
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Weaki - A weakly-typed wiki for
incremental software knowledge

acquisition

Manuel António Gomes Pereira

Mestrado Integrado em Engenharia Informática e Computação

Supervisor: Nuno Flores

July 25, 2016

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Aberto da Universidade do Porto

https://core.ac.uk/display/143407338?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Weaki - A weakly-typed wiki for incremental software
knowledge acquisition

Manuel António Gomes Pereira

Mestrado Integrado em Engenharia Informática e Computação

Approved in oral examination by the committee:

Chair: Profa. Ana Paula Rocha, PhD.

External Examiner: Profo. Luís Reis, PhD.

Supervisor: Profo. Nuno Flores, PhD.
July 25, 2016

Abstract

Software development can be seen as the final stage in a process of knowledge acquisition, during
which the acquired knowledge accumulates and evolves towards a source code that fulfills a set
of conditions previously defined by the stakeholders. The knowledge acquired this way is stored
in the form of software artifacts which have two different aspects: structure and content, that are
very difficult to change separately from each other.

To manage the acquired knowledge and the complexity of the acquisition process there are
methods, practices and tools that are commonly used to facilitate the acquisition and processing
of knowledge. Among these tools, one of the most popular are the wikis.

Wikis provide a good platform to manage knowledge while also supporting collaborative work.
However beyond what wikis already provide, it would be useful if they had other aspects such as
the recognition of knowledge structures and the support for its evolutionary behavior.

The main goal of this work is to develop an extension to an existing wiki, by adding the
functionalities to support structure recognition and type inference, with the goal of aiding in the
development of software documentation artifacts, allowing for a gradual increase in the formal-
ization of its structure and content. The usefulness of the wiki extension was validated through an
empirical experience with students.

i

ii

Resumo

O desenvolvimento de software pode ser visto como a última etapa de um processo de aquisição de
conhecimento, durante o qual o conhecimento adquirido se acumula e evolui para um código fonte
que cumpre um conjunto de condições previamente definidas pelos stakeholders. O conhecimento
adquirido desta forma é armazenado sob a forma de artefactos de software, artefactos estes que
têm dois aspetos diferentes: a estrutura e o conteúdo, que são muito difíceis de alterar em separado
um do outro.

Para gerir o conhecimento adquirido e a complexidade do processo de aquisição existem méto-
dos, práticas e ferramentas que são de maneira geral usados para facilitar a aquisição de conheci-
mentos e o seu processamento. Entre essas ferramentas, um dos mais populares são as wikis.

Wikis proporcionam uma boa plataforma para gerir o conhecimento para além de suportarem
trabalho colaborativo. No entanto para além do que as wikis já fornecem, seria útil se estas
tivessem suporte para outros aspetos, tais como o reconhecimento de estruturas de conhecimento
e suporte para a sua evolução à medida que conhecimento é adquirido e as mudanças que sofre ao
longo do tempo.

O principal objetivo deste trabalho é desenvolver uma extensão para um wiki já existente,
adicionando funcionalidades para apoiar o reconhecimento da estruturas da informação, assim
como na inferência dessas estruturas pelo conteúdo, com o objetivo de auxiliar no desenvolvimento
de artefactos de documentação de software, ao permitir um aumento gradual na formalização da
sua estrutura e do seu conteúdo. A utilidade da extensão da wiki foi validada através de uma
experiência empírica envolvendo estudantes.

iii

iv

Acknowledgements

First of all to my supervisor Nuno Flores (FEUP) for his guidance and advice, thank you.
To the students that participated in the empirical experiment, thank you for your availability

and time.
Last but not least to my family, to my parents for all your support and my brothers for their

companionship.
To all of you my sincere thank you.

Manuel Pereira

v

vi

“We know what we are,
but know not what we can be.”

William Shakespeare

vii

viii

Contents

1 Introduction 1
1.1 Context . 1
1.2 Motivation and Goals . 1
1.3 Project . 2
1.4 Structure of the Dissertation . 2

2 Bibliographic Review 3
2.1 Knowledge Acquisition in Software Development 3

2.1.1 Knowledge Acquisition Issues . 3
2.2 Wiki as a tool for Software Documentation . 4

2.2.1 What is a Wiki . 4
2.2.2 DokuWiki . 5

2.3 Software Documentation Contents and Structure as Knowledge Evolves 5
2.4 Algorithms . 5

2.4.1 Tree Edit Distance . 6
2.4.2 Tag Cloud . 6

2.5 Chapter Summary . 7

3 TypeInference 9
3.1 Implementing Type Inference . 10

3.1.1 Structural Analysis . 10
3.1.2 Semantic Analysis . 11

3.2 Content Assist . 12

4 Validation 13
4.1 Empirical Experiment . 13

4.1.1 Target Population . 13
4.1.2 Test Description . 13
4.1.3 Questionnaire . 14

4.2 Results . 14
4.2.1 Background . 14
4.2.2 Overall Satisfaction . 15
4.2.3 Plug-in . 15
4.2.4 Opinion . 16
4.2.5 Time Measurement . 16
4.2.6 Conclusions . 17

