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Abstract

Vehicular Ad-hoc Networks (VANETs) are part of the communications infrastructure for Intelli-
gent Transportation Systems (ITS), which are becoming an important type of information systems.
Additionally, vehicular networks offer various opportunities for gathering data about a city. Vehi-
cles continually sense events from streets and process sensed data. Therefore, utilizing vehicular
networks as an infrastructure for urban sensing is a cost-efficient way of deploying an urban mon-
itoring system without actually deploying connected sensors. ITS services based on VANETs
require that massive amounts of data are gathered and transferred to a location for storing and
making it available for applications that will analyze it. To collect this data using VANETs, an
efficient protocol is needed that uses minimum communication time and network resources while
providing low delay and high delivery rates. Two important components of the infrastructure of
VANET-based ITS applications are the data communication and management to provide the col-
lected data to entities inside or outside the VANET in almost real-time. In this thesis, to cover all
aspects required for data communications and data management, the following tasks are done:

1. Design and implement a new protocol for urban sensing and data collection,

2. Performance evaluation of the proposed protocol and evaluate different broadcast suppres-
sion techniques,

3. Calculate the sensing capacity and validate it with simulation,

4. Investigate the use of existing hierarchies in the data to improve the performance of the
learning process,

5. Propose a metalearning framework for data hierarchy level and algorithm selection,

6. Evaluate the framework by applying it to different datasets.

The results of the investigation show that the designed protocol is able to collect the VANETs
data efficiently (with high packet delivery and low delay). In addition, the results of the experiment
on collected data show that the designed framework is able to suggest the best part of data that
should be used for training a model for each entity to obtain the best performance without applying
each algorithm on each part of the data separately.

Keywords: Data Collection. Machine learning. Data mining. Metalearning. Data Hierarchy.
Vehicular Networks.
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Resumo

VANETs fazem parte da infra-estrutura de comunicações para Sistemas Inteligentes de Trans-
portes (ITS), que estão a tornar-se um importante tipo de sistemas de informação. Além disso,
as redes veiculares oferecem várias oportunidades para a recolha de dados sobre uma cidade.
Os veículos estão constantemente a detectar eventos da ruas e a processar os dados adquiridos.
Assim, a utilização de redes veiculares como uma infra-estrutura para detecção urbana é uma
forma eficiente em termos de custo de implantação de um sistema de monitorização urbano sem
realmente implementar sensores conectados. Os serviços ITS baseados em VANETs exigem que
grandes quantidades de dados sejam recolhidos e transferidos para um local de armazenamento
e tornando-os disponíveis para aplicações que os irão analisar. Para recolher esses dados usando
VANETs, é necessário um protocolo eficiente que use tempo mínimo de comunicação e recur-
sos de rede, proporcionando low delay e high packet delivery. Dois componentes importantes
da infra-estrutura de aplicações ITS baseadas em VANET são a comunicação e gestão de dados.
Para fornecer os dados recolhidos para entidades dentro ou fora da VANET aproximadamente em
tempo real. Nesta tese, de forma a cobrir todos os aspectos necessários para a comunicação e
gestão de dados, foram realizadar as seguintes tarefas:

1. conceptualizar e implementar um novo protocolo para sensorização urbana e recolha de
dados,

2. Avaliação do desempenho do protocolo proposto e avaliação de diferentes técnicas de broad-
cast suppression,

3. Calcular a capacidade de detecção e validá-la com a simulação,

4. investigar o uso de hierarquias existentes nos dados para melhorar o desempenho do pro-
cesso de aprendizagem,

5. Propor uma framework metalearning para o nível de hierarquia de dados e seleção de algo-
ritmos,

6. Avaliar a framework, aplicando-o em diferentes conjuntos de dados.

Os resultados da investigação mostram que o protocolo projetado é capaz de recolher os dados
VANETs de forma eficiente (com high packet delivery e low delay). Além disso, os resultados
de ensaios em dados recolhidos mostram que a estrutura concebida é capaz de sugerir a melhor
parte de dados que devem ser usados para o formo de um modelo para cada entidade para obter
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o melhor desempenho sem necessidade de aplicação de cada algoritmo em cada parte dos dados
separadamente.

Keywords: Data Collection. Machine learning. Data mining. Metalearning. Data Hierarchy.
Vehicular Networks.



Acknowledgments

Firstly, I would like to express my sincere gratitude to my advisor Prof. Carlos Manuel Milheiro
de Oliveira Pinto Soares for the continuous support of my Ph.D. study and related research, for his
patience, motivation, and immense knowledge. His guidance helped me to have an opportunity
improving my abilities in all the time of research and writing of this thesis. I could not have
imagined having a better advisor and mentor for my Ph.D. study.

Besides my advisor, I would like to thank Prof. Eugénio Oliveira and Prof. Henrique Salgado
for their support and encouragement. Without their precious support, it would not be possible to
conduct this research.

In addition, I would like to thank the rest of my Ph.D. thesis committee: Prof. Eugénio da
Costa Oliveira, Prof. Alexandre Júlio Teixeira dos Santos, and Prof. Alberto Jorge Lebre Cardoso,
Prof. José Hernandez Orallo, Prof. Pavel Bernard Brazdil for their hard questions which motivate
me to widen my research from various perspectives.

I thank my fellow lab-mates for the stimulating discussions and for all the fun we have had in
the last four years. Also, I thank my friends in the following institution: Institution of Telecom-
munication and INESC Porto. In particular, I am grateful to Prof. Ana Aguiar for enlightening me
the first glance of research.

Finally, I am very grateful to the Ph.D. scholarship (SFRH/BD/71438/2010) from the Por-
tuguese Foundation for Science and Technology (FCT), who funded my study.

Last but not least, I would like to thank my whole family especially my wife, Zhaleh, and my
son, Amirreza, for supporting me spiritually throughout this Ph.D. project and my life in general.

Mohammad Nozari Zarmehri

vii





Publications

M. Nozari Zarmehri, A. Aguiar. Novel Data Gathering Protocol for Sensing Applications in
Vehicular Networks. Polaris Workshop. Porto, Portugal, Oct 27/28. 2011.

M. Nozari Zarmehri, A. Aguiar. Urban Data Collector Protocol for Sensing
Applications in Vehicular Networks. MAP-tele Workshop. Guimarães, Portugal, May 02. 2012.

M. Nozari Zarmehri, A. Aguiar. Data Gathering for Sensing Applications in Vehicular
Networks. IEEE Vehicular Networking Conference (VNC). Amsterdam, Netherlands, Nov
13-17. 2011.

M. Nozari Zarmehri, A. Aguiar. Supporting Sensing Application in Vehicular Networks.
ACM MobiCom Workshop on Challenged Networks. Istanbul, Turkey, Aug 22. 2012.

M. Nozari Zarmehri, A. Aguiar. Urban Data Collector Protocol: Performance
Evaluation with Different Suppression Techniques. International Journal of Computer Science
Issues, Vol. 9, Issue 5, No 1, ISSN (Online): 1694-0814. September 2012.

M. Nozari Zarmehri, A. Aguiar. Numerical Limits for Data Gathering in Wireless
Networks. Proc IEEE International Symp. On Personal, Indoor and Mobile Radio
Communication - PIMRC. London, United Kingdom, Vol. 1, pp. 1 - 6, September, 2013.

M. Nozari Zarmehri, Carlos Soares. Improving Data Mining Results by taking
Advantage of the Data Warehouse Dimensions: A Case Study in Outlier Detection. The Brazilian
Conference on Intelligent Systems (BRACIS) and Encontro Nacional de Inteligência Artificial e
Computacional (ENIAC). São Carlos, SP, Brazil, October 19-23, 2014.

M. Nozari Zarmehri, Carlos Soares. Metalearning to Choose the Level of Analysis in
Nested Data: A Case Study on Error Detection in Foreign Trade Statistics. International Joint
Conference on Neural Networks (IJCNN). Killarney, Ireland, July 12-17, 2015.

M. Nozari Zarmehri, Carlos Soares. A Metalearning Framework for Model
Management. European Conference on Machine Learning and Principles and Practice of
Knowledge Discovery in Databases (ECML-PKDD). Porto, Portugal, September 7-11, 2015.

M. Nozari Zarmehri, Carlos Soares. Using Metalearning to Predict the Trip Duration
for Taxis. Lecture Notes in Computer Science, Springer International Publishing, Volume 9385,
Pages 205-216, ISBN 978-3-319-24464-8. 2015.

M. Nozari Zarmehri, Carlos Soares. Collaborative Data Analysis in Hyperconnected
Transportation Systems. 17th IFIP Working Conference on VIRTUAL ENTERPRISES, Springer
International Publishing. Porto, Portugal, October, 2016.

M. Nozari Zarmehri, Carlos Soares. Using Metalearning for Prediction of Taxi Trip
Duration Using Different Granularity Levels. in preparation to submit to Neurocomputing
Journal - Elsevier. 2016.

M. Nozari Zarmehri, Carlos Soares. A General Metalearning Framework for Model and
Data Granularity Selection. in preparation to submit to Neurocomputing Journal - Elsevier.
2016.

ix



x

M. Nozari Zarmehri, Carlos Soares. Using Data Hierarchies to Support the Development
of Personalized Data Mining Models: a Case Study in Error Detection in Foreign Trade
Transactions. under review, International Journal of Intelligent Data Analysis. April, 2016.



“Research is what I’m doing when I don’t know what I’m doing.”

Wernher von Braun

xi





Contents

List of Figures xix

List of Tables xxi

List of Abbreviations xxvi

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Research Objectives and Contributions . . . . . . . . . . . . . . . . . . . . . . . 6

2 State of the Art 9
2.1 Technologies and Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 VANET Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Data gathering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Routing Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4.1 Ad hoc Routing Protocols . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4.2 Cluster-Based Routing Protocols . . . . . . . . . . . . . . . . . . . . . . 13
2.4.3 Per-hop Forwarding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4.4 Data Dissemination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4.5 Unicast/Multicast/Geocast . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5 Algorithm Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.5.1 Meta-Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.5.2 Trip Duration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

I Data Collection 21

3 Data Gathering for Sensing Applications in Vehicular Networks 23
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Broadcast-based Data Gathering Protocol . . . . . . . . . . . . . . . . . . . . . 24

3.2.1 BPF Protocol Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.2 How to map the back-off value to time? . . . . . . . . . . . . . . . . . . 28
3.2.3 Back off-based forwarding algorithm . . . . . . . . . . . . . . . . . . . 28

3.3 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.4 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4.1 Packet Delivery Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4.2 End-to-End Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.4.3 Number of Hops and Amount of Replicas . . . . . . . . . . . . . . . . . 32

xiii



xiv CONTENTS

3.4.4 Scaling Source Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4 Supporting Sensing Application in Vehicular Networks 37
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2 Data Collection Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.3 Protocol Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3.1 Directional Forwarding . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.3.2 Suppression Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3.3 Channel Access Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.4 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.5 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.5.1 Sensing accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.5.2 Network Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.5.3 Packet Drop Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5 Numerical Limits for Data Gathering in Wireless Networks 51
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.2 Network Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.3 Maximum Service Rate without Collisions . . . . . . . . . . . . . . . . . . . . . 52
5.4 Interference Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.5.1 End-2-End PDR% . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.5.2 Service Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.7 Verification of the results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.8 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

II Data Management for Modeling 67

6 Improving Model Performance by Using Existing Hierarchies in the Data 69
6.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.1.1 Foreign Trade Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.1.2 Goals and Previous results . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.2 Error Detection Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.2.1 Data Preparation and Exploration . . . . . . . . . . . . . . . . . . . . . 72
6.2.2 Error detection method . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.2.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.3.1 Selected Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.3.2 Comparing Results Obtained with Data From Different Levels of the Prod-

uct Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.3.3 Personalized Data Selection is Required for Optimal Results . . . . . . . 82

6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86



CONTENTS xv

7 A Metalearning Framework for Model and Data Granularity Selection 87
7.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7.1.1 Traditional method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
7.1.2 Proposed Metalearning Framework . . . . . . . . . . . . . . . . . . . . 91

7.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

8 Validation of the Metalearning framework: A Case Study on Error Detection in For-
eign Trade Statistics 99
8.1 Case study: error detection in foreign trade statistics . . . . . . . . . . . . . . . . 99
8.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

8.2.1 Metafeatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
8.3 Experiments Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
8.4 Base-level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
8.5 Meta-level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
8.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

8.6.1 Base-level Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
8.6.2 Base-level vs. Meta-level . . . . . . . . . . . . . . . . . . . . . . . . . . 108

8.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

9 Using Metalearning for Prediction of Taxi Trip Duration Using Different Granularity
Levels 115
9.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
9.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

9.2.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
9.2.2 Base-level Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
9.2.3 Meta-level Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
9.2.4 Metafeatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
9.2.5 Metadata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

9.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
9.3.1 Base-level evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
9.3.2 Meta-level evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

9.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
9.4.1 Base-level results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
9.4.2 Meta-level results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
9.4.3 Base-level vs. meta-level results . . . . . . . . . . . . . . . . . . . . . . 130

9.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

10 Conclusions and Future Work 133
10.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
10.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

Bibliography 137

Index 159

A Description of the Metafeatures 159





List of Figures

1.1 VANETs vs. MANETs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Snapshot showing a part of transmit-receive pairs in the city of Porto Boban et al.

(2014) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Intelligent Transportation Systems use cases and potential communication tech-

nologies, defined by ETSI ITS . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Data gathering hierarchy in vehicular networks . . . . . . . . . . . . . . . . . . 5

2.1 DSRC Channel allocation in north America Qian and Moayeri (2008) . . . . . . 10
2.2 Frequency allocation in Europe Consortium (2008) . . . . . . . . . . . . . . . . 11

3.1 Node configuration used for calculations . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Back off time in microseconds for different positions around a node located at

(0,0) according to C1 and C2. Location of the final destination (2000,0) (horizon-
tally to the right of the plot) and communication range is 500 m. . . . . . . . . . 27

3.3 Flowchart of data gathering Protocol . . . . . . . . . . . . . . . . . . . . . . . . 29
3.4 PDR% for 4 different protocols with 8 sources (20kbps) . . . . . . . . . . . . . 31
3.5 Delay for 4 different protocols with 8 sources (20kbps) . . . . . . . . . . . . . . 32
3.6 Number of hops for 4 different protocols with 8 sources (20kbps) . . . . . . . . . 33
3.7 Average Number of replicas per uniquely received packets for 4 different protocols

with 8 sources (20kbps) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.8 PDR% for different number of source with 9.6 nodes/km . . . . . . . . . . . . . 35

4.1 UDC help packets to get to the gateway when a path in the direction of gateway is
blocked by a building. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2 UDC avoid packet die out when an accident happens on the direction of the gateway. 40
4.3 One-hop forwarding entities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.4 Forwarding Probability calculated for different suppression techniques . . . . . . 43
4.5 Protocol algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.6 Average channel access time for 4 suppression techniques.The slotted 1-persistence

protocol used for comparison is introduced in Chapter 2. . . . . . . . . . . . . . 45
4.7 Sensing accuracy for different data collection mechanism in urban area . . . . . . 47
4.8 Efficiency for using different suppression techniques . . . . . . . . . . . . . . . 48
4.9 Different reasons for drop packets depend on different communication layers . . 48

5.1 Network model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.2 Performance of a simple Chain . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.3 Chain Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.4 PDR% for different chain length . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.5 Service Rate for different chain length . . . . . . . . . . . . . . . . . . . . . . . 61

xvii



xviii LIST OF FIGURES

5.6 Trade-off between Service rate and PDR% . . . . . . . . . . . . . . . . . . . . . 62
5.7 Verification of probability of at least one collision . . . . . . . . . . . . . . . . . 63
5.8 Comparison of Simulation (S) and analytical (A) results for the end-to-end PDR% 64

6.1 An example of existing hierarchical structure within the data set: Product codes
starting with 11 and for simplicity only show the product codes starting with 1129. 74

6.2 Number of catogories for each level in each month . . . . . . . . . . . . . . . . 76
6.3 The definition of quartiles and IQR . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.4 The distribution of scores obtained by the outlier detection method at the 4 levels

for Product code starting with 11 in February . . . . . . . . . . . . . . . . . . . 79
6.5 Import transactions (February) . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.6 Export transactions (February) . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.7 Import transactions (June) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.8 Export transactions (June) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.9 The best effort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.10 The best recall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.11 The average best effort with respective recall for each month . . . . . . . . . . . 83
6.12 The average best recall with respective effort for each month . . . . . . . . . . . 83
6.13 The average effort in each month when the training data is always selected from:

The best level (Dark Green), Level 4 (Light Green), Level 3 (Gray), Level 2 (Yel-
low), or Level 1 (Red) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.14 The average recall in each month when the training data is always selected from:
The best level (Dark blue), Level 4 (Red), Level 3 (Yellow), Level 2 (Gray), or
Level 1 (Light blue) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.15 The optimum effort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.16 The optimum recall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

7.1 Illustration of a hierarchy in datasets: for each category the best performance
(black model) is obtained at different levels . . . . . . . . . . . . . . . . . . . . 88

7.2 Traditional Data Mining approach . . . . . . . . . . . . . . . . . . . . . . . . . 89
7.3 The proposed hierarchy structure . . . . . . . . . . . . . . . . . . . . . . . . . . 92
7.4 The data structure used in the proposed model . . . . . . . . . . . . . . . . . . . 93
7.5 Proposed methodology used for metalearning . . . . . . . . . . . . . . . . . . . 96

8.1 An example of existing taxonomy in foods . . . . . . . . . . . . . . . . . . . . . 100
8.2 Methodology used for metalearning . . . . . . . . . . . . . . . . . . . . . . . . 104
8.3 Decision Tree structure: at each split one feature (F1 to F4) is evaluated . . . . . 106
8.4 The effort obtained from base-level vs. meta-level . . . . . . . . . . . . . . . . . 109
8.5 Comparing the accuracy of metalearning approaches with the baseline . . . . . . 110
8.6 Comparing metalearning with different algorithms with baseline: Recall . . . . . 111
8.7 Comparing metalearning with different algorithms with the baseline: Effort . . . 112

9.1 Illustrative map of Porto, Portugal. The green dots are the taxi placement. The
neighboring area for red and black taxi is shown by purple circle around them. . . 117

9.2 Proposed methodology used for metalearning . . . . . . . . . . . . . . . . . . . 119
9.3 NRMSE[%] for different months . . . . . . . . . . . . . . . . . . . . . . . . . . 124
9.4 NRMSE for all algorithms at each level in different months . . . . . . . . . . . . 125
9.5 The percentage of the best algorithm in all months: base-level . . . . . . . . . . 126
9.6 The average Scalederror[%] over all taxis for each month . . . . . . . . . . . . . 128



LIST OF FIGURES xix

9.7 The NRMSE for the worst, the best and the meta-level results: ML-RF and ML-DT 129
9.8 Distribution of Scalederror over each taxi . . . . . . . . . . . . . . . . . . . . . . 130
9.9 Accuracy: base-level vs. meta-level . . . . . . . . . . . . . . . . . . . . . . . . 131





List of Tables

2.1 Differences between 802.11p and 802.11a . . . . . . . . . . . . . . . . . . . . . 11

4.1 Simulation Set up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2 Percentage of each reasons in the protocol performance for different node densities 49

5.1 Number of time slots for each iteration . . . . . . . . . . . . . . . . . . . . . . . 60

6.1 Dataset features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.2 Illustrative sample of the dataset . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.3 An exploratory data analysis for datasets . . . . . . . . . . . . . . . . . . . . . . 75
6.4 Concepts used in evaluation metrics . . . . . . . . . . . . . . . . . . . . . . . . 77
6.5 Illustrative results for effort obtained by applying the method at different levels of

the product hierarchy. The optimal selection is the lowest effort amongst 4 levels. 82
6.6 The average result for the best effort and its related recall and the best recall and

its related effort. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.7 The average result for the best effort for acceptable recall and the best recall for

acceptable effort by expert. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7.1 A simple statistics about Taxi dataset . . . . . . . . . . . . . . . . . . . . . . . . 90
7.2 The description of Taxi dataset’s features . . . . . . . . . . . . . . . . . . . . . . 91

8.1 Extracted features used in metalearning - INTRASTAT dataset . . . . . . . . . . 103

9.1 The description of metafeatures used for metalearning . . . . . . . . . . . . . . . 121
9.2 The meta-level results (the percentage of occurrence) for the best algorithm and the

best level of granularity on different months. Columns: meta-levels algorithms.
Rows: base-level algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

A.1 Extracted features used in metalearning - INTRASTAT dataset . . . . . . . . . . 161
A.2 The description of metafeatures used for metalearning - Taxi dataset . . . . . . . 162

xxi





List of Abbreviations

3G Third Generation
ACM Association for Computing Machinery
AIFS Arbitration Inter Frame Space
AODV Ad hoc On-Demand Distance Vector
ATIS Advanced Travelers Information Systems
BI Business Intelligence
BM Backbone Member
BO Back Off
BPF Back off-based Per-hop Forwarding
BRACIS The Brazilian Conference on Intelligent Systems
C2C-CC Car-to-Car Communication Consortium
CAS Content-Addressed Storage
CBF Contention Based Forwarding
CBMAC Cluster-Based Media Access control
CH Cluster Head
COIN Clustering for Open IVC Networks
CRISP-DM CRoss Industry Standard Process for Data Mining
CRM Customer Relationship Management
CSMA/CA Carrier Sense Multiple Access with Collision Avoidance
CTB Clear to Broadcast
CTS Clear to Send
CW Contention Window
DB Data Base
DBA-MAC Dynamic Backbone-Assisted MAC
DCF Distributed Coordination Function
DF Distance Factor
DFS Dynamic Frequency Selection
DIFS Distributed Inter Frame Space
DSR Dynamic Source Routing
DSRC Dedicated Short-Range Communications
DM Data Mining
DMwR Data Mining with R

xxiii



xxiv List of Abbreviations

DRIVE-IN Distributed Routing and Infotainment through Vehicular Inter-Networking
DT Decision Tree
DV-CAST Distributed Vehicular broadCAST protocol
DW Data Warehouse
ECML-PKDD European Conference on Machine Learning and Principles and Practice of

Knowledge Discovery in Databases
ENIAC Encontro Nacional de Inteligência Artificial e Computacional
ERP Enterprise Resource Planning
ETSI European Telecommunications Standards Institute
EU EUropean countries
FCC Federal Communications Commission
FEUP Faculdade de Engenharia da Universidade do Porto
FN False Negative
FP False Positive
GHz Gigahertz
GPS Global Positioning System
GPSR Greedy Perimeter Stateless Routing
GSR Geographic Source Routing
HV-TRADE History-enhanced V-TRADE
ID IDentifier
IEEE The Institute of Electrical and Electronics Engineers
IFIP International Federation for Information Processing
IJCNN International Joint Conference on Neural Networks
INE Instituto Nacional de Estatìstica
IQR Interquartile Range
ISM The Industrial, Scientific and Medical radio bands
ISBN International Standard Book Number
ISSN International Standard Serial Number
ITS Intelligent Transportation Systems
IVC Inter Vehicle Communication
Kbps Kilobits per second
LM Linear regression
LOF Local Outlier Factor
m Meter
MAC Media Access Control
MAN Metropolitan Area Networks
MANETs Mobile Ad hoc Networks
MAP-tele Joint Doctoral Program in Telecommunications between Universidade do

Minho, Universidade de Aveiro and Universidade do Porto (MAP)
MAS Mobility-Assist Storage



List of Abbreviations xxv

Mbps Megabits per second
MDDV Mobility-centric Data Dissemination algorithm for Vehicular networks
METAL Meta-Learning assistant
MF Mobility Factor
MHz Megahertz
ML Machine Learning
ML-RF MataLearning-Random Forest
ML-DT MataLearning-Decision Tree
MLT Machine Learning Toolbox
mph Miles Per Hour
MPR Multi Point Relays
ms Milliseconds
NRMSE Normalized Root-Mean-Square-Error
NS3 Network Simulator 3
NV Normal Vehicle
OBU On-Board Unit
OFDM Orthogonal Frequency-Division Multiplexing
PDR Packet Delivery Ratio
PHY Physical layer
PRAODV Predicted AODV
PRAODVM Predicted AODV with Maximum lifetime
QoS Quality of Service
R2V Roadside to Vehicle
RF Random Forest
RMSE Root-Mean-Square-Error
RSSI Received Signal Strength Indication
RSSIF Received Signal Strength Indication Factor
RSU Road-Side Unit
RTB Request to Broadcast
RTS Request to Send
RZ Risk Zone
SVM Support Vector Machine
SVR Support Vector Regression
TN True Negative
TP True Positive
TS Time Slot
TTL Time To Live
V2I Vehicle-to-Infrastructure communication
V2V Vehicle-to-Vehicle communication
VANETs Vehicular Ad hoc Networks



xxvi List of Abbreviations

VNC Vehicular Networking Conference
WAVE Wireless Access in Vehicular Environments
Wi-Fi Wireless Fidelity
WiMAX Worldwide Interoperability for Microwave Access
WLAN Wireless Local Area Networks
WSN Wireless Sensor Networks
UDC Urban Data Collector
UMB Urban Multi-hop Broadcast protocol
USA United States of America
V-TRADE Vector-based TRAcking DEtection
VANET Vehicular Ad-hoc NETwork
ZOR Zone Of Relevance
ZRP Zone Routing Protocol



Chapter 1

Introduction

Vehicular ad-hoc networks (VANETs) are a class of Mobile Ad hoc Networks (MANETs) that has

recently emerged. VANETs are naturally formed between moving vehicles provided with wireless

interfaces, offering communication among nearby vehicles (vehicle-to-vehicle communication or

V2V) as well as between vehicles and nearby fixed equipment (vehicle-to-infrastructure commu-

nication or V2I), usually described as roadside units (RSU).

