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Abstract

With the advent of video surveillance networks, making sense of an ever-increasing amount of
visual data is a growing desire and need in many applications. The automatic (re-)identification
of individuals across camera views, which is known as person re-identification (ReID), has been
one of the most challenging problems in the field of video analysis. Current algorithms assume
that a one time training session in where labelled observations of all the classes to be observed
is available. Furthermore, the visual streams are recorded during a limited time frame. These
assumptions are a good approximation to some of the real-life problems, however, in many of the
applications some of the previous assumptions are violated, rendering the conventional algorithms
suboptimal or impractical.

In this work, we look at the problem of human re-identification from a time-series mining per-
spective where visual streams are generated endlessly and initially we only have a vague knowl-
edge of what concepts can be observed during the surveillance period. We formalize a learning
concept suitable for multi-camera video surveillance and propose a learning methodology adapted
to that new paradigm. We build a framework that resorts to evolving approaches, specifically
ensembles, to track the environment online, and adapt the knowledge to accommodate the envi-
ronment changes accordingly. The framework is also designed to exploit active learning strategies,
in order to interact wisely with oracles, requesting assistance in more ambiguous to classify ob-
servations.

First, we utilize conventional discriminative ensembles to learn from streams generated in
wide-area surveillance. The framework is then extended with class-based ensembles, where an
individual ensemble is trained for every single class. Despite significant improvement in perfor-
mance, stability in high-dimensional visual data and finding a robust novel class detection crite-
rion are still the main concerns. Therefore, we improve the framework resorting to the universal
background models to robustly learn individual object models from small samples and to more
effectively detect novel classes. However, the framework may fall into the pitfall of the grow-
ing computational complexity, when faced with never-ending streams. To avoid the effect of
stability-placity dilemma without sacrificing and possibly enhancing the performance, an intelli-
gent learning algorithm is introduced that wisely develops over time with respect to drift level in
order to reflect the latest concepts. The framework emphasises on coverage and accuracy as well
as efficiency. We also propose a context-sensitive solo representation for video fragments which
employs a novel unsupervised criterion to give more credit to more “trustworthy” observations.

In the numerous experiments that are reported, experimental evidence of the effectiveness of
the learning framework and the representation scheme is provided.
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Resumo

Com o crescimento dos sistemas de vigilância de vídeo, muitas aplicações precisam de fazer
sentido de uma quantidade, cada vez maior, de dados visuais.

(Re-)identificar automaticamente indivíduos ao longo de várias câmaras, conhecido por "per-
son re-identification" (ReID), tem sido um dos maiores desafios na área de análise de vídeo.

Os atuais algoritmos assumem que está disponível uma sessão de treino para um período de
tempo em que todas as observações estão anotadas para todas as classes que serão observadas.
Além disso, o sistema é esperado operar apenas durante período de tempo limitados .

Estas suposições são uma boa aproximação para alguns dos problemas reais. Contudo, em
várias aplicações, algumas destas suposições são violadas, tornando os algoritmos convencionais
subótimos ou inaplicáveis. Neste trabalho, olhamos para o problema da re-identificação duma
perspetiva de aprendizagem duma série-temporal onde os streams visuais são gerados sem fim
e inicialmente possuímos apenas conhecimento vago de quais conceitos poderão ser observados
durante o período de vigilância.

Formalizamos um conceito de aprendizagem apropriado para vigilância de vídeo com várias
câmaras e propomos uma metodologia de aprendizagem adaptada a esse novo paradigma. Con-
struímos uma framework que recorre a abordagens que podem evoluir, especificamente a ensem-
bles, para fazer o tracking de forma online, e adaptar o conhecimento de forma a acomodar mu-
danças no ambiente. O framework também está desenhado para explorar estratégias de aprendiza-
gem ativa, de forma a interagir sensivelmente com o operador, pedindo ajuda nas observações de
classificação mais ambígua. Primeiro, utilizamos ensembles discriminativos convencionais para
aprender a partir de streams gerados em vigilância de zonas amplas. O framework é estendido
com ensembles baseados em classes, onde cada ensemble individual é treinado para cada classe
individual. Apesar de melhoramentos significativos no desempenho, a estabilidade em dados vi-
suais de grande dimensão e o critério de deteção robusta de novas classes são ainda preocupações
relevantes. Portanto, propomos um framework que recorre ao modelo de universal background
para aprender de forma robusta modelos para cada objeto a partir de pequenas amostras e para
detetar classes novas de forma mais eficiente. Contudo, o framework pode sofrer de complexidade
computacional crescente, quando usado com streams contínuos. Para evitar o efeito do dilema
estabilidade-plasticidade sem sacrificar e possivelmente até melhorar o desempenho, um algo-
ritmo de aprendizagem inteligente foi introduzido que se desenvolve ao longo do tempo no que
diz respeito ao nível de drift de forma a refletir os conceitos mais recentes. O framework enfatiza a
amplitude e precisão da classificação, assim como a eficiência. Também propomos uma represen-
tação sensível ao contexto de fragmentos de vídeos que emprega uma critério não-supervisionado
de forma a dar maior reconhecimento às observações de "maior confiança".

Nas inúmeras experiências que são relatadas, é fornecido evidência da eficácia do sistema de
quadro de aprendizagem e de representação.
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Chapter 1

Introduction

1.1 Relevance and Problem Definition

With the advent of video surveillance networks, making sense of an ever-increasing amount of

visual data is a growing desire and need in many applications. The automatic (re-)identification of

individuals across camera views, which is known as person re-identification (ReID), is a challeng-

ing and widely studied problem in this area [69,99,141] and it underpins many crucial applications

such as long-term multi-camera tracking [55], behaviour analysis, and security monitoring.

With few exceptions, most state-of-art approaches to person ReID have focused on settings in

which the persons of interest are known beforehand, and the system runs for a limited period of

time by matching the pairs of small shots or images. This matching approach is clearly limited

due to the drifting nature of the appearance of individuals and possible similarity of different

individuals appearances, thus exploring spatio-temporal information from video sequences seems

an interesting field to be studied. Although spatial-temporal information has been extensively

explored in other video analysis task (i.e. activity recognition [59]), its use for person ReID is

much less explored. Furthermore, in a real-world surveillance network, cameras capture streams

of visual data endlessly.

In video surveillance environments, the underlying distribution of data changes over time - of-

ten referred to as concept drift - either due to intrinsic changes (pose change, movement, etc.), or

extrinsic changes (lighting condition, dynamic background, complex object background, changes

in camera angle, etc.). Thus, models need to be continually updated to represent the latest con-

cepts. Moreover, when new objects enter the scene - referred to as class evolution [95] in machine

learning literature - new models need to be trained for the novel classes. The problem gets further

complex when the system is faced with unbounded streams of data [11].

Figure 1.1 demonstrates a typical surveillance scenario. Depending on the view angle and

the quality of the camera, every surveillance camera covers an area called Field of View (FoV).

When entering the scene, the object will enter the coverage area of at least one of the cameras. In

such environments where objects move around and cross the FoV of multiple cameras, it is more

than likely to have multiple streams, potentially overlapping in time, recorded at different starting

1
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Figure 1.1: Typical surveillance scenario [75]

points with various lengths, for the same individual object (Figure 1.1). The surveillance system

will have to track that object from the first moment it was captured by a camera and across all

cameras whose fields of view overlap the object’s path. Thus, a suitable outcome of the framework

could be a timeline graph assigning each stream in each camera to an identity for the indicated

presence period, as illustrated in Figure 1.2. This graph can be used for behaviour analysis as well

as security purposes. In this simple scenario the typical tracking systems are likely to encounter

some problems. In fact, mutual occlusion may occur if persons B and C cross. Consequently,

their identities can be switched. Moreover, prolonged occlusion might occur, which might lead

to track loss or mistaken identities [136]. Since the cameras are supposed to track all objects

in their coverage area, the definition of a global identity for each object is necessary. Multiple

appearances of objects captured by the same or by different cameras are identified in the process,

allowing also to know the path followed by a given object. This setting is inherently different from

person re-identification scenarios, either image-to-image [46] or video-to-video [108], that seek

to determine if the images (videos) correspond to the person(s) of interest [139]. Whereas, this

framework focuses on the design of a system, where no pre-defined class of interest is available.

Moreover, typical person re-identification works assume that the acquired data has enough detail

to support identification on facial data, while in our setting appearance-based approaches are more

likely to be successful. We especially focus on long-term tracking, where people cross the FoV of

multiple cameras over time and cameras monitor the environment for unbounded period.

Learning in such scenario can be characterized as follows:

Definition: Let υ be a set of unregulated time-series υi. Streams are potentially with concept

drift as well as concept evolution. Each observation x within each stream is in a d-dimensional

space, x ∈ Rd . Recording is not limited to a bounded period.

Requirements: An effective and appropriate one-pass algorithm to fit in our scenario is re-

quired to: a) learn from multiple unregulated streams; b) handle multi (possibly) high-dimensional
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Figure 1.2: Desired outcome. A, B, and C represent different individuals; C1, C2, and C3 represent
different cameras covering the scene.

data; c) handle concept drift; d) accommodate new classes; e) deal with massive unlabelled data;

f) be of limited complexity.

Considerable body of multi-camera surveillance research assumes that adjacent camera view

overlap [57, 63, 82, 142], whereas [64, 65, 98, 110, 124] assume non-overlapping views. Our pro-

posed method makes no assumption of overlapping or non-overlapping views; hence, it can be

applied in either settings.

1.2 Main Contributions

In this thesis, we put forward a framework to learn continuously from parallel video streams with

partially labelled data and that allow us to learn novel knowledge, reinforce existing knowledge

that is still relevant, and forget what may no longer be relevant. The kind of on-line learning

approach may suffer if labelling errors accumulate, which are inevitable. Unrelated objects will

sooner or later be assigned the same label or different labels will be assigned to different views of

the same object. To help mitigate this issue, we will allow the system to interact with an oracle to

help it stay “on track”. The framework utilizes active learning methodologies appropriate for this

problem. The framework receives directly the tracked sequences outputted by the tracking system

and maintains a global object identity common to all the cameras in the system.

• Initially an ensemble of discriminative classifiers, NEVIL, is proposed in order to actively

classify parallel video streams. The framework learns a classifier as new data is observed.

• The framework has been then substantially altered using a class-based ensemble strategy,

in where an individual model is learnt for each class. The framework utilizes generative

models to train the classifiers, allowing a double threshold strategy to detect novel classes.

In a first step, the most popular group of generative models, Gaussian Mixture Models, are

employed to learn new knowledge in NEVIL.gmm.

The framework is further extended in NEVIL.ubm using generative models built by the

maximum a-posteriori (MAP) adaptation of the universal background model (UBM). The
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adopted approach enables us to achieve a good balance between the need to have enough

data to make reliable decisions and the need to adapt quickly enough to drifts and new

concepts in the data streams.

• Analysing large volumes of visual information confronts vision researchers with the prob-

lem of finding effective methods to describe the objects that compose the captured scenes.

The representation schemes used for this task need to effectively discriminate objects but at

the same time they need to be efficient in terms of computational and storage resources. In

a non-stationary environment these schemes should also accommodate changes in the ob-

jects‘ appearances. In this task we focus on how perpetual learning can be supported from

the visual representation point of view. In contrast with the abstract models studied in the

learning task, we will look more closely to data. The goal is to find the primitives that are

more appropriate for updating and storage.

• Additionally, due to the video acquisition process, the quality of captured data may drift

in time. Some works [131] have shown that better quality leads to more accurate models.

Since low quality data may make future decisions highly ambiguous, it is crucial to select

“good” frames from which a model is learnt for long-term tracking. Exploring the effect

of observations’ quality, as a contributing factor, on the performance of unseen target ReID

systems seems a noteworthy area which has not been investigated before. Here we put

forward an algorithm that gives more weight to “better” Region of Interests (RoIs) to build

a model.

• We propose Intelligent NEVIL (INEVIL), a new learning framework, which is specially

designed for long-term tracking of previously unseen objects over multiple cameras. In-

spired by never-ending learning approaches, we employ active (detect & re-act) techniques

to control the complexity of the most popular group of passive approaches, ensemble based

models [42], in a time evolving environment.

The active approach is based on a change detection strategy that triggers an adaptation with

respect to the level of drift by updating or building a classifier. We assess the effectiveness

of change detectors at both data and model level.

– We put forward a data-level change detection mechanism that inspects features ex-

tracted from batches of RoIs. A simple yet effective video batch change criterion is

introduced to measure the divergence between the current batch of RoIs and the refer-

ence one.

– The Model-level mechanism is designed to react to gradual and recurrent drift by up-

dating a classifier. The adaptation process is achieved through the merging of two

GMMs into a single one, which has not been addressed before.
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1.3 Document Structure

Chapter 2 reviews the background and related work relevant to this thesis. The Discriminative

ensembles are introduced in Chapter 3. We provide a detailed presentation of the Class-based

ensembles in Section 4, starting with an overview of NEVIL.gmm and then filling in the details of

NEVIL.ubm. We discuss exploiting fusion approaches to provide a solo representation per batch

in Chapter 5. In Chapter 6 we propose a context-sensitive batch representation. An intelligent

framework for unsupervised long-term tracking of objects is presented in Chapter 7. Finally,

conclusions are drawn in Chapter 8.

1.4 Achievements

Chapter 3 of this dissertation has been published as Samaneh Khoshrou, Jaime S. Cardoso, Luís F. Teix-

eira, “Active Mining of Parallel Video Streams”, CoRR abs/1405.3382, 2014.

Section 4.1 has been published as Samaneh Khoshrou, Jaime S. Cardoso, Luís F. Teixeira,

“Active Learning from Video Streams in a Multi-camera Scenario”, 22nd International Conference

on Pattern Recognition (ICPR), Stockholm, pp. 1248-1253, 2014.

Section 4.2 has been published as Samaneh Khoshrou, Jaime S. Cardoso, Luís F. Teixeira,

“Learning from evolving video streams in a multi-camera scenario”, Machine Learning, 100(2-3),

609-633, 2015.

Chapter 5 of this dissertation has been published as Samaneh Khoshrou, Jaime S. Cardoso,

Eric Grnger, Luís F. Teixeira, “Spatio-Temporal Fusion for Learning of Regions of Interests Over

Multiple Video Streams”, 11th International Symposium on Visual Computing (ISVC), 509-520,

2015.

Chapter 6 and Chapter 7 have been submitted for publication as Samaneh Khoshrou, Jaime

S. Cardoso, Eric Grnger, Luís F. Teixeira, “Unsupervised Long-Term Monitoring of Targets Over

Multiple Video Cameras”, 2016.

We also participated in some national conferences with the following papers:

• Samaneh Khoshrou, Jaime S. Cardoso, Luís F. Teixeira, “ Learning in Evolving Video”, In

Proceedings of the 1st PhD. Students Conference in Electrical and Computer Engineering,

Porto, Portugal, 28 - 29 June, 2012.

• Samaneh Khoshrou, Jaime S. Cardoso, Luís F. Teixeira, “Evaluation of Different Incre-

mental Learning Methods for Video Surveillance Scenarios”, In Proceedings of the 18th

Portuguese Conference on Pattern Recognition (RECPAD2012), Coimbra, Portugal, 26 Oc-

tober, 2012.

• Samaneh Khoshrou, Jaime S. Cardoso, Luís F. Teixeira, “Learning from Uneven Video

Streams in a Multi-camera Scenario”, In Proceedings of the 19th Portuguese Conference on

Pattern Recognition (RECPAD2013), Lisbon, Portugal, 31 October, 2013.
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• Samaneh Khoshrou, Jaime S. Cardoso, Luís F. Teixeira, “Toward Building an Automatic

Video Surveillance System”, In Proceedings of the 20th Portuguese Conference on Pattern

Recognition (RECPAD2014), Covilhã, Portugal, 31 October, 2014.



Chapter 2

Literature Review

2.1 State of the Art

Intelligent video surveillance (IVS) is a multi-disciplinary field, related to computer vision, pattern

recognition, signal processing, communication, embedded computing and image sensors [142];

however, much of the history of IVS systems has addressed the problem employing computer

vision techniques [13, 82, 87, 98, 101, 154]. Most approaches have addressed person ReID by

comparing spatial appearance features such as color or texture of a pair of shots per individuals

[46, 62, 92, 93, 132, 152]. Considerable variation between shots of different views and visual am-

biguity due to individual clothing similarity make these approaches less practical for real-word

problems. Spatio-temporal approaches are categorized in four groups [141]: 1) Multi-shot per-

son re-identification: multiple images have been exploited to train a model for every individual.

Multiple shots have been used to enhance spatial features or extracting additional features [145].

2) Space-time features: space-time descriptors are designed to provide a compact representation

of video sequences either based on space-time interest points or space-time volume/patch. Space-

time volume representations (e.g HOG3D [78]) extracts robust and rich descriptors mainly based

on gradient information which makes this group a successful descriptor in the action recogni-

tion problem [88, 99]. 3) Gait recognition: some of the state of art algorithms reformulated

person ReID as a gait recognition problem. Since such methods usually require an ideal setting

(i.e. uncluttered background, consistent silhouette extraction, etc.) to provide effective repre-

sentation [67, 83, 103, 104, 143], they may fail in a real-world scenario. 4) Temporal sequence

matching: Image sequences have been used to perform direct sequence matching. Simonnet et

al. [127] used dynamic time warping to perform temporal sequence matching. Since the system

requires regulated streams for accurate matching, specifically when strong noise is available, the

framework may fail in real-world applications. Wang et al. [141] proposed an algorithm that se-

lects discriminative fragments to learn a video ranking function, without implicit assumption on

sequence alignment. Similar to the most of the state of art approaches, Wang’s method assumes

a closed-world setting where the test set comprises exactly the same individuals as the gallery

set. The re-identification problem becomes further challenging when the test set contains mostly

7
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Method Parallel
Streams

Uneven
Streams

Concept
Drift

Class
Evolution Learning Complex-

ity Data

[107,144] × ×
√

× SL Con-
strained MD

[2] × ×
√

× SL Uncon-
strained MD

[39,40,44] × ×
√ √

SL Uncon-
strained MD

[97] × ×
√ √

SSL Con-
strained MD

[18, 39,
156] × ×

√
× SSL Con-

strained MD

[79] × ×
√

× Clustering Uncon-
strained MD

[96] × ×
√ √

Clustering Con-
strained MD

[14, 27,
29, 116]

√
×

√ √
Clustering Con-

strained 1D

Table 2.1: Assessment of learning methods.
√

and × denote being fit and inappropriate for the
purpose, respectively. “MD” and “1D” denote multi-dimensional and one-dimensional data. “SL”
and “SSL” indicate Supervised Learning and Semi-Supervised Learning.

non-target individuals [153].

Here, we look at the problem as learning from multiple data streams (visual data) in wild en-

vironments, that views segments of a stream as a unique element to classify, thus single stream

mining methods cannot be employed. Learning from time-changing data streams has mostly ap-

peared in the data mining context and various approaches have been proposed [51, 70]. Most of

the methods proposed for parallel stream mining [14,27,29] require equal-length streams coming

from a fixed number of sources. Thus, they would fail to leverage information from time-varying

video tracks.

Learning in such non stationary environment requires evolving approaches that can adapt to

accommodate the changes accordingly. The adaptation problem has been addressed by either

active or passive approaches [42]. The active approach is designed to detect concept drift in order

to trigger an adaptation [7,50], whereas the passive one continuously update the knowledge every

time new data is received [40]. While active approaches are more effective in online settings with

abrupt drift, passive approaches are better suited for batch learning in settings with gradual drift
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and recurrent concepts [42].