ix

CONTENTS

5 Conclusions and Future Work 19
5.1 Contributions . 19
5.2 Future Work . 19

References 21

A Test Script 23
A.1 Test Script A . 23

A.1.1 First Part . 23
A.1.2 Second Part . 23

A.2 Test Script B . 24
A.2.1 First Part . 24
A.2.2 Second Part . 25

A.3 Document . 25
A.4 TypeInference . 26

A.4.1 Description . 26

B Questionnaire 27

C Template 31

x

List of Figures

2.1 Ted normalizing formula . 6
2.2 Example of a tag cloud . 7

3.1 TypeInference Diagram . 9
3.2 On the left the rendering of the wiki text on the right 10
3.3 Wiki page (left) and corresponding tree (right) 11
3.4 Semantic similarity formula . 11
3.5 Content Assist displaying type information and template sections 12

4.1 Experiment Step-by-Step . 14
4.2 Background Answers Pie Chart . 14

xi

LIST OF FIGURES

xii

List of Tables

4.1 Overall Satisfaction Answers . 15
4.2 Overall Plug-in Answers . 15
4.3 Time Measurement Results . 16

xiii

LIST OF TABLES

xiv

Abbreviations

wiki WikiWikiWeb
TED Tree Edit Distance
APTED All Path Tree Edit Distance
RTED Robust Tree Edit Distance
LRH Left-Right-Heavy
HTML HyperText Markup Language
PHP Hypertext Preprocessor
CSS Cascading Style Sheets

xv

Chapter 1

Introduction

This introductory chapter provides the context and motivation for this thesis work. The proposed

solution and the structure of the document are also described.

1.1 Context

Software development is a knowledge intensive activity and it can be difficult to manage all this

knowledge efficiently. The knowledge of software development experts can be vast, most of this

knowledge is tacit knowledge which can be very difficult if not impossible to fully materialize in

an artifact. While there are countless types of software artifacts most of the time having to pick

a specific structure before beginning to write down knowledge can have a negative impact on the

capacity of the expert in expressing the knowledge that he has in his mind, having no structure

whatsoever can be as negative. Another relevant aspect of software development is collaborative

work, most of the time several people work in the same document, simultaneously or not, so the

use of a tool that supports collaborative work can be a good step towards streamlining the software

development process.

While there are several tools that help with software development and knowledge acquisition,

these tools either use a very specific structure for their artifacts or no structure at all. An example

of such a tool is a wiki, there are several implementations of wikis all of them with their advantages

but lacking when it comes to support for knowledge and artifact evolution.

1.2 Motivation and Goals

Most of the time expressing the tacit knowledge that is the mind of a software developer in a

software documentation artifact is a long and complicated task, and when the task is finished

the results are still not quite what was expected. This can happen due to several reasons, some

of them being inter aspects such as the mood of the software developer or external such as tools

1

Introduction

available or the excessive formalizations of the artifacts structure that doesn’t allow the knowledge

to be expressed conveniently. While a fixed document structure has advantages such a setting

a standard from which one can start sometimes this structure can be excessive and restrain the

creative mind of the software developer, however the total lack of structure can be negative as well

by not setting a starting point. The absence and excess of structure and formalization in software

documentation can both have negative impact in knowledge acquisition and therefore a negative

impact in software development.

The project goal is to create a tool that allows the user to have a more straightforward approach

to software documentation development, focusing more on knowledge acquisition and less on the

document structure and formalization.

1.3 Project

The proposed solution consists in an extension to the existing DokuWiki. This extension will

add support for weakly typed pages where a wiki page will be classified in one, several or none

types, depending on a percentage of similarity with predefined templates. These templates can be

changed at any time and evolve as the software documentation evolves, as the templates change

so does the types of other wikipages change accordingly, these changes allow users to go back to

these pages and choose to update them or to let them stay as they are, depending on what suits the

situation best. To help with the creation of new pages as soon as at least one template has relevant

similarity with the page that is being worked on it is possible by using the extension to add new

sections to the page from the selected template.

1.4 Structure of the Dissertation

In addition to this introductory chapter this Dissertation has the following structure. In Chapter

2 is presented the bibliographic review describing the knowledge acquisition domain as well as

its issues. Chapter 2 also a brief overview of wikis as a tool for software documentation and in

particular the chosen DokuWiki. It is also described in chapter two several algorithms used in the

project development.

In Chapter 3 the proposed solution, the plug-in TypeInference, is described. TypeInference

can be divided into two major parts, the analysis and the content assist, the development process

of each component and the algorithms used in the analysis are described in detail.

In Chapter 4 is called Validation and describes the empirical experiment where several students

tested the TypeInference plug-in and presents the analysis of the results obtained.

The conclusions of this Dissertation are presented in Chapter 5. This final chapter also contains

further directions in how to extend the work done in this Dissertation. The plug-in developed can

be easily split into its two major parts and therefore operate with different modules. This way

different interfaces for the content assist can be used or different algorithms can be used in the

analysis.

2

Chapter 2

Bibliographic Review

In this chapter will be presented the knowledge acquisition domain and model as well as algo-

rithms and other tools relevant for this work.

