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Abstract 
The present dissertation addresses the subject of vibrations induced by the passage of 
high-speed trains. The main objective of the study is the development of numerical tools that 
allow investigating distinct geometries of train and track, considering buildings in the 
proximity of the track, and also assessing the behavior of mitigation solutions. 

The problem of vibrations induced by moving vehicles is divided into three stages: a 
generation stage, in which the vehicle interacts with the track; a propagation stage, in which 
the forces that the train transmits to the track originate waves that propagate through track and 
ground; and a reception stage, in which the waves reach a nearby building, causing it to 
respond dynamically. Since the geometric specifications of the problem vary within the three 
stages, different strategies are chosen for each stage: 

1. The generation stage involves a discrete structure (the vehicle) moving on top of a 
structure whose longitudinal dimension is infinite (track-ground system). In this way, 
the problem is formulated in a moving frame of reference, being the equations solved 
in the frequency domain; 

2. For the propagation stage, since it is assumed that track and soil are invariant in the 
longitudinal direction, then the problem is formulated in the wavenumber-frequency 
domain (2.5D). In this way, the three-dimensional problem is reduced to a series of 
two-dimensional problems of smaller dimensions that are faster to solve. The track is 
simulated with finite elements while the surface of the soil interacting with the track is 
simulated with boundary elements. Mitigation measures in the soil must be included in 
this stage; 

3. In the reception stage, the three-dimensional structure to be analyzed is irregular in all 
directions and therefore the 2.5D procedure cannot be applied. For this reason, a 3D 
frequency domain formulation is used, in which the structure is simulated with finite 
elements and the soil is simulated with boundary elements. The exterior loads 
considered in this stage are calculated based on the results of the propagation stage. 

The response of the soil, which is of great relevance for the problem, is accounted for through 
the boundary element method (BEM). The fundamental solutions used to nurture the BEM are 
obtained with the thin-layer method, being this the main difference between the strategy 
adopted herein and the procedures followed by other authors that also use the BEM. 

The numerical procedures mentioned above are described in chapters 2-4. Additionally, in 
chapter 4, the link between the three stages and the distinct procedures is established. In 
chapter 5, the methodology is applied to the study of trenches as mitigation solutions. 
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Resumo 
Esta dissertação debruça-se sobre o tema de vibrações induzidas por tráfego ferroviário de alta 
velocidade. O principal objetivo do estudo reside no desenvolvimento de ferramentas 
numéricas capazes de simular o fenómeno e que permitam investigar vias e comboios com 
geometrias variadas, considerar edifícios na proximidade da via, e ainda avaliar o 
comportamento de diversas medidas mitigadoras. 

O problema de vibrações induzidas por veículos pode ser dividido em 3 fases: uma fase de 
geração, em que o veículo interage com a via; uma fase de propagação, em que a ação que o 
veículo transmite à via-férrea origina ondas que se propagam através desta e através do solo; e 
uma fase de receção, em que as ondas chegam a um edifício próximo da via, induzindo a 
resposta dinâmica da estrutura. As especificidades geométricas variam de fase para fase, pelo 
que são tomadas diferentes estratégias para cada fase: 

1. A fase de geração envolve a interação entre uma estrutura móvel de caráter discreto (o 
veículo) e uma estrutura de dimensão longitudinal infinita (sistema solo-via). Desta 
forma, formula-se o problema com base num referencial móvel, sendo as equações 
posteriormente resolvidas no domínio da frequência; 

2. Para a fase de propagação, uma vez que se assume que tanto a via como o solo 
apresentam invariância longitudinal, as equações são formuladas no domínio do 
número de onda e da frequência (2.5D). Desta forma, reduz-se o problema 
tridimensional a um somatório de problemas bidimensionais de menor dimensão e de 
mais rápida resolução. A via-férrea é modelada com recurso a elementos finitos e a 
superfície do solo em contacto com a via é modelada com elementos de contorno. De 
salientar que medidas mitigadoras no solo, como por exemplo, trincheiras, devem ser 
incluídas nesta fase; 

3. Na fase de receção, a estrutura a analisar apresenta um caracter tridimensional e 
irregular em todas as direções, pelo que a formulação 2.5D deixa de ser válida. Assim, 
opta-se por uma formulação tridimensional, no domínio da frequência, em que a 
estrutura é modelada com elementos finitos e a superfície do solo em contacto com a 
estrutura é modelada com elementos de contorno. Convém ainda referir que a ação 
considerada nesta fase é calculada com base nos resultados da fase de propagação. 

Relativamente ao solo, elemento preponderante em todo o problema, o seu comportamento é 
tido em conta por intermédio do método dos elementos de contorno (MEC). As soluções 
fundamentais usadas para alimentar o MEC são obtidas pelo thin-layer method, sendo esta a 
principal diferença entre a estratégia aqui adotada e a estratégia seguida por outros autores 
que também usam o MEC. 

A formulação das ferramentas acima mencionadas é descrita nos capítulos 2 a 4, sendo ainda 
no quarto capítulo exemplificada a ligação entre os diferentes procedimentos. No capítulo 5, a 
metodologia é aplicada ao estudo de medidas mitigadoras sob a forma de trincheiras. 
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1. Introduction 
1.1 Motivation 

High-speed railway networks have been under construction all over Europe and Asia during 
the last decades. Currently, in Europe, high-speed lines are being explored in Spain, France, 
Germany, Belgium, Netherlands, Luxemburg, Switzerland, Italy and Britain. In Asia, China 
holds the record for the largest high-speed network, with an extension of 7500 km. It is 
expected that by 2020 the Chinese network will be expanded to a total of 25000 km. In other 
countries, for example Sweden, even though there is no high-speed network, trains can travel 
at speeds up to around 200 km/h. In Portugal, in some sections of the Northern Line, the “Alfa 
Pendular” train can travel at speeds up to 220 km/h and, until a few years ago, there were 
plans to build high-speed railway lines that would connect Portugal with Spain. 

Problems related to the increase of the travel speed of trains have been reported in the last 
years. Shortly after the opening of the Swedish line between Göteborg and Malmö in 1997, 
excessive vibration levels were detected both in the railway embankment and surrounding soil 
when the X-2000 train travelled at speeds around 200 km/h (Madshus and Kaynia, 2000). The 
high vibration levels were explained by the increase of the train speed, which approached the 
Rayleigh wave velocity of the soil, causing the resonance of the track-soil system and 
resulting in the potential instability of the train. Another problem that may arise from the 
circulation of trains is the excessive vibration level on nearby buildings originated by waves 
that propagate through the ground. The induced vibrations may cause annoyance to the 
occupants of the building, malfunction of sensitive equipment and, eventually, structural and 
non-structural damage. 

Since during the planning stage of a high-speed railway network it is not possible to avoid 
sensitive areas in which vibrations may be problematic, such as zones of poor soil 
characteristics (soft soils with low wave velocities) or zones more or less urbanized (train-
stations, for example), prediction tools for the assessment of vibrations induced by the 
passage of trains reveal themselves very valuable. This is the motivation for the present work. 
The main objective of the work is to develop numerical tools capable of predicting the 
vibration levels induced by trains in buildings and to study the efficiency of countermeasures 
to mitigate those vibrations. 

In the next section, the state of the art on vibrations induced by vehicles is presented.  

1.2 State of the art 

Vibrations induced by moving sources are not a problem that emerged with high-speed trains. 
Long before the appearance of the first high-speed trains in Japan, in the mid-sixties, reports 
had been made regarding the impact that the circulation of vehicles could have on 
surrounding buildings. For example, in the XIX century, people were concerned with the 
effects that the passage of freight trains in a line yet to be constructed in the proximity of the 
Royal Observatory, in Greenwich, England, would have on its equipment (South, 1863). This 
concern led to experimental investigations on the subject. In another example, in the middle 
of the XX century, the National Research Council of Canada promoted experimental 
campaigns to evaluate the vibrations induced by the passage of trolley buses in nearby 
buildings (Sutherland, 1950). The campaigns were organized in response to the increasing 
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number of complaints received from inhabitants who sensed the vibrations and feared damage 
on their properties. 

The construction of the subway systems inside the cities (excessively close to residences), 
together with the increase of train capacities and comfort standards, gave more importance to 
the problem of vibrations induced by moving vehicles and led to several experimental 
campaigns (Wilson et al., 1983; Dawn and Stanworth, 1979; Melke and Kramer, 1983). The 
experimental campaigns were carried out to assess if the vibrations induced by the circulation 
of trains could damage buildings, cause discomfort to inhabitants or cause the malfunction of 
sensitive equipment and, at the same time, to understand the mechanisms of generation of 
vibrations and to study possible mitigation measures. 

In more recent years, in part due to the continuous increase of the weight and speed of trains 
and in part due to the higher standards for comfort, the problem became even more important 
and, in addition to the problem of vibrations induced on buildings, a new problem emerged: at 
some lines resting on soft soils the train speed approached the propagating velocity of the 
waves and, as a consequence, large displacements in the embankment were observed, causing 
the risk of derailment of the train. This happened, for example, in the very well documented 
case of Ledsgard, Sweden (Hall, 2000), and in a line of the Northwest of France (Picoux and 
Le Houedec, 2005). In those lines, the circulation speed was reduced and, in several other 
lines around the world, new experimental campaigns were conducted to assess the vibration 
levels. In addition, studies were performed on countermeasures to mitigate the vibrations and 
prediction models were developed or improved. 

Two strategies for the study of the phenomenon of vehicle induced vibrations can be adopted: 
field measurements and numerical/analytical predictions. Field measurements are performed 
under real conditions and provide an enriched set of results, which account for all the factors 
that influence the phenomenon. The results of the experimental campaigns indicate which 
aspects most influence the level of induced vibrations, thus showing which factors must be 
taken into account when developing numerical models. When large databases collecting 
experimental data are available, it is possible to perform extrapolations in order to predict the 
vibration levels for scenarios with similar conditions (soil, track, vehicle, structure), and, 
consequently, it is possible to develop empirical models. The drawback of field experiments is 
their high cost and so it is desirable that they are employed as less as possible. Nevertheless, 
experiments are always needed to obtain inputs for numerical models and also to validate 
these models. 

On the other hand, to use prediction models is not as expensive as performing in situ 
experiments but, contrarily to experiments, these models cannot reproduce the whole reality 
since they are based on assumptions and simplifications. On one side, empirical models that 
are developed based on experimental data provide good estimates but their range of 
applicability is limited to scenarios with conditions similar to the experiments. On the other 
side, numerical models are versatile and allow studying the influence of certain parameters on 
the vibration levels, but their accuracy depends on the simplifications made and on the 
assumptions on which the models lie. Numerical models can usually be adapted in order to 
account for countermeasures and study their performance. 

In the following sub-sections, a historical overview of experimental campaigns, prediction 
models and countermeasures for vibrations is presented. 
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1.2.1 Experimental campaigns 

As mentioned earlier, the problem of vibrations induced by moving vehicles harks back to the 
XIX century, when South (1863) performed experimental investigations in a tunnel located in 
Watford, England. These experiments were carried out to sustain the idea that the passage of 
freight trains in Greenwich Park, near the Royal Observatory, could be harmful to its 
equipment. The Watford tunnel was selected for the experiments because the geotechnical 
conditions at that place were similar to the ones observed in Greenwich. 

Vibrations induced by road traffic have also been subjected to investigations since the mid 
twentieth century, as reported by Sutherland (1950), who refers to experiments made in 
Canada. There, the inhabitants of the city of Winnipeg sensed the vibrations and feared 
damage on their properties, and therefore presented their complaints to the City Hall. As a 
consequence of the multiple complaints, the National Research Council of Canada promoted 
experiments to investigate the problem. The results of the experiments suggested that the 
induced vibrations, even if felt, were not strong enough to cause damage in the structures. In 
addition, it was concluded that the irregularities of the surface of the road (such as bumps) 
were the factor that contributed most to the vibration levels. 

Also concerning road traffic induced vibrations and still in Canada, more experimental 
campaigns were carried out to understand the phenomenon. As a consequence of complaints 
lodged by residents in Quebec, Al-Hunaidi and Rainer (1991a) performed field experiments in 
two different sites in order to study the factors that influence the level of vibrations. They 
studied the influence of speed, weight and type of vehicle and road roughness, and concluded 
that while the vehicle speed and the road irregularities influenced considerably the vibrations, 
the mass of the vehicle had little influence. Later, Al-Hunaidi and collaborators performed 
more tests in nine different sites of the city of Montreal to study the influence of the 
suspension system of the vehicles (Al-Hunaidi et al., 1996) and concluded that the vibrations 
could be greatly reduced by imposing an axle hop frequency lower than the cutoff frequency 
of the soil. The influence of the road surface condition and seasonal variation of soil 
conditions has also been taken into account in another study (Al-Hunaidi and Tremblay, 
1997). 

To study the efficiency of soil improvement as a countermeasure for road traffic induced 
vibrations, Taniguchi and Okada (1981) measured the acceleration before and after the 
improvement of the soil using the lime pile technique. When they compared the spectrum of 
the vibration reduction with the acceleration spectrum of a point situated 8m away from a 
national road, they observed that the frequency range over which the vibrations were reduced 
due to the soil improvement was approximately the same range that was excited by the road 
traffic, thus concluding that the method was efficient. 

To validate their numerical model for the prediction of road traffic induced vibrations, 
Lombaert and Degrande organized two campaigns where a truck moving with variable speed 
was submitted to an artificial unevenness (Lombaert and Degrande, 2001; Lombaert and 
Degrande, 2003). Free field vibrations and acceleration of the axles were measured and the 
dynamic properties of the road and soil were determined experimentally. The results 
suggested that the vibration levels were dependent on the vehicle speed, the shape of the 
unevenness, and the vehicle and soil characteristics. The comparison between experimental 
and predicted results showed some differences that were explained by the loss of contact 
between the rear axle and the road. 
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With respect to rail traffic induced vibrations, Wilson et al. (1983) reported experiments made 
during the seventies to study the use of floating slabs as a countermeasure to mitigate ground-
borne vibrations and to study the influence of the properties of the bogies on the induced 
vibrations. Measurements were made in tunnels, on the free surface, and inside buildings. 
Later, in the late seventies, Dawn and Stanworth (1979) measured the vibration levels on a 
wall of a single storey building situated about 42m away from a track during the passage of 
trains at speeds up to 100 km/h. They noticed that the vibrations increased with the speed of 
the train and observed that the frequency content of the response presented a peak on the 
passage frequency of the sleepers. Dawn (1983) performed further experimental studies and 
confirmed that the passage frequency of the sleepers is indeed a mechanism of excitation. He 
also recognized that the critical velocity (to which corresponds the maximum ground 
response) occurred when the sleeper passage frequency coincided with the resonance 
frequency of the vehicle-track system. Melke and Kramer (1983) reached the same 
conclusions in their experimental studies. 

In more recent years, with the increase of the train speed, the problem of induced vibrations 
has been given even more importance and new experimental studies have been performed. In 
addition, with the construction of new railway lines, their homologation tests enabled the 
execution of new field experiments. 

In Germany, Auersch (1994; 2005) performed measurements at three different sites near 
Würzburg during test runs of the ICE train with different configurations and at speeds 
between 100 and 300 km/h. During the tests, which considered three different track conditions 
(surface line, bridge and tunnel), the vibrations of the vehicle, track and soil were recorded. 
The results showed that the quasi-static component of the axle load was important for the 
response of the track and the surrounding soil, and that its importance vanished rapidly with 
the distance. The results also suggested that the sleepers act as harmonic forces, whose 
intensity increases with the train speed, but remains constant when the sleeper passage 
frequency exceeds the vehicle-track resonance frequency.  

In Sweden, as a consequence of the high vibration levels observed shortly after the opening of 
the line between Göteborg and Malmö, in 1997, the train speed was reduced at some locations 
and investigations were conducted during the Autumn of 1997 and Spring of 1998 to diagnose 
the problem and to find solutions (Madshus and Kaynia, 2000; Hall, 2000). A X-2000 
passenger train was used in a total of 20 runs at speeds ranging from 10 to 202 km/h and the 
responses of rail, sleepers, embankment and ground (at the surface and its interior) were 
measured. It was observed that for speeds below 70 km/h the displacements of the ground 
were similar to those obtained considering static loading and therefore were independent from 
the speed. At speeds around 200 km/h, the amplitude of the displacements increased 
drastically, causing the risk of derailment of the train. 

In Belgium, the expansion of the railway network allowed to experimentally investigate the 
phenomenon in newly built high-speed lines. In December of 1997, six weeks before the 
inauguration of the high-speed line between Brussels and Paris, an extensive experimental 
campaign was organized by the Belgian railway company during the homologation phase of 
the line. Track response and free field vibrations up to 72 meters away from the track were 
measured during the passage of a Thalys train at speeds varying between 223 and 314 km/h 
(Degrande and Schillemans, 2001). Five years later, in August and September of 2002, the 
high-speed line between Brussels and Köln was also submitted to homologation tests (Kogut 
et al., 2003). The tests were performed at two different sites, Lincent and Waremme, and 
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included the measurement of vibration levels at the track, in the free field and in a single 
family dwelling located 50m away from the track during the passage of Thalys trains and IC 
trains at variable speed. The tests were complemented with the experimental determination of 
some dynamic properties of the track and soil. The two sets of experiments showed that the 
passage frequencies of bogies and sleepers and their higher harmonics could be noticed on the 
spectrum of the responses, namely in the near field. Also, differences in the registered 
responses for the different trains suggested that the induced vibrations depend on the train 
properties. In both cases, attenuation of vibrations with the distance to the track was detected. 

In Italy, Lai et al. (2005) measured the transfer functions in two sections of a tunnel in the city 
of Rome. The aim of the study was to assess if the level of vibrations would affect the 
surrounding buildings. Since the line was not yet operational, it was not possible to perform a 
direct measurement of vibrations induced by the railway traffic. Hence, the transfer functions 
from the tunnel to the free field and to the interior of buildings were determined 
experimentally using a mechanical hammer. The transfer functions would serve as inputs in a 
simple numerical model to predict the level of vibrations induced by future passing trains. 

In the Northwest of France, after it was observed that the ground presented excessive 
displacements, Picoux and Le Houedec (2005) measured the vibrations on rails, sleepers and 
free-field during the passage of different trains. The results showed the influence of the train 
speed and of the type of train on the induced vibrations. 

In England, within the framework of the CONVURT project, vibrations were measured at a 
site in Regent’s Park, London, during 35 passages of a test train in a tunnel at speeds between 
20 and 50 km/h (Degrande et al., 2006). Accelerations of the axle boxes, of the tunnel, of the 
free field (both at surface and inside the soil) and on several floors of two buildings situated 
70m away from the tunnel were measured. Rail and wheel roughness have also been 
measured and track characteristics were determined by receptance tests. Analysis of the 
measured fields allowed concluding that the peak velocities on the axle boxes and track 
increased with the train speed, a tendency that was less pronounced in the free-field and in the 
buildings. 

In Beijing, China, a subway line was planned to pass close to the Physics Laboratory of the 
Beijing University and so there was concern about the vibrations that would be induced by the 
rail traffic (Gupta et al., 2008). To study if certain equipments would need to change place, 
measurements were performed in the free-field near the lab and inside the building to evaluate 
the existing vibration levels (induced by road traffic and people). In addition, measurements 
were made in a different line of the Beijing subway system with similar characteristics. The 
superposition of the existing background and the predicted vibration levels would provide the 
vibration level expected in the labs. 

In Northeast China, Xia analyzed experimentally the problem of vibrations in buildings 
induced by trains running on bridges. Trains running at speeds varying between 60 and 80 
km/h (Xia et al., 2005a) and between 160 and 307 km/h (Xia et al., 2005b) were considered. It 
was observed that the vibration levels would increase with the weight and speed of the train 
and would attenuate with the distance to the railway line. It was also observed that the 
vibrations were stronger at higher floors, exceeding in some places the levels allowed by the 
Chinese code. 

To finalize the field measurements, some experimental campaigns have also been organized at 
the Portuguese Northern line by researchers from FEUP, whose objective was to characterize 
the site conditions and measure the vibrations induced by real traffic (Alves Costa et al., 
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2012a; dos Santos, 2013). At the same site, further investigations have been conducted in 
order to evaluate the dispersion of the responses along the longitudinal directions. The results 
obtained from these campaigns are expected to be published in the near future. 

1.2.2 Prediction models 

Two types of prediction models can be considered: empirical and analytical/numerical. 
Empirical models are based on results from experimental campaigns and usually provide good 
predictions, but their range of applicability is limited to scenarios that are similar to the 
conditions under which the experiments were performed, thus lacking versatility. Description 
of empirical models can be found in works by Kurzweil ( 1979), Melke (1988) and Madshus 
et al. (1996). These models use chains of transmission losses for the source-path-receiver 
system and consider parameters such as train speed, axle loads, suspension systems, weight of 
the train, wheels and rail conditions, rail fastening systems, type of track, type of tunnel and 
type of buildings. The model described by Madshus et al. (1996) was developed based on a 
large number of vibration measurements made in Norway and Sweden and was used for the 
planning of a high-speed railway line in Norway. In another empirical work, to evaluate 
problems of excessive vibrations in preliminary stages, Bahrekazemi (2004) presented a 
model that is based on measurements performed in several sites of Sweden. 

On the other hand, numerical and analytical methods are more versatile and can be efficiently 
used to study the effect of train speed or weight, track type, material resiliency, ground 
conditions, etc. The drawback is that these methods rely on idealizations and simplifications, 
then failing to reproduce reality as accurately as it would be possible with field experiments. 
Nonetheless, depending on the degree of detail of the model, the obtained prediction can be 
acceptable and useful. 

To correctly model vibrations induced by vehicles, three stages must be accounted for in a 
numerical/analytical model: the generation stage, the propagation stage and the reception 
stage (Figure 1.1). In the generation stage, the vehicle interacts with the track and induces a 
moving stress field on it. The stresses are transmitted from the vehicle to the track through 
contact surfaces (wheels or tyres) that move in space. Due to the dynamic behavior of the 
vehicle and its interaction with the track, the vehicle is subjected to accelerations and so the 
contact stresses, besides moving with the vehicle, also change their value with time. The non 
varying component of the contact stresses is called quasi-static excitation (forces per wheel or 
tyre) while the component varying with time is termed dynamic excitation. In the propagation 
stage, the stress fields (or the vibrations) propagate through the track and part of them is 
transmitted to the soil. These stresses continue to propagate in the soil, being reflected or 
refracted whenever a different material or a barrier is encountered, and finally reach the 
building. In the reception stage, the vibrations that reach the building induce a dynamic 
response on it. 

The problem of vibrations induced by moving vehicles is three dimensional: the vehicle 
moves in one direction while the waves propagate in the soil in three directions. Modeling a 
three dimensional problem can become very complicated and time consuming, even for the 
current computers. For this reason, the first works assumed that the phenomenon could be 
described by 2D models. For example, in their review paper, Gutowski and Dym (1976) 
mentioned that the vibrations generated along a road or a railway track could be modeled as a 
line source as long as the roadway was relatively uniform and the receiver was in the far field, 
but close enough to the source (less than 1/π times the length of the roadway or the train). The 
authors supplemented that if the ground motions were dominated by the surface (Rayleigh) 
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waves, then there would be no geometric damping and so the vibrations would attenuate only 
due to material damping. Later, Verhas (1979) compared the results of line source models 
with the results of point source models and concluded that by neglecting the geometric 
damping of waves inaccurate predictions would be obtained. This author suggested that the 
combination of the two models would yield better predictions, but no guidelines on how to 
combine the results from each model were indicated. In another 2D work where a finite 
element (FE) model was used, in order to account for the geometric damping of surface 
waves, the accelerations were corrected by a factor 1/ r , being r the distance to the source 
(Taniguchi and Okada, 1981). This methodology was used to study the efficiency of soil 
improvement via the lime pile technique as a countermeasure. Also using a 2D FE procedure, 
Chua et al. (1995) determined the vibration levels in a four-storey podium block due to the 
passage of trains in a double-box tunnel, accounting both for the quasi-static and for the 
dynamic excitation. The authors used an iterative nodal condensation procedure to avoid 
extremely large meshes. 

 

Figure 1.1: Generation, propagation and reception of vibrations (Hall, 2003) 

With the improvement of computational performance, both in terms of memory and speed, the 
use of 3D models became possible. One of the first works that considered the three-
dimensionality of the problem was performed by Krylov (Krylov and Ferguson, 1994; 
Krylov, 1994; Krylov, 1995). In their work, Krylov and his collaborators developed a model 
for surface trains where the forces transmitted to the ground through each sleeper are 
calculated analytically, and then, considering the sleepers as point sources, the field induced 
by each sleeper is combined, thus obtaining the response of the soil due to the passage of the 
train. Only the quasi-static component of the excitation is considered. The method for the 
calculation of the forces transmitted to the soil has been used by other researchers. 
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Conventional methods used for the analysis of three-dimensional problems, such as the FE 
method and the boundary element (BE) method, have also been employed to analyze the 
problem of induced vibrations. The FE method requires the discretization of the domain, 
which for 3D problems results in a large number of degrees of freedom and in sparse 
symmetric matrices. This method can be used to model irregular domains and, when applied 
in the time domain, can account for the non-linear behavior of materials. By itself, the 
classical FE method cannot simulate infinite domains, so special procedures need to be 
considered at the boundaries of the truncated domains in order to avoid fictitious reflections. 
Contrarily, the BE approach only requires the discretization of the boundary of the domain, 
thus resulting in less degrees of freedom, but, unlike the FE method, leads to full non-
symmetric systems of equations. The BE method takes into account the radiation of waves 
towards infinity, but cannot account for non-linearities and requires the knowledge of the so 
called Green’s functions (GF) or fundamental solutions. The hybrid FE-BE method combines 
the advantages of both approaches, being its use very attractive when the coupling between 
irregular domains and unbounded domains is required. 

Regarding the FE approach, Hall (2003) used a time domain methodology and treated the 
reflections at the boundaries using dashpots. The considered mesh led to reasonable results 
only up to the frequency 10Hz and in the calculations only the quasi-static component of the 
excitation was considered. The results of the model showed a transient phenomenon that was 
not observed in real measurements and that was originated by the entrance of the loads in the 
model. However, this numerical phenomenon would have dissipated due to damping by the 
time that the waves reached the other extreme of the model, and so the results at that extreme 
were better. Using a model with 65 meters in the longitudinal direction, good results were 
limited to the near field. To obtain better results farther from the track, longer models would 
be needed, which would render the mesh impractical for calculation. The same author 
compared the results obtained with 3D models with those obtained with simpler 2D models 
and concluded that the 2D models could be used to study certain effects of traffic induced 
vibrations but not to obtain good predictions of the induced levels of vibrations (Hall, 2000). 

In another work using the FE approach, Ekevid and Wiberg (2002) followed a similar 
approach but instead of treating the boundaries of the mesh with dashpots, these authors used 
the scaled boundary finite element method (Wolf, 2003). Even though the proposed 
methodology accounted for the radiation of waves to infinity, the fact of using a 3D mesh 
required a very large computational effort. 

Also following the FE approach, Ju used a 3D formulation to simulate soil vibrations due to a 
high-speed train crossing a bridge and to study the efficiency of trenches (Ju, 2002) and of 
soil improvement (Ju, 2004) as countermeasures. The boundaries were treated with first-order 
absorbing boundaries and the systems of equations were solved using the preconditioned 
conjugate gradients method, i.e., an iterative method. The calculation time of the problem was 
over one week. 

As for the BE and hybrid FE-BE approaches, Bode et al. (2002) used the BE method to model 
the soil and the FE method to model the sleepers and the rails (dos Santos, 2013). The 
methodology was formulated in the time domain and was used to determine the vibrations in 
the free-field and to study the influence of the soil-sleeper coupling scheme. The GF 
considered for the soil were the half-space Green’s functions, thus limiting its discretization to 
the regions interacting with the sleepers. A similar strategy was followed by O'Brien and 
Rizos (2005), but instead of using half-space GF, they used full-space GF, which demanded 
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the additional discretization of the free surface of the soil and, consequently, increased the 
number of degrees of freedom.  

In his PhD thesis, Galvín used an iterative scheme to couple the FE and BE methods and 
evaluated the response of structures near the railway track (Galvín, 2007). To account for the 
train excitation, he considered the forces transmitted by the sleepers to the soil or ballast as 
given by Krylov, and so only the quasi-static component of the excitation is included. 

Auersch (1994) presented a model for surface trains based on transfer functions of point loads 
that could be either determined experimentally or calculated numerically. The train was 
simulated by a chain of point loads representing the axles, and for each axle a force function 
was assumed with the intent of simulating the dynamic forces of the train. Later, the work was 
extended and the FE method was combined with the BE method in order to include the train-
track-soil interaction and to consider the irregularities of the vehicle/track system and the 
discrete sleeper support (Auersch, 2005). 

In more recent years, approaches that take advantage of the invariance or periodicity of the 
geometry in the longitudinal direction were developed. Some authors consider that the 
geometry is invariant in the longitudinal direction, and after performing a Fourier transform of 
the field of variables in that direction, they reduce the three-dimensional problem to a series 
of two-dimensional problems. The transformed problems are solved in the wavenumber-
frequency domain, which is termed 2.5D domain. Other authors consider that the problem is 
periodic in the longitudinal direction and after performing a Floquet transform of the field of 
variables in that direction, they reduce the geometry of the problem to a reference cell. Even 
though these two approaches, by themselves, cannot be used to predict the vibrations inside 
buildings (buildings are not invariant nor repeat themselves till infinite), they can be used to 
determine the wave fields that reach the buildings. Those wave fields can later be employed in 
the calculation of the response of the buildings. This is the approach followed by François, 
who obtains the response of buildings submitted to an incoming wave field using a FE-BE 
method in the time domain and considering the non-linear behavior of materials (François et 
al., 2006; François, 2008), and by Fiala et al. (2007), who use instead a frequency domain 
approach. 

The following group of works assumed invariant geometries and used the 2.5D approach. 

Dieterman and Metrikine (1996) coupled a beam and a half-space to model the track-soil 
interaction problem. They assumed smooth contact between the beam and the soil (no 
transmission of shear stresses) and assumed a uniform distribution of normal stresses between 
the beam and the half-space over the width of the beam. The model was used to determine the 
critical velocities of moving loads on the track-soil system. The authors concluded that there 
were two critical velocities: one that corresponds to the Rayleigh wave velocity and the other 
being slightly smaller. Both velocities resulted in severe amplifications of the beam 
displacements. Metrikine and Popp (2000) solved the same problem considering a visco-
elastic layer instead of a half-space. They concluded that the critical speed of the moving load 
was close to the Rayleigh velocity of the layer and that it decreased slightly with the depth of 
the layer. The critical velocity of harmonic loads was treated by Dieterman and Metrikine 
(1997). These authors simulated the ballast using an elastic layer and determined the speed of 
the harmonic load that caused resonance of the system as a function of the thickness of the 
layer and of the frequency of the load. They concluded that resonance occurred when the 
velocity of the load was equal to the group velocity of the waves generated by the load. In the 
work by Steenbergen and Metrikine (2007), the validity of the assumptions concerning the 
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contact between the beam and the soil is studied and the authors concluded that in general, as 
long as the wavelength is large compared with the width of the beam and as long as the 
moving load spectrum does not present high frequency components, the simplified 
assumptions succeed in obtaining the track response. However, in order to obtain the near 
field response to constant moving loads and the far field response to moving harmonic loads 
with high oscillating frequencies, the interface between the soil and the track must be 
adequately modeled. 

In a similar line of investigation, Jones, Sheng and Petyt modeled the track as a layered beam 
(accounting for rail, railpads, sleepers and ballast) and the ground as a layered half-space, for 
which they used the transfer matrices derived by Haskell (1953) and Thomson (1950). The 
contact between the layered beam and the layered half-space follows the same assumptions as 
the work of Metrikine and collaborators. The model can account for fixed harmonic loads 
(Sheng et al., 1999a) and moving loads with constant or oscillating amplitude (Sheng et al., 
1999b; Jones et al., 2000). Together with the forces transmitted by the train to the track (Jones 
and Block, 1996; Sheng et al., 2004) these models can be efficiently used to simulate the 
vibrations induced by the circulation of surface trains at variable speed, accounting both for 
the quasi-static and the dynamic components of the excitation. In the work by Sheng et al. 
(2003) this model is validated against the results of experimental measurements, and later it is 
used to study the influence of the track stiffness and the layered soil properties (Sheng et al., 
2004). 

Still considering a beam resting on a layered half-space, Lombaert et al. (2000) developed a 
numerical model for road traffic induced vibrations. The road is modeled with a beam, the 
ground is modeled using the boundary element method, and the contact between the two sub-
structures is assumed to be smooth. Since the tyres are much more flexible than the track-soil 
system, the vehicle-track interaction is uncoupled from the rest of the problem and the 
dynamic component of the excitation is calculated by simply submitting the vehicle to an 
irregular profile. The methodology is validated by means of field tests in the works of 
Lombaert and Degrande (2001, 2003) and used by Lombaert et al. (2001) to study the 
influence of the soil stratification. Clouteau et al. (2001) extended the methodology to the 
case of rail traffic and used it to exemplify the dynamic behavior of concrete slab tracks, to 
study resilient materials under the rail and slab, and to study the influence of the soil 
stratification. This last model was validated against experimental results (Lombaert et al., 
2006a) and used to study the behavior of floating slabs as control measure for ground borne 
vibrations (Lombaert et al., 2006b). The model was also used to study the influence of the 
quasi-static and dynamic components of the excitation (Lombaert and Degrande, 2009). 

Also with respect to surface trains, Karlstrom and Bostrom (2006) developed a semi-
analytical model in which the ground is modeled as a visco-elastic layered half-space, the 
embankment and ballast with a rectangular layer, the sleepers by means of an anisotropic 
Kirchhoff plate, and the rails with Euler-Bernoulli beams. A simplification is considered at 
the lateral surfaces of the embankment, where it is assumed that the tangential stresses and the 
normal displacements are null. The results obtained with the model proposed by the authors 
were compared with the results obtained with finite element models, and it was concluded that 
the simplification provided good results as long as the load was vertical. The model was used 
to study the effect of the acceleration and deceleration of trains (Karlstrom, 2006), and it was 
concluded that the differences in terms of the vertical displacements between a train moving 
at constant speed and a train accelerating or decelerating were very small. In the longitudinal 
direction, however, large differences could be observed. These works were further extended 
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in order to account for the presence of water in the ground (poroelasticity) and to study the 
effect of trenches in the isolation of vibrations (Cao et al., 2012). 

As final example concerning surface trains, Alves Costa (2011) used 2.5D finite/infinite 
elements to simulate the Leedsgard case taking into account the large deformations that may 
exist due to the poor quality of the soil. With that purpose, he simulated the non-linear 
behavior of the soil under the track by considering equivalent elastic parameters that 
depended on the deformation level of the finite elements (Alves Costa et al., 2010). 
Additionally, he also used a 2.5D coupled FE-BE model to simulate the vibrations induced by 
the passage of trains in the Portuguese railway system (Alves Costa et al., 2012a). This last 
model was also used to study the strategy for modeling the train (Alves Costa et al., 2012b), 
and to study ballast mats as mitigation measures (Alves Costa et al., 2012c). From these two 
works it is concluded that train models can be reduced to axles, bogies and primary 
suspension systems, and that ballast mats perform better when placed beneath the subballast 
layer, and not as well when placed between ballast and subballast layers. 

Regarding tunnels, Forrest and Hunt (2006b) developed a model that assumes a tunnel with a 
cylindrical shape surrounded by a soil of infinite extent. Since the soil is treated by means of 
wave equations of an elastic continuum, no free surface is considered and consequently no 
surface waves are excited. In the far field, it is likely that buildings receive more energy from 
such waves than from body waves. Nonetheless, the model can be very effective in the 
evaluation of the response near the tunnel, where surface waves have much less influence. 
The model was also extended to account for tracks and then was used to assess the behavior 
of floating slab tracks (Forrest and Hunt, 2006a). The authors concluded that floating slabs 
yielded modest insertion losses and that under certain conditions they could even increase the 
transmission of vibrations. In the work by Hussein and Hunt (2007), the model was further 
extended to account for tangential forces at the tunnel walls, and in the work by Hussein et al. 
(2008) it was improved in order to permit the analysis of tunnels embedded in layered half-
spaces. For that purpose, the authors assume that at a first step, the near field displacements 
are controlled by the dynamics of the tunnel and of the surrounding layer, i.e., they neglect the 
contribution of the other layers. At a second step, the response of the far field is calculated 
using the tractions calculated during the first step and assuming the proper stratification of the 
soil. 

Yang et al. (2003) approached the problem using finite/infinite elements formulated in the 
wavenumber-frequency domain (Yang and Hung, 2001). When compared with the 2.5D 
models mentioned so far, this approach has the advantage of considering the transverse 
stiffness of the track and of allowing more complex geometries both for track and soil. 
However, it may become less attractive because the number of dofs increases significantly. 
The authors used the developed methodology to study the stiffness, damping and stratification 
of the underlying soil, and concluded that increasing the stiffness results in the decrease of 
vibration levels, that increasing the damping results in a decrease of vibration levels only if 
the loads move faster than the Rayleigh wave velocity of the soil, and that the soil 
stratification is extremely relevant owing to the fact that the cut-off frequencies depend on the 
layers depths and because no waves can propagate below the first cut-off frequency. 

Also regarding tunnels, Rieckh et al. (2012) developed an invariant model in which the 
anisotropy of the soil is considered. The model is based on a boundary element formulation, 
and uses the 2.5D fundamental solutions of layered and anisotropic media, which are 
calculated with the method of potentials. 
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To conclude the discussion on invariant models, it must be mentioned that hybrid FE-BE 
methods formulated in the 2.5D domain can also be used (Sheng et al., 2006; Galvín et al., 
2010; Galvín et al., 2010). These hybrid approaches are more efficient and more versatile than 
the predictions that simply rely on one of these methods. 

In what concerns periodic models, they differ from the invariant models inasmuch as they can 
account for geometric features that repeat themselves through the longitudinal direction. For 
the case of railway tracks, the periodicity can account for the discrete sleeper support or for 
discontinuous slab tracks (Clouteau et al., 2005; Chebli et al., 2006; Sheng et al., 2005; Gupta 
et al., 2007; Gupta et al., 2008). Vostroukhov and Metrikine (2003) compared the results from 
periodic models with results from equivalent invariant models and concluded that the results 
were very similar. In this last study, only the quasi-static component of the excitation was 
considered. 

To complete the discussion on prediction models, one must add that in recent years new 
approaches denominated by meshless methods (or mesh-free methods) were proposed and 
shown to be a promising alternative to the boundary element and finite element methods. The 
name meshless is given because these methods do not require the discretization neither of the 
interior nor of the boundary of the domain of interest. Within this family of methods, a 
popular approach is the Method of Fundamental Solutions (MFS), which resembles the BE 
method in the sense that it requires the availability of the fundamental solutions, but 
overcomes the need for evaluating the boundary integral, thus avoiding complications 
associated with the singularities of the fundamental solutions. Researchers from University of 
Coimbra have successfully applied the MFS in acoustic problems (Godinho et al., 2012; 
Soares et al., 2012) and in some elastodynamic problems (Godinho et al., 2013; Godinho et 
al., 2009), reporting encouraging results. The main drawbacks of these methods are their high 
computational cost (mostly when weak form formulations are considered) and, in some cases, 
their lack of stability (mostly when strong form formulations are considered) (Godinho and 
Soares Jr, 2013). 

1.2.3 Countermeasures 

The control of vibrations induced by moving vehicles can accompany all three stages of the 
phenomenon: the generation stage, the propagation stage and the reception stage. Hemsworth 
(2000) considers that the most effective and economical measures are those performed on the 
track, i.e., during the generation stage. For the rail traffic case, in order to control vibrations at 
the source, the following techniques are available: precision straightened rail, rail grinding, 
wheel truing, continuous welded rail, soft direct fixation fasteners, resilient materials under 
rails and sleepers, ballast, mats and floating slabs (Nelson, 1996; Hemsworth, 2000; 
Thompson, 2008). Rail straightening, rail grinding and wheel truing are maintenance works 
that improve the quality of circulation of the vehicle and consequently reduce the dynamic 
component of the excitation. It is evident that the weight, speed and damping systems of the 
vehicle also influence its dynamic behavior, so controlling these parameters also controls the 
induced vibration levels. The use of continuous welded rails avoids the impact forces that 
occur when a wheel passes a joint, thus reducing the vibrations. Regarding the use of soft 
fasteners, resilient materials, ballast mats and floating slabs, the objective is to absorb and 
attenuate the vibrations within the track, before they are transmitted to the ground. The softer 
the material, the more efficient is the isolation. However, the resiliency of the materials is 
limited by restrictions related to the safe operation of the vehicle. For this reason, the 
materials must be stiff enough so that large deflections do not occur. Floating slab tracks are 
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widely used, namely in subway lines that pass under urban areas. Several studies and 
measurements confirm that when compared with fixed slab tracks, the use of floating slab 
tracks is successful in reducing the vibrations at frequencies above the resonance of the track 
system (around 20Hz) (Grootenhuis, 1977; Wilson et al., 1983; Cui and Chew, 2000). 

For the control of vibrations during the propagation stage, the most commonly used measures 
are soil improvement and wave barriers, such as trenches and wave impeding blocks (WIB). 
The objective of soil improvement is to make it stiffer and consequently to reduce its level of 
vibration. This technique was studied both experimentally and numerically by Taniguchi and 
Okada (1981) and Al-Hunaidi and Rainer (1991a; 1991b). Hildebrand (2004) confirms that 
this technique is successful for low frequencies, though the author warns that it produces 
amplifications in some audible bands and can give rise to perceptible sound in buildings near 
the track. 

On the other hand, the objective of wave barriers is to reflect part of the waves that impinge 
on them. As a result, the part of the wave that is transmitted through the barrier carries less 
energy and consequently the vibration levels behind the barrier are reduced. Trenches are 
efficient in reducing the vibrations originated by surface waves. According to Hubert et al. 
(2001), trenches close to the track can provide a considerable reduction in the vibration levels, 
namely in urban areas, where distances between buildings and tracks are too short to provide 
sufficient radiation damping. Several authors compared the efficiency of open trenches and 
in-filled trenches and concluded that the former are more effective than the latter (Beskos et 
al., 1986; Dasgupta et al., 1990; Yang and Hung, 1997). However, the execution of open 
trenches is more complicated than the execution of in-filled trenches. With respect to the 
dimension of the trenches, for the case of open trenches only the depth is relevant, while for 
the case of in-filled trenches both the depth and width are relevant. Ahmad and Al-Hussaini 
(1991) derived expressions that can be used as guide lines to design trenches. In order for the 
trench to be effective its dimensions must be in the order of the length of the Rayleigh wave, 
and so trenches are only efficient in the isolation of high frequency vibrations (Hung et al., 
2004). 

WIBs are intended to simulate rigid frontiers, so that waves are reflected. WIBs can be 
constructed under the buildings, in order to shield them from vibrations coming from below, 
or under the railway track, simulating the presence of a bedrock (Hung and Yang, 2001). 
Takemiya (2003) studied numerically the reduction of vibrations due to the use of WIBs and 
concluded that the stiffening effects obtained by the installation of WIBs in soft layers could 
lead to a shift of the response from large and dynamic to small and quasi-static. 

Finally, at the reception stage, countermeasures are applied in the building. The measures can 
be applied at the foundation level, isolating the whole building from the soil, or at certain 
parts of the building. Both approaches were studied by Fiala et al. (2007), who considered 
three different options to mitigate the vibrations induced by the passage of high-speed trains 
in a room: base-isolation (at the foundation), floating-floor and room-in-room (compartiment 
measures). 

As last comment concerning countermeasures, at the moment there is an undergoing 
European Project named RIVAS (Railway Induced Vibration Abatement Solutions - 
http://www.rivas-project.eu) whose objective is to reduce the environmental impact of 
ground-borne vibrations while safeguarding the commercial competitiveness of the railway 
sector. The areas of research of this project include the mitigation at the source, at the track 
and at the propagation path. 
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1.3 Objectives and original contributions of the present work 

The main objective of this thesis is to develop a numerical tool capable of predicting the 
vibrations induced by moving vehicles in nearby buildings. The tool must account for all 
stages of the problem, i.e., generation, propagation and reception stages, and must consider 
possible countermeasures, whether they are applied at the source, at the receiver, or at the 
propagation path. The purpose of the numerical tool is to provide the research group with a 
framework for investigations, which at the beginning of the PhD activities was not available. 
It is a fact that there is extensive knowledge in the scientific community addressing numerical 
models for the current problem, but it is also a fact that most of the advances and approaches 
reported in the previous section are not readily available to other researchers. Furthermore, 
their use is so complex that, by itself, a new implementation justifies a doctoral work. 

In addition to the lack of a numerical tool within the research group, the existing tools that are 
based on 2.5D BEM formulations require the calculation of the fundamental solutions and 
their integration on the boundary elements, which represents a highly difficult task, namely if 
layered domains are considered. Thus, another objective of the present work is to make the 
developed tools more attractive in the user’s perspective, which is accomplished by using the 
thin-layer method (TLM). With this approach, it is not needed to define wavenumber samples, 
which for an inexperienced user may be problematic. Instead, the layered domain is 
discretized into thinner layers, a task that is far simpler, especially if the user is familiar with 
any finite element software. The TLM is in fact the subject where the major original 
contributions of the work are included. The original contributions are: 

• Development of the expressions for the calculation of the fundamental solutions in the 
2.5D domain with the thin-layer method; 

• The coupling between the TLM and perfectly matched layers (PML), with the 
intention of simulating half-spaces (this new procedure outperforms largely the 
previous strategy, the paraxial boundaries); 

• Development of a 2.5D BEM procedure fully based on the TLM fundamental 
solutions and that avoids the numerical evaluation of boundary integrals. 

Of course, the developed tool must also be regarded as a contribution, as it corresponds to a 
collection of several mathematical procedures of considerable complexity that is made 
available and ready to use: the 2.5D BEM-FEM procedure is implemented in the finite 
element software FEMIX, while the 3D BEM-FEM procedure is implemented in MATLAB.  

The last objective of the thesis is the application of the developed numerical tool in the 
analysis of countermeasures for the abatement of vibrations induced by rail traffic. That is 
accomplished through the study of trench solutions, thus contributing to a better 
comprehension of the behavior of this type of measure. 

1.4 Organization of the document 

The thesis is divided into 6 chapters. The first and present chapter describes the problem to be 
studied, makes reference to previous works on the subject, and defines the main objectives of 
the work.  

Chapter 2 addresses the propagation of waves through the soil. The thin-layer method is 
described and extended to the 2.5D domain, and perfectly matched layers are combined with 
thin-layers in order to simulate half-spaces.  
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In chapter 3, the numerical tools to solve soil-structure interaction problems are discussed. 
The 3D BEM-FEM algorithm is used to simulate the reception stage, in which an incoming 
wave field reaches a nearby building causing it to respond dynamically. The 2.5D BEM-FEM 
procedure is used to simulate the propagation stage (and part of the reception stage). The 3D 
formulation is described first because the common reader is more likely to be familiar with 
this type of problems. The less intuitive 2.5D formulation is presented afterwards. The 
fundamental solutions used to nurture the BEM in both 3D and 2.5D domains are obtained 
with the TLM, and therefore the connection between the BEM and TLM procedures is also 
established in this chapter. 

Chapter 4 deals with the response of structures subjected to moving loads and moving 
vehicles. The solution of the train-track interaction problem is presented, which corresponds 
to the missing stage of the problem, i.e., the reception stage. By now, the reader must be 
wondering why the propagation stage is being addressed before the generation stage, which is 
in opposition to the natural order of events. This switch in the explanation of events is chosen 
because the train-track interaction solution procedure requires the knowledge of the 2.5D 
transfer functions of the track-ground system, which are calculated with the 2.5D BEM-FEM 
procedure (i.e., the propagation stage). An example is shown in which the link between all 
stages of the problem is carefully explained. 

As an application of the tools described in chapters 2-4, in chapter 5 trenches are studied as a 
mitigation solution. The chapter is subdivided into 4 sections: in the first section, a parametric 
study of trenches is performed; in the second section, the case of study is described; in the 
third section, the reduction of vibrations on the soil surface is investigated; and in the last 
section, the effect of trenches on nearby buildings is addressed. 

In chapter 6, conclusions and recommendations for further research are presented. 
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2. Wave propagation in the 
soil: fundamental solutions 

2.1 Introduction 

Soil is a discontinuous medium, whose porous may be partially filled with water. When 
loaded, it generally presents non-linear and anisotropic behavior. Nevertheless, for the case of 
traffic induced vibrations, the level of distortion induced in the ground is small and thus its 
behavior can be idealized as linear and elastic (Galvín, 2007). Moreover, according to Biot 
(Biot, 1956a; Biot, 1956b), when the frequencies of excitation are smaller than a characteristic 
frequency (inversely proportional to the permeability of the poroelastic medium), the relative 
movements between the liquid phase and the solid phase of the soil can be neglected, and so 
the soil can be idealized as a single-phased medium. For that reason, in this work the soil is 
handled as a linear viscoelastic solid, assumption that is also followed in several other works 
(Galvín, 2007; Lombaert, 2001). 

Soil connects the track or the road to the nearby buildings and consequently its dynamic 
behavior plays an important role in the phenomenon of traffic induced vibrations. In that 
sense, to know the response of any point in the soil elicited by a dynamic source at some 
arbitrary location is a powerful tool. These expressions that relate the response of a receiver 
with a source located anywhere in a solid are called Fundamental Solutions (Kausel, 2010). 
These solutions have been subject of study during the XXth century and are the essential key 
to the Boundary Element Method (BEM), which is described in chapter 3. 