(a) VANETs (b) MANETs

Figure 1.1: VANETs vs. MANETs

This kind of network differs from MANETs mainly in two aspects: high mobility of the nodes

(cars) and restricted mobility along roads (Figure 1.1). As a consequence, VANETs have a highly

volatile topology due to highly variable connectivity and communication range limited by the

shadowing effect of buildings. In VANETs, the topology depends on the density and speed of

cars, as well as on the environment. For example, in a highway scenario the speed of nodes is

1
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higher and the node density lower than in an urban environment. However, in the former scenario,

there are fewer obstacles and nodes do not change direction abruptly behind a building, as it can

happen at a crossroad in a dense urban area.

VANETs are part of the communications infrastructure for Intelligent Transportation Systems

(ITS), which are becoming an important type of information systems Chadwick et al. (1993).

There are mainly three categories of ITS applications: public safety, traffic management, and info-

tainment. The overall goal of a public safety application is to reduce accidents, with many benefits

beyond the obvious saving of lives. Examples of safety applications of ITS are: forward obstacle

detection and avoidance Badal et al. (1994); turn accident warning and intersection collision warn-

ing Lee et al. (2009a). Using technology to improve the flow of traffic and reduction of congestion

is the goal of traffic management. Smart traffic signs, rapid response to incidents, central traffic

management, enhanced public transit systems and electronic toll collection are a few examples of

traffic management applications Lee et al. (2006).

Another category of applications that could be provided in vehicles is infotainment. This kind

of application provides additional information for drivers and entertainment to passengers like

multimedia services, Internet connectivity and instant messaging. Also some other information

provision services, like weather and parking services Lochert et al. (2008) belong in this category

of VANET applications.

Additionally, vehicular networks offer various opportunities for gathering data about a city.

Vehicles continually sense events from streets and process sensed data. Some examples using data

gathered in real-time from the in-car sensors can be: Monitoring the fuel consumption from the

in-car sensors in real-time can be used to identify areas of the city with high levels of pollution Li-

imatainen (2011); Zhou et al. (2013); Monitoring the brakes of cars to detect areas where drivers

brake often without any apparent reason may be helpful in detecting dangerous conditions, like bad

roads Murphy et al. (2006); Cheifetz et al. (2011); Detecting traffic jams and managing the traffic

load in a different way Myr (2002); Improving traffic conditions Rudolf et al. (1997); Reschedul-

ing traffic lights Zhou et al. (2010); Planing trip routes Yamamoto et al. (2002); Predicting trip

duration of cars and public transports Balan et al. (2011); Mendes-Moreira et al. (2015); Elim-

inating traffic blind spots Keirstead (2004); Evaluating drivers behavior Noshadi et al. (2008a);

Hasan et al. (1997); Measuring air quality and noise Lin and Yu (2008); Monitoring city environ-

ment Kamijo et al. (2000); Zhou et al. (2007). These examples show that using the in-car sensors

as data sources and cars as data carriers, a macro vision of the city can be obtained.

Therefore, utilizing vehicular networks as an infrastructure for urban sensing is a cost-efficient

way of deploying an urban monitoring system without actually deploying connected sensors En-

glund et al. (2015). Vehicles typically do not have energy constraints and can be equipped with

powerful processing units, wireless transmitters, and sensing devices (GPS, detectors, video cam-

eras, vibration sensors, acoustic detectors, car sensors, etc).

The gathered data can be processed and visualized live, enabling monitoring activities (Fig-

ure 1.2) and better decision making. However, this data can also be serve as the basis for predictive

models that move the decision processes one step further. Given the availability of an increasing



1.1 Motivation 3

amount of data, data mining approaches are being used to obtain models that are integrated into

ITS applications (Figure 1.4) Thill (2000); Hauser and Scherer (2001); Chan and Marco (2004);

Salim et al. (2007); Wang (2010); Qureshi and Abdullah (2013); He et al. (2014a,b).

Figure 1.2: Snapshot showing a part of transmit-receive pairs in the city of Porto Boban et al.
(2014)

1.1 Motivation

ITS services based on VANETs (Figure 1.3) require that massive amounts of data are gathered

and transferred to a location for storing and making it available for applications that will analyze

it (Figure 1.4). The existence of cars moving in the city can help collect this massive amount of

data from the already implemented infrastructure without extra cost. To collect this data using

VANETs, an efficient protocol is needed. An adequate data gathering protocol needs to use min-

imum communication time and network resources while providing low delay and high delivery

rates.

Two important components of the infrastructure of VANET-based ITS applications are the data

communication and management. Concerning data communication, the purpose is to provide the

collected data to entities inside or outside the VANET in almost real-time. This corresponds to a

system architecture where several or all nodes in the VANETs are data sources and the ultimate

destination of the data lies outside the VANET in which it originated, whereby data can get there

through one or more gateways.

On one hand, in a highly variable network (cars move in VANETs), unicast/multicast commu-

nication, in which a predefined route is selected for communication using continuously exchange

neighbor information, is not feasible. On the other hand, in scenarios of high node density a
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Figure 1.3: Intelligent Transportation Systems use cases and potential communication technolo-
gies, defined by ETSI ITS

broadcast communication impairs communication in VANETs. Therefore, a new solution for data

gathering in VANETs is required.

Concerning data management for decision making, traditionally, data mining (DM) applica-

tions use a single model, created by applying algorithms on all data (or a carefully selected part

of it). For example, a single model has been used to predict the trip duration in public transporta-

tions Mendes-Moreira et al. (2012). However, in a VANET, data is collected in different settings

and the phenomena that is under analysis may also vary dramatically. Therefore, the best model

may vary, which means that a different learning process must be used (i.e. different datasets, dif-

ferent parameter settings and/or different algorithms). This is consistent with what has already

been shown in general for machine learning applications, namely that there is no commonly best

algorithm for a broad domain of problems Wolpert and Macready (1997).

To have the best performance for each entity, different approaches can be used. To obtained the

best performance, each entity can use its data or the data from its neighbors or even the data from

whole network’s entities for modeling. This decision can be made using different approaches.

One of the traditional approaches is expert advice. They can suggest a specific setting for model-

ing including an algorithm and the part of data that should be used to have the best performance

according to their experience. However, due to the variety of entities involved (i.e., different vehi-

cles) and the variable nature of datasets, experts are unable to capture all the different possibilities
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Figure 1.4: Data gathering hierarchy in vehicular networks

and the advice may end up being an inaccurate model. Another way of algorithm selection can be

obtained by a trial-and-error approach. A set of algorithms is selected and applied to the datasets

to obtain the best performance which needs a high computational cost. This approach may be

helpful for small size datasets, but it is computationally costly for medium and large datasets.

An approach that has been used in several algorithm selection problems is metalearning Brazdil

et al. (2003a); Soares et al. (2004, 1999); Torgo and Soares (2010). Metalearning models the re-

lationship between the characteristics of the data with the performance of the algorithms. Given a

new dataset, the (meta-)model is used to predict the algorithm that is expected to obtain the best

performance.

1.2 Challenges

Data gathered from vehicles can be disseminated through the network in different ways depending

on the application. For example, for a safety application, vehicle nodes broadcast a warning

message and nodes that receive the message can use it and forward it by rebroadcasting. But for

an infotainment application like games, the Internet and electronic toll collection, data needs to be

sent unicast to a specific node or infrastructure.
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For gathering data sensed by vehicles over VANETs in urban environment, the data from every

node must be sent to one or more gateways (RSU or On-Board Units (OBU)) which are connected

to a storage location to make the data available to applications outside the network. Due to high

mobility of vehicles, being bounded by roads and dependent on density, vehicles cannot always

communicate directly with each other or with a RSU. For getting a message to its final destination

within the vehicle network, it must be forwarded by other nodes through several hops (multi-hops

scenario). Since the wireless medium is a shared medium, it is necessary to keep the amount of

messages in the network bounded. Therefore, a proper algorithm for data gathering is critical for

efficient operation of a VANET-based urban sensor network.

All nodes in a VANET-based urban sensor network are simultaneously both data sources and

potential relays for the messages from other nodes. It is yet unclear: what is the maximum amount

of data that can be gathered from each node per unit time, which is the sensing capacity. More-

over, it depends on the data gathering protocol as well as on any mechanisms used for improving

communication efficiency. In this respect, it must also be considered that a sensing application

may tolerate a limited amount of losses, which can be traded off for efficiency mechanisms.

So a challenge is to provide a network protocol for efficiently (having high packet delivery and

low delay) gathering data in an urban environment by vehicular nodes and making it available to

outside applications.

In a city scenario, even by using an efficient algorithm, the amount of data gathered from

different areas depends on the number of cars in that area. So it is probable to have a low amount

of data or even no data for a certain area in the city. Therefore, this data may not be enough for

decision making or creating a model.

Dealing with this challenge, the modeling can be made using the data from neighboring cars,

the data in the nearest RSU, or even the data in the central point where the whole data is stored.

1.3 Research Objectives and Contributions

The most popular way to gather data from VANETs is broadcasting Li and Wang (2007). But

broadcasting data in a dense network causes collisions, a problem also known as a broadcast storm

problem, which causes severe impairment in the communications. The objective for data collection

is to benchmark the performance of existing protocols in urban scenarios with different traffic

densities and to propose a solution for the broadcast storm problem that addresses the requirements

of massive urban sensing applications.

While all the VANET nodes regularly generate data for multi-hop communication over a

shared medium, another objective is to address the problem of estimating the sensing capacity

of a VANETs to determine the limits that a node should be considered for generating data.

The final goal of the project is to design a general data mining framework for data analysis, in

which, by taking advantage of existing structure in the data, improve the performance of simple

data mining and machine learning algorithms. Then, by extending the framework to use a met-
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alearning, we try to reduce the computational costs and to improve the performance at the same

time.

Therefore to meet the objectives of the project, the following contributions are done. The

work is focused on improving data communications and management in VANET-based ITS appli-

cations.

To gather the data in servers that lie outside the VANETs in almost real-time, a very spe-

cific system – where there is no peer to peer communication, the data sources are distributed in

the network (all network nodes are sources themselves), the ultimate destination of the data is a

server outside the VANETs, that server is connected to the VANETs over one of several VANETs

gateways (RSUs)– is required.

In this scenario, there are lots of data packet collisions. Especially, for the area far from the

RSUs, the data packets should take a long multi-hop path to RSUs. So the probability of collisions

increases. Therefore to design a protocol for this purpose, reducing the number of collisions should

be taken into account for increasing the efficiency.

In this direction, the following contributions are done:

1. Design and implement a new protocol for urban sensing and data collection (Chapter 3).

2. Performance evaluation of the proposed protocol and evaluate different broadcast suppres-

sion techniques (Chapter 4).

3. Calculate the sensing capacity and validate it with simulation (Chapter 5).

Consequently, the collected data should be managed by choosing the right piece of data and

the right algorithm to build a model for a particular unit in a specific area, taking into account the

specificities of the VANET.

So an experimental framework was proposed and evaluated on different datasets, including a

dataset unrelated to VANETs but with some common properties which made it adequate for this

purpose.

Finally, the framework is applied to the data from a real world implementation (the DRIVE-IN

project Cmuportugal.org (2014)) which was collected in an urban area from 440 taxis in the city

of Porto.

The main contributions for this phase were:

4. Investigate the use of existing hierarchies in the data to improve the performance of the

learning process (Chapter 6).

5. Propose a metalearning framework for data hierarchy level and algorithm selection (Chap-

ter 7).

6. Evaluate the framework by applying it on different datasets (Chapters 8 and 9).





Chapter 2

State of the Art

In this chapter, we will summarize the state of the art related to the vehicular networks and machine

learning and data mining. The standard and technologies which are used in VANETs are described

in Section 2.1.

2.1 Technologies and Standards

The advent of Dedicated Short Range Communications (DSRC) makes the scenarios depicted

in the previous chapter realistic in a near future. In October 1999, the United States Federal

Communications Commission (FCC) allocated 75 MHz of the spectrum in the 5.9 GHz band to be

used by Intelligent Transportation Systems (ITS) in the USA. DSRC supports high vehicle speeds,

a transmission range of up to 1000 m, and default data rate of 6 Mbps (up to 27 Mbps) in that

frequency band Commission (2015).

In Europe, in August 2008 the European Telecommunications Standards Institute (ETSI) allo-

cated 30 MHz of spectrum in the 5.9 GHz band for ITS ETSI Headquarters (2008). In addition,

the Car-to-Car Communication Consortium (C2C-CC) was created by car manufacturers with the

main objective of increasing road traffic safety and efficiency by means of inter-vehicle commu-

nication Consortium (2008). The main goal of C2C-CC is to enable the different brands of cars

to communicate with each other and with RSUs. IEEE has recently released the 802.11p standard

for adding wireless access in vehicular communications iee (2013). The IEEE 1609 family of

standards for wireless access in vehicular environments (WAVE) is a higher layer standard based

on IEEE 802.11 iee (2013). WAVE is ensured the secure communication for V2V and V2I by

introducing the standards and architectures. The IEEE 1609 family consists of four sub-protocols

as follows:

1. IEEE 1609.1: it introduces the data and services within the WAVE architecture and also

the format of messages and data storage that are required to communicate between different

components of the WAVE architecture.

2. IEEE 1609.2: it defines the security issues to exchange messages.

9
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3. IEEE 1609.3: it consists of all network and transport protocols required for supporting

secure data exchange in WAVE.

4. IEEE 1609.4: it is an improvement of 802.11 Media Access Control (MAC) to support the

WAVE functionalities.

2.2 VANET Standards

The DSRC spectrum is divided into 8 channels: one 5 MHz channel reserved for future use and 7

channels with 10 MHz bandwidth. Channels 174, 176 and channels 180, 182 can be aggregated to

form 20 MHz channels, 175 and 181, respectively. Channel 178 is the control channel. Channels

172 and 184 are reserved for V2V advanced accident avoidance and high power public safety ap-

plications, respectively. The rest is available for both safety and non-safety channels. The channel

allocation of DSRC in North America and Europe is shown in Figures 2.1 and 2.2, respectively.

Figure 2.1: DSRC Channel allocation in north America Qian and Moayeri (2008)
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Figure 2.2: Frequency allocation in Europe Consortium (2008)

The 802.11p protocol uses Carrier Sense Multiple Access with Collision Avoidance (CS-

MA/CA) of 802.11 and the QoS supplement of 802.11e iee (2002). A node wishing to transmit

should listen to the channel during the Arbitration Inter Frame Space (AIFS) (in 802.11e)/ Dis-

tributed Interframe Space (DIFS) (802.11a) and if the channel is busy during the listening period,

then it performs backoff. The backoff procedure has two variables: Contention Window (CW ) and

Backoff count (BO). If the channel is busy, the node selects a random number between 0 and the

CW ([0,CW ]) for BO and only if the channel is free, it counts down the BO. If another station

starts transmitting, the waiting nodes stop their counting down of BO and will do the same after

the channel becomes free. Initially and after each successful transmission, CW is set to CWmin and

after each unsuccessful attempt, it is set to min{2×CW +1,CWmin}.
At the physical layer, IEEE 802.11p is essentially based on OFDM PHY defined for 802.11a iee

(1999). But there are some differences between the two standards at the physical layer, as pre-

sented in Table 2.1.

Table 2.1: Differences between 802.11p and 802.11a

Parameter 802.11p 802.11a

Channel Bandwidth (MHz) 10 20

Data Rate (Mbps) 3 to 27 6 to 54

Slot Time (µs) 16 9

Air propagation time (µs) < 4 � 1

CW (slots) [15,1023] [15,1023]

Latency < 50ms Seconds

Range (m) < 1 < 100

Mobility (mph) < 60 < 5
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2.3 Data gathering

VANETs are an emerging technology which adds the capabilities of the new generation of wireless

networks to vehicles. In-car users want to have connectivity to other networks like the internet.

Enabling Intelligent Transportation Systems (ITS) for vehicle needs vehicle-to-vehicle and also

vehicle-to-infrastructure communication. To collect data from VANETs, we need an efficient

protocol. An excellent data gathering protocol needs to use minimum communication time and

network resources while still providing low delay and high delivery rates. There are different ap-

proaches to making data from a node reach a gateway node: one is to have data delivery routes

between each node and a gateway node, created and maintained by routing protocols; or data can

be forwarded to a gateway node using hop-by-hop decisions, according to which one or more

nodes forward packets until the gateway is reached. The latter class can be further divided ac-

cording to the destination of the data, into data dissemination protocols, which deliver all data to

all nodes, including the gateway nodes, configuring a network broadcast; and unicast/multicast/-

geocast protocols, which deliver data to a subset of nodes only. We will present, in the following

section, the state-of-the-art on these two types of protocols.

2.4 Routing Protocols

Routing protocols can be classified in different ways. In our scheme routing protocols have two

categories, discussed in the following: Ad hoc Routing Protocols and Cluster-Based Routing Pro-

tocols.

2.4.1 Ad hoc Routing Protocols

Ad hoc On-Demand Distance Vector (AODV) Perkins and Royer (1999) and Dynamic Source

Routing (DSR) Johnson et al. (2007a) are reactive protocols originally designed for MANETs. A

number of studies have simulated and compared the performance of these protocols for VANETs Man-

ish (2004); Wang et al. (2005a). One study shows that AODV does not have a good performance

in the case of finding, maintaining and updating the routes in the VANET due to high mobil-

ity Wang et al. (2005a). Another study describes a highway scenario with few hops communication

where the created route with AODV probably will break due to the high mobility of cars Manish

(2004). To decrease this effect, the authors introduce the prediction-base AODV protocol: Pre-

dicted AODV (PRAODV) and Predicted AODV with Maximum lifetime (PRAODVM). These

protocols use the speed and location information of nodes to predict the link lifetime. PRAODV

creates an alternative route before the end of current link lifetime and PRAODVM, unlike AODV

and PRAODV that use the shortest path, uses the path with longer lifetime through the multiple

paths. But these methods depend on the accuracy of the prediction method.
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2.4.2 Cluster-Based Routing Protocols

In this kind of routing protocol, a virtual network infrastructure is created by clustering the nodes

in order to improve scalability. Each cluster has a cluster head which is responsible for intra- and

inter-cluster communication. Nodes in a cluster can communicate directly, but communication

between clusters is performed via cluster head. Many cluster-based routing protocols have been

studied in MANETs Lin and Gerla (1997a); Jie Wu (1999). But due to different behavior of

VANETs, these techniques are very unstable in VANETs and clusters created by these techniques

are too short-lived. This issue has been addressed in the Clustering for Open IVC Networks

(COIN) algorithm citeBlum2003. In this algorithm, the election of the cluster head is based on the

dynamics of the vehicles instead of their IDs, as in traditional clustering methods. They show that

COIN produces much more stable structures in VANETs by introducing lower overhead. COIN

increases the average cluster lifetime by at least 192%.

Alternatively, a cluster-based approach to improving packet delivery ratio was proposed Gunter

et al. (2007). It reduces the number of packets that are broadcast in the network. The authors have

proposed a medium access scheme (CBMAC) for VANETs which is based on clustering of the

vehicles. Their approach minimizes the hidden nodes problem by introducing clusters to provide

better scalability. Also in this scheme, as the cluster head (CH) can assign bandwidth to the mem-

bers of the cluster, fewer collisions occur, therefore increasing the reliability of the VANET. They

form the cluster by using the following algorithm: each node can have four states: Undecided,

Member, Gateway and Cluster Head. A node can enter the gateway state if it is a member of more

than one cluster. Furthermore, all nodes have a neighbors table which is updated by exchanging

hello messages. The authors evaluated CBMAC using simulation and compared their protocol

with IEEE 802.11 MAC, showing that the loss rate is significantly lower. In addition, the results

show that the protocol is able to form stable clusters for low and medium traffic densities.

2.4.3 Per-hop Forwarding

In this category, upon receiving a packet, each node analyzes it and decides to forward the packet

by using broadcast (dissemination), unicast, multicast or geocast. Here nodes do not know about

all paths from sender to destination and try to reduce the delay, packet travel time or increase

the packet reachability. We categorize this into two different categories; first, all protocols that

use broadcast for packet sending; second other protocols that use unicast, multicast or geocast

for sending the packets. Depending on the knowledge of the node about its neighbors, we can

divide these categories into two subcategories. When a node has information about the neighbors

and decision for forwarding is based on that information, we put it in the “Sender-based” sub

categories. When nodes have no information about their neighbors to decide for forwarding, we

put it in “Receiver-based” sub categories. We review some of related work according to our

classification.



14 State of the Art

2.4.4 Data Dissemination

VANETs can be used to gather and distribute sensing information for traffic management, safety

and commercial application in urban environments. One of the challenges in these environments

is how to retrieve data from the network. Vehicles gather information from sensors and send it

across other vehicles to infrastructure nodes, which function as gateways.

Relaying has been used to disseminate data Wu et al. (2004a). The authors proposed the

MDDV (Mobility-centric Data Dissemination algorithm for Vehicular networks) approach, de-

signed to address the data dissemination problem in partitioned and highly mobile vehicular net-

work. Since no end-to-end connectivity is assumed, the intermediate nodes store broadcast mes-

sages and forward them along a predefined trajectory geographically towards the destination. The

message dissemination information, for instance, source id, source location, generation time, des-

tination region, expiration time and forwarding trajectory is specified by the data source and is

placed in the message header. This technique improves the packet delivery ratio by allowing mul-

tiple vehicles to forward the message.

Another approach uses geographical information for routing to improve packet delivery with

less delay in urban area Lee et al. (2006). The authors propose two architecture models that

consider the location and number of infrastructure nodes in the network. They also take into ac-

count the traffic density factor: the more vehicles, the more infrastructure nodes. Each infrastruc-

ture node is responsible for its area. They used a publish-subscribe system to forward the events

through the network. Nodes interested in specific events must register themselves on infrastructure

nodes. In the case of new event, it is first forwarded to the infrastructure node that is responsible

for that area. The infrastructure node can then forward the event only to the interested nodes,

based on their registered interests. The first architecture is Content-Addressed Storage (CAS) that

takes advantage of infrastructure nodes by hashing the key of an event to a specific infrastructure

node. The second architecture is Mobility-Assist Storage (MAS), which opportunistically dissem-

inates events by “relaying” or sending events only to one’s neighbors. CAS is appropriate for

time-critical applications and MAS for delay tolerant applications.

Another approach for data dissemination in VANETs is Mobility centric Data Dissemination in

VANETs (MDDV) Wu et al. (2004a). The authors use a combination of three types of forwarding:

opportunistic, geographical and trajectory based forwarding. The vehicles know the road topology

and their own location in the network. The source nodes specify the source ID, source location,

generation time, destination region, expiration time and forwarding trajectory. The forwarding

trajectory is the path between the source and the destination region. They use the geographical

forwarding to send the packet from the source to destination. By geographically forwarding, the

MDDV tries to move the messages closer to destination. The MDDV determines who has to

forward the packets, when they have to forward them and when they can drop a packet.

Another protocol similar to CBMAC Gunter et al. (2007) is Dynamic Backbone-Assisted

MAC (DBA-MAC) protocol Bononi and Di Felice (2007) that uses cross layer MAC and clus-

tering for broadcasting the messages in VANETs. They assumed that alarm messages include: 1)
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a direction of propagation, 2) a maximum time-to-live (TTL) and 3) a risk zone (RZ). Only nodes

in this area forward the messages. The vehicles can have two states: normal vehicle (NV) or

backbone member (BM) and each BM maintains the backbone record, namely information about

vehicle ID, last hop and next hop. Creation of backbone has performed by broadcasting the BEA-

CON messages. In addition, their approach allows the fast advertisement propagation of the alarm

messages in the risk zone. Although all transmissions are broadcast, they use unicast along the

backbone. The results of performance evaluation of their approach, when compared with IEEE

802.11 DCF, showed general advantages in performance, reliability and overhead reduction.

2.4.5 Unicast/Multicast/Geocast

2.4.5.1 Sender-Oriented

Using geographical position information in VANETs is more common and routing protocols that

use this information have higher performance than topology based protocols like AODV and

DSR Liu et al. (2004a); Füß ler et al. (2002a). One of the preliminary protocols in this cate-

gory is the greedy routing protocol Bernsen and Manivannan (2008a) that always forwards the

packet to the closest node to the destination. Another known protocol in the literature is GPSR

(Greedy Perimeter Stateless Routing) Karp and Kung (2000a). This protocol consists of two dif-

ferent forwarding methods: greedy forwarding and perimeter forwarding. The packet consists of

the destination location and forwarding nodes can select the next hop by greedy selection of the

closest node to the destination. In this method, a beaconing algorithm is used for determining the

neighbor position. In the case that the node does not have a neighbor closest to the destination

but there are some nodes farther in geometric distance to destination, this protocol will use the

perimeter forwarding which uses the right-hand rule to select the next hop.

As an alternative, the GPSR protocol has been used in a simulation of a highway scenario Füß ler

et al. (2002a). It was shown that this geographical protocol achieves better performance when

compared to the DSR protocol because of fewer obstacles in the highways. But in an urban envi-

ronment, GPSR has some problems: first, greedy direct communication is not possible because of

existing building and trees; secondly, packets need to travel a longer path with longer delay than

with the DSR protocol; finally, packets are sometimes forwarded to wrong paths, causing longer

delays. Lochert et al. Lochert et al. (2005a) proposed Geographic Source Routing (GSR), which

uses the city digital map to get the destination position. By combining the geographical routing

and knowledge of the city map, GSR has better average delivery rate, smaller total bandwidth

consumption and similar latency of first delivered packet than DSR and AODV in urban areas.