2.1 Knowledge Acquisition in Software Development

Knowledge acquisition consists of the extraction, structuring and organization of expert knowledge

in a way that the knowledge necessary to solve the problem can be captured and stored in a format

that can be interpreted by a computer. Knowledge captured this way is the base for the reasoning

of an expert system and has as main concerns the appropriate involvement of experts, adequate

knowledge elicitation techniques and a structured approach to knowledge acquisition[FFCA09].

Software development can be improved by correctly recognizing the appropriate knowledge struc-

tures or representations and having the proper tools to manage them[Rob99].

2.1.1 Knowledge Acquisition Issues

Knowledge acquisition is a complex process with several issues already identified in the literature:

• A large amount of knowledge is in the head of the experts, the capture and share of this

knowledge increases its already high value, although this knowledge should be shared in a

way that everyone can understand.

• Experts have vast amounts of knowledge, it is important however to focus on the knowledge

that is relevant to the issue at hand.

• Each expert doesn’t know everything, knowledge should be captured from several experts

and the experts should be allowed to interact.

3

Bibliographic Review

• Experts have a lot of tacit knowledge, this means that experts know more than they can

usually account for, however tacit knowledge is hard to describe and nearly impossible to

capture.

• Experts are busy people, therefore knowledge elicitation techniques should take the least

time possible and if possible be integrated in the work environment.

Knowledge acquisition is a complex and time-consuming process, and usually cause for delays

in system development. These delays can and should be mitigated as much as possible through

the use of appropriate methods and techniques[FFCA09, Lio92].

2.2 Wiki as a tool for Software Documentation

Software documentation plays a central role in many software development tasks, however its

importance is not always recognized. Most of the development effort is spent formalizing infor-

mation, reading and understanding requirements, specifications and other documents with the in-

tention of producing source code. Good software documentation usually provides multiple views

of a system with different levels of abstraction, and depending on the concrete aspect of the doc-

ument it may include several notations from different types of artifacts. This level of complexity

leads to software documentation being a hard and costly task to perform, especially when not

using any adequate tool or method[AD05].

Software artifacts are products of software development, the things that developers work with.

They may be part of a set of deliverables or may describe or support the process of developing

software and impact the creation of other software artifacts[Cor15].

Several tools are used to manage and develop software artifacts as knowledge increments and

evolves, one such tool is the wiki, wikis are nowadays massively used by developers due to the ben-

efits they provide in knowledge management and collaborative authoring. Wikis have been found

to be especially useful in agile environments and in the creation of lightweight documentation[Cor15].

2.2.1 What is a Wiki

A WikiWikiWeb, or simply a Wiki, is a collaborative tool capable of presenting and editing online

information using a simple web browser[Agu03, AD05]. The first wiki was created by Ward

Cunningham 1995[Cun] and since then several other implementations were made based on the

same design principles. These principles are:

• Open - any user can edit a page.

• Incremental - pages can cite other pages even if they are yet to be created.

• Organic – the structure and contents of the site are open to edition evolution.

• Mundane – simple to use with small number of text conventions for formatting.

4

Bibliographic Review

• Universal – the mechanisms of editing and organizing are the same so that any writer is

automatically an editor and organizer.

• Overt – The formatted and printed out-put will suggest the input required to reproduce it.

• Unified – Page names will be drawn from a flat space so that no additional context is needed

to interpret them.

• Precise – pages will be titled to avoid name clashes, typically with noun phrases.

• Tolerant – Interpretable behavior is preferred to error messages.

• Observable – Activity with the site can be reviewed by any other visitor .

• Convergent - Duplication can be removed by finding and citing related content[Cor15, Cun].

2.2.2 DokuWiki

DokuWiki is an example of such an implementation. Being simple to use and lightweight, Doku-

Wiki has a clean and readable syntax and doesn’t require a database. The built in access controls

and authentication make it a especially useful wiki in enterprise context and the large amount of

plug-ins developed by the community allow for a broader range of uses beyond that of a traditional

wiki[Goh].

While there are other wiki implementations DokuWiki was chosen for this work not only be-

cause of the above mentioned factors but also because of the familiarity with the wiki and therefore

an increased productivity. For more detailed information refer to Wiki Matrix website[wik].

2.3 Software Documentation Contents and Structure as Knowledge
Evolves

Software systems can hardly be seen as immutable. The knowledge of project stakeholders about

a system under construction is always bound to change as time progresses. This implies that

software artifacts are bound to change as they may need to be adapted to new understandings. Al-

though as knowledge evolves artifacts may not be easy to adapt accordingly especially if a struc-

tural change is needed[Cor15]. The interdependence in between artifacts or parts of artifacts sug-

gests that changing a particular artifact can impact the other artifacts at the same or even other lev-

els of abstraction. To help with consistency of the documentation refactoring tools use propagation

mechanisms to allow changes to a specific artifact to be reflected in all the documentation[Cor15].

2.4 Algorithms

The following algorithms will be used to assess the level of similarity between wiki pages. Both

provide different approaches that allow to review both structure and semantic content of the pages

in order to achieve the most accurate degree of similarity.