Closed form expressions for the fundamental solutions of some particular cases, namely the 
homogeneous isotropic full-space and the homogeneous isotropic half-space, have been 
derived by some researchers. Concerning the full-space, expressions for both point (3D) and 
line (2D) sources were derived in the mid XIXth century by Sir William Thomson (Lord 
Kelvin) and by Sir George Gabriel Stokes for static and dynamic loads, respectively (Kausel, 
2010). More recently, Tadeu and Kausel (2000) derived the fundamental solutions for line 
sources with sinusoidal variation in space and time (i.e., 2.5D solutions). Regarding the 
dynamic response of half-spaces, one of the leading works was performed by Lamb (1904). In 
his work, Lamb fails to obtain closed form expressions for the displacements of the half-
space, but obtains an approximation of the displacements in the far field by considering only 
the contribution of the Rayleigh waves, whose discovery is due to Lord Rayleigh two decades 
earlier (Rayleigh, 1885). Closed form expressions for the surface displacements of half-spaces 
(limited to the Poisson’s ratio 0.25ν = ) were obtained a half century after the work of Lamb 
by Pekeris (1955) and Chao (1960), for vertical and horizontal point loads, respectively. 
Mooney (1974) extended the work of Pekeris to account for arbitrary Poisson’s ratios, but for 
the horizontal displacements the author only succeeded in obtaining closed form expressions 
for Poisson’s ratios smaller than 0.263ν = . All the previously referred to closed form 
expressions are compiled in the book by Kausel (2006). More recently, Kausel (2012) 
continued the work of the previous authors and generalized the analytical solutions for 
arbitrary Poisson’s ratios and for any direction of load and displacements, thus concluding the 
work started by Lamb more than one century ago. 
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The four works referred to above were developed based on the Cargniard-de Hoop technique 
(De Hoop, 1960), which allows the direct evaluation of the double integral needed to 
transform the displacements from the wavenumber-frequency domain to the space-time 
domain. Interestingly, the direct evaluation of only one of these integrals is not possible and 
so closed form expressions of the fundamental solutions of half-spaces exist only in the space-
time domain. Such is so because when using contour integration to evaluate the improper 
integrals to transform the displacements from the wavenumber to the space domain (Erigen 
and Suhubi, 1975) or from the frequency to the time domain (Park and Kausel, 2004a), some 
branch integrals are obtained and these cannot be solved analytically.  

For the case of layered domains or sources/receivers inside homogeneous half-spaces, no 
closed form expressions are available and therefore it is needed to resort to numerical tools to 
determine the corresponding fundamental solutions. The most commonly used tools are based 
on integral transformation techniques, in which the fields of displacements are transformed to 
the wavenumber-frequency domain and consequently the wave equations are solved in that 
transformed domain. When necessary, the displacements can subsequently be transformed 
back to the space domain and/or time domain through the numerical evaluation of the 
integrals that result from the inverse transformations. 

In the transformed domain, the solutions can be found using the transfer matrices derived by 
Thomson (1950) and corrected by Haskell (1953), using the stiffness matrices derived by 
Kausel and Roesset (1981), using the method of Potentials (Tadeu et al., 2001; Tadeu and 
Antonio, 2001; Tadeu and António, 2002) or using the Thin-Layer Method (TLM) (Kausel 
and Peek, 1982). The first three approaches handle the propagation of waves within each layer 
without any approximation. In opposition, the TLM approach is based on discretizations of 
the domain in the vertical direction and in approximations of displacements within the layers 
by means of the interpolation functions. Its advantage over the other three approaches is that it 
enables the analytical evaluation of at least one inverse transformation. As a drawback, it 
requires the solution of two eigenvalue problems. In this work, the TLM is adopted for the 
calculation of the fundamental solutions of layered soils, being the procedure and its 2.5D 
formulation presented in this chapter. 

2.2 Thin-Layer Method in Cartesian coordinates 

The TLM was introduced in the seventies (Lysmer, 1970; Lysmer and Waas, 1972; Waas, 
1972) and since then it has found use in several areas related to wave propagation in layered 
media and in soil-structure interaction problems. The TLM is a semi-discrete numerical 
technique used for the analysis of wave motion in layered media, and consists in a finite 
element discretization in the direction of layering (for the case of soil, the vertical direction) 
combined with analytical solutions for the remaining directions, along which the material 
properties are assumed to be constant. A brief historical description of the method can be 
found in Park (2002). With respect to wave fields induced by moving loads or vehicles, the 
TLM is used in the works by Hanazato et al. (1991), Jones and Hunt (2011, 2012) and Celebi 
and Schmid (2005). In the first three references, the TLM is used in the context of 
transmitting boundaries (Kausel, 1988) or super-elements (Tassoulas and Kausel, 1981). 

For the presentation of the TLM, the wave equation is first expressed in matrix notation and is 
then discretized in the vertical direction. These steps follow the works from Park (2002) and 
Barbosa and Kausel (2012). 
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One note before starting: cross-anisotropic materials are more general than isotropic materials 
since they can reproduce different behaviors of the medium when loaded in different 
directions. For the case of the soil response, this is an important aspect because the layers are 
formed by vertical sedimentation of particles and therefore they present different mechanical 
characteristics in the vertical and horizontal directions. The drawback of considering cross-
anisotropic materials is that they require the quantification of more elastic constants, thus 
requiring more experiments in order to obtain the corresponding parameters. The constitutive 
matrix D  of a cross-anisotropic material is the positive definite matrix defined by 

( ) 2
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2 0 0 0 0

0 0 0 0

0 0 0 0 0
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  + >

=  
+ > 

 
 
  

D  (2.1) 

where λ  and G  are the Lamé constants in the isotropic plane (horizontal planes) and tλ , tG , 

tD  are the Lamé constants and the constrained modulus in the transverse direction (vertical 
direction). When tλ λ= , tG G=  and 2tD Gλ= + , the material reduces to an isotropic one. 
With the intention of being more general, the following formulation considers cross-
anisotropic materials. 

Consider a horizontally homogeneous and vertically stratified cross-anisotropic elastic 
medium of infinite lateral extent and characterized by the depth dependent mass density ρ  

and the depth dependent constitutive matrix { } ( ), 1,...,6ijd i j= =D  as defined in equation 

(2.1). Assume that the medium is subjected to an arbitrary dynamic load b  placed at some 
location. With dots denoting partial derivatives with respect to time, the dynamic equilibrium 
equation at any point can be written compactly in matrix format as 

Tρ − =u L σ bɺɺ  (2.2) 

where the displacement vector u , the stress vector σ  and the differential operator L  are 
defined as 

T
x y zu u u =  u  (2.3) 

T
xx yy zz yz xz xyσ σ σ σ σ σ =  σ  (2.4) 

T

0 0 0

0 0 0

0 0 0

x z y

y z x

z y x

 ∂ ∂ ∂
 ∂ ∂ ∂ 
 ∂ ∂ ∂

=  
∂ ∂ ∂ 

 ∂ ∂ ∂
 

∂ ∂ ∂ 

L  (2.5) 

Additionally, consider the stress-strain and strain-displacement relations 

=σ Dε  (2.6) 
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=ε Lu  (2.7) 

T
xx yy zz yz xz xyε ε ε ε ε ε =  ε  (2.8) 

The substitution of equations (2.6) and (2.7) in equation (2.2) results in the elastic wave 
equation (in the 3-D space) 

Tρ − =u L DLu bɺɺ  (2.9) 

The differential operator L  can be expressed as 

x y zx y z

∂ ∂ ∂
= + +

∂ ∂ ∂
L L L L  (2.10) 

where the matrices xL , yL  and zL  are 
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0 0 0 0 0 0 0 0 1

0 0 0 0 0 1 0 1 0

0 0 1 0 0 0 1 0 0

0 1 0 1 0 0 0 0 0

x y z

     
     
     
     

= = =     
     
     
     
          

L L L  (2.11) 

Since the domain under study consists of homogeneous horizontal layers, the material 
properties are piecewise constant with depth and invariant in the horizontal directions leading 
to ( )0 , ,x y zα α∂ ∂ = =D . Thus, the term TL DL  in equation (2.9) can be expanded to 

( ) ( )

( )

2 2 2
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 (2.12) 

being the material matrices αβD  defined by 

T , , , ,x y zαβ α β α β= =D L D L  (2.13) 

and given in Appendix I. 

Now, consider the internal stresses in horizontal planes, which are calculated by 
T T T

zx zy zz z zσ σ σ = = = s L σ L DLu  (2.14) 

If one removes any horizontal slice of the medium and treats it as a free body in space, the 
dynamic equilibrium dictates the need to balance the internal stresses at the now exposed 
upper and lower surfaces with the external tractions t , i.e., 

u u

l l

   
= =   −   

t s
t

t s
 (2.15) 

where ut  and lt  are the external tractions applied at the upper and lower boundaries of the 
removed domain and us  and ls  are the internal stresses at the same locations. 
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The first step for the formulation of the TLM is to discretize the domain in the vertical 
direction, i.e., to subdivide the medium into horizontal layers which are thin in the finite 
element sense, or in other words, which are small in comparison with the expected 
wavelengths and strain gradients. Thereafter, considering an arbitrary thin-layer as a free body 
in space (Figure 2.1), the displacements field inside the layer is approximated by means of 
interpolation functions, i.e. 

=u NU  (2.16) 

where ( ),x y=U U  is a vector containing the nodal displacements (the nodes represent 

horizontal surfaces) 

T T T T
1 ... , , 1,2, ,m j xj yj zju u u j m   = = =  U u u u ⋯  (2.17) 

and ( )z=N N  is an interpolation matrix of the form 

[ ]1 ... mN N=N I I  (2.18) 

with jN  being the interpolation functions, which depend on the vertical coordinate z , and 

with I  being a 3 3×  identity matrix. (The subscript m  is the number of nodal surfaces in each 
thin-layer, and 1m −  is the interpolation order. When 2m > , there exist inner surfaces that are 
equidistant from each other. For example, 3m =  corresponds to a quadratic interpolation with 
one internal nodal surface, as shown in Figure 2.1, which depicts one thin-layer as a free body 
in space, acted upon and dynamically equilibrated by appropriate tractions applied onto the 
nodal surfaces.) 

 

Figure 2.1: Discretization into thin-layers and thin-layer as a free body in space ( 3m = ). 

When substituting the interpolation (2.16) into the wave equation (2.9) and boundary 
conditions (2.15), it can be verified that these equations are not satisfied exactly because the 
interpolation is only an approximation of the actual field. As a result, one finds unbalanced 
body forces r  and boundary tractions q  of the form 

Tρ− + =b u L DLu rɺɺ  (2.19) 

1 1 1

m m m

     
− = =     −     

t s q
q

t s q
 (2.20) 

The discrete wave equation is obtained by applying the method of the weighted residuals and 
by requiring the virtual work done by the unbalanced forces within the thin-layer and on its 
bounding surfaces to be zero. This results in the discrete thin-layer equation 
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2 2 2

2 2xx xy yy x yx x y y x y

∂ ∂ ∂ ∂ ∂
= − − − − − +

∂ ∂ ∂ ∂ ∂ ∂

U U U U U
P MU A A A B B GUɺɺ  (2.21) 

where the vector P  contains the consistent external tractions at the interfaces of the thin-layer 
(which result from the external tractions t  and the body loads b ). The thin-layer matrices M , 

αβA , αB  and G  are given by 

T
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T
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d
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zz z′ ′= ∫G N D N  (2.26) 

in which h is the thickness of the thin-layer and d
dz

′ =N N . Appendix I tabulates the above 

matrices for an individual thin-layer consisting of a cross-anisotropic material and considering 
both a linear and quadratic interpolation, i.e., 2,3m = , respectively. 

After the individual matrices are overlapped in the usual finite element sense (i.e. layer by 
layer and in the natural top down order of the interfaces), one obtains a narrowly banded set 
of global system matrices and vectors which characterizes the complete stack of thin-layers. 
The resulting system of partial differential equations has the same form as equation (2.21), but 
its shape is now block-tridiagonal and has a correspondingly larger number of equations. In 
the remaining part of the present chapter, equation (2.21) refers to the complete assembly of 
thin-layers. 

2.3 Displacements in the wavenumber-frequency domain 

To solve the system of linear partial differential equations (2.21), the displacements U  and 
tractions P  are transformed from the space-time domain to the wavenumber-frequency 
domain by means of the triple Fourier transformations 

( ) ( ) ( )i
, , , , e d d dx yt k x k y

x yk k x y t x y t
ω

ω
+∞ +∞ +∞

− − −

−∞ −∞ −∞
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( ) ( ) ( )i
, , , , e d d dx yt k x k y

x yk k x y t x y t
ω

ω
∞ ∞ ∞

− − −
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= ∫ ∫ ∫P P  (2.28) 

In the new domain, system (2.21) becomes 

( ) ( )2 2 2ix xx x y xy y yy x x y yk k k k k k ω = + + + + + − P A A A B B G M U  (2.29) 
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where i 1= − . All matrices in this expression are symmetric, except for xB  and yB  which are 

skew-symmetric. Although this system could be easily solved for U , it is both possible and 
convenient to first change the system of equations into a fully symmetric form by means of a 
similarity transformation. This is accomplished by multiplying every third row of the system 
(2.29) by i−  and every third column by i . This operation solely affects the vectors P  and U  
and the matrices xB  and yB , leaving the other matrices unchanged. As a result of this 

transformation, the system of equations is now 

( )2 2 2
x xx x y xy y yy x x y yk k k k k k ω = + + + + + − p A A A B B G M uɶ ɶɶ ɶ  (2.30) 

where pɶ  and uɶ  are obtained from P  and U  by multiplying every third row by i− . Also, xBɶ  

and yBɶ  are obtained from xB  and yB  by reversing the sign of every third column [Note: in 

comparison with previous studies on the TLM (e.g. Kausel, 1986), in this work a reversed 
sign for the i  factor is used for reasons of convenience]. After solving the system of equations 
(2.30), U  is recovered by multiplying every third row of uɶ  by i  and the displacements in the 
space-time domain can be obtained —at least formally— from the triple inverse Fourier 
transform 
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ω ω
π

∞ ∞ ∞
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The integrals in equation (2.31) can be evaluated numerically. However, by doing so the TLM 
loses its advantage over the integral transform techniques based on the transfer matrices or on 
the stiffness matrices, since these approaches, that also require the numerical evaluation of the 
inverse transformations, originate systems of equations of smaller size (usually, only the 
interfaces between the layers need to be discretized). In this way, a different procedure is 
followed, in which the displacement field is decomposed into a modal basis, similar to what is 
done in the modal superposition for linear dynamic analyses. As a result of this 
decomposition, the system of equations (2.30) can be diagonalized and that enables the 
evaluation in closed form expressions of at least one of the integrals of equation (2.31). If the 
integral to be evaluated is the outer integral, the fundamental solutions are obtained in the 
wavenumber-time domain (Kausel, 1994). If instead one changes the coordinates from 
Cartesian to cylindrical and evaluates the integral in the radial wavenumber, then the 
fundamental solutions are obtained in the space-frequency domain (Kausel and Peek, 1982; 
Kausel, 1981). Alternatively, if the inner integral of (2.31) is evaluated, then the fundamental 
solutions are obtained in a mixed space-wavenumber-frequency domain (2.5D domain), in 
which the plane-strain is the particular case 0yk =  (Barbosa and Kausel, 2012). In this work, 

in the propagation stage the geometry is assumed to be invariant and so the 2.5D fundamental 
solutions are of interest. On the other hand, in the reception stage the three-dimensionality of 
the problem has to be considered and so the cylindrical space-frequency domain solutions 
must be used. 

In the ensuing, the system of equations (2.30) is transformed in order to obtain the 
displacements U  in the wavenumber-frequency domain through modal superposition. As a 
first step in that direction, the order of the degrees of freedom is rearranged, grouping first all 
horizontal- x , then all horizontal- y  and finally all vertical- z  degrees of freedom. This 
rearrangement is suggested solely to reveal the special structure possessed by the matrices in 
the system of equations (2.30) and the implications that the referred structures have on the 
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eigenvalue problems that are solved to find the modal basis. In practice, the degrees of 
freedom are ordered by interface and not by direction, which results in a reduction of the 
bandwidth of the matrices. Hence, after rearranging the degrees of freedom, the matrices ad 
vectors in system (2.30) attain the following structures 
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where O  is the null matrix, x y≡G G , x y z≡ ≡M M M , and xz yz≡B B . In addition, and except 

for the matrices xzB  and yzB , all sub-matrices are symmetric and block-tridiagonal. 

Having rearranged the order of the degrees of freedom, it is now convenient to define the 
radial wavenumber k , the propagation angle ϑ , the transformation matrix T , its inverse 

1−T and the matrices A  and C  as 

2 2
x yk k k= +   cosxk k ϑ=   sinyk k ϑ=  (2.33) 
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in which I  is the identity matrix and O  is a null matrix, both with the dimensions compatible 
with the submatrices in equation (2.32). By substituting each variable defined in equations 
(2.33)-(2.35) in the following equation, it can be shown that the system (2.30) is the same as 

( )-1 2k= +p T A C Tuɶ ɶ  (2.36) 

or equivalently 

( )2k= +Tp A C Tuɶ ɶ  (2.37) 

The modal basis needed to decompose the displacements in a summation corresponds to the 
solution of the right eigenvalue problem in jk  and jr  
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( )2
j jk + =A C r 0  (2.38) 

Due to the structure of matrices A  and C , the eigenvalue problem (2.38) can be decoupled 
into two eigenvalue problems, one in the x  and z  directions (generalized Rayleigh problem) 
and the other in the y  direction (generalized Love problem): 

( ){ }

2
2

T 2

2 2

xjx x x xz
Rj

Rj zjxz z z z

Lj y y y yj

k
k

k

ω

ω

ω

    −  
+ =     

−       

+ − =

A O G M B
0

B A O G M

A G M 0

f

f

f

 (2.39) 

In this way, the right eigenvalue problem (2.38) has two sets of eigenpairs: one set associated 
with the eigenvalues Rjk  and right eigenvectors T T T

Rj xj Rj zjk =  r 0f f  and the other set 

associated with the eigenvalues Ljk  and right eigenvectors T T
Lj yj =  r 0 0f . 

Likewise, the left eigenvalue problem 

( )T 2
j jk + =l A C 0  (2.40) 

has two sets of eigenpairs: one set associated with the eigenvalues Rjk  and left eigenvectors 
T T T
Rj Rj xj zjk =  l 0f f  and the other set associated with the eigenvalues Ljk  and left 

eigenvectors T T
Lj yj =  l 0 0f . 

The left and right eigenvectors satisfy the orthogonal conditions (Barbosa and Kausel, 2012) 
T
Rj Rl jl Rjkδ=l Ar ,   T 3

Rj Rl jl Rjkδ= −l Cr  

T
Lj Ll jlδ=l Ar ,   T 2

Lj Ll jl Ljkδ= −l Cr  

T 0Rj Ll =l Ar ,   T 0Rj Ll =l Cr  

(2.41) 

Having found the solutions of (2.38), the rotated displacements Tuɶ  are decomposed into a 
summation of the right eigenvectors, i.e. 

1 1

R LN N

Rj Rj Lj Lj
j j= =

= Γ + Γ∑ ∑Tu r rɶ  (2.42) 

where RjΓ  and LjΓ  are participation factors yet to be determined and RN  and LN  are the 

number of degrees of freedom in the Rayleigh and Love eigenvalue problems, respectively. 
After replacing the identity (2.42) in equation (2.37) and after pre-multiplying it by T

Rll , the 
latter becomes 

T T 2

1 1

R LN N

Rl Rl Rj Rj Lj Lj
j j

k
= =

 
 = + Γ + Γ  

 
∑ ∑l Tp l A C r rɶ  (2.43) 

Due to the orthogonal conditions expressed in (2.41), equation (2.43) is equivalent to 

( )

T
T 2 3

2 2

Rl
Rl Rl Rl Rl Rl

Rl Rl

k k k
k k k

 = − Γ ⇔ Γ =  −

l Tp
l Tp

ɶ
ɶ  (2.44) 
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If (2.37) is pre-multiplied instead by T
Lll , then 

T
T 2 2

2 2
Ll

Ll Ll Rl Ll
Ll

k k
k k

 = − Γ ⇔ Γ =  −

l Tp
l Tp

ɶ
ɶ  (2.45) 

The combination of (2.44), (2.45) and (2.42) yields 

( )

T T

2 22 2
1 1

R LN N
Rj Lj

Rj Lj
j j LjRj Rj

k kk k k= =

   
 = +     −−   

∑ ∑
l Tp l Tp

Tu r r
ɶ ɶ

ɶ  (2.46) 

or equivalently 

( )

T T
1 1

2 22 2
1 1

R LN N
Rj Lj

Rj Lj
j j LjRj Rj

k kk k k
− −

= =

   
 = +     −−   

∑ ∑
l Tp l Tp

u T r T r
ɶ ɶ

ɶ  (2.47) 

Equation (2.47) can be further simplified into 

( )

( )

( )

2
T T T

2 2 2 2 2 2

2
T T T

2 2 2 2 2 2

T

2 2

cos sin cos cos
i

sin cos sin sin
i

cos sin
i i

xj xj x xj xj y xj zj z
x

Rj Rj Rj Rj

xj xj x xj xj y xj zj zy
Rj Rj Rj Rj

Rj Rj
z

zj xj x

Rj

k

k k k k k k k

k

k k k k k k k

k k

k k k

ϑ ϑ ϑ ϑ

ϑ ϑ ϑ ϑ

ϑ

+ −  − − −
 
 
  = + −

− − − 
 
   +

−

p p pu

p p pu

u p

f f f f f f

f f f f f f

f f
( )

1

T T
2 22 2

2
T T

2 2 2 2

2
T T

2 2 2 2
1

1

sin sin cos

sin cos cos

R

L

N

j

zj xj y zj zj z
RjRj

yj yj x yj yj y
Lj Lj

N

yj yj x yj yj y
j Lj Lj

k kk k k

k k k k

k k k k

ϑ

ϑ ϑ ϑ

ϑ ϑ ϑ

=

=

 
 
 
 
 

+ 
 
 
 +

−−  

 
− 

− − 
 
 − +

− − 
 
 
  

∑

∑

p p

p p

p p

0

f f f f

f f f f

f f f f

 (2.48) 

As a final step, taking into account the equality (Barbosa and Kausel, 2012) 

( ) ( )
T TRj

zj xj zj xj

Rj Rj Rj

k k

k k k k k k
=

− −
f f f f  (2.49) 

equation (2.48) can be written in the more convenient form 
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( )

( )

( )

2
T T T

2 2 2 2 2 2

2
T T T

2 2 2 2 2 2

T

2 2

cos sin cos cos
i

sin cos sin sin
i

cos sin
i i

xj xj x xj xj y xj zj z
x

Rj Rj Rj Rj

xj xj x xj xj y xj zj zy
Rj Rj Rj Rj

z zj xj x

Rj Rj

k

k k k k k k k

k

k k k k k k k

k k

k k k k

ϑ ϑ ϑ ϑ

ϑ ϑ ϑ ϑ

ϑ ϑ

+ −  − − −
 
 
  = + −

− − − 
 
  + 

−

p p pu

p p pu

u p

f f f f f f

f f f f f f

f f
( )

1

T T
2 22 2

2
T T

2 2 2 2

2
T T

2 2 2 2
1

1

sin sin cos

sin cos cos

R

L

N

j

zj xj y zj zj z
RjRj Rj

yj yj x yj yj y
Lj Lj

N

yj yj x yj yj y
j Lj Lj

k kk k

k k k k

k k k k

ϑ ϑ ϑ

ϑ ϑ ϑ

=

=

 
 
 
 
  +
 
 
 

+ 
−−  

 
− 

− − 
 
 − +

− − 
 
 
  

∑

∑

p p

p p

p p

0

f f f f

f f f f

f f f f

 (2.50) 

In the following, it will be implicitly understood that the eigenvalue problem for Rayleigh 
(shear vertical – pressure, SVP) waves will result in eigenvectors xjf , zjf  whose components 

at the thm  elevation and thj  mode are written as ( ) ( ),m m
xj zjφ φ  and their eigenvalues are j Rjk k= , 

while the eigenvectors yjf  for Love (shear horizontal, SH) waves will have components 

written as ( )m
yjφ  with eigenvalues j Ljk k= . In the light of equation (2.48), it is now convenient 

to define the set of kernels njK given in Table 2.1. 

Table 2.1: Kernels of fundamental solutions 

 

From equation (2.50) and in terms of the kernels in Table 2.1, the fundamental displacements 

( )( ) , ,mn
x yU k kαβ ω  at the thm  elevation in direction α  due to a unit load applied at the thn  

elevation in direction β  can be expressed as listed in Table 2.2. 

( )

( ) ( )

( ) ( ) ( ) ( )

1 22 2 2 2 2 2 2

222 2

3 42 2 2 22 2 2 2 2 2

5 62 2 2 2 2 2 2 2

1 sin cos
,

cos sin
,

cos sin
,

x y
j j

j j j

yx
j j

j jj j

yx
j j

j j j j j j j j

k k
K K

k k k k k k k

kk
K K

k k k kk k k k k k

kkk k
K K

k k k k k k k k k k k k

ϑ ϑ

ϑ ϑ

ϑ ϑ

= = =
− − −

= = = =
− −− −

= = = =
− − − −
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Table 2.2: Fundamental solutions in the wavenumber-frequency domain 

 

2.4 Horizontal derivatives and tractions in the wavenumber 
domain 

After the displacements are known, the horizontal derivatives in the wavenumber domain are 
easily obtained by multiplying the displacements by i xk− , for the case of the x -derivative, or 
by i yk− , for the case of the y -derivative. Similarly, the second derivatives are obtained by 

multiplying the first derivatives by i xk−  or i yk− . In this way, for the derivative 2 2x∂ ∂  the 

displacements are multiplied by 2
xk− , for the derivative 2 x y∂ ∂ ∂  the displacements are 

multiplied by x yk k− , and for the derivative 2 2y∂ ∂  the displacements are multiplied by 2
yk− . 

As for the consistent nodal tractions acting on one isolated thin-layer (say the thi  thin-layer 
delimited by the global TLM interfaces l  and m ), they can be calculated using eq. (2.30) once 
the nodal displacements of that thin-layer are known. In this case, eq. (2.30) refers to a single 
thin-layer and the vectors pɶ  and uɶ  contain the nodal values at the 1nn +  nodes of the thin-
layer ( 1nn +  is used instead of m  to avoid confusion between global TLM interface and 
number of nodal interfaces of the thin-layer): 

( )
(1)

( )

( )
( 1)

i

i

i
nn+

 
 

→ =  
 
 

t

p p

t

ɶ

ɶ ɶ ⋮

ɶ

  

( )
(1)

( )

( )
( 1)

i

i

i
nn+

 
 

→ =  
 
 

u

u u

u

ɶ

ɶ ɶ ⋮

ɶ

  

For a load in direction β , the modified nodal tractions are 
T( ) ( ) ( ) ( )

( ) ( ) ( ) ( )ii i i i
k x k y k z kt t tβ β β

 = − tɶ  and 

the modified nodal displacements are 
T( ) ( ) ( ) ( )

( ) ( ) ( ) ( )ii i i i
k x k y k z ku u uβ β β

 = − uɶ  (the word modified is 

used to take into account the multiplication by the factor i− ; the first lower index represents 
the direction of the traction or displacement, the second index represents the direction of the 
source and the third index, in parentheses, represents the nodal number). 

When there is no source acting in the interior of the considered thin-layer, the tractions ( )
( )

i
ktαβ  

for 2,...,k nn=  are null and only the tractions ( )
(1)

itαβ  and ( )
( 1)

i
nntαβ +  remain non-zero. These non-

( ) ( ) ( ) ( ) ( )
3 4

R LN N
mn m n m n

xx j xj xj j yj yj
j j

U K Kφ φ φ φ= +∑ ∑  

( ) ( ) ( ) ( ) ( )
4 3

R LN N
mn m n m n

yy j xj xj j yj yj
j j

U K Kφ φ φ φ= +∑ ∑  

( ) ( ) ( ) ( ) ( ) ( )
2 2

R LN N
mn m n m n mn

xy j xj xj j yj yj yx
j j

U K K Gφ φ φ φ= − =∑ ∑  

( ) ( ) ( )
5i

RN
mn m n

xz j xj zj
j

U K φ φ= − ∑ , ( ) ( ) ( ) ( )
5i

RN
mn m n nm

zx j zj xj xz
j

U K Uφ φ= = −∑  

( ) ( ) ( )
6i

RN
mn m n

yz j xj zj
j

U K φ φ= − ∑ , ( ) ( ) ( ) ( )
6

1

i
RN

mn m n nm
zy j zj xj yz

j

U K Uφ φ
=

= = −∑  
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zero values correspond to the tractions that the rest of the domain transmits to the thin-layer 
through the upper and lower interfaces. By replacing in eq. (2.30) the displacements by their 
modal expansion as given in Table 2.2, the fundamental tractions are obtained also in terms of 
modal superposition. Hence, considering first a force applied at the global interface n  and in 
the direction xβ = , the nodal tractions at the thi  thin-layer are obtained by 

( )

(2) ( ) (2) ( )

( ) ( ) ( )

1 1(2) ( ) (2) ( )

(1) ( )

( )

(1) ( )

R L

x l x l

jR Rj jL LjN N
i n n

xx xj yj
j jx m x m

jR Rj jL Lj

x l

jR Rj

n

y xy x xj

x m

jR Rj

k

φ φ

φ

= =

Γ Γ

= + +

Γ Γ

Γ

+

Γ

        
        
        
                

   
  
  
     

∑ ∑
Φ Φ

p A

Φ Φ

Φ

A B

Φ

ɶ ⋱ ⋮ ⋱ ⋮

⋱ ⋮

( )

(1) ( )

( )

1 1 (1) ( )

(0) ( ) (0) ( )

2 2 ( )

1 (0) ( ) (0) (

R L

R

x l

jL LjN N
n

yj
j j x m

jL Lj

x l x l

jR Rj jL LjN
n n

y yy y y xj yj
j x m x m

jR Rj jL Lj

k k

φ

ω φ φ

= =

=

Γ

+ +

Γ

Γ Γ

+ + − +

Γ Γ

    
     
     
         

     
     
     
          

∑ ∑

∑

Φ

Φ

Φ Φ

A B G M

Φ Φ

⋱ ⋮

⋱ ⋮ ⋱ ⋮
1 )

LN

j =

  
  
  
    

∑

 (2.51) 

where 

( )
( )

( )

3

( )
2

5

, 0 0

0 , 0

0 0 ,

p
x j x y

x p p
jR x j x y

p
x j x y

k K k k

k K k k

k K k k

 
 
 Γ =
 
 
 

 (2.52) 

( )
( )

4

( )
2

, 0 0

0 , 0

0 0 0

p
x j x y

x p p
jL x j x y

k K k k

k K k k

 
 
 Γ = −
 
 
 

 (2.53) 

T( ) ( ) ( ) ( )k k k k
Rj xj xj zjφ φ φ =  Φ , 

T( ) ( ) ( ) 0k k k
Lj yj yjφ φ =  Φ , ,...,k l m=  (2.54) 

Similarly, for a load in the y  direction the consistent nodal tractions are calculated by 

( )

(2) ( ) (2) ( )

( ) ( ) ( )

1 1(2) ( ) (2) ( )

(1) ( )

( )

(1) ( )

R

y l y l

jR Rj jL LjN NL
i n n

xx xj yj
j jy m y m

jR Rj jL Lj

y l

jR Rj

n

y xy x xj

y m

jR Rj

k

φ φ

φ

= =

Γ Γ

= + +

Γ Γ

Γ

+

Γ

        
        
        
                

   
  
  
     

∑ ∑
Φ Φ

p A

Φ Φ

Φ

A B

Φ

ɶ ⋱ ⋮ ⋱ ⋮

⋱ ⋮

( )

(1) ( )

( )

1 1 (1) ( )

(0) ( ) (0) ( )

2 2 ( ) ( )

1 (0) ( ) (0)

R L

R

y l

jL LjN N
n

yj
j j y m

jL Lj

y l y l

jR Rj jL LjN
n n

y yy y y xj yj
j y m y

jR Rj jL Lj

k k

φ

ω φ φ

= =

=

Γ

+ +

Γ

Γ Γ

+ + − +

Γ Γ

    
     
     
         

     
     
     
          

∑ ∑

∑

Φ

Φ

Φ Φ

A B G M

Φ Φ

⋱ ⋮

⋱ ⋮ ⋱ ⋮
1 ( )

LN

j m=

  
  
  
    

∑

 (2.55) 

with 
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( )
( )

( )

2

( )
4

6

, 0 0

0 , 0

0 0 ,

p
x j x y

y p p
jR x j x y

p
x j x y

k K k k

k K k k

k K k k

 
 
 Γ =
 
 
 

 (2.56) 

( )
( )

2

( )
3

, 0 0

0 , 0

0 0 0

p
x j x y

y p p
jL x j x y

k K k k

k K k k

 −
 
 Γ =
 
 
 

 (2.57) 

and for a load in the z  direction, the tractions are calculated by 

( )

( )

(2) ( )

( ) ( )

1 (2) ( )

(1) ( )

( )

1 (1) ( )

(0)

2 2 ( )

(0)

R

R

z l
jR RjN

i n
xx zj

j z m
jR Rj

z l
jR RjN

n
y xy x zj

j z m
jR Rj

z
jR

n
y yy y y zj

z
jR

k

k k

φ

φ

ω φ

=

=

    Γ
    

= +    
    Γ    

    Γ
    

+ +    
    Γ    

Γ


+ + −

Γ

∑

∑

Φ

p A

Φ

Φ

A B

Φ

A B G M

ɶ ⋱ ⋮

⋱ ⋮

⋱

( )

1 ( )

R

l
RjN

j m
Rj

=

   
   
    
    

   

∑
Φ

Φ

⋮

 (2.58) 

with 

( )
( )

( )

5

( )
6

1

, 0 0

i 0 , 0

0 0 ,

p
x j x y

z p p
jR x j x y

p
x j x y

k K k k

k K k k

k K k k

 
 
 Γ = −
 
 
 

 (2.59) 

2.5 Transformation of fundamental solutions to the 2.5D domain 

Having obtained the fundamental solutions explicitly in terms of the two horizontal 
wavenumbers xk  and yk , one can now proceed to carry out the inverse Fourier transform in 

xk . In this work only the case of space harmonic line loads is considered, being different load 
distributions treated in Barbosa and Kausel (2012). 

2.5.1 Fundamental displacements 

Taking as example the displacements in the x  direction induced by source in the same 
direction, it is seen in section 2.3 that the displacements ( )mn

xxU  in the wavenumber-frequency 
domain are given by (Table 2.2) 

( ) ( ) ( ) ( ) ( )
3 4

R LN N
mn m n m n

xx j xj xj j yj yj
j j

U K Kφ φ φ φ= +∑ ∑  (2.60) 

The corresponding fundamental displacement in the mixed space-wavenumber-frequency 
domain (2.5D) is obtained with 
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( ) i i( ) ( ) ( ) ( ) ( ) ( )
3 4

1 1
, , e d e d

2 2

R L

x x

N N
k x k xmn mn m n m n

xx y xx x j xj xj j yj yj x
j j

u x k U k K K kω φ φ φ φ
π π

+∞ +∞
− −

−∞ −∞

 
= = + 

 
∑ ∑∫ ∫  (2.61) 

Since the eigenvectors do not depend on the horizontal wavenumbers but instead on the 
frequency ω , equation (2.61) is equivalent to 

( ) i i( ) ( ) ( ) ( ) ( )
3 4

1 1
, , e d e d

2 2

R L

x x

N N
k x k xmn m n m n

xx y xj xj j x yj yj j x
j j

u x k K k K kω φ φ φ φ
π π

+∞ +∞
− −

−∞ −∞

   
= +   

   
∑ ∑∫ ∫  (2.62) 

Similar conclusions are derived for the other components and thus, in order to obtain the 
fundamental displacements in the 2.5D domain, one simply needs to evaluate the integrals 

( ) i(0) 1
2 e d , 1,...,6xk x

nj nj xI x K k nπ

+∞
−

−∞
= =∫  (2.63) 

and then combine them in the same fashion as done with njK  in Table 2.2. For example, the 

fundamental displacement ( )mn
xxu  is obtained with 

( ) (0) ( ) ( ) (0) ( ) ( )
3 4

R LN N
mn m n m n

xx j xj xj j yj yj
j j

u I Iφ φ φ φ= +∑ ∑  (2.64) 

The integrals (0)
njI  can be evaluated in closed form expressions by means of contour 

integration (Boas, 1983). These expressions are summarized in Table 2.3, where jk  stands for 

either the Rayleigh or the Love poles, as appropriate. The evaluation of the integral (0)
4 jI  with 

the contour integration technique is described in Appendix II. The evaluation of the remaining 
integrals follows similar steps. 

Table 2.3: Closed form expressions for (0)
njI  ( 2 2Im 0j yk k− < ) 
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{ }

2 2

2 2

2 2

ii(0)
1 1 2 2

ii(0)
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2.5.2 Horizontal derivatives 

One now proceeds to transform the horizontal derivatives to the 2.5D domain. Starting with y  
direction, the first y -derivative is obtained with , iy yu k uαβ αβ= −  while the second y -derivative 

is obtained with 2
, yy yu k uαβ αβ= − . Regarding the derivatives in the x  direction, taking as 

example the component xx  and following the procedure explained in subsection 2.5.1 for 
both first and second derivatives, the following two expressions are obtained (see section 2.4): 

( ) i i
, 3 4

1 1
, , i e d i e d

2 2

R L

x x

N N
k x k xmn m n m n

xx x y xj xj x j x yj yj x j x
j j

u x k k K k k K kω φ φ φ φ
π π

+∞ +∞
− −

−∞ −∞

   
= − + −   

   
∑ ∑∫ ∫  (2.65) 

( ) i i2 2
, 3 4

1 1
, , e d e d

2 2

R L

x x

N N
k x k xmn m n m n

xx xx y xj xj x j x yj yj x j x
j j

u x k k K k k K kω φ φ φ φ
π π

+∞ +∞
− −

−∞ −∞

   
= − + −   

   
∑ ∑∫ ∫  (2.66) 

Hence, to obtain the first and second x -derivatives, the integrals 

( ) i(1) 1
2 e d , 1,...,6xk x

nj x nj xI x k K k nπ

+∞
−

−∞
= =∫  (2.67) 

and 

( ) i(2) 21
2 e d , 1,...,6xk x

nj x nj xI x k K k nπ

+∞
−

−∞
= =∫  (2.68) 

must be evaluated and multiplied by i−  and 1− , respectively, and then used in Table 2.2 in 
place of njK . For instance, the expressions for ( )

,
mn

xx xu  and ( )
,

mn
xx xxu  are 

( )( ) (1) ( ) ( ) (1) ( ) ( )
, 3 4

i i
, ,

2 2

R LN N
mn m n m n

xx x y j xj xj j yj yj
j j

u x k I Iω φ φ φ φ
π π

= − −∑ ∑  (2.69) 

( )( ) (2) ( ) ( ) (2) ( ) ( )
, 3 4

1 1
, ,

2 2

R LN N
mn m n m n

xx xx y j xj xj j yj yj
j j

u x k I Iω φ φ φ φ
π π

= − −∑ ∑  (2.70) 

For the remaining components similar expressions can be obtained. Closed form expressions 
for integrals (1)

njI  and (2)
njI  are given in Table 2.4 and Table 2.5, respectively. 

After the first x -derivatives are known, the cross derivatives ,xyuαβ  can be obtained through 

the multiplication , ,ixy y xu k uαβ αβ= − . 

2.5.3 Fundamental tractions  

Such as described in the previous subsections, the fundamental tractions tαβ  in horizontal 

planes result from the inverse Fourier transform in xk  of equations (2.51), (2.55) and (2.58). 
Since the eigenvectors do not depend on the wavenumber xk , the inverse Fourier transform is 

accomplished by replacing in the equations (2.51), (2.55) and (2.58) the matrices ( )p
jR
βΓ  and 

( )p
jL
βΓ  by the matrices ( )p

jR
βΛ  and ( )p

jL
βΛ , whose general expressions are 

i( ) ( )1
e d

2
xk xp p

jR jR xkβ β

π

+∞
−

−∞

Λ = Γ∫   i( ) ( )1
e d

2
xk xp p

jL jL xkβ β

π

+∞
−

−∞

Λ = Γ∫  (2.71) 
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Table 2.4: Closed form expressions for (1)
njI  ( 2 2Im 0j yk k− < ) 

( )

( )
( ){ }

2 2

2 2

2 2

ii(1)
1 1

ii(1) 2 2
2 2 2

ii(1) 2 2 2
3 3 2

(1)
4 4

1
2

1
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1
2

1
2

sgn
e d e

2i

e d e +i e
2i
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e d e + e
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e
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j y yx

j y yx

x k kk x
j x j x

x k k k xyk x
j x j x j y y

j

x k k k xk x
j x j x j y y

j

j x j

x
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k
I k K k k k k

k

x
I k K k k k k

k

I k K

π

π

π

π
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−∞

+∞ − − −−

−∞

+∞ − − −−

−∞

−

= =

 = = − 
 

= = −

=

∫

∫

∫

( ){ }

( )

2 2

2 2

2 2

ii 2 2
2

2 2
ii(1)

5 5
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1
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1
2
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j
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x
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k
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k

x k
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k

π

π
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−∞

+∞ − −−

−∞
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−∞
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−
= =

= =

∫

∫

∫

 

Table 2.5: Closed form expressions for (2)
njI  ( 2 2Im 0j yk k− < ) 

( ) ( ){ }
( ){ }

2 2

2 2

2 2

2 2
ii(2) 2

1 1

ii(2) 2 2 2 2
2 2 2

3 2 3ii(2) 2 2 2
3 3 2
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j
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j

j x
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I k K k
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I k K k k k k

k

I k K k k k k
k

I k

π

π

π

π
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=

∫

∫

∫
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2 2
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1
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1
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j
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j
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k

x k k
I k K k
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I k K k

k

π

π
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−∞
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−∞
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−
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−
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∫

∫

∫

 

Obtaining the matrices ( )p
jR
βΛ  and ( )p

jL
βΛ  is straightforward, as they results from the 

combination of the integrals ( )p
njI  ( 0,1, 2p = ). For instance, the matrix ( )z p

jRΛ  is 

( )
( )

( )

( )
5

( ) ( )
6

( )
1

, 0 0

i 0 , 0

0 0 ,

p
j y

z p p
jR j y

p
j y

I x k

I x k

I x k

 
 
 Λ = −
 
 
 

 (2.72) 
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2.5.4 Vertical derivatives and internal stresses 

The z -derivatives can be obtained through the combination of the nodal displacements 
weighted by the derivatives of the associated shape functions. However, following that 
approach, the derivatives at the top and bottom interfaces of the thin-layers are not consistent 
with the tractions calculated in subsection 2.5.3, and so their accuracy is inferior. To 
compensate for the lack of precision of the vertical derivative, Kausel (2004) proposed an 
alternative strategy for their calculation. The procedure is based on the definition of secondary 
interpolation functions that are consistent with the tractions at the top and bottom interfaces of 
the thin-layer. In this work, that procedure is used to define the vertical derivatives and, 
subsequently, the internal stresses at the internal nodal interfaces. 

Consider the thi  thin-layer (of expansion nn ), from which the displacements ( )
( )

i
juαβ  at the 

1nn +  nodal interfaces, the horizontal derivatives ( ( )
( ),

i
j xuαβ  and ( )

( ),
i

j yuαβ ), and the nodal tractions 

( ( )
( )

i
jtαβ ) at the top and bottom interfaces are known for all directions , ,x y zα =  and for a source 

in the direction β . The tractions at the upper surface and the internal stresses at the same 
horizontal plane are related by 

T( ) top top top
(1)
i

xz yz zzβ β βσ σ σ =  t  (2.73) 

while the tractions at the lower surface and the internal stresses at the corresponding plane are 
related by 

T( ) bottom bottom bottom
( 1)
i
nn xz yz zzβ β βσ σ σ+

 = −  t  (2.74) 

In their turn, the internal stresses and the derivatives of displacements are related by 

( )
( )
( )

, ,

, ,

, , ,

xz t x z z x

yz t y z z y

zz t x x y y t z z

G u u

G u u

u u D u

β β β

β β β

β β β β

σ

σ

σ λ

= +

= +

= + +

 (2.75) 

The previous equation can be solved for the vertical derivatives, yielding 

( )

( )

( )

,

,

,

,

, ,

,

xz z x

x z
t

yz z y

y z
t

zz t x x y y

z z
t

Gu
u

G

Gu
u

G

u u
u

D

β β

β

β β

β

β β β

β

σ

σ

σ λ

−
=

−
=

− +
=

 (2.76) 

For each response direction α  and for each source direction β , the values of the 
displacements at the 1nn +  nodal interfaces and of the vertical derivatives at the upper and 
lower interfaces are now known. In this way, it is possible to employ the 3nn +  known 
quantities and use Hermitian interpolation to define a polynomial of degree 2nn +  that 
approximates the vertical variation of the displacements. If the thin-layer is linear ( 1nn = ) and 
its thickness is h , then 
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( ) 2 3u z A B z C z D zαβ αβ αβ αβ αβ= + + +  (2.77) 

( ) 2
, 2 3zu z B C z D zαβ αβ αβ αβ= + +  (2.78) 

1 ( ) ( )
(2) (2)

( ) ( )2 3
(1) (1)

( ) ( )2 2
(2), (2),

( )2 3 3 2 2
(1), (1),

1 0 0 0 0 1 0 0

1 0 0 0 1

0 1 0 0 3 3 1 2

0 1 2 3 2 2 1 1

i i

i i

i i
z z

i
z z

A u u

B u uh h h

C u uh h h h

D u uh h h h h h

αβ αβ αβ

αβ αβ αβ

αβ αβ αβ

αβ αβ αβ

−
      
      
      = =
      − − −
      

−         
( )i

 
 
 
 
 
  

 (2.79) 

If instead the thin-layer is quadratic ( 2nn = ), then 

( ) 2 3 4u z A B z C z D z E zαβ αβ αβ αβ αβ αβ= + + + +  (2.80) 

( ) 2 3
, 2 3 4zu z B C z D z E zαβ αβ αβ αβ αβ= + + +  (2.81) 

( ) ( ) ( )

1 ( )
(3)

2 3 4 ( )
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( )2 3 4
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(1),

2 2 2

3 3 3

1 0 0 0 0
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     = =
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(3)
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( )
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( )2 2
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( )4 4 4 3 3
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8 16 8 2 4
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u

u
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uh h h h h

αβ

αβ
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  − − −   

 (2.82) 

After finding the left-hand side of equations (2.79) and (2.82), the vertical derivatives of the 
displacements at the nodal interfaces can be determined using eq. (2.78) or eq. (2.81). As for 
the vertical derivatives ( ),zu zαβ  of points in the interior of the thin-layer, though they can be 

calculated using the same two equations, one chooses to use instead the original interpolation 
functions to determine these variables, i.e., 

( ) ( )
1

( )
, ( ),

1

nn
i

z j j z
j

u z N z uαβ αβ

+

=

=∑  (2.83) 

With all the first derivatives known, eq. (2.6) can be used to calculate the internal stresses. 

Regarding the calculation of the second derivatives involving the z  direction 
( 2 x z∂ ∂ ∂ , 2 y z∂ ∂ ∂  and 2 2z∂ ∂ ), , yzuαβ  is obtained by multiplying ,zuαβ  by i yk− , while ,xzuαβ  is 

obtained by differentiating equation (2.76) with respect to x , i.e. 
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( )
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( )
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 (2.84) 

The traction derivatives ,z xα βσ  are calculated as explained in subsection 2.5.3, with the 

exception that matrices ( )p
jR
βΛ  and ( )p

jL
βΛ  must be replaced with matrices ( )1i p

jR
β +

− Λ  and ( )1i p
jL
β +

− Λ , 

respectively. For the calculation of the matrices (3)
jR
βΛ  and (3)

jL
βΛ  the integrals (3)

njI  of the form 

( ) i(3) 31
2 e d , 1,...,6xk x

nj x nj xI x k K k nπ

+∞
−

−∞
= =∫  (2.85) 

are needed. Closed form expressions for these integrals are given in Table 2.6. 

Table 2.6: Closed form expressions for (3)
njI  ( 2 2Im 0j yk k− < ) 

( )

( ){ }
( ) ( ){ }
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2 2

2 2

2 2
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1 1
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[Note about Table 2.5 and Table 2.6: ( )
3 22 2

j yk k−  must be calculated as 

( )2 2 2 2
j y j yk k k k− − , with 2 2Im 0j yk k− < ; a direct use of the expression 

( )
3 22 2

j yk k−  might possibly assign the wrong sign to the result.] 

The remaining second derivative, ,zzuαβ , can be calculated resorting to the Navier equation 

(Achenbach, 1973) 

( ) 2
, ,i jj j ij i iG u G u F uλ ρω+ + + = −  (2.86) 

which after being solved for ,zzuαβ  yields (it is assumed that 0iF = , i.e., no internal sources)  
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( )( ) ( )
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u

G

u G u u u G u u
u
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 (2.87) 

2.5.5 Validation 

To validate the equations derived in this and previous sections, the response of a 
homogeneous full-space obtained with the TLM is compared with the analytical solution 
derived by Tadeu and Kausel (2000). The isotropic full-space has mass density 1ρ = , shear 
modulus 1G =  and Poisson’s ratio 0.25ν = , and is subjected to a time harmonic line load of 
the form ( ) ( ) ( ) ( ), , , exp i i yx y z t x z t k yδ δ ω= −b , being the excitation frequency 1f = Hz 

( 2ω π= ). The thin-layer model used to simulate the full-space consists of an elastic layer with 
thickness 20 sλ  divided into 200 thin-layers of quadratic expansion — a discussion on 
discretization errors can be found in Park and Kausel (2004b) — and supplemented at its 
upper and lower horizons with paraxial boundaries (Seale and Kausel, 1989), which are used 
to simulate the infinite domain — in section 2.6 of this chapter, a more efficient strategy to 
model infinite domains is presented. The parameters sλ  is the wavelength of the shear wave, 
which is defined by 

s
s s

C G
C

f
λ

ρ
= =  (2.88) 

The load is applied at the middle surface of the elastic layer. To avoid strong oscillations in 
the response, a small amount of damping is considered ( 0.005P Sξ ξ= = ), which renders the 
wave velocities complex. 

In the first validation scenario, the displacements induced by a vertical load are computed as 
function of the wavenumber yk  at the horizontal plane 0z =  and horizontal distances 

0.01 sx λ= , sx λ=  and 5 sx λ= . Figure 2.2 depicts the comparison between the vertical 
displacements obtained with the TLM and those calculated with the analytical solution. 

As can be observed in Figure 2.2b) and c), the match between the exact solution and the TLM 
solution is very good. Nonetheless, very close to the load (Figure 2.2a), one can observe a 
rather small difference in the real part, which is due to discretization effects. This is because 
the thickness of the thin-layers is only 0.1 sλ  while the receiver is placed at one tenth of that 
distance from the source. Still, given the excellent quality of the comparison even at that short 
range, the results obtained clearly demonstrate the robustness of the TLM solution. 

Observe that at large distances the response decays very fast with the wavenumber yk  beyond 

the threshold /s sk Cω=  (the branch point), while below that value the response is highly 
wavy. Hence, when computing the inverse transform from yk –space into y–space for remote 

points, one can truncate the integrals at the branch point, but then again because of the rapid 
oscillations one must consider a sufficiently dense number of points below that threshold. 
Conversely, for receivers at close range, the response functions are less wavy, but they also 
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decay more slowly with yk . Hence, their Fourier inversion must include points beyond the 

branch point even if one can get away with coarser spacing. 