Ensemble based approaches are the most popular group of passive methods due to higher

accuracy, flexibility and stability to handle concept drift [2, 79] and in some recent works class

evolution [44], as well. Learn++.NSE [44] is one of the latest ensemble-based classification meth-

ods in literature, that generates a classifier using each batch of training data and applies a dynamic

weighting strategy to define the share of each ensemble in the overall decision. As success is

heavily dependent on labelled data, this method would not be applicable in wild scenarios. Act-

Miner [96] addresses the problem of concept-drift as well as concept evolution in a single infinite

length data stream. Masud in [97] proposed an online clustering algorithm for single stream that

employs an active strategy in order to minimize oracle collaboration. COMPOSE [43] is designed

for learning from non-stationary environment facing gradual drift but it cannot support neither

abrupt drift nor class evolution. Although some works [18, 39, 156] can handle more dramatic

changes in data distributions, novel concept detection is an issue.

Additionally, these approaches may fall into the pitfall of a growing computational complexity,

when faced with never-ending streams. To avoid the effect of stability-placity dilemma without

sacrificing and possibly enhancing the performance [94, 158], some algorithms maintain a fixed

size ensemble, by removing the oldest [16, 129] or the least contributing member [79, 90]. These

techniques have mostly focused on two idealized settings: 1) Both training and test data are drawn

from the same yet unknown distributions and the prediction of the ensemble can be evaluated on

the training set at the first place [151]. 2) the data generating process produces sequence(s) of

data in time from potentially different probability distributions and concepts. The prediction of

the ensemble will be verified with the labels arriving immediately with the next chunk of data or

after a fair delay (in verification latency scenarios) [128]. Thus, they will fail in scenarios in where

labelled data is acute. Table 2.1 presents a qualitative look at the extent to which the reviewed

methods fulfil the requirements for deployment in our scenario.

The Never-Ending Language Learning (NELL) [20] research project has been the inspiration

of numerous researches to address the never-ending learning problem [28, 58]. Obviously, the

techniques used by research works are informed by different assumptions in respect with the ap-

plications and goals. With a few exceptions [148], most of the never-ending literature has focused

on coverage of knowledge, while our approach tries to cover knowledge and accuracy as well as

efficiency.

2.2 Datasets

Video analysis in unconstrained environment has become a very important issue for many applica-

tions. To stimulate research in this field many datasets have been introduced. We classified these

sets into two main groups: 1) synthetic sets. 2) real video clips.
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Drift Rate C1 C2 C3 C4
µx µy δx δy µx µy δx δy µx µy δx δy µx µy δx δy

0 < r < 0.25 2 5 0.5r 0.5+2r 5−5r 8 3−10r 1 5−5r 2 0.5+10r 0.5 8 8+15r 0.5 0.5
0.25 < r < 0.5 − − − − 15 −1+5r 1 2+3r 1−4r 2 0.5 3−4r 5−5r 13 0.25+4r 0.5+4r
0.5 < r < 0.75 10 −10+5r 1 2− r 17 2+5r 0.25 0.15 -1 −2−4r 0.25 0.15 − − − −
0.75 < r < 1 − − − − 20 4r 1 2 -7 −5− r 7+4r 1+4r − − − −
Drift Rate C5 C6 C7

µx µy δx δy µx µy δx δy µx µy δx δy

0 < r < 0.25 12 15 2 2+2r -15 −5+15r 1 2+3r 10 5r 0.5 2+3r
0.75 < r < 1 − − − − − − − − −10 −1+5r r 2+3r

Table 2.2: Parametric Equations for classes of MS dataset
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Dataset No. of Streams Range No. Classes Imbalance Degree No. of Cameras Setting
OneLeaveShopReenter1 3 [85−160] 2 0.28 2 Overlapped
OneLeaveShopReenter2 3 [63−347] 2 0.11 2 Overlapped

WalkByShop1front 6 [40−225] 4 0.22 2 Overlapped
EnterExitCrossingPaths1 6 [34−216] 4 0.23 2 Overlapped

OneStopEnter2 7 [51−657] 4 0.19 2 Overlapped
OneShopOneWait1 10 [36−605] 4 0.25 2 Overlapped

OneStopMoveEnter1 42 [10−555] 14 0.14 2 Overlapped
PETS2009 19 [85−576] 10 0.13 2 Overlapped

SAIVT-SOFTBIO 33 [21−211] 11 0.12 8 Overlpped, Nonoverlpped
SAIVT-NonOver 14 [21−211] 7 0.12 2 Nonoverlpped
SAIVT-Recurrent 28 [63−633] 7 0.65 2 Nonoverlpped

Table 2.3: The datasets characteristics. Imbalance degree [102] is defined by the ratio of sample
size of minority class to that of the majority ones ; Range is defined by the length of shortest and
longest streams in a given dataset, respectively.

2.2.1 Synthetic Dataset

Numerous synthetic datasets have been proposed in the literature [44, 97]. The synthetic dataset

is generated in the form of (X ,y), where X is a multi-dimensional feature vector, drawn from a

Gaussian distribution N(µX , δX ), and y is the class label. Since in real applications visual data may

suffer from both gradual and abrupt drift, both situations are simulated by changing µX and δX in

the parametric equations.

In this thesis, we employed a process that is similar to the one used in [44]. Table 2.2 presents

these parametric equations applied for drift simulation; we generated 7 classes (C1,C2, ...,C7);

for some (C5,C6) data changes gradually while others also experience one (C1,C4,C7), or three

(C2,C3) dramatic drifts. The dataset was organized in 4 different scenarios with different levels of

complexity, including streams with gradual drift, sudden drift, re-appearance of objects and non-

stationary environments where we have abrupt class and concept drift. Each scenario includes:

• Scenario I: gradually drifting streams of 5 classes.

• Scenario II: streams with abrupt drifts of 5 classes.

• Scenario III : re-appearance of objects.

• Scenario IV: a non-stationary environment with class evolution as well as concept drift.

These scenarios are depicted in Fig. 2.1.

2.2.2 Real Video Clips

Many data sets targeting visual surveillance scenarios such as person detection and tracking, event

detection, activity recognition, inter-camera tracking and re-identification, have been published

over the years. Here we review some important datasets for the task of person re-identification.
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Scenario I

Scenario II

Scenario III

Scenario IV

Figure 2.1: Scenarios in MS dataset. The sign denotes the occurrence of an abrupt drift in
the nature of data.
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Figure 2.2: The EnterExitCrossingPaths1 scenario in the CAVIAR dataset. A, B, C, and D denote
individuals who were present in the scene. (Note, labels do not carry any semantic information.)

MIT pedestrians data set

MIT pedestrians data set [106], introduced in 1997, to train pedestrian detectors. The dataset

includes 924 frontal and rear views of pedestrian in single frames acquired from multiple video

and photographic sources.

CAVIAR

CAVIAR dataset [112], which was introduced in 2004, was one of the first to provide video se-

quences instead of single frames. It was also the first to provide annotations of people location,

identity and activity, making this data set useful for many problems. The CAVIAR first set was

acquired with a single camera at INRIA Labs Grenoble for activity recognition, while the second

version was recorded in a shopping mall in Lisbon using two cameras with overlapping fields of

view, view of the corridor and frontal view, making it more interesting for RE-ID and multi-camera

tracking. The sequences include people walking alone, meeting with others, window shopping,

entering and exiting shops, fighting and passing out. As an explanatory sample, Fig. 2.2 depicts

the streams in the EnterExitCrossingPaths1 scenario.

PETS2009

PETS2009 [47] was recorded for the workshop at Whiteknights Campus, University of Reading,

UK. The dataset comprises multi-sensor sequences containing crowd scenarios with three levels

of complexity (i.e. subjective difficulty level/ density of the crowd). Dataset S2 addresses people

tracking with 8256 frames. S2.L1 subclass exhibits a randomly walking sparse crowd.

SAVIT-SOFTBIO

SAVIT-SOFTBIO [15] is specially designed for the task of re-identification. This dataset consists

of 150 sequences of 152 subjects travelling in a building environment though up to eight camera

views, appearing from various angles and in varying illumination conditions. Each individual
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is tracked from the moment he enters the building until he leaves the view of the surveillance

network. The dataset contains 64,472 frames in total. The frames with occlusion are omitted.

In order to study the framework on different conditions, we build three subsets of SAVIT-

SOFTBIO:

1) SAVIT: this dataset consists of 11 people travelling in a building environment through up to

eight camera views, appearing from various angles and in varying illumination conditions reflect-

ing real-world conditions. There are streams generated by both overlapped and non-overlapped

views.

2) SAVIT Non-Over: this set includes streams captured by cameras with non-overlapping FoV.

These sequences present challenging situations with cluttered scenes, different illumination con-

ditions as well as different scales of the person being captured.

3) SAVIT Recurrent: We conducted an experiment on a subset of streams of seven subjects

captured by non-overlapped cameras. Inspired by [86] and in order to simulate the recurring

concept drifts with sufficient learning data, this set is organized periodically.

HDA+

The dataset [48] was acquired from 13 indoor cameras distributed over three floors of our research

department, recording simultaneously for nearly 30 minutes. More than 64000 annotations were

performed on a total of more than 75000 frames. The video recordings exhibit a high degree of

variability in terms of image resolutions, frame rates, points of view. The different illumination

conditions of the recording areas make the dataset challenging for tasks such as person detection

and re-identification1.

We wrap up this section in Table 2.3, presenting a qualitative look at the characteristics of

the datasets applied in our work. Various factors have been considered in the table including:

imbalance degree [102] that is defined by the ratio of sample size of minority class to that of the

majority one; range in the length of streams that defines the length of shortest and longest streams

in a given dataset, respectively.

To extract the RoIs, we employed an automatic tracking approach [135] to track objects in the

scene and generate streams of bounding boxes, which define the tracked objects’ positions. As the

tracking method fails to perfectly track the targets, a stream may include RoIs of distinct objects.

2.3 Evaluation Criteria

Cumulative Matching Characteristic curve (CMC) [100] is the standard metric for person re-

identification in a closed-world setting. The CMC curve represents the probability of finding

the correct match over the first n ranks.

There is no metrics in person re-identification that can be used readily for an open-world

verification task [153]. Thus we have to define a set of new ones.

1This dataset was made available in a late stage of this thesis; despite our genuine interest it was not possible to be
applied in the experimental work.
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Figure 2.3: An example of diversity in appearance

In our framework, the key tactic to tackle open world re-identification is invoking teachers

using active learning strategies which aims to achieve high accuracy using as little annotation

effort as possible. Thus, a trade-off between accuracy and proportion of labelled data can be

considered as one of the most informative measures.

Accuracy

In a classical classification problem the disparity between real and predicted labels explains how

accurately the system works. However, in our scenario the labels do not carry any semantic mean-

ing (it is not a person recognition problem). The same person should have the same label in

different batches, whichever the label. One is just interested that, whatever label is used to repre-

sent a person, it is correctly transported to the next batches. The labels are therefore permutable

and just define a partition of the set of all batches according to which label was assigned to it. As

such, when evaluating the performance of our framework we are just comparing the partition of

the set of batches as defined by the reference labelling with the partition obtained by the NEVIL

labelling. We adopted a generic partition-distance method for assessing set partitions, initially

proposed for assessing spatial segmentations of images and videos [19,81]. Thus, the accuracy of

the system is formulated as:

Accuracy =
N−Cost

N
(2.1)

where N denotes the total number of batches, and Cost refers to the cost, yielded by the assignment

problem.
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Annotation

Assume MLB and T B denote the manually labelled batches and all the batches available during a

period (includes one or more time slots), respectively. The Annotation Effort is formulated as:

Annotation effort =
#MLB
#T B

(2.2)

It is expected that the accuracy increases with the increase of the annotation effort.

Area Under the Learning Curve (ALC)

ALC [21] is a standard metric in active learning research that combines accuracy and annotation

effort into a single measurement. The rationale behind the use of such metric is that there is not

a single budget level that everyone agrees is the reasonable cost for a particular problem. Hence,

ALC, which provides an average of accuracy over various budget levels, seems to be a more

informative metric. Herein, the learning curve is the set of accuracy plotted as a function of their

respective annotation effort, a, Accuracy = f (a). The ALC is obtained by:

ALC =
∫ 1

0
f (a)da (2.3)

2.4 Representation

The choice of visual features, or image representation, is a key choice in the design of any classic

image classification system [24]. Seems fair to say that most of improvement in such system

performance can be associated to the introduction of improved representation from the classic

Bag of Visual Words (BoW) [31] to the Fisher Vector (FV) [109]. In such approaches, local image

features are extracted. Then, the features are encoded in a high dimensional image representation.

Local features are properties of an image (object) located in a single point or small region.

It is a single piece of information describing a rather simple, but ideally distinctive property of the

object’s projection to the camera (image of the object). Examples for local features of an object

are the color, (mean) gradient or (mean) gray value of a pixel or small region. One of the main

advantages of using point features is their resilience to partial object occlusions. When one part of

an object is occluded, point features from the non-occluded part can still be used for the tracking.

Various local features have been proposed in the literature: Scale-Invariant Feature Transform

(SIFT) [89] which is invariant to rotations, translations, scaling, affine transformations, and par-

tially to illumination changes, Speeded Up Robust Features (SURF) [10], Fast Invariant to Rota-

tion and Scale Transform (FIRST) [9], Local Binary Pattern (LBP) [105], Histogram of Oriented

Gradient (HOG) [35], Rotation-Invariant Fast Feature (RIFF) [133], DAISY [137], Fast Retina

Keypoint (FREAK) [5].
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Encoding approaches A large number of encoding approaches for bag of visual words mod-

els have been proposed in the past few years to improve on the standard histogram of quantized

local features. Examples include: histogram encoding, Kernel codebook encoding, Fisher encod-

ing, super vector encoding, Locality-constrained linear encoding (LLC).

In general these approaches can be grouped into three categories: hard quantization, soft quan-

tization, and Fisher method. Classical BoW computes a spatial histogram (hard quantization) of

visual words constituting the baseline representation. Recent methods replace hard quantization

with methods that retain more information. This can be done in two ways: 1) soft quantiza-

tion or in other words, expressing the representation as combination of visual words (e.g. [136]),

and 2) expressing the representation as the difference between the features and visual words (e.g.

FV) [23].

Recently, there has been a renewed interest in Convolutional Neural Networks (CNNs) [84],

comprising several layers of non-linear feature extractors [24]. Their sophisticated structure pro-

vide a deep representation of the data.
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Chapter 3

Discriminative Ensembles

In this chapter we present the Never Ending Visual Information Learning (NEVIL) framework.

NEVIL employs an ensemble of classifiers that are incrementally trained (with no access to pre-

vious data) on incoming batches of data, and combined with a form of weighted majority voting.

NEVIL is designed for non-stationary environments in which no labelled data is available but the

learning algorithm is able to interactively query the user to obtain the desired outputs at carefully

chosen data points.

3.1 Never Ending Visual Information Learning

A high-level sketch of the proposed method is shown in Figure 3.1. A typical tracking algorithm

analyses sequential video frames and outputs the movement of targets between the frames, gen-

erating multiple streams of visual data. Environmental challenges such as varying illumination,

lack of contrast, bad positioning of acquisition devices, blurring caused by motion as well as oc-

clusion make data often noisy and/or partially missing. We address these challenges by a batch

divisive strategy, as learning from a data batch may reduce the noise and fill the gaps caused by

miss-tracking.

The algorithm is provided with a series of data batches Dmi
t , where mi is the index of the i-th

stream present at time slot t, T St , (not all streams are necessarily present). Note that a stream

corresponds to a track generated by the tracking system and a single camera can yield multiple

streams. A single batch aggregates B frames. The starting time of each stream is potentially

different from stream to stream but batches are aligned between streams. Inside each frame the

data corresponds to some pre-selected object representation (e.g. bag of words, histogram) is

extracted.

The ensemble obtained by all models generated up to the current time slot T St is named the

composite hypothesis Ht−1. With the arrival of the current data batches Dmi
t , i = 1 · · ·M, NEVIL

tries to predict the class label for each of the batches in current T St based on the probability

estimate p(Ck|Dmi
t ,Ht−1), where Ck runs over all the class labels observed so far.
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Figure 3.1: NEVIL High-level Overview

This kind of on-line learning approach can suffer if labelling errors accumulate, which is

inevitable. Unrelated objects will sooner or later be assigned the same label or different labels will

be assigned to different views of the same object. To help mitigate this issue, we allow the system

to interact with a human, to help it stay on track.

Algorithm 1 outlines our approach. Initially, the composite model is initialized to yield the

same probability to every possible class (uniform prior). When the batches Dmt
1 in time slot t

become available, NEVIL starts with computing the probabilities p(Ck|Dmi
t ,Ht−1) for each batch

Dmi
t in the time slot. Once p(Ck|Dmi

t ,Ht−1) is obtained, a batch confidence label (BCL) is esti-

mated; if BCL is high enough (above a prespecified threshold), the predicted label

argmax
Ck

p(Ck|Dmi
t ,Ht−1)

is accepted as correct, otherwise the user is requested to label the data batch. The labelled batches

(either automatically or manually) are used to generate a new multiclass classifier that is integrated

in the composite model, yielding Ht .

Four tasks need now to be detailed: a) the batch label prediction (by the composite model); b)

the BCL estimation; c) the multiclass classifier design in current time slot; d) the composite model

structure and update.

3.1.1 Batch Label Prediction

A batch Dmt
t is a temporal sequence of frames Dmt

t, f , where f runs over 1 to the batch size B. The

composite model, Ht−1, can be used to predict directly p(Ck|Dmi
t, f ,Ht−1) but not p(Ck|Dmi

t ,Ht−1).
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Algorithm 1 NEVIL

1: Input: Dmi
t , i = 1, ...,M

2: W0 ← 1
k

3: H0←W0
4: while Dt is True do
5: Batch label prediction (Section 3.1.1)
6: p(Ck|Dmi

t )← (Dmi
t ,Ht−1)

7: Batch Confidence Level Estimation (Section 3.1.2)
8: BCL← p(Ck|Dmi

t ,Ht−1)
9: Multiclass classifier design (Section 3.1.3)

10: ht ← Dt

11: Composite model structure and update (Section 3.1.4)
12: Ht ← (ht , Ht−1, Wt)
13: end while

The batch (multiframe) Bayesian inference requires conditional independence

p(Dmi
t |Ck,Ht−1) =

p(Dmi
t,1, · · · ,D

mi
t,B|Ck,Ht−1) =

p(Dmi
t,1|Ck,Ht−1) · · · p(Dmi

t,B|Ck,Ht−1) =

∏
B
j=1 p(Dmi

t, j |Ck,Ht−1)

From there, and assuming equal prior probabilities, it is trivial to conclude that

p(Ck|Dmi
t ,Ht−1) = Z

B

∏
j=1

p(Ck|Dmi
t, j ,Ht−1), (3.1)

where Z is a normalization constant. In practice, products of many small probabilities can lead

to numerical underflow problems, and so it is convenient to work with the logarithm of the dis-

tribution. The logarithm is a monotonic function, so that if p(Ck|Dmi
t ,Ht−1) > p(C`|Dmi

t ,Ht−1)

then

log p(Ck|Dmi
t ,Ht−1)> log p(C`|Dmi

t ,Ht−1).

Then we can rewrite the decision as choosing the class that maximizes

log p(Ck|Dmi
t ,Ht−1) = logZ +

B

∑
j=1

log p(Ck|Dmi
t, j ,Ht−1) (3.2)

The batch label prediction can also be analysed as a problem of combining information from

multiple (B) classification decisions. Considering that, per frame, the composite model produces

approximations to the a posteriori probabilities of each class, different combination rules can be

considered to build the batch prediction from the individual frame predictions [6, 77]. While Eq.

