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Abstract

Production planning is especially important for capital intensive industries, where the high
investments in capacity have to be diluted in the production of typically low profit mar-
gin products. Therefore the utilization of the installed productive capacity needs to be
maximized, while the equipment is operated efficiently and the market requirements are
satisfied.

The operational production planning is essential to adapt medium-term plans accord-
ing to the actual state of the system at each time. This activity considerably depends on
the specific industry and is particularly important in highly stochastic production environ-
ments. This thesis thus focus on the short-term planning in a particular industry, the pulp
and paper (P&P), in order to grasp and incorporate the specificities of the production pro-
cess and hence develop useful quantitative models and methods. These models need to be
accurate enough to provide detailed and realistic plans.

The P&P industry is not only capital, but also energy intensive and the price of pa-
per products is determined by the market, which may squeeze profit margins. In addition,
the plants are subject to process variability and disturbances. Therefore, the operational
planning is a critical activity. The planning task poses a variety of challenges, since the
complex production flow is characterized by shifting bottlenecks, sequence-dependent se-
tups and the variability inherent to the process.

The study conducted in the thesis is driven by a real-world case of a P&P producer,
which not only provides valuable inputs regarding the challenges to be addressed, but also
allows assessing the practical impact of the scientific contributions. The thesis explores
both reactive and proactive planning approaches to the stochastic production system. On
the reactive side, realistic models and efficient methods are proposed and a decision sup-
port system is implemented in the company. On the proactive perspective, the powerful
simulation-optimization combination is studied in depth and a framework is devised for
tackling production planning and scheduling problems.

Although the primary focus of the thesis is the P&P industry, other continuous process
industries may also benefit from the contributions here provided.
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Resumo

O planeamento da produção é especialmente importante em indústrias de capital intensivo,
onde os altos investimentos em capacidade produtiva têm de ser diluídos na produção de
produtos caracterizados por margens de lucro reduzidas. A utilização da capacidade produ-
tiva instalada deve assim ser maximizada, enquanto o equipamento deverá ser manuseado
de forma eficiente e os requisitos do mercado satisfeitos.

O planeamento operacional da produção é essencial para adaptar os planos de médio-
prazo à realidade do sistema produtivo em cada momento. Esta actividade depende consi-
deravelmente da indústria específica abordada e é particularmente importante em ambientes
produtivos altamente estocásticos. Esta tese procura por isso focar-se no planeamento de
curto-prazo numa indústria particular, a the pasta e papel (P&P), de forma a compreender
e incorporar as especificidades do processo produtivo e, assim, desenvolver modelos e mé-
todos quantitativos de relevância e utilidade prática. É necessário que estes modelos sejam
suficientemente fiéis à realidade para que disponibilizem planos detalhados e realistas.

A indústria de P&P é não só de capital intensivo, mas também de uso intensivo de
energia, enquanto o preço do papel é determinado no mercado (levando por vezes ao es-
magamento das margens de lucro). Para além disso, as fábricas apresentam variabilidade
no processo e distúrbios. O planeamento operacional é então uma actividade crítica. Es-
tas tarefas colocam uma série de desafios, visto o fluxo de produção ser caracterizado por
gargalos dinâmicos, preparações do equipamento dependentes da sequência de produtos e
a variabilidade inerente ao processo.

O estudo realizado nesta tese é motivado por um caso real de um produtor de P&P, que
não só enriquece o trabalho com informação relativa aos desafios a abordar, mas também
permite avaliar o impacto prático das contribuições científicas. A tese explora abordagens
reactivas e proactivas ao planeamento da produção deste sistema estocástico. Na perspec-
tiva reactiva, modelos realistas e métodos de solução eficiente são propostos e um sistema
de apoio à decisão é implementado na empresa. Relativamente à abordagem proactiva, a
poderosa combinação simulação-optimização é estudada em profundidade e um método
para abordar o planeamento e escalonamento da produção é proposto.

Embora o foco principal seja a indústria de P&P, outras indústrias de processo contínuo
poderão beneficiar das contribuições aqui propostas.
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Chapter 1

Motivation and framework

In increasingly competitive markets, managers need to actively look for opportunities to
achieve operational efficiency and consumer satisfaction gains. Supply chain planning is
thus an essential activity in the quest for competitive advantage. Production planning lies at
the very heart of supply chain management and is specially important for capital intensive
industries, where the high investments in capacity have to be diluted in the production of
typically low-margin products. In that context a careful planning of production resources
is crucial for maximizing capacity utilization, while operating efficiently and satisfying
market requirements.

Production planning is performed at different hierarchical levels, which consider dis-
tinct planning horizons, scopes and levels of detail (Fleischmann et al., 2008). The longer
the horizon, the greater the extent of the model (including more supply chain stages) and
the lower the level of detail, not only because of model complexity issues, but also because
uncertainty prevents a detailed planning for a long horizon.

In the short-term on the other hand, it is important to have more accurate models that
provide detailed and realistic plans. Moreover, at this operational level, planning tasks
vary considerably depending on particular industries, since the specificities of the produc-
tion process become more relevant. Advanced Planning System (APS) providers, although
increasingly aware of this situation, do not offer solutions with the required level of cus-
tomization to accurately model the specific work flows of particular industries. As a result,
managers typically rely on spreadsheets and their expertise to manually devise production
plans. These procedures are time-consuming and sub-optimal.

In addition, uncertainty at the short-term level is a great challenge. In a disturbance
situation, managers will be under more pressure and the available time to devise plans is
further reduced. On the other hand, preventing disturbances is a complex subject which
requires more elaborated techniques and becomes even more time-consuming. These reac-
tive and proactive approaches thus need to be properly addressed.

This thesis tackles the operational production planning problem and focuses on a par-
ticular industry, the pulp and paper (P&P), in order to grasp and incorporate the specificities
of the production process and hence develop useful models and methods. The research is
driven by a case study from a Iberian P&P company, which not only provides valuable
inputs regarding the challenges to be addressed, but also allows assessing the practical im-
pact of the scientific contributions of the thesis. The first part of the thesis completes this
cycle, starting with the case study motivation and ending with the final assessment in prac-
tice. The second part dives more into quantitative methods to deal with uncertainty and
other complexities (in the context of proactive planning), having also its motivation in the
case study, but focusing on a more general framework. Nevertheless, all chapters aim at
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contributing not only to the P&P industry, but also to other similar (continuous) process
industries, such as chemicals, industrial metals (e.g. iron, steel), oil refining and sewage
treatment.

The remainder of this chapter is organized as follows. Section 1.1 provides some con-
text of the P&P industry and the case study, specifically in what concerns the main chal-
lenges of the production planning and the current practice. Then, Section 1.2 presents the
research questions and objectives related to those challenges and the methodology followed
in the PhD project. Finally, the last section gives an overview of the thesis, by describing
the chapters composing this document.

1.1. Paper industry and case study

The pulp and paper (P&P) industry is not only capital intensive, but also energy intensive.
In addition, the price of paper products is determined by the market, which may squeeze
profit margins. Therefore, companies need to maximize the utilization of their equipment,
keeping production costs as low as possible, while trying to provide a good customer ser-
vice. Effective production planning is thus imperative. However, the planning process
poses a variety of challenges, both to practical and scientific fields. This section starts
with a brief description of the production process and case study specificities. Then, the
operational planning is depicted.

1.1.1 Production process and specificities

The P&P industry converts fibrous raw materials into pulp, paper and paper-board. In a first
step raw materials are processed into pulp (in the digester) and in a second step different
paper grades are produced out of this pulp (in the paper machine). These two steps can be
performed on separate plants or combined into an integrated mill. Figure 1.1 illustrates the
production process of an integrated P&P mill. It should be noted that at each stage there
can be one or several resources in parallel and the equipment may work in continuous or
batch production.

water 

paper machine winder 

jumbos buffer 

recycled pulp tank 

virgin pulp tank 

recycled pulp mill 

digester 

wood chips plant 

bleach plant 

weak black 
liquor tank 

concentrated 
black liquor tank 

evaporator 
recovery boiler 

recovery plant 

paper mill pulp mill 

Figure 1.1: The integrated pulp, paper and recovery plant.
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The quest for improvements in process efficiency, resource consumption, wastes pro-
duction and energy balance has led companies to an integration of their processes and
introduction of closed loops. Accordingly, integrated P&P mills represent 65% of the in-
dustry (CEPI, 2013) and are more capable of achieving high levels of both energy and
economic efficiency, due to:

• energy conservation projects (e.g. direct use of steam in the paper drying process);

• absence of additional processes (e.g. pulp drying);

• material closed loops (e.g. recycling of paper machine setup loss and trim loss)
which allow reducing waste production and the energy spent on it;

• tightly integrated equipment, which reduces the required capacity.

Nevertheless, an integrated P&P mill like that of our case study poses several chal-
lenges:

• important sequence-dependent setups, which break production stability and cause
wear to equipment;

• variable production rates, constrained to maximum and minimum values, and with
variation costs or limitations;

• tightly integrated production and storage capacity and distinct product recipes, which
result in multiple and shifting bottlenecks;

• complex production system with serial, divergent, convergent and loop flows;

• process variability and disturbances, propagating through multiple stages.

The company of the case study produces two main variants of kraftliner (KLB and
VLB), which is a type of paper for the corrugated cardboard boxes market. Both products
(that essentially differ in their quantities of virgin and recycled fibres) may be produced in
a set of different grammage values. For the sake of simplicity, hereafter the term “grade”
is used for the combination of the thickness of the paper (related to its grammage) and the
proportion of virgin and recycled fibres in the mixture. The company provides to its clients
a total of 29 different grades.

All the production stages depicted in Figure 1.1 are performed on site, with the excep-
tion of bleaching, which is not necessary for this type of paper. In each stage there is only
one production resource and they work in continuous. In addition to the aforementioned
challenges, this paper company has to deal with multiple distribution channels, which in-
clude the schedule of containers for ship deliveries. All the production is made to order
(MTO), which puts pressure on production to deliver the required amounts in the shortest
possible lead-time.
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1.1.2 Planning and scheduling

In order to minimize setups and maximize capacity utilization, orders are accepted based
on a standard sequence of production which is repeated in cycles. In this way orders can be
accepted well in advance. Looking at the available slots in the production sequence, man-
agers commit to a due date (available-to-promise). At the operational level, the production
sequence is adapted according to the evolving state of the system.

The operational production planning is typically a manual process which follows a
hierarchical scheme:

• the top-level focuses on the paper machine, dealing with the sizing and scheduling
of paper campaigns to fulfil current demand and backlog;

• the base-level tries to schedule and control all the other production resources, subject
to the input from the top-level.

Each level relies only on spreadsheets and the inputs or feedback from the other level.
Not only this process requires multiple iterations to produce a feasible plan, but it is also
sub-optimal. Moreover, it does not allow for a careful trade-off between the different ob-
jectives, given the very limited time available at this operational level.

In addition, the system is subject to process variability (e.g. in production yield) and
disturbances (e.g. equipment failures). Disturbances in one process tend to propagate to
other processes, resulting in production losses, unnecessary rate changes (which further
cause quality disturbances and undesired wear on equipment) and increase of the environ-
mental load of the mill. Therefore, planners need also to consider slacks in their plans,
in order to accommodate this uncertainty (proactive planning). Also, in the presence of
disturbances a quick plan must be generated (reactive planning).

1.2. Research objectives

This research intends to give new insights into the resolution of the operational produc-
tion planning problem in the P&P industry. As mentioned before, a case study is used to
motivate and identify the main challenges of this problem and also to assess the perfor-
mance of the models and methods proposed. Santos and Almada-Lobo (2012) had already
approached this case study, by proposing an integration of the pulp, paper and chemical
recovery processes, in order to consider the multiple bottlenecks of the system. The model
however was too complex for exact solvers and even the approximate method proposed
only achieved solutions of moderate quality. On the other hand, although used to generate
and validate some plans, the model was not used by practitioners and therefore it did not
address all the relevant industrial issues. Furthermore, it did not consider any uncertainty
in the process. That work is thus the starting point of this thesis, which aims at contributing
to both the literature and practice, in two main branches: reactive and proactive planning.
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Branch 1 – Reactive planning

Reactive planning focuses on generating good quality plans in a short period of time. These
methods can be used to face great disruptions, as well as situations which deviate only
slightly from the original plan. As in both cases, especially in the former, the available
time to devise a plan is very short, the models and methods assume all parameters to be
deterministic. In this context two objectives were defined:

1. Develop an efficient solution method for short-term planning and scheduling prob-
lems

As the method proposed by Santos and Almada-Lobo (2012) could not generate good
quality solutions in feasible time, the first objective is to develop an efficient solution
method that can be used to tackle that problem. The method should be flexible
enough to deal with specific issues of the problem, but also general so as to approach
other lot-sizing and scheduling problems. Metaheuristics are general frameworks
that can include specific heuristics or even exact methods. The former take advantage
of the problem structure to increase the efficiency of the method, whereas the latter
keep its generality. Therefore different components of the metaheuristic can be used
to address distinct features of the problem, providing the flexibility in adapting to
multiple problems. A metaheuristic is thus to be developed and its performance
assessed. In particular, the following questions are to be answered:

• What decisions should be solved optimally and what should be determined
heuristically?

• How should campaigns be manipulated?

• How can discrete speed rates be addressed?

2. Develop a mathematical model to be used in practice, as well as an appropriate
solution approach with the required pre- and post-optimization phases

The efficient resolution of the aforementioned problem is an important matter, since
many lot-sizing and scheduling problems will share similar features. However, to
validate its suitability to the specific case study it has to be tested in practice. Also,
the model needs to be extended, adapted or even reformulated, in order to deal with
the industrial issues of a practical implementation. The second objective thus aims
at formulating a mathematical model to be incorporated in a decision support system
(DSS), which will help managers in their planning activities. The solution approach
also needs to be revised (considering the new features) and upgraded with pre- and
post-optimization steps. The DSS will be the interface used to test and assess the
model and method in practice.

This objective includes the following research questions:

• What industrial features have to be considered in a model to be used in prac-
tice?
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• How should (continuous) production campaigns be intersected with (discrete)
due dates?

• How can such a model be approached and incorporated in a DSS? How to
implement the interfaces with users and existing systems?

Branch 2 – Proactive planning

The second branch of this dissertation focuses on proactive approaches. Dealing with
uncertainty is a complex issue, especially when the deterministic problem is already in-
tractable. Therefore, it is imperative to devise intelligent ways of modelling and solving
these complex systems. Simulation is not only able to easily address uncertainty, but also
accurate representations of different types of uncertainty. For instance, stochastic pro-
gramming allows assigning probability distribution to certain parameters. Simulation on
the other hand can emulate disturbances (with specific starting and ending times) with no
mathematical sophistication or complexity. Therefore, simulation-optimization (S-O) ap-
pears as a powerful approach, since it can combine the ease of simulation for dealing with
complexity and the focus of optimization in finding good quality solutions. Two main
objectives were thus defined:

1. Study and classify the different ways of combining simulation and optimization and
relate them to problem characteristics

Simulation and optimization can be combined in numerous ways and the selection
of the appropriate design can have a huge impact on the efficiency of the method.
That choice will entirely depend on the characteristics of the problem to be tackled.
Therefore, the first objective of this second research line is to study S-O methods and
the way they relate to problem characteristics. Since the literature in S-O does not
have a classification that covers the full spectrum of these methods, this thesis seeks
also to propose a taxonomy with the most relevant classifying dimensions.

The main research questions associated with this objective are then the following:

• What are the key dimensions in which S-O methods should be classified?

• What types of problems are best addressed by each S-O design?

2. Design and develop a simulation-optimization framework for production planning
and scheduling problems under uncertainty

After having an overview of the full spectrum of S-O methods, the objective is to
develop an S-O framework that is suitable to production planning and scheduling
problems. According to the general analysis performed in the previous objective,
some S-O designs will be immediately disregarded, while other may need further
attention.

The aim here is to explore the following questions:

• What features should be kept in optimization and what could be transferred to
simulation?
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• What method should be used to approach the optimization part?

• What type of simulation is most appropriate?

• How should the interaction be designed (what feedback and when should sim-
ulation provide to optimization)?

Figure 1.2 shows the overall structure of the thesis, framing the four main objectives in
the two aforementioned research lines. It should be noted however that the approaches pro-
posed for reactive planning can also address proactive issues and vice-versa. For instance,
considering slacks in reactive models will help accommodating uncertainties. Also, an
efficient metaheuristic addressing uncertainty may still be able to produce solutions of rea-
sonable quality in feasible time (quickly reacting to a disruption). Nevertheless, a proactive
approach will be focused on determining appropriate slacks, while a reactive method will
be more efficient if it does not expend so much effort tackling uncertainty. Therefore,
different methods should be used for reactive and proactive planning and both should be
applied according to the state of the system.

Operational Production Planning and Scheduling of Continuous P&P Mills

Reactive Planning Proactive Planning

Develop Efficient Solution Method (O1)

Develop Practice-Driven Mathematical 
Model, Solution Approach and DSS (O2)

Study Hybrid Simulation-Optimization 
Methods (O3)

Design and Develop
Simulation-Optimization Framework (O4)

Figure 1.2: Research objectives.

1.3. Thesis synopsis

The chapters of this thesis consist of a collection of papers. Each paper (or chapter) is
aligned with each of the research objectives previously defined. This section provides an
overview of the main aspects covered by these articles.

Chapter 2 approaches the planning and scheduling that appears at the P&P industry
with a hybrid approximate method. A variable neighbourhood search (VNS) is hybridized
with an exact linear programming solver and a specific heuristic to deal with the binary
variables related to the discrete digester’s speed rates. The multiple neighbourhood struc-
tures were specifically designed to optimize lot-sizing and scheduling problems, including
the discrete, continuous setup, proportional and general lot-sizing and scheduling problems
(DLSP, CSLP, PLSP and GLSP, respectively). Those structures focus on the setup pattern,
adding / removing / moving entire campaigns to / from certain positions of the schedule.
Then, the exact solver and the specific heuristic are used to decode these patterns into final
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plans, so that they can be properly assessed. While the heuristic is specific for cases where
the speed rate is defined by a discrete grid (due to operational constraints or modelling
issues), the solver is generic and allows for an easy incorporation of any linear constraint.
Moreover, it fully optimizes continuous variables, which is important when there is still a
degree of freedom after the binary variables have been fixed. The resulting method shows
a very interesting performance on real world sized instances and seems to be promising for
other lot-sizing and scheduling problems.

In Chapter 3 the mathematical model and solution method are revised to be incorpo-
rated in a DSS to be used in practice. The model is extended to deal with a variety of
issues, such as different priority levels for orders, variable production rates in all units,
scheduled stoppages and fixed campaigns. This last feature motivated also the reformula-
tion of time slots, so that a feasible plan could always be generated. The continuous slots
are able to cross the discrete periods used for demand fulfilment, which avoids having to
(heuristically) determine the number of slots for each campaign. Like the previous model,
it considers the sequence-dependent setup times and costs of the paper machine and the
integration with the other stages. Therefore, an efficient solution method is even more nec-
essary. However, the new formulation of time slots required including additional binary
variables, which would compromise the performance of the VNS, since the decoding pro-
cedure would become drastically more complex. Therefore, a MIP-based heuristic was
developed, which provides good enough solutions for practical use. The method comprises
a main optimization phase and a post-optimization step. The former generates an initial
solution and improves it, solving sub-MIP’s, first in a forward pass and then with a biased
selection. The post-optimization smooths production rates by fixing slots lengths. This
separation is conducted to avoid non-linearity. Additionally, the chapter describes the in-
terfaces of the DSS with the existing systems in the company and with the final users, as
well as important pre- and post-processing steps. The system is used not only to generate
optimized plans, but also to test and assess manually devised plans.

Chapters 4 and 5 then focus on proactive planning. The former conducts a general
study of simulation-optimization methods, whereas the latter discusses an S-O framework
for production planning and scheduling problems.

In Chapter 4 the full spectrum of S-O methods is reviewed, in order to provide an
overview for a proper classification of these methods. The key classifying dimensions
are identified. The purpose of simulation in the whole procedure appears to be the most
relevant, since it distinguishes the main streams of research in S-O. The Simulation com-
munity typically uses simulation models to give feedback with respect to the quality of the
solutions being simulated. The Optimization community tends to use simulation combined
with analytical models, so as to take advantage of the problem structure, where simula-
tion’s output is used to enhance or complement the optimization model. Other key dimen-
sions concern the hierarchical structure that relates simulation with optimization, the search
method and the way the probability space is explored. Every category of each dimension
is related to specific problem characteristics, thus providing insights regarding the types of
problems that are best approached by each S-O design.

Chapter 5 starts from the previous general study and explores S-O methods in the con-
text of a production planning and scheduling problem. The problem is inspired by the
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case study and generalized keeping just the most relevant features. In particular, only two
stages (and the tank in between) are considered. As previously discussed, the production
system of the case study is subject to a variety of uncertainties, both in the form of pro-
cess variability and as disturbances. To properly model those occurrences, discrete-event
simulation is applied. The deterministic analytical model appears to be useful for the opti-
mization of continuous variables, while a metaheuristic, based on that proposed in Chapter
2, is developed for intelligently manipulating the discrete variables. The combination of
simulation and optimization is then discussed in its main dimensions, namely the purpose
of simulation and the hierarchical structure.

Finally, Chapter 6 summarizes the most substantial results obtained with this thesis and
gives directions for future research.
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real-world case study in the pulp and paper industry, this paper provides an efficient solu-
tion method to tackle the short-term production planning and scheduling in an integrated
mill. Decisions on the paper machine setup pattern and on the production rate of the pulp
digester (which is constrained to a maximum variation) complicate the problem. The ap-
proach is built on top of a mixed integer programming (MIP) formulation derived from the
multi-stage general lotsizing and scheduling problem. It combines a Variable Neighbour-
hood Search procedure which manages the setup-related variables, a specific heuristic to
determine the digester’s production speeds and an exact method to optimize the production
and flow movement decisions. Different strategies are explored to speed-up the solution
procedure and alternative variants of the algorithm are tested on instances based on real
data from the case study. The algorithm is benchmarked against exact procedures.
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2.1. Introduction

Research on the optimization of production planning has been more and more focused
on increasing the detail and realism of mathematical formulations. Meyr (2002) pin-
pointed the need to integrate lotsizing and scheduling (LSS) in production environments
with sequence-dependent setup times, since the final available capacity is only known af-
ter the definition of both the size and the sequence of lots. Different LSS models have
been proposed, either big- or small-bucket (a classification given by Eppen (1987)). Since
small-bucket models allow for only one changeover to be performed in each period, they
always involve a larger number of periods when compared to big-bucket formulations. On
the other hand, a higher level of detail can be incorporated into the former, as time periods
are shorter. This is of particular importance in short-term planning.

Besides the integration of lotsizing and scheduling, researchers have been trying to
extend traditional models, in order to include more specificities of the production envi-
ronment (Jans and Degraeve, 2007). One of those extensions is the multi-stage scenario,
where the interdependencies between resources in different stages are taken into account.
The production flow may have different structures (serial, divergent, convergent, loop) or
combinations of them. In any of these cases, the respective models are naturally larger and
more complex than the corresponding single stage variants.

The general lotsizing and scheduling problem (GLSP), originally proposed by Fleis-
chmann and Meyr (1997), attempts to reduce the size of models, considering micro-periods
(or subperiods) of variable length embedded in macro-periods (or simply periods). How-
ever, the model’s complexity considerably suffers in case the production rate of a given
resource is a decision variable constrained to a maximum variation.

Clark et al. (2011) identified the process industries as a promising research area for
lotsizing and its extensions, in spite of the current changes in the philosophy of production
planning and control (e.g. lean manufacturing, shift from make-to-stock to make-to-order,
etc.), due to their very specific features. This paper investigates a case study in the pulp
and paper (P&P) industry, where the short-term production planning is tackled. The P&P
industry converts fibrous raw materials into pulp, paper and paperboard and may produce
energy (in a chemical recovery process) for internal use or to be sold to electrical compa-
nies. In a first step raw materials are processed into pulp (in the digester) and in a second
step paper and paper products are produced out of this pulp, in different grade runs to be
sized and scheduled on the paper machine (Schumacher and Sathaye, 1999). These two
steps can be processed on separate plants (within the same company or belonging to differ-
ent companies) or combined into a single mill. The latter can be formulated as a multi-stage
lotsizing and scheduling problem (addressed here).

Research community tended to focus on a single production stage: either pulping (e.g.
Bredstrom et al. (2004)), papermaking (e.g. Murthy et al. (1999) and Rizk et al. (2008))
or chemical recovery (e.g. Axelsson et al. (2006) and Jonsson et al. (2008)). As these ap-
proaches do not consider the interdependencies between the different stages, when applied
to integrated P&P mills they may generate plans that are not only suboptimal, but also
unrealistic, obliging managers to modify them manually to guarantee feasibility.

The work proposed by Santos and Almada-Lobo (2012) is indeed the only, to the best
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of our knowledge, to integrate all the three main production stages, although it does not
consider the cutting of the reels. This integrated production planning approach aims the
synchronization of material flow as it moves through pulp, liquors and paper, responding
to the need of integrating production decisions. The model describes a combination of all
the aforementioned flow structures (serial, divergent, convergent and loop) and deals with
the issue of production speeds constrained to maximum variations (in the digester). As the
underlying problem is NP-hard, the authors implemented a stochastic MIP-based heuristic
that provides feasible solutions. However, solutions are only of moderate quality. Thus,
although the model can effectively reflect reality, useful plans may not be generated within
feasible time.

In our paper we tackle the same problem using a different solution method. We pro-
pose a hybrid approach that combines approximate methods (heuristics and metaheuristics)
with exact methods. In fact, metaheuristics are more tailored for combinatorial problems,
whereas exact methods are relatively efficient in the optimization of continuous variables.
Therefore, the latter are frequently used to decode (i.e. translate into a full production plan)
a representation composed of only integer variables, which is managed by the metaheuris-
tic.

Metaheuristics are high level frameworks that combine basic heuristics in order to ef-
ficiently and effectively explore the search space (Blum and Roli, 2003). One of the main
issues that metaheuristics have to deal with is the entrapment in local optima. Variable
Neighbourhood Search (VNS) is based on a systematic change of neighbourhoods, which
may be performed in different ways, resulting in several variants (Hansen et al., 2008). The
basic VNS combines a standard local search with a stochastic shaking phase, thus escaping
from local optima while avoiding cycles. Variable Neighbourhood Descent (VND) is a de-
terministic best improvement descent method, where the local search is shifted to another
neighbourhood structure if a local optimum is reached in the current one. Replacing in the
VNS the local search step by the VND results in the General VNS (GVNS). The reduced
VNS (RVNS) is a pure stochastic method where random points in the neighbourhood are
picked and the incumbent solution is updated in case of an improvement.

Guimaraes et al. (2012) proposed a hybridization of an RVNS and an exact method
to approach the tactical planning problem in the beverage industry. Other papers (such as
Hindi (1996), Hung et al. (2003) and Almeder (2010)) applied this kind of hybridization
with other metaheuristics (either neighbourhood- or population-based) to extensions of the
capacitated lot sizing problem (CLSP), which is a big-bucket model. Almada-Lobo et al.
(2008) has also approached an extension of the CLSP. The authors proposed a new VNS
variant (combining GVNS and RVNS) for solving a production planning problem in the
glass container industry. However, the literature is scarce for hybrid methods on small-
bucket models. Meyr (2000) is one of the few to address a small-bucket formulation with
a metaheuristic combined with an exact decoding procedure. Nevertheless, the author has
not focused his work on the neighbourhood structures and on the constructive heuristic and
the underlying problem is of single-stage and has fixed production rates.