 

 

Figure 2.2: Vertical displacements at a) 0.01 sx λ= , b) sx λ= , and c) 5 sx λ= . Solid lines = 
TLM solution (real part — blue; imaginary part — red). Circles = analytical solution 

In the second validation example, both displacements and derivatives are computed as 
function of the horizontal distance x  and considering all three directions for the load and for 
the response. The longitudinal wavenumber is 0.4yk =  and the receivers are placed at the 

depth 4 sz λ=  and up to the horizontal distance max 4 sx λ= . The stresses are not compared 
because they can be calculated based on the derivatives of displacements, and if the latter are 
correct, then the former are also correct. Likewise, the y -derivatives are not represented 
because they result from the multiplication of other response fields (displacement or 
derivative) by i yk− . Figures 2.3 to 2.8 depict the comparison between the theoretical solution 

and the responses obtained with the TLM. All figures suggest that the two approaches yield 
results that are virtually the same, thus confirming that the TLM is indeed capable of 
reproducing the wave motion with high accuracy. This validates the expressions derived in 
the previous sections of this work. 
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Figure 2.3: Displacements uαβ . Solid lines = TLM solution (real part — blue; 

imaginary part — red). Circles = analytical solution 

 

Figure 2.4: Displacement derivatives ,xuαβ . Solid lines = TLM solution (real part — blue; 

imaginary part — red). Circles = analytical solution 
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Figure 2.5: Displacement derivatives ,zuαβ . Solid lines = TLM solution (real part — blue; 

imaginary part — red). Circles = analytical solution 

 

Figure 2.6: Displacement derivatives ,xxuαβ . Solid lines = TLM solution (real part — blue; 

imaginary part — red). Circles = analytical solution 
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Figure 2.7: Displacement derivatives ,xzuαβ . Solid lines = TLM solution (real part — blue; 

imaginary part — red). Circles = analytical solution 

 

Figure 2.8: Displacement derivatives ,zzuαβ . Solid lines = TLM solution (real part — blue; 

imaginary part — red). Circles = analytical solution 
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2.6 Modeling unbounded domains 

The TLM is a semi-discrete numerical technique for the analysis of wave motion in layered 
media and relies on a finite element discretization in the direction of layering. Due to the 
discrete character of the TLM, by itself the analyses are limited to bounded domains. 
Nevertheless, in the mid eighties, the Paraxial Boundaries (PB) were coupled to the TLM to 
allow the simulation of infinite domains (Seale and Kausel, 1989). Very briefly, the PB for 
the TLM can be obtained by expanding the stiffness matrices (Kausel and Roesset, 1981) in a 
Taylor series in the wavenumber and retaining only the first three terms. Hence, this 
technique works very well for small wavenumbers and not so well for higher wavenumbers. 
In other words, waves propagating vertically or almost vertically are mostly absorbed when 
they reach the paraxial boundary while waves propagating with a considerable horizontal 
component are mostly reflected. For this reason, the PBs are usually augmented with buffer 
(elastic) layers that are thick enough so that the component of waves that is reflected at the PB 
returns to the region of interest at a horizontal coordinate larger than the maximum distance of 
interest. Explicit expressions for the PB matrices can be found in the thesis of Park (Park, 
2002, p. 284 for SH waves and p. 289 for the SVP waves) while comments and considerations 
about their stability can be found in the works by Kausel (1988, 1992). 

More recently, Barbosa et al. (2012) successfully coupled the Perfectly Matched Layer (PML) 
to the TLM, resulting in a more efficient technique to model unbounded domains. The PML is 
a numerical technique used for purposes similar to those of absorbing or transmitting 
boundaries, namely to suppress undesirable echoes and reflections of waves in infinite media 
modeled with discrete finite systems. The technique was introduced in the nineties by 
Berenger (1994), who developed and coupled it to the time-domain finite differences method 
for the analysis of electromagnetic fields. Initially, the formulation of the PML followed the 
split-field approach, in which the systems of equations are solved both for displacements and 
stresses, but later new formulations for the PML were derived, namely by considering the 
PML as an equivalent anisotropic material (Gedney, 1996; Teixeira and Chew, 1998) or by 
stretching the coordinates to the complex space (Chew and Weedon, 1994; Hugonin and 
Lalanne, 2005). The PML has also been applied to elastodynamic problems, both in time and 
frequency domains (Basu and Chopra, 2003; Basu and Chopra, 2004; Basu, 2009; Harari and 
Albocher, 2006). A good literature review on the subject can be found in (Kucukcoban and 
Kallivokas, 2010). 

In the work (Barbosa et al., 2012), the PML is formulated based on the coordinate stretching 
approach. This approach consists in stretching the real space to a complex space by means of 
position-dependent complex-valued scaling functions, which begin with unit values at the 
interface or horizon delimiting the elastic region and then attain progressively larger complex 
values with the distance from this horizon, which causes the waves within the PML to 
attenuate exponentially (Johnson, 2008). Since there is no impedance contrast at the PML 
boundary, no reflections take place no matter what the angle of propagation of the waves 
entering the PML is. In the following subsections, it is shown how the coordinate stretching 
allows the simulation of infinite domains and then the PML is coupled to the TLM. 

2.6.1 Coordinate stretching 

Consider a plane wave travelling at an angle θ  with the vertical direction (z) in a medium 
whose wave speed is C . This wave has the form 
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( )
i sin cos

, , e
t x z

C Cu x z t A
ω ω

ω θ θ
 

− − 
 =  (2.89) 

No restriction is made regarding the vertical coordinate, and thus admit that this coordinate 
may assume the complex values, and denote it by z . Equation (2.89) is still valid but now z  
must be replaced by z . Assume also that the imaginary part of z  depends on the depth (real 
part) and define z  as 

( )iz z z= − Ψ  (2.90) 

where ( )zΨ  is a function yet to be determined. After replacing equation (2.90) into (2.89), the 

latter becomes 

( )
( )i sin cos cos

, , e e
t x z z

C C Cu x z t A
ω ω ωω θ θ θ

 
− − −Ψ 

 =  (2.91) 

The aim is to attenuate the waves that enter a finite PML region defined by 0H z> >  (Figure 
2.9). For waves that propagate in the positive z  direction ( poscos 0θ > ), for the amplitude of 

the waves to decay as z  increases, the exponential term ( )( )exp cos z Cω θ− Ψ  must decrease 

and consequently ( )zΨ  must increase with z . Similarly, for waves that propagate in the 

negative z  direction ( negcos 0θ < ), for their amplitude to decay in the direction of propagation, 

( )zΨ  must obey the same rule. A possible choice for ( )zΨ  that respects the established 

rule is 

( ) ( )
0

z

z dψ ζ ζΨ = ∫  (2.92) 

where ( )zψ  is an always positive stretching function. 

 

Figure 2.9: Propagation of a wave inside the PML region 

In theory, ( )zψ  might assume any shape as long as ( ) ( )0 HΨ < Ψ  (Bienstman and Baets, 

2002). However, once the domain is discretized so that the differential equations can be 
solved, spurious reflections occur due to changes in ( )zψ  and therefore it is convenient that 

this function changes smoothly with z . A commonly used stretching function is (Basu and 
Chopra, 2003) 

( ) 0

m
z

z
H

ω
ψ

ω

 
=  

 
 (2.93) 

H 
z  

neg posθ π θ= −  posθ  
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where 0ω  controls the level of absorption of the wave and 0m >  defines the rate of variation 
of the stretching function within the PML (Note: in section 2.2 the parameter m  has a 
different meaning). This implies 

( )
( )

1

0

1

m
H z

z
m H

ω

ω

+
 

Ψ =  
+  

 (2.94) 

which can be written compactly as 

( ) 1mz Hζ +Ψ = Ω  (2.95) 

where 

( )
0

1m

ω

ω
Ω =

+
   

z

H
ζ =  (2.96) 

The stretched vertical coordinate then simplifies to 

( )1 i mz z ζ= − Ω  (2.97) 

which implies a total complex depth [ ]1 iH H= − Ω . 

Consider now a plane wave traveling at an angle θ  with respect to the vertical direction z  
(Figure 2.9). In the stretched space, this wave can be expressed as 

( )

( )

i sin cos

i sin cos cos

, , e

e e

t x z
C C

t x z z
C C C

u x z t A

A

ω ω
ω θ θ

ω ω ωω θ θ θ

 
− − 

 

 
− − − Ψ 

 

=

=

 (2.98) 

When the wave reaches the bottom of the PML and is reflected, its amplitude is 

( )( ) ( )exp cos exp cosA H C A H Cω θ ω θ− Ψ = − Ω . When the wave reaches again the free 

surface of the PML, its amplitude is ( )exp 2 cosA H Cω θ− Ω . Hence, the total roundtrip decay 

∆  of the wave is  

2 cos
e

H

C
ω θ− Ω

∆ =  (2.99) 

Accounting for the relation between the wave velocity, frequency and wavelength 
( 2 Cλ π ω= ) and defining the ratio Hη λ= , then equation (2.99) is equivalent to 

4 cose π η θ− Ω∆ =  (2.100) 

Clearly, as long as the thickness of the layer is made proportional to the wavelength (i.e. η  is 
chosen as a constant), the effectiveness of the PML for a given angle of incidence depends 
solely on the dimensionless parameter Ω . On the other hand, a ray entering the PML at 0x  
with an inclination θ  returns to the surface at a distance 0 2 tanr x x H θ= − =  from the point of 
entrance, i.e. 

2 tan
r

η θ
λ

=  (2.101) 

Equations (2.100) and (2.101) indicate that the higher the horizontal range of interest is, the 
higher the value needed for Ω , η , or both. 
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The suitability of PMLs for the simulation of a half-space is examined next. For that purpose, 
consider an elastic half-space with shear modulus 1G =  and shear wave velocity 1sC =  
excited by an in-plane (SH) line source acting at the depth sz  with frequency 2ω π= . For an 
elastic half-space, the exact solution for the displacement observed at a receiver at range x  
and depth rz  is (Kausel, 2006; p. 69) 

( ) ( ) ( ) ( )2 2
0 1 0 2

1

2iyy s su H k r H k r
G
 = +   

s

k
C

ω π

λ

2
= = , ( )

22
1,2 s rr x z z= + ∓  (2.102) 

By contrast, the PML admits an exact solution based on an expansion in terms of the normal 
modes of the stratum, as given in Kausel (2006; p. 130). Accounting for the fact that the 
vertical dimensions have been stretched, the solution is 

( ) ( ) ( )
i

1

1 e
,

i

jk x

yy j s j r
j j

u x z z
G k H

ω φ φ
−∞

=

= ∑  (2.103) 

( )
22

s

2 1

2j

j
k

C H

πω  −  
= −   

   
  Im 0jk <  (2.104) 

( )
( )2 1

cos
2j

j z
z

H

π
φ

 − 
=  

 
 (2.105) 

where sz  and rz  are the stretched depths of the source and of the receiver, respectively, and 

H  is the total stretched depth. With 1s sC fλ = = , and choosing for the PML the parameters 
1
2/ sHη λ= =  , a maximum range max 5 5sr x λ≤ = = , a roundtrip decay of two orders of 

magnitude, i.e., 210−∆ = , and 2m = , the following can be inferred 

max
max 1

2

5
tan 5

2 2s

x
θ

ηλ
= = =

×
 ⇒ max 78.7θ = �   ⇒  maxcos 0.196θ =  

1

1
max 2

ln ln 100
3.74

4 cos 4 0.196π η θ π

−∆
Ω = = =

×
 

( ) [ ] [ ]i 1 i 0.5 1 3.74i 0.5 1.87iH H H H= − Ψ = − Ω = × − = −  

 

This data is used to construct a PML that is subjected to a SH line source at its surface 0sz =  
and then equations (2.103) to (2.105) are used to compute the displacements for receivers at 
variable positions on the surface 0rz = . Figure 2.10 compares the displacements thus 
computed against the displacements on the surface of the half-space predicted by equation 
(2.102). As can be seen, both the real and imaginary parts of the displacements agree perfectly 
until a range of about 8 sx λ=  is exceeded. On the other hand, Figure 2.11 shows the ratio 
between the absolute values of the displacements obtained by the two approaches. This figure 
confirms that until the distance max 5 sx λ= , the ratio of amplitudes is virtually one, with an 
error less than 1%. Then again, at the distance 8 sx λ=  the error has grown to approximately 
5%, and thereafter it increases substantially. This shows that with the chosen parameters and 
as seen from its surface, the PML behaves essentially as an elastic half-space, yet is a perfect 
absorber of waves only up to some maximum distance which depends on the parameters 
chosen. 
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Figure 2.10: Displacements of the PML vs displacements of half-space 

 

Figure 2.11: Ratio of displacements at surface of the PML and those of the half-space 

2.6.2 PMLs for the TLM 

In the context of elastodynamics, two different waves with different wave speeds must be 
accounted for: the shear wave with speed sC  and the dilatational wave with speed pC . If the 

waves are considered separately, the concept of the PML as explained in the previous 
subsection is still valid, but now each wave has its own rate of attenuation inside the PML. 

In the following, a PML is constructed by means of a stack of thin-layers in the context of the 
TLM. As shown in a previous work (Kausel and Barbosa, 2011), a very simple way to 
construct a PML with finite elements is to directly stretch the linear dimensions of the 
elements in accordance with their horizontal and vertical position within the PML. In the 
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TLM, this recipe translates into replacing the thicknesses of the thin-layers composing a PML 
by their complex counterparts, which depend on the location (i.e. depth) of the thin-layers 
within the PML. Thus, if it is assumed that the PML is divided into N equal thin-layers, then 
the stretched thickness jh of the thj thin-layer is 

1 1

1

1 1
i

m m

j j j

j j
h z z H

N N N

+ +

−

  −    
= − = − Ω −     

       
 (2.106) 

where 1 j N≤ ≤ , with j  increasing downwards. On the other hand, in the TLM, each of the 
thin-layers is characterized by elementary layer matrices , , ,j j j xzjα α αA G M B  —see equations 

(2.32), (2.35) and (2.39)— two of which are proportional to the sub-layer thickness, while 
another one is inversely proportional to that thickness, i.e. 

[ ]j jhα =A ⋱ ;  [ ]1
j jhα

−=G ⋱ ;  [ ]j jhα =M ⋱  (2.107) 

Thus, in order to obtain the layer matrices for the PML, it suffices to substitute jh  in lieu of 

jh . Thereafter, the layer matrices are overlapped as usual, which leads to the block-tridiagonal 

system matrices and the eigenvalue problems (2.39). 

The parameters for the PML ( m , η  and Ω ) can be selected following the strategy explained 
in the previous subsection. However, since with the TLM the domain is discretized, the 
variation of the complex thicknesses of the sub-layers originates spurious reflections that 
influence the results. On one hand, these reflections become larger as Ω  increases, and so 
thinner discretizations are needed for larger values of Ω . On the other hand, when Ω  is not 
large enough, the waves are not attenuated sufficiently as they travel through the PML. This 
can be compensated with thicker PMLs, which also causes the increase of the number of 
degrees of freedom. In this way, it is important to find a good compromise between the 
different parameters of the PML so that they minimize the number of degrees of freedom as 
much as possible. The following values are suggested as optimal parameters for the PMLs 
(Barbosa et al., 2012) 

2m =    13
max12 / 1s

s

H
xη λ

λ
= = ≥  10n N η=   4ηΩ =   (2.108) 

In this equation, N  is the number of thin-layers in the PML, n  is the expansion order used in 
the discretization (the same as 1m −  in section 2.2) and maxx  is the maximum horizontal 
distance of interest. 

Next, the PML technique is compared with Paraxial Boundaries, which have already been 
used to solve some examples in the previous sections. For that purpose, consider a full-space 
( 1ρ = , 1G = , 0.25ν =  and 0s pξ ξ= = ) and submit it to a vertical 2D line load ( 0yk = ) with 

frequency 2ω π= . For the PML approach the full-space is modeled using two PMLs (one 
upper and one lower), while for the PB approach the full-space is modeled considering two 
buffer layers plus paraxial boundaries, having the buffer layers the same depths and 
discretizations as the PMLs. The parameters chosen for the PML are 2m = , 2η = , 8Ω =  and 

10N = , having the thin-layers quadratic expansion ( 2n = ). Figure 2.12 plots the relative 
errors of the two approaches, defined as the percent deviation of the absolute values of the 
vertical displacements at the depth of the source when compared to those of the exact 
solution. Clearly, the PML approach is substantially more accurate than the PB approach, 
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with errors below 1% up to distances 20 sx λ= , while the errors in the second approach exceed 
10% even at a distance lower than 4 sx λ= , and it becomes intolerable at larger distances. It is 
then clear that the PML approach outperforms the PB approach by a vast margin. 

The example shown in this subsection considers a 2D model. For 2.5D models, the PML 
technique has been used to solve the examples of the previous sections, having the PMLs only 
one tenth of the thickness of the buffer layers. The results obtained are similar to the results 
shown in Figures 2.2-2.8, which confirms that the PML is also applicable in the 2.5D case. 

 

Figure 2.12: PML vs. Paraxial boundaries 

2.6.3 Example of a layered domain 

Up to this point all examples have been solved with the intent to validate the procedure and 
therefore only models for homogeneous full-spaces are considered, since only for these cases 
the fundamental solutions are available in closed form expressions. In this subsection, the 
example of a layered half-space is considered. 

Layered half-spaces differ from homogeneous full-spaces due to the presence of surface 
waves, which result from the interaction between the body waves at the surface between two 
different materials. For the case of elastic half-spaces, only one surface wave exists, the 
Rayleigh wave, and that wave is not dispersive, i.e., its velocity of propagation does not 
depend on the frequency of excitation. For the case of layered domains, depending on the 
frequency considered, none or more than one surface waves may exist. Because they are 
frequency dependent, these waves are called dispersive waves. Theoretical works on 
propagation of waves in layered domains can be found in (Achenbach, 1973; Erigen and 
Suhubi, 1975; Ewing et al., 1957). As for numerical works, Luco and Apsel (1983) and Apsel 
and Luco (1983) treat fixed loads while De Barros and Luco (1994) treat moving loads. 

The layered system considered in this subsection consists of a soft layer resting on a stiffer 
half-space. The material properties of the layer and half-space are 
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 Half-space: 1.0, 1.0, 0.25, 0.005s s pC ρ ν ξ ξ= = = = =  

The layer is modeled by means of 100 thin-layers of quadratic expansion, while the half-space 
is modeled using a PML whose parameters are 2η = , 6.67Ω =  and 2m = . The PML is 
divided into 10 thin-layers of quadratic expansion. 

Eigenvalues of the layered system 

First, the solutions of the Rayleigh eigenvalue problem (2.39) for the frequencies 0.1 Hzf = , 
0.2 Hzf = , 1 Hzf =  and 10 Hzf =  are shown. Figure 2.13 plots the eigenvalues obtained 

with the TLM and the eigenvalues of the exact formulation (stiffness matrices) obtained via 
search techniques. 

 

Figure 2.13: Eigenvalues of the layered system obtain with the TLM (blue dots) and via 
search techniques (red circles) 

Even though the agreement between the eigenvalues obtained with the two distinct 
approaches does not look very good, when the displacements are calculated by means of 
modal combination, the obtained results are quite good (as seen next). In Figure 2.13, it can 
be observed that the number of propagating modes (to which correspond real, or nearly real, 
eigenvalues) increases with the frequency. Also, one can distinguish the existence of two 
branches in the TLM modes that do not exist in the exact formulation. These modes are 
named Berenger modes and they are mathematical artifacts that are a consequence of the 
stretching of coordinates. They have been detected in some works related to electromagnetic 
waves (Bienstman and Baets, 2002; Derudder et al., 2001; Rogier and De Zutter, 2001; 
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Bienstman et al., 2001), but in these works, only one branch exists. In the present work, the 
two branches are justified by the existence of two different body waves. The branches start at 
the wavenumbers s sk Cω=  and p pk Cω=  and the number of modes contained in each 

branch equals the number of degrees of freedom associated with the PML layer. 

Vertical displacements due to a vertical line load ( 0yk = ) 

The modes obtained in subsection 2.6.3.1 are now combined in order to obtain the 
displacements in the interface between the layer and the half-space due to loads at the same 
elevation. Figures 2.14 and 2.15 plot the displacements for the frequencies 0.2 Hzf =  and 

1 Hzf =  obtained both with the TLM and with numerical integration on the wavenumbers of 
the displacements given by the stiffness matrices. 

 

Figure 2.14: Displacements of the layered half-space: TLM vs Stiffness matrices ( 0.2 Hzf = ) 

 

Figure 2.15: Displacements of the layered half-space: TLM vs Stiffness matrices ( 1 Hzf = ) 
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The comparison of the results obtained with the two approaches shows that except for very 
small shifts, the displacements agree very well. Hence, it is concluded that the PML is 
accurate in reproducing the behavior of infinitely deep stratified domains. 

2.7 Solution of the eigenvalue problems 

One of the more time consuming and complex steps in the TLM process is the solution of the 
eigenvalue problems (2.39). Even though commercial software, like Matlab, contain functions 
capable of solving both the linear and the quadratic eigenvalue problems with complex 
matrices (for example, eig and polyeig), these functions do not take advantage of the banded 
structure of the matrices and therefore become inefficient for the solution of eigenproblems 
with dimension of just a few hundred. Also, these routines, which are based on the QZ 
algorithm (Kressner, 2005) and thus based on iterative rotations of the modal basis until 
convergence, may yield eigenvectors that do not respect entirely the orthogonal conditions 
(2.41) due to accumulation of round-of errors, hence introducing errors in the remaining steps 
of the modal combinations: though rare, this case has been observed when a large number of 
thin-layers and PMLs are used. 

Alternative approaches to the QZ algorithm are the methods based on the Power Method. This 
family of methods is based on successive matrix-vector multiplication until the direction of 
the resulting vector has converged to the eigen direction. Several variations exist, namely the 
Power Method itself, the Inverse Iteration method, in which instead of the matrix-vector 
multiplication, a system of equations is solved, and the Inverse Iteration with Rayleigh Shift 
method (Shit and Invert method), in which the eigenvalues are shifted in order to speed up 
convergence (Saad, 1992). In this family of methods, the eigenvectors are found one by one, 
being then deflated from the eigen base (remove them from the modal spectrum) in order to 
avoid convergence to the same pair. 

Projection methods can also be employed: the most common ones are the Lanczos method (or 
Arnoldi method, for non-hermitian matrices) and the Locally Optimal Preconditionated 
Conjugated Gradients method. These projection methods iterate with a group of vectors 
instead of a single vector and are used to extract a small spectrum range, not the full spectrum 
of eigenpairs (Saad, 1992). 

Because the complete spectrum of the system of matrices is needed, the Inverse Iteration with 
Rayleigh Shift is chosen for the solution of the eigenvalue problems (2.39). In the next 
subsections, it is explained how to apply this method taking into account the special structure 
of the TLM matrices. 

2.7.1 Eigenvalue problem for SH waves 

The linear eigenvalue problem to be solved has the form 

( )2
j jk + =A C v 0  (2.109) 

where matrices A  and C  are complex, symmetric and banded. The eigenvalues jk  and 

eigenvector jv  are also complex. The bandwidth of the matrices is 2 if the thin-layers are of 

linear expansion and is 3 if the thin-layers are of quadratic expansion. The eigenvalue 
problem admits 2N  solutions, being N  the dimension of the matrices, and if the pair ( ),j jk v  

is a solution of (2.109), then the pair ( ),j jk− v  is also a solution of (2.109). In this way, only 
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half of the spectrum of the system needs to be computed. Taking into account the orthogonal 
conditions expressed in the second row of eq. (2.41), the Inverse Iteration with Rayleigh Shift 
method applied to the linear pencil (2.109) results in the algorithm described in Table 2.7. 

Table 2.7: Algorithm for the solution of the linear eigenvalue problem 

( )randj N=v   Initial guess 

T
j j j i= −v v v Av   Normalize the initial guess against previously 

    found eigenvectors ( 1,2,... 1i j= − ) 

j j=w Av    Auxiliary vector 

T

T

j j
j

j j

k = −
v Cv

v w
  Rayleigh quotient 

 

Iterate (until Rayleigh quotient has converged) 

 2
jk= +E A C   From shifted matrix 

 1
j j

−= −v E w   New approximation of eigenvector 

 T
j j j i= −v v v Av  Normalize against previously found   

    eigenvectors (if j ik k≈ , 1,2,... 1i j= − ) 

 
T

2
T

j j
j j

j j

k k= +
v w

v Av
 Update the Rayleigh quotient 

 j j=w Av   Auxiliary vector 

 

T
j j

j j

j j

δ

δ

δ

 =


=
 =


v w

v v

w w

  Normalize the approximation 

The normalization step (against previously found eigenpairs) is forced at the beginning of the 
procedure and during the iterative procedure in order to avoid finding the same solution twice. 
Notice however that at the iteration loop, the normalization is only performed against the 
eigenvectors whose associated eigenvalue approximates the current Rayleigh quotient. 

Another important aspect of the algorithm is the solution of the system of equations 
1

j j
−= −v E w . Because matrices A  and C  are symmetric and banded, matrix E  contains 

similar structure. Hence, the application of Gaussian elimination to this system of equations is 
very efficient. 

In opposition to the Power method or the Inverse Iteration method, the chosen approach 
requires the calculation and factorization of matrix E  at every iteration. Nevertheless, because 
the cost of factorization of the matrix is very low (due to its slim banded structure), because 
the convergence is greatly improved (due to the application of the Rayleigh shift), and 
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because the normalization (deflation) is imposed only against the pairs that are in close 
proximity, then the Inverse Iteration with Rayleigh Shift method turns out to be the most 
efficient tool among the three mentioned methods. 

One last comment: the speed of convergence depends on the quality of the initial guess of jv . 

In this work, the initial guess is a random value. However, because the eigenvalue problem 
needs to be solved for different values of ω  ( 2ω= −C G M ), if two successive frequencies are 
close enough to each other ( 2 1 dω ω ω= + ), one can use the eigenvectors computed for 1ω  as 
initial guesses for the eigenvectors of 2ω . This strategy shall improve the convergence of the 
procedure (examples have shown that the average number of iteration per eigenpair reduces 
from 7-8 to 2-3; this strategy has not been used in this work due to complications that occur 
when two eigenvalues are too close from each other, and as a consequence the solutions jump 
from one branch to another). 

2.7.2 Eigenvalue problem for SVP waves 

The first eigenvalue problem of eq. (2.39) is equivalent to 

( )2
j j jk k+ + =A B C v 0  (2.110) 

where 

x

z

 
=  
 

A Ο
A

Ο A
  xz

T
xz

 
=  
 

Ο B
B

B Ο
 

2

2
x x

z z

ω

ω

 −
=  

− 

G M Ο
C

Ο G M
 

xj

v
zj

v
 

=  
 

f

f
  Rj jk k=  

 

Taking into consideration the original order of the degrees of freedom instead of the order 
organized by direction (see section 2.3), matrices A , B  and C  result symmetric and banded, 
being the bandwidth 4 if the thin-layers are of linear expansion or 6 if the thin-layers are of 
quadratic expansion. 

System (2.110) can be further expanded and written as 

j j j j

j
j j

k k
k

−      
=      

      

v vB C A Ο

v vC Ο Ο C
 (2.111) 

and so it can be easily concluded that the eigenvalue problem has 2N  solutions, being N  the 
dimension of matrices A , B  and C . Also, due to the symmetric properties of these matrices 
and due to the special structure of matrix B , if the pair ( ),j jk v  is a solution of (2.110), then 

the pair ( ),j jk− v  is also a solution. The modified eigenvector jv  coincides with jv , except 

for the components associated with the z  direction, which have their sign reversed. 

Because the quadratic eigenvalue problem is slightly more complex than the linear one, some 
explanations are needed before presenting the solution procedure. Of equation (2.111), drop 
the modal index j  and consider a general iteration (say, the thl  iteration) of the Inverse 
Iteration with Rayleigh Shift: 
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1

1

l l l

l l l

k

k
+

+

+ −      
=      −       

A B C u uA Ο

C C v vΟ C
 (2.112) 

Handling simultaneously both rows of the system (2.112), it is possible to obtain 

( )

1
1

2
1

l l
l

l

l l l l l l

k

k k k

+
+

+

−
=


 + + = −

u v
v

A B C u Cv Au

 (2.113) 

Notice that at each iteration, it is needed to solve a system of equations with dimension N  
and not 2N , as could be suggested by equation (2.112). 

As for the Rayleigh quotient, its value is given by 

T T

T T

T T
T T

2
l

l l
l l l l l

l
l l l l l

l l
l

k

  
      +   = =

− −  
     

   

uB C
u v

vC O u Bu u Cv

uA O v Cv u Au
u v

vO C

 (2.114) 

However, in this work, instead of calculating the Rayleigh quotient according to (2.114), the 
quotient is updated in every iteration according to the recursive formula (Waas, 1972) 

T T
1 1

1 T T
1 1 1 1

l l l l
l l

l l l l

k k + +
+

+ + + +

−
= +

−

u Au v Cv

u Au v Cv
 (2.115) 

Equation (2.115) works as well as eq. (2.114), but is more convenient in terms of 
computational resources. 

The orthogonality between a iteration of the thj  eigenvector and an eigenvector already 

converged (the thi  eigenvector) is imposed through 

( ) ( )T T T Tj j i i i i
j i i j i j i i j i

j j i i

k k
k k

−       
= − − − +       

      

u u v v
v Cv u Av v Cv u Av

v v v v
 (2.116) 

As can be seen in eq. (2.116), both the eigenvector associated with ik  and the eigenvector 
associated with ik−  are being deflated. 

The algorithm used for the solution of the eigenvalue problem takes into account the major 
steps described above and is listed in Table 2.8. 
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Table 2.8: Algorithm for the solution of the quadratic eigenvalue problem 

( )randj N=v   Initial guess 

( )randj N=u   Initial guess (auxiliary) 

Equation (2.116)  Normalize the initial guess against previously 
    found eigenvectors ( 1,2,... 1i j= − ) 

j j=w Au    Auxiliary vector 

j j=y Cv    Auxiliary vector 

T T

T T

2j j j j
j

j j j l

k
+

=
−

u Bu u y

v y u w
  Rayleigh quotient 

 

Iterate (until Rayleigh quotient has converged) 

 2
j jk k= + +E A B C   From shifted matrix 

 ( )1
j j j jk−= −u E y w   

 ( )j j j jk= −v u v   New approximation of eigenvector 

 Equation (2.116)  Normalize against previously found  
     eigenvectors (if j ik k≈  or j ik k≈ − ,  

     1,2,..., 1i j= − ) 

 
T T

T T

j j j j
j j

j j j j

k k
−

= +
−

u w v y

u Au v Cv
 Update the Rayleigh quotient 

 j j=w Au    Auxiliary vector 

 j j=y Cv    Auxiliary vector 

 

( )T 2

2

T
j j j j j

j j

j j

j j

k
δ

δ

δ

δ

 −
 =



=


=
 =

u w u Cu

v v

w w

y y

 Normalize the approximations 

2.8 Conclusions 

In this chapter, the Thin-Layer Method is introduced as a tool to calculate the response of 
layered domains (for example, soil) to dynamic loads. The TLM is extended to the 2.5D 
domain and closed form expressions for the fundamental displacements, derivatives, tractions 
and stresses are given and validated. It is worth noting that the proposed methodology relies 
on the solution of two eigenvalue problems that in no way depend on the horizontal 
wavenumbers xk  and yk , hence they need to be solved only once for each frequency. The 3D 
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fundamental solutions obtained with the TLM can be found in other works on the subject 
(Kausel, 1981). 

A new and more efficient procedure, the Perfectly Matched Layer, is proposed for the 
simulation of infinite domains. The PML is used to solve examples of full-spaces and layered 
half-spaces and is validated by means of the same examples. This new procedure is much 
more efficient than the previous one (the paraxial boundaries), and from now on it is 
recommended that the PB be replaced by the PML. 

In the last section of this chapter, efficient algorithms for the solution of the two eigenvalue 
problems are described. 
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3. Numerical tools for soil-
structure interaction 

3.1 Introduction 

Soil-structure interaction received a lot of attention during the XXth century. It is an 
interesting and complex problem, and many works covering a wide range of fields can be 
found in the literature. The interested reader is referred to the work (Kausel, 2010) for a 
historical overview on the subject. 

For the case of traffic induced vibrations, track and building are coupled through the ground, 
and so, both in the propagation stage and in the reception stage, the interaction between the 
soil and the track or the building must be considered. Due to the differences in the typology, 
the ideal numerical tool to model each of the sub-domains may vary. For example, to model 
the soil, which is an infinite domain, the Boundary Element Method (BEM) is preferred 
because it can account for the radiation of waves to the infinity (Dominguez, 1993). On the 
other hand, the use of the Finite Element Method (FEM) reveals to be more appropriate to 
model the behavior of buildings and tracks, since these structures are circumscribed and 
generally irregular. Additionally, in the propagation stage the geometry of the problem can be 
assumed invariant in the longitudinal direction, and thus a 2.5D formulation is advantageous, 
while in the reception stage the problem is limited to the structure under analysis and the 
surrounding environment, and therefore a 3D formulation is more appropriate. 

In this work, the propagation stage and the reception stage are decoupled. Hence, the wave 
field that the track induces in the soil is calculated disregarding the presence of the building in 
the far field. This simplification has been used by other authors (François, 2008; Fiala et al., 
2007) and is valid when the distance between the building and the track is larger than the 
characteristic wavelengths of the soil, i.e., the simplification is valid for the medium and the 
high frequency range. Nevertheless, in this work this assumption is also used for the low 
frequencies. 

In the present chapter, the 3D BEM, the 2.5D BEM and the 2.5 D FEM are described. 

3.2 3D Boundary Element Method 

3.2.1 Introduction 

The Boundary Element Method is a discrete numerical procedure that can be used to solve 
partial differential equations. This procedure relies on the discretization of the boundary of the 
domain, as opposed to the Finite Element Method, for which the whole domain must be 
modeled. For this reason, for problems involving very large domains (such as the soil) the 
BEM becomes advantageous over the FEM as it avoids the discretization of the interior of the 
domain, which results in a reduced number of degrees of freedom. Another advantage of the 
BEM is that it deals with the radiation of waves to infinity exactly, contrarily to the FEM, in 
which special procedures need to be applied at the boundaries of the truncated domain in 
order to model unbounded domains. As drawbacks, the BEM renders systems of equations 
which involve fully populated and non-symmetric matrices and requires the knowledge of the 
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Fundamental Solutions of auxiliary domains, which can be homogeneous full-spaces, half-
spaces or layered spaces. 

In this work the soil is assumed to be horizontally stratified — in the work of Jones (2010), 
the importance of the inclination of layers is assessed. For this reason, the more appropriate 
auxiliary domain is the layered half-space. Using the fundamental solutions of such auxiliary 
domain, the BEM requires solely the discretization of the surfaces of the soil interacting with 
the structures. Unfortunately, such fundamental solutions are not known in closed form 
expressions. An alternative would be to use the full-space fundamental solutions, for which 
analytical expressions are known. However, when considering such auxiliary domain, the 
free-surface of the soil and of the interfaces between the different layers that characterize the 
soil must also be discretized, and that results in a substantial increase of the number of 
degrees of freedom, which renders the approach less attractive. 

Three-dimensional formulations of the BEM can be found in the works of Brebbia and 
Dominguez (1992) for elastostatic problems and of Dominguez (1993) for elastodynamic 
problems. For train induced vibration problems, the time domain 3D BEM has been used by 
Galvín (2007) and O'Brien and Rizos (2005), who considered the fundamental solutions of 
homogeneous full-spaces, by François (2008), who considered the fundamental solutions of 
layered half-spaces, and by Bode et al. (2002), who considered the fundamental solutions of 
homogeneous half-spaces. The frequency domain 3D BEM has been used by Hubert et al. 
(2001), who considered full-space fundamental solutions, and by Fiala et al. (2007), who 
considered the layered half-space fundamental solutions. In this work, a frequency domain 3D 
BEM procedure is coupled to the 3D FEM in order to obtain the response of a structure due to 
an incoming wave field. In the following section, the 3D BEM is presented. 

3.2.2 Integral representation 

Consider an elastic body Ω  with boundary Γ  and two elastodynamic states described by the 
displacement fields ( ),ku tx  and ( )* ,ku tx , the initial displacements ( )0ku x  and ( )*

0ku x , the 

initial velocities ( )0kv x  and ( )*
0kv x , the body forces ( ),kb tρ x  and ( )* ,kb tρ x  and the boundary 

tractions ( ),kp tx  and ( )* ,kp tx , where 1, 2, 3k =  corresponds to the x , y  and z  directions and 

where x  is a point with coordinates ( ), ,x y z=x . The two elastodynamic states are interrelated 

by the Reciprocal Theorem, which states (Achenbach, 1973) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }

* * * *
0 0

* * * *
0 0

, , d , , , , d

, , d , , , , d

k k k k k k k k

k k k k k k k k

p t u t b t u t u u t v u t

p t u t b t u t u u t v u t

ρ

ρ

Γ Ω

Γ Ω

∗ Γ + ∗ + + Ω =

= ∗ Γ + ∗ + + Ω

∫ ∫

∫ ∫

x x x x x x x x

x x x x x x x x

ɺ

ɺ
 (3.1) 

In equation (3.1), a dot over a variable represents the derivative with respect to time and the 
operator “*” represents the time convolution, defined by 

( ) ( ) ( ) ( ) ( ) ( )
0 0

* d d
t t

f t g t f t g g t fτ τ τ τ τ τ= − = −∫ ∫  (3.2) 

Also, the Einstein notation is used, i.e., a repeated index in a term implies the summation over 
that index. For example, 

3
* * * * *

1 1 2 2 3 3
1

k k k k
k

p u p u p u p u p u
=

∗ = ∗ = ∗ + ∗ + ∗∑  (3.3) 
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Now, assume that the second elastodynamic state (the one associated with the supperscript * ) 
is elicited by a body force of the form 

( ) ( )* , ,0k klb tρ δ δ=x ξ  (3.4) 

where 1, 2, 3l =  is the direction of the body force, klδ  is the Kronecker delta, ( )δ …  is the 

Dirac delta function and ( ), ,x y zξ ξ ξ=ξ  is the point where the body force is applied, which can 

be inside or outside the domain Ω . In this case, the displacements induced by such load 
correspond to the fundamental displacements in the time domain and, in the ensuing, are 
denoted by ( )* , ,klu tx ξ , in which the first index represents the direction of the displacement and 

the second index represents the direction of the body load as given in equation (3.4). 
Analogously, the fundamental tractions at the boundary Γ  are denoted by ( )* , ,klp tx ξ  and are 

calculated with 

( ) ( )
3

* *

1

, , , ,kl kjl j
j

p t t nσ
=

=∑x ξ x ξ  (3.5) 

where jn  are the components of the vector n  that is normal to the boundary Γ  at the point x  

(pointing outwards) and where ( )* , ,kjl tσ x ξ  are the fundamental stresses in the time domain 

induced at the point x  by a point load at ξ . Assume also that the first elastodynamic state 

presents no body forces and that it is initially at rest, i.e., ( ), , , 0kb x y z tρ = , ( )0 , , 0ku x y z =  and 

( )0 , , 0kv x y z = . Under these two assumptions, equation (3.1) becomes 

( ) ( ) ( ) ( ) ( )* *, , , d , , , d ,k kl kl k kl kp t u t p t u t u tκ
Γ Γ

∗ Γ = ∗ Γ +∫ ∫x x ξ x ξ x ξ  (3.6) 

where kl klκ δ=  if ∈Ωξ  and 0klκ =  if ∉Ωξ . The integral equation (3.6) relates the 
displacements of a point ξ  of the domain Ω  with the displacements and tractions at the 
boundary Γ . In the frequency domain, equation (3.6) becomes 

( ) ( ) ( ) ( ) ( )* *, , , d , , , d ,k kl kl k kl kp u p u uω ω ω ω κ ω
Γ Γ

Γ = Γ +∫ ∫x x ξ x ξ x ξɶ ɶ ɶ ɶ ɶ  (3.7) 

where a tilde over the variables denotes their Fourier transform with respect to time. Hence, 
( )* , ,klu ωx ξɶ  and ( )* , ,klp ωx ξɶ  represent the three-dimensional fundamental displacements and 

tractions in the frequency domain, which can be calculated using the Thin Layer Method 
(TLM) (Kausel, 1981). 

3.2.3 Regularization of the integral equation 

The fundamental displacements and fundamental traction are singular at the collocation point 
ξ  and consequently equations (3.6) and (3.7) are not valid if ξ  belongs to the boundary Γ . 
Two approaches can be followed to deal with this problem: a limiting process in which a 
spherical portion of the domain with radius tending to zero is excluded (or included) around 
the collocation ξ  (Figure 3.1) (Dominguez, 1993); and a regularization procedure in which 
the singularities of the fundamental solutions are removed (François, 2008). 
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Figure 3.1: Exclusion (left) and inclusion (right) at point ξ  ( εΓ  is the projection of Sε  on Γ ) 

Following the first approach, equation (3.7) becomes 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

* *

* *

, , , d , , , d

, , , d , , d ,

k kl k kl

S

kl k kl kl k
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p u p u S

p u p S u

ε ε

ε ε

ω ω ω ω

ω ω κ ω ω

Γ−Γ

Γ−Γ

Γ + =

 
= Γ + + 

 
 

∫ ∫

∫ ∫

x x ξ ξ x ξ

x ξ x x ξ ξ

ɶ ɶ ɶ ɶ

ɶ ɶ ɶ ɶ

 (3.8) 

The integral ( )* , , dkl

S

u S
ε

ω∫ x ξɶ  vanishes for ε  tending to zero (Dominguez, 1993) and so 

equation (3.8) is condensed to 

( ) ( ) ( ) ( ) ( )* *, , , , d , , , dkl k k kl kl kc u p u p u
ε ε

ω ω ω ω ω
Γ−Γ Γ−Γ

= Γ − Γ∫ ∫ξ x x ξ x ξ xɶ ɶ ɶ ɶ ɶ  (3.9) 

where 

( )

( )

( )

*

*

*

, , d , if inclusion

, , d
, , d , if exclusion

kl kl

S

kl kl kl

S kl

S

p S

c p S
p S

ε

ε

ε

δ ω

κ ω
ω

 +


= + = 



∫
∫

∫

x ξ

x ξ
x ξ

ɶ

ɶ
ɶ

 (3.10) 

When the boundary is smooth at ξ  and the full-space fundamental solutions are being used, 
0.5kl klc δ= . For different geometries at the node ξ , Guiggiani and Gigante (1990) and Mantic 

(1993) indicate procedures to obtain the coefficient klc , also considering the full-space 
fundamental solutions. For different fundamental solutions (such as the layered half-space 
fundamental solutions), no work addressing the calculation of the coefficients klc  was found 
in the literature. 

The remaining integrals in equation (3.9) must be evaluated in the Cauchy principal value 
sense. The fundamental displacements *

kluɶ  present a weak singularity at ξ  and so the integral 

involving *
kluɶ  can be evaluated easily. The fundamental tractions *

klpɶ  present a strong 

singularity at ξ  and for that reason the evaluation of the integral involving *
klpɶ  is not 

straightforward. Cerrolaza and Alarcon (1989) present a procedure based on a polynomial 
coordinate transformation that can be used to evaluate this type of integrals. 

Following the regularization procedure mentioned in the beginning of this subsection, the 
strong singularity that is contained in the fundamental tractions *

klpɶ  is removed by employing 
the “rigid body motion technique”. The details of this technique can be found in (François, 
2008). For unbounded domains, the regularized integral equation that is obtained using this 
technique is 

n
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( ) ( ) ( )

( ) ( ) ( ) ( )

*

* *

, , , , d

, , , , ,0 , d

l k kl

kl k kl k

u p u

p u p u

ω ω ω

ω ω ω

Γ

Γ

= Γ −

 − Γ 

∫

∫

ξ x x ξ

x ξ x x ξ ξ

ɶ ɶ ɶ

ɶ ɶ ɶ ɶ
 (3.11) 

in which ( )* , ,0klp x ξɶ  are the fundamental static tractions. 

In this work, for the 3D BEM, equation (3.11) is used. The reason why equation (3.11) is 
chosen instead of (3.9) is because with that equation the calculation of klc  is avoided. 
Furthermore, because the layered half-space fundamental solutions are used and since only 
structures resting on the surface of half-spaces are considered, the calculation of the 
fundamental tractions is not necessary as they are zero (free traction boundary condition). 

[Note: For buried structures, a more convenient strategy can be used: if the collocation points 
are placed inside the part of domain to be excluded instead of in the boundary, equation (3.7) 
can be used directly without the need for regularization because the collocation points are not 
contained in the integration path; hence, if one defines as many collocation points as nodes of 
the discretized boundary Γ , a system of equations that relates the boundary tractions and the 
boundary displacements is obtained, and from that system, a stiffness (or flexibility matrix) 
can be easily obtained. Nevertheless, the integration of the fundamental solutions over vertical 
boundaries is still needed and that can become troublesome.] 

3.2.4 Discretization of the boundary 

To solve the integral equation (3.11), the boundary Γ  is divided into eN  boundary elements 
and nN  boundary nodes. Within each boundary element, the displacement and traction fields 
are approximated by means of interpolation functions and nodal values, i.e., 

( ) ( ) ( )
( )

( ) ( )
( )

1

,
e

nN
ej e

k k j
j

u u Sω ω
=

=∑x xɶ ɶ  (3.12) 

( ) ( ) ( )
( )

( ) ( )
( )

1

,
e

nN
ej e

k k j
j

p p Sω ω
=

=∑x xɶ ɶ  (3.13) 

in which ( ),ku ωxɶ  and ( ),kp ωxɶ  are the interpolated displacements and tractions (in this case, 

x  belongs to the the  boundary element), ( )( )ej
ku ωɶ  and ( )( )ej

kp ωɶ  are the nodal values of the thj  

node of the the  element, ( )( )
( )

e
jS x  are the associated interpolation (shape) functions evaluated at 

x  and ( )e
nN  is the number of nodes contained in the the  element. The type of boundary 

elements and respective shape functions that are commonly used can be found in 
(Dominguez, 1993). 

Now, assume that the collocation point ξ  corresponds to one of the nN  nodes of the boundary 

(say, the thi  node, with coordinates ix ). In this case, after accounting for the approximations 
in equations (3.12) and (3.13), equation (3.11) becomes 
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or in compact form, 
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By making l  assume all the three directions, equation (3.15) assumes the vector form 
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where the bold variables have the following meanings (the arguments ix  and ω  were 
dropped) 
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(3.17) 

After making the collocation point ξ  correspond to all the nN  nodes and after assembling the 

matrices ( )ejUɶ  into a square matrix U  and the matrices ( )ejPɶ  and ( ,3Dstat)ePɶ  into a square matrix 
P , the final system of equations is obtained 

( ){ } ( ) ( ) ( )ω ω ω ω+ =P I u U pɶɶ  (3.18) 
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in which ( )ωuɶ  is a vector that collects all the nodal displacements and ( )ωpɶ  is a vector that 

collects all the nodal tractions. Equation (3.18) can be solved for uɶ , pɶ  or a combination of 
the two vectors, depending on the unknowns of the problem. 

3.2.5 Coupling BEM-FEM 

To model the behavior of structures composed of irregular and finite domains, the FEM is 
more adequate than the BEM. Hence, when such structures interact with the soil, the coupled 
BEM-FEM strategy may be the most attractive option. 

In the frequency domain, the FEM sub-domain is governed by the system of equations 
(neglecting the damping) 

( )2ω− =

K

K M u F

ɶ

ɶɶ

�
�

 
(3.19) 

in which M  represents the mass matrix 

FEM

T dρ
Ω

= Ω∫M N N  (3.20) 

and K  represents the stiffness matrix 

FEM

T d
Ω

= Ω∫K B DB  (3.21) 

and where the vectors uɶ  and Fɶ  represent the frequency domain displacements and external 
forces, respectively, and the variables ρ , D , N  and B  correspond to the density, the 
constitutive matrix, the shape function matrix and the linear operator containing the 
derivatives of the shape functions. On the other hand, the behavior of the BEM sub-domain is 
described by equation (3.18). In the following, the superscripts F  and B  are used to 
distinguish the response fields of the FEM and BEM sub-domains, respectively. 

Consider a sub-domain FEMΩ  modeled by means of the FEM, which interacts along the 
surface FEMΓ  with a sub-domain modeled with the BEM and whose boundary is BEMΓ  (Figure 
3.2). To couple the two sub-domains, first it is convenient to separate the degrees of freedom 
of both sub-domains into two groups: one that contains the degrees of freedom belonging to 

FEMΓ  (represented here by the index I ); and another that contains the remaining degrees of 
freedom (represented by the index II ). Taking into account the defined groups, systems of 
equations (3.18) and (3.19) are written as (the argument ω  is dropped) 

B
I,I I,II I,I I,II II

B
II,I II,II II,I II,II IIII

+       
=      +      

P I P U U pu

P P I U U pu

ɶɶ

ɶɶ
 (3.22) 

and 

F
I,I I,II I I

F
II,I II,II II II

    
=    

      

K K u F

K K u F

ɶ ɶ ɶɶ

ɶ ɶ ɶɶ
 (3.23) 
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Figure 3.2: FEM sub-domain FEMΩ  interacting with BEM sub-domain with boundary BEMΓ  

The two sub-domains are now coupled by enforcing the compatibility of displacements and 
the equilibrium of forces at the interface FEMΓ . Since the interpolation functions may differ 
from one sub-domain to the other, the compatibility of displacements cannot be imposed at all 
points of FEMΓ . Hence, the compatibility is enforced only at the nodes of the BEM model 
interacting with the FEM domain, condition that is accomplished through the identity 

F B
I I I=N u uɶ ɶ  (3.24) 

where the matrix IN  contains the FEM shape functions associated with the degrees of 

freedom I  and evaluated at the nodes of the boundary element model that belong to FEMΓ . 

Regarding the equilibrium of forces at FEMΓ , the FEM formulation relates displacements with 
nodal forces while the BEM relates displacements with nodal tractions, and for this reason the 
equilibrium can only be respected in an approximate manner. The equilibrium is therefore 
established by enforcing that the resultant of the boundary tractions equals the nodal forces, 
i.e., 
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Γ + =  
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N x S x p F

	


�


�

ɶɶ  (3.25) 

Matrix T , defined by the integral in (3.25), transforms the nodal tractions into equivalent 
nodal forces. Matrix ( )IN x  collects the FEM shape functions associated with the FEM 

nodes I  and evaluated at x  while ( )IS x  collects the BEM shape functions associated with the 

BEM nodes I  and evaluated at x . 