Geocast routing Karp and Kung (2000a) is basically a location-based multicast routing. The

objective of a geocast routing is to deliver the packet from a source node to all other nodes with

a specified geographical region (Zone of Relevance, ZOR). A simple geocast scheme has been

proposed to avoid packet collisions and reduce the number of re-broadcasts Briesemeister et al.

(2000). When a node receives a packet, it does not rebroadcast it immediately but has to wait

some waiting time to make a decision about whether to do it or not. The waiting time depends on
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the distance of this node to the sender. Thus mainly nodes at the border of the reception area take

part in forwarding the packet quickly. When this waiting time expires and if it does not receive the

same message from another node then it will rebroadcast this message. By this way, a broadcast

storm is avoided and the forwarding is optimized around the initiating vehicle.

One of the protocols that has been designed is DV-CAST Tonguz et al. (2010a). This protocol

has three major components: neighbor detection, broadcast suppression and store-carry-forward

mechanism. They use hello messages to estimate the network topology and GPS information

to determine the direction of vehicles for broadcasting the data, reducing protocol overhead and

complexity. The simulation results show that the DV-CAST performs well in heavy traffic during

rush hours and very light traffic during certain hours of the day and also is robust against various

extreme traffic conditions.

In a very recent work Wu et al. (2010a), the authors have proposed a fuzzy logic based mul-

tihope broadcast for VANETs. In the protocol, a selection of the relaying node is done by neigh-

borhood evaluation. Upon receiving the hello message from its neighbors, the node evaluates

them according to distance, mobility and signal strength. Then it uses a fuzzy function to convert

the numerical value to some non-numerical value to combine three different metrics for decision

making. After measuring the numerical value from the received packet, they convert them to three

factors: Distance Factor (DF), with three possible values (Small, Medium and Large), Mobility

Factor (MF), with three different values (Fast, Medium and Slow) and Received Signal Strength

Indication Factor (RSSIF), with three values (Bad, Medium and Good). For example they use

these values for conversion to the three factor: distance Large: 1, Medium: 0, Small: 0, mobility

Slow: 0.75, Medium: 0.25, Fast: 0 and RSSI Good: 0.5, Medium: 0.5, Bad: 0. In this step they

combine three non-numerical values to determine the final ranking. This ranking is used to select

the best neighbor for relaying, using the Min-Max method. This method consists of two phases:

first, it selects the minimum value of three factors to determine the neighbors rank; second, it eval-

uates more than one neighbors with the same rank (Perfect, Good, Acceptable, non-acceptable,

bad and very bad), and then it uses the maximum rule to select the best neighbor to relay the

packet.

Then by using fuzzy logic, they convert the non-numeric value to a numeric value and use

those values in their process to select the relaying node. “The higher the value is, the better the

neighbor node will be.” Their simulation results show that in the case of some metric such as:

Number of broadcast per packet, Packet reception and End-to-end delay their protocol has better

performance when compared with other protocols, such as (Flooding, Weighted p-persistence

Wisitpongphan et al. (2007a), Multi Point Relays (MPR) Broadcast Qayyum et al. (2002) and

Enhanced MPR Broadcast Wu et al. (2010b)). Their protocol reduces the number of broadcast

messages by selecting only a subset of neighbors to forward the messages.

2.4.5.2 Receiver-Oriented

Broadcast is very common in VANETs and has been used for data dissemination through VANETs

and for finding an efficient route to destination in unicast protocols. A very simple way is flooding.
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Each node rebroadcasts a packet after receiving it. In this way, we will have multi-hop communi-

cation when the final destination is far from the source node. Flooding has a good performance for

small number of nodes in the network, but when the number of nodes increases, the performance

drops exponentially due to the increased probability of collision.

The performance of broadcast protocols depends on node density. We can have three types

of node density: dense area, sparse area and normal area. Each of those has some problems and

there are some solutions to cope with them. In dense areas like urban areas at rush hours, one

of the problems is collision, which is also known as the broadcast storm problem. To deal with

this problem is VANETs, broadcast suppression techniques are needed. There are three types of

broadcast suppression techniques: Weighted p-Persistence, Slotted 1-Persistence and Slotted p-

Persistence broadcasting Tonguz* et al. (2007); Tonguz et al. (2006a). In weighted p-persistence

broadcasting, upon receiving the packet from node i, node j checks the packet ID and rebroadcast

the packet with probability pi j if it receives the packets for the first time, otherwise it discards it.

And the probability of broadcasting is obtained in a simple way from the distance between nodes

i and j (Di j) and average communication range (R):

pi j =
Di j

R
(2.1)

In slotted 1-persistence broadcasting, upon receiving the packet from node i, node j checks

the packet ID and rebroadcasts it at assigned timeslot T Si j, if it receives the packets for the first

time and has not received any duplicates before the assigned timeslot. Otherwise it discards the

packet. T Si j can be calculated by the following expression:

T Si j = Si j× t (2.2)

where t is the estimated 1-hop delay and Si j is the assigned slot number and can be calculated by:

Si j = Ns× (
1−Di j

R
), Di j ≤ R, Di j > R (2.3)

and Ns is the predetermined number of slots.

The last broadcast suppression technique is slotted p-persistence that a combination of the two

previous approaches. Upon receiving the packet from node i, node j checks the packet ID and

rebroadcast the packet with probability pi j at the assigned timeslot T Si j, if it receives the packets

for the first time and has not received any duplicates before the assigned timeslot. Otherwise it

discards the packet.

In sparse areas, when a node has the packet and wants to broadcast it, maybe there is no node

to relay it too. So it needs to store the packet and when it finds another node in the communication

range, it can forward the packet to that node. This technique is known as store-carry-forward

mechanism Briesemeister and Hommel (2000); Wisitpongphan et al. (2007b).

In normal traffic density areas (i.e. not very dense and not very sparse), every node has dif-

ferent connectivity. It is possible to have many neighbors. We can consider this case as a dense
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area and use one of the three broadcast suppression techniques. On the other hand, it is possible

that some nodes have very few neighbors and so they can use the store-carry-forward technique,

which is typically used in sparse areas.

Furthermore, there are some other approaches that discuss the broadcast issue in VANETs in

general. For example, Durrest et al. Durresi et al. (2005a) introduced BROADCOMM for emer-

gency applications which is based on geographical routing and has a virtual structure. A highway

is divided into some virtual section that moves with vehicle. They suggest IEEE802.11 for the

MAC layer and 350-400 m as the length of each section. The first level of the hierarchy is all

the nodes within a section and the second level is represented by nodes which are usually located

close to the geographical center of the section, and which are called cell reflectors. The live time

of cell reflector is defined for a certain time interval and they will handle the emergency messages

coming from members of the same section, or close members from neighbor sections. The source

node broadcasts the emergency message within its section. Cell reflectors will multicast the mes-

sage to other cell reflectors and so on. If a cell reflector becomes a bottleneck, another node will

be selected to become the second cell reflector and the traffic will be shared between the two cell

reflectors.

The Urban Multi-Hop Broadcast protocol (UMB) Korkmaz et al. (2004a) is designed to over-

come broadcast storm, packet collisions, and hidden nodes problems in an urban area. In this

protocol, the source node tries to select the furthest node in the broadcast direction (directional

broadcast) and then will send the messages to that node for forwarding. The nodes do not have

any prior information about their neighbors. The authors proposed to install repeaters in all in-

tersections which will forward the packets in all road segments. They used Request to Broadcast

(RTB)/Clear to Broadcast (CTB) instead of RTS/CTS. The UMB protocol utilizes the channel very

efficiently since the forwarding duty is assigned to only one node in the broadcast direction.

Vector-based TRAcking DEtection (V-TRADE) and History-enhanced V-TRADE (HV-TRADE) Ya-

mada et al. (2002) are GPS-based message broadcasting protocols. The goal is to improve band-

width utilization. The basic idea is similar to the unicast routing protocol Zone Routing Protocol

(ZRP) Haas et al. (2002). Each node has a message to rebroadcast, send a position request to other

nodes and wait for a certain period of time for a reply from its neighbors. Based on position and

movement information received from its neighbors, their methods classify the neighbors into five

different forwarding groups: same_road_same_direction_ahead, same_road_same_direction_behind,

same_road_opposite_direction_ahead, different_road and same_road_opposite_direction_behind.

For each group, only a small subset of vehicles (called border vehicles) is selected to rebroadcast

the message. They show significant improvement of bandwidth utilization with slightly loss of

reachability, because of fewer vehicles to re-broadcast the messages. The V-TRADE has a lit-

tle higher bandwidth utilization than HV-TRADE, but HV-TRADE has better reachability than

V-TRADE.
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2.5 Algorithm Selection

2.5.1 Meta-Learning

The algorithm selection problem was formally defined by Rice in 1976 Rice (1976). The main

question was that which algorithm has the best performance for a specific problem? The meta-

learning started to shape in the late eighties Brazdil et al. (2009).

Finding the relevant meta-features for predicting the performance of the base-level algorithms

is discussed in different research works Aha (1992a); Michie et al. (1994); Gama and Brazdil

(1995); Brazdil (1998); Keller et al. (2000); Brazdil et al. (2003b). Meta-features may have in-

formation regarding the error-rate of base-level algorithms which is called landmarkers Bensusan

and Giraud-Carrier (2000); Pfahringer et al. (2000).

Several project with the relevant results to the meta-learning have been launched. The first

formal project in this area was MLT project Kodratoff et al. (1992). The MLT project create

a special system called Consultant-2 which can help to select the best algorithm for a specific

problem. The next two projects in this area were: Statlog Michie et al. (1995) and METAL

Brazdil et al. (2003a). In these projects, the level of adaptation was the main difference between

meta-learning and the traditional base-learning approaches.

It may also be important to select the best base-level algorithm not for the whole data set, but

rather for subset of the data set Brodley (1995) of even for the individual example Todorovski and

Džeroski (2003). Tuning the parameter of specific base-level algorithm is another task that meta-

learning can be helpful Soares et al. (2004). They try to tune the width of the Gaussian kernel.

Rijn et al. van Rijn, JanN. and Holmes, Geoffrey and Pfahringer, Bernhard and Vanschoren (2014)

have investigated the use of meta-learning for algorithm selection on Data Streams. Calculated

Meta-features on a small data window at the start of the data stream provide information about the

best algorithm. Meta-learning uses this information for the algorithm prediction in the next data

windows. And finally, a survey of meta-learning as reported by the machine-learning literature is

provided in Vilalta and Drissi (2002).

One of the main objective of research in the community is to develop a meta-learning approach

which is able to deal with the increasing number of models. It can produce advice dynamically on

the algorithm selection problem.

Dealing with this problem – the selection of different levels for different products –, meta-

learning approach is useful. It maps the characteristics of the data with the ideal level of granular-

ity Brazdil et al. (2009). DM models can be learned at different level of granularity. Consequently,

the data characteristics can be calculated and used to determine the best level for each product

Soares et al. (1999); Torgo and Soares (2010).

In 1976, John Rice used the term algorithm selection Rice (1976) which correlates the data

characteristics of a specific problem with the performance of the algorithms. Characterization of

a classification problem and its effect on algorithm performance is investigated by Rendell and

Cho Rendell and Cho (1990). They use the size and concentration of the classes as features. This

idea was extended in 1992 by Aha Aha (1992b). Aha creates rules for learning, i.e.,
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if a given dataset has specific characteristics (C1, C2, ..., Cn) then algorithm A1 should be

selected.

The number of examples, number of classes, number of prototypes per class, number of rel-

evant and irrelevant attributes, and the distribution range of examples and prototypes were the

selected features.

On the far side of the task of algorithm selection problem, there are many other problems that

the same idea can be derived. For example to select the best parameter settings (Levels in our

case), a meta-learning approach can be used. In 2005, Ali and Smith (2005) utilized meta-learning

to find the best kernel to use within support vector machines (SVMs). By changing the kernel,

the algorithm changes and in results there will be different performance for each setting. Also an

interesting framework for optimizing algorithm parameter by using meta-learning is presented in

Duch and Grudzinski (2001).

In addition, a meta-learning algorithm for supporting the selection of learning algorithms is

presented in Brazdil et al. (2003c). It uses k-Nearest Neighbor algorithm to determine the datasets

that are most similar to the under evaluation dataset. They use ranking rather than classification as

a new contribution.

Similar approach to the one presented in this section can be used for selecting the right level

of granularity in our problem. Our method is described in the next section.

2.5.2 Trip Duration

There has been several research on the trip duration prediction. Kwon et al. (2000) use the flow and

occupancy data from single loop detectors and historical trip duration information for to forcasting

trip duration on a freeway. Using real traffic data, they found out that simple prediction method

can have a good estimation of trip duration for trip starting in near future (up to 20 minutes) while

historical data can help better for the trip which starts in more than 20 minutes. The same approach

is used in Chien and Kuchipudi (2003). Zhang and Rice (2003a) uses a linear model to predict the

short-term freeway trip duration. In their model, the trip duration is varied as a smooth function of

departure time. Their results show that for a small data set, the error varies from 5% to 10% while

for the bigger data, the variation is from 8% to 13%.

Support Vector Regression is used for prediction of trip duration in Wu et al. (2004b). They

utilize real highway traffic data for their experiment. They suggest a set of SVR parameter for

the prediction which is able to outperform other baseline trip duration prediction model. Balan

et al. (2011) is a real-time information system that provide the expected fare and trip duration for

passengers. They use historical data consisting of approximately 250 million paid taxi trips for the

experiment. But the use of meta-learning for the prediction of trip duration is still missing.

In our knowledge, there is no previous work which uses meta-learning for trip duration predic-

tion. Considering the rapid changing of behavior of vehicular network, using a single algorithm

for forecasting the travel time will end in unreliable prediction. In addition, using Trial and error

to find out the algorithm which fits well to the specific data set (data set for a specific vehicle and

in a specific time) would be time consuming and probably is not useful.
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Chapter 3

Data Gathering for Sensing
Applications in Vehicular Networks

3.1 Introduction

Vehicular ad-hoc networks (VANET) were motivated mainly by safety and traffic management

applications, followed by infotainment applications that provide an additional commercial utiliza-

tion of the new communication infra-structure. Alternatively, we propose to use a VANET as

the infrastructure for an urban cyber-physical system, an approach that has not been extensively

explored so far.

Vehicles equipped with a wide range of sensing devices and the ability to communicate with

each other offer a unique opportunity for gathering real-time data about a city, like traffic con-

ditions, environmental parameters, video and audio for surveillance Gerla and Kleinrock (2011),

or physical condition of the drivers Rodrigues et al. (2010a). A good overview of existing work

on using vehicles or VANET for sensing can be found in Gerla and Kleinrock (2011). Existing

VANET solutions either apply on-demand querying for local dissemination within the VANET Lee

et al. (2009b), sometimes keeping the data in the location it pertains to Dikaiakos et al. (2007a), or

rely on delay-tolerant networking and open Wi-Fi access points for sending the data to the Internet

backbone Hull et al. (2006a). However, the first are inefficient for real-time traffic or environmen-

tal monitoring due to the query overhead and the need to globally access the data, and the latter

cannot guarantee up-to-date data. Knowing the updated state of the various relevant variables for a

city is necessary for applications such as navigation using real-time traffic information for regular

and for emergency vehicles, or personal mobility and environmental monitoring.

The purpose of sensing in the sense of a cyber-physical system is to provide the sensed data to

entities outside the VANET in almost real-time. This corresponds to a system architecture where

several or all nodes in the VANET are data sources and the ultimate destination of the data lies

outside the VANET, whereby data can get there through one or more gateways. This chapter

proposes and evaluates a broadcast-based protocol for data collection over VANET.

23
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In scenarios of high node density broadcast storms impair communication in VANET. Several

algorithms have been proposed to mitigate them mostly in scenarios of safety message dissemina-

tion in highways, with some techniques focusing on reducing the amount of forwarders at each hop

using probabilistic forwarding and suppression Tonguz et al. (2007, 2006b); Wisitpongphan et al.

(2007c), some relying on using exchanged neighbor information to explicitly limit the number of

forwarders Sepulcre et al. (2011a).

We consider that it is inefficient to continuously exchange neighbor information in a high-

density volatile network for several reasons. First, there is the overhead of periodically exchanging

the neighbor list. Second, additional mechanisms must verify whether the chosen forwarder actu-

ally forwards the packet. Third, another major reason for not using an explicit choice of a single

forwarder is that, in urban scenarios, this choice would require knowledge of the road topology

and car density towards the destination to avoid routing packets to a dead-end. And it does not

seem feasible to do routing on the road topology on a packet-by-packet basis.

Instead, we take the approach of adding the geographic location of current forwarder and the

destination to each data packet and use this information at the receivers to rank them as potential

forwarders in a distributed fashion on a packet by packet basis. The potential forwarders are

differentiated using back-off timers and suppression is used to limit the number of forwarders,

extending existing techniques to the urban sensing scenario. We evaluate the proposed protocol

using the NS3 simulator for large-scale simulation and compare its performance with well-known

broadcast-based protocols in an urban setting. We analyze networking metrics, like the packet

delivery rate, the end-to-end delay and the number of hops in the path, as well as the number of

replicas that reach the destination, i.e. the redundancy added by the protocol, and the overhead in

terms of total amount of packets created in the network.

The rest of the chapter is organized as follows: Section 3.2 describes the novel protocol and

its parameters. The simulation setup is described in Section 3.3. Section 3.4 shows the results of

the performance evaluation of the protocol, and finally Section 3.5 concludes the chapter.

3.2 Broadcast-based Data Gathering Protocol

The proposed protocol aims at collecting large amounts of data from sensors installed in vehicles

in an urban environment, configuring a cyber-physical system for an urban area. We envision

that vehicles move within the urban environment and collect information like pollution or traffic

conditions and that the data generated in each node is periodically sent to a back-office using the

VANET as sensing infra-structure. In this scenario, we have many-to-one communication pattern

from sources to the final destination and we assume that each node knows its own geographical

location information and that of the final destination. The goal of the data gathering protocol is to

collect this data with high packet delivery ratio (PDR), limited delay and low amount of overhead

using a VANET. It is more critical in a scenario where all nodes are data sources than in other

VANET scenarios to avoid congestion collapse by limiting the amount of packets forwarded in the

network.
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We propose Back off-based Per-hop Forwarding (BPF), a data gathering protocol that uses

the location information to select the forwarding order among the nodes receiving the packet by

mapping it into back-off time, so that nodes likely to be nearer to the final destination have shorter

back-off times. BFP has the following properties: 1) it does not require nodes to exchange peri-

odic messages with their neighbors communicating their locations for keeping low the manage-

ment message overhead; 2) it uses geographic information about the current sender and the final

destination node in the header of each data packet to route it in a hop-by-hop basis; 3) it takes

advantage of redundant forwarding to increase packet delivery to a destination. The novelty of

this protocol is the use of the final destination for per-hop forwarding in a unicast urban scenario.

It takes advantage of the geographic location of the destination to direct the forwarding towards

the destination, being more efficient than destination-agnostic protocols commonly used for safety

message dissemination. Moreover, it takes advantage of redundancy to be more effective than pro-

tocols that specify one single forwarder, since specifying one single per-hop forwarder in an urban

environment requires additional knowledge of the full street map towards the destination, or the

chances are high that a packet is routed to a dead-end or along a very long route.

3.2.1 BPF Protocol Design

Figure 3.1 illustrates the scenario in considered to explain the calculation of the per-hop back-off

time: node i is the previous hop for node j and nodes 1, 2 and j are potential forwarders.

Figure 3.1: Node configuration used for calculations

The most straightforward choice for forwarding is the node geographically closest to the final

destination Karp and Kung (2000b), but that information is not available when neighbor nodes

do not exchange their locations with each other. So, the preferred forwarders are the nodes that

represent the most progress from the previous sender, which are the nodes located closer to the end

of the transmission range, which is taken by protocols like Contention Based Forwarding (CBF)

or the 1-persistent broadcasting. We further reduce the number of forwarding nodes using the

distance to the final destination in the component of the back-off calculation.
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Usually, there are 2 constant values used to calculate the back-off time: Di j and d j. These

values are the distance to the last hop and to the final destination, respectively. To analyze the

effect of these two constant on the back-off time, we define two different components according

to these values in this section: C1 and C2.

The first component is the distance between current node ( j) and previous hop (i), Di j, com-

pared with the average communication range (R). By selecting nodes farther from the previous

node to forward sooner than other nodes is a receiver-based greedy approach that makes packets

travel the largest possible distance at each hop. We define the following component, which selects

a node at the end of the communication range to have lower back-off time than other nodes:

C1 = (1−
Di j

R
) (3.1)

However, we wish to further concentrate the preferred forwarders in the direction of the final

destination, since nodes at the end of the communication range in the opposite direction of the

final destination can cause a useless increase in the number of replicas (in Figure 3.1 node 1 is in

this situation). The second component in the calculation of the back-off time is the distance to the

final destination, d j, relative to the distance between the previous hop and the final destination, di:

C2 = (1.0+
d j−di−R

2R
) (3.2)

Figure 3.2 shows the back-off time calculated as a combination of C1 and C2. In these plots,

the previous node is located at (0,0), the final destination is at (2000,0) (horizontally to the right

of the plot) and the communication range equals 500 m. The first plot depicts the back-off as an

equally weighted sum of both components, while the second plot considers only C2. The initial

plot shows only little directionality towards the destination, because the C1 component is dominant

in the sum due to the fact that Di j is much larger than d j−di−R except when the nodes are very

close to the destination. Therefore, for the evaluation of the BPF, we only consider the calculation

based on the C2 component.
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Figure 3.2: Back off time in microseconds for different positions around a node located at (0,0)
according to C1 and C2. Location of the final destination (2000,0) (horizontally to the right of the
plot) and communication range is 500 m.
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3.2.2 How to map the back-off value to time?

After calculating the back-off components, we need to map this value to the back-off time. Un-

like other broadcast storm mitigation techniques Wisitpongphan et al. (2007c), we do not use the

WAIT_TIME; we just use different back-off times to forward the packet and to distribute for-

warding events at the time. The protocols in Wisitpongphan et al. (2007c) use a WAIT_TIME of

5000 µs to suppress as many duplicate packets as possible from previous forwarders. But we aim

at forwarding the packet as fast as possible by the best-positioned nodes and cancel forwarding

from nodes not so well positioned to reduce the amount of transmission in the network. So we

give the shortest back-off time to the node with the most progress from the previous forwarder and

that transmission will suppress forwarding on nodes with less progress to the destination.

In our protocol, the back-off value calculated from the components is between 0 and 1, and

it is multiplied by 5000 µs which is the WAIT_TIME in the known broadcast suppression tech-

niques Wisitpongphan et al. (2007c). So, the back-off time at any hop lies in the interval [0,5] ms.

Note that this is the back-off time of the routing protocol and the MAC layer exponential back-off

algorithm is run for every packet passed to the MAC layer.

3.2.3 Back off-based forwarding algorithm

The flow diagram of the per-hop forwarding algorithm executed in each node upon reception of

a packet is shown in Figure 3.3. Each node upon receiving a packet, checks if it is the final

destination node. If not, it checks if it received the packet before. If so, it cancels the forwarding

event if the back-off time has not expired. In the case that it receives the packet for the first time,

it calculates the back-off time and schedules the forwarding event on the back-off time and marks

the packet as a received packet.
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Figure 3.3: Flowchart of data gathering Protocol

3.3 Simulation

We used the Network Simulator 3 (ns-3) ns3 version 3.9. The topology used for movement of cars

was Manhattan Grid with size 5×5 (from (0m,0m) to (2500m,2500m)), so the simulated area was

2.5km×2.5km with 25km road length, and the final destination was located at (1250m,1250m) in

the center of topology.

For the first results, and to keep feasible simulation durations, we simulate with a limited num-

ber of source nodes. We selected 8 source nodes located as far as possible in the topology. Node

density is set to 2.4, 4.8, 7.2 and 9.6 nodes/km, totaling 61, 121, 181 and 241 nodes, respectively.

The communication range has been set to 500 m, and each node had on average at least 2 nodes

(low node density) and at most 20 nodes (high node density and at the intersections) within the

communication range. Nodes move with an average speed of 14m/s and minimum speed of 3 m/s
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without pause time. Each source node sends 512 Bytes packets with a rate of 5 packets/s (20kbps)

and the simulation time is 200 seconds.

The underlying MAC protocol is set to 802.11p with PHY data rate equal to 6 Mbps and

channel bandwidth is 10 MHz. The propagation loss model used in the simulation environment

was Nakagami-m Propagation Loss Nak (July 13, 2011); Shigehiko (2003) with m = 1.55 which

is the recommended value for urban environments Rubio et al. (2007a).

Each simulation configuration is done for 4 different protocols: BPF using only C2, weighted

p-persistence, slotted 1-persistence and slotted p-persistence with p = 0.5. For each combination

of above parameters we ran 10 independent simulation runs and the results show the average and

95% confidence interval for each metric.

3.4 Performance Evaluation

For evaluating the performance of the BPF protocol we use the following metrics: packet delivery

ratio (PDR%), the end-to-end delay between source nodes and the final destination, number of

hops in the path, and number of replicas of a packet that reach the final destination.

3.4.1 Packet Delivery Ratio

Figure 3.4 shows the packet delivery ratio between sources and the final destination for the 4

mentioned protocols at four different traffic densities. BPF achieves higher end-2-end PDR% than

any of the other 3 protocols. In areas of low node density, all protocols have the same PDR%

performance because there are few nodes within the communication range to forward the packet

and in many cases forwarded packets end in a dead-end. As the node density increases, BPF shows

increasingly better behavior than other protocols.

The BPF protocol significantly improves the end-to-end PDR% in high node density by lever-

aging packet redundancy in the network. This effect overwhelms the additional collisions caused

by the redundant forwarding.

