
 

 

EMOTIONS AND RECOMMENDER SYSTEMS: A SOCIAL 

NETWORK APPROACH 

 

 

Carlos Manuel Moita de Figueiredo 

 

 

Dissertação apresentada na Faculdade de Engenharia da 

Universidade do Porto, para obtenção do grau de Doutor em Media Digitais 

 

 

Orientador: José Azevedo 

Co-orientador: Eduarda Mendes Rodrigues 

 

 

 

2014 

 

 

 

Doutoramento financiado por uma bolsa de doutoramento com a referência  
SFRH / BD / 51305 / 2010   



II 
 

 

 

 

To all those who helped me along the way.  

To the smile of my nephew and nieces. 

  



III 
 

ACKNOWLEDGMENTS 

 

These last four years of work have been immensely challenging and positive. 

This journey started with a question: “can we recommend content to online users in the 

context of their browsing activity and trigger richer ways of interpreting it through new 

insights?” This question arose while I was managing a startup company named "Edit on 

Web" during the period of 2003 - 2010. This amazing project of networking between 

people and content centered on contributing new ways of publishing, browsing and 

accessing information online for users and by users, benefiting from new insights by 

means of recommendation, ended up to be one of the triggers to start this thesis. In fact, 

because the seven years of the company's existence were not enough to find the right 

answers, I decided to look for it by way of this dissertation. 

However, this journey wouldn’t be possible without the knowledge, support and 

friendship of so many good people and family.  

I would like to express my sincere gratitude to these people, without whom this 

thesis wouldn’t have reached this point and my PhD journey wouldn’t have been as 

exciting and enjoyable as it has been. 

I am especially grateful for the mentorship of my primary supervisor Dr. José 

Azevedo, who since the first moment has been present and ready to guide me along the 

path. Without our first meeting talking about the "Edit on Web" at Porto University 

(UP), and his vision, this journey couldn't have started. Thanks also go to Professor 

Eurico Carrapatoso, who welcomed me and advised me in the early stages of this 

journey, with his unwavering and contagious smile, and to my second supervisor Dr. 

Eduarda Mendes Rodrigues, who provided comments at times when it was crucial.  

Another big thank you goes to Dr. Luis Francisco-Revilla and Dr. Wenhong 

Chen, who were wonderful supervisors during my three semesters at the University of 

Texas in Austin (UT). It is difficult to imagine the end of this dissertation without their 

guidance, talks, comments, networking and above all, questions and support.  

Several professors at UT have been a 'light' to my path during this journey, so 

thank you all, and particularly to Derek Lackaff, Wenhong Chen and Matt Lease. 



IV 
 

Without them it would not have been possible to find the main building blocks of this 

dissertation.  

Thank you to Christiano Prado, João Beira, Ryan Chen, Jeremy Tsuy, and so 

many others for being such great hosts during the time I spent in Austin. Special thanks 

to Filipa Ribeiro who offered me unsurpassed support and to Sara Cavaco for the 

wonderful help with the data and statistical work.  Thank you to Susana Silva, Carla C. 

Martins, Anabela Costa, Nuno Natividade, Kelly Mendonça and Paddy Greenleaf for 

the friendship and so much advice, chats and help.  

My dissertation research was made possible by the UT – Austin | Portugal 

Doctoral Program. It is impossible to imagine it happening without the vision of 

professor Pimenta Alves and Sharon Strover and the efficiency of Karen Gustafson. 

Thank you all and to the FEUP and RTF team dedicated to help on this UT-PT 

Program. 

Finally, I am grateful to my wonderful parents, brother and sister. You have 

always been an incredible support and not least over the past 4 years. Thank you for 

your love and your commitment to me through all the ups and downs. You show me 

why there is no aim, without ties. And my appreciation to Coronel Costeira, for his 

amazing work and solidarity with so many, making explicit the implicit, who helped me 

to find focus, learning and understanding. 

 

 

  



V 
 

TABLE OF CONTENTS 

 

 

TABLE OF CONTENTS 

 

 

ACKNOWLEDGMENTS .................................................................................... III 

TABLE OF CONTENTS ..................................................................................... V 

LIST OF TABLES ............................................................................................ VIII 

LIST OF FIGURES ............................................................................................ IX 

RESUMO............................................................................................................ X 

ABSTRACT ....................................................................................................... XI 

CHAPTER 1 ....................................................................................................... 1 

INTRODUCTION ................................................................................................ 1 

Objectives ....................................................................................................... 1 

Theoretical Background and Rationale ........................................................... 7 

Analytical approach ....................................................................................... 10 

Summary and Preview of Chapters............................................................... 11 

CHAPTER 2 ..................................................................................................... 13 

COGNITIVE FACTORS IN THE ONLINE ENVIRONMENT ............................. 13 

2.1 Overview ............................................................................................. 13 

2.2 Flow and Intelectual styles on online human–computer interaction .... 14 

2.3 Construction of meaning ..................................................................... 20 

2.4 Unconscious role on cognition and emotions ...................................... 24 

2.5 Emotions and emotional perception of surprise and novelty ............... 26 

CHAPTER 3 ..................................................................................................... 31 

WEB-BASED SERVICES AND COGNITIVE FACTORS: FROM A SEMANTIC 
WEB TO A SOCIALLY CENTERED WEB........................................................ 31 

3.1 Overview ............................................................................................. 31 

3.2 Semantic Web ..................................................................................... 35 

3.3 Search engines and social network data ............................................. 37 



VI 
 

3.4 Recommender systems ....................................................................... 42 

3.4.1 Collaborative filtering methods ......................................................... 43 

3.4.2 Content-based filtering methods ...................................................... 45 

3.4.3 Hybrid systems ................................................................................ 46 

3.5 Recommender systems and social network data ................................ 47 

3.5.1 Social network-based recommender system ................................... 47 

3.5.2 Surprise on recommendation ........................................................... 49 

CHAPTER 4 ..................................................................................................... 53 

SOCIAL ECHO CHAMBER AND SOCIAL STRUCTURE ................................ 53 

4.1 Overview ............................................................................................. 53 

4.2 Echo Chamber Effect .......................................................................... 54 

4.3 The Social Effect on Echo Chamber ................................................... 55 

4.4 Social Echo Chamber Effect on Web Personalization ......................... 63 

CHAPTER 5 ..................................................................................................... 67 

SOCIAL NETWORKS OVERVIEW .................................................................. 67 

5.1 Overview ............................................................................................. 67 

5.2 Networks of relationships .................................................................... 68 

5.3 The Strength of Weak Ties .................................................................. 70 

5.4 Network Bridges .................................................................................. 74 

5.5 Central Nodes: centrality and bridging measures ................................ 78 

5.6 Size and ties diversity .......................................................................... 81 

5.7 Psychological attributes in social networks ......................................... 82 

CHAPTER 6 ..................................................................................................... 87 

SURPRISE AS A PROXY OF NOVELTY ......................................................... 87 

6.1 Overview ............................................................................................. 87 

6.2 Introduction ......................................................................................... 87 

6.3 Bridging measures .............................................................................. 89 

6.3.1 Procedures ....................................................................................... 90 

6.3.2 Sampling characteristics .................................................................. 93 

6.3.3 Results ............................................................................................. 99 

6.4 Discussion ......................................................................................... 105 

6.5 Conclusion ........................................................................................ 109 

CHAPTER 7 ................................................................................................... 111 



VII 
 

STRUCTURAL HOLES AND SURPRISE IN CONTENT SELECTION IN 
SOCIAL NETWORKS .................................................................................... 111 

7.1 Overview ........................................................................................... 111 

7.2 Introduction ....................................................................................... 111 

7.3 Central Nodes, receivers' content choices and hypothesis ............... 113 

7.3.1 Sampling characteristic and procedures ........................................ 114 

7.3.2 Results ........................................................................................... 117 

7.4 Discussion ......................................................................................... 121 

7.5 Conclusion ........................................................................................ 124 

CHAPTER 8 ................................................................................................... 127 

PERSONAL ATTRIBUTES AND BRIDGING TO DEFINE COGNITIVE 
DISTANCE: PREDICTING SURPRISE .......................................................... 127 

8.1 Overview ........................................................................................... 127 

8.2 Introduction ....................................................................................... 127 

8.3 Cognitive distance and hypothesis .................................................... 129 

8.3.1 Setting ............................................................................................ 132 

8.3.2 Results ........................................................................................... 134 

8.4 Discussion ......................................................................................... 136 

8.5 Conclusion ........................................................................................ 141 

CHAPTER 9 ................................................................................................... 143 

DISSERTATION CONCLUSIONS .................................................................. 143 

LIST OF REFERENCES ................................................................................ 153 

APPENDICES ................................................................................................ 191 

APPENDIX A – ONLINE QUESTIONNAIRE ........................................................ 191 

APPENDIX B – INFORMED CONSENT FORM .................................................... 198 

APPENDIX C – INSTRUCTIONS TO STUDY PARTICIPANTS – PHASE 1 ............... 200 

APPENDIX D – FLYER ................................................................................... 202 

 

 

 



VIII 
 

LIST OF TABLES 

Table 1 – Emotional scale. ............................................................................................. 95 

Table 2 – Tie strength construct..................................................................................... 96 

Table 3 – Types of triads and strong ties per triad. ........................................................ 98 

Table 4 – Descriptive statistics based on the scores of the variables that characterize tie 
strength. ........................................................................................................................ 100 

Table 5 – Number of triads between sender and receiver. ........................................... 101 

Table 6 – Pearson correlations between triads and bridging factors. .......................... 102 

Table 7 – Coefficients from regression model predicting surprise and redundancy. .. 103 

Table 8 – Descriptive statistics on content selection and publishing. ......................... 117 

Table 9 – Pearson correlations. .................................................................................... 118 

Table 10 – Coefficients from regression model predicting surprise. ........................... 119 

Table 11 – Pearson’s correlations. ............................................................................... 134 

Table 12 – Coefficients from regression model predicting surprise. ........................... 135 

 

  



IX 
 

LIST OF FIGURES 

 

Figure 1 – Conceptual model on surprise as a proxy of novelty. .................................. 90 

Figure 2 – Flowchart of the several stages of the survey. ............................................. 92 

Figure 3 – Closed Triads ............................................................................................... 98 

Figure 4 – Conceptual model on content selection. ..................................................... 113 

Figure 5 – Participants’ network . ................................................................................ 114 

Figure 6 – Information flow’s network . ..................................................................... 115 

Figure 7 – Conceptual model on cognitive distance. ................................................... 130 

 

 

 

 

 

 

 

 

  



X 
 

RESUMO 

Esta dissertação contribui para os campos científicos sobre Sistemas de Recomendação 

e Análise de Redes Sociais, mas também para os estudos em Sociopsicologia aplicados 

a Sistemas de Media Digitais. As empresas de media digital estão a usar dados de redes 

sociais para personalizar serviços baseados na Web (por exemplo, busca e 

recomendação) para servir e envolver a sua audiência de forma mais eficaz e relevante. 

Porém, esta prática está a diminuir a diversidade de pontos de vista na comunidade de 

utilizadores Web dada a falta de novidade nos resultados entregues. Assim, o uso actual 

de dados sociais baseados em relações estabelecidas por efeitos endógenos (ou seja, 

homofilia) e amizade ou proximidade social (ou seja, laços fortes) cria um efeito de 

Câmara de Eco Social que aprisiona as pessoas dentro de bolhas sociais de informação. 

Por consequência, em vez de inovação, há uma redução de qualidade nos serviços 

prestados por sistemas de recomendação, e assim, um baixo nível de satisfação dos seus 

utilizadores.  

Reconhecendo-se as desvantagens da utilização de dados de redes sociais, mas também 

a sua riqueza, este trabalho propõe-se a encontrar uma solução para a construção de um 

fluxo de informações e recomendações baseadas na novidade através de dados sociais. 

Três estudos empíricos apoiados numa abordagem interdisciplinar entre Análise de 

Redes Sociais e Psicologia e Neurociências, pesquisam que factores estruturais e 

atributos pessoais contribuem para a percepção de novidade. Estes estudos consideram 

em conjunto o estudo dos laços sociais e das semelhanças entre uma população de 

estudantes, bem como a sua resposta emocional à selecção de conteúdo em uma rede 

social. O primeiro estudo, que propõe um método alternativo para o estudo de pontes de 

rede e que se centra na análise da percepção da novidade pelos receptores de 

informação, apoia-se na hipótese de que a surpresa é um proxy da novidade, pelo que, 

os factores de ponte, ou seja, força do laço e buracos estruturais, podem ser analisados 

como preditores da resposta surpresa. O segundo estudo empírico baseia-se na 

constatação de que a selecção de conteúdos pelos receptores é mais dependente da 

reacção emocional do receptor, do que de factores associados à popularidade dos 

remetentes, ou à relação de amizade, proximidade, entre emissor e receptor. O último 

estudo analisa a distância cognitiva óptima, entre emissor e receptor, medido a partir de 

atributos pessoais que em conjunto com factores de ponte predizem a resposta surpresa 

do receptor.  
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Os resultados mostram que o desempenho dos sistemas de recomendação baseados em 

redes sociais pode ser melhorado através da entrega de recomendações novos e 

surpreendentes com base na previsão e não na aleatoriedade, o que evita o efeito de 

Câmara de Eco Social. Esta dissertação chama a atenção para o fato de que os dados 

sociais podem ser usados para aumentar as distâncias cognitivas entre os utilizadores da 

Web, o que permite lidar com um conjunto de novas ameaças (por exemplo, ao nível da 

democracia / tolerância, conformidade, cognição, e da inovação "fluffy"), que têm sido 

impostas por alguns algoritmos Web. 

 

ABSTRACT 

This dissertation contributes to the scientific fields of Recommender Systems and Social 

Network Analysis, but also to Social-psychological studies applied to Digital Media 

Systems. Digital media entrepreneurs are using data from social networks to personalize 

Web-based services (e.g., searching and recommendation) to engage their publics in 

more effective and striking ways. However, this practice is narrowing the diversity of 

viewpoints in the Web community because of the lack of access to novelty. I claim that 

the use of the current type of social data, based on relationships set by endogenous 

effects (i.e., homophily) and friendship or social proximity (i.e., strong ties) creates a 

Social Echo Chamber Effect that traps people inside social bubbles of information. 

Consequently, instead of innovation, there is a reduction of quality in the services 

provided by recommender systems, and so, a lower level of user’s satisfaction. 

Acknowledging the drawbacks using data from social networks, but also its richness, 

this work proposes to find a solution to construct a flow of information and 

recommendations based on novelty through social data. Three empirical studies 

supported by an interdisciplinary approach between Social Network Analysis, 

Psychology and Neuroscience, examine which structural factors and personal attributes 

contribute to novelty perception. These studies consider in tandem the study of social 

ties and similarities among a population of students and the emotional response to 

content selection in a social network, in particular, surprise. The first study, which 

proposes an alternative method of investigating network bridges and focuses on novelty 

perception from receivers, supports the hypothesis that surprise is a proxy of novelty 

and, thus, bridging factors, i.e., tie strength and structural holes, can be predictors of 
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surprise response. The second empirical study builds on the finding that content 

selection in a social network environment is more dependent of receiver's emotional 

reaction than from factors associated with sender’s popularity or to a strong friendship 

bond between sender and receiver. The last study examines the optimal cognitive 

distance, between sender and receiver, measured by personal attributes that jointly with 

bridging factors predicts receiver's surprise response. The findings show that the 

performance of social network-based recommender systems can be improved by the 

delivering of novel and surprising recommendations based on prediction and not on 

randomness, which avoids the Social Echo Chamber Effect. This dissertation draws 

attention to the fact that the social data can be used to increase the cognitive distances 

among users, in order to deal with a set of new threats (e.g., at level of 

democracy/tolerance, conformity, cognition, “fluffy” innovation) that has been imposed 

by some web algorithms.  

 

Keywords: Recommendation, Personalization, Structural holes, Ties strength, Surprise, 

Novelty, Homophily, Centrality. 
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CHAPTER 1 

INTRODUCTION 

 

Objectives 

The Internet is a critical medium which gives us the opportunity to connect with 

all kinds of different people and provides access to information from all over the world. 

The almost instant access to global contents makes the Internet one of the chief 

powerful allies of globalization. Simultaneously, it acts as a glocal1 medium. It means 

that its technologies transform the "global" into other shapes that meet the needs of local 

consumers. This double role seems to be built on how people trust its technology and in 

results obtained through Internet queries. In fact, it has become a general practice for a 

person to look for a particular solution over the Internet and then getting satisfied with 

the solution. They often believe the result they get is the best available for them.  

This current state of things prompts two questions. a) What is the best result for 

an end-user?  

Given the evolution achieved by some Web-based services (e.g., searching and 

recommendation), the answer seems to be related with personalized deliveries, which 

are intimately related with the increased performance levels of these services. In fact, 

with the growth and strengthening of the social Web and associated services and 

technology, users become treated as a selected audience by the content providers (e.g., 

media), which imposes, externally, a pre-constructed and imposed view. This view, 

which describes a current trend on Web, is "tuned" by the information obtained on the 

users' habits and interests.   

In this vein, scholars have been addressing the advantages and disadvantages of 

personalization in several contexts, such as on media and by means of Web-based 

services. A common and generally accepted conclusion regarding disadvantages is that 

online personalization may isolate people from a diversity of viewpoints or content 

                                            
1 The term “glocalization” that describes a new outcome of local conditions toward global pressures, can 
be connoted with a successive development and challenge to the top-down hegemony implicit in the term 
“globalization” (Maynard, 2003). 
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(Nguyen et al., 2014). This fact emphasizes the meaning of living inside echo chambers, 

as argued by Sunstein (2009) in the book “Republic.com 2.0”.  

With regards to its advantages, marketers will say that the value of 

personalization is in how to treat each person individually, with targeted content and 

offers that can appeal to their implicit or explicit needs. This is a scenario that makes 

even more acceptable the idea that almost everything is available over the Internet and 

translated into data2 aimed to satisfy our needs in a more and more customized way. 

With this in mind, scholars and entrepreneurs started to look more attentively to the data 

collected in online social networks. Therefore, given the above question, the best result 

for the end-user would be related to more personalized results, but this means severe 

consequences to users in terms of diversity. 

Moreover, there seems to be a gap which has not yet been addressed in the 

literature, where the benefit of using social data in personalization services is discussed. 

Next, I introduce this issue, by formulating the second question.  

b) How different would the users' satisfaction level be if they could have access 

to the amount of information not shown due to personalization methods?  

Some authors (e.g., Vargas et al., 2014) argue that the users' satisfaction level 

can be enhanced by means of the results' diversity. Agreeing with this viewpoint, the 

investigation undertaken in this dissertation shows how to achieve such goal. Chapter 

three presents some of the different personalization methods currently used. 

Given the highly significant gain in popularity, online social networks became 

an important resource for recommendation (e.g., Ma et al., 2011; Bobadilla et al., 2013) 

and search (e.g., Mislove et al., 2006; Golbeck, & Wasser, 2007; Carmel et al., 2009). 

In particular, explicit user interactions have created an ideal test-bed for personalization. 

It was assumed that closely related people had similar interests, from which a 
                                            
2 The amount of data gathered globally has grown exponentially (McKinsey Global Institute 2011), as 
well as the value of the data produced in big social media platforms, such as Facebook, Twitter, LinkedIn, 
Pinterest, or even Foursquare. For example, Facebook processes around 500 terabytes of data every day, 
and their users exchange over 2.5 billion posts and upload around 300 million photos daily (Batorski, 
2012). On the other hand, big data (unstructured information) have been marketed as one of the newest 
and promising business derived from the Internet. By mid-2008, Google already had in excess of a trillion 
unique web addresses indexed, while the number of queries entered into the search engine was around 2 
billion every day. Thus, the data collection from online user behavior and status from online social 
networks, along with the development of the “Internet of Things” and the growing use of various sensors 
and devices connected to the Internet makes data even more special.  
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representation of the user and their social links in the network in relation with other 

users could be created (Boyd, 2008).  

In this vein, scholars have been focused on the relevance of a recommendation 

based on social-influence relatively to similarities in past activities. It may mean we 

overcome the idea that recommender systems are “computerized oracles or black 

boxes” that give advice but that cannot be questioned (Groh & Ehmig, 2007, p.7).  

However, the proposed approach to personalization also presents some 

constraints to receivers of information. I argue that the endogenous properties associated 

to people‘s behavior in their personal networks, such as the one characterized by 

homophily, may be extended into the social data used to improve personalization. 

Homophily represents the outcomes of social processes which show that people of the 

same or similar groups tend to adopt similar behaviors and diverse behaviors if they do 

not share this common background. This social behavior strongly affects the creation 

and maintenance of ties with other people and the sharing of new information inside 

these groups of similar people. On the other hand, it is known that people generally seek 

out information and interaction that reinforces their private positions, and so, by 

avoiding engagement with difference, people become a source of their own "Echo 

Chamber" of information and viewpoints. This natural behavior of people in offline 

social networks is not seen as a threat from the perspective of the access to novel 

information. People in offline interactions have the freewill to reach different and 

socially distant individuals during their daily connections. This fact assures the access to 

diversity and novel information (Granovetter, 1973). However, the described scenario 

of interactions may change a lot in the online environment, notably, when the access to 

content is ruled by personalization based in social data. In such circumstances 

individuals get stuck in echo chambers without having the same “natural” liberty to 

access novel information. In general, people accept the results offered and trust the 

Internet. 

Consequently, given the current trend of content personalization through the 

main forms of user interaction in the web – browsing, querying, recommendation – the 

flow of information, when grounded in data from similar people based on Web usage 

patterns, may satisfy the users’ need for information, but often does not contribute to the 

diversity of their viewpoints (Golder & Yardi, 2010), which may reduce the quality of 

the service provided. Furthermore, it generates a low level of novelty in information 
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access, which may constraint the enrichment of the meaning construction (i.e., for 

information interpretation). It means that, in spite of the enormous variety of sources of 

information, views and contents appearing online, people do not extract the whole 

benefit of its diversity. People are stuck inside their information bubble. Additionally, it 

is important to notice what is behind the data, either the social interaction that gives 

meaning to data, as the emotions’ role in such interactions when there is information 

sharing. 

Hence, in this dissertation, I examine whether or not the current use of social 

data may solve the problems related to the familiarity of contents accessed. It may even 

increase the difficulties. This problem is approached in this dissertation through the 

broadened concept of Social Echo Chamber Effect. 

The introduction of the term “social” in the concept of “echo chamber effect”, 

aims to explain this concept from a perspective that affects the final result of 

personalization. Accordingly, the use of data based on these kinds of attributes, rather 

than leverage innovation, may reduce the quality of the expected service. Therefore, this 

motivates the following research question:  

How to use social data and avoid the Social Echo Chamber Effect? 

In order to study complementary solutions and still benefit from the richness of 

social data, it is important to discuss the role of social data at a cognitive level. The field 

of Social Network Analysis (SNA) bestows a rich framework for studying such a 

problem. This is supported by rich theoretical and methodological contributions 

explaining the origin and consequences of such social dynamics, which also explain the 

Social Echo Chamber Effect and what solutions can be explored to counteract its effect. 

Moreover, the empirical knowledge provided allows the understanding of advantages 

and drawbacks of the use of social data, and what kind of social data should be 

considered.  

In this dissertation I test the value of the information flow determined by 

individuals who are socially distant and have no redundant connections between them. 

This means, being connected by a bridging tie. Some of the advantages related to 

bridging ties (Granovetter, 1973; Burt, 1982) in the context of this dissertation, deal 
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with the delivery of novel information, which may contribute to solving the Social Echo 

Chamber Effect.  

However, despite the fact that researchers have been demonstrating the evidence 

of the delivery of novelty through the two main known bridging factors (i.e., weak ties 

and non-redundant structural holes), scholars have not been considering the receivers’ 

side of this network mechanism. Thus, regardless of the rise of interest and empirical 

work on novelty related topics, as well as on the use of social data, there is a lack of 

research on the effects of information on receivers.  

In this sense, it is important to develop a common methodological and 

conceptual base to define the emotional response to information access and related 

social theory with the bridge mechanism in social networks. This approach underlines 

the importance of understanding the interactions among human and network factors 

(e.g., emotional response, psychological characteristics, personal attributes and network 

structural conditions), and how they impact Web applications that use such social data. 

This dissertation attempts to put these three fields of study together: social network 

analysis, social psychology and information filtering. 

In so doing, this work presents three empirical studies showing the relevance of 

network bridges as central nodes in defining the flow of novel information, and the 

importance of the emotional response in explaining receivers’ options (i.e., content 

selection) and the perception of novelty. This has led to the formulation of the following 

hypotheses: 

1) First empirical study: H1: Surprise is a proxy of novelty; H2: surprise is 

elicited either when the information is delivered by one single bridging factor or by the 

composition of both.  

2) Second empirical study: H1: there is a relationship between sender’s 

popularity and content selection; H2: surprise response is associated with content 

selection; H3: surprise response is associated with the quantity of published content by 

the sender; H4: tie strength is associated to content selection, independently of whether 

the tie between sender and receiver is a bridge or not. 

3) Third empirical study: H1: Surprise is elicited when sender and receiver 

share dimensions of status and attitude homophily and have similar interests in music 

and political views; H2: Surprise is elicited when sender and receiver are dissimilar; 
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H3: Surprise is elicited when sender and receiver are bridged by a weak tie, share 

dimensions of status and attitude homophily and have similar interests in music and 

political views; H4: Surprise is elicited when sender and receiver bridged by a weak tie 

are dissimilar; H5: Surprise is elicited when sender and receiver are bridged by non-

redundant structural holes, share dimensions of status and attitude homophily and have 

similar interests in music and political views; H6: Surprise is elicited when sender and 

receiver bridged by non-redundant structural holes are dissimilar. 

 Given these hypotheses, this dissertation has the following general objectives: 

1) Find a data source associated to a solution that confirms the perception of 

novelty, in order to counteract the Social Echo Chamber Effect.  

2) Analyze users' options in content selection. It means, knowing whether a 

sender's position as structural bridge is more relevant for content selection than a 

centrality position. It is also relevant to know the importance of the strength of the tie 

between sender and receiver for content selection. In sum, I want to know whether the 

end-users' behavior are based in the same assumptions as the ones applied by Web-

based systems. 

3) Identify personal and network dimensions to quantify the distance between 

senders and receivers, based on their similarities and dissimilarities, in order to provide 

two kinds of outputs: a) A methodology to identify new dimensions; b) Information to 

design predictive algorithms on surprise response.  

 And the following specific objectives: 

1) Introduce an alternative method to study the perception of novelty given a 

delivery of information through a network bridge. 

2) Analyze the influence of network dimensions (i.e., network centrality, 

structural holes, and tie strength) in individual’s choices of contents. 

3) Test a range of personal attributes combined with bridging factors (i.e., weak 

ties and non-redundant structural holes), to identify the optimal cognitive distance3 

                                            
3 As detailed in Chapter Eight, this concept was operationalized by Nooteboom (1992; 2005) stating the 
importance of differences in cognition between individuals in the context of novelty.   
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between sender and receiver of information, which is associated to the perception of 

novelty. 

Reasoning in terms of networks and the method of network analysis have gained 

ground in many disciplines, such as social psychology, anthropology, or 

communications, to name but a few, I see that network model encourages scholars to 

use new cause/effect variables in their analysis. Some of them can be found through the 

properties expressed on communication networks, i.e., connectedness, integration, 

diversity, and openness (Rogers and Kincaid, 1981). I extend this view using the 

receivers’ emotional response to identify their perception of novelty, when the access to 

contents is established by means of a network bridge. This study focuses on the analysis 

of relationships between people, but also in the characteristics of people, as well as on 

the established communication network.  

This is the combination of topics that I found more adequate to investigate and 

introduce the concept of Social Echo Chamber effect in the context of social dimensions 

and dynamics in personalized recommendation. Moreover, it is demonstrated its impact 

in the quality of online recommendations. This dissertation test alternative social 

dimensions able to substitute the current flow of social data and so how to avoid the 

social echo chamber effect. 

Moreover, the scholar’s interest on understanding the reasons why 

communication networks emerge and the effects of communication networks seems 

also to have been growing, as stated by Monge & Contractor (2003). Regarding to 

communication networks, Rogers (1986) characterizes them as consisting of 

interconnected individuals who are linked by patterned communication flows. 

Theoretical Background and Rationale 

Scholars conceive that communication network analysis and structural analysis 

can be seen as intertwined, given the sharing of intellectual lineages though they have 

followed different paths of development and debate. Structural concepts, notably, have 

been introduced in diverse disciplines (e.g., linguistic, anthropology, sociology), since 

the beginning of last century (e.g., Saussure (1916/1966) within linguistic studies). It is 

in this context that Monge & Eisenberg (1987) debate with great detail three traditions, 

i.e., positional, relational, and cultural, which include most of the structural analysis of 
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organizations and communication. The positional tradition departs from the idea that 

“positions and roles determine who communicates with who, and, consequently, the 

communication structure of the organization” (Monge & Contractor, 2003, p. 39). This 

‘static’ view disregards individuals' activity in creating and shaping the organizational 

structure, as well as the role of their individual characteristics. It is considered that the 

organizational structure is set over a pattern of relations among positions. The 

assumption is that people occupying a given position are necessarily associated to 

behaviors, relations and sets of organizational roles. Although this tradition has its roots 

in classic works like Weber’s (1947), “The theory of social and economic organization”, 

or Homans (1958), “Social behavior as exchange”, more contemporary works, like 

White et al. (1976) and notably Burt (1982), also have theorized about similar 

assumptions by developing the rubric of structural equivalence.  One of the criticisms 

against this positional tradition is its inability to frame the way individuals take part in 

the creation and shaping of organizational structures.  

The relational tradition is concerned with the communication linkages that are 

kept by direct communication. Monge & Eisenberg (1987) argue that this tradition is 

rooted in systems theory (e.g., Watzlavick et al., 1967), where the “denotation of the 

interconnections among systems components and the arrangement of the components 

into subsystems and supersystems” (Miller, 2011, p. 73) represents one of its hallmarks. 

In these systems the “mapping” of relationships among such components, when they are 

people and social groups, gain crucial relevance. Given this, Monge & Eisenberg (1987) 

emphasize the difference between positional and relational tradition, positing that a 

formal chart does not identify the actual systems of communicative relationships. The 

former refers to a prescribed flow of communication within an organization, given the 

formal organizational chart, while the latter mirrors the actual communication 

relationships emerging from the organizational system activity (Miller, 2011).  

Finally, the cultural tradition examines symbols, meanings, and interpretations 

of messages transmitted through communication networks, highlighting the implicit, 

tacit and deeper meanings, as well as the shared values, in an organization. This 

tradition sees how meanings emerge from interaction and may constrain subsequent 

interactions (Monge & Contractor, 2003). It means that a common underlying structure 

determines individuals’ interaction in organizations, going beyond a structural and 

individual view (Waldstrøm, 2001). 
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However, as Monge & Contractor (2003) claim, the three above-mentioned 

traditions cannot be seen in isolation, given that other theoretical mechanisms, like self-

interest, contagion, and exchange, need to be considered. These mechanisms are 

particularly relevant to describing how people deal with linkage (i.e., creating, 

maintaining and breaking links) and so are pertinent for social networks formation. 

Furthermore, the wide range of social network theories is often related to the topics of 

user incentives (e.g., friendship, appreciation), but also with the theories of self-interest 

that debate on people's choices driven by preferences or desires given what they believe 

to be an acquiring of personal benefit (Monge & Contractor, 2003). 

Furthermore, benefits acquired by the network interaction are not often thought 

from the cognitive and emotional viewpoint. Psychological attributes together with 

structural factors have not been deeply analyzed in this context. The arguments have 

been mainly focused on the gains explained by the theory of self-interest, comprising 

other theories like social capital, which broadly discusses the potential benefits 

retrieved from communication networks in which people are key actors. In this context, 

bridging factors attributed to structural holes (Burt, 1992) are used as a mechanism that 

gives access to such personal profits. Nonetheless, rather than considering bridging 

factors only as a hinge that gives access to a spectrum of benefits through the agent of 

the transaction (usually taken as the beneficiary), they can also be analyzed from the 

perspective of receivers' benefits. This latter perspective involves two important 

reflections. Firstly, the information contained in the delivered content that stimulates the 

construction of meaning on the receiver may act as a proxy of the psychological 

characteristics of the sender (e.g., personal traits). Secondly, the benefits for receivers 

may be due to the perception of novelty and also by the surprise elicited. This motivates 

new research on the role of individual attributes and psychological characteristics in the 

flow of information in social networks.   

On the other hand, scholars often refer to “spread” (e.g., Bakshy & Rosenn, 

2012) to denote flow (e.g., of information) or movement in a social network, whereas 

the sender influences the receiver (also known as adopter, in diffusion literature). This 

influence is often attributed to the strength of the tie, or homophily-related effects. This 

dissertation does not address the study of diffusion, but analyzes how the elicited 

emotions (i.e., surprise) are intertwined in the interaction of social networks given the 

structural and relational properties and individual characteristics. 
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Additionally, it is known that the Internet is a fast and ubiquitous channel of 

communication, but it is also important to understand how people are connecting and 

what they are saying (Watts, 2007). In particular, social networks offer an open window 

to observe people’s behavior, their tastes, moods, health, and the impact of person’s 

structural position (in a network) over these dimensions (Lewis et al., 2008). Moreover, 

with the emergence of computational social science it is becoming feasible to collect 

and analyze massive quantities of data. However, it seems that the leverage of new 

opportunities to study human behavior is more related to the value of interdisciplinary 

fields, than with the storage of massive data describing minute-by-minute interactions 

and locations of entire populations of individuals (Lazer et al., 2009). In fact, nascent 

interdisciplinary fields and questions are now appearing from computational social 

science, as well as from other fields such as neuroscience and social psychology, which 

highlights the need and opportunity for more crossing-disciplinary studies.  

It is within this logic that the link between the research questions set on the 

scope of SNA and the findings of the empirical work of this dissertation are built. 

Analytical approach 

This dissertation debates the broadened concept of Social Echo Chamber Effect 

to deal with the cognitive factors that are intimately associated with personalization 

constraints. These cognitive factors are then related to the use of network data. In order 

to study this problematic and find an alternative solution, the empirical work presented 

in this dissertation tests the relationship between emotional reaction (i.e., surprise) and 

several network dimensions. The goal is to find the adequate source of data that 

counteracts the effect of social echo chamber. 

Although this work applies SNA theories and methodologies to study the 

problems outlined in the context of personalization, this dissertation also discusses other 

findings achieved within the SNA field. 

The social networks approach offers theory and methodology with applications 

to all levels of observation of the network actors (Marsden, 1990). This perspective has 

favorable analytical properties to measure how individual choices may be affected by 

factors related to individual attributes and relational properties in an inherently 

structural framework. Nevertheless, individual choices also are affected by emotional 

reaction. The examination of receivers' emotional reaction introduces a weighting 
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measure among variables represented by structural (e.g., structural holes), relational 

(e.g., tie strength) and endogenous properties (e.g., homophily), which highlights the 

pertinence of the relationship between network properties and emotions elicited. 

Taking this approach, it becomes possible to study the use of social data by 

means of novelty perception to find an answer to avoid the Social Echo Chamber Effect, 

as proposed by this dissertation. 

Summary and Preview of Chapters 

This chapter provided a conceptual overview of the problem debated in this 

dissertation and briefly defined the constructs of interest of each empirical study 

undertaken. 

In Chapter Two, I provide a review of extant literature related to some cognitive 

factors in the online environment. This dissertation debates the use of an emotional 

reaction, i.e., surprise, related to a cognitive effect, i.e., novelty, to propose a solution 

for digital media systems. Thus, it is relevant to presents an overview of the literature on 

cognitive factors in the scope of online human-computer behavior. A particular attention 

is given to the process of construction of meaning due to its relationship with 

subconscious activity stimulated by the emotion of surprise. Equally, it is relevant for 

the argument of this dissertation, the association between novelty and surprise. 

In Chapter Three, I present a review of existing literature related to Web-based 

services, in order to introduce trade-off between the evolution of some of these Web- 

based services and cognitive factors, and like that, contextualize some failures or 

abandonment of some Web technologies. In Chapter Four, I present and explain the 

concept of Social Echo Chamber Effect, introduced in this dissertation. In Chapter Five, 

I present a review of extant literature and main social network variables used discussed 

in the empirical studies of this dissertation. 

In Chapter Six, Seven and Eight, I present these three empirical studies, which 

address different aspects of the research goals discussed above. This chapters are 

designed almost as stand-alone articles, meaning that each is written with introductory 

material; a description of the measures, data, and analysis; a presentation of the results; 

and a discussion of that specific study‘s findings. The previous chapters are also aimed 

to introduce the background of these studies.  
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Finally, in Chapter Nine, I present an overall conclusion which seeks to 

synthesize the main findings across the three empirical papers and articulate some 

general considerations for assessing the project as a unified whole.  
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CHAPTER 2 

COGNITIVE FACTORS IN THE ONLINE ENVIRONMENT 

 

2.1 Overview 

Most traditional Web-based applications have focused on improving the 

productivity or decision making of the individual user through personalization. The 

emphasis has been on providing the tools and data necessary to fulfill a specific job 

function, such as searching, browsing or recommending. Emotions are also considered, 

such as in searching, given the relevance of avoiding users' feelings of regret or 

frustration. Meanwhile, other cognitive factors, i.e., emotional reaction, associated with 

social network dynamics, also play a relevant role in user productivity and in the 

interpretation of information.  

This chapter presents an overview of the literature on four cognitive factors (i.e., 

Intellectual styles, Construction of meaning, Unconscious role of cognition and 

emotions, Emotions and novelty), which are interconnected and intimately related to 

how the online environment and its objects may interact differently among different 

users. This is important to interpret the online human-computer behavior and to uncover 

possible constraints hidden behind such interactions. The last section of the chapter 

overviews the concept of emotion in general and the relationship between surprise and 

novelty in particular. This is particularly important in the context of this dissertation 

because it justifies the method applied to study the mechanism of bridging from the 

receiver’s viewpoint. This method is based on the use of surprise as a proxy of novelty.  

This chapter is organized into four sections. The first is named Flow and 

Intellectual styles in online human–computer interaction and starts debating how 

cognitive thinking style influences users’ behaviour. The second is called Construction 

of meaning and introduces the concepts of meaning and meaning construction. It draws 

our attention to the process of information interpretation, and the association between 

meaning and emotions and how meaning emerges from context. Next, in the section of 

Unconscious role of cognition and emotions, the role of the unconscious in cognition 

and emotions is debated, e.g., primary emotions – like surprise, which are typically 

associated with unconscious processes – and the association between emotions and 
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specific cerebral hemispheres. Finally, in Emotions and emotional perception of 

surprise and novelty, an overview of emotions, emotional perception and novelty is 

presented in order to explain the association between novelty and surprise. The aim here 

is to justify the use of surprise as a proxy of novelty in the three empirical works of this 

dissertation. 