(3.1) turns out to be the product rule (or geometric mean), the sum rule (or arithmetic mean) is
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also often preferred:

p(Ck|Dmi
t ,Ht−1) = Z

B

∑
j=1

p(Ck|Dmi
t, j ,Ht−1) (3.3)

In fact some authors have shown that the arithmetic mean outperforms the geometric mean in

the presence of strong noise [6, 77]. Experimentally, we will compare both options.

3.1.2 The Batch Confidence Level Estimation

Having predicted a class label for a data batch, one needs to decide if the automatic prediction is

reliable and accepted or rather a manual labelling should be requested.

Various criteria have been introduced as uncertainty measures in the literature for a proba-

bilistic framework [123]. Perhaps the simplest and most commonly used criterion relies on the

probability of the most confident class, defining the confidence level as

max
Ck

p(Ck|Dmi
t ,Ht−1). (3.4)

However, this criterion only considers information about the most probable label. Thus, it effec-

tively “throws away” information about the remaining label distribution [123].

To correct for this, an option is to adopt a margin confidence measure based on the first and

second most probable class labels under the model:

p(C∗|Dmi
t ,Ht−1)− p(C∗|Dmi

t ,Ht−1), (3.5)

where C∗ and C∗ are the first and second most probable class labels, respectively. Intuitively,

batches with large margins are easy, since the classifier has little doubt in differentiating between

the two most likely class labels. Batches with small margins are more ambiguous, thus knowing

the true label would help the model discriminate more effectively between them [123].

Note that while the estimation of the wining class for batch label prediction requires only the

comparison of the relative values as given by Eq. (3.1), Eq. (3.2) or Eq. (3.3) both approaches

Eq. (3.4) and Eq. (3.5), for the confidence level require the exact computation of the a posteriori

probabilities of the classes. This involves computing the normalizing constant associated with Eq.

(3.1) or Eq. (3.3), which is specially unstable for Eq. (3.1).

We therefore put forward variants of the two previous measures. As an alternative to the

margin confidence measure Eq. (3.5), we base the confidence level on the ratio of the first and

second most probable class labels:

BCL = p(C∗|Dmi
t ,Ht−1)/p(C∗|Dmi

t ,Ht−1), (3.6)

which can be directly applied for the sum rule or modified to log p(C∗|Dmi
t ,Ht−1)−log p(C∗|Dmi

t ,Ht−1)

for the product rule. Either way, we eliminate the issue with the normalization constant.



3.1 Never Ending Visual Information Learning 23

To come up with an alternative to the most confident class measure, we write the decision as

max pk =
∏

B
j=1 pk, j

∑k ∏
B
j=1 pk, j

≷ T, (3.7)

where we introduced the following simplifications in notation: pk = p(Ck|Dmi
t ,Ht−1) and pk, j =

p(Ck|Dmi
t, j ,Ht−1). The comparison in Eq. (3.7) can be rewritten as

(1−T )
B

∏
j=1

pk∗, j ≷ T ∑
k,k 6=k∗

B

∏
j=1

pk, j, (3.8)

where k∗ = argmaxk pk. Since we cannot work directly with the log of Eq. (3.8) due to the sum

in the denominator, we introduce the simplification of binarizing the classification in each frame,

defining p̄k∗, j = ∑k,k 6=k∗ pk, j = 1− pk∗, j.

Accepting the strong assumption of independence for the aggregated class, then

p̄k∗ =
B

∏
j=1

p̄k∗, j.

This ends up in exchanging the order of the sum and product in the right hand side of Eq. (3.8),

which can now be rewritten as

(1−T )
B

∏
j=1

pk∗, j ≷ T
B

∏
j=1

p̄k∗, j. (3.9)

Now it is a trivial process to apply the log to obtain a stable decision:

B

∑
j=1

log pk∗, j ≷ S+
B

∑
j=1

log p̄k∗, j, (3.10)

where S = logT − log(1−T ).

Figure 3.2 highlights the characteristics of the four confidence measures by a ternary plot

(where every corner indicates a class). This plot graphically depicts the ratios of the three variables

(herein, occurrence of each class) as positions in an equilateral triangle. The probability of each

class is 1 in its corner of the triangle. Moving inside triangle, the percentage of a specific class

decreases linearly with increasing distance from the corner till dropping to 0 at the line opposite it.

A rainbow-like color pattern shows the informativeness of different composition of three classes.

For all methods, the least reliable batch would lie at the center of triangle, where the posterior

label distribution is uniform and thus the least certain under the ensemble. Similarly, the most

informative batch lies at the corners where one of the classes has the highest possible probability.
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(a) Most confident
class measure.

(b) Margin confi-
dence measure.

(c) Modified most
confident class
measure.

(d) Modified
margin confidence
measure.

(e) Margin
confidence
measure.

Figure 3.2: Heatmaps illustrating the behavior of the reliability measures in a three-label classifi-
cation problem.

3.1.3 Multiclass Classifier

At time slot t, we obtain a new set of batches that are automatically or manually labelled. We

assume all the frames belonging to a batch are from the same object (and the underlying tracking

system does not mix identities in the time slot period) and therefore the frames inside a batch

correspond to observations of the same class. Consider that to the M batches in current time slot

correspond L < M labels (some batches can have the same label). We need the design a classifier

that can approximate the a posteriori probability function p(ck|Dmi
t, f ), which gives the probability

of the frame belonging to a given class ck, given that Dmi
t, f was observed.

A standard way to address this problem is to apply discriminative approaches which predict the

conditional probability directly. As an alternative, generative approaches find the joint distribution

p(Dmi
t, f ,ck) and then use Bayes’ rule to form the conditional distribution from the generative model.

A third option is to find a function f (Dmi
t, f ), called a discriminant function, which maps each input

Dmi
t, f directly onto a class label. In this case, and although probabilities play no role in the design of

the discriminant function, it is still possible to get estimated for the conditional probabilities [17].

Each approach has its relative merits and we evaluate experimentally instantiations of each.

One of the challenges we need to handle in a practical scenario is when in a time slot all the

batches have the same label (automatically or manually assigned). In these TSs the training of

a multiclass classifier is not possible. We resort to one-class classifiers for these time slots, also

known as unary classification, to distinguish the single class present in the training set (the batches

in the time slot) from all other possible classes [71].

3.1.4 The Composite Model Structure and Update

The composite model Ht in the NEVIL framework is an ensemble of classifiers ht that are incre-

mentally trained (with no access to previous data) on incoming time slots of data as described

previously. The individual models ht are combined using a weighted majority voting, where the

weights are dynamically updated with respect to the classifiers’ time of design.
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The prediction outputted by the composite model Ht for a given frame Dmi
t, f is

p(Ck|Dmi
t, f ,Ht) =

t

∑
`=1

W t
`h`(CK |Dmi

t, f ),

where h`(.) is the multiclass classifier trained at TS `, W t
` is the weight assigned to classifier `,

adjusted for time t.

The weights are updated and normalised at each time slot and chosen to give more credit to

more recent knowledge. The weights are chosen from a geometric series 1
pt , ...,

1
p2 ,

1
p , normalised

by the sum of the series to provide proper probability estimates:

W t
` =

1
p(t−`+1)

∑
t
j=1

1
p j

3.2 Experimental Methodology

3.2.1 Experimental Setup

A series of experiments were conducted to explore the capabilities of the proposed framework. We

evaluated the framework on synthetic datasets as well as Caviar clips. These sequences present

challenging situations with cluttered scenes, high rates of occlusion, different illumination condi-

tions as well as different scales of the person being captured.

We employ an automatic tracking approach [135] to track objects in the scene and generate

streams of bounding boxes, which define the tracked objects’ positions.

An hierarchical bag-of-visterms method is applied to represent the tracked objects, resulting

in a descriptor vector of size 11110 for each frame (refer to [136] for additional details). In order

to avoid the curse of dimensionality that system may suffer from, Principle Component Analysis

(PCA) is applied to the full set of descriptor features as a pre-processing step. Hence, the number

of features in each stream is reduced to 85 dimensions.

3.2.2 Instantiation of Classifiers

In Section 3.1.3, we identified three approaches that have been applied in the literature to obtain

the posterior probability. A set of experiments were conducted in order to study the behaviour of

our framework employing instances of each option. We chose the following methods: Gaussian

Mixture Models (GMM) and Naive Bayes as generative approaches, Support Vector Machines

(SVM) [22] as one of the most popular discriminant function and logistic regression [45] as a

member of discriminative approaches family.

Designing a classifier for time slots where batches constitute different labels is quite straight-

forward. The challenging situation arises when we need to do unary classification. As we em-

ployed various approaches with specific characteristics, different strategies are proposed to handle

this situation.
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Single-class SVM classifies each frame as completely similar or different from given class,

whereas generative approaches (GMM and Naive Bayes) provide the probabilistic estimation.

To the extent of our knowledge, using logistic regression in unary problems is an unexplored

topic; existing methods need data generated by at least two classes in order to make the prediction.

Therefore, we keep the batches from the last multi-class time slot and combine them with the

uni-class time slot to build the training set.

3.2.3 Evaluation Criteria

Accuracy and Annotation effort have been applied to assess the performance of the framework on

various datasets.

3.2.4 Baseline Methods

To the best of our knowledge, there is no method that mines multi-dimensional parallel streams in

such a non-stationary environment, where the number and length of streams vary greatly. There-

fore, we compare our framework with three baseline approaches:

• Passive Learning: The first half of all the batches are submitted to the oracle for labelling.

Once the labelled set is obtained, a classifier is trained and applied to classify the other half

of stream. This method is far from a real online active learning strategy, as it needs complete

data available. For datasets in which there is no dramatic distribution evolution between first

and second half, we expect that it provides an upper bound to be compared with our method.

• Even/Odd Learning: As an on-line baseline, for a given stream, batches are marked alter-

nately with odd and even integers, where odd batches are kept in a buffer with their true

labels. At each time slot, a model is re-trained using the buffer. We then use this model

to classify even batches. Therefore, we may partly follow the distribution changes in this

setting leading to better performance than Passive Learning. However, we need to keep all

the odd batches, which is far from a practical solution in an on-line scenario.

• Unwise active learning: We use an unwise version of the original framework as a baseline,

where all the batches occurred before initiation time (tint) would be annotated. For t > tint ,

NEVIL computes the probabilities of known classes. Once p(Ck|Dmi
t ,htint ) are obtained, a

batch confidence label (BCL) is estimated; if BCL is high (above a pre-defined threshold),

the predicted label

argmax
Ck

p(Ck|Dmi
t ,htint )

is accepted as correct label of the batch, otherwise the user is requested to label the batch.

The method is summarized in Algorithm 2. Despite meticulous selection of queries, as the

model is not updated, the algorithm may establish a lower bound the level of performance

that can be expected in an evaluation.
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Table 3.1: Comparison of baseline approaches on multiple datasets

Accuracy (%)
Dataset Multiple Classifier Passive Learning Even/odd Learning

ScenarioI

SVM 97.39 97.19
GMM 79.61 79.45

Naive bayes 79.61 79.45
Logistic Regression 18.44 18.21

ScenarioII
SVM 66.32 72.25
GMM 79.60 79.45

Naive bayes 79.60 79.45
Logistic Regression 40.85 35

ScenarioIII
SVM 74.70 76.65
GMM 78.37 78.02

Naive bayes 78.37 78.02
Logistic Regression 62.18 62.64

ScenarioIV
SVM 80.05 78.61
GMM 81.81 81.87

Naive bayes 81.81 81.87
Logistic Regression 45.51 40.65

EnterExitCrossingPaths1
SVM 89.28 93.7
GMM 66.45 75.16

Naive bayes 66.45 75.16
Logistic Regression 80.12 79.86

OneLeaveShopReenter1
SVM 63.74 100
GMM 64.06 61.49

Naive bayes 64.06 61.49
Logistic Regression 92.18 97.86

OneShopOneWait1
SVM 80.24 95.79
GMM 92.33 52.88

Naive bayes 92.33 52.88
Logistic Regression 81.35 93.42

OneStopEnter2
SVM 83.56 98.63
GMM 76.73 75.28

Naive bayes 76.73 75.28
Logistic Regression 81.36 93.02

WalkByShop1front
SVM 92.32 97.58
GMM 91.50 90.93

Naive bayes 91.50 90.93
Logistic Regression 89.04 96.07

OneStopMoveEnter1
SVM 62.47 79.40
GMM 90.99 90.93

Naive bayes 90.99 90.93
Logistic Regression 56.25 73.76
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Algorithm 2 Unwise active learning

Input: Dmi
t , i = 1, ...,M

h← empty
while Dt is True do

if t > tint then
Batch label prediction
p(Ck|Dmi

t )← (Dmi
t ,hint)

Batch Confidence Level Estimation
BCL← p(Ck|Dmi

t ,hint)
else

Multiclass classifier design
hint ← Dt

end if
end while

3.3 Results

Firstly, multiple tests were run to determine the optimal batch size for each dataset to be explored.

Batch size was varied between 1% to 50% of the size of the longest stream available in each

dataset. Experiments were repeated for 50 equally spaced values in that range. The optimal batch

size varies and is influenced by the characteristics of the streams present in each dataset. Optimal

batch sizes have been observed to range between 30 and 35 for real video streams and between

200 and 300 for synthetic sequences.

Table 3.1 provides a summary of the performance of Passive Learning and Even/Odd Learning

using various classifiers on all Synthetic as well as Caviar video clips. Since different classifiers

provide varying performances on different datasets, the need for a procedure that carefully assesses

algorithms seems inevitable. We applied Friedman test [37] that provides a non-parametric rank

based statistical significance test. This test is similar to parametric repeated measures ANOVA,

which tests if there is a significant difference between the rank of different treatments across

multiple attempts. When the test runs over all the datasets shows that null hypothesis is verified

which means that type of the classifier has no significant effect on the overall performance of

baseline method in real applications. However, the test shows that Logistic Regression has yielded

weak results for synthetic data in both learning methods. When we perceive the superior learners

based on the mean rank for various scenarios, generative approaches perform fairly better in the

synthetic datasets, while discriminative methods win for real video clips. Since the dimension of

real data is large, while synthetic data is generated in 2D space, these results also emphasizes the

difficulties that generative models face in high-dimensional spaces. As mentioned in Section 3.2.4,

we expect better or equal results from Even/Odd Learning than Passive Learning which is the case

in all the settings applied discriminative approaches as well as almost all used generative methods.

Unexpected behaviour of generative methods when applies on OneShopOneWait1 dataset can be

explained by high bias of these methods when trying to model such complex data.
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(a) Naive Classifier (b) SVM Classifier

(c) Naive Classifier (d) SVM Classifier

Figure 3.3: Multiple configurations tested on the synthetic scenarios. “SUM", “Prod", “MMC", and “MM"
indicate sum rule, product rule, modified most confident and modified margin.
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(a) ScenarioI (b) ScenarioII

(c) ScenarioIII (d) ScenarioIV

Figure 3.4: Multi-class classifier comparison on synthetic scenarios using the best configuration
(Prod+MM).

Figure 3.3 presents the results of multiple settings on Scenarios I,..., IV. One prominent obser-

vation on all these results is that using geometric mean (Prod) to combine information of frames

in a given batch and the modified most measure (MMC) to select most informative batches give

the best performance.

Figure 3.4 illustrates the comparative results across multiple classifiers on Scenarios I,..., IV

from which we can observe that: a) NEVIL achieves more than 90% accuracy with less than 15%

annotation effort in all the datasets, which obviously outperforms baseline approaches. For all the

sets, we reached equal accuracy to Passive as well as Even/Odd Learning while spending much

less human resources. b) Naive classifier gives the best overall performance which emphasise the

more flexible nature of generative models than discriminative ones. Needless to say, following the

results depicted in Figure 3.3, we only present the result of winner setting.

Figure 3.5 shows the comparative results on some CAVIAR sequences with various NEVIL

configurations. We observe that unlike synthetic scenarios, employing arithmetic mean (SUM) as

combination method and modified margin (MM) as selection criteria present winner results. The

presence of challenging noise in real data explains the different behaviour of the framework.
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(a) Logistic Regression Classifier (b) Logistic Regression Classifier

(c) SVM Classifier (d) SVM Classifier

Figure 3.5: Multiple configurations tested on the CAVIAR sequences.“SUM", “Prod", “MMC", and “MM"
indicate sum rule, product rule, modified most confident and modified margin.
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(a) OneShopOneWait1

(b) OneStopMoveEnter1

(c) WalkByShop1front

Figure 3.6: Performance using multiple configurations on the CAVIAR sequences.



3.4 Discussion 33

Figure 3.7: Performance of NEVIL on multiple CAVIAR sequences. The results were obtained with the
SUM+MM configuration and applying SVM as the classifier.

Figure 3.6 presents the performance of NEVIL employing various classifiers on multiple

CAVIAR sequences. The NEVIL framework achieves over 80% accuracy with less than 25%

of labelling and in most cases, that is clearly superior to baseline methods. Contrary to results

obtained from synthetic data, Discriminative models outperforms than Generative ones. Higher

dimension of video streams (herein, equal to 85) may explain this behaviour. Generative models

are commonly trained using Maximum-Likelihood Estimation (MLE) that especially for high di-

mensional data, the likelihood can have many local maxima. Thus, finding the global maximum

affects the performance and renders the approach less practical.

Finally, Figure 3.7 presents the results obtained across multiple CAVIAR scenarios from the

most successful setting, which means SVM, SUM, and MMC as base classifier, combination rule

and selection criteria, respectively. Under such setting, NEVIL achieves 80% accuracy with 30%

annotation effort for OneStopMoveEnter1, the most complex scenario with 42 streams from 14

classes.

3.4 Discussion

In this chapter, we address the problem of learning from visual streams generated in a multi-camera

surveillance scenario using a discriminative ensemble.Inspired from active learning strategies, in

our proposed framework (NEVIL) an oracle provides labelled batches; multiple informativeness

measures are used to determine when the oracle is used. As base learners are bottlenecks of any

learning pipeline, various groups of classifiers were studied and experimentally evaluated. We ran

the experiments on synthetic as well as real datasets.
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In synthetic scenarios, where low dimensional clean data is available, applying the geometric

mean and the modified most confident measure gives the best and least expensive (in terms of

annotation cost) results. However, to get the highest accuracy from noisy visual data we need to

apply arithmetic mean for combining information and modified margin to select the most infor-

mative batches.

Another question we tried to answer was which classifier to use on a given dataset. In a low

dimensional clean data, generative approaches give the best results, however obtaining robust and

stable results from high dimensional data is too difficult, as shown by our experiments. The best

performance is obtained through discriminative approaches.
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Class-based Ensembles

This work extends our prior framework, NEVIL [75], that was instantiated with discriminative

approaches in order to actively classify parallel video streams. While having the benefit of a

robust classifier design, this strategy is not without difficulties. Firstly, if a new class appears,

it will be difficult to detect the novelty. Secondly, the framework becomes biased towards the

majority class in the case of severe class imbalance. NEVIL trains a classifier for the batches

available in a time slot. The classifiers are kept in an ensemble and participate in the final decision

using a weighted sum strategy. If the decision is not reliable enough, the batch will be sent to an

oracle to annotate it. Since NEVIL computes the posterior probability (that must sum to 1), it is

likely to assign a high enough (reliable) probability to a new class and mislead the system even

when exploiting generative models. Thus, NEVIL cannot exploit generative models true potential.

