 

results obtained through the use of the active silhouette model built to perform 

human shape segmentation in new images strongly suggest that this type of 

deformable models can be used in this task.  

To conclude, the main contribution regarding the segmentation of human 

silhouettes in images was that it allowed for building an active shape model that 

gathers the necessary information independent of the walking direction of the 

subject. 
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5.3 Future Work 

 

Although the developed algorithms for the human vocal tract and human 

silhouette have achieved successful results, there are some aspects that still need 

to be improved. 

Regarding the models built for the human vocal tract, it would be important 

to have more images of each sound from each subject as well as more images 

from different subjects in order to evaluate with more precision for instance the 

intra-subject and inter-subject variability. It would be also interesting to compare 

the results with other methodologies. With regards to the improvement of the 

vocal tract active models, the active search initialization for segmentation 

purposes should be refined with the development of an automatic algorithm. 

Another natural step would be the study and development of 3D models of the 

vocal tract using the 3D deformable models in order to have more realistic 

models. 

On the subject of the human silhouette modeling and segmentation it would 

be important to develop methodologies that can combine, more accurately, the 

human silhouette shape with important anatomical joint positions, mainly for use 

in biomechanical studies related to human motion. As soon as the use of simple 

image cameras allows the robust and detailed analysis of real movements 

performed by subjects in their daily life, it will be possible to obtain new levels of 

information of the subjects from the input images. Up until now, this has been 

only achieved from images acquired under well controlled conditions and in 

significantly restricted environments, which consequently demands more robust 

techniques of image segmentation, motion tracking and analysis. 
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