The system of equations (3.22) can be solved for Ipɶ  and the following identity can be reached 
(see Appendix III) 

1 B 1
I I II

− −= +p A Bu A Cpɶ ɶɶ  (3.26) 

in which the matrices A , B  and C  are defined by 

( )
1

I,I I,II II,II II,I

−
= − +A U P P I U  (3.27) 

( )
1

I,I I,II II,II II,I

−
= + − +B P I P P I P  (3.28) 

( )
1

I,II II,II II,II I,II

−
= + −C P P I U U  (3.29) 

FEMΩ  

FEMΓ  

BEMΓ  

BEM FEMΓ ∩ Γ  
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The combination of equations (3.24), (3.25) and (3.26) yields 
1 F 1

I I I II
− −= − −F TA B N u TA Cpɶ ɶɶ  (3.30) 

and the use of eq. (3.30) in (3.23) renders the final system of equations 

F
BEMI,I BEM I,II I

F
IIII,I II,II II

   +    
= −       

      

0 FK K K u

F 0K K u

ɶ ɶ ɶ

ɶɶ ɶ ɶ
 (3.31) 

in which 
1

BEM I
−=K TA B N  (3.32) 

and 
1

BEM II
−=F TA C pɶ  (3.33) 

The system of equations (3.31) is solved for F
Iuɶ  and F

IIuɶ  and as a result the displacements in 
FEMΩ  are obtained. The displacements B

Iuɶ  of the BEM model are then obtained by employing 

equation (3.24). The boundary tractions Ipɶ  and displacements B
IIuɶ  are obtained by solving the 

system of equations (3.22) for these variables. 

Example: massless rigid footing resting on a half-space 

For the case of a rigid footing, its behavior is described by the displacements and rotations at 
some reference point. Assuming that the reference point coincides with the origin of the 
Cartesian coordinate system, which in turn is placed at the center of the footing (Figure 3.3), 
the displacements at any point { }0x y=x  that belongs to the footing can be calculated 

with 
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 (3.34) 

where uα  is the translation of the footing in the α  direction and αθ  is the rotation of the 
footing about the α  axis, with , ,x y zα = . 

To account for the soil reaction, the soil-structure interface is divided into eN  boundary 
elements and nN  nodes, all belonging to the group I  of degrees of freedom. In addition, since 
the half-space fundamental solutions are used, the fundamental tractions are null. Hence, in 
equation (3.22) only the sub matrices I,IU  and I  are not null, and consequently the matrix 

BEMK  simplifies to 1
BEM I,I I

−=K TU N , while the vector BEMF  vanishes. 
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Figure 3.3: Rigid footing resting on a half-space: boundary element mesh 

Next, to validate the procedure, the horizontal compliance ( HH xC u Ga= , considering a unit 
horizontal load) and the vertical compliance ( VV zC u Ga= , considering a unit vertical load) of a 
square footing ( a b= ) are compared with the compliances obtained by Wong and Luco 
(1978), for the dimensionless frequency 0 sa a Cω=  ( sC G ρ= ) varying from 0 to 4. The 

size of the square foundation is 2 60a =  and the soil properties are 63.315 10G = × , 
42.82 10ρ −= ×  and 1 3ν =  (consistent units). The soil-structure interface is divided into 100 

equally sized squares, and within each square the displacement and traction fields are 
assumed to be constant (constant boundary elements). The fundamental solutions of the half-
space are obtained via the TLM with a model consisting of a elastic layer with thickness 

5 0.1s sh Cπ ω λ= =  (divided into 25 thin layers of quadratic expansion) that rests on a PML 
with parameters 2m = , 3η = , 2n = , 15N =  and 12Ω =  (see Chapter 2, equation 2.108). The 
elastic layer is added to the TLM model to improve the quality of the fundamental solutions 
near the source (recall that the TLM is a discrete method and so, near a point source, where 
the displacement and stress fields vary rapidly, thinner meshes are required in order to obtain 
a good accuracy). Figures 3.4 and 3.5 plot the results herein obtained and the results reported 
by Wong and Luco. Though not perfect, the agreement is good, which validates the 
procedure. 

 

Figure 3.4: Horizontal compliance HHC  
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Figure 3.5: Vertical compliance VVC  

Note: In this example, because the boundary elements are constant, square shaped, and resting 
at the surface of the half-space, the calculation of the boundary element matrices ( ) ( )I II ,I IIU  of 

equation (3.22) can be accomplished with a simplified procedure: instead of integrating the 
displacements induced by a point load at the ith boundary node on the surface of the jth 
boundary element, the 3x3 sub-matrix associated with the ith boundary node (rows) and jth 
boundary element (columns) can be taken as the displacements (all nine components) at the ith 
boundary node induced by a disk load applied at the jth boundary element. The radius of the 
disk load must be such that the area of the disk is the same as the area of the boundary 
element. This simplified procedure yields very good approximations as long as the boundary 
elements are horizontal, fairly square and of constant expansion. If the elements are not at the 
surface, this procedure cannot be used because it is not valid for the traction integrals. The 
displacements induced by disk loads are given in the work (Kausel and Peek, 1982b) and 
transcribed in Appendix IV. 

3.2.6 Weak coupling – response to incoming wave fields 

As mentioned in the beginning of this chapter, in this work the propagation and the reception 
stages are decoupled, i.e., the wave-field that the track transmits to the soil is calculated 
disregarding the presence of the building in the far field. Hence, there is a weak coupling 
between the two sub-structures: the connection between the track and the structure is kept, 
while the connection between the structure and the track is not (Figure 3.6). 

So, consider that the tractions tp  at the boundary tΓ  (that result from the interaction between 
the track and the soil, and that are calculated without accounting for the removal of the 
volume of soil sΩ ) induce at the boundary sΓ  the displacement field 0u  and the traction field 

0p  (Figure 3.6). The displacements 0u  are calculated by placing collocation points on the 

boundary sΓ  and then using equation (3.7) with tΓ = Γ . The traction field 0p  is obtained using 

the derivatives of 0u  in the strain-stress relations (2.6). The derivatives of 0u  are obtained by 
deriving equation (3.7) with respect to ξ  — see (Dominguez, 1993) for details. 
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Figure 3.6: Weak coupling between track and structure 

The first step to obtain the response of sΓ  is to make it traction free, a condition that is needed 
to account for the volume sΩ  of soil that is excavated. Such is accomplished by applying the 

tractions 0−p  at sΓ  (same magnitude but opposite direction). These tractions induce an extra 

displacement field pu  at sΓ  calculated with 

( )
1 0

s s

−
= − +pu P I U p  (3.35) 

where sP  and sU  are the boundary element matrices of the discretized boundary sΓ . The 

displacement field incu that tp  induces at sΓ  (and that accounts for the volume of excavated 
soil sΩ ) is then 

( )
1inc 0 0 0

s s

−
= + = − +pu u u u P I U p  (3.36) 

 (for sΓ  at the surface, 0p  is null and so inc 0=u u ). 

The second step to obtain the response of sΓ  is to establish the compatibility of displacements 
and equilibrium of forces between the soil and the structure. The incident displacement field 

incu  needs to be taken into account in the compatibility equation (3.24), which becomes 
F B inc

I I I= +N u u uɶ ɶ ɶ  (3.37) 

The equilibrium equation does not change. After combining the compatibility equation (3.37) 
and the equilibrium equation (3.25), a system of equations with the same form as equation 
(3.31) is obtained, with BEMF  being calculated with 

tp  
sp  

0 0,u p  

tΓ  

sΓ  

sΩ  
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1 1 inc
BEM II

− −= −F TA C p TA B uɶ  (3.38) 

and with the remaining matrices and vectors being calculated as explained in section 3.2.5 
for sΓ = Γ . 

Example: two weakly coupled rigid footings resting on a half-space 

Two square rigid footings ( 2 2 60a b= = ) are placed at a distance 4 120d a= =  from each other 
(center to center). Both footings have concentrated masses placed at their center of gravity 
( 500M = ), which results in inertial forces in the translational degrees of freedom. The 
footings rest on a half-space whose properties are the same of those of the previous example. 
One of the foundations (footing 1) is loaded vertically and the vertical response of both 
footings ( VV,1 ,1zC u Ga=  and VV,2 ,2zC u Ga= ) is calculated considering full coupling and weak 

coupling between the two foundations. Figures 3.7 and 3.8 compare the responses obtained 
considering the two coupling schemes for the dimensionless frequency 0a  varying between 0 
and 1. 

The presence of the concentrated masses in the footings significantly modifies the behavior of 
the footing-soil system, as can be concluded from the comparison between Figures 3.5 and 
3.7: both the shape and the magnitude of the response are different. It is also observed that the 
two coupling schemes yield different results. Nevertheless, the response of the weak coupling 
scheme follows the main trends of the response of the full coupling scheme.  

 

Figure 3.7: Vertical displacement of loaded footing: full coupling versus weak coupling 
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Figure 3.8: Vertical displacement of free footing: full coupling versus weak coupling 

3.2.7 Final considerations 

In this section of chapter 3, the 3D BEM was introduced and coupled to the 3D FEM in order 
to perform dynamic analyses of structures interacting with the soil. To validate the 
implemented methodology, the example of a rigid footing resting on a half-space was solved 
and the results were compared with results available in the literature. Then, the definition of 
weak coupling between two structures was introduced and an example was shown where the 
results obtained considering weak coupling and full coupling were compared. It was observed 
that the two coupling approaches yielded different results, but that the major trends of the 
responses were kept. 

In this work, the 3D BEM-FEM methodology is used in the context of railway induced 
vibrations to analyze the response of structures to incoming wave-fields. The wave-fields are 
calculated using a 2.5D BEM-FEM procedure, which is explained in the following 
subsections. In the 2.5D BEM-FEM procedure, the presence of the building in the far field is 
disregarded, i.e., it is considered that the track and the buildings are weakly coupled. 

The consideration of buried structures is not attempted in this work, but some comments are 
proffered next about this issue: 

1. The calculation of the boundary matrices for non-horizontal boundaries using the 
TLM becomes much more complicated than to integrate the fundamental 
displacements on a horizontal surface or to use the simplified procedure explained 
at the end of section 3.2.5. The difficulties arise because the boundary integrals 
cannot be calculated directly (unlike in the 2.5D case, explained in a later section 
of this chapter), which leads to the necessity of using special integration schemes 
(Gaussian integration, for example) and consequently an increase in the time 
needed for the computation of these integrals. Nevertheless, in the work (Kausel 
and Peek, 1982a) the BEM is formulated both in 2D and 3D spaces using the 
TLM, and these formulation can be used for the analyses of buried structures. 

2. Alternative approaches can also be used: in recent years, some authors suggested 
the use of the Perfectly Matched Layer together with finite elements to calculate 
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the stiffness matrix s BEM( )Γ =K K  of the soil interface (Basu and Chopra, 2003; 
Harari and Albocher, 2006). However, there are reports of incorrect results of the 
FEM-PML when the domain is layered, and that occurs due to grazing incidence 
of waves (Komatitsch and Martin, 2007). In this work, during some tests with 
FEM-PML to simulate a single stratum, for certain frequencies, the response of the 
stratum diverged from the expected. 

3. Another alternative for the calculation of the stiffness matrix of the soil is the 
“SASSI” approach (Lysmer et al., 1999). In this approach, a flexibility matrix ΩF  
that relates forces and displacements of a grid of nodes that delimit the volume of 
soil to be excavated is calculated using the TLM. The flexibility matrix is then 
inverted, being thus obtained a stiffness matrix ( 1−

Ω Ω=K F ). The stiffness matrix 

sΓK  of the soil is finally obtained by subtracting from ΩK  the stiffness sΩK  of the 
volume to be excavated, which is calculated with the FEM ( s sΓ Ω Ω= −K K K ). 

4. As a final comment, independently of the approach that is followed, there is 
always a huge computational cost that cannot be avoided because of the need for a 
3D mesh. 

3.3 2.5D Finite Element Method 

3.3.1 Introduction 

When the geometry of the structure is invariant in one of the directions, space-wavenumber-
frequency domain (2.5D) analyses are usually more advantageous than space domain (3D) 
analyses. In essence, a 2.5D analysis consists in performing a Fourier transform of the 
longitudinal coordinate, which results in the reduction of the dimensionality of the problem by 
one, and consequently in the reduction of the 3D analysis to the summation of a set of 2D 
analyses. 

In the context of railway induced vibrations, since in most cases it can be assumed that the 
geometry of the track and the profile of the soil are invariant in the longitudinal direction, 
2.5D analyses can be used to calculate the wave-fields that propagate in the track and soil and 
reach the buildings. The 2.5D analyses have been used by several authors in this context, as 
mentioned in the literature review presented in chapter 1. 

In this work, the track is modeled using 2.5D finite elements while the soil is modeled using 
2.5D boundary elements. The two procedures are coupled in order to solve the track-soil 
system and to calculate the vibration field that propagates in the track and soil. Coupled 2.5D 
BEM-FEM schemes can be found in the literature, for example in Galvín et al. (2010) and in 
Sheng et al. (2005). The first work uses layered half-space fundamental solutions calculated 
with the stiffness matrices while the latter uses the analytical full-space fundamental solutions 
that are given in the same reference. The fundamental solutions used in the present work are 
the 2.5D fundamental solutions explained in chapter 2. 

3.3.2 2.5D Finite Element Method 

Consider an elastic body that extends to infinity in one direction (longitudinal direction y ) 
and whose cross section SΩ is constant (Figure 3.9). It is assumed that the material properties 
are invariant in the y  direction while within the cross section the material properties may vary 
in a stepwise fashion. 
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Figure 3.9: Elastic solid: definition of invariance and angles θ  

Under the mentioned conditions, and following the same steps as for the TLM — see chapter 
2, equations (2.2) to (2.13) — the wave equation in the elastic body can be written as (the 
following variables have the same meaning as in chapter 2) 
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ɺɺ

 (3.39) 

On the other hand, the internal stresses s  at any plane parallel to y  can be calculated with 

( )T Tcos sinx zθ θ= +s L L DLu  (3.40) 

where θ  is the angle of the outwards normal to the plane with respect to the x  axis. At the 
interface between different materials, the internal stresses must be in equilibrium, i.e., 

1 2 1 2, θ π θ= = +s s  (3.41) 

while at the boundary of the cross section SΩ  the internal stresses must balance the external 
tractions t , i.e., 

=s t  (3.42) 

As in the TLM case, one proceeds to discretize the domain to solve the wave equation. 
However, instead of discretizing only in the vertical direction z , in this case the domain is 
discretized in the xz  plane. Hence, after dividing the cross section SΩ  into plane finite 
elements, the displacement field in the solid is approximated by 

( ) ( ) ( ), , ,x y z x z y=u N U  (3.43) 

where N  is a matrix containing the interpolation functions and U  is a vector containing the 
displacements of the associated nodes. The interpolation functions N  used in the 2.5D case 
are the same functions that are commonly used in plane strain or plane stress problems. 

After inserting the approximation (3.43) in the wave equation (3.39) and boundary conditions 
(3.41) and (3.42), it can be verified that these equations are not rigorously satisfied, due to the 
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presence of unbalanced body forces and tractions. The discrete wave equation is derived after 
the application of the method of the weighted residuals and by requiring the virtual work done 
by the unbalanced forces within each finite element to be null, which results in the single 
finite element equation 

2

2xx xy xz yy zy zzy y y

∂ ∂ ∂
= + − + − − +

∂ ∂ ∂

U U U
F MU G U B G U A B G Uɺɺ  (3.44) 

The vector F  contains the consistent external forces at the nodes of the finite elements (which 
result from the external tractions t  and the body loads b ), while the finite element matrices 
M , yyA , yαB , ααG  and xzG  are given by ( ,x zα = ) 

S

T d dx zρ
Ω

= ∫∫M N N  (3.45) 

S

T d dyy yy x z
Ω

= ∫∫A N D N  (3.46) 

S S

T d d d dT
y y yx z x zα α α α α

Ω Ω

= − +∫∫ ∫∫B N D N N D N  (3.47) 

S

T d dx zαα α αα α

Ω

= ∫∫G N D N  (3.48) 

S S

T Td d d dxz x xz z z zx xx z x z
Ω Ω

= +∫∫ ∫∫G N D N N D N  (3.49) 

being x x
∂
∂

=N N  and z z
∂
∂

=N N . After the assembly of the finite element matrices, one is left 

with a global system of differential equations with the same form as (3.44). To solve it, the 
displacements U  and forces F  are transformed to the wavenumber-frequency domain by 
means of the double Fourier transformations 

( ) ( ) ( )i
, , e d dyt k y

yk y t y t
ω

ω
+∞ +∞

− −

−∞ −∞

= ∫ ∫U U  (3.50) 

( ) ( ) ( )i
, , e d dyt k y

yk y t y t
ω

ω
+∞ +∞

− −

−∞ −∞

= ∫ ∫F F  (3.51) 

In the transformed domain, the system (3.44) changes into 

( ) ( )2 2iyy y y xy zy xx xz zzk k ω = + + + + + − F A B B G G G M U  (3.52) 

All matrices in (3.52) are symmetric, except for xyB  and zyB , which are skew-symmetric. 

However, for cross-anisotropic materials whose constitutive matrix is given in equation (2.1) 
of chapter 2, it is possible to transform these matrices into symmetric matrices by means of a 
similarity transformation that consists in multiplying the rows of (3.52) that are related to the 
y  direction by i−  and the columns related to the y  direction by i . The referred to rows and 
columns have indexes 2 3l j= + , with 0,1,2,...j = . This transformation solely affects the 

matrices xyB  and zyB  and the vectors F  and U . After the transformation, the system (3.52) 

becomes 
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( ) ( )2 2
yy y y xy zy xx xz zzk k ω = + + + + + − f A B B G G G M u  (3.53) 

where f  and u  are obtained from F  and U  after multiplying the rows l  by i− . Also, xyB  

and zyB  are obtained from xyB  and zyB  by reversing the sign of the columns with index l . 

After solving the system of equations (3.53) for u , the displacements U  in the wavenumber-
frequency domain are recovered by multiplying every row l  of u  by +i . 

[Note1: the above description considered the cross-anisotropic material defined in eq. (2.1). In 
some cases, it is more convenient to define materials whose direction of anisotropy is the 
longitudinal direction instead of the vertical one. For example, it is common to model the 
sleepers (which are discontinuous) as a continuous anisotropic slab, where the in-plane 
behavior differs from the out-of-plane behavior (Alves Costa, 2011). In that case, the 
constitutive matrix 

( )

( )

( )

1
1

1

1

2 1

2 1

2 1

0 0 0

0 0 0

0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

xyz xz

xz xz xz

xyz xyz

xz y xz

xyzxz

xz xz xz

y

y

xz

xz

y

y

E E E

E E E

E E E

E

E

E

ν ν

ν ν

νν

ν

ν

ν

−

+

+

+

 − −
 
 − −
 
 − − 

=  
 
 
 
 
 
 

D  (3.54) 

is more appropriate. xzE  and yE  are the in-plane and out-of-plane elastic modulus, xzν  and yν  

are the in-plane and out-of-plane Poisson’s ratio, and xyzν  is the cross Poisson’s ratio. This last 

variable can assume negative values and must be such that matrix D  is definite positive. The 
equations presented in this section are still valid for this constitutive matrix.] 

[Note2: the above formulation considers only volume elements. In order to consider different 
elements, such as beams or shells, different differential equations and discretizations have to 
be used, resulting in a final system of equations that will contain terms in 3

yk  and 4
yk  (Galvín 

et al., 2010). For an Euler beam, the system of equations is 

( )
( )
( )

4 2

2 2

4 2

x x y x

y y y

z z y z

f EI k A u

f EAk A u

f EI k A u

ω ρ

ω ρ

ω ρ

 = −



= −


= −

 (3.55) 

where E  is the Young’s modulus of the beam, ρ  is the mass density, ,x zI  are the moments of 

intertia, A  is the cross section area, , ,x y zf  represent the external forces and , ,x y zu  represent the 

displacements of the axis of the beam.] 

3.3.3 Example - dispersion curves of a UCI861-3 rail 

To validate the implementation of the procedure presented in this section, the dispersion 
curves of a UCI861-3 rail are calculated and compared with the curves obtained by Gavric 
(1995), who also used a 2.5D FEM procedure. Dispersion curves correspond to the pairs 
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( ,yk ω ) that result in singular systems of equations (3.52) or (3.53). In other words, the 

dispersion curves plot the values yk  that are solutions of 

( ) ( )2 2det 0yy y y xy zy xx xz zzk k ω + + + + + − = A B B G G G M  (3.56) 

as function of the frequency ω . The solutions of (3.56) may be real or complex: the real 
solutions correspond to waves that propagate while the complex solutions correspond to 
waves that evanesce (i.e., attenuate) with the distance to the source.  

The 2.5D FEM methodology presented in this section is employed to determine the dispersion 
curves of the propagating modes of the rail. With that intention, the rail section is divided into 
166 quadrilateral elements and a total of 214 nodes, resulting in the mesh shown in Figure 
3.10. For that mesh, the global matrices yyA , yαB , αβG  and M  are calculated and then used in 

equation (3.56). 

 

Figure 3.10: Used mesh for the rail section (dimensions in mm) 

In Figure 3.11, the results obtained in this work (black) are compared with the curves obtained 
by Gavric (red). The agreement of the curves is good namely for the lower frequencies. For 
the higher frequencies (above 3000 Hz), even though the shapes of the curves are the same, 
there is a shift between the results obtained in this work and the results obtained by Gavric. 
The disagreement might be justified by discrepancies in the material parameters: while in this 
work the material properties are Young’s Modulus 200 GPaE = , mass density 

37859 kg / mρ = , and Poisson’s ratio 0.28ν = , in (Gavric, 1995) the material properties are not 
specified. 

[Note: equation (3.56) is solved for yk  by determining the eigenvalues and eigenvectors of 

( ) ( )2 2
yy y y xy zy xx xz zzk k ω + + + + + − = A B B G G G M 0f  (3.57) 

If the rows 2 3l j= +  ( 0,1,2,...j = ) of (3.57) are multiplied by yk  and the columns l  are 

divided by yk , the symmetric eigenvalue problem (3.57) can be reduced to a non-symmetric 

general eigenvalue problem of the form 

( )2
yk + =A C 0f  (3.58) 
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where A  is obtained by adding to matrix yyA  the rows l  of xy zy+B B  and C  is obtained by 

adding to matrix 2
xx xz zz ω+ + −G G G M  the columns l  of xy zy+B B .] 

 

Figure 3.11: Dispersion curves for the UIC861-3 rail: present work (black); Gavric (1995) 
(red) 

3.4 2.5D Boundary Element Method 

3.4.1 Introduction 

The formulation of the 2.5D BEM is very similar to the formulation of the 3D BEM. 
However, because in the 2.5D BEM the mesh is 2D, and because the TLM is used to calculate 
the fundamental solution, it is possible to evaluate the boundary integrals analytically via 
modal summation. This feature is not possible with methods such as the stiffness matrix 
method, and represents one of the advantages of the TLM. In this section, the 2.5D BEM is 
presented and it is explained how use the TLM to calculate the boundary integrals. 

3.4.2 Formulation 

Recall the boundary integral equation expressed in (3.7), which concerns a three-dimensional 
body. Since in the present case the body is assumed to be invariant in the longitudinal y  
direction, the boundary integral (3.7) is equivalent to 

( ) ( ) ( ) ( ) ( )* *, , , , , , ,
S S

kl k k kl kl ku p u dy d p u dy dκ ω ω ω ω ω
+∞ +∞

Γ −∞ Γ −∞

= Γ − Γ∫ ∫ ∫ ∫ξ x x ξ x ξ xɶ ɶ ɶ ɶ ɶ  (3.59) 

where SΓ  is the boundary of the cross section SΩ . The Fourier transform of equation (3.59) 
with respect to the longitudinal coordinate results in the boundary integral equation in the 
2.5D domain, which is (Galvín et al., 2010) 
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( ) ( ) ( )

( ) ( )

*

*

, , , , , , ,

, , , , ,

S

S

kl k y k y kl y

kl y k y

u k p k u k d

p k u k d

κ ω ω ω

ω ω

Γ

Γ

= − Γ −

− Γ

∫

∫

ξ x x ξ

x ξ x
 (3.60) 

In equation (3.60), ( ), ,k yu k ωx  and ( ), ,k yp k ωx  are the displacement and traction fields in the 

wavenumber-space-frequency domain, while ( )* , , ,kl yu k ωx ξ  and ( )* , , ,kl yp k ωx ξ  are the 2.5D 

fundamental displacements and tractions discussed in chapter 2 (Note: in chapter 2, these 
variables are written without the over bar). Also, the longitudinal coordinate y  is dropped, 

i.e., ( ),x z=x  and ( ),x zξ ξ=ξ . When ξ  belongs to the cross section SΩ  then kl klκ δ= , and 

when ξ  does not belong to the cross section SΩ  then 0klκ = . 

Similarly to the 3D case, the boundary equation (3.60) is not valid for collocation points ξ  
that belong to the boundary SΓ . Hence, (3.60) must be regularized, and for that purpose the 
two approaches discussed in section 3.2.3 can be followed. However, as apposed to the option 
taken for the 3D case, for the 2.5D case the first approach is followed (i.e., the “limiting 
procedure”), which yields the regularized boundary integral equation 

( ) ( ) ( )

( ) ( )

*

*

, , , , , , ,

, , , , ,

S

S

kl k y k y kl y

kl y k y

c u k p k u k d

p k u k d

ω ω ω

ω ω

Γ

Γ

= − Γ −

− Γ

∫

∫

ξ ξ x x ξ

x ξ x
 (3.61) 

The boundary coefficient klcξ  depends on the geometry of the boundary at the collocation 
point ξ . The calculation of this coefficient is addressed in a later section of this work. 

To solve equation (3.61), the boundary SΓ  is divided into eN  boundary elements and nN  
boundary nodes, similarly to the 3D case: the difference is that in the 2.5D case the boundary 
elements consist in one dimensional elements in the xz  plane while in the 3D case the 
boundary elements consist in surface elements that can have any orientation in the xyz  space. 
Within each boundary element the displacement and traction fields are approximated by 
means of interpolation functions and nodal values, i.e., 

( ) ( ) ( )
( )

( ) ( )
( )

1

, , ,
e

nN
ej e

k y k y j
j

u k u k Sω ω
=

=∑x x  (3.62) 

( ) ( ) ( )
( )

( ) ( )
( )

1

, , ,
e

nN
ej e

k y k y j
j

p k p k Sω ω
=

=∑x x  (3.63) 

where ( )( ) ,ej
k yu k ω  and ( )( ) ,ej

k yp k ω  are the nodal values of the thj  node of the the  element, 

( )( )
( )

e
jS x  is the associated interpolation (shape) function evaluated at point x  ( x  is contained in 

the the  element) and ( )e
nN  is the number of nodes contained in the the  element. The shape 

functions ( )( )
( )

e
jS x  used for the 2.5D case are the same shape functions used for the 2D 

boundary elements and can be found in Dominguez (1993). 
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Now, assume that the collocation point ξ  corresponds to one of the nN  nodes of the boundary 

(say, the thi  node, with coordinates ix ). In this case, after accounting for the approximations 
in equations (3.62) and (3.63), equation (3.61) becomes 

( ) ( ) ( ) ( )

( )

( ) ( ) ( )

( )

( )

( )

( )

(

, ,

( ) ( ) ( ) * ( )
( )

1 1

, ,

( ) * ( )
( )

1

, , , , ,

, , , ,

ej
i ykl

e
e n

e

ej
i ykl

n

e

U k

N N
i i ej e

kl l y k y kl i y j e
e j

P k

N
ej e

k y kl i y j e
j

c u k p k u k S d

u k p k S d

ω

ω

ω ω ω

ω ω

−

= = Γ

−

= Γ

  
  

= − Γ  
  

  

 
 

− − Γ 
 
 

∑ ∑ ∫

∫

x

x

x x x

x x x

	




�




�

	




�




�)

1

e
eN

e=

 
 
 
 
 

∑ ∑

 (3.64) 

or in compact form, 

( ) ( ) ( )

( ) ( )

( )

( )

( ) ( ) ( ) ( )

1 1

( ) ( )

1 1

, , , ,

, , ,

e
e n

e
e n

N N
i i ej ej

kl l y k y kl i y
e j

N N
ej ej

k y kl i y
e j

c u k p k U k

u k P k

ω ω ω

ω ω

= =

= =

= −

− −

∑∑

∑∑

x

x

 (3.65) 

Since the shape functions ( )( )
( )

e
jS x  are polynomial functions (usually up to the second degree), 

for the case of horizontally or vertically oriented boundary elements, the terms 

( )( ) , ,ej
kl i yU k ω−x  and ( )( ) , ,ej

kl i yP k ω−x  can be calculated in closed form expressions, as explained 

in the following sections. 

Equation (3.65) is now expanded so that l  assumes all the three different directions. Equation 
(3.65) can then be replaced with 

( ) ( ) ( )

( ) ( )

( )

( ) ( ) ( ) ( )

1 1

( ) ( )

1 1

, , , ,

, , ,

e
e n

e
e n

N N
i i ej ej

y i y y
e j

N N
ej ej

i y y
e j

k k k

k k

ω ω ω

ω ω

= =

= =

= −

− −

∑∑

∑∑

C u U x p

P x u

 (3.66) 

   

where the bold variables have the following meanings (the arguments ix , yk  and ω  are 

dropped): 

( )

( ) ( )

( )

i
x

i i
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z

u

u

u

 
 

=  
 
 

u   

( )

( ) ( )

( )

ej
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ej ej
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ej
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u

u

u

 
 

=  
 
 

u   
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( ) ( )

( )

ej
x

ej ej
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ej
z

p

p
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=  
 
 

p  

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

ej ej ej
xx yx zx

ej ej ej ej
xy yy zy

ej ej ej
xz yz zz

U U U

U U U

U U U

 
 

=  
 
 

U  

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

ej ej ej
xx yx zx

ej ej ej ej
xy yy zy

ej ej ej
xz yz zz

P P P

P P P

P P P

 
 

=  
 
 

P  

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

i i i
xx xy xz

i i i i
yx yy yz

i i i
zx zy zz

c c c

c c c

c c c

 
 

=  
 
 

C  

 

Finally, after forcing the collocation point ξ  to assume all the nN  nodes and assembling the 

matrices ( )ejU  into a square matrix U , the matrices ( )ejP  into a square matrix P  and the 
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matrices ( )iC  into a square block diagonal matrix C , one arrives at the final system of 
equations 

( ){ } ( ) ( ) ( ), , , ,y y y yk k k kω ω ω ω− + = −P C u U p  (3.67) 

in which ( ),yk ωu  is a vector that collects all the nodal displacements and ( ),yk ωp  is a vector 

that collects all the nodal tractions. Equation (3.67) can be solved for u , p  or a combination 
of the two, depending on the unknowns of the problem. 

When the boundary elements are horizontally or vertically oriented, it is possible to calculate 
the boundary integrals 

( ) ( )( ) * ( )
( ), , ,

e

ej e
kl kl i y j eU u k S dω

Γ

= − Γ∫ x x x  (3.68) 

and 

( ) ( )( ) * ( )
( ), , ,

e

ej e
kl kl i y j eP p k S dω

Γ

= − Γ∫ x x x  (3.69) 

in closed form expressions. The next sections address this issue. 

3.4.3 Horizontal boundary elements 

Horizontal boundaries are defined by a constant depth. If it is assumed that the collocation 
point ξ  is placed at the depth nz  ( thn  interface of the TLM model) and that the boundary 

element eΓ  is at the depth mz  ( thm  interface of the TLM model) (Figure 3.12), then the 
integrals (3.68) and (3.69) can be replaced by integrals of the form (the variables ,yk ω  are 

dropped) 

( ) ( )( ) ( ) ( ) d
e

ej mn e
kl kl jU u x x S x xξΓ

= −∫  (3.70) 

( ) ( )( ) ( ) ( )
( ) d

e

ej mn e
kl kl jP p x x S x xξΓ

= −∫  (3.71) 

 

Figure 3.12: Horizontal boundary element 

The variables ( )mn
klu  correspond to the fundamental displacements in the 2.5D domain 

described in chapter 2 (and referred to as ( )mnuαβ ), while ( )mn
klp  corresponds to the 2.5D 

fundamental stresses ( )mn
zα βσ± , also described in chapter 2 (the positive sign is used when the 

outwards normal of the boundary faces the positive z  direction, while the negative sign is 
used otherwise). 

In order to complete the analytical evaluations of the integrals, equation (3.70) is first changed 
into a more convenient form. As seen in the previous chapter, the fundamental displacements 
are obtained through the inversion of the solutions in the wavenumber domain, i.e., 

2l  2l  ξ  
eΓ  

m  
n  
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( ) ( ) i( ) ( )1
e d

2
xk xmn mn

kl kl x xu x U k k
π

+∞
−

−∞

= ∫  (3.72) 

In this equation, ( )( )mn
kl xU k  are the wavenumber displacements defined in Table 2.2, having a 

different meaning than ( )ej
klU . 

Assuming that the x  axis is centered at the midpoint of the boundary element (of total width 
l ), after substituting (3.72) into equation (3.70), the latter becomes 

( ) ( ) ( )

( ) ( )

2
i( ) ( ) ( )

( )

2

2
ii( ) ( )

( )

2

1
e d d

2

1
e d e d

2

x

xx

l
k x xej mn e

kl kl x x j

l

l
k xk xmn e

kl x j x

l

U U k k S x x

U k S x x k

ξ

ξ

π

π

+∞
− −

− −∞

+∞
−

−∞ −

=

=

∫ ∫

∫ ∫

 (3.73) 

The Fourier transform of ( )( )
( )

e
jS x  is defined by 

( ) ( ) ( )
2

i i( ) ( ) ( )
( ) ( ) ( )

2

e d e dx x

l
k x k xe e e

j x j j

l

S k S x x S x x
+∞

− −

−∞ −

= =∫ ∫ɶ  (3.74) 

and after introducing this in equation (3.73) one obtains 

( ) ( ) i( ) ( ) ( )
( )

1
e d

2
xk xej mn e

kl kl x j x xU U k S k kξ

π

+∞

−∞

= ∫ ɶ  (3.75) 

The application of the same procedure to equation (3.71) yields 

( ) ( ) i( ) ( ) ( )
( )

1
e d

2
xk xej mn e

kl kzl x j x xP k S k kξσ
π

+∞

−∞

= ±∫ ɶ  (3.76) 

The variable ( )( )mn
kl xU k  is calculated by modal superposition. If the horizontal boundary is 

placed at the interface between two thin-layers (a condition that is assumed to be true 
throughout the remainder of the formulation), then ( )mn

kzlσ  corresponds to the consistent nodal 

tractions ( )mn
klt  at that interface and thus ( )( )mn

kzl xkσ  can also be obtained by modal superposition 

– eqs. (2.51)-(2.59). For these reasons, if ( )( )
( )

e
j xS kɶ  can be expressed analytically, then ( )ej

klU  

and ( )ej
klP  can also be obtained analytically by modal superposition (in the BEM, the shape 

functions ( )( )
( )

e
jS x  are usually polynomial functions whose Fourier transforms can be easily 

calculated). This idea is explored next for ( ) ( )( )
( ) , 0,1,2e n

j nS x S x x n= = = , but first observe that 

even though ( )( )mnu xαβ  and ( )( )mn
z xα βσ  become singular when 0x → , the variables ( )( )mn

xU kαβ  and 

( )( )mn
z xkα βσ  are finite, and therefore the values of ( )ej

klU  and ( )ej
klP  calculated with equations (3.75) 

and (3.76) are also finite. Hence, when the collocation point belongs to the horizontal 
boundary element, ( )ej

klP  already includes the factor klc . In other words, using the proposed 
procedure, eq. (3.60) can be used directly in place of the regularized equation (3.61), with the 
term klc  being automatically accounted for. 
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Case 1: ( ) ( )( )
( ) 0 1e

jS x S x= =  

The Fourier transform of ( )0S x , according to (3.74), is 

( )
2

i ii 2 2
0

2

i
e d e e

x x

x

l k l k l
k x

x
xl

S k x
k

−
−

−

 
= = − − 

 
∫ɶ  (3.77) 

The coefficients ( )ej
klU  are then obtained with 

( )
i i

( ) ( ) 2 21 i
e e d

2

x x
l l

k x k x
ej mn

kl kl x x
x

U U k k
k

ξ ξ

π

   +∞ + −   
   

−∞

 
= − − 

  
∫  (3.78) 

and the coefficients ( )ej
klP  with 

( )
i i

( ) ( ) 2 21 i
e e d

2

x x
l l

k x k x
ej mn

kl kl x x
x

P t k k
k

ξ ξ

π

   +∞ + −   
   

−∞

 
= − − 

  
∫  (3.79) 

From equations (3.78) and (3.79) it can be concluded that the calculation of the coefficients 
( )ej
klU  and ( )ej

klP  follow exactly the same steps as the calculation of ( )( )mn
klu x  (section 2.5.1) and 

( )( )mn
klt x  (section 2.5.3), changing only the integrals ( )( )p

njI x  by the integrals ( )p
njJ  of the form 

( ) ( 1) ( 1)i
2 2

p p p
nj nj nj

l l
J I x I xξ ξ

− −    
= − − − − − +    

    
 (3.80) 

The integrals ( )( 1)
njI x−  required to evaluate the coefficients ( )ej

klU  and ( )ej
klP  are given in Table 

2.1. 

Case 2: ( ) ( )1
e
jS x S x x= =  

The Fourier transform of ( )1S x , according to (3.74), is 

( )
2

i i i ii 2 2 2 2
1 2

2

i 1
e d e + e e e

2

x x x x

x

l k l k l k l k l
k x

x
x xl

l
S k x x

k k

− −
−

−

   
= = + −   

   
∫ɶ  (3.81) 

The coefficients ( )ej
klU  are then obtained with 

( )
i i i i

( ) ( ) 2 2 2 2
2

1 i 1
e + e e e d

2 2

x x x x
l l l l

k x k x k x k x
ej mn

kl kl x x
x x

l
U U k k

k k

ξ ξ ξ ξ

π

       +∞ + − − +       
       

−∞

    
=  + −    

        
∫  (3.82) 

and the coefficients ( )ej
klP  with 

( )
i i i i

( ) ( ) 2 2 2 2
2

1 i 1
e + e e e d

2 2

x x x x
l l l l

k x k x k x k x
ej mn

kl kl x x
x x

l
P t k k

k k

ξ ξ ξ ξ

π

       +∞ + − − +       
       

−∞

    
=  + −    

        
∫  (3.83) 

From equations (3.82) and (3.83) it can be concluded that the calculation of the coefficients 
( )ej
klU  and ( )ej

klP  follow exactly the same steps as the calculation of ( )( )mn
klu x  (section 2.5.1) and 

( )( )mn
klt x  (section 2.5.3), changing only the integrals ( )( )p

njI x  by the integrals ( )p
njJ  of the form 
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( ) ( 1) ( 1)

( 2) ( 2)

i
2 2 2

2 2

p p p
nj nj nj

p p
nj nj

l l l
J I x I x

l l
I x I x

ξ ξ

ξ ξ

− −

− −

    
= − − + − + +    

    

    
− − − − +    
    

 (3.84) 

The integrals ( )( 2)
njI x−  required to evaluate the coefficients ( )ej

klU  and ( )ej
klP  are given in Table 

3.2. 

Case 3: ( ) ( ) 2
2

e
jS x S x x= =  

The Fourier transform of ( )2S x , according to (3.74), is 

( )
2 2

i i i i i ii2 2 2 2 2 2 2
2 2 3

2

i 2i
e d e e e +e e e

4

x x x x x x

x

l k l k l k l k l k l k l
k x

x
x x xl

l l
S k x x

k k k

− − −
−

−

     
= = − − + + −     

     
∫ɶ  (3.85) 

The coefficients ( )ej
klU  are then obtained with 

( )
2 i i i i

( ) ( ) 2 2 2 2
2

i i
2 2

3

1 i
e e e +e

2 4

2i
e e d

x x x x

x x

l l l l
k x k x k x k x

ej mn
kl kl x

x x

l l
k x k x

x
x

l l
U U k

k k

k
k

ξ ξ ξ ξ

ξ ξ

π

       +∞ + − + −       
       

−∞

   
+ −   

   

    
= − − + +   

       

 
−  

  

∫
 (3.86) 

and the coefficients ( )ej
klP  with 

( )
2 i i i i

( ) 2 2 2 2
2

i i
2 2

3

1 i
e e e +e

2 4

2i
e e d

x x x x

x x

l l l l
k x k x k x k x

ej mn
kl kl x

x x

l l
k x k x

x
x

l l
P t k

k k

k
k

ξ ξ ξ ξ

ξ ξ

π

       +∞ + − + −       
       

−∞

   
+ −   

   

    
= − − + +   

       

 
−  

  

∫
 (3.87) 

From equations (3.86) and (3.87) it can be concluded that the calculation of the coefficients 
( )ej
klU  and ( )ej

klP  follow exactly the same steps as the calculation of ( )( )mn
klu x  (section 2.5.1) and 

( )( )mn
klt x  (section 2.5.3), changing only the integrals ( )( )p

njI x  by the integrals ( )p
njJ  of the form 

2
( ) ( 1) ( 1)

( 2) ( 2)

( 3) ( 3)

i
4 2 2

2 2

2i
2 2

p p p
nj nj nj

p p
nj nj

p p
nj nj

l l l
J I x I x

l l
l I x I x

l l
I x I x

ξ ξ

ξ ξ

ξ ξ

− −

− −

− −

    
= − − − − − + +    

    

    
− − + − + +    
    

    
− − − − +    
    

 (3.88) 

The integrals ( )( 3)
njI x−  required to evaluate the coefficients ( )ej

klU  and ( )ej
klP  are given in Table 

3.3. 
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Table 3.1: Closed form expressions for ( 1)
njI −  ( 2 2Im 0j yk k− < ) 

( )

( )

( )

( )

2 2

2 2

ii( 1) 1
1 1 2 2

ii( 1) 1
2 2 2 2 2

ii( 1) 1
3 3 2

1
2

1
2

1
2

sign
e d 1 e

2i

1
e d sign e i e

2

sign
e d e e

2i

j yx

y j yx

yx

k k xk x
j x j x

y j

k x k k xyk x
j x j x y

j j y

k x kk x
j x j x

j

x
I k K k

k k

k
I k K k k

k k k

x
I k K k

k

π

π

π

+∞ − −−− −

−∞

+∞ − − −−− −

−∞

+∞ − −−− −

−∞

 = = − 
 −

 
 = = − +
 − 

= = − −

∫

∫

∫

( )

( )

( )

2 2

2 2

2 2

2
ii( 1) 1

4 4 2 2 2 2 2 2

ii( 1) 1
5 5 2 2

i( 1) 1
6 6

1
2

1
2

1
2

sign 1 e
e d e

2i

1
e d e

2 i

sign
e

j y

y

j yx

j yx

x

k x

k x
k k xyk x

j x j x
y j j j y j

k k xk x
j x j x

j j y

k x
j x j x

kx
I k K k

k k k k k k

I k K k
k k k

x k
I k K dk

π

π

π

−

−
+∞ − −−− −

−∞

+∞ − −−− −

−∞

+∞
−− −

−∞

 
 
 

  
= = + − 

− −  

= =
−

= =

∫

∫

∫ ( )
2 2i

2 2
1 e

2i
j yk k xy

j y jk k k

− − − 
 −

 

Table 3.2: Closed form expressions for ( 2)
njI −  ( 2 2Im 0j yk k− < ) 

( )

( )

( ) ( )

2 2

2 2

i
i( 2) 2

1 1 2 2 2 2

i
i( 2) 2

2 2 2 22 2 2 2 2 2

i( 2) 2
3 3

1
2

1
2

1
2

1 e
e d i

2

sign 1 e e
e d

2i

e d

j y

x

y j y

x

x

k k x
k x

j x j x

y j j y

k x k k x
yk x

j x j x
y jy y j j y j

k x
j x j x

I k K k x
k k k k

k x
I k K k

k kk k k k k k

I k K k

π

π

π

− −
+∞

−− −

−∞

− − −
+∞

−− −

−∞

+∞
−− −

−∞

 
 = = − −
 − − 

  
= = + − 

− −  

=

∫

∫

( )
( )

( )

2 2

2 2

2

i

2 2 2

i2
i( 2) 2

4 4 2 2 2 2 2 2 2 2

ii( 2) 2
5 5 2 2

1
2

1
2

1 e e
i

2

e1 e
e d i

2

sign
e d 1 e

2i

y j y

j yy

x

jx

k x k k x

j y j y

k k xk x
yk x

j x j x
y j y j j y j j y

k kk x
j x j x

j y j

k k k k

kx
I k K k

k k k k k k k k k

x
I k K k

k k k

π

π

− − −

− −−
+∞

−− −

−∞

+∞ − −−− −

−∞

 
 = − +
 − 

 − 
= = + + 

− − −  

= = −
−

∫

∫

∫

( )

2

2 2i
i2 2

6 6 2 2 2 2

1
2

e
e d i

2

y

j y

x

x

k k x
yk x

j x j x

j y j j y

k
I k K k x

k k k k kπ

− −
+∞

−− −

−∞

 
 
 

 
 = = − −
 − − 

∫
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Table 3.3: Closed form expressions for ( 3)
njI −  ( 2 2Im 0j yk k− < ) 

( )

( )

( )

2 2

2 2

i2
i( 3) 3

1 1 2 2 2 22 2

i2
i( 3) 3

2 2 2 2 2 2 2 2 2 2

( 3)
3

1
2

1
2

1
2

sign 1 e
e d

22i

e1 e
e d i

2

j y

x

j yy

x

k k x
k x

j x j x
y j y jy j

k k xk x
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j x j x
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x x
I k K k

k k k kk k

kx
I k K k

k k k k k k k k k k

I k

π

π

π
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+∞

−− −

−∞

− −−
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 − −−
 

 − 
= = + + 

− − −  
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∫

∫
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( ) ( ) ( )

2 2

2 2
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3 2 2 2 2 2 2 2

i2 2 22
i( 3) 3

4 4 2 22 22 2 2 2 2 2 2 2

1
2

esign 1 e
e d

2i

2 esign e
e d

2i 2

j yy

x

j yy

x

k k xk x
yk x

j x
y y j j j y j

k k xk x
y j yk x

j x j x
y jy j y y j j y j

kx
K k

k k k k k k k

k k kx x
I k K k

k kk k k k k k k k
π

− −−
+∞

−−

−∞

− −−
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= + − 
− −  

 − 
= = − + + − 

− − − 

∫

∫

( )

( )

( )

2 2

2 2

i
i( 3) 3

5 5 2 2 2 2

i2
i( 3) 3

6 6 2 2 2 22 2

1
2

1
2

1 e
e d i

2

sign 1 e
e d

22i

j y

x

j y

x

k k x
k x

j x j x

j y j j y

k k x
yk x

j x j x
y j y jj y j

I k K k x
k k k k k

x k x
I k K k

k k k kk k k

π

π

− −
+∞

−− −

−∞

− −
+∞

−− −

−∞



 
 = = − −
 − − 

 
 = = − + −
 − −−
 

∫

∫
 

Considerations concerning horizontal boundaries 

The calculation of the coefficients ( )ej
klU  involves only the components of the modal shapes at 

the elevation of the collocation point and at the elevation of the boundary element. By 
contrast, the calculation of the coefficients ( )ej

klP  involves the components of all TLM nodes 
that compose the thin-layer delimiting the boundary element. Since the boundary elements are 
placed at the interface between two consecutive thin-layers, a decision is required as to 
whether to consider the upper or the lower thin-layer. 

When the collocation point is not contained in the boundary element, it is immaterial which 
thin-layer is used. On the other hand, when the collocation point is contained in the boundary 
element, the value of ( )ej

klP  depends on the thin-layer selected for the evaluation. The rule used 
in this work is that if the outwards normal faces up, the thin-layer located below the boundary 
is employed in the calculation of ( )ej

klP , otherwise the thin-layer above is used. By following 
this procedure, collocation points on horizontal boundaries are circumvented as depicted in 
Figure 3.13. 

It is important to note that according to this procedure, when the collocation point ξ  is at an 

edge of a boundary element ( 2x lξ = ± ), then the coefficient ( )ej
klP  is calculated considering 

that the boundary is distorted as shown in Figure 3.14. This aspect is important for the 
treatment of corners, i.e., points where horizontal boundaries meet vertical boundaries (Figure 
3.13b-c). 
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Figure 3.13: Exclusions in the domain at the collocation points. a) smooth horizontal 
boundary; b) concave corner; c) convex corner 

 

Figure 3.14: Deflection of the horizontal boundary when the collocation point is at one 
extreme 

Due to the homogeneity of layered domains in the horizontal direction, the fundamental 
solutions depend on the horizontal distance between the source and the receiver, and not on 
their absolute horizontal coordinates. Hence, if the horizontal boundaries are dicretized in 
such a way that the boundary elements have the same length and expansion order, then the 
boundary coefficients ( )ej

klU  and ( )ej
klP  can be reused whenever the distance between the 

collocation points and the boundary elements is repeated. This fact can reduce significantly 
the cost of computation of matrices U  and P . 

Validation 

Consider a homogeneous full-space with mass density 1ρ = , shear modulus 1G = , Poisson’s 
ratio 0.25ν =  and hysteretic damping 0.001p sξ ξ= = . The full-space is simulated with a TLM 

model consisting of an elastic layer with thickness 2H =  that is divided into 40 thin-layers of 
quadratic expansion and that is supplemented with two PMLs, one at the top and the other at 
the bottom, with parameters 2m = , 2η = , 8Ω =  and 10N =  (see section 2.6). Consider also a 
horizontal boundary element (of quadratic expansion) whose width is 0.1BEMl =  and place it at 
the depth 0BEMz =  and horizontal coordinate 0BEMx = . The shape functions associated with 
the nodes of the boundary elements are (from left to right) 

n  
ξ  

upper thin-layer 

lower thin-layer 

boundary 

deflected boundary 

ε  
a) 

b) c) 
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( )

( )

( )

2

1 2

2

2 2

2

3 2

2

4
1

2

BEM BEM

BEM

BEM BEM

x x
S x

l l

x
S x

l

x x
S x

l l


= − +




= −


 = +


 (3.89) 

In the following, the coefficients klU  and klP  associated with the middle node (node 2) are 
calculated with the procedure described in this section and compared with the results obtained 
through simple numerical integration (1000 integrating points) of the analytical solutions 
(Tadeu and Kausel, 2000). Three collocation points are considered: the first is placed at the 
position ( )1 0.5, 0.5=ξ  (outside the boundary element), the second at ( )2 0.05, 0=ξ  (right edge 

of the boundary element) and the third at ( )3 0, 0=ξ  (center of the boundary element). For the 

last collocation point and for the integration of the analytical solutions, the boundary contour 
is deflected as indicated in Figure 3.13a in order to avoid the singularities. The assumed 
frequency is 1 Hzf =  ( 2 rad/sω π= ). Figure 3.15-3.17 plot the comparison between the results 
obtained with the two approaches. 

