
Hugo Miguel Oliveira Romualdo Simões

Amortised Resource Analysis

for

Lazy Functional Programs

Departamento de Ciência de Computadores

Faculdade de Ciências da Universidade do Porto

Fevereiro de 2014

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Repositório Aberto da Universidade do Porto

https://core.ac.uk/display/143407459?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Hugo Miguel Oliveira Romualdo Simões

Amortised Resource Analysis

for

Lazy Functional Programs

Tese submetida à Faculdade de Ciências da Universidade do Porto

para obtenção do grau de Doutor em Ciência de Computadores

Supervisors: Prof. Mário Florido and Prof. Kevin Hammond

Departamento de Ciência de Computadores

Faculdade de Ciências da Universidade do Porto

Fevereiro de 2014

To my wife and sons.

v

Acknowledgements

I would like to express my deepest thanks to the people who directly contributed to the

conclusion of this thesis. First, I would like to thank my supervisors Mário Florido and Kevin

Hammond for their encouragement, support and optimism. I especially thank Kevin and his

wife for a warm welcome and making me feel at home during my stay in bonnie St Andrews

together with my wife.

My thanks extend to the functional programming group in St Andrews for valuable discus-

sions and, in particular, I would also like to thank Steffen Jost and Armelle Bonenfant, and

their respective families, for our hiking trips across Scotland and for putting our shared

interests in board gaming into practice.

A very special thanks goes to my friends and colleagues Steffen Jost and Pedro Vascon-

celos for their continuous help in pursuing a practical approach to the problem of resource

analysis for lazy functional programs. Our long collaboration formed the basis for this thesis.

I would like to thank Mário, Kevin, Steffen and Pedro for reviewing drafts of this thesis, with

special thanks to Sandra Alves and Olivier Danvy for also actually volunteering for that task.

Many thanks to the external examiners present at my viva, Vasco Thudichum Vasconcelos

and Ricardo Peña, for their kind comments and interesting observations.

After my research grant was over, I was able to regularly work on my thesis, while de-

veloping mobile applications, thanks to Luı́s Damas and Michel Ferreira at Geolink Lda.

Similarly, I would like to thank Eduardo Carqueja at AppGeneration for gracefully handling

my indecision over setting the end date of my leave of absence while I was finishing writing

this thesis.

Financial support is acknowledged from the “Fundação para a Ciência e Tecnologia”, for the

Ph.D. grant SFRH/BD/17096/2004 and for a research grant at project RESCUE (REliable

and Safe Code execUtion for Embedded systems) PTDC/EIA/65862/2006, and also from

the LIACC (Laboratory of Artificial Intelligence and Computer Science) of the University of

Porto, Portugal.

Finally, I thank my wife, not only for her unconditional support during this long Ph.D. period,

but also for sharing the happiest days of my life together with our three sons. To happiness!

vii

Resumo

Esta tese descreve a primeira tentativa bem-sucedida, de que temos conhecimento, de

definir uma análise estática, automatizada e baseada em sistemas de tipos, capaz de en-

contrar majorantes relativos à quantidade de recursos utilizados em programas funcionais

lazy. A avaliação lazy permite melhorar a composição de programas, mas dificulta quase

sempre as previsões de recursos. A nossa análise utiliza a abordagem de amortização

automatizada desenvolvida por Hofmann e Jost, que estava anteriormente restringida à

avaliação eager. Nesta tese, estendemos este trabalho a sistemas lazy através da cap-

tura em anotações de tipos dos custos de expressões por avaliar e da amortização do

pagamento destes custos utilizando uma noção de potencial lazy. Apresentamos a nossa

análise como um sistema de demonstração que prevê (em tempo de compilação) a quan-

tidade total de alocações de memória heap de uma linguagem funcional mı́nima (incluindo

funções de ordem superior e tipos de dados recursivos) e definimos um modelo de custos

formal baseado na semântica de Launchbury para avaliação lazy. Provamos a correção

da nossa análise face ao modelo de custos. A nossa abordagem é ilustrada através

de derivações de tipos de exemplos representativos e não triviais, que foram analisados

utilizando um protótipo da implementação da nossa análise.

Palavras-chave: avaliação lazy, análise amortizada, análise de recursos, sistema de tipos,

call-by-need, análise estática

viii

Abstract

This thesis describes the first successful attempt, of which we are aware, to define an

automatic, type-based static analysis of resource bounds for lazy functional programs. Lazy

evaluation allows improved modularity of programs, but often makes resource usage difficult

to predict. Our analysis uses the automatic amortisation approach developed by Hofmann

and Jost, which was previously restricted to eager evaluation. In this thesis, we extend this

work to a lazy setting by capturing the costs of unevaluated expressions in type annotations

and by amortising the payment of these costs using a notion of lazy potential. We present

our analysis as a proof system for predicting (at compile-time) total heap allocations of a

minimal functional language (including higher-order functions and recursive data types) and

define a formal cost model based on Launchbury’s natural semantics for lazy evaluation.

We prove the soundness of our analysis with respect to the cost model. Our approach is

illustrated by type derivations of a number of representative and non-trivial examples that

have been analysed using a prototype implementation of our analysis.

Keywords: lazy evaluation, amortized analysis, resource analysis, type system, call-by-

need, static analysis

ix

Contents

Resumo viii

Abstract ix

List of Figures xv

List of Theorems and Definitions xvii

1 Introduction 1

1.1 Contributions . 2

1.2 Overview . 4

2 Related Work 5

2.1 Semantics for Lazy Evaluation . 5

2.2 Resource Analyses for Lazy Evaluation . 6

2.3 Amortised Analyses . 8

2.4 Other Heap Analyses for Eager Evaluation 9

3 Amortisation 11

3.1 Classical Amortisation Technique . 11

3.1.1 Example: Analysing a Stack . 12

xi

3.2 Automatic Amortised Analysis . 13

3.2.1 Informal Description . 14

4 Cost Model 17

4.1 Language Syntax . 18

4.2 Operational Semantics . 18

4.3 Cost-instrumented Operational Semantics . 22

4.4 Example: Modelling Call-By-Need . 24

5 Amortised Analysis 27

5.1 Types and Typing Contexts . 27

5.2 Sharing Relation . 29

5.2.1 Subtyping Relation . 30

5.2.2 Idempotent Types . 31

5.3 Typing Judgements . 32

5.4 Example: Analysing Call-By-Need . 34

5.4.1 Non-Strict Evaluation . 35

5.4.2 Lazy Evaluation . 35

5.5 Soundness . 36

5.5.1 Auxiliary Lemmas . 37

5.5.2 Global Types, Contexts and Balance 38

5.5.3 Potential . 39

5.5.4 Consistency and Compatibility . 41

5.5.5 Soundness of the Proof System . 42

5.5.6 Detailed Proofs . 45

xii

5.5.6.1 Minor Lemmas . 45

5.5.6.2 Inversion Lemma for Constructors 46

5.5.6.3 Inversion Lemma for λ-abstractions 49

5.5.6.4 Context Splitting Lemma . 51

5.5.6.5 Potential Splitting Lemma . 53

5.5.6.6 Idempotent Cycles . 54

5.5.6.7 Proof of the Soundness Theorem 55

5.6 A System for Eager Evaluation . 69

5.7 Summary . 71

6 Experimental Results 73

6.1 Higher-Order Functions: map . 74

6.2 List Fusion: map/map . 76

6.3 Infinite Data Structures: cycle . 79

6.4 Nested Data Structures: concat . 80

6.5 Known Limitation with Co-Recursive Definitions: fibs 83

6.6 Summary . 86

7 Conclusion 87

7.1 Assessment of Achievements . 87

7.2 Limitations and Further Work . 88

7.3 Final Remark . 90

Bibliography 93

A A System for Eager Evaluation 103

xiii

A.1 Definitions and Figures . 103

A.2 Proof of the Soundness Theorem for the Eager System 106

B Complete Derivations 115

B.1 Simple Example: Analysing Call-By-Need . 115

B.2 Higher-Order Functions: map . 117

xiv

List of Figures

2.1 Family feature comparison . 10

4.1 Language Fun . 19

4.2 Lazy operational semantics . 20

4.3 Bound variables of Fun expressions . 20

4.4 Cost-instrumented lazy operational semantics 23

4.5 Evaluation under a call-by-need semantics 26

5.1 Annotated types . 28

5.2 Sharing relation . 30

5.3 Sharing relation extended to contexts . 30

5.4 Syntax directed type rules . 33

5.5 Structural type rules . 34

5.6 Type derivation for a non-strict evaluation example 36

5.7 Type derivation for a lazy-evaluation example 37

5.8 Potential . 40

A.1 Eager operational semantics . 103

A.2 Cost-instrumented eager operational semantics 104

xv

A.3 Annotated types . 104

A.4 Sharing relation . 104

A.5 Syntax directed type rules . 105

A.6 Structural type rules . 105

A.7 Potential . 106

B.1 Type derivation for a non-strict evaluation example 115

B.2 Type derivation for a lazy-evaluation example 116

B.3 Type derivation for map applied to a list with potential 117

B.4 Auxiliary type derivation for map applied to a list with potential 118

B.5 Auxiliary type derivation for map applied to a list with potential (cont.) 119

B.6 Type derivation for map applied to a list with no potential 120

B.7 Auxiliary type derivation for map applied to a list with no potential 121

B.8 Auxiliary type derivation for map applied to a list with no potential (cont.) . . . 122

xvi

List of Theorems and Definitions

4.1 Definition (Bound Variables of Fun Expressions) 19

4.2 Definition (Freshness) . 20

4.3 Lemma (Invariant Locations Under Evaluation) 22

5.1 Definition (Idempotent Types and Idempotent Contexts) 31

5.2 Lemma (Substitution) . 37

5.3 Lemma (CONS Inversion) . 37

5.4 Lemma (ABS Inversion) . 38

5.5 Lemma (Context Splitting) . 38

5.6 Definition (Potential) . 39

5.7 Lemma (Potential Splitting) . 40

5.8 Corollary (Potential Remaining) . 41

5.9 Corollary (Potential Subtype) . 41

5.10 Definition (Type Consistency of Locations) . 41

5.11 Definition (Type Consistency of Heaps) . 42

5.12 Definition (Global Compatibility) . 42

5.13 Theorem (Soundness) . 42

5.14 Lemma (Subtyping is a partial order) . 45

xvii

5.15 Lemma (Idempotent Subtypes) . 45

5.16 Definition (Reachability) . 54

5.17 Lemma (Idempotent Cycles) . 54

5.18 Theorem (Soundness of the Eager System) 70

A.1 Definition (Type Consistency of Locations) . 106

A.2 Definition (Type Consistency of Heaps) . 106

xviii

1. Introduction

Non-strict functional programming languages, such as Haskell [PAB+99], offer important

benefits over more conventional eagerly-evaluated languages in terms of modularity and

abstraction [Hug89] through exploiting lazy evaluation. A key practical obstacle to their

wider use, however, is that extra-functional properties, such as time- and space-behaviour,

are often difficult to determine prior to actually running the program. This is largely because

the effects of lazy evaluation are hard to predict without actually running a program, since

evaluation order is determined dynamically: reduction is carried out if and when it is found

to be needed and consequently memory is allocated only if and when needed. Given

this difficulty, providing guarantees about memory usage or time performance would both

increase confidence in software reliability and performance of lazily-evaluated programs,

and open new resource-critical applications such as real-time, memory-limited systems.

Recent advances in static cost analyses, such as sized types [VH05, SHFV07, Vas08] and

type-based amortisation [HJ03, HAH11] have enabled the automatic prediction of resource

bounds for eager functional programs, including uses of higher-order functions [JLHH10].

This thesis develops a new mechanism, lazy potential, that allows execution costs to be

transferred from one point of a program to another, as part of an amortised analysis.

By exploiting this mechanism, we are then able to extend type-based amortisation to

lazy evaluation, describing a static analysis for determining a-priori worst-case bounds on

execution costs (specifically, dynamic memory allocations).

Our amortised analysis derives costs with respect to a cost semantics for lazy evaluation

that derives from Launchbury’s natural operational semantics of graph reduction [Lau93]. It

deals with both first-order and higher-order functions, but does not consider polymorphism.

Moreover, the analysis is compositional, i.e. it can be applied to program fragments as well

as to complete programs. For simplicity, we restrict our attention to total heap allocation,

but previous results have shown that the amortised analysis approach also extends to other

1

2 FCUP

999. 1. Introduction

countable resources, such as worst-case execution time [JLH+09]. In order to ensure

a good separation of concerns, our analysis assumes the availability of Hindley-Milner

type information [Mil78]. We extend Hofmann and Jost’s type annotations for capturing

potential costs [HJ03] with information about the latent costs of unevaluated expressions.

The analysis produces a set of constraints over cost variables that we solve in our prototype

implementation using an external LP-solver. We have thus demonstrated all the steps that

are necessary to produce a fully-automatic analysis for determining bounds on resource

usage for lazily-evaluated programs.

Although we do not directly address the issue of algorithmic type reconstruction in this

thesis, a prototype implementation∗ and previous work in the strict setting [HJ03, JLHH10,

HAH11] suggests that our analysis should be fully automatable, e.g. by performing a stan-

dard Damas-Milner type inference [DM82] with types decorated with fresh annotation vari-

ables and producing a set of linear inequalities that can then be automatically solved by a

standard LP solver. No guidance from the programmer is necessary.

1.1 Contributions

This thesis makes the following novel contributions:

• we present the first successful attempt, of which we are aware, to produce an auto-

matic, efficient, type-based, static analysis with formally guaranteed data-dependent

resource bounds for lazy evaluation;

• we introduce a cost model for heap allocations for a lazy functional language based

on Launchbury’s natural semantics for lazy evaluation [Lau93], and use this as the

basis for developing a resource analysis;

• we prove the soundness of our analysis with respect to the cost-instrumented seman-

tics;

• we develop an analysis for eager functional programs with the purpose of better

contrasting the analysis for laziness; and

∗Pedro Vasconcelos implemented in Haskell a publicly accessible web-prototype for our analysis (available

at http://www.dcc.fc.up.pt/~pbv/cgi/aalazy.cgi) — a much welcome relief from the burden of manually

testing program examples.

http://www.dcc.fc.up.pt/~pbv/cgi/aalazy.cgi

FCUP 3

1.1. Contributions 999.

• we demonstrate the effectiveness of the analysis by deriving costs for some non-trivial

examples.

The research on which this thesis is based was done in collaboration with others. In

particular, the automatic amortised analysis for lazily-evaluated functional programs has

previously been reported in a published paper [SVF+12] which was jointly authored by

Pedro Vasconcelos, Steffen Jost, my two supervisors Mário Florido and Kevin Hammond,

and myself: Hugo Simões, Pedro Vasconcelos, Mário Florido, Steffen Jost, and Kevin Ham-

mond. Automatic Amortised Analysis of Dynamic Memory Allocation for Lazy Functional

Programs. In Proceedings of the ACM SIGPLAN International Conference on Functional

Programming (ICFP’12), pages 165–176, Copenhagen, Denmark, September 2012. The

technical differences to the published paper are that this thesis:

• fixes a minor problem in the soundness proof (caused by rule LET of our type system);

• changes the language to be compatible with Launchbury’s semantics (replaces match

with case expressions, removes parentheses of constructor applications and merges

letcons with let expressions);

• simplifies annotations by replacing the double cost annotations with a single cost

annotation (this is possible since we are analysing a monotonic resource: total heap

allocations);

• restricts the inversion lemmas of Section 5.5.1 to have zero on the turnstile of the type

judgements (otherwise those lemmas would not hold);

• adds a side-condition to rule WEAK of our type system;

• contrasts the lazy system with an eager system that is specifically tailored to empha-

sise the key elements of the novel analysis; and

• illustrates the effectiveness of the analysis with detailed derivations of some non-trivial

examples;

Note that meanwhile the soundness proof was double checked in detail, since the first five

items above forced almost all of the previous technical work (including proofs) to be rewritten

in this thesis.

4 FCUP

999. 1. Introduction

Also in the course of his PhD plan, during the introductory studies on the field of static

resource analysis, the author contributed to another paper [SHFV07]: Hugo R. Simões,

Kevin Hammond, Mário Florido, and Pedro Vasconcelos. Using Intersection Types for

Cost-Analysis of Higher-Order Polymorphic Functional Programs. In Thorsten Altenkirch

and Conor McBride, editors, Revised Selected Papers of the International Workshop on

Types for Proofs and Programs (TYPES’06), Nottingham, UK, April, 2006, volume 4502 of

Lecture Notes in Computer Science, pages 221–236. Springer, 2007. This paper improves

the quality of a previous analysis for eagerly evaluated programs by showing how discrete

polymorphism helps reduce the problem of size aliasing. However, since it is not a direct

contribution to the field of analysis for lazy evaluation (the core topic of this thesis), the result

is simply referenced here.

1.2 Overview

In the remainder of this thesis we start by reviewing some related work in Chapter 2. Next,

in Chapter 3, we review some background on amortisation, covering the description of the

general technique and its application to type-based analyses.

Then, in Chapter 4, we define a simple functional language and present a cost model for

measuring the total heap allocations under a call-by-need semantics of programs written in

this language.

In Chapter 5 we develop a type-based amortised analysis for lazy evaluation and provide a

soundness proof as the main contribution of this thesis, guaranteeing that the cost bound

of the analysis is observed with respect to the cost model.

An experimental assessment of the analysis is given in Chapter 6 through a range of

illustrative examples.

Finally, Chapter 7 concludes.

2. Related Work

2.1 Semantics for Lazy Evaluation

We build heavily on Launchbury’s natural semantics for lazy evaluation [Lau93], as subse-

quently adapted by Sestoft [Ses97], and exploit ideas that were developed by Encina and

Peña [EP02, EP03a]. There is a significant body of other work on the semantics of call-

by-need evaluation. Pre-dating Launchbury’s work, Josephs [Jos89] gave a denotational

semantics of lazy evaluation, using a continuation-based semantics to model sharing, and

including an explicit store. However, this approach does not fit well with standard proof

techniques. Maraist et al. [MOW98] subsequently defined both natural and reduction se-

mantics for the call-by-need lambda calculus, so enabling equational reasoning, and a

similar approach was independently described by Ariola and Felleisen [AF97].

Like Encina and Peña [EP03a, EP09], Mountjoy [Mou98] derived an operational semantics

for the Spineless Tagless G-Machine from the natural semantics of Launchbury and Sestoft,

including poly-applicative λ-expressions. The main differences between these approaches

are that Encina and Peña correct some mistakes in Mountjoy’s presentation; that they

provide correctness proofs; that their semantics correctly deals with partial applications

in the Spineless Tagless G-Machine; that they deal with partial applications as normal

forms; and that they consider two distinct implementation variants, based on push/enter

versus apply/eval. More recently, Pirog and Biernacki [PB10] have established the equiv-

alence between the Spineless Tagless G-Machine and an extended version of the natural

semantics of Launchbury and Sestoft as evidenced by Danvy et al.’s [ADM04] functional

correspondence between abstract machines and evaluators.

Bakewell and Runciman [BR01] have previously defined an operational semantics for Core

Haskell that gives time and space execution costs in terms of Sestoft’s semantics for his

5

6 FCUP

999. 2. Related Work

Mark 1 abstract machine. The work has subsequently been extended to give a model

that can be used to determine space leaks by comparing the space usage for two evalua-

tors using a bisimulation approach [BR00]. Gustavsson and Sands [GS99] have similarly

defined a space-improvement relation that guarantees that some optimisation can never

lead to asymptotically worse space behaviour for call-by-need programs and Moran and

Sands [MS99] have defined an improvement relation for call-by-need programs that can

be used to determine whether one terminating program improves another in all possible

contexts.

Finally, given that compilers for lazy evaluation eventually generate optimised code based

on information from strictness analysis [Myc81, BHA86, MN92, WH87] or cheapness anal-

ysis [Myc80, Fax00] and thus implement in fact a non-strict semantics rather than call-by-

need, it is worth noting an alternative non-strict reduction strategy by Ennals et al. [EP03b,

Enn03], called optimistic evaluation, that, in an attempt to improve the average time perfor-

mance against call-by-need, is based on speculatively evaluating expressions that are con-

sidered to be usually used and usually cheap to evaluate and aborting if an embedded pro-

filer determines that it is not the case. Although the approach promised to achieve consid-

erable performance improvements, its development is currently suspended from industry-

strenght compilers given the difficulties in maintaining the supporting framework (i.e. spec-

ulation, profiling and abortion) while implementing other features.

Our own work differs from this body of earlier work in that we provide a cost semantics from

which we derive a static analysis to automatically determine upper bounds on the memory

requirements of lazily evaluated programs.

2.2 Resource Analyses for Lazy Evaluation

Resource analysis based on profiling and manual code inspection has long formed the

state-of-the-art and still is current practice in many cases. Indeed, for non-strict functional

languages, such as Haskell, ad-hoc techniques, manual analysis or symbolic profiling are

the only currently viable approaches: the dynamic demand-driven nature of lazy func-

tional programming creates particular problems for resource analysis, whether manual or

automatic. There has therefore been very little work on static resource analysis for lazy

functional programs, and, to our knowledge, no previous automatic static analysis has ever

been produced. The most significant previous work in the area is that by Sands [San90a,

FCUP 7

2.2. Resource Analyses for Lazy Evaluation 999.

San90b], whose PhD thesis proposed a cost calculus for reasoning about sufficient and nec-

essary execution time for lazily evaluated higher-order programs, using an approach based

on evaluation contexts [Wad88, San98] to capture information about evaluation degree

and appropriate projections [WH87] to project this information to the required approach.

Wadler [Wad88] had earlier proposed a similar approach to that taken by Sands, but lim-

ited to first-order functions and using only strictness analysis combined with appropriate

projections, rather than the neededness analysis that Sands also uses. Around the same

time, Bjerner and Holmström [BH89] developed an approach using demand analysis which

requires, a-priori, a domain structure describing an approximation of the output of the

analysed program. A primary disadvantage of such approaches lies in the complexity of the

domain structure and associated projections that must be used when analysing even simple

data structures such as lists. In contrast, our approach easily extends to algebraic data

structures. A secondary disadvantage is that a demand analysis approach requires knowing

in advance much information about the output value and, unlike the self-contained analysis

we have described, projection-based approaches rely on the existence of a complex and

powerful external neededness analysis to determine evaluation contexts for expressions.

These are serious practical disadvantages: in fact, to date, we are not aware of any fully

automatic static analysis that has been produced using these techniques.

Transforming lazy programs into eager ones would be a possible approach to producing an

analysis for lazily evaluated programs. The resulting programs would then be analysed us-

ing (simpler) techniques for eagerly evaluated programs. Unlike our work, these approaches

would suffer from the problems that they would produce very poor quality bounds (many

programs requiring a small finite amount of resources under lazy evaluation, would require

an infinite amount if evaluated eagerly), that they would be, in general, not cost-preserving,

that they would lead to potentially exponential code explosion, and that, because they

would alter the program, they would not be suitable for use with standard compilers for

lazy functional languages. Perhaps because of such drawbacks, no one appears to have

actually done this.

Several authors have proposed approaches where programs are annotated with additional

cost parameters. For example, Albert et al. [ASV03] describes how to automatically con-

struct recurrence relations by adding extra cost parameters to each function under a call-by-

name semantics and suggests extending the approach to call-by-need through an additional

linearisation phase together with guarded constraints (to handle sharing and so avoid cost

8 FCUP

999. 2. Related Work

duplication); and Hope [Hop08] describes how to derive an instrumented function for deter-

mining time and space usage, including a simple deallocation model, for a strict functional

language and outlines how this could be extended to lazy evaluation. By constrast, our work

is capable of inferring cost bounds. Also, unlike Albert et al. [ASV03]’s work, our system

deals directly with higher-order programs, as opposed to using program transformation

techniques such as defunctionalisation [Rey72] which are, in general, not cost-preserving

and require a whole-program analysis.

Another approach followed by Wadler [Wad92] uses monads to capture execution costs

through a tick-counting function; Danielsson [Dan08] takes this work a stage further, de-

scribing a library that can be used to annotate (lazy) functions with the time that is needed

to compute their result. An annotated monad is then used to combine these time complexity

annotations. This can be used to verify the time complexity of (lazy) functional data struc-

tures and algorithms against Launchbury’s semantics, using a dependent type approach.

However, some of the annotations must be manually introduced by the programmer and that

may require ingenuity. Moreover, unlike our work, the system is not capable of inference.

2.3 Amortised Analyses

The amortised analysis approach has been previously studied by a number of authors, but

has never previously been used to automatically determine the costs of lazy evaluation. Tar-

jan [Tar85] first described amortised analysis, but as a manual technique. Okasaki [Oka98]

subsequently described how Tarjan’s approach could be applied to (lazy) data structures,

but again as a manual technique. While there has subsequently been significant interest

in the use of amortised analysis for automatic resource usage analysis, using an advanced

per-reference potential, none of this newer work, however, considers lazy evaluation. Hof-

mann and Jost [HJ03] were the first to develop an automatic amortised analysis for heap

consumption, exploiting a difference metric similar to that used by Crary and Weirich [CW00]

(the latter, however, only check bounds, and therefore does not perform an automatic

static analysis of the kind we require); Hofmann et al. have extended their method to

cover a comprehensive subset of Java, including imperative updates, inheritance and type

casts [HJ06, HR09]; Shkaravska et al. [Svv07] subsequently developed a polynomial heap

consumption analysis for first-order polymorphic lists, with restricted (shapely) functions,

but did not consider the efficiency of the suggested inference; in the meantime, Herrmann,

FCUP 9

2.4. Other Heap Analyses for Eager Evaluation 999.

Bonenfant et al. [HBH+07] showed an automatic amortised analysis for worst-case exe-

cution time; and Campbell [Cam08, Cam09] has developed the ideas of depth-based and

temporary credit uses to give better results for stack usage. Jost et al. [JLH+09, JLHH10]

significantly extended previous analyses by dealing with higher-order, polymorphic func-

tions, varying resource metrics, arbitrary recursive data types, the creation of circular data,

and the possibility of directly adding constraints on resource annotations in types through

resource parametric functions; later, Hoffmann et al. [HH10, HAH11] achieved another

breakthrough by extending the technique to infer (multivariate) polynomial cost functions,

still only requiring efficient LP solving.

The analysis presented in this thesis is yet another member of the Hofmann and Jost based

family of amortised analyses and can be further put into context by Figure 2.1 which extends

a related figure from Jost’s PhD thesis. The work presented here corrects a minor technical

problem found in the soundness proof of Simões et al. [SVF+12] and, except for object-

orientation and imperative update (which are unrelated to the purely functional language of

this thesis), all remaining features not handled by our analysis are discussed in Section 7.2

as further work.

2.4 Other Heap Analyses for Eager Evaluation

Finally, several authors have recently studied analyses for heap usage in eager languages,

without considering lazy evaluation. For example, Albert et al. [AGG09] present a fully

automatic, live heap-space analysis for an object-oriented bytecode language with a

scoped-memory manager, and have subsequently extended this to consider garbage

collection [AGG10], but, unlike our system, data-dependencies cannot be expressed.

Braberman et al. [BFGY08] infer polynomial bounds on the live heap usage for a Java-

like language with automatic memory management, but do not cover general recursive

methods. Finally, Chin et al. [CNPQ08] present a linearly-bounded heap and stack analysis

for a low-level (assembler) language with explicit (de)-allocation, but do not cover lazy

evaluation or high-level functional programming constructs.

10 FCUP

999. 2. Related Work

Feature [H
J
0

3
]

[H
J
0

6
]

[S
v
v
0

7
]

[H
B

H
+

0
7

]

[C
a

m
0

8
,

C
a

m
0

9
]

[J
L

H
+

0
9

]

[J
L

H
H

1
0

]

[J
o

s
1

0
]

[H
H

1
0

,
H

A
H

1
1

]

[S
V

F
+

1
2
]

a
n

d
T

h
is

T
h

e
s
is

full recursion + + + + + + + + + +

aliasing + + + + + + + + +

inference + ? + + + + + + +

object-orientation +

imperative update +

non-termination + +

total heap allocation usage + + + + + + + + +

heap usage (w/ deallocation) + + + + + + +

worst-case execution time + + + +

stack usage + + + +

varying resource metrics + + +

arbitrary recursive data types + + +

polymorphism +

resource parametricity + +

higher-order + + +

creating circular data + +

delayed execution + +

requires shapely functions (*) –

super-linear bounds + +

laziness +

(*) Requiring shapely functions is actually not a feature, but a limitation.

Figure 2.1: Family feature comparison

3. Amortisation

3.1 Classical Amortisation Technique

First described by Tarjan [Tar85], amortisation is a technique in the field of complexity

analysis of algorithms. It is a manual method that tries to take advantage of the correlated

effects of a sequence of operations on a data structure in order to obtain tighter bounds

than for example the sum of the worst-case costs of each operation in the sequence.

There are two equivalent views of amortisation. We will focus hereafter on the so-called

physicist’s view as it better serves the intuition behind the analysis described in this thesis.

To use the general technique, we define a potential function Φ mapping any configuration

of a data structure to a number, henceforth referred to as the potential of that configuration.

The amortised cost ai of an operation to a data structure is then defined as the actual cost

ti of the operation plus the difference between the potential of the configuration of the data

structure after the operation Φi and the potential of the configuration before the operation

Φi−1.

ai = ti +Φi − Φi−1

In a sequence of n such operations the following equality holds:

n∑

i=1

ti =
n∑

i=1

(ai − Φi +Φi−1) = Φ0 − Φn +
n∑

i=1

ai

If we ensure that potential is always non-negative then the potential of the initial configura-

tion plus the sum of the amortised costs provide an upper bound on the actual cost of the

11

12 FCUP

999. 3. Amortisation

sequence.
n∑

i=1

ti ≤ Φ0 +
n∑

i=1

ai, if Φi ≥ 0 for all i

By cleverly defining the potential function, the goal is to further simplify the bounding ex-

pression by making the amortised costs zero or at least (bounded by a) constant, thus being

able to easily bound the fluctuations of the successive actual operation costs.

3.1.1 Example: Analysing a Stack

To better understand the intuition and the application of the amortisation technique the

following example∗ will be used:

Consider the manipulation of a stack using the two standard primitives: push, which adds a

new element to the top of the stack, and pop, which returns and removes the top element

from the stack.

Now consider an additional compound operation consisting of applying any number of pops

followed by exactly one push. Starting with an empty stack, we would like to analyse the

cost — in terms of the number of pushes and pops — of a sequence of n such compound

operations.

The worst-case cost of a single operation is n, corresponding to the case where no pops

occur in the first n− 1 operations and the last operation applies n− 1 pops followed by the

mandatory push. So, although the cost of each of the first n − 1 operations is 1 (a push),

the cost of the last operation is n (n− 1 pops plus 1 push).

Compare a worst-case analysis in which we sum the worst-case cost of a single operation

for each operation in the sequence, obtaining n ∗ n, to the following worst-case analysis

using amortisation.

Define the potential of a stack to be the number of elements it contains. It follows that, if a

stack has m elements, the amortised cost of an operation that pops k elements followed by

a push is (k + 1) + (m − k + 1) − m = 2. Since the potential is always non-negative (by

definition) and the initial potential is zero (we start with an empty stack), we know that the

actual cost of the sequence of n operations is bounded by
∑n

i=1 ai =
∑n

i=1 2 = 2n.

∗Due to Tarjan [Tar85].

FCUP 13

3.2. Automatic Amortised Analysis 999.

We know that in a sequence of n operations, starting with an empty stack, we have exactly

n pushes (one per operation). Given that each pop must correspond to an earlier push,

we can have at most n pops as well. In fact, since push is the last primitive applied in an

operation, we cannot pop the last element and so we have at most n − 1 pops. Thus, the

maximum number of pushes and pops in a sequence of n operations is n+(n−1) = 2n−1.

The amortised analysis of this example allowed us to obtain a tight worst-case bound 2n of

the actual worst-case cost 2n− 1.