As shown in Figure 3.4, the PDR% increases from 8% to 78% for the BPF protocol when

the node density increases from 2.4 to 9.6 nodes/km, which is 85% more than the PDR% of the

second best protocol in a well-connected network in high node density. Moreover, the PDR%

increasing tendency is higher than that of the other 3 protocols, which seem to start saturating at

the maximum node density simulated.
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Figure 3.4: PDR% for 4 different protocols with 8 sources (20kbps)

3.4.2 End-to-End Delay

Figure 3.5 shows the end-to-end delay between sources and the final destination, which is an

important metric since we aim at providing up-to-date data about a city in a timely manner. BPF

also has a lower end-to-end delay when compared with the 3 other protocols, mainly because it

does not have a WAIT_TIME of 5 ms on each hop, as do the other protocols.

When node density increases, the number of collisions increases because there are more nodes

in the communication range of any node, and the probability of having a back-off time near 0

increases because of the higher number of nodes at the end of communication range.

On the other hand, the broadcast mitigation protocols can deal better with this because they use

the WAIT_TIME before forwarding, sender nodes receive more duplicate packets from neighbor

nodes before forwarding and choose the nearest node to itself for its calculation, so the probability

of collision and the delay decrease. This slump is more significant for the protocols that use the

probability for forwarding (slotted-0.5 and weighted-p). The protocols will not forward the packets

with probability 1− p, reducing the probability of collisions, but enough other nodes forward the

packets and the delay will decrease.
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Figure 3.5: Delay for 4 different protocols with 8 sources (20kbps)

3.4.3 Number of Hops and Amount of Replicas

Figure 3.6 shows the number of hops from source to the final destination. The number of hops is

the same for all the protocols for different node density because all of the protocols try to choose

the nearest node to the final destination only in different ways.
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Figure 3.6: Number of hops for 4 different protocols with 8 sources (20kbps)

As discussed before, BPF distributes the back-off time and gives shorter back-off time to the

nodes which are nearer to the final destination, trying to reduce the number of replicas through

suppression. The other protocols do it by using WAIT_TIME and allowing for the reception of

all possible packets with the same ID from neighbor nodes and then using one of those packets

to calculate whether or when to forward the packet. As Figure 3.7 shows, the BPF without using

WAIT_TIME produces the same number of replicas at the final destination, showing that our

protocol achieves higher PDR% with the same redundancy as the other protocols, i.e. it is more

efficient.
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Figure 3.7: Average Number of replicas per uniquely received packets for 4 different protocols
with 8 sources (20kbps)

3.4.4 Scaling Source Nodes

Since we envision a scenario where all nodes can be data sources, Figure 3.8 shows the PDR% for

increasing percentage of nodes being network sources in the highest node density (9.6 nodes/km)

scenario previously considered. As expected, as the number of source nodes in the network in-

creases, the PDR% decreases due to increasing network congestion. Nevertheless, the proposed

protocol shows a higher PDR% in all situations, showing a higher efficacy. As a future work, we

will study a way to increase the PDR% for high node density having all nodes as source nodes by

decreasing the number of useless forwarding.
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Figure 3.8: PDR% for different number of source with 9.6 nodes/km

3.5 Summary

We envision the usage of a VANET as an infra-structure for an urban cyber-physical system that

makes available up-to-date data about various parameters of an urban area to services outside of

the network. The main consumers of such data are applications like as traffic management or

navigation using real-time traffic information for regular and for emergency vehicles, or personal

mobility and environmental monitoring. The data gathering system is modeled as a many-to-one

communication over VANET, a scenario that has not been previously addressed. In this scenario,

broadcast storms are more likely to happen than in regular scenarios, since there are more source

nodes regularly sending packets, so the amount of congestion in the network should be carefully

monitored.

In this chapter, we propose the Back off-based Per-hop Forwarding (BPF), a broadcast- and

receiver-based per-hop forwarding protocol that selects the forwarding order among the nodes

receiving the packet by mapping it into back-off time, so that nodes likely to be nearer to the

final destination have shorter back-off times. BFP has the following properties: 1) it does not

require nodes to exchange periodic messages with their neighbors communicating their locations

for keeping low the management message overhead; 2) it uses geographic information about the

current sender and the final destination node in the header of each data packet to route it in a

hop-by-hop basis; 3) it takes advantage of redundant forwarding to increase packet delivery to a

destination.
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We evaluated the proposed protocol and compared its performance to broadcast storm mitiga-

tion techniques for safety message dissemination using ns-3. The results show that the proposed

protocol achieves higher packet delivery rates and uses on average the same number of hops and

causes less redundant packets at the data sink. When subject to increasing load due to increasing

number of nodes generating data, all studied protocols significantly reduce the PDR%, although

BFP maintains a higher delivery efficacy.

However, the results also indicate that there is still room for improving the performance in

higher load scenarios, which will be the focus of the next steps. Another matter of interest in

this context is analyzing the effect of the length of the path between sources and destinations and

limiting the amount of network congestion observed near the sink, a typical problem from sensor

networks.



Chapter 4

Supporting Sensing Application in
Vehicular Networks

4.1 Introduction

Vehicular ad-hoc networks (VANET) have moved into the spotlight driven mainly by the bene-

fits expected from safety, traffic management, and infotainment applications Gerla and Kleinrock

(2010). In this chapter, we propose a different utilization, namely to use a VANET as the infras-

tructure for an urban monitoring system, an approach that has not been explored so far. Vehicles

equipped with a wide range of sensing devices and the ability to communicate with each other

offer a unique opportunity for gathering real-time data about a city, like traffic conditions Hao

(2010), environmental parameters, video and audio for surveillance Gerla and Kleinrock (2011),

or physical condition of the drivers Rodrigues et al. (2010b). Knowing the updated state of relevant

variables for a city is not only critical for applications such as navigation using real-time traffic

information both for regular and for emergency vehicles, but also for personal mobility support

and environmental monitoring Rodrigues et al. (2011a).

The IEEE has recently released the 802.11p standard for VANET IEE (2010), which is derived

from the 802.11a and 802.11e standards. The 802.11p PHY uses the 5.9 GHz frequency band

with channels of 10 MHz. Additionally, 802.11p MAC does not require node association for

communication, and no handshakes or acknowledgments are foreseen on the control channel.

The purpose of urban sensing is to provide information about an urban area to entities outside

the VANET in near real-time. Each node collects information about its environment and sends

it periodically to the gateway, configuring a many-to-one network topology, where all nodes are

simultaneously both data generators and forwarders and the ultimate destination of the data lies

outside the VANET.

Several protocols for data collection in wireless sensor networks (WSN) and mobile ad-hoc

networks (MANETs) have been previously proposed, but VANET links are more volatile and

multi-hop paths have very short durations Viriyasitavat et al. (2011), in addition to the lack of

reliability at the link level due to the highly dispersive environment. In this scenario, the protocols

37



38 Supporting Sensing Application in Vehicular Networks

developed for WSN incur a very high path management overhead Li et al. (2009) and are not

adequate. On the other hand, existing VANET protocols focus on unicast or data dissemination,

and the scenario described has not been previously addressed.

This chapter proposes and evaluates a data collection protocol over an urban VANET. Our

main contributions are 1) a new data collection protocol for data gathering in an urban area; 2)

the evaluation of different suppression levels to limit the number of forwarders at each hop; 3)

the benchmarking of broadcast-based protocols using a metric appropriate to measure sensing

performance.

Our results show that significant gains can be obtained from probabilistic forwarding to further

reduce the replication of packets at each hop while there is a significant amount of packets from

each road segment received at the gateway for a wide range of vehicle densities.

4.2 Data Collection Challenges

The envisioned scenario is a city environment with moving cars which are collecting sensor data

about the city, e.g. noise or air pollution, and the VANET is used as sensing infrastructure for

gathering and sending the data to a back-office outside the VANET for monitoring purposes. This

configures a many-to-one communication pattern, and it is assumed each node knows its own

geographic position and that of the gateway.

In a city, cars move along the streets with unpredictable patterns and buildings block the com-

munication between vehicles in non-aligned streets, creating a very volatile environment, where

a single direct link lasts on average 20 s Viriyasitavat et al. (2011). Data collection protocols for

wireless sensor networks and MANETs foresee some movement and provide mechanisms for path

re-establishment, but they would need to be used too often in such volatile scenarios causing too

high an overhead.

On the other hand, the number of vehicles in each street segment is highly variable in time and

across different streets, and not feasible to be estimated in real-time by vehicles in other streets

with low overhead. This makes it difficult to use source routing to take the packet towards the

destination, because it is not possible to know at the packet source, or anywhere along the way,

whether there are vehicles that can serve as forwarders in the street segments between any vehicle

and the gateway, causing packet die out with high likelihood.

Furthermore, during traffic congestion, communication can be very difficult due to an overly

loaded shared medium. In this situation, which is common in urban areas, requiring additional

message exchange for coordination purposes increases further the medium load.

A protocol for data collection in an urban scenario using vehicle-to-vehicle communication

must take all these limitations into account.
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4.3 Protocol Design

The proposed protocol is Urban Data Collector (UDC) protocol, a data gathering protocol that

has the following features: 1) it does not require nodes to exchange periodic messages with their

neighbors; 2) it uses the 802.11p MAC layer; 3) it takes advantage of redundant forwarding to

increase packet delivery to the gateway; 4) it limits the amount of redundancy using suppression

techniques.

The UDC protocol is a network layer protocol that can be run on top of the recently standard-

ized 802.11p MAC. It is a broadcast- and receiver-based protocol, so that it can take advantage

of any node that receives a forwarded packet without requiring an exchange of information about

node present in the neighborhood. This is especially relevant because the MAC layer does not pro-

vide acknowledgments, and it is not easy for a forwarder node to know whether its packet has been

received by another node. Next, we exemplify why some well-known solutions are not adequate

for data gathering in urban areas, and explain how our protocol addresses those issues.

Figure 4.1: UDC help packets to get to the gateway when a path in the direction of gateway is
blocked by a building.

Figure 4.1 illustrates a case where a greedy protocol cannot deliver a packet to the gateway

(shown as an antenna on the right bottom) because a chosen forwarder does not have any neigh-

bor in the direction of the gateway. Protocols like GPSR Karp and Kung (2000a) use perimeter

routing technique to recover from the blocked path and find another path to the gateway, but these
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introduce a high delay and cause a lot of additional transmissions. Because the proposed protocol

follows two paths simultaneously (black and gray paths in Figure 4.1), although the black path is

blocked, the gray path provides a redundant path which avoids packet die out.

Figure 4.2: UDC avoid packet die out when an accident happens on the direction of the gateway.

In Figure 4.2, the main path (black path) to the gateway is blocked because the packet reaches

a node that has no other nodes in range. This can happen because of the high volatility of the

network, where the node that sent the packet is no longer in range after the routing dead-end has

been detected. In this case, the perimeter technique will not be able to recover from this situation

because there are no other nodes in the communication range of the single vehicle that has the

packet. Because our protocol uses both the main path (black path) and the redundant path (gray

path) for forwarding the packet the likelihood of both dying out is reduced.

Existing protocols get stuck in a blocked road or a road without forwarders toward the gate-

way because most of them take a binary decision for selecting the next forwarder. UDC gives

the forwarding opportunity to several neighbor nodes to create redundant paths to avert packet die

out. Finally, a fully distributed suppression technique that requires no coordination among nodes

has been used to limit the number of redundant paths so as to reduce the overhead. This is ac-

complished by taking advantage of two different types of forwarding: directional forwarding and

probabilistic forwarding. Directional forwarding means that each node, upon receiving a packet,
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forwards it in the direction of the gateway after the expiration of a timer, which is used for giv-

ing forwarding priority to nodes that represent more progress towards the gateway. Probabilistic

forwarding means that each node forwards the received packet with a probability which depends

on difference distances between itself and the previous node to the gateway. The next sections

describe in detail how these two techniques are combined to provide the desired functionality.

4.3.1 Directional Forwarding

UDC uses a network layer timer calculated as a function of the difference between the distance

of the previous and potential forwarder to the gateway to prioritize forwarders nearer to the gate-

way. The timer is calculated at each node in a distributed manner based only on the information

contained in the header of the received packet and of the node itself.

Figure 4.3: One-hop forwarding entities

Figure 4.3 illustrates the scenario used to explain the calculation of the timer: node i is the

sender of the packet and nodes 1, 2 and j are receivers and potential forwarders. The communi-

cation range is divided into two different areas, marked white and gray in Figure 4.3. Nodes in

the gray area are nearer to the gateway than the previous hop, whereas nodes in the white area are

farther away. Nodes that represent the most progress towards the destination should be preferred

forwarders. These are the nodes located closer to the end of the transmission range in the direction

of the gateway, hence, they shall have shorter timers and forward earlier than nodes farther away

from the gateway.

The time coefficient is calculated according to Equation 4.1. This timer coefficient lies in

range [0, 1] and is then multiplied by the maximum timer Tmax to deterministically calculate the

actual timer value at all potential forwarders (Figure 4.3).

C = (1.0+
d j−di−R

2R
), (4.1)
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where d j is the distance of node j to the gateway, di the distance between the previous hop and

the gateway, and R is the communication range.

4.3.2 Suppression Techniques

Suppression techniques are mechanisms that effect the reduction of the number of packets re-

forwarded at each hop. The simplest suppression mode is that any node that hears a packet being

forwarded while waiting for timer expiration stops the timer and discards the packet. In this way,

the node that correctly receives a packet and is closest to the gateway will be the first to forward,

and any node that hears that forwarding will not double forward. But nodes on different sides of

the previous hop may not hear each other, i.e., nodes in the white area do not hear nodes in the gray

area in Figure 4.3 and cause duplicated forwarding. This problem could be solved by limiting the

forwarder nodes to nodes that are nearer to the gateway than the previous hop. But this is likely to

raise a problem for low node density, causing packet die out in the more likely event of lack of a

forwarder nearer to the gateway.

Four different levels of suppression have been studied to overcome these problems: basic,

weak, moderate and strong suppression. In the basic method, nodes discard a packet if they

receive the same packet during the timer or wait time (see Section 4.3.3), meaning that it has

been forwarded by a node which is closer to the destination.

In weak suppression, UDC reduces the number of forwarders by using probabilistic forwarding

for the nodes with higher distance to the gateway (white area in Figure 4.3), while nodes closer

to the destination (gray area in Figure 4.3) forward the packet with probability one. Nodes in

the white area forward a packet with a probability that decreases with increasing distance to the

gateway, calculated according to Eq. 4.2.

p f wd = (1.0−
d j−di

R
) (4.2)

In strong suppression, nodes in the gray area, which are ranked by a timer, forward the packet

with a different probability, calculated according to Eq. 4.3 and nodes in the white area do not

forward the packet at all.

p f wd = (
di−d j

R
) (4.3)

An intermediate level, moderate suppression, is added for which the forwarding probability

is increased linearly with decreasing distance of potential forwarders to the gateway, calculated

using Eq. 4.4.

p f wd = (
di−d j +R

2R
) (4.4)

Figure 4.4 shows the forwarding probability of different suppression levels where the x-axis

shows the difference distance between the last hop and potential forwarders to the gateway (di−d j)

relative to the communication range (R).
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The complete network layer forwarding protocol algorithm is described in Figure 4.5. Upon

receiving a packet, node checks if it is not a gateway and consequently if it did not receive the

packet before, it calculates the timer (section 4.3.1) and in the end of the timer according to the

probability (section 4.3.2) forwards the packet.
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Figure 4.5: Protocol algorithm

4.3.3 Channel Access Time

The average CSMA/CA channel access time obtained from simulation of UDC protocol with

different suppression techniques is illustrated in Figure 4.6. The average channel access time for

all node densities for 4 different suppression techniques was 5 ms. This time is embedded in the

protocol by letting each node wait for this duration before starting the timer at the network layer,

to allow the suppression mechanisms to hear packets forwarded by other nodes.
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Figure 4.6: Average channel access time for 4 suppression techniques.The slotted 1-persistence
protocol used for comparison is introduced in Chapter 2.

4.4 Simulation

The Network Simulator 3 (NS-3) ns3 version 3.9 is used to simulate a 2.5× 2.5 km Manhattan

Grid topology with 5× 5 roads, adding up to a total of 30km road length. There is one gateway

located in the center of the topology, at (1250 m, 1250 m), and all other nodes are data sources.

The communication range is set to 500 m using a path-loss exponent of 2.5, and each node has

on average at least four nodes and at most 84 nodes (crossroads with 42 nodes/km) within its

communication range. The data rate is set to 1 kbps with100 Bytes packets, which is sufficient for

envisioned sensing applications Rodrigues et al. (2011a). The other simulation parameters can be

found in Table 4.1.

Table 4.1: Simulation Set up

Parameter Name Value

Node Density 4, 8, 16 and 42 nodes/km
Average Speed 14 m/s

Minimum Speed 3 m/s
MAC protocol 802.11p

Channel Data rate 6 Mbps
Channel Bandwidth 10 MHz

Communication Range 500 m
Propagation Model Nakagami-m (m=1.56)
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Two seconds warm-up time is considered at the start of the simulation before reaching steady-

state. The simulated time is set to guarantee that each node generates at least 20 packets. UDC with

four different suppression levels (Section 4.3.2) and the maximum timer equal to Tmax = 5ms is

used for simulation. The slotted-1 persistence protocol Wisitpongphan et al. (2007a) is employed

for comparison because it showed the best performance in a benchmark of existing protocols for

data gathering using VANET in Nozari Zarmehri and Aguiar (2011) (see Chapter 3).

4.5 Performance Evaluation

The performance of UDC is evaluated using the following metrics:

• Sensing accuracy: In the city environment for having an explicit view about the city, the

urban sensing application needs having information about each road segment. Then the

application can extract useful information about each road segment and expand it from road

segment to entire city. So the sensing accuracy is defined to show how obtained information

is accurate and can be applicable for the urban sensing. Therefore, it has been defined as

a number of received packets from each road segment in a second from all nodes within

that section. To calculate it, after analyzing the collected data at the gateway, the received

packets are separated depending on the source‘s location.

• Network efficiency: The question of how well the protocol acts in the broadcast fashion is

defined as network efficiency. This metric shows how many of the packet forwardings are

used for the packets which get to the sink. The definition is: the number of hops for each

packet receives at the sink, including both unique packets and their replicas, divided by the

number of all forwarded packets in all nodes.

Additionally, extensive simulations were run to determine the different reasons for the packet

discards at each node, and the evaluation of these results is shown in this section.

4.5.1 Sensing accuracy

Figure 4.7 shows the sensing accuracy for the UDC with different suppression levels. It plots

the average number of received packets from each road segment at the gateway in one-second

windows in the simulated road topology against varying node densities. It shows that the sensing

accuracy is most dependent on the node density when using the strong suppression level. For the

lowest node density, it discards more than 87% of the received packets at each hop and is not able

to produce enough redundancy paths, causing a high probability of packet die out. As the node

density increases, the strong suppression level represses about 97% of received packets at each hop

and thus reduces the number of collisions, achieving the highest sensing accuracy for the highest

node density.
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Figure 4.7: Sensing accuracy for different data collection mechanism in urban area

On the other hand, the weak and basic suppression level achieve similar sensing accuracy with

less dependency to the node density. Since the sensing application needs to obtain information

from each road segment independently of the node density, a protocol with fewer variations in the

sensing accuracy for different node densities is a better choice for a sensing application. This fact

and the fact that both provide the highest accuracy for the lowest node density, makes them a better

choice for the envisioned application. The moderate suppression level has a sensing accuracy

that lies midway between the performance of weak and strong, showing better performance than

strong suppression at low node density and better performance than weak suppression at high node

density.

4.5.2 Network Efficiency

Figure 4.8 shows that the UDC with strong suppression level uses broadcast forwarding in the most

efficient way, since a larger percentage of the packets forwarded in the network end up reaching

the sink. More interestingly, the weak suppression level shows a higher network efficiency than

the basic level while achieving similar sensing accuracy (see the previous section) since the lower

amount of forwarded packets causes a lower number of collisions. The moderate suppression level

again lies midway between strong and weak suppression levels, as intended at its construction.

These results also show that the efficiency of the protocol drops with increasing node density

due to the high amount of collision caused by a higher medium load, as expected for a broadcast

protocol in a shared medium.
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Figure 4.8: Efficiency for using different suppression techniques

4.5.3 Packet Drop Analysis

An extensive simulation is carried out to analyze the reasons of performance drop for increasing

node density, with the aim of gaining insight into the possible ways to improve the performance of

the protocol. Figure 4.9 identifies the different possible reasons for packet discards at the different

communication layers.
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Figure 4.9: Different reasons for drop packets depend on different communication layers
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In this analysis, only the packets that do not get to the sink is considered and the drop reasons

for these packets is counted. Table 4.2 shows the reason why the last replication of a packet still

alive in the network dies out before reaching the gateway. This table also shows that the main

reason for dropping the packets is excessive suppression, i.e. suppression of packets that would

have been useful for reaching a higher sensing accuracy.

Also, even for low node densities, suppression and collision are the main causes of packet die

out, and not low SNR, i. e. packets do not die out because of lack of forwarders, but due to the

broadcast nature of the protocol, which causes collisions and requires suppression. On the other

hand, the single main cause for packet die out for the strong method is suppression, for any node

density.

Moreover, we conclude that an intermediate solution between the weak and strong suppression

techniques would achieve a better balance between the collision and suppression trade-offs. So

UDC with moderate suppression level is proposed as the best compromise, in accordance with the

results of the performance evaluation in Section 4.5.

Table 4.2: Percentage of each reasons in the protocol performance for different node densities

Density Sup. Sup. Col. Low PDR

nod./km Method % % SNR% %
4 Strong 81.06 0 0.46 18.48

Weak 19.23 6.15 1.4 73.22
8 Strong 48.01 0.02 0.04 51.93

Weak 15.73 6.92 0.21 77.14
16 Strong 39.11 0.22 0.02 60.65

Weak 28.64 11.93 0 59.43
42 Strong 55.27 0.79 0 43.94

Weak 53.79 33.59 0 12.62

4.6 Summary

We envision the usage of a VANET as infrastructure for an urban cyber-physical system that

makes up-to-date data about various parameters of an urban area available to services outside of

the network. We propose and evaluate the use of UDC protocol, a broadcast- and receiver-based

forwarding protocol.

The effect of four different suppression techniques on the sensing accuracy and network over-

head is evaluated using NS-3 large scale simulation. The results reveal that for supporting the

sensing applications in the urban area, the weak suppression increases the sensing accuracy with

lower dependency to the node density. Also, it shows that the weak method has less excessive

suppression than other methods and is the best solution of those evaluated for urban sensing.

As part of ongoing efforts, the study of network limitation and its effect on the sensing accu-

racy will be investigated (see Chapter 5).





Chapter 5

Numerical Limits for Data Gathering in
Wireless Networks

5.1 Introduction

Data collection is a major application of wireless sensor networks. Typically, each node in the

network captures information about its environment through sensors and sends it towards the sink

node, which has all resources and functionalities to store and/or process the data. All nodes are

also relays, helping data from other nodes get to the sink. In this scenario, it is crucial to know the

maximum amount of data that each node can produce without causing the network to overload.

In this chapter, we provide initial numeric results on the limit of wireless data gathering along

a chain with respect to the probability of collisions due to hidden nodes. The scenario for this

calculation is many-to-one communication from all nodes in the chain to the sink. To the best of

our knowledge, there are no previous results that enable the calculation of a numeric limit for the

data generated by each node as a function of the network parameters. The lack of such a calculation

motivates us to show the limitation of the network in a chain of nodes with some numerical results.

In this study, we focus on the maximum service rate at each node for achieving a certain packet

delivery rate at the sink. For example for a chain of 15 nodes, for having guaranteed 90% packet

delivery for each node at the sink, the service rate must be less than 25%.

The rest of the chapter is organized as follows. The network model which has been used for our

calculation is illustrated in Section 5.2. The main contribution for limitation of the data gathering

is shown in sections 5.3 and 5.4. Section 5.5 shows the results for two well-known performance

metrics: packet delivery rate (PDR) and service rate. Results are discussed in section 5.6. In

Section 5.7, we verify our calculation by simulating the same scenario. Finally, we conclude the

chapter in Section 5.8.

51
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1 2 3 n-1 n Sink

Communication range

Figure 5.1: Network model

5.2 Network Model

According to our previous study for an urban scenario Nozari Zarmehri and Aguiar (2011), each

source passes its packets through a chain of nodes to the sink. So we consider a network model

deployed as a flat chain of n nodes, which are all data sources. Also, there is one sink node, located

at the end of the chain, which we will consider to be at the right side without loss of generality.

Each node is not only a source of data packets but also a relay for the data coming from all its

left side neighbors on its way towards the sink. The network model used for the calculations is

illustrated in Figure 5.1.

Each node has at most two neighbors located at the end of its transmission range. Moreover,

nodes forward all packets received from the left side and ignore all packets received from the

right side (implied ranking). The channel transmission rate is W [bps] and the packet transmission

duration is τ , and can be calculated as τ = L/W , where L is the packet size.

5.3 Maximum Service Rate without Collisions

In this section, we calculate the maximum service rate as the maximum amount of data that can be

generated at each node. The actual generation rate should be less than the maximum achievable

service rate to avoid overload. We make the simplifying assumption that nodes send their packets

in a coordinated way from left to right, starting at the farthest node from the sink, and each node

sends one packet of its own and forwards one packet from each node in its left, adding up to i

packets at node i. All nodes use the same amount of resources, time, for sending each data packet,

τ , so node i needs i · τ to transmit its packets. We also assume that each node requires a certain

time to access the channel for each transmission, the channel access time TCA, which is on average

equal for all nodes.