2.2 Flow and Intelectual styles on online human–com puter 
interaction  

Flow theory has its roots in psychology and is used to address optimal user 

experiences with personal computers (e.g., Ghani, 1995) and the World Wide Web (e.g., 

Chen, 2000, Novak et al., 2000). As a construct for describing more general human–

computer interactions in online environments (Trevino & Webster, 1992; Trevino & 

Ryan, 1992), flow was important for understanding consumer use of the Web (Hoffman 

& Novak, 2009). Flow can be defined as “the state occurring during network navigation 

which is: (a) characterized by a seamless sequence of responses facilitated by machine 

interactivity, (b) intrinsically enjoyable, (c) accompanied by a loss of self-

consciousness, and (d) self-reinforcing” (Hoffman & Novak, 1996, p. X). Given this 

state of mind, the user forgets everything else around him, like time (Novak et al, 2000). 

Thus, flow represents a state of consciousness where a person is so absorbed in an 

activity that s/he excels in performance without consciously being aware of his or her 

every movement. The use of this theory has been applied as a way to understanding 

human behavior with computers and thus inform better ICT4 design, training and use 

(for a review see Finneran & Zhang, 2005).   

Novak et al. (2000, 2003) state that there is more evidence of flow for task-

oriented activities than for experiential activities, but that there are flow experiences in 

both types of activity. Furthermore, online customer experiences are positively 

correlated to “fun, recreational and experiential uses of the Web”, and negatively 

correlated to work-oriented activities. This definition and the existence of such flow 

experience in the Web environment, was empirically tested by Chen (2000), who 

contends that Web activities provide enjoyable experiences to Web users improving the 

quality of their psychological well-being. The flow in the Web environment is presented 

in this context as being related to functional categories, i.e., researching on the Web, 

                                            
4 Information and communications technology. 
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information retrieval, participating in discussion groups, e-mailing, creating Web pages, 

playing games, and chatting. 

However, as stated by Hoffman & Novak (2009) “the consumer Internet has 

evolved from a few directories and online storefronts into a vast, sophisticated network 

of information stores that millions of people interact with on a regular basis.” Even 

more nowadays with the maturity of the “Web 2.0” and the impact of social networks 

on users’ habits and flow of information. As matter of fact, ‘‘members in virtual 

communities differ from general Internet users in that virtual community members are 

brought together by shared interests, goals, needs, or practices’’ (Chiu et al., 2006, p. 

1875).  

Flow has been examined as antecedents of behavioral intentions and behaviors, 

such as related to the influence of flow on continued use of mobile instant messaging 

(Zhou & Lu, 2011), the impact of instant messaging flow experience on exploratory 

behavior (Zaman et al., 2010), the importance of flow experience as a mediator that 

produces indirect effects in predicting the social network sites games continuance in the 

model (Chang, 2013), or the contribution of both knowledge seeking and knowledge 

(contributing in the context of Web 2.0 virtual communities) to flow, and also to 

employees’ creativity (Yan et al., 2013). 

In this vein of investigation, Vinitzky & Mazursky (2011) argue that beyond the 

effects of online human-computer interaction (e.g., Novak et al., 2000), it is important 

to consider users’ personal differences in their cognitive thinking styles and that 

cognitive thinking styles influence users’ behavior. The results presented by these 

authors show that intuitive thinking style promotes associative thinking and pleasure, 

thus, the more pronounced this style is, the higher is users’ perception of interactivity of 

a Website. In turn, systematic thinking style does not promote exploratory behavior or 

the perception of interactivity. Additionally, differences in cognitive styles influence the 

amount of information sought to support the decision-making process and the 

corresponding number of alternatives to be considered by the individual (Hunt et al., 

1989; Driver et al., 1990).  

Cognitive styles refer to consistent individual differences in how individuals 

perceive, think, solve problems, learn, take decisions and relate to others (Witkin et al., 

1977). These psychological dimensions represent consistencies in how individuals 

acquire, evaluate, organize and process information, and guide their performance in 
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information processing and creative tasks, through relatively stable mental structures or 

processes (Messick, 1984; Myers & McCaulley, 1985; Aggarwal, 2013). Thus, 

cognitive styles are understood as an internal preference of the individual for using a 

unique type of thinking (Sternberg, 1998), whose pattern tends to be stable over time 

and in different situations and is independent of the level of intelligence (Perkins, 1981).  

More recently, the concept of intellectual styles has been seen in scientific 

literature as an umbrella term that covers closely related constructs such as "cognitive 

styles," "learning styles," "teaching styles," and "thinking styles". One example of this 

can be found in the work of Zhang & Sternberg (2009). Such terminology basically 

intends to explain why different people succeed in different professional and 

organizational settings. In this regard, it was thought for a long time that innate abilities 

justified differences between high-achievers and less successful peers. However, 

research has shown that individuals have different intellectual styles that fit in varying 

types of contexts and problems (Furnham, 2011). Thus, despite the fact that literature 

uses different terminology to explain “style”, it is accepted that intellectual style “refers 

to one’s preferred way of processing information and dealing with tasks. To varying 

degrees, an intellectual style is cognitive, affective, physiological, psychological and 

sociological” (Zhang & Sternberg, 2005, p. 2). Indeed, apart from some confusing 

literature on all sorts of styles (Furnham, 2011) most scholars believe that styles are 

primarily a function of ability and personality (Zhang & Sternberg, 2000, 2005).  

The questions of cognitive styles is of significant importance, both scientifically 

and practically (Zhang and Sternberg, 2009), but despite the growing interest in this 

field of study, it is still a relatively neglected concept in several areas, like business and 

management fields (Amstrong et al., 2012), or Web-based systems (e.g., Kao et al., 

2009, Ocepek et al., 2013).  

Various studies demonstrate the significance of compatibility between styles and 

task or activity characteristics (Epstein, 1994, 2003; Hogarth, 2002; Kahneman, 2003; 

Novak & Hoffman, 2009). Considering the business and management fields, Amstrong 

et al. (2012) present an extensive literature revision, where they conclude that cognitive 

style can be a critically important indicator of vocational orientations, vocational choice, 

job selection, job level and work performance. Furthermore, cognitive styles are likely 

to have an impact on aspects of perception and communication in teams, membership 
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formation, group norms and deviancy, individual versus group goals, team leadership, 

group problem solving and decision making, and group conflict. 

In the context of We-based systems, it is argued that human-centric 

recommender systems are an adequate solution to satisfy users’ new needs that are more 

and more specific and based on products located in long tails (Gretzel et al., 2012).  The 

authors posit that the success of a specific destination recommender system depends on 

the ability to anticipate and respond creatively to transformations in the personal and 

situational needs of the users.  

Cook (2005) argues that one way of maximizing learning in web-based 

environments is to adapt web-based environments to suit specific cognitive styles. For 

example, individuals with analytical styles in environments with no clear structure, 

which are somewhat informationally disoriented as well as socially isolating, are more 

able to benefit from their own structure. They require less external motivation and social 

support, which can be used as an advantage over individuals with holistic styles. 

Conversely, holistic styles are at an advantage when the environment is characterized by 

settings with explicit guidance and structure, external motivation and social interaction 

(Chen and Macredie, 2002). This vision of an adaptive learning environment is based on 

the idea of “one teacher for one student” (Woolf, 2009). This is a statement based on the 

constructivist learning theory, which supports the idea that knowledge is constructed by 

the student individually through his interactions with the learning environment (Rovai, 

2004). Students can select their own material and learning resources by themselves, 

according to their preferences. However, this process may cause a cognitive overload or 

stress on students. The overload may originate from paying too much attention to 

selecting the appropriate presentation of learning topics (Mayer & Moreno, 2003). 

Stress can be caused by inappropriate multimedia material selection (Chen & Sun, 

2012).  In order to avoid this, a recommender system may recommend the appropriate 

learning materials taking into account student’s preferences while guiding them through 

the learning process (Vogel-Walcutt et al., 2011). Accordingly, Ocepek et al. (2013) 

propose an adaptive constructivist learning environment that recommends learning 

objects. The goal is to relate the combination of different learning style models with the 

preferred types of multimedia materials in order to select appropriate multimedia types 

for particular students. The results show that the learning style model of hemispheric 

dominance is the most important criterion in deciding if students prefer different 
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learning multimedia materials. It was also found that the most of students still learn 

using textbooks and books.  

Kao et al. (2009) argues that human factors, such as thinking style (an affective 

factor) should be incorporated in the design of search engines, because it influences 

search target settings and search behavior. Additionally, it can be used with or without 

data mining techniques to identify user search patterns for predicting search intentions. 

The relevance of this suggestion seems to rely on the fact that search results are sorted 

using relevance-ranking mechanisms, which do not provide significant or structured 

presentations in a friendly way to help users quickly comprehend the retrieved 

information (Kao et al., 2009).  

Other approaches state that team composition based on members’ cognitive 

styles explained differences in performance between teams. It influences both the 

strategic focus that a team forms, as well as strategic consensus. Diversity is categorized 

here in terms of race, ethnicity and gender (Aggarwal, 2013). Other studies examined 

the effect of interpersonal differences in thinking style on online consumer experience 

(online purchase process) (Vinitzky and Mazursky, 2011). The findings indicated that 

systematic cognitive thinking style is correlated to search motivation. It means that 

online stores with an environmental distracter may be less accurate at capturing 

purchase attention from people with this kind of cognitive thinking style. In this study, 

the authors differentiated the cognitive thinking style between systematic cognitive 

thinking style and intuitive cognitive thinking style5. They emphasize the need to 

consider consumers’ shopping environment and personal differences in their cognitive 

thinking styles. Thus, the rise in the consumers’ satisfaction level and their loyalty to 

the site seems to be related to the structure of the site, its contents, and its advertising 

information with regard to consumers’ shopping environment.  

Zhang & Sternberg (2005) classified all major style constructs in styles literature 

in three types: Type I is associated with right-hemispheric styles being indicative of 

higher levels of cognitive complexity. Type II is associated with left-hemispheric styles 

and denotes lower levels of cognitive complexity. Finally, Type III, which manifests the 

                                            
5 The authors report that systematic thinking is related to a person’s tendency to analyse information and 
reality in a rational, consistent, and multilevel way. Intuitive thinking is related to the individual’s 
tendency to organize information globally and to make decisions after he/she has already formed, 
developed, and understood the entire context of the required decision. 
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characteristics of either Type I or Type II styles, depending on the stylistic demands of a 

specific task (Furnham, 2011).  

Cerebral predominance – be it right or left – is then intimately related to style 

thinking. Left cerebral hemisphere is intimately related to analytic, rational, and 

sequential information processing, and the right cerebral hemisphere specializes 

primarily in intuitive and simultaneous information processing (Armstrong, 1999). 

Fecteau et al. (2004, p. 551), say in this context that “word reading is one of the 

most strongly lateralized, showing a left hemisphere advantage” and that the left 

hemisphere displays some advantages such as helping in tasks that involve word 

reading and that are related to visual stimuli. This is to say semiotic activities, or use of 

explicit information. Hence, we may see the left hemisphere as the basis of a linguistic 

frame, being the language a semiotic tool applied namely to construction of meaning 

and meaning exchange in imagined or real social interaction (Holtgraves et al., 2007).  

Yet, though certain cognitive activities are intimately related to a certain 

hemisphere, this does not mean that the other is not able to actively participate in the 

interpretation of information. Both sides of the brain participate simultaneously in the 

construction of meaning, albeit with different weightings of activity (Fecteau et al., 

2004). These authors argue that “the right hemisphere shows as much evidence of 

reading words unconsciously as the left hemisphere. Thus the classic left hemisphere 

advantage in word reading is likely only to be an advantage of conscious access to 

words presented to that hemisphere” (p. 562).  

As matter of fact, it has been reported that the process of conscious thinking is 

related to explicit information, which is typically associated with activities such as word 

reading (Fecteau et al., 2004). When reading, the unconscious activity of the individual 

makes use of the implicit information to achieve meaning, which justifies the fact that 

what is explicit through words does not mean the same to everyone. As a result, the 

response6 related to information access plays a relevant role in how people elaborate 

                                            
6 Neuman (2004) defines meaning as “the systems specific response to a signal”, and meaning-making as 
“the process that yields the systems specific response to an indeterminate signal”. In this regard, the 
author clarifies that ‘response’ in this context is not associated with the sense of ‘stimuli–response’, 
which could be wrongly related to ‘behaviorism’. It intends to describe an interaction with the 
environment. Behaviorism was established with the publication of Watson's classic paper "Psychology as 
the Behaviorist Views It" (1913). This theory of learning is based upon the idea that all behaviors are 
acquired through conditioning. See more here: http://psychclassics.yorku.ca/Watson/intro.htm.  
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new perspectives and viewpoints. This, given the level of interpretation achieved and 

associated richness of the construction of meaning.  

On the other hand, unconscious thinking is claimed to be related to implicit 

information (Ekstrom, 2004), which is triggered by certain types of stimulus (e.g., 

specific emotions) (Scarantino, 2005)7.  

In this view, users’ online experiences are strongly dependent on users’ 

characteristics, which have been explored by researchers and entrepreneurs to improve 

the human-computer interaction. The lessons learned show that flow is less dependent 

on user-machine interaction and is also influenced by interactivity-community/ 

recommendation interplay. This seems to be in line with the current trend of 

personalization. Nonetheless, the forecast improvement in quality of web experience for 

users through online personalization seems disappointing from the consumer’s 

viewpoint (Lee et al. 2009). People seem to feel their freedom is threatened when they 

are given these kinds of recommendations.  

2.3 Construction of meaning  

The concept of information has several senses (Collier, 1990), but is often 

associated with Shannon’s (1948) statistical definition of information, which separates 

information from meaning. Because of this, the concept of information has been 

frequently seen from the perspective of its quantification (Aczel & Daroczy, 1975; 

Cover & Thomas, 1991). In this sense, the debate ranged from the quantification of the 

information included in a piece of data to the measurement of the information yielded 

by one event (Cover & Thomas, 1991). Though, considering that a bit of information is 

like ‘‘a difference that makes a difference’’ (Bateson, 1972, p. 315), it is correct to 

analyze the interdependence between information and meaning, i.e., they are closely 

related (Neuman, 2006). However, it would be misleading to consider that the meaning 

of a message can be reduced to information content, just because meaning is also about 

the information carried in the detected message. Here, the meaning-making that acts as 

a procedure for extracting the information conveyed by a message (Neuman, 2006), 

may not be able to extract the meaning from the context, which could complete the 

meaning of the message. As Neuman (2006) underlines, in order to understand how 

                                            
7 In view of brain areas assessment in this regard, is reported that no physical or chemical measurement of 
brain activity is a direct measure of meaning (Freeman, 2003). 
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meaning emerges from the context, first it is necessary to find better ways to model 

meaning-making, which is an important issue not only for people in information 

sciences, but also for the field of artificial intelligence. 

From a human approach, sometimes, one word it is enough to maintain the 

dialogue between two people; however, a third person may have difficulties in catching 

the meaning of the message. The issue here is how to understand the meaning that 

emerges from the context that is comprehended by the two people, but not by the third 

person. As pointed out by Neuman (2006) “we still do not have a satisfactory answer to 

the question of how meaning emerges in context” (p. 1447). This is a relevant question, 

not only from a theoretical approach, but also for computation (e.g., in artificial 

intelligence research). As a result, different readers will get a different meaning from 

that, which is conveyed by the words, as well as other semiotic symbols. Each person 

acting as a receptor uses his own background and expectations when interpreting 

information (Freeman, 2003). 

Cognitive scientists studying meaning have achieved many similar sorts of ideas 

as those studying vision. It is assumed that there is a considerable difference between 

the visual information transduced by the eyes and the information that the brain 

subsequently computes from it. Similarly, the information contained in linguistic input 

does not fully describe its emergent meaning. In this sense, words and varieties of 

linguistic structure have no intrinsic meaning; they are used by speakers to actively 

construct meaning (Coulson, 2006). This explains the complexity of detecting novelty, 

in particular in computation through linguistic events. Langacker (2000) refers to this 

problematic in the context of novel expressions in these terms: 

 

“when a novel expression is first used, it is understood with reference to 

the entire supportive context. The speaker relies on this context, being able to 

code explicitly only limited, even fragmentary portions of the conception he 

wishes to evoke. Usually, then, the expression’s conventionally determined 

import at best approximates its actual contextual understanding. (…) It does not 

contain or convey the intended meaning, but merely furnishes the addressee with 

a basis for creating it.” (p. 15) 
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Furthermore, Chandler (2005) contends that “meaning does not reside in a text 

but arises in its interpretation, and interpretation is shaped by socio-cultural contexts”. 

This idea agrees with the saying of Paul Valéry (1957, p. 1597) who states that “there is 

no true meaning of a text”. When a text is interpreted by its receiver, it is already free of 

the contextual support of the author (of the text) to be formalized in the cognitive 

contexts of the receiver. The message immersed in a narrative is then passed from the 

sender to the receiver in a continuum of contexts, both conscious and subconscious, and 

both converging in the embodiment of 'meaning' (Eco, 1990).  

Meaning is equally associated to intensely positive experiences and then to the 

eliciting of emotions (King & Hicks, 2009; Keltner & Haidt, 2003). In this vein, a 

recent theory on the Broaden and Build Model of Positive Emotions, Fredrickson (1998, 

2000) highlights the relevance of positive emotions for health and well-being. The 

author claims that positive emotions have a lasting undoing effect on negative emotions. 

Thus, strategies that cultivate positive emotions, like finding positive meaning, prevent 

or solve problems such as anxiety. In this regard, Schwarzer & Knoll (2003, p. 13) say 

that there is empirical evidence attesting “the fact that meaning and positive emotions 

help to restore an individual’s world view and may build additional personal resources”.  

Meaning can also be seen from a social construction perspective through an 

information sharing environment. In this context, information sharing disseminates 

information that holds the same meaning to everyone (Miranda and Saunders 2003)8. 

Here, when a group member has equal access to information, it supports the social 

constructionist perspective that states that meaning is socially constructed during 

information sharing. However, this does not mean that agreement and shared meaning 

signifies the same. When agreement is reached, the offered meaning can become part of 

the common ground and then, the agreed-on interpretation of the situation is achieved 

(Bossche et al., 2006). This is the case of the process of building a shared conception, 

e.g., to solve a problem, which starts with the way the articulation of personal meaning 

is taken up in the social setting (Stahl, 2000). On the other hand, shared meaning refers 

to events wherein everyone holds the same meaning. Linguistic events where meaning 

is situational are an example of that (Ricoeur, 1981).  

                                            
8 The author bases his argument on Berger and Luckmann’s (1966) work on social institutions which 
proposes that institutions experienced as an objective reality are in actuality, social constructions, and on 
Schutz (1967), who emphasizes the cognitive processes underlying such social constructions. 
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It is known that the access to online content is characterized by a process of reasoning 

and interpreting. This process of interpreting is intimately related to meaning (Sommer 

et al., 1998), which can be detected or constructed. It is detected when it is related to 

pre-existing beliefs, and constructed, i.e., actively molded, when it is engaged in a 

constructive process to come to a sense of meaning (King & Hicks, 2009).  

The detection of meaning can be observed in the way people perceive life and 

hypothesize about its meaning. Here, “meaning detection refers to those times when the 

data from the world are essentially (and perhaps quietly) saying ‘Yes’ to that 

hypothesis” (King & Hicks, 2009, p. 318). Nonetheless, the detection of meaning is not 

limited to a passive reception of meaning. It is a personal process that converts 

information into a personal perspective making it present when the event 'makes sense'. 

Because this is a personal process, it can involve new experiences that confront pre-

existing assumptions, i.e., that fit with pre-existing beliefs and expectations (King & 

Hicks, 2006; Heine et al., 2006). 

In contrast with meaning – related to detecting – meaning construction involves 

the cognitive action of searching for satisfactory answers requiring a revision in the 

meaning structures of the individuals (King & Hicks, 2009). It enables the interpretation 

of information, being dependent on the conscious and unconscious processes of 

thinking (Bargh, 2011). Thus, contrary to meaning detection, meaning construction is 

about awareness and intentionality involving an effortful process (King and Hicks, 

2009) to avoid a threat in the individual sense of meaning (Heine et al., 2006). The 

motivation to keep this brain process, whose purpose is to maintain meaning, may 

correspond to the individual's awareness about the gap between experience and 

expectation (King & Hicks, 2009). 

A daily example of construction of meaning can be found in the complex 

interplay between linguistic and nonlinguistic knowledge (Sperber & Wilson, 1995) that 

people do to define a week day. In this case there is a contextual dependence to 

understand the meaning of weekend, which is impossible to have without 

comprehending first the structure of the week and the respective cultural (and 

economic) knowledge associated with it (Fillmore, 1976).  
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2.4 Unconscious role on cognition and emotions 

It was with Freud and Jung’s work that the first attempts were made to 

systematize and understand the complementary relationship of the conscious and 

unconscious and their processes in cognition. Freud had the foresight to look to the 

brain for answers, but the mechanistic understanding available at the time was not 

enough to advance his studies. In this regard he mainly focused on unconscious 

thoughts. Jung, on the other hand, questioned the ability of the conscious to elaborate all 

the complex information from images and ideas (Ekstrom, 2004). With a gap of more 

than 50 years, today’s cognitive scientists attempt to fully understand cognition in a 

holistic way. Nonetheless, it is relevant to note that old and new models connect in 

some obvious ways. 

Bargh & Morsella (2008), claim that one reason for the lack of comprehension 

of this side of cognition was related to the meaning attributed to the term unconscious. 

The author says that “the earliest use of the term in the early 1800s referred to 

hypnotically induced behavior in which the hypnotized subject was not aware of the 

causes and reasons for his or her behavior” (p.3), as was reported by Goldsmith (1934). 

Also other scholars like Darwin (1859) in “On the Origin of Species”, or Freud, applied 

the term unconscious to classify a non-intentional and deliberate selection (i.e., 

“unconscious selection”) or to refer to behavior and ideation that was not consciously 

intended or caused (i.e., unintended behavior), respectively. In fact, the notion that 

certain universal truths came to stay is an idea strongly rooted in Western culture.  

Given that, it is claimed that scholars in psychology, e.g., in the judgment and 

decision making (JDM) field, supported their cognitive research in the Cartesian 

tradition. It means that for these scholars, reasoning and judgment are an exclusively 

conscious activity, and that conscious short-cuts could equally be used under time 

pressure e.g., in heuristics (Lassiter et al., 2009).  

It was in this scope that the cognitive linguists and philosophers, George Lakoff 

and Mark Johnson, challenged the premises of cognitive science, proposing a new 

approach to the understanding of the unconscious. They call it ‘the cognitive 

unconscious’, a concept which was developed in their book “Philosophy in the Flesh” 

(Lakoff & Johnson, 1999). The authors base their analyses on cited studies in 

neuroscience, cognitive linguistics, and neural modeling. They wrote on this subject: 
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“Cognitive science is the scientific discipline that studies conceptual 

systems. It is a relatively new discipline, having been founded in the 1970s. Yet 

in a short time it has made startling discoveries. It has discovered, first of all, 

that most of our thought is unconscious, not in the Freudian sense of being 

repressed, but in the sense that it operates beneath the level of cognitive 

awareness, inaccessible to consciousness and operating too quickly to be focused 

on.” (p.9) 

 

Exploring other approaches but still uncovering the role of the unconscious in 

cognition, scholars (e.g., Nisbett & Wilson’s, 1977; Ekstrom, 2004; Bargh, 2011) have 

been presenting the relevance and tangibility of unconscious thinking. For example, 

some studies show that while conscious thought is considered to be better for simple 

choices, unconscious thought does the deliberative work related to complex decision 

better (Bargh, 2011). In this regard, Dijksterhuis & Nordgren (2006) posit that the best 

strategy would be to consciously encode all of the relevant information and then let the 

unconscious do its task.  

On the other hand, it seems that the conscious also uses already-existing 

unconscious motivational structures to pursue its goals (Dennett, 1995), illustrating the 

flexibility and adaptability of the unconscious processes (Bargh & Morsella, 2008). 

Furthermore, when conscious attention is diverted by a secondary task, this does not 

change the similarity on judgment outcomes produced by conscious and unconscious 

deliberation (Bargh, 2011). 

These and other works revised in Bargh (2011) show that people think 

unconsciously as well as consciously, namely in the domains of judgment and decision 

making. Additionally, primary emotions (surprise, happiness, fear, anger, disgust, and 

sadness) (Izard, 1991) are not typically frequently activated in a consciously controlled 

real life. Emotion is an innate and unconscious process that has the ability to deal with 

cognitive processes (and problems) that do not require conscious attention (Scarantino, 

2005). Centered mainly in a small set of sub-cortical brain systems, the emotion is like a 

biological sensor that alerts us to an opportunity e.g., danger, food, novelty, telling us to 

stop doing what we're currently doing, in order to attend to this challenge. In this sense, 

emotion has the tendency to respond strongly to high contrast information, and to just 

be vigilant in steady states or subtle changes. Further, different emotions are mainly 
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related to specific hemispheres. For example, boldness is processed principally in the 

left hemisphere, and anxiousness in the right hemisphere (Siegel, 1999). Moreover, 

unconscious processing of emotional information is mainly subsumed by a right 

hemisphere sub-cortical route (Gainotti, 2012).  

2.5 Emotions and emotional perception of surprise a nd novelty 

Scholars agree that emotions encompass several aspects, such as information-

processing components, response components, and regulatory components (Oatley & 

Jenkins, 1996), and are even directly related to the situational meaning. Different 

emotions occur in response to the meaning structures of given situations (Frijda, 1988; 

King & Hicks, 2009) that influence cognitive activity. They are dependent not only on 

the situation’s characteristics, but also on the individual’s perceptions (Frijda, 1988), 

i.e., the existence of an emotion itself depends on the perceiver (Lindquist et al., 2012).  

There is a general consensus that basic emotions are psychologically primitive. 

Primitive means that they must originate in sub-cortical brain structures. In this sense, 

the neocortex may be involved in emotion processing, related to higher order structures. 

Thus, “basic emotion should be discrete, have a fixed set of neural and bodily expressed 

components, and a fixed feeling or motivational component that has been selected for 

through longstanding interactions with ecologically valid stimuli (e.g., the subjective 

feeling and motivational component of fear is what it is because this response has 

historically been most adaptive in coping with typical fear elicitors).” (Tracy & Randles, 

2011, p. 398). This view is accepted by four prominent scholars in this field, Ekman & 

Cordaro (2011); Izard (2011); Levenson (2011); and Panksepp &Watt (2011). 

In this regard, Izard et al. (1974, 1977) elaborated a scale of ten primary 

emotions, named “Differential Emotions Theory” (DES scale), which has been revised a 

number of times subsequently. The DES scale is composed by the emotions of: Anger, 

contempt, disgust, distress, fear, guilt, interest, joy, shame, and surprise. 

In the revision undertaken by Tracy & Randles (2011) of the four above 

mentioned scholars, it is reported that the four authors agree in five common primary 

emotions. It includes a positive emotion named happiness (Ekman and Cordaro; Izard), 

enjoyment (Levenson), or play (Panksepp and Watt); and three distinct negative 

emotions: sadness (labelled grief by Panksepp and Watt), fear, and anger. Because there 

is some controversy on some emotions, such as surprise, contempt, and lust, they are 
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out of the final list (Tracy & Randles, 2011). Although it is agreed that there is no 

sufficient evidence for their inclusion, there also is no reason to disregard them as basic 

emotions.  

The emotion itself starts with a process of cognitive appraisal9 that is related to 

the result of how people evaluate their continuous transactions from perceptual stimuli 

(Schmidt et al., 2010). As explained in Finkenauer et al. (1998), the appraisal process is 

influenced by several factors, such as antecedent personal characteristics – e.g., beliefs 

about oneself and the world – prior experiences and expectations, or even attitudes and 

self-concepts.  

In this scope, Scherer's (1984, 1986) theory of components process model of 

emotion outlines a mechanism for the ongoing appraisal of environmental events. The 

author presents specific hypotheses regarding the pattern of meanings that will precede 

particular emotional states, as explained in Leventhal & Scherer (1987). Scherer 

proposes five types to check (or to evaluate) the emotional response, which includes a 

check for: 1) Novelty; 2) Intrinsic pleasantness; 3) relevance and /or conduciveness to 

meeting goals or plans; 4) ability to cope with the perceived event; 5) Compatibility of 

events (including actions) with self-concept and social norms. In this sense, it is 

suggested that surprise can be seen as a positive outcome of the novelty check – and so, 

a specific consequence of the appraisal of novelty (Finkenauer et al., 1998) – i.e., 

Novelty “determines whether there is a change in the pattern of external or internal 

stimulation, particularly whether a novel event occurred or is to be expected” 

(Leventhal & Scherer, 1987, p. 15). Another example is enjoyment, which is seen as a 

positive outcome of the intrinsic pleasantness check. 

In short, emotions can be defined “as episodic, relatively short-term, biologically 

based patterns of perception, experience, physiology, action, and communication that 

occur in response to specific physical and social challenges and opportunities" 

(Keltner & Gross, 1999, p. 468). An emotion represents a complex array of 

psychophysical stimuli that arises spontaneously 3000 times faster than rational thought. 

It invokes either a positive or a negative response and typically a physical expression 

                                            
9 Appraisal is defined by the Merriam-Webster dictionary as an evaluation of worth, significance, status 
or estimate. Appraisal is achieved by monitoring and evaluating an event associated with emotional states 
(Smith & Ellsworth, 1987). The process of cognitive appraisal is influenced by personal characteristics, 
prior experiences and expectations, as well as behavior (Finkenauer et al., 1998).  
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(Tang et al., 2011). Thus, the emotional response (e.g., autonomic reactions) prepares 

the organism for action (Leventhal & Scherer, 1987). Cognition, on the other hand, 

corresponds to the appraisal or "evaluative perception" of the implications (positive or 

negative) of the stimulus for the organism. This appraisal operates at a simple sensory 

level or on the level of complex, conscious reasoning (Lazarus 1984), though, this is 

essentially a functional analysis, whereby it neglects the type of processing occurring.  

In response to the question of which comes first, emotion or cognition, 

Leventhal & Scherer (1987) argue that it is difficult to conceive an emotional reaction 

totally unconnected from perceptual or cognitive reactions and that "emotion" and 

"cognition" "are always intertwined in emotional behavior and emotional experience" 

(Leventhal & Scherer, 1987, p.23).  

Emotions in general, and surprise in particular, may be classified according to 

different grades of relevance and used in practical applications, notably by basing them 

in the correlation between novelty and surprise (Baldi & Itti, 2010).  

Surprise is an important attractor of human attention (Itti & Baldi, 2009) and 

appears to be stimulated in situations in which an activated schema (Schuetzwohl, 1998) 

is interrupted by a novel, unexpected turn of events (Teigen & Keren, 2003). As shown 

in the empirical work of Reisenzein (2000) there is good evidence to trust that high 

surprise ratings are associated with low probabilities, and vice versa, though, as shown 

by Teigen & Keren (2003), the emotion of surprise may not be related to a low 

probability, per se, but to the level of contrast with the more likely or ‘normal’ not 

confirmed expectation. This means that, not all low-probability outcomes are 

necessarily surprising, even if surprises are generally created by low-probability events. 

However, as reported by the authors, even if their findings are more related to people’s 

cognitive representations of surprise than an emotional experience, it highlights the 

differences between surprise ratings and probability estimates. Thus, despite the fact 

that surprise is typically considered to be created by low-probability outcomes, this does 

not mean that all low-probability outcomes are necessarily surprising. 

Novelty and surprise play a relevant role in human behavior and have been 

studied either through mechanistic models of neural processing or by psychological 

constructs. Most often, if not always, surprise accompanies novelty and has often been 

defined as a reaction to novelty (e.g. Berlyne, 1960). Yet, the opposite is not always 
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true. A common example of this is the car door that is found unlocked. This familiar 

event is not novel, but we are surprised when we find our car unlocked.  

In neural processing, an observation is considered to be novel when its 

representation is not found, or is not similar to another one stored in memory (Barto et 

al., 2013). Here, novelty perception regards the hippocampal general role of detecting 

mismatches between expectation and experience (Ploghaus et al., 2000; Strange & 

Dolan, 2001), in which the hippocampal neuronal activity represents the expected 

information or novelty of an event before it occurs (Strange et al., 2005). 

Surprise is not a consequence of the attributes of luck or a random result, but 

rather an affective reaction to unexpectedness that stimulates causal thinking 

(Stiensmeier et al., 1995). It is unique to a particular event and is a specific consequence 

of the appraisal of novelty (Finkenauer et al., 1998), i.e., it measures its improbability or 

novelty (Strange et al., 2005). The relationship between the expected and the obtained 

result is what more strongly determines the surprise, which combines a previous 

experience and knowledge with the unfamiliarity of the outcome (Teigen & Keren, 

2003). The overlap between both surprise and novelty has been observed too. Its result 

is usually related to attention capturing and learning (Ranganath & Rainer, 2003).  

Surprise is generally accepted as an emotion that arises from the mismatch 

between expectation and what is actually observed, i.e., between an input coming from 

the outside and the individual’s own schema (Ekman & Davidson, 1994; Derbaix & 

Vanhamme, 2003; Casati & Pasquinelli, 2007). Hence, surprise is elicited when the 

prediction based on an expectation is violated or frustrated (Bruner, 1986; Davison, 

2004; Barto et al., 2013).  

Furthermore, considering the concept of changing prior beliefs into posterior 

beliefs (Itti & Baldi, 2005, 2006, 2009; Baldi & Itti, 2011), surprise can be measured 

based, firstly, on the definition introduced by Shannon (1948)10, secondly, by the 

probabilistic interpretation of an event given by the Bayes theorem11, and thirdly, 

attending to the perceived emotion by the receiver. The empirical work developed in 

this dissertation relies on the latter, as will be described in the following chapters. 

                                            
10 The amount of information contained in a piece of data “D” is given by the probabilistic result of log2 
P(D) bits and so, related to its rarity and small probability. 
11 It quantifies the amount of information included in a piece of data “D”. 
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Additionally, particular attention will be given to the fact that when there is a 

novelty perception the emotion of surprise will follow. This will be particularly relevant 

when the use of surprise as a proxy of novelty is discussed to study the assumptions of 

bridging factors (Granovetter, 1973; Burt, 1992). The process of detecting novelty is not 

an easy task in a survey environment and surprise should be used instead. Furthermore, 

it is important to highlight the association between the cognitive process of appraisal (of 

novelty) and access to contents (i.e., interpreting). Interpreting can be seen as an output 

of meaning construction, enriched by the use of both conscious and unconscious 

processes of thinking. This is true particularly due to the unconscious processing given 

the associations between surprise, unconscious processing and construction of meaning. 

Thus, the use of surprise as proxy is also used to discuss the enrichment of construction 

meaning, as well as to understand the cognitive factors and constraints associated to 

information personalization on Web-based services. In this particular, the study by 

Flavián-Blanco et al. (2013) shows that online searching tasks have a positive impact on 

the positive emotions experienced after the search process. This is particularly related to 

feeling of “hope” that is usually satisfied when users find the information they have 

been looking for (or at least they perceive so). On the other hand, the lack of satisfactory 

results or process failure quickly originates negative emotions associated with the 

feelings of regret and frustration. Nonetheless, other cognitive factors are associated 

with this output, which we will be discussing in the two following chapters. 
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CHAPTER 3 

WEB-BASED SERVICES AND COGNITIVE FACTORS: FROM A 
SEMANTIC WEB TO A SOCIALLY CENTERED WEB 

 

3.1 Overview 

The early stages of the World Wide Web's12 evolution were characterized by 

institutions and companies offering information contents and services. However, with 

the shift towards a social-web (“Web 2.0”)13, it started to be organized more around the 

users (Mislov et al., 2007) by means of social tagging (e.g., Kim et al., 2009; Pancke et 

al., 2009; Huang et al., 2009; Han et al., 2009), user-centric publishing and knowledge 

management platforms (e.g., Wikis and Blogs), as well as social resource sharing tools 

(e.g., Flickr), and social networks services (e.g., Facebook, LinkedIn, Twitter, 

Instagram) 

In this second evolutionary stage, social networks have become an important 

source of data and information sharing among Web users. This shift as several 

implications, but the one that we want to emphasize is concerned with how a new way 

to access content was established through people’s social ties. Since then, the access is 

no longer through the common explicit links of the Web (Mislove et al., 2006), but via a 

social link that also carries implicit information that has become accessible and 

profitable for computation. Thus, when people are sharing contents on their social 

networks, they also are recommending information weighted by implicit information on 

the individuals interacting. Social networks are storing information after it is "filtered" 

by their members, and they serve also as a vehicle that connects thoughts. In this 

                                            
12 It is necessary to understand the differences between the Internet and the Web, terms that are often used 
interchangeably. The Internet is the physical layer or network made up of switches, routers, and other 
equipment. Its primary function is to transport information from one point to another quickly, reliably, 
and securely. The web, on the other hand, is an application layer that operates on top of the Internet. Its 
primary role is to provide an interface that makes the information flowing across the Internet usable. In 
this dissertation we use either one or other term, but always meaning the concept of Web. In: 
http://www.cisco.com/web/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf.  

13 Web 2.0 is the term used to define a computing paradigm that uses the Web as the application platform 
and facilitates collaboration and information sharing between users. See: O’Reilly, T.. What is Web 2.0: 
Design patterns and business models for the next generation of software. O’Reilly Media, Inc., (Sept. 30, 
2005), in: http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html. 
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context, we are witnessing the embodiment of thought through the content conveyed by 

the medium.  

As mentioned by Press (1995), although Marshall McLuhan lived until 1980 and 

understood computers as a communication medium, he did not discuss it in his work 

Understanding Media, first published in 1964, or after its publication. However, when 

McLuhan (1964) claims that the use of new media was the prime cause of fundamental 

changes in society and the human psyche, it seems that he is projecting the same 

arguments as us, with regards to media effects and the intertwining cognitive factors 

and people' narratives.  

Many saw Marshall McLuhan as a media thinker and visionary. He described at 

a very early stage of digital media, what life would be immersed in digital media 

narratives. As in my argument, the starting point for McLuhan is the individual, which 

entails a psychological dimension when media effects need to be thought about. As he 

defined it, media is as technological extension of the body14. 

We argue that the Web is emulating human narratives, which is reflected 

nowadays, for example, in the implicit information contained in the social links and in 

content interpreting which is shared.  

McLuhan (1964) sustained that the electronic media are ‘extensions of our 

nerves’ (p. 152), and supplementary to this, we may add that in the scope of digital 

media, the Web is a representation of the extensions of meaning built by individuals, as 

a way in which current human thought is expressed and emotions are elicited according 

to content accessed and sender. 

In fact, McLuhan’s approach reflects a society where linear thinking (systematic 

thinking style) is extended to the electronic media. However, as mentioned by Press 

(1995, p. 16), “linear thinking may not be as important tomorrow as it was yesterday”, 

given that tomorrow in 1995, is today. Hence, we conjecture that the McLuhan’s 

‘extensions’  could be seen today as the bridge between the collective consciousness 

(relative to explicit information) and the collective unconsciousness (relative to implicit 

information). With the concepts of ‘collective conscious’ and ‘collective unconscious’ 

being those proposed by Carl Jung (1959) and mentioned by Jones (2003). 