3.2 Automatic Amortised Analysis

As a manual technique, amortisation has two shortcomings. Firstly, it requires ingenuity

when defining a useful mapping from each configuration to a number representing its po-

tential (since it is unfeasible to try all possible mappings), thus restricting the widespread use

of the technique. Secondly, as Okasaki [Oka98] notes, “traditional methods of amortization

break in presence of persistence”. This represents a problem, given that persistent data

structures are commonly found in functional settings.

A type-based approach solves both of these issues. It has been successfully applied [HJ03,

Cam09, JLH+09, JLHH10, HH10, HAH11] as a way not only to provide a means to automat-

ically determine a suitable potential function, but also to deal with persistent data structures

(by assigning potential on a per-reference basis, instead of resorting to a lazy evaluation

strategy as in Okasaki’s approach [Oka98]).

The first type-based automatic amortised analysis was developed by Hofmann and

Jost [HJ03] for analysing the heap-space consumption of first-order eager functional pro-

grams. Although at that time unaware of the connection to Tarjan’s work [Tar85], their goal

was to produce an automatic analysis that could find bounds to resource usage at the press

of a button. For that purpose, their fundamental idea was to collect linear inequalities arising

from the side conditions of a type derivation and then solve them with an LP-solver (such

as the glpk†). The main limitation was the expressiveness of the bounds — the potential

function was linearly tied to the number of nodes of data structures and since the analysis

depends on the potential of the initial configuration, it could only hope to find linear bounds

as well — but the end result in itself, and the program examples that could be successfully

†http://www.gnu.org/software/glpk/

http://www.gnu.org/software/glpk/

14 FCUP

999. 3. Amortisation

analysed, made the approach interesting.

Since then, keeping the fundamental idea, their technique has been successfully applied in

the analyses of stack usage [Cam09], generic resource metrics [JLH+09], higher-order and

polymorphic functions [JLHH10] and in efficiently finding multivariate polynomial

bounds [HAH11] through using non-linear potential functions.

3.2.1 Informal Description

In the classical amortisation technique, the first step in developing an amortised analysis is

to define the potential function — the mapping from configurations to numbers. In Hofmann

and Jost’s approach, this corresponds to defining the annotated types the type system will

handle. The annotated data types, in particular, carry the contributions of a node in a

particular data structure to the overall potential of the memory configuration. For example,

a red-black binary tree [Bay72] is a binary tree data structure that is easier to maintain

balanced than its regular counterpart. It consists of three possible constructors: a Red and

a Black binary constructors having a left and a right red-black binary tree as arguments,

and a zero-arity Leaf constructor. Consider the following annotated data type for red-black

binary trees of Ints:

RBTree(qr, qb, ql, Int)

In a tree with this type, where qr, qb and ql are non-negative rational numbers, each Red and

Black node contributes with qr and qb, respectively, and each Leaf node contributes with

ql to the potential of the tree. Given a tree with nr red nodes, nb black nodes and nl leaf

nodes, the potential of such tree is nr×qr + nb×qb + nl×ql. Note that the potential of the

tree is linear with respect to its number of nodes. Restricting to linear potential with respect

to the number of constructors in a data structure is common in type systems following the

approach of Hofmann and Jost, with a notable exception [HH10, HAH11]. Since our main

concern here is to extend the approach to a lazy setting, we keep the linear restriction,

leaving as further work the adoption of super-linear bounds in our analysis.

Also, recall from Section 3.1 that the goal of any amortised analysis is to find a constant

that bounds the fluctuations of the successive actual operation costs (in order to simplify the

overall bounding expression). That is the purpose of the annotated type systems following

Hofmann and Jost’s approach: to ensure the amortised costs are zero, so that the potential

FCUP 15

3.2. Automatic Amortised Analysis 999.

of the initial configuration is an upper bound of the overall actual cost.

Once the type system is defined, these type-based amortised analyses obtain their result

automatically by performing the following 4 steps:

1) perform a Damas-Milner type inference [DM82] to obtain a type derivation (without

annotation variables);

2) decorate the Hindley-Milner types [Mil78] with fresh annotation variables;

3) traverse the type derivation, gathering linear constraints among annotation variables

according to the rules of the type system;

4) feed the linear constraints to a standard linear programming solver with the objective

of minimising the overall expression cost.

Note that only the first or the last step may fail, i.e. either the program being analysed is not

well-typed or the gathered linear constraints cannot be solved.

Each solution to the generated linear program corresponds to a particular bound on the ex-

ecution cost. However, these bounds are then only useful provided a correctness guarantee

exists. As such, a soundness proof is the key result of these systems, since it establishes

the link between cost model and type system. This ensures the run-time actual costs never

exceed the compile-time predicted bounds.

It is important to note that the analysis produces data-dependent bounds. For example,

using an automatic amortised analysis, Loidl and Jost [LJ09] learned that insertion, in their

cost model, is generally more expensive for a red-black tree having many black nodes, since

coefficient qb was about 3 times higher than qr.

In this thesis we present a type-based amortised analysis for lazy functional programs

following Hofmann and Jost’s approach and show its complete development in Chapter 5

— from the chosen annotated types, to the invariants required for the soundness proof.

16 FCUP

999. 3. Amortisation

4. Cost Model

In this chapter we present a cost model that allows us to measure total heap allocations. It is

given as an operational semantics that formalises the cost of evaluating an expression. We

define a cost model for two reasons: to prove the soundness of our analysis (Chapter 5),

i.e. to prove that evaluating an expression never costs more than the analysis predicted,

and to measure the quality of our analysis against a range of examples (Chapter 6), i.e. to

compare the costs of evaluating an expression with the costs predicted by the analysis for

the same expression.

The cost model we present is built on Encina and Peña’s corrected version [EP02] of

Sestoft’s revision [Ses97] of Launchbury’s natural semantics for lazy evaluation [Lau93].

Launchbury’s semantics forms one of the earliest and most widely-used operational ac-

counts of lazy evaluation for the λ-calculus. Encina and Peña [EP02] [EP03a] subse-

quently proved that the Spineless Tagless G-Machine [Jon92] is sound and complete with

respect to one of Sestoft’s abstract machines. More recently, Pirog and Biernacki [PB10]

have established the equivalence between the Spineless Tagless G-Machine and their

extended version of the natural semantics of Launchbury and Sestoft. This equivalence is

evidenced by Danvy et al.’s [ADM04] functional correspondence between abstract machines

and evaluators. We therefore have a high degree of confidence that the cost model for lazy

evaluation developed in this thesis is not just theoretically sound, but also that it could, in

principle, be extended to model real implementations of lazy evaluation, such as the GHC

implementation of Haskell.

Before looking at the cost model in Section 4.3, we will see in detail the operational seman-

tics on which it is based. However, we first need to define the language to be used on both

the cost model and the analysis.

17

18 FCUP

999. 4. Cost Model

4.1 Language Syntax

The Fun language (Figure 4.1) is similar to the one found in Sestoft’s revision [Ses97] of

Launchbury’s natural semantics for lazy evaluation [Lau93]. The reader unfamiliar with the

mentioned references should note that arguments to both applications and constructor ap-

plications are restricted to variables and that this can be achieved through a process called

normalisation [Lau93], which consists of naming the arguments using let expressions.

We have thus a normalised λ-calculus extended with (possibly recursive) local bindings,

(saturated) constructor applications and case expressions.

In contrast to Launchbury and Sestoft’s language, we consider only (for simplicity) single-

variable let-bindings (multiple let-bindings can be encoded, if needed, using pairs and

projections). Also, constructor applications appear only in let-bindings as in Encina and

Peña’s semantics for lazy evaluation [EP09]. However, Encina and Peña’s motivation for

such restriction was different from ours: they wanted to be as close as possible to the STG

language, while we simply need to distinguish between allocating a constructor and merely

referencing an existing one, since these are handled differently by our analysis.

As in Sestoft’s language, we do not require bound variables (either lambda-, let- or case-

bound) to be distinct, except that, for each case expression, each element in multiset {−→xi}

must be distinct, for i = 1, . . . , n. For example,

case e of c1 x y -> x, c2 y -> y

would be a valid program, whereas the following would not

case e of c1 x x -> x, c2 y -> y

4.2 Operational Semantics

Our big-step operational semantics is based on Launchbury’s natural semantics for lazy

evaluation [Lau93], as subsequently adapted by Sestoft [Ses97], as corrected for case

expressions by Encina and Peña [EP02]. Figure 4.2 shows the set of rules that define

our operational semantics.

FCUP 19

4.2. Operational Semantics 999.

– Variables

v ::= x | y – bound variable

| l – free variable (location)

– Expressions

e ::= v – variable

| λx. e – lambda abstraction

| e v – application

| let x = ê in e – (possibly recursive) let-binding

| case e of {ci
−→xi -> ei}

n
i=1 – case expression

– Augmented expressions

ê ::= c ~v – (saturated) constructor application

| e – expression

– Weak head normal forms

w ::= λx. e – lambda abstraction

| c ~l – constructor application

Figure 4.1: Language Fun

Judgements of the form H, S,L ê ⇓ w,H′ should be read as “in the heap H, (aug-

mented) expression ê evaluates to whnf (weak head normal form) w, producing the new

heap H′”, where a heap is a partial function mapping distinct variable names to thunks and

a thunk is an augmented expression (bound in the heap) that may be further evaluated to

whnf. Note that, as usual (and seen in Figure 4.1), weak head normal forms are expressions

whose outermost structure is a lambda or a constructor. The auxiliary set L of locations

under evaluation was one of the changes introduced by Sestoft∗ to improve the renaming

mechanism of Launchbury’s semantics. The auxiliary set S was introduced by Encina and

Peña† in order to fix a freshness property of Sestoft’s rules, and, although in their paper it

contains the alternatives of case expressions {ci
−→xi -> ei}

n
i=1, we simply keep the bound

variables of such alternatives, since these are sufficient to fix the problem.

We next define the set of bound variables contained in a Fun expression in order to later

formalise the notion of freshness of variables.

Definition 4.1 (Bound Variables of Fun Expressions). The bound variables of a Fun ex-

pression ê, denoted by BV(ê), are defined in the usual way as shown in Figure 4.3.

∗In [Ses97] this set is called A.
†In [EP02] this set is called C.

20 FCUP

999. 4. Cost Model

w is in whnf

H, S,L w ⇓ w,H
(WHNF⇓)

ℓ 6∈ L H, S,L ∪ {ℓ} H(ℓ) ⇓ w,H′

H, S,L ℓ ⇓ w,H′[ℓ 7→ w]
(VAR⇓)

H, S,L e ⇓ λx. e′,H′ H′, S,L e′[ℓ/x] ⇓ w,H′′

H, S,L e ℓ ⇓ w,H′′
(APP⇓)

ℓ is fresh H[ℓ 7→ ê[ℓ/x]], S,L e[ℓ/x] ⇓ w,H′

H, S,L let x = ê in e ⇓ w,H′
(LET⇓)

H, S ∪
⋃n

i=1 ({
−→xi} ∪ BV(ei)) ,L e ⇓ ck ~ℓ,H′

H′, S,L ek[~ℓ/
−→xk] ⇓ w,H′′

H, S,L case e of {ci
−→xi -> ei}

n
i=1 ⇓ w,H′′

(CASE⇓)

Figure 4.2: Lazy operational semantics

BV(v) = ∅
BV(λx. e) = {x} ∪ BV(e)
BV(e v) = BV(e)
BV(let x = ê in e) = {x} ∪ BV(ê) ∪ BV(e)
BV(case e of {ci

−→xi -> ei}
n
i=1) = BV(e)

⋃n
i=1({

−→xi} ∪ BV(ei))
BV(c ~v) = ∅

Figure 4.3: Bound variables of Fun expressions

The following auxiliary definition of freshness of variables is due to Encina and Peña [EP02]:

Definition 4.2 (Freshness). In a judgement H, S,L ê ⇓ w,H′ a variable is fresh if it is

not in dom(H) nor S nor L and it is not bound in either ran(H) or ê.

Expressions in whnf (lambda abstractions and constructor applications) are already values

and should therefore evaluate to themselves, keeping the heap unchanged. This is reflected

in rule WHNF⇓.

Rule VAR⇓ states that in order to evaluate a location ℓ, present in a heap H, we evaluate

H(ℓ) with ℓ included in the set of locations under evaluation. If, as a result, we obtain

a whnf w and a heap H′, then evaluating ℓ in H evaluates to the same w and the new

heap produced is H′ with a mapping updating ℓ to w. Note that once ℓ is updated its

FCUP 21

4.2. Operational Semantics 999.

subsequent accesses obtain the corresponding whnf immediately, effectively implementing

sharing of named expressions. Also note that if ℓ depends directly on itself before evaluating

to whnf, when attempting to evaluate ℓ for the second time, no rule will apply, since ℓ will

be marked as being under evaluation in rule VAR⇓. This situation is known as a “black-

hole”: a detectably self-dependent infinite loop. In Launchbury’s semantics, a black-hole

is detected by removing ℓ from the heap before evaluating its contents. Since Sestoft’s

revision of the semantics, black-holes can equivalently be detected using the set of locations

marked as being under evaluation. In this thesis we need to keep ℓ in the heap since the

mappings defined for the invariants of our soundness proof in Chapter 5 must apply to all

heap locations (regardless of being under evaluation). Thus, we use set L to detect black-

holes (in addition to the benefits that motivated its introduction).

The APP⇓ rule deals with function applications and, assuming the term is well-typed, evalu-

ation is done in two steps: first, its expression e is evaluated in the original heap, producing

a lambda abstraction and an intermediate heap. Then, substituting the lambda variable by

the argument of the application, the body of the function is evaluated in the intermediate

heap to a final whnf, producing a final heap as well.

The LET⇓ rule starts by creating a fresh location. Then, the let-bound variable is renamed

to this fresh location in all sub-expressions. The location is then allocated to the heap,

mapping to the respective augmented expression, and the body of the let is evaluated in

this larger heap, with the results being carried over.

Finally, rule CASE⇓ first evaluates the case discriminant, adding to S the bound variables

of the case alternatives in order to avoid such variables from being used as locations. As-

suming this evaluates to a constructor application in an intermediate heap, then, depending

on the constructor that results from the evaluation, the selected alternative is evaluated in

the intermediate heap, substituting the formal constructor arguments by the concrete ones.

The results of evaluating the alternative are then carried over as the results of evaluating

the whole case expression. Note that the set S was introduced by Encina and Peña [EP02]

to keep freshness locally checkable, a property that motivated Sestoft’s revision [Ses97] to

Launchbury’s semantics [Lau93].

22 FCUP

999. 4. Cost Model

To illustrate the purpose of set S, consider the following artificial example (in lack of a

meaningful short one):

case (let s = Succ s in s) of Succ x -> λy. x

Note that s is defined as a cyclic successor of itself and that the expected result of evaluating

the whole expression is a function that discards its single argument and returns the cyclic

successor. However, when evaluating let s = Succ s in s, had the lambda-bound variable

y not been added to set S, we could have chosen y as a fresh location and, although not

violating the freshness condition, we would have ended up with the identity function instead

as the result, since (with naive substitution) the term λy. x[y/x] is equivalent to λy. y. The

set S avoids such variable captures.

We now present a lemma that states that the contents of heap locations that are under

evaluation are preserved during intermediate evaluations.

Lemma 4.3 (Invariant Locations Under Evaluation). If H, S,L ⊢ ê ⇓ w,H′ then for all ℓ ∈ L

we have ℓ ∈ H iff ℓ ∈ H′ and if ℓ ∈ H then H′(ℓ) = H(ℓ).

Proof. By inspection of the operational semantics (Figure 4.2) we observe that VAR⇓ is

the only rule that modifies an existing location ℓ and that this rule does not apply when

ℓ ∈ L.

4.3 Cost-instrumented Operational Semantics

In order to measure the total number of heap allocations of a given program, we have

defined a cost model by instrumenting the rules of Figure 4.2 with a non-negative counter

as shown in Figure 4.4.

In the new rules, judgements of the form H, S,L m ê ⇓ w,H′ should be read as “in the

heap H, expression ê evaluates to whnf w, producing the new heap H′, and m new heap

cells have been allocated”.

For simplicity, but without loss of generality, we choose a uniform cost-model where eval-

uation costs one (heap) unit for each fresh heap location (regardless of its content) that

is needed during evaluation — essentially counting the number of new locations in the

FCUP 23

4.3. Cost-instrumented Operational Semantics 999.

w is in whnf

H, S,L 0 w ⇓ w,H
(WHNF⇓C)

ℓ 6∈ L H, S,L ∪ {ℓ} m
H(ℓ) ⇓ w,H′

H, S,L m ℓ ⇓ w,H′[ℓ 7→ w]
(VAR⇓C)

H, S,L m e ⇓ λx. e′,H′ H′, S,L m′

e′[ℓ/x] ⇓ w,H′′

H, S,L m + m′

e ℓ ⇓ w,H′′
(APP⇓C)

ℓ is fresh H[ℓ 7→ ê[ℓ/x]], S,L m e[ℓ/x] ⇓ w,H′

H, S,L 1 + m let x = ê in e ⇓ w,H′
(LET⇓C)

H, S ∪
⋃n

i=1 ({
−→xi} ∪ BV(ei)) ,L

m e ⇓ ck ~ℓ,H′

H′, S,L m′

ek[~ℓ/
−→xk] ⇓ w,H′′

H, S,L m + m′

case e of {ci
−→xi -> ei}

n
i=1 ⇓ w,H′′

(CASE⇓C)

Figure 4.4: Cost-instrumented lazy operational semantics

heap (i.e. the number of newly allocated locations). We could have chosen other met-

rics [JLH+09], modelling the usage of other countable resources such as execution time or

stack space, but we believe this simplicity has allowed us to focus on the principles needed

to develop a resource analysis for call-by-need. Cost-metric refinements are left to further

work.

The only change introduced in Figure 4.4 with respect to Figure 4.2 is the introduction of

the non-negative value above the turnstile. This value corresponds to the cost of evaluation

in terms of quantity of heap cells required. We will now describe how the rules in Figure 4.4

affect this total heap allocation counter.

As we have seen, rule WHNF⇓ leaves the heap unchanged. Thus, no heap cells are

allocated in rule WHNF⇓C, corresponding to a cost of zero.

In rules APP⇓C and CASE⇓C the cost of evaluation is the sum of the costs of each of the two

evaluation steps.

Rule VAR⇓C states that the cost of evaluating a location ℓ is the cost of evaluating the

corresponding heap expression H(ℓ). Note that although the resulting heap is updated, ℓ

was already in the domain of H′ (by Lemma 4.3) and thus no new heap cell was added at

that point which justifies the preservation of cost m.

Rule LET⇓C is the only rule that effectively allocates heap cells, costing one heap cell for the

24 FCUP

999. 4. Cost Model

binding created.

4.4 Example: Modelling Call-By-Need

This section illustrates through a couple of simple examples that we are modelling call-by-

need rather than call-by-value or call-by-name.

To stress the sequential nature of evaluation we lay out the rules of our cost model vertically:

if H, S,L m ê ⇓ w,H′ we write

H, S,L ⊢ ê

a sub-rule premise

another sub-rule premise

⇓m w,H′

Consider the expression below, which includes a divergent term:

let z = z in (λx. λy. y) z (4.1)

Under a call-by-value semantics this would fail to terminate, because z does not admit a

normal form. In our call-by-need semantics, however, evaluation succeeds:

H, S,L ⊢ let z = z in (λx. λy. y) z

H[ℓ3 7→ ℓ3], S,L ⊢ (λx. λy. y) ℓ3

H[ℓ3 7→ ℓ3], S,L ⊢ λx. λy. y

⇓0 λx. λy. y,H[ℓ3 7→ ℓ3]

H[ℓ3 7→ ℓ3], S,L ⊢ λy. y

⇓0 λy. y,H[ℓ3 7→ ℓ3]

⇓0 λy. y,H[ℓ3 7→ ℓ3]

⇓1 λy. y,H[ℓ3 7→ ℓ3]

FCUP 25

4.4. Example: Modelling Call-By-Need 999.

The final heap is augmented with a fresh location ℓ3 whose content is a cyclic self-reference;

because the argument z is discarded by the application, its evaluation is never attempted.

We can see that the semantics is call-by-need rather than call-by-name by observing the

sharing of normal forms. Consider,

let f = let z = z in (λx. λy. y) z

in let i = λx. x in let v = f i in f v
(4.2)

where f is bound to the thunk (4.1) and applied twice to the identity function. Evaluation of

f v forces the thunk. After the thunk is evaluated, the location ℓ0 that is associated with f is

updated with the corresponding whnf λy. y. The second evaluation of f does not re-evaluate

the thunk (4.1).

Following the rules of our cost model and starting from the empty configuration, Figure 4.5

shows how we derive the following judgement:

∅, ∅, ∅ 4 (4.2) ⇓ λx. x, [ℓ0 7→ λy. y, ℓ1 7→ λx. x, ℓ2 7→ λx. x, ℓ3 7→ ℓ3]

Evaluating expression (4.2) thus costs four heap cells, that is, one cell for each let expres-

sion. Under a call-by-name semantics, the cost would instead be 5, since the let expression

that is bound to f would then be evaluated twice, rather than once as here.

The next chapter shows an analysis for lazy evaluation and its validation against the cost

model developed in this chapter.

26 FCUP

999. 4. Cost Model

∅, ∅, ∅ ⊢ let f = let z = z in (λx. λy. y) z in let i = λx. x in let v = f i in f v

[ℓ0 7→ let z = z in (λx. λy. y) z], ∅, ∅ ⊢ let i = λx. x in let v = ℓ0 i in ℓ0 v

[ℓ0 7→ let z = z in (λx. λy. y) z, ℓ1 7→ λx. x], ∅, ∅ ⊢ let v = ℓ0 ℓ1 in ℓ0 v

[ℓ0 7→ let z = z in (λx. λy. y) z, ℓ1 7→ λx. x, ℓ2 7→ ℓ0 ℓ1], ∅, ∅ ⊢ ℓ0 ℓ2

[ℓ0 7→ let z = z in (λx. λy. y) z, ℓ1 7→ λx. x, ℓ2 7→ ℓ0 ℓ1], ∅, ∅ ⊢ ℓ0

[ℓ0 7→ let z = z in (λx. λy. y) z, ℓ1 7→ λx. x, ℓ2 7→ ℓ0 ℓ1], ∅, {ℓ0}
⊢ let z = z in (λx. λy. y) z

[ℓ0 7→ let z = z in (λx. λy. y) z, ℓ1 7→ λx. x, ℓ2 7→ ℓ0 ℓ1, ℓ3 7→ ℓ3], ∅, {ℓ0}
⊢ (λx. λy. y) ℓ3

[ℓ0 7→ let z = z in (λx. λy. y) z, ℓ1 7→ λx. x, ℓ2 7→ ℓ0 ℓ1, ℓ3 7→ ℓ3], ∅, {ℓ0}
⊢ λx. λy. y

⇓0 λx. λy. y,
[ℓ0 7→ let z = z in (λx. λy. y) z, ℓ1 7→ λx. x, ℓ2 7→ ℓ0 ℓ1, ℓ3 7→ ℓ3]

[ℓ0 7→ let z = z in (λx. λy. y) z, ℓ1 7→ λx. x, ℓ2 7→ ℓ0 ℓ1, ℓ3 7→ ℓ3], ∅, {ℓ0}
⊢ λy. y

⇓0 λy. y,
[ℓ0 7→ let z = z in (λx. λy. y) z, ℓ1 7→ λx. x, ℓ2 7→ ℓ0 ℓ1, ℓ3 7→ ℓ3]

⇓0 λy. y, [ℓ0 7→ let z = z in (λx. λy. y) z, ℓ1 7→ λx. x, ℓ2 7→ ℓ0 ℓ1, ℓ3 7→ ℓ3]

⇓1 λy. y, [ℓ0 7→ let z = z in (λx. λy. y) z, ℓ1 7→ λx. x, ℓ2 7→ ℓ0 ℓ1, ℓ3 7→ ℓ3]
⇓1 λy. y, [ℓ0 7→ λy. y, ℓ1 7→ λx. x, ℓ2 7→ ℓ0 ℓ1, ℓ3 7→ ℓ3]

[ℓ0 7→ λy. y, ℓ1 7→ λx. x, ℓ2 7→ ℓ0 ℓ1, ℓ3 7→ ℓ3], ∅, ∅ ⊢ ℓ2

[ℓ0 7→ λy. y, ℓ1 7→ λx. x, ℓ2 7→ ℓ0 ℓ1, ℓ3 7→ ℓ3], ∅, {ℓ2} ⊢ ℓ0 ℓ1

[ℓ0 7→ λy. y, ℓ1 7→ λx. x, ℓ2 7→ ℓ0 ℓ1, ℓ3 7→ ℓ3], ∅, {ℓ2} ⊢ ℓ0{
[ℓ0 7→ λy. y, ℓ1 7→ λx. x, ℓ2 7→ ℓ0 ℓ1, ℓ3 7→ ℓ3], ∅, {ℓ2, ℓ0} ⊢ λy. y
⇓0 λy. y, [ℓ0 7→ λy. y, ℓ1 7→ λx. x, ℓ2 7→ ℓ0 ℓ1, ℓ3 7→ ℓ3]

⇓0 λy. y, [ℓ0 7→ λy. y, ℓ1 7→ λx. x, ℓ2 7→ ℓ0 ℓ1, ℓ3 7→ ℓ3]

[ℓ0 7→ λy. y, ℓ1 7→ λx. x, ℓ2 7→ ℓ0 ℓ1, ℓ3 7→ ℓ3], ∅, {ℓ2} ⊢ ℓ1{
[ℓ0 7→ λy. y, ℓ1 7→ λx. x, ℓ2 7→ ℓ0 ℓ1, ℓ3 7→ ℓ3], ∅, {ℓ2, ℓ1} ⊢ λx. x
⇓0 λx. x, [ℓ0 7→ λy. y, ℓ1 7→ λx. x, ℓ2 7→ ℓ0 ℓ1, ℓ3 7→ ℓ3]

⇓0 λx. x, [ℓ0 7→ λy. y, ℓ1 7→ λx. x, ℓ2 7→ ℓ0 ℓ1, ℓ3 7→ ℓ3]
⇓0 λx. x, [ℓ0 7→ λy. y, ℓ1 7→ λx. x, ℓ2 7→ ℓ0 ℓ1, ℓ3 7→ ℓ3]

⇓0 λx. x, [ℓ0 7→ λy. y, ℓ1 7→ λx. x, ℓ2 7→ λx. x, ℓ3 7→ ℓ3]

⇓1 λx. x, [ℓ0 7→ λy. y, ℓ1 7→ λx. x, ℓ2 7→ λx. x, ℓ3 7→ ℓ3]
⇓2 λx. x, [ℓ0 7→ λy. y, ℓ1 7→ λx. x, ℓ2 7→ λx. x, ℓ3 7→ ℓ3]

⇓3 λx. x, [ℓ0 7→ λy. y, ℓ1 7→ λx. x, ℓ2 7→ λx. x, ℓ3 7→ ℓ3]

⇓4 λx. x, [ℓ0 7→ λy. y, ℓ1 7→ λx. x, ℓ2 7→ λx. x, ℓ3 7→ ℓ3]

Figure 4.5: Evaluation under a call-by-need semantics

5. Amortised Analysis

In this chapter we present a type-based amortised analysis of total heap allocation for

higher-order lazy functional programs.

Our approach is based on the principle of amortisation as described in Chapter 3. We start

by defining the types and presenting the rules of our type system. We then define some

auxiliary mappings that help us construct the invariants to the main contribution of this

thesis: a soundness proof connecting our analysis to the cost model of Chapter 4, proving

that the upper bounds given by our analysis are not exceeded under the cost model. Finally,

at the end of the chapter we present a system for eager evaluation, derived with minimal

changes from the lazy, in order to, by contrast, emphasise the key elements needed in the

development of our analysis for lazy evaluation.

5.1 Types and Typing Contexts

As described in Chapter 3, to develop a type-based amortised analysis, we start by defining

the annotated types the type system (to be presented later in this chapter) will handle.

The syntax of allowed types is shown in Figure 5.1. We use meta-variables A, B, C for

types, X, Y for type variables and p, q for annotations, i.e. non-negative rational numbers

representing potential or cost (whenever possible we use p for potential and q for cost an-

notations). The allowed types include type variables, function types and possibly recursive

data types over labelled sums of products (representing the types of each constructor) and

thunk types.

Except for type variables, all types have annotations. Annotation q in a function type

expresses the cost incurred by each evaluation of the corresponding function; similarly,

the annotation q in a thunk type captures the cost of evaluating the corresponding thunk

27

28 FCUP

999. 5. Amortised Analysis

A,B,C ::= X – type variable

| A−→q B – function type

| µX.{c1 : (p1, ~B1)| · · · |cn : (pn, ~Bn)} – data type

| T
q(A) – thunk type

with q, p1, . . . , pn ∈ Q+
0

Figure 5.1: Annotated types

(this cost can be zero if the thunk is known to be in whnf). As in previous type-based

amortised analyses, our potential function (from data structures to numbers) is defined in

a type-directed way: in particular, we choose to annotate data types with non-negative

coefficients pi that specify the contribution of each constructor ci to the potential of the

data structure. Although this representation of potential in data types limits the analysis to

express bounds that are linear functions to the number of constructors in data structures,

we keep our focus on the contributions found in this thesis, showing a range of interesting

examples successfully handled by the analysis (Chapter 6), and leave as further work the

study of an extension to super-linear bounds, along the lines of recent work [HAH11].

Recall from Chapter 4 that arguments to constructor applications are always variables

(locations) and never values, and also that constructor applications are always introduced

by lets. As such, constructor applications and their arguments are always stored in the heap

and are referenced by a location, i.e. constructors in our cost model are boxed, and this is

reflected in data types, where each type in ~Bi, with i = 1, . . . , n, is implicitly a thunk type.

Similarly, since arguments to applications are always variables, the argument of function

types is implicitly a thunk type as well.

We consider only recursive data types that are non-interleaving [Mat98], i.e. we exclude

µ-types whose bound variables overlap in scope, e.g. µX.
{
c1 :

(
. . . , µY .{c2 : (. . . ,T(X))}

)}
.

This helps us prove a crucial lemma on cyclic structures (Lemma 5.17) in the key soundness

proof (Theorem 5.13). Note that this restriction does not prohibit nested data types; e.g. the

type of lists of lists of naturals is µY.{ Nil : (p′n, ()) | Cons : (p′c, (T(LN),T(Y))) }, where

LN = µY.{ Nil : (pn, ()) | Cons : (pc, (T(N),T(Y))) } is the type of list of naturals and

N = µX.{ Zero : (pz, ()) | Succ : (ps, T(X)) } is the type of naturals, and we have omitted

thunk type annotations for simplicity. Also, note that distinct lists can be assigned different

constructor annotations in their types, thus improving the precision of the cost analysis.

FCUP 29

5.2. Sharing Relation 999.

For simplicity, we also exclude resource parametricity [JLHH10], since this is only important

for functions that are re-used in different circumstances and not for thunks that are evalu-

ated at most once, being thus orthogonal to this thesis. Nevertheless, adopting resource

parametricity in our analysis is left as further work.

Typing contexts are multisets of pairs x:A of variables and annotated types; we use multisets

to allow separate potential to be accounted for in multiple references. We use Γ, ∆, Θ for

contexts and Γ↾x for the multiset of types associated with x in Γ, i.e. Γ↾x= {A | x:A ∈ Γ}.

Note that, since variables in typing contexts represent locations in a heap, their corre-

sponding types are implicitly thunk types, similar to the above observation on arguments

to function types and data types.