Our algorithm considers the pattern of setups on the paper machine as the representa-
tion to be managed by the metaheuristic and decodes the remaining variables using an exact
procedure and a specific heuristic to determine the discrete digester’s speeds. Broad neigh-
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bourhood structures are proposed in a GVNS design and different techniques to speed-up
the expensive local search are employed. Tests performed on generated instances based on
real data attested the superiority of the algorithm over a state-of-the-art commercial solver
for large sized instances.

The main contributions of our work are as follows. We propose here a hybrid solution
method that is the first to deliver good quality solutions within feasible time for a real-world
problem in the P&P industry. Both pure exact methods and MIP-based heuristics provide
only feasible solutions of low or moderate quality. We also expect to give insights on the
efficient resolution of other LSS problems, where the integer part consists of a setup pattern
and/or a grid of production speeds (constrained to a maximum variation).

The remainder of the paper is as follows. In Section 2.2 the case study is discussed (in-
cluding the general production and planning processes and the characteristics of the specific
problem). Section 5.4 is dedicated to the solution method proposed for this problem. Com-
putational experiments are given in Section 2.4. The paper ends with some conclusions and
directions for further research.

2.2. The case study

2.2.1 Production process and problem specificities

The workflow of the integrated production system consists of seven interdependent sub-
processes: wood preparation, pulping, paper recycling, bleaching, chemical recovery, pa-
permaking and cutting.

In the first stage the wood is debarked and reduced to small chips, which are later
cooked in one or several (batch or continuous) digesters in aqueous solutions with reagents
at high temperature and pressure (chemical pulping), producing virgin pulp. Different types
of pulp are characterized by different types of wood and incorporation ratios of recycled
materials or even of non-wood plant sources.

In the pulping process a by-product is produced: the weak black liquor. From this point
onwards, both products go through various transformation processes separately from each
other (divergent flow). The weak black liquor goes to an intermediate tank before being
concentrated in an evaporator. After this stage, the concentrated black liquor flows through
another intermediate buffer and then to a capacitated recovery boiler, where it is burnt,
providing high-pressure steam and regenerating the spent chemicals applied in pulping.
The steam can either be used for the paper drying process or be led to counter-pressure
turbines which produce electrical energy to be sold afterwards.

The virgin and recycled pulps may go through a bleaching phase and then stocked in
their respective tanks, waiting for being pulled by the paper machine(s). From the tanks,
these primary pulps are diluted and fed together into the paper machine (convergent flow),
where the paper is formed and the water is removed. The dried paper, characterized by
its grammage (measured in g/m2) and type of pulp, is wound into a master reel (called
jumbo). The configuration of the machine to produce a different type of paper (different
grammage or pulp mixture) is sequence-dependent. Each setup leads to a loss in the pro-
duction process in terms of time and quantity of a lower quality paper produced (as the
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machine is never idle, even during the switchover). The wasted paper is fed again into the
recycled pulp mill (loop flow).

Finally, the jumbo follows to the winder where it is cut into smaller reels. The wasted
paper in the cutting process is also fed into the recycled pulp mill. Customers may place
orders for reels of different widths and paper types. The reels can also be cut into sheets
of different sizes, which are wrapped into reams. Converted paper products, such as paper-
board boxes, may also be produced.

Figure 5.1 shows a simplified scheme of the manufacturing process in a P&P mill. It
should be noted that at each stage there can be one or several resources in parallel. This
figure depicts the main decision variables of the mathematical model of the respective
production planning and scheduling problem (presented in 2.A).

water 

paper machine winder 

jumbos buffer 

recycled pulp tank 

virgin pulp tank 

recycled pulp mill 

digester 

wood chips plant 

bleach plant 

weak black 
liquor tank 

concentrated 
black liquor tank 

evaporator 
recovery boiler 

recovery plant 

paper mill pulp mill 

Figure 2.1: The integrated pulp, paper and recovery plant.

The company of this case study produces two main variants of kraftliner (KLB and
VLB), which is a type of paper for the corrugated cardboard boxes market. Both products
(that essentially differ in their quantities of virgin and recycled fibres) may be produced in
a set of different grammage values. For the sake of simplicity, hereafter the term grade is
used for the combination of the thickness of the paper (related to its grammage) and the
proportion of virgin and recycled fibres in the mixture. The company provides to its clients
a total of 29 different grades.

All the aforementioned production stages are performed on site, with the exception
of bleaching, which is not necessary for this type of paper (note that in Figure 5.1, the
input and output flow variables in the bleaching stage are the same), and sheet cutting,
as customers place orders for reels. In each stage there is only one production resource
(e.g. one continuous digester, one paper machine, etc.). Between the papermaking and the
cutting stage, there is a buffer that makes it possible the production planning to consider
aggregated demand for jumbos, instead of demand for final items.

2.2.2 Short-term planning and scheduling

The P&P industry is characterized on the one hand by high capital and energy intensity and,
on the other hand, by a relatively high introduction rate of new products. As a result, the
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definition of the desirable efficient production sequences (remark that setups are sequence-
dependent) and the work-load balance between different resources are frequently perturbed
by the accommodation of new products in the production system. Moreover, the expansion
of the product range demands for an increased flexibility, which has to be conjugated with
high productivity levels, that are crucial in peak demand periods. The objective function of
the model in appendix thus weights inventory, backlogging and setup costs, as well as the
productivity of each resource.

This trade-off between lead-times and productivity is especially difficult when demand
is subject to rapid change (as it is in our case). In such cases, the tactical planning level
seeks to derive a periodic scheduling, in which a production cycle (e.g. one week) is
repeated over time. This periodic scheme facilitates the acceptance of customer orders
well in advance. Then, in the operational level the sequence of paper grades (defined for
the cycle) is adapted according to the evolving state of the system. The short-term problem
is the focus of our work. For tactical approaches, see Bouchriha et al. (2007) and Castro
et al. (2009).

In most companies, the short-term production planning process is completely manual
and typically follows a hierarchical scheme. The top-level focuses on the paper machine,
dealing with the sizing and scheduling of paper runs to fulfil current demand and backlog.
The paper sequence may come from the tactical level and generally consists of an ascend-
ing (or descending) order of grades, followed by a descending (or ascending) order, hence
minimizing setups. Some grades may be repeated in the same cycle, due to market issues
(concerning customer order due dates and backlog) and production issues (temporary bot-
tlenecks and virgin/recycled pulp tank levels). The base-level of the hierarchical planning
tries to schedule and control all the other production resources, subject to the input from
the top-level.

This industry-practice planning seeks the maximization of the mill’s throughput, fo-
cusing mainly on the paper machine (typically the bottleneck) and minimizing the time
lost in setups of that resource. However, backlogging and inventory costs are not properly
weighted. Also, the complexity of the production flow (including divergent, convergent
and loop structures) makes the base-level planning incredibly hard to optimize. Moreover,
various iterations between the two levels may be needed to find a reasonable solution, since
for example, a lack of capacity of the recovery boiler may force the digester to reduce its
speed, not allowing it to provide the required pulp for a given papermaking schedule. In
addition, as the pulp quality strongly depends on the digester’s stability, its synchronization
with other resources, such as the paper machine, is crucial. In fact, different paper grades
produced on the paper machine pull more or less pulp from the digester (forcing the change
of its speed) according to their respective grammage. Therefore, the close interrelation be-
tween these two stages must be carefully managed.

Facing several constraints, conflicting objectives and eventually multiple and shifting
bottlenecks, planners are led to place feasibility over optimality. The resulting suboptimal
plans may not only compromise production costs and company’s efficiency, but also the
service level provided to its clients. Optimization models focusing on a comprehensive
P&P production planning are thus imperative, as well as efficient solution methods capable
of solving these complex and realistic problems within feasible time. The latter are the
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focus of this paper.

2.3. Hybrid VNS approach

2.3.1 Problem and notation

The model proposed by Santos and Almada-Lobo (2012) is based on the GLSP with
sequence-dependent setup times and costs and extended to the multi-stage scenario with
additional constraints. The length of each subperiod s is a continuous decision variable de-
noted by Ns (in this case expressed in hours) and the time grid to be defined (i.e. number of
non-empty micro-periods) is common for all the resources and production stages (similar
modelling techniques are used by Camargo et al. (2012)).

One of the main issues of this problem is that the digester’s rotation speed (Vdig
s ) is

a decision variable that is constrained to a maximum variation (∆ ·Φ) in each subperiod
(to ensure the stability and smoothness of the cooking process) and hence, it has to be
represented explicitly in the model. Therefore, in order to avoid a non-linear formulation,
a grid of 15 discrete values for the digester’s speed (spv) had to be defined (in steps of 0.25
rpm), with a binary variable (Ydig

vs ) associated to each of them. The other binary variables of
the model are related to paper machine’s setups and changeovers (Y js and Z jks, respectively,
which are mutually dependent). All the remaining variables are continuous and basically
consist of the flow variables represented in Figure 5.1 and the inventory levels throughout
the process. Although backlog is allowed, it should not build up for a long period of time
and hence, in each cycle, the initial backlog of each grade has to be fulfilled until the end
of that cycle (backlog coverage). This requirement is common in practice.

A refined version of Santos and Almada-Lobo’s model is presented in 2.A, with ad-
ditional constraints and objectives that better represent company’s reality and with mod-
ifications that turn the model more efficient for exact methods. Throughout this section,
the notation used for variables is the same as that of the model. Additionally, a complete
solution is denoted by x and each of its decision variables dv can be assessed as a function
dv(x).

In order to quickly understand the key features of the model, a production plan was
generated for a small instance, with 8 products (aggregated into 7 grades), 5 periods (total-
izing a cycle in this case) and 3 subperiods per period. The model was solved to optimality
by a commercial solver. Figure 2.2 illustrates the plans generated for both the digester and
paper machine, as well as their synchronization through the common time grid (which is
also shared by the other production resources). The vertical dashed lines divide the sub-
periods, whereas the continuous lines represent the digester’s speed (expressed in rotations
per minute) and its maximum value.

Although small instances of this (NP-hard) problem can be solved to optimality by
commercial solvers in reasonable time, real-world sized instances clearly need more effi-
cient methods (see Section 2.4 for computational times and gaps). For that purpose, an
approximate algorithm was developed.



18 Chapter 2. Solution approach for production planning and scheduling

0,00 0,50 1,00 1,50 2,00 2,50 3,00 3,50 4,00 4,50 5,00 

0 1 2 3 4 5 

186 

170 

140 

125 

115 

R115 

R140 

Time (days) 

P
ap

e
r 

m
ac

h
in

e
's

 s
ch

e
d

u
le

 

11.5 

12.0 

12.5 

13.0 

13.5 

14.0 

D
ig

e
st

e
r'

s 
sp

e
e

d
 (

rp
m

) 

Figure 2.2: Partial production plan: synchronization between the digester and the paper
machine.

2.3.2 Solution representation and decoding

The algorithm proposed in this paper combines heuristic and exact methods in a GVNS
design (see Algorithm 11 in Subsection 2.3.3 for the high level procedure). Each solution is
represented by the setup pattern (encoding), i.e. the number of subperiods assigned to each
paper grade and their sequence (which is the information given by the setup variables Y js) –
see Figure 2.4 for graphical representations. The GVNS iterates through different patterns
and uses a decoding procedure to translate each pattern into a final production plan (as
that represented in Figure 2.2, with subperiods of different length and production decisions
related to the other resources). Figure 2.3 illustrates this general algorithm structure. The
decoding procedure is a combination of an exact method and a specific heuristic (the Speeds
Constraint Heuristic – SCH). The exact method optimizes the continuous variables, so that
good quality solutions are not incorrectly rejected and the algorithm keeps its simplicity
and flexibility to cope with further model extensions and modifications. The heuristic is
used to determine the digester’s speeds. The complete decoding is presented in Algorithm
12.

Figure 2.3: General structure of the hybrid algorithm.
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The Decode function decodes gradually the solution while the objective value is better
than that of the incumbent ( f inc), in order to save computational time. This is particularly
important in local search, where the number of neighbours to evaluate can be very large.
If the solution is worse than the incumbent, it is rejected by considering it as infeasible. In
the shaking procedure of the GVNS, however, as the solution can deteriorate, an infinity is
assigned to f inc so that worse solutions are not rejected.
Decode starts by calling an exact solver to optimize the linear programming (LP) prob-

lem that results from fixing the setup pattern Y and relaxing the speed variation constraints
(line 1). This relaxation is achieved by removing (2.3)–(2.6) and replacing the digester’s
production output constraints (2.9) by the following:

Xdig
s ≤ α · v

dig
max ·Ns s ∈ [S ]. (2.1)

Xdig
s ≥ α · v

dig
min ·Ns s ∈ [S ]. (2.2)

The new constraints just impose upper and lower bounds on the digester’s output (and
therefore to its speeds), leaving the choice of the speed as a continuous decision variable.
In fact, the speed is now an implicit variable defined by Vdig

s = Xdig
s / (α ·Ns).

To ensure that the digester’s speeds satisfy the maximum variation constraints (2.4),
the SCH is called to check, correct and fix the speeds (line 3). In SCH (detailed in Section
2.3.6), the LP is solved again to update the values of the continuous variables, according to
the modified speeds. If the solution returns as infeasible, the solver is called to definitely
validate the setup pattern (solving the fixed MIP with the original constraints until a first
solution is found – line 5). The solver is drastically more demanding in terms of computa-
tional time (over 100 times, according to some preliminary testing) and the SCH enables a
quick validation of the feasibility of the majority of the neighbour solutions.

Algorithm 1: Decode(Y, f inc)

1 x′← Solver(Y,RelaxSpeeds,Optimality)
2 if f (x′) < f inc then
3 x′′← SCH(x′)
4 if x′′ is infeasible then
5 x′′← Solver(Y,IncludeSpeeds,FirstSol)

6 if x′′ is feasible and f (x′) < f inc then
7 x← x′

8 else
9 x← in f

10 else
11 x← in f

12 return x

The gradual decoding of solutions is reflected not only in the number of steps per-
formed in Algorithm 12, but also in the first LP solving procedure. In fact, in that proce-
dure a speed-up strategy called Dual Re-optimization is used. This technique interrupts the
LP optimization procedure (which is solved with the dual algorithm), in case the solution
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gets worse than the incumbent (Meyr, 2002; Guimaraes et al., 2012).

2.3.3 GVNS design

The GVNS design is presented in Algorithm 11. A solution is initialized by ConstructiveHeuristic
and then a series of Shake and VND executions try to improve this solution by exploring
different regions of the space. In the shaking phase, the search shifts to the next neighbour-
hood if an improvement is not achieved (line 10) and it returns to the first one, otherwise
(line 8). Neighbourhoods are sequenced in increasing order of the strength of the cor-
responding moves. In this way, small perturbations are applied after a local optimum is
obtained, so that its close region is well explored. Then, the search diversificates more to
explore different regions. The algorithm ends after the last neighbourhood has been tried
in shaking. A time limit is also imposed (and checked throughout the algorithm). The final
setup pattern is exactly decoded, running the solver until optimality with the Y variables
fixed (line 11).

Algorithm 2: GVNS(kmax,k′max)

1 x← ConstructiveHeuristic()
2 k← 1
3 while k ≤ kmax do
4 x′← Shake(x,k)
5 x′′← VND(x′,k′max)
6 if f (x′′) < f (x) then
7 x← x′′

8 k← 1

9 else
10 k← k + 1

11 x← Solver(Y(x),IncludeSpeeds,Optimality)

In the search performed by the GVNS, critical constraints are relaxed and their violation
is penalized in the evaluation function, so that the ConstructiveHeuristic is always
able to generate an initial solution. The VND is then expected to correct this violation,
which is related to backlog covering (constraints (2.22)) and the virgin pulp and black
liquors tank levels (constraints (2.15), (2.31) and (2.35)).

The neighbourhood structures to be used in VND are very broad in this case (as we
will see in the next subsection). Moreover, as the evaluation of each neighbour requires
calling the expensive Decode function, the VND design (see Algorithm 22) is focused on
speeding-up the neighbourhood search.

The neighbourhood search is applied to each production cycle, one at a time (the veri-
fication in lines 6-7 allows not to repeat cycles already explored since the last move). Also,
when an improvement move is found, it is immediately selected and implemented (first-
improvement strategy), avoiding an exhaustive exploration of neighbourhoods. In addition,
to find improving solutions more quickly, the neighbours are ranked according to their like-
lihood of improving the incumbent solution (line 8). Since the last ranked moves are not so
likely to improve, it is probably not worth (and is even impractical on real-sized problem
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instances) to explore the entire neighbourhoods. Thus, a given parameter (psi) determines
the percentage of the size of each neighbourhood i to be explored. It may also balance
the different neighbourhood reduced sizes. The change of neighbourhoods is performed
in a cyclic way: the search continues in the same neighbourhood while it finds improv-
ing solutions and moves to the following otherwise (except when the last neighbourhood
is explored – see lines 15-21). The VND is executed until the number of non-improving
consecutive iterations (k′′) reaches the number of neighbourhoods (k′max).

Algorithm 3: VND(x′,k′max)

1 k′′← 0
2 while k′′ < k′max do
3 k← 1
4 x′′← x′

5 for c← 1 to dCe do
6 if c = c′ + 1 and x′ = x′′ then
7 break

8 Sort(Nc
k′ (Y(x′)))

9 while f (x) ≥ f (x′) and k ≤
⌈
psk′ · |Nc

k′ (Y(x′))|
⌉

do
10 x← Decode(Y, f (x′)) , Y ∈ Nc

k′ (Y(x′))
11 k← k + 1

12 if f (x) < f (x′) then
13 x′← x
14 c′← c

15 if f (x) < f (x′′) then
16 k′′← 0

17 else
18 k′′← k′′ + 1
19 k′← k′ + 1
20 if k′ > k′max then
21 k′← 1

22 return x′

The neighbourhood structures consider compound moves, i.e., each move is composed
of different partial moves. The ranking procedure is then performed for each of these partial
moves. The exact impact on the changeovers cost is evaluated and the changes in inventory
and backlogging are estimated, thus providing an indicator of the quality of the move. In
order to avoid premature convergence, a stochastic selection is applied, choosing randomly
in each iteration one of the pr% best ranked moves to be evaluated. The deterministic
variant is also tested.

Finally, an early rejection strategy is implemented in order to further reduce computa-
tional time. The strategy consists on examining moves feasibility regarding backlog cov-
ering constraints. In fact, if the only production run of a grade with backlog to fulfil in a
given cycle is removed (and no other run of that grade is inserted), the move will result in
an infeasible solution and thus, it can be rejected before executing the Decode procedure.

The following subsections explore in more detail the different ingredients of the algo-
rithm (neighbourhood structures, ConstructiveHeuristic and SCH).
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2.3.4 Neighbourhood structures

A neighbour of an incumbent solution x is obtained by slightly changing the setup pattern
and decoding it (see line 10 of Algorithm 22). We have defined four different types of
neighbourhood structures, which share a common feature: the total number of subperiods
keeps constant, which is important when the LP model is solved. Figure 2.4 illustrates the
neighbourhood structures, each with an example of a move applied to a given setup pattern.
It is important to note that time is discretized in subperiods, which after the decoding
procedure may have different lengths.
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Figure 2.4: Illustration of the neighbourhood structures.

Given a set of production runs r = 1, . . . ,R and a set of grades j = 1, . . . ,K, let j(r) denote
the grade being produced on run r, s(r) be its number of subperiods and o(r) its position in
the sequence. The definition of the neighbourhood structures then follow:

• S ubperRemIns(r1,r2) (Figure 2.4(a)) consists on removing one subperiod from a
run r1 (in which s(r1) > 1, so that the run itself is not removed) and inserting another
one into a run r2, such that r2 , r1.

• RunRemIns(r1,r2) (Figure 2.4(b)) removes a complete production run r1 and inserts
another run r2, such that s(r2) = s(r1)∧ ( j(r2) , j(r1)∨o(r2) , o(r1)).

• RunInsS ubperRem(r1, [R2]) (Figure 2.4(c)) inserts a production run r1 and consec-
utively removes single subperiods (in a total of s(r1)) from a set [R2] of any runs
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r2 ∈ [R]∪{r1}, such that s(r2) > 1.

• RunRemS ubperIns(r1, [R2]) (Figure 2.4(d)) removes a production run r1 and con-
secutively inserts single subperiods (in a total of s(r1)) into a set [R2] of any runs
r2 ∈ [R]∪{r1}, such that ∃r2 , r1.

The first neighbourhood (based on S ubperRemIns(r1,r2)) is the smoothest and only
explores the distribution of production subperiods among the existing runs. The other three
are very broad in the sense that they extend traditional neighbourhoods (such as transfer,
splitting and aggregation of runs).

Some preliminary tests were performed in order to select the neighbourhood structures
for the local search phase, as well as their sequence. The results led to the selection of the
last three, in the order they were presented here.

For the shaking phase, six derived neighbourhoods are used in the following order:
three neighbourhoods based on S ubperRemIns(r1,r2), consisting of one, two and three
random moves of that type, respectively; three other based on RunRemIns(r1,r2), consist-
ing of one, two and three random moves, respectively.

2.3.5 Constructive heuristic

Finding an initial solution for this problem consists on determining a setup pattern for the
paper machine, which is then decoded by Decode function (as seen in Subsection 2.3.2).
The constructive heuristic proposed here can be divided in two main steps: sequencing
grades and assigning a number of production subperiods to each grade. To make it simple,
only one run is considered per grade and per cycle, at this stage. The procedure is separately
executed for each cycle and decodes in each iteration the partial solution, composed of
all the considered setup variables (whose integrality was relaxed in the beginning of the
algorithm). Algorithm 18 exhibits the main procedure.

In each cycle, sequencing is executed by consecutively choosing, among the grades
with demand or backlog to fulfil in that cycle, the one (within the same product type) of
the following grade either in ascending or descending order. For instance, grades may start
increasing the grammage value within a given product type (e.g. KLB). Then, a changeover
to another type (VLB) is performed, starting at the highest value (for the shift to be smooth)
and decreasing until the lowest. Finally, it returns to the original type (KLB), if there are
any grades left, starting at the lowest and continuing in ascending order. In this way, the
amount of time lost in setups is relatively small. The first setup pattern in Figure 2.4(a) is an
illustrative example of a sequence of paper runs starting in ascending order. The procedure
can be executed in the opposite way (starting with decreasing grades), which will lead to
the mirrored sequence. Both sequences (defined by orderl , l = {1,2}) are generated (see
line 5) and evaluated in the ConstructiveHeuristic and the one that provides the best
results is selected (lines 16-17). As this sequencing procedure is deterministic and may
lead towards premature convergence, a stochastic variant is also implemented.

For each of the generated sequences, the assignment of subperiods to paper grades has
to be determined. The heuristic starts assigning an amount of subperiods that guarantees
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the backlog coverage of the corresponding cycle (lines 6-7). From that assignment, three
different cases may occur:

• The number of assigned subperiods is the same as the total available to schedule and
thus, the procedure has finished;

• The assigned subperiods are more than those available and consequently some sub-
periods have to be removed from production runs;

• There are still subperiods to be assigned, requiring a procedure to determine the
additional assignment.

The assignment of subperiods in the first step (to fulfil backlog) is performed assuming
that all superiods have equal lengths. Therefore, the removal of subperiods in the second
case does not necessarily result in an infeasible solution, since the slack of some paper
grades can be used by other grades adjusting the length of the subperiods. Hence, an
iterative procedure is executed, where in each iteration a subperiod is removed from the
grade with the greatest slack (line 9).

When the number of assigned subperiods is less than the total available (third case), a
utility measure u j is used to determine the portion of the remaining subperiods to assign
to each grade (line 12). The greater the production needs (considering demand, backlog
and inventory on the one hand, and the already assigned subperiods on the other hand) and
the faster the production rate of a given grade are, the higher the utility will be. However,
the number of subperiods to assign is constrained by the actual production requirements
S addReq j

. Then, if there are still subperiods to be assigned, an iterative procedure is used,
choosing in each iteration the grade with the greatest production needs.

2.3.6 Speeds Constraint Heuristic (SCH)

The Speeds Constraint Heuristic has to check, correct and fix the speed values that result
from the optimization of the first LP (in which the speed variables and constraints were re-
moved) – see Algorithm 12. The SCH iterates through subperiods, comparing the digester’s
speed to that of the previous subperiod. The main steps are presented in Algorithm 13.

In order to get more control over the behaviour of the speed pattern, the (guiding) ob-
jective function is slightly modified. The virgin pulp production output of early subperiods
is favoured over the output of those that follow. Therefore, at first only the speed shift
upper limit may be violated and then, when one of the downstream tanks (either the virgin
pulp or the weak black liquor) gets full, the speed may be abruptly reduced.

The correction of the upper limit violation becomes trivial: it is just necessary to reduce
the speed value to the previous speed incremented by the maximum variation (see line 4).
The same is not true for the lower limit, since increasing the speed value will necessarily
result in overflow of the tank levels (as the digester’s production was being maximized),
unless the speed has been reduced in a previous subperiod. In case of overflow, the speeds
of previous subperiods have also to be reduced. Thus, after a set of consecutive subperiods
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Algorithm 4: ConstructiveHeuristic()
1 x′← in f
2 for l← 1 to 2 do
3 Relax integrality of Y
4 for c← 1 to dCe do
5 Sequencing(c,orderl)

6 S assignCalc j
← average

{
|S t |
capt
|t ∈ [Tc]

}
·
(
p j · IG−j,t1c−1(x) + stk j

)
, where k, j ∈ [K] and k is

before j in the sequence
7 S assign j

←
⌈
S assignCalc j

⌉
, j ∈ [K]

8 while
∑

j S assign j
> |S cyclec | do

9 k← argmax
{
S assign j

−S assignCalc j
| j ∈ [K]

}
10 S assignk

← S assignk
−1

11 if
∑

j S assign j
< |S cyclec | then

12 S assign′j ← min
{⌊

u j ·
(
|S cyclec | −

∑
j S assign j

)⌋
,S addReq j

}
, j ∈ [K]

13 Iteratively assign the remaining subperiods according to production needs

14 Determine Y according to the defined sequence and subperiods assignment
15 x← Decode(Y, f (x′))

16 if f (x) < f (x′) then
17 x′← x

18 return x′

{si, . . . , s f } where the speed reduction has been violated, the iterative procedure is inter-
rupted and the previous speeds are reduced until all the cumulative overflow has been elim-
inated (line 9). The iteration then restarts after all the assessed speeds have been rounded
down to the next value of the grid, in order to guarantee discrete values (which is important
for the results to be comparable to those obtained when solving the complete MIP exactly).
At the end, the speeds are fixed (in addition to the setup pattern) and the solver is called to
update the continuous variables (in an LP).

Algorithm 5: SCH(x)

1 while ∃s ∈ S : |Vdig
s −Vdig

s−1| > ∆ ·Φ do
2 for s← 1 to S do
3 if Vdig

s > Vdig
s−1 +∆ ·Φ and there is no speed reduction to correct then

4 Vdig
s ← Vdig

s−1 +∆ ·Φ

5 else if Vdig
s < Vdig

s−1 −∆ ·Φ then
6 Vdig

s ← Vdig
s−1 −∆ ·Φ

7 Update si and s f

8 if there is any speed reduction to correct and ( the speed reduction in s does not need
correction or s = S ) then

9 LayerRemoval(si, s f )
10 break

11 Round down all the assessed speeds

12 x′← Solver(Y(x),FixSpeeds,Optimality)
13 return x′
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Figure 2.5: Speed pattern correction procedure.