Assuming a total available time of T , the first node on the left has T −TCA time for its trans-

mission. But the second node cannot send during the transmission of the first and third nodes to

avoid collisions, where the second node has T − TCA− 2τ time to send its data packets, which

include his own data packet and the data packet forwarded from node one. This calculation can

be continued to the end of the chain. Although node n is the last node in the chain, it is not the

bottleneck because it must not wait for any transmission on its right side, since there is the sink.
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Hence, the bottleneck of this scenario is node n− 1 because it is the last node that must avoid

collision with neighbors on both sides.

The total waiting time for the bottleneck in this scenario is given by the sum of the transmission

times of the neighbor nodes, n− 2 and n, with the average waiting time: TCA +(n− 2)τ + nτ .

To accommodate all transmissions from all nodes without collisions, the total available time T

should be at least equal to the waiting time plus the time needed for its own transmissions at the

bottleneck:

T ≥ TCA +(n−2)τ +nτ +(n−1)τ (5.1)

From here, we can calculate the maximum duration of a single packet, τ , depending on the other

network parameters as follows:

τ ≤ T −TCA

(3n−3)
[seconds], (5.2)

And the maximum amount of data that can be generated by each node within each period T without

causing congestion is:

L≤ (T −TCA)W
(3n−3)

[bits] (5.3)

We also calculate the best-case resource usage efficiency, ρ , which can only be obtained

through perfect scheduling, by dividing the maximum amount of data that can be transmitted

by all nodes per unit time by the available channel bit rate (W ):

ρ =
L ·n

T ·W
(5.4)
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Figure 5.2a shows numeric values for the resource efficiency and Figure 5.2b the maximum

amount of data per node for T =1 s, TCA=5 ms, and available bandwidth W=6 Mbps. Both values

decrease with increasing number of nodes in the chain, as expected. The bandwidth efficiency is

below 70% for very short chains and stabilizes at around 35%, and we have not yet considered

hidden node collisions.

5.4 Interference Model

In the previous section, we assumed that the transmission starts were fully coordinated and node i

would only start to transmit after it received all packets from node i−1, in which case no collisions

could occur. In this section, we extend the results to a more realistic scenario, in which transmis-

sion starts are not coordinated and packet receptions at any node can be impaired by collisions

caused by simultaneous transmissions from both neighbor nodes, which cannot hear each other

(hidden nodes). This only impairs the packet delivery rate from the left side neighbor, since the

data flows from left to right. To estimate the number of collisions and its influence on the system

performance we assume a time slotted system, in which the total time T is divided into N equal

time slots.

The minimum number of time slots can be calculated by considering the bottleneck in the

network according to Eq 5.5. Node n−1 should wait during the transmissions of nodes n−2 and

n to avoid collision, and needs n−1 time slots for own transmission.

N = (n−2)+(n−1)+n = 3n−3 (5.5)

Even with this number of time slots, a collision can still happen when two hidden nodes select

the same time slot for a transmission. For example, nodes 2 waits for node 1 and 3 but cannot hear

the transmission of node 4 and so it is possible that nodes 2 and 4 select the same time slots for

their transmission, causing a collision that impairs the reception of the packet from node 2 at node

3. So, nodes in the chain do not receive all packets generated to their left side, as part of those

collide as a consequence of the hidden node problem. Equation 5.6 expresses the total received

packets at node n−1, Rn−1, obtained by subtracting the total number of collisions (E[Col]) from

node 2 to node n−1 from the total packets generated to the left of the node.

Rn−1 =
n−2

∑
i=1

ki−
n−1

∑
j=2

E j[Col] (5.6)

The best case scenario is when time slot selection is coordinated and no collisions occur, mean-

ing that nodes receive correctly all packets generated at their left side. Therefore, the probability

of receiving all packet successfully in node n− 1 can be calculated by Equation 5.7. Node n− 1

receives successfully all the packets only if it selects its time slots for transmission from all time

slots excluding the ones chosen by nodes n−2 and n.
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Pn−1[Success f ul] =

(N−kn−2−kn
kn−1

)( N
kn−1

) (5.7)

This calculation is plotted in Figure 5.3a for each node in the chain and for three different

chain lengths. The probability of successfully receiving all packets from all nodes decreases as

the number of source nodes increases and goes to zero before reaching to the sink for all chain

lengths, meaning that it is not possible to receive all packets at the sink without collision.
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For considering possible collisions in Equation 5.7, which is more realistic, this equation has

been extended. We use Yi as a random variable that indicates the number of collisions at node

i. For example FY2(0) = P(Y2 = 0) = P2[Success f ul] or FY2(1) = P(Y2 = 1) is the probability of

having one collision at node two. The probability of having y collision at node (n−1) is:

FYn−1(y) = P(Yn−1 = y) =

(N−kn−2−kn+y
kn−1−y

)
×
(kn−1

y

)( N
kn−1

) (5.8)

In Equation 5.8, the numerator has two factors. The first factor shows that node n− 1 as a

receiver has y collisions. So this node has y common time slots with its neighbors. The second

part just shows the selection of these collisions from all received packets.
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So, the expected number of collision can be calculated for node (n−1) from Equation 5.9:

En−1[Col] =
kn−2

∑
i=1

i×FYn−1(i) (5.9)

In the presence of collisions, some of the time slots are used for unsuccessful transmissions.

So, to evaluate the effect of increasing the number of time slots on system performance, we iter-

atively add the total number of expected collisions over all nodes (Equation 5.10) to the number

of time slots (N). Thus, we do an iterative search for the number of total time slots required to

transmit one packet from each node with high packet delivery rate at the sink.

ETotal[Col] =
n

∑
i=2

Ei[Col] (5.10)

NU pdated = 3n−3+ETotal[Col] (5.11)

Figure 5.3-b shows how the expected number of collision is improved by increasing the num-

ber of time slots (N). In this figure, each node generates one packet. By increasing N, the expected

number of collision decreases (Figure 5.3-b). However, it causes also a decrease in the service rate.

5.5 Results

5.5.1 End-2-End PDR%

Following our previous work Nozari Zarmehri and Aguiar (2012), the most interesting metric for

an urban data collector (UDC) protocols is the number of packets received at the sink (PDR%).

Moreover, this packet delivery ratio is considered between each source and the sink (End-to-End)

because we assume that the sensing application needs information from each source to create a

macro vision about the city. According to Equation 5.6, collisions are the main reason of PDR%

reduction at the sink.

Figure 5.4 shows the PDR% at the sink for a chain with varying number of nodes. The average

number of hops from each source node to the sink in our previous study Nozari Zarmehri and

Aguiar (2012) was between 10 to 15 hops, so we focus on this chain length range. The plot shows

the end-to-end PDR% for various chain lengths, calculated for the farthest node from the sink, as

it is the worst case PDR.

Table 5.1 shows the number of time slots in each iteration for each configuration. For 10

nodes, after 12 iterations, there is no collision and the number of time slots remains the same. It

also happens for 15 nodes after 10 iterations. Therefore, the curves for 10 and 15 nodes in figure

5.4 reach to the 100% and cross other curves.
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Table 5.1: Number of time slots for each iteration

No. of Nodes
Iteration

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

7 18 40 49 54 58 61 63 65 67 69 70 71 72 73 74
10 27 97 127 144 155 163 169 174 179 183 186 189 189 189 189
15 42 422 588 677 731 767 794 814 830 843 843 843 843 843 843
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Figure 5.4: PDR% for different chain length

The PDR% with the smallest N is almost zero for the farthest node from the sink. By increasing

N, giving more opportunities for transmission, the PDR% is improved to 100% after 12 and 10

iterations for 10 and 15 nodes, respectively.

5.5.2 Service Rate

To increase the PDR, we are increasing the amount of time slots necessary to transmit one packet

from each node, hence decreasing the service rate and reducing the resource usage efficiency. So,

now we evaluate the service rate for this scenario. The service rate is the amount of packets per

unit time that each node can generate.

Figure 5.5 shows the service rate for different chain lengths in different iterations. Clearly,

by increasing the number of nodes in the chain, the minimum total number of required time slots

increases (see Eq. 5.5) and so the achievable service rate decreases. The difference in service rate

between different chain lengths is due to the existence of a high number of collision in a longer

chain. So, increasing the number of time slots improves the packet delivery rate at the cost of a

sharp decrease in the service rate. This trade-off is discussed in the next section.
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Figure 5.5: Service Rate for different chain length

5.6 Discussion

The previous results provide a quantification for the trade-off between the packet delivery rate

and service rate. By increasing the number of time slots, the packet delivery rate increases due to

the reduced number of collisions and the service rate falls because the total amount of generated

packets is fixed. Figure 5.6 shows this trade-off for better illustration. For the shortest chain, the

service rate falls very sharply by increasing the number of time slots because there are fewer time

slots in this scenario.

As an example of our goal which is system design, if we have 10 nodes that need to generate

three packets per unit time each and we want to guarantee a PDR of 85% at the sink, then we

should design the system to have at least 432 time slots (fourth iteration: 3∗144 = 432), achieving

a resource utilization of 7% at most.
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5.7 Verification of the results

We verify the analytical results by simulating the same scenario. We design a time slotted system

with N = 3n−3 slots and each node randomly selects time slots for its transmission, meaning that

node one selects one time slot, node two selects two time slots and so on.

After choosing the time slots for all nodes, we count the number of collisions at each receiver.

As a result, at each receiver, the common time slots between the receiver and both its one-hop

neighbor in two directions are counted. E.g. in node three, we count the common time slots

between nodes (3, 2), (3,4), and (2, 4). It shows the number of collisions at node three (receiver).

We start by verifying the probability of having at least one collision (1−Pi[Success f ul]). We

calculate this probability with both Equation 5.7 and simulation. In the simulation, we count the

number of successful receptions and then reduce it from one. This gives the probability of having

at least one collision at each node. Figure 5.7 shows the results for a chain with a different number

of nodes and the analytical results match the simulation results.
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Figure 5.7: Verification of probability of at least one collision
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Then, we verify the PDR% at the sink, i.e. the results from Figure 5.4. Again, the PDR%

is calculated for the packet generated at the first node in the chain. To calculate this metric in

the simulation, we calculate the probability of having at least one collision at each node and then

reduce it from one to obtain PDRi. Then, we use Equation 5.12 to calculate the PDR% at the sink

for the first node in the chain:

PDRmin =
n−1

∏
i=2

PDRi, (5.12)

By comparing the Simulation (S) and analytical (A) results (Figure 5.8), we can see that the

results are almost the same, although there is a small difference. This difference happens because

in the simulation, most of the time, there are few time slots that are not selected by any node. So,

the obtained results are for a lower effective number of time slots, which decreases the available

resources. So, the number of time slots in the simulation is actually less than the number of time

slots in the analytical calculation. As a result, the PDR% in the simulation is slightly less than the

calculation.
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Figure 5.8: Comparison of Simulation (S) and analytical (A) results for the end-to-end PDR%

5.8 Conclusion and Future Work

In this chapter, we study the limitations of data gathering in the sense of many-to-one scenario

and we provide a method to estimate the maximum amount of data that each node can generate

to guarantee a pre-defined packet delivery ratio at the sink. Firstly, we calculate the maximum

packet size for a scenario without considering the collision. Secondly, we add up collision to

our calculation and calculate the end-to-end packet delivery ratio and also the service rate. The
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results quantify the trade-off between these two metrics. Finally, we verify our analytical results

by simulation of the same scenario.

The main line of future work will be to extend these results to more complex network topolo-

gies used in data gathering, especially trees. Furthermore, we will model more precisely the impact

of contention, and verify the results in experimental settings.
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Chapter 6

Improving Model Performance by
Using Existing Hierarchies in the Data

Traditionally, Data Mining (DM) applications use a single model. This model is created by apply-

ing an algorithm on all the data available, or a carefully selected part of it. For example, a single

model has been used to predict the trip duration in public transportations Mendes-Moreira et al.

(2012).

However, in a VANET, data is collected in different settings and the transmission of data is

costly. This discourages the construction of a single dataset with all the data. Furthermore, the

phenomenon that is under analysis may also vary dramatically with vehicles (e.g. taxis that work

regularly in an airport as opposed to the ones that work in the city center), which means that the

best model may vary with the vehicle. Therefore, different learning processes must be used (i.e.

different datasets, different algorithms and/or different parameter settings) for different vehicles.

On the other hand, although there is a cost associated with exchanging data, the use of data

from different vehicles may, in some cases, yield gains in predictive performance that compensate

for that cost. For instance, a taxi in a small town may not generate enough data to obtain reliable

models and, thus, it may compensate to join its data with data obtained from others.

All of this means that, in order to maximize the quality of the results, the learning process

involves selecting:

• the training data, i.e. local or collect data from other vehicles,

• the algorithm, i.e. the learning method with the most suitable bias for the data,

• the parameter settings of the algorithm, i.e. the values of the parameters of the selected

algorithm that will yield the best model.

Although the number of data sources in traditional DM projects is significantly smaller than in

the context of VANETs, a parallel can be established in some settings. Traditional projects often

work on the raw data obtained from the transactional systems, such as the Enterprise Resource

Planning (ERP) and Customer Relationship Management (CRM) systems. Many companies also

69
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have Business Intelligence (BI) systems that collect and organize the data from the same sys-

tems Kimball et al. (2011). The data is used to compute metrics that represent the performance

of the business processes (e.g. sales or new customers acquired). The metrics are stored in a

Data Warehouse (DW) and are organized into dimensions (e.g., product taxonomy and store loca-

tion). These dimensions have different granularity levels (e.g., store location can be analyzed at

the street, city, region and country level). In this setting, DM models can be generated at different

levels of granularity (e.g. customer, product, store). Traditionally, DM algorithms were applied at

the global level. For instance, a single model 1 was learned to make sales predictions for all prod-

ucts. However, as more data is collected and the data characterizes objects at a finer level, there

is a growing interest in more specific models, that represent groups or individual entities Soulié-

Fogelman (2006). For instance, we may learn a direct marketing model for each segment of

clusters or a sales prediction model for each individual product. Assuming that the data available

is sufficient to generate models at different levels of granularity, the choice is usually based on

some domain-level knowledge. For instance, in an application to detect errors in foreign trade

transactions, approaches have been attempted where the modeling is done at the global level or

at the local level Soares et al. (1999); Torgo and Soares (2010). However, this choice may not

yield the best local models in every case. Thus, as in the case of VANETs, there is an opportunity

to maximize the quality of results by selecting for each learning process, the training data, the

algorithm and its parameters.

Before proposing a methodology to address this problem, we investigate empirically if a real

application confirms the existence of such an opportunity. The hypothesis is whether the best re-

sults are obtained by learning different local models using different learning algorithms on training

data obtained at different granularity levels.

However, the VANET data available for this project does not allow the testing of this hy-

pothesis at a detailed level, due to the lack of timestamps in the observations. Therefore, we test

the hypothesis on a traditional DM problem with the characteristics that were indicated earlier:

observations are organized hierarchically using a simple DW dimension.

Thus, in this chapter we argue that the DW schema, namely the hierarchy associated with the

dimensions, can be used to support the selection of the granularity that should be used to develop

the DM models. Furthermore, we argue that for different parts of the problems (e.g. different

products), the best granularity level may vary. The problem is concerned with the use of outlier

detection methods to detect errors in foreign trade data Soares et al. (1999); Torgo and Soares

(2010).

The description of the data and previously obtained results with this data are presented in

Section 6.1. Section 6.2 describes our proposal for outlier detection using different granularity

levels of the product hierarchy. We then present the evaluation of the proposal in Section 6.3.

Finally, Section 6.4 concludes the chapter.

1For simplicity, we include multiple model approaches, such as ensemble learning, when we refer to ”single model”.
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Table 6.1: Dataset features

Feature Name Description
RN Row Number
Origin (O) Type of method used to insert the data into the dataset (1:

Disk, 2: Manual, 3: Web)
In/Out (IO) The flow (1: arrival, 2: dispatch)
Lot number (L) Group of transactions that were shipped together
Document number (DN) Official document number
Operator ID (OID) Company that is responsible for the transaction
Month (M) Month of the transaction
Line number (LN) Line number in the document
Country (C) Country of origin/destination
Product code (PC) Code of the product
Weight (W) Weight of the traded goods
Total cost (TC) The total cost of the traded goods
Type import/export: (1: Import, 2: Export)
Cost/Weight (TCW) The ratio of Total cost per weight
Average Weight/Month (AvgWM) Average weight of the transactions made in the same month

of the product which the current transaction is from
Standard Deviation of Weight/Month (SDWM) Standard deviation of AvgWM
Score (S) normalized distance of the Total cost/weight value to the

average value Soares et al. (1999)
Transaction number (TN) Number of transactions made in the same month of the

product which the current transaction is from
Error (E) target value (1: error, 0: normal transaction)

6.1 Background

In this section, we start by describing the dataset of foreign trade transactions used in this work.

Then, we describe the previous results obtained on that dataset.

6.1.1 Foreign Trade Dataset

The data which is used in this chapter is the foreign trade data collected by the Portuguese Institute

of Statistics (INE). Users from Portuguese companies fill in forms about import/export transactions

with other EU countries, containing several pieces of information about those transactions. They

may insert incorrect data when filling the form. Some of the common errors are declaring the

cost in Euro rather than kEuro; the weight in grams instead of kilos; and associating a transaction

with the wrong item. At INE, the experts extend the dataset with a few other attributes. The

most important of those attributes, in terms of error detection, is the Total Cost/Weight. This

attribute represents the cost per kilo. The experts typically detect errors by analyzing this value

first and then, eventually, other fields. The dataset contains the following information Soares et al.

(1999)(see Table 6.1):
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6.1.2 Goals and Previous results

The success criteria originally defined by the experts for the automated system is:

• The system should select less than 50% of transactions,

• The selected transactions should contain more than 90% of the errors.

In the first approach to this problem, four different outlier detection algorithms were ap-

plied Soares et al. (1999): box plot J.S. Milton, J.J. Corbet (1997), Fisher’s clustering algo-

rithm Fisher (1958), Knorr & Ng’s cell-based algorithm Knorr and Ng (1998), and C5.0 Quinlan

(1998). The best results were obtained with C5.0. A scoring approach was used, which orders the

transactions according to the probability of being an outlier. The model obtained with C5.0 was

able to identify 90% of the errors by analyzing 40% of the transactions. Fisher’s algorithm using

the Euclidean distance and identifying 6 clusters detected 75% of the errors by selecting 49% of

the transactions.

The approach based on clustering was further explored more recently Loureiro et al. (2005).

In this work, several hierarchical clustering methods were explored. The transactions allocated to

small clusters are selected for manual inspection. The results show that the performance of the

algorithm depends on the distance function used. The best performance was obtained with the

Canberra distance.

6.2 Error Detection Methodology

In this section, an exploratory data analysis is done in Section 6.2.1. Then, we describe the use

of an outlier detection algorithm for predicting the erroneous transactions in the foreign trade

dataset in Section 6.2.2. Finally, the evaluation methodology and metrics use for the evaluation

are described in Section 6.2.3.

6.2.1 Data Preparation and Exploration

In INE dataset, each product is presented by a unique 8-digits code. For better illustration, a small

sample of the dataset is presented in Table 6.2. It contains one transaction from each of the months

January, February, March, May, June, August, September, and October in 1998 and January and

February in 1999.

The 8-digits code can be decomposed to create the data hierarchy. Level 1 is defined by 8-

digits, which means that individual products are identified using the 8-digits code. All products

that have the same 6-, 4-, and 2-digits belong to the same level 2, 3, and 4, respectively. For better

illustration, the existing hierarchy in the product codes starting with 11 is shown in Figure 6.1. The

categories for levels one and two are just shown for product codes starting with 1129 for simplicity.

As expected, the number of different categories increases by going down in the hierarchy structure

because each level contains multiple product categories/codes from the level beneath it.
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Figure 6.1: An example of existing hierarchical structure within the data set: Product codes start-
ing with 11 and for simplicity only show the product codes starting with 1129.

An important fact about this problem is that it is very unbalanced, as is typical in anomaly

detection problems Chandola et al. (2009). There are very few errors: less than 1% of the transac-

tions are erroneous.

A summary of the datasets used for the experiment is shown in Table 6.3.

The number of categories in each month varies between 3411 to 4697 categories. Actually,

these numbers are the number of unique product codes at the first level (common 8-digits). On

average, there are around 9 to 16 observations for each category at the same level. Obviously, at the

higher levels, the number os observations is higher than this level due to aggregation (Figure 6.2).

Another fact about the data is that there are a few errors in each month which is less than 1%

percentage for all months.

For example, the number of categories in August were 4522, 3032, 963, 94 for level 1 (8-

digits), 2 (6-digits), 3 (4-digits), and 4 (2-digits) respectively. Considering all months, the maxi-

mum number of categories are 4697, 3109, 972, 95 for levels 1, 2, 3, and 4 respectively, and the

corresponding minimum values are 3411, 2449, 833, 90.

6.2.2 Error detection method

To find the errors, an outlier detection algorithm is applied at each level of hierarchy for each

product code. We used the LOF Breunig et al. (2000) algorithm. The LOF algorithm computes

the density of each object in terms of the distance to its k-closest neighbors. If the local density

of an object is less than of its neighbors, then the object is considered to be an outlier Breunig

et al. (2000). Rather than a label of outlier or non-outlier, LOF computes for each observation an

outlierness score.
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Table 6.3: An exploratory data analysis for datasets

Number of The percentage of The average number
Month categories at No. of errors errors per total of examples for

the first level transactions each category
9801 3411 79 0.24 9.36
9802 3757 109 0.27 10.47
9803 3884 150 0.33 11.25
9805 4251 158 0.29 12.33
9806 3697 173 0.45 10.12
9808 4522 130 0.20 13.93
9809 4697 189 0.24 16.36
9810 4249 258 0.44 13.37
9901 3662 256 0.65 10.46
9902 3763 158 0.37 11.13

We used the implementation available from the DMwR package Torgo (2010) of R R Core

Team (2014a). The number of neighbors that is used in the calculation of the local outlier factors

is k=5.

Afterward, in our approach, we use the outlier scores and sort them in ascending order. The

first (lower) quartile is the median of the first half of the data (Q1), the second quartile is the me-

dian, and the third (upper) quartile is the median of the second half of the data (Q3) J.S. Milton, J.J.

Corbet (1997) (see Figure 6.3). The following equation shows the Interquartile Range (IQR) 6.1:

IQR = Q3−Q1 (6.1)
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Figure 6.2: Number of catogories for each level in each month

Figure 6.3: The definition of quartiles and IQR
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Table 6.4: Concepts used in evaluation metrics

Ground Truth
True False

Predictions
True tp fp
False fn tn

The factors that are substantially larger or smaller than the other factors are referred to as

outliers. The potential outliers are the ones that fall below Equation 6.2, or above Equation 6.3.

However, for our purposes, the only values that we are interested are the largest ones, representing

the transactions that may have more impact on the foreign trade statistics that are computed based

on these data.

Q1−1.5∗ IQR (6.2)

Q3 +1.5∗ IQR (6.3)

By applying this method to the data hierarchy at different levels of the product taxonomy, we

are able to investigate our hypothesis, namely that the best results can be obtained at different

granularity levels. For each product code, the LOF algorithm is applied on its associated data

from four levels of hierarchy and then the performance of these four models are compared in the

direction of our hypothesis.

It should be noted that, as in other approaches to this problem Loureiro et al. (2005); Torgo

and Soares (2010), we have analyzed import and export transactions separately, as they are quite

different in nature.

6.2.3 Evaluation

The goal of the outlier detection method is to meet the criteria defined by the experts. Accordingly,

proper metrics as described in the following section are selected. Additionally, we note that to find

the outliers, the class (field Error) is not used. It is used only to evaluate the observations selected

by the methods as suspicious.

6.2.3.1 Metrics

Table 6.4 shows the basic concepts that are used in the evaluation measures. True Positive (tp) is

the number of errors which are predicted correctly. If the method can not predict an error, then it

is counted as False Negative (fn). On the other hand, True Negative (tn) is the number of error-less

transactions which is predicted appropriately. But if the method predicts an error-less transaction

as an erroneous one, then it is counted as a False Positive (fp).

The selected metrics for evaluating the model are recall Powers (2007) and effort. The recall

is the fraction of relevant instances (e.g. errors) that are retrieved (Equation 6.4). Recall shows
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the ratio of detected error per number of transactions and should be more than 90% to satisfy the

expert criteria (See Section 6.1.2).

Recall =
t p

t p+ f n
(6.4)

Besides this common and well-known metric for model evaluation, we define another metric

to introduce the cost of manually analyzing the outliers. Effort is the proportion of transactions

that were selected by the method for manual inspection (Equation 6.5). The effort should be as

low as possible and not higher than 50%, as indicated earlier (See Section 6.1.2).

Effort =
Total number of transaction predicted as outliers

Total number of transactions
=

tp + fp
t p+ f p+ tn+ f n

(6.5)

6.2.3.2 Methodology to obtain results for different levels of aggregation

As explained in Section 6.1.1, in our experiment, there are different products, Pi for i = 1, ...,n1

while n1 is the number of unique products at the first level. Product’s codes are organized in

a four-levels hierarchy (C j
i , j = 1, ...,k)) where k = 4 is the number of levels. Each product is

distinguished by an 8-digits code. Level one contains all the products with the same 8-digits code.

Level two includes all the products with the same first 6-digits code. Similarly, levels three and

four contain the products with the same 4- and 2-digits code, respectively.