5.2 Sharing Relation

Figure 5.2 shows the syntactical rules for an auxiliary judgement .(A |B1, . . . , Bn) that

is used to share a type A among a finite multiset of types {B1, . . . , Bn}. It is used to

limit contraction in our type-system. Rule SHAREEMPTY accepts sharing a type among

an empty multiset of types. Data type annotations for potential associated with A are

linearly distributed among B1, . . . , Bn (SHAREDAT), whereas cost annotations for functions

and thunks are preserved (SHAREFUN and SHARETHUNK). Rule SHAREVEC is applied to

vectors of types with the same length and is used as a premise of SHAREDAT.

Figure 5.3 extends the sharing relation for typing contexts. With rule SHARECTX a typ-

ing context {x1:A1, . . . , xn:An} shares to another typing context ∆ iff there is a partition

∆1, . . . ,∆n of ∆ such that .(xi:Ai |∆i) holds and dom(∆i) ⊆ {xi}, for (1 ≤ i ≤ n).

For example,

.
(
x:T2(µX.{Unit:(5, ())})

∣∣x:T3(µX.{Unit:(3, ())}), x:T5(µX.{Unit:(2, ())})
)

.
(
f :T2(T5(A)−→

2
B)

∣∣∣ f :T3(T3(A)−→
3

B), f :T5(T2(A)−→
5

B)
)

hold, whereas

.
(
x:T2(µX.{Unit:(5, ())})

∣∣x:T3(µX.{Unit:(3, ())}), y:T5(µX.{Unit:(2, ())})
)

.
(
x:T2(µX.{Unit:(5, ())})

∣∣x:T3(µX.{Unit:(3, ())}), x:T5(µX.{Unit:(3, ())})
)

.
(
f :T2(T2(A)−→

2
B)

∣∣∣ f :T3(T3(A)−→
3

B)
)

30 FCUP

999. 5. Amortised Analysis

.(A | ∅)
(SHAREEMPTY)

.(X |X, . . . ,X)
(SHAREVAR)

Bi = µX.
{
c1 : (p

′
i1,

~Bi1)| · · · |cm : (p′im, ~Bim)
}

.
(
~Aj

∣∣∣ ~B1j , . . . , ~Bnj

)
pj ≥

∑n
i=1 p

′
ij (1 ≤ i ≤ n, 1 ≤ j ≤ m)

.
(
µX.

{
c1 : (p1, ~A1)| · · · |cm : (pm, ~Am)

}
| B1, . . . , Bn

) (SHAREDAT)

.(Ai |A) .(B |Bi) qi ≥ q (1 ≤ i ≤ n)

.
(
A−→q B

∣∣A1−→
q1

B1, . . . , An
−→qn Bn

) (SHAREFUN)

.(Aj |B1j , . . . , Bnj) m =
∣∣∣ ~A

∣∣∣ =
∣∣∣ ~Bi

∣∣∣ (1 ≤ i ≤ n, 1 ≤ j ≤ m)

.
(
~A
∣∣∣ ~B1, . . . , ~Bn

) (SHAREVEC)

.(A |A1, . . . , An) qi ≥ q (1 ≤ i ≤ n)

.(Tq(A) |Tq1(A1) , . . . ,T
qn(An))

(SHARETHUNK)

Figure 5.2: Sharing relation

.(Γ | ∅)
(SHAREEMPTYCTX)

.(A | B1, . . . , Bn) .(Γ |∆)

.(x : A, Γ | x : B1, . . . , x : Bn,∆)
(SHARECTX)

Figure 5.3: Sharing relation extended to contexts

do not. The last three sharing examples fail since in the first of these a typing for y appears

only at the right-hand side of the sharing relation; in the second, the potential on the left-

hand side is not linearly distributed with respect to the right-hand side (5 6≤ 3 + 3); and

the last example fails since sharing is contravariant in the left argument of functions and

thus, while the cost of the outermost thunk type on the right-hand side can exceed the

corresponding cost on the left-hand side, the cost of the inner thunk type cannot.

5.2.1 Subtyping Relation

Sharing also allows the relaxation of annotations to subsume subtyping. The special case

of sharing one type to a single other corresponds to a subtyping relation; we define the

shorthand notation A<:B to mean .(A |B). Inequalities over type annotations in rules

SHAREDAT, SHAREFUN and SHARETHUNK allow potential annotations to decrease and

cost annotations to increase. Informally, A<:B implies not only that A and B have identical

FCUP 31

5.2. Sharing Relation 999.

underlying types, but also that B has lower or equal potential and greater or equal cost than

that of A. As usual in structural subtyping, this relation is contravariant in the left argument

of functions (SHAREFUN).

5.2.2 Idempotent Types

We now define the notion that some types can be freely shared. Namely, if they observe

the following definition:

Definition 5.1 (Idempotent Types and Idempotent Contexts). We say type A (respectively

context Γ) is idempotent iff .(A |A,A) (respectively .(Γ |Γ,Γ)) holds.

This special case occurs when sharing a type or context to itself: because of non-negativity,

.(A |A,A) (respectively .(Γ |Γ,Γ)) requires the potential annotations in A (respectively Γ)

to be zero for all data types outside of function types.

Note though that function types are unaffected by this special case of sharing. However,

since function types do not carry potential per se (the potential required to execute the body

of a function must come from its arguments), all types subject to such constraint carry no

potential.

For example, types

T
1(µX.{Unit:(0, ())})

T
1(T1(µX.{Unit:(1, ())})−→

1
B)

T
1(µX.{Cons:(0, (T1(µX.{Unit:(0, ())}),T1(X))) | Nil:(0, ())})

are idempotent, whereas types

T
1(µX.{Unit:(1, ())})

T
1(µX.{Cons:(1, (T1(µX.{Unit:(0, ())}),T1(X))) | Nil:(0, ())})

T
1(µX.{Cons:(0, (T1(µX.{Unit:(0, ())}),T1(X))) | Nil:(1, ())})

are not.

We use this property to impose a constraint that types or contexts carry no potential. A

variant of this is .(A |A,A′), which implies that A′ is a subtype of A that holds no potential.

32 FCUP

999. 5. Amortised Analysis

5.3 Typing Judgements

Our analysis for lazy evaluation is presented in Figures 5.4 and 5.5 as a proof system

that derives judgements of the form Γ q ê : A, where Γ is a typing context, ê is an

augmented expression, A is an annotated type and q (above the turnstile) is a non-negative

rational number approximating the cost of evaluating ê. For simplicity, we will omit turnstile

annotations whenever they are not explicitly mentioned.

In the LET rule, the cost q′ of evaluating ê is deferred by moving it to the thunk type of x in the

type judgement of e. If x does not occur in e then its cost can be discarded, in accordance

with lazy evaluation. Also, type A′ is restricted to being idempotent in order to prevent the

potential of x from being reused in the derivation of ê, keeping potential from being obtained

for free in the recursive definition. Finally, the overall cost of the let expression is 1 for the

newly allocated heap cell (according to the cost model) plus the cost q of evaluating the

body e and, if ê is a constructor, its potential p′ is also added to the overall cost. Note that

the thunk cost of x in the type judgement of ê is q′, instead of always zero as in a previous

presentation [SVF+12]. This change allowed us to fix a minor problem in the soundness

proof of the main theorem.

VAR moves the cost from the thunk type to the turnstile, ensuring that any cost in the thunk

type is paid for at this point of access in a type derivation.

In the ABS rule, the cost of eventually applying the λ-abstraction is q, but the cost of

evaluating the λ-abstraction itself is zero, since it is already a whnf. In order to avoid

duplicating potential where a λ-abstraction is applied more than once, ABS ensures that Γ

is idempotent, by forcing it to share with itself. While on the one hand this means functions

can be reused arbitrarily without risking unsound duplication of potential, on the other hand

functions must obtain all their required potential, other than a constant amount, from their

input argument x alone and not from other variables in dom(Γ).

APP ensures that the argument and function types match and includes the cost of the

function in the final result.

The CONS rule simply ensures consistency between the arguments and the result type.

Since constructors cannot appear in source forms, the rule is used only when we need to

assign types either to heap expressions or to evaluation results. Note that while rule LET

FCUP 33

5.3. Typing Judgements 999.

Γ, x:Tq′(A′) q′ ê : A ∆, x:Tq′(A) q e : C
x 6∈ dom(Γ,∆) .(A |A,A′) q′ = 0 if ê is a whnf

p =

{
p′, if ê ≡ c ~y and A = µX.{· · · |c : (p′, ~B)| · · · }
0, otherwise

Γ,∆ 1 + q + p let x = ê in e : C
(LET)

x:Tq(A) q x : A
(VAR)

Γ, x:A q e : C x 6∈ dom(Γ) .(Γ |Γ,Γ)

Γ 0 λx.e : A−→q C
(ABS)

Γ q e : A−→q
′

C

Γ, y:A q + q′ e y : C
(APP)

B = µX.{· · · |c : (p, ~A)| · · · }

y1:A1[B/X], . . . , yk:Ak[B/X] 0 c ~y : B
(CONS)

Γ q e : B B = µX.{c1 : (p1,
−→
A1)| · · · |cn : (pn,

−→
An)}

(
⋃n

i=1{
−→xi}) ∩ dom(∆) = ∅

i = 1, . . . , n

{
|
−→
Ai| = |−→xi | = ki
∆, xi1 :Ai1 [B/X], . . . , xiki :Aiki

[B/X] q′ + pi ei : C

Γ,∆ q + q′ case e of {ci
−→xi -> ei}

n
i=1 : C

(CASE)

Figure 5.4: Syntax directed type rules

must ensure that sufficient potential (p′) is available for the constructor, the CONS rule does

not — the former corresponds to allocating a constructor, the latter to merely referencing

one.

The CASE rule deals with pattern-matching over an expression of a (possibly recursive) data

type. The rule requires that all branches of the alternatives admit an identical result type

and that part of the estimated cost of each alternative branch is the same; fulfilling such

a condition may require the relaxation of type and/or cost information using the structural

rules described below. The matching branch uses extra resources corresponding to the

potential annotation on the matched constructor, previously set aside at the introduction of

the constructor (LET).

The structural rules of Figure 5.5 allow the analysis to be relaxed in various ways. Rule

WEAK allows the introduction of an extra hypothesis in the typing context and the side

condition ensures type A must be structurally equivalent to any of Γ↾x, if Γ↾x is not empty,

preventing ill-formed contexts, such as {x:Bool, x:List}. RELAX allows argument costs to

be relaxed. SUPERTYPE and SUBTYPE allow supertyping in a hypothesis and subtyping

34 FCUP

999. 5. Amortised Analysis

Γ q e : C .(A′ | (Γ, x:A)↾x)

Γ, x:A q e : C
(WEAK)

Γ q′ e : A q ≥ q′

Γ q e : A
(RELAX)

Γ, x:B q e : C A<:B

Γ, x:A q e : C
(SUPERTYPE)

Γ q e : B B<:C

Γ q e : C
(SUBTYPE)

Γ, x:A1, x:A2
q e : C .(A |A1, A2)

Γ, x:A q e : C
(SHARE)

Γ, x:Tq′0(A) q e : C

Γ, x:Tq′0+q′(A) q + q′ e : C
(PREPAY)

Figure 5.5: Structural type rules

in the conclusion, respectively. SHARE allows the use of sharing to split potential in a

hypothesis. Finally, PREPAY allows (part or all of) the cost of a thunk to be paid for, so

reducing the cost of further uses.

It is important to note that a decrease of cost annotations for thunks (possibly down to zero)

can only be achieved through the PREPAY structural rule and not through the sharing rules

of Figure 5.2. Without PREPAY the system would model call-by-name, since each access

of a variable would pay for the entire cost. Also, if we would force the use of PREPAY for

the entire cost after each LET, we would be modelling call-by-value: pay in full once at

introduction (LET) and pay zero at every access (VAR). It is the ability to selectively choose

when to use PREPAY that enables the system to model call-by-need. Thus, “prepaying”

is key to correctly modelling the reduced costs of lazy evaluation by allowing costs to be

accounted only once for a thunk, if at all.

5.4 Example: Analysing Call-By-Need

We now present type derivations for the examples from Section 4.4 in order to illustrate how

the type rules of Figures 5.4 and 5.5 reflect the costs of our operational semantics.

FCUP 35

5.4. Example: Analysing Call-By-Need 999.

5.4.1 Non-Strict Evaluation

Recall example (4.1) which demonstrates that unneeded redexes are not reduced (i.e. that

the semantics is non-strict):

let z = z in (λx. λy. y) z

Evaluation of this term in our operational semantics succeeds, requires one heap cell (for

allocating the thunk named by z) and the result is the identity function λy. y:

H, S,L 1 let z = z in (λx. λy. y) z ⇓ λy.y,H′

An analysis for this term is given in Figure 5.6 as an annotated type derivation.∗

The final judgement is:

∅ 1 let z = z in (λx.λy.y) z : Tq(B) −→
q

B

The annotation in the turnstile of this judgement gives a cost estimate of one heap cell,

matching the exact cost of the operational semantics. The type annotation q represents the

cost of the thunk bound to the concrete argument of the identity function λy. y. The value of

q can be arbitrary. So can type B. Note that type A′ is similarly arbitrary, subject only to the

side condition .(A′ |A′, A′), forbidding circular data for having potential.

5.4.2 Lazy Evaluation

The second example (4.2) illustrates the sharing of normal forms, i.e. lazy evaluation:

let f = let z = z in (λx. λy. y) z

in let i = λx. x in let v = f i in f v

Evaluating f v forces the thunk named by f; following evaluation, the location associated

with f is updated with a whnf. Subsequent evaluations of f re-use this result. Evaluation of

∗For the complete derivation see Figure B.1 in Appendix B.

36 FCUP

999. 5. Amortised Analysis

VAR
z:Tq′′

(
A′

)
q′′

z : A′

. . .

z:Tq′′
(
A′

)
0 (λx.λy.y) z : Tq(B) −→

q

B
LET

∅ 1 let z = z in (λx.λy.y) z : Tq(B) −→
q

B

where .(A′ |A′, A′)

Figure 5.6: Type derivation for a non-strict evaluation example

the overall expression therefore costs 4 heap cells (as seen in Figure 4.5, Chapter 4):

∅, ∅, ∅ 4 (4.2) ⇓ λx. x, [ℓ0 7→ λy. y, ℓ1 7→ λx. x, ℓ2 7→ λx. x, ℓ3 7→ ℓ3]

The type derivation in Figure 5.7 shows the analysis for this example.†

The final type judgement replicates the exact operational cost of 4 heap cells:

∅ 4 (4.2) : B, where B = T
q′(C) −→

q′

C

Note that we employ the structural type rule SHARE to allow the function f to be used twice.

The duplication is justified since the type of f is idempotent (i.e. it shares to itself).

The crucial point in this type derivation that allows us to match the exact operational cost is

the use of the structural rule PREPAY (below SHARE) to pay, precisely once, the cost of the

thunk bound to f.

Also note that although the type derivation constrains B = T
q′(C) −→

q′

C to be idempotent,

i.e. .(B |B,B), it leaves type C unconstrained.

5.5 Soundness

This section establishes the soundness of our analysis for lazy evaluation with respect to

the cost model of Section 4.3.

We begin by stating some auxiliary proof lemmas and preliminary definitions, notably for-

malising the notion of potential. We then define the principal invariants of our system,

namely, type consistency and type compatibility relations between a heap configuration of

†For the complete derivation see Figure B.2 in Appendix B.

FCUP 37

5.5. Soundness 999.

(Figure 5.6, where q = 0)
WEAK

f:T1(T0(B) −→
0

B) 1 let z = z in (λx.λy. y) z : T0(B) −→
0

B

. . .

i:T0(B) 0 λx. x : B

. . .

f:T0(T0(B) −→
0

B),

f:T0(T0(B) −→
0

B), i:T0(B) 1 let v = f i in f v : B
SHARE

f:T0(T0(B) −→
0

B), i:T0(B) 1 let v = f i in f v : B
PREPAY

f:T1(T0(B) −→
0

B), i:T0(B) 2 let v = f i in f v : B
LET

f:T1(T0(B) −→
0

B) 3 let i = λx. x in . . . : B
LET

∅ 4 let f = (let z = z in (λx.λy. y) z) in let i = λx. x in let v = f i in f v : B

where B = T
q′(C) −→

q′

C

Figure 5.7: Type derivation for a lazy-evaluation example

the operational semantics and global types, contexts and balance. We conclude with the

soundness result proper (Theorem 5.13).

5.5.1 Auxiliary Lemmas

The first auxiliary lemma allows us to replace variables in type derivations. Note that

because of the lazy evaluation semantics (and unlike the usual substitution lemma for the

λ-calculus), we substitute only with variables but not with arbitrary expressions. Also, since

our typing contexts are multisets, we need to ensure the simultaneous substitution of all

typings of the variable in the context.

Lemma 5.2 (Substitution). If Γ, x:A1, . . . , x:An
q ê : C and x 6∈ dom(Γ) and y /∈ dom(Γ) ∪

FV(ê) then also Γ, y:A1, . . . , y:An
q ê[y/x] : C.

Proof. By induction on the height of derivation of Γ, x:A1, . . . , x:An
q ê : C, simply replac-

ing any occurrences of x for y.

The next two lemmas establish inversion properties for constructors and λ-abstractions.

Lemma 5.3 (CONS Inversion). If Γ 0 c ~y : B then B = µX.{· · · | c : (p, ~A) | · · · } and

.(Γ | y1:A1[B/X], . . . , yk:Ak[B/X]).

38 FCUP

999. 5. Amortised Analysis

Lemma 5.4 (ABS Inversion). If Γ 0 λx.e : A−→q C then there exists Γ′ such that .(Γ |Γ′),

.(Γ′ |Γ′,Γ′), x /∈ dom(Γ′) and Γ′, x:A q e : C.

Proof Sketch (for both lemmas). A typing with conclusion Γ 0 c ~y : B must result from ax-

iom CONS followed by (possibly zero) uses of structural rules. Similarly, a typing Γ 0 λx.e :

A−→q C must result from an application of the rule ABS followed by (possibly zero) uses of

structural rules. The proof follows by induction on the structural rules, considering each rule

separately. For rules RELAX and PREPAY induction is trivial since both type judgements

have zero on the turnstile. For the remaining structural rules the proof follows by transitivity

of the sharing relation. See Section 5.5.6.2 and 5.5.6.3, respectively, for the detailed

proofs.

Note that, for a typing judgement with any number greater than zero on the turnstile,

inversion in our type system would not hold in general. The reason is that two (mu-

tually exclusive) rules might apply. For example x:T1(A) 1 e : C might have premise

x:T1(A) 0 e : C through rule RELAX, or it might have premise x:T0(A) 0 e : C throught

rule PREPAY. This is not a problem since the proofs we present in our system do not require

inversion lemmas with a number other than zero on the turnstile of the typing judgements.

The final auxiliary lemma allows splitting contexts used for typing expressions in whnf

according to a split of the result type.

Lemma 5.5 (Context Splitting). If Γ 0 w : A, where w is an expression in whnf and

.(A |A1, A2); then there exist Γ1,Γ2 such that .(Γ |Γ1,Γ2), Γ1
0 w : A1 and Γ2

0 w : A2.

Proof Sketch. The proof follows from an application of Lemma 5.3 (if w is a constructor)

or Lemma 5.4 (if w is an abstraction) together with the definition of sharing. See Sec-

tion 5.5.6.4 for the detailed proof.

5.5.2 Global Types, Contexts and Balance

We now define some auxiliary mappings that will be necessary for formulating the sound-

ness of our type system.

The mapping M from locations to types, written {ℓ1 7→ A1, . . . , ℓn 7→ An}, records the global

type of a location, which accounts for all potential in all references to that location.

FCUP 39

5.5. Soundness 999.

We extend subtyping to global types in the natural way, namely M<:M′ if and only if

dom(M) ⊆ dom(M′) and for all ℓ ∈ dom(M) we have M(ℓ)<:M′(ℓ). This relation will be

used to assert that the potential assigned to global types is always non-increasing during

execution.

The mapping C from locations to typing contexts, written {ℓ1 7→ Γ1, . . . , ℓn 7→ Γn}, associates

each location with its global context that justifies its global type.

We also extend the projection operation from (local) contexts to global contexts in the natural

way:

C↾ℓ= {ℓ1 7→ Γ1, . . . , ℓn 7→ Γn}↾ℓ
def
= (Γ1, . . . ,Γn)↾ℓ

Furthermore, we introduce an auxiliary balance (or lazy potential) mapping B from locations

to non-negative rational numbers.

The balance mapping will be used to keep track of the partial costs of thunks that have been

paid in advance by applications of the PREPAY rule.

Note that these auxiliary mappings are needed only in the soundness proof of the analysis

for bookkeeping purposes, but are not part of the operational semantics — in particular,

they do not incur run-time costs.

5.5.3 Potential

We now define the potential of an augmented expression with respect to a heap and an

annotated type.

Definition 5.6 (Potential). The potential assigned to an augmented expression ê of type A

under heap H, written φ
H
(ê:A), is defined in (5.1) within Figure 5.8.

The potential of data constructors is obtained by summing the type annotation with the

(possibly recursive) potential contributed by each of the arguments. Note how the potential

of data constructors is unwrapped from thunk types. The potential of expressions other than

data constructors is always zero.

Equation (5.2) extends the definition to typing contexts in the natural way. Equation (5.3)

defines potential for global contexts, but considers only thunks that are not under evaluation.

40 FCUP

999. 5. Amortised Analysis

φH(ê:A)
def
=

p+
∑

i φH
(H(ℓi):Bi[A/X]) if A = µX.{· · · |c:(p, ~B)| · · · } and ê = c ~ℓ

φ
H
(ê:B) if A = T

q(B)

0 otherwise

(5.1)

φH(Γ)
def
=

∑{
φH(H(x):A)

∣∣ x:A ∈ Γ
}

(5.2)

ΦL

H(C)
def
=

∑{
φH(C(ℓ))

∣∣ ℓ ∈ dom(H) and ℓ /∈ L and H(ℓ) is not a whnf
}

(5.3)

ΦL

H(B)
def
=

∑{
B(ℓ)

∣∣ ℓ ∈ dom(H) and ℓ /∈ L and H(ℓ) is not a whnf
}

(5.4)

Figure 5.8: Potential

Finally, (5.4) defines a convenient shorthand notation for a similar summation over the

balance.

Note that for cyclic data structures, the potential is only defined if all the type annotations

of all nodes encountered along a cycle are zero (the overall potential must therefore also

be zero). For example, consider the heap H = [ℓ0 7→ True, ℓ1 7→ Cons ℓ0 ℓ1] where ℓ1

represents an infinite list of booleans True as a cyclic list of length 1. Potential

φH

(
ℓ1:T

1(µX.{Cons:(0, (T1(µY.{True:(0, ())|False:(1, ())}),T1(X))) | Nil:(1, ())})
)

is zero, whereas potentials

φ
H

(
ℓ1:T

1(µX.{Cons:(1, (T1(µY.{True:(0, ())|False:(1, ())}),T1(X))) | Nil:(1, ())})
)

φ
H

(
ℓ1:T

1(µX.{Cons:(0, (T1(µY.{True:(1, ())|False:(1, ())}),T1(X))) | Nil:(1, ())})
)

are not defined.

The next lemma formalises the intuition that sharing splits the potential of a type.

Lemma 5.7 (Potential Splitting). If .(A |A1, . . . , An) then for all ê such that the potentials

are defined, we have φ
H
(ê:A) ≥

∑
i φH

(ê:Ai).

Proof Sketch. First note that the results follow immediately if ê is not in whnf or is a λ-

abstraction (because potentials are zero in those cases). The potential is also zero if ê is

a constructor that is part of a cycle (since otherwise it would be undefined). The remaining

case is for a constructor with no cycles, i.e. a directed acyclic graph (DAG). The proof is

then by induction on the length of the longest path. See Section 5.5.6.5 for the detailed

proof.

FCUP 41

5.5. Soundness 999.

This lemma has an important corollary when A occurs as one of the types on the right hand

side.

Corollary 5.8 (Potential Remaining). If .(A |A,B1, . . . , Bn) then for all ê such that the

potentials are defined, we have φ
H
(ê:Bi) = 0 for all i.

Proof. This is a direct corollary of Lemma 5.7.

It also follows as corollary that a supertype of a type A has potential that is no greater than

that of A.

Corollary 5.9 (Potential Subtype). If A<:B then for all ê such that the potentials are

defined, we have φ
H
(ê:A) ≥ φ

H
(ê:B).

Proof. By the definition of subtyping, this is a direct corollary of Lemma 5.7 for the case

when n = 1.

5.5.4 Consistency and Compatibility

We now define the principal invariants for proving the soundness of our analysis, namely,

consistency and compatibility relations between a heap configuration and the global types,

contexts and balance.

We proceed by first defining type consistency of a single location and then extending it to a

whole heap.

Definition 5.10 (Type Consistency of Locations). We say that location ℓ admits type T
q(A)

under context Γ, balance B and heap configuration (H,L), and write Γ,B;H,L ⊢LOC
ℓ :

T
q(A), if one of the following cases holds:

(LOC1) H(ℓ) is in whnf and Γ 0
H(ℓ) : A

(LOC2) H(ℓ) not in whnf and ℓ 6∈ L and Γ
q + B(ℓ)

H(ℓ) : A

(LOC3) H(ℓ) not in whnf and ℓ ∈ L and Γ = ∅

The three cases in the above definition are mutually exclusive: LOC1 applies when the

expression in the heap is already in whnf ; otherwise LOC2 or LOC3 apply, depending on

whether the thunk is or is not under evaluation.

42 FCUP

999. 5. Amortised Analysis

Note that for LOC2 the balance B(ℓ) associated with location ℓ is added to the available

resources for typing the thunk H(ℓ), effectively reducing its cost by the prepaid amount.

Once evaluation has begun (LOC3), or once it has completed (LOC1), the balance is

considered spent. However, we never lower or reset the balance, since it is simply ignored

in such cases.

Definition 5.11 (Type Consistency of Heaps). We say that a heap state (H,L) is consistent

with global contexts, global types and balance, and write C,B ⊢MEM
(H,L) : M, if and only

if for all ℓ ∈ dom(H): C(ℓ),B;H,L ⊢LOC
ℓ : M(ℓ) holds.

Definition 5.12 (Global Compatibility). We say that a global type M is compatible with

context Γ and a global context C, written .(M |Γ,C), if and only if .(M(ℓ) |Γ↾ℓ ,C↾ℓ) for all

ℓ ∈ dom(M).

Definition 5.11 requires the type consistency of each specific location. Definition 5.12

requires for each location that the global type accounts for the joint potential of all references

(in both the local and global contexts).

5.5.5 Soundness of the Proof System

We can now state the soundness of our analysis as an augmented type preservation result.

Theorem 5.13 (Soundness). If the following statements hold

Γ q e : A (5.5)

H, S,L ⊢ e ⇓ w,H′ (5.6)

C,B ⊢MEM (H,L) : M (5.7)

.(M | (Γ,Θ),C) (5.8)

then for all t ∈ Q+
0 and m ∈ N with

m ≥ t+ q + φH(Γ) + φH(Θ) + ΦL

H(C) + ΦL

H(B) (5.9)

FCUP 43

5.5. Soundness 999.

there exist Γ′, C′, B′, M′ and m′,m′′ ∈ N such that the following statements also hold

Γ′ 0 w : A (5.10)

H, S,L m′′

e ⇓ w,H′ (5.11)

M<:M′ (5.12)

C
′,B′ ⊢MEM (H′,L) : M′ (5.13)

.(M′ | (Γ′,Θ),C′) (5.14)

m′ ≥ t+ φH′(w:A) + φH′(Θ) + ΦL

H′

(
C
′
)
+ΦL

H′

(
B

′
)

(5.15)

m−m′ ≥ m′′ (5.16)

Informally, the soundness theorem reads as follows: if an expression e admits a type A (5.5),

its evaluation is successful (5.6) and the heap can be consistently typed (5.7) (5.8), then

the resulting whnf also admits type A (5.10). Furthermore, the resulting heap can also be

typed (5.12) (5.13) (5.14) and the static bounds that are obtained from the typing of e give

safe resource estimates for evaluation (5.9) (5.11) (5.15) (5.16).

The arbitrary value t is used to carry over excess potential which is not used for the

immediate evaluation but will be needed in subsequent ones (e.g. for the argument of an

application). Similarly, the context Θ is used to preserve types for variables that are not in

the current scope but that are necessary for subsequent evaluations (e.g. the alternatives

of the case).

Note that type preservation — i.e. the fact that expression e and its whnf w both have

judgements with the same type A — could be proven separately from the main theorem, but

obviously only if there were no resource related type annotations in the relevant statements.

We present here a proof sketch of our main theorem; a detailed proof is available in

Section 5.5.6.

Proof Sketch. The proof follows by induction on the lengths of the derivations of (5.6) and

(5.5) ordered lexicographically, with the derivation of the evaluation taking priority over the

typing derivation. We proceed by case analysis of the typing rule used in premise (5.5),

considering just some representative cases.

44 FCUP

999. 5. Amortised Analysis

Case VAR: The typing premise ℓ:Tq(A) q ℓ : A is an axiom. By inversion of the eval-

uation premise, we obtain H, S,L ∪ {ℓ} ⊢ H(ℓ) ⇓ w,H′. In order to apply induction to

the evaluation of the thunk H(ℓ), we take the typing context from the hypothesis of type

consistency for the location ℓ. We apply induction to a typing with the global type M(ℓ)

rather than the local type T
q(A) in the local context. This gives us a stronger conclusion

with a context that we can then split using Lemma 5.7 to justify type consistency for the

heap update and the local context for the answer. Finally, we require an auxiliary result to

ensure that if the update introduces a cycle, the locations on the cycle can be assigned a

type with zero potential (Lemma 5.17 in Section 5.5.6).

Case LET: The typing premise is Γ,∆ 1 + q + p let x = ê in e : C and evaluation premise

gives us H0, S,L ⊢ e[ℓ/x] ⇓ w,H′ where H0 = H[ℓ 7→ ê[ℓ/x]] is the heap extended with a

new location ℓ and thunk. To apply induction to the evaluation of e[ℓ/x] we reestablish the

consistency to the new location ℓ; this is done using Γ from the typing hypothesis together

with an idempotent type for self-references to ℓ. Applying induction then yields all required

conclusions.

Case CASE: The typing premise is Γ,∆ q + q′ case e of {ci
−→xi -> ei}

n
i=1 : C and, by inver-

sion of the type rule, we get a typing Γ q e : B for e, where B = µX.{c1 : (p1,
−→
A1)| · · · |cn :

(pn,
−→
An)} is some data type for constructors c1, . . . , cn. We apply induction to the evalu-

ation of e. We then apply induction to ek[~ℓ/
−→xk] and obtain the proof obligation. To es-

tablish the premise (5.9) on m′, we use the definition of potential: φ
H
(ck ~ℓ:B) = pk +

∑
i φH

(H(ℓi):Ai[B/X]), i.e. the potential of the constructor ck is the sum of the type an-

notation pk plus the potential of its context.

Case PREPAY: The typing premise is Γ, ℓ:Tq′0+q′(A) q+q′ e : C. We want to apply induc-

tion to the typing Γ, ℓ:Tq′0(A) q e : C, obtained by inversion of the type rule, and we use

the same evaluation premise, since PREPAY is a structural rule. We reflect the prepayment

of q′ in the global balance B′ = B[ℓ 7→ q′+B(ℓ)]. Let Tr(A′) = M(ℓ), k = max(r−q′, 0) and

M′ = M[ℓ 7→ T
k(A′)], i.e. we want to show that we can lower (by q′) the global cost of thunk

types for location ℓ. In order to do so, we need to reestablish type consistency and global

compatibility for the new B′ and M′. The important part is to show that .
(
T
k(A′)

∣∣∣Tq′0(A)
)

,

in particular k ≤ q′0, but this is equivalent to show that max(r−q′, 0) ≤ q′0 ⇐⇒ r−q′ ≤ q′0∧0 ≤

FCUP 45

5.5. Soundness 999.

q′0, where the latter follows from the non-negativity of q′0, and r−q′ ≤ q′0 ⇐⇒ r ≤ q′0+q′,

which holds by the compatibility premise .
(
T
r(A′)

∣∣∣Tq′0+q′(A)
)

.