The reduction of the previous speeds consists on an iterative procedure based on the
idea of ‘layer removal’. This procedure is illustrated in Figure 2.5b. In Figure 2.5a the
speed pattern starts at its maximum value (13.5 rpm in this case) and abruptly decreases
in a given subperiod, due to one of the tanks being completely filled. Therefore, a correc-
tion is made to the speed pattern in order to eliminate the violations of the smooth speed
shifts (corrected pattern 1) – see line 6 in Algorithm 13. However, this adjustment causes
a violation in the tank levels. Thus, the speed pattern has to be lowered, i.e., layers have
to be removed, as in the corrected pattern 2 (where one layer was removed) and the cor-
rected pattern 3 (where two layers were removed). The layer removal procedure has to be
executed until the area beneath the corrected pattern and above the original pattern (that
corresponds to additional content inside the tanks) is less than the area above the former
and under the latter (that corresponds to the content that is removed from the tanks). The
speed reductions do not have to be performed through entire layers (this would lead to un-
necessary extra reductions). Hence, they are executed subperiod by subperiod, in a forward
move.

2.4. Computational tests and results

In this section we present the experimental results that validate the solution method design
and show how it behaves for a varied set of instances. We start by presenting how the com-
putational tests were designed. Then, the final results, which compare different variants
of the proposed method, the MIP-based heuristic (MIPBH) by Santos and Almada-Lobo
(2012) and IBM ILOG Cplex 12.1 (for the complete MIP), are exhibited. All the methods
were implemented in C++, compiled using GCC and run on an Intel Xeon CPU E5504
@ 2.0 GHz, with 3 Gb of random access memory. Cplex was also used as the LP solver
(within our algorithm) and it was limited to one thread in all methods to have a fair com-
parison.
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2.4.1 Tests design

2.4.1.1 Instances

A set of different instances were generated based on real data from the company of the
case study. The aim here is on the one hand to test the methods on instances as close as
possible to real-world data and, on the other hand, to compare and analyse their behaviour
on a variety of scenarios, which should represent different planning systems and strategies.
Also, it is important to assess the robustness regarding different moments in time and KPIs
(Key Performance Indicators) policies.

The configuration set of test classes is defined by all the combinations of T = {8,15}
(where the number of periods per cycle |Tc| is 5 or 10, respectively, corresponding to 1.5
cycles), |S t|= {3,4} and K = {8,16}. It is important to note that in spite of the total number of
grades of the studied company being 29, only about a half of them has demand or backlog
to fulfil in each production cycle and therefore is considered to be produced in that cycle.
The instance class that matches the company’s reality is defined by: T = 15 (|Tc| = 10 and
C = 1.5) and K = 16. The number of subperiods is yet to be defined and it will depend on
the quality of the final production plans (the trade-off between the accuracy of the model
and the efficiency of the method is to be assessed in practice).

For each class, 10 different instances were generated, varying some parameters that
appear to be more dynamic, namely demand intensity, initial tank levels and company’s
KPIs. For the demand intensity (which is defined here as the required time to produce all
demand and backlog – excluding setups – divided by the total available time), a uniform
distribution U[0.65,0.85] was used. Regarding the initial tank levels, a uniform U[0.8,1.2]
was multiplied by the original values. If any of the lower or upper bounds were violated,
the corresponding value was corrected to that bound. The KPIs (represented by wi – see
3.4.4) were randomly varied between half and double of the original values provided by
the decision maker, but considering the same probability of being less or greater than those
values. Therefore, either U[0.5,1] or U[1,2] were used with a probability of 50% each.

2.4.1.2 Algorithm variants and general parameters

Variants of the main procedure of our algorithm mentioned in Section 5.4 are tested here.
We choose not to combine variants, in order to have a reasonably small amount of methods
to test. Still, the potential benefits of each alternative design can be assessed by comparing
the results of the corresponding variant to those of the Standard Algorithm. The alternative
variants are as follows:

• DetMoves uses a deterministic strategy for the sequence of neighbour solutions to be
evaluated. Instead of choosing randomly one of the pr% best ranked moves in each
iteration (where pr was chosen to be 10, based on preliminary tests), it selects the
absolute best.

• RelaxBCov allows temporarily some violation of the backlog covering constraint
(2.22) in the middle of the algorithm’s procedure, in order to make the change of
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setup patterns more flexible. Using adaptive penalties, the method alternately ex-
plores the feasible and the infeasible regions, in a balanced way. However, the ex-
ploration of the infeasible region begins only after the first local optimum has been
reached. At that stage, the penalty starts being equal to the backlogging cost multi-
plied by the number of periods in a cycle and by a given coefficient: wcoe f ·λ2 · |Tc|.
Then, after a maximum number Nmax of consecutive iterations in a given region (ei-
ther feasible or infeasible), the penalty changes (increases if the search was perform-
ing in the infeasible region or decreases otherwise), according to a given rate wdelta.
Some preliminary tests lead us to choose the following values for these parameters:
wcoe f = 0.5, Nmax = 5 and wdelta = 1.5.

• RandCH applies a stochastic procedure to the first part of the ConstructiveHeuristic.
This variant consists on selecting at each step of the sequencing phase not the follow-
ing grade, but one of the Nrestricted closer, within the same product type. As a result,
the conventional smooth sequence is replaced by a semi-random construction. A
value of 2 is assigned to Nrestricted, so that the randomness is not too strong.

The time limit for the computational experiments is set to one hour, which seems to
be appropriate for a real-world application. The stochastic nature of the proposed methods
(with the exception of DetMoves) makes it necessary to run each algorithm more than once,
in order to obtain a reliable measure of its performance. Therefore, each stochastic method
was run 5 times on each of the 10 different randomly generated instances of each class.

We choose to capture the quality of the final solutions (in stochastic variants, the aver-
age of the runs is used) by their gaps to the best obtained solution in all runs of all methods
(including Cplex MIP) on each instance. The Gap is computed as Gap = (zi− zbest)/zi,
where zi is the average final solution of method i and zbest is the best obtained solution in
all runs on a given instance. Results are aggregated (through arithmetic mean) by instance
class, in order to provide a sense of the average performance of each method on each plan-
ning configuration. We also report the minimum and maximum gaps obtained by each
method on every instance class.

2.4.2 Results

Table 2.1 shows the average gaps and running times (in seconds) and Table 2.2 exhibits
the minimum and maximum gaps of every method on each instance class (for stochastic
versions, the average of the runs on each instance was used). Comparing the different
variants of the proposed algorithm, one can see that on small- to medium-sized instances
(the first six instance classes) the RelaxBCov is the overall best, whereas on large-sized
instances (the last two classes) the Standard version provides the best average gaps, for
similar running times.

The flexibility of moving through the solution space provided by RelaxBCov appears
to be more effective than a simple shaking, on instances of moderate size. In the last two
classes of instances, the Standard version exceeds that variant. The reason for that may
be in the fact that on larger instances the space is not so constrained and hence, crossing
the infeasible region is not so important. Nevertheless, the effectiveness of that strategy is
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Table 2.1: Average gaps and times of the four algorithm versions and Cplex on each in-
stance class. Best results are in boldface.

Standard DetMoves RelaxBCov RandomCH Cplex

K T |S t| AvgGap Time AvgGap Time AvgGap Time AvgGap Time AvgGap Time

8
8

3 1.9% 339 2.0% 143 1.7% 933 6.8% 718 0.0% 1619
4 2.8% 921 2.6% 500 2.8% 1189 5.6% 1026 0.2% 2792

15
3 2.3% 3005 1.4% 3296 1.4% 3561 17.0% 3431 8.3% 3594
4 3.4% 3539 4.8% 3336 2.0% 3636 18.2% 3576 18.8% 3597

16
8

3 14.1% 1284 17.9% 845 8.1% 3444 11.5% 1312 6.7% 3593
4 5.3% 2931 13.0% 1561 3.7% 3561 4.2% 3113 14.3% 3598

15
3 5.8% 3584 8.1% 3284 6.0% 3582 11.9% 3467 21.1% 3598
4 6.9% 3435 12.0% 3506 7.4% 3631 15.6% 3592 71.5% 3595

Table 2.2: Minimum and maximum gaps of the four algorithm versions and Cplex on each
instance class.

Standard DetMoves RelaxBCov RandomCH Cplex

K T |S t| Min Max Min Max Min Max Min Max Min Max

8
8

3 0.0% 4.8% 0.0% 3.7% 0.0% 4.6% 0.9% 18.2% 0.0% 0.2%
4 0.0% 7.7% 0.0% 6.4% 0.0% 7.7% 1.6% 17.4% 0.0% 1.3%

15
3 0.0% 8.0% 0.0% 6.0% 0.4% 3.7% 4.2% 26.2% 1.8% 14.1%
4 0.3% 9.4% 0.0% 36.0% 0.3% 5.6% 4.9% 27.5% 3.7% 33.3%

16
8

3 2.5% 48.6% 4.2% 55.1% 0.3% 47.6% 2.5% 31.5% 0.0% 43.7%
4 0.4% 13.6% 2.0% 28.7% 0.3% 9.7% 0.8% 9.9% 1.5% 33.3%

15
3 0.8% 10.2% 0.9% 15.8% 2.9% 10.4% 7.2% 17.1% 11.4% 38.0%
4 3.5% 13.6% 6.2% 17.1% 1.6% 12.8% 5.7% 27.6% 20.9% 98.1%

often rather impressive, even on large-sized instances. Figure 2.6 illustrates the behaviour
of the optimization process (switching between feasible and infeasible spaces) on one of
the instances of the seventh class (K = 16, T = 15 and |S t| = 3). The progress of the penalty
value (properly adjusted to the scale of the figure) is also exhibited. The importance of
the backlog covering relaxation is evident in the figure, where the algorithm is able at four
different times to further improve the first local optimum. For effectively switching between
feasible and infeasible solutions, the behaviour of the penalty function is determinant.

The DetMoves variant, on the other hand, proves to be very efficient just on the small-
est instances (the first two classes), obtaining high quality solutions within remarkably
short times. On larger instances, the gaps are consistently worse (on average) than those
of Standard, showing that it is not beneficial to use a completely greedy strategy in the
raking system when exploring neighbourhoods. Therefore, we can conclude that the ran-
dom component in this exploration prevents premature convergence towards local optima
in relatively large solution spaces.

The RandCH can achieve rather good results when the number of products is large in
comparison to the number of periods (in the fifth and sixth instance classes). However,
that is not true on the remaining instances, where it is often the worst variant. Indeed, it
seems that even a semi-random sequencing procedure in the ConstructiveHeuristic
spoils too much the setup pattern and the algorithm cannot fix it afterwards. Hence, a fairly
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Figure 2.6: Algorithm’s behaviour (RelaxBCov variant): switching between feasible and
infeasible spaces.

greedy constructive heuristic is desirable for this problem.
Regarding robustness, the RelaxBCov appears to be the best variant, since its ranges of

gaps seem to be relatively short. In the fifth instance however the maximum gap is around
50% for all the variants (except for RandCH, which presents a fairly good performance on
those instances, but the worst robustness overall). It seems that the algorithm finds it hard
to perform consistently when dealing with several products within few periods.

Looking at the Cplex results on the small-sized instances (namely when K = 8 and
T = 8), one can see that, as expected, it is not only able to find provably optimal solutions
within the time limit for almost all the instances, but it also proves to be superior to the
approximate algorithms. However, for medium and large-sized instances, that superiority is
inverted and Cplex deteriorates its performance sharply, specially as the number of periods
increases. Thus, we can conclude that in real-world applications like that of our case study,
exact methods fail to obtain good quality solutions.

Figure 2.7 shows the progress of the best solution throughout the search of the Standard
version and Cplex, on the same instance as that of Figure 2.6. It is clear from the figure the
incredibly fast convergence of the algorithm towards good quality solutions. Indeed, it is
able to provide within few seconds a solution that is drastically better than that obtained by
Cplex running a complete hour.

The results of the MIP-based heuristic (proposed in the previous paper) demonstrate
that, although this kind of approaches is more effective than Cplex for medium- to large-
sized instances, its performance also suffers significantly as the instance size increases
(contrary to the algorithm proposed in the present paper). Furthermore, it is similar to
Cplex in what concerns the gradual generation of good solutions. Therefore, for reduced
time limits the advantage of the new method would be even more clear.

The final plans generated by our method were validated with the company. They are
naturally very similar to those provided by Santos and Almada-Lobo (2012), as we use
virtually the same constraints, but respond better to the defined objective function criteria,
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Figure 2.7: Algorithm’s behaviour (Standard version compared to Cplex): best solution
throughout the optimization process.

since the algorithm is more effective in finding good solutions.

2.5. Conclusions

Exact solvers fail to generate good quality solutions for complex multi-stage lotsizing and
scheduling models on large real-world sized instances within feasible time. In this paper
we explore a case study in the P&P industry, where different production stages are inte-
grated into a single formulation. We propose a hybrid approach that combines the GVNS
metaheuristic (which manages the paper machine setup pattern), a specific heuristic to de-
termine the digester’s speeds (the SCH) and an exact solver for the continuous variables
(material flow and inventory levels).

Computational tests have demonstrated that our method is significantly more efficient
than both pure exact methods and MIP-based heuristics on real-sized instances. Different
algorithm variants were tested on a variety of instances. Results suggest that on small-
to medium sized instances the relaxation of backlog covering constraints appears to be
a more effective strategy to explore the solution space, rather than supporting the whole
diversification scheme in the shaking phase. On the largest instances (which correspond to
our case study), the Standard method provides better results.

Our method is driven by a real-world case study of the short-term production plan-
ning in an integrated P&P mill company. However, it can be applied to many other LSS
problems (in or outside the industry) formulated by a small-bucket MIP model where the
integer part consists of a setup pattern and/or a grid of production speeds (constrained to
a maximum variation). The notion of cycles is also taken into account by our solution
method.

The plans generated by our algorithm were validated with the company and their qual-
ity was confirmed. However, they are still subject to several changes and adaptations during
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their implementation and cannot guarantee feasibility in the presence of disturbances. In-
deed, the system is stochastic, since processes have an uncertain behaviour and production
resources, such as the paper machine, are subject to unpredicted interruptions. Therefore,
further research regarding the generation of more robust production plans is desirable.

Currently, the propagation of disturbances is avoided by considering slacks in the tank
limits when creating plans. We can try to optimize those slacks, instead of leaving them as
predefined decisions. In this way, both quality and robustness of production plans would
be correctly weighted.
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Appendix 2.A Integrated P&P mathematical formulation

The presentation of the MIP model is divided into four parts: one for each of the three
main production steps (related to pulp mill, paper mill and chemicals recovery plant) and
the last dedicated to the objective function. The indices, parameters and decision variables
are defined along the presentation of the model.

2.A.1 Pulp mill

Parameters, indices and sets:
t Index for period (t ∈ [T ] = {1, . . . ,T })
s Index for subperiod (s ∈ [S ] = {1, . . . ,S })
[S t] Set of subperiods s belonging to period t
Φ Minimum possible speed variation (in rpm)
∆ Maximum possible speed step

V Number of speeds, that is equal to
vdig

max−vdig
min

Φ + 1
vdig

max
(
vdig

min

)
Maximum (minimum) speed of the digester (in rpm)

v Index for digester’s rotation speed (v ∈ [V] = {1, . . . ,V})
spv Value of the speed indexed by v (e.g. sp1 = vdig

min)
capt Capacity of period t (in hours)
Nmin Minimum subperiod length (in hours)
α Digester’s conversion parameter from rpm to tonnes

Ydig
v,0

1 if the digester is running at speed v at the beginning of the planning horizon,

0 otherwise
xrrecy

max
(
xrrecy

min

)
Maximum (minimum) production rate of the recycled pulp plant (in tonnes per hour)

krecy
cap Capacity coefficient of recycled fibre plant

Ivirg
0

(
Irecy
0

)
Initial inventory of virgin (recycled) pulp at the beginning of the planning horizon (in tonnes)

Ivirg
max

(
Ivirg
min

)
Upper (lower) bounds on the virgin pulp stocked in the respective tank (in tonnes)

Irecy
max

(
Irecy
min

)
Upper (lower) bounds on the recycled pulp stocked in the respective tank (in tonnes)

Decision variables:

Ydig
vs

1 if the digester runs at speed v in subperiod s,

0 otherwise
Ns Length of subperiod s (in hours)
Nhvs Time that the digester works at speed v in subperiod s (in hours)
Xdig

s Output of the digester in subperiod s (in tonnes of virgin pulp)
Xrecy

s Output of the recycled pulp mill in subperiod s (in tonnes of recycled pulp)
Ivirg
s (Irecy

s ) Inventory of virgin (recycled) pulp in the respective tank at the end of micro-period s (in tonnes)
Ovirg

s (Orecy
s ) Output of virgin (recycled) pulp tank in micro-period s (in tonnes)

IS recy
s Quantity of pulp fed back to the recycled pulp mill during the paper grade changeover in s (in tonnes)

∑
v

Ydig
vs = 1, s ∈ [S ] (2.3)
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Ydig
vs ≤

min(v+∆,V)∑
w=max(v−∆,0)

Ydig
w,s−1, v ∈ [V], s ∈ [S ] (2.4)

Nhvs ≤ capt ·Y
dig
vs , v ∈ [V], s ∈ [S ] (2.5)

Ns =
∑

v

Nhvs, s ∈ [S ] (2.6)∑
s∈[S t]

Ns = capt, t ∈ [T ] (2.7)

Ns ≥ Nmin, s ∈ [S ] (2.8)

Xdig
s = α ·

∑
v

spv ·Nhvs, s ∈ [S ] (2.9)

Xrecy
s ≥ xrrecy

min ·Ns, s ∈ [S ] (2.10)

Xrecy
s ≤ xrrecy

max ·Ns, s ∈ [S ] (2.11)∑
s∈[S t]

Xrecy
s ≤ krecy

cap · xrrecy
max · capt, t ∈ [T ] (2.12)

Xdig
s + Ivirg

s−1 = Ovirg
s + Ivirg

s , s ∈ [S ] (2.13)

Xrecy
s + Irecy

s−1 + IS recy
s = Orecy

s + Irecy
s , s ∈ [S ] (2.14)

Ivirg
min ≤ Ivirg

s ≤ Ivirg
max, s ∈ [S ] (2.15)

Irecy
min ≤ Irecy

s ≤ Irecy
max , s ∈ [S ] (2.16)

The digester runs at the same speed throughout each subperiod s (constraints (2.3)).
Naturally, the speed of the digester in subperiod s is implicitly determined by Vdig

s =
∑

v spv ·

Ydig
vs . Constraints (2.4) ensure a smooth shift of the speed of the digester between two

consecutive subperiods. The working speed of the digester and the length of each subperiod
s (which is common to all resources) are defined by constraints (2.5) and (2.6). The sizes of
the micro-periods of the same period altogether cannot exceed the capacity of the respective
period (constraints (2.7)), but each of them has a minimum value (constraints (2.8)), so that
the digester keeps its speed during at least a given amount of time. The amount of virgin
pulp in subperiod s is proportional to the speed of the digester and to the length of s, as in
constraints (2.9).

The production of the recycled pulp plant (where the waste collected is refined) in each
subperiod, Xrecy

s , is limited to lower (xrrecy
min ) and upper bounds (xrrecy

max) of production rate.
Additionally, the whole production in a period cannot exceed krecy

cap of the total capacity of
the corresponding period. These constraints are expressed in (2.10) - (2.12).

Both the virgin and recycled pulp tanks have limited storage capacity and must be filled
with stock over a minimum limit (constraints (2.15) and (2.16)). The inventory balancing
equations of virgin and recycled pulp are given by constraints (2.13) and (2.14). In the
case of recycled pulp tanks, it is necessary to consider the recovery of the paper loss during
grade changeovers and the cutting stage (see constraints (2.14)).
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2.A.2 Paper mill

Parameters, indices and sets:
j,k Indices for paper grades ( j,k ∈ [K] = {1, . . . ,K})
j1 Common first paper grade of all the cycles
c Index for cycle (c ∈ [C−] = {1, . . . , bCc} or c ∈ [C+] = {1, . . . , dCe}, where C is the number

of cycles, which can be non-integer)
[Tc] Set of periods t belonging to cycle c (T = d|Tc| ·Ce,c ∈ [C−])
[S cyclec ] Set of subperiods s belonging to cycle c
t1c First period of cycle c
s1c First subperiod of cycle c
slk j Paper lost (setup cost) in a changeover from grade k to j (in tonnes)
stk j Time lost (setup time) in a changeover from grade k to j (in hours)
bvirg

j

(
1−bvirg

j

)
Percentage of virgin (recycled) pulp used in the production of paper grade j

f j Percentage of water in paper grade j
p j Minimum processing time to produce one tonne of paper grade j
M j Large number for each paper grade j
m j Minimum lot size of paper grade j
D jt Demand for paper grade j in period t (in tonnes)
ι Average trim loss (in percentage)

Y j0

1 if the paper machine is set up for grade j at the beginning of the planning horizon,

0 otherwise.

Decision variables:

Zk js

1 if a changeover from grade k to j takes place at the beginning of subperiod s,

0 otherwise.

Y js

1 if the paper machine is set up for grade j in subperiod s,

0 otherwise.
X js Quantity of paper grade j produced in subperiod s (in tonnes)
IG+

j,t Inventory of paper grade j at the end of period t (in tonnes)
IG−j,t Quantity of paper grade j backlogged at the end of period t (in tonnes)

∑
j

bvirg
j ·

(
1− f j

)
·

X js +
∑

k

slk j ·Zk js

 = Ovirg
s , s ∈ [S ] (2.17)

∑
j

(
1−bvirg

j

)
·
(
1− f j

)
·

X js +
∑

k

slk j ·Zk js

 = Orecy
s , s ∈ [S ] (2.18)∑

j

∑
k

(
1− f j

)
· slk j ·Zk js +

∑
j

ι ·X js = IS recy
s , s ∈ [S ] (2.19)

∑
j

p j ·X js +
∑

k

stk j ·Zk js

 = Ns, s ∈ [S ] (2.20)

(1− ι) ·
∑

s∈[S t]

X js + IG+
j,t−1− IG−j,t−1−D jt = IG+

jt − IG−jt, j ∈ [K], t ∈ [T ] (2.21)

(1− ι) ·
∑

s∈[S cyclec ]

X js ≥ IG−j,t1c−1, j ∈ [K],c ∈ [C−] (2.22)

X js ≤ M j ·Y js, j ∈ [K], s ∈ [S ] (2.23)
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X js ≥ m j ·
(
Y js−Y j,s−1

)
, j ∈ [K], s ∈ [S ] (2.24)∑

j

Y js ≤ 1, s ∈ [S ] (2.25)

Y j1,s1c = 1, c ∈ [C+] (2.26)∑
k

Z jks = Y j,s−1, j ∈ [K], s ∈ [S ] (2.27)∑
k

Zk js = Y js, j ∈ [K], s ∈ [S ] (2.28)

Constraints (2.17) and (2.18) keep track of the usage of virgin and recycled pulp, re-
spectively, during production and setup tasks in each subperiod (where water is added to
it). In the P&P mill, the amount of paper lost during grade switchovers and reels cutting is
fed back into the recycled pulp mill and is traced by constraints (2.19).

It should be remembered that there is a common time grid for all production resources.
Constraints (2.20) define the size of each micro-period as a function of the production
and setup times of the paper machine performed in that subperiod. These requirements,
together with (2.6), synchronize the time grid of the digester with that of the paper machine
in each subperiod.

Constraints (2.21) represent the balance of inventory of paper grade j in period t. The
initial inventory of each grade is null

(
IG+

j,0 = 0∀ j
)
. The term (1− ι) ·

∑
s∈[S t] X js deducts the

trim loss out of the overall quantity produced. Constraints (2.22) ensure that in each cycle,
the initial backlog of each grade is fulfilled until the end of that cycle.

Constraints (2.23) establish that production of grade j occurs in subperiod s if the
machine is set up for that grade in subperiod s. In that case, constraints (2.24) force a
minimum lot size for the whole run. From (2.25) at most one grade can be produced per
subperiod. Constraints (2.26) impose that the first grade of each cycle is always the same
and thus, they create the perception of cycles (which is important for planners). Finally,
constraints (2.27) and (2.28) relate the changeover variables to the setup state variables.
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2.A.3 Recovery plant

Parameters:
Iliquor
0 Initial inventory of weak black liquor (in m3)

Iliquor
max

(
Iliquor
min

)
Maximum (minimum) inventory of weak black liquor in the buffer (in m3)

Cevap Capacity of the evaporator to process the black liquor (in m3 per hour)
ρ Ratio between digester’s pulp and weak black liquor production
β Conversion parameter from weak black liquor to concentrated black liquor
Ic.liq
0 Initial inventory of concentrated black liquor (in m3)

Ic.liq
max

(
Ic.liq
min

)
Maximum (minimum) holding stock of concentrated black liquor in the buffer (in m3)

Cr.boiler
steam Capacity of the recovery boiler to produce steam (in tonnes per hour)

σ Conversion factor of concentrated black liquor to steam
Cr.boiler

burn Burning capacity of the recovery boiler (in m3 per hour)

Decision variables:
Xliquor

s Quantity of weak black liquor produced by the digester in subperiod s (in m3)
Oliquor

s Quantity of weak black liquor evaporated in subperiod s by the evaporator (in m3)
Iliquor
s Inventory of weak black liquor at the end of subperiod s (in m3)

Xc.liq
s Quantity of concentrated black liquor produced in subperiod s (in m3)

Ic.liq
s Inventory of concentrated black liquor at the end of subperiod s (in m3)

Oc.liq
s Quantity of concentrated black liquor to be burnt (in m3)

Xsteam
s Quantity of steam produced in the recovery boiler (in tonnes)

Xliquor
s = ρ ·Xdig

s , s ∈ [S ] (2.29)

Xliquor
s + Iliquor

s−1 = Oliquor
s + Iliquor

s , s ∈ [S ] (2.30)

Iliquor
min ≤ Iliquor

s ≤ Iliquor
max , s ∈ [S ] (2.31)

Oliquor
s ≤Cevap ·Ns, s ∈ [S ] (2.32)

Xc.liq
s = β ·Oliquor

s , s ∈ [S ] (2.33)

Xc.liq
s + Ic.liq

s−1 = Oc.liq
s + Ic.liq

s , s ∈ [S ] (2.34)

Ic.liq
min ≤ Ic.liq

s ≤ Ic.liq
max , s ∈ [S ] (2.35)

Oc.liq
s ≤Cr.boiler

burn ·Ns, s ∈ [S ] (2.36)

Xsteam
s = σ ·Oc.liq

s , s ∈ [S ] (2.37)

Xsteam
s ≤Cr.boiler

steam ·Ns, s ∈ [S ] (2.38)

The amount of weak black liquor, Xliquor
s , expressed in m3, is proportional to the di-

gester’s virgin pulp output, and is given by constraints (2.29). The buffer between the
digester and the evaporator is constrained by lower and upper bounds (constraints (2.31)).
Constraints (2.32) establish the evaporator’s capacity and the inventory balance equations
on the weak black liquor are given by (2.30). The output of the evaporation process is
the concentrated black liquor, Xc.liq

s that is proportional to the input Oliquor
s , as given by

constraints (2.33).
The mass balance equations of the concentrated black liquor tank are given by con-

straints (2.34), while the storage capacity of the buffer is defined by (2.35). Constraints
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(2.36) ensure that the burning capacity is limited in each subperiod. Finally, the steam
generated by the recovery boiler is proportional to the amount of dry solid content that is
burnt at each time, as indicated in (2.37). The steam output cannot exceed an upper limit –
see constraints (2.38).