5

Bibliographic Review

2.4.1 Tree Edit Distance

The standard approach to tree similarity is to calculate the tree edit distance, that is to calculate

the minimum number of node operations (insert, edit and delete) that one tree has to undergo

to become the other[PA16, But04]. There are several implementations of TED algorithms such

as RTED (Robust Tree Edit Distance)[PA15], and APTED(All Path Tree Edit Distance)[PA16].

RTED implements LRH (left-right-heavy) strategy[PA15] however this approach trades off mem-

ory efficiency for computational time, APTED however uses an All-Path approach that is at least

just as fast as RTED without trading off memory efficiency[PA16]. The information obtained from

this algorithm can be converted into a similarity metric by normalizing the number of edit opera-

tions with the number of nodes from the largest tree as can be seen in the following formula. Let

Di and Dj be documents and Ni,Nj the number of nodes from the corresponding trees.

Figure 2.1: Ted normalizing formula

2.4.2 Tag Cloud

A tag cloud is usually seen as visual representation of a set of words, where words with more

weight are presented in a larger font, however a tag cloud can also be seen as a list of weighted

words[SCH08, GXF08]. Such a weighted list can be used to compare two document by over-

lapping their corresponding weighted lists and checking how many tags match and their relative

position, however this technique while simple by itself it’s not satisfactory, the major issue is that

pages that follow the same schema, an HTML document for example, two documents can have

very similar contents but one page contains a large number of a certain tag while the other only has

a few occurrences. To compensate for this a weighted tag system can be used, but in documents

types such as HTML where the tag set is limited but the tag frequency varies significantly this

metric will have poor results[But04].

6

Bibliographic Review

Figure 2.2: Example of a tag cloud

2.5 Chapter Summary

In this chapter it was presented the knowledge acquisition domain and model. There was also a

overview of wikis as a tool for software documentation and a quick presentation of DokuWiki,

its advantages and why it was chosen for this thesis work. There was also a description of the

algorithms used in the TypeInference plug-in. In the next chapter the implementation will be

described in detail.

7

Bibliographic Review

8

Chapter 3

TypeInference

TypeInference is an extension for DokuWiki. It can be divided in two distinct aspects, one is type

inference itself where the wiki pages are analyzed and compared to the templates and another is

the content assist where the user is provided with the type inference information and menus to

select sections from the templates that were found to be relevant.

Figure 3.1: TypeInference Diagram

9

TypeInference

3.1 Implementing Type Inference

DokuWiki supports several types of plug-ins, such as syntax, action, auth and others1. TypeInfer-

ence is an action plug-in. Action plug-ins in DokuWiki are triggered by events that occur in the

wiki, TypeInference registers two hooks for events, one in order to access the text of a wiki page

when the page is saved and another to load information onto the JavaScript variable $JSINFO.

The type inference component is responsible for the analysis and matching of the wiki pages

with the templates. These templates follow a specific structure as can be seen in the following

image where can be seen the wiki text and its visual rendering. The analysis is done in two

phases, on the first phase the wiki pages are compared at the structural level and on the second

phase they are compared at the semantic level. The type inference match is the average of the

values obtained on these two phases. Both these analyses are implemented in PHP. The wiki text

is obtained using the DokuWiki function rawWiki($id) and parsed with regular expressions

using the PHP function preg_match().

Figure 3.2: On the left the rendering of the wiki text on the right

3.1.1 Structural Analysis

The structural similarity of the documents is measured with the use of a TED based metric where

both documents are converted into trees and the edit distance is calculated with the use of an

APTED implementation[PA, PA15, PA16], this edit distance is normalized by the formula pre-

sented in Chapter 2 and converted to a percentage value based on the fact that zero edit distance

corresponds to a hundred percent match and the largest number of nodes of the largest tree corre-

sponds to a zero percent match.

The documents trees are created by using explode() to split the document into lines, this

lines are filtered into section titles and placed in the appropriate level of the tree after cleaning the

wiki syntax characters. The APTED implementation is a java implementation stored in a jar file

and is called using the function exec().

1https://www.dokuwiki.org/plugins

10

TypeInference

Figure 3.3: Wiki page (left) and corresponding tree (right)

3.1.2 Semantic Analysis

The semantic analysis is done by creating a weighted list based on the count of each word used

on the wiki page. From this weighted list a set of “stop-words”[Stp] are removed, stop words

are words that aren’t important to the semantic context of the text and words that only contribute

to the text syntax. At this point the weighted list is checked against the templates keywords in

order to check how many words are present, at this point zero words found means a zero percent

match, while any other amount of words will directly affect the result percentage. The average

position of the found words on the weighted list is divided by the average difference between the

highest N words and lowest N words (where N is the number of found words) on the weighted

list, meaning that if the highest N words on the list are the found words then it’s a hundred percent

match and if the number of found words is the lowest N words then it’s a zero percent match.