The soundness proof presented in this thesis does not require co-induction for proving

memory consistency. This contrasts with previous amortised analyses that deal with re-

cursive closures [JLHH10, Jos10]. It should be noted that the same reason, i.e. proving

the consistency of recursive closures, also caused Milner and Tofte [MT91] to resort to

co-induction. The analyses presented in this thesis, however, do not need a co-inductively

defined consistency for recursive closures, but instead rely upon the convention that all vari-

able names are sufficiently fresh, hence a single, global, environment suffices. Therefore,

checking all locations for this global environment once suffices since a function value does

not need a recursive check for its consistency with a new environment.

The next section includes the detailed proof of the soundness theorem for our analysis.

5.5.6 Detailed Proofs

We begin with an auxiliary definition and lemma that will be used in the proof of the sound-

ness of the analysis in the case VAR for updating a location with a whnf.

5.5.6.1 Minor Lemmas

Lemma 5.14 (Subtyping is a partial order). <: is a partial order.

Proof. Straightforward by induction on the type structure and the definition of sharing (Fig-

ure 5.2).

Lemma 5.15 (Idempotent Subtypes). If .(A |A,A′) then .(A′ |A′, A′) as well.

Proof. Straightforward by induction on the type structure and the definition of sharing (Fig-

ure 5.2).

We now present the proof of Lemma 5.3 (CONS Inversion), followed by the proof of

Lemma 5.4 (ABS Inversion).

46 FCUP

999. 5. Amortised Analysis

5.5.6.2 Inversion Lemma for Constructors

Lemma 5.3 (CONS Inversion). If Γ 0 c ~y : B then B = µX.{· · · | c : (p, ~A) | · · · } and

.(Γ | y1:A1[B/X], . . . , yk:Ak[B/X]).

Proof. A typing with conclusion Γ 0 c ~y : B must result from axiom CONS followed by

(possibly zero) uses of structural rules. The proof follows by induction on the structural

rules, considering each rule separately. For rules RELAX and PREPAY induction is trivial

since both type judgements have zero on the turnstile. For the remaining structural rules the

proof follows by transitivity of the sharing relation. We now consider each of the remaining

structural rules.

Case WEAK: We have Γ, xn+1:Cn+1
0 c ~y : B. Applying induction to the premise of rule

WEAK Γ 0 c ~y : B we obtain

B = µX.{· · · |c : (p, ~A)| · · · }

as required for the conclusion, and

.(Γ | y1:A1[B/X], . . . , yk:Ak[B/X])

Let Γ = {x1:C1, . . . , xn:Cn}. By the definition of sharing (Figure 5.3) we know that

.(x1:C1, . . . , xn:Cn | y1:A1[B/X], . . . , yk:Ak[B/X])

iff there is a partition ∆1, . . . ,∆n of {y1:A1[B/X], . . . , yk:Ak[B/X]} such that .(xi:Ci |∆i)

holds and dom(∆i) ⊆ {xi}, for (1 ≤ i ≤ n).

Let ∆n+1 = ∅. Since .(xn+1:Cn+1 |∆n+1) holds (by SHAREEMPTYCTX) and dom(∆n+1) ⊆

{xn+1}, again by definition of sharing we have

.(Γ, xn+1:Cn+1 | y1:A1[B/X], . . . , yk:Ak[B/X])

as required.

FCUP 47

5.5. Soundness 999.

Case SUPERTYPE: We have Γ, xn+1:C
′
n+1

0 c ~y : B. The premises of rule SUPERTYPE

are Γ, xn+1:Cn+1
0 c ~y : B and .

(
C ′
n+1 |Cn+1

)
. Applying induction to Γ, xn+1:Cn+1

0 c ~y :

B we obtain

B = µX.{· · · |c : (p, ~A)| · · · }

as required for the conclusion, and

.(Γ, xn+1:Cn+1 | y1:A1[B/X], . . . , yk:Ak[B/X])

Let Γ = {x1:C1, . . . , xn:Cn}. By the definition of sharing (Figure 5.3) we know that

.(x1:C1, . . . , xn:Cn, xn+1:Cn+1 | y1:A1[B/X], . . . , yk:Ak[B/X])

iff there is a partition ∆1, . . . ,∆n,∆n+1 of {y1:A1[B/X], . . . , yk:Ak[B/X]} such that

.(xi:Ci |∆i) holds and dom(∆i) ⊆ {xi}, for (1 ≤ i ≤ n+ 1).

From .
(
C ′
n+1 |Cn+1

)
and .(xn+1:Cn+1 |∆n+1) by the transitivity of sharing we have

.
(
xn+1:C

′
n+1 |∆n+1

)

Thus by definition of sharing we have

.
(
Γ, xn+1:C

′
n+1 | y1:A1[B/X], . . . , yk:Ak[B/X]

)

as required.

Case SUBTYPE: We have Γ 0 c ~y : C. The premises of rule SUBTYPE are Γ 0 c ~y : B

and .(B |C). Applying induction to Γ 0 c ~y : B we obtain

B = µX.{· · · |c : (p, ~A)| · · · }

and

.(Γ | y1:A1[B/X], . . . , yk:Ak[B/X])

From .(B |C) we know

C = µX.{· · · |c : (p′, ~A′)| · · · }

48 FCUP

999. 5. Amortised Analysis

where p ≤ p′ and .
(
~A
∣∣∣ ~A′

)
. Also, .(yi:Ai[B/X] | yi:A

′
i[C/X]) for (1 ≤ i ≤ k). By the

transitivity of sharing we obtain

.(Γ | y1:A
′
1[C/X], . . . , yk:A

′
k[C/X])

as required.

Case SHARE: We have Γ, x:C ′ 0 c ~y : B. Applying induction to the premise of rule

SHARE Γ, x:C ′
1, x:C

′
2

0 c ~y : B we obtain

B = µX.{· · · |c : (p, ~A)| · · · }

as required for the conclusion, and

.(Γ, x:C ′
1, x:C

′
2 | y1:A1[B/X], . . . , yk:Ak[B/X])

Let Γ = {x1:C1, . . . , xn:Cn}. By the definition of sharing (Figure 5.3) we know that

.(x1:C1, . . . , xn:Cn, x:C
′
1, x:C

′
2 | y1:A1[B/X], . . . , yk:Ak[B/X])

iff there is a partition ∆1, . . . ,∆n,∆
′
1,∆

′
2 of {y1:A1[B/X], . . . , yk:Ak[B/X]} such that

.(xi:Ci |∆i) holds and dom(∆i) ⊆ {xi}, for (1 ≤ i ≤ n), and .(x:C ′
1 |∆

′
1), .(x:C ′

2 |∆
′
2)

hold and dom(∆′
1 ∪∆′

2) ⊆ {x}.

From .(x:C ′
1 |∆

′
1) and .(x:C ′

2 |∆
′
2) we have .(x:C ′

1, x:C
′
2 |∆

′
1,∆

′
2). From .(C ′ |C ′

1, C
′
2)

(also premise of rule SHARE) and the transitivity of sharing we have .(x:C ′ |∆′
1,∆

′
2). By

definition of sharing we have

.(Γ, x:C ′ | y1:A1[B/X], . . . , yk:Ak[B/X])

as required.

This concludes the proof of the CONS Inversion.

FCUP 49

5.5. Soundness 999.

5.5.6.3 Inversion Lemma for λ-abstractions

Lemma 5.4 (ABS Inversion). If Γ 0 λx.e : A−→q C then there exists Γ′ such that .(Γ |Γ′),

.(Γ′ |Γ′,Γ′), x /∈ dom(Γ′) and Γ′, x:A q e : C.

Proof. A typing Γ 0 λx.e : A−→q C must result from an application of the rule ABS followed

by (possibly zero) uses of structural rules. The proof follows by induction on the structural

rules, considering each rule separately. For rules RELAX and PREPAY induction is trivial

since both type judgements have zero on the turnstile. For the remaining structural rules the

proof follows by transitivity of the sharing relation. We now consider each of the remaining

structural rules.

Case WEAK: We have Γ, yn+1:Bn+1
0 λx.e : A−→q C and, as a premise of rule WEAK,

Γ 0 λx.e : A−→q C

Applying induction to Γ 0 λx.e : A−→q C we obtain Γ′ such that .(Γ |Γ′), .(Γ′ |Γ′,Γ′),

x /∈ dom(Γ′) and Γ′, x:A q e : C.

Let Γ = {y1:B1, . . . , yn:Bn}. By the definition of sharing (Figure 5.3) we know that

.(y1:B1, . . . , yn:Bn |Γ
′)

iff there is a partition ∆1, . . . ,∆n of Γ′ such that .(yi:Bi |∆i) holds and dom(∆i) ⊆ {yi}, for

(1 ≤ i ≤ n).

Let ∆n+1 = ∅. From SHAREEMPTYCTX we have .(yn+1:Bn+1 |∆n+1). By the definition of

sharing we have

.(Γ, yn+1:Bn+1 |Γ
′)

as required.

Case SUPERTYPE: We have Γ, yn+1:B
′
n+1

0 λx.e : A−→q C and, as a premise of rule

SUPERTYPE,

Γ, yn+1:Bn+1
0 λx.e : A−→q C

50 FCUP

999. 5. Amortised Analysis

where .
(
B′

n+1 |Bn+1

)
. Applying induction to Γ, yn+1:Bn+1

0 λx.e : A−→q C we obtain Γ′

such that .(Γ, yn+1:Bn+1 |Γ
′), .(Γ′ |Γ′,Γ′), x /∈ dom(Γ′) and Γ′, x:A q e : C.

Let Γ = {y1:B1, . . . , yn:Bn}. By the definition of sharing (Figure 5.3) we know that

.(y1:B1, . . . , yn:Bn, yn+1:Bn+1 |Γ
′)

iff there is a partition ∆1, . . . ,∆n,∆n+1 of Γ′ such that .(yi:Bi |∆i) holds and dom(∆i) ⊆

{yi}, for (1 ≤ i ≤ n+ 1).

From .
(
B′

n+1 |Bn+1

)
and .(yn+1:Bn+1 |∆n+1) by the transitivity of sharing we have

.
(
yn+1:B

′
n+1 |∆n+1

)

Thus, by the definition of sharing we obtain

.
(
Γ, yn+1:B

′
n+1 |Γ

′
)

as required.

Case SUBTYPE: We have Γ 0 λx.e : A′−→q
′

C ′ and, as a premise of rule SUBTYPE,

Γ 0 λx.e : A−→q C

where .
(
A−→q C

∣∣∣A′−→q
′

C ′
)

. Applying induction to Γ 0 λx.e : A−→q C we obtain Γ′ such

that .(Γ |Γ′), .(Γ′ |Γ′,Γ′), x /∈ dom(Γ′) and Γ′, x:A q e : C.

From .
(
A−→q C

∣∣∣A′−→q
′

C ′
)

we know q ≤ q′, .(A′ |A) and .(C |C ′).

From Γ′, x:A q e : C applying rules SUPERTYPE (with .(A′ |A)), RELAX (with q ≤ q′) and

SUBTYPE (with .(C |C ′)) we obtain

Γ′, x:A′ q′ e : C ′

as required.

FCUP 51

5.5. Soundness 999.

Case SHARE: We have Γ, y:B′ 0 λx.e : A−→q C and, as a premise of rule SHARE,

Γ, y:B′
1, y:B

′
2

0 λx.e : A−→q C

where .(B′ |B′
1, B

′
2). Applying induction to Γ, y:B′

1, y:B
′
2

0 λx.e : A−→q C we obtain Γ′

such that .(Γ, y:B′
1, y:B

′
2 |Γ

′), .(Γ′ |Γ′,Γ′), x /∈ dom(Γ′) and Γ′, x:A q e : C.

Let Γ = {y1:B1, . . . , yn:Bn}. By the definition of sharing (Figure 5.3) we know that

.(y1:B1, . . . , yn:Bn, y:B
′
1, y:B

′
2 |Γ

′)

iff there is a partition ∆1, . . . ,∆n,∆
′
1,∆

′
2 of Γ′ such that .(yi:Bi |∆i) holds and dom(∆i) ⊆

{yi}, for (1 ≤ i ≤ n), and .(y:B′
1 |∆

′
1) and .(y:B′

2 |∆
′
2) hold, and dom(∆′

1 ∪∆′
2) ⊆ {y}.

From .(y:B′
1 |∆

′
1) and .(y:B′

2 |∆
′
2) we have .(y:B′

1, y:B
′
2 |∆

′
1,∆

′
2). From .(B′ |B′

1, B
′
2) and

the transitivity of sharing we have .(y:B′ |∆′
1,∆

′
2). By definition of sharing we have

.(Γ, y:B′ |Γ′)

as required.

This concludes the proof of the ABS Inversion.

We now present the proof of Lemma 5.5 (Context Splitting), followed by the proof of

Lemma 5.7 (Potential Splitting).

5.5.6.4 Context Splitting Lemma

Lemma 5.5 (Context Splitting). If Γ 0 w : A, where w is an expression in whnf and

.(A |A1, A2); then there exist Γ1,Γ2 such that .(Γ |Γ1,Γ2), Γ1
0 w : A1 and Γ2

0 w :

A2.

Proof. Expression w is either a constructor application or a λ-abstraction. The proof follows

by considering the two cases separately.

Z/A A/B B/Z

52 FCUP

999. 5. Amortised Analysis

Case w = c ~y: We have Γ 0 c ~y : A and .(A |A1, A2). By applying Lemma 5.3 we obtain

A = µX.{· · · |c : (p, ~B)| · · · } and .(Γ | y1:B1[A/X], . . . , yk:Bk[A/X]). From .(A |A1, A2)

we also obtain

A1 = µX.{· · · |c : (p′, ~B′)| · · · }

A2 = µX.{· · · |c : (p′′, ~B′′)| · · · }

Applying rule CONS we obtain

y1:B
′
1[A1/X], . . . , yk:B

′
k[A1/X] 0 c ~y : A1

y1:B
′′
1 [A2/X], . . . , yk:B

′′
k [A2/X] 0 c ~y : A2

as required, by considering

Γ1 = y1:B
′
1[A1/X], . . . , yk:B

′
k[A1/X]

Γ2 = y1:B
′′
1 [A2/X], . . . , yk:B

′′
k [A2/X]

We are left to prove .(Γ |Γ1,Γ2). Note that by definition of sharing and .(A |A1, A2)

.(yi:Bi[A/X] | yi:B
′
i[A1/X], yi:B

′′
i [A2/X])

for (1 ≤ i ≤ k). Thus, we have .(y1:B1[A/X], . . . , yk:Bk[A/X] |Γ1,Γ2). By transitivity of

sharing we obtain .(Γ |Γ1,Γ2) as required.

Case w = λx.e: We have Γ 0 λx.e : A−→q C and .
(
A−→q C

∣∣A1−→
q1

C1, A2−→
q2

C2

)
. By

applying Lemma 5.4 we obtain Γ′ such that .(Γ |Γ′), .(Γ′ |Γ′,Γ′), x /∈ dom(Γ′) and

Γ′, x:A q e : C.

From .
(
A−→q C

∣∣A1−→
q1

C1, A2−→
q2

C2

)
we also obtain .(A1 |A), q ≤ q1, .(C |C1), .(A2 |A),

q ≤ q2 and .(C |C2).

Let Γ1 = Γ2 = Γ′. From Γ1, x:A
q e : C applying rules SUPERTYPE (with .(A1 |A)), RELAX

(with q ≤ q1), SUBTYPE (with .(C |C1)) and ABS (with .(Γ1 |Γ1,Γ1) and x /∈ dom(Γ1))

we obtain Γ1
0 λx.e : A1−→

q1
C1 as required. Also from Γ2, x:A

q e : C applying rules

SUPERTYPE (with .(A2 |A)), RELAX (with q ≤ q2), SUBTYPE (with .(C |C2)) and ABS (with

.(Γ2 |Γ2,Γ2) and x /∈ dom(Γ2)) we obtain Γ2
0 λx.e : A2−→

q2
C2 as required.

We are left to prove .(Γ |Γ1,Γ2). This is equivalent to .(Γ |Γ′,Γ′) and follows from .(Γ |Γ′)

FCUP 53

5.5. Soundness 999.

and .(Γ′ |Γ′,Γ′) by the transitivity of sharing.

We thus conclude the proof of Context Splitting.

5.5.6.5 Potential Splitting Lemma

Lemma 5.7 (Potential Splitting). If .(A |A1, . . . , An) then for all ê such that the potentials

are defined, we have φ
H
(ê:A) ≥

∑
i φH

(ê:Ai).

Proof. First note that the results follow immediately if ê is not in whnf or is a λ-abstraction

(because potentials are zero in those cases). The potential is also zero if ê is a constructor

that is part of a cycle (since otherwise it would be undefined). The remaining case is for a

constructor with no cycles, i.e. a directed acyclic graph (DAG). The proof is then by induction

on the length of the longest path. We have .(A |A1, . . . , An) and ê ≡ c ~y. Also φ
H
(c ~y:A) is

defined.

If A = T
q(B) then Ai = T

qi(Bi) for (1 ≤ i ≤ n) and we would proceed to proving

φ
H
(c ~y:B) ≥

∑
i φH

(c ~y:Bi).

Otherwise, A = µX.{· · · |c:(p, ~B)| · · · } and Ai = µX.{· · · |c:(pi, ~B′
i)| · · · } for (1 ≤ i ≤ n).

We have to prove φ
H
(c ~y:A) ≥

∑
i φH

(c ~y:Ai) or in this case the equivalent inequality

p+
∑

j

φH(H(ℓj):Bj [A/X]) ≥
∑

i

(pi +
∑

j

φH

(
H(ℓj):B

′
ij [Ai/X]

)
)

By induction on the shorter paths H(ℓj), we know

∑

j

φH(H(ℓj):Bj [A/X]) ≥
∑

i

∑

j

φH

(
H(ℓj):B

′
ij [Ai/X]

)

From the non-negativity of potential annotations, all that remains to prove is

p ≥
∑

i

pi

and that follows from .(A |A1, . . . , An) by the definition of sharing.

This concludes the proof of Potential Splitting.

54 FCUP

999. 5. Amortised Analysis

5.5.6.6 Idempotent Cycles

Definition 5.16 (Reachability). The one-step reachability relation ℓ❀Hℓ
′ between two loca-

tions ℓ, ℓ′ in a heap H holds if and only if H(ℓ) = c ~ℓ′′ and ℓ′ ∈ ~ℓ′′. The many-step reachability

relation ❀
+
H

is defined as the transitive closure of the one-step reachability relation.

Note that reachability only traverses constructors, but not unevaluated locations nor

λ-abstractions. This mimics the definition of potential (Definition 5.6).

The following lemma shows that, in a consistent configuration, locations within cycles can be

assigned global types with zero potential. Because of the way the invariants were defined,

any cycles having positive potential must keep this potential within the cycle in order to

justify the typing of each subsequent location. Therefore, since this potential cannot affect

the types of locations outside the cycle, we can always set the potential within a cycle to

zero.

Lemma 5.17 (Idempotent Cycles). Let (H,L) be a heap configuration consistent with global

types, contexts and balance M,C,B, that is, such that C,B ⊢MEM
(H,L) : M and .(M |Γ,C).

Then there exist C′,M′ such that M<:M′ with C′,B ⊢MEM
(H,L) : M′ and .(M′ |Γ,C′) such

that for all ℓ with ℓ❀+
H
ℓ we have .(M′(ℓ) |M′(ℓ),M′(ℓ)) as well.

Proof. Consider a cycle consisting of the locations ℓ0, . . . , ℓn+1 with ℓi❀Hℓi+1 and ℓn+1 =

ℓ0. By Definition 5.16 (Reachability) each H(ℓi) must be a constructor of the form

ci(. . . , ℓi+1, . . .). The type consistency of locations (Definition 5.10) for each ℓi must hold

by case LOC1, because constructors are whnfs. Since thunk annotations are irrelevant for

LOC1, we omit them in the following for readability.

Let M(ℓi) = T(Ai), hence C(ℓi)
0 ci(. . . , ℓi+1, . . .) : Ai by LOC1. By our assumption that

recursive types are non-interleaving, the type for the position of ℓi+1 within the constructor ci

must be the µ-bound type variable, i.e. Ai = µX.{ · · · |ci : (pi, . . .T(X) . . .)| · · · }. Applying

Lemma 5.3 (CONS Inversion) we obtain

.(C(ℓi) | ℓi+1:T(Ai) , . . .) (5.17)

FCUP 55

5.5. Soundness 999.

From (5.17) by the definition of context sharing and subtyping we conclude that there

exists A′
i such that T(A′

i) ∈ C↾ℓi+1
and A′

i<:Ai. By the definition of global compatibility

(Definition 5.12), we have .
(
M(ℓi+1)

∣∣ Γ↾ℓi+1
,C↾ℓi+1

)
; again by definition of subtyping this

implies Ai+1<:A′
i; combining with A′

i<:Ai established earlier, we obtain

Ai+1<:A′
i<:Ai for 0 ≤ i ≤ n (5.18)

Because <: is a partial order (Lemma 5.14) and An+1 = A0 by definition, it follows from (5.18)

that the Ai, A
′
i must all be equal. Let A be this common type of the cycle locations, i.e.

M(ℓi) = T(A) for all 0 ≤ i ≤ n. The compatibility hypothesis for location ℓi now instantiates

as follows:

.
(
T(A)

∣∣ Γ↾ℓi ,T(A) , . . .
)

(5.19)

Because each location occurs at least once in the cycle with exactly the global type T(A)

we know that any other references in Γ or C must occur with an idempotent subtype of A,

i.e. A′ such that A<:A′ and .(A′ |A′, A′). We can thus set the global type for all locations

in the cycle to this self-sharing type A′ without disrupting type consistency.

5.5.6.7 Proof of the Soundness Theorem

The proof of Theorem 5.13 follows by induction on the lengths of the derivations of (5.6) and

(5.5) ordered lexicographically, with the derivation of the evaluation taking priority over the

typing derivation. This is required since an induction on the length of the typing derivation

alone would fail for the case of unevaluated locations, which prolongs the length of the

typing derivation by a typing judgement for the thunk, granted through the type consistency

hypothesis. On the other hand, the length of the derivation for the term evaluation never

increases, but may remain unchanged where the last step of the typing derivation was

obtained by a structural rule. In these cases, the length of the typing derivation does de-

crease, allowing an induction over the lexicographically ordered lengths of both derivations.

We proceed by case analysis of the typing rule used in premise (5.5).

Case VAR: We have ℓ:Tq(A) q ℓ : A from the typing hypothesis (5.5). From the compati-

bility hypothesis (5.8) we then obtain .
(
M(ℓ)

∣∣ T
q(A) ,Θ↾ℓ ,C↾ℓ

)
which implies M(ℓ) = T

q′(Â)

and .
(
Â
∣∣A, Ā

)
for some types Â, Ā and annotation q′ with q ≥ q′.

56 FCUP

999. 5. Amortised Analysis

The evaluation premise (5.6) reads as H, S,L ⊢ ℓ ⇓ w,H′[ℓ 7→ w] for some intermediate

heap H′; by inversion of the only applicable evaluation rule VAR⇓, we obtain ℓ 6∈ L and

H, S,L ∪ {ℓ} ⊢ H(ℓ) ⇓ w,H′ (5.20)

By (5.7) for location ℓ we obtain C(ℓ),B;H,L ⊢LOC
ℓ : Tq′(Â). We proceed by case analysis

of the rule used for type consistency of ℓ. Note that LOC3 cannot apply because ℓ /∈ L by

the premise of the VAR rule. The remaining cases are then LOC1 and LOC2, which apply

according to whether H(ℓ) is in whnf or not, respectively.

If H(ℓ) is in whnf : The evaluation (5.20) terminates immediately by WHNF⇓ and we have

w = H(ℓ) and H = H′ = H′[ℓ 7→ w], i.e. the update is without effect. By LOC1 we obtain

C(ℓ) 0 w : Â. By .
(
Â
∣∣A, Ā

)
established earlier and Lemma 5.5 we obtain .(C(ℓ) |Γ′

1,Γ
′
2)

and Γ′
1

0 w:A as required for (5.10), as well as Γ′
2

0 w:Ā. Let M′ = M[ℓ 7→ T
0
(
Ā
)
] and

C′ = C[ℓ 7→ Γ′
2]. By the previous results together with (5.7) we obtain C′,B ⊢MEM

(H,L) : M′

as required for (5.13). From the compatibility premise (5.8) together with .(C(ℓ) |Γ′
1,Γ

′
2) es-

tablished earlier we can conclude .(M′ |Γ′
1,Θ,C′) as required for (5.14). Conclusions (5.11)

and (5.16) with m′ = m follow directly from an application of rule WHNF⇓C. It remains to

show that the bound (5.15) is satisfied for the choice m′ = m. Our proof obligation is:

t+q+φH(ℓ:T
q(A))+φH(Θ)+ΦL

H(C)+ΦL

H(B) ≥ t+φH(w:A)+φH(Θ)+ΦL

H

(
C
′
)
+ΦL

H(B)

The above inequality holds because: q is non-negative; φ
H
(ℓ:Tq(A)) = φ

H
(H(ℓ):A) =

φ
H
(w:A) by Def. 5.6 (potential); and ΦL

H
(C′) = ΦL

H
(C) because C′ differs from C only for

ℓ which is in whnf, and therefore its context does not contribute to the potential.

If H(ℓ) is not in whnf : By LOC2 we obtain C(ℓ)
q′ + B(ℓ)

H(ℓ) : Â. Let M′ = M[ℓ 7→

T
q′
(
Ā
)
] and C′ = C[ℓ 7→ ∅]. We observe that C′,B ⊢MEM

(H,L ∪ {ℓ}) : M′ must hold by hy-

pothesis (5.7) together with the case for LOC3 for location ℓ. Furthermore .(M′ |C(ℓ),Θ,C′)

holds, since for all ℓ′ we have C↾ℓ′ = C(ℓ)↾ℓ′ ∪C
′↾ℓ′ by definition.

We will now apply the induction hypothesis to the evaluation of H(ℓ) with type Â. We first

show that m can be chosen as required for the induction; the proof obligation is:

m ≥ t+ (q′ +B(ℓ)) + φH(C(ℓ)) + φH(Θ) + Φ
L∪{ℓ}
H

(
C
′
)
+Φ

L∪{ℓ}
H

(B) (5.21)

FCUP 57

5.5. Soundness 999.

Starting from the hypothesis (5.9) we obtain:

m ≥ t+ q + φH(ℓ:T
q(A)) + φH(Θ) + ΦL

H(C) + ΦL

H(B)

≥ t+ q′ + 0 +
(
φH(C(ℓ)) + φH(Θ) + Φ

L∪{ℓ}
H

(
C
′
))

+
(
Φ
L∪{ℓ}
H

(B) +B(ℓ)
)

= t+
(
q′ +B(ℓ)

)
+ φH(C(ℓ)) + φH(Θ) + Φ

L∪{ℓ}
H

(
C
′
)
+Φ

L∪{ℓ}
H

(B)

The inequality follows, since q′ ≤ q from above; φ
H
(ℓ:Tq(A)) = 0 because H(ℓ) is not in

whnf ; ΦL

H
(C) = φ

H
(C(ℓ)) + Φ

L∪{ℓ}
H

(C′) by definition; and ΦL

H
(B) = B(ℓ) + Φ

L∪{ℓ}
H

(B) by

definition.

We can now apply the induction hypothesis to the evaluation of H(ℓ) with type Â and obtain:

Γ′ 0 w : Â (5.22)

H, S,L ∪ {ℓ} m′′

H(ℓ) ⇓ w,H′ (5.23)

M
′<:M′′ (5.24)

C
′′,B′ ⊢MEM (H′,L ∪ {ℓ}) : M′′ (5.25)

.(M′′ |Γ′,Θ,C′′) (5.26)

m′ ≥ t+ φH′(w:Â) + φH′(Θ) + Φ
L∪{ℓ}
H′

(
C
′′
)
+Φ

L∪{ℓ}
H′

(
B

′
)

(5.27)

m−m′ ≥ m′′ (5.28)

By applying the induction hypothesis to the global type, we obtained a stronger typing

(5.22) for the resulting whnf as well. We now recover the required typing for A by the

lemma for splitting contexts and the remaining potential associated through Ā allows us to

establish memory consistency for the remaining aliases. So by .
(
Â
∣∣A, Ā

)
from above,

(5.22) and Lemma 5.5 we obtain .(Γ′ |Γ′
1,Γ

′
2) and Γ′

1
0 w:A as required for (5.10), as

well as Γ′
2

0 w:Ā; this together with (5.25) and the case LOC1 of Def. 5.10 gives us

C′′[ℓ 7→ Γ′
2],B

′ ⊢MEM
(H′[ℓ 7→ w],L) : M′′ as required for (5.13).

Conclusion (5.12) follows by the transitivity of subtyping from M<:M′ by the definition of

M′ and (5.24).

From (5.26) we have .(M′′ |Γ′
1,Γ

′
2,Θ,C′′) which by definition is equivalent to

.(M′′ |Γ′
1,Θ,C′′[ℓ 7→ Γ′

2])

58 FCUP

999. 5. Amortised Analysis

as required for (5.14).

Conclusion (5.11) follows directly from (5.23) by application of VAR⇓.

It remains to show that m′ obtained from (5.27) satisfies the requirements of (5.15); our

proof obligation is:

t+ φH′(w:Â) + φH′(Θ) + Φ
L∪{ℓ}
H′

(
C
′′
)
+Φ

L∪{ℓ}
H′

(
B

′
)
≥

t+ φ
H′[ℓ7→w](w:A) + φ

H′[ℓ7→w](Θ) + ΦL

H′[ℓ7→w]

(
C
′′[ℓ 7→ Γ′

2]
)
+ΦL

H′[ℓ7→w]

(
B

′
)

First note that Φ
L∪{ℓ}
H′ (B′) = ΦL

H′[ℓ7→w](B
′) since the balance ignores both whnfs and loca-

tions under evaluation. It remains to show that

φH′(w:Â) + φH′(Θ) + Φ
L∪{ℓ}
H′

(
C
′′
)
≥ φ

H′[ℓ7→w](w:A) + φ
H′[ℓ7→w](Θ) + ΦL

H′[ℓ7→w]

(
C
′′[ℓ 7→ Γ′

2]
)

(5.29)

We first argue that we can assume without loss of generality that the potentials above are all

defined (i.e. finite): these could be undefined only if the update H′[ℓ 7→ w] introduced new

cycles, but in that case we would apply Lemma 5.17 (Idempotent Cycles) and obtain new

global contexts and global types that still satisfy the three conclusions (5.12), (5.13) and

(5.14) proved earlier. Furthermore, any new cycles must include the updated location ℓ, for

which the refined global type assigns zero potential by Lemma 5.5. That implies (5.29) is

then an equality, since φ
H′(w:Â), φH′[ℓ7→w](w:A) and ΦL

H′[ℓ7→w]((C
′′[ℓ 7→ Γ′

2])↾ℓ) must then all

be zero, and likewise Φ
L∪{ℓ}
H′ (C′′↾ℓ) by definition.

In the remaining case where the update did not introduce a cycle, we have φ
H′(w:Â) =

φ
H′[ℓ7→w](w:Â) and φ

H′(Θ) = φ
H′[ℓ7→w](Θ). Recall that .

(
Â
∣∣A, Ā

)
, so by Lemma 5.7 we

have φ
H′[ℓ7→w](w:Â) ≥ φ

H′[ℓ7→w](w:A) + φ
H′[ℓ7→w]

(
w:Ā

)
. Thus it remains to be shown that

φH′

(
w:Ā

)
≥ ΦL

H′[ℓ7→w]

(
C
′′[ℓ 7→ Γ′

2]
)
− Φ

L∪{ℓ}
H′

(
C
′′
)

= ΦL

H′[ℓ7→w]

(
(C′′[ℓ 7→ Γ′

2])↾ℓ
)

(5.30)

which follows by the compatibility concluded earlier, and applying Lemma 5.9 for

T
q′
(
Ā
)
<:M′′(ℓ)

This concludes the proof of the VAR case.