All the aforementioned reasons make this method fairly expensive. Hence, we need to spend more

human resources to get higher accuracy.

To address these problems, the NEVIL framework is extended with generative models within a

new framework, allowing a double threshold strategy to detect novel classes and avoids the pitfall

of classifying every batch as the majority class. A class-based ensemble is introduced, where

models of each class are stored separately.

Class-based ensemble is firstly introduced in [4] where a model is trained for each class in

a chunk. The ensemble keeps a fixed size ensemble of each class and it has been shown that

this approach is more robust than traditional ensembles, though it needs the presence of training

partition in each chunk. Although this approach does not fit directly in our scenario, we expect

that class-based ensemble can improve our framework.

4.1 NEVIL.gmm

In this section we present our framework, that employs class-based ensembles to learn from non-

stationary environments where no labelled data is available. The framework is able to interactively

query the user to obtain the desired outputs at carefully chosen batches. The algorithm is a one-

pass class-based ensemble of classifiers that trains a separate model (h j
t ) for a class ( j) at every

35
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time slot (t). It also keeps models of each class in a separate ensemble (Intra-Ensemble). As one of

the most popular generative approaches, use of Gaussian Mixture Models (GMM) to train models

seems a natural choice. A time-adjusted weighting strategy combines the probabilities outputted

by the models in order to make the final decision.

The framework receives multiple visual streams, generated by a typical tracking algorithm,

which analyses sequential video frames and outputs the movement of targets between the frames.

Environmental challenges such as varying illumination, lack of contrast, bad positioning of ac-

quisition devices, blurring caused by motion as well as occlusion make data often noisy and/or

partially missing. We address these challenges by a batch divisive strategy, as learning from a data

batch may reduce the noise and fill the gaps caused by miss-tracking.

4.1.1 Gaussian Mixture Models

The Gaussian mixture density is a weighted linear combination of M component densities. For a

D-dimensional feature vector, x, the mixture density for class c is defined as:

p(x|c) =
M

∑
i=1

ωi pi(x) (4.1)

where ωi are the mixture weights which satisfy the constraint that ∑
M
i=1 ωi = 1; pi(x) are the

unimodel Gaussian density functions parametrized by a mean D× 1 vector, µi, and a covariance

D×D matrix, ∑i;

pi(x) =
1

(2π)D/2|∑i |1/2 exp

{
−1

2
(x−µi)

T (∑
i
)−1(x−µi)

}
(4.2)

The parameters of application c’s density model are denoted as θa = {ωi,µi,∑i}where i= 1, · · · ,M.

Such parameters are estimated via Expectation–Maximization (EM) algorithm [36], given a set of

training vectors. The EM algorithm refines the GMM parameters through an iterative procedure

aiming at maximizing the likelihood of the initialized model for the observed feature vectors.

4.1.2 Learning Framework

Similarly to NEVIL, the algorithm is provided with a series of data batches Dmi
t , where mi is the

index of the ith stream present at time slot t, T St , (not all streams are necessarily present). Note

that a stream corresponds to a track generated by the tracking system and a single camera can

yield multiple unregulated streams. A single batch aggregates B frames. Inside each frame the

data corresponds to some pre-selected object representation (e.g. bag of words, histogram).

The ensemble obtained by all Intra-Ensemble (IE) generated up to the current time slot T St

is named the composite hypothesis Ht−1. With the arrival of the current data batches Dmi
t , i =

1 · · ·M, the algorithm tries to predict the most probable class label for each of the batches in
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Algorithm 3 NEVIL.gmm

Input: Dmi
t , i = 1, ...,M

W0← 1
k

H0←W0
while Dt is True do

Batch label prediction (Section 4.1.2.1)
p(Ck|Dmi

t )← (Dmi
t ,Ht−1)

Batch Confidence Level Estimation (Section 4.1.2.2)
BCL← p(Ck|Dmi

t ,Ht−1)
Model design (Section 4.1.2.3)
h j

t ← D j
t , j = 1, ...,k

Composite model structure and update (Section 4.1.2.4)
IE j

t ← h j
t , j = 1, ...,k

Ht ← (IE1
t , ..., IEk

t , Ht−1, Wt)
end while

current T St based on the probability estimate p(Ck|Dmi
t ,Ht−1), where Ck runs over all the class

labels observed so far.

Algorithm 3 outlines our approach. Initially, the composite model is initialized to yield the

same probability to every possible class (uniform prior). When the batches Dmt
1 in time slot t be-

come available, the framework starts computing the probabilities p(Ck|Dmi
t ,Ht−1) for each batch

Dmi
t in the time slot. Once p(Ck|Dmi

t ,Ht−1) is obtained, a batch confidence label (BCL) is esti-

mated; if BCL is high enough (above a predefined threshold), the predicted label

argmax
Ck

p(Ck|Dmi
t ,Ht−1)

is accepted as correct, otherwise the user is requested to label the data batch. The labelled batches

(either automatically or manually) are used to generate new separate models hk
t (k runs over all the

classes available in t) that are kept in intra ensembles IEk, integrating in the composite, yielding

Ht .

Four tasks need now to be detailed: a) the batch label prediction (by the composite model);

b) the BCL estimation; c) the model design in current time slot; d) the composite model structure

and update.

4.1.2.1 Batch Label Prediction

A batch Dmt
t is a temporal sequence of frames Dmt

t, f , where f runs over 1 to the batch size B

on top. The composite model, Ht−1, can be used to predict directly p(Ck|Dmi
t, f ,Ht−1) but not
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p(Ck|Dmi
t ,Ht−1). The batch (multiframe) Bayesian inference requires conditional independence

p(Dmi
t |Ck,Ht−1) =

p(Dmi
t,1, · · · ,D

mi
t,B|Ck,Ht−1) =

p(Dmi
t,1|Ck,Ht−1) · · · p(Dmi

t,B|Ck,Ht−1) =

∏
B
j=1 p(Dmi

t, j |Ck,Ht−1)

From there, and assuming equal prior probabilities, it is trivial to conclude that

p(Ck|Dmi
t ,Ht−1) = Z

B

∏
j=1

p(Ck|Dmi
t, j ,Ht−1), (4.3)

where Z is a normalization constant. In practice, as streams have different starting points and

lengths, the number of frames may vary (<= B) for different batches in a given timeslot. Thus,

the products of different number of small probability can make the process of defining an optimal

confidence level threshold challenging. Thus, besides the options we considered in Chapter 3, we

estimate the probability of a given batch by:

p(Ck|Dmi
t ,Ht−1) = M edian(p(Ck|Dmi

t, j ,Ht−1)) (4.4)

That makes the prediction independent of the number of frames. Then, the framework will assign

each batch to the class that maximizes p(Ck|Dmi
t ,Ht−1).

4.1.2.2 The Batch Confidence Level Estimation

Having predicted a class label for a data batch, one needs to decide if the automatic prediction is

reliable and accepted or rather a manual labelling be requested.

Various criteria have been mentioned as an uncertainty measure in chapter 3 for a probabilistic

framework. Perhaps the simplest and most commonly used criterion relies on the probability of

the most confident class, defining the confidence level as

max
Ck

p(Ck|Dmi
t ,Ht−1). (4.5)

4.1.2.3 Model Design

At time slot t, we obtain a new set of batches that are automatically or manually labelled. A

model (h j
t ) has been trained by positive instances (D j

t ) of classes at t. Hence, we require models

that can carry deep information about the distribution of an individual class. Having in mind our

needs, generative models, seem a natural choice. In this work, we use GMMs to learn the model

for individuals at each TS. It is worth mentioning that we assume that all the frames belonging to

a batch are from the same object.
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4.1.2.4 The Composite Model Structure and Update

The composite model Ht is an ensemble of Intra-ensembles (IE j
t , j = 1, ...,k). Each IE j

t includes

models that are incrementally trained (with no access to previous data) on incoming batches of

jth class (h j
t ). The approximation outputted by individual models are combined using a weighted

majority voting, where the weights are dynamically updated with respect to the classifiers’ time of

design.

The prediction outputted by the composite model IE j
t for a given frame Dmi

t, f is

p(Ck|Dmi
t, f , IE j

t ) =
t

∑
`=1

W t
`h j

`(CK |Dmi
t, f ),

where h j
`(.) is the model trained from batches of jth at TS `, W t

` is the weight assigned to model

`, adjusted for time t. The weights are updated and normalised at each time slot and chosen to

give more credit to more recent knowledge. They are chosen from a geometric series (1, ...,(β )`)).

After combing the decisions of the models inside every IE, the ensemble will assign a batch with

the label of the IE with the highest probability.

4.1.3 Experimental Setup

In order to explore the properties of the proposed framework, we evaluated it on multiple datasets

covering various possible scenarios in a multi-camera surveillance system. We conducted our ex-

periments on synthetic as well as real datasets. We run our experiments on a number of CAVIAR

video clips [112] including: OneLeave ShopReenter1, Enter ExitCrossingPaths1, OneShopOneWait1,

OneStopEnter2, OneStopMoveEnter1, and WalkByShop1front. Due to the presence of different

perspectives of the same person, streams are drifting in time.

We employ an automatic tracking approach [135] to track objects in the scene and generate

streams of bounding boxes, which define the tracked objects’ positions.

Similar to the experiments in chapter 3, a hierarchical bag-of-visterms method is applied to

represent the tracked objects, resulting in a descriptor vector of size 11110 for each frame (refer

to [136] for additional details). In order to avoid the curse of dimensionality that system may suffer

from, Principle Component Analysis (PCA) is applied to the full set of descriptor features as a pre-

processing step. Hence, the number of features in each stream is reduced to 85 dimensions.

4.1.3.1 Random Strategy (Baseline)

The Random strategy [157] labels the incoming batches randomly instead of wisely deciding

which batches is more informative. Constrained by budget, batches are sent for annotation.

4.1.3.2 Instantiation of Classifiers

In Section 4.1.2.3, we noted that designing a generative model when we only have positive sample

is quite straightforward. However, a challenge may arise since these models output likelihood
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(a) (b)

Figure 4.1: Comparison of the performance of NEVIL and NEVIL.gmm on synthetic scenarios

whereas we have made all the decisions based on posterior probability in the theoretical discus-

sion. Nevertheless, assuming equal priors and employing the Bayes’ theorem, the likelihood and

posterior are consistent.

4.1.4 Results

Firstly, multiple tests were run to determine the optimal batch size for each dataset to be explored.

The batch size was varied between 1% to 50% of the size of the longest stream available in each

dataset. Experiments were repeated for 50 equally spaced values in that range. The optimal batch

size varies and is influenced by the characteristics of the streams present in each dataset. Optimal

batch sizes have been observed to range between 30 and 35 for real video streams and between

200 and 300 for synthetic sequences.

Figure 4.1 shows the results of NEVIL.gmm on multiple synthetic scenarios. To the best of

our knowledge, there is no approach (except NEVIL) that can classify parallel data streams while

interacting with an oracle (there are however clustering approaches which are not applicable in our

scenario). Thus we compared this framework with NEVIL in two different settings: GMM-based

NEVIL, to be consistent with the results of this version and Naive-based NEVIL, that gave the best

results with synthetic data in the previous work. For most of the scenarios, NEVIL.gmm (black

plots) outperforms NEVIL and we can get 90% accuracy by only 10% annotation effort.

Figure 4.2 shows that NEVIL.gmm is specially effective when the human collaboration is

low. We see that even at big budget Random strategy may fail due to selection of non or less

informative batches (see OneLeave ShopReenter1). Figure 4.3 presents the results on multiple

CAVIAR datasets, where various lengths and number of streams from different classes are present.

The most complex scenario is OneStopMoveEnter1, with 42 streams from 14 classes. We have

compared the results of the proposed method with NEVIL’s most successful setting in real video

scenarios (SVM-based NEVIL) as well as GMM-based NEVIL. Results show a clear improve-

ment when comparing to GMM-based NEVIL (See Figs. 4.3a, 4.3b). Comparing to SVM-based

NEVIL, our method has also improved. For half of the clips (including OneStopEnter2, WalkBy
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(a) (b)

Figure 4.2: Comparison of the performance of Random Strategy and NEVIL.gmm on real scenarios

Shop1front,OneLeave ShopReenter1), we obtain over 90% accuracy with a manual labelling of

20% of batches. Although the interaction increase for other scenarios, the value is quite accept-

able considering the complexity of the data (we need to annotate 25% of batches to gain 85%

correct classification for OneStopMoveEnter1).

4.1.5 Discussion

We introduced a class-based ensemble framework for the classification of parallel visual data

streams. The framework has shown promising performance with a fairly little human collaboration

and can be applied in an on-line process. However, it posses most of the characteristics mentioned

in Chapter 1 for our desired learning algorithm, the instability for high-dimensional data, which

makes effective novelty detection highly challenging, and the growing complexity are the main

concerns.
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(a)

(b)

(c)

(d)

Figure 4.3: Performance evaluation on multiple CAVIAR clips.
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4.2 NEVIL.ubm

Although NEVIL.gmm produces superior performance compared to NEVIL, stability in high-

dimensional visual data is still a big issue and the novel class detection is unreliable due to the

difficulty of setting a suitable threshold. Here, we address those issues by adopting a UBM-

normalized strategy and class-based ensembles. An ensemble of generative models that includes

the maximum a-posteriori (MAP) adaptation of the universal background model (UBM). This

framework applies a double threshold strategy in order to detect novel classes and unreliable deci-

sions. The decisions are categorized into three groups: novel classes when the existing classes are

unable to explain satisfactorily the observed data; unreliable, leading to a request of user input;

and reliable when there is strong evidence in favor of one of the existing classes. The adopted

batch approach enables to achieve a good balance between the need to have enough data to make

reliable decisions and the need to adapt quickly enough to drifts and new concepts in the data

streams.

4.2.1 Universal Background Model

Universal background modelling is a common strategy in the field of voice biometrics [111]. It can

be easily understood if the problem of biometric verification is interpreted as a basic hypothesis

test. Given a biometric sample Y and a claimed ID, S, we define:

H0: Y belongs to S

H1: Y does not belong to S

as the null and alternative hypothesis, respectively. The optimal decision is taken by a likelihood-

ratio test:

S (Y |H0) =
p(Y |H0)

p(Y |H1)

≥ θ accept H0

≤ θ accept H1

(4.6)

where θ is the decision threshold for accepting or rejecting H0, and p(Y |Hi), i ∈ {0,1} is the

likelihood of observing sample Y under hypothesis i. Biometric recognition can, thus, be reduced

to the problem of computing the likelihood values p(Y |H0) and p(Y |H1). Note that H0 should

characterize the hypothesized individual, while, alternatively, H1 should be able to model all the

alternatives to the hypothesized individual.

From such formulation arises the need for a model that successfully covers the space of al-

ternatives to the hypothesized identity. The most common designation in literature for such a

model is universal background model or UBM [115]. Such model must be trained on a large set

of data, so as to faithfully cover a representative user space and a significant amount of sources of

variability.
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4.2.1.1 Hypothesis Modeling

Gaussian Mixture Models (GMM) are typically chosen to model both the UBM, i.e. H1, and the

individual specific models (IDSM), i.e. H0. Such models are capable of capturing the empiri-

cal probability density function (PDF) of a given set of feature vectors, so as to faithfully model

their intrinsic statistical properties [114]. The choice of GMM to model feature distributions in

biometric data is extensively motivated in many works of related areas. From the most common

interpretations, GMMs are seen as capable of representing broad “hidden” classes, reflective of the

unique structural arrangements observed in the analysed biometric traits [114]. Besides this as-

sumption, Gaussian mixtures display both the robustness of parametric unimodal Gaussian density

estimates, as well as the ability of non-parametric models to fit non-Gaussian data [113]. This du-

ality, alongside the fact that GMM have the noteworthy strength of generating smooth parametric

densities, confers such models a strong advantage as generative model of choice.

4.2.1.2 H1: UBM Parameter Estimation

To train the Universal Background Model a large amount of “impostor” data, i.e. a set composed

of data from all the enrolled individuals, is used, so as to cover a wide range of possibilities in the

individual search space [126]. The training process of the UBM is simply performed by fitting a

k-mixture GMM to the set of feature vectors extracted from all the “impostors”.

If we interpret the UBM as an “impostor” model, its “genuine” counterpart can be obtained by

adaptation of the UBM’s parameters using individual specific data. For each enrolled individual,

ID, an individual specific model (IDSM) is therefore obtained.

4.2.1.3 H0: MAP Adaptation of the UBM

IDSMs are generated by the tuning of the UBM parameters in a maximum a posteriori (MAP)

sense, using individual specific biometric data. This approach provides a tight coupling between

the IDSM and the UBM, resulting in better performance and faster scoring than uncoupled meth-

ods [146], as well as a robust and precise parameter estimation, even when only a small amount of

data is available [126]. This is indeed one of the main advantages of using UBMs. The determina-

tion of appropriate initial values (i.e. seeding) of the parameters of a GMM remains a challenging

issue. A poor initialization may result in a weak model, especially when the data volume is small.

Since the IDSM is learnt only from each individual data, it is more prone to a poor convergence

that the GMM for the UBM, learned from a big pool of individuals. In essence, UBM constitutes

a good initialization for the IDSM.

4.2.1.4 Recognition and Decision

After the training step of both the UBM and each IDSM, the typical recognition phase in biometric

systems is somewhat trivial. As referred in the previous sections, the identity check is performed

through the projection of the new test data, Xtest , onto both the UBM and either the claimed
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Figure 4.4: NEVIL.ubm High-level Overview

IDSM (in verification mode) or all such models (in identification mode). The recognition score is

obtained as the likelihood-ratio. This is a second big advantage of using UBM. The ratio between

the IDSM and the UBM probabilities of the observed data is a more robust decision criterion than

relying solely on the IDSM probability. This results from the fact that some subjects are more

prone to generate high likelihood values than others, i.e. some people have a more “generic” look

than others. The use of a likelihood ratio with an universal reference works as a normalization step,

mapping the likelihood values according to their global projection. Without such step, finding a

global optimal value for the decision threshold, θ , presented in Equation (4.6), would be a far

more complex process.

4.2.2 Algorithm Overview

In this section we present the framework named Never Ending Visual Information Learning with

UBM (NEVIL.ubm). Algorithm 4 outlines our approach. The framework receives multiple vi-

sual streams, generated by a typical tracking algorithm, which analyses sequential video frames

and outputs the movement of targets between the frames. Inside each frame the data corresponds

to some pre-selected object representation (e.g. bag of words, histogram). Experimentally we

will evaluate the stability of NEVIL.ubm with several object representations. Environmental chal-

lenges such as varying illumination, lack of contrast, bad positioning of acquisition devices, blur-

ring caused by motion as well as occlusion make data often noisy and/or partially missing. We

address these challenges by a batch divisive strategy, as learning from a data batch may reduce the

noise and fill the gaps caused by miss-tracking. Initially, the composite model is initialized to yield

the same probability to every possible class (uniform prior). When the batches Dmi
t in time slot t

become available, the framework starts computing the scores S (Dmi
t |Ck,Ht−1) for each batch Dmi

t

in the time slot. The scores are obtained from the likelihood ratio test of the batch data obtained
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by the individual class model Ck and the UBM. Unrelated objects will sooner or later be assigned

the same label or different labels will be assigned to different views of the same object. To avoid

propagate such errors, we allow the system to interact wisely with a human, to help it stay on

track. Once S (Dmi
t |Ck,Ht−1) is obtained, a batch confidence level (BCL) is estimated; if BCL is

high enough (above a predefined threshold), the predicted label

argmax
Ck

S (Dmi
t |Ck,Ht−1)

is accepted as correct; if the BCL is very low (lower than a pre-determined second threshold), the

batch data is assigned to a novel class; otherwise the user is requested to label the data batch. The

labelled batches (either automatically or manually) are used to generate new separate models hk
t (k

runs over all the classes available in t), which are then integrated in the composite model, yielding

Ht . Four tasks need now to be detailed: a) the batch label prediction (by the composite model);

b) novelty detection and batch confidence level estimation c) the individual class model design in

current time slot; d) the composite model structure and update.