2.A.4 Objective function and overall model

Ob j =
∑

j

∑
t

λ1 · IG+
jt +

∑
j

∑
t

λ2 · IG−jt +
∑

j

∑
k

∑
s

λ3 · slk j ·Zk js−
∑

s

λ4 ·Xsteam
s

−
∑

s

λ5 ·O
liquor
s −

∑
s

λ6 ·X
recy
s −

∑
s

λ7 ·X
dig
s

(2.39)

Expression (2.39) represents the weighted sum of the objective function. Its coeffi-
cients (λi’s) were determined based on the preferences of the decision-maker. To make
this process easier, the following expression was used:

∑
i

(
wi ·Fi/Fmax

i

)
, where wi’s are

the weights to be parametrized, Fi’s are the sub-functions and Fmax
i ’s are the maximum

values these functions can take. Therefore, the sub-functions are normalized and hence,
easier to be weighted. The weights to be applied to the output flow variables (the last
four terms) should increase as we go downstream the production process, so that stages
closer to the overall mill’s output are not hindered by upstream stages. Therefore, a fac-
tor of 2 was applied between the weights of two consecutive stages and hence, we have:
w4 = 2 ·w5 = 4 ·w6 = 4 ·w7. The values of the λi’s can be determined by dividing the
corresponding wi’s by the Fmax

i ’s.
The overall model then reads:

min Ob j
subject to (2.3)–(2.38),

Ns,Nhvs,X
dig
s ,Xrecy

s , Ivirg
s , Irecy

s ,Ovirg
s ,Orecy

s , IS recy
s ,X js, IG+

j,t, IG
−
j,t,X

liquor
s ,Oliquor

s ,

Iliquor
s ,Xc.liq

s , Ic.liq
s ,Oc.liq

s ,Xsteam
s ≥ 0,

Ydig
vs ,Zk js,Y js ∈ {0,1}.
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Abstract Production planning and scheduling in the process industry in general and in
the pulp and paper (P&P) sector in particular can be very challenging. Most practitioners,
however, address those activities relying only on spreadsheets, which is time-consuming
and sub-optimal. The literature has reported some decision support systems (DSSs) that
are far from the state-of-the-art with respect to optimization models and methods, and sev-
eral research works that do not address industrial issues. We contribute to reduce that
gap by developing and describing a DSS that resulted from several iterations with a P&P
company and a thorough review of the process systems engineering literature. The DSS
incorporates relevant industrial features (which motivated the development of a specific
model), exhibits important technical details (such as the connection to existing systems
and user-friendly interfaces) and shows how optimization can be integrated in real world
applications, enhanced by key pre- and post-optimization procedures.

Keywords Decision Support System ·Lot-sizing and Scheduling ·MIP-based heuristics
·Pulp and Paper Industry ·Continuous Production

3.1. Introduction

The pulp and paper (P&P) industry is highly capital intensive, which means that invest-
ments in capacity can represent very long-term decisions. For instance, the modification
of a single paper machine requires a planning horizon of at least five years (Martel et al.,

∗INESC TEC, Faculdade de Engenharia, Universidade do Porto, Porto, Portugal
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2005). Paper products are commodities, with their price determined in the market and char-
acterized by small margins. Hence, companies must differentiate themselves by improving
customer satisfaction indicators, while keeping production costs as low as possible. Fur-
thermore, the P&P production process is also energy intensive. Producing one tonne of
paper requires 5–17 GJ of process heat, depending on the paper type and on the technology
applied (Szabó et al., 2009). The P&P industry uses 84% of the fuel energy consumed by
the forest products industry as a whole and it is one of the largest producers of greenhouse
gas (GHG) emissions. Therefore, it is of particular interest in the context of environmental
discussions.

These three main factors (capital intensity, energy intensity and competitive market)
make the production planning an essential activity in the quest for improvements in oper-
ational efficiency and consequently economic gains. However, the planning process poses
a variety of challenges, both to practical and scientific fields. If these challenges are suc-
cessfully addressed, companies can achieve true competitive advantage.

In most cases, production planning is addressed manually by practitioners, even in
modern mills with sophisticated automated systems. That applies not only to the P&P in-
dustry, but to the process industry in general (see Harjunkoski et al. (2014)). Companies
may use advanced tools for particular tasks, such as the planning of the paper reels’ cut-
ting, but when approaching the overall planning activity (e.g. size and sequence of paper
campaigns, production rates, etc.) most practitioners rely only on spreadsheets. This man-
ual process is time-consuming, sub-optimal (as only few alternatives are considered) and
completely dependent on the planners’ expertise.

Therefore, there is thus the need for optimization-based tools that support decision
making in the operational production planning of these mills. Some decision support sys-
tems (DSS) for this particular industry were reported in the literature (e.g. Murthy et al.
(1999); Respício and Captivo (2008)). Although considering relevant industrial features
and practical issues, the underlying approaches are far from the state-of-the-art in produc-
tion planning. On the other hand, more research-oriented works do not address the issues
of an industrial implementation.

Our work helps closing the gap between research and practice, proposing an optimization-
based DSS, which improves on manual planning and contributes to the literature in the
following ways:

• exploring desirable characteristics of analytical models and methods;

• identifying relevant industrial features and how they should be included in the solu-
tion approach;

• extending models of the literature, considering practical constraints and objectives;

• exhibiting important data processing in both pre- and post-optimization phases;

• illustrating required connections to existing systems and desirable aspects in the user
interface.

We start by describing the industrial system and the planning challenge in Section 3.2.
This motivates the discussion in Section 5.6.1 on the different approaches in the literature
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for the operational production planning. In that section we explore some desirable charac-
teristics of optimization models and identify relevant features for industrial practice. Based
on that, we choose an appropriate mathematical model and extend it in order to include the
identified practical issues. Our formulation is presented in Section 3.4. Section 5.4 moti-
vates and explores the solution method for an efficient yet simple and flexible resolution of
this complex problem. Section 3.6 details the integration of the optimization in the deci-
sion support system, describing pre- and post-optimization steps, as well as the interfaces
to the existing information systems and to the final user. The usage of the system is also
discussed. In Section 5.7 we compare a plan obtained with the system to one manually
generated by production planners and give further details of the performance and usage of
the system by the company. Finally, the last section summarizes the benefits of our DSS,
discusses its applicability to other environments and shows possible directions for further
improvement.

3.2. The challenge

The P&P production process is illustrated in Figure 5.1. The variables depicted in this
Figure will be introduced later in Section 3.4. In a first step, both virgin and recycled
pulps are produced out of wood and recycled paper, respectively. These pulps are then
stored in tanks, waiting for being pulled by the paper machine. The machine can produce
different types of paper. Each type (or grade) is characterized by its grammage (measured
in g/m2) and pulp mixture. The configuration of the machine to produce a different grade is
sequence-dependent. Each setup leads to a loss in the production process in terms of time
and quantity of a lower quality paper produced (as the machine is never idle and the paper
produced will not be homogeneous nor satisfy completely the customer requirements). The
wasted paper (setup loss) is fed again into the recycled pulp mill and a loss pulp tank.

The master reel that results at the end of the paper machine, the jumbo, is cut into
smaller reels. The wasted paper in the cutting stage (trim loss) is also fed back to the
production process. Customers place orders for reels of different widths and grades. The
orders may have different priority levels. The maximum priority is given to those that travel
by ship, since the company has to schedule containers in advance and commit to a given
due date. Then, the remaining is divided into normal and priority orders.

In parallel, a by-product of the digester’s pulping process, the weak black liquor, is
concentrated and burnt to provide high-pressure steam and regenerate the spent chemicals
applied in the pulping stage. The steam can either be used for the paper drying process or
be led to counter-pressure turbines which produce electrical energy to be sold afterwards.

In other companies, the paper mill can be physically distant from the pulp and recov-
ery plants. However, integrated plants, like our case study, represent 65% of the industry
(CEPI, 2013) and are more capable of achieving high levels of both energy and economic
efficiency, due to:

• energy conservation (e.g. direct use of steam in the paper drying process);

• absence of additional processes (e.g. pulp drying);
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Figure 3.1: The integrated pulp, paper and recovery plant, with multiple distribution chan-
nels.

• material closed loops (e.g. recycling of paper machine setup and trim losses) which
allow reducing waste production and the energy spent on it;

• tightly integrated equipment, which reduces the required capacity.

Nevertheless, an integrated mill poses additional difficulties. The complex production pro-
cess described above (with convergent, divergent and loop flows) and the tightly integrated
equipment, with limited intermediate storage space, result in multiple and shifting bot-
tlenecks. For instance, the company under study produces two main products (KLB and
VLB), which have major differences with respect to the incorporation of virgin and re-
cycled fibres. Hence, the bottleneck stage clearly shifts according to the mixture being
produced (for example, VLB quickly exhausts the recycled pulp mill, whereas KLB is
typically restricted by the recovery boiler).

On the other hand, the orders placed by customers put a great pressure on production,
as the system operates in a make-to-order (MTO) policy. Still, adjusting the production
sequence to better meet market needs has to be done carefully, since the desired production
cycles will be disrupted and some stages may be forced to drastically reduce their pro-
duction rate or even to shut-down. The start-up of the process after these interruptions is
typically problematic and requires a large expenditure of energy, increasing the environ-
mental load of the mill. The rates of the various resources are wanted to be as steady as
possible, as rough changes can cause quality deviations and undesired wear of equipment.
Therefore, the variation that results from production cycles is conveyed as much as pos-
sible to the tank levels. Nonetheless, the system is subject to process variability (e.g. in
production yield, required pulp mixture, etc.) and disturbances (e.g. paper breaks, equip-
ment failures, etc.). Thus, it is important to keep some slacks in the intermediate buffers,
in order to prevent under and overflows.

In this capital intensive industry in general, and in this plant in particular, the exploita-
tion of existing capacity is a major concern. Therefore, the plant works on a 24/7 basis
and backlog is tolerable. When accepting orders, managers use a base sequence of grades,
where they can check the earliest available slot for that grade and hence commit to a due
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Figure 3.2: Example of a production plan – cycle of grades (left axis) and cycle of virgin
pulp tank (right axis).

date (available-to-promise). The base sequence minimizes changeovers, since not only
they consume time (i.e. capacity), but can also be highly disruptive to the system, breaking
the production stability and causing wear to equipment. Still, at the operational level, the
sequence has to be adapted according to the evolving state of the system.

The operational planning consists of determining the sequence and size of paper cam-
paigns (where each campaign represents one of the 29 commercial grades) and all the
production rates of the different resources for the following 10 to 15 days. This horizon is
important to effectively check production cycles and the impact on every unit. An exam-
ple of a production plan is illustrated in Figure 3.2. The cycle of grades is conveyed to a
cycle of the virgin pulp tank level (as the digester’s rate should be as smooth as possible).
As VLB-type grades consume more recycled pulp, the tanks of virgin pulp increase their
stock throughout the VLB campaigns. This stock is consumed during the majority of the
KLB-type campaigns. The slacks of the tanks are kept to some desired limits that will not
impact the feasibility of the subsequent plans.

This planning process is conducted by two main entities: Sales and Production de-
partments. The former aims to fulfil the orders respecting due dates, whereas the latter is
focused on operational costs and throughput maximization. As stated above, aligning these
two main objectives is problematic. Therefore, when devising a plan, several interactions
are needed between both departments. The lack of a holistic view and of an optimization-
based DSS makes the generation of feasible plans a hard task and their quality is com-
promised. This is especially true in the presence of disturbances, scheduled maintenance
or rush customer orders. The latter prevent the reels cutting from being planned for the
same horizon. Indeed, one late order can completely spoil the cutting patterns. Therefore,
managers choose to define those patterns just for the following 2 to 3 days.
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3.3. Solution approach

Considering the aforementioned challenges to the production planning activity, we propose
an optimization-based DSS. Our system supports decision making regarding the size and
sequence of paper campaigns, the production rates for every unit and the fulfilment of
individual orders (with different priority levels). The planning of cutting patterns is not
included for two reasons: (i) companies already have software packages for that task; (ii)
the planning horizon is radically different, as the cutting is only scheduled for a couple of
days ahead; (iii) as there are buffer areas between the paper machine and the cutting reels,
jumbos storage is allowed to some extent, enabling the decoupling of the two processes.

However, at this planning level it is important to integrate lot-sizing and scheduling.
Indeed, the sequence dependent setups on the paper machine, with important costs related
to production stability, must be taken into account when defining production plans. This
is not possible in plain lot-sizing models. On the other hand, pure scheduling approaches
are not appropriate either, since this (capital intensive) continuous production plant has
high utilization ratios. Therefore, choosing the amounts to be produced and the respective
sequence (leaving orders unmet or to be met later) is a key decision.

The literature on this industry has mainly focused on either lot-sizing (e.g. Rizk et al.
(2008), Poltroniere et al. (2008)) or scheduling (e.g. Akkiraju et al. (2001), Correia et al.
(2012)). Moreover, those works have not included the pulping and recovery stages. This
is crucial in integrated plants due to the tightly integrated equipment and the existence of
multiple and shifting bottlenecks. Santos and Almada-Lobo (2012) were the first to inte-
grate those stages. The proposed model was based on the general lot-sizing and scheduling
problem (GLSP), presented by Fleischmann and Meyr (1997), and considered sequence
dependent setup times and costs. Figueira et al. (2013) then improved the resolution of the
problem with a variable neighbourhood search.

GLSP is a small-bucket model (also known as time slot formulation, see Amorim et al.
(2013)), it allows for at most one setup in each (micro) period. Having only one product
in each period is a key aspect in our case, since it allows the accurate evaluation of mass
balances. This is crucial when the intermediate tanks have tight capacities. In big-bucket
models (also known as precedence-based), multiple products with different rates are pro-
duced in the same period, whereas the mass balances are only checked at the end of each
period. Therefore, the tank limits may be violated within a period, while being respected
at the beginning and at the end.

Contrary to other small-bucket models, GLSP combines continuous- and discrete-time
grids. Continuous-time grids are important to accurately track the production of non-
standard amounts, essential in this MTO system. Discrete-time grids allow assessing the
fulfilment of demand (at discrete time points) during the planning horizon. This mixed grid
thus makes the interface between Production and Sales requirements.

Other works in the literature, in both the operations research (OR) and the process
systems engineering (PSE) communities, sought to combine the advantages of continuous
and discrete-time grids. Maravelias (2005) and Westerlund et al. (2007) proposed models
that use a discrete grid, but where campaigns do not need to start or end at the exact grid
points. This aspect was also explored by the continuous setup lot-sizing problem (CSLP),
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Figure 3.3: GLSP – each period t is divided into multiple continuous slots, where a grade
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Figure 3.4: CGLSP – the discrete grid (of periods t) is crossed by continuous slots, where
a grade j is produced.

presented by Karmarkar and Schrage (1985), and the proportional lot-sizing and schedul-
ing problem (PLSP), proposed by Drexl and Haase (1995). However, in these models
obtaining continuous amounts imply idle times and/or multiple products per period, which
undermines the evaluation of intermediate tank levels.

Models based on GLSP have been extensively explored in the literature (e.g. Lim and
Karimi (2003), Erdirik-Dogan and Grossmann (2008), Castro et al. (2009), Amorim et al.
(2011)). Still, all these models divide each (macro) period in multiple slots (micro-periods).
Thus, if a campaign crosses a period, it will need more than one slot (see Figure 3.3). This
increases the difficulty in incorporating some practical constraints. For instance, in our case
we need to fix the amounts of the first campaigns, as they were already programmed for the
cutting stage. In those models we have to determine the number of slots for each of these
campaigns. Since the production rates are variable, and will have to be adapted accord-
ing to the state of the system, the appropriate number of slots can only be approximately
estimated. This may compromise the feasibility of the plans generated. Other constraints
include maximum and minimum lot sizes and a minimum distance between campaigns of
the same grade.

Karimi and McDonald (1997) and Camargo et al. (2012) proposed other mixed grids
formulations, where (continuous) production slots may cross (discrete) time periods (see
Figure 3.4). This feature allows assigning only one slot to each campaign, and hence eas-
ily accommodating the aforementioned issues. The authors concluded however that these
crossed grids models (here denoted by CGLSP) are harder to solve than the GLSP. There
is thus a trade-off between modelling accuracy and performance. For the P&P industrial
problem, the CGLSP was found to be the appropriate choice. In fact, the accuracy of plans
is a critical issue. Moreover, the flexibility in incorporating the numerous practical con-
straints, avoiding specific heuristics for the allocation of slots, was crucial in this industrial
implementation. In addition to the multi-stage environment and the sequence dependent
setup times and costs modelled by Santos and Almada-Lobo (2012), our system comprises
a set of features that are important for industrial practice, such as:

• fixing the size of certain campaigns (due to cutting programs);

• fixing the sequence of certain campaigns, critical when the production system is not
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responding well to certain grades;

• giving an initial sequence of campaigns, which can then be improved;

• scheduling stoppages in the paper machine and digester (for maintenance purposes
or in a disturbance situation);

• variable production rates for all the units, including the paper machine;

• production rates smoothness (to be performed in post-optimization, in order to keep
model’s linearity);

• different priority levels for the clients orders;

• demand beyond the planning horizon (important in low demand periods).

The system was designed to support both Sales and Production staff, weighting their
conflicting objectives. Other works in the literature (e.g. Murthy et al. (1999)) proposed
multi-objective approaches, where managers can evaluate different plans and choose the
one that seems more appropriate. However, in our case this evaluation appears to be time
consuming. Indeed, at the operational level managers do not have the time to properly
evaluate different plans. Therefore, they prefer to define a priori the trade-offs between
objectives, according to the company’s policies, and then use them in every plan generation.

3.4. Mathematical model

We present the mathematical formulation in four main parts:

• continuous time slots and their intersection with the discrete time grid;

• production system, namely the P&P production;

• demand fulfilment, discriminated by period;

• objective function, with all the components of the production and marketing objec-
tives;

An illustrative example is provided to help the understanding of the model. Two addi-
tional sections are then presented to foster the applicability of the model, namely:

• valid inequalities that help improving the tightness of the formulation;

• practice issues, such as smoothed production rates (essentially performed in post-
optimization), undesired sequence of campaigns and stoppages.
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3.4.1 Time slots

The production slots are of arbitrary lengths and are independent of the discrete time grid
(they may cover one or more periods). A slot contains only one paper campaign and starts
always with the changeover from the grade produced in the previous slot to the grade of
the current slot. This continuous-time representation of the formulation avoids the time
slot splitting, which will be of great advantage to incorporate in a straightforward manner
industrial features, such as lower and upper bounds on the quantity produced. On the other
hand, (external) demand is given for each (discrete) time period, and therefore there is a
need to define the quantity produced in each time period. The following set of constraints
allow for the coherence of this two-level time grid.

Indices, sets and parameters
t Index for period (t ∈ [T ] = {1, . . . ,T })
s,u Indices for slot (s,u ∈ [S ] = {1, . . . ,S })
j,k Indices for paper grades ( j,k ∈ [K] = {1, . . . ,K})
cap Period’s capacity (in hours)
hcap Planning horizon’s capacity (in hours): hcap = T · cap
slotsmax Maximum number of slots crossing one period
Decision variables
S start

s Starting time of slot s
S end

s Ending time of slot s
U start

js Starting time of slot s for grade j
Uend

js Ending time of slot s for grade j

Ets

1 if slot s intersects period t

0 otherwise

Y js

1 if the paper machine is set up for grade j in slot s

0 otherwise
Ns Length of slot s (in hours)

The maximum number (S ) of slots is given. The planning horizon starts with the first
slot (S start

1 = 0) and ends with the last S end
S = hcap. In case the slots are not all used,

phantom slots can be moved to the end of the horizon as it will be shown later.

S start
s = S end

s−1, s ∈ [S ] \ {1} (3.1)

Ns = S end
s −S start

s , s ∈ [S ] (3.2)

Uend
js −hcap ·Y js ≤ U start

js ≤ Uend
js , j ∈ [K], s ∈ [S ] (3.3)

S start
s −hcap · (1−Y js) ≤ U start

js ≤ S start
s + hcap · (1−Y js), j ∈ [K], s ∈ [S ] (3.4)

S end
s −hcap · (1−Y js) ≤ Uend

js ≤ S end
s + hcap · (1−Y js), j ∈ [K], s ∈ [S ] (3.5)

Constraints (3.1) forbid idleness by blocking the starting time of a slot to the ending
time of the precedent one. The length of each slot is computed in (3.2). The production
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time of each campaign is limited to the respective bucket – see (3.3)–(3.5). When these
constraints are active (Y js = 1), clearly U start

js = S start
s and Uend

js = S end
s .

Recall that the production resources have the slots independent of the time period’s
boundaries. Now, the intersection between slots and time periods is assured by variables
E. Naturally, the first slot takes place in time period one (E11 = 1) and the last in the last
period (ETS = 1).

slotsmax ·T · (1−Ets) ≥
t−1∑
t′=1

S∑
s′=s+1

Et′s′, t ∈ [T ] \ {1}, s ∈ [S ] \ {S } (3.6)

Et−1,s + Et+1,s ≤ Ets + 1, t ∈ [T ] \ {1,T }, s ∈ [S ] (3.7)

The proper assignment of slots to time periods is established by (3.6). Given that a slot s
is assigned to period t, a subsequent slot can not be assigned to any precedent time period,
which guarantees the order correctness of the slots. In case the slot spans from period t−1
to period t + 1, then (3.7) ensures that period t is also crossed by the same slot.

3.4.2 Production system

Here we focus on the pulp plant and paper mill of the P&P manufacturing system (recall
Figure 5.1).

Parameters
Vdig

min

(
Vdig

max

)
Minimum (maximum) rate of the digester (in rpm)

α conversion factor of digester’s throughput (from rpm to tonnes
per hour)

Ivirg
min

(
Ivirg
max

)
Minimum (maximum) level of virgin pulp stocked in the tanks (in
tonnes)

f j Percentage of water in paper grade j
tl j Average trim loss (in percentage)
bvirg

j Percentage of virgin pulp used in the production of paper grade j
bvirg

loss Percentage of virgin pulp in the loss pulp
slk j Paper lost in a changeover from grade k to j (in tonnes)
stk j Time lost in a changeover from grade k to j (in tonnes)
pmin

j minimum time (at machine’s maximum rate) to produce one
tonne of paper grade j (in hours)

pmax
j maximum time (at machine’s minimum rate) to produce one

tonne of paper grade j (in hours)
Decision variables
Xvirg

s Production of virgin pulp in slot s (in tonnes)
Ovirg

s Amount of virgin pulp fed into the paper machine in slot s (in
tonnes)

Ivirg
s Inventory of virgin pulp at the end of slot s (in tonnes)
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Xloss
s Production of loss pulp in slot s (in tonnes)

Oloss
s Amount of loss pulp used in slot s (in tonnes)

X jts Production of paper grade j in period t and slot s (in tonnes)

Zk js

1 if a changeover from grade k to j occurs at the beginning of slot s

0 otherwise

In what concerns the pulp production, the amount of virgin pulp produced by the di-
gester in each slot is bounded by its speed limits, according to (3.8). Produced pulp is
stocked in tanks and then fed into the paper machine (3.9). In (3.10), this stock is also lim-
ited to lower and upper bounds. The reader is referred to Santos and Almada-Lobo (2012)
for a thorough analysis of the constraints of these two areas.

α ·Vdig
min ·Ns ≤ Xvirg

s ≤ α ·Vdig
max ·Ns, s ∈ [S ] (3.8)

Xvirg
s + Ivirg

s−1 = Ovirg
s + Ivirg

s , s ∈ [S ] (3.9)

Ivirg
min ≤ Ivirg

s ≤ Ivirg
max, s ∈ [S ] (3.10)

The requirements of the recycled pulp and recovery plant are similar to those that ap-
pear in the virgin pulp plant, and therefore will not be presented here (such as the minimum
and maximum production of recycled pulp, liquors and steam, the inventory balance for re-
cycled and loss pulps and liquors, and the inventory limits for recycled and loss pulps and
liquors).

∑
j

Y js = 1, s ∈ [S ] (3.11)∑
k

Z jks = Y j,s−1, j ∈ [K], s ∈ [S ] (3.12)∑
k

Zk js = Y js, j ∈ [K], s ∈ [S ] (3.13)

X jts ≤ cap ·Y js, j ∈ [K], t ∈ [T ], s ∈ [S ] (3.14)

pmin
j ·X jts ≤ cap ·Ets, j ∈ [K], t ∈ [T ], s ∈ [S ] (3.15)∑
j

bvirg
j ·

(
1− f j

)
·

∑
t

X jts +
∑

k

slk j ·Zk js

 = Ovirg
s + bvirg

loss ·O
loss
s , s ∈ [S ] (3.16)

Xloss
s =

∑
j

∑
k

(
1− f j

)
· slk j ·Zk js +

∑
j

∑
t

(
1− f j

)
· tl j ·X jts, s ∈ [S ] (3.17)∑

t

pmin
j ·X jts +

∑
k

stk j ·Zk js ≤ Uend
js −U start

js , j ∈ [K], s ∈ [S ] (3.18)∑
t

pmax
j ·X jts +

∑
k

stk j ·Zk js ≥ Uend
js −U start

js , j ∈ [K], s ∈ [S ] (3.19)

Regarding the paper production, from (3.11) at most one grade can be produced per slot.
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Constraints (3.12) and (3.13) link the grade changeover variables to the setup state variables
on the paper machine. A grade j is only produced in a given bucket in case the machine
has been appropriately set up to (3.14). Naturally, variable X jts only takes positive values
in case slot s crosses period t, as ensured by equations (3.15). Note that the production
quantity (X jts) is described per period, i.e., the portion of the slot s that crosses period t is
taken into account to define the quantity that meets the demand of that period. The virgin
pulp used by the paper machine, defined in (3.16, comes from the virgin pulp stored in
tanks together with (part of) the pulp that is recovered from the production losses due to
the grade setup changeovers and trim sub-process – which are computed in (3.17).

Finally, according to (3.18)-(3.19) the time confined to the setup and production oper-
ations of each grade on the paper machine in each slot is given by the length of the slot,
where the machine operates within its minimum and maximum speed limits. Note that in
case grade j is not assigned to slot s, from (3.3), Uend

js = U start
js and therefore no operations

take place. The definition of the consumption of recycled pulp is also modeled in a way
similar to the consumption of the virgin pulp presented before, and it is not presented here.

3.4.3 Demand fulfilment

Demand is fulfilled at the end of the discrete periods. The following equations look at the
intersection of the continuous production slots with those discrete periods.