FCUP 59

5.5. Soundness 999.

Case LET: The typing and evaluation premises (5.5) and (5.6) instantiate as

Γ,∆ 1 + q + p let x = ê in e : C

and H, S,L ⊢ let x = ê in e ⇓ w,H′, respectively. By inversion of rules LET and LET⇓ we

obtain

x 6∈ dom(Γ,∆) (5.31)

.(A |A,A′) (5.32)

Γ, x:Tq′
(
A′

)
q′ ê : A (5.33)

∆, x:Tq′(A) q e : C (5.34)

p =

p′, if ê ≡ c ~y and A = µX.{· · · |c : (p′, ~B)| · · · }

0, otherwise
(5.35)

ℓ is fresh (5.36)

H[ℓ 7→ ê[ℓ/x]], S,L ⊢ e[ℓ/x] ⇓ w,H′ (5.37)

Applying Lemma 5.2 (substitution) to (5.33) and (5.34) we obtain

Γ, ℓ:Tq′
(
A′

)
q′ ê[ℓ/x] : A (5.38)

∆, ℓ:Tq′(A) q e[ℓ/x] : C (5.39)

We intend to apply the induction hypothesis over subterm e[ℓ/x] using (5.39) and (5.37),

so we must establish the required premises first. Note that we do not invoke the induction

hypothesis for subterm ê, since it is not executed at this point, but just stored within the

heap.

Let H0 = H
[
ℓ 7→ ê[ℓ/x]

]
. In order to establish global compatibility and type consistency for

the extended memory H0, we set B0 = B[ℓ 7→ 0], M0 = M[ℓ 7→ T
q′(A)] and C0 = C[ℓ 7→

Γ, ℓ:Tq′(A′)]. Type consistency for existing locations is unaffected by these extensions, since

ℓ is a fresh location.

The required global compatibility .
(
M0

∣∣ ∆, ℓ:Tq′(A) ,Θ,C0

)
follows from (5.8) and

.
(
T
q′(A)

∣∣ T
q′(A) ,Tq′(A′)

)
, where the latter follows from typing premise (5.32).

Type consistency for the new location ℓ requires Γ, ℓ:Tq′(A′) ,B0;H0,L ⊢LOC
ℓ : Tq′(A) to

hold. We now distinguish whether ê[ℓ/x] happens to be in whnf or not. In the case that

60 FCUP

999. 5. Amortised Analysis

ê[ℓ/x] is not in whnf, (LOC2) applies, since a fresh location is not contained in L and the

required typing (5.38) holds.

In the case that ê[ℓ/x] is in whnf, (LOC1) applies since there is a type judgement for

expression ê[ℓ/x] with zero on the turnstile as required by (LOC1), either by inversion of

ABS (Lemma 5.4) or CONS (Lemma 5.3), followed by an immediate application of ABS

or CONS, depending on whether the whnf is a λ-expression or a constructor application,

respectively. (Note that instead of Γ, ℓ:Tq′(A′), inversion might require an altered context. If

this is the case, then C0 is chosen above to deliver the altered context in the first place.)

This establishes the required type consistency for ℓ and thus together with (5.7) also

C0,B0 ⊢MEM
(H0,L) : M0.

In order to establish the remaining premise (5.9), we proceed by case analysis on whether

expression ê[ℓ/x] is a constructor application (and consequently on whether we need to

consider the potential p′).

If ê ≡ c ~y: Premise (5.9) reads as

m+ 1 ≥ t+ 1 + q + p′ + φH(Γ,∆) + φH(Θ) + ΦL

H(C) + ΦL

H(B)

By definition φ
H0

(
ℓ:Tq′(A)

)
≤ p′ + φ

H0

(
Γ, ℓ:Tq′(A′)

)
= p′ + φ

H
(Γ), where the inequality

is due to the context possibly containing unneeded or needlessly strong references and

the equality follows by ℓ /∈ dom(Γ) from the freshness of ℓ and type A′ being idempotent

by .(A |A,A′) and Lemma 5.15; ΦL

H0
(C0) = ΦL

H
(C) since ℓ points to a whnf ; furthermore

ΦL

H
(B) = ΦL

H0
(B0) by definition. Combining these three with the previous inequality yields

as required

m ≥ t+ q + φH0

(
∆, ℓ:Tq′(A)

)
+ φH0

(Θ) + ΦL

H0
(C0) + ΦL

H0
(B0)

since the other statements are unaffected by the fresh ℓ extending H to H0.

If ê 6≡ c ~y: Premise (5.9) reads as

m+ 1 ≥ t+ 1 + q + 0 + φH(Γ,∆) + φH(Θ) + ΦL

H(C) + ΦL

H(B)

FCUP 61

5.5. Soundness 999.

Since ê 6≡ c ~y, H0(ℓ) is either a λ-expression or not in whnf, hence φ
H0

(
ℓ:Tq′(A)

)
= 0; by

subtyping φ
H0

(
ℓ:Tq′(A′)

)
= 0 and thus φ

H
(Γ) = φ

H0
(C0(ℓ)) by definition of C0, and hence

ΦL

H0
(C0) ≤ φ

H
(Γ) + ΦL

H
(C) (note that this is an equality if H0(ℓ) is not in whnf, and Γ

is minimal, and strict inequality if H0(ℓ) is a λ-expression and φ
H
(Γ) > 0); furthermore

ΦL

H
(B) = ΦL

H0
(B0) by definition. Combining these three with the inequality before yields as

required

m ≥ t+ q + φH0

(
∆, ℓ:Tq′(A)

)
+ φH0

(Θ) + ΦL

H0
(C0) + ΦL

H0
(B0)

since the other statements are unaffected by the fresh ℓ extending H to H0.

Regardless of whether expression ê[ℓ/x] is a constructor application, once premise (5.9) is

established, applying the induction hypothesis then yields all required conclusions directly

without any alterations, except for (5.12) which follows by the transitivity of subtyping and

M<:M0 by definition. This concludes the proof of the LET case.

Case ABS: The typing premise (5.5) is Γ 0 λx.e : A−→q C.

The evaluation premise (5.6) is H, S,L ⊢ λx.e ⇓ λx.e,H. Assume m satisfying (5.9); let

Γ′ = Γ, C′ = C, M′ = M, B′ = B, m′ = m and m′′ = 0; we trivially obtain (5.12), (5.10),

(5.13), (5.14), (5.11), (5.16).

It remains to show that the bound (5.15) is satisfied when m′ = m. From the premise (5.9)

we know

m ≥ t+ φH(Γ) + φH(Θ) + ΦL

H(C) + ΦL

H(B) (5.40)

By inversion of rule ABS we obtain .(Γ |Γ,Γ) which by Lemma 5.7 implies φ
H
(Γ) = 0.

By Def. 5.6 (potential) we also obtain φ
H

(
λx.e:A−→q C

)
= 0, and therefore also φ

H
(Γ) =

φ
H

(
λx.e:A−→q C

)
; substituting in (5.40) gives us

m′ ≥ t+ φH

(
λx.e:A−→q C

)
+ φH(Θ) + ΦL

H(C) + ΦL

H(B)

as required. This concludes the proof of the ABS case.

Case APP: The typing and evaluation premises (5.5) and (5.6) instantiate as

Γ, ℓ:A q + q′ e ℓ : C

62 FCUP

999. 5. Amortised Analysis

and H, S,L ⊢ e ℓ ⇓ w,H′′, respectively. By inversion of rules APP and APP⇓ we obtain

Γ q e : A−→q
′

C (5.41)

H, S,L ⊢ e ⇓ λx.e′,H′ (5.42)

H
′, S,L ⊢ e′[ℓ/x] ⇓ w,H′′ (5.43)

By premise (5.9) we assume

m ≥ t+ q + q′ + φH(Γ, ℓ:A) + φH(Θ) + ΦL

H(C) + ΦL

H(B)

= (t+ q′) + q + φH(Γ) + φH(ℓ:A,Θ) + ΦL

H(C) + ΦL

H(B) (5.44)

Inequation (5.44) shows that the bound for m satisfies the requirements for applying induc-

tion for expression e using judgements (5.41) and (5.42); we obtain m′,Γ′,C′,B′,M′ and m′′
1

such that:

Γ′ 0 λx.e′ : A−→q
′

C (5.45)

H, S,L
m′′

1 e ⇓ λx.e′,H′ (5.46)

M<:M′ (5.47)

C
′,B′ ⊢MEM (H′,L) : M′ (5.48)

.(M′ | (Γ′, ℓ:A, Θ,C′) (5.49)

m′ ≥ t+ q′ + φH′

(
λx.e′:A−→q

′

C
)
+ φH′(ℓ:A,Θ) + ΦL

H′

(
C
′
)
+ΦL

H′

(
B

′
)

(5.50)

m−m′ ≥ m′′
1 (5.51)

By Lemma 5.4 (ABS inversion) applied to judgement (5.45) we can assume without loss

of generality that .(Γ′ |Γ′,Γ′) and Γ′, x:A q′ e′ : C; applying Lemma 5.2 (Substitution) we

obtain

Γ′, ℓ:A q′ e′[ℓ/x] : C (5.52)

In order to apply the induction hypothesis to e′[ℓ/x] it remains to show that the bound (5.50)

for m′ satisfies the premise (5.9). By .(Γ′ |Γ′,Γ′) established earlier and Lemma 5.7

(Potential Splitting) we know φ
H′(Γ′) = 0 and therefore φ

H′(Γ′, ℓ:A) = φ
H′(ℓ:A).

FCUP 63

5.5. Soundness 999.

By Def. 5.6 (Potential) we know φ
H′

(
λx.e′:A−→q

′

C
)
= 0; substituting in (5.50) gives us:

m′ ≥ t+ q′ + φH′

(
λx.e′:A−→q

′

C
)
+ φH′(ℓ:A,Θ) + ΦL

H′

(
C
′
)
+ΦL

H′

(
B

′
)

= t+ q′ + φH′(ℓ:A,Θ) + ΦL

H′

(
C
′
)
+ΦL

H′

(
B

′
)

= t+ q′ + φH′

(
Γ′, ℓ:A

)
+ φH′(Θ) + ΦL

H′

(
C
′
)
+ΦL

H′

(
B

′
)

Hence we are able to apply induction on e′[ℓ/x] and obtain:

Γ′′ 0 w : C (5.53)

H
′, S,L

m′′

2 e′[ℓ/x] ⇓ w,H′′ (5.54)

M
′<:M′′ (5.55)

C
′′,B′′ ⊢MEM (H′′,L) : M′′ (5.56)

.(M′′ | (Γ′′,Θ),C′′) (5.57)

m′′ ≥ t+ φH′′(w:C) + φH′′(Θ) + ΦL

H′′

(
C
′′
)
+ΦL

H′′

(
B

′′
)

(5.58)

m′ −m′′ ≥ m′′
2 (5.59)

From (5.47) and (5.55) and the transitivity of subtyping we conclude M<:M′′. From (5.46)

and (5.54) and rule APP⇓C we obtain H, S,L
m′′

1
+ m′′

2 e ℓ ⇓ w,H′′. From (5.51) and (5.59)

we establish proof obligation (5.16), i.e. m−m′′ = m+(−m′+m′)−m′′ = (m−m′)+(m′−

m′′) ≥ m′′
1 + m′′

2. Equations (5.53), (5.56), (5.57) and (5.58) establish the remaining proof

obligations. This concludes the proof of the APP case.

Case CONS: This case cannot occur because the theorem applies only to initial expres-

sions (not augmented expressions).

Case CASE: The typing and evaluation premises are

Γ,∆ q + q′ case e of {ci
−→xi -> ei}

n
i=1 : C (5.60)

H, S,L ⊢ case e of {ci
−→xi -> ei}

n
i=1 ⇓ w,H′′ (5.61)

64 FCUP

999. 5. Amortised Analysis

From (5.61) by inversion of rule CASE⇓ we obtain:

H, S ∪
n⋃

i=1

({−→xi} ∪ BV(ei)) ,L ⊢ e ⇓ ck ~ℓ,H′ (5.62)

H
′, S,L ⊢ ek[~ℓ/

−→xk] ⇓ w,H′′ (5.63)

From (5.60) by inversion of the typing rule CASE we obtain:

Γ q e : B (5.64)

B = µX.{c1 : (p1,
−→
A1)| · · · |cn : (pn,

−→
An)} (5.65)

(

n⋃

i=1

{−→xi}) ∩ dom(∆) = ∅ (5.66)

|
−→
Ak| = |−→xk| = j (5.67)

∆, xk1 :Ak1 [B/X], . . . , xkj :Akj [B/X] q′ + pk ek : C (5.68)

From (5.68), (5.66) and (5.67) together with Lemma 5.2 (substitution) we obtain

∆, ℓ1:Ak1 [B/X], . . . , ℓj :Akj [B/X] q′ + pk ek[~ℓ/
−→xk] : C (5.69)

Let m be such that

m ≥ t+ q + q′ + φH(Γ,∆) + φH(Θ) + ΦL

H(C) + ΦL

H(B)

= (t+ q′) + q + φH(Γ) + φH(∆,Θ) + ΦL

H(C) + ΦL

H(B) (5.70)

We are now able to apply the induction hypothesis for expression e using (5.64) and (5.62)

and obtain:

Γ′ 0 ck ~ℓ : B (5.71)

H, S ∪
n⋃

i=1

({−→xi} ∪ BV(ei)) ,L
m′′

1 e ⇓ ck ~ℓ,H′ (5.72)

M<:M′ (5.73)

C
′,B′ ⊢MEM (H′,L) : M′ (5.74)

.(M′ | (Γ′,∆,Θ),C′) (5.75)

m′ ≥ (t+ q′) + φH′(ck ~ℓ:B) + φH′(∆,Θ) + ΦL

H′

(
C
′
)
+ΦL

H′

(
B

′
)

(5.76)

m−m′ ≥ m′′
1 (5.77)

FCUP 65

5.5. Soundness 999.

From (5.71), by Lemma 5.3 (inversion), we have

.(Γ′ | l1:Ak1 [B/X], . . . , lj :Akj [B/X]) (5.78)

From (5.75) and (5.78), global compatibility can be relaxed to

.(M′ | (l1:Ak1 [B/X], . . . , lj :Akj [B/X],∆,Θ),C′) (5.79)

We now apply induction again, this time for expression ek[~ℓ/
−→xk] using (5.69), (5.63), (5.74)

and (5.79). It remains to show that the bound (5.76) satisfies premise (5.9). By Def. 5.6

(potential) and (5.65) we know φ
H′(ck ~ℓ:B) = pk +

∑j
i=1 φH′(ℓi:Aki [B/X]); substituting

in (5.76) yields:

m′ ≥ t+ q′ + pk +
∑j

i=1 φH′(ℓi:Aki [B/X]) + φ
H′(∆,Θ) + ΦL

H′(C′) + ΦL

H′(B′)

= t+ q′ + pk + φH′

(
∆, ℓ1:Ak1 [B/X], . . . , ℓj :Akj [B/X]

)
+ φH′(Θ) + ΦL

H′

(
C
′
)
+ΦL

H′

(
B

′
)

Hence we can apply induction and obtain:

Γ′′ 0 w : C (5.80)

H
′, S,L

m′′

2 ek[~ℓ/
−→xk] ⇓ w,H′′ (5.81)

M
′<:M′′ (5.82)

C
′′,B′′ ⊢MEM (H′′,L) : M′′ (5.83)

.(M′′ | (Γ′′,Θ),C′′) (5.84)

m′′ ≥ t+ φH′′(w:C) + φH′′(Θ) + ΦL

H′′

(
C
′′
)
+ΦL

H′′

(
B

′′
)

(5.85)

m′ −m′′ ≥ m′′
2 (5.86)

From (5.73) and (5.82) and the transitivity of subtyping we conclude M<:M′′. From (5.72)

and (5.81) and rule CASE⇓C we obtain

H, S,L
m′′

1
+ m′′

2 case e of {ci
−→xi -> ei}

n
i=1 ⇓ w,H′′

From (5.77) and (5.86) we establish proof obligation (5.16), i.e. m−m′′ = m+(−m′+m′)−

m′′ = (m−m′)+(m′−m′′) ≥ m′′
1+m′′

2. Equations (5.80), (5.83), (5.84) and (5.85) establish

the remaining proof obligations. This concludes the proof of the CASE case.

66 FCUP

999. 5. Amortised Analysis

Case WEAK: The typing premise (5.5) reads Γ, x:A q e : C. By inversion of rule WEAK

we obtain Γ q e : C. In order to apply the induction hypothesis for this judgement, we note

that premise (5.7) (type consistency) holds unchanged; and because .(M |Γ, x:A,Θ,C)

implies .(M |Γ,Θ,C) so does (5.8) (global compatibility). The bound (5.9) for the induction

also holds because φ
H
(Γ, x:A) ≥ φ

H
(Γ). We can therefore apply induction to e with the

typing Γ q e : C and obtain all required results for this case.

Case RELAX: By the second premise of RELAX follows q− q′ ≥ 0 and thus we can choose

t′ = t+ q − q′. We apply the induction hypothesis to Γ q′ e : A for this t′. Since RELAX is a

structural rule, all statements apart from (5.5) and (5.9) remain unchanged. The induction

hypothesis thus yields all required conclusions verbatim, except for (5.15). Instead, the

induction yields m′ ≥ t′ + φ
H′(w:A) + φ

H′(Θ) + ΦL

H′(C′) + ΦL

H′(B′). Unfolding our choice for

t′ yields m′ ≥ (t+ q− q′) +φ
H′(w:A) +φ

H′(Θ)+ΦL

H′(C′) +ΦL

H′(B′). By the second premise

of RELAX follows q − q′ ≥ 0 and thus m′ ≥ t + φ
H′(w:A) + φ

H′(Θ) + ΦL

H′(C′) + ΦL

H′(B′) as

required to conclude this case.

Case PREPAY: The typing premise is

Γ, ℓ:Tq′0+q′(A) q + q′ e : C

By inversion of the rule PREPAY we obtain

Γ, ℓ:Tq′0(A) q e : C (5.87)

Let B′ = B[ℓ 7→ q′ + B(ℓ)], i.e. B′ is equal to B except for location ℓ where it increases by

q′. Assuming m as in premise (5.9), we show that it satisfies the requirements for applying

induction to (5.87) with the modified B′:

m ≥ t+ q + q′ + φH(Γ, ℓ:T
q′0+q′(A)) + φH(Θ) + ΦL

H(C) + ΦL

H(B)

≥ t+ q + φH(Γ, ℓ:T
q′0(A)) + φH(Θ) + ΦL

H(C) + ΦL

H

(
B

′
)

The last inequality holds because φ
H
(ℓ:Tq′0+q′(A)) = φ

H
(ℓ:Tq′0(A)) by Def. 5.6 (potential)

and q′ +ΦL

H
(B) ≥ ΦL

H
(B′); note that the latter is an equality when H(ℓ) is not a whnf.

We need to reestablish both global compatibility and type consistency in order to apply

FCUP 67

5.5. Soundness 999.

the induction hypothesis. Let T
r(A′) = M(ℓ). By the definition of sharing and global

compatibility (5.8) we have .
(
T
r(A′)

∣∣ T
q′0+q′(A)

)
and hence q′0 + q′ ≥ r. Define k =

max(r − q′, 0), and M′ = M[ℓ 7→ T
k(A′)].

To establish consistency for M′, note that only the global type of location ℓ changes. Assume

that (LOC2) applies, i.e. H(ℓ) is not in whnf and ℓ /∈ L, since otherwise the claim is trivial.

From the consistency premise (5.7) we have

C(ℓ)
r + B(ℓ)

H(ℓ) : A′ (5.88)

By the definition of k we have k+q′ = max(r−q′, 0)+q′ ≥ r. Hence we can apply rule RELAX

to (5.88) and obtain

C(ℓ)
k + q′ + B(ℓ)

H(ℓ) : A′

By definition of B′ this is equivalent to the required

C(ℓ)
k + B

′(ℓ)
H(ℓ) : A′ .

To establish compatibility for M′ we need to show

.
(
T
k(A′)

∣∣∣Γ↾ℓ ,Tq′0(A) ,C↾ℓ

)

From the compatibility premise (5.8) we know

.
(
T
r(A′)

∣∣∣Γ↾ℓ ,Tq′0+q′(A) ,C↾ℓ

)
(5.89)

First we show that .
(
T
k(A′)

∣∣∣Tq′0(A)
)

; by definition of sharing, we need to show q′0 ≥ k. By

definition of k, we have q′0 ≥ k ⇐⇒ q′0 ≥ max(r − q′, 0) ⇐⇒ q′0 ≥ r − q′ ∧ q′0 ≥ 0 ⇐⇒

q′0+ q′ ≥ r∧ q′0 ≥ 0; the latter holds by non-negativity assumption, while the former holds by

the compatibility premise above.

For other types T
s(A′′) in either Γ↾ℓ or C↾ℓ, observe that Tk(A′)<:Tr(A′) by construction and

T
r(A′)<:Ts(A′′) by the original compatibility (5.89). By transitivity we obtain the desired

result.

Since the other premises remain unchanged, we can therefore apply induction and obtain

precisely the results required for the conclusion of this case.

68 FCUP

999. 5. Amortised Analysis

Case SHARE: The typing hypothesis is Γ, ℓ:A q e : C. By inversion of rule SHARE we

obtain Γ, ℓ:A1, ℓ:A2
q e : C and .(A |A1, A2). Assuming m as in premise (5.9), we obtain:

m ≥ t+ φH(Γ, ℓ:A) + φH(Θ) + ΦL

H(C) + ΦL

H(B)

≥ t+ φH(Γ, ℓ:A1, ℓ:A2) + φH(Θ) + ΦL

H(C) + ΦL

H(B)

The last inequality holds by Lemma 5.7 (Potential Splitting) φ
H
(H(ℓ):A) ≥ φ

H
(H(ℓ):A1) +

φ
H
(H(ℓ):A2). We can therefore apply the induction hypothesis to e with typing premise

Γ, ℓ:A1, ℓ:A2
q e : C and obtain as result the required conclusions for the case SHARE.

This concludes the proof of this case.

Case SUPERTYPE: The type rule gives us Γ, x:A q e : C and A<:B. We show that we

can apply induction for the premise Γ, x:B q e : C. Type consistency holds unchanged

for the induction; by A<:B and the compatibility premise (5.8) .(M |Γ, x:A,Θ,C), we

have .(M |Γ, x:B,Θ,C). The bound (5.9) also holds because φ
H
(x:A) ≥ φ

H
(x:B) by

A<:B and Lemma 5.9. Applying the induction gives us the required conclusions for the

case SUPERTYPE.

Case SUBTYPE: The type rule gives us Γ q e : C; by inversion we obtain Γ q e : B and

B<:C. Because the context is unchanged, we can apply induction hypothesis directly and

obtain:

Γ′ 0 w : B (5.90)

H, S,L m′′

e ⇓ w,H′ (5.91)

M<:M′ (5.92)

C
′,B′ ⊢MEM (H′,L) : M′ (5.93)

.(M′ | (Γ′,Θ),C′) (5.94)

m′ ≥ t+ φH′(w:B) + φH′(Θ) + ΦL

H′

(
C
′
)
+ΦL

H′

(
B

′
)

(5.95)

m−m′ ≥ m′′ (5.96)

Applying SUBTYPE to (5.90) gives us Γ′ 0 w : C as required for (5.10). Lemma 5.9 with

B<:C gives us φ
H′(w:B) ≥ φ

H′(w:C); substituting in (5.95) establishes the bound (5.15).

Results (5.91), (5.92), (5.93), (5.94) and (5.96) directly establish the remaining proof obli-

FCUP 69

5.6. A System for Eager Evaluation 999.

gations for this case.

5.6 A System for Eager Evaluation

This section emphasises the key points of the analysis for lazy evaluation developed in this

thesis by contrast to the minimal changes needed to derive an analysis for eager evaluation.

The complete definitions and figures of the eager system can be seen in Appendix A.

First of all, the analysis needs a cost model to be validated against. For that purpose we

derive a cost model for eager evaluation from Figure 4.4 by replacing rule LET⇓C with the

following:

ℓ is fresh H
[
ℓ 7→ ê[ℓ/x]

]
, S,L ∪ {ℓ} m′

ê[ℓ/x] ⇓ w′,H′

H′[ℓ 7→ w′], S,L m e[ℓ/x] ⇓ w,H′′

H, S,L 1 + m′ + m let x = ê in e ⇓ w,H′′
(EAGERLET⇓C)

The new rule EAGERLET⇓C forces evaluation of ê before evaluating the body of the let

expression. Note that the cost m′ of this forced evaluation is immediately added to the

overall cost of the let expression while, in a lazy setting, an expression in a new location

would only possibly incur a cost if its evaluation was needed indeed. Correspondingly, in

rule VAR⇓C the cost m is zero since all locations introduced by EAGERLET⇓C map to whnfs

in the heap if their evaluation terminates.

Although it is tempting to simplify the eager semantics (for example, in EAGERLET⇓ we could

avoid adding to H the mapping for ℓ when evaluating ê[ℓ/x] or we could alter rule VAR⇓ to

remove the update since H′ = H′[ℓ 7→ w]) we must refrain from doing so, remembering that

the purpose of presenting an eager system in this thesis is to be able to contrast it with the

lazy system. The fewer the changes, the simpler the contrast.

With respect to the type system, from Figures 5.4 and 5.5 we derive a type system suitable

for eager evaluation by removing the now unneeded rule PREPAY and by replacing rules

LET and VAR with

70 FCUP

999. 5. Amortised Analysis

Γ, x:A′ q′ ê : A ∆, x:A q e : C

x 6∈ dom(Γ,∆) .(A |A,A′) q′ = 0 if ê is a whnf

p =

p′, if ê ≡ c ~y and A = µX.{· · · |c : (p′, ~B)| · · · }

0, otherwise

Γ,∆ 1 + q′ + q + p let x = ê in e : C
(EAGERLET)

and

x:A 0 x : A
(EAGERVAR)

respectively.

Since we removed all explicit references to thunk types from the type system, we can also

derive for the eager system both a new syntax of allowed types (by removing the thunk

types from Figure 5.1) and a new sharing relation (by removing rule SHARETHUNK from

Figure 5.2).

In order to validate the analysis for eager evaluation against its respective cost model, we al-

ter the invariants needed for the proof of the soundness theorem. We start by removing the

now unneeded balance B (lazy potential). Moreover, since we no longer have references

to thunk types and there is no need to account for expressions that are simultaneously

not in whnf and not under evaluation (set L), we can simplify the definition of potential

(Figure 5.8) with respect to thunk types (also removing the auxiliary definitions of potential

for global contexts C and balance B) and furthermore remove case LOC2 from the definition

of type consistency of locations (Definition 5.10).

The soundness theorem (Theorem 5.13) is restated according to the changes introduced

for the eager system in this section:

Theorem 5.18 (Soundness of the Eager System). If the following statements hold

Γ q e : A (5.97)

H, S,L ⊢ e ⇓ w,H′ (5.98)

C ⊢MEM (H,L) : M (5.99)

.(M | (Γ,Θ),C) (5.100)

FCUP 71

5.7. Summary 999.

then for all t ∈ Q+
0 and m ∈ N with

m ≥ t+ q + φH(Γ) + φH(Θ) (5.101)

there exist Γ′, C′, M′ and m′,m′′ ∈ N such that the following statements also hold

Γ′ 0 w : A (5.102)

H, S,L m′′

e ⇓ w,H′ (5.103)

M<:M′ (5.104)

C
′ ⊢MEM (H′,L) : M′ (5.105)

.(M′ | (Γ′,Θ),C′) (5.106)

m′ ≥ t+ φH′(w:A) + φH′(Θ) (5.107)

m−m′ ≥ m′′ (5.108)

Except for EAGERLET, the proof of the eager system is omitted since all cases are similar

to (or simpler than) the ones presented in the soundness proof of the lazy system (in

Section 5.5.6.7). The proof of the eager system can be seen in the Appendix A.2.

Note that, apart from the expected changes to the operational semantics (EAGERLET⇓) and

its corresponding type rules (EAGERLET and EAGERVAR), the fundamental difference be-

tween the lazy and the eager systems presented in this chapter is rule PREPAY, that allows

the lazy system to prepay or otherwise defer the costs of thunks. Without rule PREPAY,

the eager system does not need thunk types nor lazy potential (global balance B) and

consequently there is no need to handle those in the definitions of sharing, potential and

type consistency.

5.7 Summary

In this chapter we have presented a type-based amortised analysis of total heap allocations

for lazily evaluated programs and proved that its statically determined bounds are not

exceeded during run-time. We have also emphasised the key elements needed in the

development of this analysis for lazy evaluation by contrasting the lazy system with a

specifically tailored eager system.

72 FCUP

999. 5. Amortised Analysis

The eager system implicitly forces PREPAY when allocating new heap cells (EAGERLET),

while the lazy system is flexible enough to allow prepaying part of the cost of a named

expression (all of the cost, none or something in between) at allocation (LET) and defer the

remainder to the references of the expression (VAR).

Note that the difference of modelling call-by-name would be not prepaying at all and instead

defering the cost to every reference, and although we would avoid paying the cost of

expressions that are not referenced, we might have to pay the full cost multiple times

(corresponding to the number of references to the named expression).

The next chapter discusses the applicability of our analysis for lazy evaluation with some

concrete program examples.

6. Experimental Results

This chapter illustrates the strenghts and limitations of our approach through a series of

examples. We first analyse a higher-order function, map. Then, we use the bounds obtained

for map in a list fusion example in order to show that our analysis can capture intensional

behaviour, by comparing two programs and their respective bounds as given by our anal-

ysis. Afterwards, we show the accurate bounds predicted for an infinite list constructed as

a cycle of a finite non-empty list. We then analyse a function concat for an example that

deals with nested data structures. Finally, we describe an interesting limitation that we have

found for our analysis.

In this chapter we abbreviate the type of lists of A as:

Lqt(pc, pn, A)
def
= µX.{ Cons : (pc, (A,T

qt(X))) | Nil : (pn, ()) }

where qt is an upper bound on the maximum of the costs of evaluating to whnf each of the

tails of the Cons nodes of the list, and pc and pn are the potentials assigned to each Cons

node and Nil node of the list, respectively. Also, whenever we have T
q0(Lqt(pc, pn, A)), the

q0 represents an upper bound on the cost of evaluating the list to whnf.

Note that type derivations show one possible solution. In most examples the best solution

would depend on the context. We provide alternative solutions for the first example that try

to take advantage of more concrete use cases, since these types will also help us explain

two other examples in this chapter. In particular, we present two alternative types for map:

one when applied to lists with potential and the other when applied to lists with zero potential

such as circular lists (which the soundness of our system prevents from having potential).

73

74 FCUP

999. 6. Experimental Results

6.1 Higher-Order Functions: map

The first example we will analyse using our system is the function map which takes as

arguments a function f and a list xs and returns a new list constructed from the results of

applying f to every element of xs.

let map = λf.λxs. case xs of Nil -> let nil = Nil in nil,

Cons x xs′ -> let y = f x in

let ys′ = map f xs′ in

let ys = Cons y ys′ in ys in

map

Assuming qf is an upper bound on the cost of applying f to an element of xs, and p′c and

p′n are the potentials associated to the Cons nodes and the Nil node of the output list,

respectively, we can derive the following informative type for map:∗

T
0
(
T
0(A−→qf B)−→

0
T
q0(Lin)−→

q0
Lout

)
where Lin = Lqt(3+qf+ql+p′c, 1+p′n, A)

Lout = L0(p′c, p
′
n,T

0(B))

ql = max(q0, qt)

According to this type, once applied to a function f and a list xs of length n, the cost of map

is bounded by q0 + n(3+qf +ql+p′c) + 1+p′n, i.e. the cost of map is bounded by q0 — the

cost over the arrow type — plus n(3+qf+ql+p′c) — n times the potential required for each

Cons node of the input list — plus 1+p′n — the potential required for the Nil node of the

input list. Also, observe that any potential carried to the output list (p′c and p′n) imposes an

extra requirement on the potentials of the input list. Note that in general when applying a

function, we can use rule PREPAY to shift to the caller (or turnstile) the costs of evaluating

the arguments to whnf. For example, when applying map to its list argument we can prepay

q0 and make subsequent costs of evaluating the tail of the Cons nodes depend on qt instead

of ql.