This value is then multiplied by the value obtained when checking how many keywords could be

found in the weighted list giving the final value as can be seen in the following formula, where K

is the total number of keywords, A is the average position of the found words, AM is the average

position of the highest words on the weighted list and Am the average position of the lowest

words on the weighted list. After the match value is obtained, the average between both analyses

is calculated and the information stored in the variable $JSINFO, so that it is available to the

JavaScript component of the plug-in.

Figure 3.4: Semantic similarity formula

11

TypeInference

3.2 Content Assist

The content assist displays the type inference information on the bottom of the text area, and when

the page is in edit mode the information is colored blue and when clicked shows a dropdown menu

with a list of sections from the selected template as shown on Figure 3.5, when the user selects a

section, that section is automatically added to the bottom of the wiki page currently being edited.

The type information will only be shown when there are any relevant matches with the templates

and when more than 6 relevant matches occur only the top 6 will be shown.

While the other component of the plug-in is implemented in PHP, the content assist is imple-

mented in JavaScript and uses HTML and CSS to display the type information and user interface.

The type information is read from the $JSINFO variable and displayed in a div bellow the text

area. When the page is in edit mode this div also contains a dropdown menu for each of the

matched templates, in this menu each element is a button that appends the corresponding section

title to the page text.

Figure 3.5: Content Assist displaying type information and template sections

12

Chapter 4

Validation

In this chapter the empirical experiment is going to be explained in detail, starting with the target

population, test description and metrics used. Following, the test results are described.

4.1 Empirical Experiment

The objective of this experiment was to evaluate the plug-in. Several aspects were evaluated such

as usefulness, user interface and possible time gains when using the plug-in.

4.1.1 Target Population

The target population of this experiment were students of the Integrated Master in Informatics

and Computing Engineering, lectured at University of Porto, Faculty of Engineering. By selecting

students from this Master’s degree is expected that their experience with developing software

documentation will allow them to overcome most of the issues related to software documentation

that are raised during the experiment.

4.1.2 Test Description

The test consists of two distinct parts, in the first part the test subjects are asked to elaborate a

requirements document of a clock [Clo] application (either desktop or mobile) and of a calculator

[Cal] (either desktop or mobile) in the second part. The test subjects were divided in two groups

with 4 and 5 students each, group A that worked with the TypeInference plug-in in the second part

of the test and group B that worked with the plug-in in the first part. The test subjects were provided

with the appropriate test script for their group (Appendix A) which in addition to information about

the tasks also provided a brief description of the TypeInference plug-in, a suggestion of sections

for the requirements document and a link to the DokuWiki syntax.

13

Validation

Figure 4.1: Experiment Step-by-Step

4.1.3 Questionnaire

The questionnaire (Appendix B) was design with yes or no questions and statements where the

user can pick a number from a scale in the following format: 1 (disagree), 2 (somewhat disagree),

3 (neither agree nor disagree), 4 (somewhat agree) and 5 (agree). These questions and statements

were grouped in the following groups:

1. Background. This group of questions aims to evaluate the subjects background with wiki

and if it may affect the test results.

2. Overall Satisfaction. This group aims to dismiss some validation threats such as high

pressure environment or bad test environment.

3. Plug-in. This group aims to evaluate the overall performance and usefulness of the plug-in.

4. Opinion. In this question the test subjects are expected to give their general opinion about

the plug-in and any suggestions they may have to improve it.

4.2 Results

In this section the test results and the Questionnaire will be presented and discussed.

4.2.1 Background

From these questions is possible to assess that the test subjects were mostly familiar with DokuWiki

and wikis in general.

Figure 4.2: Background Answers Pie Chart

14

Validation

4.2.2 Overall Satisfaction

The results from this section show that the subjects could execute the test comfortably and without

major effect from external factors. However group A was slightly less affected by these factors.

Statements Group A Group B Total
OS1 4.5 4.2 4.34
OS2 4.75 4 4.34
OS3 4.75 4 4.34

Table 4.1: Overall Satisfaction Answers

OS1. I found the test environment conditions were acceptable.

There is a slight difference in between the two groups but it is not significative.

OS2. The test environment was distraction free.

The test was conducted in several different locations so it is understandable that one of the groups

felt more affected by distractions in the test environment.

OS3. I didn’t feel pressured while doing the test.

The test subjects were told that they could take as much time as they wanted to execute the given

tasks however some subjects might have felt more pressured due to other commitments besides

the experiment.

4.2.3 Plug-in

In general the results from this section show that the subjects found the plug-in useful, however

the interface aspect was found to be lacking in comparison.

Statements Group A Group B Total
P1 4.75 4.6 4.67
P2 4 4.6 4.34
P3 3.5 3.8 3.67
P4 4.25 4.6 4.45
P5 4.5 4.6 4.56

Table 4.2: Overall Plug-in Answers

P1. I found the TypeInference plug-in useful.

Both groups found the plug-in to be useful without any significative difference.

15

Validation

P2. Using TypeInference allowed me to be less worried about the structure of the document.

The test subjects in group B felt more inclined to rely on the plug-in for the structure of the

document, however group A response was also positive.

P3. The TypeInference plug-in information was conveniently displayed on the screen.