Parameters
d jt Demand for paper grade j in period t (in tonnes)
I j0 Initial inventory of paper grade j (in tonnes)
IB j0 Initial backlog of paper grade j (in tonnes)
Decision variables
W start

jts Starting time of slot s for grade j in period t
Wend

jts Ending time of slot s for grade j in period t
I jt Inventory of paper grade j at the end of period t (in tonnes)
IB jt Backlog of paper grade j at the end of period t (in tonnes)

pmin
j ·X jts ≤Wend

jts −W start
jts , j ∈ [K], t ∈ [T ], s ∈ [S ] (3.20)

pmax
j ·X jts ≥Wend

jts −W start
jts , j ∈ [K], t ∈ [T ], s ∈ [S ] (3.21)

Wend
jts ≤ min

(
t · cap;Uend

js + hcap · (1−Ets)
)
, j ∈ [K], t ∈ [T ], s ∈ [S ] (3.22)

W start
jts ≥ max

(t−1) · cap;U start
js +

∑
k

stk j ·Zk js−hcap · (1−Ets)

 , j ∈ [K], t ∈ [T ], s ∈ [S ]

(3.23)∑
t

(
Wend

jts −W start
jts

)
+

∑
k

stk j ·Zk js = Uend
js −U start

js , j ∈ [K], s ∈ [S ] (3.24)∑
s

(
1− tl j

)
·X jts + I j,t−1− IB j,t−1 = d jt + I jt − IB jt, j ∈ [K], t ∈ [T ] (3.25)
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t t+ 1t- 1

𝑎 𝑊𝑗𝑡𝑠
𝑠𝑡𝑎𝑟𝑡 = 𝑡 − 1 ∙ 𝑐𝑎𝑝 ; 𝑊𝑗𝑡𝑠

𝑒𝑛𝑑 = 𝑡 ∙ 𝑐𝑎𝑝

𝑐 𝑊𝑗𝑡𝑠
𝑠𝑡𝑎𝑟𝑡 = 𝑡 − 1 ∙ 𝑐𝑎𝑝 ; 𝑊𝑗𝑡𝑠

𝑒𝑛𝑑 = 𝑈𝑗𝑠
𝑒𝑛𝑑
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𝑒𝑛𝑑 = 𝑡 ∙ 𝑐𝑎𝑝

𝑑 𝑊𝑗𝑡𝑠
𝑠𝑡𝑎𝑟𝑡 = 𝑈𝑗𝑠

𝑠𝑡𝑎𝑟𝑡 + 𝑠𝑒𝑡𝑢𝑝; 𝑊𝑗𝑡𝑠
𝑒𝑛𝑑 = 𝑈𝑗𝑠

𝑒𝑛𝑑

setup =  𝑘 𝑠𝑡𝑘𝑗 ∙ 𝑍𝑘𝑗𝑠𝑊𝑗𝑡𝑠
𝑠𝑡𝑎𝑟𝑡

𝑊𝑗𝑡𝑠
𝑒𝑛𝑑

𝑈𝑗𝑠
𝑠𝑡𝑎𝑟𝑡

Figure 3.5: Production window of a slot definition in each time period.

Variables W start
jts and Wend

jts define the respective production windows, which in turn limit
the production amounts (X jts) – see requirements (3.20)–(3.21). These variables are upper
bounded by (3.22) and lower bounded by (3.23). Figure 3.5 provides some examples to
explain how these constraints work and to show different production windows definitions.
In case 3.5(a), the slot cross entirely period t, and therefore the production window bounds
in period t match that period’s boundaries. In case the slot ends in the middle of time period
t, cases 3.5(c) and (d), the ending date of the production window is the same of the ending
time of the slot. Note that the production window is contained within the slot, as it discards
the setup time. In case slot s does not intersect period t (i.e. Est = 0), requirements (3.22)
and (3.23) are non-active. The relation between the production window of grade j in slot s
and the slot length is established in (3.24) – the slot contains the production window and the
setup times consumed in a grade changeover. Then, the fulfilment of demand is obtained
by (3.25), which allows backlogging orders to be met in later periods.

3.4.4 Objective function

Given that on the one hand the system works with an MTO policy and on the other hand
the plant operates continuously on a 24/7 basis (no idle or extra times), orders may backlog
at some points in time. The goal of the operational production planning and scheduling
is then to minimize that backlog at the minimum possible cost. Operational costs include
grade setup, production and holding costs. Production costs are mainly related to diluting
the costs of the capital intensive equipment, which is achieved by maximizing its utilization
(sometimes producing beyond fixed orders). The setup costs, which are sequence depen-
dent, concern not only the time and product lost in that process, but also the wear imputed
to equipment. Equation (5.17) represents a cost function that aggregates these main objec-
tives.
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Parameters
bc Cost of backlogging one tonne of paper per period
hc Cost of holding one tonne of paper in stock per period
sck j Setup cost of changing from grade j to k
po Benefit (negative cost) of producing paper

min
∑

j

∑
t

bc · IB jt +
∑

j

∑
t

hc · I jt +
∑

j

∑
k

∑
s

sck j ·Zk js−
∑

j

∑
t

∑
s

po ·X jts

(3.26)

Other objectives are considered in the complete model. The driver of the P&P com-
pany is not only to produce paper, but also to generate and sell energy based on the steam
produced (which is somehow proportional to the throughput of the digester). Therefore,
any plan also aims at maximizing the production of steam. Further terms of this objective
function are revealed in Subsection 3.4.6, where some practical issues are addressed.

3.4.5 Valid inequalities

A few sets of valid inequalities are hereby introduced to strengthen the aforementioned
mathematical formulation.

∑
s

Ets ≥ 1, t ∈ [T ] (3.27)∑
t

Ets ≥ 1, s ∈ [S ] (3.28)∑
s

Ets ≤ slotsmax, t ∈ [T ] \ {T } (3.29)

Z j js ≤ 1−Z jku, j,k ∈ [K] : k , j, s,u ∈ [S ] : u > s (3.30)

Z j js ≤ ET s, j ∈ [K], s ∈ [S ] (3.31)

Each time period is intersected by at least one slot, as pointed out by (3.27). Clearly,
each slot has to be assigned to at least one time period (3.28). The maximum number of
slots per period is reinforced by (3.29). Two consecutive non-empty slots produce different
grades. In case there is no need to use all the pre-defined slots, the null slots should be
placed at the end of the horizon. Requirements (3.30) and (3.31) force the the phantom
grade changeovers (Z j js) to be moved to the end.

3.4.6 Practical constraints

In order to be used in practice, the model presented above needs to incorporate real-world
extensions. Some of the new features are related to customers to maximize their satisfac-
tion, other have to do with the hurdles of managing the resources in the smoothest way
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possible.

3.4.6.1 Sales requirements

To consider different types of orders with different priority levels it is necessary to disag-
gregate production, inventory and backlog variables. In that way it is possible to introduce
different penalties for backlogging specific orders. The suffix norm of the new variables
refers to the normal priority level, whereas ship to ship orders and prio to the highest pri-
ority orders. Given that multiple ships can be scheduled within the planning horizon, an
index m ∈ [M] is introduced for them. For instance, variable Xship

jtm denotes the amount of
grade j produced in period t to be distributed in ship m. The latest production time of an
order to meet the departure of ship m is given by ddm.

I j0 = Inorm
j0 + Iprio

j0 +
∑

m

I ship
jm , j ∈ [K] (3.32)∑

s

(
1− tl j

)
·X jts = Xnorm

jt + Xprio
jt +

∑
m

Xship
jtm , j ∈ [K], t ∈ [T ] (3.33)

ddm∑
t=1

Xship
jtm + I ship

jm − IBship,ini
jm = dship

jm − IBship
jm , j ∈ [K],m ∈ [M] (3.34)

Inorm
jT − IBnorm

jT = dnorm
j,T+1 + Inorm

j,T+1− IBnorm
j,T+1, j ∈ [K] (3.35)

The disaggregation of the initial inventory is performed by (3.32), where it is allo-
cated to normal, priority or ship orders (the three priority levels described in Section 3.2).
Constraints (3.33) disaggregate production. Note however that there is also aggregation,
regarding the different slots that cross the period, since at this point we just need to know
the completed amounts at the end of each period.

The demand fulfilment equations for normal and priority orders are similar to con-
straints (3.25), hence they are not detailed here. On the other hand, for ships they are
slightly different – see (3.34). Indeed, each ship m has a single due date (ddm). Thus, de-
mand fulfilment is not checked in each period, but only in the ship’s due date. Therefore,
production is summed from the first period until the due date and no inventory is left after
that since there is no other chance to fulfil that demand.

Finally, in (3.35) the fulfilment of demand beyond the planning horizon is verified.
Given that the machine is never idle and paper is not made to stock, if all the demand
within the horizon has been met, future demand should be considered. All this demand
is then aggregated in an additional term corresponding to period T + 1. Naturally, not
fulfilling this demand will have a lower penalty in the objective function.

3.4.6.2 Paper campaigns

Here, we describe some constraints related to operational issues in executing paper cam-
paigns. Parameters Nmin and Nmax define the lower and upper bounds for the length (in
time units) of each grade campaign, respectively. Furthermore, LVLB

min refers to the minimum
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production amount of each VLB-type campaign, |KVLB| to the number of VLB grades, and
distmin to the minimum distance between campaigns of the same grade.

Z jks = 0, s ∈ [S ], j ∈ [K],k ∈
[
Kna

j

]
(3.36)

Ns ≤ Nmax ·
∑

k

∑
j,k

Zk js, s ∈ [S ] (3.37)

Ns ≥ Nmin−Nmax ·
∑

j

Z j js, s ∈ [S ] (3.38)

(
1− tl j

)
·
∑

t

X jts ≥ Lmin ·
(
Y js−Z j js

)
, j ∈ [K], s ∈ [S ] (3.39)

∑
j∈[KVLB]

∑
t

s+|KVLB|−1∑
s′=s

X jts′ ≥ LVLB
min ·

∑
k<[KVLB]

∑
j∈[KVLB]

Zk js, j ∈ [K], s ∈ [S ] : s ≤ S − |KVLB|+ 1

(3.40)
s+distmin∑

s′=s

(
Y js′ −Z j js′

)
≤ 1 + violdist, j ∈ [K], s ∈ [S ] : s ≤ S −distmin (3.41)

The first constraints regard sequences that cannot be executed. In our case, quality “A”
grades should not be produced after basic ones. Indeed, if they do not meet the required
quality level, but there is a basic quality campaign following, they can still be used as basic
quality products and the “A” quality has another opportunity to be produced. Therefore,
for each grade j, there is a list of forbidden grades [Kna

j ], which correspond to the better
quality versions (if any).

Constraints (3.37) and (3.38) define maximum and minimum lengths for campaigns,
which should be respected for the sake of plant’s stability. Note that for all fictitious
changeovers (Z j js), the length is zero. Minimums are also defined in term of the amounts
produced (Lmin and LVLB

min ) – see (3.39) and (3.40). The former applies a minimum lot to
individual campaigns, whereas the latter does that to a set of campaigns of the same type
(VLB grades).

Finally, (3.41) forces a minimum distance (distmin) between campaigns of the same
grade. The violation of this soft constraint (violdist) is penalized in the objective function.
This issue is somehow avoided with setup costs. However, these constraints provide a more
explicit penalization of producing the same grade twice in a short period of time. This type
of constraints help better tailoring the plans to meet industrial requirements, which would
otherwise need non-linear cost functions.

Figure 3.6 provides an example of a plan that does not comply with the operational
constraints here described. The corrected version of the plan is that represented in Figure
3.2. Note that the first part is fixed, since those campaigns were already programmed in
the cutting stage. The first campaign, which seems not to comply with the minimum lot
size, is indeed in progress. The above constraints are thus only applied after the last fixed
campaigned.
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VLB115
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KLB135
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long campaign
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Fixed Schedule

Optimize Schedule
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e
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Figure 3.6: Example of a plan not following the operational requirements.

3.4.6.3 Production rates

The production rates of all resources should be as smooth as possible to avoid large energy
expenditures and wear of the equipment. Here we illustrate how the digester’s rates can be
smoothed in the optimization process. Variables Vdig

s introduce the speed of the digester in
slot s.

Vdig
s −Vdig

s−1 = δ
dig+
s −δ

dig−
s , s ∈ [S ] (3.42)

Xvirg
s = α ·Vdig

s ·Ns, s ∈ [S ] (3.43)

The rates variations are assessed with equations (3.42). Minimizing the variables δdig+
s

and δdig−
s in the objective function will smooth rates variations. The former variable will

then assess the rates’ increase, whereas the latter will assess their decrease. These equations
require an explicit variable for the digester’s rate (Vdig

s ), as opposed to the implicit definition
in constraints (3.8). That results in a non-linear formulation, since the rate variable is
multiplied by the slot’s length – see (3.43). Therefore, in order to avoid the complexity
of the non-linear formulation, these constraints are only added in a post-optimization step
where the slots are fixed.

3.4.6.4 Recommended tank levels

In practice, the stock should not approach the physical limits of the tank, since it may
trigger operational difficulties and would leave the system more vulnerable to disturbances.
For those reasons, recommended levels (below the capacity upper limit and above than the
lower limit) are established. The stock may in some points in time range between the
desirable and physical limits, but the violation from the recommend levels is penalized
in the objective function. The stock of virgin pulp in the tank in slot s is now given by
Ivirg

s + Ivirg,rec+
s − Ivirg,rec−

s , where variables Ivirg,rec+
s denote the amount of stock above the
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recommended upper limit, and Ivirg,rec−
s the amount of stock below the recommended lower

limit. In addition, parameter Ivirg
slack− (Ivirg

slack+
) refers to the slack between the upper (lower)

recommended level and the upper (lower) physical limit.

Equations (3.9)–(3.10) should then be replaced by the following:

Ivirg
min + Ivirg

slack− ≤ Ivirg
s ≤ Ivirg

max− Ivirg
slack+

, s ∈ [S ] (3.44)

Ivirg
min ≤ Ivirg

s + Ivirg,rec+
s − Ivirg,rec−

s ≤ Ivirg
max, s ∈ [S ] (3.45)

Xvirg
s + Ivirg

s−1 + Ivirg,rec+

s−1 − Ivirg,rec−
s−1 = Ovirg

s + Ivirg
s + Ivirg,rec+

s − Ivirg,rec−
s , s ∈ [S ] (3.46)

Equations (3.44) force the regular variable (Ivirg
s ) to respect the recommended levels,

while extra level variables (Ivirg,rec+
s and Ivirg,rec−

s ) are included in the physical limits verifi-
cation and material balance equations – constraints (3.45) and (3.46), respectively.

3.4.6.5 Fixed schedule

A critical feature of the model, and one of the most important reasons that led to the choice
of CGLSP as the basic formulation, is the possibility of fixing production amounts without
the need of heuristically define the number of slots needed for each campaign. Indeed,
as slots are able to cross periods, only one slot is required per campaign. Therefore, both
the sequence of campaigns and their lot sizes can be easily fixed. The former is a simple
assignment (Y js = 1, for the respective grade and slot), while the latter is represented in
constraints (3.47). These constraints are essential to freeze campaigns in the DSSthat have
already been programmed in the cutting stage, i.e. have cutting patterns optimized for
them.

∑
t

X jts = X f ix
s , s ∈ [S ] < prodS , j ∈ [K] : Y js = 1 (3.47)

X f ix
s is the amount to be produced in slot s and prodS is the number of slots with fixed

production. This latter parameter has to be taken into account in some of the constraints
previously presented.

3.4.6.6 Stoppages

Finally, in this last subsection we show the way stoppages were modelled. These stoppages
can occur in different production resources, such as the digester and the paper machine. We
consider all the stoppages’ starting and ending times as parameters stopstart

r and stopstart
r ,

where r is the index of the stoppage. Then, we use binary variables Pstart
rs and Pend

rs to state
if stoppage r starts at the beginning or ends at the end of slot s.
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stopstart
r −hcap ·

(
1−Pstart

rs

)
≤ S start

s ≤ stopstart
r + hcap ·

(
1−Pstart

rs

)
, r ∈ [R], s ∈ [S ]

(3.48)

stopend
r −hcap ·

(
1−Pend

rs

)
≤ S end

s ≤ stopend
r + hcap ·

(
1−Pend

rs

)
, r ∈ [R], s ∈ [S ]

(3.49)∑
s

Pstart
rs = 1, r ∈ [R] (3.50)∑

s

Pend
rs = 1, r ∈ [R] (3.51)

s∑
s′=1

Pstart
rs′ ≥

s∑
s′=1

Pend
rs′ , r ∈ [R], s ∈ [S ] (3.52)

Constraints (3.48) and (3.49) align the starting and ending times of slots with the start-
ing and ending times of stoppages, respectively. Then, (3.50) and (3.51) ensure that only
one slot is aligned with the start and/or the end of each stoppage. The last constraints forbid
the end of a stoppage to occur before its start.

Variables Pstart
rs and Pend

rs are then used to constraint the output of the corresponding
resources. In the case of the digester, for instance, equations (3.8) would include these
variables to enable or disable the maximum and minimum production rates.

3.5. Solution method

The solution strategy followed is based on a heuristic solution of the problem’s mathemat-
ical formulation. The reasons behind this choice come both from practical implications
and algorithmic aspects. First and foremost the large scale and complexity of the model
described in the previous section for a regular real-world instance prohibited the use of a
commercial solver on the complete model formulation given its difficulty in even finding a
feasible solution in the time limit imposed by the DSS usage. The model suffers from its
computational intractability especially when the number of slots defined increases. Second,
heuristics based on mathematical programming techniques, also known as matheuristics,
are a powerful framework to explore the problem’s structure and take advantage of today’s
computational and commercial solvers power. Matheutistics trade-off the solution qual-
ity obtained by solving the complete model formulation in a commercial solver with the
solution search efficiency of heuristics and meta-heuristics. Moreover, these algorithms
yield substantial advantages when compared to traditional heuristics, as they require less
parameters and consequently a much lower effort in parameter tunning, and can adapt to
changes in the mathematical formulation with limited or zero adjustments. Matheuristics
often provide quasi-optimal solutions for a variety of problems and for the majority of
the companies having a very good solution is sufficient as optimality can have a marginal
improve for a high additional effort.

The matheuristic designed for the purpose of generating good quality solutions for this
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complex problem has three main phases: initial solution, forward-pass and neighborhood
search. All the phases decompose the problem or reduce its dimension by working on
the set Y defined by the variables Y js of the original problem. The overall procedure is
illustrated in Figure 3.7.

1. Initial Solution

2. Forward-Pass

Iteration 1

Iteration 2

...

Iteration n

3. Neighborhood Search

Slot-
oriented

Grade-
oriented

ω

φ

grades

slots

Y = 0 Y = 1 Y free

Figure 3.7: Solution method consisting of three phases: initial solution, forward-pass and
neighborhood search. A sub-MIP is solved in each iteration.

In the first phase the goal is to generate an initial feasible solution to the problem. To
this aim the variables on set Y are fixed in the mathematical formulation either to zero
or as following: an initial sequence provided by a company’s manager or a standard (pre-
defined) sequence considering the current grade at the paper machine. The value for the
remaining variables in the problem is obtained by solving the resulting sub-MIP.

The idea of the second phase is to improve the quality of the initial solution using a
forward pass over the continuous time slots. At each iteration of the second phase a total
of ω adjacent slots are re-optimized in a sub-MIP were their corresponding Y js are set as
binary while the remaining Y js variables keep their current value. We start at the beginning
of the planning horizon and re-optimize the solution corresponding to the first ω slots.
Between iterations the selection of the slots also uses φ as the number of overlapping slots
allowing for a smother schedule. Thus, in next iteration the solution for the first ω−φ slots
is fixed and we re-optimize the flowing ω slots. This process is repeated until the final slot
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in reached.
The third phase is a neighborhood search that iteratively decomposes the overall prob-

lem. Two neighborhoods were defined: slot and grade oriented. The slot oriented neigh-
borhood is similar to the second phase where all the Y js variables associated with a given
sub-set of slots are “free” in the model formulation keeping the other slots unchanged. The
main difference relies on the fact that the re-optimization step does not follow a forward
pass search. The grade oriented neighborhood optimizes the variables Y js of a given sub-
set of grades over the entire planning horizon. The choice of the slots and grades is guided
by a procedure which uses the frequency and recency of selection to bias the sub-sets. The
more frequent or recently a slot or grade has been selected the less probability has to be part
of the sub-set to re-optimize. The exploration of a neighborhood corresponds to the sub-set
creation and model re-optimization being performed until a maximum number of consecu-
tive iterations without improvement has been reached. The neighborhood search alternates
between the two neighborhoods stopping when both are unable to yield any improvement
or the user defined time limit is reached.

3.6. Decision support system

This section starts by describing the system architecture and how the optimization com-
ponent is integrated in that framework. Then, the focus is shifted to the system’s usage,
where the features and information relevant to managers are detailed. In particular, specific
activation and deactivation rules are discriminated, as well as key performance indicators
(KPIs) of the plant.

3.6.1 System architecture

The DSS was built following a typical setup of full-fledged “Software as a Service” (SaaS)
applications. SaaS applications are centrally hosted and by porting this feature into a
service-oriented DSS, we address many problems related to the maintenance and evolution
of software, being especially helpful when phasing out older versions (Gold et al., 2004).
Updates and bug fixes are made available in a transparent and immediate way, requiring no
further action from the user.

The architecture of this SaaS DSS is comprised of three main layers: the Data Layer,
the Optimization Layer and the Web Presentation Layer. The layers communicate and
work in a seamless way. Also, the DSS infrastructure interacts with the business ERP and
related systems, following the best practices in the field (Harjunkoski et al., 2014). Figure
3.8 gives an overview of the system’s architecture.

The Data Layer component is in control of establishing the necessary connections with
third-party systems, namely with the manufacturing execution system (MES) to retrieve
information about the shop floor; and with the enterprise resource planning (ERP), that
contains typical customer and order management figures. The connection is established
over an on-demand VPN link to the data warehouse, after which data is retrieved and
mapped to a local data model schema stored in an SQL database (SQL Server).
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Parametrization and 
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Database
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Enterprise Resource 
Planning (ERP)

Figure 3.8: Overview of the DSS architecture, composed by three main layers: Data, Opti-
mization and Web Presentation.

Data retrieved from the external systems is then made available to the Optimization
Layer, providing critical input parameters to the optimization algorithm. Optionally, data
can also be provided through an Excel spreadsheet. Excel is still a popular and ubiquitous
tool for assembling data from several sources and for assisting in such an iterative and time-
consuming process (Harjunkoski et al., 2014), despite being potentially more error-prone
since users can manipulate it freely. Regardless of the input source chosen, the data is fed
to the Optimizer, which will then generate a solution and provide it as an Excel spreadsheet
file.

The optimizer block (illustrated in Figure 3.9) generates a production plan by exe-
cuting the optimization algorithm described in the previous section, followed by a post-
optimization phase, where the slots’ lengths are fixed and the production rates are smoothed
(cf. Subsection 3.4.6.3). The overall optimization process is wrapped by pre- and post-
processing stages. In the former the size of the mathematical model is reduced, by remov-
ing paper grades with no demand or backlog to meet. In addition, orders are aggregated
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by grade and priority level to match the model’s parameters. After the optimization the
production amounts have to be disaggregated again, in order to check the fulfilment of in-
dividual orders, and KPIs have to be computed. The allocation of production to orders is
achieved by applying the “earliest due date” rule.

Pre-Processing

• Screen out 
grades with 
no demand/ 
backlog

• Aggregate 
orders by 
grade and 
priority level

Optimization Post-Processing

• Allocate 
production to 
individual 
orders by 
“earliest due 
date”

• Display KPIs

Main 
Optimization
(MIP-based 
heuristic)

Post-
Optimization 
Smoothness 
(LP solver)

Figure 3.9: The optimizer component includes the main and post-optimizations, as well as
pre- and post-processing stages.

None of the layers is directly accessible by the operator of the DSS. Instead, the user
interacts with the system through the Web Presentation Layer, where he can upload Excel
files to be later used by the Optimization Layer; consult the run history; download output
files; or check the log files. Moreover, advanced users with administrator privileges will
also be able to change certain configuration parameters that may interfere directly with the
optimizer. In the limit, the web interface could be used only as a gate to the algorithm, a
situation in which the user would only upload the Excel input file and then download the
Excel output file generated. However, the full potential of the web interface comes with
the important information directly retrieved from the ERP systems along with the tools
developed and incorporated in the DSS to assist in the analysis. One of such tools is an
advanced table editor (Handonstable) that allows for in-place editing and direct copy-paste
from and to Excel. The main advantage being that critical business logic constraints and
error-checking can be implemented at the interface level, preventing potential mistakes
from propagating to the Optimization Layer or to be stored in the local database.

3.6.2 System’s usage

From a user perspective, our DSS assists both production planners and production man-
agers in obtaining the best production plans for a short-term planning horizon. The process
to obtain such plans is presented in Figure 3.10. As already mentioned, to start the user
needs to select which type of data to use – Excel or database.

By choosing to use the database, the user further needs to select a profile (produc-
tion planner or production manager) and he may also fine-tune some parameters. This
parametrization is made directly on the system’s interface, which is divided in two main
sections. One displays the main steps to generate a plan and comprises only the frequently
changed parameters, in order to expedite the process (Figure 3.11). The other section con-
tains more structural parameters, such as capacities and processing times, which are more
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User (manual) System (automated)

select type of 
input data

read inputs from
the system

select input file

select profile and
fine tune 

parameters

generate
production plan

build and store
output file

select to 
donwload

download file

[parametrized]

[else]

[file completed][else]

Figure 3.10: Process of generating a production plan as an activity diagram. The activities
on the right-hand side are automated in the decision Support system, and the actions on the
left-hand side require an input by the user.

stable and hence accessed only sporadically (Figure 3.12). The advanced editor tool for
plan generation is particularly interesting for listing and customizing the orders (e.g. as-
signing priorities) and checking production quantities on the spot, as well as fixing the
initial part of the plan (essential for rescheduling purposes) and scheduling stoppages (cf.
Subsection 3.4.6.6). In addition, a variety of rules can be activated or deactivated, depend-
ing on the user’s judgement of the current state of the plant. These options include:

• distinct priority levels (cf. Subsection 3.4.6.1);

• required quality sequence (cf. Subsection 3.4.6.2)

• maximum and minimum lot sizes (cf. Subsection 3.4.6.2);

• maximum and minimum campaigns’ lengths (cf. Subsection 3.4.6.2);

• minimum distance between campaigns (cf. Subsection 3.4.6.2);

• production rates smoothness (cf. Subsection 3.4.6.3);
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• initial backlog clearance (imposing the fulfilment of the initial backlog orders until
the end of the planning horizon).

Figure 3.11: Web interface of the DSS for generating a production plan (only frequently
changed parameters are displayed).

When finishing the setup of the input data, the system starts to generate the produc-
tion plan by running the Optimizer, which includes the MIP-based heuristic (cf. Section
5.4). After running this module, the system builds and stores the output excel file that
will serve as basis for the decision process. Figure 3.13 is an example of an output. The
excel output file allows some adjustment of the resulting schedule to address unsolved busi-
ness/production issues or perform what-if analysis. This spreadsheet has different sheets
with Gantt charts depicting the sequence of operations across each resource, trend charts
displaying the forecasted evolution of inventories of intermediate and final products; and
a comprehensive reporting on order fulfilment with expected dates of delivery, as well rel-
evant KPIs such as average and final backlog of orders, equipment utilization ratios and
total production output. At the end, if the user wants to perform some sensitivity analysis
he may run another production plan or he may download the output file to his computer.