In terms of quality, provided qf , q0, qt and ql are actual costs (and not just upper bounds)

and map is evaluated in a context that demands all elements of the output list to be in whnf

(and, for simplicity, the output list has zero potential), the analysis of map gives an exact

∗See Figure B.3 in Appendix B for the type derivation.

FCUP 75

6.1. Higher-Order Functions: map 999.

match to its operational cost. Dividing the cost into three parts — q0, 1 and n(3+qf+ql) —

we can see that the first part corresponds to evaluating xs in order to determine which of

the case alternatives apply. The second part corresponds to the cost of allocating a heap

cell for the nil. Finally n(3+qf+ql) corresponds to, for every Cons node in xs, the cost of

allocating three heap cells (for y, ys′ and ys) plus the cost of applying f to x plus ql, the cost

of applying map to f and xs′, where we have to take the maximum between q0 (the cost that

map expects for its input list) and qt (the cost of evaluating xs′ to whnf).

The above type for map has the advantage that if the length of the input list is known as

well as the other parameters qf , q0, qt, p
′
c and p′n, then an upper bound on the cost of map is

determined by a simple linear formula. However, with lazy evaluation, the actual cost largely

depends on the context in which evaluation takes places. For instance, suppose that we

knew for a fact that we would not need the whnfs of the elements in the output list. Then, a

more suitable type for reasoning about map (also derivable in our system) would have been

to have Lin = Lqt(3+ql+p′c, 1+p′n, A) and Lout = L0(p′c, p
′
n,T

qf (B)). The corresponding cost

formula would then be q0+n(3+ql+p′c)+1+p′n, and although each element of the output list

had a latent cost qf , we could ignore those, since we had known that we would not need to

evaluate them.

Note that we have considered types for map that are valid only when applied to a non-circular

list, since they rely on the input list having positive potential (and the soundness of our type

system only allows circular data structures without potential). However, it is important to

note that we can similarly derive a type for map when the input list has zero potential:†

T
0
(
T
0(A′−→qf B)−→

0
T
ql(L′

in
)−−−−−−−−−−−−−−→

3+qf +ql+max(p′c, p
′

n−2)
Lout

)

where L′
in

= Lql(0, 0, A′), with .(A′ |A′, A′)

Lout = L3+qf+ql+p
′
c(p′c, p

′
n,T

0(B))

Note that since q0 and qt do not contribute independently to the cost formula for this type,

we use the maximum between them (ql) throughout instead. In this case, the cost formula

is expressed in terms of how many elements, say m, of the output list are demanded from

the context of the evaluation of map. The corresponding cost formula is now 3+qf +ql+

max(p′c, p
′
n−2) +m(3+qf+ql+p′c). When comparing with the cost formula of the initial type

presented for map, it is interesting to realise that the higher bound now obtained is due to the

inability of having separate potential for the Cons nodes and the Nil node of the input list,

†See Figure B.6 in Appendix B for the type derivation.

76 FCUP

999. 6. Experimental Results

and for that reason there is a fixed cost (3+qf+ql+max(p
′
c, p

′
n−2)) covering both alternatives.

Note the change in the expected type for function f: since the input list has zero potential,

the argument to f cannot have potential as well.

Having discussed map we now move to another example that benefits from the types just

presented.

6.2 List Fusion: map/map

The following two Haskell programs are equivalent in the sense that, given the same input,

produce the same output:

• progA f g = map f . map g

• progB f g = map (\x -> f (g x))

Translating to our Fun language:

• let progA = λf.λg.λxs.let ys = map1 g xs in map2 f ys in progA

• let progB = λf.λg.λxs.let h = (λx.let y = g x in f y) in map h xs in progB

where map1 and map2 are two copies of the code for map, as defined in the previous sec-

tion, in order to enable our analysis to annotate the types of each copy differently and

successfully handle the first of the above programs. Resource parametricity as previously

established [JLHH10] would avoid the need for such code duplication and its adoption here

is suggested as further work.

Conceptually, progA constructs an intermediate list ys from applying g to every element of

xs and then returns a final list from applying f to every element of ys, while progB starts

by creating a function, that, given x as an argument, creates an intermediate value y from

applying g to x and proceeds by applying f to y, and then returns a final list from applying

the newly defined function h to every element of xs. Note though that under a call-by-need

semantics these intermediate structures are created as needed and not up front as this

conceptual description would seem to imply.

FCUP 77

6.2. List Fusion: map/map 999.

In this section we want to show that our analysis can express intensional behaviour of

programs. In particular, we want to show that operationally progB allocates fewer heap cells

than progA and that our analysis captures this difference in cost, despite the fact that both

programs produce the same output if given the same input.

The types given by our analysis for progA and progB are, respectively:

• T
0
(
T
0(T0(A)−→

qg
B)−→

0
T
0(T0(B)−→

qf
C)−→

0
T
q0(LinA)−−−→

1+q0
Lout

)

• T
0
(
T
0(T0(A)−→

qg
B)−→

0
T
0(T0(B)−→

qf
C)−→

0
T
q0(LinB)−−−→

1+q0
Lout

)

where‡

LinA = Lqt(6+qg+qf+qt+p′c, 2+p′n,T
0(A))

LinB = Lqt(4+qg+qf+qt+p′c, 1+p′n,T
0(A))

Lout = L0(p′c, p
′
n,T

0(C))

First note that the only two differences between the above types are that 6 and 2 in LinA are

replaced by 4 and 1 in LinB. Now recall from the previous section that, assuming qf (and qg),

q0 and qt are actual costs (and not just upper bounds), the analysis of map gives an exact

match to its operational cost. We also assume for simplicity that we are not interested in

having potential in the resulting list (p′c = p′n = 0).

We start by showing that the type given for progA corresponds to its expected cost. Ac-

cording to its type, progA has the following cost when applied to two functions and a list of

length n

1+q0+n(6+qg+qf+qt)+2

Let us divide the cost formula into three parts, 1+q0, n(6+qg+qf +qt) and 2, and explain

each of them. The first part corresponds to a fixed cost of 1+q0, where the 1 corresponds to

allocating a heap cell for binding ys to the thunk map1 g xs and the q0 is prepayment for eval-

uating xs to whnf. In the second and third parts the 6+qg+qf+qt and the 2 correspond to the

cost of processing each Cons node and the Nil node of xs in progA, respectively. In order

to understand the origin of these costs, we have to consider what types do map1 and map2

have, in this concrete example. Given that q0 has been prepaid in the first part as a fixed

cost, the type for the input list that map1 is expecting is T
0
(
Lqt(3+qg+qt+pc, 1+pn,T

0(A))
)
,

where pc and pn are extra amounts that are returned in the output list of map1. Also, since

‡Note that the cost of zero in the thunk type T
0(A) assumes that the eventual cost of the thunk has been

shifted to qg. Similarly, for T0(B) and qf .

78 FCUP

999. 6. Experimental Results

q0 has been prepaid, the cost of applying map1 to g and xs is zero, which is also the cost

of ys. Since the output of map1 has type L0(pc, pn,T
0(B)) and ys has cost zero, the type

for the input list of map2 is T
0
(
L0(pc, pn,T

0(B))
)
, the cost of applying map2 to f and ys is

zero and the type of the output of map2 is L0(0, 0,T0(C)), the same type as the output of

progA. Note from the type of map that the extra amounts pc and pn are 3+qf+0+0 and 1+0,

respectively. Now we can see where the costs for the second and third parts come from,

since 3+qg+qt+pc = 3+qg+qt+(3+qf) = 6+qg+qf+qt and 1+pn = 1+1 = 2. Since the cost

of map is an exact match to its operational cost and no expression in progA is unaccounted

for, we conclude that the cost formula of progA shown above is accurate.

We use a similar argument to demonstrate that the type given for progB also corresponds

to its expected cost. The cost formula is now

1+q0+n(4+qg+qf+qt)+1

which we also divide in three parts: 1+q0, n(4+qg+qf+qt) and 1. The first part corresponds

again to a fixed cost of 1+q0, but this time the 1 corresponds to allocating a heap cell for

binding h to the λ-abstraction (λx.let y = g x in f y), while the q0 is still prepayment for

evaluating xs to whnf. Before looking at the second and third parts, it is useful to reason

about the cost of applying function h. We know function h allocates a heap cell for the

binding of y to the application of g to argument x, and returns f applied to y. So, we know

h costs qh = 1+qg+qf to apply. Now going back to the second and third parts of the cost

formula of progB, since q0 has been prepaid, the specific type for map in progB is

T
0
(
T
0(T0(A)−→

qh
C)−→

0
T
0(Lqt(3+qh+qt, 1,T

0(A)))−→
0

L0(0, 0,T0(C))
)

and it is clear now that the costs for the second and third parts of the cost formula of

progB come from the potential assigned to the input list of map, in particular the Cons nodes:

3+qh+qt = 3+(1+qg+qf)+qt = 4+qg+qf+qt. Again, since the cost of map is an exact match

to its operational cost and no expression in progB is unaccounted for, we conclude that the

cost formula of progB shown above is accurate, indeed showing that our analysis is able to

measure deforestation benefits.

FCUP 79

6.3. Infinite Data Structures: cycle 999.

6.3 Infinite Data Structures: cycle

This section serves to demonstrate that our static analysis can obtain accurate bounds

when applied to definitions of infinite data structures.

Consider the following program

let append′ = λys.λxs. case xs of Nil -> ys,

Cons x xs′ -> let ws′ = append′ ys xs′ in

let ws = Cons x ws′ in

ws in

let cycle = λzs. let zs′ = append′ zs′ zs in zs′ in

cycle

where cycle is a function that, given a finite non-empty list as its argument, generates

an infinite list by constructing a copy of the input list and connecting its end back with the

beginning, effectively creating a circular list. The function cycle uses the auxiliary append′,

which is defined as the classical append, except for having its argument order reversed.

This change is necessary since our system only allows potential in the innermost argument

of a function (rule ABS of our type system forces context Γ to be idempotent) and thus, if

we want the cost of applying append to be paid from the potential in the recursive argument,

we must swap the order of arguments (as in this example) or use an uncurried version of

the function (as we will see in the next section).

In our type system we can derive the following type for cycle:

T
0
(
T
q0(Lin)−−−→

1+q0
L′
out

)

where Lin = Lqt(2+qt, 0, A)

L′
out

= L0(0, 0, A′), with .(L′
out

| L′
out

, L′
out

) and .(A |A,A′)

Note that, since the outermost argument ys of append′ cannot have potential, the output list

of append′ cannot have potential as well, since for the case alternative of the Nil branch,

the returning expression is ys. However, given that cycle outputs a circular list and our

system does not allow circular data structures with (positive) potential§, the restriction on

append′ does not negatively affect the type of cycle, since we would not expect its output

§Note in Figure 5.4 the use of an idempotent type A′ in the recursive typing of rule LET.

80 FCUP

999. 6. Experimental Results

list L′
out

to have potential anyway.

We now show that the bounds given by our analysis are tight. According to the type of

cycle, we have the following cost formula

1+q0+n(2+qt)

where n is the length of zs with n ≥ 1 (otherwise, cycle applied to the empty list would

fail to terminate). We divide the cost formula into two parts: a fixed part 1+q0 and a part

that depends on the length of the input list n(2+qt). In the first part, the 1 corresponds to

the heap allocation for the let-binding of zs′, while the q0 corresponds to a prepayment of

the cost of evaluating zs to whnf. The second part corresponds to, for each Cons node of

xs in append′, the cost of allocating two heap cells for the let-bindings of ws′ and ws plus

a prepayment for the evaluation of xs′ to whnf. Note that ys acts as a reference to a copy

of zs and can be seen as a thunk with zero cost, provided the cost of constructing a copy

of the Cons nodes of zs has been prepaid for, as in this case. Since we have covered the

cost of all the expressions in the program, we conclude that the cost formula shown above

is tight, as long as q0 and qt are actual costs and not just upper bounds.

6.4 Nested Data Structures: concat

In this section we show the applicability of our analysis to nested data structures, using a

function concat. The classical list concatenation function is defined as taking a list of lists as

its argument and creating a single list by appending each of the inner lists to the previous

one. Here, we define the following alternative version to the classical list concatenation,

using an auxiliary function appendp:

let appendp = λp. case p of Pair xs ys -> case xs of Nil -> ys,

Cons x xs′ -> let p′ = Pair xs′ ys in

let zs′ = appendp p′ in

let zs = Cons x zs′ in

zs in

FCUP 81

6.4. Nested Data Structures: concat 999.

let concat = λxss. case xss of Nil -> let nil = Nil in nil,

Cons xs xss′ -> let ys = concat xss′ in

let p = Pair xs ys in

appendp p in

concat

We choose to define concat with appendp and not with the append′ seen in the previous

section. While this allows us to show another alternative version of append successfully

handled by our analysis and avoids imposing unnecessary constraints on the output list

(since the output list can now have potential, unlike the output of append′), appendp does

have a higher cost due to the construction of a pair for each call of this uncurried version

and this is reflected on the following type for concat

concat : T0
(
T
qo0(Louter)−−→

qo0
Lfinal

)

where Louter = Lqot(2+qol+qi0, 1+p′n,T
qi0(Linner))

Linner = Lqit(3+qit+p′c, 0, A)

Lfinal = L0(p′c, p
′
n, A)

qol = max(qo0, qot)

whose derivation uses the following type for appendp

T
0
(
P(T0(Linner),T

0(L′
final

))−→
0

L′
final

)

where P(A,B) = T
0(µX.{ Pair : (0, (A,B)) })

L′
final

= L0(p′c, 0, A)

where qo0 and qot are the usual costs of a list (as defined in the introduction of the current

chapter), in this case for the outer list of concat, and qi0 and qit are the usual costs applied

to the inner lists, but taking the maximum of such costs for each of the inner lists of concat,

i.e. qi0 is an upper bound on the maximum of the costs of evaluating to whnf each of the

inner lists (xs) and qit is an upper bound on the maximum of the costs of evaluating to whnf

each of the tails of the Cons nodes of the inner lists (xs′).

Assuming, for simplicity, that we are not interested in the potential of the output list (p′c = 0),

82 FCUP

999. 6. Experimental Results

the cost formula extracted from the type of appendp is

l(3+qit)

where l is the length of the first list of the input. We start by explaining how the cost

formula relates to the definition of appendp. First note that the type assigned by our analysis

assumes that the first list of the input pair costs zero to evaluate to a whnf (or assumes that

this cost has been prepaid). Now, looking at the program definition, the cost of the case

expression for the pair is equal to the cost of the case expression for the list xs, since p, from

its type, costs nothing to evaluate to whnf. We can also see in the type that xs and ys cost

zero to evaluate to whnf, and thus, the cost of the case expression for the list is equal to the

cost of the Cons case alternative, which in turn, for each Cons node of xs, corresponds to

a cost of 3 for the three heap cells storing the thunks referenced by p′, zs′ and zs, plus the

cost of prepaying qit for xs′ since appendp expects a pair of lists that cost zero to evaluate

to whnf (or have those costs prepaid, as in this case). Note that applying appendp to p′

has no extra cost and that not only zs is in whnf, but also evaluating each of its Cons nodes

also has no extra cost, according to the type L′
final

of the application appendp p′. We have

thus related each expression in the definition of appendp to the cost formula expressed by

its type.

We now do the same with respect to concat. According to its type, and ignoring, for

simplicity, p′c and p′n, we have the following cost formula

qo0+1+n(2+qol+qi0)+m(3+qit)

where n is the length of outer list passed as input to concat and m is the sum of the

lengths of the inner lists (m = l1, . . . , ln). Connecting the cost formula to the definition

of concat, we can see that, once applied to a list of lists xss, concat evaluates the case

discriminant (costing qo0). When concat reaches the end of the outer list, it costs 1 for the

heap cell allocated by the let-binding for nil. Meanwhile, we have to consider the cost

of each Cons node of the outer list, and it useful to consider its part on the cost formula

n(2+qol+qi0)+m(3+qit) as
n∑

i=1

(2+qol+qi0+li(3+qit))

So, for each inner list of the input to concat, it costs 2 heap cells to create the two let-

bindings for ys and p. We also have to pay qol, as the worst case between the cost qot of

FCUP 83

6.5. Known Limitation with Co-Recursive Definitions: fibs 999.

evaluating xss′ to whnf and the cost qo0 that the type of concat expects for its input list.

Furthermore, we prepay the cost qi0 of xs, since the type of appendp expects a list with

no cost, and pay the cost li(3+qit) of applying appendp to p. Thus, we have related each

expression in the definition of concat to the cost formula expressed by its type.

Note that m is the sum of the lengths of the inner lists, taking each length separately

into account, and thus it does not introduce a source of relaxation on the cost, unlike, for

example, if we had considered m as n × max(l1, . . . , ln). The cost formula for concat is an

exact match to its operational cost, provided qo0, qot, qi0, qit and qol are exact values and not

just upper bounds, and therefore the quality of the bounds is the best we could hope for¶.

6.5 Known Limitation with Co-Recursive Definitions: fibs

Non-strict functional languages allow the use of an idiom that consists of concisely defining

an infinite list where, other than a finite number of initial elements, each element depends

on previous ones. The classical definition of the Fibonacci series is an example of such

idiom and is written in Haskell as

fibs = 0 : 1 : zipWith (+) fibs (tail fibs)

Unfortunately, although fibs has a linear cost with respect to the number of elements

needed from this infinite list, our analysis cannot capture that fact and cannot find a solution

for this example. In fact, we have found that our analysis cannot handle such examples and

we discuss the difficulties in the remainder of this section.

In order to isolate the problem, we highlight the difficulties with what we believe to be one

of the simplest examples of this idiom, concisely written in Haskell as

bools = True : map not bools

¶Note that, by definition, qot, qit and qol are likely to be a source of relaxation of the cost. However, this loss

of precision is expected of any static analysis, since it results from the need to create a single abstraction to

represent an infinity of concrete data.

84 FCUP

999. 6. Experimental Results

and translated into our Fun language as

let true = True in

let false = False in

let not = λb. case b of True -> false, False -> true in

let map = λf.λxs. case xs of Nil -> let nil = Nil in nil,

Cons x xs′ -> let y = f x in

let ys′ = map f xs′ in

let ys = Cons y ys′ in ys in

let bools = let bls′ = map not bools in

let bls = Cons true bls′ in

bls in

bools

The bools example defines an infinite list of alternating booleans (arbitrarily starting with

True) where each element, other than the first, is defined as the negation of the preceeding

element.

We start by observing that bools yields a constant cost for each successive element (and

thus has a linear cost with respect to its length). Evaluating bools to a whnf, in order to

access its first element, costs 2, corresponding to the allocation of two heap cells that hold

the thunk map not bools and the whnf Cons true bls′. Each subsequent element costs 3

heap allocations, corresponding to the three lets in the Cons branch of function map. Given

this reasoning, we would like to obtain a typing such as bools : T
2
(
L3(0, 0,T0(Bool))

)
,

where Bool
def
= µX.{ True : (0, ()) | False : (0, ()) }.

Recall the type of map, for input lists without potential, as shown in Section 6.1:

T
0
(
T
0(A′−→qf B)−→

0
T
ql(L′

in
)−−−−−−−−−−−−−−→

3+qf +ql+max(p′c, p
′

n−2)
Lout

)

where L′
in

= Lql(0, 0, A′), with .(A′ |A′, A′)

Lout = L3+qf+ql+p
′
c(p′c, p

′
n,T

0(B))

Applying to this concrete example: A′ = T
0(Bool), qf = 0 (since applying not to a boolean

has zero cost), B = Bool and, for simplicity, assuming we are not interested in having

FCUP 85

6.5. Known Limitation with Co-Recursive Definitions: fibs 999.

potential in the output list, p′c = 0 and p′n = 0. We thus have

T
0
(
T
0(T0(Bool)−→

0
Bool)−→

0
T
ql(L′

in
)−−−→

3+ql
Lout

)

where L′
in

= Lql(0, 0,T0(Bool))

Lout = L3+ql(0, 0,T0(Bool))

Since in bools the output list of map is passed back again as the input list, the types Lout

and L′
in

must match, but then our analysis fails to produce a type for bools due to the

impossibility of finding a finite solution to ql = 3+ql (the costs in L′
in

and Lout).

However, the real problem with this co-recursive definition is that, because of lazy eval-

uation, the cost of the recursive call of map (3+ ql) is shared with the cost of obtaining

each element of the output list (also 3+ ql). Unfortunately, the rules of our type system

(including PREPAY) are not enough to track the circular sharing dependencies which would

allow lowering the costs of thunk types. Therefore, we conclude that our analysis cannot

handle such examples of co-recursive functions.

It is important to note that bools can be rewritten in a way for which our analysis obtains

accurate results. For example, in the translation to our Fun language of the following Haskell

code

bools = iter not True

where iter f x = x : iter f (f x)

bools has type

T
3+pc

(
L3+pc(pc, pn,T

0(Bool))
)

where any potential in the Cons nodes pc must be paid for from the costs of evaluating bools,

and subsequent tails, to its whnf, while the potential in the Nil node pn has no restriction

since bools never creates such node. We could do better and rewrite bools as a circular

definition having constant overall cost, such as

let true = True in

let false = False in

let bools = let bls′ = Cons false bools in

let bls = Cons true bls′ in

bls in

bools

86 FCUP

999. 6. Experimental Results

(in Haskell it could be written as bools = True : False : bools), which has type

T
2
(
L0(0, 0,T0(Bool))

)

and thus, although here we could not have potential in bools if we wanted to‖, this version

has better cost.

While we believe the remaining examples with linear cost of this idiom can also be rewritten

in a way our analysis can handle, such reformulations might not feel natural for some

examples. We would like to avoid forcing programmers out of this style when using our

analysis and we will pursue a solution to this problem as further work.

6.6 Summary

In this chapter we have shown how our analysis provides accurate cost bounds for functions

such as map, cycle and concat, thus covering examples of higher-order functions and the

use of infinite and nested data structures. We have also seen how our analysis can hint into

which alternative program definition has better operational cost.

Remember though, that all static analyses are doomed to fail for some programs and we

did show some examples that in particular our analysis finds problematic. Some limitations

such as that of append have simple workarounds by swapping the order of arguments

or using an uncurried version, but each has its drawbacks: restricted output potential or

increased cost of uncurrying the input. Other limitations are left as further work, such as the

one found on the co-recursive definitions of the previous section and the one that restricts

our analysis to programs with linear costs with respect to the number of constructors in data

structures.

‖Circular data structures in our system cannot have potential other than zero. This is similar to the restriction

found in the output of function cycle in Section 6.3.

7. Conclusion

In this chapter we summarise the work described in this thesis and note the limitations of

our approach together with a discussion of further work.

7.1 Assessment of Achievements

Analyses for lazily evaluated programs were restricted to first-order programs or were not

automatic or depended on context information currently impractical to obtain or made the

relation between costs and inputs more opaque by not expressing data-dependencies in

the bounds.

This thesis has introduced the first automatic static analysis for accurately determining

bounds on the execution costs of lazy functional programs. The analysis uses an amortised

analysis technique that is capable of directly analysing higher-order lazy programs, without

requiring defunctionalisation or other non-cost-preserving program transformations. Our

analysis deals with user-defined (potentially infinite) data structures and data-dependencies

are expressed in the produced bounds. We have presented a soundness proof, validating

the analysis against an operational semantics derived from Launchbury’s natural semantics

of graph reduction, and analysed in detail some non-trivial examples of lazy evaluation

using the rules of our system, while providing a URL to a web-prototype implementation of

the analysis where more examples can be found and users can try their own. From our

novel analysis for lazy evaluation we have derived with minimal changes an analysis for

eager evaluation, clearly highlighting the key element of our result: a type rule (PREPAY)

that allows costs to be deferred.

87

88 FCUP

999. 7. Conclusion

Although the examples in this thesis have only considered list and scalar data structures,

previous work [JLH+09, JLHH10] suggests that there should be no difficulties in finding

examples that successfully deal with other forms of data structures. Also, even though

we do not provide a formal guarantee for the predicted bounds of the publicly accessible

web-prototype implementation (we have not worked on a proof connecting the analysis

to the implementation), examples with other forms of data structures are available and

we have confidence on the implementation results based on the similarity to other (three)

implementations by Jost [Jos10] (that have been around for over 10 years now) and on the

fact that we have used this same tool to help construct the complete type derivations found

in Appendix B.

7.2 Limitations and Further Work

There are a number of limitations to the work presented here that would repay further

investigation.

Deallocation and other resource metrics: While Jost et al. [JLH+09, JLHH10] have

previously constructed analyses that are capable of dealing with arbitrary countable re-

sources for strict languages, for simplicity, in this thesis we have restricted our attention to

the heap allocation metric only. There are two obvious ways to extend the analysis to handle

deallocation: a destructive pattern matching operator similar to the one used in [HJ03] and

a deallocation primitive such as free(ℓ). In either case we would extend the type system

with an extra annotation (on thunk types, function types and turnstile) to represent how many

heap cells could be reused. For example, a type T
q
q′(A) would correspond to an expression

that needs at most q heap cells to evaluate and frees at most q′ heap cells once evaluated.

Supporting deallocation would widen the range of successfully handled examples as seen

for example in the analysis of insertion sort with destructive pattern matching [HJ03] that

turned an otherwise quadratic heap usage function into a linear one. Once deallocation

is supported, the same principle can be used to measure other non-monotonic resource

usage such as stack information. Analysing countable resource metrics other than heap

usage should then follow a similar structure, but might require a richer operational semantics

than that given by Launchbury.

FCUP 89

7.2. Limitations and Further Work 999.

Co-recursive definitions: We would like to tackle the limitation found in Section 6.5. It

seems that the cause for failure is related to our type system inability to capture sharing of

costs in co-recursive examples such as the ones found in Section 6.5. Our first attempt at

solving this problem would be to provide a way to unfold recursive types and see where it

would lead us. Failing that, and since a circular definition can successfully reach a whnf if it

only ever depends on parts of the data that can readily be in whnf themselves, we could try

to change rule LET in order to allow the free reuse of the recursive binding by having zero

on the costs of the thunk types for x, in the typing for ê. After these attempts, we hope we

would have more insight and be better positioned to suggest further alternatives to tackle

this current limitation.

Super-linear bounds: It seems possible to combine our analysis for lazy evaluation with

recent advances by Hoffmann et al. [HAH11] in the study of super-linear bounds. However,

it is not clear how to keep higher-orderness since their system currently only applies to first-

order functional languages. Another approach that could be taken (based on a suggestion

found in Jost’s thesis [Jos10]) is the combination of current sized type and automatic amor-

tised analyses. The idea is to use information from a sized type analysis (such as the length

of a list) to recharge the potential (of that same list) on an amortised analysis. Inference of

super-linear bounds could still be efficient through the successive application of LP-solving.

Note though that, to be effective, this alternative approach would have the extra difficulty

of first extending a sized type analysis, since such analyses currently do not handle lazy

evaluation.

Interleaving types: The analysis is limited to non-interleaving types [Mat98] , which ex-

clude types such as finitely branching trees (µY.
{
FinT:(µX.{Cons:(Y,X)|Nil:()})

}
), but

include nested types such as lists of lists and trees of lists and most of the commonly

user-defined data types. The requirement of non-interleaving types helps us prove a crucial

lemma on cyclic structures (Lemma 5.17) in the key soundness proof (Theorem 5.13).

However, this restriction feels arbitrary — we do not know if there is a fundamental reason

for such requirement or if it results from our current inability to find a better argument for

the proof, although we suspect the latter. In accordance with this intuition, note that the

soundness proof of the eager system presented in this thesis also relies on the same lemma

(and thus relies on having non-interleaving types only), while no other previous analyses for

eager systems do so. We believe that, if removing the limitation of non-interleaving types

90 FCUP

999. 7. Conclusion

is possible, it will require different invariants for the soundness proof, since that is the main

difference between the eager system presented in this thesis and the previous automatic

amortised analyses for eager evaluation.

Non-terminating programs: As Jost [Jos10] observes: “all programs that exceed the

available free memory, even non-terminating ones, must do so already after a finite num-

ber of steps”. The technique for handling non-terminating programs as a separate proof

treatment in analyses following Hofmann and Jost’s approach was introduced by Aspinall

et al. [ABH+07] and later used in other analyses [Cam08, Jos10, Hof11]. It consists of

extending the core semantics with extra rules that force the termination of programs that

exceed some arbitrary prescribed amount of resources during evaluation and then add

a soundness theorem for non-terminating programs, stating that if a program is forced

to terminate then the prescribed bound is lower than what the analysis predicted. This

technique can be straightforwardly applied to our system, extending our analysis to handle

non-terminating lazy programs.

Polymorphic functions and resource parametricity: The system we have described is

restricted to monomorphic definitions. Jost et al. [JLHH10] describe an amortised analysis

for polymorphic, higher-order but strict functions. Also, improving our system to allow

function types to be resource parametric [JLHH10] would imply that instead of having the

type system deal only with rational numbers as type annotations, it would have to deal

also with so-called resource variables in order to directly manipulate constraints on the

annotations. With this convenient feature we would not have to duplicate the code in

order to produce the required different type annotations for function map when showing

the deforestation benefits in Section 6.2. We believe the same techniques that enable

polymorphic functions and resource parametricity can be straightforwardly adapted to a

lazy setting.

7.3 Final Remark

Lazy evaluation, in practice being free from side-effects, is particularly well suited for

parallelism [THLPJ98, MML+10, KCL+10, MNPJ11], and can offer important advantages

in the current era of many-core processors. Recent work [DMMZ12] allows further

FCUP 91

7.3. Final Remark 999.

research on call-by-need to simply focus on one formal system, e.g. a reduction semantics,

an abstract machine or a natural semantics, since we can mechanically inter-derive the

others. Combined with the continuous improvements on the automatic amortised analysis

over the past few years [HJ03, HJ06, Cam08, JLH+09, JLHH10, Jos10, HAH11, SVF+12],

we look forward to see our work on bridging lazy evaluation and automatic amortised

analysis enjoy increasing success.

92 FCUP

999. 7. Conclusion

Bibliography

[ABH+07] David Aspinall, Lennart Beringer, Martin Hofmann, Hans-Wolfgang Loidl, and

Alberto Momigliano. A program logic for resources. Theoretical Computer

Science, 389(3):411–445, 2007. 7.2

[ADM04] Mads Sig Ager, Olivier Danvy, and Jan Midtgaard. A functional correspondence

between call-by-need evaluators and lazy abstract machines. Information

Processing Letters, 90(5):223–232, 2004. 2.1, 4

[AF97] Zena M. Ariola and Matthias Felleisen. The Call-by-Need Lambda Calculus.