Algorithm 4 NEVIL.ubm

Input: Dmi
t , i = 1, ...,M

W0← 1
k

H0←W0
while Dt is True do

Batch label prediction (Section 4.2.2.1)
S (Ck|Dmi

t ,Ht−1)← (Dmi
t ,Ht−1)

Novelty Detection (Section 4.2.2.2)
maxCk S (Ck|Dmi

t ,Ht−1)< T ⇒Dmi
t ⊂ novel class

Batch Confidence Level Estimation (Section 4.2.2.2)
BCL←S (Ck|Dmi

t ,Ht−1)
Model design (Section 4.2.2.3)
h j

t ← D j
t , j = 1, ...,k

Composite model structure and update (Section 4.2.2.4)
ME j

t ← h j
t , j = 1, ...,k

Ht ← (ME1
t , ...,MEk

t , Ht−1, Wt)
end while

4.2.2.1 Batch Label Prediction

A batch Dmi
t is a temporal sequence of frames Dmi

t, f , where f runs over 1 to the batch size B. The

composite model, Ht−1, can be used to predict directly p(Dmi
t, f |Ck,Ht−1) but not p(Dmi

t |Ck,Ht−1).

The individual scores per frame S (Dmi
t, j |Ck,Ht−1) can be immediately obtained as S (Dmi

t, j |Ck,Ht−1)=
p(Dmi

t, j |Ck,Ht−1)

p(Dmi
t, j |UBM)

. The batch label prediction can be analysed as a problem of combining information

from multiple (B) classification decisions. Considering that, per frame, the composite model pro-

duces approximations to the likelihoods/scores for each class, different combination rules can be

considered to build the batch prediction from the individual frame predictions [6, 77]. Assuming
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independence between the scores of the individual frames, the score per batch is readily obtained

as

S (Dmi
t |Ck,Ht−1) =

B

√√√√ B

∏
j=1

S (Dmi
t, j |Ck,Ht−1) (4.7)

Some authors have shown that the arithmetic mean outperforms the geometric mean in the pres-

ence of strong noise [6, 77]. Thus, as a second option we defined the BCL as:

S (Dmi
t |Ck,Ht−1) =

∑
B
j=1 S (Dmi

t, j |Ck,Ht−1)

B
(4.8)

In our scenario, it is very likely to obtain outlier values for some frames in a batch due to occlusion

or miss tracking. The median might be seen as a better indication of central tendency than the

arithmetic mean in such cases, since it is less susceptible to the exceptionally large or small values

in data. Hence, as a third option we consider estimating the score of a given batch by:

S (Dmi
t |Ck,Ht−1) = M edian {S (Dmi

t, j |Ck,Ht−1), j = 1, ...,B} (4.9)

Although other robust statistics could be considered from the individual frame scores, experimen-

tally we will only compare the three options.

In the end, NEVIL.ubm assigns each batch to the class maximizing S (Dmi
t |Ck,Ht−1).

4.2.2.2 Novelty Detection and Batch Confidence Level Estimation

In our scenario, the number of classes is unknown beforehand. When a previously unobserved

person enters the area of coverage by the camera network, the system should create a new model

to represent the novel class. We consider automating this decision. Applying a threshold to detect

novel classes is extensively explored in the literature [91].

In our NEVIL.ubm framework, if the scores associated to all observed classes (S (C j|Dmi
t ,Ht−1), j =

1, ...,k) are significantly low (below a predetermined threshold), it is very likely that this class has

not observed before and it is considered novel:

max
Ck

S (Ck|Dmi
t ,Ht−1)< T ⇒ data belongs to a novel class

Having decided that the batch data belongs to an existing class, one needs to decide if the

automatic prediction is reliable and accepted or rather a manual labelling needs to be requested.

As per discussions in Chapter 3, the most commonly used criterion relies on the probability of

the most confident class, defining the confidence level as

max
Ck

S (Ck|Dmi
t ,Ht−1) (4.10)
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Another option is to adopt a margin confidence measure based on the first and second most

probable class labels under the model:

S (C∗|Dmi
t ,Ht−1)−S (C∗|Dmi

t ,Ht−1), (4.11)

where C∗ and C∗ are the first and second most probable class labels, respectively. Intuitively,

batches with large margins are easy, since the classifier has little doubt in differentiating between

the two most likely class labels. Batches with small margins are more ambiguous, thus knowing

the true label would help the model discriminate more effectively between them [123].

We also proposed a variant of the margin measure, which is based on the ratio of the first and

second most probable class labels:

S (C∗|Dmi
t ,Ht−1)/S (C∗|Dmi

t ,Ht−1), (4.12)

4.2.2.3 Model Design

The Universal Background Model is trained offline, before the deployment of the system. UBM is

designed from a large pool of streams aimed to be representative of the complete set of potentially

observable ‘objects’. The training process of the UBM is simply performed by fitting a GMM to

the set of feature vectors extracted from the complete pool.

At time slot t, we obtain a new set of batches that are automatically or manually labelled. We

assume all the frames belonging to a batch are from the same object and that the M batches in a

time slot correspond to L < M labels (some batches can have the same label).

At each time slot, the data from the batches predicted to belong from the same class is used

to generate the class model by tuning of the UBM parameters, in a maximum a posteriori (MAP)

sense. This approach provides a tight coupling between the individual model and the UBM, re-

sulting in better performance and faster scoring than uncoupled methods, as well as a robust and

precise parameter estimation, even when only a small amount of data is available [126]. The adap-

tation process consists of two main estimation steps. First, for each component of the UBM, a set

of sufficient statistics is computed from a set of M class specific feature vectors, X = {x1, ...,xM}
computed from the batch data:

ni =
M

∑
m=1

p(i|xm) (4.13)

Ei(x) =
1
ni

M

∑
m=1

p(i|xm)xm (4.14)

Ei(xxt) =
1
ni

M

∑
m=1

p(i|xm)xmxt
m (4.15)
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where p(i|xm) represents the probabilistic alignment of xm into each UBM component. Each

UBM component is then adapted using the newly computed sufficient statistics, and considering

diagonal covariance matrices. The update process can be formally expressed as:

ŵi = [αini/M+(1−αi)wi]ξ (4.16)

µ̂i = αiEi(x)+(1−αi)µi (4.17)

Σ̂i = αiEi(xxt)+(1−αi)(σiσ
t
i+µiµ

t
i)− µ̂iµ̂i

t (4.18)

σi = diag(Σi) (4.19)

where {wi,µi,σi} are the original UBM parameters and {ŵi, µ̂i, σ̂i} represent their adaptation to

the specific class. To assure that ∑i wi = 1 a weighting parameter ξ is introduced. The α parameter

is a data-dependent adaptation coefficient. Formally it can be defined as:

αi =
ni

r+ni
(4.20)

The relevance factor r weights the relative importance of the original values and the new sufficient

statistics.

4.2.2.4 The Composite Model Structure and Update

Obtaining a meaningful stability-plasticity balance is a key issue in learning from non-stationary

environments. The human learning system has addressed this issue by reinforcing existing knowl-

edge that is still relevant, as well as forgetting what may no longer be relevant. The forgetting

curve supports the process of forgetting that occurs with the passage of time [119], which is expo-

nential in nature. Inspired by human learning system, a strategic combination of an ensemble of

classifiers, that employs dynamically assigned weights, is proposed in [44]. Herein, we applied a

time weighted strategy that gives more credit to more recent knowledge. Inspired by the forgetting

curve, weights are chosen from the Taylor expansion of an exponential. The IDSM associated to

the jth class, h j
t , is stored in the jth ensemble, the so called Micro ensemble ME j

t . Contrasting to

the classic ensembles, a Micro ensemble includes models that are incrementally trained on incom-

ing batches of a specific class, not all the batches (potentially from multiple classes) in a given

timeslot. The composite model Ht is an ensemble of Micro ensembles ME j
t , j = 1, ...,Kt , where

Kt is the number of classes observed until time t. Each ME j
t includes models h j

t that are trained

on incoming batches of the jth class since its appearance until the current time. The outputs of the

individual models h j
t are combined in ME j

t using a weighted majority voting, where the weights

are dynamically updated with respect to the classifiers’ time of design. The prediction outputted
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Figure 4.5: An example of composite structure. Once a new class enters the scene (e.g. t=4) , a
new micro-ensemble is added to the composite.



4.2 NEVIL.ubm 51

by the composite model ME j
t for a given frame Dmi

t, f is

S (Ck|Dmi
t, f ,ME j

t ) =
t

∑
`=1

W t
`S

j
` (CK |Dmi

t, f ),

where S j
` (.) is the score outputted by h j

`(.) (the model trained from batches of jth class at TS `),

and W t
` denotes the weight assigned to model h j

`, adjusted for time t. The weights are chosen from

a Taylor expansion of an exponential (1, ...,(β )`)) and are updated and normalised at each time

slot to give more credit to more recent knowledge.

Figure 4.5 shows an example of how the composite is updated in a simplified scenario (a class

is represented by a single stream). The IDSM associated to each class is trained and stored in

the corresponding micro ensemble. For example, classes 1, 2 and k are available in the second

timeslot. Hence three IDSM (h1
t , h2

t , hk
t ) associated to these classes are stored at ME1

2 , ME2
2 , and

MEk
2 , respectively. Once a new class (k+1) appears at t = 4 (a new person enters the scene), a

new micro ensemble MEk+1
4 is built. In order to get a decision on a frame (assign a score to the

frame), the outputs of the models are combined using a weighted strategy that gives more credit

to the more recent knowledge. Note that these weights are updated at every timeslot.

4.2.3 Experimental Methodology

4.2.3.1 Experimental Design

Besides synthetic datasets, we run our experiments on public indoor (CAVIAR [112], SAVIT-

SOFTBIO [15]) and outdoor (PETS) datasets. Seven scenarios of CAVIAR (OneLeave ShopReen-

ter1, Enter ExitCrossingPaths1, OneShopOneWait1, OneStop Enter2, WalkBy Shop1front) have

been used.

Two views of scenario S2.L1 of PETS2009 have been applied in our experiments. We carry

out experiments on SAVIT subset of the SAVIT-SOFTBIO, as well. This dataset consists of 11

people moving through a network of 8 cameras. Subjects move in an uncontrolled manner, which

provides a highly unconstrained environment reflecting real-world conditions.

We employed an automatic tracking approach [135] to track objects in the scene and generate

streams of bounding boxes, which define the tracked objects’ positions. As the tracking method

fails to perfectly track the targets, a stream often includes frames of distinct objects.

4.2.3.2 RoI Representation

In order to evaluate the stability of the framework, we study the impact of different representations

in the performance of NEVIL.ubm. We evaluate three encoding approaches: hard quantization,

soft quantization (hierarchical bag-of-visterms), and Fisher method.Classical BoW computes a

spatial histogram (hard quantization) of visual words constituting the baseline representation.

In order to extract the hard quantized representation, we used a dictionary with 8000 visual

words in classic BoW that provides 96000 features for each frame. Following the approach
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in [136], a hierarchical bag-of-visterms method is applied to represent the tracked objects, re-

sulting in a descriptor vector of size 11110 for each bounding box (soft quantized representation).

In Fisher encoding, visual words are represented by means of a GMM, and the average first and

second order differences of image descriptor and the visual words are recorded as global represen-

tation. We use a GMM with k=256, resulting in a vector size of 327680 for each bounding box.

We used the implementation provided in [23] to extract hard quantized and Fisher Vector features.

To avoid the curse of dimensionality, Principle Component Analysis (PCA) is applied to the

full set of features as a pre-processing step. The number of features in each stream is reduced to

85 features for hard quantization and 350 dimensions for both soft quantization and FV.

4.2.3.3 Baseline Methods

We compared our proposed NEVIL.ubm framework with two groups of baseline approaches: 1)

unwise methods, in where the query is blindly requested. 2) wise approaches that select queries

meticulously.

Unwise Strategy

In such methods (e.g. Random strategy), queries are blindly chosen. The Random strategy [157]

labels the incoming batches randomly instead of wisely deciding which batches are more infor-

mative. Constrained by budget, batches are sent for annotation.

Wise Methods

To the best of our knowledge, there is no approach (except NEVIL [75] and NEVIL.gmm [74])

that can be used in our learning setting. We stress that the methods in the literature fail to classify

uneven parallel streams.

NEVIL [75] trains a classifier (employing discriminative approaches) per time slot. The clas-

sifiers are kept in an ensemble and participate in the final decision using a weighted sum strategy.

If the decision is not reliable enough, the batch will be sent to an oracle for annotation.

NEVIL.gmm [74] employs a class-based ensemble of GMMs. A computational model is built

for individual classes available in a given time slot. Unreliable batches are chosen for manual

labeling.

4.2.3.4 Evaluation metrics

ALC, Accuracy, and the amount of annotation effort have been applied to study the characteristics

of the framework.

4.2.4 Results

Firstly, multiple tests were run to determine the optimal batch size for each dataset to be explored.

The batch size was varied between 1% to 50% of the size of the shortest stream available in each
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ALC
Datasets Random NEVIL NEVIL.gmm NEVIL.ubm

Scenario I 0.544 0.976 0.990 0.990
Scenario II 0.532 0.943 0.980 0.986
Scenario III 0.613 0.882 0.886 0.983
Scenario IV 0.523 0.883 0.972 0.973

Table 4.1: Assessment on synthetic datasets.

dataset. Experiments were repeated for 50 equally spaced values in that range. The optimal batch

size varies and is influenced by the characteristics of the streams present in each dataset. Optimal

batch sizes have been observed to range between 25 and 35 for video streams. In order to explore

the properties of the proposed framework, we evaluated it on multiple datasets covering various

possible scenarios in a multi-camera surveillance system.

4.2.4.1 Results on Synthetic Data Sets

Table 4.1 provides a summary of ALC of baseline approaches as well as NEVIL.ubm on multiple

synthetic datasets. We plot the accuracy of a given strategy as a function of annotation effort in

Figure 4.6. Results show that NEVIL.ubm outperforms all the other techniques, specially in more

complex scenarios: Scenario III and Scenario IV. All the experiments were repeated 10 times

to smooth initialization variability. Results demonstrate that the new framework (NEVIL.ubm)

outperforms the baseline methods, providing over 90% accuracy with less than 10% annotation

for all the datasets.

4.2.4.2 Results on Real Video Streams

We compared NEVIL.ubm against baseline methods on multiple real video data, where various

lengths and number of streams from different classes are present. Results are provided in Ta-

ble 4.2. We note that the results showed significant improvement in favour of wise strategies in

where queries are carefully chosen (Random strategy occupies the lowest place in the table). We

observe that NEVIL.gmm and NEVIL.ubm are both significantly better than NEVIL. NEVIL was

based on a discriminative learning of the models, being unable to detect novel classes. Therefore,

it requires more user input for the same performance. Moreover, the learning of a multiclass clas-

sifier at each timeslot using only the subset of objects present in that timeslot is likely to induce

false high likelihoods for the more recent classes. NEVIL.ubm has the highest ALC (except for

Datasets
Methods Reenter2 Reenter1 Wait1 front Path1 Enter2 Enter1 PETS2009 SAVIOT Mean rank

Random strategy 0.69 0.63 0.59 0.68 0.62 0.66 0.51 0.56 0.57 4
NEVIL 0.76 0.90 0.84 0.79 0.74 0.84 0.78 0.68 0.82 3

NEVIL.gmm 0.94 0.89 0.90 0.88 0.85 0.91 0.81 0.71 0.88 2
NEVIL.ubm 0.93 0.96 0.88 0.93 0.86 0.95 0.87 0.79 0.92 1

Table 4.2: Comparison of NEVIL.ubm with baseline methods on real-world datasets.
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(a) Scenario I (b) Scenario II

(c) Scenario III (d) Scenario IV

Figure 4.6: Performance of baseline methods as well as NEVIL.ubm on synthetic datasets (Accu-
racy against Annotation effort) The signs denote the results of Random sampling, NEVIL,
NEVIL.gmm, and NEVIL.ubm, respectively.
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Confidence
Measure

Combination
Method

Datasets Mean
RankReenter1 Reenter2 front Paths1 Enter2 Wait1 Enter1 PETS2009 SAVIOT

Most Confident Class
Median 0.96 0.93 0.93 0.86 0.95 0.88 0.87 0.79 0.88 3

Prod 0.93 0.97 0.931 0.85 0.92 0.901 0.89 0.81 0.89 4
Sum 0.96 0.97 0.90 0.87 0.95 0.90 0.90 0.85 0.92 1

Modified Margin
Median 0.96 0.91 0.95 0.87 0.93 0.91 0.87 0.71 0.86 5

Prod 0.937 0.97 0.97 0.84 0.95 0.89 0.87 0.75 0.87 6
Sum 0.962 0.95 0.93 0.85 0.96 0.92 0.89 0.75 0.92 2

Table 4.3: Multiple settings of NEVIL.ubm on real-world datasets.

“OneShopOneWait1" and “OneLeaveShopReenter2") and the best mean rank over all the experi-

ments. Figure 4.7 depicts the accuracy of various methods against the amount of queries placed

on the operator.

Although there is not a single operating point in the Learning Curve suitable for all the ap-

plications, similarly to [32], we chose the point obtained by labelling 20% of batches for a more

detailed analysis. Given that budget, we obtain 100% for four scenarios (OneLeaveShopReenter2,

OneLeaveShopReenter1, OneStopEnter2, and WalkByShop1front). For more complex scenarios,

such as OneStopMoveEnter1 (in where 42 streams from 14 classes are available) 80% of batches

are correctly classified, showing a clear improvement over prior approaches. All the results are

obtained using the most confident class as batch confidence measure and the median as the com-

bination rule.

We presented multiple combination rules including sum, product and median and various con-

fidence measure in sections 4.2.2.1 and 4.2.2.2, respectively. Any of the rules and measures can

be applied in the framework. Table 4.3 provides a summary of the ALC measure for each setting

on all datasets along with the mean of ALC rank averaged over all the experiments. We omit the

margin measure results as it has shown results almost equal to the modified margin. The table

shows that settings in where sum rule have been applied for combining the information occupy the

two of top three spots (first and third). It is not surprising, since sum rule outperformed the prod-

uct rule when complex data is present [6, 77]. The results indicate that the most confident class

as batch confidence measure selects more informative batches than modified margin, as settings

employing the former have better mean rank. Based on the average rank, we conclude that the

arithmetic mean as combination rule and the most confident as selection criterion represents the

optimal design.

Timeline Generation

Figure 4.8 shows an example of automatically labelled streams of “OneEnterExitCrossingPath1”

and the respective ground truth (Figure 4.8a). The framework assigns labels to the batches. It is

desirable to assign the same identifier to all the streams of an individual object, however labels

do not carry any semantic information (a name corresponds to a unique number in results). Fig-

ure 4.8b shows the output of the framework when 7% of batches are labelled. The framework

fails to identify the second class. Figure 4.8c can be considered as a successful case, since all

objects are correctly identified. The main difference to the groundtruth is the miss identification of
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(a) OneLeaveShopReenter2 (b) OneLeaveShopReenter1

(c) OneShopOneWait1 (d) WalkByShop1front

(e) EnterExitCrossingPaths1 (f) OneStopEnter2

(g) OneStopMoveEnter1 (h) PETS2009
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(i) SAVIOT

Figure 4.7: Comparison of the performance of NEVIL, NEVIL.gmm, NEVIL.ubm on real-world datasets
(Accuracy against Annotation effort). The signs denote the results of Random sampling,
NEVIL, NEVIL.gmm, and NEVIL.ubm, respectively.
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Figure 4.8: Streams of "OneEnterExitCrossingPath1”, groundtruth and timeline outputted by the frame-
work using different amount of labelling
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a stream. As the second object made a brief appearance in the scene, and he is heavily occluded,

the stream experiences an abrupt drift.