                                            
14 Biography: http://www.marshallmcluhan.com/biography/.  
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In this sense, I can reinforce my argument that we are witnessing the 

embodiment of thought through the medium. Through the medium we all are 

collectively sharing the broad amplitude of the construction of meaning, with its 

conscious and unconscious components. In fact, “What before was a mental process, a 

uniquely individual state, now became part of a public sphere. [...] Interactive computer 

media perfectly fits this trend to externalize and objectify the mind’s operations” 

(Manovich 2001, p. 60). 

Thus, the new way to access content, carrying information contained in the 

social links (e.g., Mislove et al., 2006; Boyd, 2008), seems to recreate the relevance of a 

hyperlink structure as a path to content. It adds a new sense to that content and its path. 

Content is now associated to the individual who introduced it, as well as to individuals 

who will explicitly recommend the content. Thus, with the rise of publishing (by 

content creators that make information available to other users) and locating 

information (mechanism by which users find information relevant to them) through 

online social networks, search engines and recommender systems have found a new 

way to present customized results centered on the user. Furthermore, while, initially, the 

criteria of “individualized” and “interesting and useful” created a distinction between 

recommender system and search engines, nowadays, with the rise of personalization in 

information retrieval, this distinction is no longer visible (Burke, 2002; Adomavicius 

and Tuzhilin, 2011). The blurring of this distinction is even more present when the 

methods applied to personalization are based on “social” data gathered from Web 2.0 

applications.  

Accordingly, online social networks have not only become the epicenter of 

information sharing for many Web users, but also an important resource for the 

personalization and improving of several Web-based services. And similarly to what 

has been happening with the Web search, data from online social networks has also 

become tested on the improvement of recommendation.  

Furthermore, although recommender systems have been comprehensively 

analyzed by scholars, the emergence of online social networks and the access to its data 

has sparked the rise of social-based recommender systems as a new and alternative 

method. 
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Through the evolution of those Web technologies, it was observed that some 

proposals, like Semantic Web and some social-web tools (e.g., tagging), have lost 

relevance or been abandoned by users. As an example, because tags are handled in a 

purely syntactical way, it means that the annotations provided by users create a very 

wide and noisy tag space that limits the effectiveness for complex tasks using this 

semantic approach (Lops et al., 2013).  

Among other possible causes, the following sections present a review of such 

evolution and a trade-off between the evolution of some of these Web-based services 

and cognitive factors that may have justified its failure or abandonment. I focus on the 

cognitive factors to justify my argument. 

In this vein, we question the current solutions of personalization based on social 

data. The use of these data are creating new technological  challenges, whose 

opportunities also become threats due to the cognitive factors involved, more 

specifically, the lack of diversity in viewpoints and novelty. This is determined by the 

social organizing principles that justify the strength of the ties and similarities between 

friends. Further, this family of constraints arises from social data use – when based on 

strong ties and similarities among users – that motivates the research undertaken in this 

thesis, in particular on recommender systems. 

Four main sections are presented in this chapter. First, is the Semantic Web, 

which reviews the challenge posed by a Semantic Web to inter-link the Web of contents 

automatically, and how differences in human construction of meaning end up being the 

main restriction to the success of a semantic-based tool. The second section, Search 

engines and social network data, reviews some solutions proposed by search engines 

and presents the boost of online social networks and how the information contained in 

the social links has recreated the sense of hyperlink. Cognitive factors identified by the 

term “Filter Bubble”, are presented here as severe constraints to innovation and search 

performance, notably from the users' viewpoint, given the current paradigm of social 

data use. The third section, named Recommender systems and social network data, 

presents the three main methods that have been widely debated and reviewed in the 

literature and in particular, the solutions that social data applies to improve 

recommendation. In fact, the latter use of information based on user behavior, 

similarities and social ties creates a new opportunity to present personalized 

recommendations and solve some persistent problems known in these systems, e.g., 



35 
 

missing values of the user-item matrix. However, this approach, which improves 

recommendation, also presents some constraints. They are related to the familiarity of 

the recommendations provided to the target-user. In order to discuss this subject, this 

last section is organized into five topics: Collaborative filtering methods; Content-based 

filtering methods; Hybrid systems; Social network-based recommender system; Novelty 

and diversity in recommendation; and Surprise in recommendation. This last chapter 

ends by introducing the problem of Social Echo Chamber Effect, which we assume to 

be related to current use of social data, notably in social-based recommender systems.  

3.2 Semantic Web 

In 2001, referring to Berners-Lee’s (1999) work, Ding (2001) mentioned that the 

World Wide Web was living a new technological shift with the Semantic Web. This 

new Web was providing additional automated services based on machine-processable 

semantics of data and heuristics using the metadata of the Semantic Web.  

In 2010, the same author (Ding, 2010) contends that data can be represented 

with widely different syntaxes and semantics, which may make the task of integrating 

data very complex. This describes a reality that seems to be more complex than it was 

anticipated. However, the difficulties faced were not due to a lack of research. By 

analyzing the data from Scopus about the most cited articles on the topics of 

“semantics” and “ontologies” between 2005 and 2009, the author notes that the theme 

raised by the article of Berners-Lee (1999) still remains up-to-date ten years later. In 

fact, the number of citations found in the Scopus data base (Ding, 2010) illustrates the 

continuous investment made by the scientific community to achieve an automated Web, 

as was suggested in the initial vision of the founder of the WWW.  

As is known today, in spite of the hard work of the scientific community, the 

problem has not been solved. This is possibly, because the solution is not rooted in 

technology, but rather in a more cognitive nature. This means that the difficulties of 

expansion and consolidation of an architecture based on the Semantic Web, machine-

learning, or other automated services may lie not on the technological development but 

rather on the ability of the model to respond to cognitive factors. These cognitive factors 

seem to justify the unviability of the Semantic Web as a global technology, making the 

application of semantic solutions more restricted and applicable to contextually 
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controlled environments, where the community is aware of the used vocabulary 

(Pollock, 2009) and of its boundaries of meanings. 

In fact, it is commonly accepted that in terms of word reading activity, the 

meaning is not a property of words, because words have no meaning (Evans, 2006). The 

meaning of words is related to each individual and how he uses it in his own cultural 

context, knowledge and experience, which makes the meaning extracted from words 

and utterances flexible. Moreover, concepts related to cognitively irreducible key areas 

(linguistic) have a reduced interpretive ambiguity, but this is not the case of linguistic 

expressions, because they are not related to key areas (most of the vocabulary).  

Additionally, given that the majority of the linguistic expressions do not refer to 

fundamental domains, but to higher levels of conceptual organization, each word can 

elicit an infinite number of cognitive domains, and so, be related to countless 

application contexts (Lévi, 1991). Thus, given the multiple meanings of words, when an 

individual is accessing his mental lexicon, he is accessing more meanings than others, 

depending on his/her cognitive priorities (Kecskes, 2006), which underlines the fact that 

the construction of meaning differs between individuals. That is why construction of 

meaning cannot be based only on the explicit information conveyed by language, since 

language doesn’t provide a unique meaning or a true meaning (Freeman, 2003). It varies 

from person to person. 

On the other hand, the need for compromise to create a unique ontology of 

meanings became one of the main bottlenecks of this technology and a difficult 

constraint that the ontologies have tackled. This was a compromise that needed to be 

achieved by all the interested parties. Otherwise, it would be an imposition of a vision 

(or several), but not representative of all visions. This vision means the understanding of 

the person (or persons) that design the ontologies. However, if it was imposed a solution 

not agreed by all interested parties, I could argue that the «Dewey’s error»15, by 

analogy, would be recreated. “Dewey's error” is based on the organization principles 

proposed, which are oriented through one single perspective and from a ‘physical’ way, 

                                            
15 In 1876, John Dewey proposed the Decimal Classification System basing it on his understanding of 
what knowledge was. His proposal was based on a representation of his “physical” world (Weinberger, 
2007). The proposed system can be regarded as a second-order way of organizing the information, which 
is constrained by the physical reality of paper and the need to give each book a single spot on a shelf 
(Weinberger, 2007).  
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instead of being based on the ‘meaning’ that combines different perspectives from 

different people. It is a systems based on the proposal from one to all. 

In short, in order to unify the proposed technology, the implementation of 

standards namely at language level is difficult and highly controversial. Thus, the 

inevitable lack of convergence on meaning construction given the richness of language 

and cognitive differences between people, notably at their unconscious level, 

characterizes some of the constraints related to semantic-based solutions. Hence, the 

afore-mentioned cognitive factors should be highlighted as the main drawbacks for the 

enhancement of this technology. Therefore, the cognitive factors underlying the 

interpretation of semiotic signs significantly increase the ambiguity of this technological 

proposal.  

Furthermore, they draw our attention to the challenges that semantic tools may 

present when considering an online large-scale use, i.e., beyond restricted environments 

at vocabulary level and contextually controlled. 

3.3 Search engines and social network data 

Web search engines have transformed the way people find, share and perceive 

information. Recent studies have shown that searching for information, together with 

email services, is the most frequently performed activity by users (AECE, 2009)16. In 

fact, one of the main informational retrieval tools that users have at their disposal is the 

online search engine (Rangaswamy et al., 2009), of which Google is the most visited 

website in the world (Alexa, 2014)17. 

It can be said that the semantics of a search engine are “matching”, since it is 

supposed that the system returns the items that match the query ranked by degree of 

match. Two main developments can be highlighted for information retrieval systems or 

search engines: a) the “authoritativeness” criteria incorporated by Google (Burke, 

2002); b) Personalized social search. 

a) Online search evolved dramatically when Google incorporated the 

“authoritativeness” criteria (Burke, 2002) into its ranking (defined recursively as the 

                                            
16 Asociación Española de Comercio Electrónico y Marketing Relational – AECE, ‘‘Estudio sobre 
comercio electrónico b2c 2009”. (2009). http://www.red.es/media/registrados/2009-
10/1256816746333.pdf?aceptacion=8686d2aacf93732ad9c39ce7ba5f0018/.. 
17 Alexa, "Top 500 global sites”. (2014). http://www.alexa.com/topsites/ Retrieved July 2014. 
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sum of the authoritativeness of pages linking to a given page) aiming to return more 

useful results (Brin & Page, 1998). 

The hyperlinks between content (typically pages) form a hyperlink structure 

based on the incidence of links to Web pages. This is the primary tool for structuring 

information. It is this structure of links that informs search engines of the corpus of 

information to be indexed, i.e., to crawl the Web to index content. Hyperlinks also 

inform the search engines about the relevance of a certain Web page relative to a given 

query. It allows estimating and ranking the relevance of the content (Page et al., 1998; 

Mislove et al., 2006).  

On the other hand, hyperlinks identified as explicit links are also used by people 

as an indicator of relevance of the browsed content, as well as to embed a Web page in 

the context of related information (Mislove et al., 2006).  

b) Despite continuing improvements in this hyperlink-based search paradigm, 

some limitations were reported in literature (e.g., Mislove, 2006), highlighting two main 

concerns: i. how to make a new Web page or content for the search engine visible; and 

ii. how to avoid the biases introduced by the incident link solution to rank the 

importance of a certain Web page or content.  

At the center of these concerns is the meaning of “user” and how to integrate the 

“user” into studies of information retrieval (e.g., Jones, 1988). Rather than continuing 

research almost exclusively on document representation (Belkin, 2008), it was found 

that we needed to approach the meaning of user in a different way. Nonetheless, it was 

necessary to form a more consensual understanding of this need to react positively to 

the questions raised by Sparck Jones in 2008. After that and benefiting from the amount 

of social data available, scholars started to develop a more personalized social search. 

With that, the information exchanged in online social networks started to be examined 

as a source of naturalistic behavioral data. 

This type of search requires the ability to model the users’ preferences and 

interests – done through the tracking and aggregation of users’ interaction with the 

system (Carmel et al., 2009). Some examples of user aggregation are represented by 

tracking information on users’ previous queries (Tan et al., 2006), or click-through 

analysis (Dou et al., 2007). The interaction of the users with the system can be 

represented by users’ profiles that are applied in the search (Agichtein et al., 2006). This 
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can be employed by incorporating users’ interests with the processes of re-ranking and 

filtering of the search results (Shen et al., 2005). However, this approach may raise 

issues related to privacy, because user profiling may be understood as a violation of user 

privacy (Carmel et al., 2009).  

The concept of social search has several alternative definitions. We adopt the 

one used by Carmel et al. (2009), which states that social searches “describe the search 

process over “social” data gathered from Web 2.0 applications, such as social 

bookmarking systems, wikis, blogs, forums, social network sites (SNSs), and many 

others” (p. 1228). Thus, the explicit user interactions provide an ideal framework for 

personalization. The assumption behind the use of data based on a user’s social network 

to obtain user preferences from related people is that closely related people have similar 

interests18. 

Facebook presents a relevant example of the trade-off between service provided 

and information gathered from users, in order to apply it to other Web-services (e.g.,  on 

Bing19). While Facebook gives to its users the opportunity to make their relationships 

explicit (among friends and acquaintances) and share all kinds of information, the 

algorithm infers intimate details about users' preferences. Applying these data 

(carefully, given privacy concerns) can improve greatly other Web-based services, like 

searching.  

In this regard, Piscitelli et al. (2010) states that filtered content based on our 

social network is likely to provide information that is equally or even more relevant 

than content obtained through standard Web searches.  

Several approaches for directly or indirectly employing users’ social relations to 

improve personalization have been proposed by scholars.  

Mislove et al. (2006) tested the use of social network information to inform and 

bias the ranking algorithm of a search engine and found an improvement of 9% in 

search result clicks over Google alone. This integration has the potential to improve the 

                                            
18 Similarly, this is one of the main assumptions behind collaborative filtering methods in recommender 
systems. 
19 Greene, J., 2012. Bing deepens Facebook integration, connecting searchers with friends. From 
http://www.cnet.com/news/bing-deepens-facebook-integration-connecting-searchers-with-friends/  
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quality of Web search experience, because nearby users in the network often find 

relevance on similar sets of pages.  

Golbeck et al. (2007) proposed the integration of social network information into 

a user's browsing experience using a Firefox extension. The goal was to create 

additional contextual information loaded from other sites on the subject browsed by the 

user. This means completing contextual information with data on what others are saying 

about the subject browsed.  

Bender at al. (2008) developed a framework representing a social community by 

means of a network graph model of users, documents, and user-generated annotation 

(tags) that gives information about users’ interests and users themselves. They found 

that social expansion based on the Friendship graphs improves the precision of the 

retrieval effectiveness remarkably. These results contribute positively to social search 

strategies.  

Carmel et al. (2009) analyzed the value of personalization according to different 

relationship types, in particular familiarity and similarity. The results show that social 

network based personalization significantly outperforms non-personalized social search. 

Cai et al. (2014) raise the question of search engines’ lack of ability to be aware 

of users’ interests or how to efficiently find the information that users need. So, the 

authors propose to store users’ search history in the user profile and relocate the results 

of search history by the particular subject. The proposed method provides a 

personalized search service that gives priority to the documentation already seen by the 

user to position it at the top of the search results. 

Several other contributions regarding personalized search have been presented in 

literature, such as Song et al. (2014), who adapted the well-known ranking model of 

RankNet to personalized search, or Gasparetti et al. (2014), who selectively collect text 

information based on implicit signals captured through web browsing interactions of the 

user. 

However, privacy concerns a side (Carmel et al., 2009; Younus et al., 2014) that 

is not free of cognitive constraints. Thus, here too, there is setbacks on innovation and 

performance of information technology, which can be pointed out to cognitive factors. 

This constraint is described in literature as Filter Bubble. 
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Filter Bubble 

The term Filter Bubble was introduced by the internet activist Eli Pariser20 to 

describe how algorithms are tailoring information to people, creating a personal 

ecosystem of information based on user information (such as location, past click 

behavior and search history). As a result, users are separated from diversity and receive 

what 'can be' expected. In this sense, personalization confirms what people already 

know and avoids offering information that disagrees with the user's viewpoints. In short, 

the term Filter Bubble describes the potential for online personalization to effectively 

isolate people from a diversity of viewpoints or content (Nguyen et al., 2014). 

This effect has been most noticed in Google results since December 2009, when 

it started to customize its search results. Several bloggers have already stated their 

concerns. An example of that is Cyrus Shepard21, who contends that: 

 

“[personalisation] creates a real risk of limiting our worldview. Every 

new search result starts to look like the search before. Our ideas become isolated 

and homogenized, like exclusively watching only Fox News or MSNBC, while 

refusing to consider CNN. There are times when personalization and localization 

work well, such as when I’m looking for a pizza restaurant in Seattle. The 

maddening part is, what if I want to turn it off? There are times when I want 

unbiased results not based on my past search history, my location, or what my 

social circle has shared.” 

   

Other bloggers22 used the term “Echo Chamber Effect” to refer to the problem 

described above as the “Filter Bubble”. The constraints underlined are the same and 

centered on the problem of personalized search. The difference is that this is an 

individual option, referring to the fact that people freely decide their “political corner”, 

for example, as expressed by Jamieson & Cappella (2008) to explain the homogeneity 

among people that share similar political views. This kind of personalization / forced 

homogenization is determined by a 'blind' algorithm, which is socially ignorant and, 

                                            
20 http://www.amazon.com/The-Filter-Bubble-Personalized-Changing/dp/0143121235.  
21 Cyrus Shepard: http://moz.com/blog/google-personalized-search.  
22 Grant Jacobs: http://sciblogs.co.nz/code-for-life/2011/07/30/google-and-the-echo-chamber-effect/.  
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probably, biased by business interests (e.g., some sort of tailored advertising). This 

problem is not only affecting online searching though, but also other media, such as 

Facebook (e.g., through the news feeds), which is tailoring the results based on 

personalization. 

Nowadays, we are still witnessing the continuous growth in access to social data, 

which has increased the availability of more and more explicit and implicit information. 

This fact is yielding even more insight to develop new digital media solutions, notably 

in the improvement of recommendation through recommender systems. However, 

problems related to cognitive factors persist.  

3.4 Recommender systems  

Web entrepreneurs at the forefront of the information revolution were the first to 

notice the opportunity that recommendation could leverage. This is one of the reasons 

why the study of recommender systems is at the intersection of science with business, 

i.e., they are an integral part of some e-commerce sites (Schafer et al., 1999), calling for 

contributions from diverse knowledge fields, such as computer scientists, 

mathematicians, physicists, and even psychologists and sociologists (Lü et al., 2012).  

A recommender system suggests items of interest to users based on their explicit 

and implicit preferences, given the preferences expressed by other users, and attributes 

of the users and items. A recommender system is expected to predict users' possible 

future likes and interests based on data from the users and their preferences. The main 

basis is the act of suggesting items based on a representation of what a user likes and 

dislikes, with the aim to personalize, as much as possible, the delivery of the right 

content to the right person.  

The recommendation activity is particularly relevant for sales based on the so-

called long-tail (Anderson, 2006). The long-tail refers to goods that are rarely 

purchased, but given their multivariate they represent, in total, a great quantity, and so 

they can yield considerable profits for the businesses able to explore this model 

(Leskovec & Adamic, 2007). This is the case of Amazon.com, where 20 to 40 percent of 

its sales are based on products that are above the line of the 100 000 most sold products 

(Brynjolfsson, 2003). Another typical activity of recommendation is the sale of goods, 

like DVDs rented by Netflix. Here, the purchases based on personalized 

recommendation achieved 60 percent in 2009 (Lü et al., 2012). 
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Three main methods have been widely debated and reviewed in literature (e.g. 

Bilgic, 2004; Adomavicius & Tuzhilin, 2005; Lü et al., 2012; Park et al., 2012), in 

which authors present extensive surveys with the pros and cons of each system and 

suggestions for new solutions. Next, we present an overview of these methods. 

3.4.1 Collaborative filtering methods 

 Collaborative filtering (CF) (Adomavicius & Tuzhilin, 2005; Shi et al., 2014) 

and content based filtering (Chen & Sycara, 1998) are the most common types of 

recommender systems, and hybrid systems combine the strengths of both types of 

systems (Burke, 2002). CF is the most successful method and can be found in several 

online applications and fields of knowledge, such as health education (Luque et al., 

2009), consumer reviews (e.g., Epinions.com) (Massa & Avesani, 2007), and sentiment 

prediction in twitter conversation threads (Kim et al., 2013). New approaches have also 

been developed, like the one introduced by Cai et al. (2014), who propose a user-based 

recommendation that makes a representation of the user through a vector that can 

indicate the user’s preferences on each kind of item. It finds a user’s neighbors based on 

their typicality degrees in all user groups. This is different than rely on users’ ratings on 

items as happens in other methods.  

 Apart from some recent proposals, like Cai et al. (2014), two common types of 

CF have been discussed in literature: a) user-based recommendation, and b) item-to-

item recommendation (the Amazon model).  

 a) In the user-based recommendation, the system finds similar users 

(collaborative) and makes a prediction based on those similar user preferences 

(filtering) (e.g., Ali & van Stam, 2004, Arora et al., 2014). The principle is to pick 

people who share similar tastes with someone else, and make an automatic prediction 

about the taste of someone based on the collected information from many others. It can 

be summarized by the idea that “People like you bought, liked or shared Y”. In this 

regard, Adomavicius & Tuzhilin (2005) present the well-known user similarity method, 

based on the taste overlap between users. This technique recommends items frequently 

collected by a given user’s “taste mates”.  

 b) In the item-to-item recommendation, the items are compared first, but 

incorporating user preferences. It takes the preferences of users who liked (or bought) 

one item to suggest an item those users liked just as much (this system was made 
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popular by Amazon) (Schafer et al., 2001; Linden et al., 2003; Koenigstein & Koren, 

2013). The idea that summarizes it is: “People who bought, liked or shared X also 

bought, liked or shared Y”. 

 CF recommendation presumes that people who have similar tastes will rate 

items similarly. This method bases its recommendations on community preferences 

(e.g., user ratings and purchase histories), ignoring user and item attributes (e.g., 

demographics and product descriptions) (Schein et al., 2002). Thus, to predict a 

recommendation about a consumer item (e.g. a book, a film) the item needs to have a 

reasonable number of ratings. However, this is not always the case, particularly for new 

entries (new goods). Similar constraints occur when the target user (recommendee) has 

unusual tastes compared to the rest of the population that has evaluated the items, which 

makes it even more difficult to find a similar profile. Thus, all of these complications 

lead to poor recommendations. These constraints are known as rating sparsity. 

 The problem of sparsity data occurs when there are several items to be 

recommended and the user/ratings matrix is sparse, independently of the number of 

users, which makes it difficult to find users that have rated the same items (e.g., when 

someone bought only one book on Amazon it is hard to accurately determine similar 

preferences, given the lack of information on the user and few overlapping items).  

 To overcome the problem of ratings sparsity, some scholars have been exploring 

solutions based on demographic information, known as "demographic filtering" 

(Pazzani, 1999), transitive trust graphs, as a way to increase the number of comparable 

users (Massa & Avesani, 2007), social information (Kaya & Alpaslan, 2010), or even 

by the selection of optimal personal propensity variables (Jeong et al., 2013), just to 

mention a few of them.  

 In the case of Massa & Avesani (2007), the goal was to search for trustable users 

in a social trust network, instead of searching for similar users in a social network (e.g., 

friends of friends). The social trust network is based on user feedback about which 

recommendations they trust most. This feedback is used to rank people in the trust 

network.  

 Other examples incorporating trust network into CF are presented in Yan et al. 

(2013) and Gou et al. (2014).  Yan et al. aims to resolve the neighbor selection problem, 

while the Gou et al. proposal distinguishes between implicit and explicit trust. Here, it is 
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argued that the inference of trust based only on user ratings is not sufficient to capture 

the dynamics and context-dependency. The authors suggest the incorporation of 

contextual information when the ratings are given, as well as the users’ interactions 

pertaining to the items. 

 Some other challenges in CF are the cold-start problem (e.g., when new users 

have zero ratings/purchases, or items that no one – in the data set – has yet rated) and 

the popularity bias (e.g., everyone reads “Harry Potter”, or someone with unique tastes).  

 Finally, given that CF bases its recommendation on overlap, i.e., similarities, 

rather than differences, this narrows the access to novelty and to different viewpoints, 

by exposing them, mostly, to a narrowing band of popular objects. As a result of this, a 

niche of items that might be very relevant will be overlooked (Zhou et al., 2010), which 

will emphasize the problem of the Filter Bubble, as studied in Nguyen et al. (2014). The 

authors conclude that there are two forms that represent the narrowing of influence of an 

online recommender system on its users: a) through the items recommended by the 

system, and b) the items rated by users. Furthermore, the risk of a filter bubble increases 

when users follow recommendations that appear in their top-N recommendation lists. 

As a matter of fact, as Ziegler et al. (2005) show, user satisfaction can be improved with 

diversification. 

3.4.2 Content-based filtering methods 

Content-based filtering methods rely on comparing content of items rather than 

on other users’ opinions. It uses an algorithm to induce a profile of the user’s 

preferences from previously rated items, matching query words or other user data with 

item attribute information (Mooney & Roy, 2000). The goal is to recommend items that 

fit this preference profile based on similar content. In this sense, some authors defined 

the design of similarities from an inter-concept similarity based on the distance of the 

concepts to their least common subsumer in an ontology (Fernández et al., 2006). This 

solution presents at least two variations. One applies taxonomies as a basis for 

calculating similarity, and the other uses only annotated corpus data. Here it is the 

frequency with which concepts are used that defines similarity (e.g., Lin, 1998).  

Nonetheless, these solutions found similar constraints to those faced by the 

ontologies proposed in the Semantic Web. This limitation resides in the fact that the 

filter does not distinguish between word senses (Tintarev & Masthoff, 2006). 
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Some of the known constraints related to that approach are the lack of scalability 

and the fact that it is not social. The advantage is that there is no need for data on other 

users, which avoids the cold-start and sparsity problems. Also it is able to make 

recommendations to users with unique tastes, as well as recommending new and 

unpopular items, which avoids the so-called first-rater problem. Moreover, it can 

provide explanations of recommended items by listing content-features that caused an 

item to be recommended. 

An example of a socio-economic application of this method is Pandora.com, 

which is a free and personalized radio that plays music online. Pandora coded the so-

called "genome"23 of each song to generate personalized recommendations based on 

“genes” from songs that users liked. The Music Genome Project (Liu et al., 2009) 

attempts to analyze the content attributes of each song. Based on the name of songs or 

artists typed by users, the system finds requests which are similar to make 

recommendations. Another example of a content-based approach, this time applied to 

the culinary domain in recipe recommendation, is proposed by Lin et al. (2014). 

However, there are also challenges with this type of recommender system which 

need to be overcome. First, it requires content that can be encoded as meaningful 

features. Second, users’ tastes must be represented as a learnable function of these 

content features. Finally, it is unable to exploit quality judgments of other users, unless 

these are somehow included in the content features recommended. 

3.4.3 Hybrid systems 

Hybrid systems combine collaborative methods with content-based methods or 

with different variations of other collaborative methods. This method is helpful to 

address the diverse needs of heterogeneous users (Burke, 2002), or to join the best of 

different methods, as in Lops et al. (2013), who proposes a tag recommender system 

implementing both a collaborative and a content-based recommendation technique. For 

example, CF is useless in solving the problem in a cold-start setting, but content 

information can help to bridge the gap from existing items to new items by inferring 

                                            
23 In Wikipedia: “The Music Genome Project is an effort to "capture the essence of music at the most 
fundamental level" using almost 400 attributes to describe songs and a complex 
mathematical algorithm to organize them. The Music Genome Project is currently made up of 5 sub-
genomes: Pop/Rock, Hip-Hop/Electronica, Jazz, World Music, and Classical. Under the direction of 
Nolan Gasser and a team of musicological experts, the initial attributes were later refined and extended.” 
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similarities among them. Hybrid systems that join CF and content-based methods 

enable us to solve this problem (Schein et al., 2002; Tewari et al., 2014), which is one 

of the most important applications of this type of recommendation system.  

Some proposals for hybrid systems aim to recommend long-tail items, to which 

users have had little access – as seen above (Zhou et al., 2010). This method provides 

novel insights about users by combining collaborative filtering with graph spreading 

techniques. 

3.5 Recommender systems and social network data 

3.5.1 Social network-based recommender system 

After being strongly focused on how algorithms could better predict unrated 

items, scholars started to look more carefully at solutions based on social elements of 

decision making and advice seeking (Bonhard, 2004), by merging recommendation 

systems and social networks (for a review see Bobadilla et al., 2013; Tavakolifard & 

Almeroth, 2012).  

In this vein, scholars found that people seem to appreciate more a 

recommendation coming from friends than one from a recommender system (Sinha and 

Swearingen, 2001), which underlines the relevance of a recommendation based on 

social-influence in relation to similarities of past activities. As mentioned by Lü et al. 

(2012), scholars have understood the value of social influences for a long time, yet, it 

was with the emergence of Internet and particularly with the rise of social networks that 

it has become possible to understand social influences quantitatively. 

The effects of social influences can be divided into two classes: a) users' prior 

expectations, which lead to the increase of sales, and b) users' posterior evaluations, 

connected to the improvement of user loyalty.  

a) Leskovec & Adamic (2007) studied the effects of social influences on 

purchase preference in an e-commerce system. The authors tested the reaction of the 

target users to recommendations from friends through e-mails after purchases. The 

results reveal that individuals are often impervious to the recommendations of their 

friends, particularly when the recommendations received arrive at saturation level 

(about 10 recommendations for DVD products). At the same time, with book sales, they 

reported that the purchase probability had little effect or was even negatively affected 
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after the recommendations. In short, the authors concluded that there are limits to how 

influential high degree nodes are in the recommendation network. There is a limited 

reach of influence that individuals have over friends – they just reach a few of them, 

and, furthermore, they do not reach everybody they know.  

b) In order to solve traditional challenges related to CF, such as data sparsity and 

cold-start, and harnessing the emergence of online social networks, some authors 

merged both areas to enhance a social network-based recommender system. Social 

recommendation introduces transparency to the activity of recommendation and a 

higher level of trust in the system itself (Groh & Ehmig, 2007).  

Lü et al. (2012) analyze how to utilize social network information in social 

recommender systems. The authors present a framework incorporating social context 

information and show that this improves the accuracy of review quality prediction, in 

particular when the data is sparse.  

He et al. (2010) crawled the dataset of the online social network Yelp.com to 

analyze whether or not friends tend to select the same item, and whether or not friends 

tend to give similar ratings. The results reveal that friends have a tendency to review the 

same restaurants and give similar ratings. Also, on the sparsity test and cold-start test, 

the proposed system performs better than on CF.  

Ma et al. (2011) provide a general method for improving recommender systems 

by incorporating social network information, in particular, to solve the persistent 

problem related to the missing values in the user-item matrix. The results are indicative 

of improvements in recommendation, but by using all the social connections of each 

user, the recommendation performance decreases. The authors do not explain the 

reasons why this happens, but propose for future work the use of an algorithm that 

identifies the most suitable group of friends for different recommendation tasks.  

There is one thing the approaches mentioned have in common, which is that they 

all lead to some kind of challenge that researchers in the field of recommender systems 

have to face. Some of the major challenges have been identified as sparsity, scalability, 

cold start, diversity vs. accuracy, vulnerability to attacks, etc. (for a complete review 

see: Lü et al., 2012), while other issues have been pointed out by scholars, particularly 

the danger of an excess of recommendations based on popularity (Zhou et al., 2010), 

low novelty, or lack of diversity (Vargas & Castells, 2011). In fact, just as happens in 
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Web searches, diversification of results is a critical factor in significantly influencing 

user satisfaction24.  

In this regard, Zhou et al. (2010) estimated the capacity of a recommender 

system to generate novel and unexpected results by measuring the unexpectedness of an 

object, i.e., the average self-information or “surprisal” (term coined by Tribus, 1961) of 

recommended items, which amounts to the average log inverse ratio of users who like 

the item (also known as “inverse user frequency”).  

Another issue on recommendation is the absence of control of number of times 

that the system recommends the same items to users over and over again, or whether a 

novel content is delivered in recommendations, or to the appropriate user.  

In this scope, Lathia et al. (2010) studied the novelty that a system delivers with 

respect to recommendations that it produced in the past. They observed that CF 

algorithms often repeatedly recommend the same (top-N) items to users. To invert this, 

the authors suggest switching the CF algorithm over time, in order to re-rank the results 

of frequent visitors to the system, making that a temporally evolving system that could 

give diversified recommendations in time. In turn, Vargas and Castells (2011) proposed 

an evaluation of the novelty and diversity of the recommendations attempting to 

formally unify them in a single evaluation framework. 

Therefore, the familiarity of online recommendations characterized by the 

Portfolio Effect concept (Burke, 2002) is then a problem addressed by scholars, 

although, not from the viewpoint of a cognitive constraint increased by the current use 

of social data. In order to study complementary solutions and still benefiting from the 

richness of social data, it is important to discuss the role of the emotion of surprise, 

given its relationship with novelty. 

3.5.2 Surprise on recommendation  

Surprise in recommender systems can be observed in several ways. I present 

three approaches: serendipity, past surprise, and network approach.  

                                            
24 Diversity has been addressed by scholars in the scope of personalization of Web searching and with 
promising results (Vallet & Castells, 2012).  
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The relevance of surprise from the viewpoint of users' emotional reaction is 

related to the process of information sharing/ content selection debated in this 

dissertation.  

The serendipity and past surprise approaches, because they have often been used 

by scholars and entrepreneurs in order to trigger the emotion of surprise on the online 

users when they access the contents.  

In this dissertation it is explored the network approach. This is a not yet explored 

approach that uses surprise as a proxy of novelty – surprise response is elicited in the 

context of a network bridge (Granovetter, 1973; Burt, 1992). This subject is detailed in 

the next chapters. 

To explain serendipity, some literature mentions the process of incidental 

information acquisition (IIA) as an occurrence in which a person acquires information 

(useful or interesting), while not consciously looking for it (Williamson, 1998; 

Heinström, 2006). This acquisition is due to the individual’s psychological receptivity 

that makes people more or less attentive to the received message (Heinström, 2006). 

Thus, personal traits and emotional states may determine the attention to the message.  

Some studies (Swearingen and Sinha 2001) recognize that "surprise" caused by 

serendipity in recommendation expands their horizons, while others (Groh & Ehmig, 

2007) say that serendipity can convey novel predictions in recommendation, which are 

brought from cliques (clusters or groups of people that share similar tastes). This same 

approach is argued in Zhang et al. (2012), whom propose a framework of novel 

recommendations based on serendipitous recommendations. 

The past surprise approach, on the other hand, is explored by Horvitz (2007). 

The author explains the "mixed-initiative interaction", which allows the collaboration 

between computers and humans in which human skills will attempt to expand the ability 

of the computational systems. The author25 believes that through the technique of 

'surprise modelling', it would be possible and beneficial to consider the kinds of things 

that have surprised people in the past to model the kinds of things that may surprise 

them in the future. 

The third approach results from the information flow in social structures 

situating surprise as an emotion which arises when the input coming from the 
                                            
25

 http://www.technologyreview.com/read_article.aspx?ch=specialsections&sc=emerging08&id=20243 
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surroundings doesn’t match the individual’s own schema (Derbaix, 2003). Surprise can 

be either positive or negative and can be related to different types of communication 

processes, e.g., action tendency of "interrupting" (Frijda, 2003), cognitive dissonance 

(Festinger, 1957).  

Considering the situation of communication in which the sender and the receiver 

of information are connected by a network bridge, the surprise might not only be caused 

by the information received, but also by the perspective delivered within the 

information. This is to say that the cause of surprise might not only be the information 

itself, but also the sender of information associated with structural and relational 

properties and individual attributes – characterizing psychological characteristics. In the 

following chapters it will be presented greater detail on this. 

Given this, in the context of this dissertation, surprise must not be elicited in a 

serendipitous way, because a system that relies on this kind of design cannot compute 

this emotional state from data based on naturalistic behavior from social networks. On 

the other hand, through solutions such as the "mixed-initiative interaction," surprise 

relies on a probabilistic approach that may not fit the purpose of my approach.  

 

There are many highly diversified contributions involving recommendation and 

social network data, numerous approaches to enhance novelty and diversity, as well as 

several methodologies to assess and measure how well this is achieved. Though, despite 

the common understanding that social influence and data on naturalistic behavior from 

social networks are very relevant to improve accuracy on recommender systems, it 

seems that there is an important concern in this regard that should be considered. This is 

related to network mechanisms supported by homophily (McPherson et al., 2001), like 

triadic closure, which contributes to closure and so to reducing novelty access.  

On the other hand, if the priority or opportunity is on the use of social network 

data, then novelty can be approached from a social and psychological perspective too. 

Mastering both factors in the same framework, this might bring new insights about 

Web-based systems and particularly to recommender systems. This dissertation 

dedicates particular attention to this opportunity.  
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In this context, the following chapter introduces the concept of Social Echo 

Chamber Effect and the problem of trapping users inside their own social bubble – echo 

chamber – when the recommendation's target user receive a recommendation based on 

data from similar users or close friends (strong ties). 
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CHAPTER 4 

SOCIAL ECHO CHAMBER AND SOCIAL STRUCTURE 

 

4.1 Overview 

This chapter introduces the concept of Social Echo Chamber Effect applied to 

Web interactions. The point of departure is the assumption that similarities in personal 

attributes (e.g., attitude, age, race, ethnicity, education, religion, socio-economic status, 

physical, etc.), between individuals who are socially connected, notably by strong ties, 

are associated to a low level of novelty exchanged and lack of diversity of viewpoints 

among them. I advocate that the use of data based on these kinds of attributes to 

improve the personalization of Web-based applications, rather than boosting innovation 

and opportunity, may generate the “Social Echo Chamber” effect. Although the problem 

of “Filter Bubble” or “Echo Chamber Effect” has  already been identified in literature in 

the context of online personalization (e.g., Nguyen et al., 2014), in this work I study this 

problematic from the perspective of social data use. I emphasize that the use of this kind 

of data may help in personalization algorithms, but it also has some drawbacks, because 

it may generate dissatisfaction in users. This highlights that the relationship between 

cognitive factors and social interaction may distort the meaning of Web personalization. 

Thus, it is important to fully understand this phenomenon in order to find solutions. 

This chapter is organized in three sections. The first section, named Echo 

Chamber Effect, introduces the concept of the “Echo Chamber Effect” and reviews the 

literature. The second section, called The Social Effect on Echo Chamber, shows how 

social dynamics based on homophily and strong ties contribute to the reduction of 

diversity of viewpoints among groups and thus provoke the effect of Echo Chamber. 