The system’s usage described can be performed in three main contexts:

• periodic planning – the managers typically determine an optimized plan on a weekly
basis and revise it daily;
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• reactive scheduling – in the presence of a disturbance situation which causes a seri-
ous disruption to the original plan, recover from that disturbance using an appropriate
sequence of campaigns (sometimes not obvious to plant managers);

• what-if -analysis – supporting planning in hierarchically upper levels by checking the
effectiveness of practical rules, expanding storage and production capacities, chang-
ing weights of different objectives and scheduling maintenance.

3.7. Results

In this section we start by looking at the usage of the system during a period of four months
and then delve into one plan generated by the system and its differences to the manually
generated counterpart. In the end, a plan considering a long stoppage is analysed.

3.7.1 Overall results of the system’s usage

Production planners and managers are not willing to wait more than 15 to 20 minutes
for an optimized plan in normal conditions. When facing an operational issue, such as a
disturbance, that time can be reduced to 5 to 10 minutes. With that time limit, state-of-
the-art solvers like Cplex are not even able to find a solution for a regular instance. The
focus here is thus much more on feasibility and improvement over current practice than
it is on optimality. For that reason, a considerable amount of constraints are relaxed (and
put as soft constraints) so that our constructive heuristic is always able to find an initial
solution. Then, the MIP-based heuristic improves that solution to a point that it satisfies
plant’s managers.

Our system was made available online for the company to use. Various iterations were
performed with the users in order to fine tune all the parameters and introduce additional
constraints to the mathematical model, such that the resulting plans meet their require-
ments. Table 3.2 contains information about 22 runs executed during four months after
those iterations. In spite of the total number of grades being 29, the number of grades with
demand or backlog to satisfy at each moment is reduced to 16/17. This shows the impor-
tance of the pre-processing steps described in the previous section. The maximum number
of campaigns (i.e. slots) is set to 35 (for an horizon of 15 days) and the model can use them
all or leave some empty. The fixed (frozen) campaigns are dependent on what was already
scheduled in the cutting stage and additional considerations managers might want to take.

The table reports the improvements achieved over the initial solution in runs executed
by the planners. We can see that those values are highly variable. Essentially, they will
depend on whether the initial solution is already good or not, and on the time limit given,
which is defined by the user in every run. Nevertheless, an average improvement of 34%
was obtained, with an average running time of 11 minutes, which shows the ability of the
heuristic in correcting and improving production plans in short periods of time.

To validate the quality of those plans, they need to be compared to those manually
generated by the company. In this regard, the system can also help. Indeed, the system can
be used not only to optimize a plan from scratch, but also to test certain schedules by fixing
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Table 3.2: Company’s usage of the system from June to September 2014.

# Date Grades Fixed campaigns Total campaigns Improv over ini sol Time (min)

1 09/06/2014 17 4 35 75% 13
2 17/06/2014 17 7 34 81% 12
3 19/06/2014 17 9 28 26% 8
4 20/06/2014 17 8 33 51% 10
5 20/06/2014 17 20 27 5% 4
6 27/06/2014 17 10 30 29% 10
7 04/07/2014 17 14 28 0% 7
8 09/07/2014 16 7 35 4% 10
9 14/07/2014 16 3 31 1% 18

10 18/07/2014 17 4 35 45% 12
11 18/07/2014 17 27 28 3% 2
12 22/07/2014 17 9 32 8% 11
13 24/07/2014 17 4 30 6% 12
14 24/07/2014 17 7 31 7% 15
15 24/07/2014 17 13 29 63% 9
16 29/07/2014 17 5 30 87% 18
17 06/08/2014 17 5 30 93% 14
18 06/08/2014 16 5 32 46% 16
19 27/08/2014 17 9 33 55% 11
20 03/09/2014 17 7 29 6% 10
21 15/09/2014 16 6 31 18% 15
22 25/09/2014 17 9 29 48% 14

Avg – 17 9 31 34% 11

the sequence and amounts of paper campaigns. The table clearly shows that the company
has applied these two usages, comparing the output of both (e.g. runs 4 and 5, with a very
different number of fixed campaigns - run 4 refers to the optimum plan and run 5 to the
so-called manual solution). When fixing most campaigns, the algorithm is naturally much
faster to finish. However, that should not be a reason for not letting the system optimize the
plans, since just providing the initial sequence guarantees a good solution in a few minutes,
in case the sequence is good, and gives the opportunity to improve on that solution.

The plan of run 4 (taking full advantage of the DSS) outperforms that of run 5 (manual
plan) by 59% of the optimized. Regarding runs 10 (optimized one) and 11 (manual), that
improvement was of 71%. These values are unreasonably high since some soft constraints
were violated in the company’s plans, whereas our system has addressed them. A more
insightful comparison is performed in the next subsection, where we look at the schedules
and the main KPIs.

3.7.2 Optimized plan vs. manual plan – an example

Two production plans, one optimized by the system and the other manually defined (al-
though still generated by the system), are now examined. Figures 3.14 and 3.15 depict
these two plans, in particular the schedule of campaigns and the virgin pulp stock level.
As usual the initial part of the plans is fixed. The differences thus start in the middle,
where the optimized plan includes KLB275A and KLB170A (which were ignored by the
manual plan) and an additional campaign of KLB225, on the descending part of the of the
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sequence. Note that plans tend to follow this smooth ascending and descending pattern of
grades, in order to avoid costly setups. Then, the cycle of the virgin pulp level is extended
in the optimized plan, to produce a larger amount of KLB170 and avoid a further cam-
paign of this grade. After that, the VLB campaigns have to start in order to rise the virgin
pulp level again. Indeed, these grades incorporate considerably more recycled fibres and
hence are used to balance the KLB grades, which have the opposite composition - more
virgin fibers. The manual plan ends with low KLB grades, which were not repeated in the
optimized plan.

To better understand the different planning approaches, we need to look at their im-
pact on the main KPIs. The relative improvement of the optimized plan over the manual
counterpart is given in Table 3.3.

Table 3.3: Comparison of the manual and optimized plans, with respect to main KPIs.

Backlog Setups Production Stock Overall

-6.4% -10.0% -1.8% -2.6% -7.4%

From those figures, one may conclude that the additional campaigns in the optimized
plan helped improving the backlog in more than 6%. Moreover, the smoother grade
changeovers and absence of the second wave of KLB grades at the end of the manual
plan provided a reduction of 10% in setup costs. Furthermore, inventory was reduced by
almost 3%. The only advantage of the manual plan is a 2% additional production. The
optimization method made a trade-off when extending the production cycle, which forced
a slight reduction of the paper machine’s rate, but allowed a better fulfilment of demand
and improvement of operational costs. This kind of trade-offs are hard to grasp in manual
planning and practitioners are forced to use simple rules, such as a given production cycle,
to generate feasible plans. Still, when programming stoppages for equipment maintenance
or when stoppages arise in disturbance situations, it is more difficult to devise rules. In
those cases, the DSS can bring additional value.

3.7.3 Plan considering stoppages

To end this section, a plan considering a long stoppage in the whole plant is inspected. The
plan is illustrated in Figure 3.16, where the stoppage of the paper machine is represented
as another paper grade. The paper machine stops after the digester in order to consume
all the pulp left in the tanks. At the start-up the digester is activated before the machine
to create some inventory of pulp. The machine starts with VLB165, which consumes
significantly more recycled than virgin pulp. In this way the pulp inventory continues
to rise until reaching a level where the KLB products (which consume more virgin pulp)
can be produced.

Planning a stoppage takes the resources to their actual limits. Therefore, the rates
have to be carefully managed. In the generation of the illustrated plan, some simplifying
assumptions were made, such as the ability of the production rates to rise from (or fall to)
zero instantly. The aim there was just to obtain a rough idea of what the plan would be.
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Nevertheless, the system allows considering maximum rates variations, as well as easily
redefining maximum and minimum rates. Hence, after this initial plan managers could
generate a more accurate one by further customizing the system inputs.

3.8. Conclusions and future work

The DSS reported in this paper has been developed to help a P&P company deal with the
various challenges of their production planning and scheduling activities. Companies in
this sector have to differentiate themselves by providing the best customer service at min-
imum cost, since paper prices are determined by the market. Therefore, multiple criteria
have to be considered and properly weighted when devising a production plan. However,
managers do not have the time at the operational level to perform a thorough evaluation
of plans, which must satisfy a multitude of complex constraints. Hence, the DSS supports
the automatic generation of plans with different levels of customization (e.g. fixing the
sequence and/or amounts of paper campaigns).

Several iterations with the company were performed in order to include a set of essen-
tial features for their planning tasks and to design user-friendly interfaces. The immediate
updates (due to the “Software as a Service” setup), in-place editing, direct copy-paste from
and to Excel, input validation procedures, automatic connection to existing systems and
separation of plan generation and fine tuning interfaces are examples of technical details
that were crucial for the usability of the system. On the other hand, the optimization model
provided the required flexibility in incorporating operational constraints, such as fixing
campaigns and scheduling stoppages. The method then makes use of the model to generate
good quality solutions in the short periods of time available at the operational level.

As future work, there are additional features that can be included, such as improving
the interactivity of the final schedules or providing more customization of the input data.
These enhancements should be done according to company’s actual needs. In addition, the
modular design of the system, as well as the general-purpose of the optimization method,
would facilitate its adaptation or extension to other similar plants.

In scientific terms, the formulation may still be strengthened by additional valid in-
equalities or reformulations. Comparing the formulations of Karimi and McDonald (1997)
and Camargo et al. (2012) could give some insights in this regard. Moreover the facility
plant location reformulation could also improve the model’s solvability (Amorim et al.,
2011). Another important aspect to be examined is the impact of the soft constraints in the
optimization performance and how that could be addressed by the heuristic method. The
latter could also be improved with respect to the neighborhoods used, possibly allowing it
to add/remove campaigns to/from certain positions, as suggested by Figueira et al. (2013).

Finally, as computational power increases and the efficiency of the methods improve,
the production planning problem can integrate more details of other activities (up or down-
stream in the supply chain) or address important issues, such as process variability and
disturbances. The latter may have an important impact on the production system and there-
fore its consideration in a proactive planning approach is highly relevant.
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Figure 3.12: Web interface of the DSS for fine-tuning structural (not frequently changed)
parameters.
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Figure 3.13: Output Excel file with tables and charts detailing the production plan (com-
plete table, evolution of final products stock / backorders, paper campaigns and machine’s
production rate, respectively).
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Figure 3.14: Manual plan – generated by the system, fixing the sequence and size of paper
campaigns (grades on the left and virgin pulp on the right axis).
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Figure 3.15: Optimized plan – generated by the system, optimizing the sequence and size
of paper campaigns (grades on the left and virgin pulp on the right axis).
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Figure 3.16: Plan considering a long long stoppage – paper grades (bars) and digester’s
rate (dashed line) represented on the left axis and virgin pulp tank (solid line) on the right
axis.
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Abstract The possibilities of combining simulation and optimization are vast and the
appropriate design highly depends on the problem characteristics. Therefore, it is very im-
portant to have a good overview of the different approaches. The taxonomies and classifi-
cations proposed in the literature do not cover the complete range of methods and overlook
some important criteria. We provide a taxonomy that aims at giving an overview of the full
spectrum of current simulation-optimization approaches. Our study may guide researchers
who want to use one of the existing methods, give insights into the cross-fertilization of
the ideas applied in those methods and create a standard for a better communication in the
scientific community. Future reviews can use the taxonomy here described to classify both
general approaches and methods for specific application fields.

Keywords Simulation-Optimization ·Taxonomy ·Classification ·Review ·Hybrid Meth-
ods

4.1. Introduction

Simulation and Optimization were traditionally considered separate (or alternative) ap-
proaches in the operational research field. However, tremendous leaps in computational
power promoted the appearance of methods that combined both. Simulation-based ap-
proaches started involving the optimization of the model inputs (also called controllable
parameter settings). On the other hand, optimization-based approaches started using simu-
lation for the computation of parameters (e.g. in queuing systems) or the sampling of sce-
narios for mathematical programming models. Nevertheless, this dichotomy is gradually
vanishing, as other approaches are applying a balanced use of simulation and optimiza-
tion (e.g. ROSA – see Subsection 4.2.3 – for a complete list of acronyms see 4.A). The
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idea is to explore simultaneously the great detail provided by simulation and the ability of
optimization techniques to find good or optimal solutions.

One of the main challenges hybrid simulation-optimization tries to answer is uncer-
tainty. This aspect is addressed by a variety of (more conventional) approaches, such as
stochastic programming, fuzzy programming and stochastic dynamic programming. The
accuracy and detail of these models are however much lower when compared to simulation
approaches. Furthermore, the difficulty in dealing with pure mathematical models leads in
most cases towards the use of simulation for some computations. For instance, stochastic
programming is most common in the form of scenarios (which may apply Monte Carlo
simulation to perform the sampling), since the mathematical manipulation of probability
distributions easily becomes intractable. Stochastic dynamic programming makes also use
of simulation, when solving large complex models with the so-called reinforcement learn-
ing algorithms. A good overview of stochastic, fuzzy and stochastic dynamic programming
is given by Sahinidis (2004).

Another major challenge is the consideration of nonlinear relationships, qualitative as-
pects or even processes hardly modelled by analytical expressions. The problem tackled by
Albey and Bilge (2011) is an example of a completely deterministic problem that requires
simulation. Indeed, the core advantage of simulation is its ability to deal with complex
processes, either deterministic or stochastic, with no mathematical sophistication.

Still, combining simulation and optimization typically results in highly demanding
methods in terms of computational effort, even for today’s standards. Hence, the design
of a good interaction is crucial. For that reason, and because the possibilities of combining
them are so vast, it is very important to have a good overview of the different approaches.
There is thus the need for a taxonomy which covers the full spectrum of these hybrid
approaches and launches the discussion on the different strategies (their advantages and
limitations).

A number of taxonomies and classifications have been proposed in the literature us-
ing different criteria. Some distinguished simulation-optimization methods by the applied
techniques (e.g. statistical procedures, gradient approaches, heuristics, etc.) or their prop-
erties of convergence, optimality and correct selection (Carson and Maria, 1997; Banks
et al., 2000; Fu, 2001). Other frameworks focused on the optimization problem, i.e. the
solution space and objective function (Fu, 1994; Tekin and Sabuncuoglu, 2004; Barton
and Meckesheimer, 2006; Ammeri et al., 2011). Shanthikumar and Sargent (1983) sug-
gested a classification schema, according to the hierarchical structure of both simulation
and optimization models. The authors have further distinguished between “hybrid models”
(which they classify) and “hybrid modelling” (previously classified by Hanssmann et al.
(1980)). In the former both analytic and simulation models are combined into one single
model, whereas in the latter each model is able to generate a complete solution, but the
final solution results from information exchanges between their executions.

While helpful for understanding the extent of research and practice in the field, these
classifications have focused only on particular streams of methods. The last two considered
only the cases where an analytical model exists a priori (which does not happen in several
simulation-optimization approaches, such as stochastic approximation). The remaining
papers addressed only the optimization of simulation model inputs, commonly known as



4.1. Introduction 79

“simulation optimization” (SO). Here, we refer to “hybrid simulation-optimization” (or
simply “simulation-optimization” – S-O) as any combination of these two major OR ap-
proaches.

Another aspect of those classifications that is subject to improvement is the possibility
of combining different criteria. In fact, relating different dimensions and perspectives in a
single classification can be critical when trying to grasp the essence of S-O methods and
discover new opportunities for the cross-fertilization of ideas or the exploration of new
approaches.

Finally, important criteria were overlooked. The first concerns the purpose of the sim-
ulation component in the overall design. This is the criterion that distinguishes the main
streams of research in S-O. Fu (2002) outlined this dimension in two main categories (“op-
timization for simulation” and “simulation for optimization”), but the author has not de-
veloped it further. Another key dimension is the search scheme with respect to the series
of solutions and realizations considered for evaluation. We refer here to “realization” as a
short sample path (or simulation run) or part of a long path. The search scheme not only
separates methods that tackle deterministic problems from those that address stochastic
settings, but also discriminates the different strategies for dealing with the latter.

Two other papers (Pasupathy and Henderson, 2006; Han et al., 2011) sought to create
taxonomies for simulation optimization problems and methods, in order to facilitate nu-
merical comparisons and code reuse. Nevertheless, the interaction between simulation and
optimization was not discussed and their studies were confined solely to SO methods.

In light of the above discussion, we propose a comprehensive taxonomy for S-O meth-
ods. Our classifying framework comprises four key dimensions: Simulation Purpose, Hi-
erarchical Structure, Search Method and Search Scheme. The first two are related to the
interaction between simulation and optimization, whereas the other two concern the search
algorithm design. Considering these four dimensions (and their full spectrum), we are
able to cover the complete range of S-O methods and distinguish virtually all of them in
at least one dimension. The categories of each dimension had to be created from scratch,
even for those already considered in the literature, since the confrontation of multiple cri-
teria so required. The range of S-O methods includes: “simulation optimization” (already
mentioned); “simulation for optimization”, where simulation helps enhancing an analyti-
cal model; and “optimization-based simulation”, where simulation generates the solution
based on the optimization output (optimization does not need any simulation feedback).

One may question whether a so ambitious taxonomy is reasonable, or if it would make
more sense studying and discussing those main streams of methods separately. The issue
is that in many applications, even the choice of the main approach is not straightforward
and consequently requires the consideration of methods that are entirely different in spirit.
Moreover, some of these methods are more similar than it might appear at first sight.

This paper makes a clear distinction between the characteristics of the problem and
those of the method and suggests connections between both. Our work has therefore a
threefold contribution:

• give an overview of the full spectrum of simulation-optimization approaches, provid-
ing some guidance for researchers who want to use one of the existing techniques;
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• explore the characteristics of these methods, giving insights into the cross-fertilization
of their ideas and showing gaps that may result in new approaches;

• create a standard for a better communication in the scientific community, either when
comparing existing S-O methods or when proposing a new one.

As opposed to other papers, we start by reviewing a variety of well-known methods
(in Section 4.2) and only then propose our taxonomy (in Section 4.3). We do not intend
to do an extensive review. Our aim is just to provide an overview of the main methods
in the literature, referring to specific examples. Nevertheless, we seek to cover their full
spectrum, in order to create a comprehensive taxonomy. Section 4.4 presents a discussion
on the different S-O strategies and their relationship with the characteristics of the problem.
Finally, Section 5.8 summarizes the conclusions and future lines of research. Since the
review and taxonomy comprise a wide range of methods and categories, we provide a list
of acronyms in appendix.

4.2. S-O methods

We divide this section in three main parts, each corresponding to one of the three major
streams of simulation-optimization research: Solution Evaluation (SE), Analytical Model
Enhancement (AME) and Solution Generation (SG) approaches, plus a fourth part for re-
lated methods. The first approach corresponds to SO and is more popular in the simulation
community. Here, simulation is used to evaluate solutions and hence perceiving the land-
scape (or response surface). The other two combine simulation with analytical models, thus
being classified in the literature as “hybrid simulation-analytic models/modelling”. These
are mostly adopted within the optimization community.

S-O methods can be applied to a wide range of problems in areas such as manufactur-
ing, warehousing, transportation, logistics, services, finance, among others. In this paper
we present an illustrative example of a manufacturing system, which will be used to give
context to the explanation of the S-O methods.

Consider the job shop consisting of four machines and three buffers (or queues) exhib-
ited in Figure 4.1. Three different products can be produced in this system and each has
its own sequence of machines to visit. Each machine can only process one product at a
time. Whenever a machine finishes one job, the product moves to the buffer immediately
before the following machine, waiting for being processed. However, the machine cannot
discharge it if the succeeding buffer is full. The size of a buffer b is determined by its
number of positions S b, each having a certain capacity a (the overall buffer capacity is then
S b ·a). The total number of positions is limited. Processing times are stochastic and follow
given probability distributions. Each product has a certain demand in each day and backlog
is not allowed. The aim is then to determine the (continuous) production amounts Xit, for
each product i in each day t, and appropriate (discrete) buffer sizes S b (with b ∈ {2,3,4}) in
order to optimize the expected aggregated costs, which include production, inventory and
shortage (unmet demand) costs. Two variants (simplifications) of this problem will also be
considered:
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• lot sizing (determine X) assuming infinite buffer capacities (infinite S);

• buffer space allocation (determine S) assuming fixed production lots (fixed X).

M1 M2 M3 M4

P1 P2 P3

B2 B3 B4

Figure 4.1: Production system: a job shop with three products (P1, P2 and P3), four ma-
chines (M1, M2, M3 and M4) and three buffers (B2, B3 and B4).

4.2.1 Solution Evaluation approaches

The first major S-O approach consists of developing a comprehensive simulation model
to represent the system (such as the manufacturing system presented above) and use that
model to evaluate the performance of various solutions. For instance, we could configure
the system to produce given lot sizes and include certain buffers. Alternative solutions,
with different lots and buffer spaces would then be tested and compared, in order to find
a good (or optimal) solution. This experiment is thus the optimization of a simulation
model, which in the literature is called “simulation optimization” (SO). Here, we refer to
them as Solution Evaluation (SE) methods, since the purpose of simulation is to evaluate
the performance of solutions.

The general SO problem setting is as follows:

min f (θ) (4.1)

s.t. g(θ) ≥ 0, (4.2)

θ ∈ Θ, (4.3)

where θ represents the vector of input variables, Θ its potentially feasible domain (before
running any simulation), f (θ) = Y [F(θ,ω)] and g(θ) = Z [G(θ,ω)] the objective and con-
straint functions (respectively) determined by a simulation model, ω a sample path, F and
G the direct performance measures of the simulation output (depending on both the con-
trollable vector and stochastic effects) and Y and Z the corresponding statistics (typically
the expected value).

In our problem example:

• θ includes both X and S (in each variant however it includes either one or the other);

• f (θ) = E[F(θ,ω)], which can be represented by

E

 T∑
t=1

3∑
i=1

(
cit ·RXit(θ,ω) + hit ·RI+

it (θ,ω) + qit ·RI−it (θ,ω)
) (4.4)
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where RXit, RI+
it and RI−it are the observed production, inventory and shortage amounts,

and cit, hit and qit are the production, inventory and shortage costs, respectively;

• g(θ) = G(θ,ω) would include constraints such as the inventory balance equations

RXit(θ,ω) + RI+
i(t−1)(θ,ω) + RI−it (θ,ω)−RI+

it (θ,ω) = dit i = 1...3 t = 1...T
(4.5)

where dit is the demand;

• Θ incorporates non-negativity and other a priori constraints, such as the total avail-
able buffer positions

4∑
b=2

S b ≤ Npos (4.6)

• ω is the set of values obtained for the (stochastic) processing times in a given real-
ization.

Note the difference between Xit and RXit. The former is the predefined amount, whereas
the latter is that observed in the simulation (which will also depend on the buffer sizes S
and the stochastic effects ω). There is a wide variety of methods approaching this problem.
Some of the most important are following presented.

Statistical Selection Methods (SSM)

Consider the buffer space allocation problem stated above (second variant). If the number
of possible solutions is not very high (let say each buffer can have one, two or three spaces,
resulting in 27 combinations), then all those combinations can be evaluated in order to de-
termine the optimal solution. However, the solution space is not the only to be explored. In
fact, the problem is stochastic and thus one replication should not be enough to accurately
evaluate the performance of each solution. Therefore, the number of replications for each
solution (i.e. the way the probability space is explored) is also to be determined. Statistical
Selection Methods, which include the well-known Ranking and Selection (R&S) and Mul-
tiple Comparison Procedures (MCP), focus on this aspect. These methods compare and
select solutions applying statistical analysis, so that a given confidence is achieved in that
process. The solution search typically consists of an exhaustive enumeration and is thus
limited to a relatively small set of solutions (Θ) with discrete input variables, such as in this
buffer space allocation problem. At the end, R&S provides the best solution, while MCP
quantify the differences in performance ( f (θ)) among the solutions. Traditional procedures
(here referred to as SSMa) can be enhanced (to SSMb) by the method of common random
numbers (CRN) which induces a positive correlation among the solutions (Swisher et al.,
2003). In practical terms CRN favours a fairer comparison between solutions, resulting in
a reduction in the necessary number of replications.
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Metaheuristics (MH)

To explore large or infinite solution spaces (such as larger instances of the buffer space al-
location or the lot sizing problem), “true” search algorithms are needed. Metaheuristics are
high level frameworks that combine basic heuristics in order to efficiently and effectively
explore the search space (Blum and Roli, 2003). These algorithms may be single-solution
based (e.g. simulated annealing (Alkhamis et al., 1999)), population-based (e.g. genetic
algorithms (Truong and Azadivar, 2003)) or set-based (e.g. nested partitions (Shi and Ólaf-
sson, 2000)) and can tackle both combinatorial (MHa) and continuous optimization (MHb).
They were originally developed to address deterministic problems, even though the al-
gorithm itself may be stochastic. Nevertheless, metaheuristics have also been applied to
stochastic simulation optimization, where the evaluation of solutions is performed (multi-
ple times for each) by the simulation model (Ólafsson, 2006). Indeed, given their flexibility
to tackle any type of solution space and their ability to quickly achieve good quality so-
lutions, these methods dominate the optimization routines of the discrete-event simulation
software.

Memory-based Metaheuristics (MMH)

The difference to the previous is that while moving in the solution space, these methods
construct and memorize a perception of the landscape. This memory structure is typically
a probability distribution on the space of solutions which provides an estimate of where the
best solutions are located. The generation of the following solutions then uses this distri-
bution to perform a biased selection towards promising regions. Some examples include
Swarm Intelligence (e.g. ant colony optimization (Dorigo and Blum, 2005)), Estimation
of Distribution Algorithms (Larrañaga and Lozano, 2002), Cross-Entropy Method (Rubin-
stein and Kroese, 2004) and Model Reference Adaptive Search (Hu et al., 2008). These
methods are also known as model-based methods, as opposed to the previous methods,
which are instance-based (Fu et al., 2005), and may work either with discrete (MMHa) or
continuous variables (MMHb).

Random Search (RS)

RS is very close to MH (and may even be seen as the same method), where a neighbourhood
can be defined for each incumbent solution. However, the next move is probabilistically
chosen, based on a given probability distribution. These methods have also been originally
designed for conventional deterministic problems, but have been extended afterwards to
the stochastic setting. In the latter, an additional feature has to be defined: how the best
solution is selected. Possible alternatives include the incumbent solution at the end of the
procedure, the most visited solution and the solution with the best sample mean. The choice
is closely related to the approach for dealing with noise in the stochastic setting, which can
range from expending a significant amount of computer effort on each point visited (RSa)
to deciding on how to proceed based only on limited information (RSb). Further details on
RS are given by Andradóttir (2006) and recent work is reported by Hong et al. (2010) and
Xu et al. (2013).
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Stochastic Approximation (SA)

In contrast to the previous method, SA is a gradient-based procedure and is therefore tar-
geted at continuous variables (such as the lot sizing decisions of the problem described
before). Under appropriate conditions, convergence towards local optima can be guaran-
teed and its rate is dramatically enhanced with the availability of direct gradients, which
are problem-specific. Their absence is solved by computing naive estimations, such as fi-
nite differences or simultaneous perturbations. SA typically uses a short simulation run in
each iteration, but can also perform gradient steps at intervals during a (single) long run
(Single-Run Optimization – see Suri and Leung (1987)). For a comprehensive discussion
on SA see Kushner and Yin (2003).