Journal of Functional Programming, 7:265–301, May 1997. 2.1

[AGG09] Elvira Albert, Samir Genaim, and Miguel Gómez-Zamalloa. Live Heap Space

Analysis for Languages with Garbage Collection. In Proceedings of the

International Symposium on Memory Management (ISMM’09), pages 129–138,

Dublin, Ireland, June 2009. ACM. 2.4

[AGG10] Elvira Albert, Samir Genaim, and Miguel Gómez-Zamalloa. Parametric Infer-

ence of Memory Requirements for Garbage Collected Languages. In Pro-

ceedings of the International Symposium on Memory Management (ISMM’10),

pages 121–130, Toronto, Ontario, Canada, June 2010. ACM. 2.4

[ASV03] Elvira Albert, Josep Silva, and Germán Vidal. Time Equations for Lazy

Functional (Logic) Languages. In Proceedings of the Joint Conference on

Declarative Programming, AGP-2003, pages 13–24, Reggio Calabria, Italy,

September 2003. 2.2

[Bay72] Rudolf Bayer. Symmetric binary b-trees: Data structure and maintenance

algorithms. Acta Informatica, 1:290–306, 1972. 3.2.1

93

94 FCUP

999. BIBLIOGRAPHY

[BFGY08] Vı́ctor Braberman, Federico Fernández, Diego Garbervetsky, and Sergio

Yovine. Parametric Prediction of Heap Memory Requirements. In Proceedings

of the International Symposium on Memory Management (ISMM’08), pages

141–150, Tucson, Arizona, USA, June 2008. ACM. 2.4

[BH89] Bror Bjerner and Sören Holmström. A compositional approach to time analysis

of first order lazy functional programs. In Proceedings of the ACM SIGPLAN

Conference on Functional Programming Languages and Computer Architecture

(FPCA’89), London, UK, September 1989. 2.2

[BHA86] Geoffrey L. Burn, Chris Hankin, and Samson Abramsky. Strictness analysis for

higher-order functions. Science of Computer Programming, 7:249–278, 1986.

2.1

[BR00] Adam Bakewell and Colin Runciman. A Model for Comparing the Space Usage

of Lazy Evaluators. In Proceedings of the 2nd International ACM SIGPLAN

Conference on Principles and Practice of Declarative Programming (PPDP’00),

pages 151–162, Montreal, Quebec, Canada, September 2000. 2.1

[BR01] Adam Bakewell and Colin Runciman. A Space Semantics for Core Haskell. In

Graham Hutton, editor, ACM SIGPLAN Haskell Workshop 2000, volume 41 of

Electronic Notes in Theoretical Computer Science. Elsevier, 2001. 2.1

[Cam08] Brian Campbell. Type-based amortized stack memory prediction. PhD

thesis, Laboratory for Foundations of Computer Science, School of Informatics,

University of Edinburgh, UK, 2008. 2.3, 7.2, 7.3

[Cam09] Brian Campbell. Amortised Memory Analysis Using the Depth of Data Struc-

tures. In Giuseppe Castagna, editor, Proceedings of the European Symposium

on Programming (ESOP’09), York, UK, March, 2009, volume 5502 of Lecture

Notes in Computer Science, pages 190–204. Springer, 2009. 2.3, 3.2

[CNPQ08] Wei-Ngan Chin, Huu Hai Nguyen, Corneliu Popeea, and Shengchao Qin.

Analysing Memory Resource Bounds for Low-Level Programs. In Proceedings

of the International Symposium on Memory Management (ISMM’08), pages

151–160, Tucson, Arizona, USA, June 2008. ACM. 2.4

[CW00] Karl Crary and Stephanie Weirich. Resource Bound Certification. In Proceed-

ings of the ACM SIGPLAN-SIGACT Symposium on Principles of Programming

FCUP 95

BIBLIOGRAPHY 999.

Languages (POPL’00), pages 184–198, Boston, Massachusetts, USA, January

2000. 2.3

[Dan08] Nils Anders Danielsson. Lightweight Semiformal Time Complexity Analysis for

Purely Functional Data Structures. In Proceedings of the ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages (POPL’08),

pages 133–144, San Francisco, California, USA, January 2008. 2.2

[DM82] Luı́s Damas and Robin Milner. Principal type-schemes for functional programs.

In Proceedings of the ACM Symposium on Principles of Programming Lan-

guages (POPL’82), pages 207–212, Albuquerque, New Mexico, USA, January

1982. 1, 3.2.1

[DMMZ12] Olivier Danvy, Kevin Millikin, Johan Munk, and Ian Zerny. On Inter-deriving

Small-step and Big-step Semantics: A Case Study for Storeless Call-by-need

Evaluation. Theoretical Computer Science, 435(0):21–42, 2012. 7.3

[Enn03] Robert Ennals. Adaptive Evaluation of Non-Strict Programs. PhD thesis, King’s

College, University of Cambridge, December 2003. 2.1

[EP02] Alberto de la Encina and Ricardo Peña. Proving the Correctness of the STG

Machine. In Thomas Arts and Markus Mohnen, editors, Selected papers

of the International Workshop on Implementation of Functional Languages

(IFL’01), Stockholm, Sweden, September, 2001, volume 2312 of Lecture Notes

in Computer Science, pages 88–104. Springer, 2002. 2.1, 4, 4.2, †, 4.2, 4.2

[EP03a] Alberto de la Encina and Ricardo Peña. Formally Deriving an STG Machine. In

Proceedings of the 5th International ACM SIGPLAN Conference on Principles

and Practice of Declarative Programming (PPDP’03), pages 102–112, Uppsala,

Sweden, August 2003. ACM. 2.1, 4

[EP03b] Robert Ennals and Simon Peyton Jones. Optimistic Evaluation: an adaptive

evaluation strategy for non-strict programs. In Proceedings of the ACM

SIGPLAN International Conference on Functional Programming (ICFP’03),

pages 287–298, Uppsala, Sweden, August 2003. 2.1

[EP09] Alberto de la Encina and Ricardo Peña. From Natural Semantics to C: a Formal

Derivation of two STG Machines. Journal of Functional Programming, 19(1):47–

94, 2009. 2.1, 4.1

96 FCUP

999. BIBLIOGRAPHY

[Fax00] Karl-Filip Faxén. Cheap eagerness: Speculative evaluation in a lazy functional

language. In Proceedings of the ACM SIGPLAN International Conference

on Functional Programming (ICFP’00), pages 150–161, Montreal, Canada,

September 2000. 2.1

[GS99] Jörgen Gustavsson and David Sands. A Foundation for Space-Safe Transfor-

mations of Call-by-Need Programs. In Andrew D. Gordon and Andrew M. Pitts,

editors, Third International Workshop on Higher Order Operational Techniques

in Semantics, volume 26 of Electronic Notes in Theoretical Computer Science.

Elsevier, 1999. 2.1

[HAH11] Jan Hoffmann, Klaus Aehlig, and Martin Hofmann. Multivariate Amortized

Resource Analysis. In Proceedings of the ACM SIGPLAN-SIGACT Symposium

on Principles of Programming Languages (POPL’11), pages 357–370, Austin,

Texas, USA, January 2011. 1, 2.3, 3.2, 3.2.1, 5.1, 7.2, 7.3

[HBH+07] Christoph A. Herrmann, Armelle Bonenfant, Kevin Hammond, Steffen Jost,

Hans-Wolfgang Loidl, and Robert Pointon. Automatic amortised worst-case

execution time analysis. In Proceedings of the 7th International Workshop on

Worst-Case Execution Time (WCET) Analysis, pages 13–18, Pisa, Italy, July

2007. 2.3

[HH10] Jan Hoffmann and Martin Hofmann. Amortized Resource Analysis with

Polynomial Potential. In Giuseppe Castagna, editor, Proceedings of the

European Symposium on Programming (ESOP’10), Paphos, Cyprus, March,

2010, volume 6012 of Lecture Notes in Computer Science, pages 287–306.

Springer, 2010. 2.3, 3.2, 3.2.1

[HJ03] Martin Hofmann and Steffen Jost. Static Prediction of Heap Space Usage

for First-Order Functional Programs. In Proceedings of the ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages (POPL’03),

pages 185–197, New Orleans, Louisiana, USA, January 2003. 1, 2.3, 3.2,

7.2, 7.3

[HJ06] Martin Hofmann and Steffen Jost. Type-Based Amortised Heap-Space Anal-

ysis. In Peter Sestoft, editor, Proceedings of the European Symposium

on Programming (ESOP’06), Vienna, Austria, March, 2006, volume 3924 of

Lecture Notes in Computer Science, pages 22–37. Springer, 2006. 2.3, 7.3

FCUP 97

BIBLIOGRAPHY 999.

[Hof11] Jan Hoffmann. Types with Potential: Polynomial Resource Bounds via

Automatic Amortized Analysis. PhD thesis, LMU Munich, Germany, 2011. 7.2

[Hop08] Catherine Hope. A Functional Semantics for Space and Time. PhD thesis,

University of Nottingham, UK, 2008. 2.2

[HR09] Martin Hofmann and Dulma Rodriguez. Efficient Type-Checking for Amortised

Heap-Space Analysis. In Proceedings of the CSL: Annual Conference of

the European Association for Computer Science Logic, Coimbra, Portugal,

September, 2009, volume 5771 of Lecture Notes in Computer Science, pages

317–331. Springer, 2009. 2.3

[Hug89] John Hughes. Why Functional Programming Matters. The Computer Journal,

32(2):98–107, 1989. 1

[JLH+09] Steffen Jost, Hans-Wolfgang Loidl, Kevin Hammond, Norman Scaife, and

Martin Hofmann. “Carbon Credits” for Resource-Bounded Computations Using

Amortised Analysis. In Ana Cavalcanti and Dennis R. Dams, editors, FM 2009:

Formal Methods, Eindhoven, The Netherlands, November, 2009, volume 5850

of Lecture Notes in Computer Science, pages 354–369. Springer, 2009. 1, 2.3,

3.2, 4.3, 7.1, 7.2, 7.3

[JLHH10] Steffen Jost, Hans-Wolfgang Loidl, Kevin Hammond, and Martin Hofmann.

Static Determination of Quantitative Resource Usage for Higher-Order Pro-

grams. In Proceedings of the ACM SIGPLAN-SIGACT Symposium on Prin-

ciples of Programming Languages (POPL’10), pages 223–236, Madrid, Spain,

January 2010. 1, 2.3, 3.2, 5.1, 5.5.5, 6.2, 7.1, 7.2, 7.2, 7.3

[Jon92] Simon Peyton Jones. Implementing Lazy Functional Languages on Stock Hard-

ware: The Spineless Tagless G-Machine. Journal of Functional Programming,

2(2):127–202, 1992. 4

[Jos89] Mark B. Josephs. The semantics of lazy functional languages. Theoretical

Computer Science, 68(1):105–111, 1989. 2.1

[Jos10] Steffen Jost. Automated Amortised Analysis. PhD thesis, Faculty of Mathemat-

ics, Computer Science and Statistics, LMU Munich, Germany, 2010. 2.3, 5.5.5,

7.1, 7.2, 7.2, 7.3

98 FCUP

999. BIBLIOGRAPHY

[KCL+10] Gabriele Keller, Manuel M.T. Chakravarty, Roman Leshchinskiy, Simon Pey-

ton Jones, and Ben Lippmeier. Regular, shape-polymorphic, parallel arrays

in haskell. In Proceedings of the ACM SIGPLAN International Conference

on Functional Programming (ICFP’10), pages 261–272, Baltimore, Maryland,

USA, September 2010. 7.3

[Lau93] John Launchbury. A Natural Semantics for Lazy Evaluation. In Proceedings

of the ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages (POPL’93), pages 144–154, Charleston, South Carolina, USA,

January 1993. 1, 1.1, 2.1, 4, 4.1, 4.2, 4.2

[LJ09] Hans-Wolfgang Loidl and Steffen Jost. Improvements to a Resource Analysis

for Hume. In Proceedings of the 1st International Workshop on Foundational

and Practical Aspects of Resource Analysis (FOPARA), Eindhoven, The Nether-

lands, November 2009. Springer. 3.2.1

[Mat98] Ralph Matthes. Extensions of System F by Iteration and Primitive Recursion on

Monotone Induction Types. PhD thesis, LMU Munich, Germany, 1998. 5.1, 7.2

[Mil78] Robin Milner. A theory of type polymorphism in programming. Journal of

Computer and System Sciences, 17:348–375, 1978. 1, 3.2.1

[MML+10] Simon Marlow, Patrick Maier, Hans-Wolfgang Loidl, Mustafa K. Aswad, and Phil

Trinder. Seq no more: Better strategies for parallel haskell. In Proceedings

of the third ACM SIGPLAN Haskell Symposium, pages 91–102, Baltimore,

Maryland, USA, 2010. ACM. 7.3

[MN92] Alan Mycroft and Arthur Norman. Optimising compilation — lazy functional

languages. In Proceedings of the 19th Software Seminar (SOFSEM), Ždiar,

Czechoslovakia, 1992. 2.1

[MNPJ11] Simon Marlow, Ryan Newton, and Simon Peyton Jones. A monad for

deterministic parallelism. In Proceedings of the fourth ACM SIGPLAN Haskell

Symposium, pages 71–82, Tokyo, Japan, 2011. ACM. 7.3

[Mou98] Jon Mountjoy. The Spineless Tagless G-machine, naturally. In Proceedings

of the ACM SIGPLAN International Conference on Functional Programming

(ICFP’98), pages 163–173, Baltimore, Maryland, USA, September 1998. 2.1

FCUP 99

BIBLIOGRAPHY 999.

[MOW98] John Maraist, Martin Odersky, and Philip Wadler. The Call-by-Need Lambda

Calculus. Journal of Functional Programming, 8:275–317, May 1998. 2.1

[MS99] Andrew Moran and David Sands. Improvement in a Lazy Context: An

Operational Theory for Call-by-Need. In Proceedings of the ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages (POPL’99),

pages 43–56, San Antonio, Texas, USA, January 1999. 2.1

[MT91] Robin Milner and Mads Tofte. Co-induction in relational semantics. Theoretical

Computer Science, 87(1):209–220, 1991. 5.5.5

[Myc80] Alan Mycroft. The theory and practice of transforming call-by-need into call-by-

value. In Proceedings of the International Symposium on Programming, Paris,

France, April, 1980, volume 83 of Lecture Notes in Computer Science, pages

269–281. Springer, 1980. 2.1

[Myc81] Alan Mycroft. Abstract interpretation and optimising transformations for applica-

tive programs. PhD thesis, Department of Computer Science, University of

Edinburgh, UK, 1981. 2.1

[Oka98] Chris Okasaki. Purely Functional Data Structures. Cambridge University Press,

1998. 2.3, 3.2

[PAB+99] Simon Peyton Jones (editor), Lennart Augustsson, Brian Boutel, F. Warren

Burton, Joseph H. Fasel, Andrew D. Gordon, Kevin Hammond, John Hughes,

Paul Hudak, Thomas Johnsson, Mark P. Jones, John C. Peterson, Alastair

Reid, and Philip Wadler. Report on the Non-Strict Functional Language, Haskell

(Haskell98). Technical report, Yale University, 1999. 1

[PB10] Maciej Pirog and Dariusz Biernacki. A Systematic Derivation of the STG

Machine Verified in Coq. In Proceedings of the third ACM SIGPLAN Haskell

Symposium, pages 25–36, Baltimore, Maryland, USA, 2010. ACM. 2.1, 4

[Rey72] John C. Reynolds. Definitional Interpreters for Higher-Order Programming

Languages. In Proceedings of the ACM National Conference, pages 717–740.

ACM, August 1972. 2.2

[San90a] David Sands. Calculi for Time Analysis of Functional Programs. PhD thesis,

Imperial College, University of London, September 1990. 2.2

100 FCUP

999. BIBLIOGRAPHY

[San90b] David Sands. Complexity Analysis for a Lazy Higher-Order Language. In

Neil Jones, editor, Proceedings of the European Symposium on Programming

(ESOP’90), Copenhagen, Denmark, May, 1990, volume 432 of Lecture Notes

in Computer Science, pages 361–376. Springer, 1990. 2.2

[San98] David Sands. Computing with contexts: A simple approach. In Andrew D.

Gordon, Andrew M. Pitts, and Carolyn L. Talcott, editors, Second Workshop

on Higher-Order Operational Techniques in Semantics, volume 10 of Electronic

Notes in Theoretical Computer Science. Elsevier, 1998. 2.2

[Ses97] Peter Sestoft. Deriving a Lazy Abstract Machine. Journal of Functional

Programming, 7(3):231–264, 1997. 2.1, 4, 4.1, 4.2, ∗, 4.2

[SHFV07] Hugo R. Simões, Kevin Hammond, Mário Florido, and Pedro Vasconcelos.

Using Intersection Types for Cost-Analysis of Higher-Order Polymorphic Func-

tional Programs. In Thorsten Altenkirch and Conor McBride, editors, Revised

Selected Papers of the International Workshop on Types for Proofs and

Programs (TYPES’06), Nottingham, UK, April, 2006, volume 4502 of Lecture

Notes in Computer Science, pages 221–236. Springer, 2007. 1, 1.1

[SVF+12] Hugo Simões, Pedro Vasconcelos, Mário Florido, Steffen Jost, and Kevin

Hammond. Automatic Amortised Analysis of Dynamic Memory Allocation for

Lazy Functional Programs. In Proceedings of the ACM SIGPLAN International

Conference on Functional Programming (ICFP’12), pages 165–176, Copen-

hagen, Denmark, September 2012. 1.1, 2.3, 5.3, 7.3

[Svv07] Olha Shkaravska, Ron van Kesteren, and Marko van Eekelen. Polynomial

Size Analysis of First-Order Functions. In Proceedings of the 8th International

Conference on Typed Lambda Calculi and Applications (TLCA’07), Paris,

France, June, 2007, volume 4583 of Lecture Notes in Computer Science, pages

351–365. Springer, 2007. 2.3

[Tar85] Robert E. Tarjan. Amortized computational complexity. SIAM Journal on

Algebraic and Discrete Methods, 6(2):306–318, April 1985. 2.3, 3.1, ∗, 3.2

[THLPJ98] Phil W. Trinder, Kevin Hammond, Hans-Wolfgang Loidl, and Simon Pey-

ton Jones. Algorithm + strategy = parallelism. Journal of Functional Program-

ming, 8(1):23–60, 1998. 7.3

FCUP 101

BIBLIOGRAPHY 999.

[Vas08] Pedro Baltazar Vasconcelos. Space cost analysis using sized types. PhD

thesis, School of Computer Science, University of St Andrews, November 2008.

1

[VH05] Pedro B. Vasconcelos and Kevin Hammond. Inferring Cost Equations for

Recursive, Polymorphic and Higher-Order Functional Programs. In Phil Trinder,

Greg J. Michaelson, and Ricardo Peña, editors, Revised Papers of the

International Workshop on Implementation of Functional Languages (IFL’03),

Edinburgh, UK, September, 2003, volume 3145 of Lecture Notes in Computer

Science, pages 88–101. Springer, 2005. 1

[Wad88] Philip Wadler. Strictness Analysis aids Time Analysis. In Proceedings of the

ACM Symposium on Principles of Programming Languages (POPL’88), pages

119–132, San Diego, California, USA, January 1988. 2.2

[Wad92] Philip Wadler. The Essence of Functional Programming. In Proceedings of the

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages

(POPL’92), pages 1–14, Albuquerque, New Mexico, USA, January 1992. 2.2

[WH87] Philip Wadler and John Hughes. Projections for Strictness Analysis. In

Proceedings of the ACM SIGPLAN Conference on Functional Programming

Languages and Computer Architecture (FPCA’87), Portland, Oregon, USA,

September 1987. 2.1, 2.2

102 FCUP

999. BIBLIOGRAPHY

A. A System for Eager Evaluation

A.1 Definitions and Figures

w is in whnf

H, S,L w ⇓ w,H
(WHNF⇓)

ℓ 6∈ L H, S,L ∪ {ℓ} H(ℓ) ⇓ w,H′

H, S,L ℓ ⇓ w,H′[ℓ 7→ w]
(VAR⇓)

H, S,L e ⇓ λx. e′,H′ H′, S,L e′[ℓ/x] ⇓ w,H′′

H, S,L e ℓ ⇓ w,H′′
(APP⇓)

ℓ is fresh H
[
ℓ 7→ ê[ℓ/x]

]
, S,L ∪ {ℓ} ê[ℓ/x] ⇓ w′,H′

H′[ℓ 7→ w′], S,L e[ℓ/x] ⇓ w,H′′

H, S,L let x = ê in e ⇓ w,H′′
(EAGERLET⇓C)

H, S ∪
⋃n

i=1 ({
−→xi} ∪ BV(ei)) ,L e ⇓ ck ~ℓ,H′

H′, S,L ek[~ℓ/
−→xk] ⇓ w,H′′

H, S,L case e of {ci
−→xi -> ei}

n
i=1 ⇓ w,H′′

(CASE⇓)

Figure A.1: Eager operational semantics

103

104 FCUP

999. A. A System for Eager Evaluation

w is in whnf

H, S,L 0 w ⇓ w,H
(WHNF⇓C)

ℓ 6∈ L H, S,L ∪ {ℓ} m
H(ℓ) ⇓ w,H′

H, S,L m ℓ ⇓ w,H′[ℓ 7→ w]
(VAR⇓C)

H, S,L m e ⇓ λx. e′,H′ H′, S,L m′

e′[ℓ/x] ⇓ w,H′′

H, S,L m + m′

e ℓ ⇓ w,H′′
(APP⇓C)

ℓ is fresh H
[
ℓ 7→ ê[ℓ/x]

]
, S,L ∪ {ℓ} m′

ê[ℓ/x] ⇓ w′,H′

H′[ℓ 7→ w′], S,L m e[ℓ/x] ⇓ w,H′′

H, S,L 1 + m′ + m let x = ê in e ⇓ w,H′′
(EAGERLET⇓C)

H, S ∪
⋃n

i=1 ({
−→xi} ∪ BV(ei)) ,L

m e ⇓ ck ~ℓ,H′

H′, S,L m′

ek[~ℓ/
−→xk] ⇓ w,H′′

H, S,L m + m′

case e of {ci
−→xi -> ei}

n
i=1 ⇓ w,H′′

(CASE⇓C)

Figure A.2: Cost-instrumented eager operational semantics

A,B,C ::= X – type variable

| A−→q B – function type

| µX.{c1 : (p1, ~B1)| · · · |cn : (pn, ~Bn)} – data type

with q, p1, . . . , pn ∈ Q+
0

Figure A.3: Annotated types

.(A | ∅)
(SHAREEMPTY)

.(X |X, . . . ,X)
(SHAREVAR)

Bi = µX.
{
c1 : (p

′
i1,

~Bi1)| · · · |cm : (p′im, ~Bim)
}

.
(
~Aj

∣∣∣ ~B1j , . . . , ~Bnj

)
pj ≥

∑n
i=1 p

′
ij (1 ≤ i ≤ n, 1 ≤ j ≤ m)

.
(
µX.

{
c1 : (p1, ~A1)| · · · |cm : (pm, ~Am)

}
| B1, . . . , Bn

) (SHAREDAT)

.(Ai |A) .(B |Bi) qi ≥ q (1 ≤ i ≤ n)

.
(
A−→q B

∣∣A1−→
q1

B1, . . . , An
−→qn Bn

) (SHAREFUN)

.(Aj |B1j , . . . , Bnj) m =
∣∣∣ ~A

∣∣∣ =
∣∣∣ ~Bi

∣∣∣ (1 ≤ i ≤ n, 1 ≤ j ≤ m)

.
(
~A
∣∣∣ ~B1, . . . , ~Bn

) (SHAREVEC)

Figure A.4: Sharing relation

FCUP 105

A.1. Definitions and Figures 999.

Γ, x:A′ q′ ê : A ∆, x:A q e : C
x 6∈ dom(Γ,∆) .(A |A,A′) q′ = 0 if ê ≡ c ~y or ê ≡ λy.e′

p =

{
p′, if ê ≡ c ~y and A = µX.{· · · |c : (p′, ~B)| · · · }
0, otherwise

Γ,∆ 1 + q′ + q + p let x = ê in e : C
(EAGERLET)

x:A 0 x : A
(EAGERVAR)

Γ, x:A q e : C x 6∈ dom(Γ) .(Γ |Γ,Γ)

Γ 0 λx.e : A−→q C
(ABS)

Γ q e : A−→q
′

C

Γ, y:A q + q′ e y : C
(APP)

B = µX.{· · · |c : (p, ~A)| · · · }

y1:A1[B/X], . . . , yk:Ak[B/X] 0 c ~y : B
(CONS)

Γ q e : B B = µX.{c1 : (p1,
−→
A1)| · · · |cn : (pn,

−→
An)}

(
⋃n

i=1{
−→xi}) ∩ dom(∆) = ∅

i = 1, . . . , n

{
|
−→
Ai| = |−→xi | = ki
∆, xi1 :Ai1 [B/X], . . . , xiki :Aiki

[B/X] q′ + pi ei : C

Γ,∆ q + q′ case e of {ci
−→xi -> ei}

n
i=1 : C

(CASE)

Figure A.5: Syntax directed type rules

Γ q e : C .(A′ | (Γ, x:A)↾x)

Γ, x:A q e : C
(WEAK)

Γ q′ e : A q ≥ q′

Γ q e : A
(RELAX)

Γ, x:B q e : C A<:B

Γ, x:A q e : C
(SUPERTYPE)

Γ q e : B B<:C

Γ q e : C
(SUBTYPE)

Γ, x:A1, x:A2
q e : C .(A |A1, A2)

Γ, x:A q e : C
(SHARE)

Figure A.6: Structural type rules

106 FCUP

999. A. A System for Eager Evaluation

φH(ê:A)
def
=

{
p+

∑
i φH

(H(ℓi):Bi[A/X]) if A = µX.{· · · |c:(p, ~B)| · · · } and ê = c ~ℓ

0 otherwise
(A.1)

φH(Γ)
def
=

∑{
φH(H(x):A)

∣∣ x:A ∈ Γ
}

(A.2)

Figure A.7: Potential

Definition A.1 (Type Consistency of Locations). We say that location ℓ admits type A under

context Γ and heap configuration (H,L), and write Γ;H,L ⊢LOC
ℓ : A, if one of the following

cases holds:

(LOC1) H(ℓ) is in whnf and Γ 0
H(ℓ) : A

(LOC3) H(ℓ) not in whnf and ℓ ∈ L and Γ = ∅

Definition A.2 (Type Consistency of Heaps). We say that a heap state (H,L) is consistent

with global contexts and global types, and write C ⊢MEM
(H,L) : M, if and only if for all

ℓ ∈ dom(H): C(ℓ);H,L ⊢LOC
ℓ : M(ℓ) holds.

A.2 Proof of the Soundness Theorem for the Eager System

The proof of Theorem 5.18 follows by induction on the lengths of the derivations of (5.98)

and (5.97) ordered lexicographically, with the derivation of the evaluation taking priority over

the typing derivation. We proceed by case analysis of the typing rule used in premise (5.97),

considering just the case EAGERLET since the remaining cases are similar to (or simpler

than) the ones presented in the soundness proof of the lazy system (in Section 5.5.6.7).

Case EAGERLET: We start with hypothesis

Γ,∆ 1 + q′ + q + p let x = ê in e : C (5.97)

H, S,L let x = ê in e ⇓ w,H′′ (5.98)

C ⊢MEM
(H,L) : M (5.99)

.(M | (Γ,∆,Θ),C) (5.100)

FCUP 107

A.2. Proof of the Soundness Theorem for the Eager System 999.

Applying Lemma 5.2 (Substitution) to the premises of rule EAGERLET (5.97) we obtain

Γ, ℓ:A′ q′ ê[ℓ/x] : A (A.3)

∆, ℓ:A q e[ℓ/x] : C (A.4)

The premises of rule EAGERLET⇓ (5.98) instantiate as

H1, S,L1 ê[ℓ/x] ⇓ w′,H′ (A.5)

H2, S,L e[ℓ/x] ⇓ w,H′′ (A.6)

where L1 = L ∪ {ℓ}, H1 = H
[
ℓ 7→ ê[ℓ/x]

]
, H2 = H′[ℓ 7→ w′] and ℓ is a suitably fresh

location (without loss of generality we can assume not only that ℓ is fresh by Definition 4.2

w.r.t. (5.98) but also that ℓ does not occur in Γ, ∆, Θ, C nor M).

Expression ê[ℓ/x] is either not in whnf or is in whnf. Also, if in whnf, expression ê[ℓ/x]

is either a constructor application or a λ-abstraction. We proceed by considering each of

these mutually exclusive cases separately.

If ê[ℓ/x] is not in whnf : We intend to apply the induction hypothesis twice, so we must

establish the required premises first.

To apply the induction hypothesis over the term ê[ℓ/x], let C1 = C[ℓ 7→ ∅] and M1 = M[ℓ 7→

A′], for some idempotent type A′ with .(A |A,A′) provided by the premises of (5.97).

Type consistency is extended to C1 ⊢MEM
(H1,L1) : M1 by case (LOC3) of Definition A.2.

Compatibility .(M1 | (Γ, ℓ:A
′,∆,Θ),C1) follows from (5.100), ℓ being suitably fresh and Def-

inition 5.12 (Global Compatibility).

From premise m ≥ t+ 1 + q′ + q + p+ φ
H
(Γ,∆) + φ

H
(Θ) (5.101) we derive m1 ≥ (t+ 1 +

q + p) + q′ + φ
H1

(Γ, ℓ:A′) + φ
H1

(∆,Θ), observing that φ
H
(Γ,∆,Θ) = φ

H1
(Γ,∆,Θ) (since ℓ

is suitably fresh) and p = 0 = φ
H1

(ℓ:A′) (since ê[ℓ/x] is not in whnf).

We can now apply the first induction hypothesis, obtaining m′
1,Γ

′
1,C

′
1,M

′
1 and m′′

1 such that:

Γ′
1

0 w′ : A (A.7)

H1, S,L1
m′′

1 ê[ℓ/x] ⇓ w′,H′ (A.8)

M1<:M′
1 (A.9)

108 FCUP

999. A. A System for Eager Evaluation

C
′
1 ⊢MEM (H′,L1) : M

′
1 (A.10)

.(M′
1 | (Γ

′
1,∆,Θ),C′

1) (A.11)

m′
1 ≥ (t+ 1 + q + p) + φH′

(
w′:A

)
+ φH′(∆,Θ) (A.12)

m1 −m′
1 ≥ m′′

1 (A.13)

In order to extend type consistency (A.10) to H2, let C2 = C′
1[ℓ 7→ Γ′

1] and M2 = M′
1[ℓ 7→ A].

Note that C′
1(ℓ) = ∅ from case (LOC3) of (A.10) and that M′

1(ℓ) = A′ from (A.9) and the

definition of M1. From (A.7) and case (LOC1) of Definition A.2 (Type Consistency of Heaps)

C2 ⊢MEM
(H2,L) : M2 holds.

From (A.11) we extend global compatibility to .(M2 | (∆, ℓ:A,Θ),C2) which holds by Defini-

tion 5.12 since eventual types (∆,Θ)↾ℓ ∪C2↾ℓ are idempotent (A.9).

From (A.12) we derive m2 ≥ (t+1+p)+q+φ
H2

(∆, ℓ:A)+φ
H2

(Θ), observing that φ
H′(w′:A)+

φ
H′(∆,Θ) = φ

H2
(w′:A)+φ

H2
(∆,Θ) (if the update H2 introduced new cycles we would apply

Lemma 5.17 (Idempotent Cycles) and, since any new cycles must include the updated

location ℓ, this would imply type A is idempotent and the potential of idempotent types

φ
H2

((∆,Θ)↾ℓ) is zero) and that φ
H2

(w′:A) = φ
H2

(ℓ:A) (by Figure A.7 (Potential)).

We have all the premises required to apply the second induction hypothesis, obtaining

m′
2,Γ

′
2,C

′
2,M

′
2 and m′′

2 such that:

Γ′
2

0 w : C (A.14)

H2, S,L
m′′

2 e[ℓ/x] ⇓ w,H′′ (A.15)

M2<:M′
2 (A.16)

C
′
2 ⊢MEM (H′′,L) : M′

2 (A.17)

.(M′
2 | (Γ

′
2,Θ),C′

2) (A.18)

m′
2 ≥ (t+ 1 + p) + φH′′(w:C) + φH′′(Θ) (A.19)

m2 −m′
2 ≥ m′′

2 (A.20)

Let Γ′ = Γ′
2, M

′ = M′
2 and C′ = C′

2. Equations (A.14) (A.17) (A.18) directly establish the

proof obligations (5.102) (5.105) (5.106) respectively.