Both groups of subjects felt that the interface and the way the information was displayed was

somewhat lacking.

P4. I would rather use DokuWiki with the TypeInference plug-in than without.

The test subjects in group B are slightly more inclined to use the plug-in than the subjects in group

A, but the overall response is positive.

P5. The TypeInference plug-in can be useful in other knowledge intensive areas besides
Software Engineering.

Both groups agree that the plug-in can be useful in other areas of study.

4.2.4 Opinion

In this section almost all test subjects expressed their opinions and suggestions of the plug-in.

The general opinion was that the plug-in was useful and allowed the user to quickly structure a

document saving time for content production. Most users suggested that the location where the

information was displayed should be changed to a more visible one. Another suggestion was that

the information should be updated as the user types content and not only when the page is saved

or previewed.

4.2.5 Time Measurement

Group A Group B
Part One 13m04s 10m53s
Part Two 12m29s 10m44s

Table 4.3: Time Measurement Results

Group B subjects were faster executing both tasks, and overall there wasn’t much difference in

the execution of both tasks by either group. The difference in time between the groups can be due

to any given number of reasons such as previous experience in creating software documentation

and external factors such as distractions. Overall whether the plug-in can speed the process of

software documentation creation remains inconclusive since no appreciable difference could be

noted in the execution time between tasks with and without the plug-in.

16

Validation

4.2.6 Conclusions

The experiment took place without any major issues and the test subjects found the environment

acceptable.

In general, even though most test subjects found the plug-in interface lacking, the overall re-

sponse to the plug-in was good and most test subjects found it to be useful when creating software

documentation. Whether the plug-in can speed the process of software documentation creation

remains inconclusive and more thorough testing is required. Several improvements were sug-

gested by the test subjects such as updating the type information as the user types and placing this

information in a more visible location.

17

Validation

18

Chapter 5

Conclusions and Future Work

Knowledge acquisition is an intensive activity and as such is very time consuming. Software doc-

umentation developers use several tools to help manage this process and improve the knowledge

acquisition rate. However the available tools are lacking in some aspects, one of the most impact-

ful being support for software documentation artifact evolution and different levels of software

documentation artifact structure formalization.

5.1 Contributions

This Dissertation contributes to a solution for the above mentioned issue, the proposed and de-

veloped extension allows the software documentation developer to update document templates

overtime and gradually increase the formalization of software artifacts structure.

Validation was achieved through an empirical experiment. This experiment concluded that the

extension is a useful tool to create software documentation artifacts and that the tool allows the

software documentation developer to focus more on the actual contents of the document than on

its structure. Whether the extension helps speed up the software documentation development was

inconclusive.

5.2 Future Work

This Dissertation is just a starting point, while the TypeInference plug-in can be improved both at

the type analysis level and at the interface level, there many more undeveloped functionalities that

make the Weaki wiki and without them all together is hard to gauge the tool’s true potential.

19

Conclusions and Future Work

20

References

[AD05] Ademar Aguiar and Gabriel David. Wikiwiki weaving heterogeneous software ar-
tifacts. In Proceedings of the 2005 international symposium on Wikis (San Diego,
California, USA), pages 67–74. ACM, 2005.

[Agu03] Ademar Aguiar. A minimalist approach to framework documentation. PhD thesis,
Faculdade de Engenharia da Universidade do Porto, September 2003.

[But04] D. Buttler. A short survey of document structure similarity algorithms. In The 5th
International Conference on Internet Computing Las Vegas, NV, United States, March
2004.

[Cal] Calculator. Available on https://lh6.ggpht.com/
942KbwPIon7xQet0Qv5F0Orj70Ob3zlGq48NWbWQgx1RkE7MXJ_
5Arz5tEclNiRMwYK3=w300, accessed on 24/6/2016.

[Clo] Clock. Available on https://thecustomizewindows.com/wp-content/
uploads/2012/04/Metallic-Flipping-Clock-Widget.jpg, accessed
on 24/6/2016.

[Cor15] Filipe F. Correia. Documenting Software With Adaptive Software Artifacts. PhD thesis,
Faculdade de Engenharia da Universidade do Porto, January 2015.

[Cun] Ward Cunningham. Wiki design principles. Available on http://c2.com/cgi/
wiki?WikiDesignPrinciples, accessed on 24/6/2016.

[FFCA09] Nuno Flores Filipe F. Correia, Hugo S. Ferreira and Ademar Aguiar. Incremental
knowledge acquisition in software development using a weakly-typed wiki. In Pro-
ceedings of the 5th International Symposium on Wikis and Open Collaboration (Or-
lando, Florida, USA). ACM, October 2009.

[Goh] Andreas Gohr. Dokuwiki. Available on https://www.dokuwiki.org, accessed
on 24/6/2016.

[GXF08] Fernando Morgado Geraldo Xexéo and Patrícia Fiuza. Differential tag clouds: High-
lighting particular features in documents. Web Intelligence and Intelligent Agent Tech-
nologies, 2009. WI-IAT ’09. IEEE/WIC/ACM International Joint Conferences on, 3,
2008.