The outlier detection method is used separately for the transactions aggregated at each level

of the product hierarchy. To illustrate this, let us consider the product taxonomy in Figure 6.1,

focusing in particular, on product code 11290550. In this case, the outlier detection is applied

on data from one product code, 11290550 (level 1). When applied at level 2, the same algorithm

would be applied on the transactions from all the products that have the same 6-digits product

codes as the 11290550 product, i.e., 112905. This means joining the transactions from this product

with the ones from products 11290550 and 11290546. At level 3, the number of product codes

with the same 4-digits code (1129) is eight (the two bottom layers in Figure 6.1). So the outlier

detection algorithm is applied to data from those eight product codes. Finally, all product codes

that start with 11 are grouped at level 4 and the outlier detection method is applied to data from

all of them. To ensure that results are comparable, the evaluation is also done at each aggregation

level.

To illustrate the differences in the results provided by the method at different levels of the

data hierarchy, we present the distribution of scores for the month of February, concerning import

transactions for the product code 11681414 at the different levels of the hierarchy, in Figure 6.4.

At level 4, around 99.7% of outlier scores are below 25. For level 3, around 99.6% of outlier

scores are below 50. On the other hand, at levels 2 and 1, most of the transactions have very low

outlier scores, namely below 2 (around 94% for level 2, 92.6% for level 1).
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Figure 6.4: The distribution of scores obtained by the outlier detection method at the 4 levels for
Product code starting with 11 in February

6.3 Results

In this section, the results of empirical evaluation of the hypothesis are investigated in this chapter

are presented. In the first part (Section 6.3.1), the results for two illustrative examples are dis-

cussed. The main claim of this chapter, which is that the best model for different entities can be

obtained with data from different levels of its hierarchy, is investigated in Section 6.3.2. Given

that the results obtained in our experiments confirm our hypothesis, we then investigate how much

improvement could be obtained if the best level could be selected individually for each entity

(Section 6.3.3).
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Figure 6.5: Import transactions (February) Figure 6.6: Export transactions (February)

Figure 6.7: Import transactions (June) Figure 6.8: Export transactions (June)

6.3.1 Selected Examples

Here, we present the results obtained on all dataset (Section 6.1.1), analyzed according to the

different levels of the hierarchy in the product codes used for data aggregation.

Figures 6.5 to 6.8 show the average results (both effort and recall) for two different months,

February and June, separating import and export transactions. Analyzing the results of the method

at the top level of the hierarchy for February (Figures 6.5 and 6.6), we observe that the model

can predict more than 70% of the errors just by selecting 10% of the transactions. Despite a very

significant reduction in the effort, the recall is not good enough to be accepted by the experts. On

the other hand, for level three (4-digits), the model can predict more than 90% of the errors by

analyzing just 12% of the transactions which is acceptable by the experts. So in this month, the

best results are obtained by grouping the products at the four digits level of the product codes.

In June (Figures 6.7 and 6.8), the results show that grouping by two (fourth level) and four
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Figure 6.9: The best effort Figure 6.10: The best recall

(third level) digits of the product codes leads to just 10% of the effort. Although the x-axis shows

the average number of observations per set of transactions analyzed, the levels are also shown from

level 1, the points at the left-hand side, to the level 4, represented by the point at the right-hand

side. However, this is not an acceptable result due to very low recall (less than 90%). The best

results for this month are obtained at the second level (six digits) of product codes.

In summary, the results in these two months illustrate the claim of this work: analyzing the

data at the third (four digits) and fourth levels (two digits) requires lower effort. But to obtain

acceptable results, namely a recall higher than 90%, an analysis at the six digits level is the best.

6.3.2 Comparing Results Obtained with Data From Different Levels of the Product
Hierarchy

To investigate the hypothesis that deciding the level of aggregation at which the data is analyzed

affects the results significantly, we analyze the percentage of the products codes for which the

best effort (the lowest effort) is obtained at each level of the product taxonomy for every month

(Figure 6.9). A similar plot for the recall measure is shown in Figure 6.10.

For example, in February 1999, the best (lowest) effort is obtained at the level 1 (8-digits) in

24% of the product codes, while for 10% of the products, it is at level 2 (6-digits), 34% at level 3

(4-digits), and 32% at level 4 (2-digits).

In the same month, a similar scenario is observed with the recall measure: the best (highest)

recall is obtained at level 1 for 11% of the products, while for 1% it is at level 2, 85% at level 3,

and finally only 3% at level 4.

According to the graphs, the best results are obtained at different levels of the taxonomy for

different products. These results confirm our hypothesis: The best results are obtained by using

data at different level of granularity.

In other words, for some products, the best results are obtained at the product level (8-digits)

while, for other products, the best results are obtained by aggregating transactions at the fourth

(two digits), the third (four digits) or the second (six digits) levels of the taxonomy. This means

that, for each product, it is important to decide the level of data aggregation to use, if any.
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6.3.3 Personalized Data Selection is Required for Optimal Results

The average results presented in the previous section, clearly show that the best results are obtained

by analyzing the data at different levels of granularity, as defined by the hierarchical structure

which is used to organize the products. Thus, it can be expected that the global results can be

improved by selecting for each individual entity (i.e. product in the current case) the level in

which it should be analyzed.

6.3.3.1 Best Level According to Single Criterion

In fact, the illustrative examples presented in Table 6.5, where the effort for several product codes

at different levels of the hierarchy is given, provide additional evidence supporting our hypothe-

sis. The optimal selection for each product is the lowest obtained effort amongst all four levels.

Clearly, the best selection is varied for different products. Therefore, modeling at the same level

for all product codes does not lead to the best results and may cause a performance degradation.

Table 6.5: Illustrative results for effort obtained by applying the method at different levels of the
product hierarchy. The optimal selection is the lowest effort amongst 4 levels.

Product Level 4 Level 3 Level 2 Level 1
Code (2-digits) (4-digits) (6-digits) (8-digits)
09751691 0.09 0.07 0.13 0.23
33292727 0.08 0.11 0.11 0.11
88065114 0.13 0.20 1.00 1.00
44325116 0.08 0.07 0.14 0.05
85224327 0.10 0.09 0.12 0.12
82225014 0.10 0.06 0.10 1.00
23290416 0.13 0.13 0.15 0.14
49391616 0.10 0.13 0.07 0.06
49395127 0.10 0.13 0.20 0.20
44224327 0.08 0.12 1.00 1.00
44321416 0.08 0.07 0.12 0.11
44751627 0.08 0.14 0.11 0.11
44142716 0.08 0.20 0.20 0.08
44531627 0.08 0.11 0.13 0.13
30680327 0.16 0.11 1.00 1.00
30294327 0.16 0.14 1.00 1.00

The average results for each month are also calculated and shown in Table 6.6. For each

product, the optimal effort is calculated and then its related recall at the selected level is found.

Suppose that the best effort for product code i is obtained from level 2. So the best level for this

product code in our model is C2
i . Then the recall for the same level (C2

i ) is selected. The process

is repeated for all products in a given month and the average is presented the Table 6.6. This

procedure is also done for the best recall and the related effort at the same level.
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Figure 6.11: The average best effort with re-
spective recall for each month

Figure 6.12: The average best recall with re-
spective effort for each month

The average of best effort for all months is always below 10% (Figure 6.11) and the average

of best recall is also over 99% (Figure 6.12). Both results are within the limits of acceptance

that were defined by the experts. However, if we take both criteria into account, effort and recall,

neither of the strategies presented here, i.e. focusing on either effort or recall, achieves acceptable

results. Table 6.6 shows that in the optimal effort strategy, the corresponding average recall is

always below 90%. The scenario for the optimal recall strategy is better, as there are several

months with a corresponding average effort below 50%, but in the majority of the cases, the effort

is above the established maximum. In summary, the results are not acceptable by the experts in

both cases. Thus, a better strategy is needed.

Table 6.6: The average result for the best effort and its related recall and the best recall and its
related effort.

Month Optimal Recall relative Optimal Effort relative
effort to the recall to the

optimal effort optimal recall
9801 8.31 86.85 99.73 26.83
9802 8.10 85.72 99.69 23.45
9803 7.85 81.27 99.60 71.61
9805 7.61 85.15 99.49 68.74
9806 8.33 78.68 99.34 54.23
9808 7.56 83.55 99.59 20.76
9809 7.08 81.93 99.31 60.81
9810 7.70 80.25 99.19 67.42
9901 8.22 72.58 99.01 73.25
9902 8.61 77.78 99.44 26.89
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Figure 6.13: The average effort in each
month when the training data is always se-
lected from: The best level (Dark Green),
Level 4 (Light Green), Level 3 (Gray), Level
2 (Yellow), or Level 1 (Red)

Figure 6.14: The average recall in each
month when the training data is always se-
lected from: The best level (Dark blue),
Level 4 (Red), Level 3 (Yellow), Level 2
(Gray), or Level 1 (Light blue)

6.3.3.2 Best Level vs. Fixed Level

In the previous section, we evaluated the approach of choosing the granularity of the data for

each individual product code, considering one evaluation criterion at a time. Significant gainings

were obtained in terms of the corresponding criterion, even if for the other criterion they were not

satisfactory. The question can be raised if a simpler approach, such as using the best overall level

for all products, could not achieve comparable results.

Suppose that level four (aggregation with 2-digits product codes) is used for modeling all

products. Figure 6.13 shows the average effort for all product codes in each month. It compares

using a fixed level for modeling instead of using the best level for each product code. The figure

shows that choosing the best level, the effort is always below 10% while by choosing any of the

other levels systematically, the effort is always higher than 10%. In fact, because the best level is

varied between different levels and it is not fixed, the average effort for the best level is lower than

all individual levels.

The results for recall are also illustrated in Figure 6.14. The only difference between recall

and effort is that the recall for lower levels is higher due to more specific model for each individual

product. But the effort for the higher levels, where there is more data for modeling, is lower (better)

than other levels. Figure 6.14 shows that the average recall for the best level is almost higher than

other levels which is the same result as effort. Accordingly, this strategy also cannot satisfy expert

advice.
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6.3.3.3 Best Level Taking into Account the Expert Advice

Although the optimal strategies focusing on effort/recall are quite good concerning the measure

they optimize, the corresponding recall/effort are not acceptable by experts. For that reason, two

additional strategies are attempted. They consist of determining the best value for a single measure,

ensuring that the value for the other is within the limits established by the experts. For instance,

the best effort for each product code is selected by considering only the results with a valid recall

(more than 90%). The same course of action is performed for calculating the best recall. When

computing the best recall, only the results with an effort less than 50% are considered. Finally, an

average over the acquired results for each month are computed and shown in Table 6.7.

Table 6.7: The average result for the best effort for acceptable recall and the best recall for accept-
able effort by expert.

Month Optimal effort Related recall Optimal recall Related effort
w/ acceptable to the w/ acceptable to the

recall optimal effort effort optimal recall
9801 11.38 100.00 97.82 10.92
9802 11.23 99.91 98.11 10.45
9803 15.05 100.00 96.61 10.52
9805 12.92 100.00 97.23 10.09
9806 15.45 100.00 96.17 10.82
9808 11.06 100.00 98.01 10.27
9809 11.81 100.00 97.74 9.81
9810 15.61 100.00 95.72 10.35
9901 20.66 100.00 93.22 10.52
9902 14.45 100.00 96.74 10.89

The results obtained with these new strategies are very good. When focusing on effort, the

largest value is 20.66%, which is much less than the limit of 50%. In fact, most of the values

are close to 10%. Furthermore, the corresponding recall is, except in one case, 100%. When

compared to the previous effort-based strategy (Table 6.5), we observe that with a small increase

in the effort (typically 4 p.p.), we obtain a rather large gain in recall (typical 15 p.p.). When

focusing on recall, the results are also good, with an effort which is always around 10% yielding

recalls that are almost always above 95%. When compared to the previous recall-based strategy

(Table 6.5), the improvements are not as impressive. However, it should be noted that, in the new

strategy, the results are all withing the limits defined by the experts, unlike in the previous one.

Comparing this strategy with the selection of the best level taking into account a single crite-

rion (Section 6.3.3.1), on average a significant gain for both effort and recall is obtained (compar-

ing results in Tables 6.6 and 6.7). For example, in Table 6.6, the related effort to the optimal recall

is 20.76% in the best case (in August) while in the same month and by taking into account the

expert advice (Table 6.7), the effort is 10.27% (around 10% improvement/gain for effort). On the

other hand, the best-related recall obtained in Section 6.3.3.1 is 86.85% for January 1998 while
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Figure 6.15: The optimum effort Figure 6.16: The optimum recall

for almost all months the recall is 100% when taking into account the expert advice. Therefore,

around 14% gain is obtained with this strategy for recall.

Figures 6.15 and 6.16 show that for both strategies, namely effort-based (Figure 6.15) and

recall-based (Figure 6.16), the selected level of granularity is still distributed amongst all possible

values. Thus, this figures confirm our hypothesis, that the optimum level to choose the data for

making a local model is varied between all levels.

6.4 Summary

In this chapter, we have investigated the effect of aggregating data at different levels of a product

taxonomy in the performance of an outlier detection method applied to the problem of identifying

erroneous foreign trade transactions collected by the Portuguese Institute of Statistics (INE). The

approach is tested on 10 months of data and the results are evaluated in terms of the recall and the

effort involved in the manual analysis of the selected transactions.

The results show that, depending on the product, the best results can be obtained at different

levels of aggregation. In fact, in some cases, the best results are obtained at the lowest level where

there is no grouping.

This means that different aggregation levels should be selected for different local models, i.e.

products in this application. One approach that can be followed is to use a metalearning approach

to mapping the characteristics of the data with the ideal level of aggregation Brazdil et al. (2009).

This approach will be presented in Chapter 7 and is tested on the same problem in Chapter 8.

Although the results on the error detection problem are important to illustrate the generality of

the proposed approach, our main goal is to test it on the generation of predictive local models for

VANETs. This will be investigated in the Chapter 9.



Chapter 7

A Metalearning Framework for Model
and Data Granularity Selection

Business Intelligence (BI) can help companies to implement an effective strategy or model reach-

ing competitive market advantage and long-term stability. A BI application uses data from a Data

Warehouse (DW) which is organized into dimensions. Taking into account the DW dimensions,

model creation can be done in each dimension independently. Comparing the performance of

these models reveal that the best performance can be obtained at different levels of hierarchy

(Chapter 6).

The data management problem addressed in this thesis is concerned with settings in which

multiple local models are developed, i.e. models that are applicable to a small part of the space of

data (local models), instead of a single global model. This is true in the VANETs, for instance, in

the problem of predicting the duration of taxi trips addressed in this project, in which a model is

developed for each car (Chapter 9). But local models can also be useful in more traditional Data

Mining (DM) problems, in which the spatial issues involved in VANETs are not applicable. For in-

stance, in the foreign trade error detection problem (Chapter 8), separate models can be developed

to detect errors in transactions of different products. Figure 7.1 shows this model development in

the data hierarchy. Different models are created at different levels and the performance of them is

compared to select the best one.

In these settings, the training data for a local model can be the local data, i.e. data from the part

of the space that the model is associated with, or the learning process of a specific local model may

use data from other parts of the data space. Despite potential gains in the quality of the models,

the sharing of data may have costs. For instance, due to shared medium, transmitting data between

vehicles has cost. Even in more traditional settings, such as in the foreign trade error detection

problem, using more data for training the model increases the computational costs of that task.

The results in the previous chapter confirm that there is potential in sharing data in the process

of learning local models. However, the results also show that, depending on the part of the data

space (i.e. the local model), the best results can be obtained at different levels of aggregation.

Additionally, the results show that, in some cases, the best results are obtained at the lowest level

87
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Figure 7.1: Illustration of a hierarchy in datasets: for each category the best performance (black
model) is obtained at different levels

where there is no grouping and the local model is trained using only local data. This means that

different aggregation levels should be selected for different local models.

One solution can be metalearning Vilalta and Drissi (2002). It models the relationship between

the characteristics of the data with the performance of the algorithms. It is often used to select

the best algorithm for a specific problem, such as classification or regression. Here, we use this

approach to address the problem of selecting the right level of granularity, as defined by DW

dimensions, to model a DM problem. In our approach, the characteristics of the data are mapped

to the performance of the learning algorithms at different levels of granularity.

The methodology which is used in this chapter is introduced in Section 7.1.

7.1 Methodology

In this section, firstly the traditional method is presented (Section 7.1.1). Then the proposed frame-

work is discussed by describing the definitions (Section 7.1.2), metafeatures (Section 7.1.2.1), and

metadata (Section 7.1.2.2).

7.1.1 Traditional method

In the real world, data is gathered by individual entities (Ei), where each entity is potentially

associated with multiple examples (local data). For instance, an entity can be a product code

or a taxi that has associated data. In the traditional approaches, a global model is developed by
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applying machine learning algorithms to the data from all entities to predict the future events for

all entities.

Suppose that the available dataset consists of n entities, {Ei,∀i ∈ {1, ...,n}}. Each example

associated with the entity i consists of a set of m features, Xi =(x1,x2, . . . ,xm), and a target variable,

yi ((Xi,yi)). Then, a global model that maps the features (Xi) to the target variable (yi) is learned

from a training set (Figure 7.2). Finally, its performance is evaluated on the test dataset. Therefore

the dataset used in the traditional data mining approaches is like DB = {Ei,Xi,yi},∀i ∈ {1, ...,n}.

Figure 7.2: Traditional Data Mining approach

As an example, in the previous chapter (Chapter 6), in the INTRASTAT dataset, each product

code represents an entity and all data associated with this product code is considered as local data.

The set of features in this case are:

Ci = (Origin, In/Out,Lotnumber,Documentnumber,OperatorID,Month,

Linenumber,Country,Productcode,Weight,Totalcost,Type,

Cost/Weight,AverageWeight/Month,StandardDeviationo f

Weight/Month,Score,Transactionnumber)

(7.1)

The target variable for this dataset is Error which makes this a classification task. According

to the Tables 6.2 and 6.3, at the lowest level, there are nine observations on average for each

category which indicates the number of observations for the local data. Equation 7.1 shows the

complete list of features for each product code in the traditional approach.

Another case study which is studied in this thesis is the taxi dataset taken from DRIVE-IN

project Cmuportugal.org (2014). In this dataset and the lowest level, each taxi creates a category

and all the observations for each taxi is the local data. Table 7.1 shows the number of taxis and
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the average number of observations for each taxi in each month. There are around 440 taxis and

at the lowest level, there are between 1238-1484 observations for local data.

Table 7.1: A simple statistics about Taxi dataset

Month No. of Taxis Average number of

Month No. of Taxis observation per each taxi

201301 439.00 1328.20

201302 443.00 1238.50

201303 443.00 1356.60

201304 446.00 1302.70

201305 443.00 1484.90

201306 442.00 1385.70

201307 440.00 1416.90

201308 435.00 1253.90

201309 432.00 1382.10

201310 434.00 1478.50

In this dataset, the complete list of features is shown in Equation 7.2. The name of features

is also provided in Table 7.2. The target variable is the trip duration. Therefore, the problem is a

regression task. The objective is to predict the trip duration (dt).

Ci = (X_id,driver, ts,st, id, pst, track,

dd,src,dst,n, pos,dt)
(7.2)
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Table 7.2: The description of Taxi dataset’s features

Feature Feature’s description

X_id Event identifier

driver Taxi driver identifier

ts Time stamp of the event (seconds)

st Taxi state

id Taxi identifier

pst Previous state identifier

track GPS track, encoded with polyline algorithm

dd Distance between src and dst (meters)

src GPS coordinates of the source position

dst GPS coordinates of the destination position

n Name of the taxi stand

pos Location of the taxi stand

dt Duration of the trip (seconds)

The traditional scheme is unidirectional scheme (See Figure 7.2). It maps a set of features to

a target variable.

7.1.2 Proposed Metalearning Framework

In this section, we propose a generalized model that can be used in a broad range of applications.

In the proposed model, there are k entities (Ei,∀i ∈ {1, . . . ,k}) which are organized into several hi-

erarchies (Hp). For instance, entities are taxis which are organized according to their geographical

positions (hierarchy). Each hierarchy is organized in different levels (Equation 7.3). For example,

taxi level, road-side unit level, and a central unit level where the data from all taxis is collected.

Hp = {Lp,q},∀q ∈ {1, . . . , lp} (7.3)

where lp is the number of levels in the hierarchy p. However, since, we have a single hierarchy in

our case study, we ignore hierarchies in the notation, for simplicity, thus, Lp,q ≡ Lq.

In addition, each level in a hierarchy has a domain which is organized in categories, i.e., all

taxis in the same geographical location or all taxi in the city. Another example are product codes

which have 8-digits or 6-digits common product codes. This can be shown as:

Lq = {Cq,r},∀r ∈ {1, . . . ,kq} (7.4)

where kq is the number of categories in the level q of the hierarchy p. Each category contains a

set of entities (the ones that are associated with it). For instance, road side unit category contains

all taxis within its communication range. In case of product codes, level two contains all the
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Ei

H1

L1

C1,1

D1,1

. . . C1,kq

. . . Lq

. . . Hp

Figure 7.3: The proposed hierarchy structure

transactions that have the same 6-digits code. However, there is one particular category which is

at the same level as the individual entity (i.e. Equation 7.5). For instance, in the taxi dataset, at

the taxi level, each taxi makes a category and in the INTRASTAT dataset, each product at the first

level makes a category.

C1,r = {Er} (7.5)

where C1,r is the category r at level one and contains only one entity (Er).

The relationship between levels is defined as a parent and children relationship. We define Cq,r1

(category r1 at level q) as the parent of Cq+1,r2 (category r2 at level q+1) if Cq+1,r2 is a subcategory

of Cq,r1 (Equation 7.6). In the other words, all entities contained in Cq+1,r2 are contained in Cq,r1

and also that the set of entities in Cq,r1 is the union of the set of entities of all Cq+1,r2 which are

subcategories of Cq,r1 (Equation 7.7).

Cq+1,r2 is a subcategory of Cq,r1 ⇔Cq,r1 is the parent of Cq+1,r2 (7.6)

Cq,r1 =
⋃

Cq+1,r2

{E j},∀Cq+1,r2 ∈ {subcategories of Cq,r1} (7.7)

For better illustration, Figure 7.3 shows this hierarchical structure in a tree structure.

On the other hand, for modeling, the data is also needed to follow the same structure. As

mentioned previously, suppose that the available dataset for a given supervised learning problem

consists of k entities, Ei,∀i ∈ {1, . . . ,k}. There are also several examples associated with each

entity, {ei,1, . . . ,ei,o}. We refer to this set of examples associated with an entity Ei as its local data.

Each example associated with the entity i consists of a set of m features, Xi = (x1,x2, . . . ,xm), and a

target variable, yi (ei, j = (Xi, j,yi, j)). The features (x’s) have fixed meaning with different values for

each example. In taxi dataset, the examples are the GPS data obtained from taxis and the features

are the characteristics of each observation (see Equation 7.2).

Therefore, the dataset associated with the entity i can be defined like Di = {ei,1, . . . ,ei,m}. For
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Ei

ei,1 . . . ei, j

Xi, j

x1 x2 . . . xm

yi, j

. . . ei,o

Figure 7.4: The data structure used in the proposed model

example, in Figure 7.3, D1,1 is the dataset related to the category one at the level one. In this level,

each identical entity build a category and therefore, D1,1 is the data associated with the entity one

at the level one (at this level, C1 contains only E1). Thus:

D1,1 = {e1,1, . . . ,e1,o} (7.8)

Which means the dataset for the category one at the level one has only one entity and contains all

the examples associated with this entity. For simplicity, D1,1 ≡ D1.

The dataset structure for the entity i is shown in the Figure 7.4.

Generally, Dq,r is the dataset for the category r at the level q and is contained nq,r examples

associated with the category r at the level q. According to the Formula 7.6, Dq,r can be defined as:

Dq,r =
⋃
r j

Dq+1,r j ,∀r j ∈ {children of Cq,r} (7.9)

which means that the data for an upper level’s category is the union of the data from all of its

children. In other words, if D j is considered as the dataset for the entity j at the first level, then

we can conclude that the dataset for the category r at the level q is:

Dq,r =
⋃

j

D j,∀ j ∈ {indices of entities in Cq,r} (7.10)

This structure in the data and the whole methodology is depicted in the Figure 7.5. The data is

organized according to the above structure on the left side of the figure. Then several algorithms

are applied to the data from different levels of hierarchy for each entity (Performance Evaluation

block). In parallel, the values of a set of metafeatures (Section 7.1.2.1) are also calculated based

on the data for each entity and at different levels (Metafeatures calculation block). Having a set

of values for metafeatures and the best performance obtained from the performance evaluation

block, the metadata (Section 7.1.2.2) is created for each entity. Therefore, the metadata has k rows

equals to the number of entities. In the final step, several machine learning algorithms are applied

to the metadata to find a recommendation for each entity which is a combination of a level and an
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algorithm (see Equation 7.11).

Input : { Ei︸︷︷︸
entity

}

Out put : { l︸︷︷︸
recommended level

, g︸︷︷︸
recommended algorithm

}
(7.11)

Having this methodology in mind, instead of using a global model for all entities, it is possible

to develop a local model for each entity. The advantage of using a local model for prediction is that

the model may be more accurate than the global model due to the having only related examples to

the entity. For example, the data from a taxi in a highway may not be useful for prediction of trip

duration of a taxi in the city center. On the other hand, the disadvantages of creating a local model

for each entity, Ei, is that the training data associated with it, Di, may be insufficient to learn a

reliable model.

7.1.2.1 Metafeatures

The values of metafeatures are also calculated for each entity and at all levels. In general, m f q
i

is the values of metafeatures for entity i at the level q. In result, there are q sets of values of

metafeatures for each entity: m f 1
i , . . . ,m f q

i . For example, m f 1
i is obtained by calculating the

values of metafeatures for the entity i and at the level 1.