Four main topics are developed: Novelty and diversity, Homophily on Echo Chamber, 

Strong ties on Echo Chamber and Network mechanisms on tie formation that feeds the 

echo chamber. Finally, the third section called Social Echo Chamber Effect on Web 

Personalization, presents the effects of echo chamber on personalized recommendations 

explaining its relationship with the current use of social data. 
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4.2 Echo Chamber Effect  

The term Echo Chamber Effect was coined to emphasize the human behavior 

that is typically observed in political or cultural communities (Jamieson & Cappella, 

2008), whose individuals seek information or join groups similar to their prior beliefs 

and biases (Sunstein, 2001). This behavior leads to the argument that the look alike 

effect plays an important role on self-affirmation “birds of a feather flock together” 

(McPherson et al., 2001). A person typically enjoys receiving confirmation of every 

aspect of his or her ideas and attitudes. It is argued by some scholars that this kind of 

social interaction results from homophily, given individuals' preferences to interact with 

others that have similar background or opinions (McPherson et al., 2001). This can be 

explained either by the structural constraints of society, which limits people’s social 

worlds (Blau, 1980), i.e., their ability to interact with others from different backgrounds 

or with different opinions, or individual choices within social structures (McPherson et 

al., 2001), or even as a result of social influence through interactions (Ma et al., 2009).  

Consequently, people in these situations lack exposure to diverse viewpoints.  

Social structures grounded in homophilous relationships and in strong ties set by 

friendship, have a higher likelihood of increased information access from other strong 

ties that keep spinning the same personal perspectives. Strong ties are then characterized 

by their homophily (McPherson et al., 2001), which strengthens the bond between 

people contributing for them to have the same close friends either online or offline 

(Lewis et al., 2008; Hampton et al., 2010). 

The massive amount of media currently on offer would seem to ensure exposure 

to a broad spectrum of views and the diversity of information for a healthy democracy. 

However, that is not necessarily the case. First, as already reported by Centola (2007), 

people joining a new online group seek similar people, which maintain the same offline 

cultural affinities – i.e., the homophily effect is also visible in options made by people 

who select their communities online. Second, it has been reported that similar people 

present similar behaviors of information access. People look for content that, in fact, 

feeds their prior views, i.e., “people avoid the news and opinions that they don't want to 

hear”26. Consequently, this circular option locks the individual in an experience of echo 

chamber. On top of this, the current fragmentation of the communication market and the 

                                            
26 http://press.princeton.edu/titles/8468.html.  
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concentration of ownership seem to emphasize this problem, as sustained by Cass R. 

Sunstein in the book “Republic.com 2.0” (Sunstein, 2009). In this sense, people are 

"closed" inside their own cluster. A cluster that is naturally created and tuned by 

endogenous properties, i.e., homophily, as basic social organizing principle, but which 

is treated as a selected audience by the media. As a result, this audience becomes 

externally regulated by a pre-constructed and imposed view by the media. Furthermore, 

current social networking systems (SNSs) seems to emphasize narrowing contexts of 

information as detailed by Boyd (2002) through the concept of collapsing of context. It 

has been stated in this scope that the digital world alters people's notions of context and 

identity. Gilbert (2012, p. 2) posits in the scope of this concept that, “in social streams, 

people from every part of life collapse into one channel, in temporal order, with nothing 

distinguishing one from any other.” This author uses the following analogy to explain: 

“imagine living your whole life at your own wedding. Everyone you know from various 

parts of your life is there: grandmothers, in-laws, coworkers, cousins, childhood friends, 

etc. Writing a status update on a social media site is like forgetting you left the 

microphone on. Everyone hears everything. Consuming content (e.g., reading Twitter or 

the Newsfeed) is very much like standing in the receiving line. Everyone you know 

passes by in random order.” (p.2) 

4.3 The Social Effect on Echo Chamber 

Having established the conditions that are facilitating the emergence of the echo 

chamber factor, we will now discuss its effect when Web applications use data from 

supposedly like-minded people to personalize the information services required. In this 

context, it is important to understand what network dimensions are behind the social 

data in the Web personalization and why that is reducing diversity and novelty 

potential.  

Novelty and diversity 

As established earlier, the information based on interactions from strong ties has 

a very low rate of novelty (Granovetter, 1973). On the other hand, the concepts of 

novelty and diversity are intertwined, which means the argument that the low level of 

novelty in the information accessed leads to a deficiency of variety in the information 
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shared, which may reduce the quality of the contribution of social data on recommender 

systems. This idea is underlined by Vargas & Castells (2011), which states that: 

 

“Novelty and diversity are different though related notions. The novelty 

of a piece of information generally refers to how different it is with respect to 

“what has been previously seen”, by a specific user, or by a community as a 

whole. Diversity generally applies to a set of items, and is related to how 

different the items are with respect to each other. This is related to novelty in 

that when a set is diverse, each item is “novel” with respect to the rest of the set. 

Moreover, a system that promotes novel results tends to generate global 

diversity over time in the user experience”. (p.2) 

 

To clarify how network interactions may participate in keeping the echo and 

then in reducing the access to novelty, we need to develop further some properties 

related to homophily, tie strength, and network mechanisms. 

Homophily on Echo Chamber 

There are plenty of published social network studies on bridging factors 

(Granovetter, 1973; Burt, 1992) or centrality (Freeman, 1973) to explain outputs related 

to the information flow (e.g., McEvily et al., 1999; Hansen, 1999; Holme & Ghoshal, 

2008, Kratzer & Lettl, 2008; Shi et al., 2013). In this regard, some authors argue that 

weak ties are more likely to be dissimilar than strong ties relatively to the ego (‘owner’ 

of a social network), and that this dissimilarity is advantageous to expose the ego to a 

dissimilar knowledge and new perspectives (Zhou et al., 2009) and so, to influence the 

information flow.  

On the other hand, several socio-psychological studies indicate that homophily is 

a noticeable characteristic of social interactions despite often being diminished and 

attributed to peer-to-peer influence27 (Aral et al., 2009), given the preference to interact 

with people with similar  attitude, background or opinions (McPherson et al., 2001).  

                                            
27 Homophily has been seen to be more important than peer-to-peer influence and more relevant that 
sometimes is assumed by scholars, notably, in the sense that it can account for a great deal of what 
appears at first to be a contagious process (Aral et al., 2009). However, the distinction between 
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The term homophily coined by Lazarsfeld & Merton (1954) suggests that 

individuals tend to associate with others who share similar backgrounds or opinions and 

is often referred to as “similarity breeds connection” (McPherson et al., 2001). It can be 

said that homophily is "the conscious or unconscious tendency to associate with people 

who resemble us" (Christakis & Fowler, 2009, p.17).  

The homophily between two individuals – as a tendency to associate ourselves 

only with like-minded people – can be expressed in several possible dimensions, such 

as those related to socio-demographic dimensions that stratify society ("status" 

homophily), and cognitive dimensions (e.g., preferences, attitudes, aspirations, values) 

(“value” homophily), as defined by McPherson et al. (2001)28. Status homophily 

includes ascribed characteristics (e.g., race, ethnicity, sex, or age) and acquired ones 

(e.g., religion, education, occupation, or behavior patterns). Value homophily includes 

dimensions such as beliefs and attitudes, traits like intelligence and behavior 

(emotional), which may report cognitive similarities. In this regard, McPherson et al., 

(2001) states that value homophily is about "internal states presumed to shape our 

orientation toward future behavior" (p. 419).  

Thus, similar people will establish contact at a higher rate than dissimilar ones29. 

It is assumed that endogenous characteristics strongly affect the creation of ties. In fact, 

homophily is often studied in the perspective of social ties creation and maintenance in 

social networks, and so, associated with the empirical measures of assortative mixing. 

There are three main factors related to why social networks present assortative mixing, 

which refers to a positive correlation in the personal attributes among individuals who 

are socially connected. One factor is related to homophily, which justifies why people 

create foci of shared information and points of view. This socio-demographic and 

attitudinal information implies that “distance in terms of social characteristics translates 

into network distance” (McPherson et al., 2001, p. 416). Thus, the stratification of 

                                                                                                                                
homophily and social influence is not easy to make. Some of the difficulties in distinguishing these 
phenomena may be related to external factors (difficult to be specified) (Anagnostopoulos et al., 2008).  
28 Following the work of Lazarsfeld & Merton (1954). 
29 Given the principles of homophily, authors have proposed various measures to study dimensions like 
attitude and background factors (McCroskey et al., 1975, 2006), cultural similarity (Centola, 2007), and 
they have underlined the relevance of some variables like Educational, Occupational, and Class 
homophily, comparing less intimate ties to relatively strong ties. For a review see Rivera et al. (2010). 
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society by similarities and dissimilarities between individuals also means distance to be 

travelled by a piece of information between two individuals.  

A second factor is related to how network structures may influence the 

formation of social ties. This can happen, for example, through the propinquity 

mechanism that leads to spatial proximity: this mechanism explains that there is a high 

likelihood that two people that do not know each other will meet, if they share time with 

the same third person (common friend). In these circumstances, the physical distance 

changes the likelihood of tie formation, weak or strong (Hipp & Perrin, 2009).  

Finally, there is the property of sociality, which is not related to homophily, but 

still might influence the formation of ties.  

Homophily may lead to cognitive similarities (Arazy et al., 2010) that may affect 

the perception of the communication. In this regard, some authors (Roger & Bhowmik, 

1970; McCroskey et al., 200630) uphold that the communication is more effective when 

the source and the receiver of information are more similar (homophilous), since the 

perception of the message is associated with cognitive similarities (Roger & Bhowmik, 

1970). Moreover, when the perception of the message is associated with cognitive 

similarities (Rogers & Bhowmik, 1970), communication becomes even more effective. 

These similarities, even with limited social interaction, are likely to establish links of 

trustworthiness that may induce receivers to more comfortably accept a sender’s 

recommendation (Arazy et al., 2010). 

Differences in the social context in which people are embedded, also affect 

communication given the varying levels of attitudinal diversity (Levitan & Visser, 

2009). Psychological preference (Kossinets & Watts, 2009) seems to drive one of the 

reasons why individuals interact favorably with others who are similar – strengthening 
                                            
30 Several studies have debated the factors that form the basis of human communication, such as, how the 
‘person perception’ affects the interpersonal communication (McCroskey et al., 2006). The studies report 
two main factors: interpersonal attraction and homophily (ibid.). McCroskey et al. (2006) have been 
analysing the reliability of the measures reported from 1975 to 2006, and have concluded that they are 
valid, while still recommending a second generation of measures. The authors McCroskey et al. (2006) 
state that the first-generation measures of McCroskey et al. (1975) "reported a multi-dimensional measure 
of perceived homophily (similarity of source and receiver)" (p.2), but which presented moderate 
reliability in several studies in which they were used. Thus, the second generation measures (McCorskey 
et al., 2006) review the measuring instruments for reliability and validity of the homophily scales, namely 
by analysing thirty years of work of other authors that have used those scales. Furthermore, McCroskey et 
al. (1975, 2006) suggest that perceived and real homophilious patterns are present regarding the following 
factors: age, ethnicity, sexual orientation, religious affiliation, education level, income, attitudes, beliefs, 
values. 
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ties (Granovetter, 1973), and so emphasizing a cumulative advantage of homophily, if 

there is a preference for homophilous relationships31. By tracking the email of 45,553 

students, faculty and staff at a large research university over an academic year, 

Kossinets & Watts found that Simmel’s triadic closure32 was the predominant influencer 

on social attachment. However, it should be noted that similarities are often measured 

through scales of homophily, and psychological attributes in the social network analysis 

are neglected (Crosier et al., 2012). Diversity is also affected by homophilious 

behaviour, even in contexts where diversity is explicitly valued and encouraged 

(Mollica et al., 2003; Ruef et al., 2003; Ingram & Morris, 2007). As reviewed in Rivera 

et al. (2010), diversity can be found in some heterophilous dynamics, such as boards of 

directors of large companies, to be representative of dissimilar functional specializations 

(e.g., law, science, or non-profit), (e.g., Westphal & Milton, 2000, Mizruchi, 2004), 

teams in science (e.g., Moody, 2004), or even in the formation of task-related ties in 

organizations (asking for assistance or support from a colleague) (Casciaro & Lobo, 

2008). 

Therefore, homophily contributes to clustering people that share similar social 

and cognitive dimensions. Basically, homophily is a natural ‘source’ of social echo, 

among similar people. As matter of fact, when people realize the similarities between 

them, mutual trust is enhanced, but, on the other hand, these people become "naturally" 

closed in clusters, framed by similar opinions and viewpoints.  

Strong ties in Echo Chambers 

The strength of the tie is intimately related to homophily, which characterizes 

socially linked people. This leads to the mechanisms of exposure that are associated 

with the tie structure in cohesive networks. The exposure between strong ties is 

associated with the time spend with each other’s contacts, i.e., with close friends or co-

workers, and the motivation to interact may derive from endogenous effects, i.e., 

homophily, which are conducive to the formation of ties, or to the sharing of 

preferences (towards cultural interests, etc.). 

                                            
31 Yet, networks which are already highly homophilous and, e.g., exposed to mechanisms of triad closure 
(Rapoport, 1957), do not easily become more homophilous due to the cumulative effect (Kossinets & 
Watts, 2009). 
32 This concept is detailed further below and in the next section. 
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Social structures are depicted by a variety of interactions, either at dyadic and 

triadic level, such as face-to-face in local groups of neighbors, or even in organizational 

and categorical social structures. In particular, social structures based on strong ties are 

characterized by relationships surrounded by strong third-party connections (Reagan & 

McEvily, 2003). These triads contribute to the principle of triadic closure that strongly 

affects the formation of ties in social networks, as detailed in the next section. This kind 

of social structure is typical in cohesive networks and finds its roots in Granovetter 

(1973). In this regard, the author states that individuals are ‘embedded’ in a matrix of 

relations and ties forming cohesive embedded networks. Cohesive networks represent 

the context in which individual actions are placed and in which individuals tend to 

interact more frequently and spend more time with each other’s contacts.  

In general, "strong ties have greater motivation to be of assistance and are 

typically more easily available [than weak ties]" (Granovetter, 1982, p.113). People 

linked by such ties are more likely to engage in higher emotional efforts to share 

knowledge, with others. Conversely, this characteristic of embeddedness may intensify 

the flow of influence (Bian, 1997) among strong ties. This is the case of the flow of 

diversified knowledge at dyadic level through strong ties that reinforce the enhancement 

of individual creativity (Staber, 2004; Sosa, 2011), or even knowledge creation – among 

university researchers – if strong ties are surrounded by a sparse network of actors 

(Mcfadeyn et al., 2009). 

In all these cases, cohesion is due to the characteristics of strong ties that 

contribute positively to the flow of specific resources, but, on the other hand, which 

constrain access to new information and diversity of points of view. Similarly to what 

happens in offline social structures, people in online social networks keep the same 

quantity and diversity of close friends in their core networks, with whom they 

communicate most frequently and from whom they receive the majority of information. 

Thus, the dynamics of communication do not mean an increase of new close friends 

(Wang & Wellman, 2010). In fact, it has been reported by scholars that online social 

networks encourage communication with existing offline connections, instead of being 

a “trigger” to initiate new contacts online (Ellison et al., 2007; Subrahmanyam et al., 

2008). Therefore, this dynamic of communication that appears to maintain the same 

group of strong ties, intensifies the echo chamber effect between these individuals, 

keeping those that do not share the same viewpoints apart.   
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Research in this vein has shown that strong ties are an important determinant of 

attention on social networking websites, such as Facebook (Messing & Westwood, 

2013), and that Facebook users usually browse profiles of people with whom they have 

an offline connection more than the profiles of complete strangers (Lampe et al., 2006). 

Furthermore, scholars report that acquaintances in networks have a determinant role as 

vehicles of contagion, due to their abundance (Bakshy & Rosenn, 2012), but also to 

give access to novelty (Granovetter, 1973). However, these ties are not the ones that 

characterize the current use of social data for Web personalization.   

As matter of fact, when users browse their social network, they access content 

posted by friends, acquaintances and through them, from friends' friends (third-party 

connections). This means that a large network of relationships is established between 

them all, which include people (senders and receivers) and the exchanged contents. 

As a result of this, the correlation between social network structure and users’ 

attributes emerges, in which people with similarities exchange and access similar kinds 

of content. The structure formed by such ties, finds correspondence in users’ attributes 

as shown by Mislove et al. (2010). The authors posit that using given attributes from a 

fraction of users in an online social network, it is possible to infer the attributes of the 

remaining users. Network communities form around users who share certain attributes. 

Thus, given the shared cognitive similarities in such groups of people, the information 

spins in closed circuits. Therefore, this seems to interfere with the effect of Echo 

Chamber, by emphasizing it. 

Network mechanisms in the formation of ties that feed the echo chamber 

The two most studied determining factors of the formation of ties are triadic 

closure33 and selective mixing. Selective mixing is related to the tendency of tie creation 

based on people’s attributes (e.g., language, homopily dimensions) (Goodreau et al., 

2009). Both factors are strongly supported or reinforced by homophily factors (Schafer, 

2011). Two known factors determining tie formation are the structural proximity (e.g., 

friendship circles, shared foci) and physical distance (Marmaros & Sacerdote, 2006).  

                                            
33 A triad can be described as a set of three people that tend to close through a third person due to 
propinquity or cognitive processes.  
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This section centers attention on the consequences of triadic closure given its 

importance in understanding the effect of echo chamber.  

More than 100 years have passed since Simmel (1908) showed the importance 

of triadic clustering in social interaction, and since then many scholars have addressed 

this issue in social network analysis (e.g., Granovetter, 1973; Wasserman, 1974). The 

basic idea of triadic closure is supported by the Balance Theory of Heider (1958), which 

posits that two people may appreciate each other mutually by way of their mutual 

agreement on a third person. This third person is a common friend, or someone with 

whom the two others spend time together. Supported by this theory, Granovetter (1973) 

explained that if an individual B is a friend of individual A, and A of C, then, there is a 

high probability that B and C are friends (or become friends). These interactions among 

friends and people with similar interests or behavior have been studied by sociologists 

namely in the context of tie formation. All those processes are often characterized by 

the interplay among homophily dimensions and tie strength, it being commonly 

accepted that individuals seek or join groups that are close to their prior beliefs and 

biases, as seen above.  

Two balance mechanisms contribute strongly to tie formation: reciprocity – 

which includes the desire to reciprocate the friendship (Granovetter, 1973), and 

transitivity (e.g., ethnic homogeneity on online social networks) – that describes the 

tendency for friends-of-friends to become friends (Goodreau et al., 2009). Both 

mechanisms contribute to measuring similarities among people (their homophily) and 

describe a certain closure among similar people (friends) that contributes to tie creation.  

The representation of those individual characteristics are extensively reported in 

literature, such as in the context of adoption of behavior (Zhou et al., 2009), contagion 

(Aral et al. 2009), or creation of ties by people's similarity or dissimilarity (Rivera et al., 

2010). Furthermore, scholars (e.g., Golder & Yardi, 2010; Leskovec et al., 2008) have 

been proving that friendship connections among users in their online social networks 

are mostly based on a triadic closure principle, i.e., people mainly form connections 

with, or through, close friends (strong ties).  
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Leskovec et al. (2008) study the triadic closure mechanism within four online 

platforms34 to contend that triadic closure justifies the most links between people in 

large online social networks. They found that most of the new edges (connections) are 

extended to very short distances, typically close triangles, through which is possible to 

present a predictive model of network evolution that captures the triadic effect. 

In the same vein, Golder & Yardi (2010) show that transitivity and mutuality 

emphasize the effect of triadic closure among Twitter users, and Gilbert (2012) reports 

that the formation of tie strengths manifests itself in similar ways on Twitter and 

Facebook, which shows the triadic closure principle in Facebook as well. The author’s 

findings can be generalized across media, revealing too that some important properties 

of online relationships do not change due to implementation details on SNSs, e.g., 

changes on design and functionalities, like those observed on Facebook since 2008. 

Thus, scholars stress the role of strong ties in tie creation, as well as how people 

rely on them given the shared trust, which is confirmed and reinforced by network 

mechanisms and endogenous factors. In fact, all this is explained by the browsing 

activity and communication level between such ties.  

4.4 Social Echo Chamber Effect on Web Personalizati on 

The reported findings on tie creation in triadic closure stress the argument for the 

relationship between the effect of echo chamber and the use of social data from strong 

ties and homophilous people – through which ties are set or are in a state of being 

established by triadic closure. Consequently, if the data from social networks are based 

on profile similarities and people socially connected by strong ties to improve the 

performance of Web personalization, the final results are the known effects of echo 

chamber.  

A related problem associated to personalized recommendations has already been 

studied under the known concept of Filter Bubble (Graells-Garrido et al., 2013), as 

detailed in the previous chapter. In this regard, this authors test a way to take advantage 

of partial homophily between people with opposite views on sensitive issues. After 

determining the regularity of keywords between people with different viewpoints, the 

                                            
34 1) The photo-sharing website: “FLICKR” (flickr.com); 2) The collaborative bookmark tagging website: 
“DELICIOUS” (del.icio.us, a); 3) “YAHOO! ANSWERS” (answers.yahoo.com); 4) The professional 
contacts website: “LINKEDIN” (linkedin.com). 
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authors created a data portrait of each user, and then recommended information based 

on similarities between their word clouds, especially when they differed in their views 

on the topic studied (abortion on Chile). The results show that people can be more open 

than expected to ideas that oppose their own, which is a relevant approach to disrupt the 

Filter Bubble.  

Another known problem that affects users’ satisfaction is called the Portfolio 

Effect. This term was coined specifically for recommender systems referring to 

recommended items that were already familiar to users (Burke, 2002). One example of 

this effect can be found in news recommendation. Here the recommendation lists often 

contain identical or nearly identical news messages only.  

Another example appears in recommendation engines like Amazon.com. In the 

case of Amazon, the effect is found in costumers that have purchased several books 

from the same author, which may bias the recommender system. From that, the users 

may receive recommendation lists where all top-5 entries are books by that author 

(Ziegler et al., 2005).  

A similar constraint happens with content-based recommender systems, 

especially with respect to music, where songs of the same artist are recommended. In 

this regard, Seyerlehner (2010) proposes a solution based on the use of a portfolio filter 

aiming to ensure that there is only one song per artist in each recommendation list and 

then force the content-based recommender systems to increase the diversity of the 

recommendations. 

Although there is a diversity of terms, methods and solutions to solve the 

different problems identified in web-based systems, notably in recommender systems, 

this dissertation indicates a new problem and suggests a solution to solve it. As seen, 

this problem derives from the use of social data to improve personalized 

recommendations through social-based recommender systems. However, as a result of 

network properties, particularly given the interaction results of individuals at emotional 

and cognitive level, the current solutions applied in social-based recommender systems 

end up creating an Echo Chamber Effect that traps people inside their – usual – social 

bubble of information. 

The Social Echo Chamber Effect refers to the fact that users are trapped inside 

their own social of information, received and known. This loop of information keeps 
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users attached to the same viewpoints and away from the access to novelty. As seen, 

this may occur when the target-user receives a recommendation based on information 

from similar users or close friends (strong ties), or simply by mirroring their past online 

activities. Research in social psychology has argued that our identity is shaped by the 

media we consume. In short, identification processes are powerful engines in engaging 

the users during reception (e.g., Entman, 1989; Cohen, 2001). So, we can easily fall into 

feedback loops that we are not aware. 

Scholars do not mention what the individuals’ options on content selection 

would be if the individuals could opt from a sender weakly or strongly tied to them. It is 

also not reported what a possible benefit at cognitive level could be, notably considering 

the meaning construction of the receiver if the selection of content were free of 

algorithms options (which may be biased and serve unasked queries by the users). This 

means, free of information tailored by past options, with the aid of technology, about 

people's tastes, views, and prejudices. 

However, there are reports on the role of weak ties in contagion processes and 

access to novelty, which reinforces the view put forward in this dissertation. These and 

other arguments are tested in the empirical works presented in the sixth, seventh and 

eighth chapters. I conjecture that the lack of studies in Social Network Analysis in this 

area might be one the reasons why the Echo Chamber Effect – related to the use of 

social data – has been absent from literature so far. In the following chapter an overview 

on social networks is presented in order to introduce the empirical chapters.  
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CHAPTER 5 

SOCIAL NETWORKS OVERVIEW 

 

5.1 Overview 

Social Network Analysis (SNA) was initially formalized within the frameworks 

of graph theory and network theory. The perspective of SNA that includes both method 

and theory claims that there is no meaning in studying any single relationship in 

isolation from the network of which it is part. In fact, the dyad formed by the 

relationship between two individuals is the main element of a network, but its existence 

is itself conditioned by the network. The SNA methods and underlying theories on 

social science frame the empirical work of this dissertation. Additionally, some 

psychology theories are applied that challenge the current studies on SNA, notably on 

bridging ties. 

The growth of computing power and the current trend of social media that mirror 

the engrained desire of humans in connecting on large scales (Crosier et al., 2012), has 

opened new possibilities for accessing massive amounts of data and going further in 

SNA studies. In this venture, several types of network-oriented mathematical software 

have been developed to assist the work on SNA. Some examples include the UCINET, 

NodeXL, statnet in R, Pajek, or EgoNet, just to quote a few of them. Furthermore, the 

use of both the theory and methodology networks has already crossed the boundaries of 

social science and reached multiple fields (for a revision see: Kadushin, 2012). Its 

application has become interdisciplinary and has motivated the adoption of new 

methods in numerous scientific areas, like psychology (Vachon, 1982; Kalish & Robins, 

2006; Brass, 2011), human behavior (Li & Chen, 2014), communication (Oberg & 

Walgenbach, 2008; Vladuțescu, 2012), social media & emotions (Kivran-Swaine & 

Naaman, 2011; Lin & Qiu, 2012; Tadic et al., 2013), biology (Fowler et al., 2009), 

health (Cornwell, 2009; Haas et al., 2010), organization science (Shipilov, 2009; Ahuja 

et al., 2012), economics (Jackson, 2010; Ozsoylev & Walden, 2011), or even behavioral 

ecology (Sih et al., 2009).   

Networks of relationships come in many shapes and sizes, which complicate the 

task of finding a single way of representing them encompassing all applications. Yet, 
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there are some common network representations that help to accomplish this purpose. 

Next, and in order to introduce the social networks concepts applied in this dissertation, 

notably in the three empirical studies presented in the following chapters,  an overview 

on social networks and the fundamental theories behind tie strength and central nodes is 

presented.  

This chapter is organized into six sections. The first, Networks of relationships 

presents a short overview of some elements that denote a social network in order to 

introduce the other sections of this chapter. The second, The Strength of Weak Ties, 

presents the fundamentals of the theory, some approaches of other authors and the trade-

off between weak and strong ties. The third, Network Bridges, introduces the concept of 

network bridges. Two other topics are developed here:  Bridging factors through weak 

ties and Bridging factors through non-redundant structural holes. The fourth section, 

Central Nodes: centrality and bridging measures, outlines the differences between the 

network measures defined by the concepts of centrality and bridging. The fifth section, 

Size and tie diversity, overviews the concept of size beyond the notion of number of 

network members. It presents the relationship between size and weak and strong ties, 

and how it contributes to diversity and determining the value that a user can derive from 

being a member of a network. The last section, entitled Psychological attributes in 

social networks, presents some studies and reflections on the merging of both fields of 

research. 

5.2 Networks of relationships 

A network is a set of relationships (Kadushin, 2004), while a social network can 

be defined as a “finite set or sets of actors and the relation or relations defined in them” 

(Wasserman & Faust, 1994, p.20). Social networks operate on many levels, from 

individuals and families up to the level of nations. They play a critical role in 

determining the flow of information through central nodes, and the degree to which 

individuals succeed in achieving their goals. They also have an influential role in the 

way problems are solved, or in how organizations are run. This social structure made by 

nodes is viewed in general as individuals or organizations tied by one or more specific 

types of interdependency that includes values, visions, ideas, financial exchange, 

friendship, kinship, dislike, conflict or trade (Bulte & Wuyts, 2007).  
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“Communication networks are the patterns of contact that are created by the 

flow of messages among communication through time and space” (Monge & 

Contractor, 2003, p.3). The concept of message includes here diverse symbolic forms 

(e.g., data, information, knowledge, images, or symbols) that flow between points in a 

network or that can be co-created by network members. These networks take many 

forms in contemporary organizations, which contain personal contact networks, or 

flows of information within and between groups, to name a few (Monge & Contactor, 

2000).  

Social network data can be applied in the construction of both personal (ego) and 

whole networks, wherein they both share several measures. However, each one of the 

networks has a unique set of structural metrics given the specificity of each social 

system being modeled.  

In personal networks random sampling methods are adopted to define the 

boundary of work and to make the work of data collection more feasible. However, the 

dynamics related to personal networks are complex given the multitude of interactions 

associated to the relational level. Here it is the owner of the network, the ego, that 

generates the list of members (‘alters’) of their own social network, which change in 

size, composition, structure, and stability. The ties can be created, grow or decrease in 

strength or change their contents, but also disappear in a smooth way or end abruptly. 

One of the challenges related with this kind of networks is the fact that only one person 

informs about the network, which can make hard to predict any change that occurs in 

the network. 

A whole (‘sociocentric’) network is considered an entire population of 

individuals bound by a concrete definition (e.g., students who attend a school). The 

increase of members is accompanied here by the number of possible connections 

between them and then by the size of the group. Here, measures of structural holes 

(bridging) can be represented by betweenness centrality measures (Ferris and 

Traeadway, 2012). Some scholars associate these measures with power in organizations 

(Brass, 1984), while the measures of structural holes in personal networks have shown 

robustness in predicting performance outcomes (Burt, 2007). 

One of the benefits of analyzing social networks is that they can help researchers 

to understand and evaluate how structural and relational properties and individual 
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attributes intervene, notably on perception of information, access to novelty, or even on 

sharing information and knowledge. For example, with respect to the access to novelty, 

a network rich in acquaintance connections, i.e., weak ties (Granovetter, 1973) and 

structural holes (Burt, 1992) can be considered an indication of bridging factors that 

represent network central nodes. These analyses are intimately related to the theory of 

‘The Strength of Weak Ties’, as is shown next.  

5.3 The Strength of Weak Ties 

Some of the principles that describe relationships among individuals in a social 

network are found in ‘The Strength of Weak Ties’ (Granovetter, 1973). The author 

states that within social circles there are individuals who establish ties with members of 

outside networks. These ties are called ‘weak ties’ because they are built by distant 

individuals who can still give access to each other’s resources, and end up becoming 

strong ties instead. 

Granovetter’s work proposes a measure of tie strength, which has the underlying 

principle that personal ties have an important association with reciprocity, in the sense 

that “the strength of a tie is a combination (probably linear) of the amount of time, the 

emotional intensity, the intimacy (mutual confiding) and the reciprocal services which 

characterize the tie" (p. 1361). In this work, the tie strength measure was calculated by 

asking those who found a new job through contacts how often they saw the contact 

around the time that he passed on job information to them. A scale of three items was 

conceived: strong tie = at least twice a week; medium tie = less than twice a week but 

more than once a year; and weak tie = once a year or less.  

Granovetter’ survey was centered on understanding the relevance of tie strength 

in finding jobs. Granovetter interviewed people (n = 54) who had found their most 

recent job through a social contact. This work, which has become one of the most 

influential research projects in the field of social networks, found that people got a job 

more easily through weak ties contacts (27.6 percent) than strong ones (16.7 percent). 

Medium ties represented 55.7 percent of the contacts. The findings contrasted the 

differences between weak and strong ties and their role in society.  

The results may have a different trend when considering the urgency for a job. In 

this circumstance, Granovetter (1983, p. 211) says that people “in urgent need of a job 
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turned to strong ties because they were more easily called on and willing to help, 

however limited the information they could provide”.  

Two authors (Murray et al., 1981, Bian, 1997) stated a view contrary to 

Granovetter’s theory applied to job finding. Nevertheless, in both, it seems that these 

findings are different from Granovetter due to two main reasons: a) particularities of the 

sociocultural and temporal context; b) understanding from the sampling obtained. 

In response to Murray et al. (1981), Granovetter (1983) argues that 80 percent of 

the data of these authors are focused on first academic jobs. Thus, because the new 

PhDs have, in general, few useful contacts in their subject, they need to rely on mentors 

and dissertation advisers, with whom they have a close relationship – at least at 

academic work level. By observing the percentages and number of PhDs for no first job 

and estimating these figures after disaggregation by career stage, Granovetter posits that 

their reliance on strong ties should decline, confirming Granovetter’s (1973) theory. 

The other author, Bian (1997), argues that strong bridging ties are also efficient 

when it is the influence that flows through personal networks instead of information. In 

such cases jobs can be channeled through strong ties more easily than through weak 

ties. The author studied a particular socio-cultural context, where personal networks are 

used to gain influence from job-assigning authorities, rather than to gather employment 

information. The distinction between information and influence may disentangle some 

controversies about the relative efficacy of strong and weak network ties in the context 

of job searches. Nevertheless, the author concludes that, despite the strong-tie bridges 

observed in his work that challenges the strength of weak tie hypothesis, so immersed in 

Granovetter's work about job searches, this does not totally disqualify it. Here, it is 

relevant to note the socio-cultural context of China, where the study was undertaken. As 

mentioned by the author, in China “personal networks are used to influence authorities, 

who in turn assign jobs as favors to their contacts, which is a type of unauthorized 

activity facilitated by strong ties characterized by trust and obligation” (p. 366). 

Since Granovetter’s theory, scholars have debated several proposals to measure 

tie strength in a social network. Often, the concern in describing the ‘strength’ of ties is 

in identifying how people are close to or distant from each other. Another important 

topic of debate has been the possible patterns related to structural positions of the 

individuals in social networks and the attempt to predict actors’ roles.  
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Lin et al. (1981) state that strong ties can be defined by social distance – 

embodied by factors such as socioeconomic status, education level, political affiliation, 

race and gender.  

In turn, Marsden (1987) highlights that emotional closeness is what can best 

reflect tie strength, while Wellman et al. (1990) characterize strong ties as those that 

offer emotional support, such as offering advice on family problems.  

Krackhardt (1992) argues that strong ties can be depicted by interaction, 

affection and time. This author also explores how people’s behavior in processes of 

information sharing can generate trust.  

Burt (1995) claims that tie strength characterize the network topology and the 

informal social circles. While Gilbert & Karahalios (2009), Ficher (2010) and 

particularly Krackhardt (1992), claim that strong ties are defined by seven main 

dimensions: intensity, intimacy, duration, reciprocal services, structural, emotional 

support, and social distance.  

Last, but not least, Petrosky (2011) states that "strength" can be conceptualized 

as being consisting of two dimensions: intensity (frequency of contact) and valence (the 

affective, supportive and cooperative character of the tie). 

From the extensive literature published related to tie strength results, both weak 

and strong ties are important channels through which users extract benefit from their 

networks. It is known that weak ties show great utility in searching for information and 

that their value derives from locating what needs to be exchanged.  

On the other hand, strong ties are useful for exchanging effective or tacit 

information and on making exchanges (Hansen, 1999; Granovetter, 1985). In this sense, 

there is a trade-off between the opportunities to access new information through social 

distant ties (weak ties) and the micro integration that allows the regular transmissions 

within groups (Friedkin, 1980) into which strong ties are usually immersed.  

Strong ties are then not less relevant in a network. They are known to have 

greater motivation to be of assistance (Granovetter, 1982) and influential in determining 

the outcome of a union election (Krackhardt, 1992). Strong embedded ties have good 

problem-solving capabilities, particularly when compared with other nearby 

connections, afford higher levels of trust, and are good conveyers of information (Uzzi, 

1997). Although, strong ties can be a more trusted source of advice and influence in 
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uncertain or conflicting situations, they require more time and effort to keep, which may 

originate stronger obligations to reciprocate than weak ties (Ferris & Treadway, 2012), 

but also keeps each one more aware of the others' viewpoints and information.  

Social network users usually compete for attention and rely on each other to 

spread their information and contents. Such contents gain importance depending not 

only on their quality, but also on their size and spreading process. 

In this scope, Shi et al. (2013) show that Twitter followers who are weakly tied 

to content senders are more likely to retweet than strongly tied followers. Other authors 

explain popularity (individuals with large numbers of friends and high volumes of 

communication) as being inversely related to picking and sharing contents on Twitter 

(retweets) – to the extent that, when an individual becomes more popular, their rate of 

retweeting goes down, particularly when they are followed by a large number of people 

(Harrigan et al., 2012). These results drew our attention because of the relationship 

between people’s behavior and the strength of the tie, whose interdependence can be 

associated to the conjecture that a pair of strongly tied people shares a larger overlap in 

their friendship circles – reducing novelty – than a pair of weakly tied people 

(Granovetter, 1973).  

While some authors report that reciprocal ties, or ties with common third parties 

that are common in community structures, substantially increase social contagion in 

social networks such as Twitter – users are more likely to disseminate redundant 

information (retweeting “old news”) (Harrigan et al., 2012) – others show that most 

contagion occurs along weak ties, given their abundance in social networks (Bakshy & 

Rosenn, 2012). Moreover, weak ties are the best channels for gaining access to novel 

content that people would otherwise not find (Bakshy & Rosenn, 2012) and conduct 

useful information in computer mediated communication (Constant et al., 1996).  

Finally, the strength of the tie between sender and receiver is also reported as 

being a strong determinant of attention to traditional media items on social networking 

websites, e.g., Facebook (Messing & Westwood, 2013). The authors’ findings suggest 

that social influence serves to privilege information shared by socially close friends at 

the expense of heterogeneous contacts, being that a powerful force driving news 

consumption. This study attempts to do a direct causal examination of how the strength 

of the tie between sender and receiver drives attention, independent of common interests 

or other sources of similarity/homophily.  
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Often, the strength of the tie is characterized in published literature by seven 

dimensions: intensity, intimacy, duration, reciprocal services, structural, emotional 

support and social distance (Ficher, 2010), whereas weak ties are commonly associated, 

in a simplified way, to the infrequency of contacts between the individuals and capacity 

to traverse greater social distances establishing local bridges (Granovetter, 1973).  

5.4 Network Bridges 

Weak ties are characterized by the infrequency of contacts between the 

individuals and their capacity to channel ideas, influence and novelty by traversing 

greater social distances. Moreover, individuals connected by ties who do not share ties 

with other people of the same network are local bridges (Granovetter, 1973). Though, 

not all weak ties are bridges as noticed by the author. Hence, when weak ties are 

"bridges" they become sources of information that can bring new perspectives and 

create new insights, which strong ties cannot. This happens because people often share 

their opinions and perspectives within the social circle linked by strong ties (e.g. family 

and close friends); yet, since the strong ties will already be familiar with their ideas, it 

reduces the possibility of accessing different viewpoints in the process of information 

sharing.  

Granovetter states that a strong tie can be a bridge, but only if neither party has 

any other strong ties. Furthermore, if the individuals of a network form triangles 

through their connections, formed by transitivity, then it is not possible to establish local 

bridges between them. The author claims that the transitivity mechanism can be 

regarded as a “function of the strength of ties, rather than a general feature of social 

structure” (p. 1377). 