Conclusion (5.104) follows by (A.16) and the transitivity of subtyping.

FCUP 109

A.2. Proof of the Soundness Theorem for the Eager System 999.

By applying rule EAGERLET⇓C with premises (A.8), (A.15) and l being fresh, we establish

proof obligation (5.103), yielding

H, S,L
1 + m′′

1
+ m′′

2 let x = ê in e ⇓ w,H′′

If we choose m′ = t + φ
H′′(w:C) + φ

H′′(Θ) all we need to complete the proof of case

EAGERLET is to show that m−m′ ≥ 1 + (m1 −m′
1) + (m2 −m′

2) (≥ 1 +m′′
1 +m′′

2 = m′′).

m−m′ ≥ 1 + (m1 −m′
1) + (m2 −m′

2)

⇐⇒ m− t− φH′′(w:C)− φH′′(Θ) ≥ 1 +m1 −m′
1 +m2 − t− 1− p− φH′′(w:C)− φH′′(Θ)

⇐⇒ { p = 0 by premise of EAGERLET (5.97), since ê[ℓ/x] is not in whnf }

m ≥ m1 −m′
1 +m2

⇐⇒ t+ 1 + q′ + q + p+ φH(Γ,∆) + φH(Θ)

≥ t+ 1 + q + p+ q′ + φH1

(
Γ, ℓ:A′

)
+ φH1

(∆,Θ)−m′
1 +m2

⇐⇒ φH(Γ,∆) + φH(Θ) ≥ φH1

(
Γ, ℓ:A′

)
+ φH1

(∆,Θ)−m′
1 +m2

⇐⇒ { φ
H1

(ℓ:A′) = 0 since type A′ is idempotent by premise of EAGERLET (5.97) }

φH(Γ,∆) + φH(Θ) ≥ φH1
(Γ) + φH1

(∆,Θ)−m′
1 +m2

⇐⇒ { φ
H
(Γ,∆,Θ) = φ

H1
(Γ,∆,Θ) since ℓ is suitably fresh }

m′
1 ≥ m2

⇐⇒ t+ 1 + q + p+ φH′

(
w′:A

)
+ φH′(∆,Θ) ≥ t+ 1 + p+ q + φH2

(∆, ℓ:A) + φH2
(Θ)

⇐⇒ φH′

(
w′:A

)
+ φH′(∆,Θ) ≥ φH2

(∆, ℓ:A) + φH2
(Θ)

⇐⇒ { φ
H′(w′:A) + φ

H′(∆,Θ) = φ
H2

(w′:A) + φ
H2

(∆,Θ) by Lemma 5.17 (Id. Cycles) }

φH2

(
w′:A

)
+ φH2

(∆,Θ) ≥ φH2
(∆, ℓ:A) + φH2

(Θ)

⇐⇒ φH2

(
w′:A

)
≥ φH2

(ℓ:A)

This last inequality is in fact an equality since φ
H2

(ℓ:A) = φ
H2

(w′:A) by the definition of

potential (Figure A.7).

This concludes the proof of case EAGERLET when ê[ℓ/x] is not in whnf.

110 FCUP

999. A. A System for Eager Evaluation

If ê[ℓ/x] is in whnf : Evaluation (A.5) terminates immediately by WHNF⇓ and we have

w′ = ê[ℓ/x] and H1 = H′ = H2. We use rule WEAK⇓C to obtain

H1, S,L1
0 ê[ℓ/x] ⇓ w′,H′ (A.21)

We intend to apply the induction hypothesis over the term e[ℓ/x], so we must establish the

required premises first.

Let C2 = C[ℓ 7→ Γ, ℓ:A′] and M2 = M[ℓ 7→ A].

Type consistency (5.99) is extended to C2 ⊢MEM
(H2,L) : M2 by case (LOC1) of Defini-

tion A.2, using (A.3) and the fact that q′ = 0 from premise of rule EAGERLET (5.97).

Compatibility .(M2 | (∆, ℓ:A,Θ),C2) follows from (5.100), ℓ being suitably fresh, .(A |A,A′)

from premise of rule EAGERLET (5.97), and Definition 5.12 (Global Compatibility).

Since expression ê[ℓ/x] is in whnf, it can either be a constructor application or a λ-abstraction.

We now consider each case separately.

If ê[ℓ/x] is in whnf and ê[ℓ/x] ≡ c ~y: From premise m ≥ t + 1 + q′ + q + p + φ
H
(Γ,∆) +

φ
H
(Θ) (5.101) we want to derive m2 ≥ (t + 1 + q′) + q + φ

H2
(∆, ℓ:A) + φ

H2
(Θ) and for

that purpose we have to show t + 1 + q′ + q + p + φ
H
(Γ,∆) + φ

H
(Θ) ≥ (t + 1 + q′) + q +

φ
H2

(∆, ℓ:A) + φ
H2

(Θ), or equivalently p+ φ
H
(Γ,∆)+ φ

H
(Θ) ≥ φ

H2
(∆, ℓ:A) + φ

H2
(Θ). First

note that φ
H
(Γ,∆,Θ) = φ

H2
(Γ,∆,Θ) since ℓ is suitably fresh, and thus we just have to show

p + φ
H2

(Γ) ≥ φ
H2

(ℓ:A). Since type A′ is idempotent by premise of EAGERLET (5.97), we

have φ
H2

(ℓ:A′) = 0 and thus p + φ
H2

(Γ) = p + φ
H2

(Γ, ℓ:A′). From Lemma 5.3 (CONS In-

version) applied to (A.3) we obtain .(Γ, ℓ:A′ | y1:A1[B/X], . . . , yk:Ak[B/X]). By Lemma 5.7

generalised to contexts, we then have φ
H2

(Γ, ℓ:A′) ≥ φ
H2

(y1:A1[B/X], . . . , yk:Ak[B/X])

and thus p+ φ
H2

(Γ, ℓ:A′) ≥ p+ φ
H2

(y1:A1[B/X], . . . , yk:Ak[B/X]). Finally, by the definition

of potential (Figure A.7) we have φ
H2

(ℓ:A) = p + φ
H2

(y1:A1[B/X], . . . , yk:Ak[B/X]) and

thus obtain what was needed to prove p+ φ
H2

(Γ) ≥ φ
H2

(ℓ:A).

We have all the premises required to apply the induction hypothesis over e[ℓ/x], obtaining

m′
2,Γ

′
2,C

′
2,M

′
2 and m′′

2 such that:

Γ′
2

0 w : C (A.22)

H2, S,L
m′′

2 e[ℓ/x] ⇓ w,H′′ (A.23)

FCUP 111

A.2. Proof of the Soundness Theorem for the Eager System 999.

M2<:M′
2 (A.24)

C
′
2 ⊢MEM (H′′,L) : M′

2 (A.25)

.(M′
2 | (Γ

′
2,Θ),C′

2) (A.26)

m′
2 ≥ (t+ 1 + q′) + φH′′(w:C) + φH′′(Θ) (A.27)

m2 −m′
2 ≥ m′′

2 (A.28)

Let Γ′ = Γ′
2, M

′ = M′
2 and C′ = C′

2. Equations (A.22) (A.25) (A.26) directly establish the

proof obligations (5.102) (5.105) (5.106) respectively.

Conclusion (5.104) follows by (A.24) and the transitivity of subtyping.

By applying rule EAGERLET⇓C with premises (A.21), (A.23) and l being fresh, we establish

proof obligation (5.103), yielding

H, S,L
1 + m′′

2 let x = ê in e ⇓ w,H′′

If we choose m′ = t + φ
H′′(w:C) + φ

H′′(Θ) all we need to complete the proof of case

EAGERLET is to show that m−m′ ≥ 1 + (m2 −m′
2) (≥ 1 +m′′

2 = m′′).

m−m′ ≥ 1 + (m2 −m′
2)

⇐⇒ m− t− φH′′(w:C)− φH′′(Θ) ≥ 1 +m2 − t− 1− q′ − φH′′(w:C)− φH′′(Θ)

⇐⇒ { q′ = 0 by premise of EAGERLET (5.97), since ê[ℓ/x] is in whnf }

m ≥ m2

⇐⇒ t+ 1 + q′ + q + p+ φH(Γ,∆) + φH(Θ) ≥ t+ 1 + q′ + q + φH2
(∆, ℓ:A) + φH2

(Θ)

Note though that we already showed this last inequality is true, when we established the

induction premise (5.101).

This concludes the proof of case EAGERLET when ê[ℓ/x] is in whnf and ê[ℓ/x] ≡ c ~y.

If ê[ℓ/x] is in whnf and ê[ℓ/x] ≡ λy.e′: From premise m ≥ t+ 1+ q′ + q + p+ φ
H
(Γ,∆)+

φ
H
(Θ) (5.101) we want to derive m2 ≥ (t+ 1 + q′ + p) + q + φ

H2
(∆, ℓ:A) + φ

H2
(Θ) and for

that purpose we have to show t + 1 + q′ + q + p + φ
H
(Γ,∆) + φ

H
(Θ) ≥ (t + 1 + q′ + p) +

q+ φ
H2

(∆, ℓ:A) + φ
H2

(Θ), or equivalently φ
H
(Γ,∆)+ φ

H
(Θ) ≥ φ

H2
(∆, ℓ:A) + φ

H2
(Θ). Note

112 FCUP

999. A. A System for Eager Evaluation

that φ
H
(Γ,∆,Θ) = φ

H2
(Γ,∆,Θ) since ℓ is suitably fresh, and thus we just have to show

φ
H2

(Γ) ≥ φ
H2

(ℓ:A). This inequality holds, since by the definition of potential (Figure A.7)

we have φ
H2

(ℓ:A) = 0, given that H2(ℓ) is a λ-abstraction.

We have all the premises required to apply the induction hypothesis over e[ℓ/x], obtaining

m′
2,Γ

′
2,C

′
2,M

′
2 and m′′

2 such that:

Γ′
2

0 w : C (A.29)

H2, S,L
m′′

2 e[ℓ/x] ⇓ w,H′′ (A.30)

M2<:M′
2 (A.31)

C
′
2 ⊢MEM (H′′,L) : M′

2 (A.32)

.(M′
2 | (Γ

′
2,Θ),C′

2) (A.33)

m′
2 ≥ (t+ 1 + q′ + p) + φH′′(w:C) + φH′′(Θ) (A.34)

m2 −m′
2 ≥ m′′

2 (A.35)

Let Γ′ = Γ′
2, M

′ = M′
2 and C′ = C′

2. Equations (A.29) (A.32) (A.33) directly establish the

proof obligations (5.102) (5.105) (5.106) respectively.

Conclusion (5.104) follows by (A.31) and the transitivity of subtyping.

By applying rule EAGERLET⇓C with premises (A.21), (A.30) and l being fresh, we establish

proof obligation (5.103), yielding

H, S,L
1 + m′′

2 let x = ê in e ⇓ w,H′′

If we choose m′ = t + φ
H′′(w:C) + φ

H′′(Θ) all we need to complete the proof of case

EAGERLET is to show that m−m′ ≥ 1 + (m2 −m′
2) (≥ 1 +m′′

2 = m′′).

m−m′ ≥ 1 + (m2 −m′
2)

⇐⇒ m− t− φH′′(w:C)− φH′′(Θ) ≥ 1 +m2 − t− 1− q′ − φH′′(w:C)− φH′′(Θ)

⇐⇒ { q′ = 0 by premise of EAGERLET (5.97), since ê[ℓ/x] is in whnf }

m ≥ m2

⇐⇒ t+ 1 + q′ + q + p+ φH(Γ,∆) + φH(Θ) ≥ t+ 1 + q′ + p+ q + φH2
(∆, ℓ:A) + φH2

(Θ)

FCUP 113

A.2. Proof of the Soundness Theorem for the Eager System 999.

Note though that we already showed this last inequality is true, when we established the

induction premise (5.101).

This last sub-case concludes the proof of case EAGERLET and since the remaining cases

are similar to (or simpler than) the ones presented in the soundness proof of the lazy system

(in Section 5.5.6.7) this also concludes the proof of the soundness theorem for the eager

system.

114 FCUP

999. A. A System for Eager Evaluation

B. Complete Derivations

B.1 Simple Example: Analysing Call-By-Need

VAR
z:Tq′′

(
A′

)
q′′

z : A′

VAR
y:Tq(B) q

y : B
ABS

∅ 0 λy.y : Tq(B) −→
q

B
WEAK

x:Tq′′
(
A′

)
0 λy.y : Tq(B) −→

q

B
ABS

∅ 0 λx.λy.y : Tq′′
(
A′

)
−→0 T

q(B) −→
q

B
APP

z:Tq′′
(
A′

)
0 (λx.λy.y) z : Tq(B) −→

q

B
LET

∅ 1 let z = z in (λx.λy.y) z : Tq(B) −→
q

B

where .(A′ |A′, A′)

Figure B.1: Type derivation for a non-strict evaluation example

115

116 FCUP

999. B. Complete Derivations

(Figure B.1, where q=0)
WEAK

f:T1(T0(B) −→
0

B) 1 let z = z in (λx.λy. y) z : T0(B) −→
0

B

VAR
x:Tq′(C) q′

x : C
ABS

∅ 0 λx. x : B
WEAK

i:T0(B) 0 λx. x : B

VAR
f:T0(T0(B) −→

0
B) 0 f : T0(B) −→

0
B

APP
f:T0(T0(B) −→

0
B), i:T0(B) 0 f i : B

WEAK
f:T0(T0(B) −→

0
B), i:T0(B), v:T0(B) 0 f i : B

VAR
f:T0(T0(B) −→

0
B) 0 f : T0(B) −→

0
B

APP
f:T0(T0(B) −→

0
B), v:T0(B) 0 f v : B

LET
f:T0(T0(B) −→

0
B),

f:T0(T0(B) −→
0

B), i:T0(B) 1 let v = f i in f v : B
SHARE

f:T0(T0(B) −→
0

B), i:T0(B) 1 let v = f i in f v : B
PREPAY

f:T1(T0(B) −→
0

B), i:T0(B) 2 let v = f i in f v : B
LET

f:T1(T0(B) −→
0

B) 3 let i = λx. x in . . . : B
LET

∅ 4 let f = (let z = z in (λx.λy. y) z) in let i = λx. x in let v = f i in f v : B

where B = T
q′(C) −→

q′

C

Figure B.2: Type derivation for a lazy-evaluation example

FCUP 117

B.2. Higher-Order Functions: map 999.

B.2 Higher-Order Functions: map

(Figure B.4)
ABS

map:T0
(
T
0(A−→

qf
B)−→

0
T
q0(Lin)−→

q0
Lout

)
, f:T0(A−→

qf
B)

0 λxs. case xs of Nil -> let nil = Nil in nil,
Cons x xs′ -> let y = f x in

let ys′ = map f xs′ in

let ys = Cons y ys′ in ys

: T
q0(Lin)−→

q0
Lout

ABS

map:T0
(
T
0(A−→

qf
B)−→

0
T
q0(Lin)−→

q0
Lout

)

0 λf.λxs. case xs of Nil -> let nil = Nil in nil,
Cons x xs′ -> let y = f x in

let ys′ = map f xs′ in

let ys = Cons y ys′ in ys

: T
0(A−→

qf
B)−→

0
T
q0(Lin)−→

q0
Lout

map:T0
(
T
0(A−→

qf
B)−→

0
T
q0(Lin)−→

q0
Lout

)

0 map : T
0(A−→

qf
B)−→

0
T
q0(Lin)−→

q0
Lout

LET

∅ 1 let map = λf.λxs. case xs of Nil -> let nil = Nil in nil,
Cons x xs′ -> let y = f x in

let ys′ = map f xs′ in

let ys = Cons y ys′ in ys

in map : T
0(A−→

qf
B)−→

0
T
q0(Lin)−→

q0
Lout

where

Lin = Lqt(3+qf+ql+p′c, 1+p′n, A)
Lout = L0(p′c, p

′
n,T

0(B))
L′
in

= Lqt(0, 0, A′), with .(A |A,A′)
L′
out

= L0(0, 0,T0(B′)), with .(B |B,B′)
ql = max(q0, qt)

Figure B.3: Type derivation for map applied to a list with potential

118 FCUP

999. B. Complete Derivations

VAR
xs:Tq0(Lin)

q0 xs : Lin

CONS
∅ 0 Nil : Lout

WEAK
nil:T0(L′

out
) 0 Nil : Lout

VAR
nil:T0(Lout)

0 nil : Lout LET
∅

1+p′n let nil = Nil in nil : Lout
WEAK

map:T0
(
T
0(A−→

qf
B)−→

0
T
q0(Lin)−→

q0
Lout

)

1+p′n let nil = Nil in nil : Lout
WEAK

map:T0
(
T
0(A−→

qf
B)−→

0
T
q0(Lin)−→

q0
Lout

)
, f:T0(A−→

qf
B)

1+p′n let nil = Nil in nil : Lout

VAR
f:T0(A−→

qf
B) 0 f : A−→

qf
B

APP
f:T0(A−→

qf
B), x:A

qf f x : B
WEAK

f:T0(A−→
qf

B), x:A, y:Tqf (B′)
qf f x : B

(Figure B.5)
LET

map:T0
(
T
0(A−→

qf
B)−→

0
T
q0(Lin)−→

q0
Lout

)
,

f:T0(A−→
qf

B), f:T0(A−→
qf

B), x:A, xs′:Tqt(Lin)
3+qf +ql+p′c let y = f x in

let ys′ = map f xs′ in

let ys = Cons y ys′ in ys : Lout
SHARE

map:T0
(
T
0(A−→

qf
B)−→

0
T
q0(Lin)−→

q0
Lout

)
,

f:T0(A−→
qf

B), x:A, xs′:Tqt(Lin)
3+qf +ql+p′c let y = f x in

let ys′ = map f xs′ in

let ys = Cons y ys′ in ys : Lout
CASE

map:T0
(
T
0(A−→

qf
B)−→

0
T
q0(Lin)−→

q0
Lout

)
, f:T0(A−→

qf
B), xs:Tq0(Lin)

q0 case xs of Nil -> let nil = Nil in nil,
Cons x xs′ -> let y = f x in

let ys′ = map f xs′ in

let ys = Cons y ys′ in ys : Lout

Figure B.4: Auxiliary type derivation for map applied to a list with potential

FCUP 119

B.2. Higher-Order Functions: map 999.

VAR

map:T0
(
T
0(A−→

qf
B)−→

0
T
q0(Lin)−→

q0
Lout

)

0 map : T
0(A−→

qf
B)−→

0
T
q0(Lin)−→

q0
Lout

APP

map:T0
(
T
0(A−→

qf
B)−→

0
T
q0(Lin)−→

q0
Lout

)
, f:T0(A−→

qf
B)

0 map f : T
q0(Lin)−→

q0
Lout

SUBTYPE

map:T0
(
T
0(A−→

qf
B)−→

0
T
q0(Lin)−→

q0
Lout

)
, f:T0(A−→

qf
B)

0 map f : T
min(q0,qt)(Lin)−→

q0
Lout

APP

map:T0
(
T
0(A−→

qf
B)−→

0
T
q0(Lin)−→

q0
Lout

)
, f:T0(A−→

qf
B),

xs′:Tmin(q0,qt)(Lin)
q0 map f xs′ : Lout

WEAK

map:T0
(
T
0(A−→

qf
B)−→

0
T
q0(Lin)−→

q0
Lout

)
, f:T0(A−→

qf
B),

xs′:Tmin(q0,qt)(Lin), ys
′:Tq0(L′

out
) q0 map f xs′ : Lout

CONS
y:T0(B), ys′:T0(Lout)

0 Cons y ys′ : Lout
WEAK

y:T0(B), ys′:T0(Lout), ys:T
0(L′

out
) 0 Cons y ys′ : Lout

VAR
ys:T0(Lout)

0 ys : Lout LET
y:T0(B), ys′:T0(Lout)

1+p′c let ys = Cons y ys′ in ys : Lout
PREPAY

y:T0(B), ys′:Tq0(Lout)
1+q0+p′c let ys = Cons y ys′ in ys : Lout

LET

map:T0
(
T
0(A−→

qf
B)−→

0
T
q0(Lin)−→

q0
Lout

)
, f:T0(A−→

qf
B),

xs′:Tmin(q0,qt)(Lin), y:T
0(B)

2+q0+p′c let ys′ = map f xs′ in let ys = Cons y ys′ in ys : Lout
PREPAY*

map:T0
(
T
0(A−→

qf
B)−→

0
T
q0(Lin)−→

q0
Lout

)
, f:T0(A−→

qf
B),

xs′:Tqt(Lin), y:T
0(B)

2+ql+p′c let ys′ = map f xs′ in let ys = Cons y ys′ in ys : Lout
PREPAY

map:T0
(
T
0(A−→

qf
B)−→

0
T
q0(Lin)−→

q0
Lout

)
, f:T0(A−→

qf
B),

xs′:Tqt(Lin), y:T
qf (B)

2+qf +ql+p′c let ys′ = map f xs′ in let ys = Cons y ys′ in ys : Lout

∗ Note that rule PREPAY justifies the typing xs′:Tqt(Lin) from xs′:Tmin(q0,qt)(Lin)
by prepaying the amount max(qt−q0, 0).

Figure B.5: Auxiliary type derivation for map applied to a list with potential (cont.)

120 FCUP

999. B. Complete Derivations

(Figure B.7)
ABS

map:T0
(
T
0(A′−→

qf
B)−→

0
T
ql(L′

in
)−−−−−−−−−−−−−−→

3+qf +ql+max(p′c, p
′

n−2)

Lout

)
, f:T0(A′−→

qf
B)

0 λxs. case xs of Nil -> let nil = Nil in nil,
Cons x xs′ -> let y = f x in

let ys′ = map f xs′ in

let ys = Cons y ys′ in ys

: T
ql(L′

in
)−−−−−−−−−−−−−−→

3+qf +ql+max(p′c, p
′

n−2)

Lout
ABS

map:T0
(
T
0(A′−→

qf
B)−→

0
T
ql(L′

in
)−−−−−−−−−−−−−−→

3+qf +ql+max(p′c, p
′

n−2)

Lout

)

0 λf.λxs. case xs of Nil -> let nil = Nil in nil,
Cons x xs′ -> let y = f x in

let ys′ = map f xs′ in

let ys = Cons y ys′ in ys

: T
0(A′−→

qf
B)−→

0
T
ql(L′

in
)−−−−−−−−−−−−−−→

3+qf +ql+max(p′c, p
′

n−2)

Lout

VAR

map:T0
(
T
0(A′−→

qf
B)−→

0
T
ql(L′

in
)−−−−−−−−−−−−−−→

3+qf +ql+max(p′c, p
′

n−2)

Lout

)

0 map : T
0(A′−→

qf
B)−→

0
T
ql(L′

in
)−−−−−−−−−−−−−−→

3+qf +ql+max(p′c, p
′

n−2)

Lout
LET

∅ 1 let map = λf.λxs. case xs of Nil -> let nil = Nil in nil,
Cons x xs′ -> let y = f x in

let ys′ = map f xs′ in

let ys = Cons y ys′ in ys

in map : T
0(A′−→

qf
B)−→

0
T
ql(L′

in
)−−−−−−−−−−−−−−→

3+qf +ql+max(p′c, p
′

n−2)

Lout

where

L′
in

= Lql(0, 0, A′), with .(A′ |A′, A′)

Lout = L3+qf+ql+p
′
c(p′c, p

′
n,T

0(B))

L′
out

= L3+qf+ql+p
′
c(0, 0,T0(B′)), with .(B |B,B′)

ql = max(q0, qt)

Figure B.6: Type derivation for map applied to a list with no potential

FCUP 121

B.2. Higher-Order Functions: map 999.

VAR
xs:Tql(L′

in
) ql xs : L′

in

CONS
∅ 0 Nil : Lout

WEAK
nil:T0(L′

out
) 0 Nil : Lout

VAR
nil:T0(Lout)

0 nil : Lout LET
∅

1+p′n let nil = Nil in nil : Lout
WEAK

map:T0
(
T
0(A′−→

qf
B)−→

0
T
ql(L′

in
)−−−−−−−−−−−−−−→

3+qf +ql+max(p′c, p
′

n−2)

Lout

)

1+p′n let nil = Nil in nil : Lout
WEAK

map:T0
(
T
0(A′−→

qf
B)−→

0
T
ql(L′

in
)−−−−−−−−−−−−−−→

3+qf +ql+max(p′c, p
′

n−2)

Lout

)
, f:T0(A′−→

qf
B)

1+p′n let nil = Nil in nil : Lout
RELAX

map:T0
(
T
0(A′−→

qf
B)−→

0
T
ql(L′

in
)−−−−−−−−−−−−−−→

3+qf +ql+max(p′c, p
′

n−2)

Lout

)
, f:T0(A′−→

qf
B)

3+qf +max(p′c, p
′

n−2)
let nil = Nil in nil : Lout

VAR
f:T0(A′−→

qf
B) 0 f : A′−→

qf
B

APP
f:T0(A′−→

qf
B), x:A′ qf f x : B

WEAK
f:T0(A′−→

qf
B), x:A′, y:Tqf (B′)

qf f x : B

(Figure B.8)
LET

map:T0
(
T
0(A′−→

qf
B)−→

0
T
ql(L′

in
)−−−−−−−−−−−−−−→

3+qf +ql+max(p′c, p
′

n−2)

Lout

)
,

f:T0(A′−→
qf

B), f:T0(A′−→
qf

B), x:A′, xs′:Tql(L′
in
)

3+qf +max(p′c, p
′

n−2)
let y = f x in

let ys′ = map f xs′ in

let ys = Cons y ys′ in ys : Lout
SHARE

map:T0
(
T
0(A′−→

qf
B)−→

0
T
ql(L′

in
)−−−−−−−−−−−−−−→

3+qf +ql+max(p′c, p
′

n−2)

Lout

)
,

f:T0(A′−→
qf

B), x:A′, xs′:Tql(L′
in
)

3+qf +max(p′c, p
′

n−2)
let y = f x in

let ys′ = map f xs′ in

let ys = Cons y ys′ in ys : Lout
CASE

map:T0
(
T
0(A′−→

qf
B)−→

0
T
ql(L′

in
)−−−−−−−−−−−−−−→

3+qf +ql+max(p′c, p
′

n−2)

Lout

)
,

f:T0(A′−→
qf

B), xs:Tql(L′
in
)

3+qf +ql+max(p′c, p
′

n−2)
case xs of Nil -> let nil = Nil in nil,

Cons x xs′ -> let y = f x in

let ys′ = map f xs′ in

let ys = Cons y ys′ in ys : Lout

Figure B.7: Auxiliary type derivation for map applied to a list with no potential

122 FCUP

999. B. Complete Derivations

VAR

map:T0
(
T
0(A′−→

qf
B)−→

0
T
ql(L′

in
)−−−−−−−−−−−−−−→

3+qf +ql+max(p′c, p
′

n−2)

Lout

)

0 map : T
0(A′−→

qf
B)−→

0
T
ql(L′

in
)−−−−−−−−−−−−−−→

3+qf +ql+max(p′c, p
′

n−2)

Lout
APP

map:T0
(
T
0(A′−→

qf
B)−→

0
T
ql(L′

in
)−−−−−−−−−−−−−−→

3+qf +ql+max(p′c, p
′

n−2)

Lout

)
,

f:T0(A′−→
qf

B) 0 map f : T
ql(L′

in
)−−−−−−−−−−−−−−→

3+qf +ql+max(p′c, p
′

n−2)

Lout
APP

map:T0
(
T
0(A′−→

qf
B)−→

0
T
ql(L′

in
)−−−−−−−−−−−−−−→

3+qf +ql+max(p′c, p
′

n−2)

Lout

)
,

f:T0(A′−→
qf

B), xs′:Tql(L′
in
)

3+qf +ql+max(p′c, p
′

n−2)
map f xs′ : Lout

WEAK

map:T0
(
T
0(A′−→

qf
B)−→

0
T
ql(L′

in
)−−−−−−−−−−−−−−→

3+qf +ql+max(p′c, p
′

n−2)

Lout

)
,

f:T0(A′−→
qf

B), xs′:Tql(L′
in
),

ys′:T3+qf+ql+max(p′c,p
′
n−2)(L′

out
)

3+qf +ql+max(p′c, p
′

n−2)
map f xs′ : Lout

CONS
y:T0(B), ys′:T3+qf+ql+p′c(Lout)

0 Cons y ys′ : Lout
WEAK

y:T0(B), ys′:T3+qf+ql+p′c(Lout), ys:T
0(L′

out
) 0 Cons y ys′ : Lout

VAR
ys:T0(Lout)

0 ys : Lout LET
y:T0(B), ys′:T3+qf+ql+p′c(Lout)

1+p′c let ys = Cons y ys′ in ys : Lout
PREPAY*

y:T0(B), ys′:T3+qf+ql+max(p′c,p
′
n−2)(Lout)

1+max(p′c, p
′

n−2)
let ys = Cons y ys′ in ys : Lout

LET

map:T0
(
T
0(A′−→

qf
B)−→

0
T
ql(L′

in
)−−−−−−−−−−−−−−→

3+qf +ql+max(p′c, p
′

n−2)

Lout

)
, f:T0(A′−→

qf
B),

xs′:Tql(L′
in
), y:T0(B)

2+max(p′c, p
′

n−2)
let ys′ = map f xs′ in let ys = Cons y ys′ in ys : Lout

PREPAY

map:T0
(
T
0(A′−→

qf
B)−→

0
T
ql(L′

in
)−−−−−−−−−−−−−−→

3+qf +ql+max(p′c, p
′

n−2)

Lout

)
, f:T0(A′−→

qf
B),

xs′:Tql(L′
in
), y:Tqf (B)

2+qf +max(p′c, p
′

n−2)
let ys′ = map f xs′ in let ys = Cons y ys′ in ys : Lout

∗ Note that rule PREPAY justifies the typing ys′:T3+qf+ql+max(p′c,p
′
n−2)(Lout)

from ys′:T3+qf+ql+p′c(Lout) by prepaying the amount max(p′n−2−p′c, 0).

Figure B.8: Auxiliary type derivation for map applied to a list with no potential (cont.)

	Resumo
	Abstract
	List of Figures
	List of Theorems and Definitions
	Introduction
	Contributions
	Overview

	Related Work
	Semantics for Lazy Evaluation
	Resource Analyses for Lazy Evaluation
	Amortised Analyses
	Other Heap Analyses for Eager Evaluation

	Amortisation
	Classical Amortisation Technique
	Example: Analysing a Stack

	Automatic Amortised Analysis
	Informal Description

	Cost Model
	Language Syntax
	Operational Semantics
	Cost-instrumented Operational Semantics
	Example: Modelling Call-By-Need

	Amortised Analysis
	Types and Typing Contexts
	Sharing Relation
	Subtyping Relation
	Idempotent Types

	Typing Judgements
	Example: Analysing Call-By-Need
	Non-Strict Evaluation
	Lazy Evaluation

	Soundness
	Auxiliary Lemmas
	Global Types, Contexts and Balance
	Potential
	Consistency and Compatibility
	Soundness of the Proof System
	Detailed Proofs
	Minor Lemmas
	Inversion Lemma for Constructors
	Inversion Lemma for -abstractions
	Context Splitting Lemma
	Potential Splitting Lemma
	Idempotent Cycles
	Proof of the Soundness Theorem

	A System for Eager Evaluation
	Summary

	Experimental Results
	Higher-Order Functions: map
	List Fusion: map/map
	Infinite Data Structures: cycle
	Nested Data Structures: concat
	Known Limitation with Co-Recursive Definitions: fibs
	Summary

	Conclusion
	Assessment of Achievements
	Limitations and Further Work
	Final Remark

	Bibliography
	A System for Eager Evaluation
	Definitions and Figures
	Proof of the Soundness Theorem for the Eager System

	Complete Derivations
	Simple Example: Analysing Call-By-Need
	Higher-Order Functions: map