Sample-Path Optimization (SPO)

SPO (Gurkan et al., 1994; Plambeck et al., 1996) is based on the idea of going out far
enough along the sample path (to have a good estimate of the limit function), fixing it for
every solution and solving the resulting problem applying deterministic optimization. In
our illustrative problem a large set of processing times would be sampled and used in a
long simulation run. Applying the same set of processing times to every solution (the CRN
method extended to the whole domain) makes it a deterministic problem, which should be
easier to solve. Indeed, the existence of effective methods for constrained deterministic
optimization can be exploited here. In spite of the typical implementations (here denoted
by SPOa) being gradient-step methods, SPO is a general procedure and can be applied to
many SE and AME methods.

Metamodel-based Methods

Instead of iterating through different solutions and running simulations to evaluate each
of them, another approach is to first perceive the landscape in multiple points (using sim-
ulation) and then approximate a metamodel for those points. Deterministic optimization
methods can then be applied to the obtained objective function, which is inexpensive to
compute. This is the idea behind Metamodel-based Methods. A significant advantage of
these methods, as Barton and Meckesheimer (2006) advocate, is the “reduction in predic-
tion variance by extending the effect of the law of large numbers over all points in the
fitting design”. However, “this advantage comes at a cost: bias that is introduced when the
metamodel fails to capture the true nature of the response surface”.

Two main strategies exist: Global Metamodel-based Methods (GMM) and Local Metamodel-
based Methods (LMM). The former are typically plain SO sequential procedures and re-
quire a global optimization strategy. The latter, which include the well-known Response
Surface Methodology (RSM) – see Khuri and Mukhopadhyay (2010), alternate between
model construction (from simulation responses) and deterministic optimization. For both,
solutions may be evaluated with single (GMMa and LMMa) or multiple realizations/replications
(GMMb and LMMb).
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Gradient Surface Methods (GSM)

Combining techniques is frequently a promising avenue of research. One of these fruit-
ful results is the GSM, which combines RSM and SA. Proposed by Ho et al. (1992), this
method implicitly utilizes a second-order design for the fitting surface (in RSM), by consid-
ering the gradient surface modelled by a first-order design. However, only a single replicate
is used to obtain each estimate. The procedure switches to a pure SA when the optimum is
approached (Fu, 1994).

Surrogate Management Framework (SMF)

There are approaches that make also use of metamodels (or surrogate models), but do not
apply a deterministic search directly on them. Instead, the surrogate model is used just
to guide the search, screening out poor solutions, which do not get to be evaluated by
simulation, or even selecting only high-quality solutions for examination. The latter is the
case of SMF. This methodology was proposed by Booker et al. (1999) and is built on top
of pattern search methods – see Torczon (1997). SMF creates a grid of points to serve as
a basis for the recalibration of a surrogate model. The points are chosen to be spatially
disperse, in order to improve the accuracy of the approximation, but at the same time be
promising solutions. The surrogate model then predicts points at which improvements
are expected. The recalibration procedure may use single (SMFa) or multiple evaluations
(SMFb) in each point. The overall method does not require the existence of derivatives and
still converges towards local optima.

Reverse Simulation Technique (RST)

The idea of RST is to specify in advance desired target values or ranges of values for par-
ticular simulation variables and run the model with expert systems guiding those variables
towards their corresponding targets (Wild and Pignatiello, 1994). For instance, in our lot
sizing problem we could specify that the time each machine m spends on each product i
in each day t could not be higher than a given percentage of the total available time of
that day. If this share was reached, then the machine would shift to another product. The
adjustments thus occur during the simulation execution. RST appears to be an interesting
approach to generate an initial solution of reasonable quality. Both continuous (RSTa) and
discrete variables (RSTb) can be addressed by this method. In Lee et al. (1997) the authors
report an RST algorithm that finds the steady state of a system and an optimal state.

Approximate Dynamic Programming (ADP)

The parametric optimization problem defined in the beginning of this section can be ex-
tended to a control optimization problem (often called dynamic optimization), which may
be stated as: min

U(·)
E

[∑T
t=1 C (V(t,ω),U(V, t))

]
, where V(t,ω) is the state of the system and

U(V, t) is the corresponding control action. The solution to this problem is not a finite di-
mensional vector (like θ), but a function (U(V, t)). The optimal control may be solved via
dynamic programming (DP). However, according to Gosavi (2003), stochastic DP “suffers
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from the curses of modelling and dimensionality”. The author states also that “these two
factors have inspired researchers to devise methods that generate optimal or near-optimal
solutions without having to compute or store transition probabilities”. ADP (also known
as reinforcement learning or neuro-dynamic programming, in the artificial intelligence and
control theory communities, respectively) is one such method. Combining DP and simula-
tion, ADP is based on a learning agent which selects actions according to its knowledge of
the environment. The latter responds by an immediate reward (the reinforcement signal).
This procedure is similar to RST (in the sense that there is an agent controlling the system
over the simulation), but here the agent learns and improves its actions over the process.
For a brief review of ADP see Powell (2009).

Retrospective Simulation Response Optimization (RSRO)

All the aforementioned methods (with the exception of RST) deal with stochastic problems
performing either one or multiple realizations for each solution. A different approach,
which is the essence of RSRO (Healy and Schruben, 1991), is to consider one common
realization for every solution. Note the difference to SPO, where the latter fixes a long
sample path (i.e. multiple realizations for each solution). In the buffer space allocation
problem, RSRO would simulate the system with an infinite (or very large) number of spaces
until the total number of used spaces reached the real availability. This would be actually
the optimal solution for that realization if the objective was to minimize the time to buffer
exhaustion, but not necessarily a good solution for other scenarios. Hence, the method
is repeated for a number of realizations. Each realization results in a distinct solution.
Therefore, the expected value of the relevant performance measure cannot be evaluated.
Instead, it provides for instance the solution with the maximum likelihood of being optimal
(the poor behaviour when it is not optimal is not assessed though). Like RST, RSRO seems
to be appropriate for generating good solutions for further evaluation and refinement. The
most natural use of RSRO applies exact methods (RSROa), although heuristics can also
be used. The RSRO approach should not be mistaken for the more recent retrospective
optimization (Pasupathy, 2010), the latter being closer to SPO.

4.2.2 Solution Generation approaches

Using simulation to evaluate different solutions (as in every method of the previous section)
can be very computationally intensive. For some particular problems, the feedback from
simulation may not even be important to the choice of the solution. In those cases analytical
models can be formulated and solved and their solutions simulated (optimization-based
simulation), in order to compute all the variables of interest. The purpose of simulation
here is not to verify the advantage of one solution over another, but simply to compute
some variables and hence be part of the whole solution generation (SG).

The lot sizing problem described in the beginning of this section could be formulated
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as:

min
T∑

t=1

3∑
i=1

(
cit ·Xit + hit · I+

it + qit · I−it
)

(4.7)

s.t. Xit + I+
i(t−1) + I−it − I+

it = dit i = 1...3 t = 1...T, (4.8)
3∑

i=1

pim ·Xit ≤ capmt m = 1...4 t = 1...T, (4.9)

Xit, I+
it , I
−
it ≥ 0 i = 1...3 t = 1...T, (4.10)

where pim is the processing time (here assumed deterministic) of product i on machine m,
capmt its capacity in period t and the remaining terminology is the same as that used in
the previous subsection. Buffer spaces are assumed to be infinite. Note that production,
inventory and shortage amounts are all decision variables, not observations of simulation.
Simulation is then used to compute more realistic values for these variables.

In order to close the gap between predefined and simulated values, it would be impor-
tant to reduce the production capacities (capmt) in the analytical model, since there will
be waiting times between operations which are only considered in simulation. If defining
these capacity reductions appears to be difficult and critical to the overall optimization,
this SG approach might not be the best choice. However, if the analytical model is able
to generate good solutions, this should be the best approach, especially when simulation is
very expensive, since it only needs to run once. The optimization process can be performed
either before or during that simulation run. These two schemes are described below.

Solution Completion by Simulation (SCS)

In this first method simulation is used to compute some variables, which will complete or
correct the solution generated by optimization. In our example the model stated by (4.7)–
(4.10) is solved for the entire horizon, resulting in certain production (Xit), inventory (I+

it )
and shortage (I−it ) amounts. This solution is fed to simulation, which gives more accu-
rate values for these variables. The literature applies SCS to different types of problems.
Briggs (1995) approached the problem of mass tactical airborne operations. The analytical
model generates a solution under ideal conditions. Simulation then considers the inher-
ent variability and provides the expected, best and worst outcomes. Other applications of
SCS somehow hybridize it with SE methods. For instance, Lim et al. (2006) determine a
production-distribution plan with an analytical model and simulate that plan to obtain more
realistic values. However, if the plan is not acceptable, the replenishment policy is changed
and simulation is run again. Truong and Azadivar (2003) embed an SCS into an MH to
solve a supply chain design problem. Their genetic algorithm determines some qualita-
tive decisions. Each chromosome is decoded by an SCS method, where first an analytical
model is solved to determine other decisions and then simulation is used to evaluate the
complete solution. The popular commercial optimization module OptQuest also allows
applying this type of hybridization.
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Iterative Optimization-based Simulation (IOS)

Instead of a simply sequential procedure, optimization may be called during simulation ex-
ecution. For instance the above analytical model can be solved in a rolling-horizon basis,
simulating one period (t) at a time, updating the inventories and shortages of that period
and solving the analytical model from that period until the end of the horizon. The new
solution is then re-primed in simulation, which advances another period (to t + 1). In this
way the output of optimization should be closer to that of simulation, since the former
keeps track of the latter over the horizon. This iterative process is applied by Subramanian
et al. (2000). However, in their case optimization is not called in a periodic scheme, but
in an event-driven basis. Whenever the simulation module encounters a need for a control
action, it momentarily suspends itself and communicates the state of the system to the opti-
mization module, which resolves it. This approach may resemble RST. However, here the
optimization phase is based on an analytical model and does not need simulation to evalu-
ate its actions. In fact, RST obtains feedback from simulation, whereas IOS only receives
feedforward. Furthermore the need for adjustments does not result from the specification
of targets.

4.2.3 Analytical Model Enhancement approaches

Solution Generation methods can be very efficient, but if the feedback from simulation
proves to be important, they may not be effective. Therefore, as mentioned above, they
often end up being hybridized with Solution Evaluation methods. Another possibility is to
enhance the analytical model using the simulation results. This analytical model enhance-
ment (AME) can be conducted in different ways.

Stochastic Programming Deterministic Equivalent (SPDE)

Consider the lot sizing problem previously stated, but with only one machine. The wait-
ing times issue is now simple to address. The only difficult aspect that remains is the
uncertainty of processing times. In this situation, stochastic programming appears to be
appropriate. Still, since mathematically manipulating probability distributions can be diffi-
cult, one may resort to Monte Carlo simulation to perform the sampling of scenarios, which
are later embedded in a single analytical model. The final model is then the same as before,
but where constraints (4.9) are replaced by:

3∑
i=1

piw ·Xit ≤ capt t = 1...T w = 1...W, (4.11)

where w represents a given scenario, for which all processing times piw are sampled from
their corresponding distributions. This model is called a large-scale deterministic equiva-
lent, since introducing the scenario index may increase the number and size of constraints
by multiples. The general procedure is known as sample average approximation (SAA –
see Kleywegt et al. (2002)) and includes SPO (which fixes a long sample path), but also the
aggregation of realizations of multiple paths. The method starts with a given sample size,
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which increases until required confidence and variance levels are achieved. An example is
given in Santoso et al. (2005). These SPDE approaches typically require some assumptions
/ simplifications to be made, when compared to S-O using discrete-event simulation. Nev-
ertheless, the work by Schruben (2000) may change this scenario (see Subsection 4.2.4).

Recursive Optimization-Simulation Approach (ROSA)

If the SPDE method was applied to the original system, consisting of four machines, it
would probably fail to provide a good solution, since it would not consider waiting times.
In those cases the output of a discrete-event simulation model should be helpful to assess
those parameters and thus correctly estimate a proper capacity reduction for the analytical
model. That is the idea behind ROSA. This approach was firstly proposed by Nolan and
Sovereign (1972) and consists of running alternately a (typically linear) deterministic an-
alytical model, such as (4.7)–(4.10), and a (typically stochastic discrete-event) simulation
model. Simulation uses the solution generated by optimization and computes particular
performance measures (in our case, throughput times). The values of these measures are
then introduced again into the analytical model, refining its parameters (e.g. capacity re-
ductions, processing times). The iterative process ends after a stopping criterion is met
(e.g. convergence of the solution, parameters, objective). It should be noted that even if the
processing times were deterministic, simulation would still be needed, due to the waiting
times.

There are several implementations of this approach, applying different stopping criteria
and refinement strategies. The variants in Albey and Bilge (2011), Bang and Kim (2010)
and Almeder et al. (2009) are some interesting examples. The first two tackle pure de-
terministic problems (ROSAa), whereas the last one approaches a stochastic environment
(ROSAb). In the latter case results from multiple simulation runs have to be aggregated
(typically by quantiles, which may reflect different risk-averse levels). Some authors have
criticized these iterative procedures, claiming that convergence can be problematic (Irdem
et al., 2008). Still, most of the studies have found convergence in practice after a few iter-
ations. Acar et al. (2009) propose a ROSA framework close to SE methods. The authors
define an analytical model with an optimistic objective function. Simulation evaluates each
solution generated (under more realistic conditions) and corrects the objective function for
that particular solution. This ROSA variant is one of the few S-O methods that is optimal.
Nevertheless, it is geared to discrete solution spaces.

Function Estimation based Approach (FEA)

An alternative to the iterative procedure of ROSA is the initial estimation of (often nonlin-
ear) functions that describe the relationship between particular input and output variables.
In our lot sizing problem the relationship between lot sizes Xt and production lead-times
lt(Xt), which include processing and waiting times, is not trivial and needs simulation to be
estimated. By performing a set of simulations, this dependency can be characterized and
included in the analytical model, specifically in the capacity constraints:

lt (Xt) ≤ capmt m = 1...4 t = 1...T, (4.12)
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All the other constraints and the objective function remain the same. In this way, the
method is not dependent on the convergence between simulation and optimization, like
ROSA. However, this comes at the cost of a more difficult analytical model to be solved.
An example of FEA is implemented by Asmundsson et al. (2006). The authors conduct an
initial simulation study to specify the nonlinear relationship between the expected work-
in-progress and the expected throughput. This relationship is reproduced in what are called
“clearing functions”. The final analytical formulation incorporates an approximation of
these concave functions by outer linearization.

Optimization-based Simulation with Iterative Refinement (OSIR)

ROSA assumes that once the decisions are made, they cannot be revised. However, in
practice they often can. If that is to be considered, SPDE for instance has to be extended
to a multi-stage stochastic program. This increases considerably the scale of the model
to be solved, which easily becomes intractable. An alternative is proposed by Jung et al.
(2004), who approach a supply chain management problem under demand uncertainty. The
authors have devised a framework similar to IOS, but that performs refinements to the an-
alytical model. The latter is thus solved in rolling-horizon within the simulation model
(optimization-based simulation). This procedure is repeated multiple times, performing
(every n iterations) the appropriate refinements to the safety stock levels, in order to accom-
modate the uncertainty of demand. The refinement process, however, is not straightforward
in their case. Indeed, unlike the deterministic problems where capacity reductions directly
result from simulated waiting times, in this stochastic problem the right adjustments are to
be determined. For this purpose, the authors apply a gradient-based search. Their method
can thus be seen as an IOS embedded in an SA method. The input variables of the latter
are the refinement parameters in the former (the safety stocks).

4.2.4 Methods related to S-O

Before concluding this section, we would like to make a reference to methods that are
closely related to S-O, but may not be exactly a hybridization between simulation and
optimization. Schruben (2000) proposed modelling sample paths from event relationship
graphs, which are used to simulate discrete event systems (DES) as the solutions to math-
ematical programming (MP) models. In Chan and Schruben (2008) the authors provide a
procedure that generates these optimization models directly from the explicit event rela-
tionships and examine several examples and potential applications. The objective of the
MP models, as in the simulation, is simply to execute events as early as possible. Hence,
they are seen as simulation models. The solution of each MP model represents a single
simulation run. This procedure does not fit in the S-O definition given in Section 5.1, since
it does not combine simulation and optimization. Instead, it replaces the former by the
latter. Thus, it can be called “simulation by optimization” (SbO).

SbO has two main advantages over conventional simulation. First, linear programming
duality can be used to perform sensitivity analysis, which is simpler than the traditional
way of computing sample path derivatives. Moreover, as Chan and Schruben (2008) ex-
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plain, the solution obtained from linear programming may provide more information for a
single simulation run because other perturbed sample paths can be reached from the current
sample path by some additional computation (pivots), which may be easier than running a
new simulation.

The other key advantage is related to the application of this approach to S-O. SbO
promotes a deeper integration between simulation and optimization. Indeed, the constraints
that describe the system dynamics can be embedded within an optimization model that also
determines decisions (in addition to simulating the system). If the concept of SAA is also
applied, a single optimization model can be enough to perform the whole S-O. This can be
seen as an SPDE, but less restricted by assumptions that oversimplify the problem.

Nevertheless, SbO has a major issue to be addressed: computational time. If one SbO
run can provide more information than one conventional simulation run, it is also true
that it may consume significantly more time. The MP model may have integer variables
which highly increase the computational burden. To overcome this difficulty, Alfieri and
Matta (2012) propose approximate representations for simulation, based on time buffers.
In Alfieri and Matta (2013), the authors apply a time-based decomposition algorithm to
further reduce the computational effort.

4.3. S-O taxonomy: a new unified framework

The proposed framework for classifying simulation-optimization methods is composed of
four dimensions:

1. Simulation Purpose,

2. Hierarchical Structure,

3. Search Method and

4. Search Scheme.

The first two are related to the interaction between simulation and optimization, whereas
the other two concern the search algorithm design. In the following subsections we describe
all the categories of each dimension and combine the four dimensions, two by two. The
two matrices that result are then used to classify all the previously reviewed methods.

4.3.1 Interaction between simulation and optimization

The categories for Simulation Purpose correspond to the main streams of research in S-O:

• Evaluation Function (EF) – iterative procedures that use simulation to evaluate solu-
tions and hence guide the search, validating its moves;

• Surrogate Model Construction (SMC) – methods which apply simulation for the
construction of a surrogate model, which is either used to guide the search or is
directly searched;
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• Analytical Model Enhancement (AME) – approaches making use of simulation to
enhance a given analytical model, either by refining its parameters or by extending it
(e.g. for different scenarios);

• Solution Generation (SG) – methods where a simulation model generates the solu-
tion, using optimization for some computations.

The first two categories compose the Solution Evaluation (SE) approaches. The large vari-
ety of these methods and the core difference of having (or not) a surrogate model leads to
this distinction.

Some of these streams of methods may in some situations appear quite similar. In both
SMC and AME an analytical model is improved with the output of simulation. However,
the key difference is that the former uses only evaluations of the objective function to
update a problem-independent model, whereas the latter starts from a problem-specific
model which is modified according to the simulation output. Similarly, SG may be very
close to SE approaches (e.g. IOS vs. RST – see Subsection 4.2.2), although belonging to
different streams of research. The importance of integrating all S-O approaches into one
single classification is therefore evident.

For the Hierarchical Structure dimension, four other categories were defined:

• Optimization with Simulation-based Iterations (OSI) – in all (or part) of the iter-
ations of an optimization procedure, one or multiple complete simulation runs are
performed;

• Alternate Simulation-Optimization (ASO) – both modules run alternately and in each
iteration, either both run completely or both run incompletely;

• Sequential Simulation-Optimization (SSO) – both modules run sequentially (either
optimization following simulation or the opposite);

• Simulation with Optimization-based Iterations (SOI) – in all (or part) of the iterations
of a simulation process, a complete optimization procedure is performed.

Figure 4.2 exhibits the combination of these two dimensions and the corresponding
classification of each method. According to the categories previously defined, there is a
trend along both axes of the matrix: the autonomy of the optimization procedure tends
to grow and the total number of simulations, compared to the number of optimization
iterations, tends to decrease. There are however cells that are not-applicable, particularly
at two corners:

• top right corner – calling the simulation process multiple times (either in OSI or
ASO), when only one solution is to be generated and no feedback is necessary;

• bottom left corner – simulation being the evaluation function of the optimization
procedure and not being (either completely or partially) in the iterations of the latter.

The number of categories in both dimensions could be larger. For instance, SMC meth-
ods could be further divided into those that base all their search in the surrogate model (e.g.
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LMM, GMM) and those which use it as a supporting tool to guide the search (e.g. MMH,
SMF). Likewise, AME and SG methods could be divided according to the extent of the an-
alytical and simulation models (which may result in a hybrid model or hybrid modelling –
see Shanthikumar and Sargent (1983)). That is the essential difference between SPDE and
ROSA, for instance. Also, the ASO and SSO structures include more than one possibility,
as described above. Nevertheless, this level of aggregation in both dimensions was kept in
order to simplify the analysis and favor a global view over the whole spectrum of methods.

Finally, another aspect worth mentioning is the fact that GSM appears in more than one
cell. Indeed, hybrid methods, such as this, may embed different S-O interaction schemes
and hence, fill more than one cell in the matrix. Subsection 4.3.3 explains how these
methods can be fully classified.
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Figure 4.2: Classification according to the interaction between simulation and optimiza-
tion: simulation purpose and hierarchical structure.

4.3.2 Search design

Four types of methods are distinguished:

• Exact (E) – methods which achieve and prove global optimality (e.g. exhaustive
and implicit enumeration, Dantzig’s simplex algorithm, branch-and-bound, column
generation, etc.);

• Derivative-Based Heuristic (DBH) – heuristic methods (i.e. procedures that can-
not guarantee an optimal solution) which are based on derivative information, thus
targeting continuous variables, to make progress in their search (e.g. gradient-step
methods, Hessian-based methods, etc.);
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• Other Continuous Heuristic (OCH) – heuristic methods that tackle continuous vari-
ables without requiring derivative information (e.g. pattern search, Nelder-Mead’s
simplex method, particle swarm optimization, etc.);

• Discrete Heuristic (DH) – heuristic methods that tackle discrete variables (e.g. neighbourhood-
based metaheuristics, greedy heuristics, etc.).

When defining these four categories, we have looked at the major dichotomies in Opti-
mization: exact vs. heuristic; and continuous vs. discrete (or combinatorial). Continuous
can be further divided into derivative-based or other. Given the difficulty of most prob-
lems approached by S-O, the exact methods are not so frequently applied and were thus
aggregated into one single category.

The search scheme concerns the sequence of solutions and realizations considered for
computation. Four schemes exist:

• One realization for each solution (1R1S) – moving in the solution and probability
spaces simultaneously (i.e. changing the realization whenever a new solution is gen-
erated);

• Different realizations for each solution (DR1S) – successively considering multiple
realizations for each solution that is generated;

• Common realizations for each solution (CR1S) – successively considering multiple
realizations for each solution that is generated (the realizations are the same for all
solutions);

• One realization for multiple solutions (1RMS) – repeatedly applying the same real-
ization to multiple solutions (the former may change after a series of solutions).

The last scheme is the framework of RSRO and includes methods that approach determinis-
tic problems. If that is the case, the realization does not change during the entire procedure,
as there is one single scenario. The second and third schemes (the latter being the essence
of SAA and SPO) involve two variants each: the consideration of a constant or a variable
(typically increasing) number of realizations. Fully sequential procedures in SSM, where
in each iteration a single observation is added to each alternative solution that is still in the
running, are examples of the second variant.

Figure 4.3 presents the matrix that combines these two dimensions and the correspond-
ing classification of each method. An important observation to make is the appearance of
many S-O methods in multiple cells each. Indeed, some of the methods proposed in the
literature have a clearly specified procedure (e.g. SA), while other methods are more gen-
eral approaches (e.g. ROSA). Nevertheless, the different variants identified in the literature
were properly discriminated with different labels in the previous section. The identified
variants are not exhaustive though. For instance, SPDE may use metaheuristics to find so-
lutions, which should not be confused with MH methods (in the latter the metaheuristic is
the S-O method, whereas in the former it concerns just the optimization part).
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Figure 4.3: Classification according to the search design: method and scheme.

4.3.3 Complete classification

Our taxonomy was used to categorize well-known methods proposed in the literature, as
well as some of their specific variants. However, the purpose is that it may be used to
classify any S-O framework that appears, either being an adaptation of the existing methods
or a new approach. The complete classification would then connect the four dimensions,
resulting in [SimulationPurpose]-[HirarchicalStructure]/[SearchMethod]-[SearchScheme].
For instance, a genetic algorithm (GA) that evaluates individuals (represented by discrete
solutions) by running simulations is a MH method and can be classified as EF-OSI/DH-
DR1S. Some approaches apply however a hybridization of interactions and methods. An
example is the GSM, which combine SA (EF-OSI) and RSM (SMC-ASO). GSM can then
be classified as <EF-OSI,SMC-ASO>/DBH-1R1S. Some hybridizations are less evident.
For instance, a GA that tackles both discrete and continuous variables is also considered a
hybrid method. In this case the classification would be EF-OSI/<DH,OCH>-DR1S.

4.4. S-O strategies discussion

In this section we examine and discuss different S-O strategies in each of the dimensions of
the proposed taxonomy. The strategies depend on the characteristics of the problem that is
approached. Therefore, we try to understand these relationships. The following subsections
explore every classifying dimension. Figure 4.4 summarizes some evident connections that
result from the analysis of the taxonomy. Other connections are possible though, since there
is a wide range of aspects that can influence the choice of an S-O design. Moreover, the
diversity of S-O methods and the possibilities of modifying and adjusting them are vast,
which makes it difficult to provide definite statements in this regard. Nevertheless, we
believe this discussion can contribute to a better understanding of this field, similarly to the
classifications proposed in the literature that relate S-O methods to problem characteristics
(see Section 5.1). Indeed, the schema in Figure 4.4 can be seen as an extension of those
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classifications (considering additional dimensions and categories).

4.4.1 Simulation purpose

Looking at the first dimension, the major streams of research in S-O can be distinguished.
The SE approach assumes that the landscape of solutions is not known (and has to be
perceived), whereas in AME it is partially known or known with uncertainty (and has to
be improved) and in SG it is completely known (it naturally results from the problem and
possibly some simulation). The first is applied in the optimization modules included in
commercial simulation software, since it considers the simulation model as a black-box
(see April et al. (2003) for further details). Nevertheless, when designing an S-O algorithm
those assumptions do not need to reflect the real context.

It is evident that SE approaches, relying their search only on the output from a (detailed)
simulation model, should perform a better selection of candidate solutions. That is longer
true for EF than for SMC, since the latter may compute interpolations / extrapolations.
Therefore, one may opt for SE approaches, rather than AME, even if the landscape is
partially known. The downside of this strategy is that a great amount of simulation runs
may be needed, hence increasing computational time. The issue of selecting the appropriate
approach is thus related to a trade-off between solution quality and efficiency and how the
consideration of an initial analytical model responds to that. This is what we mean by
“useful analytical model” in the first question of Figure 4.4.

Typically, when a linear relationship between most input and output variables exists
and is known, but there are particular aspects difficult or undesirable to be included in the
analytical model, AME can be very efficient and effective (see ROSA and OSIR implemen-
tations). If no relationship is known and simulation is costly, either because of the need to
perform many replications or because each replication is expensive, then SMC may be
adequate (see for instance Kleijnen et al. (2010), where the authors reported a GMM im-
plementation that outperformed OptQuest, in terms of number of replications and final
solution quality). In the case of simulation being relatively modest, EF may fit well. The
selection of SG approaches is more clear: they are suitable when the analytical model does
not depend on any simulation feedback (although it may depend on simulation feedforward
– see Subsection 4.2.2). The trend (along the axis of this dimension) of decreasing number
of simulation runs validates these observations.