Connections established at triadic-level forming triangles shaped by transitivity, 

reinforce the strength of the ties and their proximity due to similarities between the 

individuals in these closed circles. This reduces, for those ties, the ability of acting as a 

bridge (hinge) with other social circles. This is a common circumstance in endogenous 

and structural conditions that contribute to tie formation in social networks, i.e., triadic 

closure and selective mixing, which are strongly supported or reinforced by homophily 

factors (Schafer, 2011). Consequently, ties that involve little time, effort, and emotion 

(requiring little pressure to organize activities with others) to stay connected, are most 
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likely to remain bridging (Feld, 1981). This premise is contrary to what happens 

between strong ties. 

 

Bridging factors through weak ties 

In an amplified re-edition of his 1973 work, Granovetter (1983) says that 

scientific discoveries are more able to flow through weak ties than through strong ones. 

Similar conclusions are reported by Lin et al. (1978) that re-created Milgram’s 

experiment of the “The small world problem”35. This experiment was based on a request 

to their participants to deliver a booklet to some unknown person in a distant place. The 

authors confirmed that weak ties were more efficient in helping the booklet to reach the 

destination.  

In a different vein of investigation, Ruef (2002) confirmed the relevance of weak 

ties for creative entrepreneurs to achieve non-redundant information that will contribute 

to innovation. Those weak ties – of acquaintanceship, of colleagues who are not friends 

– may act as bridges between non-connected social circles. 

Granovetter’s bridging concept was also discussed and found to be beneficial for 

the overlap of several sub-networks with many others affecting the motivation of 

employees in their work places (Blau, 1980). By studying the integration of staff in a 

children's psychiatric hospital in New York City, the author reports that good 

integration of employees (contrary to comparable institutions, there is not a high staff 

turnover, neither a low morale) can only be understood by considering the role of an 

extensive network of weak ties. She found a correlation between the network of weak 

ties and low staff turnover with high morale. If instead of weak ties there were strong 

ties, and given the sub-networks of many different foci (i.e., hospital departments), 
                                            
35 In approaching the work of Milgram (1967) – “The Small-World Problem” – it becomes clear that 
through an average of five circles of acquaintances apart is possible to reach anyone on planet (i.e., six 
degrees of separation). This work confronted two different philosophical views of the small-world 
problem. One posits that two people can be linked through acquaintances, and that the number of such 
intermediate links is relatively small. The other holds that there are unbridgeable gaps between various 
groups. The author concludes that "social communication is sometimes restricted less by physical 
distance than by social distance" (p.66). Because this work was deeply embedded in the cultural context 
of the mid-century United States, Milgram raised the question about possible differences in the results if 
the experiment would take place in a different society with more sustained kinship relations. The answer 
was given by Lin et al. (1978) and reinforced by several other investigations, e.g., Watts (2004), which 
posits that many real-world networks, as social networks, could be small-world networks. 
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these sub-networks would tend to close in on themselves, and then they would develop 

into cliques, as highlighted by Granovetter (1983) discussing Blau’s work.  Such cliques 

can create closed circles of information flows and of personal interactions, which could 

reduce productivity and employees’ motivation. Blau’s work highlights the value of 

weak ties in social interaction and an important relationship between psychological 

health (high moral) and network structure.   

Bridges formed by weak ties also have a positive impact on individual creativity 

(Perry-Smith, 2006) and on keeping a low redundancy in the flow of information 

(McEvily et al., 1999; Hansen, 1999; Ruef, 2002). Scholars also report that weak ties 

are more prevalent in structurally diverse networks, being determinant for the diffusion 

and propagation of novel information (Bakshy & Rosenn, 2012). 

As has been seen, there are abundant studies testing the hypotheses put forth by 

Granovetter, in particular on the role of weak ties as a bridging factor. In this scope, 

many interesting questions have been answered by scholars about the relative use of 

weak ties, but some have still not been fully answered. For instance, in this dissertation 

the question of the role of weak ties on recommending surprising information is raised. 

Is the importance of the weak ties only centered on their bridging behavior or ability to 

diffuse information, or do they embody other features like an “emotional opportunity”, 

i.e., surprise, that can be expressed in a regular structural distance, or cognitive distance 

to other people? Should this 'distance' be considered only from a structural perspective, 

or cognitive (personal attributes) or both? This subject is debated carefully in the next 

three chapters. In particular, cognitive distance is discussed in chapter eight.  

Meanwhile, as seen, considerable literature has been published about the tie 

strength argument claiming that weak ties can provide people with better access to 

information and resources beyond those available in their own social circle 

(Granovetter, 1983). Since then, this has been the most common approach to 

expounding the benefits of bridging ties, although it is not the only approach that 

highlights the benefits of network bridges. 
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Bridging factors through non-redundant structural holes 

A second network theory on bridging ties was developed by Burt (1992), which 

introduces the concept of structural holes. It is argued that the individual who 

establishes a bridge between two acquaintances not connected with each other provides 

superior access to information and greater opportunities to exercise control. Thus, the 

structural holes through which new information flows, also lead to inequality between 

network members and power opportunities. Individuals with different attributes and 

organizations of different kinds may not be affected equally by these holes. 

A structural hole is a void in a social structure. In terms of social networks this 

refers to an absence of connections between individuals and each one of them being the 

access to different groups. This does not mean, though, that these individuals and 

corresponding groups are unaware of each other, but rather that the lack of links 

between them leads to a non-redundancy in the exchange of information. Thus, as Burt 

points out, receivers of less redundant information through individuals that span 

structural holes are better informed about opportunities and hold a broader range of 

options to access diverse individuals whenever it is worthwhile.  

Contrary to Granovetter (1973), Burt’s theory introduces a measure of bridging 

that is a function of the redundancy of contacts between individuals that span structural 

holes. This measure calculates the spanning function by “constraint” (p. 55). Constraint 

is the degree of redundancy of the contacts of an individual. Such contacts are 

redundant to the extent that they lead to the same people, and so provide the same 

information benefits. This measure is positively related to the formation of structural 

holes, where a high value of constraint means more structural holes (Susskind et al., 

1998). This measure of bridging can also be evaluated through triadic-level 

measurements which can become advantageous when establishing comparisons across 

networks (Kalish & Robins, 2006).  

Burt (1992) asserts that individuals acting as brokers have control advantages 

over the information flow and, as brokers, are the third person, in the established 

connection, and strengthen their position by benefitting from the information shared 

between receivers and the originator of the information. In this regard, and considering 

a multidisciplinary viewpoint (i.e.,  health and social networks), Cornwell (2009) 

advances that the advantages of being a broker in one’s own network depends on the 
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individual’s mental condition, because bridging actions use the ability to recall or 

identify the structural holes of the individual’s network. Many other scholars have been 

debating the role of structural holes in several fields of application, including the 

discovery of new information (McEvily et al., 1999), the access to novelty (Gilsing et 

al., 2008) and its delivery (Aral & Alstyne, 2011), or even how social network 

structures may influence people’s outcomes, such as creativity (Burt, 2004; Uzzi & 

Spiro, 2005; Fleming et al., 2007; Sosa, 2011).  

In summary, as we have seen, some studies report similar outputs to both 

bridging factors (e.g. creativity), but there has been less research into finding out 

whether or not both factors are equally related to the perception of novelty by receivers. 

This will be discussed in the next chapter. 

5.5 Central Nodes: centrality and bridging measures  

Two structural positions determining the flow of information in social networks 

have been described in literature. These two types of central nodes can be measured by: 

a) centrality (Freeman, 1979) and, b) bridging factors (Burt, 1992).  

 

a) Centrality is defined as the extent to which individuals are connected to others 

in a direct or indirect way in a network (Freeman, 1979) and posits that 

individuals who have more ties to others may be in an advantageous position to 

make many others aware of their views, to hold direct access to resources and 

show independence from others (Brass & Burkhardt, 1992). These central 

positions are considered to be preferential given that they represent control or 

better access to resources (Paruchuri, 2010). Thus, individuals in such central 

positions contribute to the interconnectedness of the overall network (Rogers & 

Kincaid, 1981), holding a certain level of power (Brass, 1985; Krackhardt, 1990) 

given their easy and direct access to any resources that might flow through the 

network (whether or not dependent on any particular individual). This general 

view of network centrality suggests that the benefit of a central position depends 

on the interdependence maintained with the adjacent nodes. Two common ways 

to measure this are by the number of relationships or the size of one's network. 

Both are referred to as degree centrality (Ferris & Traeadway, 2012).  
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The metrics most often studied to characterize centrality were introduced by 

Freeman (1979). They include degree, betweenness and closeness centrality36. Degree is 

a local measurement, undertaken at dyadic level and focused on the level of interaction, 

e.g., of the communication activities. It can be calculated by counting the number of 

links for each node. Often, it is interpreted as a grade of popularity, prestige, or 

influence (Knoke & Burt, 1983), and it is argued that the influence exercised must be 

related to a higher degree and clustering coefficient value – the followers have to be 

linked between each other (Kanovy & Yaari, 2011). Others report that it can be 

indicative of the avoidance of relying on mediating nodes for indirect access to 

resources or even other direct interactions such as coalitions (Brass & Burkhardt, 1992). 

Betweenness and closeness are global measures and are calculated using 

information from the entire network. Betweenness centrality is frequently observed 

from the broker's standpoint, which is positioned on informational paths facilitating the 

flow of information and connections between individuals (Mori et 

al., 2005; Kratzer & Lettl, 2008). Formally, this measure refers to the probability that a 

‘communication’ between two individuals takes a particular path. It is assumed that the 

connections have equal weight, i.e. each tie has a weight of 1, and communications will 

flow along the shortest paths. These paths minimize the number of intermediary nodes 

and its length is defined as the minimum number of ties linking the two nodes, either 

directly or indirectly. Thus, a node that holds a high degree of betweenness centrality 

refers to the number of shortest paths that it facilitates and supposes that a 

communication that takes place in this way follows one of the geodesics (Wasserman & 

Faust, 1994).  

Closeness centrality measures the mean geodesic distance (the shortest path) 

between an actor and all other actors in the network (Wasserman & Faust, 1994). 

Similar to closeness, betweenness is also concerned with shortest paths, but it looks at 

the fraction of shortest paths that must pass through the ego to be connected. Closeness 

expresses the ability to avoid being influenced by others. A low value in closeness 

means shorter distances from others and can be regarded as power to 

influence (Holme & Ghoshal, 2008). In this sense, shorter distances could also mean 

faster access to novelty spreading in a network; however, because closeness only 

                                            
36 Other alternative measures, such as Bonacich and eigenvector, also take into account the centrality of 
alters. 
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ponders connected graphs, the flow through bridges is not considered. Closeness is not 

analyzed in the scope of this study. 

Despite the different interpretations of centrality measures (e.g., Freeman, 1979; 

Bonacich, 1987, 1991; Brin & Page, 1998), all scholars agree that centrality is a node-

level construct (Borgatti & Everett, 2006), whose measurements must fit the type of 

“thing” that flows in the network (Borgatti, 2005), e.g., virus, or information in social 

networks or through email exchanges (Wu et al., 2004) and that provides both a visual 

and a mathematical analysis of human-influenced relationships 

(Abbasi & Altmann, 2010). 

Centrality means a balance between the peripheral position and the central 

position in a network that mediates a small number of direct contacts with the core of 

the network (border position) with a high number of direct contacts (core position) 

(Kratzer & Lettl, 2008). Conversely, nodes rated with high values of degree and 

betweenness tend to be located in the network’s core (Hwang et al., 2008). In this sense, 

from a cognitive perspective, individuals in central nodes have better knowledge of the 

network than those in peripheral locations (Krackhardt, 1990). These individuals, for 

example, are better informed about others’ knowledge and network to approach or avoid 

forming coalitions (Ferris & Traeadway, 2012).  

 

b) Like centrality (Freeman, 1979), structural bridging is also a central node. 

Like degree, bridging is also measured at local level. As proposed by Burt (1992) it can 

be measured by “constraint”, which is the degree of a person's links (ego network) to 

people not connected to another. In order to introduce a measure for bridging using 

complete network data and independent of degree, Valente & Fujimoto (2010) propose 

a new approach, justified by the importance of bridging behavior to interpretation of 

network structure and diffusion. The authors state that, as a global measure, 

betweenness does well at finding bridges as long as the links between disparate groups 

come from the center of the network. However, when they come from the periphery the 

existing measures of centrality are not accurate enough to identify such critical 

connectors, and constraint cannot do so from a global measure perspective. In this 

sense, the authors propose an alternative bridging measure that calculates the difference 

in cohesion (inverse of the average path length distances). 
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5.6 Size and ties diversity 

The importance of network size in social networks is intimately related to 

communication and may reflect aspects of personality, such as larger orientation for 

socialization, in spite of the fact that larger networks may be harder to maintain 

(Tillema et al., 2010). This means that size, which is closely associated with the rise of 

the number of weak ties in personal networks (Hampton et al., 2010), might change 

people's communication habits. Similarly, the communication level with a larger 

number of strong ties increases, but the number of new close friends does not (Wang & 

Wellman, 2010). Scholars posit that people use social networking sites (SNSs), like 

Facebook, primarily to keep or reinforce existing offline contacts (Lewis et al., 2008), 

and that people have the same close friends either online or offline (Hampton et al., 

2010). Is this beneficial for information access and diversity?  

Size is not adverse to the regularity of contact among strong ties (Tillema et al., 

2010). People keep the same quantity and diversity of close friends in their core 

networks with whom they communicate most frequently and from whom they receive 

the majority of information (e.g. posts on Facebook) (Lewis et al., 2008). Hence, people 

are increasing the sharing of knowledge among their close friends, and at the same time, 

they are more exposed to the information from people with whom they are weakly tied. 

As argued in previous studies, among other factors (bureaucratization, population 

density, and the spread of market mechanisms), the development of the communications 

system has increased the number of weak ties, a fact that has been reinforced with the 

success of social media services (Pool, 1980). 

Individuals that are more exposed to larger networks are more exposed to a 

larger number of weak ties and so less likely to be redundant and more likely to be 

information rich. This corroborates with Levitan & Visser (2009), who studied how 

college students would react to different social contexts containing varying levels of 

attitudinal diversity. It was found that social resistance to attitude change is inversely 

proportional to the attitudinally diverse social networks. It means that greater attitude 

stability will imply more attitudinally congruent networks (Levatan & Visser, 2009). By 

analyzing the social networks of like-minded connections these authors conclude that 

“the social context in which people are embedded has important implications for the 

durability of their attitudes” (p. 1058).  
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Size may imply more diversity if the increase of contacts is based on weak ties, 

since people exposed to a greater number of social contexts through the information 

brought by weak ties will be more available to change their attitudes. Consequently, a 

network structure rich on non-redundant structural holes may leverage the number of 

contacts (Afuah, 2013). This signifies more exposure and more access to valuable 

information.  

Size is then beneficial for diversity and so for novelty access. It fosters the 

diversity of the network and affects the people with whom there is a connection. 

Through weak ties and structural holes, the probability of an individual reaching 

different people is higher. This means that, by accessing a greater number of different 

status groups, the diversity of information (and social support) to which an individual 

will have access will also be increased (Burt, 1983).  

Size also gives a measure of social integration being represented by the number 

of alters (members of a given social network) with whom an individual has a specified 

social relationship (Marsden, 1987). Hence, size is about the number of network 

members, but this fact alone, may not be enough, in particular, to determine the value 

that a user can derive from being a member of a network. Therefore, a focus on network 

size, for example, without considering the number and nature of ties within the network, 

can distort reality (Afuah, 2013). Further, though early research focused on the 

phenomenon of network effects, centered primarily on the role of network size, more 

recent works claim that other factors, such as structure, need to be considered. Structural 

factors (centrality of members, structural holes, network ties) and conduct factors 

(opportunistic behavior, reputation signaling, and perceptions of trust), shape network 

value, which raises its importance as a driver of strategic action during the life of a 

network (Afuah, 2013). Additionally, this author posits that an individual that has a 

central location in the network or bridges structural holes can bring more value to the 

network. As a result, these members (its structural position) will be more relevant than 

an undifferentiated member contributing only to the increasing of the network size. 

5.7 Psychological attributes in social networks 

As seen above, the study of social relationships provides rich data and 

knowledge to extend the understanding of the matrix that embeds people’s interaction. 

Is this enough to comprehend such interactions? 
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Research into social networks is still growing interest in many fields, but not so 

much in psychology, notably, when compared to sociology, anthropology or even 

epidemiology, for example (Totterdell et al., 2010). However, two significant areas of 

work have been receiving important contributions from psychologists investigating 

community and organizational fields. The former includes work on the interrelation 

between physical proximity and similarities, beliefs and attitudes, amount of interaction, 

and affective ties. The latter, includes work on interaction between personality and 

network position (Borgatti & Foster, 2003). 

Some studies in psychology have centered their attention on the relationship 

between personality traits and network factors. In this regard, the Big Five model is 

considered to be the best framework to study personality (John et al., 2008). Inclusively, 

this framework was tested on online social networks showing that people do not use an 

idealized virtual identity to interface with others through these communication 

platforms, which suggests that they might be an efficient medium for expressing and 

communicating real personality (Back et al., 2010). 

Without framing personality in terms of the Big Five model, but centering 

attention on features of people’s organizational personalities and emphasizing the 

sociologist perspective37, Burt et al. (1998) show that personality varies in the presence 

of structural holes. Similarly, personality was also shown to vary with network closure 

(Kalish & Robins, 2006). Furthermore, applying the mechanism named PCO – 

Propensity to Connect with Others, Totterdell et al. (2008) found that PCO was strongly 

related to network size. The authors measured the relationship between social network 

characteristics and personality38, given people’s propensity to connect with others – 

making strong ties, weak ties, and joining others (bridging ties). 

In another vein of investigation, scholars have been developing relevant work on 

the understanding the dynamics of human emotions in social networks (e.g., Totterdell 

et al., 2004; Fowler & Christakis, 2008; Tang et al., 2011). This line of research aims to 

understand how emotions penetrate people’s social networks. These studies undertaken 

by researchers from different areas are based on the notion that social networks have 

                                            
37 Burt (1998, p. 64) says that “Personality as a concept seems to be no more popular with psychologists 
than sociologists, but the exchange between sociology and psychology in organization behavior focuses 
attention on individual differences above and beyond differences attributable to network structure.”. 
38 In spite of the fact that PCO is not framed in terms of personality it is similar to the measurement of 
extraversion. 
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their building blocks in dyadic relationships, but also in the matrix of relationships 

surrounding each person.  

In this sense, emotions (e.g., surprise) and more enduring states (e.g., happiness) 

have been studied in both real and virtual worlds (i.e., Internet). Both emotions and 

happiness (or sadness) are feelings which have been proven to be transmitted in social 

networks. And both of them concern affect, which refers to a range of feeling states, 

including different moods and emotions (Totterdell et al., 2004).  

Neuman & Strack (2000), show that when individuals are provided with 

different plausible causes for an affective response of unknown origin different 

emotions are activated. The findings have indicated that affective feelings can be 

transferred between people through a mechanism of mood contagion, and the other’s 

emotional expression is sufficient to automatically evoke a congruent mood state in the 

listener. It should be noted that to achieve this effect it is not necessary to use verbal or 

semantic information about the emotion of the target person or an emotion-elicitation. 

Totterdell et al. (2004), report that employees’ feelings depend on the network of 

people with whom they work. More specifically, the feeling of affect shared within a 

group of employees is a predictor of affect towards other employees in the network, if 

the similarity of their structural position is taken into account. Equally relevant is the 

finding that the affect determined the network structure, rather than the other way 

around. The authors advocate that affect might have determined who people chose to 

work with.  

Fowler and Christakis (2008), in turn, have found that happiness it is not only an 

individual experience or an individual choice, but that it is a property of groups of 

people. This seems to agree with the so called “affective revolution” of Barsade et al. 

(2003)39. Thus, happiness can be transmitted to others in a network flow that can reach 

three degrees of separation. The happiness of someone is associated with the happiness 

of others, who are located nearby or in other clusters of happy people. Furthermore, this 

effect holds true in both the real and virtual worlds (Whitfield, 2008).  

Despite this work, a certain downplay of the role of psychological attributes in 

the social network analysis has been commonly accepted. Taking a macro level 

                                            
39 In the affective revolution, feelings are not understood as a solely personal experience, but as result of 
how people socially share and influence each other’s affect at work and how this affects work life. 
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perspective of behavior, the assumption is that all humans act in the same fashion. 

Human behavior is seen here like nodes of a network that are represented by a 

homogenous set manipulated by environmental influences alone (Crosier et al., 2012).  

In another line of research, scholars have been concerned with the role of a 

specific emotion (i.e., surprise) and its relationship with the information contained in a 

piece of data, or with the cognitive perception of novelty.   

The concept of information in the context of its quantification has been largely 

debated in literature (Aczel & Daroczy, 1975; Cover & Thomas, 1991), particularly 

since the work of Shannon (1948). The debate ranges from the quantification of the 

information included in a piece of data, to the measurement of the information yielded 

by one event (Cover & Thomas, 1991). Another perspective on the concept of 

information is the fundamental effect that a piece of data has on an observer by 

replacing their prior beliefs with posterior beliefs. Deviation measurements between 

prior and posterior beliefs can be considered an aspect of surprise information (Baldi & 

Itti, 2010). In regard to novelty, scholars report that surprise is a specific consequence of 

the appraisal of novelty (Finkenauer et al., 1998). It measures the improbability or 

novelty of a certain event (Strange et al., 2005), as detailed in the second chapter. 

 

In summary, similarly to the research into weak ties, many empirical works have 

debated Burt’s conclusions alluding to the benefits and constraints related to the 

existence of structural holes. Usually, the viewpoint explored by the majority of those 

works relies on the bridging factors identified by the weak connection to socially distant 

groups or by the structural position of the sender of information. Common to all these 

theories is that they report on the delivery of novelty based on its assumptions about 

bridging factors. However, literature has not explored whether the delivery corresponds 

to the perception of novelty by the receiver – the other side of the bridge – neither 

whether centrality roles couple with the receivers’ choices when they select information. 

This means, how their selection corresponds to the delivery of information when this is 

determined by central nodes. On the other hand, as far as I know, there is no prolific 

research on how to join social interaction and emotional reaction in order to apply it to 

digital media systems.  

Motivated by these questions and with the aim of presenting a new approach to 

accessing social network data to avoid the effect of social echo chamber in 
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personalization of Web-based applications, three empirical studies are presented below. 

These studies are based on the same survey and sample of participants. The next chapter 

discusses the first one. 
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CHAPTER 6 

SURPRISE AS A PROXY OF NOVELTY 

 

6.1 Overview 

Data about strong ties and similarities between individuals from social networks 

have become an important resource to personalize Web-based services. Some authors 

have previously pointed to constraints related to Web personalization due to the 

diminishing diversity of viewpoints within communities. This is related to the lack of 

novelty of information shared. Structural bridges may be an accurate source of social 

data to introduce novelty on the receiver’s side. It may create a new kind of data source 

for personalization. However, literature often debates the delivery of novelty but not its 

perception. This study proposes an alternative method that uses surprise as a proxy of 

the perception of novelty. It introduces a new approach to investigate the bridging 

process and how to confirm bridging assumptions. The results point out solutions for 

some constraints identified in digital media systems. A sample of 56 individual 

emotional responses to content selections in a social network environment is analyzed. 

Multivariate regression analysis shows that both weak ties and non-redundancy are 

predictors of surprise, but not all non-redundant structural holes identified are related to 

surprise. This attracts attention to the generally accepted bridging assumptions. It 

contrasts the differences between novelty delivered and perceived. Furthermore, 

socially distant ties and emotional support (closeness) play a relevant role in this regard, 

as well as the number of strong ties in the triads that surround structural holes. This 

method can potentially be useful in empirical work where novelty or its underlying 

dimensions are used (e.g., novelty vs. creativity).  

6.2 Introduction  

In order to engage their public in more effective and striking ways, digital media 

entrepreneurs are using data from social networks to personalize Web-based services 

(e.g. searching and recommendation).   

Those approaches have been based mainly in the strong ties and homophily 

processes. Instead we have chosen to test a new approach through data derived from 
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network bridges. The basic principle behind this approach is the idea that a network 

bridge can be used to establish the delivery of novelty (Borgatti & Lopez-Kidwel, 

2011), avoiding the use of redundant information for the end-user.  

Two different theories (Granovetter, 1973; Burt, 1992) debate bridging factors in 

the scope of the delivery of novelty, but neglect to say whether this novelty is perceived 

by the receivers. This is particularly important because is the perception of novelty that 

could confirm if the bridges are effectively associated to novelty delivering.  

To overcome this problem it is necessary to extend the current methodologies to 

deal simultaneously with content and users' cognitive reaction and secure that the 

content delivered by an identified bridge corresponds to the perception of novelty. 

One major way to engage users with content is through the emotions raised 

when the information is perceived. To test this method, I have raised two hypotheses: a) 

surprise is an accurate proxy of novelty, and, b) bridging factors are predictors of a 

surprise response. Thus, when surprise is elicited and the bridging assumptions are 

verified, then, theoretically, we can assume that novelty is perceived.  

Let me briefly develop on the concepts behind each of those hypotheses:  

a) The adequacy of the proxy proposed is based on neuroscience and psychology 

studies, which confirm that surprise accompanies novelty (e.g., Berlyne, 1960), and 

despite the fact that surprise can be elicited in events not related to novelty (e.g., Barto 

et al., 2013), surprise is the triggered emotion when novelty is perceived (e.g., Strange 

et al., 2005)40;  

b) This study through the assessment of surprise response, tests whether both 

assumptions on bridging factors predict surprise, and if each one of the assumptions as a 

factor to deliver novelty corresponds to the novelty perceived. 

Moreover, as modern sociological theory suggests, novelty is found through 

weak ties that span structural holes. This raises the question of whether both bridging 

factors are coincident or correlated, when delivery corresponds to perception of novelty. 

To elaborate on these questions, I hypothesize that surprise is elicited either when the 

information is delivered by one single bridging factor or by the composition of both.  

                                            
40 This topic is not debated here more extensively because the extent in which surprise and novelty are 
interrelated it is largely debated in the second chapter. 
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On the other hand, considering the bridging measures introduced by Burt (1992), 

it is expected that for every bridge defined there will be a corresponding perception of 

the novelty delivered. Because scholars have not tested the veracity of the 

correspondence between novelty delivered and perceived, it is not possible to confirm 

whether this metric is accurate. The proposed methodology allows test this 

correspondence and debating this issue. 

The aim of this study is twofold. Firstly, test a methodology that looks for the 

most efficient bridging factors in the context of novelty perception. That means 

analyzing Granovetter's (1973) theory, on the relevance of the socially distant ties and 

the most relevant dimensions to the tie strength construct, as well as considering Burt’s 

(1992) theory, on the redundancy of the connections spanning structural holes and 

observing the strength of the ties in the triads formed by sender, receiver and common 

connections with a third party. 

Secondly, overcome the constraints associated with the effect of social echo 

chamber by showing the opportunities of applying data organized by bridging factors. 

6.3 Bridging measures 

As referred before I will examine which bridging factors meet the perception of 

novelty by the receiver. Assuming that novelty is confirmed by the emotion of surprise 

as its proxy, the strategy became to observe the emotional response of the receiver when 

accessing the contents.  

Two kinds of bridging factors were tested. According to Granovetter (1973) a 

bridge appears between two individuals weakly tied, or, if strongly tied, they cannot 

have third-parties common to both.  

In Burt’s assumption, a bridge exists when there is non-redundancy between the 

individuals connected through a structural hole. This implies the nonexistence of 

common third-parties between these individuals. To evaluate the structural holes and to 

define non-redundancy I have used triad-level measurements, instead of summary 

measurements (Kalish & Robins, 2006). 

The following hypothesis will be explored:  

H1: surprise is a proxy of novelty;  
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H2: surprise is elicited either when the information is delivered by one single 

bridging factor or by the composition of both.  

In order to test them, data was collected from a group of volunteer participants in 

a survey which was split into two phases.  

The process of novelty delivering relying on the action of the sender of information is 

the main assumption behind the bridging mechanisms on. Though, it is important to 

note that a bridge determines both who delivers and who receives resources (e.g., new 

information). In this study, the participant whose content was selected is called sender 

and the participant who has selected the content, the receiver, is referred to as the 

selector of information. Participants shared and selected contents of other participants 

by privately describing the emotion they perceived, which includes surprise. “Surprise 

response” is the output of the action undertaken between the “sender” and “receiver”, as 

Figure 1 shows. This work presents an approach to studying how structural conditions 

may explain the emotional reaction of surprise and provides an alternative method to 

control the whole bridging process.  

 

Figure 1 – Conceptual model on surprise as a proxy of novelty. 

 

6.3.1 Procedures 

The two phases of data collection were undertaken in an online setting and by 

means of an online questionnaire. A Project's Facebook Page (PFP) was created as a 

platform for the participants interactions.  In the first phase, participants shared content 

on the Project's Facebook Page (PFP) and have forwarded the selected posts to the 
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message box of the PFP41. Participants were asked to register the emotion perceived 

whenever they accessed and selected a post.  

Several procedures were created in order to avoid possible bias based on 

expectations or learning from others: 

- Participants were not directly questioned about their perception of surprise to 

avoid biasing them by any kind of expectation or misconception concerning the 

real emotion perceived (Ramiller & Wagner, 2009); 

- Participants classified the emotion perceived without knowing how others 

classified identical posts (they didn’t have access to the classifications by 

others).  

A list of emotions to classify these messages was previously distributed to the 

participants (Table 1). This first phase lasted five days. This phase includes stages 1 and 

2 of the flowchart presented below (Figure 2). In the stage 2b), the number of content 

selections (posts selected) by each participant varied between two and four. As Figure 2 

shows, in total, 97 content selections were validated, but this number was reduced to 56, 

because only the first and second selection of each participant was counted. The aim 

was to equalize the number of times that participants appear in the data and reduce the 

possible data bias. 

In the second phase participants had to fill in an online questionnaire. The 

survey (Appendix A) is structured along two main topics, level of relationship and 

friendship perception. Firstly, they were asked about their perception of friendship with 

those participants from whom they picked posts to classify emotions. Secondly, they 

                                            
41 This description requires some knowledge about relevant Facebook functionalities, which we briefly 
review here. Nevertheless, it is important to highlight that the experiment undertaken in this dissertation, 
were not influenced by EdgeRank - the algorithm used by Facebook to determine what articles should be 
displayed in a user's News Feed.  
Facebook main purpose from a user perspective is to become virtual friends with other users, and to 
communicate and stay informed about their activities and interests. When a user sends a friend request to 
another user and the latter accepts the request is established the friendships. It generates the so-called 
Facebook friend. Friends can usually read each other’s contents (“posts”). Posts are unaddressed text 
messages, possibly enriched by photos or videos, which can be commented on and “liked” (by clicking a 
“like”- button). {In the survey this actions were not required, being participants even discouraged to do 
it}. Such posts appear on the users’ “news feeds”, a collection of friends’ posts and notifications of other 
activities of friends (e.g. when someone changed his/her profile picture). Users can post on their own 
“walls” or on their friends’. {The timeline of the PFP was the main page used by participants in this 
study. Here, they shared contents and had access to other participants' posts}. Walls show all posts and 
notifications related to a certain user (whereas news feeds show posts of all of a user’s friends). Users can 
also tag friends in their posts. This way, the post does not only appear on the user’s wall, but also on the 
tagged person’s wall. Friends’ privacy settings and filter options set by the user determine which posts 
and notifications appear on news feeds and walls (Bohn et al., 2014). 
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were asked to indicate which participants they considered to be close friends, regardless 

of whether they picked their posts or not. A flowchart describing this process is 

presented below. 

 

Figure 2 – Flowchart of the several stages of the survey. 

Stage 1: Participants Recruitment 

 

Stage 2 - Content selection in a SN environment 

 

Stage 3 – Online questionnaire 

 

Legend: 

• Stage 1: Participants became members of the “project Facebook page”. Two kinds 

of ties were designed by this survey. Friendship ties, as above shown and the ties 

established when the receptor selected the sender’s post. 

• Stage 2a: On News Feed: Published posts: 199; Selected posts: 174. Here, 

participants published posts from their own Facebook page and by following their 
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own interests. Each participant was invited to: a) view all the posts published; b) 

select the most interesting posts. 

• Stage 2b: Links created: sender and receiver: 202. Participants selected the posts and 

sent it to the private message box of the PFP. They also registered the emotion 

perceived. The emotions registered were selected from a list of 10 emotions 

provided previously to the participants. The name of the participant who posted the 

post is also registered. 

• Stage 3: The questionnaire answers were based on the names of the post authors 

selected – senders of the posts selected by the receptors – see stage 2b. 

 

To confirm the option taken and avoid instability on the regression models, the 

co-linearity among content selections was analyzed to test their independence and so too 

was the non-co-linearity of the data. The agreement between content selections was 

analyzed with Intraclass Correlation Coefficient (ICC) using the two-way random 

model (McGraw & Wong, 1996; Shrout & Fleiss, 1979) and Cohen Kappa for nominal 

variables. Variables whose upper bound for ICC computation was above 0.50 were not 

considered, as suggested in similar literature to this field of work (e.g., Duncan & 

Raudenbush, 1998). The data for tie strength (ICC = 0.226) and surprise (Cohen Kappa 

= 0.103) show independence in its observations. 

 

6.3.2 Sampling characteristics 

Sampling procedure involved different processes of recruiting (direct appeal and 

using the ‘snowball’ technique42) in order to find people that know each other (living in 

the same university dorm) as well as people from other contexts.  The aim was to ensure 

that the sample would not be formed only by random connections, or by connections 

only centered in the same kind of foci (participants from a dorm). I also intended to test 

different kinds of relationships (tie strength) and similarities between individuals. 

Hence, the sample should hold a reduced level of randomness, but still be representative 

of a large population.  

                                            
42 The most common methodology used in whole (‘sociocentric’) networks is the snowball sampling, 
commonly applied in small-to medium-sized networks (Wasserman & Faust, 1994). 
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56 emotional responses to content selections were validated in the study from 28 

participants (16 males, Mean (M) = 19.7 years, Standard Deviation (S.D.) = 1.4 years, 

12 females, M = 21.7 years, S.D. = 5.1 years). 

Participants’ age averaged around 20.5 years (S.D. = 3.52). Ninety-six per cent 

of them were between 18 and 23 years-old, the youngest was 18 and the oldest 37 years-

old. The majority of the participants were Christians (79%, n = 22). The others were 

Buddhists, Muslims or Agnostics (21%, n = 6).  

All tasks pertaining to the two study phases were performed online.  

The sample set for this study consists in data from one group formed by 

seventeen dorm residents43 and another by eleven non-residents (friends of friends). The 

reason for choosing those two groups was to force interactions within different kinds of 

connections as well as with the surrounding environment. Each participant was 

encouraged to invite up to five friends, and especially if those friends did not belong to 

the dorm or to that same university community. On the other hand, by recruiting in a 

dorm I expected to capture different levels of interaction, different kinds of relationships 

(tie strength) and similarities/dissimilarities between individuals. Moreover, with the 

individuals who were external to the dorm, playing the role of friends of friends, we 

aimed to extend the grades of separation from each recommender considered in the 

study and so to diversify the network. 

 

6.3.2.1 Surprise elicited as dependent variable 

Surprise is the dependent variable in the study. The registered emotions were 

coded as a dichotomous variable: surprise (n = 14) and not surprise (n = 42). The 

assessment of the emotions was done by using a scale previously delivered to 

participants44. Thus, each of the contents posted was rated by the selectors of 

information using the scale (see Table 1) for the emotion felt when the content was 

accessed. Participants were able to describe more than one emotion, either by mixing 

different categories of emotions or by mixing subcategories with categories. Thus, the 

                                            
43 At University of Texas in Austin (UT). 
44 In this study the “Differential Emotions Theory” (DES scale) (Izard, 1977, 1991) that postulates ten 
primary emotions was adopted and crossed with the sub-categories defined by Derbaix & Vanhamme 
(2003). Both include surprise, as shown in Table 1. 
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emotion of surprise was followed by another emotion in several situations, which was 

positive (e.g., surprise + joy) or negative (e.g., surprise + anger) (Ekman & Friesen, 

1975; Meyer et al., 1994). Moreover, when the emotion perceived was "surprise", 

participants were asked to write down why he or she was surprised, as well as to 

describe other emotions that could complete their sense of surprise. 

 

Table 1 – Emotional scale.  

Emotions Sub-categories 

Surprise Surprised, amazed, astonished 

Enjoyment Joyful, delighted, happy 

Interest --- 

Distress Sad, downhearted, discouraged 

Anger Angry, mad, enraged 

Fear Afraid, scared, fearful 

Disgust Disgusted, feeling of distaste, feeling of revulsion 

Contempt Disdainful, contemptuous, scornful 

Shame --- 

Guilt --- 

6.3.2.2 Tie strength and Redundancy as 
independent variable 

The two independent variables that play the role of network factors are the tie 

strength and redundancy.   

1) Tie strength: Several distinct types of social interaction were identified – for 

example, some participants spent time with other participants on a daily or weekly 

basis, and some do not feel comfortable to borrow money from others (see Appendix 

A).  

Several methods have been used to construct the overall measure of social 

interaction since each person is potentially connected to another by several types of 

relationship45, the most common variables quoted on literature were followed (for a 

revision see: Petróczi et al. 2007).  

                                            
45 Tie strength was measured according to the following weighing between variables (see indexes of the 
variables on Table 2): Tie strength = [(V1 + V2type of relationship + (V2private correspondence with * 2) + V3 + (V4 * 
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Granovetter’s (1973) tie strength definition46 was used. The argument of 

Marsden et al. (1984) on closeness47 was also considered, as being the best indicator of 

tie strength. Equally, the emotional support to characterize strong ties relationships was 

identified, as reported by Wellman and Wortley (1990). Finally, the choices taken agree 

with Petrosky’s (2011), which mention two dimensions to conceptualize tie strength: 

intensity and valence. The former is about frequency of contact and the latter refers to 

“the affective, supportive and cooperative character of the tie” (ibid. p. 44).  

In this sense, I characterize tie strength through four variables, each of which is 

described by several survey items. Such variables are: intensity/ communication and 

reciprocity, intimacy, duration/ amount of time, emotional support, as detailed in the 

Table 2 below. 

 

Table 2 – Tie strength construct. 

Variable Detail 

V1 - frequency 
of contact  and 
reciprocity 

Tie strength scores were weighted both to distinguish the relevance of different items, 
as to differentiate variables between themselves48.  

E.g., Frequency of contact and Reciprocity was measured with two questions. The 
first was: “How often have you had contact with each person that you mentioned 
above”.  Responses were rated on a ten point scale, where 1 represented "other", 2 
“once a year” and 10 "every day". The scale is not linear to emphasize relevant 
differences. Thus, the second less quoted answer “twice a week” was rated with 7. 
Similarly, the same procedure was used with the other variables. The second question 
assigned to this variable was a request to write down the names (four of them) of 
other participants that he/she knew best (having met them socially/ professionally, 
e.g., in sports, parties, work, classes). Participants were rated with a score of 5 if the 
answer was reciprocated by the other participant, and with a score of 3 if not.  