Metalearning uses a set of features, called metafeatures (m f q
i ), to depict the dataset char-

acteristics. Then it tries to find a correlation between these metafeatures and the performance

of the base-level algorithms Pavel Brazdil, João Gama (2005); Christian Köpf, Charles Taylor

(2000); Lagoudakis and Littman (2000). The effectiveness of metalearning highly depends on

these metafeatures. Depending on the learning tasks, different sets of metafeatures are selected. In

the next two chapters, two different sets of metafeatures suitable for classification (Section 8) and

regression (Section 9) tasks are introduced. The full lists of these metafeatures are also presented

in Appendix A.

7.1.2.2 Metadata

The dataset used for metalearning is called metadata which is data about the original dataset. The

metadata for each entity consists of the values of metafeatures for different levels plus the best

performance obtained from the Equation 7.12.

For each entity, the best performance (Pbest i) is obtained from the performance evaluation block

by comparing the performance of all algorithms at different levels of hierarchy and selecting the

best one (see Equation 7.12):

Pbest i = max
w, j

(P j
iw) , ∀w ∈ {1, ...,g}, ∀ j ∈ {1, ...,k} (7.12)
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As an example, Equation 7.13 shows the general form of the metadata which is used in met-

alearning block:

Row i→ Ei, m f 1
i , m f 2

i , . . . , m f l
i, Pbest i, (7.13)

For a better explanation, suppose we have only one metafeature which is the number of ob-

servations (n.examples). Then the metadata is: the entity, the number of observations at the first

level, the number of observations at the second level, ..., the number of observations at the level k,

and the best performance obtained from performance evaluation block.
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7.2 Summary

Metalearning approaches aim at assisting users to select appropriate learning algorithm for the

particular data mining task. This problem is even worse when considering the existing hierarchy

in the datasets. In this chapter, we have proposed a new metalearning framework to predict the

best level of granularity to apply the recommended algorithm. The basic idea is to reduce the

computational costs for applying different algorithms at different levels of granularity to reach the

best performance. Our model recommends an algorithm and a level of granularity to obtain the

best performance.

The next two chapters include the validation of the framework by applying it to two differ-

ent datasets: Statistical dataset (Chapter 8) and Taxi dataset (Chapter 9). These two datasets are

selected to evaluate the framework on two different problems: classification and regression, re-

spectively.





Chapter 8

Validation of the Metalearning
framework: A Case Study on Error
Detection in Foreign Trade Statistics

In the previous chapter, we introduced a metalearning-based framework to address the problem

of selecting the best level of data granularity to learn local models. This framework is useful for

problems in which 1) learning processes are carried out at the local level (e.g. different vehicles

in a VANET) and 2) there are costs in sharing data between learning processes (e.g. transmitting

data between vehicles in a VANET), although 3) the quality of the models obtained by learning

processes that combine different subsets of data may be better than the models obtained just with

the local data.

In Chapter 6, we showed that such a framework may also be useful in a more traditional data

mining (DM) setting, in which similar issues are relevant. For instance, if the data is organized

according to a data warehouse-like (DW) structure, with hierarchies of dimensions, then the local

models can be obtained on the lowest level of the hierarchy (e.g. at the product level) but data

sharing can be done based on that hierarchy (e.g. the model for a given product may use data from

other products in the same category).

In this chapter, we empirically test the framework on the problem addressed in Chapter 6, the

detection of errors in foreign trade transactions.

The chapter is organized as follows. Section 8.1 summarizes the case study description. Sec-

tion 8.2 describes our customized methodology for data analysis and metalearning to find the best

level of granularity for this case study. The obtained results are presented in Section 8.6. Finally,

a conclusion is presented in Sections 8.7.

8.1 Case study: error detection in foreign trade statistics

Foreign trade statistics are important to describe the state of the economy of countries Soares

et al. (1999). They are usually estimated by the different national statistics institutes based on
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data provided by companies. The problem in INTRASTAT dataset (See Tables 6.1 and 6.2 for

the dataset description) is already describe at chapter 6, Section 6.1.1. The goal is to detect as

many errors as possible – to maximize the quality of the statistics – with as little manual effort as

possible – to minimize the cost.

Some of the previous work on error detection has used outlier detection, classification and

clustering approaches (e.g., Soares et al. (1999); Nozari Zarmehri and Soares (2014)). In general,

satisfactory results have been obtained as some approaches were able to detect most of the erro-

neous transactions by choosing a small subset of suspicious transactions for manual inspection.

However, this was not true for all products. This is partly due to the fact that some products have

very few transactions. Given that each product is analyzed individually, the decision can be based

on a very small set of data.

In Chapter 6, the products are organized in a 4-levels taxonomy. An example of such a taxon-

omy can be Food (Level 4), Bread (Level 3), Sliced bread (Level 2), Pack of 16 slices (Level 1)

(Figure 8.1).

Figure 8.1: An example of existing taxonomy in foods

Each product is presented with a unique 8-digits product code (Level 1). By going up in the

product taxonomy, the number of products in each level increases. Therefore, by grouping the

transactions at a higher level of the product taxonomy may help to obtain better results when

compared to an analysis at the product level (Level 1) itself, especially in the cases where the

number of observation at this level is too low.

According to Chapter 6, the best results are obtained at different levels of the taxonomy for

different products (Figure 7.1). For example, the best results for the products on the right leaf are

obtained by training with the data from the third level of product taxonomy while for the products

at the middle leaf, the best results are obtained by training with the data from the second level

(black models in Figure 7.1). In spite of the fact that the results show that the aggregation is

generally useful, they also show that the best results for different products are obtained at different

levels of granularity (see Section 6.3.1).
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8.2 Methodology

In Chapter 7, we introduce the framework used in this project. To obtain the best model for each

entity, the training data can be used at different levels of hierarchy in the data taxonomy, including

the local data, i.e. the data related to one product code, or the data from other levels, i.e. the data

from level two where the data is aggregated by 6-digits product code(see Section 6.2).

In this section, the proposed framework (see Chapter 7) is customized for the problem of error

detection in foreign trade transactions. The entity here is a product code with 8-digits. For example

instead of Ei, Pi is used in the framework. Figure 8.2 shows the customized framework. The

problem is to use the training data from the best level of granularity to apply an outlier detection

algorithm. Therefore, the framework recommends a level with the best performance amongst all

levels.

In our experiment, there are different products, Pi for i = 1, ...,n1 while n1 is the number of

unique products at the first level. The products are organized in a four-levels hierarchy (C j
i , j =

1, ...,k)) where k = 4. Each product is distinguished by an 8-digits code. Level one contains all

the products with the same 8-digits code. Level two includes all the products with the same first

6-digits code. Similarly, levels three and four contain the products with the same 4- and 2-digits

code, respectively. For example, all the dried fruits have a product code starting with 11 while

raisins, which are a specific type of dried fruits, have code 1155.

The best model for a given product depends on the product itself and the data available. For

instance, given a very specific product with a lot of transactions, the best results can be obtained by

learning a model on training data from that product only. On the other hand, if the product is very

general behavior or has very few transactions, the best model can be obtained by training with the

full dataset. It is expected that in other cases the best model can be obtained by training on data

from intermediate levels of the hierarchy. Therefore, the question is, given a product, what subset

of the data should be used for training. By mapping the characteristics of the different subsets to

the performance of learning algorithms, a metalearning approach can be used in this problem.

However, another question is raised. For large datasets, the number of candidate subsets is

very large, so it is not feasible to consider all of them in a metalearning approach. When available,

such as in our case study, a hierarchy of the observations (e.g. products, product families, . . . )

can be used to reduce the number of candidate sets of training data to be considered. Therefore,

for product Pi the datasets considered contain the transactions concerning the levels C1
i ,C

2
i , . . . ,C

k
i

(where k = 4 in our case study). A metalearning approach is then used to choose, for a given

product Pi, the level of the hierarchy, j = 1, . . . ,k = 4, that contains the data which is expected to

generate the best model for that product.

For each unique product, metafeatures (see Section 8.2.1) are calculated at all levels, j =

1, . . . ,k = 4. m f j
i is a vector containing the calculated metafeatures for the product i at the level j.

The metadata consists of algorithm performance data and metafeatures. Algorithm performance

data is obtained by running base-level experiments. In these experiments, an outlier detection

method (LOF Torgo (2010); Nozari Zarmehri and Soares (2014)) is applied at each level, for each
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product. The data from a month is used for training and the accuracy of the model is tested with

the data from the next month. The performance of outlier detection for the product i on the level j

is indicated by PI j
i .

Having PI j
i and m f j

i enables us to create the metadata set. Each metadata row includes the

product code (Pi), metafeatures for all levels of the product code (m f j
i , ∀ j ∈ {1, . . . ,k}), and the

best performance obtained by outlier detection methods for that product among all the levels

(PIbest i, see Equation 8.1). Equation 8.2 shows the format of the metadata sets in our experiment.

PIbest i = max
j
(PI j

i ) , ∀ j ∈ {1, . . . ,k} (8.1)

{Pi,m f 1
i ,m f 2

i ,m f 3
i ,m f 4

i ,PIbest i},

∀i ∈ {1, . . . ,n1} (8.2)

By applying a learning algorithm on the metadata, we obtain a meta-model that can be used to

predict the best level of granularity for each product code.

8.2.1 Metafeatures

As discussed previously (Chapter 7, Section 7.1.2.1), a set of metafeatures is selected related to

the problem. In this case study and according to our dataset, we select 15 metafeatures to describe

the characteristics of INTRASTAT dataset. The extracted metafeatures are shown by m f j
i notation

in the customized framework. A list of all metafeatures which are used in this study with a brief

description is provided in the Table 8.1 and is also described in Appendix A.
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Table 8.1: Extracted features used in metalearning - INTRASTAT dataset

Feature Name Description
n.examples Number of examples

n.attrs Number of attributes

prop.symbolic.attrs Proportion of symbolic attributes

prop.missing.values Proportion of missing values

class.entropy Class entropy

avg.mutual.information Average mutual information

prop.h.outlier Proportion of continuous attributes with out-

liers

avg.attr.entropy Average attribute entropy

avg.symb.pair.mutual.infor Average mutual information between pairs of

symbolic attributes

avg.abs.attr.correlation Average absolute correlation between contin-

uous attributes

avg.skewness Mean skewness of attributes

avg.abs.skewness Mean absolute skewness of attributes

avg.kurtosis Mean kurtosis of attributes

canonical.correlation.best.linear.combination Canonical correlation of the best linear com-

bination of attributes to distinguish between

classes

relative.prop.best.linear.combination Proportion of the total discrimination power

explained by the best linear combination
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8.3 Experiments Setup

In this section, the experimental setup at both base-level (Section 8.4) and meta-levels (Section 8.5)

are explained.

8.4 Base-level

In chapter 6 we introduce our base-level experimental setup. There are ten months of INTRASTAT

data. The LOF algorithm Torgo (2010); Nozari Zarmehri and Soares (2014) is trained on the

data obtained from each level of granularity (see Section 8.2). In this case study, the number of

algorithms at the base-level equals to one(g= 1). Therefore, the output of the framework is the best

level of granularity for each entity. As a result, for each product code, there are four performance

indicators (PI j
i ) obtained from all possible levels (four levels, in this case, j = 1, . . . ,k = 4).

In the results section (Section 8.6), the levels are indicated by: level 1 (OD8), level 2 (OD6),

level 3 (OD4), and level 4(OD2). While "OD" stands for the outlier detection method and the

suffixes (8, 6, 4, and 2) show the number of common digits among the product codes used for

aggregation.

The evaluation part is done by testing each model obtained from above scenario against the

data from the same level and the same product code in the next month. To be clearer, assume that

for product code i, a model is trained using the data from month m at level two. Then this model

is evaluated by the data taken from the level two for product i but at the month m+1.

Thereafter, by knowing the performance of outlier detection algorithm at all levels, the best

level for each entity is selected as its actual value at the base-level. Then the majority level 1 is

selected as the prediction level for all entities at the base-level. Based on the actual and prediction

values, the accuracy of the base-level is calculated.

Two metrics are also used for the base-level evaluation: recall and effort. The explanations of

the metrics are presented in Chapter 6, Section 6.2.3.1.

8.5 Meta-level

Two machine learning algorithms were used in our experiments at the meta-level: Random Forest

(RF) Amit and Geman (1997); Breiman; Liaw and Wiener (2002) and Decision Tree (DT) Olshen

et al. (1984); Safavian and Landgrebe (1991); Ripley (2014). A DT is a tree-like structure, splitting

a dataset into branch-like segments, by evaluating a condition on a feature in each node(F1, ..., F4

in Figure 8.3). The origin of the DT is a root node at the top of the tree (Figure 8.3).

1For example, if there are 10 entities in the dataset and the best level for these entities are levels 2, 3, 2, 1, 2, 4, 2, 1,
2, and 2 at the base-level, then the majority level is the second level (2).
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Figure 8.3: Decision Tree structure: at each split one feature (F1 to F4) is evaluated

The decision was taken after computing all features downward. The classification rules are

the path from the root to the leaf. The choice of DT is related to the good results obtained on this

problem previously by this algorithm Friedl and Brodley (1997).

Random forest is an ensemble learning approach for classification, regression and other tasks Breiman.

RFs are the multitude of decision trees (forest). The output is the mode von Hippel (2005) of the

classes (classification) or mean von Hippel (2005) prediction (regression) of the individual trees.

RFs are trying to overcome the problem of overfitting in DTs Hastie et al. (2009). In particular,

trees overfit their training sets due to having low bias and high variance. Random forests are

averaging multiple decision trees which are trained on different parts of the same training set

with the goal of reducing the variance of DTs. Generally, this leads to great improvement in the

performance of the final model Hastie et al. (2009).

These algorithms are applied to the metadata (Equation 8.2) to train a model and predict the

best level of granularity for each product code which is called predicted level.

Following that, for evaluation, the accuracy of the meta-level is obtained by comparing the

predicted level at the meta-level with the best level at the base-level. The accuracy is calculated

using the Equation 8.3. The definition of all the elements of this equation is described in Table 6.4

and in the Section 6.2.3.1. This prediction accuracy is our primary evaluation measure for meta-

level.

Accuracy =
t p+ tn

t p+ f p+ f n+ tn
(8.3)

8.6 Results

As mentioned previously, the main performance evaluation metric is the accuracy of meta-level

versus base-level. This metric shows that how well the meta-level can predict the best level for
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training at the base-level. In this section, the base-level results (Section 8.6.1) from previous

Chapter 6 is presented briefly. Then the meta-level results (Section 8.6.2) is compared with the

base-level results.

8.6.1 Base-level Results

The base-level results show that the best level for different product codes is varied. In this section

the result of a selected example (product codes starting with 11) is presented in Section 8.6.1.1.

Then the average results for different months (namely February and June) are shown in Sec-

tion 8.6.1.2. Finally, the optimum results is illustrated in Section 8.6.1.3.

8.6.1.1 Selected Example

The distribution of outlier scores for the month of February, concerning import transactions for

product code 11681414 at different levels of hierarchy, is shown in Figure 6.4. The variation in

the scores happens due to the accuracy of models in the different levels for different product codes.

This score is used to distinguish the errors in the dataset. The transactions with high outlier

score (namely more than the 1.5 ∗ (Q3−Q1) J.S. Milton, J.J. Corbet (1997) (see Section 6.2.2)

are selected as outliers (they contain an error). These results show that for this particular product

code, at the higher levels where there are more transactions, the number of detected errors (with

high outlier scores) is higher than the lower levels. Using these results, the obtained results for

evaluation metrics (Section 6.2.3.1) are presented in the next section.

8.6.1.2 Monthly Results

In this section, we present the previous results for two months, analyzed according to the different

levels of the hierarchy in the product codes used for data aggregation.

Looking at Figures 6.5 to 6.8, it is observed that the base-level can predict around 70% and

less than 70% of the errors just by selecting 10% of the transactions. Despite a very significant

reduction in the effort, the recall is not good enough to be accepted by the experts.

On the other hand, for level three (4-digits), the model can predict more than 90% of the errors

on February by analyzing just 12% of the transactions which is acceptable by the experts. So in

this month, the best results are obtained by grouping the products at the four-digits level of the

product codes (level three).

In June (Figures 6.7 and 6.8), the results show that grouping by two (fourth level) and four

(third level) digits of the product codes leads to just 10% of the effort. Although the x-axis shows

the number of observations, the levels are also shown from level 1, the most left points, to the level

4, the most right points, in this figures. However, this is not an acceptable result due to very low

recall (less than 90%). The best results for this month are obtained at the second level (six digits)

of product codes.
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The percentage of the products codes for which the best effort (the lowest effort) and the best

recall (the highest recall) are obtained at each level of the product taxonomy for every month is

illustrated in Figures 6.9 and 6.10, respectively.

In summary, analyzing the data at the third (four digits) and fourth levels (two digits) requires

lower effort. But to obtain acceptable results, namely a recall higher than 90%, an analysis at

the six digits level is the best. On that account, in Section 8.6.1.3, we investigate the best way to

choose the best level for training a model to meet the expert advice.

8.6.1.3 Optimal level selection

There are three different proposals for the optimum selection of the best level for modeling to

obtain the best performance (see Section 6.3.3). We introduce them briefly as follow:

1. Using the best performance for either recall or effort. In this case, results show that it causes

a drop on the other metric (Figures 6.11 and 6.12).

2. Using a fixed level for training a model which leads to the best performance for most of the

product codes at the base-level. The result for this investigation also show that it has lower

performance comparing to the previous selection (Figures 6.13 and 6.14).

3. Using the best performance for either recall or effort after considering the expert advice

(recall more than %90 and effort less than %50). The best effort/recall is chosen, in which,

the related recall/effort is acceptable by an expert. This strategy is selected as the most

advantageous way to select the best level for training a model (Figures 6.15 and 6.16).

In overall, the best level is varied between different levels. Therefore, there is a need for a

strategy that can help to find the best level of hierarchy amongst the existing levels. We use the

metalearning for the problem of level selection in this case study. These results are discussed in

the next section (Section 8.6.2).

8.6.2 Base-level vs. Meta-level

In this section, we evaluate the meta-level accuracy based on the best performance obtained at the

base-level. Figure 8.4 shows the boxplot of the efforts obtained at the base-level and the meta-

level. It is clear that the meta-level has a lower effort (better performance) in comparison with

the base-level. On the other hand, the performance of both base-level and meta-level satisfies the

expert advice (effort less than 50%).
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Figure 8.4: The effort obtained from base-level vs. meta-level

As previously mentioned, the main performance evaluation metric at the meta-level is its accu-

racy in comparison with the base-level. This metric shows that how well the meta-level can predict

the best level obtained at the base-level. The results are plotted in Figure 8.5. The accuracy of ap-

plying the RF algorithm on the metadata is labeled as ML-RF. The accuracy of DT is also plotted

as ML-Tree. The average accuracy is calculated in each month for all the product codes.

The accuracy of base-level shows that for around 55% of product codes, a specific level of

granularity is the best level while in other cases, another level is the best level. Therefore, the

base-level itself is not accurate enough because the best level of granularity is different from one

product code to another and therefore a fixed level can not be always the best level of granularity.

Obviously, the accuracy of the RF model has outperformed the accuracy of the base-level. The

performance of the RF algorithm at the meta-level is almost two times of the base-level. On the

other hand, the performance of the DT is not satisfactory. It only beats the base-level for September

1998. Figure 8.5 is shown that the RF at the meta-level is more suitable for modeling.
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Figure 8.5: Comparing the accuracy of metalearning approaches with the baseline

The comparison of the Recall obtained by the meta-level and the base-level is also illustrated

in Figure 8.6. While the base-level sustains significantly more than 50% in recall degradation for

the higher levels, the RF incurs around 60% or more decrease in recall at the lowest level (OD8).

In addition, the DT algorithm performs variably at different levels.

Nevertheless, for the lower levels, where the number of observations is very low, the base-level

obtains better recall than the meta-level approaches while for higher levels the RF at the meta-level

is outperformed other approaches.
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Figure 8.6: Comparing metalearning with different algorithms with baseline: Recall

Figure 8.7 compares the average effort obtained from meta-level with the base-level. At the

higher levels where there are more observations for modeling, the base-level has a lower effort

than the meta-levels approaches. But for the lower levels where the number of observations is

low, both meta-level algorithms outperform the base-level approach. This is due to the inaccurate

models built on top of a few training examples at the base-level.
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Figure 8.7: Comparing metalearning with different algorithms with the baseline: Effort

From our experiments, our metalearning model compares favorably with the base-level results

for the lower levels of granularity. However, the base-level for the higher levels performs better

because there is more data to build a more accurate model. It should be noted that the best perfor-

mance of the base-level is chosen in the comparison which needs a lot of computational costs to

be obtained. But then in the lower levels, the metalearning approaches show better results due to

the lack of data at these levels at the base-level.

8.7 Summary

In this chapter, we present the first test of the framework that was proposed in the previous chapter.

The framework addresses the problem of selecting the best level of data granularity to learn local

models.

Although it was developed with models for VANETs in mind, the framework may also be use-

ful in a more traditional data mining (DM) setting, particularly if the data is organized according

to a data warehouse-like (DW) structure. The first test, described here, is one such problem, error

detection in foreign trade transactions, which was discussed in Chapter 6.
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The proposed framework was applied on transactions from several months, described using a

set of metafeatures based on 15 basic measures that were used in previous metalearning research.

Extensive experimental results have illustrated the improvement of accuracy of the metalearn-

ing approaches when compared to the baseline. In particular, the results suggest that RF algorithm

obtains very good results at the meta-level.

In the next chapter, the proposed framework is tested for a VANETs related problem. Knowing

the travel duration beforehand can help drivers, passengers, and even the travel companies to better

manage their trips, routes, and time. Unlike the problem already discussed in this chapter, the trip

duration is a regression problem. Therefore, the framework is also tested for different problems

including classification (this chapter) and regression (the next chapter).





Chapter 9

Using Metalearning for Prediction of
Taxi Trip Duration Using Different
Granularity Levels

In the previous chapter, we tested the metalearning-based framework (Chapter 7) to address the

problem of selecting the best level of data granularity to learn local models (Chapter 8) on the

problem of detecting errors in foreign trade transactions (Chapter 6).

In this chapter, the framework is tested on another problem which is more related to this

project. A taxi application introduces an interesting challenge for metalearning. Each taxi gen-

erates enough data to learn its own model. However, it can be expected that, in some cases, the

quality of the global model generated from the full set of data, i.e. concerning all taxis, can be

better than the model generated solely with "local" data. Therefore, besides selecting an algorithm

to learn the best model for a taxi, a decision can be made also concerning whether only local data

or global data.

In this chapter, we close the circle on the data management goals of this project, by applying

the same methodology to the problem of taxi trip time duration. More specifically, we investi-

gate the use of a metalearning approach to the problem of algorithm selection in a case study of

predicting trip duration for a taxi company. The taxi dataset is obtained from the Carnegie Mel-

lon Portugal project, DRIVE-IN (Distributed Routing and Infotainment through Vehicular Inter-

Networking) Cmuportugal.org (2014).

The experiment is done on the data from five months in 2013, from February to June. In each

month, the data is collected by around 440 taxis.

The approach is evaluated at the meta-level (i.e. the ability to choose the most accurate base-

level algorithm) and at the base-level (i.e. the base-level performance of the algorithm selected by

the metalearning approach). The results obtained are positive at both levels.

The chapter is organized as follows. Section 9.1 summarizes the case study description. Sec-

tion 9.2 describes our methodology for data analysis and metalearning to find the best level of
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granularity. The evaluation strategies are discussed in Section 9.3. The obtained results are pre-

sented in Section 9.4. Finally, Section 9.5 concludes the chapter.

9.1 Motivation

With the fast growth of Intelligent Transportation Systems (ITS) and Advanced Travelers Infor-

mation Systems (ATIS), data collected by those systems can be useful to understand and improve

processes in taxi companies and other organizations dealing with transportation, i.e. public trans-

portation companies, logistics companies, and local government Rodrigues et al. (2011a).

An example of a problem that can benefit from the analysis of data is trip duration in taxi com-

panies Zhang and Rice (2003b); Rashed and Jürgens (2010); Lee and Gerla (2010a). Especially

knowing the estimated trip time duration beforehand can be very informative for taxi companies,

drivers, and passengers to make the right decision for the scheduling and route planning. Data

concerning the taxi trips (essentially GPS data) collected by taxis can be used for that purpose.

Data mining approaches can be used for the prediction of the trip duration. Using the data

collected by taxis, these approaches relate trip duration with several variables describing the trip

like origin, destination, time of day, day of week, and the weather.

The prediction of trip duration may vary for different taxis, due to differences in the brand of

the vehicle, its usage, and driving habits. Therefore, algorithm selection should be made not at the

global level but at a lower one, such as the taxi itself.

On the other hand, in applications with multiple sources of data in which the data schema is

the same, it is possible that the quality of the model for a given source can be improved by training

it with data from other sources. Therefore, the problem of algorithm selection is also extended

to the dataset granularity selection. For the purpose of trip duration prediction, each taxi can use

its data, data from its neighbors, data collected at the nearest road-side unit, or the whole dataset

which is collected centrally throughout the city.

9.2 Methodology

In this section, the methodology used in this chapter is described. The dataset is introduced briefly

in Section 9.2.1. Section 9.2.2 explains the methodology which is applied on the base-level. The

approach for meta-level is discussed in Section 9.2.3. The metafeatures used in the metalearning

are also presented in Section 9.2.4.

9.2.1 Dataset

The dataset is obtained from a large-scale scenario Cmuportugal.org (2014), one of the taxi com-

panies in the city of Porto. Porto is the second largest city in Portugal, with an area of 41.3 km2,

and comprises 965 km of roads. It is the central city in a metropolitan area with more than one

million inhabitants. There are 63 taxi stands in the city and the main taxi union has 441 vehicles.
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Each taxi has an on-board unit with a GPS receiver and collects the travel log. The dataset pro-

vided by the project Cmuportugal.org (2014) consists of five months in 2013 for all the vehicles.