As can be observed from Figure 3.15, the two approaches yield practically the same results, 
thus validating the procedure. Figure 3.16 provides exactly the same conclusions: 
discrepancies can be noticed for some components of klU  and klP  but these differences exist 
merely due to some residual values of the TLM results. In Figure 3.17, the agreement is also 
very good: also in this example, the differences are caused by residual values. Notice that the 
last two collocation points are placed inside the boundary element and that no special 
treatment is given to the fundamental solutions of the TLM and that the results are still 
correct. This confirms that using this procedure the coefficients klc  are already accounted for 

during the calculation of the boundary integrals klP : for the collocation point 3ξ , the 

components xxP , yyP  and zzP  correspond to 0.5kl klc δ=  (smooth boundary). 
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Figure 3.15: Boundary coefficients klU  and klP  for 1ξ . Solid lines – TLM solution; circles – 
analytical solutions. Blue – real component; red – imaginary component 
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Figure 3.16: Boundary coefficients klU  and klP  for 2ξ . Solid lines – TLM solution; circles – 
analytical solutions. Blue – real component; red – imaginary component 
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Figure 3.17: Boundary coefficients klU  and klP  for 3ξ . Solid lines – TLM solution; circles – 
analytical solutions. Blue – real component; red – imaginary component 
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3.4.4 Vertical boundary elements 

Vertical boundaries are defined by a constant horizontal coordinate BEMx  (Figure 3.18). If it is 

assumed that the load is applied at the depth nz  ( thn  interface of the TLM model) and that the 

boundary element is placed between depths 1mz  and 2mz  ( th
1m  and th

2m  interfaces of the TLM 
model), then the integrals in equations (3.68) and (3.69) can be replaced by integrals of the 
form (for convenience, the variables ,yk ω  are dropped) 

( ) ( ) ( )
2

1

( ) ( ) ( )
( ) ( ) d

m
ej mn j

kl kl BEM m e
m m

U u x x N z S z zξ
=

= −∑ ∫  (3.90) 

( ) ( ) ( )
2

1

( ) ( ) ( )
( ) ( ) d

m
ej mn e

kl kxl BEM m j
m m

P x x N z S z zξσ
=

= ± −∑ ∫  (3.91) 

In these equations, the factors ( ) ( )( )
( )

mn
kl BEM mu x x N zξ−  and ( ) ( )( )

( )
mn

kxl BEM mx x N zξσ −  represent 

the vertically interpolated displacements and tractions fields, with ( )( )mN z  being the TLM 

shape function associated with the thm  interface. In equation (3.91), the positive sign must be 
used if the outwards normal is in the positive x  direction, while the negative sign must be 
used otherwise. 

 

Figure 3.18: Vertical boundary element 

Since ( )( )mn
kl BEMu x xξ−  and ( )( )mn

kxl BEMx xξσ −  are nodal values and therefore do not depend on 

the depth z , the expressions (3.90) and (3.91) can be replaced by 

( ) ( ) ( )
2

1

( ) ( ) ( )
( ) ( ) d

m
ej mn j

kl kl BEM m e
m m

U u x x N z S z zξ
=

= −∑ ∫  (3.92) 

( ) ( ) ( )
2

1

( ) ( ) ( )
( ) ( ) d

m
ej mn e

kl kxl BEM m j
m m

P x x N z S z zξσ
=

= ± −∑ ∫  (3.93) 

Thus, only the integrals of the form ( ) ( )( )
( ) ( ) de
m jN z S z z∫  need to be evaluated. Since ( )( )mN z  

and ( )( )
( )

e
jS z  are both polynomial functions, these integrals can be evaluated in closed form. 

As final note, since the displacements are interpolated in the vertical direction using 
polynomial functions, the singular behavior of the fundamental solutions is not captured. 
Hence, when the collocation point lies within the vertical boundary element, in the calculation 
of ( )ej

klP   the term klc  is not accounted for. Nonetheless, since the boundary elements are 
vertically oriented and the fundamental solutions are symmetric with respect to vertical 
planes, the resulting value for the missing term is 0.5kl klc δ= . In this way, for nodes that 
belong to vertical boundary elements and that do not correspond to corners, the term 

2BEMl  

ξ  

eΓ  1m  
n  

2m  

2BEMl  
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0.5kl klc δ=  must be added to the diagonal of P  associated with the node. When the node 
corresponds to a corner, two situations occur: 

1. Concave corner (Figure 3.13b): in this case, because the horizontal boundary 
element already accounts for the quarter of circle of the deflected boundary (Figure 
3.14), then the factor klc  must only account for the remaining semi-circle, and so 

0.5kl klc δ= ; 

2. Convex corner (Figure 3.13c): the horizontal boundary element already accounts 
for the quarter circle of the deflected boundary (Figure 3.14), and so the factor klc  
is null. 

Validation 

Recall the homogeneous full-space used to validate the horizontal boundary elements, which 
is simulated with the same TLM model, and consider a vertical boundary element with width 

0.1BEMl = , centered at ( ) ( ), 0,0BEM BEMx z =  and of quadratic expansion (the boundary element is 

contained in two distinct thin-layers). The shape functions of the boundary element are the 
same as in equation (3.89), with the argument being replaced by z . 

In the following, the boundary coefficients klU  and klP  associated with the middle node (node 
2) are calculated with the procedure described in this section and compared with the results 
obtained through simple numerical integration (1000 integrating points) of the analytical 
fundamental solutions (Tadeu and Kausel, 2000). Three collocation points are considered: the 
first is placed at the position ( )1 0.5, 0.5=ξ  (outside the boundary element), the second at 

( )2 0, 0.05=ξ  (upper edge of the boundary element) and the third at ( )3 0, 0=ξ  (center of the 

boundary element). The assumed frequency is again 1 Hzf =  ( 2 rad/sω π= ). Figure 3.19-3.21 
plot the comparison between the results obtained with the two approaches. 

Such as in the case of the horizontal boundary element, a very good agreement is obtained 
between the two procedures. There is however a shift in the real components of the boundary 
coefficients xzP  and zxP  for 2=ξ ξ  and this difference does not vanish with the refinement of 
the TLM model. Nevertheless, as it is seen by the examples described in the next section, 
despite these differences, the results obtained with the TLM-BEM exhibit a good quality. 
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Figure 3.19: Boundary coefficients klU  and klP  for 1ξ . Solid lines – TLM solution; circles – 
analytical solutions. Blue – real component; red – imaginary component 
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Figure 3.20: Boundary coefficients klU  and klP  for 2ξ . Solid lines – TLM solution; circles – 
analytical solutions. Blue – real component; red – imaginary component 
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Figure 3.21: Boundary coefficients klU  and klP  for 3ξ . Solid lines – TLM solution; circles – 
analytical solutions. Blue – real component; red – imaginary component 
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3.4.5 Outgoing stress fields 

To calculate the response of a close by structure due to wave-fields that are generated at the 
boundary SΓ , both the outgoing displacement field and the outgoing stress field that reach the 
structure must be known. The outgoing displacement field is calculated using eq. (3.60), 
where ξ  corresponds to a point of the layered domain but outside the boundary SΓ , and so 

kl klκ δ= . Its calculation follows what is described in the two previous subsections. The 
calculation of the outgoing stress-field can be based on the derivatives of the displacements, 
which are obtained through the derivation of eq. (3.60) with respect to ξ . For the generic 
direction , ,x y zδ = , the derivative of equation (3.60) is 

( ) ( ) ( )

( ) ( )

*
, ,

*
,

, , , , , , , d

, , , , , d

S

S

l y k y kl y

kl y k y

u k p k u k

p k u k

δ δ

δ

ω ω ω

ω ω

Γ

Γ

= − Γ −

− Γ

∫

∫

ξ

ξ

ξ x x ξ

x ξ x
 (3.94) 

If yδ = , the derivative can be easily calculated as ( ) ( ), , , i , ,l y y y l yu k k u kω ω= −ξ ξ . 

For the horizontal derivative x , since the domain is homogeneous in the horizontal direction, 
eq. (3.94) is equivalent to 

( ) ( ) ( )

( ) ( )

*
, ,

*
,

, , , , , , , d

, , , , , d

S

S

l x y k y kl x y

kl x y k y

u k p k u k

p k u k

ω ω ω

ω ω

Γ

Γ

= − − Γ +

− Γ

∫

∫

x

x

ξ x x ξ

x ξ x
 (3.95) 

Conversely, in the vertical direction the domain is not homogeneous, and so the previous 
equivalence is not valid. Hence, in order to calculate the vertical strains ,l zu , a better approach 

is to compute the displacements at two consecutive nodal interfaces and then calculate the 
derivative with 

( )
( ) ( )

,

, , , ,
, ,

l y l y

l z y

u z k u k
u k

z

ω ω
ω

+ ∆ −
=

∆

ξ ξ
ξ  (3.96) 

Returning to the horizontal direction x , after discretization of the boundary SΓ , equation 
(3.95) gives rise to the matrix equation 

, , ,x x x S= − + ∉Γξu U p P u ξ  (3.97) 

where ,xP  is a matrix that collects the coefficients ( )
,
ej

kl xP  of the form  

( ) ( )( ) * ( )
, , ( ), , , d

e

ej e
kl x kl x i y j eP p k Sω

Γ

= − Γ∫ x x x  (3.98) 

and ,xU  is a matrix that collects the coefficients ( )
,

ej
kl xU  of the form 

( ) ( )( ) * ( )
, , ( ), , , d

e

ej e
kl x kl x i y j eU u k Sω

Γ

= − Γ∫ x x x  (3.99) 

The vectors u  and p  collect the nodal displacements and tractions at the boundary SΓ . 
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For vertical boundaries eΓ , the quantities in equation (3.98) and (3.99) are calculated as 
described in section 3.4.4, i.e., after calculating the nodal values of the interested quantities in 
the space domain (see chapter 2), the integrals are calculated through polynomial integration. 
For horizontal boundaries, the quantities ( )

,
ej

kl xU  and ( )
,
ej

kl xP  are calculated as ( )ej
klU  and ( )ej

klP  in 

section 3.4.3, with the integrals of the form ( )p
ijI  replaced with ( 1)i p

ijI +− . 

3.4.6 Coupling 2.5D BEM and 2.5D FEM 

The coupling between the BEM and FEM sub-domains in the wavenumber domain follows 
the steps that are explained in section 3.2.5 for the case of BEM-FEM coupling in the space 
domain. The main differences consist in the matrix Kɶ , that is now  

( ) ( )2 2
yy y y xy zy xx xz zzk k ω= + + + + + −K A B B G G G M  (3.100) 

and in the shape functions that are used in the calculation of T  — equation (3.25) — that in 
this case must be the shape functions of 2D finite and boundary elements. The application of 
the steps expressed in equations (3.22) to (3.33) yield the final system of equations, which is 
of the form 

F
I,I BEM I,II BEMI

F
II,I II,II IIII

 +      
= −       

    

K K K 0 Fu

K K f 0u
 (3.101) 

This system is solved for F
Iu  and F

IIu  in order to obtain the 2.5D displacements of the FEM 

domain. The displacements B
Iu  of the BEM domain are obtained subsequently by application 

of equation (3.24) — the over tilde is replaced by a bar — and the boundary tractions Ip  and 

displacements B
IIu  are obtained after solving the system of equations (3.22) for these variables 

— again, the over tildes are replaced by bars. 

[Note: in order to add BEMK  to the sub-matrix I,IK , after its calculation according to (3.32), 

the columns related to the y  dofs must be multiplied by i  while the rows related to the y  
dofs must be multiplied by i− . For the same reasons, before subtracting the vector BEMF  at the 
right-hand side of equation (3.101), after its calculation according to equation (3.33), the rows 
of BEMF  related to the y  dofs must be multiplied by i− . After solving the system (3.101) for 

F
Iu  and F

IIu , the rows related to the y  dofs of these vectors must also be multiplied by i .] 

3.4.7 Conclusions 

In this section, a 2.5D BEM procedure based on the TLM fundamental solutions is presented. 
For horizontal boundary elements, the BEM coefficients are calculated directly based on a 
modal superposition, rendering accurate results and accounting for the singularities of the 
fundamental solutions. For vertical boundary elements, the vertically interpolated 
fundamental solutions are integrated analytically but the singularities are not accounted for: to 
account for the singular behavior of the fundamental solutions, the term klc  must be added à 
posteriori, being its value 0.5 klδ  in smooth vertical boundaries or concave corners and being 
null in convex corners. 

When compared with the BEM procedures based on the analytical fundamental solutions of 
full-spaces, the proposed procedure presents the advantage of simulating horizontally layered 
domains with the same ease as homogeneous domains, and of avoiding the discretization of 
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free surfaces and layer interfaces. When compared with the BEM procedures based on 
fundamental solutions obtained with wavenumber transfer or stiffness matrices, the proposed 
method has the advantage of evaluating the inverse Fourier transform in closed form 
expression, which yield more accurate results. In addition, the proposed methodology turn out 
to be more user friendly than other procedures based on the stiffness/transfer matrices since 
the definition of a proper wavenumber sample xk  is replaced by the subdivision of the layered 
domain into small thin-layers, a task that is far simpler. As major drawbacks, the proposed 
procedure requires the solution of two eigenvalue problems for each frequency, and since it is 
based on modal combinations, it might be inefficient for very deep structures that require soil 
models with a large number of thin-layers and interfaces. 

The proposed methodology only considers horizontal and vertical boundary elements. If the 
actual boundary presents inclined surfaces, such geometry can be achieved by filling the 
irregular volume with finite elements. 

As a final remark, the TLM model must be compatible with the BEM mesh in such a way 
that: 

1. The horizontal boundaries are placed at the interface between two thin-layers and 
not inside a thin-layer; 

2. The extremities of vertical boundaries correspond to interfaces between thin-layers 
and not to intermediate elevations within the thin-layers; 

3. If there are boundary nodes inside vertical boundary elements (in constant and 
quadratic boundary elements, for example), these nodes must be located at the 
interface of thin-layers; 

4. It is not recommended that the horizontal boundary elements be smaller than the 
thickness of the thin-layers. Likewise, it is not recommended that the distance 
between vertical boundary elements at the same elevation be smaller than the 
thickness of the thin-layers. 

3.5 2.5D BEM-FEM validation examples 

In sections 3.3 and 3.4, the 2.5D FEM and the 2.5D BEM are presented and validated: the 
2.5D FEM is validated through the determination of the dispersion curves of a UIC861-3 rail, 
while the 2.5D BEM is validated through the calculation of the BEM coefficients ( )ej

klU  and 
( )ej

klP  for horizontal and vertical boundary elements. In the present section, the coupled 2.5D 
BEM-FEM procedure is validated by means of two examples: the first example consists in the 
calculation of the response of a square tunnel inside a layered domain, while the second 
example consists in the calculation of the response of a homogeneous slab free in space. The 
results of the 2.5D BEM-FEM procedure are compared with the results of the 2.5D FEM 
procedure. 

3.5.1 Example 1 – square tunnel in a layered medium 

In the present subsection, the dynamic compliances of a tunnel are computed and compared 
with the corresponding values obtained with a 2.5D finite element approach. The tunnel is 
massless, has rigid cross section, and is placed inside a horizontally layered domain. The 
geometry and properties of the problem are illustrated in Figure 3.22. 
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Figure 3.22: Square tunnel inside a horizontally layered domain 

Since the cross section of the tunnel is rigid, the displacements of the walls of the tunnel can 
be described as function of the translation and rotation of the tunnel, i.e., 
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    −    
 
  

Nu N u  (3.102) 

On the other hand, the pressures that the layered domain transmits to the walls of the tunnel 
induce at the center of the tunnel forces and moments that are calculated with 

( )
( )
( )

TTunnel T

,

, d

,

x

x y z x y z y

z

p x z

f f f m m m p x z

p x zΓ

 
  = = Γ   
  

∫f N  (3.103) 

where Γ  represents the boundary of the tunnel. 

After discretizing the surface of the layered domain that is in contact with the tunnel into 
boundary elements and N  boundary nodes, the nodal displacements ju  at the boundary are 

obtained with 

( )

( )

1 1 1
Tunnel

U U

,

,N N N

x z

x z

  
   = =   
     

u N

N u N

u N

⋮ ⋮  (3.104) 

The forces Tunnelf  are obtained from the boundary pressures jp  through 

, , ,u u u uGρ ν ξ  

1 1 1 1, , ,Gρ ν ξ  

2 2 2 2, , ,Gρ ν ξ  

, , ,l l l lGρ ν ξ  

1H  

2H  

2H  

L  

x  

z  
y  

2H  
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( ) ( ) ( ) ( )
1

Tunnel T T
P P 1, , d , , dN

N

x z S x z x z S x z
Γ Γ

 
  = = Γ Γ  
   

∫ ∫
p

f N N N N

p

⋮ ⋯  (3.105) 

with ( ),jS x z  being the shape function associated to the thj  boundary node. 

Replacing eqs. (3.104) and (3.105) in equation (3.67) yields 

( )( )1 Tunnel Tunnel
P U

− + =N U P C N u f  (3.106) 

and so the compliance matrix corresponds to the 6 by 6 matrix F  obtained with 

( )( )
11

P U

−−= +F N U P C N  (3.107) 

In the subsequent examples, the components of the compliance matrix F  are evaluated using 
the 2.5D BEM methodology explained earlier. The tunnel is given the cross section 

1[m]H L= =  and each edge of the tunnel is divided into 5 boundary elements of quadratic 
expansion (3 nodes per boundary element). The total number of nodes is then 40N = . To 
validate the results, the compliance matrices are also calculated using a finite element model 
coupled with PMLs, which are obtained as explained in (Kausel and Barbosa, 2011). The 
excitation frequency is 2 [rad s]ω π=  and the wavenumbers yk  range from 0 to 6 [rad m]π  

(301 wavenumbers). 

Homogeneous full-space 

The material properties of the full-space are: mass density 3
1 2 1 kg mu lρ ρ ρ ρ= = = = ; shear 

modulus 1 2 1Pau lG G G G= = = = ; Poison’s ratio 1 2 0.25u lν ν ν ν= = = = ; hysteretic damping 

1 2 0.01u lξ ξ ξ ξ= = = = . The TLM model consists of the 4 macro-layers identified in Figure 
3.22, where the upper and the lower semi-infinite elements are modeled with PMLs (with 
parameters 2, 8, 10, 2N mη = Ω = = = ; see chapter 2 for definition of variables), and the 
middle layer satisfy 1 2 2mH H= =  and are divided into 40 thin-layers of quadratic expansion. 

Due to symmetry conditions, only the components xxf , yyf , zzf , 
x x

fθ θ , 
y y

fθ θ , 
z z

fθ θ , 
z zx xf fθ θ= −  

and 
x xz zf fθ θ= −  are non-zero. Also, due to the geometry of the problem, xx zzf f= , 

x x z z
f fθ θ θ θ=  

and 
z xx zf fθ θ= . Hence, considering only the five compliance components xxf , yyf , 

x x
fθ θ , 

y y
fθ θ  

and 
zxf θ , it is possible to describe the entire system. In Figure 3.23, the 5 components of the 

compliance matrix obtained with the proposed procedure (solid lines) are compared with the 
results obtained with the FEM (black circles). Blue is used for the representation of the real 
part, while red is used for the imaginary part. 

Figure 3.23 shows that the two approaches yield virtually identical results, leading to the 
conclusion that both procedures are correct. It can also be observed that the in-plane 
components ( xxf ,

x x
fθ θ  and 

zxf θ ) present singularities at 2y S Sk k Cω π= = = . 

It should be noted that, because in this example the soil is a homogeneous, infinite space, it 
follows that the classical BEM that uses the fundamental solutions of a full-space has a clear 
advantage over the use of BEM-TLM. However, this problem of very simple geometry is 
used solely for validation purposes. In the next examples, the use of full-space fundamental 
solutions requires the discretization not only of the edges of the tunnel but also of the free-
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surfaces and of the interface between different layers, and now the TLM offers clear 
advantages inasmuch as these interfaces need not to be discretized. 

 

Figure 3.23: Tunnel compliances for the full-space case. Solid lines = 2.5D BEM (real part – 
blue; imaginary part – red). Black circles = FEM 

Homogeneous layer free in space 

The free layer consists of the two intermediate macro layers depicted in Figure 3.22 
( 1 2 2 mH H= = ). The material properties of the free layer are the same of the full- space 
considered in the previous example. The TLM model is similar to the one used therein, but 
with the upper and lower PMLs excluded. Again, due to symmetry conditions, only the 
components xxf , yyf , zzf , 

x x
fθ θ , 

y y
fθ θ , 

z z
fθ θ , 

z zx xf fθ θ= −  and 
x xz zf fθ θ= −  do not vanish. 

However, the identities xx zzf f= , 
x x z z

f fθ θ θ θ=  and 
z xx zf fθ θ=  do not hold, and so a total of eight 

components of the compliance matrix are needed to describe the system. Figure 3.24 shows 
the eight components obtained with the proposed methodology and with the FEM. Once 
again, the results obtained with the two procedures match perfectly. 
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Figure 3.24: Tunnel compliances for the free layer in space. Solid lines = 2.5D BEM (real part 
– blue; imaginary part – red). Black circles = FEM 
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Homogeneous half-space 

The material properties of the homogeneous half-space are the same as in the previous case. 
The TLM model differs from the model in the first example in that the upper PML is 
excluded. In this case, 12 distinct components are needed to define the compliance matrix, 
whose structure is 

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

y z

x

x

x x x x

y y y y z

z y z z z

xx x x

yy yz y

yz zz z

y z

x

x

f f f

f f f

f f f

f f f

f f f

f f f

θ θ

θ

θ

θ θ θ θ

θ θ θ θ θ

θ θ θ θ θ

 
 
 
 

− 
=  −
 
 
 
− −  

F  (3.108) 

The 12 components of the compliance matrix are plotted in Figure 3.25. A good agreement is 
once again reached. 

Layered half-space 

The case of a non-homogeneous half-space is considered next. The properties of the layers, 
based on Figure 3.22, are the following: 

 0, 0u uGρ = =  (the upper half-space does not exist) 

 3
1 1 1 1 11.2kg m , 1.0Pa, 0.25, 0.01, 2mG Hρ ν ξ= = = = =  

 3
2 2 2 2 21.3kg m , 2.0Pa, 0.3, 0.01, 2mG Hρ ν ξ= = = = =  

 2 2 2 2, , ,l l l lG Gρ ρ ν ν ξ ξ= = = =  

Each of the physical layers are modeled with 40 thin-layers based on a quadratic expansion. 
The lower half-space is modeled with PMLs with the same parameters used in the first 
example ( 2, 8, 10, 2N mη = Ω = = = ). 

As in the case of the half-space, the 12 components given by eq. (3.108) are needed to define 
the compliance matrix F . These compliance components, obtained with the proposed 
procedure and with the FEM, are plotted in Figure 3.26. Again, the agreement between the 
proposed method and the FEM is very good. It can be concluded from this example that the 
BEM based on the TLM fundamental solutions can correctly simulate horizontally layered 
domains without the need to discretize the interfaces between layers, as is necessary in the 
standard BEM. 
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Figure 3.25: Tunnel compliances for the half-space. Solid lines = 2.5D BEM (real part – blue; 
imaginary part – red). Black circles = FEM 
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Figure 3.26: Tunnel compliances for the layered half-space. Solid lines = 2.5D BEM (real part 
– blue; imaginary part – red). Black circles = FEM 
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3.5.2 Example 2 – slab free in space 

For the second example an infinitely long slab with width 1 mL =  and thickness 0.1 mH =  
that is free in space is considered. The material properties of the slab are: mass density 

31kg mρ = ; shear modulus 1PaG = ; Poison’s ratio 0.25ν = ; material damping 0.01ξ = . The 
slab is submitted to a vertical line load at its top (at the middle alignment) and the 
displacements of the top right corner, center right point and bottom right corner are 
calculated. The excitation frequency is 2 rad/sω π=  and the range of wavenumbers of the line 
load is [0,6 ]yk π=  rad/m . 

The displacements of the points referred to above are calculated using a 2.5D FEM procedure 
and using a coupled 2.5D BEM-FEM procedure, and then compared. For the first approach 
the cross section of the slab is divided into a regular mesh of 20 8×  solid elements of 
quadratic expansion (8 nodes per element), while for the second approach the cross section of 
the slab is divided into two sub-domains: a FEM sub-domain, with dimensions 1m 0.05m×  
and divided into a regular mesh of 20 4×  solid elements of quadratic expansion; and a BEM 
sub-domain with the same dimensions, whose lateral boundaries are divided into 4 boundary 
elements each and whose interface between the BEM and the FEM sub-domains is divided 
into 20 boundary elements. The boundary elements are of quadratic expansion (3 nodes per 
element). The fundamental solutions of an elastic layer free in space, calculated with the TLM 
(the elastic layer is divided into 32 thin-layers of quadratic expansion), are used to nurture the 
boundary elements: this choice for the fundamental solutions avoids the discretization of the 
free lower surface of the slab, thus reducing the cost of computation of the BEM matrices. 
The results obtained with the two approaches are compared in Figure 3.27-3.29 for the 3 
points considered. As can be observed, the agreement is very good even for the center right 
point, which belongs to the BEM-FEM interface, and for the bottom left corner, which 
belongs to the BEM domain. The good quality of the results validates the two procedures. 

As a concluding remark regarding this example, it is important to be aware that the use of the 
2.5D BEM-FEM is inefficient when compared to the 2.5D FEM. The structure under analysis 
is finite and of relatively small dimensions, which means that the reduction in the number of 
degrees of freedom achieved with the BEM does not compensate the computational cost 
associated with the calculation of the BEM matrices. This example is considered herein solely 
for validation purposes, and not to demonstrate the advantages of the 2.5D BEM. 
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Figure 3.27: Displacements of the top right corner of the slab: a) ux; b) uy; c) uz. 

Solid lines = 2.5D BEM (real part – blue; imaginary part – red). Black circles = FEM 

 

 
Figure 3.28: Displacements of the center right point of the slab: a) ux; b) uy; c) uz. 

Solid lines = 2.5D BEM (real part – blue; imaginary part – red). Black circles = FEM 
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Figure 3.29: Displacements of the bottom right corner of the slab: a) ux; b) uy; c) uz. 
Solid lines = 2.5D BEM (real part – blue; imaginary part – red). Black circles = FEM 

3.6 Conclusions 

In this chapter, the numerical tools used for the solution of soil-structure interaction problems 
are presented and validated. To solve the interaction between the track and the soil, a coupled 
2.5D BEM-FEM procedure is used, and for the case of the interaction between the building 
and the soil, a coupled 3D BEM-FEM procedure is used. Both procedures are based on the 
fundamental solutions obtained with the TLM, which is described in chapter 2. 

The 2.5D BEM-FEM procedures are developed in the space-wavenumber-frequency ( ,yk ω ) 

domain. In order to use the responses obtained with this methodology in a coupled 3D BEM-
FEM procedure, the responses must first be transformed to the space-frequency ( ,y ω ) 
domain, which is accomplished by an inverse Fourier transform. After having calculated the 
responses in the ( ,yk ω ) domain for a discrete sample of the wavenumber yk , the inverse 

transform can be calculated numerically by means of a summation.  

It is important to recall that when the proposed 2.5D BEM methodology is used, the 
coefficients for the BEM matrices can be calculated in closed form expressions. This fact 
leads to fast and precise calculations of such coefficients. The drawback of this approach is 
the time required to calculate the eigenmodes of the soil, which can become large when the 
fundamental solutions are needed at deep positions. Nevertheless, for each soil profile, the 
eigenmodes only have to be calculated once for each frequency. Then, they can be stored and 
reused to analyze different configurations of tracks, buildings and countermeasures. 

Concerning the BEM procedures, the step that consumes more time is the calculation of the 
BEM matrices P  and U . The components of these matrices are obtained by applying a load 
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at one BEM node and by integrating the fundamental solutions over the surface of the BEM 
element, being this procedure repeated n eN N×  times ( nN  is the number of boundary nodes 
and eN  is the number of boundary elements). Since these n eN N×  calculations can be 
performed simultaneously, parallel computing becomes of great advantage. Using CPU 
parallelization, the calculation of the matrices P  and U  can become up to CPUN  times faster 
than without parallelization, since the n eN N×  calculation can be divided by CPUN  (number of 
CPUs). During the last two decades, the GPU boards, commonly used for image processing, 
have been used for scientific calculation and in some cases a reduction of two orders of 
magnitude in the time needed for the calculations has been achieved (Hwu and Kirk, 2009). 
The GPU processors allow a large number of processes to run simultaneously, at the expense 
of slower clock speeds. Also, the memory access of GPUs is more complicated than the RAM 
access by the CPUs, and so the algorithms must be properly adapted so that time needed to 
access the memory does not reduce the efficiency. 

During the PhD works, a GPU implementation has been attempted for the calculation of 
matrices P  and U . The resulting program did work correctly, but an improvement in the 
calculation time could not be achieved, since at the end, the computational time needed to run 
a calculation with GPU parallelization was roughly the same computational time that was 
needed to run the same calculation parallelized with the CPU. The author believes that the 
reason for not achieving better performances is related to the GPU memory access.  

The results contained in this chapter were obtained with MATLAB. No special attention was 
given in terms of the efficiency of the calculations or versatility of the subroutines, since the 
main purpose of these calculations was the validation of the procedures described throughout 
this chapter. For chapters 4 and 5, in order to obtain better computational costs, the 2.5D 
BEM-FEM and the TLM were implemented in FEMIX, which is a finite element code written 
in C programming language (http://www.alvaroazevedo.com/femix/).  
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4. Invariant structures 
subjected to moving loads 

and moving vehicles 
4.1 Introduction 

In problems of vibrations induced by moving vehicles, the vehicle transmits to its supporting 
structure a set of moving forces (as many as the number of contact points/surfaces). For the 
cases in which the dynamic behavior of the vehicle is considered, the interaction between the 
vehicle and the supporting structure causes the vehicle to respond dynamically, and 
consequently the contact forces between the two structures are not constant in time. 

Even though in general the most significant contribution to the magnitude of the contact 
forces is attributable to the weight of the vehicle (quasi-static component), the oscillating 
(dynamic) component, whose contribution to the total force is smaller, has an important role 
in the response of the supporting structure, specially for points located at remote positions. 
Hence, it is of great importance to consider the dynamic component of the transmitted forces 
in order to obtain accurate predictions of the vibrations in the nearby buildings and in the far 
field. 

The dynamic response of the vehicle is caused, among other aspects, by longitudinal 
variations of the stiffness of the supporting structure and by geometric irregularities observed 
at the contact surface between the vehicle and the structure. In this work, because it is 
assumed that the track-soil system is invariant in the longitudinal direction, the variations of 
stiffness cannot be considered, and therefore the excitation associated with the discrete sleeper 
support is not accounted for. Regarding the geometric irregularities at the contact surface 
between the vehicle and the supporting structure (in the railway case, wheel-rail contact), they 
are considered by means of position dependent gap/irregularity profiles. These irregularity 
profiles may account for both the unevenness of the track and the imperfections of the wheels. 

In the present chapter, the 2.5D BEM-FEM procedure presented in the previous chapter is 
employed in the analysis of longitudinally invariant structures that are subjected to moving 
loads. The results obtained with the 2.5D BEM-FEM are in the ( ,yk ω ) domain, and in order 

for them to provide meaningful information, they must be transformed to the space-frequency 
domain, and in some cases also to the space-time domain. The transformation to these 
domains can be simplified due to the moving nature of the perturbation. 

After describing the solution procedure for the case of moving loads, the vehicle-structure 
interaction problem is addressed. The solution of this interaction problem returns the forces 
that the vehicle induces in the structure. In the context of vibrations induced by railway 
traffic, this corresponds to the generation stage, the last stage to be described in this work (the 
propagation and the reception stages were explained in the previous chapter). Having 
characterized the forces that the train transmits to the track, the tools explained in chapter 3 
and the expressions for moving loads described in this chapter can be used to determine the 
response of the track, soil and nearby buildings. 
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4.2 Moving loads 

4.2.1 Introduction 

The results obtained with the 2.5D BEM-FEM procedure are in the wavenumber-frequency 
domain ( ,yk ω ), and in order for them to be meaningful and be used as inputs in the 3D BEM-

FEM procedure, the results have to be transformed to the space-frequency domain ( ,y ω ), and 
in some cases, to the space-time domain ( ,y t ). The transformation to the space-time domain 
requires the evaluation of the double inverse Fourier transform 

( ) ( )

( ),

i i1 1
, , e d e d

2 2
y

h y

k y t
y yh y t H k k

ω

ωω ω
π π

+∞ +∞
−

−∞ −∞

= ∫ ∫

	



�



�

ɶ  (4.1) 

in which ( ),yH k ωɶ  corresponds to some response field in the wavenumber-frequency domain 

(displacement, derivative, traction, etc) and in which ( ),h y t  corresponds to the associated 

response field in the space-time domain. When the response is needed in the space-frequency 
domain, i.e., when ( ),h y ω  is required, only the inner integral needs to be evaluated. 

In some practical cases, the longitudinal and temporal variations of the load are independent 
of the variation within the cross section of the domain in such a way that at any given instant 
t  and any given cross section y , the load vector ( ),y tP  can be factorized into the product 

( ) ( ), ,y t p y t=P p  (4.2) 

where p  is a vector containing the distribution of the load within the two dimensional cross 

section (this vector is to be used as right-hand side of equation (3.101)) and where ( ),p y t  is a 

function representing the evolution of the load in time and with the longitudinal coordinate. 
Under this condition, the response fields ( ),yH k ωɶ  can be written as 

( ) ( ) ( ), , ,y y yH k h k p kω ω ω= ɶɶ ɶ  (4.3) 

being ( ),yh k ωɶ  the response function (usually called transfer function) obtained with the 2.5D 

BEM-FEM tool (and considering that the load vector corresponds to p ) and being ( ),yp k ωɶ  

the wavenumber-frequency content of the load, calculated with 

( ) ( ) i -i, , e d e dyk y t
yp k p y t y tωω

+∞ +∞

−∞ −∞

= ∫ ∫ɶ  (4.4) 

For general structures in which the transfer functions ( ),yh k ωɶ  cannot be determined 

analytically and for general load variations ( ),p y t , the inverse Fourier transforms (4.1) can 

only be calculated numerically based on the FFT technique or based on some numerical 
integration scheme, and so the values of ( ),yh k ωɶ  need to be evaluated for a large range of yk  

and ω . For instance, an impulsive point load applied at the instant 0t =  and at the 
longitudinal coordinate 0y =  is defined by ( ) ( ) ( ),p y t y tδ δ=  and its wavenumber-frequency 

content is ( ), 1yp k ω =ɶ . Hence, the integral (4.1) becomes 
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( ) ( ) ( )i i
2
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h y t h k k h k kωω ω ω ω
π π π
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For loads moving with constant speed, the frequency-wavenumber content ( ),yp k ωɶ  contains 

a special structure that enables the calculation of one of the integrals in equation (4.1) directly. 
This issue is addressed in the following sub-sections, where constant loads and oscillating 
loads moving with constant speed are considered and exemplified for the case of a beam on a 
Kelvin foundation. 

4.2.2 Constant moving loads 

Consider that a load moving with constant speed V  and constant amplitude 0A  crosses the 

longitudinal section 0y y=  at the instant 0t = . The function ( ),p y t  associated with such load 

is 

( ) ( )0 0,p y t A y Vt yδ= − −  (4.6) 

and its wavenumber-frequency content is 
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 (4.7) 

The insertion of (4.7) and (4.3) in equation (4.1) yields 

( ) ( ) ( ) ( )0i i
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1
, , e d e d

2
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y y yh y t A h k k V k ωω δ ω ω
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+∞ +∞
− −

−∞ −∞

= −∫ ∫ ɶ  (4.8) 

and after solving equation (4.8) for the inner integral, the following result is obtained 
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The previous equation reveals that for the case of moving loads, the transformation of the 
response from the wavenumber-frequency domain to the space-frequency domain can be 
accomplished without solving any integral. Instead, such inverse transformation is obtained 
by evaluating the transfer function ( ),yh k ωɶ  at the wavenumber-frequency pair ( ,Vω ω ). 

In the following example, ( ),yh k ωɶ  can be determined analytically and consequently so does 

( ),h y t . For more general structures in which the transfer function ( ),yh k ωɶ  cannot be 

evaluated in closed-form expressions, the remaining integral in eq. (4.9) can only be solved 
numerically using, for example, a discrete inverse Fourier transform (as in this work), an 
adaptive Filon method (De Barros and Luco, 1994), a classical FFT, or a logarithm FFT 
(Talman, 1978). This last technique is used in the works developed at Leuven (e.g., François 
et al., 2010). 

Before the presentation of the example, it is important to note that the space-time domain 
response field is a function of ( )0t y y V− −  and not of y  and t  separately. This aspect 
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indicates that for moving loads with constant amplitude, the response field moves with the 
load and is constant in time. 

Beam on a Kelvin foundation subjected to a constant moving load 

The example of a beam on a Kelvin foundation (Andersen and Nielsen, 2003) is used next to 
illustrate the procedure. This example is chosen because the displacements in the 
wavenumber-frequency domain of such structure are known in closed-form expressions and 
consequently the integral (4.9) can be evaluated analytically. In this context, consider an Euler 
beam with flexural stiffness EI  and unit mass m  resting on a Kelvin foundation with stiffness 
k  and damping c , as represented in Figure 4.1. 

 

Figure 4.1: Beam on a Kelvin foundation subjected to a moving load 

The wavenumber-frequency domain displacement uɶ  of the beam is 

( ) 4 2

1
,
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y
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ω
ω ω

=
+ + −

ɶ  (4.10) 

and, according to (4.9), the space-time domain displacement induced by a constant moving 
load ( ( ) 0f t A= ) is 
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Since the integrand in (4.11) is a regular expression, and since it is bounded in the complex 
plane, the integral can be evaluated by means of contour integration, which results in 
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∑ ∏  (4.12) 

where the values jω  represent the roots of the polynomial 

4 4 4 2 4i 0j j jEI kV cV mVω ω ω+ + − =  (4.13) 

Furthermore, for cases in which the damping is null ( 0c = ), there is a critical speed crV  around 
which the response of the beam is greatly amplified. This critical speed equals the lowest 
bending velocity of the system (Hung and Yang, 2001) and corresponds to the lowest velocity 
that yields the roots of the polynomial (4.13) real, and so crV  is given by 

,EI m  

,k c  

V  
( )f t  
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4
cr 2

4EI k
V

m
=  (4.14) 

Next, the beam displacements are calculated with eq. (4.12) and with a time domain finite 
element procedure (FEMIX, www.alvaroazevedo.com\femix), and then compared. The 
mechanical and dynamic properties of the beam are 61.222 10 PaEI = ×  and 120.89 kg/mm = , 

the stiffness and damping of the foundation are 6200 10 N/mk = ×  and 330 10 Ns/mc = × , and 

the magnitude of the force is 3
0 195 10 NA = × . The critical load speed of this system, according 

to (4.14), is cr 508.6 m/sV = . The beam displacements are computed for the load speeds 
250 m/sV = , 500 m/sV = , 550 m/sV =  and 700 m/sV =  and plotted in Figure 4.2. 

 

 

Figure 4.2: Beam displacements induced by a constant moving load. Blue line = eq. (4.12); 
black circles = time domain FEM (FEMIX) 

The displacements represented in Figure 4.2a show that for speeds below crV , the behavior 
ahead of the load ( 0 0Vt y y− + < ) and behind the load position ( 0 0Vt y y− + > ) are identical. 
This fact is observed mostly because the roots jω  are complex and characterized by a 

significant imaginary component, which causes the response to evanesce away from the load. 
As the load speed V  increases, the roots jω  come closer to the real axis and therefore the 

response decays slower with the distance to the position of the load. 
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When the load speed is near crV  and the damping is neglected, the roots jω  are very close to 

the real axis and have approximately the same value (apart from the sign) and so the response 
propagates both ahead and behind the load with roughly the same wavelength, which is 

approximately cr re2 Vπ ω , being ( )2
re 2V m EIω ≈ . The presence of damping makes the 

wavelengths ahead and behind the load different, but their values are still close to each other, 
as can be inferred from Figure 4.2b-c. 

Finally, for crV V>  and again for null damping, there are two distinct pairs of real roots: 1ω±  

and 2ω±  ( 1 2ω ω> ), being 1ω  associated with the waves ahead of the load and 2ω  associated 

with the waves behind the load position, thus turning the wavelength ahead of the load 
smaller than the wavelength behind the load. As V  increases, 1ω  increases and 2ω  decreases 

(tending to a minimum of k m ) and consequently the wavelength ahead of the load 

shortens, while the wavelength behind the load increases. In the case under study, the 
presence of damping makes the roots jω  complex, but the features explained in the last 

sentence are still present, as can be observed in Figure 4.2d. 

Also observable in Figure 4.2a-d is the amplification of the displacements when the load 
speed approaches crV . That fact is confirmed in Figure 4.3, where the maximum beam 
displacement is plotted as a function of the load speed V  for two distinct damping scenarios: 

330 10 Ns/mc = ×  (blue line) and 0 Ns/mc =  (red line). The effect of the damping is similar to 
the effect of a dashpot on one-degree-of-freedom systems, which reduces the amplification of 
the response at the resonance frequency of the systems. 

 

Figure 4.3: Beam maximum displacements as a function of the load speed. Blue line = with 
damping; red line = no damping 

4.2.3 Oscillating moving loads 

Consider now that a load moving with constant speed V  and with time varying amplitude 
defined by ( ) ( )0 0 0, exp if t A tω ω=  crosses the longitudinal section 0y y=  at the instant 0t =  
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(the forcing frequency 0ω  is added as an argument for convenience). The function ( )0, ,p y t ω  

associated with such load is 

( ) ( )0i
0 0 0, , e tp y t A y Vt yωω δ= − −  (4.15) 

and its wavenumber-frequency content ( )0, ,yp k ω ωɶ  is 
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 (4.16) 

The insertion of (4.16) and (4.3) in equation (4.1) yields 
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and after solving equation (4.17) for the inner integral, the following expression is obtained 
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The force ( )0,f t ω  described above has no physical meaning since it contains an imaginary 

component, which results from the exponential factor ( )0exp i tω . However, this type of 

expression can be used to define real functions of the type cosine or sine, as stated in the next 
equations 

( ) ( )

( ) ( )

0 0

0 0

i -i

C 0 0 0 C

i -i

S 0 0 0 S

e e
, cos

2

e e
, sin

2i

t t

t t

f t A t A

f t A t A

ω ω

ω ω

ω ω

ω ω

+
= =

−
= =

 (4.19) 

Hence, in order to obtain the response ( )C 0, ,h y t ω  for cosine type loads or the response 

( )S 0, ,h y t ω  for sine type loads, equation (4.18) must first be used to calculate ( )0, ,h y t ω  and 

afterwards, since ( ) ( )0 0, , , ,h y t h y tω ω− = , the real or imaginary component must be retained 

according to the following  

( )
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 (4.20) 

Similarly to the case of constant moving loads, for oscillating moving loads no integral needs 
to be evaluated in order to obtain the space-frequency domain response. Instead, the response 
in that domain is obtained simply by evaluating the transfer function ( ),yh k ωɶ  for the 
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wavenumber-frequency pair ( 0( ) ,Vω ω ω− ). In addition, the response of points that move 
with the same speed as the load is given by 

( )
P P

0i i
0 0

0 P , e , e d
2

y yt
V V

A
h y Vt y y t h

V V

ω ωω ω
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π

  +∞− 
 

−∞

− 
= + − =  

 
∫ ɶ  (4.21) 

in which P 0y Vt y y= + − is the distance between the moving point and the source. The previous 
equation clearly shows that the response fields move together with the load and oscillate with 
frequency 0ω . 

Beam on a Kelvin foundation subjected to a cosine type moving load 

For a load ( ) ( )0 0cosf t A tω= , the beam displacements are calculated with 

( ) ( )C 0 0, , Re , ,u y t u y tω ω=     (4.22) 

in which 
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Since the integrand in (4.23) is a regular expression and since it is bounded in the complex 
plane, the integral can be evaluated by means of contour integration, resulting in 
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In the previous equation, the values jω  represent the roots of the polynomial 

( )
4 4 4 2 4

0 i 0j j jEI kV cV mVω ω ω ω− + + − =  (4.25) 

Similarly to the case of constant moving loads, when damping is null, there is a velocity 
above which the polynomial (4.25) presents real roots. However, in this case, for low 
frequencies 0ω , the minimum velocity that yields real roots only yields two of the poles real, 
and so there is a second velocity above which all the roots are real. At these two critical 
velocities, two roots of (4.25) become real and with the same value (double roots), which 
results in the amplification of the displacements of the beam. 

In Figure 4.4, the (logarithm of) maximum of the displacements Cu  is plotted as a function of 
the excitation frequency 0ω  and load speed V  for a beam on a Kelvin foundation with the 
same properties of the system described in section 4.2.2 (with 0 Ns/mc = ). 
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Figure 4.4: Logarithm of the beam maximum displacement as a function of the load speed V  
and excitation frequency 0ω  ( 0 Ns/mc = ) 

For 0 0ω = , there is only one critical velocity which is calculated with (4.14). For, 0 0ω ≠ , to 
determine the load speeds is cumbersome, but by rearranging equation (4.25) it can be 
concluded that these velocities correspond to the local real minima of 

( )
4

04
2

,
EI k

V
m k m

ω ω
ω

ω

−
= >

−
 (4.26) 

When 0 k mω > , there is only one critical velocity. 

Next, the beam displacements are calculated considering the excitation frequency 

0 100 rad/sω =  and considering the load speeds 300V = , 500V =  and 700m/sV = . The 
properties of the beam and foundation are the same of the example of section 4.2.2, and it is 
assumed that the load crosses the cross-section 0y =  at the instant 0t =  ( 0 0y = ). The results 
obtained with the time domain FEM procedure are not shown, but is was observed that the 
agreement between the FEM results and equations (4.22) and (4.23) is very good. The 
displacements at 0t =  are plotted in Figure 4.5. 

For load speeds below the lower critical velocity (Figure 4.5a), the displacements evanesce 
with the distance to the source and the decay rate of the displacements depends on the 
proximity of the load speed to the critical velocity. For load speeds between the two critical 
velocities (Figure 4.5b), the displacements propagate both ahead ( 0y > ) and behind ( 0y < ) 
the load, being the wavelength of the displacements shorter ahead than behind. For load 
speeds greater than the highest critical velocity (Figure 4.5c), the displacements propagate 
mostly behind the load and the wavelengths are shorter ahead than behind. Note that there are 
two major wavelengths for each side of the response, a consequence of the existence of four 
distinct real roots in the polynomial (4.25) (for non-oscillating loads, the roots are paired up in 
groups of 2, 1ω±  and 2ω± , and so the two distinct wavelengths are not observed). 
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Figure 4.5: Beam displacements induced by harmonic moving loads 

In Figure 4.6, the maximum displacements observed at the beam are plotted as a function of 
the load speed for the conditions referred to above (blue line) and for null damping (red line). 
The two critical velocities can be identified for the case of no damping, while for the case of 
damping, the critical velocities appear to merge into one. Such feature is observed for the 
damped case because the critical velocities are near each other and because the large amount 
of damping used not only reduces the maximum displacements as it also widens the “bell 
shaped response” associated with each velocity. If the damping is reduced or if the excitation 
frequency 0ω  is increased (and consequently the critical velocities are moved farther apart), 
then, even for the damped case, the two critical velocities can be noticed. 

The example solved in this subsection considers cosine type loads. For sine type loads, the 
same conclusions can be drawn and the response of the structure is practically the same, being 
it simply shifted in time and in space. In the next subsection, structures for which the response 
fields cannot be determined analytically are studied. 
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Figure 4.6: Beam maximum displacements as function of the load speed. Blue line – with 
damping; Red line – no damping  

4.2.4 Examples 

Next, equations (4.9) and (4.18)-(4.20) are used to calculate the response of longitudinally 
invariant structures of which the wavenumber transfer functions (and therefore the integrands 
of the mentioned equations) cannot be determined analytically. 

The case study considered in this subsection consists in a flexible slab resting on the surface 
of a half-space (homogeneous or layered) that is subjected to a vertical load ( )f t  that moves 

with speed V  along the middle top alignment (point A), as exemplified in Figure 4.7 (it is 
assumed that the load crosses the section 0y =  at 0t = , i.e., 0 0y = ). The material properties 

of the slab are: density 32145 kg/mρ = ; Young’s modulus 30 GPaE = ; and Poisson’s ratio 

0.2ν = . The slab is modeled with 8 four-node volume elements with dimensions 20.25 0.3 m×  
and the interface between the slab and the half-space is divided into 8 boundary elements of 
constant expansion. 

 

Figure 4.7: Slab resting on a half-space submitted to a moving load 

Example 1 – Slab on a homogeneous half-space subjected to a constant moving load 

In this first example, the slab is subjected to a constant moving load defined by ( ) 1000 Nf t =  

and the foundation, which consists in a homogeneous half-space, is given the following 
properties: density 31800 kg/mρ = ; shear modulus 0.1125 GPaG = ; Poisson’s ratio 0.25ν =  

1m 1m 

0.3m A 
B 

( )f t  
V  

C 

1m 

D E 

4m 5m 

x 
y 

z 

0 200 400 600 800 1000
0

0.002

0.004

0.006

0.008

0.01

V [m/s]

m
ax

(u
C
) 



Chapter 4 – Invariant structures subjected to moving loads and moving vehicles 

120 

(the corresponding body wave velocities are s 250 m/sC =  and p 433 m/sC = ). A small amount 

of hysteretic damping p s 0.02ξ ξ= =  is considered, which renders complex wave velocities 

( )p p p1 sign 2iC C ω ξ= +  and ( )s s s1 sign 2iC C ω ξ= +  (Dominguez, 1993). 