                                                                                                                                
2)] / 7. The scores of the weak ties could range from 1 to 4 and strong ties from 5 to 9. The final value of 
tie strength could range between 2 and 11, depending on the proportional strength set for each variable. 
46 As presented in the fifth chapter, Granovetter (1973, p. 1361) states that “the strength of a tie is a 
combination (probably linear) of the amount of time, the emotional intensity, the intimacy (mutual 
confiding) and the reciprocal services which characterize the tie". 
47 Closeness has been considered the best indicator of tie strength, such as underlined by Gilbert & 
Karahalios (2009) that assessed the strength of study participants' friendships in Facebook. 
48 Some variables and items are scored with a double weight. The variable “intimacy” is made up of two 
items. One of the items “having private correspondence with” was scored with a double weight. The 
“emotional support” items were also scored with a double weight. Moreover, some of the items were 
scored with a nonlinear scale. This was determined by the relevancy of the item for the tie strength 
concept. E.g., "How often did you have contact with each person?” If the answer was “every day” then 10 
points were given and 7 or 7-n (n<7), for scores below. 
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Variable Detail 

V2 – Intimacy 
(confidence) 

The intimacy was measured through two more questions. The first one on “What type 
of relationship do you have with the people that you mentioned above”. Participants 
were rated on a five-point scale, ranging from 0 ("Acquaintance / Other - Not close at 
all") to 5 ("Partner, Boyfriend/ Girlfriend"). The second question was “Who are the 
people that you mentioned above with whom you have private correspondence”. 
Participants were free to select up to four names. The selected names were marked 
with “yes” and got a 5 points rating, if not they got a 0 points rating. 

V3 - Duration/ 
amount of time 

The duration/amount of time contained a single question: “Indicate for how long you 
have known each of the mentioned people” and was rated on a three point scale, 
where 0 represented "other", 2 “less than three months” and 4 "more than one year". 

V4 - Emotional 
support 

The emotional support is a construct of three questions. The first one, was with whom 
the participant felt familiar enough to ask “to borrow a small sum of money from”, 
and the second one was who the participant would contact if “feeling sick, or needing 
health support”. Both were rated on a three point scale, where 0 represented "no", 2 
“uncertain” and 5 "yes". The third and last question was about “how close do you feel 
with” the four participants from whom he/she picked content, and was rated in a five-
point scale, ranging from 0 ("Don’t feel close at all"), 2 “I don’t feel very close” to 5 
("I feel very close"). 

 

2) Redundancy: To measure bridging factors applying Burt’s (1992) theory, I 

needed to evaluate the degree of redundancy between the participants that span 

structural holes. Thus, triadic-level measures were applied (Kalish & Robins, 2006). A 

triad is a set of three persons that tend to close through a third person, forming a triadic 

closure, due to propinquity or cognitive processes (Goodreau et al., 2009), in which the 

strength of the ties among individuals plays a determinant role. Propinquity represents 

the process in which two people encounter due to the time shared with a third. 

Cognitive processes, highlighted by the social balance theory (Heider, 1958), are 

represented by cognitive events in which two people may appreciate each other 

mutually by their agreement on a third person. Hence, even if two individuals share 

distant ties, they may share similar perspectives and access similar information. This 

fact may preclude the novelty between the two individual ties when they share 

information.  

To evaluate the existence of triads in the data, first, the existence of common 

connections between each pair sender – receiver was examined. Then, the ties among 

the individuals included in each triad formed were analyzed: tie strength or absence of 
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ties, as explained in the “forbidden triad” role of Granovetter (1973). To accomplish 

that, the following information from the questionnaire was used: (1) tie strength, as 

described above; (2) information from the question “names of the participants that you 

know best (people that you have been meeting socially/ professionally, e.g., in sports, 

parties, work, classes)”. In order to gather the maximum information possible on ties 

among participants, the collected data in the survey was confronted with the data on 

“friendship” ties downloaded from the project’s Facebook page through the NodeXL 

software (v. 1.0.1.210).49 

 

Table 3 – Types of triads and strong ties per triad. 

 
WSW/ 
 WWS 

WSS WWW SWW SSS 
SSW/ 
 SWS <=1 ST >1 ST50 

Nr. of pairs sender-receiver per kind of triad 13 7 9 12 10 18 45 27 

Mean (nr. of triads/connection with triads51)       1.70 2.19 

SD (nr. of triads/connection with triads)       0.95 1.24 

Six types of triads were considered (Table 3). Two of them represent network 

closure: SSS and SSW/SWS (representing strong network closure).  

 

Figure 3 – Closed Triads  

 

 

 

“Rv” means receiver and “Sd” sender. “S” stands for strong tie and “W” weak 

tie. The first letter means the tie between sender and receiver (the selector), the second 

letter the tie between sender and third-party, and the third one the tie between receiver 

                                            
49 We tested all the results for redundancy, with and without those forbidden triads forming four-cycles. 
The existence of four-cycle indicates that structural holes are not present. The forth element may induce a 
closure of the cycle through the third-party. I tested all results for 4-cycles redundancy and I found out 
that the increment of redundancy, through a common fourth element, did not change the statistical results 
found for the variable redundancy. Thus, I do not include 4-cycles redundancy results in the discussion. 
50 ST – Strong Tie. 
51 27 connections sender-receiver with <=1 ST, 27 with >1 ST and 29 without any triad. 

S S 

S 

S S 

W 

S W 

S 

Rv Sd Rv Sd Rv Sd 
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and third-party (e.g., WSW: Weak-Strong-Weak). The closure of a triad WWW 

(representing a weak network closure) was not considered because such connections 

include distant ties (up to 50% in average in the study, as shown below), thus, there is 

no redundancy. From the six types of triads, four represent the existence of structural 

holes: WSW/WWS, WSS, WWW and SWW.  

6.3.3 Results 

The introduction of receptor’s perspective to confirm the validity of a bridging 

probably changes the number of bridges counted by comparison to the result obtained 

by using the usual bridging factors approach. This section helps to confirm this and 

observe how structural network conditions may predict the emotional response. The 

identification of bridges and the corresponding emotional responses, in particular 

surprise, provides a larger control of the whole bridging process. It informs about 

receivers’ individual characteristics and creates new valences of observation, which can 

be used, for example, to compare them with those of the senders. This may allow 

moving forward in the examination of predictive factors in the delivery of novelty using 

data from social networks. 

6.3.3.1 Tie Strength 

The Table below presents the separate scores obtained for the ties coded as weak 

and strong and for the final value of tie strength between sender and receiver. 
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Table 4 – Descriptive statistics based on the scores of the variables that characterize tie 

strength. 

 V (1; 2; 3; 4) N Minimum Maximum Mean Std. 
Deviation 

V1 - Intensity/ 
communication   
and reciprocity 

weak tie 33 2 4 4.121 1.727 

strong tie 23 5 16 8.652 2.707 

  V2 - Intimacy 
weak tie 33 2 8 2.727 1.484 

strong tie 23 3 10 8.391 2.407 

V3 - Duration/ 
amount of time 

weak tie 33 1 4 1.969 1.103 

strong tie 23 3 4 3.565 0.506 

 V4 - Emotional 
support 

weak tie 33 2 4 4.181 1.590 

strong tie 23 5 9 11.043 2.915 

 Tie Strength 

   

weak tie 33 2 4 2.636 0.822 

strong tie 23 5 9 6.782 1.412 

tie strength 56 2 11 5.607 3.061 

 

Descriptive statistics for variables used in the analyses of tie strength are 

presented in Table 4, which describes the contribution of each variable (V1, V2, V3 and 

V4) for the tie strength's construct. It also shows how each variable contributes to the 

score of weak and strong ties.  

V4 – Emotional Support is the variable with the highest rate to characterize the 

strength of the tie (Mean = 7.000; SD = 4.058), but also the one which received lower 

values when the participants did not know each other. This variable emphasizes the 

differences between ties (weak and strong) and the score range of the weak ties that 

vary from 1 to 4 and the strong from 5 to 9. The final value of tie strength could range 

between 2 and 11, depending on the proportional strength set for each variable. This 

draws the attention to the existence of “socially distant ties” between the weakly tied 

participants.  

A socially distant tie means a tie between two individuals (sender and receiver) 

that had never had any contact before the study or almost nonexistent contact. The score 

classifying weak ties varies from 2 to 4, with 57.5% scoring 2. Surprise response was 

elicited 42.9% for a tie strength with a score of 2 (n = 6); 29% when scored 3 (n = 4) 

and 14% when scored 4 (n = 2). Finally, surprise response was elicited 14% (n =2) for a 

strong tie.  
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To summarize, given the results above, "socially distant ties" are the weak ties 

scored 2. These ties were also rated with low values in the variable of Emotional 

Support (V4). Weak ties which scored 3 or 4 are present in equal percentages (21.2%). 

Given the relevance of the Emotional Support variable to determine tie strength 52, and 

the findings related to its scores (V4), this variable seems to be an accurate dimension to 

detect socially distant ties. Moreover, almost half of the surprise responses (42.9%) are 

related to the lower scores on tie strength. Thus, it seems that surprise is mostly elicited 

by weak ties from people who are socially distant.  

6.3.3.2 Redundancy 

The Table below shows the total number of triads when there is fewer than or 

equal to one strong tie (<= 1 Strong Tie) and more than one strong tie (> 1 Strong Tie). 

The results are split as a function of the redundancy state and the average number of 

triads between each connection. 

Table 5 – Number of triads between sender and receiver. 

Ties between sender a selector <=1 Strong tie in the triads >1 Strong tie in the triads 

 Redun-
dancy 

N (Tie & 
Redund.) 

Triads 
(T<=1ST) 

Mean SD Max. Triads 
(T>1ST) 

Mean SD Max 

Weak tie 
(NWT = 33) 

0 26 23 2.18 1.25 5 -- -- -- -- 

1 7 8 1.75 0.50 2 7 1 0 0 

Strong tie 
(NST = 23) 

0 3 1 1.00 -- 1 -- -- -- -- 

1 20 14 1.27 0.46 2 52 2.60 1.88 5 

Weak tie & 
Surprise (n = 12) 

0 11 5 1.50 1.00 3 -- -- -- -- 

1 1 -- -- -- -- 1 2.00 1.41 3 

Strong tie & 
Surprise (n = 2) 

0 0 -- -- -- -- -- -- -- -- 

1 2 -- -- -- -- 2 2.00 1.41 3 

 

The results show that among all bridges that match the assumptions of Burt 

(1992) related to non-redundancy (N = 29 [NWT = 26 + NST = 3]), only eleven are 

related to novelty perception (NWT & Surprise = 11). On the other hand, the prevalence of 

the number of strong ties on triad formation determines the existence of redundancy.  

                                            
52 Which agrees with Marsden et al.’s (1984) argument on “closeness”. 
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Table 5 shows that the non-redundancy is verified (Redundancy = 0) only when 

the triad is formed by a maximum of one strong tie (<=1 Strong tie). This is verified 

regardless of whether the tie strength between sender and receiver is weak (NTie & Redund. = 

26; T<=1ST = 23) or strong (NTie & Redund. = 3; T<=1ST = 1). Whether the triad has more than 

one strong tie, redundancy is verified, which confirms that redundancy is determined by 

the number of strong ties in the triad. 

On the other hand, surprise responses are mostly related to non-redundancy and 

weak connections (NTie & Redund. = 11). In fact, surprise response related to redundancy 

(Redundancy = 1) is only verified in three cases: one, in a weakly connection (NTie & Redund. 

= 1; T>1ST = 1) and two, in a strong connection (NTie & Redund. = 2; T>1ST = 2), in which the 

triads have more than one strong tie (>1 Strong tie). 

 

Table 6 – Pearson correlations between triads and bridging factors. 

Variables (1) (2) (3) 

Triads  
   

   (1) Triads <=1 Strong tie -- 
  

   (2) Triads >1 Strong tie 
 

-- 
 

Bridging factors 
   

   (3) Redundancy 0.037 * X2 (1) = 56.00 -- 

   (4) Tie strength  
 

* X2 (1) = 25.77 *X2 (1) = 25.77 

* p < 0.001 

 

Findings confirm strong evidence of a relationship between triads with more 

than one strong tie and redundancy (X2 = 56.00, df = 1, p < 0.001) as shown in the 

Table 6, where all closed triads of the study are related to redundancy. There is also 

strong evidence of a relationship between these triads and tie strength (X2 = 25.77, df = 

1, p < 0.001), where 87% of the strong ties are related to redundancy, while only 18.2% 

of the weak ties are present in such triads. This shows that triads related to redundancy 

are predominantly dominated by strong ties.  
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Finally, it is worth examining the answers issued from participants to describe, 

in their own words, why they were surprised when this emotion was picked out by 

them. Nine of them answered “expectedness”, one referred “novelty”, two referred 

“new perspectives” and two did not provide any answer. These answers are in line with 

what has been reported in published literature on surprise and novelty, as mentioned 

above in this work. 

6.3.3.3 Bridging Factors and Surprise 

In this section the associations between the bridging factors and surprise are 

examined. In order to test the two hypothesis raised, firstly, the relationship between 

surprise response and both bridging factors was analyzed. This was undertaken through 

logistic regression analyses predicting surprise using tie strength (Granovetter, 1973) 

and redundancy (Burt, 1992) separately as independent variables (Table 7). 

 

Table 7 – Coefficients from regression model predicting surprise and redundancy. 

Predictors Redundancy Surprise 

Bridging factors 
  

   Tie strength 5.477 (.001) -.408 (.030) 

   Redundancy  
 

-.125 (.012) 

* Applying Granovetter’s (1973) forbidden triads.  

 

To test Granovetter’s (1973) assumptions I analyze the association between 

surprise and tie strength. The results suggest that there is a significant positive 

relationship between surprise and weak ties (36% weak ties vs. 9% strong ties) and the 

odds of being surprised decreases when the tie is strong (odds = 0.408, p = 0.030, 95% 

Confidence Interval (CI): [0.182, 0.915]). Thus, weak ties are determinant to explain 

surprise, but it is important to note that distant ties (scoring 2 in the tie strength range) 

represent 42.9% of the weak ties for surprise responses.  

Next Burt’s (1992) assumptions were tested and I have analyzed whether 

surprise is predicted by the independent variable of redundancy. The results tell that 

there is a relationship between these variables and that the odds of being surprised 

decreases with the redundancy (odds = 0.125, p = 0.12, 95% CI: [0.025, 0.630]). When 
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considering the number of strong ties per triad in non-redundant connections (between 

sender and receiver), we observed that 62% of these triads have no strong ties, or just 

one strong tie (38%). Among these non-redundant connections, surprise is elicited in 

61.1% of the triads that do not hold any strong tie and in 36.4% of the triads with one 

single strong tie. Considering redundancy, surprise is elicited in 11% of the triads with 

more than one strong tie. Therefore, the set of results obtained suggest that the 

prevalence of surprise response at structural level is strongly associated to the number 

and strength of ties forming the triads that surround the connection between individuals, 

separated by a structural hole.  

Hence, the outcomes validate the hypothesis that surprise is a proxy of novelty. 

Thus, bridging factors are predictors of surprise response. This is verified for both 

assumptions on bridging. H1 is confirmed. 

Secondly, by computing Pearson correlations (Table 6), evidence was found of 

the relationship between tie strength and redundancy (X2 = 27.77, df = 1, p < 0.001). 

The odds of experiencing redundancy increased whenever the sender and the receiver 

were strongly tied (odds ratio = 5.477, p = 0.001, 95% CI [2.585, 11.605]) (see table 7). 

This is evidenced by the fact that 90% of the weak ties are related to non-redundant 

connections, while only 23.1% of the strong ties are related to non-redundancy. 

Next, the second hypothesis was tested. The key question now is to what extent 

is there any correlation between both bridging factors when there is a delivery of 

novelty. Both weak ties and non-redundancy were shown earlier to be predictors of 

surprise, so both are associated to perceived novelty. Concurrently, there is strong 

evidence of the relationship between them (weak ties and non-redundancy). It would 

seem then, that bridging factors could be correlated. Thus, this seems to justify the 

hypothesis that surprise is elicited either when the information is delivered by one single 

bridging factor, or by the composition of both.  

In this sense, and given the strong associations between tie strength and 

redundancy, a multivariate regression was applied with forward stepwise selection of 

variables53. When computing surprise with each of the bridging factors, it shows an 

association with both strength and redundancy. However, when seen together, the 

redundancy remains statistically associated with the surprise response, but the tie 
                                            
53 We applied multivariate regression with forward stepwise, in order to estimate whether both 
independent variables, tie strength and redundancy, could predict surprise together.  
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strength does not. The odds of experiencing surprise decreased for higher redundancy 

(odds = 0.125, p = 0.012, 95% CI: [0.025, 0.630]). Therefore, the hypothesis confirms 

that surprise is elicited by each one of the bridging factors, but not by its correlation to 

predict surprise. 

6.4 Discussion 

Social network literature has mainly reported the existence of bridges delivering 

novelty, but only considering one single perspective: the information sender. It means 

that people who are socially distant, and located in previously separated groups 

(Granovetter, 1973), or connected by non-redundant structural holes (Burt, 1992) can 

receive novel information. However, these theories do not claim that the received 

information will be perceived as novelty. In this regard, I have shown that the receiver’s 

perception of surprise plays a relevant role to explain and confirm the full process of 

bridging. The key question now is to evaluate to what extent this method can be 

regarded as a better approach to confirm delivery of novelty than those of other 

scholars, or even to confirm the theoretical assumptions underpinning the bridging 

mechanism of the two known theories.  

It was shown earlier that surprise and novelty differ in their typical functions at 

neuronal level. While novelty is based on memory and on cognitive processes, surprise 

is based on expectations of systems capable of predicting. Furthermore, it is recognized 

that surprise accompanies novelty (e.g. Berlyne 1960) and psychology studies underline 

that surprise is the emotional state related to the evaluation of novelty (e.g. Smith & 

Ellsworth, 1987; Finkenauer et al., 1998; Strange et al., 2005). Some scholars state too 

that it is not accurate to say that surprise is always associated with novelty, but it is 

correct to claim that novelty perceived is always followed by a surprise response.  

Following the above analysis, the method proposed helps to find an explanation 

for the events related to surprise, though not all events are related to bridging 

assumptions. In fact, not all surprise responses match the assumptions of network 

bridges.  

In total, 14 surprise responses were reported by participants. Observing them 

using Granovetter’s bridging factors, surprise is related to 12 bridges of weak ties and 2 

of strong ties. It means that two receivers reported surprise, but they had a strong 

connection with the receiver (one scoring 5 and other 7 on tie strength, and 9 and 12 on 
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Emotional Support, respectively). In both cases participants had a feeling of 

unexpectedness, as can be seen by their justification for the emotion elicited54 (see55).     

When considering Burt’s bridging factors, the novelty perceived is related to 11 

bridges formed by non-redundant structural holes and 3 redundant connections. Thus, in 

some cases, the surprise response is elicited but they do not match the assumptions of 

the delivery of novelty defined by each author. Given this and the fact that novelty 

perceived is always accompanied by the emotion of surprise, as claimed by scholars, it 

seems adequate to consider these surprise responses as outliers in the context of 

bridging. 

Considering that this method applies when the bridge meets the assumptions of 

the delivery of novelty, then the surprise elicited by the access to content corresponds to 

the novelty perceived. Moreover, both bridging factors – weak ties and non-redundant 

structural holes – are predictors of surprise. Thus, this method seems to be adequate to 

confirm the delivery of novelty based on its perception and to find the bridges that 

match the assumptions. On the other hand, these results are related to the fact that a 

specific emotional state can be predicted by specific structural conditions and 

determined by the rapport between pairs. This is in spite of the fact that in this study 

nothing has been said about the psychological attributes of each individual and how 

they may be related. This subject is debated in chapter eight. 

Granovetter (1973) does not clarify how to distinguish between weak ties that 

act as bridges and others that do not, but this method may be helpful to specify which 

weak ties present better conditions to act as bridges considering the perception of 

novelty. As a matter of fact, regarding the weak ties, the socially distant ties are the ones 

that play the most relevant role in the delivery of novelty (42.9% of the surprise 

responses among weak ties are scored with 2 in the tie strength construct), and the 

emotional support (closeness) is the variable that best characterizes tie strength. Thus, 

two dimensions should be highlighted to distinguish the weak ties from the most 

                                            
54 Participant X: “Surprise, I was surprised because I didn't expect to feel this relaxed when listening to 
this”; Participant Y: “I felt surprised because the thumbnail looked like a grown up but it's actually a boy. 
It is a pleasant surprise because it's funny.” In both cases the content accessed was an image. In fact, in 
most cases the contents associated to surprise responses in the study are images or videos. This might be 
related to the participants' age, which on average is 20.7 years old. 
55 See APPENDIX C – INSTRUCTIONS TO STUDY PARTICIPANTS - PHASE 1, ITEM 3.I. 
 



107 
 

accurate ones to match with bridging assumptions: a) social distance of the tie and, b) 

the emotional support between sender and receiver. 

Burt (1992) has drawn out assumptions defining the best conditions for bridging 

actions. It is assumed that non-redundant structural holes can act as bridges. In this 

regard, the results of this study show that the number of strong ties included in the triads 

is determinant to identify structural holes related to surprise response, which excludes 

some bridges defined by Burt’s assumptions. In fact, 11 out of 29 non-redundant 

structural holes are related to surprise, confirming that only in 11 content selections the 

receiver received novelty in a structural condition that avoids redundancy. It means that 

despite the number of structural holes between participants that exchanged content, and 

who do not hold a redundant connection with common friends, only 11 are related with 

surprise responses, which reduces considerably the number of bridges supposedly 

associated to the delivery of novelty. At the same time these findings show evidences of 

the relationship between redundancy and tie strength. Furthermore, the results suggest 

that non-redundancy is more prevalent in bridges delivering novelty (eliciting surprise) 

when the actors are weakly tied: 85.7% of the ties (n = 11) are non-redundant and weak. 

To sum up, the findings show two important conditions for the perception of 

novelty that combine with the mechanism of novelty delivery. One concerns the number 

of strong ties in the triads to define redundancy. The other regards the distant ties, 

instead of weak ties in general, to define the tie strength with a higher probability of 

acting as an accurate bridge. And finally, a significant aspect to define distant ties 

should be associated with a low level of emotional support. This method, therefore, 

confirms which bridges correspond to the perception of novelty and are related to the 

stimulus of surprise. 

Lastly, the findings show that non-redundancy is the bridging factor in the 

prediction of surprise that remains in the regression model when it aggregates all the 

variables under study. This means, that though both bridging factors are predictors of 

novelty they do not show this behavior when looked at simultaneously. The findings, at 

first, seem to agree with McEvily et al. (1999) who assert that there is no correlation 

between weak ties and non-redundancy. However, contrary to these authors, this study 

did not consider the infrequency of interaction as the single variable of coding of the tie 

strength, which may change the correlation between both variables. In fact, by 

eliminating the variable “Emotional Support” in the study, several strong ties became 
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weak ties. Second, it should be noted that the correlation, or overlapping, between the 

bridging factors was not statistically proven. This may be due to a possible lack of 

sufficient statistical power, given the dimension of the study sample. This should be 

mentioned because the corresponding association between the variables seems to exist. 

In fact, non-redundancy is more prevalent when in association with weak ties, as 

mentioned above. Therefore, it seems accurate to say that the bridges confirmed by the 

method proposed – using surprise as proxy of novelty perceived – match the best 

conditions for delivery and reception of novelty, and that bridging is an important 

structural condition to explain the emotional reaction of surprise.  

Last but not least, the method being tested in this study provides an alternative 

method to control the whole bridging mechanism, which could also be usefully applied 

in other studies on novelty or its underlying problems (e.g. novelty vs. creativity). When 

confirming the delivery of novel information in their studies, some social network 

scholars often do so by identifying other dimensions that are supposed to be a condition 

of novelty delivered (e.g., knowledge, innovation, creativity). Thus, they verify novelty 

as an underlying proxy to these dimensions. This is the case of Aral and Alstyne’s 

(2011) work, which contends that strong ties are beneficial in network structures rich in 

structural holes. These ties create dense information flows that improve the access to 

novelty. These authors report different results from the ones analyzed here about the 

relevance of tie strength (weak ties) and structural holes. The reasons for those 

differences seem to be centered on the type of framework used. They rely strongly on 

studies that do not consider the reception of novelty, but on other dimensions thought to 

be related to the delivery of novelty, e.g., knowledge transfer (Hansen 1999; Reagan & 

McEvily, 2003), innovation (Staber, 2004; Obstfeld, 2005), and creativity enhancement 

(Fleming et al., 2007; Sosa, 2011). This method applied in these studies could extend its 

results, namely by allowing an accurate association between novelty and the dimensions 

mentioned above related to personal and/or cognitive performance. 
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6.5 Conclusion 

There is not much published literature on empirical work regarding information 

flow through network relationships to validate network effects. This work tries to 

contradict this trend. In order to do this, I tried to clarify which bridging factors hold a 

stronger association with the perception of novelty by a receiver. The study deepens the 

understanding of the bridging mechanisms that are relevant for the delivery of novelty 

in a process of information sharing. This work also identified which individuals in a 

network, acting as senders of information, may play the role of brokers. A broker may 

intervene in the cognitive behavior of the receivers by suggesting new perspectives 

through the surprise effect. This seems to be a relevant contribution for the SNA field, 

as well as for the digital media field in regard to the problematic of the ‘social bubble’. 

This study presents a recognizable output, i.e., novelty perception, of the bridge 

mechanism and a new perspective over dyadic and network interactions surrounding 

these structural bridges. This is particularly useful to develop predictive models for 

these specific types of bridges. In fact, the prediction of novelty  represents a potential 

solution for some digital media constraints, such as the ‘echo Chamber’ effect in the 

personalization of Web-based services (Sunstein, 2009), the ‘Portfolio Effect’ (Groh & 

Ehmig, 2007), identified in recommendation systems, and the effect of social echo 

chamber related to the current use of social data, as detailed in this dissertation. Such 

effects are related to the lack of diversity in users’ viewpoints (Vargas & Castells, 

2011), and, thus, a lack of novelty in information delivered (Golder & Yardi, 2010).  

Regardless of the constraints and difficulties in keeping participants strongly 

engaged in long-term studies, it could be useful to extend this study to a larger 

population so as to reinforce or bring further clarifications on some analyses developed 

in this work. This research may also have faced some boundary constraints. Several ties 

were certainly out of the observation range, but I do not expect this uncaptured data 

would have interfered with the redundancy encoding results, to the point of observing a 

significant change in my conclusions. To support this claim I point out that an 

increment of non-redundant connections did not lead to notable changes in the 4-cycle 

redundancy tests described above. 

Beyond the findings of the presented study, two questions remain unanswered: 

how is the information flow be influenced by the surprise effect? And, what type of 
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relationship exists between the selection of contents and the friendship/ spatial 

proximity between senders and selectors of information (receivers)?  

Finally, when aiming to extend the knowledge about the information sharing 

process in a social network environment, it is also important to analyze to what extent 

the centrality measures (Freeman 1979) interfere or may predict the factors behind 

surprise response and compare such results with the ones obtained with bridging factors. 

The study presented in the following chapter looks for answers to these 

questions.  
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CHAPTER 7 

STRUCTURAL HOLES AND SURPRISE IN CONTENT 
SELECTION IN SOCIAL NETWORKS 

 

7.1 Overview 

Limited attention has been paid to the influence that social network dimensions 

associated to senders position relative to the receiver may have on an individual’s 

choices of contents. Thus, it is relevant to know how network dimensions (i.e., network 

centrality, structural holes, and tie strength) may influence the content selection by 

receivers. This raises the question of what determines such content selection. These 

relationships are empirically tested by using both social network data and participants’ 

survey data. Findings show that despite the fact that degree and strength of tie are 

associated with central positions in the network, they are not related to individual’s 

choices of contents. Findings also suggest that structural holes in association with the 

emotion of surprise, used as a proxy of the perception of novelty, offer a good 

representation of people‘s behavior when they select contents. These are valuable 

arguments to enhance content personalization with new perspectives for receivers. 

7.2 Introduction  

Social network literature is full of studies on bridging factors (i.e., weak ties and 

non-redundant structural holes), and centrality showing how each one determines the 

information flow (e.g., McEvily et al., 1999, Hansen, 1999; Holme & Ghoshal 2008; 

Kratzer & Lettl, 2008; Shi et al., 2013). However, despite differences in how they 

determine the information flow, they have only been studied by scholars from the 

sender’s viewpoint. Having discussed in the previous chapter the perspective regarding 

network bridges, I am now going to analyze the benefits associated to network positions 

identified by centrality measures (Freeman, 1979). Particularly, it is examined the 

relationship between the network position, occupied by the sender of information, and 

the individuals' choices of contents. 

The effects of central positions can easily be found in several online 

applications, such as on the delivery of a recommendation (e.g., the name of a book), 

which may follow criterions based on centrality (i.e., associated to the number of 
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persons that bought or rated that book). The assumptions behind this approach are based 

on the knowledge that individuals look for staying in contact with popular items or 

connect with popular people.56 Similar relevance seems to be attributed to the notion of 

social relevance.57 Thus, the degree of centrality is often used to determine the value58 

of a network node (e.g., an online resource) located in such structural positions. 

Recognizing that in many situations centrality is effective and provide good 

results, I would like to point to their weakest points and propose a more complex and 

powerful approach. The main problem of those methods is related to their over 

emphasis on a structural view and rationality neglecting the role of the elicited emotions 

when the receiver accesses the content.  

On top of that, there is another reason why my approach can improve the 

traditional understanding that usually neglects information concerning the receivers. In 

fact, scholars have not been taking in account the receivers' role in the network. This 

means that is not clear how the structural position of the senders relatively to receivers 

may influence the individual’s choices of contents. In this regard, I analyze how 

network dimensions (i.e., network centrality, structural holes, and tie strength) may 

influence the choices of contents by receivers. I also evaluate if the content production 

of the sender, their exposure in the network, will influence such choices. 

This raises the question of what determines the contents selection by receivers. 

What perspective should be followed in order to satisfy the target user? Should it be the 

sender's perspective or the receiver? Is there any difference between them? 

Therefore, in this chapter I will examine the information flow between sender 

and receiver considering receiver’s content selection and their emotional reaction. I will 

explore how individual’s choices of contents are related with the perception of 

novelty.59 The surprise response is applied as a proxy of the perception of novelty 

(Stiensmeier et al., 1995; Strange et al., 2005) to ensure that the bridging factors for the 

delivery of novelty correspond to the perception of novelty. In that way, I am certain 

                                            
56 Popularity in this context refers to people with a high value of degree centrality. 
57 From a network standpoint, social relevance derives from the high number of connections that a node 
has with adjacent nodes that also have a high number of connections. Thus, social relevance can be 
understood as the importance attributed to the assessment made by others about their choices concerning 
nodes connections. 
58 It assumes that individuals act opportunistically, calculating their potential benefits and costs. 
59 When this is verified, there is a non-redundant structural hole that connects sender and receiver. 
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that each choice of content corresponds to an emotion identified by the receiver (here 

dichotomized as ‘surprise’ and ‘no surprise’).  

The analysis undertaken in the study presented will rely on two types of central 

nodes. One it is identified by its role in network bridges (Burt, 1992), and the other by 

two centrality measures, degree and betweenness (Freeman, 1979). 

7.3 Central Nodes, receivers' content choices and h ypothesis 

The two types of central nodes considered in this chapter may have different 

implications to receivers. While centrality measures are based on the degree of its nodes 

(number of connections with adjacent nodes), network bridges are based on the ability 

to deliver novelty.  

The approach proposed, presented in Figure 3, seems to be new in social 

network studies and introduces an important valence that contributes to complete the 

representation of users in the network.  

 

Figure 4 – Conceptual model on content selection. 

 

Using the associated study of central nodes and emotional response, I examine 

whether the content selection is independent of (the presented) network dimensions and 

exposure of the sender or not (see figure 3). It is expected that the receiver's emotional 

reaction will be more determinant for content selection (individual’s choices of 

contents) than social relevance. In this study, social relevance regards the number of 

adjacent connections and corresponding tie strength of a given node relative to other 

nodes of the network. The number of adjacent nodes will be found by measuring the 

value of degree centrality (Freeman 1978). Four hypotheses emerge directly from this. 
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Hypothesis 1: there is a relationship between sender’s popularity and content 

selection.  

Hypothesis 2: surprise response is associated with content selection. 

Hypothesis 3: surprise response is associated with the quantity of published 

content by the sender. 

Hypothesis 4: tie strength is associated to content selection, independently of 

whether the tie between sender and receiver is a bridge or not. 

7.3.1 Sampling characteristic and procedures 

The sample is the same than the one presented in the previous chapters. 56 

emotional responses to content selections were validated in the study from 28 

participants (16 males, Mean (M) = 19.7 years, Standard Deviation (S.D.) = 1.4 years, 

12 females, M = 21.7 years, S.D. = 5.1 years). Similarly, the procedures for data 

collection were like described in the previous chapter.  

The methodology used allowed to produce two different networks. The first 

network (Figure 4 – Participant network) presents a network of social ties (friendship). 

With the data on social ties from the network and the information on tie strength from 

the questionnaire (third stage of the survey – see Appendix A), the entire network of 

friendship was identified. Degree and betweenness centrality of the senders was 

measured using the data from this sociograph. 

Figure 5 – Participants’ network 60. 

 

                                            
60 Download from the PFP through the software Node XL. 
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The second network (Figure 5 – Information flow network) shows ties that 

represent the individuals’ choices of content. Additionally, that will be used to inform 

us about the emotional reaction to content selection, notably surprise. 

Two groups of ties were identified from the Information flow network data. The 

first group, called “clique”, is formed by the participants among whom there is a tie of 

friendship (either weak or strong). The second group, called “acquaintances”, includes 

the participants with no shared ties between them. This method gives us the possibility 

to evaluate the number of content selections from a given sender and the corresponding 

tie strength with the receiver. I could also obtain information about which kind of tie 

corresponds to a surprise response.  

Figure 6 – Information flow’s network 61. 

 

Legend:  

(�) The arrows mean the direction of whom (receiver) selected a content from whom (sender). It 
explains the information flow between sender and receiver.  

(->) The arrows formed by dots means content selection between sender and a weakly tied receiver.  

(�) The arrows formed by lines represent a content selection for a strong tie.  

(---->) The arrows formed by dashes means a content selection with surprise response between weak 
ties (n=12). The results obtained reveal 12 surprise responses. 

(-.-.->) The arrows formed by dashes and dots means surprise response too, but in this case there is a 
strong tie between sender and receiver (n=2). 

(    ) The square shape (R) means a receiver that was surprised. The number, e.g., R2, means that the 
participant was surprised by two different content. 

(    ) The triangles represent a participant that was surprised as receiver and who, as sender, caused 
surprise with their contents.  

(   ) The circles mean no surprise. 

                                            
61 Configuration obtained with the data validated (56 content selections) using the software Node XL. 
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Dependent and Independent Variables 

The variable defining content selection activity is the main dependent variable: 

“Nr. of selections”. I expected to identify how receiver’s content selection (Nr. of 

selections), is influenced by both tie strength with the sender and structural position of 

the sender in the network. We will observe whether or not the emotional reaction of 

surprise (given by the independent variable of “Structural holes”) explains the content 

selection, and if it prevails over the other network dimensions in this regard 

(“Centrality” and “Tie Strength”). Similarly, the importance of senders’ exposure 

(“Total of published contents”) through their content published in regard to receiver’s 

content selection (Nr. of selections), is analyzed. The sender of the content selected is 

the central node observed. 

Relatively to independent variables, four variables were considered.  

Contents’ choices describe the participants’ activity in the “Information flow’s 

network” and was defined by two variables: “Total of published contents” and “Nr. of 

selections”. Both variables are presented in the tables below under the "Content’s 

choices", however, “Total of published contents” is the only one as independent 

variable. 

 

Centrality was measured by degree and betweenness (Freeman, 1979). Degree 

centrality was computed in both networks. In the “Participants’ network” the popularity 

of the sender is measured by its degree centrality62. In the “Information flow’s 

network”, the degree indicates the number of receivers who selected the content. 

Betweenness centrality63 was computed in the “Participants’ network”. This measure is 

regularly used as a bridging proxy (Mori et al., 2005; Kratzer & Lettl, 2008). With the 

values obtained it was verified the relationship between the structural position of the 

individuals acting as bridges and its values of betweenness.  

                                            
62 As reviewed in fifth chapter, degree can be calculated by counting the number of links for each node 
and, often, it is interpreted as a grade of popularity, prestige, or influence (Knoke & Burt, 1983). 
63 This measure refers to the probability that a ‘communication’ between two individuals takes a 
particular path, which minimize the number of intermediary nodes, being its length defined as the 
minimum number of ties linking these two individuals, either directly or indirectly. 
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Structural holes that connect otherwise disconnected individuals (Burt, 1992) 

were evaluated through triad-level measurements (Kalish & Robins, 2006). This 

analysis was based on the identification of triads64.  

 

Tie strength was based on a construct of four dimensions and dichotomized as 

weak ties and strong ties, as described in sixth chapter. These ties are described by six 

variables, which are distributed among two groups: the “clique” group and the 

“acquaintances” group. These six variables are listed in the item “Tie strength and 

content selection”, as shown below in the tables 8 and 9. 

7.3.2 Results 

Descriptive statistics for variables used in the analyses of content selection and 

publishing describe the values relative to each participant (N = 28).  

 

Table 8 – Descriptive statistics on content selection and publishing. 

Participants N Minimum Maximum Mean Std. 
Deviation 

Content’ choices      

   Total of published contents 199 3 22 7.10 4.42 

   Nr. of selections (first two selections) 56 0 9 2.00 2.37 

Clique (group of tied participants with 
content selected from each other) 

     

   Participants in the clique 160 1 17 5.71 4.13 

   Strong ties in the clique 70 0 8 2.50 2.26 

Tie strength and content selection      

   Weak ties from the clique that selected 10 0 2 .357 .558 

   Strong ties that selected 23 0  7 .821 1.54 

   Weak ties that selected 33 0 5 1.17 1.56 

   Strong ties that didn’t select 47 0 6 1.67 1.76 

   Weak ties not from the clique that selected  23 0 4 .821 1.33 

   Weak ties from the clique that didn’t select 71 0 6 2.53 1.87 

 

                                            
64 As mentioned in sixth chapter, a triad is a set of three persons that tend to close through a third person, 
forming a triadic closure, in which the strength of the ties among individuals plays a determinant role. 
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Table 8 shows that despite the high number of strong ties in the “clique” group 

(“Strong ties that selected” and “Strong ties that didn’t select”), the number of strong 

ties that select contents from someone in the “clique” group is quite small. This seems 

to reveal the low level of relevance of friendship in decision making for content 

selection. The Wilcoxon signed-rank test is used to verify this association. On the other 

hand, the number of “Weak ties not from the clique that selected” (N=23) are much 

higher than the number of “Weak ties from the clique that selected” (N=10). This seems 

to reinforce the idea that the level of friendship, even between acquaintances, is not as 

relevant as distant weak ties on the decision making for content selection. Given the 

relevance of distant ties as bridges (as verified previously in chapter 6), this seems to be 

relevant to show the importance of bridging ties – associated to novelty perceived – on 

content selection.    