4.2.4.3 Stability

In many classical object recognition problems, the representation plays an important role in the

performance of the system. Our scenario as a pseudo object classification is not an exception. In

here we analyse the impact of the representation in the performance of NEVIL.ubm. We compare

the performance reached with the three descriptors introduced in Section 4.2.3.2. Table 4.4 lists FV

as the top rank representation, attaining the lowest mean rank. We observe that the performance

of NEVIL.ubm does not change much with the representation, presenting a good stability.

Hard Quantization Bag of Vistream Fisher Kernel
OneLeaveShopReenter2 0.97 (1) 0.95 (2) 0.95 (3)
OneLeaveShopReenter1 0.93 (3) 0.96 (2) 0.97 (1)

OneShopOneWait1 0.91 (2) 0.86 (3) 0.92 (1)
WalkByShop1front 0.79 (3) 0.93 (1) 0.89 (2)

EnterExitCrossingPaths1 0.81 (2) 0.86 (1) 0.76 (3)
OneStopEnter2 0.95 (2) 0.91 (3) 0.97 (1)

OneStopMoveEnter1 0.77 (3) 0.87 (1) 0.85 (2)
PETS2009 0.76 (3) 0.79 (1) 0.79 (2)
SAVIOT 0.79 (3) 0.90 (2) 0.92 (1)

Mean Rank 3 2 1
Table 4.4: The ALC obtained with multiple descriptors. The rank of the descriptors in a given dataset is
presented next to the ALC between parentheses.

4.2.4.4 Memory

Decisions made by models inside ensembles are combined in respect to time (`). Models are

incrementally forgotten, to give emphasis to models built from more recent data.

To evaluate the impact of the forgetting factor (α), we kept batch size constant letting α vary.

Results are plotted in Figure 4.9. We observe that based on the datasets characteristics, exploiting

previous models could have different impacts on the final results; for scenarios in where data

drifts abruptly and re-reappearance of classes is not present (e.g scenario2, OneShopReenter2),

keeping the last model is enough. However, in a real world surveillance system, people may re-

enter the scene after a while (which is the case for all our video clips except OneShopReenter2).

Furthermore, the appearance of objects may (it is very likely) drift in time, but the drift is not

strictly abrupt (which is the case in scenario II, in where data is generated from a completely

different distribution). In such scenarios, the framework definitely gets advantage from proper

choice of α . Through this proper range the choice of α is not critical (see Figure 4.9b, when

α ∈ [0.4,0.8]).
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(a) Synthetic datasets (b) Multiple video clips

Figure 4.9: Effect of forgetting factor (α) in ALC for various synthetic as well as real-world datasets.

4.2.4.5 Time Efficiency

Since NEVIL.ubm was developed in MATLAB without any efficiency concerns, a straightforward

assessment of the time efficiency is not adequate. Nevertheless, some comments on the running

time are in order. The analysis time grows naturally with the complexity of the dataset; the On-

eStopMoveEnter1 dataset was therefore the slowest to process. Although the time to process a

batch grows with the batch size, since the time spanned by the batch also grows, the overall pro-

cessing rate is not much affected by the batch size. Finally, ignoring the time to build the UBM

model (done before the deployment of the system) the NEVIL.ubm framework was able to process

in between real time and twice as fast the video streams, for a framerate of 25fps (running in an

Intel Core i7 at 3.2GHz).

4.3 Wrap Up

We propose two frameworks that are intended to learn from uneven parallel streams in non-

stationary environments in where both concept drift and concept evolution are available. The

framework receives directly the tracked sequences outputted by the tracking system and maintains

a global object identity common to all the cameras in the system. Both frameworks share the same

characteristics that make them effective for our scenario: 1) interactively query the oracles to stay

on track. 2) on-line learning from streams without access to previous data. 3) utilize class-based

ensemble to accommodate new knowledge.

As one of the most popular generative approaches, use of Gaussian Mixture Models as the

generative approach to train models seems a natural choice. The NEVIL.gmm delivered superior

performance compared to NEVIL, however, stability in high-dimensional visual data is still a big

issue and the novel class detection is unreliable due to the difficulty of setting a suitable threshold.

NEVIL.ubm adopts a UBM- normalized strategy resulting in better and faster decisions as

well as a robust and precise classifiers parameter estimation, even when only a small amount of

data is available. This framework has shown promising performance with a fairly little human
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collaboration. However, growing complexity in terms of runtime and memory is still the main

concern for long-term observation.



Chapter 5

Batch Representation

Video surveillance applications, such as activity recognition, are increasingly making use of mul-

tiple sensors and modalities. The fusion of multiple diverse sources of information is expected to

benefit the system for the recognition of objects, persons, activities and events captured in an array

of cameras.

Environmental challenges such as the variation in appearance of individuals due to changes

in illumination, contrast, positioning of acquisition devices, motion blur as well as occlusion lead

to noisy and/or partial RoI captures. These challenges have previously been addressed by a batch

divisive strategy, that views a batch of RoI as a unique element to classify, since learning from

these batches may reduce noise and fill the gaps caused by dropped-tracks. A batch includes a

fixed number of consecutive RoIs (sources of information) of a given stream and a single label

is assigned to the batch of same person in time. Each batch of RoI can be learnt using either

a discriminative or a generative classifier, and the pool(s) of classifiers generated in one or more

FoVs can be combined into an ensemble of classifiers. Fusion of multiple sources into an ensemble

have been addressed by three main approaches in the literature: early, mid-level, and late [38].

Early fusion combines the information in the first possible level (so called signal level fusion in

image processing), whereas late fusion combines the information as late as possible (decision level

fusion) [1,66]. Mid-level fusion is an interesting compromise that combines the information in an

intermediate abstraction level [121].

Score-level fusion as the most popular way of fusion has been employed in previous frame-

works (e.g. Section 4.2.2.1). A quantitative similarity measure disseminates valuable information

about the input, and yet it is still easy to process compared to sensor-level or feature-level data.

However the score space is subject to considerable flexibilities, e.g. different normalization meth-

ods may lead to different decision boundaries. Furthermore, small number of scores in a batch

might easily overfit the data [134]. On the other hand, feature-level fusion schemes derive the

most abstract form of original multiple feature set by eliminating redundant information. The ad-

vantages of this scheme are the use of only one learning stage to combine the information (instead

of running individual learning stage for every single feature set) for rapid decisions.

In this chapter, two feature-level abstraction schemes that represent the entire batch with a

61
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single descriptor are proposed. These descriptors are obtained by combining features of individual

frames in different ways. To the best of our knowledge, this work is the first attempt to explore

spatial-temporal fusion schemes for RoI batches captured from video streams generated in a multi-

camera surveillance scenario. Note, this study will be conducted under the NEVIL.ubm (version

of the) framework.

5.1 Spatial-Temporal Fusion Schemes Over Frames

Early fusion has been applied to define whether the audio signal is consistent with the speaker

video file [49]. Pixel-level fusion has shown promising performance in video-based biometric

recognition [30] as well as multiple object tracking [33]. Some authors demonstrate [68, 80]

demonstrated the effectiveness of the decision level fusion strategies on object tracking, video

segmentation, and video event detection. Feature-level fusion has gained much importance over

the past few years, and various approaches have been introduced in the literature [1, 26, 125].

Most approaches combined the information of multiple modalities (sensors), while some methods

used the complementary descriptors. The former requires multiple sensors (visible light cameras

combined with depth or infra-red camera), and the latter adds more complexity to the system

specially in an online application. To the best of our knowledge, the employment of feature-level

techniques over frames in a Person Re-ID scenario has not been addressed before.

Fusion schemes have been successfully used in large-scale recognition systems to address

multiple issues confronting these systems such as accuracy, practicality, and efficiency. Inspired by

the rationale behind such systems, two fusion schemes to combine the information in a Person Re-

ID system are proposed. Each frame can be considered as an independent source of information

and combining such information in different levels could be beneficial for a Person Re-IDsystem.

The batch score (S (υmi
t |Ck,Ht−1)) can be obtained in two ways: either by combining the scores

of individual RoIs in a batch (score-level fusion), or by combining the patterns of M RoIs in a

batch (feature-level fusion).

5.1.1 Feature-Level Fusion

Finding a joint representation for a group of frames is a challenging problem in visual applica-

tions. There is a considerable body of research works that addressed this problem by choosing

a key frame, which represents the entire batch. As the quality of the batch representation relies

heavily on the representative sample and an inappropriate choice may lead to unreliable results,

such methods seem impractical for challenging environments. This is the main rationale behind

approaches exploiting fusion schemes. In this paper, two feature-level fusion that aggregate de-

scriptors of all the frames in a given batch are proposed. Let υ
mt
t, f be the descriptor of f − th

frame in a batch, the average histogram that combines the information of entire batch in a single
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Figure 5.1: Block diagram of feature-level fusion (performed before micro-ensembles recognition)

histogram defined by:

υ
∗mi

t (b) =
1
B

B

∑
f=1

υ
mi
t, f (b) where b = 1, ...,M (5.1)

Where M is the number of histogram bins.

In our scenario, it is very likely to obtain outlier values for some frames in a batch due to

occlusion or miss tracking. The median might be seen as a better indication of central tendency

than the arithmetic mean in such cases, since it is less susceptible to the exceptionally large or

small values in data. Hence, as an alternative option we consider estimating the descriptor of a

given batch by:

υ
∗mi

t (b) = M edian f=1,...,B υ
mi
t, f (b) where b = 1, ...,M (5.2)

Given the single representation, a score S (υmi
t |Ck,Ht−1) is calculated for the batch.

5.1.2 Score-Level Fusion

The composite model, Ht−1, can be used to predict directly p(υmi
t, f |Ck,Ht−1) but not p(υmi

t |Ck,Ht−1).

The individual scores per frame S (υmi
t, j |Ck,Ht−1) can then be immediately obtained as S (υmi

t, j |Ck,Ht−1)=
p(υmi

t, j |Ck,Ht−1)

p(υmi
t, j |UBM)

. The batch label prediction can be analysed as a problem of combining information

from multiple (B) classification decisions. Considering that, per frame, the composite model pro-

duces approximations to the likelihoods/scores for each class, different combination rules can be

considered to build the batch prediction from the individual frame predictions. Applying arith-

. . .

Score-Level 
Fusion

Ensemble-based 
Recognition of RoIs

. . .

Scores for M  frames in a 
batch

Figure 5.2: Block diagram of score-level fusion (performed after micro-ensembles recognition)
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Confidence Measure Combination Rule Reenter1 Reenter2 front Paths1 Enter2 Wait1 Enter1 PETS09
Median 0.96(1) 0.96(2) 0.91(4) 0.87(2) 0.96(1) 0.90(4) 0.90(1) 0.85(2)

MC
Mean 0.94(3) 0.97(1) 0.96(1) 0.88(1) 0.96(1) 0.91(3) 0.90(1) 0.86(1)

Median 0.95(2) 0.94(3) 0.93(3) 0.86(3) 0.96(1) 0.93(1) 0.88(2) 0.79(3)
MM

Mean 0.96(1) 0.96(2) 0.95(2) 0.87(2) 0.96(1) 0.92(2) 0.90(1) 0.73(4)

Table 5.1: ALC of fusion at feature-level on videos. The rank of each setting in a given dataset is presented
next to the ALC between parentheses. Highlighted row indicates the optimal design. Values in bold indicate
better performance than score-level fusion for optimal setting.

metic mean, the score per batch is obtained as:

S ∗(υmi
t |Ck,Ht−1) =

∑
B
j=1 S (υmi

t, j |Ck,Ht−1)

B
(5.3)

As an alternative choice, the median of the scores were also evaluated, since it may be more robust

to the outliers. The batch score is defined by:

S ∗(υmi
t |Ck,Ht−1) = M edianS (υmi

t, j |Ck,Ht−1) (5.4)

Although other robust statistics could be considered from the individual frame scores, experimen-

tally we will only compare the two options. In the end, NEVIL.ubm assigns each batch to the class

maximizing S (υmi
t |Ck,Ht−1).

5.2 Experimental Setup

As before, the adopted representation is a hierarchical bag-of-visterms method is applied to rep-

resent the tracked objects, resulting in a descriptor vector of size 11110 for each frame (refer

to [136] for more information). In order to avoid the curse of dimensionality that system may

suffer from, PCA is applied to the full set of descriptor features as a pre-processing step. Hence,

the number of features in each stream is reduced to 85.

5.3 Results

Table 5.1 shows the ALC performance of the proposed fusion techniques using all datasets along

with the mean of ALC rank averaged over all the experiments (the std of the results is always

Datasets
Confidence Measure Combination Rule Reenter1 Reenter2 front Paths1 Enter2 Wait1 Enter1 PETS09

MC
Median 0.96(1) 0.93(3) 0.93(2) 0.86(2) 0.95(2) 0.88(4) 0.87(3) 0.79(2)
Mean 0.96(1) 0.97(1) 0.90(3) 0.87(1) 0.95(2) 0.90(3) 0.90(1) 0.85(1)

MM
Median 0.96(1) 0.91(4) 0.95(1) 0.87(1) 0.93(3) 0.91(2) 0.87(3) 0.71(4)
Mean 0.96(1) 0.95(2) 0.93(2) 0.85(3) 0.96(1) 0.92(1) 0.89(2) 0.75(3)

Table 5.2: ALC of fusion at score-level on videos. The rank of each setting in a given dataset is presented
next to the ALC between parentheses. Highlighted row indicates the optimal design. Values in bold indicate
better performance than score-level fusion for optimal setting.
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below ±0.01). The table shows that settings in where sum rule have been applied for combining

the information occupy the two top spots for both feature-level and score-level fusion. The re-

sults indicate that the most confident class as batch confidence measure selects more informative

batches than modified margin, as settings employing the former have better mean rank. Based on

the average rank, we conclude that the arithmetic mean as fusion rule and the most confident as

selection criterion presents the optimal design. Comparing the ALC of identical designs of two

fusion schemes (highlighted rows in tables 5.1 and 5.2) for every dataset, we observe that for

6 out of 8 datasets feature-level fusion attains better performance (higher ALC) than score-level

fusion.

Figure 5.3 presents the results of optimal design (arithmetic mean as fusion rule and the most

confident as selection criteria) for two fusion levels on all video clips. Since ALC measures the av-

erage performance over various budget levels, it does not give detailed information for every single

budget level. We chose the point obtained by labelling 20% of batches for a more detailed analysis.

Given that budget while employing mid-level fusion, we obtain 100% accuracy for four scenar-

ios (OneLeaveShopReenter2, OneLeaveShopReenter1, OneStopEnter2, and WalkByShop1front).

For more complex scenarios, such as OneStopMoveEnter1 (in where 42 streams from 14 classes

are available) 88% of batches are correctly classified, showing an improvement over score-level

fusion results (80% accuracy). The results indicate the better performance of feature-level over

score-level fusion.

Complexity Improving the accuracy is not the only advantage of feature-level fusion. In real-

time learning, when massive amount of information is available, efficiency is equally important. In

contrary to score-level fusion, where an independent recognition process is applied to every single

RoI (of M RoIs in a batch) and then the results are mathematically combined, feature-level fusion

employs a single learning stage on the joint representation of a batch of M frames. Thus, the time

and complexity of the framework decrease dramatically. Since the framework was developed in

MATLAB without any efficiency concerns, a straightforward assessment of the time efficiency is

not adequate. Nevertheless our experiments shows that combining the information at feature-level

is able to process the streams almost twice as fast as score-level fusion, for a framerate of 25fps

(running in an Intel Core i7 at 3.2GHz).

5.4 Discussion

Most state of art approaches for a group of frames representation under specific capture condi-

tions (i.e. uncluttered background), thus they may fail to output an effective representation in a

less-controlled situation. Gait-based algorithms represent video shots with gait features. Since

extracting distinctive features usually requires a controlled environment (i.e. uncluttered back-

ground, consistent silhouette extraction), these methods are not applicable in our scenario [67, 83,

103, 104, 143]. Tensor-based representations deliver a successful performance for some applica-

tions (e.g. content-based video retrieval, shot boundary detection) [147], however they require
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Figure 5.3: ALC vs annotation effort for feature-level with score-level fusion on the various videos.
highlights 20% budget.
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fixed-size batches to output a comparable representation. In our scenario, the number of RoIs

inside a batch is a variable parameter under the limit of B. Hence, the tensor-based methods are

not directly applicable in our scenario.

In this chapter, two spatio-temporal fusion strategies, which do not necessary need a controlled

environment, to combine the patterns of RoIs in various streams are presented. We experimentally

investigated the impact of feature-level and score-level fusion on the performance of the Person

Re-ID system. Experiments indicate the potential of feature-level fusion for on-line applications,

as they attained the best performance with much lower time complexity.
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Chapter 6

Context-sensitive Representation

The Longman dictionary defines context as “the situation, events, or information that are related

to something and that help you to understand it”. Using context has a history in computer vision

[54, 56, 60, 149], however using context information for person Re-ID is a less explored area.

Some research works [131] have shown that better quality of data leads to more accurate models.

Thus it is crucial to select “good” frames from which to learn a model for long-term tracking.

They proposed a supervised criterion that automatically selects the most truth-worthiest frames,

however such approach requires large sets of negative examples to train an effective model. In this

chapter, we put forward a batch representation that exploits the context information to output an

effective context-sensitive representation.

6.1 Representation

In chapter 5 a solo representation per batch is presented. Inspired by [131], it is expected us-

ing context information may improve the quality of the descriptor. We propose an unsupervised

quality criterion, Q(RoI f ), that automatically gives more credit to more trustworthy RoIs. When

two persons are very close, the detected bounding boxes for either of them may contain many

pixels of the other, or when objects enter or leave the scene, they are likely only partially visi-

ble. Q(RoI f ), which consists of two unsupervised criteria, Disjuncture Measure (Q1(RoI f )) and

Peripheral Measure (Q2(RoI f )), tries to tackle these situations.

The weight assigned to the fth RoI of the mth stream at timeslot t, Qm
t (RoI f ), is formulated as:

Q(RoI f ) = Q1(RoI f )Q2(RoI f ) (6.1)

where for the reason of clarity all the subscripts and superscripts are omitted.

Let υm
t, f be the descriptor vector of the fth RoI in a batch belonging to mth stream. The solo

descriptor of the batch, υ∗t
m, that combines the information of entire batch with respect to the
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quality measure in a single vector defined by:

υ
∗m

t =
∑

B
f=1 Qm

t (RoI f )υ
m
t, f

∑Qm
t (RoI f )

(6.2)

Note, that Eq. 6.2 generalizes the formula 5.1 in chapter 5.

6.2 Context Quality Measures

Disjuncture Measure (DM) Suppose that, for a certain video stream, there are multiple RoIs in

a given frame at t. The DM (Q1(RoI f )) is defined by:

Q1(RoI f ) =
A (RoI f )−A (RoI f

⋂
(
⋃

RoI j, j 6= f ))

A (RoI f )
(6.3)

where A is the area of a region. Q1 is expressed on a range from 0 to 1. Q1 = 1 indicates that the

RoI f is visible and has no intersection with other RoIs in a given frame.