The list of all features with their descriptions is already presented in Table 7.2.

As an example of the scenario where the data is collected, Figure 9.1 shows a snapshot of the

taxis’s placements in the city of Porto. The green dots show the taxi positions in the city. The

communication range for two taxis (red and black) is also shown by purple circles.

Figure 9.1: Illustrative map of Porto, Portugal. The green dots are the taxi placement. The neigh-
boring area for red and black taxi is shown by purple circle around them.

9.2.2 Base-level Approach

In this section, the traditional data mining method which is described in Section 7.1.1 is cus-

tomized for the base-level experiment and this dataset. At the base-level, the same scheme is used.

Each taxi is represented by an entity in the scheme, Ei = Ti. The target variable is the trip duration

(Yi = DT i). So the base-level scheme is like DB = {Ti,Xi,DT i},∀i ∈ {1, ...,n}, where Ci is a set
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of the features which are used at the base-level (Equation 7.2). And the objective is to predict the

trip duration (dt). All the observations for each taxi is considered as the local data.

There are 5 months data in 2013: February to June. Two levels of granularity are selected:

taxi itself and the data for whole month, C1
i ,C

2
i (see Equation 7.2). Four algorithms are applied on

different levels of the dataset (DB) at the base-level to predict the target variable (Trip Duration):

• Decision Tree (DT) Olshen et al. (1984); Safavian and Landgrebe (1991); Ripley (2014),

• Random Forests (RF) Amit and Geman (1997); Breiman; Liaw and Wiener (2002),

• Support Vector Machines (SVM) Hearst et al. (1998); Schölkopf and Smola (1998); Stein-

wart and Christmann (2008),

• Linear Regression (LM) Seber and Lee (2012); Montgomery et al. (2012).

The results of this experiment is used for comparison at the base-level as well and to create the

meta-dataset at the meta-level.

9.2.3 Meta-level Approach

In terms of the metalearning approach, the possibility of generating meta-examples at different

levels of granularity of the data, adds another dimension to the meta-dataset. So for each entity,

instead of having just one set of Ci, other feature sets can be generated for different levels or

categories of the data, C1
i ,C

2
i ,C

3
i , ...,C

k
i , where k is the number of levels or categories. Therefore

the meta-dataset for the metalearning process is DB = {Ti,C
j
i ,Yi},∀i ∈ {1, ...,n},∀ j ∈ {1, ...,k}.

The customized model for this case study used in this chapter is shown in Figure 9.2.
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Figure 9.2: Proposed methodology used for metalearning

In the proposed model, there are two different levels: the taxi itself (local model) and the data

for the whole month (global model). At the level one, each taxi (Ti) creates a unique category,

C1
i ,∀i ∈ {1, ...,n1} where n1 is the number of taxis. The level two data has only one category

containing all the data from all taxis. At the meta-level, to create the meta-dataset, we need the best

performance obtained at the base-level for each taxi. Therefore, the best base-level performance

is selected as Pbest i for taxi i (see Equation 9.1).

Pbest i = max
w, j

(P j
iw) , ∀w ∈ {1, . . . ,4}, ∀ j ∈ {1,2} (9.1)

Where w is the number of algorithms and j is the number of levels at base-level.

In addition, the metafeatures (see Section 9.2.4) are also calculated for each taxi and at differ-

ent levels. In general m f j
i is the calculated metafeatures for taxi i at the level j. As a result, there

are two sets of metafeatures for each taxi: m f 1
i and m f 2

i .

Finally the metadata (see Section 9.2.5) structure for each taxi consists of the taxi identifi-

cation, metafeatures for the two levels and the best performance at the base-level obtained from

Equation 9.1. A general form of metadata is shown in Equation 9.2.

Ti, m f 1
i , m f 2

i , Pbest i (9.2)
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In the experiment setup, two algorithms are applied on the metadata at the meta-level to predict

the best performance (P̂best i):

• Decision Tree (DT),

• Random Forests (RF).

The target variable at the meta-level is Pbest i. The predicted best performance at the meta-level is

called P̂best i . Using P̂best i , the meta-model recommends the best level and the best algorithm for

each taxi to have the best performance at the base-level.

The performance of metalearning model is evaluated using the predicted best performance

(P̂best i) and the actual value obtained from Equation 9.1 (Pbest i). The results of this evaluation are

presented in Section 9.4.

9.2.4 Metafeatures

The extracted metafeatures noted above, are described briefly in this section. A comprehensive

study was done by Peng et al. Peng et al. (2002) for feature selection. Also the reasons to select

these metafeatures are also discussed in Section 8.2.1. For this problem, in total, 31 metafeatures

were selected to describe the structure of the dataset. These metafeatures are selected based on the

regression problem. Their effectiveness through extensive experiments was evaluated.

A list of all metafeatures that we used for this study with a brief description is provided in

Table 9.1. The detailed description of each metafeature is explained in Peng et al. (2002) and is

also described in Appendix A.
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Table 9.1: The description of metafeatures used for metalearning

Feature Feature’s description

1 Number of examples

2 log(10) of the number of examples

3 Number of attributes

4 Ratio of number of examples by number of attributes

5 log(10) of the ratio of number of examples by number of attributes

6 Number of continuous attributes

7 Number of symbolic attributes

8 Number of binary attributes

9 Proportion of continuous attributes

10 Proportion of symbolic attributes

11 Proportion of binary attributes

12 Correlation between continuous attributes

13 Average absolute correlation between continuous attributes

14 Minimum absolute correlation between continuous attributes

15 Maximum absolute correlation between continuous attributes

16 The ratio between the standard deviation and the standard deviation of alpha

trimmed mean

17 Number of continuous attributes with outliers

18 Proportion of continuous attributes with outliers

19 Correlation matrix between attributes and target

20 Average correlation continuous attribute/target

21 Minimum correlation continuous attribute/target

22 Maximum correlation continuous attribute/target

23 Check if standard deviation is larger than mean

24 Ratio of the standard deviation and the mean of the target attribute

25 Sparsity based on the coefficient of variation

26 Sparsity based on the absolute coefficient of variation

27 Standard deviation of the proportions of a histogram with 100 bins of target

values

28 textith.outlier value, as calculated for the continuous attributes

29 Outlier detection based on the notion of outliers used for continuous attributes

30 Mean distance between each target value and its two neighbors (sorted by

value)

31 Average mean distance between each target value and its two neighbors (sorted

by value)
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9.2.5 Metadata

The dataset used for metalearning is called metadata. For each entity, the best performance ob-

tained from the performance evaluation part is selected according to the Equation 9.1.

The metadata for each entity is consisted of metafeatures for different levels plus the best

performance obtained from the Equation 9.1. Equation 9.3 shows the general form of the metadata

which is used for metalearning:

Row i→ Ti, m f 1
i , m f 2

i , . . . , m f k
i , Pbest i (9.3)

As an example, suppose we have only one metafeature which is the number of observations. Then

the metadata is: the entity, the number of observations at level one (m f 1
i ), the number of observa-

tions at level 2 (m f 2
i ), and the best performance obtained amongst two levels (Pbest i). Equation 9.4

shows this example:

Ti, m f 1
i , m f 2

i ,Pbest i (9.4)

The main idea of metalearning is to find out the best algorithm and the best level of hierarchy to

apply the algorithm depending on the metafeatures obtained at different levels. Consequently, the

metalearning maps the extracted metafeatures from the original datasets to the best performance

obtained at different levels by applying different algorithms to the original dataset. Our metalearn-

ing model recommends a level and an algorithm for each taxi in which, applying the recommended

algorithm on the recommended level produces the best performance (see Equation 9.5).

Out put : { Ti︸︷︷︸
entity

, j︸︷︷︸
recommended level

, g︸︷︷︸
recommended algorithm

} (9.5)

9.3 Evaluation

In this section, the evaluation process is discussed for both base-level 9.3.1 and meta-level 9.3.2.

9.3.1 Base-level evaluation

At the base-level, the problem of prediction of the trip duration is a regression problem. Each

algorithm is applied on the training dataset and the model obtained is applied to new examples

to predict the corresponding trip duration. This prediction is evaluated by the Normalized Root-

Mean-Square-Error (NRMSE). This measure is based on the popular RMSE (Equation 9.6), which

is based on the differences between the predicted and the observed values.

RMSE =

√
∑(D̂t i−Dt i)2

n1
(9.6)

where Dt i is the observed trip duration, D̂t i is the predicted trip duration and n1 is the number of

predicted values.
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The NRMSE is the RMSE divided by the standard deviation of the variable being predicted

(Equation 9.7). Using R R Core Team (2014b), the package hydroGOF Zambrano-Bigiarini (2014)

is used to compute the NRMSE.

NRMSE = 100∗ RMSE
σ

(9.7)

where σ is the standard deviation of the predicted variable. Having the NRMSE for all the possible

runs, the algorithm with the best NRMSE (the lowest one) is selected as the best algorithm for each

taxi to be used at the meta-level.

9.3.2 Meta-level evaluation

As previously mentioned, at the meta-level, two algorithms were applied on the meta-data (Equa-

tion 9.2): random forest and decision tree. The meta-level approach predicts a base-level algo-

rithms along the level of granularity which will have the best performance (lowest NRMSE) for a

given taxi and month.

The performance of the proposed metalearning model is evaluated by the accuracy of the

prediction. This is done by comparing the predicted best performance (P̂best i) and the actual value

at the base-level (Pbest i). In addition, we also evaluate the performance of the proposed model

relative to the possible range of base-level performance. Scalederror shows the relative NRMSE

of the metalearning model with respect to the best and the worst NRMSE of the base-level. It is

shown in the following equation:

Scalederror =
NRMSEML−NRMSEB

NRMSEW −NRMSEB
(9.8)

where NRMSEML is the NRMSE of the proposed metalearning model, NRMSEB and NRMSEW

are the best and the worst NRMSE obtained by the base-level algorithms, respectively. The met-

alearning approach can behave as well as the best performance at the base-level (NRMSEB) or as

worse as the worst performance at the base-level (NRMSEW ). Therefore, the range of Scalederror

is between 0 and 1. If the prediction of the metalearning model equals to the best performance of

the base-level, then Scalederror = 0. In the worst case when the performance of the meta-model

equals to the worst performance of the base-level, then Scalederror = 1. As a result, the lower the

Scalederror the better performance is expected for the meta-level experiment.

9.4 Results

In this section, the use of metalearning for algorithm selection and level of granularity is investi-

gated. The performance of different algorithms is evaluated for local and global data for each taxi

at the base-level and the meta-level. Section 9.4.1 shows the base-level results while the perfor-

mance of the meta-level is discussed in Section 9.4.2. The comparison of base-level and meta-level

results is also illustrated in Section 9.4.3.
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9.4.1 Base-level results

As previously mentioned (Section 9.3.1), the performance of the base-level is evaluated by NRMSE.

Figure 9.3 shows the box-plot of the average NRMSE for different taxis in five months. It can be

seen that the NRMSE for all months is less than 5%. The average NRMSE for each month is

around 1%. Therefore, on average, the base-level error is 1% which sounds considerably good.

This means that the base-level algorithms can predict the trip duration very precisely.

Figure 9.3: NRMSE[%] for different months

The performance of individual algorithms are also shown in Figure 9.4 which shows the

NRMSE for each algorithm at each level for all months. It also shows that the NRMSE at the

base-level is around 1% and the variation for month April, 2013 is more than other month. In

general, the SVM algorithm at the first level (the local mode trained only by the data from taxi

itself) has the worst performance while the random forest algorithm at the level one has the best

performance on average. Although it is not true for all taxis and the best performance may vary

between different algorithms and levels (Figure 9.5).
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(a) 201302 (b) 201303

(c) 201304 (d) 201305

(e) 201306

Figure 9.4: NRMSE for all algorithms at each level in different months
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Figure 9.5: The percentage of the best algorithm in all months: base-level

9.4.2 Meta-level results

At the meta-level, the best algorithm and the best level of granularity have a less variation than

the base-level.Table 9.2 shows the results of the best algorithm and the best level for each month

at the meta-level. Clearly, the SVM algorithm is never selected as the best at the level one in

our experiments. The linear regression algorithm at the first level is also selected for only 0.24%

of taxis on June which can be illuminated from the algorithm space at the base-level. The SVM

algorithm is also selected as the best only for less than 1% of taxis at the level two, on June. So

we may remove it from the algorithm space in the base-level and decrease the computational cost.

Obviously, the RF algorithm is the algorithm that is selected as the best algorithm in both levels in

most of the time.
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The meta-level results is also shown that the best level varies. For February, March, and April,

the best level is the level one. This is probably due to terrible weather in Porto and as a result,

there are more trip for each taxi in these months. So an accurate model can be trained by using

only the data from taxi itself. But in months May and June, while the weather is better and people

start using other public transportations like metro and buses, the number of trips for each taxi is

decreased. Therefore, the best level of granularity for taxis is changed from level one to level two

where there is enough data to train an accurate model (global model).

Table 9.2: The meta-level results (the percentage of occurrence) for the best algorithm and the
best level of granularity on different months. Columns: meta-levels algorithms. Rows: base-level
algorithms

Year 2013
February March April May June
RF DT RF DT RF DT RF DT RF DT

L
ev

el
1

DT 0 0 0.49 0 0 0 0.53 9.74 0.94 0
SVM 0 0 0 0 0 0 0 0 0 0
RF 88.3 69.68 71.92 99.01 78.93 100 36.94 0.26 29.41 21.65
LM 0 0 0 0 0 0 0 0 0 0.24

L
ev

el
2

DT 0.53 1.6 0 0.99 0.31 0 0 31.24 0 0
SVM 0 0 0 0 0 0 0 0 0 0.94
RF 11.17 23.94 27.59 0 20.75 0 60.16 58.76 66.35 72.24
LM 0 4.79 0 0 0 0 2.37 0 3.29 4.94

As discussed previously (Section 9.3.2), our metric to evaluate the meta level results is Scalederror.

Figure 9.6 shows this metric on average for all months. The Scalederror is about 30% in the worst

scenario and around 5% for the best one.

The overall results of the calculated Scalederror seem interesting while the Scalederror is very

low. It shows that the performance of the algorithms selected by the meta-model is close to the

best performance obtained by the base-level by any of the algorithms. This satisfies our objectives.

The Scalederror is increased with time. This is because the difference between the worst and

the best NRMSE for the months May, and June is decreasing and therefore the denominator in

Equation 9.8 is decreased. The comparison of the worst, the best and the meta-level results is

illustrated in Figure 9.7. In addition, this figure also confirms that the meta-level results are almost

followed the best base-level results.
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Figure 9.6: The average Scalederror[%] over all taxis for each month
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Figure 9.7: The NRMSE for the worst, the best and the meta-level results: ML-RF and ML-DT

The distribution of calculated Scalederror for each taxi is shown in Figure 9.8. As we expected,

the density is concentrated around zero. The distribution for RF and DT algorithms show that on

average the Scalederror is less than 0.2 in both cases. Although the density of Scalederror for RF

algorithm has higher concentration near the origin.

In general, the results show that during the months with lots of rain (February to April) in

Porto, when there are more taxi trips in the city, the local model for each taxi is more accurate than

the global one. But on May and June while there is less taxi trips in the city of Porto, taxis should

the global model for prediction.
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(a) RF algorithm

(b) DT algorithm

Figure 9.8: Distribution of Scalederror over each taxi

9.4.3 Base-level vs. meta-level results

In metalearning one of the most important metric for evaluation is the accuracy. The comparison of

accuracy between the base-level and the meta-level is presented in Fig. 9.9. According to this re-
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sult, the performance of the meta-level outperforms the base-level for most of the months. In April

2013, due to the lack of enough observations for calculating the metafeatures, the performance of

metalearning is dropped.

The accuracy of the base-level is calculated based on the majority algorithm and level with

the best performance at the base-level. Imagine that on February, applying the random forest

algorithm (Figure 9.5 shows that for 47.9% of the time, the random forest algorithm is the best

choice) at the level one is selected as the prediction of the best choice for all taxis in this month.

Then the accuracy of base-level for this month is calculated by knowing the actual best choice

and this prediction. At the meta-level, the accuracy is calculated by comparing the prediction of

meta-level with the actual best choice at the base-level. On average, the meta-level accuracy is

32% higher than the base-level accuracy.

Figure 9.9: Accuracy: base-level vs. meta-level

9.5 Summary

We proposed the use of metalearning for prediction of trip duration. The experiments are per-

formed on the taxi dataset from Drive-In project. The machine learning algorithms are performed

at two different levels of granularity: taxi and month levels. The results show that the metalearning

can help predicting the algorithm with the best performance at the base-level with high accuracy.
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Furthermore the performance of the base-level itself is also considerably applicable. In overall,

the results show that the metalearning predicts the trip duration with the error rate less than 5%.
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Conclusions and Future Work

10.1 Conclusion

Vehicular networks, which are part of the communication infrastructure for ITS, offer several

applications like safety, traffic management, and infotainment applications. Vehicles move all

over the city and sense events from the city environment. This data can be processed and sent to

a central location where it can be aggregated and used for various applications from real-time to

offline applications. Therefore, using in-car sensors as data sources and cars as data carriers, a

macro vision of the city can be obtained. In addition, vehicular networks can be a cost-efficient

infrastructure for urban sensing making an urban monitoring system without actually deploying

connected sensors.

In this project, a solution is proposed for the broadcast storm problem in the massive urban

sensing application. The proposed solution uses a back-off timer to distribute the forwarders ac-

cording to their distance to the final destination which is a data collection point in the network.

It also uses different suppression techniques for further suppressing the unnecessary packet for-

warding. The protocol is compared to other existing protocols that may be used for the purpose

of the data collection in VANETs. In most of the cases, it outperforms other protocols with high

end-to-end packet delivery ratio and low end-to-end delay.

Another contribution of the project is that the sensing capacity is estimated. This sensing

capacity indicates the maximum amount of data that a node can generate before saturating the

shared medium. The results of this theoretical limit are also compared to the simulation results for

validation.

In detail, the following contributions related to data communication are done:

• A new protocol for urban sensing and data collection is designed and evaluated (Chapter 3).

The protocol is a broadcast- and receiver-based per-hop forwarding protocol. It selects

the forwarding order among the nodes receiving the packet by mapping it into back off

time, in which, nodes that are nearer to the final destination have shorter back-off times.

The protocol does not require nodes to exchange periodic messages with their neighbors

communicating their locations for reducing the message overhead and it uses geographic

133
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information about the current sender and the final destination node in the header of each

data packet to route the packet in a hop-by-hop basis by taking advantage of redundant

forwarding to increase packet delivery to a destination. The performance of the protocol

is compared with the broadcast storm mitigation techniques using NS-3. The proposed

protocol achieves higher packet delivery rates and uses on average the same number of hops

and causes less redundant packets at the data sink.

• The performance of the proposed protocol is compared with the performance of different

broadcast suppression techniques (Chapter 4). The effect of four different suppression tech-

niques on the sensing accuracy and network overhead is evaluated using NS-3 large scale

simulation.

• The sensing capacity is calculated and validated with the simulation. In Chapter 5, the

limitations of data gathering protocol in the sense of many-to-one scenario are studied and

a method to estimate the maximum amount of data that each node can generate to guarantee

a pre-defined packet delivery ratio at the sink is also proposed. The maximum packet size

for a scenario without considering the collision is calculated. Then, the collision is added to

the calculation and the end-to-end packet delivery ratio and the service rate are calculated.

The results quantify the trade-off between these two metrics. Finally, the analytical results

are validated by simulation of the same scenario.

The data management part of the project is concerned with the choosing of the right piece of

data and the right algorithm to build an accurate model for a particular entity in a specific area of

the city. Taking advantage of existing hierarchy in the collected data, a general data mining frame-

work is proposed. The proposed framework is used for improving the performance of traditional

data mining and machine learning algorithms for building predictive models. This approach uses

metalearning to relate the performance of the different machine learning algorithms with the data

characterization to reduce the computational costs as well as to improve the model performance.

The performance of the framework is evaluated on two datasets: VANETs dataset and unrelated

dataset to VANETs but with common properties.

The contributions related to data management are:

• Use of existing hierarchies in the data is investigated to improve the performance of the

learning process. In Chapter 6, the effect of aggregating data at the different levels of a

product taxonomy in the performance of an outlier detection method applied to the problem

of identifying erroneous foreign trade transactions collected by the Portuguese Institute of

Statistics (INE) is investigated. The evaluation results show that, depending on the product,

the best results can be obtained at different levels of aggregation. However, in some cases,

the best results are obtained with no grouping. This means that different aggregation levels

should be selected for different local models.

• In Chapter 7, a metalearning framework is proposed for data hierarchy level and algorithm

selection. The basic idea for this proposal is to reduce the computational costs for applying
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different algorithms at different levels of granularity to reach the best performance. The

proposed model recommends an algorithm and a level of granularity to obtain the best per-

formance.

• The framework is evaluated by applying it to different datasets (Chapters 8 and 9). Although

the proposed framework is developed for VANETs-related models in mind, the framework

may also be useful in a more traditional data mining (DM) setting, particularly if the data

is organized according to a data warehouse-like (DW) structure. In Chapter 8, the proposed

framework is applied on the INTRASTAT dataset to detect erroneous transactions. Ex-

tensive experimental results have shown the improvement of accuracy of the metalearning

approaches, when compared to the baseline. In Chapter 9, the proposed framework is tested

for a VANETs related problem. Knowing the trip duration beforehand can help drivers, pas-

sengers, and even the travel companies to better manage their trips, routes, and time. At the

base-level, the machine learning algorithms are performed at two different levels of gran-

ularity: taxi and month levels. The results show that the metalearning can help predicting

the algorithm with the best performance at the base-level with high accuracy. In overall, the

results show that the metalearning predicts the trip duration with the error rate less than 5%.

Unlike the problem already discussed in Chapter 8, the trip duration is a regression problem.

10.2 Future Work

The proposed approach in this project covers the whole process from data collection to the data

model management for different ITS applications. Considering the hyperconnected world, this

proposal can be used by different applications including manufacturing of products by forecasting

of product demands, supply chain management by predicting of the best location of stocks, and

real-time optimization of supply chain networks by prediction of the best route for fleets, through

networking machinery, sensors and control systems together.

All manufacturers have a desire to give their consumers exactly what they want. This can be

done by using historical data collected from sales and production lines and forecasting the demand

for products. Our proposed approach can be implemented in this case by organizing the past data

into hierarchy structure. One of possible solution can be using three different hierarchy levels: the

data associated with a product, the data related to a group of products which have the same type,

i.e. foods, clothes, and so on, and all the data.

This proposal can be used in a supply chain management system where a poor stock’s location

can give low productivity, unreliable deliveries of materials, high costs, and poor customer service.

The same approach can be done using the data that can be collected from the logistics and also

stocks movement within the supply chain. The approach can help to deal with the uncertain and

non-stationary demand with minimum cost.
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The detail description about the metafeatures for INTRASTAT dataset (Section A) and taxi

dataset (Section A) is presented in this Appendix.

Metafeatures for INTRASTAT Dataset

Totally, fifteen metafeatures are calculated for INTRASTAT dataset which are described in Ta-

ble A.1.

Table A.1: Extracted features used in metalearning - INTRASTAT dataset

Feature Name Description
n.examples Number of examples

n.attrs Number of attributes

prop.symbolic.attrs Proportion of symbolic attributes

prop.missing.values Proportion of missing values

class.entropy Class entropy

avg.mutual.information Average mutual information

prop.h.outlier Proportion of continuous attributes with out-

liers

avg.attr.entropy Average attribute entropy

avg.symb.pair.mutual.infor Average mutual information between pairs of

symbolic attributes

avg.abs.attr.correlation Average absolute correlation between contin-

uous attributes

avg.skewness Mean skewness of attributes

avg.abs.skewness Mean absolute skewness of attributes

avg.kurtosis Mean kurtosis of attributes

canonical.correlation.best.linear.combination Canonical correlation of the best linear com-

bination of attributes to distinguish between

classes

relative.prop.best.linear.combination Proportion of the total discrimination power

explained by the best linear combination

Metafeatures for Taxi Dataset

The description of 31 metafeatures which are calculated for creating metadata for taxi dataset are

presented in Table A.2.
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Table A.2: The description of metafeatures used for metalearning - Taxi dataset

Feature Feature’s description
1 Number of examples

2 log(10) of the number of examples

3 Number of attributes

4 Ratio of number of examples by number of attributes

5 log(10) of the ratio of number of examples by number of attributes

6 Number of continuous attributes

7 Number of symbolic attributes

8 Number of binary attributes

9 Proportion of continuous attributes

10 Proportion of symbolic attributes

11 Proportion of binary attributes

12 Correlation between continuous attributes

13 Average absolute correlation between continuous attributes

14 Minimum absolute correlation between continuous attributes

15 Maximum absolute correlation between continuous attributes

16 The ratio between the standard deviation and the standard deviation of alpha

trimmed mean

17 Number of continuous attributes with outliers

18 Proportion of continuous attributes with outliers

19 Correlation matrix between attributes and target

20 Average correlation continuous attribute/target

21 Minimum correlation continuous attribute/target

22 Maximum correlation continuous attribute/target

23 Check if standard deviation is larger than mean

24 Ratio of the standard deviation and the mean of the target attribute

25 Sparsity based on the coefficient of variation

26 Sparsity based on the absolute coefficient of variation

27 Standard deviation of the proportions of a histogram with 100 bins of target values

28 textith.outlier value, as calculated for the continuous attributes

29 Outlier detection based on the notion of outliers used for continuous attributes

30 Mean distance between each target value and its two neighbors (sorted by value)

31 Average mean distance between each target value and its two neighbors (sorted

by value)
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