 

Table 9 – Pearson correlations. 

Variables (1) (2) (3) 

Content’ choices    

(1) Total of published contents   -- 

(2) Nr. of selections (first two selections) .032   

Centrality measures -- -- -- 

Structural holes    

(3) Surprise  .010  

Tie strength and content selection     

Weak ties from the clique that selected  .020 .005 

Strong ties that selected  .003  

Weak ties that selected  .011 * X2 (1) = 22,19 

Strong ties that didn’t select    

Weak ties not from the clique that selected   .003 

Weak ties from the clique that didn’t select -- -- -- 

* p < 0.001 

 

The Table 9 shows a positive correlation between the “Nr. of selections” and ties 

from the “clique” group: weak ties (r = 42.903, p = .020) and strong ties (r = 83.707, p 

= .003), showing that both acquaintances and friends selected contents. However, no 

correlation was found between the number of ties of each sender (degree centrality in 
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the “Participants’ network”) and content selection, or in other words, between 

popularity and content selection. 

On the other hand, evidence was found for the relationship between surprise and 

the “Nr. of selections” (X2 = 18.563, df = 7, p < .010). Furthermore, a 

strong association was found between surprise and weak ties that selected content (X2 = 

22.193, df = 5, p < .001). This includes all weak ties that selected, either from the 

“clique” group (r = 10.463, p = .005), or not from the “clique” group (r = 93.889, p 

= .003). 

The associations were examined between the activities of content selection (“Nr. 

of selections”) and the independent variables represented by the three network 

dimensions under study. Table 10 does not list any results for tie strength, degree and 

betweenness centrality, because no association was found between them and “Nr. of 

selections”. 

 

Table 10 – Coefficients from regression model predicting surprise. 

Predictors Nr. of selections  

Content’ choices  

Total of published contents  .216 (.034) 

Structural holes  

Surprise 3.733 (.001) 

 

Hypothesis 1 states that there is a relationship between sender’s popularity and 

content selection. Firstly, by computing Pearson’s correlation no association was found 

between the number of ties held by each sender (sender's popularity) and the 

selection of their content. Moreover, applying the multiple linear regression65 with 

backward variables selection, I found that the degree centrality values  in “Participants’ 

network” is not associated to the values presented by any variable related to ties from 

the “clique” group that selected ("Weak ties from the clique that selected" and "Strong 

ties that selected"). A higher value on degree centrality of a sender does not mean a 

selection of their contents by a receiver, independently whether their bond is weak or 

strong, when they belong to the clique that selected. Thus, Hypothesis 1 is not 

                                            
65 The assumptions of linear regression were verified. 
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confirmed and factors underlying to social relevance are not determinant to content 

selection. Content selection was found not to be associated to the sender’s popularity. 

Individuals make their content choices irrespectively of the kind of relationship they 

have at friendship level with the sender. As seen in Table 8, the findings show a low 

level of relevance of friendship on decision making for content selection. Therefore, to 

have a strong tie with the sender is not predictive of content selection. 

To test Hypothesis 2, which posits that the surprise response is associated with 

content selection, multiple linear regression it was applied. It was found that content 

selection is strongly associated with surprise response (B adjusted = 3.733, p = .001). 

Thus, Hypothesis 2 is confirmed. 

To test Hypothesis 3, which states that surprise response is associated with the 

quantity of published content by the sender, it was applied the Fisher's Exact test. The 

results suggest that there is no association between the activity of publishing contents 

and becoming more surprised (p = .433). Thus, the surprise response is not associated 

with the contents sender’s production, and Hypothesis 3 is not confirmed.  

Hypothesis 4 posits that the tie strength is associated to content selection, 

independently of whether the tie between sender and receiver is a bridge or not. 

Wilcoxon’s signed-rank test was applied to analyze whether or not there is a difference 

between strong and weak ties for content selection (Table 8). The results shown that 

there is not a significant difference between the number of selections made by strong 

and weak ties (Z = - 1.052, p = .293). This seems to indicate that friendship (strong ties) 

is not prevalent for content selection. Furthermore, by applying multiple linear 

regressions, no relationship was found between weak or strong ties and the variable “Nr. 

of selections” (Table 10). The same results were found when surprise was included in 

the regression model. Thus, content selection is not associated with the strength of the 

tie. Friendship ties (i.e., strong ties) do not predict content selection, even when this tie 

is associated with a bridging factor, which confirms Hypothesis 4.  

Therefore the results seem to reveal that people make their content selection 

independently of the tie strength and sender's content production and popularity. Sender 

exposure does not determine the content choices when the individual is surprised. Once 

again it is verified that content selection does not obey to social relevance factors, 

because individuals’ choices do not rely on senders identified by high values of 

centrality measures (i.e., degree centrality, and so, popularity). On the other hand, given 
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that surprise is representative of the perception of novelty, it was found that there is a 

preference to select contents from central nodes represented by bridges and posted by 

weak ties, rather than those posted by close friends or associated to centrality measures 

(Freeman, 1979). 

Finally, the coincidence between the assessment of betweenness centrality and 

bridging was analyzed. Betweenness centrality identifies the brokering position of the 

participants in the "Participants’ network" and is associated to the network of ties 

among participants. Bridging associated with novelty perception is identified by the 

emotional response of surprise in the "Information flow's network" given the content 

choices. Pearson’s correlation shows that there is not any association between 

betweenness and bridging. The positions associated to the brokering activity do not 

coincide with the location of bridges eliciting surprise. Thus, the brokering positions 

defined by high values of betweenness centrality do not coincide with the positions 

occupied by senders that elicited the surprise response in receivers. 

7.4 Discussion 

It is known that bridging nodes are typically located at the periphery (Valente & 

Fujimoto, 2010), but the broker’s role can also be measured by betweenness centrality 

and still be independent of degree, which indicates peripheral locations 

(Haythornthwaite, 1996). Nevertheless, none of these possibilities reveal how content 

choices are made, because such measures are typically centered in senders’ perspective. 

This study considered the information flow in a network from the receivers’ viewpoint 

(rather than the sender's perspective), regarding the two types of central nodes, bridges 

and the ones defined by centrality measures.  

Furthermore, it was analyzed how tie strength may influence the choices of 

contents by receivers, as well as if the content production of the sender, their exposure 

in the network, could influence such choices. 

The overall results do not confirm hypotheses related to centrality measures, but 

they do confirm the ones related to bridging factors. This suggests that only one of the 

central nodes (i.e., the information flow through network bridges associated to the 

perception of novelty) matches with the individuals’ content choices. Furthermore, I 

verified the low level of importance of friendship on decision making for content 
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choices, at least for the contents analyzed in the survey. The contents shared among 

participants were mostly videos (some of them were songs), photos and online news. 

The discussion will be structured into two parts; a) flow of information 

determined by central nodes associated to high values of centrality measures; b) 

emotional factors related to central nodes identified by its role as network bridge.  

a) Flow of information: 

First, I analyze the flow of information in a network considering the viewpoint 

of centrality measures. Literature on central nodes has been focusing its attention in the 

benefits associated to network position, either related to the degree centrality (and other 

derived measures), or related to the brokerage activity. This kind of approach is strongly 

associated to the role of the individual located in such position, i.e., the position of the 

sender. Nevertheless, we can extend the understanding about the information flow in the 

network by considering the receiver’s perspective relatively to senders’ position, as well 

as the personal attributes. This may change the assessment made about the importance 

of a given type of central node. However, a different outlook has been adopted by 

scholars.  

It is correct to say that centrality measures of a central node are not about 

isolated attributes of individuals, nor are they about their role as a sender of 

information; rather, they represent the individual's relationship within the network and 

ability to control the flow of information. From the viewpoint of the number of adjacent 

nodes, these central nodes are weighted by their social relevance to other nodes, and, 

thus, are frequently seen as objects, rather than sources, of communication (Knoke & 

Burt, 1983). It is in such conditions that the benefit (and power) underlying its network 

position is estimated. However, it is not estimated how that network position, given 

individual attributes, may benefit other nodes (e.g., giving access to novel information).  

On the other hand, those metrics are relative measurements because they 

compare their elements among each other based on a static structure corresponding to a 

certain moment in time (Nanda & Kotz, 2008). Of course that, despite the limitation of 

the metrics, methods and tools to observe such dynamic relationships, seems relevant to 

advance in studies that comprehend such dynamics in a more holistic way.  

b) Emotional factors: 
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Second, considering the arguments above, it seems that scholars have 

overlooked how personal attributes (Aral et al., 2009) and, consequently, individual 

choices may interfere in the information flow. There is a lack of data concerning the 

individual's role in linking parts. In fact, neither does Granovetter deliberate on how the 

individuals at each end of the tie participate in the effectiveness of the bridging 

connections, nor does Burt clarify whether or not the bridging factors are independent of 

recipients’ perception. 

I discuss how emotional factors (i.e., surprise) are a better descriptor of content 

choices than the social relevance factors of nodes.  

In Burt’s (1992, 2004) concept of bridging it is stated that the differences in 

interests and unique perspectives of individuals surrounding structural holes creates 

advantages in the access to information, novelty and the spreading of information 

(Bakshy & Rosenn, 2012). The individual that spans the structural hole, or the broker 

that mediates the access to resources by connecting parties or preexisting ties between 

parties (Katz & Tushman, 1981), transports information on personal attributes and 

people’s social world immersed in the content shared. In this sense, the filtering of 

information through the network processes creates an interchange of information about 

people participating in the bridge (Burt, 1992)66. 

This view asserts that it is the network that promotes and legitimates both 

information and network members, which, from this standpoint, are instrumental in 

receiving and forwarding such information (Haythornthwaite, 1996). This is a structural 

outlook that is emphasized by some realms of literature that argue that nodes or groups 

of nodes of a network can be replaced with no information flow breakdown (Sarr et al., 

2012). However, this seems to be an incomplete view when considering the dimension 

of the psychological characteristics (personal attributes) of the actors in a social 

network, as the results presented in this work seems to show.  

Furthermore, the literature on central nodes usually debates the benefits accessed 

by the central position occupied, but the overall process behind the structural bridges is 

not fully characterized, or terminated, with the argument that brokers facilitate the 

access to novelty (Obstfeld, 2005).  

                                            
66 As stated by Burt (1992, p. 14), “the network that filters information coming to you also directs, 
concentrates, and legitimates information about you going to others”. 



124 
 

This study complements the traditional structural view (e.g., Burt, 1992; Valente 

& Fujimoto, 2010) introducing the surprise response as a proxy of novelty to analyze 

the emotional reaction to content selection, and presents a different perspective on how 

social network dimensions may influence content choices of the Web users. It was also 

shown that that content selection in a social network environment is more dependent of 

receiver's emotional reaction than from factors associated with node's social relevance –

characterized in this work by popularity of the sender and tie strength between sender 

and receiver. 

In summary, though popularity and friendship suggest that a network's central 

positions show nearness, these two dimensions are not associated with receivers’ 

content selection. This association can also not be made with all kinds of bridges 

(structural holes), but only with those related to the receivers' stimulus of surprise. 

Therefore, the overall results indicate that the network dimensions of centrality (degree 

and betweenness) and tie strength (i.e., friendship) are less relevant to content choices 

than has been assumed (considering the relevance attributed to those network 

dimensions on providing social data and solutions to digital media systems). Instead, 

structural holes spanned by weak ties reveal a strong relationship with receivers’ choice 

of contents. Particularly, by applying surprise as proxy of novelty perceived, the 

relevance of the emotional reaction in the content choices is made clear. 

7.5 Conclusion 

This study generalizes Burt’s (1992) assertion about bridges, highlights its 

relevance as a central node, and the importance of novelty perception to validate 

bridging factors (i.e., non-redundant structural holes), and study the behavior of content 

selection by receivers of information.   

Bridging nodes present valuable arguments as central nodes, either by the 

uniqueness of the information flow brokered or by their association with the emotion of 

surprise. This allows the creation of content personalization rich in new perspectives for 

the receiver, and offers a good representation of people‘s behavior when they select 

contents. For specific concerns, they are a valuable alternative to central nodes 

identified by centrality measures. 

More studies are required concerning the bias set forth by the information flow 

centrality measurements, which is centered in the number of ties, as proposed in the 
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original measures (Freeman, 1979). This emphasis on centrality may have weakened the 

development of other measures for structural positions (Valente & Fujimoto, 2010), in 

particular, understanding the role of users' psychological characteristics in social 

networks. 

The development of a different approach, e.g., considering the prediction of 

surprise, can have significant applications in digital media systems, such as in 

recommendation systems and search engines. Considering the current demand for social 

data, scholars may be encouraged to extend the study of emotions elicited on social 

networks, notably from the perspective of the perception of novelty.  

This research may have limitations, given the sample used. An extension to 

these results could be found by analyzing how the cognitive distance between receivers 

and senders may justify the stimulus of surprise. In doing so, analyzing which factors 

could justify similarities at an emotional level that could determine an optimal cognitive 

distance for the perception of novelty becomes equally significant. The next chapter of 

this dissertation presents an approach to the analysis of these questions. 
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CHAPTER 8 

PERSONAL ATTRIBUTES AND BRIDGING TO DEFINE 
COGNITIVE DISTANCE: PREDICTING SURPRISE 

 

8.1 Overview 

Our network of contacts and level or interaction with which we usually do not 

have a frequent contact is growing fast. This is raising the importance of 

communication among people bound by a weak tie and so, the need to understand the 

data behind the connections between people socially distant, through which novelty can 

be exchanged. However, little attention has been given to the implications that personal 

attributes may have in this process, notably, in the information flow from the standpoint 

of an individual’s emotional reaction when the information is accessed. Thus, I test 

which personal attributes (i.e., homophily, preferences of music genre and emotional 

reaction to music genres, and political views) and bridging factors represent the optimal 

cognitive distance that is associated with the perception of novelty. Here, surprise is 

applied and justified as a proxy of novelty perceived by receivers. Findings show that 

dissimilarity rather than similarity compose the cognitive distance that explains the 

surprise response, jointly with bridging factors. These dimensions are relevant to design 

personalized recommendation based in novelty. 

8.2 Introduction  

Interactive media like online social networks have been scaling our access to a 

larger number of people, which mainly consists of acquaintances instead of people with 

which we have a frequent contact. In this context, weak ties are becoming more 

influential than strong ties on behavior or opinions that people choose to adopt (Bakshy 

& Rosenn, 2012). This fact creates a totally new kind of output based on sharing views 

between Web users, which can benefit from new insights and novelty, as the theories on 

network bridges show (Granovetter, 1973; Burt, 1992). Furthermore, there is an 

association between surprise and bridging factors (i.e., weak ties and non-redundant 

structural holes), connecting senders and receivers of novel information, as we have 

seen in the sixth chapter. This highlights the need to know more about how to collect 

data on the different possibilities of users' interaction beyond the ones based on the 
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homophily dynamics, adjacent connections, strong ties, or characterized by centrality 

measures. However, little attention has been given to the implications that personal 

attributes may have in the information flow from the standpoint of an individual’s 

emotional reaction when the information is accessed. This knowledge is important, in 

order to characterize the processes of interaction between people socially distant (i.e., 

connected by weak ties or by means of structural holes). Further, this data is easy to get 

from social networks. Thus, in this chapter I examine the role of similarities/ 

dissimilarities between sender and receiver when surprise is elicited. In order to do that 

a threefold approach is proposed. 

Firstly, I applied the concept of optimal cognitive distance (Nooteboom, 1992; 

2005). This conceptualization states the importance of differences in cognition 

(cognitive distance) between individuals and the trade-off between a higher novelty 

value and a mutual understanding. Where this distance is too large, it may preclude 

mutual understanding and then the information received will not be perceived as novel. 

While if it is too short, this means that there is too much familiarity in the information 

shared (Nooteboom et al., 2007) and, thus, no surprise involved, given the absence of 

novelty (Barto et al., 2013). Distance in Nooteboom model is explained by means of the 

existing dissimilarity between partners and by the contribution to the creation of new 

knowledge and novelty (Nooteboom, 2000, 2007).  

Secondly, I propose a way of solving the issues caused by the absence of a direct 

measurement of cognitive distance. Wuyts et al. (2005), who tested the optimal 

cognitive distance hypothesis in the perspective of finding the technological and 

organizational differences between partners of pharmaceutical firms, identified that as a 

major limitation67. To surpass this constraint, although in a different context of 

application, this study proposes the use of personal attributes and test network 

dimensions (i.e., bridging factors) to define such a distance between sender and 

receiver. I propose a range of personal attributes to identify the optimal cognitive 

distance underlying the perception of novelty, by means of detecting the surprise 

elicited when the receiver selects a content of a sender. The range of personal attributes 

                                            
67 The authors assumed that the more that pharmaceutical firms cooperate with the same partners over 
time in their agreement portfolio, the lower will be the average cognitive distance with their partners. 
They argue that the assumption is consistent with an earlier finding that cognitive distance decreases as 
interaction is more frequent (e.g., (Lewicki and Bunker, 1996). 
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comprises the dimensions of status homophily (McPherson et al., 2001), attitudinal 

similarity (McCroskey et al., 1975, 2006), political views (Lin & Ensel, 1981, Fond & 

Neville, 2010), preferences of music genre (Rentfrow & Gosling, 2003), and emotional 

reaction to music genres.  

Thirdly, the assumptions on bridging proposed by Granovetter (1973) and Burt 

(1992) are tested. It is well established that the information flow crossing a bridge 

(Granovetter, 1973; Burt, 1992) in a social network is strongly determined by the level 

of novelty that it carries to a receiver.68 

Therefore, the aim is to identify which personal attributes and bridging factors 

jointly characterize the optimal cognitive distance underlying the perception of novelty, 

i.e., surprise.  

That goal has however an important implication, that is the need to combine the 

cognitive view with the social structural view or, in other words, to analyze the 

association between personal attributes and the bridges outputs.  

Those goals also give the possibility of exploring an alternative approach to 

social network analysis, notably in the understanding of the delivery of novelty through 

network bridges, as well as in the use of these social data in Web applications, like 

social-based recommender systems. That line of reasoning may introduce a more 

detailed knowledge in which dimensions characterize the interaction between two 

socially distant people in a network when a specific emotion is elicited, i.e., surprise. 

Furthermore, the interplay between bridging and emotional reaction may show the way 

towards the next generation of social networking for digital media systems and a new 

approach for scholars in the field of social network analysis.  

8.3 Cognitive distance and hypothesis 

In this chapter I examine in a social network environment which personal 

attributes and network dimensions (i.e., bridging factors) are associated with the 

surprise response when a receiver selects contents. As Figure 6 shows, in such 

conditions there is a cognitive distance between sender and receiver into which surprise 

is elicited. 

                                            
68 In this study, similarly to what was done in the previous chapters, surprise (e.g., Teigen & Keren, 2003) 
is used as a proxy of novelty (Stiensmeier et al., 1995; Strange et al., 2005). 
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Figure 7 – Conceptual model on cognitive distance. 

 

 

Nooteboom’s optimal cognitive distance hypothesis was already tested by 

several scholars (e.g., Wuyts et al. (2005) and Nooteboom et al. (2005)) in order to 

explain the inverse U-shaped relation between novelty and cognitive distance. The 

optimal level is found here at the middle point between the very low and very high 

levels of cognitive distance. This is related with the tradeoff between opportunity and 

challenge in processes of learning and innovation, in interaction between firms 

(Nooteboom, 1992; Nooteboom, et al., 2005, Wuyts et al., 2005).69 The opportunity is 

related to diversity, where the novelty value of a relation increases with cognitive 

distance. The challenge lies in finding partners at sufficient cognitive distance to tell 

something new, but not so distant as to preclude mutual understanding. In this sense, 

Nooteboom (2005) posits that with more knowledge one needs larger cognitive 

distances to find novelty. In a similar vein, Gilsing et al. (2008) state that, cognitive 

distance refers to the extent that, organizations differ in their technological knowledge 

and expertise. Here, the authors consider the role of cognitive distance among 

organizations forming an alliance network. 

Regarding this study, the concept of optimal cognitive distance was adopted 

with the aim of framing a possible range of dimensions based on similarities (or 

dissimilarities) and network factors that justify the surprise response when a content 

                                            
69 The results found were tested in 994 alliances in several industries, in the period 1986-1996, by 
Nooteboom et al., and on interfirm agreements between pharmaceutical companies and biotech 
companies, as well as on interfirm agreements in ICT industries, by Wuyts et al..  
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shared by a sender is selected by the receiver. Two reasons justify this option: a) The 

inverse U-shaped relation between novelty and cognitive distance helps to frame 

theoretically the approach of this study; b) The adequacy of using surprise instead of 

novelty, it is adequate and justified by the proxy between novelty and surprise 

introduced in previous chapters. 

In this sense, six hypotheses will be explored. The listed hypotheses incorporate 

two opposite views to justify surprise response. One is based in the similarities of 

personal attributes between sender and receiver. The other is based on dissimilarities. 

Each hypothesis on similarity and dissimilarity is also tested with bridging factors. I do 

not list here mixed hypotheses on similarity and dissimilarity, e.g., similar in music but 

dissimilar in political views, and vice versa. However, the results of these tests are 

debated in discussion section. 

Hypothesis 1: Surprise is elicited when sender and receiver share dimensions of 

status and attitude homophily and have similar interests in music and political views 

(Homophilous Hypothesis). 

Hypothesis 2: Surprise is elicited when sender and receiver are dissimilar 

(Dissimilar Hypothesis). 

Hypothesis 3: Surprise is elicited when sender and receiver are bridged by a 

weak tie, share dimensions of status and attitude homophily and have similar interests 

in music and political views (Homophilous and weak ties Hypothesis). 

Hypothesis 4: Surprise is elicited when sender and receiver bridged by a weak 

tie are dissimilar (Dissimilar and weak ties Hypothesis). 

Hypothesis 5: Surprise is elicited when sender and receiver are bridged by non-

redundant structural holes, share dimensions of status and attitude homophily and have 

similar interests in music and political views (Homophilous and structural holes 

Hypothesis).  

Hypothesis 6: Surprise is elicited when sender and receiver bridged by non-

redundant structural holes are dissimilar (Dissimilar and structural holes Hypothesis). 
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8.3.1 Setting  

Sample and procedures for data collection were the same as the ones presented 

in previous chapters. 56 emotional responses to content selections were validated in the 

study from 28 participants (16 males, Mean (M) = 19.7 years, Standard Deviation (S.D.) 

= 1.4 years, 12 females, M = 21.7 years, S.D. = 5.1 years).  

Dependent and Independent Variables 

The dependent variable in this study is the surprise perceived by participants 

when they selected shared contents. As previously discussed, surprise is an accurate 

proxy to study the receivers’ novelty perception while receiving information through a 

bridge. Here, two bridging factors are observed separately. One concerning 

Granovetter’s (1973) proposal, based on the weak ties. The other, based on Burt’s 

(1992) theory of structural holes.  

Relatively to independent variables, two groups were considered. The first group 

includes the network factors characterizing bridging assumptions. The two bridging 

factors analyzed are relative to the variables of tie strength (Granovetter, 1973) and non-

redundancy (Burt, 1992). The procedures for measuring tie strength and structural holes 

were described in previous chapters.  

The second group of independent variables refers to personal attributes. It 

includes five variables: a) socio-demographic dimensions; b) attitudinal similarity; c) 

political views; d) preferences of music genre; e) emotional reaction to music genres. 

Socio-demographic dimensions: Each participant characterized their own 

dimensions on status homophily.  For the study it was considered the dimensions of 

economic factors, gender, ethnicity and religion (McPherson et al., 2001). Given the 

sample homogeneity, we withdrew the dimensions of age and educational level. Each 

participant characterized their own socio-demographic dimensions by answering the 

online questionnaire. Status homophily data was collected individually. For 

normalization of such data it was estimated the euclidean distance70 between receptor 

and source for each dimension of status homophily. 

Attitudinal similarity: The Perceived Homophily Measures (PHM) of 

McCroskey et al.’s (1975, 2006) was adopted to evaluate the attitudinal homophily. 

                                            
70 Euclidean distance gives a measure of dissimilarity between two variables. 
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McCroskey et al. (2006) model allow the study of variables such as Attitude and 

Economic factors, regarding the perception of others. This model fits well the approach 

to the Attitude71 study. 

Political views: Participants were asked to specify their political affiliation, or 

political inclinations. Five options were listed: Conservative; Moderate; Liberal; 

Independent; Other. To compute the result the variable was dichotomized. 

Music genres preferences: preference of music genre and emotional reaction to 

music genres were based on the use of the dimensions studied by Rentfrow & Gosling 

(2003) about musical preferences72. Participants were asked about their preferences in 

musical genres and classified different types of music by selecting a value ranging from 

1 (Very negative) to 10 (Very positive). Four categories of music genres were 

presented, such as “Reflective and Complex (Blues, Folk, Classical, Jazz)”, “Intense 

and Rebellious (Alternative, Heavy metal, Rock)”, “Upbeat and Conventional (Country, 

Religious, Pop)”, “Energetic and Rhythmic (Funk, Hip-Hop, Soul, Electronica)”.  

Participants were also asked about their emotional reaction when they listen to a 

particular type of music, based on the same four categories of music genres listed above. 

Participants classified each category with one specific emotion out of a list of ten. These 

emotions were based on the DES scale of Izard (1991). The variables “preference of 

music genre”, and “emotional reaction to music genres” were both dichotomized.  

 

                                            
71 Participants answered a set of six questions based on a five-point semantic differential scale. Scale 
items included descriptors such as “The participant that stimulated the emotion of ‘surprise’ on me”: 
‘Behaves like me (e.g., in public, among friends)’. In order to dichotomize this variable, firstly a value 
from 1 to 5 was attributed for each item of the scale (e.g., 1 – “Strongly disagree”; 5 – “Strongly agree”). 
Secondly, the mean and the standard deviation were estimated. Then, the lowest value of the scale (A – 
lower border) was obtained by subtracting the value of the standard deviation from the mean value. By 
adding the standard deviation value to the mean value we found the other end of the scale (B – higher 
border). All the values lower than or equal to A and equal to or greater than B were considered in the 
extremes. We dichotomized the variable by coding the extremes (A and B) with 0 and 1 (between A and 
B). 
72 The authors used a set of music’ genres already studied (Reflective and Complex, Intense and 
Rebellious, Upbeat and Conventional, and Energetic and Rhythmic) to identify, or predict, traits of 
personality according to a wide array of personality dimensions (e.g., openness), self-views (e.g., political 
orientation), and cognitive abilities (e.g., verbal IQ). The authors’ claim is that music preferences are 
partially determined by personality, self-views, and cognitive abilities. For the questionnaire, we adopted 
the framework used by Rentfrow & Gosling (2003). 
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8.3.2 Results 

The study aims to draw conclusions about which personal attributes and bridging 

factor predicts surprise. By means of the dimensions mentioned, it was intended to 

characterize the optimal cognitive distance between sender and receiver underlying the 

perception of novelty. This means, when the surprise is elicited. 

Firstly, it was analyzed which personal attributes have a relationship with the 

perception of novelty through the proxy of surprise. Secondly, it was analyzed the 

association between each bridging factor and surprise and on how this structural 

property interferes in the relationship between personal attributes and the perception of 

novelty. 

8.3.2.1 Personal attributes and surprise  

The first step was to establish the association between surprise and the 

independent variables describing personal attributes. Pearson’s correlation results (see 

table 11) suggests that gender (X2 = 4.691, p = .030) and attitudinal similarities (X2 = 

4.058, p = .044) are the only variables associated with surprise. This means that in all 

content selections related to surprise, 74% correspond to different genders between 

receivers and senders and that in 64.3%, receivers consider themselves similar to the 

source of information.  

 

Table 11 – Pearson’s correlations.  

Variables (1) (2) (3) 

Economic factors -- -- -- 
Gender -- -- .030 

Ethnicity .017 * 12.355 (.001) -- 

Religion 0.48 .012 -- 

Attitudinal similarity   .044 

(1) Tie strength   .019 

(2) Redundancy * 20.541 (.001)  .005 

(3) Surprise    

* p < 0.001 

To study the correlations between the variables it was performed logistic 

regressions.  



135 
 

Internal consistency reliability was established by Cronbach alpha values. It was 

computed such coefficients for attitudinal homophily (.67) and tie strength (.97). 

Table 12 – Coefficients from regression model predicting surprise. 

Predictors Tie Strength Redundancy Surprise 

Personal attributes   

Economic factors   -- 
Gender   4.062 (.037) 

Ethnicity -.224 (.021) -.096 (.001) -- 

Religion   -- 

Attitudinal similarity   -.243 (.054) 

Interactions    

  Gender (& tie strength)   4.379 (.037) 
  Gender (& redundancy)   -- 

  Tie strength (& gender)   -.394 (.029) 

  Redundancy (& gender)   -- 

Logistic regression was used to explore the influence of the variables of the 

socio demographic variables (religion, ethnicity, economic factors and gender) on the 

variable of attitude. None of the tested variables presented an association with attitude.  

The association between tie strength and the variables of ethnicity, gender, 

economic factors and religion, as well as attitude was also analyzed. Applying logistic 

regression, the results showed that only ethnicity was significantly related with the tie 

strength. The odds of having a strong tie decreased when the sender and the receiver had 

different ethnicities (odds ratio = .224, p = .021, 95% CI [.062, .801]).  

To understand whether any of these independent variables could be a predictor 

of surprise, logistic regression was computed (see table 12). The results suggest that 

either attitudinal similarities (odds =.243, p = .054, 90% CI: [.073, .813]), or gender 

(odds ratio = 4.062, p = .037, 95% CI [1.089, 15.150]) hold a significant relationship 

with surprise response. When the sender and the receiver have different genders, the 

odds of having a surprise response increases. The same happens regarding the 

attitudinal similarities between these actors. When there are attitudinal similarities, the 

odds of having a surprise response increase. 

8.3.2.2 Personal attributes and bridging factors of 
surprise 

Next, it was mainly examined the associations between each bridging factor and 

personal attributes with surprise. Firstly, it was found that there is strong evidence of a 
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relationship between surprise and tie strength (X2 = 5.534, p = .019), where 36% are 

weak ties and 9% are strong ones, and 85.7% of the weak ties spanning non-redundant 

structural holes (N = 11) are associated with the stimulus of surprise (see table 11), as 

well as between surprise and redundancy (X2 = 7.754, p = .005), where 78.6% of these 

connections are established over a structural hole linking non-redundant peers of 

receivers and senders of information. 

Secondly, logistic regression (table 12) was computed separately for each 

bridging factor jointly with personal attributes as independent variables, and with 

surprise as a dependent variable. Including personal attributes and tie strength in the 

regression model, both gender (odds ratio adjusted = 4.379, p = 0.037, 95% CI [1.090, 

17.587]) and tie strength (odds ratio adjusted = 0.394, p = 0.029, 95% CI [0.171, 0.908]) 

were significantly related to surprise response. The odds of having a surprise response 

decreased with strong ties. Nonetheless, when the regression model included gender and 

redundancy, no significant relationship with surprise response were found. 

8.4 Discussion 

This study tested a range of personal attributes to find which one is associated 

with the surprise response when a content delivered by a bridge is perceived by a 

receiver as novelty. This means identifying the optimal cognitive distance measured by 

personal attributes that jointly with bridging factors predict the surprise.  

This study consisted of two levels of analysis. First, the association between 

personal attributes and surprise was examined. It was found that only two dimensions of 

homophily, i.e., gender, more specifically gender differences, and the attitudinal 

similarity were associated with surprise response. The regression model showed that 

differences in gender and similarities in attitudinal behavior, analyzed separately, 

predict surprise. These findings suggest that these two personal characteristics make up 

the cognitive distance that explains the surprise response.  

Surprise is elicited when the cognitive distance between sender and receiver is 

not too short, and nor is it too great. If the distance is too short, the familiarity of the 

information will prevent any surprise, and if it is too great, it may preclude mutual 

understanding to benefit from the opportunity of a novelty perception. It is in between 

cognitive borders that surprise occurs. Besides that, other emotions are elicited, but 

which are not relevant for the bridging effect. 
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It is assumed that cognitive similarities contribute to improving the perception of 

the message (Roger & Bhowmik, 1970), and that similarity induces homophily 

(McPherson et al., 2001), as well as to establishing links of trustworthiness, and 

generate better acceptance of recommendations between pairs (Arazy et al., 2010). 

Nonetheless, the results suggest that what reinforces the level of communication 

through the emotion of surprise is the gender difference. Thus, the factor of cognitive 

agreement is based on heterophily (dissimilarities) rather than on, only, homophily. 

Here, the optimal cognitive distance associated with the surprise elicited is due to a mix 

of heterophilous and homophilous factors.  

In fact, H1 (Homophilous Hypothesis) was confirmed, but only for attitude 

similarity. H2 (Dissimilar Hypothesis) was also confirmed due to the differences in 

gender. This means that surprise is more probable to occur between two individuals that 

share information online if they have similar attitudes, or are from different genders. 

Furthermore, the tests did not show any significant relationship between surprise and 

similarities or dissimilarities in music preferences and emotional reaction to music 

genres. The same results were obtained for political views. Mixed hypotheses were also 

tested, e.g., similar in music but dissimilar in political views, and vice versa, with the 

aim to define the best possibilities based in personal attributes. Nevertheless, I did not 

find any valid combination.  

Thus, if the model does not change its predictors, this can be taken as evidence 

that these attributes (i.e., economic factors, religion, music genres and corresponding 

emotional reaction, and political views) included in the model, do not mediate the 

relationship between bridging factors and surprise, nor are they predictors of surprise 

when tested in isolation in the model.  

This raises the question of how the relationship between communication 

agreement and differences in gender, between two actors, challenge the conventional 

assumptions about homophily (McPherson et al., 2001). Several scholars report that 

gender homophily is an inductor of tie creation. In this vein of research, van Duijn et al., 

(2003) and Leenders (1997) posit that gender homophily justifies the formation of 

friendship ties. However, this is not true in cases where the strength of the tie is not 

strong, i.e., in “friendly” or “neutral” relations. More recently, scholars have noticed 

that absolute similarity in individuals’ attributes may not characterize social 

connections. In some instances, individuals may try to find a balance between similarity 
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in some dimensions and differentiation, or heterophily, in others (Rivera et al., 2010). A 

similar idea was supported by Blau (1974, p. 622), who stated that: “It may ultimately 

be an oversimplification to refer to a relationship as homophilous or heterophilous, as 

few individuals do not differ in at least some dimensions and match in at least a few 

others.”  

Second, the delivering of novelty was tested by applying the bridging factors of 

Granovetter (1973) and Burt (1992). Both conditions were tested separately. To test the 

perception of novelty by receivers, surprise was applied as a proxy of novelty and 

computed as a dependent variable. Surprise represents the emotion related to the 

appraisal of the information delivered by a bridge, when novelty is perceived. Thus, to 

be surprised in this context means to perceive novelty.  

Novelty “determines whether there is a change in the pattern of external or 

internal stimulation, particularly when a novel event occurred or is to be expected” 

(Leventhal & Scherer, 1987, p. 15); and an observation is novel when its representation 

is not found, or is not similar to another one stored in memory (Barto et al., 2013). 

Consequently, three reasons seem to justify that the perception of novelty is conceived 

in a framework of communication: a) there is a process of communication because the 

receiver interprets the information received, as is shown by the emotion elicited; b) the 

information when accessed by the receiver was already interpreted by the sender; c) the 

surprise response that is characterized by an optimal cognitive distance between 

individuals, explains a mutual understanding and interest in the content shared. Hence, 

it seems correct to assume that in these circumstances there is an effective 

communication between sender and receiver based on cognitive similarities that are not 

fully explained by endogenous effects like homophily73, similarities based on music and 

political interests, or even through structural factors in isolation. 

When analyzing the relationships described above between the bridging factors 

of Granovetter (1973) and the five variables included in the personal attributes, only 

gender remains significantly associated with surprise. Moreover, by considering Burt’s 

(1992) assumptions to configure the bridging factors, no personal attributes, including 

gender and attitude, stay in the regression model. Therefore, only the bridging factors 

based on Granovetter’s (1973) assumptions match the hypotheses listed. It confirms H4 

                                            
73 As debated in Roger & Bhowmik (1970), or by McPherson et al. (2001). 
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(Dissimilar and weak ties Hypothesis), but hypothesis H3 (Homophilous and weak ties 

Hypothesis), H5 (Homophilous and structural holes Hypothesis) and H6 (Dissimilar 

and structural holes Hypothesis) are not confirmed.  

In sum, the delivery of novelty in a social network associated to the surprise 

response can be depicted by an optimal cognitive distance between sender and receiver. 

This distance can be defined by gender differences and a structural position defined by 

weak ties acting as network bridges.  

On the other hand, the data do not show differences in people’s attitude as a 

function of socio demographic variables. However, attitude similarities are a relevant 

factor for surprise response, as well as gender differences. This seems to emphasize the 

fact that the usual variables used to describe homophily behavior, or its effects, may not 

be sufficient when the actions under observation are information sharing. This means, 

when the emotional response is a relevant factor to drive such behaviour. 

Regarding the literature on affect (which refers to a range of feeling states that 

includes different emotions), it is reported that affect can determine the network 

structure rather than the other way around (Totterdell et al., 2004). Accordingly, even 

regarding it in a very simplified way, it seems adequate to argue that bridges can be 

seen as enablers that approach people with mutual interest in similar topics. 

Considering, then, the accurate network factors, i.e., bridging as a structural facilitator, 

and the cognitive distance between recommender (sender) and user target (receiver of 

the recommendation) as suitable for accommodating surprise response, the benefits 

would be twofold. First, it will be able to deliver novelty to recommendees. Second, it 

will be a potential predictor of tie formation, or on the strengthening of ties. In 

accordance to the latter, these results seem to open up the issue of how the formation of 

ties is established across social networks. I discuss this issue in the following.  

Scholars have been debating extensively the mechanisms of network evolution 

that lead to creation and break of ties. Nevertheless, in these discussions the role of 

emotional response has been disregarded, particularly in the case of surprise. There is 

still no study on how cognitive distances may influence information sharing, which may 

overlap or complement the adjacency factors and assortative mixing (Goodreau et al., 

2009; Rivera et al., 2010) that justify the formation of ties based on individual 

attributes.  
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In that sense, the approach proposed seems to challenge the idea which can be 

found in published literature that bridging structural conditions are opposed to 

transitivity and, so, to tie formation that is associated to such endogenous effects 

(Schafer, 2011). This means that from a structural standpoint, Granovetter’s (1973) 

hypotheses of “The Strong Triadic Closure Property”, also tested by Shi et al. (2013), 

contradicts the conditions for bridging formation. Both are accurate. However, by 

considering the bridges as potential inductors of tie formation (i.e., a structural 

facilitator), this assumption deliberates on the structural conditions of networks. This 

includes the cognitive conditions that bring to this discussion the actors’ personal 

attributes. Thus, bridges can be seen as a mechanism of tie formation, when analysed 

together with factors of cognitive distance. Moreover, this proposal does not disagree 

with Granovetter's hypothesis. 