For constant moving loads, the time domain response fields ( ),h y t  are obtained through the 

evaluation of eq. (4.9), but since in this example the transfer functions ( ),y ih k ωɶ  cannot be 

determined analytically, then the integral in (4.9) has to be evaluated numerically, being 
approximated with 

( ) ( )
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i i

i N
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h y t h V
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ω
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ω ω

π
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=−

∆
≈ ∑ ɶ  (4.27) 

Due to the conjugate property ( ) ( ), ,y i y ih k h kω ω− − =ɶ ɶ , eq. (4.27) can be further simplified to 
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   =
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∑ ɶ ɶ  (4.28) 

In the following, equation (4.28) is used to calculate the time domain displacements at the 
cross-section 0y =  and for 100 m/sV =  at point B, situated at the edge of the slab, and at 
points C, D and E, situated at the surface of the half-space. Two TLM models are tested: in 
the first model (TLM-1), the half-space is modeled with just one PML with parameters 2η = , 

4Ω = , 2m =  and 10N = (see chapter 2); in the second model (TLM-2), the half-space is 
modeled with an elastic layer of thickness 2 mH = , divided into 40 quadratic thin-layers, and 
with a PML (same parameters as for model TLM-1). The displacements obtained with these 
TLM models are compared with the displacements obtained using a time domain 
methodology (TD) (dos Santos et al., 2010a; dos Santos et al., 2010b) and with the 
displacements obtained using eq. (4.28) together with the transfer functions ( ),y ih k ωɶ  obtained 

from a 2.5D BEM-FEM procedure based on the stiffness matrices of Kausel and Roesset 
(1981) (SM). For the procedures based on eq. (4.28), 1500 frequencies with a step of 0.1 Hz 
are used. For the time domain procedure, a 100m long 3D model divided into 400 longitudinal 
sections and a time step of 0.002 s are used. Figure 4.8 plots the transverse displacements of 
the points B, C, D and E obtained with the four mentioned approaches, Figure 4.9 plots the 
longitudinal displacements and Figure 4.10 plots the vertical displacements. 

From Figure 4.8, it can be observed that the four approaches yield significantly different 
transverse displacements: at the slab (Point B), the TLM-1, the TLM-2 and the SM results 
tend approximately to the same maximum value, but the shapes of the curves are different; 
still regarding point B, the TD solution differs both in shape and sign from the remaining 
solutions (a justification for this could not be found); at the surface of the half-space (points 
C, D and E), the results of the SM model tend the follow the TD results while the TLM-1 and 
the TLM-2 yield smaller displacements. Despite this fact, the passage of the load at the cross-
section is noticed in all four approaches. As for the longitudinal and vertical displacements 
represented in Figure 4.9 and Figure 4.10, respectively, a better agreement is, in general, 
observed. 
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Figure 4.8: Transverse (x) displacements: blue = TLM-1; red = TLM-2; black = TD; 
green = SM 

 

Figure 4.9: Longitudinal (y) displacements: blue = TLM-1; red = TLM-2; black = TD; 
green = SM 

-0.2 -0.1 0 0.1 0.2 0.3
-1 

-0.5

0

0.5

1
x 10

-7

t [s]

u y
 [

m
] 

-0.2 -0.1 0 0.1 0.2 0.3 -5

0

5
x 10 -8

t [s]

u y
 [

m
] 

-0.4 -0.2 0 0.2 0.4
-4 

-2 

0

2

4 x 10
-8

t [s]

u y
 [

m
] 

-0.5 0 0.5 -4

-2

0

2

4 x 10 -8

t [s]

u y
 [

m
] 

Point B Point C 

Point D Point E 

-0.2 -0.1 0 0.1 0.2 0.3 -6 

-4 

-2 

0

2
x 10 -8

t [s] 

u x
 [

m
] 

-0.2 -0.1 0 0.1 0.2 0.3
-15

-10

-5

0

5
x 10 -8

t [s] 

u x
 [

m
] 

-0.4 -0.2 0 0.2 0.4 -6 

-4 

-2 

0

2
x 10 -8

t [s] 

u x
 [

m
] 

-0.5 0 0.5
-4

-3

-2

-1

0

1
x 10 -8

t [s] 

u x
 [

m
] 

Point B Point C 

Point D Point E 



Chapter 4 – Invariant structures subjected to moving loads and moving vehicles 

122 

 

Figure 4.10: Vertical (z) displacements: blue = TLM-1; red = TLM-2; black = TD; 
green = SM 

When comparing the TD results (black lines) with the remaining approaches, it is noticed that 
for the earlier moments ( 0.2t <  s) the responses present very distinct behaviors. These 
differences are justified by the finite length of the 3D model used in the TD approach, a 
characteristic that violates the assumption of invariant cross-section considered in the 2.5D 
models. In this way, while in the TD approach the entrance of the load in the finite element 
model induces a transient phenomenon, in the 2.5D approaches, since it is assumed that the 
load travels from minus infinity to plus infinity, the phenomenon is not present. The transient 
phenomenon dissipates due to internal damping and therefore after some time its contribution 
is minimal. Apart from the transient phenomenon, the remaining differences may be justified 
by the longitudinal and temporal discretizations required by the TD approach: the TD and the 
SM approaches are based on the fundamental solutions obtained with the stiffness matrices 
and therefore, theoretically, they should yield the same values. This hypothesis has not been 
tested because to make the 3D mesh longer in the longitudinal direction and/or with thinner 
elements and smaller time-steps renders the calculation unfeasible (for the current 100 m long 
model, more than two days were required to calculate the passage of the load from one edge 
of the model to the other edge). 
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which leads to the conclusion that these differences are caused by the inappropriate simulation 
of the infinite domain at the low frequency range. The comparison of the longitudinal and 
vertical responses is not shown here, but it was observed that the differences are smaller than 
for the transverse component, which justifies the better agreement obtained. 

 

Figure 4.11: Transverse (x) displacements in the wavenumber-frequency domain: solid line = 
real part; dashed line = imaginary part; blue = TLM-1; red = TLM-2; green = SM 

Note that for the low frequencies, the PML used to model the half-space is divided into thin-
layers that are thicker than the widths of the slab and of the boundary elements (the PML and 
the thin-layers are made proportional to the shear wavelength) and so the boundary integrals 
calculated as explained in chapter 3 do not yield accurate results. Also, at low frequencies, 
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low frequencies can be solved by using a sufficiently thick elastic thin-layer on top of the 
PML. 
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structure of the TLM matrices and consequently the algorithms described in chapter 2 for the 
solution of the eigenvalue problems could not be applied. For this reason, since the 
differences in the results can be reduced by adding a thicker elastic layer, and since this 
problem is not observed for harmonic moving loads (as seen in the next example), the 
mentioned procedure has not been tested nor implemented. 

Another study that can be performed with this example is the influence of the load speed on 
the response of the system. Figure 4.12 plots the maximum vertical displacement of point B 
obtained with TLM-2 as a function of the load speed V . 

 

Figure 4.12: Maximum vertical displacement of point B as a function of the load speed V  

Similarly to the case of a beam on a Kelvin foundation, there is a critical velocity crV  at which 
the displacements of the slab are amplified. This velocity cr 230 m/sV ≈  corresponds to the 
Rayleigh wave speed of the half-space, which is in accordance with the conclusions obtained 
by other authors, (e.g., Dieterman and Metrikine, 1996; Metrikine and Popp, 2000). 

Finally, the influence of the load speed V  on the displacements at the surface of the half-
space is analyzed. With that intention, a snapshot of the surface vertical displacements is 
represented in Figures 4.13-4.15 for 100 m/sV =  (below the critical speed), 300 m/sV =  
(above the critical speed but below the pressure wave speed) and 500 m/sV =  (above both the 
critical and pressure wave speeds), respectively. 

From Figure 4.13, it can be seen that for load speeds below the critical velocity crV , the 
displacements are practically symmetric with respect to the load position. Also, at the surface 
of the half-space, the displacements evanesce with the radial distance to the load and are 
negative everywhere. This last feature is supported by Figure 4.10. 

In Figure 4.14, it is observed that the displacements are no longer symmetric with respect to 
the loaded section: on the contrary, the wave-field forms a cone that moves with the load, 
which is a consequence of the load moving faster than the critical velocity crV . Ahead of the 
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the displacements are negative (downwards; blue and green zones).  
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Figure 4.13: Vertical displacements for 100 m/sV =  ( 0 0ω = ): the displacements are multiplied 
by the shear modulus of the half-space (values in N/m) 

 

Figure 4.14: Vertical displacements for 300 m/sV =  ( 0 0ω = ): the displacements are multiplied 
by the shear modulus of the half-space (values in N/m) 
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Figure 4.15: Vertical displacements for 500 m/sV =  ( 0 0ω = ): the displacements are multiplied 
by the shear modulus of the half-space (values in N/m) 

Figure 4.15 is very similar to Figure 4.14, being the main difference the angle of the cone, 
which is sharper because the load moves faster. Also, because in this case the load moves 
faster than the pressure wave ( PV C> ), there is a second cone (or wave-front; not visible in the 
figure), not as sharp as the first, and ahead of which the amplitudes of the displacements are 
small (note that there are displacements ahead of this cone only because the waves at the slab 
are faster than the load speed; had the load been applied directly at the surface of the half-
space, then no displacements would be observed ahead of the second cone). 

The maximum downwards displacements of Figures 4.13-4.15 are in accordance with the 
maximum displacements plotted in Figure 4.12. 

Example 2 – Slab on a homogeneous half-space subjected to a harmonic moving load 

In this second example, the slab, which rests on a homogeneous half-space with the same 
properties as in the previous example, is subjected to a harmonic moving load of the type 

( ) ( )01000sin (N)f t tω= . 

For sinusoidal moving loads, the response fields in the time domain correspond to the 
imaginary component of equation (4.18), which in this example has to be calculated 
numerically given the fact that the transfer functions ( ),y ih k ωɶ  cannot be determined 

analytically. For this reason, ( )S 0, ,h y t ω  is approximated with 
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which is equivalent to 
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  ∆
  ≈ +

    
∑ ɶ ɶ  (4.30) 

Hence, for each sampled frequency iω , the transfer functions ( ),yh k ωɶ  must be calculated for 

the wavenumbers 1 0( )/ik Vω ω= −  and 2 0( )/ik Vω ω= + , which are then used in eq. (4.30). 

Next, equation (4.30) is used to calculate the time domain displacements of points B, C, D 
and E (Figure 4.7) at the cross-section 0y =  and for 100 m/sV =  and 0 40 rad/sω π=  (once 
again, it is assumed that the load crosses the section 0y =  at 0t = , i.e., 0 0y = ). The two TLM 
models described in Example 1 (TLM-1 and TLM-2) are used to simulate the half-space, and 
the results thus obtained are once again compared with the displacements obtained using the 
TD and the SM approaches. For the procedures based on eq. (4.30), 1500 frequencies with a 
step of 0.1 Hz are considered. For the time domain procedure, the same model and time steps 
considered in Example 1 are used. Figures 4.16-4.18 plot the transverse, longitudinal and 
vertical components of the displacements obtained with the four approaches. 

 

Figure 4.16: Transverse (x) displacements: blue = TLM-1; red = TLM-2; black = TD; 
green = SM 
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Figure 4.17: Longitudinal (y) displacements: blue = TLM-1; red = TLM-2; black = TD; 
green = SM 

 

Figure 4.18: Vertical (z) displacements: blue = TLM-1; red = TLM-2; black = TD; 
green = SM 
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Except for the TD response of point B, a good agreement can be observed between the results 
of the four distinct approaches. The differences observed for the TD approach at point B can 
be justified by the longitudinal discretization, which is not fine enough to reproduce 
accurately the response near the loaded point (note that for large negative and positive times, 
i.e., when the load is far from the reference section 0y = , the agreement is good). 

When comparing the results of examples 1 and 2, it can be observed that in general the 
agreement is better for the second example than for the first. The reason for this is that the 
time domain response in the second example is dominated by the radial frequencies 

1 0 R R( )V V Vω ω= −  and 2 0 R R( )V V Vω ω= + , and not by the low frequencies, as in the first 
example. The mentioned radial frequencies correspond to the interceptions between the 
dispersion curves of the foundation (for a homogeneous half-space, the dispersion curve 
corresponds to RV kω = , where RV  is the Rayleigh wave speed) and the integration paths of 
equation (4.18) ( 0 yVkω ω= +  and 0 yVkω ω= − ).  

In opposition to what happens in example 1, for the oscillation frequency 0 40 [rad/s]ω π=  there 
is no critical load speed at which the displacements are amplified, and the reason for that is 
because the integrating paths 0 yVkω ω= +  and 0 yVkω ω= − , that intercept the dispersion 

curves at the frequencies 1 0 R R( )V V Vω ω= −  and 2 0 R R( )V V Vω ω= + , are never tangent to the 
mentioned curves (for 0 0ω =  and for RV V= , the integrating path coincides with the 
dispersion line, i.e., are tangent everywhere, and that is the reason for the displacements to be 
amplified). This conclusion is in accordance with the work of Dieterman and Metrikine 
(1997) and is supported by Figure 4.19, which plots the maximum displacement observed at 
point B for different forcing frequencies 0ω  as a function of V , and where it can be observed 
that the displacements tend to decrease as V  increases. 

Taking into account the conclusions obtained in section 4.2.3 for a beam on a Kelvin 
foundation, it could be expected the existence of at least on critical velocity. However, in that 
case, the energy dissipates only along the longitudinal and vertical directions, while for the 
case of a slab on a half-space (a pure 3D case) the energy also dissipates along the transverse 
direction, thus changing completely the behavior of the system. This aspect supports the 
importance of 3D models in the simulation of vibration fields induced by moving loads. 

Before proceeding to examples of layered domains, the influence of the load speed on the 
shape of the response of the system is evaluated with the aid of snapshots of the vertical 
displacements induced by loads moving at the speeds 100 m/sV = , 300 m/sV =  and 

500 m/sV = . The snapshots are represented in Figures 4.20-4.22. 
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Figure 4.19: Maximum vertical displacement of point B as a function of the load speed V  for: 

0 0ω =  (gray); 0 10 rad/sω π=  (blue); 0 20 rad/sω π=  (red); 0 30 rad/sω π=  (black); and 

0 40 rad/sω π=  (green) 

 

Figure 4.20: Vertical displacements for 100 m/sV =  ( 0 40 rad/sω π= ): the displacements are 
multiplied by the shear modulus of the half-space (values in N/m) 

100 150 200 250 300 350 400 450 500
0.4 

0.6 

0.8 

1 

1.2 

1.4 

1.6 

1.8 

2 

2.2 

2.4 x 10
-6

V [m/s]

m
ax

(u
z)

 [
m

] 



Analysis and mitigation of vibrations induced by the passage of high-speed trains in nearby buildings 

131 

 

Figure 4.21: Vertical displacements for 300 m/sV =  ( 0 40 rad/sω π= ): the displacements are 
multiplied by the shear modulus of the half-space (values in N/m) 

 

Figure 4.22: Vertical displacements for 500 m/sV =  ( 0 40 rad/sω π= ): the displacements are 
multiplied by the shear modulus of the half-space (values in N/m) 
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For 100 m/sV =  (Figure 4.20) it can be observed that the waves propagate away from the load 
and that the wave-fronts present an elliptical shape, being the wavelengths ahead of the load 
shorter than the wavelengths behind the load. Such aspect is characteristic of waves induced 
by loads moving with speeds below the surface waves of the medium. Unlike the case of a 
constant moving load with the same speed (Figure 4.13), in this example the values of the 
displacements alternate between positive and negative, a consequence of the oscillatory nature 
of the load. Also, the reduction of displacements with the distance to the source is smaller, 
which emphasizes the importance of the dynamic loads in the calculation of wave-fields at 
remote positions. 

For 300 m/sV =  and for 500 m/sV =  (Figure 4.21 and Figure 4.22, respectively) the wave-
fronts form a cone, which is also observed for the case of constant moving loads, and that is a 
consequence of the load moving faster than the surface waves of the foundation. Similarly to 
constant loads, the cone is shaper for 500 m/sV =  than for 300 m/sV = , and for 500 m/sV =  
there is a second cone that results from the fact that the load moves faster than the pressure 
wave of the foundation (this second cone cannot be noticed in Figure 4.22). 

Example 3 – Critical speeds for layered foundations 

The first two examples considered homogeneous foundations. In this example, the critical 
load speeds are calculated for different configurations of the foundation, namely: a) a stiffer 
layer on top of a softer half-space ( lay half0.225 GPa, 0.1125 GPaG G= = ); b) a softer layer on top 

of a stiffer half-space ( lay half0.05625 GPa, 0.1125 GPaG G= = ). The thickness of the upper layers 

is 2 mH =  (divided into 40 quadratic thin-layers), and the material properties are the same of 
the homogeneous half-space used in examples 1 and 2 (except for the shear modulus, which is 
as indicated in the previous sentence). 

According to Dieterman and Metrikine (1997), resonance occurs when the load speed equals 
the group velocity of the waves generated by the load, which in other words means that 
resonance takes place when the integrating path 0 yVkω ω= +  or 0 yVkω ω= − +  is tangent to a 

dispersion curve of the foundation. 

The dispersion curves of a layered domain represent its free vibration modes and are defined 
by the curves ( , ( )k kω ) that yield the system singular, i.e., undetermined. These curves are 
associated with the steady waves that are originated due to the existence of boundary 
conditions (such as free surface or interface between layers). These waves propagate 
horizontally with phase velocity ph ( )V k kω=  and group velocity gr ( )V k kω= ∂ ∂ . 

For the case of a homogeneous full-space, there are no such steady waves because the only 
existent boundary condition is the radiation of waves to infinity. As for the case of a 
homogeneous half-space, the existence of a free surface originates the well-known Rayleigh 
wave, whose phase and group velocities are constant (Rayleigh wave speed). Under this 
scenario, the system is classified as non-dispersive. For the cases of layered systems, the 
number of existing waves and their phase velocity depend on the frequency being considered. 
The system is then said to be dispersive. The Love waves, which are observed in anti-plane 
systems consisting of a layer on a half-space, and the Stonely waves, which can exist at the 
interface between two adjacent layers for a certain range of frequencies, are examples of such 
dispersive waves (Erigen and Suhubi, 1975). 
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Besides being useful for the calculation of critical load speeds, the dispersion curves of a 
foundation can also be used to investigate some properties of the response of the layered 
domain, especially for remote positions where the evanescent waves are not noticed. For 
instance, for the case of non-moving harmonic loads with excitation frequency 0ω , the 
waviness of the response at remote positions is characterized by the wavelengths 2 jkπ , 

being jk  the wavenumbers at which the line 0ω ω=  intercepts the dispersion curves. For 

moving loads, the dispersion curves indicate which frequencies dominate the response at the 
free-field, which correspond to the frequencies at which the lines 0 yVkω ω= +  and 

0 yVkω ω= − +  intercept the dispersion curves.  

Using the TLM, the dispersion curves are obtained through the calculation of the real modes 
k  of the SH and SVP eigenvalue problems as a function of the frequency ω . However, when 
in the presence of PMLs to simulate half-spaces, the dispersion curves obtained with this 
method may not have any physical meaning, since the PML is not more than an artifact to 
simulate a half-space up to a certain distance. Alternatively, making use of the stiffness 
matrices of Kausel and Roesset (1981), the pairs ( , ( )k kω ) are found by forcing the assembled 
stiffness matrices to become singular, or in other words, by forcing the determinant of the 
matrix to be null. This last procedure has been used in this work together with search 
techniques to calculate the dispersion curves of the layered system considered as foundations. 
The obtained curves are represented in Figure 4.23 together with the corresponding phase 
velocities phV  and group velocities grV . Figure 4.23 also plots the expected critical load speeds 

that, according to Dieterman and Metrikine (1997), are calculated by 

( ) ( )0 grk kV kω ω= −  (4.31) 

The first feature that can be observed in Figure 4.23 is that for layered half-spaces no wave 
propagates with phase velocity higher than the shear wave velocity of the half-space 
( s 250 m/sC = ). That is so because for such waves to keep propagating, energy has to come 
from inside the half-space (otherwise the waves would propagate faster than it is admissible in 
the half-space), and that violates the radiation condition. 

Due to the reason explained above, the inversely dispersive domain a) only presents one real 
pole, and that pole becomes complex for frequencies 52ω π> (rad/s), which is approximately 
the frequency at which the phase velocity of the surface wave reaches the shear wave velocity 
of the half-space. In addition, the lowest critical load speed of this domain occurs for 0 0ω =  
and equals the Rayleigh wave velocity of the half-space, as can be inferred from the last row 
of Figure 4.23. The highest admissible critical load speed is approximately cr 263 m/sV ≈ , 
which occurs for a excitation frequency 0 2.7ω π≈  rad/s. Above that excitation frequency, 
there are no critical load speeds. 

As for the normally dispersive domain b), since the layer is softer than the half-space, there is 
a vast set of waves that can coexist at the interface between the layer and the half-space. Since 
one of the lower poles stabilizes at the phase velocity ph 162 m/sV ≈  (Rayleigh wave speed of 

the layer), for the frequency of excitation 0 0ω = , such velocity is one of the critical load 
speeds of the system. Nevertheless, that is not the minimal admissible critical load speed, as 
can be inferred from the last row of Figure 4.23: the lowest mode admits a critical speed of 

cr 142 m/sV ≈  that occurs for the excitation frequency 0 17ω π≈ . In practice, this must be the 
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maximum speed for the vehicle to circulate without causing the resonance of the track-soil 
system. 

 

Figure 4.23: Dispersion curves, phase velocities, group velocities and expected critical load 
speeds for the layered domain a) (left) and for the layered domain b) (right) 
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Next, the critical load speeds are calculated using equations (4.28) and (4.30). With that 
intention, the maximum displacements of point B are calculated for a set of values of 0ω  and 
for the load speeds ranging from 80 to 480 m/s. The considered values of 0ω  are: 0 0ω = , 

0 rad/sω π= , 0 2 rad/sω π=  and 0 4 rad/sω π=  for the layered domain a); 0 0ω = , 0 10 rad/sω π= , 

0 15 [rad/s]ω π=  and 0 40 rad/sω π=  for the layered domain b). The results are shown in Figure 
4.24. 

 

Figure 4.24: Maximum vertical displacement of point B as a function of the load speed V  and 
excitation frequency 0ω  for the layered domain a) and layered domain b) 

The analysis of the displacement envelope of the layered domain a) (left image of Figure 
4.24) indicates that for 0 0ω = , 0 rad/sω π=  and 0 2 rad/sω π=  the critical load speeds are 
effectively those predicted in Figure 4.23. However, there is no evidence of the existence of 
the higher critical speed associated with the upper part of the blue line of Figure 4.23 (bottom 
left figure) for 0 rad/sω π=  and for 0 2 rad/sω π= . Also, there is a peak at 270 m/sV ≈  for 

0 4 rad/sω π=  that according to Figure 4.23 does not correspond to a critical load speed. 

As for the layered domain b), for the excitation frequencies 0 10 rad/sω π=  and 0 15 rad/sω π= , 
the critical load speeds cr 160 m/sV ≈  and cr 150 m/sV ≈  associated with the upper part of the 
blue curve of Figure 4.23 (bottom right figure) can be identified in the right image of Figure 
4.24. Nevertheless, the critical load speeds associated with the lower part of that curve cannot 
be distinguished. Also, for these excitation frequencies, the amplification is greatest for the 
critical load speeds associated with the red line (around 240 m/s). For 0 0ω = , it can be 
observed that the critical load speed associated with the upper part of the blue curve is slightly 
shifted to the left, being its value cr 215 m/sV ≈  instead of the expected 230 m/s . A local 
maximum can also be observed at the load speed 250 m/sV = , which corresponds to the group 
velocity with which the second and higher poles become real, and equals the shear wave-
velocity of the half-space. Finally, for the excitation frequency 0 40 rad/sω π=  no critical load 
speed can be detected in Figure 4.24. 

The differences between the critical load speeds calculated according to Dieterman and 
Metrikine (1997) and the critical speeds detected in Figure 4.24 can be justified by the 
presence of the slab, since the slab, which is not considered in the mentioned work, changes 
the behavior of the foundation, namely for the higher frequencies (Steenbergen and Metrikine, 
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2007) (note that when the integrating paths 0 crV kω ω= +  and 0 crV kω ω= − +  are tangent to the 
dispersion curves at low frequencies ω , the displacement envelope presents a local maximum 
for crV V= ). Nonetheless, despite the differences, the critical load speeds calculated according 
to Dieterman and Metrikine (1997) can be very helpful to estimate the vehicle speeds that can 
cause the resonance of the track-soil system. 

4.2.5 Conclusions 

In this section, the equations used to calculate the response of invariant structures subjected to 
loads moving with constant speed are derived and discretized so that they can be used in cases 
in which the transfer functions cannot be determined in closed-form expressions. Important to 
retain is that in order to transform the transfer functions from the wavenumber-frequency 
domain to the space-frequency domain, no integral needs to be solved. Only if one attempts to 
obtain the space-time domain response it is needed to solve an integral. 

Theoretical examples consisting of a beam on a Kelvin foundation are used to validate the 
equations and some conclusions concerning the critical load speeds are presented. Then, the 
example of a slab resting on the surface of a half-space is considered and the results obtained 
with the proposed methodology are compared with the results obtained with a time domain 
3D FEM procedure. It is observed that the proposed procedure yields slightly different results 
for moving loads with constant magnitude (mostly due to the incorrect simulation of the half-
space at very low frequencies) and that it yields excellent results for oscillating moving loads. 
This dynamic component of the load is crucial for a correct prediction of the vibrations at 
remote positions. 

The influence of the speed of the load on the response of the slab-foundation system is also 
investigated, and it is concluded that while for foundations consisting of homogeneous half-
spaces there is a critical load speed that coincides with the Rayleigh wave velocity of the half-
space (but only if the load magnitude is constant in time), for foundations consisting of 
layered half-spaces the critical load speeds depend on the stratification of the domain (in the 
sense that it defines the dispersion curves) and on the frequency of the moving load. Hence, 
both the stratification of the foundation and the dynamic component of the loads are important 
aspects to consider in the calculation of the response of structures subjected to moving loads 
or vehicles. 

4.3 Moving vehicles 

4.3.1 Introduction 

The forces that a moving vehicle transmits to the supporting structure can be divided into two 
components: the quasi-static part, which corresponds to the weight that each contact point 
bears under static conditions; and the dynamic part, that results from the interaction between 
the two structures. In the railway case, despite the fact that in most cases the dynamic forces 
are less than 15% of the quasi-static component (Kruse and Popp, 2001; Katou et al., 2008), 
their consideration is of the greatest importance for the calculation of the response of the 
track-soil system, namely at remote positions (free-field). The calculation of the dynamic 
forces is addressed in the present section. 

As mentioned in the introduction to this chapter, the dynamic response of the vehicle is 
caused, among other aspects, by longitudinal variations of the stiffness of the supporting 
structure and by geometric irregularities at the contact between the vehicle and the structure. 
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Other aspects that influence the dynamic behavior of the vehicle-track system are the 
geometry and the dynamic properties of the track and vehicle, and the travel speed of the 
vehicle. All these aspects must be considered when developing a numerical model for the 
solution of this problem. 

In this work, since it is assumed that the track-soil system is invariant in the longitudinal 
direction, the variations of the stiffness cannot be considered and consequently the excitation 
due to the discrete sleeper support is not accounted for. It must be mentioned, however, that 
there are works in the literature in which the periodicity of the track-soil system is considered 
(Gupta et al., 2007; Gupta et al., 2008; Gupta et al., 2010). The geometric irregularities at the 
contact between the vehicle and the supporting structure (in the railway case, wheel-rail 
contact) are considered by means of a position dependent gap/irregularity profile. The 
irregularity profile may account for the unevenness of the track and for the imperfections of 
the wheels (Wu and Thompson, 2002). 

Besides the assumption of invariance in the longitudinal direction, this work also assumes that 
the vehicle and the supporting structure are linear and that the contact between the two 
structures is also linear. These two assumptions, which are commonly used by other authors 
(Metrikine et al., 2005; Lombaert et al., 2006), allow the analyses to be performed in the 
frequency domain, which is very convenient, since the 2.5D BEM-FEM yields results in the 
wavenumber-frequency domain and their transformation to the space-frequency domain is 
straightforward. 

Before proceeding to the description of the solution method, it must be mentioned that if the 
non-linear behavior of the vehicle or track is to be considered, or if the loss of contact 
between the wheels and the rail is to be studied, then frequency domain procedures lose their 
applicability and therefore time domain procedures must be used (Lane et al., 2007; Katou et 
al., 2008; Neves et al., 2012). Hybrid methods, in which the response of the track-soil system 
is first obtained in the 2.5D domain, then transformed to the space-time domain, and finally 
given as inputs to time domain procedures, can also be applied (Grundmann and Lenz, 2003; 
Müller et al., 2008). Nevertheless, the increase of complexity associated with these 
approaches is considerable and would force simplifications in other components of the 
system, namely in the boundary conditions of the track and length of the model. 

In the next sub-sections, the procedure used to calculate the dynamic forces that the vehicle 
transmits to the supporting structure is explained and exemplified. 

4.3.2 Vehicle – structure interaction 

Consider a vehicle moving with constant speed V  on top of an invariant structure, as 
represented in Figure 4.25a. The vehicle contacts with the structure through CPN  contact 
points which may or may not belong to the same longitudinal alignment (in the example 
shown in Figure 4.25, the contact points belong to two distinct horizontal alignments). 
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Figure 4.25: Vehicle-structure interaction – cross-section perspective (left) and longitudinal 
perspective (right): a) coupled system; b) substructuring method 

The solution method for the vehicle-structure interaction consists in a substructuring 
technique (Figure 4.25b), in which the vehicle and the supporting structure are modeled 
independently and in which the equilibrium of forces and the compatibility of displacements 
is enforced between the CPN  contact points of the vehicle and the corresponding points of the 

supporting structure. The objective is to find the moving forces ( )if t  ( CP1...i N= ) that the 

vehicle transmits to the supporting structure. Once the forces ( )if t  are known, the response 

fields both of the vehicle and of the supporting structure can be calculated using the governing 
equations of each of the domains. 

The compatibility of displacements is imposed through the condition 

( ) ( ) ( )v s
0 0,i i i i iu t u y Vt t u y Vtδ= + + +  (4.32) 

in which ( )v
iu t  is the displacement of the thi  contact point of the vehicle, ( )s

0 ,i iu y Vt t+  is the 

displacement of the corresponding moving contact point of the supporting structure and 
( )0i iu y Vtδ +  is the irregularity/gap experienced by the contact point. The quantities s

iu  and 

iuδ  are defined in a fixed frame of reference, and so 0iy y Vt= +  represents the longitudinal 

position of the thi  contact point at the generic instant t , while 0iy  represents the 
corresponding position at the instant 0t = . 

The displacements of the structure ( )s
0 ,i iu y Vt t+  result from the contribution of all CPN  

contact points of the vehicle, and so they are calculated by the summation 

x  

z  

y  

z  

V  

a) 

b) 

( )if t  ( )if t  

V  
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( ) ( )
( ) ( )

CP

0

s s
0 0

1

, ,
j j

N

i i ij i f t y y Vt
j

u y Vt t u y Vt t
δ− − +

=

+ = +∑  (4.33) 

where ( )
( ) ( )0

s
0 ,

j j
ij i f t y y Vt

u y Vt t
δ− − +

+  are the displacements that the force ( )jf t−  (force transmitted 

by the vehicle through the thj  contact point) induces at the moving contact point i . The 
negative sign is used to account for the equilibrium condition. 

Since linear behavior and linear contact is assumed, eq. (4.32) can be transformed to the 
frequency domain, becoming 

( ) ( ) ( )v s
0 0 0 0,i i i iu u y Vt uω ω δ ω= + +ɶ ɶ ɶ  (4.34) 

with 

( ) ( ) 0iv v
0 e dti iu u t tωω

+∞
−

−∞

= ∫ɶ  (4.35) 

( ) ( ) 0is s
0 0 0, , e dti i i iu y Vt u y Vt t tωω

+∞
−

−∞

+ = +∫ɶ  (4.36) 

( ) ( ) 0i
0 0 e dti i iu u y Vt tωδ ω δ

+∞
−

−∞

= +∫ɶ  (4.37) 

Some comments must be made about these three frequency domain variables. The variable 
( )s

0 0,i iu y Vt ω+ɶ  represents the frequency domain displacements of a point with longitudinal 

coordinates 0iy y Vt= + , i.e., a point that moves with the same speed as the set of loads. As 
mentioned in section 4.2.3 (equation (4.21)), the response field of points moving with the 
same speed as the load oscillate also with the same frequency as the load. Hence, accounting 
for (4.33) and (4.21), the integral (4.36) can be replaced with 

( ) ( )

0 0
0 0 0CP

i
is 0

0 0 0
1

e
, , e d

2

ij

j i

j i

h

y y
y yN V

V
i i j ij

j

u y Vt f u
V V

ω
ωω ω

ω ω ω ω
π

−
− −+∞

= −∞

− 
+ = −  

 
∑ ∫

ɶ

	






�






�

ɶɶ ɶ  
(4.38) 

where ( )0jf ωɶ  is the frequency content of the load transmitted by the thj  contact point and 

calculated with 

( ) ( ) 0i
0 e dtj jf f t tωω

+∞
−

−∞

= ∫ɶ  (4.39) 

and where ( ),ij yu k ωɶ  is the transfer function that relates the displacements of the alignment 

associated with the thi  contact point with the forces at the alignment associated with the thj  
contact point. In this work, the referred to transfer function is calculated with the 2.5D BEM-
FEM procedure explained in chapter 3. 

On the other hand, the irregularity profile iuδ  is a position dependent function, and so it is 
more convenient to define its Fourier transform in terms of the wavenumber yk  rather than 

the radial frequency 0ω . This leads to 
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( ) ( ) ie dyk y

i y iu k u y yδ δ
+∞

−∞

= ∫  (4.40) 

Hence, the Fourier transform (4.37) can be replaced with the more convenient expression 

( )
0

0i
0

0

1
e

iy
V

i iu u
V V

ω ω
δ ω δ

 
= − 

 
ɶ  (4.41) 

Finally, the vehicle displacements v
iuɶ  are obtained through the solution of the differential 

equations that governs its behavior. In this work, a FEM procedure is used to solve these 
equations (whether the elements are flexible or rigid), and so the displacements of the vehicle 
are obtained by solving the linear system 

111 12 1

221 22

    
=    

    

uK K f

uK K 0

ɶ ɶ ɶɶ

ɶ ɶ ɶ
 (4.42) 

in which the index 1 refers to the degrees of freedom that contact with the structure, the index 
2 refers to the remaining dofs, mnKɶ  are the frequency domain matrices obtained with 

2
0 0imn mn mn mnω ω= + −K K C Mɶ  (being mnK , mnC  and mnM  the stiffness, damping and mass 

matrices of the vehicle model), and in which muɶ  is a vector containing the vehicle 

displacements and mfɶ  is a vector containing the applied forces. The vector 1uɶ  collects the 

vehicle displacements v
iuɶ  and the vector 1f

ɶ  collects the interaction forces ( )0jf ωɶ . It is 

assumed that the remaining dofs are free of forces and therefore 2 =f 0ɶ . 

System (4.42) can be condensed into 

( )1
11 12 22 21 1 1

−− =K K K K u fɶɶ ɶ ɶ ɶ ɶ  (4.43) 

and solved for 1uɶ , being thus obtained 

1 1=u Ffɶɶɶ  (4.44) 

with 

( )
11

11 12 22 21

−
−= −F K K K Kɶ ɶ ɶ ɶ ɶ  (4.45) 

By collecting all irregularities/gaps ( )0iuδ ωɶ  in the vector δuɶ  and all the coefficients ijhɶ  

defined in equation (4.38) in matrix Hɶ , the equality (4.34) can then be written as 

1 1 δ= − +Ff Hf uɶ ɶɶ ɶ ɶ  (4.46) 

This equation can be solved for the interaction forces 1f
ɶ , yielding 

( )
1

1 δ
−

= +f F H uɶ ɶ ɶ ɶ  (4.47) 

The irregularity/gap profiles ( )iu yδ  are usually defined as combinations of trigonometric 

functions of the type sine and cosine, i.e., 

( ) ( ) ( )c s
1

cos sin
ky

N

i ,l yl ,l yl
l

u y A k y A k yδ
=

= +∑  (4.48) 
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Each harmonic ylk  is associated with a wavenumber content ( ),i l yu kδ ɶ  calculated with 

( ) ( ) ( ) ( ) ( ), c s , c s ,i ii l y ,l ,l y y l ,l ,l y y lu k A A k k A A k kδ π δ π δ= + − + − +  (4.49) 

and with a corresponding frequency content ( ), 0i luδ ωɶ , which according to (4.41) is 

( )
( ) ( )0 0

0 0i ic s c s0 0
, 0 , ,

i i
e e

i iy y,l ,l ,l ,lV V
i l y l y l

A A A A
u k k

V V V V

ω ωπ πω ω
δ ω δ δ

+ −   
= − − + − +   

   
ɶ  (4.50) 

The insertion of gap profiles of type (4.50) in equation (4.47) leads to interaction forces 

( ), 0j lf ωɶ  of the form 

( ) ( ) ( )0 0
, 0 c s , c s ,i ij l ,l ,l y l ,l ,l y lf B B k B B k

V V

ω ω
ω δ δ

   
= + − − + − − +   

   
ɶ  (4.51) 

whose corresponding time domain functions are 

( ) ( ) ( ) ( )0i
, , 0 0 c , s ,

1
e d cos sin

2
t

j l j l ,l y l ,l y l

V
f t f B k V t B k V tωω ω

π π

+∞

−∞

 = = + ∫ ɶ  (4.52) 

The interaction forces are now known in terms of sines and cosines and they can be combined 
with equation (4.42) to obtain the response of the vehicle, or with the equations developed in 
section 4.2 to obtain the response of the supporting structure. [The factors V  and π  appear 
alternately in the denominator and numerator of equations (4.50) and (4.52), and therefore can 
be disregarded in the numerical implementation of the method.] 

Before proceeding to the validation examples, notice that the equations derived above are not 
restricted to the vertical direction and therefore they can be used to study the transverse 
interaction as well. Nevertheless, in the railway case, under the assumptions of straight lines 
and constant movement, the transverse forces assume significant values only if there is a 
considerable misalignment of the rails in the horizontal direction, which is not likely to 
happen in high-speed lines, and therefore the horizontal interaction is not considered in this 
work. As for the interaction in the longitudinal direction, it is assumed that the vehicle moves 
with constant speed, which implies the resultant of forces in this direction to be null. Apart 
from the reactions of the supporting structure, it is assumed that no other force is applied at 
the vehicle, and so the reactions in the longitudinal direction must be null. For this reason, the 
interaction in the longitudinal direction cannot be considered. Hence, in this work, only the 
vertical interaction is considered, but since the contact points can belong to different 
alignments, three-dimensional modeling of the vehicle becomes possible, thus enabling the 
study of the rolling motion of the vehicle.  

Next, two vehicle-structure interaction problems are solved with the equations derived in this 
section and the results are compared with the results obtained with a time domain 3D-FEM 
procedure. The first example consists of a point mass moving on top of a Winkler foundation, 
while the second example considers a multi-degree of freedom vehicle moving on top of a 
ballast track. 

4.3.3 Point mass moving on top of a beam on a Kelvin foundation 

Consider a mass M  moving with speed V  on top of an Euler beam with, flexural stiffness EI  
and unit mass m , that rests on a Kelvin foundation with stiffness k  and damping c , as 
represented in Figure 4.26.  
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Figure 4.26: Point mass moving on top of a beam on a Kelvin foundation 

The moving mass contacts with the supporting structure by means of a suspension system 
consisting of a spring with rigidity K  and a dashpot with damping C . Consider also that the 
surface of the Euler beam is uneven and that the profile of the unevenness is described by the 
function ( ) ( ) ( )c scos siny yu y A k y A k yδ = + . The corresponding unevenness, as felt by contact 

point 1, has frequency content solely at the frequency 0 yk Vω = , and its value is 

( )
0

0i

c si e
y

VA A
ω

δ = −uɶ  (4.53) 

( 0y  is the position of the point mass at the instant 0t = ; the factors π  and V  are neglected.) 

The vehicle responds also with frequency 0ω , and thus its dynamic stiffness matrix is  

0 0
2

0 0 0

i i

i i

K C K C

K C K C M

ω ω

ω ω ω

+ − − 
=  − − + − 

Kɶ  (4.54) 

while its flexibility matrix Fɶ  (in this case a scalar) is 

( )

2
0 0

2
0 0

i

i

K C M

M K C

ω ω

ω ω

+ −
= −

+
Fɶ  (4.55) 

On the other hand, based on equation (4.24), the expression for ijhɶ  is 

( )

0 0 0 0
0

0 0

3 44i i0 0

1 1

imag 0

1
i e sign e

j i j i
j

j i
l

y y y y
j iV V

ij
l k l k

k ly y

V

y yV
h

EI V

ω ω

ω

ω ω

− −
−

= =

≠− 
>  

 

 
−   

=    −   
 

∑ ∏ɶ  (4.56) 

being the poles kω  and lω  the roots of the polynomial (4.25). Since there is only one contact 

point, matrix Hɶ  is also a scalar. [Note: when i j= , the value ijhɶ  returned by eq. (4.56) is null, 

a consequence of the sign factor. The sign factor is associated with the complex half-plane 
used in contour integration, which in turn depends on the sign of the imaginary component of 

the term 0 0j i

l

y y

V
ω

− . When the imaginary part of this term is null (i.e., when 0 0i jy y= ), the 

integrating functions do not vanish neither in the upper nor in the lower complex half-planes, 
and consequently contour integration can no longer be applied. Nevertheless, the function ijhɶ  

,EI m  

,k c  

V  

,K C  

M  

1 

2 
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must be continuous with the argument 0 0j iy y− , and so, when 0 0i jy y= , ijhɶ  can be evaluated 

with (4.56) by calculating its limit when 0 0j iy y−  tends to zero, either from the positive side 

or from the negative side.]  

With the values of Fɶ , Hɶ , and δuɶ  known, equation (4.47) can be employed to obtain fɶ . To 
exemplify the procedure, the values indicated in Table 4.1 are given to the beam and 
foundation, point mass, and irregularity profile uδ . 

Table 4.1: Properties of track and Vehicle 

Beam and foundation  Point mass   uδ  

61.222 10 PaEI = ×   2003 kgM =    c 0A =  

120.89 kg/mm =    91.94 10 N/mK = ×   s 0.001 mA =  

6200 10 N/mk = ×   0C =  (no damping)  2 /2.4 rad/myk π=  

330 10  Ns/mc = ×   200 m/sV =  

(as in section 4.2)   0 0y =  

For the properties indicated above, the following values are obtained: 0 166.667 rad/sω π= ; 
91.3056 10 m/N−= − ×Fɶ ; 9 108.2465 10 i 9.3581 10 m/N− −= × − × ×Hɶ ; 0.001 i mδ = − ×uɶ ; 

4 51.9078 10 i 1.4150 10 N= × − × ×fɶ . The interaction force is then of the form 

( ) ( ) ( )3 4 519.649 10 1.9078 10 cos 166.667 1.4150 10 sin 166.667f t t tπ π= × − × × − × × , where the static 

term corresponds to the weight W  of the SDOF (W Mg= , being 29.81 m/sg =  the gravity 
acceleration). 

To validate these results, the example is solved with a time domain FEM approach in which 
the mass-beam interaction problem is solved according to the algorithm described in Neves et 
al. (2012). Figure 4.27 compares the obtained interaction forces ( )f t  and the displacements 

of the beam at the section 0y = . As can be observed, the results agree perfectly, which 
validates the expressions developed in this section. 

Similarly to the case of moving loads, the speeds V  that lead to resonance of the mass-beam 
system can also be determined for a given irregularity profile uδ . Figure 4.28 plots the 
maximum interaction force ( )f t  and the maximum displacement of the beam for a range of 

speeds varying from 50 to 1000 m/s, considering both damped foundation and non-damped 
foundation. 

The unique peak of the interaction force, which coincides with the first peak of the beam 
displacements, occurs at the speed 100 m/sV ≈  and corresponds to the resonance of the 
moving mass-suspension system. For very stiff foundations, this resonance occurs at the 
speed 376 m/syV K M k= = , i.e., at the speed for which the displacements prescribed at the 

contact point oscillate with the natural frequency of the mass-spring system ( nat K Mω = ). 

However, in this case, due to the flexibility of the foundation, the resonance of the coupled 
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mass-beam structure is shifted to lower speeds. No other speed causes the resonance of the 
mass-spring system, as suggested in the left plot of Figure 4.28. 

 

Figure 4.27: Interaction force ( )f t  (left) and beam displacements ( )u t  (right). Blue line – 

current work; black circles: time domain FEM 

 

Figure 4.28: Interaction force ( )f t  (left) and maximum beam displacement ( )u t  (right). Blue 

line – 330 10 Ns/mc = × ; red line - 0 Ns/mc =  

The second peak of the beam displacements occurs at the speed 278 m/sV ≈ . This speed is the 
first speed at which the line 0 yk Vω =  intercepts the yellow region of Figure 4.4: the line 

0 yk Vω =  relates the frequency of the interaction force with the speed of the point mass, while 

the yellow regions of Figure 4.4 correspond to the pairs ( 0,V ω ) that lead to amplification of 
the beam displacements; it is therefore expected that the response is amplified when the line 
crosses this region. 

Finally, a third peak can be distinguished in the right plot of Figure 4.28 at the speed 
510 m/sV = . This speed corresponds to the critical load speed of the beam (as defined in 

section 4.2), and the associated peak is observed because the interaction force ( )f t  contains a 

static component that is independent of the moving speed. For the viscous foundation 
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( 330 10 Ns/mc = × , blue line), this peak is strongly attenuated to the point that it can hardly be 
distinguished. 

4.3.4 Multi-degree of freedom vehicle moving on top of a ballast track 

The second example considered herein corresponds to a multi-degree of freedom vehicle 
moving on top of a ballast track (Figure 4.29). The track is composed of two UIC60 rails on 
top of a slab that rests on a ballast foundation, which lies on a rigid base (the rigid base is 
considered instead of a half-space in order to avoid the use of boundary elements in the time 
domain approach; also, since this example is used only for validation purposes, the slab is 
used instead of sleepers in order to make the 2.5D model and the time domain model 
geometrically the same). The rails and the slab are connected through rail pads. 

 

Figure 4.29: Multi-degree of freedom vehicle moving on top of a ballast track 

The vehicle consists of a rigid mass with bouncing ( zu ), pitching ( xθ ) and rolling ( yθ ) 

inertias, suspension systems, and wheels. Contact springs establish the connection between 
the vehicle and the rail. 

The properties of the components of the problem are given in Table 4.2 (the properties of the 
ballast and subballast are taken from the work (Ribeiro et al., 2009), while the multi-degree of 
freedom vehicle corresponds to a bogie of an Alfa-Pendular train (Ribeiro et al., 2013)). 

The main differences between this example and the example in subsection 4.3.3 reside in the 
transfer functions ijhɶ , which in this case cannot be determined analytically, being instead 

approximated by the summation 

0 0
0 0 0 0 0
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i i
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i iV V
ij ij i ij i

i

h u u
V V V

ω
ω ωω ω ω ω

ω ω ω
π

−
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 − +   
≈ ∆ +    

     
∑ɶ ɶ ɶ  (4.57) 

and in the matrices Fɶ  and Hɶ  and the vectors δuɶ  and fɶ , which have dimension 4 instead of 
being scalars. 

Subballast 
Ballast 

Rail 

Rail pad 

0.25 [m] 
0.35 [m] 
0.22 [m] 

0.
5[

m
] 

0.
5[

m
] 

1.
6[

m
] 

0.
6[

m
] 

0.
6[

m
] 

x  
y  

z  

Slab 

Rigid mass 

Wheel 

Suspension system 
2.75 [m] 

1 2 

3 4 



Chapter 4 – Invariant structures subjected to moving loads and moving vehicles 

146 

Table 4.2: Properties of track and vehicle 

( ) ( )

( ) ( ) ( ) ( )

3

6

6

9

3 4 2

9

Elastic modulus Mass density Poisson ratio

Pa kg/m

Ballast 70.0 10 1529 0.15

Subballast 70.0 10 2090 0.30

Slab 10.0 10 1200 0.16

Elastic modulus Mass density Poisson ratio Moment inertia Area

Pa kg/m m m

Rail 210 10 78

x

E

E I A

ρ ν

ρ ν

×

×

×

×

( ) ( )

( ) ( ) ( ) ( ) ( )

4 3

2 2

6 3

2 2

50 0.3 3.055 10 7.686 10

Stiffness Damping

N/m N.s/m

Rail pad 170 10 40 10

Mass Pitching inertia Rolling inertia Stiffness Damping

kg kg.m kg.m N/m N.s/m

Rigid mass 4930 2440 3615 --- ---

Rigid wheel 840 --- --- --- --

x y

k c

M M M K C

− −× ×

× ×

3 3

9

-

Suspension --- --- --- 564 10 18 10

Contact spring --- --- --- 1.2 10 ---

× ×

×

 

To excite the rolling motion of the vehicle, different irregularity profiles are given to each of 
the rails: the left rail is given an irregularity profile of the form 

( ) ( ) ( )left 2 2 2
3 3 50.025cos 0.01sin 0.01sinu y y yδ π π π= − − + , while the irregularity profile associated 

with the right rail is of the form ( ) ( )right 2 2
3 50.02sin 0.01cosu y yδ π π= + . The profiles are defined 

by the two wavelengths 1 3 mλ =  and 2 5 mλ = , whose corresponding wavenumbers are 
2

1 3 rad/myk π=  and 2
2 5 rad/myk π=  (these profiles are not based on any real measurement). 

Next, the interaction forces between the wheels and rails are calculated for a vehicle moving 
with speed 80 m/sV = . For the 2.5D FEM model, the cross-section is divided into 80 solid 
elements of 4 nodes (to simulate ballast, subballast and slab), two spring-dashpots couples (to 
simulate the rail pads) and two Euler beams (to simulate the rails). For the 3D time domain 
model, 400 slices with an equivalent cross section and thickness 0.25 m are used, satisfying a 
total length of 100 m. The results are plotted in Figure 4.30. 
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Figure 4.30: Interaction forces if : blue line = time domain approach; red line = 2.5D 
approach 

It can be observed that the results obtained with the two approaches are identical, existing 
small differences at some local maxima or minima, but being the responses in perfect phase. 
Furthermore, Figure 4.30 confirms that the interaction forces are entirely defined by two 
frequencies, which in this example are 160

1 1 3 rad/syk Vω π= =  and 2 2 32 rad/syk Vω π= = .  

The differences reported above can be justified by the longitudinal discretization of the 
domain, which is required for the 3D time-domain approach, and that violates the assumption 
of continuity and infinite length of the 2.5D model. While for the example of the Kelvin 
foundation treated in the previous section this “problem” can be easily solved by decreasing 
the discretization size and increasing the total length of the model used in the time-domain 
approach, for the current example doing so results in an excessive number of linear equations 
to be solved, and therefore in impracticable computational times. Nevertheless, given the 
good match between the two approaches, it can be concluded that the equations derived in this 
section yield good results also for structures with complex geometries and for vehicles 
contacting with the supporting structure at more than one contact point. 