[Lio92] Y. I. Liou. Knowledge acquisition: issues, techniques, and methodology. In Proceed-
ings of the 1990 ACM SIGBDP conference on Trends and directions in expert systems,
Orlando, Florida, United States, page 212–236. ACM, 1992.

21

https://lh6.ggpht.com/942KbwPIon7xQet0Qv5F0Orj70Ob3zlGq48NWbWQgx1RkE7MXJ_5Arz5tEclNiRMwYK3=w300
https://lh6.ggpht.com/942KbwPIon7xQet0Qv5F0Orj70Ob3zlGq48NWbWQgx1RkE7MXJ_5Arz5tEclNiRMwYK3=w300
https://lh6.ggpht.com/942KbwPIon7xQet0Qv5F0Orj70Ob3zlGq48NWbWQgx1RkE7MXJ_5Arz5tEclNiRMwYK3=w300
https://thecustomizewindows.com/wp-content/uploads/2012/04/Metallic-Flipping-Clock-Widget.jpg
https://thecustomizewindows.com/wp-content/uploads/2012/04/Metallic-Flipping-Clock-Widget.jpg
http://c2.com/cgi/wiki?WikiDesignPrinciples
http://c2.com/cgi/wiki?WikiDesignPrinciples
https://www.dokuwiki.org

REFERENCES

[PA] M. Pawlik and N. Augsten. Apted. Available on http://
tree-edit-distance.dbresearch.uni-salzburg.at/#download,
accessed on 24/6/2016.

[PA15] DM. Pawlik and N. Augsten. Tree edit distance: Robust and memory-efficient. ACM
Transactions on Database Systems (TODS), 40, March 2015.

[PA16] DM. Pawlik and N. Augsten. Tree edit distance: Robust and memory-efficient. Infor-
mation Systems, 56:157–173, March 2016.

[Rob99] P. N. Robillard. The role of knowledge in software development. In Communications
of the ACM, volume 42, page 87–92. ACM, January 1999.

[SCH08] James Sinclair and Michael Cardew-Hall. The folksonomy tag cloud: when is it use-
ful? Journal of Information Science, 34:15–29, February 2008.

[Stp] Stop-words. Available on http://www.lextek.com/manuals/onix/
stopwords1.html, accessed on 24/6/2016.

[wik] Wiki matrix. Available on http://www.wikimatrix.org/, accessed on
24/6/2016.

22

http://tree-edit-distance.dbresearch.uni-salzburg.at/#download
http://tree-edit-distance.dbresearch.uni-salzburg.at/#download
http://www.lextek.com/manuals/onix/stopwords1.html
http://www.lextek.com/manuals/onix/stopwords1.html
http://www.wikimatrix.org/

Appendix A

Test Script

A.1 Test Script A

This test is divided into two parts. In both parts you will be asked to create a requirements docu-

ment, in one of the parts you will do so in a clean DokuWiki and in a DokuWiki with the TypeIn-

ference plug-in. While doing the test some sections may require diagrams, for the purposes of the

test you are not required to make them.

A.1.1 First Part

Create a document where you specify the requirements of a simple clock application (it can be

either a desktop or mobile application), the document should not exceed 6 requirements. The

clock is very simple like the one in the image, it can be digital or analog and have any timing

functions you like. Follow this link Document for additional information about the document and

this link DokuWiki SyntaxDokuWiki Syntax for information about the DokuWiki syntax. In this

first part you will work with a simple DokuWiki.

Start

A.1.2 Second Part

Create a document where you specify the requirements of a simple calculator application (it can

be either a desktop or mobile application), the document should not exceed 10 requirements. The

calculator is very simple like the one in the image. Follow this link Document for additional

23

https://www.dokuwiki.org/wiki:syntax

Test Script

information about the document and this link DokuWiki SyntaxDokuWiki Syntax for informa-

tion about the DokuWiki syntax. In this second part you will work with a DokuWiki with the

TypeInference plug-in.

Start

Please answer this questionnaire when you are finished.

Helpful Links

Document

TypeInference

DokuWiki Syntax

A.2 Test Script B

This test is divided into two parts. In both parts you will be asked to create a requirements docu-

ment, in one of the parts you will do so in a clean DokuWiki and in a DokuWiki with the TypeIn-

ference plug-in. While doing the test some sections may require diagrams, for the purposes of the

test you are not required to make them.

A.2.1 First Part

Create a document where you specify the requirements of a simple clock application (it can be

either a desktop or mobile application), the document should not exceed 6 requirements. The

clock is very simple like the one in the image, it can be digital or analog and have any timing

functions you like. Follow this link Document for additional information about the document and

this link DokuWiki SyntaxDokuWiki Syntax for information about the DokuWiki syntax. In this

first part you will work with a DokuWiki with the TypeInference plug-in.