Peripheral Measure When a person enters the field of view of a given camera, quality is likely

to be low, due to the inherent noise in the of the borders of the image (out of focus, radial distortion,

etc.) and due to the “warm-up” process of the tracker when the tracking is initialized. We assume

that quality tends to be higher when the center of the RoI is close to the center of the frame. We

define the Peripheral Measure, Q2, as:

Q2(RoI f ) = 1− (max(
x− xc

a
,
y− yc

b
))γ (6.4)

where, (x,y) and (xc,yc) are the center of RoI and frame, respectively. γ allows to control the

steepness of the curve.

6.3 Experimental Setup

RoI Representation Our reference image descriptor is an improved version of FV, since the FV

was found to serve as the most effective encoding technique for pooling approaches in recent stud-

ies [25]. Given an image (RoI), the IFV υ is obtained by extracting a dense collection of patches

and corresponding local image features (herein, SIFT [89]) from the image at multiple scales.

Each descriptor (xi ∈ RD) is then soft-quantized using a Gaussian Mixture Model with K compo-

nents. FV captures the average first and second order differences between the image descriptors

and the centres of the GMM, leading to 2KD-dimensional image descriptor. We used GMM with

K = 256, resulting in a vector size of 327680 for each bounding box. We used the implementation

provided in [23] to extract Fisher Vector features. To avoid the curse of dimensionality, Principle

Component Analysis (PCA) is applied to the full set of features as a pre-processing step. The

number of features in each stream is reduced to 200 dimensions.
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Batch Representation Most approaches assume that RoIs have the same quality (obviously is

not true for real-world scenarios), while in this work a RoI quality criterion is also considered.

Once the RoI wise features are extracted, a weighted average over time, which gives more credit

to more trustworthy RoIs, is adopted to produce a batch wise representation.

6.4 Do more trustworthy RoIs help the performance?

The main objective of these experiments is to analyse how well context quality weighting incor-

porate into performance of learning framework. First, we evaluate the impact of the measures

individually as well as combination. Then, we explore whether more trustworthy RoIs lead to

learn more effective models.

6.4.1 Impact of Exploiting Q1 Measure

Figure 6.1 illustrates the impact of Q1 measure on the performance of the framework. The plots

define the ALC as a function of annotation. In datasets, i.e PETS, EnterExitCrossingPath1, and

OneShopOneWait1 where the people cross, employing intersection-weighted feature vector im-

proves the results.

6.4.2 Impact of Exploiting Q2 Measure

Fig. 6.2 shows a sample of miss-tracking RoIs in “EnterExitCrossingPath1” dataset. The a, b, and

γ are defined RoI width
2 , RoI height

2 , and 4, respectively. Using this technique has increased the area

under learning curve for “EnterExitCrossingPath1” from 0.84 to 0.85.

6.4.3 Impact of Exploiting Q Measure

We present the results of exploiting the quality measure to obtain a single descriptor for individual

batches at the second row of table 6.1. Adding context quality measures into the representation

term of batches improve the performance for all three datasets.

As the next step, we study whether using quality measures to weight the decisions of classifier

improve performance? Given a set of RoIs (RoI f f = 1, ...,B) used to learning a classifier, the

weight assigned to the decision of this model (Wh) is obtained by:

Wh =
∑

B
f=1 Q(RoI f )

B
(6.5)

The decision made by models inside ensembles are combined using this quality-weighted strategy.

Results (third row of Table 6.1) shows an improvement comparing to the first row (where no

contextual information have been considered).
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Figure 6.1: Impact of exploiting Q1 to give more credit to cleaner data on various video dataset.
The Accuracy is presented as a function of Annotation effort. The signs denote the results of
ignoring and considering context information, respectively.

Figure 6.2: sample of partial tracking
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Methods
Datasets

Mean rank
EnterExitCrossingPath1 OneShopOneWait1 PETS

NO context information [73] 0.842 (4) 0.923 (3) 0.833 (4) 4
Context sensitive batch representation 0.864 (3) 0.957 (1) 0.851 (2) 2

Context sensitive learner decisions 0.873 (2) 0.935 (2) 0.844 (3) 3
Fusion at feature and decision level 0.885 (1) 0.957 (1) 0.860 (1) 1

Table 6.1: Results of exploiting context information at data-level(second row) and model-level(third) on
video datasets

More trustworthy RoIs leads to more effective models as well as more accurate predictions.

Here, we investigate the impact of exploiting both context-sensitive representation and quality-

weighted decisions under the NEVIL.ubm (version of the framework). Table 6.1 provides a sum-

mary of the ALC measure for each setting on three datasets along with the mean of ALC rank

averaged over all the experiments. The table shows that settings in where quality measures have

been applied for fusing context-sensitive representation and quality-based decisions occupies the

top spot, showing a clear improvement over experiments inwhere no context information is con-

sidered. Context-sensitive descriptors provide the second successful strategies.

6.5 Discussion

The framework receives directly the tracked sequences outputted by the tracking system and main-

tains a global object identity common to all the cameras in the system. We proposed a criterion

to find more trustworthy RoIs. We further combine the information of RoIs to output a single

representation vector per batch. The results indicate that the proposed criterion has the potential to

properly rank the RoIs and it is worthwhile to give more credit to better RoIs, resulting in higher

performance.
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(a) EnterExitCrossingPaths1

(b) OneShopOneWait1

(c) PETS

Figure 6.3: Comparison of the performance of feature-level and model-level intelligent ensemble develop-
ment on real-world datasets (ALC against updating ratio). The signs denote the results of feature-level
and model-level, respectively.



Chapter 7

INEVIL

A classic approach to track changes is to train new classifier(s) as new data arrives and to keep

all the classifiers [41]. Accumulating large number of classifiers imposes serious costs (i.e. acute

storage space an long prediction time) to the system. Although the costs seems negligible with

relatively simple research datasets, they may become highly critical for complex real-word data.

In fact, these approaches can easily generate thousands of classifiers under a time-evolving envi-

ronments. Additionally, it is not always true that the bigger ensemble, the better it is [151].

In previous versions of the framework, we tried to address this problem using a time-weighting

strategy, in which decisions made by models inside ensembles are combined in respect to time.

However, by giving higher weights to the decision made by more recent models, the older ones

are forgotten in time, still a substantial number of models are kept in the framework.

In this chapter, the Intelligent Never Ending Visual Information Learning (INEVIL) frame-

work is presented. INEVIL is specifically designed for long-term learning from non-stationary

environments in which no labelled data is available but the learning algorithm is able to interac-

tively query teachers to label meticulously chosen observations.

7.1 Learning Framework

The system receives multiple visual streams, generated by a typical tracking algorithm, which

analyses sequential video frames and outputs RoIs over time. A batch is a temporal sequence of

RoIs, RoI f , where f runs over 1 to the batch size B. A high-level sketch of the proposed method

is illustrated in Figure 7.1. Five tasks need to be detailed: a) the batch representation; b) batch

score estimation; c) batch confidence level estimation; d) batch label assignment; e) Intelligent

ensemble development.

7.1.1 Batch Representation

Various methods to find a single representation per batch have been introduced in Chapters 5 and 6.

In chapter 6 a solo context-sensitive representation per batch is presented. Experiments provided
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Figure 7.1: Block diagram of INEVIL

the scientific evidence for the advantage of this approach over the other group of batch-based de-

scriptors (Chapter 5) or frame-based methods (Chapter 3). Hence context-sensitive representations

have been applied in our experiments.

7.1.2 Batch Score Estimation

The learning framework is initialized to yield the same probability to every class (uniform prior),

at the first place. When the features of batches of RoIs (υ∗mt, f ) at time slot t become available, the

framework starts computing the scores S (υ∗mt |Ck,Ht−1) for every batch. The scores are obtained

from the likelihood ratio test of the batch data obtained by the individual class model Ck and the

Universal Background Models (as detailed in Section 4.2.1).

The composite model Ht is an ensemble of Micro-classifiers ensembles (MCE j
t , j = 1, ...,k).

Each MCE j
t includes classifiers that are incrementally trained (with no access to previous data) on

incoming batches of jth class at t, h j
t . The individual models h j

t are combined using a weighted

majority voting, where the weights are dynamically updated with respect to the classifiers’ time of

design.

The prediction outputted by the composite model MCE j
t for a given batch of ROIs (υ∗mt ) is

S (C j|υ∗mt ,MCE j
t ) =

t

∑
`=1

W t
`S

j
` (C j|υ∗mt ) (7.1)

where S j
` (.) is the score outputted by h j

`(.) (the model obtained, either trained or updated, from

batches of jth class at timeslot `), and W t
` denotes the weight assigned to model h j

`, adjusted

for time t. The weights are chosen from a geometric series ( (1, ...,(β )`)) and are updated and

normalised at each time slot to give more credit to the more recent knowledge.
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7.1.3 Batch Confidence Level Estimation

Various criteria have been introduced in Chapter 3 as uncertainty measures in our framework.

Based on the experiments in Chapters 3 and 4, the most confident measure, defining as Eq. 7.2

outperforms other measures in our scenario.

max
Ck

S (Ck|υ∗mt ,Ht−1) (7.2)

7.1.4 Batch Label Assignment

On-line learning from time-evolving environments, where labelled data is scarce, may suffer if

labelling errors accumulate, which is inevitable. To mitigate this issue, the system is designed to

exploit active learning strategies. Based on the type of oracle (teacher) available, these strategies

request two groups of teachers to label the data. Strong teacher usually but not always is human and

assumed to give unambiguous but expensive labels, while weak teachers provide tentative but less

expensive labels. Most, but not all, weak teachers are assumed to be classification algorithms. This

framework provides the opportunity to take advantage of both groups. We request the ensemble,

H, to participate in learning as a weak teacher. Additionally, in order to reduce the number of the

queries, we consider automating the label assignment for novel classes.

In our scenario, the number of classes is unknown beforehand. When a previously unob-

served person enters the area of coverage by the camera network, the system should create a new

model to represent the novel class. Applying a threshold to detect novel classes is extensively ex-

plored in the literature [91]. In INEVIL framework, if the scores associated to all observed classes

(S (C j|υ∗mt ,Ht−1), j = 1, ...,k) are significantly low (below a predetermined threshold), it is very

likely that this class has not been observed before and it is considered novel and a new label (ÿ) is

automatically assigned to this/these batch(es):

max
Ck

S (Ck|υ∗mt ,Ht−1)< T ⇒ data belongs to a novel class ÿ

Having decided that the batch data belongs to an existing class, one needs to decide which

teacher to invoke. If the decision made by H is not reliable enough, that means if maxCk S (Ck|υ∗m
t ,Ht−1)<

T1, a strong teacher (in this case an operator) labelling needs to be requested (y), otherwise we in-

voke the weak teacher and ŷ = argmaxCk S (υ∗m
t |Ck,Ht−1) is assigned to the batch.

7.1.5 Intelligent Ensemble Development

An important part of our work is to propose incremental learning algorithms for never-ending

scenarios in where the system can learn 24/7 from wide-area surveillance networks. As data

distribution evolves in time, the framework must be able to adapt itself to track changes in order

to maximize the performance. The advantage of ensembles algorithms in tackling these problems

is the ability to accumulate and aggregate knowledge in the form of learned models [150].
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In a typical ensemble a new classifier is build once a new set of labelled data is available.

Adding new models at every time slot creates a significant limitation to the system as the com-

putational and storage resources are limited. The target of the proposed intelligent approach is to

increase the efficiency by avoiding a expansion of the ensemble size without sacrificing the perfor-

mance. We explore the problem of intelligent ensemble from two different perspectives, data-level

and model-level. Both algorithms exploit a “detect-and-react” strategy to detect a change either in

the data distribution p(υ∗mt ) or the classifier h j
t and then perform the subsequent adaptive proce-

dure.

Note that, both methods exploit universal background modelling to create a new classifier.

7.1.5.1 Data-level Adaptation Mechanism

The first step in data-level adaptation mechanism is to inspect incoming batches of data to react

to the detected change. In order to detect change in data distribution, several family of measures

have been proposed in the literature that can be categorized in two main groups, signal-based and

feature-based measures. The former adopts signal quality measures to accept or reject samples

as well as select the best observations, modalities or classifiers. The decisions are made based

on information prior to the feature extraction [34, 122]. Feature-based strategies [108] inspect the

information after the feature-extraction process. Algorithm 5 details the proposed approach. In

Algorithm 5 Data-level Update

Input: H m
t−1,υ

∗m
t ,υ

∗m
re f ,∀m = 1, ...,K

Similarity assessment 7.1.5.1
dm

t = Similarity(υ∗m
t ,υ

∗m
re f )

if dt
m > T ′′ then
Adding criterion
hm

t ← υ∗mt
H m

t = (hm
t ,H

m
t−1)

υ∗mre f ← υ∗m
t

else
Updating a concept 7.1.5.1
h′mt = update(υ∗mt ,h

m
t−1)

H m
t = (h′mt ,H m

t−1)
end if

this paper, we focus on a novel mechanism to detect deviations in feature distributions from the

reference batch of RoIs (see Figure 7.2). The framework employs a thresholding strategy to detect

different levels of change and to provide an up-to-date knowledge. Once a new batch of RoIs is

received, the framework assigns a label. In order to evaluate the drift level, each batch υ∗mt is

compared with the reference batch of each class υ∗mre f . When a gradual change is detected, i.e.

the deviation of new samples from reference batch of a given class is below a predefined threshold

(T ′′), INEVIL will update the latest model in MCEm with the most recent data (h′mt ).
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Figure 7.2: Data-level Updating Procedure

While an abrupt drift is observed (i.e. due to a new viewpoint or change of camera), the

framework trains a new model using the data just captured and substitutes the recent batch as the

new reference batch of RoIs.

Batch Drift Assessment

Video change detection approaches in the literature has mostly focused on the visual similarity

of successive frames of the video [8, 130], while in this work batch drift assessment quantifies

the change in the content of a batch of RoIs. To achieve this goal, each batch is represented by

a feature vector (Section 7.2.2). Then, a pair-wise comparison between batches is employed to

measure the similarity between the reference batch and the current one.

The Fisher Vector (FV) [118] was found to be one of the most effective encoding techniques

in recent years [23, 140]. The similarity between two samples X and Y using the Fisher Kernel

(FK) can be explicitly formulated as dot product:

KFK(X ,Y ) = G X
≥
′
G Y
≥

where G≥ is the Fisher Vector. More information is available at [118].
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The l2 norm is a natural norm associated with dot product, this measure is also chosen to

evaluate the drift level of batches. The drift between the current batch , υ∗mt , and the reference

batch, υ∗mre f , of mth class, dm
t , is formulated as:

dm
t = 〈υ∗mt ,υ∗

m
re f 〉 (7.3)

To the best of our knowledge this is the first attempt to apply this measure for batch change

detection. Favourable results (see 7.2) indicate the effectiveness of this light yet effective measure.

Updating GMMs with new observations

Once gradual drift is observed, the data from the batches predicted to belong from the same class

is used to generate the class model by tuning of the (hm
t−1) parameters, in a maximum a posteriori

(MAP) sense. The rationale behind this method is basically similar to updating the individual

models for UBM. The adaptation process consists of two main estimation steps. First, for each

component of the h′mt , a set of sufficient statistics is computed from a set of B class specific feature

vectors, υ∗mt = {x1, ...,xB} computed from the batch data:

ni =
B

∑
b=1

p(i|xb) (7.4)

Ei(x) =
1
ni

B

∑
b=1

p(i|xb)xb (7.5)

Ei(xxt) =
1
ni

B

∑
b=1

p(i|xb)xbxt
b (7.6)

where p(i|xb) represents the probabilistic alignment of xb into each hm
t−1 component. Each hm

t−1

component is then adapted using the newly computed sufficient statistics, and considering diagonal

covariance matrices. The update process can be formally expressed as:

ŵi = [αini/B+(1−αi)wi]ξ (7.7)

µ̂i = αiEi(x)+(1−αi)µi (7.8)

Σ̂i = αiEi(xxt)+(1−αi)(σiσ
t
i+µiµ

t
i)− µ̂iµ̂i

t (7.9)

σi = diag(Σi) (7.10)
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Figure 7.3: Model-Level Adaptation Mechanism Procedure

where {wi,µi,σi} are the original hm
t−1 parameters and {ŵi, µ̂i, σ̂i} represent their adaptation to

the specific class. To assure that ∑i wi = 1 a weighting parameter ξ is introduced. The α parameter

is a data-dependent adaptation coefficient. Formally it can be defined as:

αi =
ni

r+ni
(7.11)

The relevance factor r weights the relative importance of the original values and the new sufficient

statistics.

7.1.5.2 Model-level Adaptation Mechanism

In this section, we propose a mechanism for the development of the ensemble with higher potential

to identify recurrent concept drift. The framework employs change detection strategies at the

learner level in order to (re-)identify concept drifts aiming at provoking a favourable yet less

involved response.

“It is desired that the individual learners should be accurate and diverse” [155]. Although there

is no well-accepted definition for diversity in the classifier ensemble field, there is a general agree-

ment on the qualitative notion of diversity and its role on the performance of an ensemble [3]. An

ensemble consisting in a set of identical classifiers does not bring any advantage while maintaining

a good diversity with minimum number of classifiers is desirable.
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We propose an algorithm that keeps a limited number of the classifiers inside the ensemble

without sacrificing the performance. Algorithm 6 outlines our approach. The framework receives

multiple micro-ensembles (Hm
t ). Once the batch(es), υ∗mt , in time slot t classified as class “m”

Algorithm 6 Model-Level Adaptation Mechanism

Input: H m
t−1,h

m
t

Similarity assessment
dm

t j = Similarity(hm
j ,h

m
t ),∀ j = 1, ...,K7.1.5.2

Closest models
∃k ∈ 1, ...,K,dt

k < dt
j,∀ j 6= k

if dt
k > T ′ then
Adding criterion
H m

t = (hm
t ,H

m
t−1)

else
Updating a concept
h′mt = merge(h′mk ,h

m
t ) 7.1.5.2

hm
k = []

H m
t = (h′mt ,H ′m

t−1)
end if

(either by invoking teachers or automatically), the framework trains a model (h j
t ). The similarity

scores dm
t j are computed between all the models available in the corresponding micro-ensemble

(MCE(t−1)
j ) and the newly trained model (ht

j). Once similarity scores are obtained, we searched

over all the models to find the one with minimum distance with the recent one.

If dm
tk = mindm

t j, j = 1, ...,K (K is the number of models inside mth micro-ensemble) is high

enough (above a predefined threshold, (T ′), the model is distinct enough, thus it will be added to

the ensemble, otherwise the closest pair is merged into a single model (ĥm
t ).

Hence, we need a notion of similarity between models as well as a strategy for updating the

learners.