4.3.5 Conclusion 

In this section, the equations needed to obtain the interaction forces between a supporting 
structure and a moving vehicle are derived and validated. The derivation of the equations is 
based on the following three assumptions: 1) both the supporting structure and the vehicle 
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behave linearly; 2) there is never loss of contact between the vehicle and the supporting 
structure; 3) the vehicle moves from minus infinity to plus infinity with constant speed. The 
first two assumptions allow the calculation to be performed in the frequency domain, as they 
are consistent with the principle of superposition of effects. The third assumption allows for 
the calculation to be cast in the wavenumber-frequency domain. 

The equations here derived are used to determine the interaction forces between a moving 
mass and a beam on a Kelvin foundation, and the interaction forces between a multiple DOF 
vehicle and a ballast track that lies on a rigid base. In both cases, the forces obtained with the 
derived equations are compared with the forces obtained with a space-time domain procedure. 
A good agreement between the two approaches is observed, which validates the equations. 

The example of the point mass moving on top of a beam on a Kelvin foundation is also used 
to calculate the critical velocities of the system. It is concluded that the critical speeds are 
related both to resonance of the mass-suspension system and to the critical load speeds of the 
supporting structure (discussed in section 4.2). 

The calculation of the interaction forces (generation phase) is the last step described in this 
work, since the propagation stage (response of the supporting structure) and the reception 
stage (response of a nearby structure/building) have already been described in section 4.2 and 
sub-section 3.2.6, respectively. In the subsequent section, an illustrative example is solved in 
which the three phases are accounted for and linked. 

4.4 Vibrations induced by a moving vehicle in a nearby structure 

4.4.1 Introduction and general description of the example 

In the previous chapters and sections it is discussed how to deal separately with the three 
stages of vibrations induced by moving vehicles: the generation stage is discussed in section 
4.3; the propagation stage is discussed in section 4.2 (these first two stages rely on the transfer 
functions calculated with the 2.5D BEM-FEM procedure explained in chapter 3); and the 
reception stage is discussed in sub-section 3.2.6. In the present section, all the three stages are 
put together in an illustrative example used to explain how to link all the tools developed in 
this work. 

In the example considered next, the response of a building due to a train passing in a nearby 
track is calculated. The soil corresponds to the layered domain b) described in “Example 3” of 
sub-section 4.2.4, the track corresponds to the supporting structure represented in Figure 4.29, 
and the vehicle corresponds to the X2000 train, whose geometries and properties can be found 
in Alves Costa (2011, p. 281) and are transcribed in Figure 4.31 and Table 4.3. Together with 
the train geometry, Figure 4.31 also presents the theoretical model used for each vehicle of the 
train: the vehicle model consists of 7 rigid bodies that represent the car-body, the bogies and 
the axles; the distinct bodies are connected through the primary and secondary suspension 
systems. Contact springs establish the connection between the axles and the rails (stiffness: 

92.4 10 N/m× ). The train moves at the speed 60 m/sV = . 
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Figure 4.31: X2000 train – geometry and single vehicle model (Alves Costa, 2011) 

Table 4.3: Properties of the vehicles of the X2000 train (Alves Costa, 2011) 

3 3 3

2 3 3 3

6 6 6

3 3

Leading vehicle Middle vehicles Rear vehicle

Mass (kg) 48 10 31 10 35 10
Car-body

Bouncing inertia (kg.m ) 760 10 1450 10 1100 10

Secondary Stiffness (N/m) 1 10 0.8 10 0.9 10

suspensions Damping (N.s/m) 70 10 60 10 60

× × ×

× × ×

× × ×

× × 3

3 3 3

2 3 3 3

6 6 6

3 3 3

10

Mass (kg) 8.4 10 5.4 10 7.2 10
Bogie

Bouncing inertia (kg.m ) 12 10 5.7 10 7.6 10

Primary Stiffness (N/m) 2.4 10 1.8 10 2.0 10

suspensions Damping (N.s/m) 80 10 60 10 60 10

Axles Mass (kg) 2050 1300 1300

×

× × ×

× × ×

× × ×

× × ×

 

The same irregularity profile is considered for the left and right rails. This feature, together 
with the symmetry of the track, prevents the rolling motion of the vehicle, and therefore it is 
sufficient to consider a 2D model for the vehicle. The irregularity profile considered in this 
example is artificial, and is generated according to the function (Alves Costa, 2011) 

( ) ( ) ( )c s
1

cos sin
kN

j yj j yj
j

u y A k y A k yδ
=

= +∑  (4.58) 

( ) ( ) ( )c s rcos sin 2j j j j j j j yj yA A A A A S k kθ θ= = = ∆  (4.59) 

Primary suspension systems 

Secondary suspension systems 

Car-body 

Bogie Bogie 

Axles 
Contact springs Contact springs 
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where jθ  is a random variable with uniform distribution in the interval ]0,2 [π , rS  is the power 

spectral density function of the rail, and yk∆  is the increment in the longitudinal wavenumber. 

The function rS  used to define the irregularity profiles is also taken from Alves Costa (2011) 
and assumes the form 

( ) 8 3.5
r 1.36 10y yS k k− −= ×  (4.60) 

The wavenumber sample contains 26kN =  equally spaced values ( 0.3 rad/myk∆ = ), being the 

first 1 0.15 rad/myk =  (the corresponding maximum wavelength of the irregularity profile is 

approximately 42 m). Figure 4.32 plots the coefficients cjA  and sjA  and the corresponding 

irregularity profile ( )u yδ . 

 

Figure 4.32: Left image = coefficients cjA  (blue) and sjA  (red); right image = irregularity 

profile ( )u yδ  

The nearby structure consists of a two story building resting on the surface of the soil. Its 
geometry is indicated in Figure 4.33. The floors and roof are assumed rigid, and the footings 
are assumed rigid and massless. The total mass per unit surface (including self-weight and 
overweight loads) is 2

floor 2160 kg/mm =  for the floors and 2
roof 1080 kg/mm =  for the roof. The 

columns are made of concrete and their cross section is 20.40 0.40 m× . They are modeled with 
Euler beams and discretized as indicated in Figure 4.33. The dimensions of the footings are 

21.5 1.5 m× , and each is divided into 25 square boundary elements of constant expansion. The 
distance between the center of the track and the closest column alignment is 20.0 m. 
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Figure 4.33: Geometry of the building and discretization of the columns 

4.4.2 Step 1: eigenpairs of the soil (TLM) 

The first step to solve this problem corresponds to the calculation of the vibration modes of 
the soil. With that objective, the TLM matrices indicated in Chapter 2 must be assembled and 
then used as inputs in the algorithms described in Table 2.7 and Table 2.8. The obtained 
eigenpairs are then used to calculate the transfer functions and boundary element matrices 
required for the three stages of the problem. 

In this example, all integrals in dω  are calculated numerically using a frequency sample 
consisting of 1500 frequencies, with frequency step 0.2 rad/s ( 0.1 hz)fω π∆ = ∆ =  and initial 
frequency 1 2ω ω= ∆ . The TLM modes must be calculated for this sample of frequencies. 

4.4.3 Step 2: transfer functions 

In the second step, the 2.5D BEM-FEM procedure described throughout sections 3.3 and 3.4 
is used to calculate the transfer functions between sources at the rails and receivers at the rails, 
soil surface, and soil-building interaction surface. The eigenpairs calculated in step 1 are used 
here to calculate the 2.5D boundary element matrices of the soil. 

Since the track and the irregularity profiles are symmetric, the transfer functions are 
calculated for a pair of vertical loads applied at the rails and with amplitude 0.5 N . Figure 
4.34 plots the induced vertical displacements (transfer functions) of the rails and of receivers 
at the positions of columns A, B and C, for the wavenumber-frequency pairs 
( , ) ( , )yk Vω ω ω= , 10( , ) ( , )y yk V kω ω ω= +  and 10( , ) ( , )y yk V kω ω ω= −  (the second and third 

pairs relate to the integration paths associated with the wavenumber 10y yk k=  of the 

irregularity profile). 

The first feature to be observed in Figure 4.34 is that the transfer functions for the pairs 

10( , ) ( , )y yk V kω ω ω= +  (red line) are negligible when compared with those of the other pairs 

represented in the figure. Thus, the contribution of that branch for the final response is 
negligible. 
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Figure 4.34: Transfer function at the rail and column: blue line - yk Vω= ; red line - 

10y yk V kω= + ; green line - 10y yk V kω= −  

Regarding the path ( , ) ( , )yk Vω ω ω=  (blue line), it is observed that its contribution is limited 

to the lower frequencies, and that the contributing frequency range is narrower for receivers at 
the columns than for receivers at the rail. In fact, the farther a receiver is from the track, the 
narrower is the contributing frequency range. 

As a last observation, the contribution of the path 10( , ) ( , )y yk V kω ω ω= −  (green line) is more 

expressive in the frequency interval [130,260] rad/s . This range limits the frequencies at which 
the referred to path intercepts the dispersion curves of Figure 4.23. 

In general, the absolute value of the transfer functions decreases as the distance to the track 
increases. 

4.4.4 Step 3: generation stage – dynamic forces 

After calculating the transfer functions for receivers at the rails, these functions are used in 
conjunction with the irregularity profile and the FEM matrices of the vehicle in order to 
calculate the dynamic forces that the vehicle transmits to the track (procedure explained in 
section 4.3). Figure 4.35 plots the dynamic forces of the front and rear axles of the train. 
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As expected, since the front vehicle is heavier than the rear one, the interaction forces of the 
front axle are larger than the interaction forces of the rear axle. Also observed in the figure is 
that for both axles the interaction forces oscillate around 10% above and below the static 
force, as expected according to Kruse and Popp (2001) and Katou et al. (2008). 

 

Figure 4.35: Interaction forces of front and rear axles. Left figures: cosine term cA  (blue), sine 
term sA  (red), and amplitude (black) of forces as a function of the frequency of oscillation. 

Right figures: time domain forces 

4.4.5 Step 4: propagation stage – response of the supporting structure 

After quantifying the dynamic forces, these forces and the transfer functions calculated in step 
2 are used in the equations derived in section 4.2 in order to obtain the response of any point 
of the track-soil system. Hence, in this step, the frequency domain displacements of the 
boundary nodes of the discretized soil-building interaction surface are calculated, being for 
now the presence of the building neglected (weak coupling). These displacements serve as 
input for the last step, the reception stage, in which the response of the building is finally 
calculated. 

In order to illustrate some results of this fourth step, the frequency and time domain 
displacements of the rails and of column A and the frequency and time domain velocities of 
column A are plotted in Figure 4.36. The results that are obtained when considering only the 
quasi-static component of the interaction forces are also plotted in the same figure. 
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Figure 4.36: Displacements of rail and column A and velocities of column A: blue = quasi-
static and dynamic forces; red = quasi-static forces only 

In the first two rows of Figure 4.36, it is observed that the red line coincides with the blue 
line. This observation suggests that, at least up to the distance considered (approximately 
20 m), the quasi-static component of the interaction forces is the major contributor to the 
displacements. Nonetheless, the rapid oscillations of the blue line (observed in the time 
domain displacements of column A) indicate that the dynamic component of the interaction 
forces has a greater contribution to the velocities than the quasi-static component. Such is 
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confirmed in the last row of Figure 4.36, and justifies why the dynamic component of the 
interaction forces have an important role in the vibrations at the far-field. 

4.4.6 Step 5: reception stage – response of the building 

In this last step, the response of the building due to an incoming wave-field is calculated using 
the 3D BEM-FEM procedure discussed in section 3.2. With that objective, the eigen modes 
calculated with the TLM in the first step are used in this step to calculate the boundary 
element matrices U  and P  of the soil-building interaction surface. The frequency domain 
displacements calculated in step 4 for receivers at the same surface are assembled in vector 

incuɶ  and used as indicated in subsection 3.2.6 to form the exterior forces BEMF . Knowing the 
matrices U  and P , the vector BEMF  and the FEM matrices of the building, one is ready to 
employ equations (3.26)-(3.31) and calculate the frequency domain displacements of the 
building. 

Notice that in this example the building rests at the surface of the soil and therefore incuɶ  
corresponds to the incident displacements as calculated in step 4. If the structure was buried 
or partially buried, then the incident stresses would also contribute to incuɶ , as suggested in 
equations (3.35)-(3.36). 

In the ensuing, the responses of the floors and roof are calculated. The responses are 
calculated at the intersections between the slabs and the mid column of the alignment closest 
to the track, whose points are denoted with Di in Figure 4.33. Figure 4.37 plots the frequency 
and time domains displacements while Figure 4.38 plots the frequency and time domains 
velocities. The response of point D1 is represented in blue, of point D2 in red and of point D3 
in black. The responses of points Di are accompanied with the incident displacements and 
velocities at footing A, represented in green. 

The transverse and longitudinal displacements represented in Figure 4.37 are in phase and 
tend to increase as the receiver is placed higher in the structure, which leads to the conclusion 
that the horizontal response of the building is dominated by the first horizontal mode. The 
natural frequency of this mode is 15 rad/sω =  and, around that frequency, the horizontal 
responses present a peak that is not observed in the incident displacements field. [In the time 
domain plots, the oscillations at earlier and later times are consequence of the low damping of 
the building and of the large frequency step (0.1 Hz) used in the inverse Fourier transform. 
Such would not be observed if the frequency step was made smaller or if damping was 
considered] 

The vertical displacements are independent of the floor level and match almost perfectly the 
incident vertical displacements. It can thus be concluded that the building responds vertically 
as a rigid body. 

In general, the smoothness of the structure displacements, when compared with the incident 
displacements, suggest that the higher frequencies are filtered by the building. The frequency 
content of the velocities represented in Figure 4.38 confirms so: approximately at the 
frequency 65 rad/sω = , the building velocities reduce to less than 10% of the value of the 
incident velocities; at the frequency 300 rad/sω = , the building velocities almost vanish, while 
the incident velocities vanish only at the frequency 570 rad/sω = . These features lead to lower 
peaks and smoother oscillations in the time history of the velocities. 
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Figure 4.37: Transverse, longitudinal and vertical displacements of points D1 (blue), D2 (red), 
D3 (black) and incident displacements at point A (green): left = frequency domain; right = 

time domain 
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Figure 4.38: Transverse, longitudinal and vertical velocities of points D1 (blue), D2 (red), D3 
(black) and incident velocities at point A (green): left = frequency domain; right = time 

domain 

4.5 Conclusions 

In this chapter, the problems of moving loads and of moving vehicles are addressed, being the 
expressions for the former given in section 4.2 and the expression for the latter given in 
section 4.3. Furthermore, in section 4.4, all procedures addressed in this work are linked by 
means of an example in which the generation, propagation and reception stages are 
considered. 
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Concerning section 4.2, after the derivation of the equations for moving loads, these are 
validated through the comparison of the results thus obtained with the results obtained with a 
time domain procedure. The derived expressions are also used to investigate the critical load 
speeds of the different systems, namely: i) beam on a Kelvin foundation; ii) slab on a layered 
foundation. It is seen that the two systems present different features and therefore the former, 
which is a simpler two-dimensional model, cannot reproduce accurately the behavior of the 
second, which is a more complex three-dimensional model. Also, it is concluded that the 
stratification of the layered foundation influences the response fields and the critical load 
speeds, and therefore to consider homogeneous foundations may yield incoherencies in the 
results. 

Concerning section 4.3, in which the interaction between an invariant structure and a moving 
vehicle is addressed, after the derivation of the expressions, these are validated through the 
comparison of the dynamic forces thus obtained with the dynamic forces obtained with a time 
domain procedure. The critical speed of a point mass moving on top of a beam on a Kelvin 
foundation is also studied and it is concluded that the critical speed is related to the resonance 
of the mass-spring system and to the critical load speeds of the foundation. 

The example in section 4.4 links all the procedures explained in this work and therefore 
makes the connection between the three stages of the studied problem: the generation stage, in 
which the vehicle interacts with the track inducing on it a moving force field; the propagation 
stage, in which the vibrations propagate through the track and foundation; the reception stage, 
in which the vibrations reach the building and cause it to respond dynamically. The following 
characteristics are observed: 

i) the dynamic forces correspond to approximately 10% of the total interaction 
force; 

ii) the contribution of the dynamic forces can be neglected in the calculation of 
the track response; 

iii) the displacements of the soil at remote positions are dominated by the static 
component of the interaction forces; however, the dynamic component 
dominates the velocities; 

iv) the horizontal response of the building increases with the floor level and is 
dominated by the first mode of the building, which is activated long before the 
train reaches the proximity of the building; 

v) the considered building filters the incident vibrations above the frequency 
65 rad/sω = . 

The mentioned observation are specific of the problem that was solved in this chapter, and 
should not be generalized. 
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5. Reduction of vibrations by 
means of trenches 

5.1 Introduction 

The prediction and mitigation of vibrations induced by moving vehicles has been a concern to 
engineers for the past decades, as can be confirmed by the publications on the subject, which 
go back to the 19th century (South, 1863). In fact, vibrations induced by traffic, including 
railway transportation, are responsible for the annoyance of inhabitants surrounding the 
transport infrastructures and, in the most severe situations, may induce damage, at least in an 
aesthetic point of view, in sensitive structures such as old heritage buildings. 

The relevance of the above mentioned concern justified several studies on the topic in order to 
reach a deeper understanding of the problem and of its mitigation, but despite all the progress 
that has been made in recent years, there are still some gaps that deserve deeper studies, 
mainly in what concerns the comprehension and efficiency of mitigation measures. 
Nowadays, this topic is being object of attention by the political instances, as indicated by 
the currently running projects RIVAS (http://www.rivas-project.eu/) and CARGOVIBES 
(http://www.cargovibes.eu/), both subsidized by the European Commission and whose 
objective is to propose mitigation measures to obtain more sustainable and environmental 
friendly railway infrastructures. 

The countermeasures for vibrations induced by railway traffic can be classified by the 
location where they are applied: i) at the source; ii) at the propagation path; iii) at the receiver. 
Mitigation at the source may involve, among other options, changing the properties of the 
trains (suspension system, masses, etc.), changing the type of the track (ballast track versus 
slab-track) and its resiliency (using rail pads, under-sleeper pads and/or ballast mats), and 
improving the rolling conditions of the vehicle (i.e., to reduce the defects of the wheels and 
the vertical roughness and unevenness of the rail) (Hemsworth, 2000). This last option 
appears to be the most efficient strategy because the improvement of the rolling quality of the 
vehicle results in the reduction of the dynamic forces transmitted by the vehicle to the track, 
and, consequently, in the reduction of the vibrations felt at large distances from the track 
(Nelson, 1996). Nevertheless, due to the high cost of the wheel truing/rail grinding, it 
becomes economically unsustainable to rely only on this approach. Regarding the 
modification of the resiliency of the track, the main purpose is to achieve a considerable 
attenuation of vibration levels at high frequencies (Alves Costa et al., 2012b; Bongini et al., 
2011). However, the introduction of these elements on the track is also accompanied by the 
amplification of energy transmitted to the ground at the low frequency range, which may 
amplify the response of nearby buildings at their lower natural frequencies (Alves Costa et al., 
2012b; Alves Costa et al., 2013). 

On the other hand, mitigation at the receiver (a structure to be shielded from vibrations) 
involves the application of elastic materials at the foundations, so that the whole building is 
isolated, or at certain floors/compartments, in order to separate them from the rest of the 
building. Fiala proposes different approaches based on this idea (Fiala et al., 2007; Fiala et al., 
2008). The drawback of this option is that it is only applicable, at least at a reasonable 
economical cost, to new buildings, since it involves drastic changes on the structural behavior 
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of existing constructions. The mitigation of vibrations induced by new railway lines generally 
demands solutions that do not imply modifications on existent buildings. Therefore, this kind 
of solution is excluded when it comes to these situations, where, on the other hand, the 
application of countermeasures at the propagation path may become more relevant. 

The basic idea of the last type of countermeasures (at the propagation path) is to change the 
propagation of the waves through the soil, thus impeding the waves of reaching a building or, 
at least, reducing the amplitude of the incident vibrations. The most common strategies are: 
subgrade stiffening; WIBs (wave impeding block); trenches and rows of piles. Subgrade 
stiffening consists in stiffening the soil in the proximity of the track, usually through 
jetgrouting or soil mixing techniques, which results in the reduction of the vibrations that are 
induced in the ground (Ahmad and Al-Hussaini, 1991; Celebi and Göktepe, 2012). In turn, 
WIBs may be constructed beneath the track (active isolation) with the intention of replicating 
a rigid base, resulting in the decrease of the cut-off frequency of the foundation and in the 
attenuation of vibrations below this frequency, or under the building (passive isolation), with 
the purpose of deflecting waves that are about to impinge the building (Celebi and Göktepe, 
2012). Trenches and rows of piles are used to reflect surface waves (Hung and Yang, 2001) 
and, like WIBs, can be bored or driven near the track (active isolation) or near the building 
that is going to be shielded (passive isolation). Their efficiency largely depends on the depth, 
and so, for moderate dimensions, they are merely suitable for reducing the vibrations at 
medium and high frequency ranges. 

Several studies that focus on the reduction of vibrations through the use of trenches have been 
published before. The studied scenarios can be divided, according to the nature of the source, 
into mitigation of vibrations induced by standing loads, and mitigation of vibrations induced 
by moving loads. The difference between standing sources and moving sources resides in the 
vibration field that is induced in the ground: while in the former case the ground responds 
with the same frequency as the excitation, for moving loads the ground responds in a range of 
frequencies that depends on the speed of the source and on its frequency content, i.e., the 
Doppler effect becomes relevant. In the case of vibrations induced by railway traffic, an extra 
complexity arises since the frequency content of the moving source is characterized by the 
interaction between the track and the train. 

Studies that consider standing sources can be found in several references. These works 
comprise experimental studies (Ahmad and Al-Hussaini, 1991; Alzawi and Hesham El 
Naggar, 2010; Celebi et al., 2009; Klein et al., 1997; Murillo et al., 2009) and parametric 
investigations (Ahmad et al., 1996; Beskos et al., 1986; Dasgupta et al., 1990; Hung and Ni, 
2012; Leung et al., 1990; Shrivastava and Kameswara Rao, 2002; Yang and Hung, 1997). 
Some works consider plane strain conditions (Beskos et al., 1986; Hung and Ni, 2012; Leung 
et al., 1990; Yang and Hung, 1997) while others consider three-dimensional sources (Ahmad 
et al., 1996; Dasgupta et al., 1990; Shrivastava and Kameswara Rao, 2002): some analyze 
trenches placed near the source (Ahmad et al., 1996; Yang and Hung, 1997) while others 
consider trenches constructed near the receiver (Hung and Ni, 2012): very few consider 
non-linear behavior of materials (Celebi et al., 2009; Celebi and Kirtel, 2012; Hung and Ni, 
2012). Tools such as the BEM and/or the FEM have been used, with formulations both in the 
time domain as in the frequency domain. 

The mentioned works indicate the following aspects as those that significantly influence the 
efficiency of trenches: 
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- trench dimensions (depth and width): for open trenches only the depth plays a role, 
while for in-filled trenches both dimensions matter; 

- properties of the in-fill material: open trenches perform better than in-filled 
trenches but their application in practical situations is complex due to the need of 
support of the trench walls; for in-filled trenches, in-fill materials that are more 
flexible than the ground tend to perform better than stiffer in-fill materials; 

- properties and stratification of the soil: wave propagation in the soil depends on 
the stratification, and consequently so does the behavior of trenches; nevertheless, 
the stratification of the soil can be neglected if the lower layers are softer than the 
upper layers. 

Additionally, it is also concluded that plane strain (2D) analyses are not suitable for the study 
of point sources (3D case). Contradictory statements are proffered concerning the best 
position of the trench: for example, in (Adam and von Estorff, 2005; Celebi et al., 2009) it is 
stated that the best position of the trench is near the receiver (passive isolation) while in 
(Celebi and Kirtel, 2012) it is determined that trenches near the source (active isolation) may 
perform better. 

Few references can be found regarding studies in which the moving nature of the source is 
taken into consideration (case of interest for this chapter). The vast majority of them 
corresponds to numerical investigations, being (Dijckmans et al., 2013) the only reference that 
was found concerning experimental investigations on trenches under moving loads. Thereby, 
numerical works based on 3D formulations are found in (Andersen and Nielsen, 2005; Pflanz 
et al., 2002) while 2.5D formulations can be found in (Cao et al., 2012; Hung et al., 2004; 
Karlstrom and Bostrom, 2007). From a computational point of view, 2.5D formulations are 
considered more efficient, since they enable the simulation of three-dimensional problems 
based on series of simpler 2D problems. The disadvantage is that 2.5D models are limited to 
scenarios in which the longitudinal section of the problem is fairly constant and no variations 
of the stiffness are observed in that direction. These limitations are not perceived in 3D 
formulations; however, this type of models requires more computational resources. 
Nevertheless, the assumption of a constant cross-section is valid for the problem under study 
and, therefore, 2.5D analyses can be applied. 

The common conclusions of the works concerning moving sources are that trenches perform 
better for moving loads with high frequency contents and that, apart from constant moving 
loads, open trenches perform better than in-filled trenches, being the performance of trenches 
filled with stiffer materials better than those filled with more flexible materials. Regarding 
this last conclusion, it is important to be aware that the forces that a train transmits to the track 
contain both quasi-static and dynamic components, which makes impossible to predict which 
type of trench shall perform better. Also, this last conclusion contradicts the conclusions 
reported for standing loads, and, therefore, emphasizes the need for numerical models that 
consider the moving nature of the load. 

Of the works contemplating moving loads, references (Andersen and Nielsen, 2005; Hung et 
al., 2004) consider oscillating moving loads, references (Cao et al., 2012; Karlstrom and 
Bostrom, 2007) consider constant moving loads, reference (Pflanz et al., 2002) assumes a 
simplified law for the amplitude of the sources, and reference (Dijckmans et al., 2013) 
simulates the moving excitation by means of a finite number of standing point sources 
distributed along the longitudinal direction. No work was found in which the frequency 
content of the source is defined based on the vertical interaction between the train and the 
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track. As seen in chapter 4, this interaction has direct influence on the vibration field induced 
in the ground. For this reason, in this work, the circulation of the train and its interaction with 
the track are taken into account in the assessment and discussion of different trench solutions. 

This chapter is organized as follows: section 2 contains a comprehensive study on the 
parameters that most influence the reduction achieved by trenches; section 3 investigates the 
efficiency of different trench solutions for the mitigation of vibrations induced by the passage 
of trains in an existing line (near Carregado, Portugal); section 4 evaluates the influence of 
such measure on a nearby building; finally, section 5 summarizes the main conclusions of the 
chapter. 

5.2 Parameters influencing the efficiency of trenches 

5.2.1 Introduction 

In order to obtain a more comprehensive insight about the influence of the parameters with 
more relevance to the efficiency of trenches, a parametric study is presented. The study is 
similar to the studies presented in some of the works mentioned in section 5.1. 

The problem to be considered is depicted in Figure 5.1: a homogenous half-space is submitted 
to a harmonic vertical point source and the response of the surface of the half-space is 
computed before and after the excavation of a trench with width w  and depth d  at the 
distance l  from a point source. Plane strain conditions are assumed (unless otherwise stated), 
which means that in the parametric study the longitudinal wavenumber yk  is assumed to be 

null. The material properties of the soil are defined by the variables SoilG  (shear modulus), 

Soilρ  (material density), Soilν  (Poisson’s ratio) and Soilξ  (hysteretic damping), while the material 
properties of the in-fill material are defined by the variables MatG , Matρ , Matν  and Matξ . 

 

Figure 5.1: Trench in a half-space 

To analyze the problem with the 2.5D BEM-FEM procedure, the trench limits are simulated 
with boundary elements of linear expansion, while the in-fill material is simulated with finite 
elements. The dimensions of the boundary elements and of the finite elements are such that 20 
elements per Rayleigh wavelength are used. The fundamental solutions to be used in the BEM 
are calculated with TLM models such that for each boundary element there are two thin-
layers of quadratic expansion. Additionally, for the TLM models, an elastic layer with 
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thickness Rλ  is placed between the lower surface of the trench and the lower PML simulating 
the lower half-space. 

The parameters to be studied are the trench depth d , the trench width w , the trench position 
l , the stiffness and density of the in-fill material, and the Poisson’s coefficient of the soil. The 
influence of stratification and of modeling strategy (2D versus 3D) is considered afterwards. 

In order to avoid dependency on the excitation frequency ω , all dimensions are made 
proportional to the Rayleigh wavelength R R2 Cλ π ω= , in which RC  is the Rayleigh wave 
speed of the half-space. The Rayleigh wave speed can be approximated by the expression 

( )( )( )R Soil Soil Soil Soil Soil0.874 0.197 0.056 0.0276C G ρ ν ν ν= + − +  (5.1) 

Unless otherwise stated, the following values are assumed: Rd λ= , R0.2w λ= , R5l λ= , 

Mat Soilρ ρ= , Soil 0.25ν = , Mat 0.3ν = , Soil Mat 0.03ξ ξ= = . For each parameter investigated, three 
scenarios are considered for the in-fill material: Mat 0G =  (open trench), Mat Soil0.2G G=  (softer 
material) and Mat Soil10G G=  (stiffer material). For each scenario, the efficiency of the trench is 
evaluated through the position dependent ratio rA  

( )
( )
( )

Trench

No trench

z
r

z

u x
A x

u x
=  (5.2) 

in which Trench
zu  represents the vertical displacement at the surface of the soil after the 

construction of the trench, No trench
zu  represents the vertical displacement at the surface of the 

soil before the construction of the trench, and in which x  is the transverse distance to the 
point source (the smaller the ratio ( )rA x , the better the isolation). The average ratio rA , 

calculated with 

( )
0

1
d

L

r rA A x l x
L

= +∫  (5.3) 

may also provide important information and therefore is also represented. L represents the 
maximum distance of interest after the trench. 

In the next sub-section, a validation example is shown. The parametric study starts in 
sub-section 5.2.3. 

5.2.2 Validation example 

The suitability of the 2.5D BEM-FEM procedure for the simulation of trenches is assessed 
prior to its utilization in the corresponding parametric study. With this purpose, the reduction 
achieved by an open trench is computed and compared with the results published in the 
literature and with the results obtained by means of a FEM approach. The validation problem 
consists of a trench with depth R1.0d λ=  and width R0.1w λ= , placed at the distance R5l λ=  
from a massless rigid footing with width R0.5b λ= . The footing is perfectly bonded to the 
underlying homogeneous half-space and is submitted to a prescribed uniform vertical 
displacement. Figure 5.2 shows the ratios rA  obtained in this work (blue curve), the ratios rA  
obtained by Yang and Hung (1997) (red curve), and the ratios rA  obtained with a 2D FEM 
approach (black curve). For the 2D FEM approach, an elastic region with width R11λ  and 
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depth R2λ  is modeled with 4 noded quadrilateral elements and such that there are 40 finite 
elements per Rayleigh wavelength. The elastic region is augmented with the PMLs defined in 
the work of Kausel and Barbosa (2011) in order to absorb the outgoing waves. 

 

Figure 5.2: Reduction ratios rA  for an open trench: blue line = 2.5D-BEM FEM; 
red line = Yang and Hung (1997) ; black line = 2D FEM-PML 

Some differences can be observed between the three curves, but the trends are the same and 
the deviations of the curves are relatively small. Thus, it can be concluded that the 2.5D 
BEM-FEM procedure is adequate for this parametric study and that the discretization used for 
the boundary elements is fine enough. It must be added, however, that the differences 
observed between the distinct curves, and namely after the trench (for R 5x >λ ), can be 
justified by the dispersion associated with the discretization. The recalculation of the blue and 
black curves assuming 80 boundary elements per Rayleigh wavelength (for the blue curve) 
and assuming 80 finite elements per Rayleigh wavelength (for the black curve) leads to 
practically coincident results. 

5.2.3 Influence of the trench depth 

According to the literature, one of the parameters that significantly influence the efficiency of 
trenches is the depth. The influence of this parameter for the three trench solutions (open 
trench, trench filled with soft material and trench filled with stiff material) is represented in 
Figure 5.3 through the representation of the ratios rA  and their average rA  ( R25L λ= ) as a 
function of the trench depth. A maximum depth of R3d λ=  is assumed. 

For the case of an open trench (Figure 5.3a), the efficiency of the trench appears to increase 
with its depth. However, above Rd λ= , increasing the depth does not seem to result in a 
considerable change of the trench efficiency, namely for R30x λ< . For R30x λ> , the ratio rA  
oscillates around one, which means that there are zones where the response is amplified. 
These amplification zones are justified by horizontal shifts of the local minima due to the 
presence of the trench. Nevertheless, at these distances the response is so small that these 
amplifications have no practical consequence. 
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Figure 5.3: Ratio rA  as a function of the trench depth: a) open trench; b) trench filled with 

soft material; c) trench filled with stiff material; d) average ratio rA  

For the case of a trench filled with a soft material (Figure 5.3b), the ratios rA  tend to decrease 

with the trench depth, reaching the minimum average value rA  at the depth R0.5d λ= . Above 
this depth, the ratios rA  start to increase, and when the trench depth Rd λ=  is reached, the 
ratios rA  remain approximately constant. Therefore, for this case the best efficiency seems to 
be achieved when the depth of the trench is one half of the Rayleigh wavelength. A deeper 
trench may result in a reduction of displacements of 30% instead of 50%. 

Finally, for the case of a trench filled with a stiff material (Figure 5.3c), the best efficiency is 
obtained for the trench depth R1.5d λ= , but the average reduction is of only 20%. Immediately 
after the trench ( R R5 6.5xλ λ< < ) the reduction can reach up to 50%, but it decays as the 
distance to the source and trench increases. 

In all these cases, the displacements before the trench ( x l< ) are amplified. 

5.2.4 Influence of the trench width 

The other dimension that also influences the trench performance is its width. The influence of 
this parameter is evaluated next through the calculation of the ratios rA  and rA  for a trench 
width varying from R0.1λ  to R2λ . Figure 5.4 shows the obtained results. 

[A real trench is not likely to be wider than 1.5m. In this way, for a soil with Rayleigh wave 
speed R 120C =  m/s (for example), the width R0.5w λ=  is achieved only for frequencies above 
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40 Hz. Thus, for the purpose of train induced vibrations, only the results considering small 
trench widths (say R0.5w λ< ) are of interest.] 

 

Figure 5.4: Ratio rA  as a function of the trench width: a) open trench; b) trench filled with 

soft material; c) trench filled with stiff material; d) average ratio rA  

For the open trench, its width does not have much influence on the efficiency, at least up to 
the distance R30x λ= . For greater distances, increasing the width seems to enlarge the 
shielded zone (the darker blue area in Figure 5.4a extends farther as w  increases). This 
tendency is not observed in the average ratio rA  because R25L λ= . 

For the in-filled trenches, the increase of the trench width leads, in general, to an increase of 
the trench performance. The optimal trench width is R1.2w λ=  for the soft material and Rw λ=  
for the stiff material. However, these values are not attainable for the frequencies excited by 
trains, and so it is concluded that for realistic values, to increase the trench width is always 
beneficial. 

5.2.5 Influence of the trench position 

With the aim of studying the influence of the trench position, the distance l  between the point 
source and the trench assumes values between R0.5l λ=  and R10l λ=  and the ratios rA  and rA  
are accordingly calculated. The results are represented in Figure 5.5. 
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Figure 5.5: Ratio rA  as a function of the trench position: a) open trench; b) trench filled with 

soft material; c) trench filled with stiff material; d) average ratio rA  

The results in Figure 5.5a-c suggest that the attenuation of the response after the trench ( x l> ) 
is almost independent of the trench position: vertical stripes can be identified in the colored 
plots, which sustain this conclusion. The average ratio rA  shows a similar trend: for the open 

trench, rA  oscillates around the value 0.3rA = , being the maximum deviation equal to 0.1; for 

the trench filled with the soft material, the mean value is 0.75rA =  and the maximum 
deviations are around 0.05; for the trench filled with the stiff material, the mean value is 

0.85rA = , and the maximum deviations are also around 0.05. 

5.2.6 Influence of the stiffness of the in-fill material 

The present and the following sub-sections investigate the influence of the mechanical 
properties of the in-fill material: the stiffness is considered first, and the material density is 
considered second. The Poisson’s ratio is not studied in this work, but it has been shown that 
its influence on the behavior of in-filled trenches is negligible (Yang and Hung, 1997). 

The influence of the stiffness of the in-fill material is analyzed by varying the shear modulus 
from Mat Soil0.1G G=  to Mat Soil10G G= . Figure 5.6 shows the corresponding ratios rA  and rA .  
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Figure 5.6: a) Ratio rA  as a function of the stiffness of the in-fill material; b) average ratio rA  

It can be clearly observed from Figure 5.6b that softer in-fill materials perform better than 
stiffer in-fill materials. Furthermore, for softer in-fill materials, the isolation efficiency 
improves with the decrease of the stiffness, while for stiffer materials, the isolation efficiency 
improves with the increase of the stiffness. 

5.2.7 Influence of density of in-fill material 

The second property of the in-fill material to be studied is the density. With that aim, the 
ratios rA  and rA  are calculated for densities Matρ  varying between Mat 0ρ =  and Mat Soil10ρ ρ= . 
Again, the scenarios of stiff in-fill material ( Mat Soil10G G= ) and of soft in-fill material 
( Mat Soil0.2G G= ) are considered. The open trench scenario is not applicable in this study. Figure 
5.7 shows the corresponding results. 

The main conclusion that can be inferred from the results shown in Figure 5.7 is that the 
density of the in-fill material considerably influences the behavior of trenches. While for soft 
in-fill materials a lighter material is beneficial, for stiffer materials it is convenient to have 
high densities. For the two stiffness scenarios studied, the density has more influence on the 
behavior of the stiff material than on the behavior of the soft material. 

5.2.8 Influence of the Poisson’s ratio of the soil 

Since the soil is assumed homogeneous and since the trench dimensions are made 
proportional to the Rayleigh wavelength Rλ , then the unique parameter of the soil that may 
influence the behavior of the trench is the Poisson’s ratio. The influence of this parameter is 
investigated next through the calculation of the ratios rA  and rA , which are represented in 
Figure 5.8. 
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Figure 5.7: Ratio rA  as a function of the density of the in-fill material: a) trench filled with 

soft material; b) trench filled with stiff material; c) average ratio rA  

For all three cases, the trend is that the average ratio rA  increases (slightly) with the increase 
of the Poisson’s ratio. The explanation for this can be found in the ratio P Rλ λ  ( Pλ  represents 
the wavelength of the P wave). This ratio increases with the increase of the Poisson’s ratio 
and thus, for high values of this parameter, the dimensions of the trench become small when 
compared to the P wave. As a consequence, the reflection of P waves becomes negligible. 

The decrease of efficiency of the trenches due to higher Poisson’s ratios is more obvious away 
from the trench than in its proximity. 

5.2.9 Influence of the ground stratification 

In general, the ground conditions do not correspond to homogeneous half-spaces, and 
therefore soil stratification may need to be considered. In order to understand if disregarding 
the soil stratification may affect the predictions, in this section the homogeneous half-space is 
replaced by a layer on top of a half-space. The material properties of the layer and underlying 
half-space are indicated in the general description (sub-section 5.2.1), except for the shear 
modulus of the half-space, which assumes values between Half Layer0.1G G=  and Half Layer5G G= . 

The thickness of the layer is RH λ= . Figure 5.9 shows the ratios rA  and rA  for this new 
scenario. 
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Figure 5.8: Ratio rA  as a function of the Poisson’s ratio of the soil: a) open trench; b) trench 

filled with soft material; c) trench filled with stiff material; d) average ratio rA  

It can be seen in Figure 5.9 that the stratification of the ground considerably changes the 
behavior of the trenches, namely when the lower half-space is stiffer than the upper layer. The 
influence of stratification is more noticeable for the open trench than for the in-filled trenches. 

5.2.10 Influence of the modeling strategy 

The modeling strategy is studied next to assess whether the simulations under plane-strain 
conditions are valid to infer about the behavior of trenches when acted upon by standing point 
loads (three-dimensional excitation). Figure 5.10 plots the ratio rA  as function of the 
longitudinal ( y ) and transverse ( x ) coordinates for a point source applied at the origin 

( ), (0,0)x y = . 

For the open trench and for the trench filled with a soft material, the ratio rA  after the trench 
is approximately symmetric with respect to the loaded point. In opposition, for the stiff trench, 
one can notice the existence of a yellowish triangular region inside which the displacements 
are not attenuated. This shadow region is a consequence of the high bending stiffness of the 
trench, being the angle of these triangular shaped shadow zones dependent on the excitation 
frequency, on the Rayleigh wave speed of the soil, and on the bending dispersion of the 
trench. Expressions for this angle can be found in Coulier et al. (2013b). This feature indicates 
that for standing harmonic solicitations, the best orientation of a stiff trench is not 
perpendicularly to the line that connects source and receiver, but instead at a certain angle. 
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Figure 5.9: Ratio rA  as a function of the stiffness of the lower half-space: a) open trench; b) 

trench filled with soft material; c) trench filled with stiff material; d) average ratio rA  

The average ratio rA  has been computed for the central alignment 0y = , and it has been 
found that this ratio is very similar to the 2D ratio (results not shown here). In this way, for 
open trenches and trenches filled with soft materials, since the ratio rA  is almost symmetric 
with respect to the loaded point, 2D simulation can be used to estimate the reduction maps 
plotted in Figure 5.10a,b. For stiff in-fill materials, such is not possible due to the presence of 
the shadow zones. Thus, at least for the case of stiff in-fill materials, 3D simulations are 
necessary. 

5.2.11 Conclusions 

In this section, a parametric study was performed to evaluate the influence of some variables 
on the reduction of vibrations achieved by trenches. The following conclusions are drawn: 

1. Increasing the depth of the trench has in general a beneficial effect, but above the 
value Rd λ= , increasing the depth does not improve significantly the efficiency of the 
trench. In the case of the trench filled with a soft material, the optimal value for the 
trench depth is one half of the Rayleigh wavelength. 

2. For the case of open trenches, the trench width has no significance. For in-filled 
trenches, to enlarge the width reveals to be beneficial. 
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Figure 5.10: Ratio rA  for a 3D loading scenario: a) open trench; b) trench filled with soft 
material; c) trench filled with stiff material 

3. The trench position does not influence much its efficiency. 

4. Open trenches perform better than in-filled trenches, and within in-filled trenches, 
materials softer than the soil tend to perform better than materials stiffer than the soil. 
Trenches filled with soft materials perform better if the in-fill material is made softer, 
while trenches filled with stiff materials perform better is the in-fill material is made 
stiffer. 

5. The density of the material also influences the trench performance. The trend is that as 
the in-fill material is made heavier, the reduction provided by the trench increases. 
This parameter has more influence in the case of a stiff material than in the case of a 
soft material. 

6. The greater the Poisson’s ratio of the soil, the worse the efficiency of the trench is. 
This parameter has more influence on open trenches than on in-filled trenches. 

7. To consider the ground stratification changes considerably the performance of the 
trench. 

8. For open trenches and trenches filled with a soft material, 2D simulations may provide 
good information about the reduction achieved with trenches when acted upon by 
point loads. The same is not valid for trenches filled with stiff materials. For this last 
situation, the best position of trenches is obliquely to the line that links source and 
receiver. 

y/
λ R

 

c) 

x/λR 

y/
λ R

 

x/λR 

a) b) 

x/λR 

y/
λ R

 



Analysis and mitigation of vibrations induced by the passage of high-speed trains in nearby buildings 

173 

The conclusions obtained in this study are the same as those of the studies referred to in 5.1. 
However, it must be mentioned that each parameter is being studied independently of the 
others, and so, if more than one parameter varies in each study, then different conclusions 
may be reached. 

As last comment, it must be restated that these investigations concern standing line loads. In 
the case of moving loads, the response of the ground is characterized by a wide frequency 
band and so the dimensionless study becomes impossible, turning the problem much more 
complex. This issue is addressed in the next sections, in which trenches are used as mitigation 
measures for the vibrations induced during the passage of a train. 

5.3 Trenches for the mitigation of train induced vibrations 

5.3.1 Introduction 

In this section, distinct trench solutions are analyzed and compared in the context of 
vibrations induced by railway traffic. This problem differs from the problem of vibrations 
induced by fixed stationary loads in the fact that the motion induced by moving loads is 
characterized by a wide range of frequencies, while the response induced by stationary loads 
has the same frequency as the load. 

The problem to be analyzed is schematized in Figure 5.11: a train runs on a surface track, next 
to which a trench is constructed in order to scatter the impinging waves and thus reduce the 
vibrations after the trench. For the study, the train is considered as a set of moving harmonic 
loads whose amplitudes result from the solution of the train-track interaction problem 
described in chapter 4, the track and the interior of the trenches are simulated with finite 
elements, and the ground is simulated with boundary elements. 

 

Figure 5.11: Schematization of the problem 

The main objective of this section is the comparison between different trench solutions in the 
reduction of vibrations induced by railway traffic. For this purpose, the geometry and material 
properties of an existing and operational line are considered, being the scenario chosen for the 
analyses a stretch of the Portuguese railway network, near the town of Carregado. The reason 
for this option is the fact that the local conditions at this line have been obtained after some 
experimental campaigns that have been carried out with that intent. The reader is referred to 
Alves Costa et al. (2012a) for more details on these experimental campaigns. 

The following paragraphs describe the soil conditions, track geometry and properties, rolling 
material properties and trench solutions assumed in the analyses. 
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Local soil conditions and TLM model for the soil 

The local properties of the ground have been determined experimentally through cross-hole 
tests, CPT tests, and SASW tests, having the experiments revealed that it consists of several 
layers of clay with distinct wave velocities (Alves Costa et al., 2012a). In the following 
analyses, the soil model is assumed to be simpler than the conditions obtained experimentally, 
being the model composed by two elastic layers on top of a half-space, whose properties are 
indicated in Table 5.1. 

Table 5.1: Soil stratification and properties 

 

Layer 

Thickness 

H [m] 

Density 

ρ  [kg/m3] 

P wave speed 

PC [m/s] 

S wave speed 

SC  [m/s] 

Hysteretic damping 

P Sξ ξ=  

1 6 1900 1250 150 0.03 

2 6 1900 1500 230 0.03 

3 ∞  1900 1600 310 0.03 

For the TLM model, the layers one and two are divided into quadratic thin-layers with 0.10 m 
of thickness, while the lower half-space is simulated through the use of PMLs (Barbosa et al., 
2012). 

Figure 5.12 shows the dispersion curves and the corresponding phase velocities for the 
considered soil profile. The maximum phase velocity corresponds to the shear wave speed of 
the lower half-space, while the minimum phase velocity corresponds to the Rayleigh wave 
speed of the top layer (approximately 143 m/s). 

 

Figure 5.12: Dispersion curves (left) and corresponding phase velocities (right) of the soil. 

Properties of the track and corresponding numerical model 

The line at Carregado corresponds to a double ballast track, with a straight alignment, and is 
composed of UCI60 rails, Vossloh rail pads, concrete sleepers (spaced 0.60 m), and ballast 
and subballast layers. Despite the fact of being a double track, the numerical model used in 
the following analyses corresponds to a single track, whose geometry and FEM mesh are 
represented in Figure 5.13. As previously shown in Alves Costa et al. (2012a), the use of a 
single line model to simulate a double track is accurate enough. The elastic and dynamic 
properties of each component of the track are indicated in Table 5.2. 
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Figure 5.13: FEM model of the track 

 

Table 5.2: Properties of the components of the track 

Rails UIC60 (modeled with Euler beams) 

Young’s Modulus 

E  [Pa] 

Mass Density 

ρ  [kg/m3] 

Section Area 

A  [m2] 

Section Inertia 

VI  [m4] 

9200 10×  7850.0  37.687 10−×  67.860 10−×  

Rail Pads 

Vertical Stiffness VK  [kN/mm] Vertical Damping VC  [kNs/mm] 

Real: 600  Model*: 1000  Real: 22.5  Model*: 37.5  

Sleepers 

Real 

Mass [kg/m] E  [Pa] Dimensions [m3] 

300  930 10×  2.5 0.6 0.22× ×  

Model** 

ρ  [kg/m3] xzE  [Pa] xzν  yE  [Pa] yν  xyzν  P Sξ ξ=  

1850.0  920 10×  0.2  697 10×  0.1  0.04  0.01  

Ballast 

E  [Pa] ρ  [kg/m3] ν  P Sξ ξ=  

697 10×  1591.0  0.12  0.061  

Subballast 

E  [Pa] ρ  [kg/m3] ν  P Sξ ξ=  

6212 10×  1913.0  0.3  0.054  

* The rail pads are modeled with distributed line springs along the longitudinal direction 

** The sleepers are modeled with anisotropic materials, as explained in chapter 3 
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Another important aspect related to the track is its unevenness, which is responsible for the 
generation of the dynamic train-track interaction forces. The unevenness at Carregado has 
been measured with a EMI recording car, capable of measuring the unevenness profiles of 
rails for the range of wavelengths between 0.4 and 25 m. With the power spectral density 
(PSD) of the measured unevenness profile, artificial profiles with 40 wavelengths ranging 
from 0.75 m to 30 m have been generated. These profiles are based on the expressions 
suggested in the norm ISO8680 (1995) and are such that their PSD approximate these of the 
measured profile. Figure 5.14 represents the PSD of the measured and artificial profiles, and 
the longitudinal variation of one possible random profile generated with the expressions of 
ISO8608. The same unevenness profile is assumed for both rails. 

 

Figure 5.14: PSD of the unevenness (left: red = measured; blue = approximated) and random 
unevenness profile (right)  

Rolling stock and numerical model 

The trains that circulate in the Northern line near Carregado (Portugal) comprise commuter 
trains, with speeds of approximately 130 km/h, Inter Cities trains, which can travel up to 
200 km/h, Alfa Pendular trains, which are the fastest trains operating in Portugal, with speeds 
up to 220 km/h, and in some cases, freight trains, which travel with speeds below 100 km/h. 
The train considered in this work is the Alfa Pendular. 