Start

24

https://www.dokuwiki.org/wiki:syntax
https://docs.google.com/forms/d/1ctoMUgXmqgSbzZjPAHqLdaViZXuIQHDeFkoRKXwfzCA/viewform
https://www.dokuwiki.org/wiki:syntax
https://www.dokuwiki.org/wiki:syntax

Test Script

A.2.2 Second Part

Create a document where you specify the requirements of a simple calculator application (it can

be either a desktop or mobile application), the document should not exceed 10 requirements. The

calculator is very simple like the one in the image. Follow this link Document for additional

information about the document and this link DokuWiki SyntaxDokuWiki Syntax for information

about the DokuWiki syntax. In this second part you will work with a simple DokuWiki.

Start

Please answer this questionnaire when you are finished.

Helpful Links

Document

TypeInference

DokuWiki Syntax

A.3 Document

Description

The document should contain the necessary information about the product and its requirements.

Some Possible Sections

Project Description

This section consists in a general description of the project.

25

https://www.dokuwiki.org/wiki:syntax
https://docs.google.com/forms/d/1ctoMUgXmqgSbzZjPAHqLdaViZXuIQHDeFkoRKXwfzCA/viewform
https://www.dokuwiki.org/wiki:syntax

Test Script

Requirements

This section generally contains a small introductory statement.

A.4 TypeInference

A.4.1 Description

This plugin can be divided into two major parts. The first runs two analysis algorithms through

the wiki page text, one reads document structure and the other semantic content, this analysis is

matched with several templates, that are saved under a wiki page named typeinference, and shows

the highest percent matches under the text area. The second is enabled in the edit mode, and

allows the user to click on the name of the templates in the footer and select from a drop-down

menu several sections of the template and add them to the current page.

Notes In other for the plugin to be able to compare the document structure the following syntax

must be followed

====== Title ======

==== Section ====

== Sub Section ==

==== Another Section ====

26

Appendix B

Questionnaire

Bellow is a printed version of HTML questionnaire used to collect the students answers after the

test.

27

Weaki
This form intends to evaluate your previous knowledge about dokuwiki, and gather user feedback
about the plug-in TypeInference

*Obrigatório

Yes

No

Yes

No

Yes

No

disagree

1 2 3 4 5

agree

User Test Code *

Sua resposta

B1. Have you worked with wikis before? *

B2. Did you already know about DokuWiki before doing this test?
*

B3. Have you worked with DokuWiki before? *

OS1. I found the test environment conditions were acceptable. *

disagree

1 2 3 4 5

agree

disagree

1 2 3 4 5

agree

disagree

1 2 3 4 5

agree

disagree

1 2 3 4 5

agree

disagree

1 2 3 4 5

agree

disagree

1 2 3 4 5

agree

OS2. The test environment was distraction free. *

OS3. I didn't feel pressured while doing the test. *

P1. I found the TypeInference plug-in useful. *

P2. Using TypeInference allowed me to be less worried about the
structure of the document. *

P3. The TypeInference plug-in information was conveniently
displayed on the screen. *

P4. I would rather use DokuWiki with the TypeInference plug-in
than without. *

disagree

1 2 3 4 5

agree

Nunca envie senhas pelo Formulários Google.

Este conteúdo não foi criado nem aprovado pelo Google. Denunciar abuso - Termos de Serviço - Termos Adicionais

P5. The TypeInference plug-in can be useful in other knowledge
intensive areas besides Software Engineering. *

O1. Give a brief opinion on what was your experience with the
TypeInference plug-in, giving feedback on features, caveats and
possible improvements.

Sua resposta

ENVIAR

Appendix C

Template

keywords: development, requirements, functionalities, system

Requirements Elicitation Report

Introduction

Project Description

Product Functionalities

Requirements

Functional Requirements

Non Functional Requirements

User Stories

Use Cases Diagrams

Domain Model

Concept Diagram

31

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Context
	1.2 Motivation and Goals
	1.3 Project
	1.4 Structure of the Dissertation

	2 Bibliographic Review
	2.1 Knowledge Acquisition in Software Development
	2.1.1 Knowledge Acquisition Issues

	2.2 Wiki as a tool for Software Documentation
	2.2.1 What is a Wiki
	2.2.2 DokuWiki

	2.3 Software Documentation Contents and Structure as Knowledge Evolves
	2.4 Algorithms
	2.4.1 Tree Edit Distance
	2.4.2 Tag Cloud

	2.5 Chapter Summary

	3 TypeInference
	3.1 Implementing Type Inference
	3.1.1 Structural Analysis
	3.1.2 Semantic Analysis

	3.2 Content Assist

	4 Validation
	4.1 Empirical Experiment
	4.1.1 Target Population
	4.1.2 Test Description
	4.1.3 Questionnaire

	4.2 Results
	4.2.1 Background
	4.2.2 Overall Satisfaction
	4.2.3 Plug-in
	4.2.4 Opinion
	4.2.5 Time Measurement
	4.2.6 Conclusions

	5 Conclusions and Future Work
	5.1 Contributions
	5.2 Future Work

	References
	A Test Script
	A.1 Test Script A
	A.1.1 First Part
	A.1.2 Second Part

	A.2 Test Script B
	A.2.1 First Part
	A.2.2 Second Part

	A.3 Document
	A.4 TypeInference
	A.4.1 Description

	B Questionnaire
	C Template