A distinct but related body of literature considers that the spreading of 

information in a social system is content dependent and that it assumes different 

behaviours in different networks (Holme & Ghoshal, 2008). It seems to reflect the fact 

that people react to contents differently depending on their emotional interaction with 

that content. Indirectly, this reaction seems to mimic the way the receiver perceives the 

sender in the topic exchanged.  

As a result of that, I speculate that people shape their networks (not the other 

way around) depending of the perception on others through the contents shared. To 

justify this assertion, I argue that the contents are like a proxy that interfaces the 

emotional and affective contact between sender and receiver. This is a view that 

highlights the idea that endogenous properties like homophily (McPherson et al., 2001; 

Aral et al., 2009) cannot fully explain the interactions in a social network, neither the 

structural position when seen in isolation. This reinforces the argument about the use of 

social data that considers an optimal cognitive distance between sender and receiver, to 

counteract the social echo chamber effect, instead of social data based on adjacent 

connections and similarities.  

Furthermore, although the role of psychological attributes in the social network 

analysis has been downplayed (Crosier et al., 2012), the present work shows its 

relevance and how a more attentive view of them may extend the understanding of 

social networks. Additionally, considering the psychological attributes in this study, 

new light will the shed on the assumption that a network of nodes, notably when they 
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represent people, is more than a homogenous set manipulated by homophily, social 

influence or structural conditions alone. They are all this and the emotions elicited, at 

least. Thus, beyond the structural properties, social networks are configured by 

individuals’ behaviour and their attributes. This reflects their activities, interests, 

opinions and emotions when they interact with content and, so, directly or indirectly, 

with other people.  

8.5 Conclusion 

The tests presented showed associations between dissimilarity on gender and 

weak ties as bridging factors that predict surprise. The approach used shows some 

promising potential when diverting the study of bridging into a new direction, such as 

towards social media systems. Moreover, it may direct us towards the next-generation 

of social networking by suggesting on how to seek for proxies that can be used to 

predict the delivery of novelty through the information flow, or in a social network-

based recommender system (by applying social network data to compute 

recommendations). 

In fact, as reviewed in previous chapters, the emergence of online social 

networks and the access to its data sparked the rise of social network-based 

recommender systems. This new approach to online recommendation is based on 

information provided by users’ behavior, social ties and similarities, in order to improve 

personalized recommendation. However, as already debated in this dissertation, the use 

of these kind of social data also constrains the reach of the recommendation system as 

such recommendations may become very similar and, thus, less attractive for the user. 

The introduction of novelty through the data provided is then very important. The 

present work shows which network dimensions and users attributes should be 

considered to design such kind of recommendation. 

This work is not without limitations. First, although individuals’ views on 

politics were measured, this was based on a single question. The process undertaken 

was accurate, but it was not possible to control respondents’ differences on socio-

demographic and cultural background to avoid different interpretations when they 

needed to classify political choices.  

In subsequent work, it would be relevant to analyze other proxies which can 

represent the concept of cognitive distance, such as by testing personality similarities 
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using the framework of the Big Five personality traits (Gosling et al., 2004; Back et al., 

2010). Other approaches can also contribute to better understanding the role of personal 

attributes and the way they interplay with structural and relational properties in the 

bridging effects.   
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CHAPTER 9 

DISSERTATION CONCLUSIONS 

 

The purpose of this dissertation is to examine the challenges associated to 

personalization of Web-based services, notably by recommender systems, and find a 

solution for the problem of Social Echo Chamber Effect. The challenges associated with 

the increasing of web data and the possibilities opened by new uses of social data offer 

new research lines that I tried to assimilate.  

Personalized recommendation based in social data from social networks has 

been pointed out as a good solution to improve performance and solve persistent 

problems in these systems. However, as discussed in this dissertation, the use of social 

data based on relationships set by endogenous effects (i.e., homophily) and friendship or 

social proximity (i.e., strong ties) creates a new problem in recommender systems which 

I have named the Social Echo Chamber Effect problem. This term seeks to represent the 

cause and effect related to the use of social data aimed to improve the performance of 

personalized recommendation. What this term attempts to explain is different from other 

ones that also describe problems related to personalization, e.g., “Echo Chamber” 

(Sunstein, 2009), which explains that people naturally seek those who agree with them, 

or “Filter Bubble” (Graells-Garrido et al. 2013), which draws our attention to the fact 

that the Web algorithms prevent people from being exposed to viewpoints different 

from their own, as discussed in third chapter.  

I argue that, the Social Echo Chamber Effect traps people inside social bubbles 

of information. This is due to the lack of diversity in users’ viewpoints (Vargas & 

Castells, 2011) that are clustered by endogenous properties and, thus, exposed to the 

lack of novelty in information delivered (Golder & Yardi, 2010) and shared among 

them. 

In order to find a solution to this problem, I have examined an alternative use of 

social data, with the aim of delivering novelty to the receiver. With this in mind, I 

developed an empirical work in the field of Social Network Analysis (SNA), and 

applied knowledge from neuroscience and psychology on novelty perception and 

surprise response to support the experimental framework. I have found the need to 
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extend the current methodologies to deal simultaneously with content and the users' 

cognitive reaction.  

On the other hand, Web 2.0 technologies have created tools that make Web-

users active participants in social networks that they can now also create and operate by 

themselves. Trust and spatial proximity, associated with specific incentives like 

friendship, appreciation, knowledge sharing, democratic participation, financial support, 

or collective creation (Lai & Turban, 2008), have become the design focus of these 

systems. Moreover, because this Web of social links is more organized around the users 

rather than around content, more information on users’ interests and habits has become 

accessible for computation. In fact, as it was argued in third chapter, the Web is 

emulating human narratives. This can be found in the implicit information contained in 

the social links and in the content that is interpreted and shared. As a consequence of 

this, "meaning", which used to be private, is now mutual and shared with the receiver 

through the information delivered by the sender, i.e., everyone can now go deeper inside 

the thinking of others through the information shared. 

With this understanding, and the boom of online social networks, the activities 

of sharing common issues and interests that came to be viewed as the reward of the 

whole system, also became an advantage for other Web-applications, notably for 

personalization. Consequently, factors related to friendship (Granovetter, 1973) and 

homophily (McPherson et al., 2001), associated with the growth of knowledge about 

users’ individual characteristics, have become key-references to define borders of 

information. However, when Web-based applications use these naturalistic behavioral 

data (Boyd, 2007), to create a representation of their users and their networks, these data 

only mirror social relationships determined (and confined) by social organizing 

principles based on homophily. This means that the dimension that includes the 

psychological characteristics of the users is missing, and consequently significant 

information about individual attributes.  

Hence, when these data are used to improve personalization, they are in fact 

transporting into the recommendation the information from the set of people that share 

the same echo chambers. Consequently, this kind of personalization is strongly related 

to the concept of "Social Echo Chamber Effect", as I have stated. 

In this sense, it would seem that, once again, the development of a Web 

technology is not looking carefully enough at the cognitive factors that can limit its 
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success, at least from a user perspective. The reduction of quality of personalization 

services seems to be related to cognitive factors rather than to technological factors.74 

Thus, there is a technological limitation that is only detectable if the researchers and 

developers, notably in computer science, are aware of this kind of knowledge, and reach 

an understanding (and agreement) on the impact that cognitive factors may have on 

technological development. As a consequence, instead of gaining facilitated access to 

information, through media, people end up merely spinning around inside their social 

worlds.  

There are uncountable drawbacks related to this restrictive reality. In this sense, 

we highlight three motives that have a negative impact in social interaction and in the 

individual behavior, when people access online information based in the current 

solutions of personalization, which justify the need for alternative solutions. First, the 

echo chamber is conducive to increased conformity and less diversity. Accordingly, 

people lose the stimuli to ask new questions, which may reduce learning and creativity. 

Second, less novelty is associated to less surprise, which means less richness in 

the construction of meaning. This fact may reduce the ability to interpret the 

surrounding reality exploring different perspectives.    

Third, less diversity in the viewpoints generated among users, means reduced 

quality in the services provided by recommender systems, and so, a lower level of 

satisfaction for these users.  

Despite the drawbacks associated to the social data, listed above, it does not 

follow that social data should be avoided to improve personalization or other types of 

Web-applications.  

With these considerations in mind, what does the present dissertation contribute 

to our knowledge about how to use social data and avoid the Social Echo Chamber 

Effect?  

                                            
74 A similar hypothesis was argued in the context of the lack of success of the Semantic Web proposal, as 
well as of other automated services sustained at the semantic level. The reasons detailed in the third 
chapter for this are related to the different boundaries of the meanings of words and linguistic expressions 
that vary from person to person. The simple fact that what is expressed in words does not mean the same 
to everyone, may drastically reduce the opportunities for convergence in these automatic services.  
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In order to answer to this question, three studies were developed in order to 

analyze social interactions from the perspective of the receiver of information (who 

makes the content choices). The aim was to find which dimensions are behind social 

data, i.e., structural factors and personal attributes, that contribute to the perception of 

novelty, with the purpose of provide a new kind of data source for personalization. In 

particular, improve the performance of social network-based recommender systems.  

Three empirical studies presented in Chapters 6, 7 and 8, respectively, consider 

in tandem the study of social ties and similarities among a population of students 

(participants in the empirical work undertaken) and the emotional response to content 

selection in a social network environment. This option had a twofold aim: a) To 

conceive an appropriate methodology to study the problem presented by the Social 

Echo Chamber Effect; b) Extend the current approaches on SNA, by researching the 

role of emotions, in particular surprise, as well as its relationship with personal 

attributes, such as  dimensions of status homophily (McPherson et al., 2001), attitudinal 

similarity (McCroskey et al., 1975, 2006), political views (Lin & Ensel, 1981, Fond & 

Neville, 2010), preferences of music genre (Rentfrow & Gosling, 2003), and emotional 

reaction to music genres. This approach provided the opportunity to reinforce the idea 

on how psychology and social networks studies are intertwined.  The analysis of the 

main results obtained from the three empirical studies is shown below.  

a) The results provided information on user interactions that can be used in 

personalized recommendation. This information is based on structural dimensions 

related to the users' location in the network, and with their personal attributes. This can 

be applied to create a representation of the users and their social links in the network in 

relation to other users, with whom the user (the receiver of recommendation) would 

have a weak and non-redundant tie while forming a network bridge. Thus, the receiver 

could be surprised by the recommendation delivered. Therefore, given the theoretical 

approach discussed in the fourth chapter, I believe that this kind of social data can 

counteract the Social Echo Chamber Effect. Furthermore, it allows us to speculate about 

the added value for receivers; first, when they interpret information based on novelty – 

notably by supporting a richer construction of meaning due to subconscious activity; 

second, by the gain in affect through the elicited emotion, i.e., surprise. This is 

important in the scope of recommendation, but can also be applied in other fields of 

analysis, like searching;  
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b) The empirical results offer promising evidence about the relevance of the 

study of emotions in the context of SNAs. Three synthesizing principles guide this 

overview. 

First, surprise is an adequate proxy of the novelty perceived by a receiver in a 

network bridge. The main contribution of Chapter 6 is the proposed method – surprise 

as proxy of perceived novelty – which identifies the relationship between bridging 

assumptions and the perception of novelty. However, as the proposed method 

demonstrates, not all bridges assuming the delivery of novelty can match the receivers’ 

perception of novelty. Burt (1992) proposes a measure to calculate bridges, and so, to 

find the bridging assumptions related to the delivery of novelty. Nevertheless, this 

theory does not explain whether there is a perception of novelty or not. A similar 

constraint can be found in the bridging theory of Granovetter (1973). This method 

extends the results on theories of bridging by introducing the receiver’s viewpoint – 

their perception of novelty. A valuable contribution to the SNA field was obtained 

testing the methods. A difference was found between the number of bridges that can be 

assumed by following the traditional approach and the one found by means of the 

perceived novelty.  

The findings have shown that socially distant ties and a low emotional support 

between sender and receiver are two important dimensions to describe weak ties as 

bridges. On the other hand, a bridge spanning a structural hole is considered non-

redundant only if this link does not contain more than one strong tie in the triads formed 

with common third-party connections. Furthermore, no-redundancy is more prevalent in 

bridges connecting weakly tied individuals. Lastly, network bridges are an important 

structural condition to explain the emotional reaction of surprise. 

A second synthesizing principle is that structural holes spanned by weak ties 

reveal a strong relationship with receivers’ choices of contents. Content selection is 

more dependent on the receiver's emotional reaction (i.e., surprise), than on factors 

associated with the node's social relevance. Social relevance means here the number of 

adjacent connections (degree centrality) and corresponding tie strength of a given node 

relative to other nodes in the network. This argument is the main contribution of the 

seventh chapter. Chapter 7 also shows that centrality (degree and betweenness) and 

strength of ties (i.e., friendship) are less relevant for content selection than has been 

discussed in literature, notably, given the value attributed to popularity and friendship. 
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Literature usually debates the benefit of individuals in the central position. In 

this context, when the central position is defined by centrality measures, the degree is 

the base of assessment. It means that such central positions will be correlated with the 

benefits associated to the centrality degree, which often includes the grade of popularity, 

prestige, or influence (Knoke & Burt, 1983). Regarding to betweenness centrality, the 

corresponding benefit of such a network position is accounted by the ability to broke the 

flow of information.  

On the other hand, when this central position is identified by a bridge, the 

benefit is centered on the access to novelty, in other words on the ability of the receiver 

to be surprised – as the sixth chapter shows. However, contrary to the proposal of this 

dissertation, the receiver's perspective (e.g., content choices) is not usually discussed in 

literature, nor the benefits (at cognitive level) when the information is received. As 

presented in the second chapter, there are cognitive gains related to the perception of 

novelty, which stimulates a richer construction of meaning. This happens because 

surprise is an emotion stimulated at an unconscious level and so is relevant in 

promoting the use of implicit information in the interpreting processes. Therefore, the 

study also contributes to a clarification of the differences between sender and receiver 

when a content selection is made and, additionally, to characterize the corresponding 

gains. Finally, it highlights the relevance of network bridges as central nodes that 

determine the information flow in a network.   

Third, the results suggest that personal attributes (differences in gender) jointly 

with bridging factors (weak ties) characterize the optimal cognitive distance (between 

individuals in a social network) underlying the perception of novelty, i.e., surprise. It 

means that such dimensions are a predictor of the perception of novelty. This is the 

chief contribution of the eighth chapter. Although transitivity mechanisms, i.e., based 

on homophily dynamics that traditionally underlie social mechanisms of triadic closure 

and selective mixing (Goodreau et al., 2009), have been applied to provide targeted 

product recommendations, this study shows that is the heterophily in gender that 

explains surprise, rather than homophily, as might be expected. As a matter of fact, 

among the range of personal attributes tested, it is dissimilarity in gender (heterophily) 

that predicts surprise. This happens 74% of the times that surprise is elicited.  

Heterophily describes the tendency to interact with others of different type and 

refers to the fact that different people can have different frequencies or intensities in 
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their relations. E.g., there is homophilia among the members of the same social class 

and there is heterophily among members of different class or age. Because the study of 

heterophily has not been approached very often in sociology, this result seems to be 

important, notably to communication studies. 

The approach tested analyzes the association between personal attributes and 

bridging outputs to identify the best combining between structural conditions and the 

adequate cognitive distance among users that assure better odds of novelty perception. 

In this regard, it is assumed that bridges can be seen as enablers that approach people 

with mutual interest on similar topics – but beyond the effects of echo chamber. On the 

other hand, the perception of novelty is conceived in a framework of communication 

because surprise requires a certain level of agreement between sender and receiver. The 

findings seem to support this idea, but they also highlight that the endogenous effects, 

like homophily and similarities based on music and political interests, do not fully 

characterize such communication process.  

The findings also contribute to raising the assumption that people shape their 

networks (not the other way around) depending on perception of others through the 

access to content and its assessment at cognitive and emotional level. Contents can be 

seen here as a proxy that interfaces the emotional and affective (virtual) contact between 

sender and receiver. Therefore, the results seem to support the claim that the cognitive 

stimulus related to the interpretation of information is not only dependent on the 

information itself, but also on the emotions elicited by individuals. In particular, there is 

an optimal cognitive distance between sender and receiver when the surprise is the 

elicited emotion. As seen, this distance can be characterized by the individuals' 

structural position in the network and their personal attributes. 

 

In summary, this dissertation characterizes the problem of the Social Echo 

Chamber Effect, which affects online users when they receive a personalized 

recommendation online. Because this problem arises due to the use of social data, it was 

developed a study focused on an alternative extraction of social data. It consisted of 

three empirical studies following a simple premise: surprise as a proxy of novelty to 

study the individual attributes and network dimensions that explain the perception of 

novelty by receivers in a network environment. Thus, by introducing the study of 

emotions (i.e., surprise response), the flow of information, which is usually weighted by 
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the location and number of network members (Shi et al., 2013) and regarded as 

structurally (Burt, 2002) and content dependent (Holme & Ghoshal, 2008) is, 

additionally, emotionally weighted. This presents a new perspective on the role of 

emotions’ in social networks. Therefore, given the definition that a network is a set of 

relationships (Kadushin, 2004), while a social network “consists of a finite set or sets of 

actors and the relation of relations defined in them” (Wasserman & Faust, 1994, p.20), 

it might be correct to add that social networks are also users' choices in response to 

elicited emotions. 

Moreover, the results show that social data can be used in a way that increases 

the cognitive distances among users in order to deal with a set of new threats that has 

been imposed by some web algorithms. Some of such threats can be named as: a) 

Democracy or Tolerance threats, because people are being separated by opinion 

clusters75; b) Conformity threat, given the lack of “natural” liberty to access novel 

information; c) Cognitive threat, given that people’s ability to interpret surrounding 

reality is diminished; d) “Fluffy” Innovation threat, due to the urgency to obtain 

people's time and attention, which can reduce the added value to society of some 

technologies.  

Despite several results that point towards interesting outcomes for the three 

fields of study covered by this work, the general conclusion is that the performance of 

social network-based recommender systems can be improved through social data 

conceived from differences in gender and central nodes defined by network bridges of 

distant ties spanning non-redundant structural holes. Such dimensions defines the 

optimal cognitive distance between users (i.e., sender and receiver of recommendation) 

related to novelty perception. Non-redundancy means having no more than one strong 

tie between the triads formed by sender, receiver and common third-parties. This 

underscores the idea that receivers of such recommendations will benefit from the 

novelty delivered, but also from a richer construction of meaning due to a subconscious 

cognitive process that is stimulated by novelty interpretation and so, by the emotion of 

surprise. 

 
                                            
75 Ethan Zuckerman, director of the center for Civic Media at MIT. See: 
https://www.bbvaopenmind.com/ethan-zuckerman-todavia-no-entendemos-muy-bien-como-ocurre-el-
cambio-social-en-la-era-digital/.  
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In closing, it is important to acknowledge some of the shortcomings of this 

project. In this regard, it should be noted that the dimension of the sample used may 

weaken a more general view about the results obtained. Despite the multiple 

assessments undertaken, several ties were outside the observation range, which may 

have hidden some information on third party-connections forming triadic relationships 

among participants not detected through the data gathered. Thus, it would be relevant, 

first, to test the methods proposed in this dissertation with a larger population; second, 

to develop this experiment with a population from a Recommender System; third, to 

find further and stronger evidence of regularities in the associations tested between 

personal attributes, network bridges and surprise would strengthen the findings of the 

proposed method. 

Furthermore, the interdisciplinary approach of this study enables a contribution 

to three scientific fields: 1) Social Network Analysis; 2) Recommender Systems; and 3) 

Social-psychology. 

1) The contribution for the Social Network Analysis field is mainly focused on 

the method proposed for analyzing bridging assumptions and relationships between 

network dimensions and emotional response, particularly surprise. This is relevant in 

the sense that it contributes from a different perspective to the study of weak ties and 

structural holes. On the other hand, this study draws attention to the importance of 

developing more interdisciplinary work between both fields of social-psychology and 

SNA.   

2) The contribution to Recommender Systems is twofold. First, we framed the 

problem related to personalization in the context of Social Echo Chamber Effect, and 

explained how the potential of innovation in Web technologies can be compromised by 

cognitive factors. Second, I discussed a solution for this problem based on the use of 

specific data from users' social networks. This dissertation ends with a theoretical 

proposal applied to social-based recommender system using the empirical results of this 

investigation. It draws our attention to the possibility of delivering novel and surprising 

recommendations based on prediction, instead of randomly. The next steps would be to 

apply the findings in the development of an algorithm and to test it on a social network -

based recommender system. 

3) The last contribution of this dissertation is aimed at Social-psychological 

studies. In this scope, this work deliberates on how to enrich the construction of 
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meaning of the target-users of novel information by means of network dimensions and 

personal attributes. It also shows the importance of having further contributions from 

this field of studies to develop the understanding of social networks from the viewpoint 

of their actors, rather than be seen eminently from a structural perspective. Despite 

some important contributions from Social-psychological studies in the field of Social 

Network Analysis, further studies applied to Digital Media Systems are needed. It 

would be particularly interesting to find new associations between personal attributes 

and surprise response namely in the context of bridging factors (i.e., weak ties and non-

redundant structural holes). Additionally, it would be important to test personal 

attributes that could be extracted directly, or implicitly, from network social data. 
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APPENDICES 

 

APPENDIX A – ONLINE QUESTIONNAIRE 
 

The lineout presented here differs of the one seen online by participants, though, it 
contains the same contents than the original. 

---------------------------------------- 1st screen -------------------------------------------- 

 

This research study is about social networks and information sharing. 

Thank you for what you did on the previous phase (task 1). 

For this second and last phase of the study (task 2), please read and answer to the questionnaire. 

The questionnaire is formed by 5 groups, each one shown in one single screen. Please, be attentive when 
you scroll the screen for do not miss any question. 

 

We expect that this survey will take about 15 minutes to complete. 

In order to gain as much information as possible, please complete each question before moving on to the 
next. 

Participation is entirely voluntary, and you may withdraw at any time by closing your browser window. 
Your results will be completely anonymous. 

If you have any questions before completing this survey, please contact the researcher, Carlos Figueiredo 
(principle investigator) by e-mail: carlos.figueiredo@utexas.edu phone: 512-905-2414.  

This research study has been reviewed by the Institutional Review Board for the Protection of Human 
Subjects the Human Research Protection Program at University of Texas at Austin. For information about 
the review process, please contact the (512) 232-2685 or the Office of Research Support at (512) 471-
8871 or email: orsc@uts.cc.utexas.edu 

IRB APPROVED ON: 04/09/2012 | IRB PROTOCOL # 2012-02-0141 

 

Click to start the survey 

----------------------------------------- 2nd screen ------------------------------------------- 

- GROUP 1 -  

This project is interested in people's social networks. 

G1-1: At previous phase of this study you forwarded some posts of other participants to the message box 
of the project's Facebook page. You had selected those posts, because they stimulated an emotion in you. 
Given this, please write the names of the participants that posted the content in the project's Facebook 
page. 

Please write the participants' names as they are registered on their Facebook pages. Please list up to 4 
names. Start to list the names of those whose posts have stimulated the emotion of "surprise" on you.  
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All responses you provide will be kept strictly private and be used for the purposes of this study only. 

 

Please write the names below also in a sheet of paper. This might help you to answer the questions that 
follow. 

Person 1 [First name and initial of the last name]   ----------------------------------------------- 

Person 2 [First name and initial of the last name]   ----------------------------------------------- 

Person 3 [First name and initial of the last name]   ----------------------------------------------- 

Person 4 [First name and initial of the last name]   ----------------------------------------------- 

 

G1-2.1/ 2.2/ 2.3/ 2.4: The questions that follow are associated only with the names that you listed above.  
Please, follow the order that you established beginning by the first name listed. 

First / 2nd / 3rd / 4th person that I listed above … 

 

Behaves like me (e.g. in public, among friends) ......  

Thinks like me (e.g. about life)................................ 

Has similar interests ...................................... .......... 

Is different from me ............................................... 

Expresses attitudes different from mine ................. 

Has similar cultural heritage as I do ........................  
(e.g. similar family traditions, behavior in public, 
likes the same media/music content) 
 

Click for next question 

---------------------------------------------------- 3rd screen ---------------------------------------------------- 

- GROUP 2 - 

Now we would like to know more about how well you know the participants that you listed above.  

G2-1: How often you had contact with each person that you mentioned above? Please select one option 
per person.  

 

1st person ........................ 

2nd person .......................  

3rd person ........................ 

4th person ........................ 

Strongly 
disagree 

Disagree Neutral Agree Strongly 
agree 

Every 
day 

Twice a 
week 

Once a 
week 

Twice a 
week 

Twice a 
month 

Once a 
year 

Twice a 
year 
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G2-2: What type of relationship do you have with the people that you mentioned above? Please select the 
option following the order of your list of names. Please select only one option per row.  

 

1st person ........................ 

2nd person ...................... 

3rd person .......................  

4th person ....................... 

 

G2-3: Indicate for how long you know each of the mentioned people.  

 

1st person ........................ 

2nd person ...................... 

3rd person ....................... 

4th person ....................... 

 

G2-4.1/ 4.2: Please select the option if the statements match with the person listed. 

Relatively to the persons listed above, I could ask to borrow a small sum of money to / I would contact I 
feeling sick, or needing health support: 

 

1st person ........................ 

2nd person ...................... 

3rd person ....................... 

4th person ....................... 

 

G2-5: On average, how close do you feel with the people that you listed at beginning of the 
questionnaire? 

 

1st person ........................ 

2nd person ...................... 

3rd person ....................... 

4th person ....................... 

  

Partner, 
Boyfriend/ 
Girlfriend 

Direct 
family 

Friend Acquaintance 

 

Other 

More than 
one year 

 

More than 
three months 

Less than 
three 

months 

Yes 

 

Uncertain 

 

No 

Don’t feel 
close at all 

 

I don’t feel 
very close 

I feel 
reasonably 

close 

I fell close 

 

I feel very 
close 
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G2-6.1/ 6.2/ 6.3/ 6.4: Would you help the first / 2nd / 3rd / 4th person that you listed above…  

 

Get information about a job ................... 

Get information about a restaurant ….. 

Get information about courses .............. 

Provide emotional support ..................... 

 
G2-7: Who are the people that you mentioned above with whom you have private correspondence? 

€ 1st person 
€ 2nd person  
€ 3rd person 
€ 4th person 

Click for next question 

---------------------------------------------------- 4th screen ----------------------------------------------------- 

- GROUP 3 - 

The following questions are about your musical preferences (genres) and emotions. 

G3-1: Indicate your preferences by selecting a value between 1 (Very negative) to 10 (Very 
positive). 

 

Reflective and Complex (Blues, Folk, Classical, Jazz) ............. 

Intense and Rebellious (Alternative, Heavy metal, Rock) ......... 

Upbeat and Conventional (Country, Religious, Pop) ................ 

Energetic and Rhythmic (Funk, Hip-Hop, Soul, Electronica) ... 

  

G3-2: Given the musical genres above, indicate the more common emotions when you listens music. 

 

 

 

Reflective and Complex  .......... 

(Blues, Folk, Classical, Jazz) 

Intense and Rebellious  ............ 

(Alternative, Heavy metal, Rock)  

Upbeat and Conventional  ........ 

(Country, Religious, Pop) 

Energetic and Rhythmic  .......... 

(Funk, Hip-Hop, Soul, Electronica) 

Click for next question 

---------------------------------------------------- 5th screen ------------------------------------------------------ 

Surprise 
(surprised, 
amazed, 

astonished) 

Enjoyment 
(joyful, 

delighted, 
happy) 

Interest  Distress 
(sad, 

downhearted, 
discouraged) 

Anger 
(angry, 
mad, 

enraged) 

Fear 
(afraid, 
scared, 
fearful) 

Contempt 
(disdainful, 

contemptuous, 
scornful) 

Shame Disgust 
(disgusted, 

feeling 
 of distaste, 
feeling of 
revulsion) 

Guilt 

Yes 

 

Uncertain 

 

No 

1 2 3 4 5 6 7 8 9 10 
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- GROUP 4 - 

Please, write below your answers. 

G4-3: Before you go to the last part of the survey, please write the names of the participants that you 
know best (people that you have been meeting socially/ professionally, e.g., in sports, parties, work, 
classes). Please write their names as they are registered on their Facebook pages. Do not list more than 
four names. However you can list less than four. 

 First name    Last name   

1-  -----------------------------------------------   ----------------------------------------------- 

2-  -----------------------------------------------   ----------------------------------------------- 

3-  -----------------------------------------------   ----------------------------------------------- 

4-  -----------------------------------------------   ----------------------------------------------- 

 

Click for next question 

---------------------------------------------------- 6th screen ------------------------------------------------------ 

- GROUP 5 – 

Questions about Personal data 

G5-1: You are almost done. We would briefly like to know a few things about you. What is your 
gender? 

€ Male 
€ Female 

G5-2: How old are you? 

 

 

G5-3: In order to organize your information, please tell us your: 

First name 

Last name 

Email address 

Name shown on your Facebook page 

Residence (city, name of the building or dorm) 

 

G5-4: What is your ethnicity? 

€ Native American 
€ African-American or of African descent 
€ Middle Eastern 
€ Asian-American or of Asian descent 
€ Hispanic 
€ White/ Caucasian 
€ Other, please specify… 
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G5-5: What is your political affiliation (or your current strongest trend)? 

€ Conservative 
€ Moderate 
€ Liberal 
€ Independent 
€ Other 

G5-6: What is your current occupation? 

€ Student 
€ Employed 
€ Self-employed 
€ Unemployed 
€ Retired 
€ Other 

G5-7: What kind of part-time job have you had in the last 2 years? 

 

 

G5-8: What kind of activities (sports or hobbies) do you like the most? 

 

 

G5-9: If you are a student, what is the highest education that you achieved / are currently attending?  

€ Some High School coursework 
€ High School 
€ GED 
€ Some College 
€ Undergraduate Degree 
€ Some Undergraduate Degree 
€ Some Graduate School 
€ Graduate Degree 

G5-10: What is your religion spiritual practice? 

€ Atheist 
€ Catholic 
€ Protestant 
€ Christian  
€ Jewish 
€ Muslim 
€ Hindu 
€ Buddhist 
€ Other, please specify 

 

G5-11: What is your current marital status? 

€ Single 
€ In a Relationship 
€ In an open Relationship 
€ Engaged 
€ Married 
€ Divorced 
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G5-12: What is your family income? 

€ Under $ 20,000 
€ $ 20,000 - $ 40,000 
€ $ 41,000 - $ 60,000 
€ $ 61,000 - $ 80,000 
€ $ 81,000 + 
€ N/A 

G5-13: And last but not least; how many "friends" do you have in your Facebook? 

 

G5-14: In your Facebook, your friends have similar activities, common interests, or a similar general 
knowledge? 

Please select the best option. 

 Majority of them are similar between each other  

€ About 75% are similar between each other 
€ About 50% are similar between each other 
€ About 25% are similar between each other 
€ Less than 25% are similar between each other 
€ Just a few of them are similar between each other 

 

---------------------------------------------------- 7th screen ------------------------------------------------------ 

Thank you so much for your time and collaboration. 
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APPENDIX B  – INFORMED CONSENT FORM 
 

Title: Interpreting how homophily (similarities) and weak ties (social ties) intervene in the arousal of 
surprise in online social networks. 

 

Introduction 

You are being asked to participate in a research study.  This form provides you with information about the 
study. The person performing the research will answer any of your questions. Read the information below 
and ask any questions you might have before deciding whether or not to take part. If you decide to be 
involved in this study, this form will be used to record your consent. 

 

Purpose of the study 

You have been asked to participate in a research study on how similarities between people and their social 
ties intervene in the process of information sharing in a social network.   

 

What will you to be asked to do? 

If you agree to participate in this study, you will be asked to complete two tasks: 

� Task 1:  
� Share post, selected by you from your Facebook page with the project's Facebook page.  
� Forward the posts that stimulate in you an emotion to the message box of the project's 

Facebook page.  
� Write in the message the emotion that you perceived and the name of the participant that 

posted the content selected.  
� If the emotion was the "surprise", in few words, write why you were surprised.  

� Task 2: Answer an online questionnaire. 
� You will receive an email with a link to access the online questionnaire. 

 

The activities of this study will be spread by five days. In total you will spend about 1 hour to 1,5 hours. 
Task 1 will last four days. In total you will spend about 50 to 70 minutes (about 15 minutes per day). 
Task 2 will take 10 to 15 minutes. The study includes approximately 35-45 participants. There are no 
foreseeable risks in participating in this study. 

 

You will receive a coupon for a brunch for completing the survey (task 1 and 2). Furthermore, for each 
new participant brought by you (up to a maximum of five), you will receive a coupon for a cookie.  

In addition, you will be entered in a drawing for a chance to win either a Kindle Fire or one of three $20 
Amazon gift certificates. 
Participants that you bring to the study must send an email to carlos.figueiredo@utexas.edu for 
confirmation. 

Participants must have an active Facebook account. Participants are invited to forward some content to 
the project's Facebook page. Are expected at least ten posts per participant. All participants will be 
"friends" in the project's Facebook page during the study. 
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To receive your compensation for completing the survey and for bringing additional participants 
please contact Carlos Figueiredo; T: (512) 905-2414; email: carlos.figueiredo@utexas.edu 

Carlos Figueiredo; Ph.D. student of the University of Porto, visiting student of the University of Texas at 
Austin, TX 78712, Department of Radio-TV-Film, College of Communication. 

 

Do you have to participate? 

No, your participation is voluntary. You may decide to not participate at all or, if you start the study, you 
may withdraw at any time.  Withdrawal or refusing to participate will not affect your relationship with 
The University of Texas at Austin in anyway.  

If you would like to participate, you will receive a copy of this form. 

 

What are my confidentiality or privacy protections when participating in this research study? This 
study is confidential. There is no way to connect your personal information with the interview data. 
Recordings will be kept for one year and then erased. The data resulting from your participation may be 
used for future research or may be made available to other researchers for research purposes not detailed 
within this consent form. 

 

Whom to contact with questions about the study?   

Prior to, during, or after your participation you can contact the researcher Carlos Figueiredo at 512-905-
2414 or send an email to: carlos.figueiredo@utexas.edu  

  

Whom to contact with questions concerning your rights as a research participant? 

For questions about your rights or any dissatisfaction with any part of this study, you can contact, 
anonymously if you wish, the Institutional Review Board by phone at (512) 471-8871 or by email at 
orsc@uts.cc.utexas.edu.  

 

Signature   

You have been informed about this study’s purpose, procedures, possible benefits and risks, and you have 
received a copy of this form. You have been given the opportunity to ask questions before you sign, and you 
have been told that you can ask other questions at any time. You voluntarily agree to participate in this 
study.  By signing this form, you are not waiving any of your legal rights. 

 

____________________    _________________ 

Printed Name         Date 

_____________________    _________________  

Signature of Person obtaining consent     Date 
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APPENDIX C – INSTRUCTIONS TO STUDY PARTICIPANTS – PHASE 1 
 
 
What will you to be asked to do (please, repeat those actions during four days)? 
 

� 1: Friend the project’s Facebook page: Name: Study Social-net Info-sharing (Figure 2 below).  

� 2: Share posts from your Facebook with the project's Facebook page. Please, share at least four 
posts from your wall. Select the posts that are meaningful to you (Figure 3 below).  

� 3: Forward the posts that stimulate in you an emotion. Use the message box of the project's 
Facebook page to forward the posts (Figures 4 and 5).   

� Forward at least five posts registering your perceived emotion(s). If you want to forward 
more than five posts, even better. When forwarding a post, please include the following: 

I. Write the emotion(s) (see Figure 6). If the emotion was "surprise", in a few 
words, tells why you were surprised.  

II. Write the name of the participant that posted the content that you selected. 

� Note: It is not supposed comment the posts of other participants. 
 

Representation of the actions to be undertaken: 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

  

Figure 1 – Sharing content and message forwarding through project's Facebook page 
 

Figure 2 – Find the page of the project and ask to friend the page.  

Name of the project’s Facebook page: Study Social-net Info-sharing 

 
Figure 3 – Forwarding post from your wall to Study Social-net Info-sharing. 
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To classify the emotions perceived select one or more options from the columns of Emotions and/ or 
Sub-categories. You can mix options to describe your emotion(s). 

Emotions Sub-categories 

Surprise surprised, amazed, astonished 

Enjoyment joyful, delighted, happy 

Interest --- 

Distress sad, downhearted, discouraged 

Anger Angry, mad, enraged 

Fear Afraid, scared, fearful 

Disgust disgusted, feeling of distaste, feeling of revulsion 

Contempt disdainful, contemptuous, scornful 

Shame --- 

Guilt --- 

 

Note:  

All participants need to be aware that the content shared must follow ethical rules about personal presence 
in social media, e.g. not sharing any kind of offensive, racist, xenophobic or pornographic content. 
Participants should not abuse their presence on the Facebook page of the project. Participants are invited 
to see more information online about the ethics of personal presentation on online social media.  

E.g.,: http://research20atimperial.wordpress.com/compulsory-content/legal-ethical-issues/ 

 

Thank you very much for your collaboration. 

Carlos Figueiredo, carlos.figueiredo@utexas.edu Phone: (512) 905-2414; University of Texas at Austin, Department 
of Radio-TV-Film, College of Communication. This research study has been reviewed by the Institutional Review Board for 
the Protection of Human Subjects the Human Research Protection Program at University of Texas at Austin. IRB APPROVED ON: 
04/09/2012 | IRB PROTOCOL # 2012-02-0141. 

  

Figure 6: Emotions Scale. 

Figure 4 – Forwarding the post selected using the 
message box of the project's Facebook page. 

 

  
Figure 5 – Actions to do when forwarding the post 
selected. 
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APPENDIX D – FLYER 

 

Hello, if you are a student living in the Jester residence this is for you. 
 

I need of some volunteers for a short study on social network and information sharing. Participants need 
to be Jester residents, or be invited by participants that are Jester residents. Each participant will get a 
FREE brunch at Sagra Restaurant, a FREE Tiff's treat cookie for each additional friend invited, AND a 
chance to win an Amazon Kindle Fire or one of three $20 gift cards. Tasks include sharing Facebook 
posts and answering a questionnaire. Any help is greatly appreciated. Please, email me at 
carlos.figueiredo@utexas.edu saying that want to participate, and I'll email you with more information on 
how to participate. Thanks a lot! 

 
Please, spread the word about the survey among your friends and acquaintances. 
Your participation is greatly appreciated and you can make a difference. 
 

Carlos Figueiredo, carlos.figueiredo@utexas.edu Phone: (512) 905-2414; University of Texas at Austin, Department 
of Radio-TV-Film, College of Communication. This research study has been reviewed by the Institutional Review Board for 
the Protection of Human Subjects the Human Research Protection Program at University of Texas at Austin. IRB APPROVED ON: 
04/09/2012 | IRB PROTOCOL # 2012-02-0141 

 