The Alfa Pendular is a high-speed train composed of six vehicles, fulfilling a total length of 
158.9 m. Each vehicle is composed of the car-body, two bogies and four axles. The car-body 
is linked to the bogies at its extremities through the secondary suspension system, and the 
bogies are connected to a pair of axles through the primary suspension system. In the 
following analyses each vehicle of the train is modeled as a two dimensional multi rigid-body 
system in which the axles, the bogies and the car-body are considered as rigid masses, and in 
which the suspension systems that connect these components are simulated by means of 
springs and dashpots. All displacements not contained in the vertical-longitudinal plane are 
neglected. The contact stiffness is accounted for by means of springs between the wheels and 
the rails, that simulate the Hertzian contact (Wu and Thompson, 2002). The geometry of the 
train is represented in Figure 5.15 and the 2D model of each vehicle is represented in Figure 
4.31. The dynamic properties assumed for the different components of the train are given in 
Table 5.3. 
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Figure 5.15: Geometry of the Alfa Pendular train 

 

Table 5.3: Dynamic properties of the train 

V
eh

ic
le

 Car body Front bogie Rear bogie 
Axles 

FF FR RF RR 

M 

[kg] 

Ix 

[kg.m2] 

M 

[kg] 

Ix 

[kg.m2] 

M 

[kg] 

Ix 

[kg.m2] 
M [kg] M [kg] M [kg] M [kg] 

1 32901 

20
83

60
0 

4932 5150 4823 5150 1538 1884 1884 1538 

2 32901 4823 5090 4823 5090 1538 1884 1884 1538 

3 33124 4712 5000 4712 5000 1538 1538 1538 1538 

4 33524 4712 5000 4712 5000 1538 1538 1538 1538 

5 35710 4823 5090 4823 5090 1538 1884 1884 1538 

6 33201 4823 5150 4932 5150 1538 1884 1884 1538 

 Primary suspension systems Secondary suspension systems Contact springs 

 K [N/m] C [Ns/m] K [N/m] C [Ns/m] K [N/m] 

 3420000 3600 1320000 3600 2.4×1012 

 M = mass; Ix = momentum of inertia; K = stiffness; C = damping 

 

Trench solutions and numerical models 

The mitigation solutions analyzed in this work are materialized with trenches constructed 
7.5m away from the central line of the track. The trenches are 0.40 m wide and two depths are 
considered: 3 m and 6 m. The trenches are open or in-filled with concrete or geofoam. The 
elastic and dynamic properties of these in-fill materials are listed in Table 5.4. 

From a practical standpoint, the open trench is not a viable solution as it requires some type of 
supporting system in order to avoid its walls to collapse. Nevertheless, this solution is taken 
into consideration for comparison purposes. As for geofoam, it consists in an expandable 
polystyrene material with low density which provides flexibility in the design and easiness in 
its practical implementation. It has been investigated as a possible in-fill material for trenches 
by Alzawi and Hesham El Naggar (2009, 2010; 2011). The concrete filled trenches can be 
materialized through buried concrete walls and have also been investigated in several 
experimental and numerical studies (e.g., Celebi et al., 2009).  
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Table 5.4: Properties of the in-fill materials 

Concrete 

E  [Pa] 

(Young’s modulus) 

ρ  [kg/m3] 

(Mass density) 

ν  

(Poisson’s ratio) 

P Sξ ξ=  

(hysteretic damping) 

930 10×  2300.0  0.2  0.01 

Geofoam 

E  [Pa] ρ  [kg/m3] ν  P Sξ ξ=  

613.3 10×  61.0  0.0  0.01 

 

The behavior of the trenches is simulated with quadrilateral finite elements with 4 nodes and 
with dimensions 0.20 × 0.20 m2. The interface between the soil and the trench border is 
simulated by boundary elements of constant expansion in such a way that there is one 
boundary element per face of the finite element mesh in contact with the soil (the same rule 
applies for the interface between the track and the soil). 

5.3.2 2D analyses – influence of the track 

Before moving into the case of vibrations induced by traffic, the case of line loads ( 0yk = ) is 

addressed so that some features of the numerical modeling may be inferred. The impact 
resulting from the exclusion of the track from the mathematical model, in what regards the 
predicted soil response and the predicted trench efficiency, is investigated. For that purpose, 
two scenarios are considered: a first scenario in which the track is included and loads of the 
type ( ) i0.5e tF t ω=  are applied at each rail; and a second scenario in which the track is 

excluded and therefore a load of the type ( ) ie tF t ω=  is applied directly at the ground surface at 

the position 0x =  (central alignment of the track). 

The differences in the ground surface responses are investigated first, and to this end, the 
vertical displacements are calculated as functions of the excitation frequency ω  and of the 
transverse distance x . The results are depicted in Figure 5.16, where the variables Track

zu  and 
No track
zu  correspond to the displacements in the presence and in the absence of the track, 

respectively. In order to facilitate the interpretation of the differences between the two 
scenarios, the ratios No track Track

z zu u  are also depicted. No trench is considered at this point. 

Figure 5.16 confirms that the exclusion of the track from the mathematical model 
considerably alters the predicted ground response. As can be observed, the displacements are 
two orders of magnitude higher for frequencies above 40 Hz when the track is excluded. 
There is no significant difference for frequencies below 20 Hz. 
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Figure 5.16: Displacements at the ground: a) ( )Track
10log zu ; b) ( )No track

10log zu ; 

c) ( )No track Track
10log z zu u  

The difference observed for frequencies above 40 Hz can be explained by the forces that are 
transmitted to the ground: firstly, the total transmitted force is not the same for the two 
scenarios (Figure 5.17a); secondly, in the first scenario, the transmitted force is distributed 
along the track-soil interface (Figure 5.17b), while in the second the force is concentrated at a 
single point. Therefore, as the force transmitted by the track is greater than the applied force, 
it could be expected that the predicted displacements were greater when the track was 
considered. However, since the load is distributed along the train-track interface, the near 
field displacements are smaller. For remote positions, the effect of the load distribution 
disappears and the predicted ground displacements are greater when the track is taken into 
account. This can be observed in Figure 5.17c, where the ground displacements are depicted 
for x > 30 m and for the excitation frequency 80 Hz, with and without the track. 

The discrepancy between the two scenarios reveals that when the track is disregarded the 
predicted response of the near field is over-estimated, which can lead to an incorrect 
conclusion about the need for mitigation measures. 
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Figure 5.17: a) Resultant of the vertical forces between track and soil; b) distribution of 
tractions at the track-soil interface for f = 80 Hz; c) displacements at the ground surface for 

f = 80 Hz. 

The importance of the track for the correct estimation of the efficiency of trenches is 
examined next. With that aim, the ratio rA , defined in equation (5.2), is calculated as a 
function of the excitation frequency ω  and of the transverse distance x  for the two scenarios 
(with and without track). Figure 5.18 presents the results obtained for the trench solutions 
with 3 [m] of depth. 

The comparison between the left and right columns of Figure 5.18 reveals differences in the 
estimated reduction levels: firstly, higher reduction levels are obtained when the track is not 
accounted for; secondly, there is a band near the frequency 60 Hz that causes the 
displacements after the trench to be amplified, if the track is included, which does not occur if 
the forces are applied directly to the ground. In general, the estimated reduction is higher in 
situations in which the track is disregarded, and lower when the track is considered. For this 
reason, the track exclusion may lead to under designed protective measures. 

The differences reported in this sub-section point out the need for the inclusion of the track in 
the numerical model, as it is observed that considering simpler models in which the track is 
disregarded may result in over-estimated attenuation levels and, consequently, in 
inappropriate designs of trenches. On the other hand, neglecting the track results in over-
estimations of the induced level of vibrations, which may lead to an incorrect judgment about 
the need for mitigation measures. 
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Figure 5.18: Ratios rA  for: a) open trench with track; b) open trench without track; c) 
geofoam trench with track; d) geofoam trench without track; e) concrete trench with track; 

f) concrete trench without track 

A common feature of the two scenarios is the amplification of displacements before the 
trench, which is a consequence of the reflection of waves at the trench. It is therefore 
important to examine if this amplification effect may influence the train-track interaction, 
potentially causing an amplification of the interaction forces and resulting in the cancellation 
of the beneficial effects associated with the construction of trenches. This issue is addressed in 
the next sub-section, together with the evaluation and comparison of the efficiency of the 
distinct trench solutions. 
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5.3.3 3D analyses – vibrations induced by the Alfa Pendular train 

In this sub-section, the vibrations induced by an Alfa Pendular train travelling at the speed 
60V =  m/s are analyzed. Contrarily to the analyses reported in 5.3.2, the present study 

demands for the development of a 3D solution with train-track interaction. The dynamic 
interaction between the train and the track is taken into account through the formulation 
presented in chapter 4, for which the irregularity profile shown in Figure 5.14 is used. 

This sub-section is divided into three topics: in the first topic, the influence of the trenches on 
the train-track interaction is discussed; in the second, the different trench solutions are 
compared; in the last topic, the behavior of the trenches along the longitudinal coordinate is 
assessed. 

Influence of the trenches in the train-track interaction 

As described in sub-section 5.3.2, the construction of trenches causes the amplification of 
displacements in the ground surface located between the track and the trench. At a first 
glance, this amplification may seem inconsequent, as the main objective is the attenuation of 
vibrations after the trench and not before it. However, since the vibrations are reflected at the 
trench and then come back towards the track, a deeper thought leads to the question: “Will the 
reflections interfere in the train-track interaction phenomenon, causing the increase of the 
dynamic forces and the cancellation of the beneficial effects of the trench?” This question is 
investigated next, through the comparison of the dynamic forces of the first wheel set for the 
mitigated and non mitigated situations. These forces and the relative deviations with respect 
to the non-mitigated scenario are overlapped in Figure 5.19 for the different trench solutions 
under analysis. 

 

Figure 5.19: Dynamic forces (left) and relative deviations (right) of first wheel set 

The maximum deviation of the magnitude of the dynamic forces is 1%, so it is concluded that 
the trenches do not affect the train-track interaction mechanism, at least for the track-trench 
distance considered in the present analysis. Though it could be expected that the waves that 
are reflected and that return to the track had more influence on the train-track interaction, the 
opposite happens, and the reason for that can only be another reflection of waves when they 
reach back the track-soil interface. This aspect can be used in the benefit of the simulations, 
since, according to the conclusions, the train-track interaction problem needs to be solved 
only for the non-mitigated scenario, enabling the use of the obtained results in the remaining 
situations. 
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The efficiency of trenches 

The efficiency of distinct trench solutions is now compared. The trench solutions are 
compared based on the insertion loss (IL) and on the running root means square (RRMS) of 
the vertical velocity induced by the passage of the train. Three receivers are considered, being 
all of them placed after the trench, namely at the transverse positions 1 10x =  m, 2 15x =  m, 
and 3 20x =  m ( 0=x  corresponds to the central alignment of the track). The longitudinal 
position of all receivers is 0y = . 

The insertion loss ( ), ,IL x y ω  for a point with coordinates (x, y) is calculated with 

( )
( )

( )

NoTrench
z

10 Trench
20log

z

u
IL

u

ω
ω

ω
=  (5.4) 

and the RRMS for the same point is calculated with 

( )
2

2

2

, , d

( , , )

t t

z

t t

v x y

RRMS x y t
t

τ τ
+∆

−∆
=

∆

∫
 

(5.5) 

where ( ), ,zv x y t  is the vertical velocity in the time domain. The insertion losses and RRMSs 

for the three receivers are represented in Figure 5.20 (in one-third-octave bands) and in Figure 
5.21, respectively. For the calculation of the RRMS, the time window 0.125t∆ =  s is used, as 
indicated in the norm DIN4150-2 (1999). 

The IL curves depicted in Figure 5.20 show that above the frequency 10 Hz, the 
displacements are attenuated for all trench solutions and all receivers considered. For this 
frequency, the phase velocity of the Rayleigh wave is approximately 180 m/s (Figure 5.12) 
and the associated wavelength is 18 m, so even though the depth of the shallower trench is 
only 1/6 of the Rayleigh wavelength, it is concluded that the 3 m deep trenches are able to 
reduce the vibrations. This feature could not be inferred from the 2D analyses (Figure 5.18), 
thus highlighting the relevance of 3D analyses for the understanding of the problem. 

Also based on the IL plots, it can be observed that the 6 m trenches tend to perform better than 
the 3 m trenches, as expected, and that no general trend can be distinguished in what concerns 
the influence of the distance between receivers and trench. As for the ranking of the in-fill 
material in terms of the performance of the trench, it is concluded that concrete trenches come 
first, empty trenches come second, though very close to the concrete trenches, and geofoam 
trenches come last, way below the other two. This ranking differs from the results of the 2D 
analyses (Figure 5.18), for which open trenches come first, geofoam trenches come second 
and concrete trenches get last place. 

The RRMS plots can also provide information about the efficiency of the trenches. As 
observed in Figure 5.21, all trenches indeed succeed in reducing the velocities at all receivers, 
but with different levels of attenuation: as concluded from the IL plots, the concrete and open 
trenches provide very similar reduction levels (apart from the first receiver, for which the 
concrete trenches outperform the open trenches), while the geofoam trenches yield smaller 
attenuation levels. Additional information that can be perceived from Figure 5.21 is that 
geofoam trenches perform worse when the receiver is placed farther from the trench, while no 
significant difference is noticed regarding open and concrete trenches. 
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Figure 5.20: Insertion losses for distinct trench solutions and receivers 
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Figure 5.21: RRMS for distinct trench solutions and receivers 

The reason why the concrete trenches outperform the geofoam trenches when acted upon by 
moving loads (as opposed to what happens in the 2D simulations) is related to their high 
bending stiffness. As explained in some works (Coulier et al., 2013a; Coulier et al., 2013b; 
Dijckmans et al., 2013), the transmission of plane waves in the soil with a longitudinal 
wavelength smaller than the longitudinal bending wavelength of the barrier is hindered. In 
other words, when the longitudinal wavelength yλ  of a propagating wave is smaller than the 

free bending wavelength in the barrier Byλ , but not shorter than the Rayleigh wavelength of 

the soil Rλ , then the waves are reflected at the barrier due to its bending stiffness (waves 
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travelling with longitudinal wavelength smaller than the Rayleigh wavelength are evanescent 
in the transverse direction and therefore the barrier is ineffective for those cases). In plane 
strain conditions, the wavelength is infinite and so the bending stiffness has no influence, but 
in 3D conditions, waves can propagate in all directions and so surface waves that propagate 
with an angle θ  such that R

B
sin

y

λ

λθ >  are reflected by the trench. As a result, for standing point 

sources, there is a triangular zone delimited by the critical angle R

B

1
cr sin

y

λ

λθ −= , inside which 

the reduction of vibrations is not as significant as outside the mentioned zone. For the case of 
moving harmonic loads, the generated waves propagate with angles R

0

1sin k V

ω ωθ −

−= , and 

therefore the waves that impinge the barrier with an angle higher than crθ  are also reflected. 

The wavenumbers of the free longitudinal bending waves 
B

2
B yyk π

λ=  for the 3 m concrete and 

3 m foam trenches (vertical bending, transverse bending and torsion), and the Rayleigh 

wavenumbers of the soil are represented in Figure 5.22. Superimposed is the line 0

y Vk ω ω−
=  

for 0 80ω π=  rad/s (this line corresponds to the integration path for a moving load with speed 
V  and oscillation frequency 0 40f =  Hz). As can be observed, the portion of transversely 
propagating waves ( Ryk k< ) that reach the barrier with angles greater than the critical angle 

crθ  ( By yk k> ) is greater for the concrete trench than for the geofoam trench. Furthermore, for 

the geofoam trench, the transverse bending stiffness and the torsional stiffness of the barrier 
contribute for the reflection of waves only above the frequency f = 60 Hz. These aspects 
justify the considerable increase of performance of the concrete trenches and explain why 
they outperform the geofoam trenches. In general, the reflecting property expressed in the last 
paragraph also supports the idea that 2D simulations are not sufficient to predict with enough 
accuracy the abatement of vibrations induced by moving loads, since the obtained results will 
tend to underestimate the actual reduction. 

 

Figure 5.22: Rayleigh wavenumber (blue) and free bending wavenumber of 3 m concrete 
trench (red) and 3 m geofoam trench (green) 
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Behavior of trenches for various longitudinal positions 

The insertion losses shown in Figure 5.20 concern receivers at the longitudinal position 0y = . 
For other longitudinal positions, since the amplitudes of the moving forces are the same, with 
or without a trench, it could be expected that the ratios between the responses of the two 
scenarios were the same, and thus that the insertion losses for 0y =  were representative of the 
problem. However, a deeper examination of the expression that yields the displacements 
induced by a set of moving forces with multiple frequencies reveals the opposite. This 
expression is derived from eq. (4.18) and assumes the form 

( ) ( )
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in which 
0

Nω  is the number of oscillation frequencies, 
0yN  is the number of moving forces, 

( )0j iP ω  is the amplitude of the jth force for the ith oscillation frequency, 0iω  is the ith 

oscillation frequency, y0j is the longitudinal position of the jth force at 0t = , (x,y) are the 

coordinates of some point, and ( )0, ,i

Vu x ω ω ω−ɶ  is the 2.5D transfer function. Thus, the ratio rA  

defined in equation (5.2) becomes 
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and, in order for this ratio to be location independent, the following condition is necessary 
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 (5.8) 

The previous statement can be fulfilled only if 
0

1Nω = , and that leads to the conclusion that 

within the same transverse alignment and for multiple excitation frequencies, the ratio rA  in 
equation (5.7) and the insertion losses defined in eq. (5.4) change with the longitudinal 
coordinate y . 

To assess the variation of the insertion losses, these values are calculated for 100 receivers 
placed at the alignment 15x =  m and spread between the longitudinal positions 30y = −  m and 

30y =  m. The results are plotted in Figure 5.23. 

It is demonstrated that within each frequency band the maximum variation can reach 10 dB, 
which is a considerable value. Nevertheless, above the frequency 10 Hz, all trench solutions 
offer an attenuation of vibrations for the great majority of longitudinal positions (with very 
few exceptions). 
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Figure 5.23: Insertion losses for receivers placed at 15x = [m] and 30 30y− < < [m]. The black 
solid line represents the 'IL  curves for the maximum responses (defined in eq. 5.9). The 

dashed black line illustrates the IL assuming plane strain conditions 

For a given longitudinal position, the insertion loss varies between the maximum and the 
minimum values of the “insertion envelope”. Thus, for design purposes, considering only the 
lower limit of the envelope yields over protective measures, while considering merely the 
upper limit yields very relaxed conditions. Therefore, it is recommended to consider a curve 
that passes through an intermediate value of both limits. A possible option is the curve 
calculated with the maximum responses, i.e., 
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For each frequency band, this curve considers the ratio of the response of points placed at 
different longitudinal positions. In this way, the value 'IL  cannot be considered as a reduction 
measure for a given point, but, instead, should be perceived as a reduction measure for the 
maximum response along a given alignment. The curves 'IL  for the 15x =  m alignment are 
represented in Figure 5.23 through solid black lines. 

For comparison purposes, the IL lines for 2D line loads are also represented in Figure 5.23 
(black dashed line). It is observed that for the concrete trenches, the 2D results underestimate 
their efficiency, even when compared with the lower limits of the envelope. As for the open 
and geofoam trenches, the 2D results run close to the lower limit of the envelope, but there are 
frequency bands where the 2D results predict amplification of displacements, a scenario that 
does not correspond to reality. This comparison corroborates that 2D results underestimate the 
efficiency of trenches and, therefore, plane strain conditions are not applicable for cases that 
include moving vehicles. 

One interesting aspect that can be observed in Figures 5.20 and 5.23 is the amplification of 
the response below 5 Hz. The low frequency response of the soil is due to the quasi-static 
component of the interaction forces, and its effect evanesces with the distance (i.e., mainly 
evanescent waves contribute to the response of the ground in the low frequency range). Since 
the trench is placed at a small distance from the track, the evanescent waves still reach the 
trench with a considerable amount of energy, and so their interaction with the trench produces 
new waves that reach further than what they would if no heterogeneity was encountered. That 
is in fact the reason why amplifications are greater for 6 m trenches than for 3 m trenches (the 
energy of evanescent waves is distributed with the depth and, therefore, the deeper the trench, 
the greater the energy that “collides” with it), and why amplifications are larger for concrete 
and open trenches than for geofoam trenches (the material contrast in the first two is greater). 
In any case, these amplifications are inconsequent because the contribution of this low 
frequency content for the response of the ground surface is negligible when compared to the 
contribution of the medium and high ranges. This situation is represented in Figure 5.24, 
which plots the frequency content of the vertical velocities evaluated at the 100 receivers 
mentioned in the first paragraph of this sub-section for the non-mitigated scenario and for the 
3 m and 6 m concrete trenches. 

5.3.4 Conclusions 

In section 5.3, the efficiency of distinct trench solutions is investigated numerically with the 
aid of the 2.5D BEM-FEM approach. The investigations comprise 2D simulations ( 0yk = ), 

carried out to assess the need for the inclusion of the track in the numerical models, and 3D 
simulations of moving vehicles, performed to compare and rate the trench solutions and to 
investigate some features of the problem, namely the influence of the trenches in the train-
track interaction phenomenon and the efficiency of trenches along the longitudinal direction. 
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Figure 5.24: Frequency content of the vertical velocities for receivers placed at  transverse 
position 15x =  m and longitudinal position 30 30y− < <  m 

The following conclusions are achieved throughout this section: 

1. Neglecting the track leads to higher vibration levels in the soil surface (at least for 
short and medium distances) and to lower efficiency of trenches. Thus, its inclusion in 
the numerical model is necessary to assess the need for mitigation measures and to 
estimate the efficiency of the abatement solutions more accurately. 

2. The presence of the trench does not influence the train-track interaction phenomenon. 
This conclusion is important because it permits to calculate the train-track interaction 
forces for the non-mitigated scenario and to use these forces in the evaluation of 
trench like measures. 

3. The behavior of trenches when acted upon by moving loads is very different from 
their behavior when acted upon by 2D line loads. In fact, 2D simulations tend to 
underestimate the efficiency of trenches, and that is more pronounced for concrete 
trenches than for geofoam trenches. 

4. Ranking the in-fill materials according to the efficiency of the trench, from the 2D 
simulations open trenches are placed first, geofoam trenches second, and concrete 
trenches in last place, while from the 3D simulations concrete trenches and open 
trenches come together in the first place, and geofoam trenches are placed last, clearly 
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5. In the studied example, within the same longitudinal alignment the insertion losses 
may vary up to 10 dB, which is a considerable value. Thus, for design purposes, to 
consider only the lower limit of the envelope leads to over protective measures, while 
to consider merely the upper limit yields relaxed conditions. Therefore, it is 
recommended to consider the insertion loss curve based on the maximum responses of 
the alignment. 

5.4 Effect of trenches on a nearby structure 

5.4.1 General description of the building 

The response of a structure due to the passage of the Alfa train is now analyzed. The objective 
is to assess the efficiency of the trench solutions in reducing the vibration levels inside a 
building situated near a railway track. 

The target structure consists in a two story building whose geometry is represented in 
Figure 4.33. It is composed of vertical columns with cross section 0.4 × 0.4 m2, horizontal 
beams with 0.4 m of width and 0.5 m of height, and slabs with 0.3 m of thickness. The 
structure considered in this example differs from the structure considered in chapter 4 in two 
aspects: firstly, the slabs are flexible; secondly, the slabs are supported on beams and not 
directly on the columns. 

The material considered for all components of the structure is concrete, being its properties 
given in Table 5.4. A distributed mass of 200 kg/m2 is added to the floors and a mass of 
100 kg/m2 is added to the roof-top. The footings are assumed massless and rigid, with 
dimensions 1.5 × 1.5 m2. The distance from the nearest side of the building to the central 
alignment of the track is 20 m. 

In terms of the numerical model, columns and beams are simulated with 2 noded Euler beams, 
and the slabs are simulated with the 4 noded shell elements (the finite element model is 
created in ANSYS — www.ansys.com — being the corresponding matrices exported and 
used in the implemented procedure). The maximum size of the elements is 0.5 m. Each rigid 
footing is divided into 25 equally sized square boundary elements (0.3 m of side). The FEM 
mesh used in the numerical model is represented in Figure 5.25. 

 

Figure 5.25: Finite element mesh of the building (generated with ANSYS) 
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5.4.2 Natural frequencies of the building 

When a structure is subjected to incident wave-fields (seismic waves, or, as in the problem at 
hand, vehicle induced vibrations), it is expected that the structural response be amplified at its 
natural frequencies. 

The natural frequencies of a structure depend on its geometry, on the material properties 
(elastic constants and density), and on the boundary conditions. For the structure represented 
in Figure 5.25, assuming that it rests on a stiff foundation, the natural frequencies jω  

correspond to the solutions of 

( )2det 0jω− =K M  (5.10) 

in which K  and M  are the stiffness and mass matrices of the structure. There are as many 
natural frequencies jω  as the number of rows and columns in K  and M  (approximately 

16000 for this example), and all of them are real. The lowest 100 natural frequencies are 
depicted in the histogram of Figure 5.26, and the mode shapes associated with the natural 
frequencies below 20 Hz are represented in Appendix 5.1. Since the structure is symmetric, 
some natural frequencies jω  are repeated, namely those associated with floor drifting and 

those associated with the bending of the slabs. The repeated frequencies are indicated in 
Appendix 5.1 together with the mode shapes. 

 

Figure 5.26: Number of natural frequencies per frequency interval (intervals of 1 Hz) 

If more realistic boundary conditions are assumed, i.e., if the structure is considered to be 
resting on the soil (and if this is modeled with boundary elements), then the natural 
frequencies jω  correspond to the solutions of 

( )2
BEMdet ( ) 0j jω ω+ − =K K M  (5.11) 

in which BEM ( )ωK  is the frequency dependent stiffness matrix of the soil, calculated as 
explained in chapter 3. Contrarily to the solutions of (5.10), since the soil absorbs waves and 
therefore introduces damping to the system, the natural frequencies jω  of (5.11) are complex. 
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Nevertheless, some frequencies have small imaginary components and thus the structure can 
still resonate if excited near these frequencies. 

Only the almost real solutions jω  are of interest to the current analysis. These solutions can be 

found by exciting the structure in a wide range of frequencies and then observing at which 
frequencies the response is amplified. In this way, to find the natural frequencies, the structure 
is loaded in points A1, A2 and A3 (indicated in Figure 5.25) and the displacements of the 
same points are calculated. The loads are applied both in the horizontal ( x ) and vertical ( z ) 
directions, and the displacements are calculated in the direction of the loads. The obtained 
responses are represented in Figure 5.27, together with analogous results for the case of the 
rigid foundation. 

The results presented in Figure 5.27 show that the presence of the soil (blue curves) cancels 
some of the natural frequencies of the rigidly supported structure (red curves). Furthermore, 
the amplification of the response near the natural frequencies appears to be smaller when the 
soil is considered, which can be justified by the damping introduced in the system due to the 
radiation of waves into the soil. 

Figure 5.26 and Figure 5.27 show that there is a set of natural frequencies that lies in the 
frequency range below 10 Hz, which according to the conclusions of section 5.3, is the 
frequency range at which the trench solutions are ineffective. It can therefore be concluded 
that amplification problems may arise below the frequency 10 Hz. This issue is investigated in 
the following sub-sections. 

5.4.3 Building response for the non-mitigated case 

Before evaluating the reduction achieved by the trench solutions, the building response is first 
investigated considering the non-mitigated scenario. Figure 5.28 shows the horizontal and 
vertical components of the displacements of points A1, A2 and A3 that are induced by the 
passage of the Alfa Pendular train. The displacements are represented in one-third-octave 
bands, and for comparison purposes, the incident displacements at the central footing are also 
represented. 

Figure 5.28a-b reveals amplification of the horizontal displacements xu  and yu  in the 

frequency intervals 2-3 Hz and 6-8 Hz. These frequencies correspond to the lower natural 
frequencies of the building, and are associated with translations of the slabs and rotation about 
their vertical axis (see Appendix 5.1). Above the frequency 10 Hz, the horizontal vibrations 
are almost completely filtered by the building, namely for the points A2 and A3. 

Observe that for the frequency intervals 2-3 Hz and 6-8 Hz, the values of the displacements 
are consistent with the modal shapes of the associated natural frequencies: at the frequencies 
2-3 Hz the horizontal displacements are greater at A3 than at A2, which in turn are greater 
than at A1 (first, second and third modal shapes); at the frequencies 6-8 Hz the displacements 
are greater at A2 than at the other two points (fourth, fifth and sixth modal shapes). Observe 
also that there is an amplification around the frequency 20 Hz, which is felt only at point A1. 
This amplification is justified by the natural frequency f = 18.069 Hz, whose associated modal 
shape corresponds to horizontal translations of the first floor. 

In what concerns the displacements in the vertical direction (Figure 5.28c), amplifications 
occur in the frequency interval 6-30 Hz. This interval is explained by the bending motion of 
the slabs, whose corresponding modal shapes are associated with natural frequencies above 
8 Hz. Moreover, in the frequency interval between 10 and 15 Hz the amplifications are 
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interrupted, coinciding this interval with the range where no natural frequency is observed 
(Figure 5.26 and Appendix 5.1: natural frequencies jump from 11 Hz to 15.7 Hz). 

 

Figure 5.27: Displacements of points A1, A2 and A3 due to horizontal and vertical loads 
applied at the same points 
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Figure 5.28: Displacements of points A1, A2 and A3 and incident displacements at the central 
footing: a) horizontal x  displacements; b) horizontal y  displacements; c) vertical z  

displacements 

 

5.4.4 Reduction achieved by trenches 

The reduction of vibrations in the building due to the six trench solutions described in section 
5.3 is now studied. For that, the insertion losses defined by equation (5.4) are calculated for 
point A2 and represented in Figure 5.29 (for the horizontal directions, the insertion losses are 
calculated using the horizontal displacement in place of the vertical displacement; the results 
for points A1 and A3 are very similar and are not shown here). 
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Figure 5.29: Insertion losses for point A2 
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that the 6m deep trenches perform better than the 3m deep trenches. Overall, it is concluded 
that trenches may have a beneficial effect. 

As a final note concerning this topic, the insertion losses calculated for the building are quite 
similar to the insertion losses calculated for the ground response at the position of the building 
(incident wavefield). For instance, if the two plots at the bottom of Figure 5.29 are compared 
with the insertion losses of Point 3 represented in Figure 5.20, it can be observed that they are 
quite similar. The insertion losses for the horizontal response of the ground are not shown in 
this work, but similar conclusions can be obtained for that direction. 

5.5 Conclusions 

In this chapter, the methods described throughout chapters 2-4 are employed in the analysis of 
vibrations induced by trains and in the assessment of trench-like mitigation solutions. 
Chapter 5 starts with a parametric study of trenches, then the behavior of distinct trench 
solutions is investigated, and finally the effect of the trenches on the vibrations inside a 
building is assessed. 

Based on the parametric study, it is concluded that the behavior of trenches depends on 
several parameters such as its dimensions, stiffness and density of the in-fill material, and 
properties and stratification of the soil. Each parameter is investigated separately, and so 
different conclusions can be obtained if different default scenarios are assumed. In any case, 
the efficiency of trenches largely depends on their depth and width, being the trenches 
ineffective when these dimensions are much smaller than the characteristic wavelength 
(Rayleigh wave) of the soil. For this reason, trenches are effective only in the medium and 
high frequency ranges. 

Concerning the mitigation of the vibrations induced by the Alfa Pendular train, some aspects 
are studied, namely the need for the inclusion of the track in the numerical model, the impact 
of the trenches in the train-track interaction phenomenon, and the variability of the reduction 
of vibrations provided by trenches along the longitudinal position. It is concluded that the 
track must be included in the numerical model, that trenches do not change significantly the 
train-track interaction forces, and that the relative reduction may vary up to 10 dB within the 
same longitudinal alignment. It is also observed that concrete and open trenches present 
similar reduction levels, while geofoam trenches do not perform as well as the other two (this 
ranking order differs from the 2D ranking). 

In section 5.4 the response of a building induced by the passage of an Alfa train is evaluated. 
It is observed that some amplifications occur at the natural frequencies of the structure, being 
the amplification of the horizontal response associated with the floor-shifting modes and the 
amplification of the vertical response associated with the slab-bending modes. Since the lower 
natural frequencies of the building are in the low frequency range (below 10 Hz), the trench 
solutions are ineffective in neutralizing these amplifications, possibly aggravating the 
horizontal response. Nevertheless, if problems are detected above 10 Hz, then the trench 
solutions may provide some protection. The reduction achieved inside the building resembles 
the reduction obtained for the soil surface at the location of the building. For this reason, the 
response of the building needs to be calculated only for the non-mitigated scenario. 

As a final comment, it must be stressed that the results reported in section 5.3 and 5.4 concern 
the line near Carregado. The reductions obtained in different scenarios or at different train 
speeds may not necessarily be equivalent to the results reported here. Further studies are 
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required to contribute to the development of rules of thumb for the design of this type of 
mitigation measures. 
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6. Conclusions and 
recommendations for 

further research 
6.1 Conclusions 

The work described in this dissertation addresses the problem of vibrations induced by trains 
in the surrounding environment. All stages relevant to the problem are considered, namely the 
generation stage, in which the train interacts with the track-ground system, the propagation 
stage, in which the vibrations propagate through the track and ground, and the reception stage, 
in which the mentioned vibrations reach the building and induce its dynamic response. 
Mitigation at the propagation stage using trenches is also addressed. 

The major focus of the work is on the development and implementation of numerical tools for 
the simulation of the three stages of the problem. The selected numerical approaches are 
described throughout chapters 2-4. In chapter 5, the derived tools are used to analyze trench 
like mitigation solutions. 

Numerical approaches have to fulfill several requirements in order to provide reliable 
predictions, namely: 

1. Moving nature of the source – while standing harmonic loads induce harmonic 
responses, moving loads induce transient responses characterized by a wide range of 
frequencies. Therefore, simplistic models in which moving loads are replaced by 
standing loads are not sufficient; 

2. Train-track interaction – if the interaction is disregarded, then the moving forces 
remain constant in time (quasi-static components) and the induced response 
evanesces with the distance to the track. In order to obtain the response at remote 
positions, the dynamic components must also be accounted for. These components 
result from the solution of a train-track interaction problem; 

3. Adequate soil model – soil connects the track with nearby buildings, and therefore 
its consideration is of great importance. The propagation of waves in the soil is 
affected by heterogeneities found along the propagation path. If these 
heterogeneities are neglected, the obtained results may be inaccurate; 

4. Mitigation measures – in order to assess the efficiency of mitigation measures, they 
must be considered in numerical models, whether these measures are applied at the 
source, at the propagation path, or at the receiver. 

The above mentioned requirements can be fulfilled through the use of three-dimensional finite 
element models, where the components of train, track, soil and building can be simulated with 
a suitable type of element and constitutive behavior (eventually nonlinear). However, the use 
of 3D FEM to solve soil-structure interaction problems (such as track-ground and building-
ground interaction) leads to extremely large systems of equations whose solution is time 
consuming. For this reason, and in order to simplify the problem, some assumptions are made, 
namely the consideration of: 
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1. Linear behavior of the material and linear contact between train and track – this 
assumption enables the analysis to be performed in the frequency domain; 

2. Constant cross section of the track – this assumption allows the problem to be 
analyzed in the wavenumber-frequency domain (2.5D domain). In other words, the 3D 
problem is reduced to a series of smaller 2D problems, which are faster to solve; 

3. Constant speed of the train – the 2.5D models are exact in the simulation of loads 
(constant or oscillating) moving at constant speed; 

4. Horizontally stratified soil –this assumption is commonly used in the literature, and 
allows the soil to be simulated with the boundary element method and with the thin-
layer method, a combination that results in a very efficient strategy; 

5. Weak coupling between the nearby building and the track – or in other words, waves 
that propagate from the track to a nearby building are accounted for, but waves that 
are reflected by the building and return to the track are neglected. This assumption 
allows the solution of the problem in two distinct phases: a first phase in which the 
generation and propagation stages are accounted for and in which the presence of the 
building is disregarded; a second phase in which the response fields calculated in the 
first phase are prescribed at the building, thus obtaining its response. 

Based on the above mentioned requirements and assumptions, the following strategies are 
followed: 

• Generation stage (train-track interaction): the train is simulated with a 3D 
multi-rigid-body approach, while the stiffness matrices for the track-ground system are 
obtained with the 2.5D transfer functions of that system (see the next point). The 
equilibrium and compatibility equations are formulated in a moving frame of reference 
and solved in the frequency domain. This procedure yields the dynamic interaction 
forces between train and track; 

• Propagation stage: a 2.5D BEM-FEM approach is used to solve the soil-track 
interaction problem. The track is modeled with finite elements while the track-ground 
interface is modeled with boundary elements. Heterogeneities in the soil, such as 
trenches, are modeled with the same strategy. The interaction forces calculated in the 
generation stage are used as inputs in the 2.5D BEM-FEM, and the response of the 
ground at any position, including the positions of the nearby building, is calculated. 
The presence of the building is neglected at this point; 

• Reception stage: a 3D BEM-FEM approach is used to solve the soil-structure 
interaction problem. The response fields calculated in the previous stage are 
transformed to the 3D space and used as inputs in the 3D BEM-FEM model, whose 
solution provides the response of the building. 

The fundamental solutions used to nurture the BEM (both 2.5D BEM and 3D BEM) are 
calculated with the thin-layer method (TLM). This aspect represents the main difference 
between the methodology used in this work and the strategies followed by other authors. 

The TLM is described in chapter 2, where expressions for the 2.5D fundamental solutions are 
derived, and where perfectly matched layers (PMLs) are coupled with the TLM in order to 
simulate half-spaces. All the developments are validated through the calculation of the 
fundamental solutions of full-spaces and a posteriori comparison with analytical solutions. It 
is concluded that the TLM is in fact an efficient option for the calculation of fundamental 
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solutions of layered half-spaces. It is also concluded that the coupled TLM+PML scheme is 
significantly more efficient than the paraxial boundaries (PB) approach, which prior to this 
work was the favorite procedure to model half-spaces with the TLM. 

The coupled BEM-FEM strategy is used to solve soil-structure interaction problems. The soil, 
of unbounded geometry, is modeled with boundary elements, while the structure (track or 
nearby building), of bounded and complex geometry, is modeled with finite elements. The 
advantages of the coupled BEM-FEM approach are the reduction of the number of degrees of 
freedom needed to model the domain (and in particular, the soil), and the consideration of the 
radiation of waves to infinity. The main disadvantage resides in the need for the calculation of 
the BEM matrices, which is usually time consuming. 

The coupled BEM-FEM approaches are described in chapter 3. There, for the case of the 
2.5D BEM, it is explained how to use the TLM to calculate the boundary element coefficients 
without resorting to spatial integrations, and thus avoiding the complications associated with 
the singularities of the fundamental solutions. 

When compared with similar approaches, the main drawback of the 2.5D BEM-TLM strategy 
is the time needed for the calculation of the eigenmodes, which becomes large when the 
fundamental solutions are needed at deep positions. Nevertheless, for each soil profile, the 
eigenmodes only need to be calculated once for each frequency. They can thereafter be used 
to analyze different configurations of tracks, buildings and countermeasures. 

The train-track interaction problem involves the coupling between a moving discrete structure 
and an invariant structure. While the moving vehicle is simulated in the 3D domain, the 
underlying structure (track-ground system) is formulated in the 2.5D domain, and so the 
coupling between the two structures is not straightforward. This issue is addressed in 
chapter 4, where the expressions for the dynamic interaction forces and the transformation of 
the 2.5D results to the 3D space domain are described. The link between the distinct 
procedures and stages is exemplified also in chapter 4. 

It is convenient to point out that the 2.5D BEM-FEM procedure, the TLM, and the train-track 
interaction solution procedure have been implemented in the finite element software FEMIX 
(http://www.alvaroazevedo.com/femix/). The software is structured in such a way that the 
user only needs to provide information about the soil profile and respective TLM model, finite 
element model of track and mitigation measures, boundary element model for soil-structure 
interfaces, vehicle model (multiple rigid body model), irregularity profiles, and frequencies of 
interest. The program then proceeds to complete all necessary operations and returns the 
outputs requested by the user, both in the time domain and in the frequency domain. The user 
does not need to provide a transverse wavenumber sample for the transformation of the 
fundamental solutions from the (kx, ky, ω) domain to the (x, ky, ω) domain, since that 
transformation is accomplished internally by the TLM. The program is generic enough to 
account for surface lines or tunnels, stratification of the soil and obstacles in the propagation 
path (e.g., trenches). 

The 3D BEM-FEM procedure has not been implemented in the FEMIX software, but a 
MATLAB module has been written with the purpose of calculating the response of a building 
due to an incoming wave field. The subroutine requires a binary file with the incident 
displacement field (this file is an output of FEMIX), and text files with the stiffness and mass 
matrices of the building. These matrices have to be written in the Harwell-Boeing format, as 
provided by ANSYS through the command HBMAT. This subroutine only handles structures 
resting on the surface of layered half-spaces. 
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In chapter 5, the above mentioned programs are used to study the efficiency of trenches as 
mitigation solutions. First a parametric study is performed and then the behavior of trenches 
under realistic conditions is investigated. The main conclusion of the parametric study is that 
the efficiency of a trench depends mostly on its dimensions, being the trench ineffective when 
its depth is much smaller than the characteristic wavelength of the soil (Rayleigh wave). For 
this reason, trenches are effective only in the medium and high frequency range. 

In what concerns the use of trenches for the reduction of vibrations induced by trains, it is 
observed that excluding the track from the numerical model results in underestimations of the 
induced vibrations and overestimations of the efficiency of trenches. It is also observed that 
trenches do not affect significantly the train-track interaction forces (at least for the problem 
analyzed) and that concrete trenches and open trenches present similar reduction levels, while 
geofoam trenches perform worse than the other two. 

An important observation regarding the modeling of mitigation solutions is that 2D models 
are not appropriate for the simulation of the trench behavior, namely when the system is acted 
upon by moving loads. The results in chapter 5 show that 2D simulations overestimated the 
efficiency of geofoam trenches and underestimated the efficiency of concrete trenches. 

Regarding the reduction observed in nearby buildings, it is seen that trenches fail to diminish 
the amplifications at the low natural frequencies caused by the passage of trains. On the 
contrary, trenches are effective in reducing the vibrations at high frequencies (frequencies 
above 10 Hz for the case considered). 

6.2 Recommendations for further research 

Taking the FEMIX program and the MATLAB modules developed in the course of this thesis 
as framework for future investigations, the following studies are of great interest. 

• Vibrations induced by underground trains: the examples presented in this thesis only 
consider surface lines. Nevertheless, trains running on tunnels are also a reality inside 
cities, and due to their close proximity to buildings, they may have a negative impact 
on inhabitants and equipments. 

• Mitigation measures: in chapter 5 of this thesis, trenches are studied as measures for 
the abatement of vibrations induced by trains. Nevertheless, the conclusions obtained 
in that chapter refer to the particular problem there considered, and so the extension of 
the conclusions to different scenarios may be inappropriate. Thus, further studies are 
needed, and if possible, rules of thumb for their design should be attempted. 
Additionally, different mitigation solutions should be investigated. The developed 
programs are prepared to incorporate several mitigation solutions, whether they are 
applied at the source (e.g., suspension systems of the train, type of track, resilient 
materials in the track), at the propagation path (wave impeding blocks, for example), 
or at the target building (compartment isolation, for example). Studies on these 
measures can be found in the literature, but further studies are needed. 

Additionally, improvements are required so that different studies become possible. For 
example, to solve each of the 6m deep trench problems described in chapter 5 takes a couple 
of days, which renders sensitive analyses impractical. In order to reduce the computation 
times, the following strategies are recommended. 

• Reduced modal superposition: in the 2.5D BEM-FEM procedure, the step that is more 
time consuming is the calculation of the boundary element matrices. Their calculation 
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relies on a modal superposition, which in this work is performed combining all the 
vibration modes. It is known that vibration modes whose eigenvalues contain a large 
imaginary component are evanescent with the distance to the source, and therefore 
their contribution can be neglected when a collocation point and a boundary element 
are far from each other. To account for this feature may save some time in the 
computation of the boundary matrices. 

• Parallel computing (GPU vs CPU): the objective is to reduce the computation time, 
which for more complex geometries (such as when discontinuities/heterogeneities are 
considered in the soil) may become excessively time consuming. In this work, GPU 
computation of the BEM matrices has been attempted, but the time reduction was not 
significant (CPU and GPU calculation took roughly the same time). The author 
believes that his implementation does not access the GPU memory in the most 
efficient way, and so he believes that better performances can be obtained. 

• Parallel computing (“supercomputers”): the parallelization attempted in this work is 
performed in the calculation of the BEM matrices, but parallelization can be 
implemented at a higher level. Since the same type of problem needs to be solved for 
each wavenumber-frequency pair (ky, ω), and since each of these 2.5D problems can 
be solved independently from the others, then the calculations can be distributed 
across different computers. If multiple computers or if supercomputers are available, 
then distributing the calculations across several processing units is expected to result 
in a considerable speed up. 

Lastly, apart from the improvements associated with computation time, some of the 
limitations of the programs can be overcome so that new scenarios can be analyzed. 

• Buried structures: the formulation of the 3D BEM-FEM procedure in chapter 3 is 
generic, but the method has been implemented only for structures resting at the 
surface. The reasons for this limitation are complications associated with the 
evaluation of the boundary integrals, which cannot be performed analytically. 
Furthermore, since the mesh is three dimensional, the time needed for the calculation 
of the BEM matrices may render the problem impracticable. A promising alternative 
for the calculation of the stiffness matrices of the soil is the use of finite elements 
coupled with perfectly matched layers (FEM+PML). 

• Periodic geometries: in this thesis, it is assumed that the geometry is invariant in the 
longitudinal direction. There are, however, scenarios for which periodicity cannot be 
neglected, as for example, isolation of vibrations by means of rows of piles. In that 
example, the space between consecutive piles plays an important role in the efficiency 
of the measure, and therefore invariant models are revealed to be inadequate, being a 
more appropriate model one that accounts for the periodicity of the geometry. 
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Appendix I 

Matrices αβD  for cross-anisotropic materials 

Based on the constitutive matrix D  defined in equation (2.1), the matrices αβD  in equation 

(2.13) are 
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Thin-layer matrices for cross-anisotropic materials 

Linear expansion  

The shape functions for this case are 

 1N ζ=    2 1N ζ= −   /z hζ =  

where 0z =  at the bottom surface of the thin-layer and z h=  at its top surface. The evaluation 
of equations (2.22) to (2.26) results in the following thin-layer matrices 
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The elementary matrix αBɶ  is obtained by changing the sign of every third column of αB . 

Quadratic expansion 

The shape functions are now 
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 ( )1 2 1N ζ ζ= −   ( )2 4 1N ζ ζ= −   ( )( )3 1 1 2N ζ ζ= − −   /z hζ =  

where 0z =  at the bottom surface of the thin-layer and z h=  at its top surface. The evaluation 
of equations (2.22) to (2.26) results in the following elementary matrices 
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The elementary matrix αBɶ  is obtained by changing the sign of every third columns of αB . 
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Appendix II 

Evaluation of 4 jI  using contour integration 

The Residue Theorem (Boas, 1983) states that the value of the contour integral for any 
contour in the complex plane depends only on the properties of a finite number of points 
contained inside the contour (the poles). Using mathematic representation, this theorem states 
that 

 ( ) ( )2 i Res j
jC

f d fξ ξ π ξ= ∑∫�        (AII.1) 

where jξ  represents the jth pole (inside the contour) of the single valued function ( )f ξ , and 

( )Res jf ξ  represents the residue of the pole jξ . For a simple pole, the residue is calculated 

with 
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Equation (AII.1) is valid for contour integrals in the anti-clockwise direction. For the 
clockwise direction, the right hand side is multiplied by 1− . 

The integral to be evaluated is 
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or equivalently, 
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For this case, the function ( )f ξ  is 
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whose poles are ( yk  is assumed to be real) 
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The residues of the poles, as defined by equation (AII.2), are 
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In order to evaluate the integral (AII.4) using contour integration, the contours shown in 
Figure AII.1 are used. 

 

Figure AII.1: Contours for the evaluation of 4 jI  

The red contour must be considered when x  is smaller than zero, while the blue contour must 
be considered when x  is greater than zero. These conditions guarantee that the function ( )f ξ  

vanishes in the semi-circumferences of infinite radius, which means that only the integrals on 
the real axis are non-zero. 

Equations (AII.1) and (AII.2) are used to evaluate the contour integral, yielding 
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Replacing the residues with the expressions (AII.6) leads to 
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After some simplifications, equation (AII.8) becomes 
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which is equivalent to the expression indicated in Table 2.3. 

 

 

 





Analysis and mitigation of vibrations induced by the passage of high-speed trains in nearby buildings 

211 

Appendix III 

Ipɶ  as a function of B
Iuɶ  and IIpɶ  

Consider the system of equations (3.22) 
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After solving the first row for Ipɶ  and the second row for B
IIuɶ , one obtains 
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Substituting B
IIuɶ , defined in the second equation, into the first, yields 
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Appendix IV 

Displacements induced by disk loads 

Knowing the eigenvectors of the SVP and SH problems (Chapter 2), the displacements in the 
space domain can be calculated with an appropriate combination of the eigen modes. The 2D 
displacements can be calculated with the equations found in (Kausel, 1981), for the 2.5D 
displacements (mixed domain) see Chapter 2 or (Barbosa and Kausel, 2012) and for the 3D 
cylindrical displacements (due to a point load) see (Kausel, 1999). As for the displacements 
induced by disk loads, the corresponding equations can be found in (Kausel and Peek, 1982), 
being transcribed below. In the superscripts, m represents the depth of the receiver and n the 
depth of the load. In the subscripts, r corresponds to the radial direction and z to the vertical 
direction. The first subscript of u  indicates the direction of the displacement, and the second 
corresponds to the direction of the load. The parameter ρ  is the radial distance between the 
receiver and the center of the disk load, R is the radius of the disk load (Figure AIV.1), q is 
the applied pressure, ( )nJ X is the Bessel function of first kind and nth order, and ( ) ( )2

nH X  is 

the second Hankel function of nth order. 

 

Figure AIV.1: Definition of directions z  and r  
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Appendix V 

Vibration modes of the building 

 

 

 

 

 

f = 10.337 [Hz] f = 10.812 [Hz] f = 10.986 [Hz] 

f = 9.925 [Hz] f = 10.189 [Hz] 

f = 9.163 [Hz] 
f = 9.902 [Hz] 

f = 9.001 [Hz] f = 8.871 [Hz] 

f = 6.254 [Hz] f = 8.293 [Hz] 

f = 2.097 [Hz] 
f = 2.735 [Hz] 
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f = 19.569 [Hz] 

f = 19.610 [Hz] 

f = 18.587 [Hz] f = 18.788 [Hz] 
f = 19.231 [Hz] 

f = 18.069 [Hz] 
f = 18.438 [Hz] 

f = 17.295 [Hz] f = 17.551 [Hz] 

f = 16.563 [Hz] f = 16.593 [Hz] 

f = 16.135 [Hz] 
f = 16.219 [Hz] 

f = 15.710 [Hz] 
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