Model-level Drift Assessment

The Kullback-Leibler divergence is a natural similarity measure between two distributions. Al-

though it cannot be analytically computed for GMMs, an efficient and accurate approximation of

KL-divergence for GMMs is proposed in [53]. Assume h(x)=∑
n
i=1 αihi(x) and h′(x)=∑

m
k=1 βkh′k(x)

are two Gaussian Mixture densities whose KL-divergence we want to compute. Generally, the KL-

divergence between two GMMs can be approximated by:

KL(h ‖ h′)≈
n

∑
i=1

αiminm
k=1KL(hi ‖ h′k) (7.12)

The approximation is based on a matching function between each element of h and an element

of h′ that is the most similar to it. Various methods including the Hungarian algorithm have been

employed to find corresponding components.
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Since, in GMM-UBM, the GMMs are obtained from a maximum a posteriori adaptation of a

universal background model, the both densities have the same number of components and there is

a well justified correspondence between components, the KL-divergence can be approximated as:

KL(h ‖ h′) = ∑
i

αiKL(hi ‖ h′i) (7.13)

where the KL-divergence between components hi(µ1,Σ1) and h′i(µ2,Σ2) can be formulated as:

KL(hi ‖ h′i) =
1
2
(log
|Σ2|
|Σ1|

+Tr(Σ−1
2 Σ1)+

(
µ1−µ2)

T
Σ
−1
2 (µ1−µ2)−d

)
(7.14)

Finally, the distance between two distributions h and h′ is computed as:

dhh′ =
KL(h ‖ h′)+KL(h′ ‖ h)

2
(7.15)

Updating a Concept

The problem of updating GMM has mostly appeared in situations where: 1) a Gaussian mixture

is fitted but the mixture components are not separated enough [61,117,138], 2) in presence of non

stationary environment the model is not representative as time passes and the Gaussian mixture

model needs to be updated to track environment change [72, 85]. These algorithms mainly focus

on updating a GMM by either merging or splitting the components, while combining two GMMs

is a less explored area.

We present a method for incrementally merging GMMs that avoids the necessity to keep all

data points. Suppose we have learned two GMMs from two sets of observations f (x) and g(x)

with n′ and n′′ points:

f (x) =
M

∑
i=1

fi(x′i,π
′
i ,µ
′
i ,Σ
′
i )

g(x′′) =
M

∑
j=1

g j(x j
′′,π j

′′,µ j
′′,Σ j

′′)

, where each component is represented by its weight (π), mean (µ), and covariance (Σ ).

We start by finding corresponding components in different GMMs (finding the closest com-

ponent from two or multiple GMM). We present the method for a pair of 2-component GMMs,

while the method can be extended for multiple GMM. Suppose, the ith component of f (x) cor-

responds to jth component of g(x), that can be merged and form the kth component of m(x) =

∑
M
j=1 mk(xk,πk,µk,Σk). Note that the number of points in jth component is expected to be equal to

the product of the component weight (π̈ j) and the total number of points in the GMMs (n̈). Using

the definition of mean, variance and prior we derive:

πk =
n′π ′j +n′′π ′′j

n′+n′′
(7.16)
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µk =
∑xk

n
=

∑x′i +∑x′′j
n′µ ′i +n′′µ ′′j

=
n′π ′µ ′i +n′′π ′′j µ ′′j

n′π ′i +n′′π ′′j
(7.17)

Σk = E(xk
2)−E2(xk) =

n′π ′(Σi +µ ′i µ
′T
i )+n′′π ′′j (Σ

′′
j +µ ′′j µ ′′Tj )

n′π ′i +n′′π ′′j
−µkµk

T (7.18)

7.2 Experimental Methodology

7.2.1 Experimental Setup

Experiments were conducted on public indoor (CAVIAR [112], SAVIT-SOFTBIO [15]) and out-

door (PETS) datasets. Seven scenarios of CAVIAR (OneLeave ShopReenter1, Enter ExitCrossing-

Paths1, OneShopOneWait1, OneStop Enter2, WalkBy Shop1front) as well as two views of scenario

S2.L1 of PETS2009 have been applied in our experiments. We also carried out some experiments

on three subsets of SAVIT-SOFTBIO: 1) SAVIT. 2) SAVIT Non-Over. 3) SAVIT Recurrent.

To extract the RoIs, we employed an automatic tracking approach [135] to track objects in the

scene and generate streams of bounding boxes, which define the tracked objects’ positions. As the

tracking method fails to perfectly track the targets, a stream may include RoIs of distinct objects.

7.2.2 Video Representation

RoI Representation

Our reference image descriptor is an improved version of FV, since the FV was found to serve

as the most effective encoding technique for pooling approaches in recent studies [25]. Given an

image (RoI), the IFV υ is obtained by extracting a dense collection of patches and corresponding

local image features (herein, SIFT [89]) from the image at multiple scales. Each descriptor (xi ∈
RD) is then soft-quantized using a Gaussian Mixture Model with K components. To avoid the

curse of dimensionality, Principle Component Analysis (PCA) is applied to the full set of features

as a pre-processing step. The number of features in each stream is reduced to 200 dimensions.

Batch Representation

Once the RoI wise features are extracted, a weighted average over time, which gives more credit

to more trustworthy RoIs, is adopted to produce a batch representation (consider Chapter 6 for

more details).

7.2.3 Baseline Methods

The work closest in spirit to INEVIL is [58], that proposed a never-ending framework for one di-

mensional real value time series. Since, we deal with multiple high-dimensional data streams, the

framework is not applicable in our scenario. We compare INEVIL framework with three baseline

approaches: 1) Ensemble Classifier Model, that add and modify members of an ensemble. This
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T=701 T=771

T=550

T=3680

T=3590
T=3500

T=5710

T=5231

T=8431

T=8385T=8275

T=5300

T=8386

T=8331

Figure 7.4: Some streams of SAIVOT (Timeslots when a new model is added to the system are
highlighted in the sequences)
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(a) EnterExitCrossingPaths1 (b) OneShopOneWait1

(c) OneLeaveShopReenter2 (d) OneLeaveShopReenter1

(e) OneStopEnter2 (f) OneStopMoveEnter1

(g) WalkByShop1front (h) PETS
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(i) SAVIOT (j) Non-overlapped

Figure 7.5: Comparison of the performance of feature-level and model-level intelligent ensemble devel-
opment on real-world datasets (ALC against number of classifiers in descending order). The signs
denote the results of AA, INEVIL, NEVIL.ubm, and Incremental Learning, respectively.

method adds a new member to the ensemble as new data arrives. 2) Incremental methods (single

classifier models): at the other side of extreme these methods perform a continuous adaptation of

the model once new observations received. 3) Active Add: between two extremes active adap-

tation adds a new model whenever an abrupt change is detected. These methods are detailed as

follows.

Ensemble Classifier Models: NEVIL.ubm

NEVIL.ubm [76] is an example of the recent learning algorithms for learning from multiple unreg-

ulated streams in a non-stationary environment where both concept drift and concept evolution are

available. The framework is detailed in Chapter 4. NEVIL.ubm trains a new classifier when new

batches are available. Despite a time-weighted strategy to control the complexity of the frame-

work, the size of the ensemble grows over time.

Single Classifier Model: Incremental Learning

Incremental learning performs a continuous adaptation of the model once a new observation is

received. The composite model Ht includes only one classifier per class that is incrementally

trained (with no access to previous data) on incoming batches of jth class at t, h j
t . The adapta-

tion process for data-level and model-level is performed using the techniques proposed in sec-

tions 7.1.5.1, 7.1.5.2, respectively.

Active Methods: Active Add

The Active Add is based on change detection mechanisms (proposed in sections 7.1.5.2, and

7.1.5.1). Once an abrupt change is detected, a new classifier is built and added to the corre-

sponding micro-ensemble (MCE j
t ). The framework only reacts to abrupt changes and no update

is performed in case of gradual drift.
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7.3 How well do intelligent updating mechanisms work under a never-
ending setting?

We evaluate the INEVIL under the never-ending setting. Active mechanisms are employed to

address long-term monitoring at two different levels, data-level and model-level.

7.3.1 Effectiveness of the Data-level Adaptation

7.3.1.1 Video Drift Assessment Results

We proposed a criterion for visual data change assessment. The timeslots when flag is triggered

and a new model is added to the ensemble are highlighted in Figure 7.4. We observe that abrupt

change in illumination and pose may trigger the flag. We applied this criterion to track the changes

and perform an appropriate adaptation.

7.3.1.2 Data-level Adaptation

To evaluate the effectiveness of the adaptation algorithm on size and accuracy of learning system,

we compared our method with three baseline approaches. Figure 7.5 illustrates the comparative

results across baseline approaches on multiple video datasets as a function of number of classi-

fiers from which we can observe that: a) keeping all the classifiers (red points) does not bring an

advantage for the system. b) Only track and re-act to abrupt change (AA method) do not bring

any advantage to the framework. c) While using wise update and add strategy, INEVIL performs

as well as and in most cases better that conventional ensembles by keeping only a limited num-

ber of classifiers. The number of the learners is a function of number of classes that have been

observed at the scene. For example, the system obtained 90% ALC (which is the best ALC ob-

tained for this set) by keeping 21 models for the 7 classes present at “SAIVT-NonOver” dataset.

The average cost is 3 models per person. However the cost increased for more occluded datasets

(e.g. PETS with average cost of 6 classifiers per classes), still the framework controls a dramatic

expansion of the size of the models without sacrificing or in cases (e.g. PETS, SAIVT-NonOver,

WalkbyShop1Front, OneShopOneWait1, EnterExitCrossingPath1, OneLeaveShopReenter1) even

improving the performance.

7.3.2 Effectiveness of the Model-level Adaptation

We evaluate INEVIL on the task of long-term tracking using model-level assessment strategy. The

performance of the system is evaluated using ALC versus the number of classifiers.

7.3.2.1 Model Change Detection

In Figure 7.6, the timeslots when a flag triggered and a new model is added to the ensemble are

highlighted. We observe that abrupt change in illumination, pose may trigger the flag. Pair-wise

distance between models inside an ensemble is applied as notion of diversity in this framework.
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T=701 T=851

T=550

T=3680

T=3590
T=3500

T=5710

T=5231

T=8630

T=8385T=8275

T=5300

T=8386

Figure 7.6: Changes in illumination and pose triggered adding models (These points are highlighted in the
sequences)
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T=8571

T=8385T=8275

T=8391

T=8411

(a) streams correspond to object #14

(b) Pair-wise entropy of the models present in-
side MCE #14 using NEVIL.ubm

(c) Pair-wise entropy of the models #14 using
INEVIL

Figure 7.7: An example of micro-ensemble diversity using Model-Level adaptation mechanism
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Figure 7.7 shows an example of the the micro-ensemble diversity corresponds to subject #14 us-

ing NEVIL.ubm (Figure 7.7b) and INEVIL (Figure 7.7c) over time(horizontal axis denotes the

frame number). Although the number of the models has been dramatically reduced using INEVIL

(Figure 7.7c), diversity range (difference between the minimum and maximum distance) has not

been changed. Figure 7.8 illustrates the performance of model-drift assessment strategy on various

video clips. The ALC is presented as a function of the number of classifiers. We observe that in

7 datasets (i.e. SAVIT, SAVIT Nonover, Enter ExitCrossingPaths1, OneShopOneWait1, OneStop

Enter2, WalkBy Shop1front) out of 9, the framework obtains comparable performance by wise

development of only 20% number of the maximum classifiers possible. The average number of

classifiers per person is 1.8 (21 models for 11 classes). With only one exception (OneExitCross-

ingPath1) INEVIL outperforms Incremental learning. AA provides the poorest performance con-

firming the importance of on updating procedure.

7.3.2.2 Which Adaptation Mechanism Benefits our Setting Better?

Performance

Figure 7.9 presents the results of both levels of adaptation on various video datasets as a function

of the number of classifiers. Since, there is not a single size that everyone agrees as the most

reasonable cost, we compare the performance of methods with 20% of classifies. Model-level

adaptation is specially designed for addressing recurrent drift outperforms inwhere recurrent drift

is present (i.e SAVIT, SAVIT-recurrent, SAVIT Non-Over). However, in 6 out of 11 datasets the

data-level adaptation provides better results.

Time Efficiency

Since INEVIL was developed in MATLAB without any efficiency concerns (running in an Intel

Core i7 at 3.2GHz), a straightforward assessment of the time efficiency is not adequate. Figure

7.10a depicts INEVIL processing time for SAVIT-ReCurrent as a function of frame number. For

a framerate of 25fps, one second is spanned by the batch in our experiments. The analysis time

grows naturally with the complexity of the dataset; however feature-level adaptation delivers faster

decisions. However, for both methods the maximum processing time of a second video is 0.25

second. Thus, the INEVIL framework is able to process in real time.

Memory

Figure 7.10b illustrates the number of classifiers inside ensemble over time. Once a new concept

or an abrupt drift is detected, a new model is added to the ensemble. The dataset is organized in

the way that the last dramatic drift is observed at frame=1700, when is the last time a new concept

is observed. We observe that the model-adaptation method experiences a stability of size after this

point while the size of INEVIL in feature based algorithm increases slightly.
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(a) EnterExitCrossingPaths1 (b) Non-overlapped

(c) OneLeaveShopReenter2 (d) OneLeaveShopReenter1

(e) OneStopEnter2 (f) WalkByShop1front

(g) PETS (h) SAVIOT

Figure 7.8: Comparison of the performance of INEVIL against multiple baseline approaches on real-
world datasets (ALC against number of classifiers in descending order). The signs denote the results
of AA, INEVIL, NEVIL.ubm, and Incremental Learning, respectively.
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(a) EnterExitCrossingPaths1 (b) OneShopOneWait1

(c) OneLeaveShopReenter2 (d) OneLeaveShopReenter1

(e) OneStopEnter2 (f) OneStopMoveEnter1

(g) WalkByShop1front (h) PETS
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(i) SAVIOT (j) SAVIT Non-Over

(k) SAVIT Recurrent

Figure 7.9: Comparison of the performance of data-level and model-level intelligent ensemble develop-
ment on real-world datasets (ALC as a function of the number of the classifiers in descending order). The
signs denote the results of feature-level and model-level, respectively.

(a) Time efficiency (b) Memory

Figure 7.10: Comparison of the performance of data-level and model-level intelligent ensemble develop-
ment on SAVIT ReCurrent in terms of processing time and memory over time. The signs denote the
results of feature-level and model-level, respectively.
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7.4 Discussion

In this chapter, we present a learning setting yet unexplored in the literature but with wide rele-

vance, especially in long-term person re-identification over multiple video cameras. We proposed

an adaptive ensemble that wisely develops over time with respect to drift level in order to reflect

the latest concepts as well as controlling the complexity of the system.

The framework receives directly the tracked sequences outputted by the tracking system and

maintains a global object identity common to all the cameras in the system. We proposed a crite-

rion to find more trustworthy RoIs. We further combine the information of RoIs to output a single

representation vector per batch. The results indicate that it is worthwhile to give more credit to

better RoIs. INEVIL adopts a UBM-normalized strategy in a class-based ensemble, where an

individual ensemble (so called micro-ensemble) is trained for every single class. The framework

monitors the change either in data distribution or classifier.

We proposed a simple yet effective data change detection that triggers a proper adaptation

mechanism to react to the detected change either by updating an existing model or adding a new

learner to the ensemble. The results indicate that we obtain a high and stable ALC (> 0.85) only

by keeping average 3 models per class. Change in illumination and pose trigger building new

models, while in case of gradual drift an existing classifier is updated by current observation.

The data-level adaptation effectively controls the size of the ensemble without sacrificing the

performance. However when a concept drift reappears after a time, it may add new models to the

ensemble. To get further closer to a practical solution, model-level adaptation was proposed which

has a better capability (better performance with less complexity) to address recurrent concept drift.

Favourable results on datasets with recurrent drift indicate the effectiveness of this method.

Both frameworks (either data or model level monitoring) share the same characteristics that

make them effective for real-world applications: 1) adapting the knowledge using very few obser-

vations, in fact the each batch is translated into a single feature vector. 2) interactively invoke the

oracles to stay on track. 3) on-line learning from streams without access to previous data.
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Chapter 8

Conclusion

In this thesis, we focused on unsupervised long-term tracking over multiple distributed cameras,

where people cross the FoV of multiple cameras over time and cameras monitor the environment

for unbounded-time. The problem of open-world human re-identification was seen from a time-

series mining perspective where visual streams are endlessly generated. First, a new learning

concept was formulated and a desirable learning methodology was proposed. We proposed multi-

ple frameworks that were developed over time, getting more efficient, effective and accurate. We

conducted several experiments to assess the stability, performance and complexity of the proposed

frameworks.

In the first level, we proposed NEVIL that utilizes discriminative ensembles to actively clas-

sify streams. While having the benefit of a robust classifier design, it was difficult to detect the

novel classes. Besides, the framework got biased towards the majority class in the case of severe

class imbalance. To address these problems, the NEVIL framework was extended with generative

models within a new framework, allowing a double threshold strategy to detect novel classes and

avoiding the pitfall of classifying every batch as the majority class. Hence, in the second phase

of this research two novel frameworks were proposed that employ class-based ensembles. As one

of the most popular generative approaches, the use of Gaussian Mixture Models to train models

seemed a natural choice. The GMMs-based framework, named as NEVIL.gmm, delivered superior

performance compared to NEVIL, however, stability in high-dimensional visual data is still a big

issue and the novel class detection is unreliable due to the difficulty of setting a suitable threshold.

NEVIL.ubm adopts a UBM- normalized strategy resulting in better and faster decisions as well

as a robust and precise classifiers’ parameter estimation, even when only a small amount of data

(here, a single shot) is available. From the performance perspective, this framework has shown

promising performance with a fairly little human collaboration. However, growing complexity in

terms of runtime and memory is still the main concern for long-term observation.

The last framework, INEVIL, was specially designed for long-term tracking. We proposed

an adaptive ensemble that wisely develops over time with respect to drift level in order to reflect

the latest concepts as well as controlling the complexity of the system. We studied the system

from both data-level and model-level. Both methods effectively control the size of the ensemble
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without sacrificing the performance, however the former unleashed better potential to address

recurrent drift.

A second line of study concerned with the representation of a batch of RoIs. Firstly, two spatio-

temporal fusion strategies, which do not necessary need a controlled environment, to combine the

patterns of RoIs in a given batch are presented. Then, the winner method is generalized to output

a context-sensitive batch representation. An unsupervised criterion was proposed to score RoIs.

Experiments indicated that it is worthwhile to consider the context information and give more

credit to more trustworthy RoIs.

Benefits of this thesis take the first steps towards an open-world person re-identification over

multiple distributed cameras during an unlimited time frame. Numerous experiments on various

datasets provide the evidence of the effectiveness of the proposed algorithms.

Future Work

The studies of this thesis, although with some conclusive results, constitute the starting point for

a possible larger project, with focus on learning algorithm from evolving environment as well as

visual data representation schemes.

First line concerns with the introduction of a new or modification of a current version of

the learning algorithms. These methods are listed as follows: 1) Inspired by probability models

proposed in [120] for open-set recognition, we will investigate the impact of such models on the

performance of the proposed framework for an open-set person re-identification problem. 2) There

has been a keen interest on zero-shot learning methods for video analysis [52]. Exploring these

approaches in our scenario seems an interesting field of study. 3) Never-ending learning is still a

quite young (back to 2010 [20]) and less explored area in machine learning field. In this thesis,

we tried to cover accuracy, knowledge and efficiency domains. However, there is still room for

improvement; exploring more accurate and efficient methods constitute the future direction of our

study.

Second line will focus on the study of new representation schemes. The NSF report on Fu-

ture Challenges for the Science and Engineering of Learning listed depth as one of the missing

ingredients [12]. Since, deep learning methods have shown their incredible potential to boost the

performance and robustness of a system in various studies, we intend to exploit such approaches

to learn a robust and effective model.

Finally, video analysis is a multi-disciplinary field, related to different areas. It is expected that

combining different but complementing strategies, particularly never-ending learning approaches

and deep-learning methods, increases the performance of the framework, an area which has not

been explored yet.

Despite all the progress in the field of artificial intelligence, design a fully-automatic surveil-

lance system is still in infancy stages. Exploring aforementioned ideas may be a step, however

small, forward.
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