4.4.2 Hierarchical structure

The hierarchical structure between simulation and optimization concerns the dependence
of one component on the other. This dependence is related to the previous dimension,
since for each category of the latter, there are some structures that are typical and others
which may not make sense (see Subsection 4.3.1). For instance, EF methods are usually
associated with OSI structures, but not with SSO or SOI, since simulation works as an
evaluation function and hence needs to be called in the iterations of optimization. AME
approaches, on the other hand, are more flexible and may involve any structure. The choice
will typically regard the dependence of the analytical model on the refinements performed
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by simulation. For example, FEA fully enhances the analytical model just in the beginning,
while ROSA does it recurrently, thus being suitable for applications where the parameters
depend on the solution. The former is also able to deal with that issue, but they typically
complicate the model introducing nonlinear relationships. OSIR requires the optimization
problem to be solved multiple times during simulation. This analysis suggests that along
this axis the optimization problem should be of decreasing complexity, since it may be
further complicated or called more times. Still, it is difficult to make a global conclusion
and hence, we chose to leave it as an open (and more conservative) question in Figure 4.4,
which does not directly relate to problem characteristics. Indeed, it only questions about
the dependence of one component on the other.

4.4.3 Search method

The search method focuses on the optimization problem (but not on the interaction with
simulation). The categories defined for this dimension are aligned with the characteris-
tics of the target optimization problem. Therefore, the correspondence is straightforward.
Exact methods are appropriate when the problem is relatively easy (e.g. simple combina-
torial, linear, quadratic). Large complex problems naturally require the use of heuristics.
If the entire solution space is discrete, DH methods are suitable. For continuous optimiza-
tion, either DBH or OCH methods can be used, although the former are more effective if
derivatives exist. In mixed integer-continuous problems a hybrid solution method, combin-
ing DH with DBH/OCH methods, can be necessary. An example is given by Gray et al.
(2010), where the authors propose an algorithm that hybridizes a GA with a pattern search
method. Alternatively, heuristics may be combined with exact methods: DH+E, E+DBH
or E+OCH. The first is suitable when the combinatorial part is difficult and the continuous
part is linear (or simple nonlinear), which typically occurs in AME or SG approaches. The
remaining are more appropriate when the combinatorial part is simple and the continuous
part is complex nonlinear, most common in SE. The distinction between simple and diffi-
cult combinatorial problems typically concerns the existence of polynomial-time optimal
algorithms and the problem size.

In the discrete-space case another distinction could be made. The decision variables
can be integer or binary. The latter are typically related to qualitative decisions, which
may activate sub-options that also need to be optimized. These “simulation configura-
tion” problems (Pierreval and Paris, 2003) can be seen as an extension of SO, since not
only the simulation input parameters need to be optimized, but also its configuration (en-
tities or layout of the simulation model). For such problems, optimization becomes more
difficult because mathematical programming, hill climbing and stochastic approximation
methods are not usually applicable. In addition, there is the need for automatic generation
of simulation models according to a systematic process (Azadivar, 1999). To tackle these
problems, Azadivar (1999), Truong and Azadivar (2003) and Pierreval and Paris (2003)
suggest evolutionary / genetic algorithms (a particular type of DH).
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4.4.4 Search scheme

The selection of the search scheme is mainly related to the relative difficulty in travelling
in both solution and probability spaces and to the trade-off between convergence and di-
versification. Therefore, if it is harder to move in the solution space, either DR1S or CR1S
should be the correct choice. This is the case of approaches like ROSA, where each iter-
ation requires the entire resolution of an analytical model. The difference between DR1S
and CR1S is that the former focuses more on diversification whereas the latter provide
faster convergence. On the other hand, if moving in the probability space appears to be
more difficult (or non-existent, in the case of deterministic problems), then 1RMS would
be more appropriate. This is the foundation of the RSRO approach: for problems such
as the well-known Newsvendor problem (see Ruszczynski and Shapiro (2003)), it can be
more convenient to consider all the solutions before changing the realization. Finally, if
moving in both spaces is similar in terms of effort, then 1R1S may be the best option.
This is the approach of some methods which are very focused on diversification issues in
stochastic settings, such as SA and RSb. In SMC methods (such as LMM or GMM) greater
diversification is achieved with DR1S and 1R1S. Both obtain a greater variety of realiza-
tions and the latter allows simulating more solutions. There is thus a trend of decreasing
diversification (or increasing convergence) along the axis of this dimension, as suggested
in Figure 4.4. Nevertheless, there is another aspect that should be taken into considera-
tion when choosing the search scheme: the use of variance reduction techniques (VRTs) or
SSM ideas, which require DR1S/CR1S schemes.

VRTs are methods that aim at reducing the variance of results for a given number of
replications. This means that for the same confidence level, the application of VRTs may
allow reducing the number of replications and hence, the computational effort. Several
VRTs exist, such as the common random numbers (Schruben, 2010), antithetic variates
(Hammersley and Morton, 1956), control variates (Glynn and Szechtman, 2000), impor-
tance sampling (Glynn and Iglehart, 1989) and stratified sampling (McKay et al., 2000).
The first is the most simple and widely used VRT and consists on applying the same sets
of random number streams to every solution. If this is applied to the complete optimization
procedure, we are in the presence of CR1S. Still, it can be applied to each iteration sepa-
rately, within a DR1S scheme. For instance, in a single-solution based MH all neighbours
in a given iteration would be evaluated with the same realizations, but these would change
in the following iterations.

In addition to VRTs, SSM principles may be applied in SE approaches. The idea of
discarding simulation replications for solutions which quickly prove (statistically) to be of
poor quality is very attractive. It is not necessary though that the statistical proof involves
a good confidence level (such as 90% or higher). Indeed, it may even be desirable working
with a low level, in order to promote diversification in the search procedure. Still, solutions
of too low quality would be quickly rejected, saving computational time.
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Optimization highly depends on simulationa OSI

Both need each other recurrentlyb ASO

One needs the other oncec SSO

Simulation highly depends on optimizationd SOI
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Difficult combinatorial linear (or simple nonlinear) problemc.b DH + E

Difficult combinatorial complex nonlinear problem DH + CHc.d
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Same difficulty and/or diversification is very importanta 1R1S

More difficult in solution space and/or diversification is importantb DR1S

More difficult in solution space and/or convergence is criticalc CR1S

More difficult in the probability space (or deterministic problem)d 1RMS

Figure 4.4: Evident connections between the problem characteristics and the classifying
dimensions and categories.

4.5. Conclusion and future lines of research

In the S-O research field the dichotomy between “simulation-based” and “optimization-
based” approaches is vanishing. Some of the main streams of methods may in some situa-
tions appear quite similar, as previously shown. Thus, the choice of the main approach may
not be straightforward and require the consideration of methods that are different in spirit.
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Indeed, the boundaries of these methods can be fuzzy. Some categorization is important
though. It is also crucial that it covers all S-O approaches, so that a comprehensive view is
obtained. That was the aim of our taxonomy.

The classifications used so far in the literature focused on particular streams of meth-
ods and typically utilized one single criterion. We propose a classification which relates
multiple dimensions and perspectives in an attempt to grasp the essence of S-O methods
and discover new opportunities for the cross-fertilization of ideas and the exploration of
new approaches. Two new key criteria were considered, which greatly contributed to the
discussion. The organization of criteria in two matrices allowed the examination of both
the interaction between simulation and optimization and the search design. We were also
able to explore the characteristics of each method and distinguish virtually all of them in
at least one dimension. Additionally, common trends along different axes were identified.
The discussion of each classifying dimension has resulted in some guidelines which can be
used when selecting appropriate S-O designs for given problems.

The variety of methods reviewed in Section 4.2 reveals an immense range of possibil-
ities for combining simulation and optimization. Some methods have a clearly specified
procedure, while others are more general approaches. Nevertheless, research activities in
this promising area are likely to increase significantly in the near future. We provide here
some directions for further research:

• Embedding ideas from RSb into MH frameworks. The former are very focused on the
stochasticity issues, moving simultaneously in both solution and probability spaces.
The latter contain a large variety of diversification and intensification strategies. An
interesting framework is proposed by Andradóttir and Prudius (2009), where explo-
ration, exploitation and estimation are carefully balanced. Another example is the
work of Xu et al. (2010) whose method consists of a global-search phase, followed
by a local search phase, and ending with a “clean-up” (selection of the best) phase.
Nevertheless, these approaches are still in their infancy.

• Applying VRTs in DR1S/CR1S schemes. As previously discussed, these techniques
may allow reducing computational effort when performing simulation replications.
Contrary to what might appear, VRTs can be applied not only in SE approaches, but
also in AME. Indeed, even when the aim of simulation is not evaluating solutions, the
feedback of the former may take advantage of a reduced variance to better enhance
the analytical model.

• Using SSM principles in other SE approaches. As opposed to the previous point, this
idea can only be employed in SE approaches. The increase of efficiency that result
from SSM may improve the performance of DH methods, such as RS and MH. This
promising combination is being explored both in the literature (e.g. Ólafsson (2004))
and in practice (e.g. by OptQuest). Nevertheless, there are still some questions
to be answered. For instance, Almeder and Hartl (2013) show that in their case a
statistical selection with 95% of confidence performs worse than a sample average
of 10 replications, since diversification is spoiled in the former. Therefore, the choice
of a good confidence level is still an open question.



4.A. List of acronyms 101

• Filling gaps in the matrices. Two obvious gaps in the Interaction matrix exist: SMC-
SOI and AME-OSI. The former could be some kind of hybridization between GMM
and ADP, where during simulation a global metamodel would be constructed (instead
of simply reinforcing a function). The latter might result in a progressive refinement
strategy, where an analytical model would be refined during its resolution. Regarding
the Search Design matrix blanks, CR1S schemes could be an interesting approach
for metaheuristics with difficult convergence (which is more likely in the stochastic
setting).

To conclude, our taxonomy fully classifies any S-O method, including hybridizations.
Therefore, it can contribute to a better communication in the scientific community. Future
reviews can use the dimensions here described to classify additional S-O methods or extend
them for particular streams of research. For instance, in ROSA approaches it may be
important to distinguish different refinement strategies and stopping criteria. More in-
depth studies may also allow better characterizing the relationship between S-O problems
and methods (or strategies). There is a wide avenue of research in simulation-optimization,
particularly regarding the study of specific application fields.

Appendix 4.A List of acronyms

General: Simulation-optimization methods:
OR Operations Research SSM Statistical Selection Methods
SO Simulation Optimization R&S Ranking and Selection
S-O Simulation-Optimization MCP Multiple Comparison Procedures
SbO Simulation by Optimization MH Metaheuristics
DES Discrete Event System GA Genetic Algorithm
MP Mathematical Programming MMH Memory-based Metaheuristics

Simulation purposes: RS Random Search
SE Solution Evaluation SA Stochastic Approximation
EF Evaluation Function SPO Sample Path Optimization
SMC Surrogate Model Construction GMM Global Metamodel-based Methods
AME Analytical Model Enhancement LMM Local Metamodel-based Methods
SG Solution Generation RSM Response Surface Methodology

Hierarchical structures: GSM Gradient Surface Methods
OSI Optimization with Simulation-based Iterations SMF Surrogate Management Framework
ASO Alternate Simulation-Optimization ADP Approximate Dynamic Programming
SSO Sequential Simulation-Optimization RST Reverse Simulation Technique
SOI Simulation with Optimization-based Iterations RSRO Retrospective Simulation Response Optimization

Search methods: SPDE Stochastic Programming Deterministic Equivalent
E Exact SAA Sample Average Approximation
CH Continuous-space Heuristic ROSA Recursive Optimization-Simulation Approach
DBH Derivative-Based Heuristic FEA Function Estimation based Approach
OCH Other Continuous-space Heuristic OSIR Optimization-based Simulation Iterative Refinement
DH Discrete-space Heuristic SCS Solution Completion by Simulation

Search schemes: IOS Iterative Optimization-based Simulation
1R1S One realization for each solution Stochastic techniques:
DR1S Different realizations for each solution VRT Variance Reduction Technique
CR1S Common realizations for each solution CRN Common Random Numbers
1RMS One realization for multiple solutions
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Chapter 5

Simulation-optimization for
proactive planning and scheduling

Simulation-optimization for planning and scheduling
of two-stage continuous systems subject to variability
and disturbances

Gonçalo Figueira∗ · Bernardo Almada-Lobo∗

Working paper, 2014

Abstract Continuous production systems are frequently subject to high variability and
disturbances in the process. The literature tends to focus on reactive planning to avoid
the burden of dealing with stochastic models. Simulation-optimization (S-O) appears as
a promising technique for proactive planning, since it combines the ease of simulation
for dealing with complexity and the focus of optimization in finding good quality solu-
tions. However, selecting the appropriate S-O design is critical to the efficiency of the final
method. This paper studies different ways of combining simulation and optimization when
approaching the production planning and scheduling of a two-stage continuous system sub-
ject both to process variability and disturbances. An S-O method is then implemented and
tested against a non-proactive approach. The first preliminary results validate the effective-
ness of the proposed S-O method in generating robust production plans.

Keywords Simulation-optimization ·Lot-sizing and Scheduling ·Process Industry ·Continuous
Production ·Proactive Planning ·Process Uncertainty

5.1. Introduction

Production planning and scheduling are important activities when trying to reduce costs and
provide a good service level to customers. In process industries that is particularly relevant,
since the daily operation has to return the investments made on expensive machinery. The
literature on process systems engineering (PSE) has been active in providing models and
algorithms to improve planning and scheduling in a variety of industries and for both batch
and continuous processes. However, most of them assume all the input data to be known
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in advance, despite these processes being typically characterized by high variability levels
(e.g. in production yield) and the occurrence of disturbances (such as equipment failures).
These uncertainties in the process create a gap between plans and their execution.

The approaches that attempt to close that gap can be classified as reactive or proactive.
The former are essential in the presence of serious disturbances. However, they can also
be used in a periodic scheme (rolling-horizon). Lindholm et al. (2013) apply hierarchical
scheduling and control in this rolling-horizon scheme, where the lower levels update the
schedule of upper levels. Subramanian et al. (2012) use ideas from model predictive control
(MPC) in a deterministic scheduling approach. Nevertheless, these reactive approaches do
not optimize production plans, but rather their execution. The optimization criteria are thus
related to the minimization of deviations from the plan. Therefore, if those plans are not
robust, their implementation can be problematic. Hence, proactive approaches are crucial.
Some efforts were made in order to integrate planning and control. Harjunkoski et al.
(2009) reviewed some contributions in this context. Still, the authors concluded that the
integrated approaches essentially start from the control’s point of view and have only been
able to address smaller instances of the planning problem.

At the planning level, there are three main methodologies to obtain robust solutions
and thus mitigate the effects of variability and disturbances:

• accommodate uncertainty, considering buffers in the form of (predefined) safety
stocks or safety times;

• incorporate uncertainty, in the so-called stochastic programming, fuzzy logic or ro-
bust optimization;

• consider uncertainty in a lower level, simulating the execution of plans.

The first branch is the most simplistic and results in the plain deterministic models
that abound in the literature. If buffers are defined blindly, they may result in too con-
servative or too risky plans. This has motivated the formulation of models that incorporate
stochastic elements (second branch of approaches). Several works have devised a variety of
approaches, based on different well-known techniques. Balasubramanian and Grossmann
(2002) and Engell et al. (2004) proposed stochastic programming models for scheduling
problems under process and demand uncertainty, respectively. To avoid the exponential
complexity that such models can take, decomposition methods were devised. These ap-
proaches however require simplifying assumptions that reduce their applicability to a wide
range of problems. Janak et al. (2007) and Wittmann-Hohlbein and Pistikopoulos (2013)
have also tackled scheduling problems under uncertainty. They have chosen robust opti-
mization techniques, which are very efficient, but frequently too conservative. Some works
have further combined scheduling with planning in a stochastic environment, using either
fuzzy set theory (Majozi and Zhu, 2005), stochastic programming (Wu and Ierapetritou,
2007) or robust optimization (Verderame and Floudas, 2010). However, these methods
have not integrated planning and scheduling in a single model, but used procedures which
iterated between these two levels. A full integration of lot-sizing and scheduling is imper-
ative in the presence of significant sequence-dependent setups. This integration has essen-
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tially been achieved with deterministic approaches and for problems of moderate complex-
ity and size (e.g. Erdirik-Dogan and Grossmann (2008)). Simulation-optimization (S-O)
appears to be a promising technique to extend them to stochastic settings, while keeping
the required level of detail.

Indeed, S-O provides a good framework for dealing not only with uncertainty (see for
example Chu et al. (2014), who were able to keep a deterministic planning model, while
the agent-based simulation incorporated the stochastic part), but also with elements which
are hard to include in analytical models, such as non-linearities and qualitative aspects.
Castro et al. (2011), for instance, combined mathematical programming with discrete-event
simulation to address the issue of having a shared transportation resource in a multi-stage
batch plant. In our case simulation provides accurate representations of different types
of uncertainty. While stochastic programming allows assigning probability distribution to
certain parameters, such as daily capacity, simulation is able to emulate disturbances (with
specific starting and ending times) with no mathematical sophistication or complexity. S-O
is hence very powerful both for increasing the realism and detail of models/methods and for
improving their solution time. Nevertheless, simulation and optimization can be combined
in numerous ways and the selection of the appropriate design can have a huge impact on
the efficiency of the method.

This paper provides a study on different ways of combining simulation and optimiza-
tion when approaching the production planning and scheduling of a two-stage continuous
system, which is subject both to process variability and disturbances. Previous research
(Figueira et al. (2013a)) started to devise an S-O framework for this type of problems. In
the current paper that problem is generalized and the S-O method is improved.

The paper is organized as follows: Section 5.2 describes the general problem to be
tackled. That will further motivate the integration of lot-sizing and scheduling and the use
of S-O. Section 5.3 exhibits the (deterministic) analytical model, while Section 5.4 summa-
rizes the ideas of the solution method for that problem. The stochastic part of the problem
is then addressed in Section 5.5, where the simulation model is depicted. The exploration
of the combination of simulation and optimization is conducted in Section 5.6. First, the
main S-O approaches are discussed in the context of the underlying problem. Then, an S-O
framework is proposed. Section 5.7 provides preliminary results of the application of that
framework in a real case study. The paper ends with some conclusions and directions for
future research.

5.2. Problem description

The industrial problem under investigation was inspired by the short-term planning and
scheduling of a pulp and paper plant, described in (Figueira et al., 2013b). Here, some
specificities of the problem are removed, so that it becomes more general and we can focus
on the most relevant features, which appear in other production environments.

The plant operates in continuous production, on a 24/7 basis and has two main produc-
tion stages:

• a production unit, which can represent a reactor, mill or furnace;
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machine
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Figure 5.1: Two-stage continuous system, subject to variability and disturbances.

• and a machine, which can produce multiple products (with sequence-dependent se-
tups) from the material that comes from the previous stage.

These stages have maximum and minimum rates (no idle time exists). Between them
there is an intermediate tank, which works as a buffer, allowing the machine to consume
at a higher or lower rate than the output rate of the reactor. This is crucial, as different
products have different consumption levels, which makes the bottleneck shifting between
the two stages. On the other hand, changing production rates or setting up products involves
important costs, due to wear and stability issues. It is thus desirable to use the tank to its
limits, in order to make the most of production cycles, while rate and product changes are
minimized.

Nevertheless, the devised plans for this system should not consider the physical limits
of the tank, but more constrained levels, so that there is some slack to face disturbances and
process variability. The latter include variations in production and consumption. Distur-
bances regard any type of disruption that has a beginning and an end (transitory change).
In this study, we consider failures on both resources (from the two production stages),
which will block their production for some time, hence the need for the slacks in the tank.
Keeping track of this tank level is therefore essential and that, in addition to the sequence-
dependent setup times and costs, motivates the full integration of lot-sizing and scheduling.
The planning process should be conducted for a 15 day horizon, so that production cycles
are effectively checked.

The sequence of products has to take into account not only the operational constraints
and objectives, but also the commitments to the final clients. Indeed, the system operates
in a make-to-order (MTO) policy and has certain due dates to take into account. However,
given that there is neither extra, nor idle time, backlog can be hard to avoid sometimes.
Figure 5.1 illustrates the system being approached.
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5.3. Mixed integer programming model

To model the system described in the previous section, we use the general lot-sizing and
scheduling problem (GLSP), proposed by Fleischmann and Meyr (1997), which is ex-
tended to capture the multi-stage setting. This formulation allows considering continuous
production amounts, tracing the tank level whenever rates or products change and keeping
a moderate number of periods. In terms of computational performance, it proves to be
superior to other similar models (see Camargo et al. (2012)).

We present the formulation in four parts. The first two concern the two production
stages, the third regards production rates variation and the last one the objective function.

5.3.1 First stage (reactor) and intermediate tank

Indices, sets and parameters:
t Index for time period (t ∈ [T ] = {1, . . . ,T })
s Index for time slot (s ∈ [S ] = {1, . . . ,S })
[S t] Set of slots s belonging to period t
capt Capacity of period t
Nmin Minimum slot length
α Material’s production yield
Vreac

max

(
Vreac

min

)
Reactor’s maximum (minimum) rate

Imat
0 Initial inventory of material

Imat
max

(
Imat
min

)
Upper (lower) limit on material stocked in the tank

Decision variables:
Ns Length of slot s
Xmat

s Output of the reactor in slot s
Imat

s Inventory of material in the tank at the end of slot s
Omat

s Output of material from the tank in slot s

∑
s∈[S t]

Ns = capt, t ∈ [T ] (5.1)

Ns ≥ Nmin, s ∈ [S ] (5.2)

α ·Vreac
min ·Ns ≤ Xmat

s ≤ α ·Vreac
max ·Ns, s ∈ [S ] (5.3)

Xmat
s + Imat

s−1 = Omat
s + Imat

s , s ∈ [S ] (5.4)

Imat
min ≤ Imat

s ≤ Imat
max, s ∈ [S ] (5.5)

The production slots within each time period are of variable length. On the other hand,
the period time grid is fixed. This two-level time grid is quite advantageous to address
simultaneously the features of the operational process and the requirements of external de-
mand. Constraints (5.1) ensure that the time slots respect the capacity of each period. In
addition, each of these slots has a minimum length (constraints (5.2)), so as to account for
a stabilization period after a possible change in rates or products. It should be highlighted
that a common time grid is used for both production stages (i.e. the slot boundaries cross
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over the reactor and machine time grids). The defined time slots are then used to deter-
mine reactor’s production, which also depends on its (maximum and minimum) rates and
a yield factor – see (5.3). The material balance is established by (5.4), whereas its storage
limitations are enforced by (5.5).

5.3.2 Second stage (machine)

Indices and parameters:
j,k Indices for products ( j,k ∈ [K] = {1, . . . ,K})
slk j Product lost in a changeover from product k to j
stk j Time lost in a changeover from product k to j
b j Percentage of material in product j
p j Minimum processing time of product j
Vmach

min Machine’s minimum rate (relative to its maximum)
M j Upper bound on the lot size of product j
m j Minimum lot size of product j
d jt Demand for product j in period t
vl Variable production loss

Y j0

1 if the machine is set up for product j at the beginning of the planning horizon,

0 otherwise.
I+
0 Initial inventory of of product j

I−0 Initial backlog of of product j
Decision variables:

Y js

1 if the machine is set up for product j in slot s,

0 otherwise.

Zk js

1 if a changeover from product k to j takes place at the beginning of slot s,

0 otherwise.
X js Quantity of product j produced in slot s
I+

j,t Inventory of product j at the end of period t
I−j,t Quantity of product j backlogged at the end of period t

∑
j

b j ·

X js +
∑

k

slk j ·Zk js

 = Omat
s , s ∈ [S ] (5.6)

Vmach
min ·Ns ≤

∑
j

p j ·X js +
∑

k

stk j ·Zk js

 ≤ Ns, s ∈ [S ] (5.7)

(1− vl) ·
∑

s∈[S t]

X js + I+
j,t−1− I−j,t−1 = d jt + I+

jt − I−jt, j ∈ [K], t ∈ [T ] (5.8)

X js ≤ M j ·Y js, j ∈ [K], s ∈ [S ] (5.9)∑
j

Y js = 1, s ∈ [S ] (5.10)



5.3. Mixed integer programming model 115

∑
k

Z jks = Y j,s−1, j ∈ [K], s ∈ [S ] (5.11)∑
k

Zk js = Y js, j ∈ [K], s ∈ [S ] (5.12)

The production of final products is linked to material consumption with constraints
(5.6) and constrained by machine’s minimum and maximum rates with (5.7). Note the
sequence-dependent setup times and losses in these equations. Indeed, during change overs
the machine keeps pulling material from the tank. The products processed on this stage
might incorporate other materials rather than that stocked in the tank (e.g. different types
of pulp, in the pulp and paper industry). Parameter b j gives enough flexibility to represent
different environments. The processing time p j used in (5.7) corresponds to machine’s
maximum rate. Therefore, the right-hand side includes only the length of the slot, while
the left-hand side multiplies it by the minimum rate (as a percentage of the maximum).
Constraints (5.8) model the demand satisfaction, where production suffers an additional
loss (beyond setup losses), which depends on the amount produced. Constraints (5.9) link
production to setups, (5.10) enforce only one product per period, and (5.11) and (5.12) link
setups to changeovers, guaranteeing the consistency of the production sequence throughout
the horizon.

5.3.3 Rates variation

Parameters:
Vreac

0 Rate of the reactor at the beginning of the planning horizon
Vmach

0 Rate of the machine at the beginning of the planning horizon
Decision variables:
Vreac

s Rate of the reactor in slot s
δreac+

s
(
δreac−

s
)

Positive (negative) variation of reactor’s rate in slot s
Vmach

s Rate of the machine in slot s
δmach+

s

(
δmach−

s

)
Positive (negative) variation of machine’s rate in slot s

Xmat
s = α ·Vreac

s ·Ns, s ∈ [S ] (5.13)

Vreac
s −Vreac

s−1 = δreac+
s −δreac−

s , s ∈ [S ] (5.14)∑
j

p j ·X js +
∑

k

stk j ·Zk js

 = Vmach
s ·Ns, s ∈ [S ] (5.15)

Vmach
s −Vmach

s−1 = δmach+
s −δmach−

s , s ∈ [S ] (5.16)

To measure rates variation (δreac+
s , δreac−

s , δmach+
s and δmach−

s ), the implicit formulation
in equations (5.3) and (5.7) is not sufficient. Explicit decision variables (Vreac

s and Vmach
s )

are needed. However, those equations become non-linear, since the explicit rate variables
are multiplied by slots’ lengths – see constraints (5.13) and (5.15). This issue has to be
addressed by the solution method (see next section).
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5.3.4 Objective function

Parameters:
bc Backlog cost per unit and period
sck j Setup cost of changing from product k to j
rc Cost of changing reactor’s production rate
mc Cost of changing machine’s production rate
po Benefit (negative cost) of producing final products

min
∑

j

∑
t

bc · I−jt +
∑

j

∑
k

∑
s

sck j ·Zk js +
∑

s

rc ·
(
δreac+

s +δreac−
s

)
+

∑
s

mc ·
(
δmach+

s +δmach−
s

)
−

∑
j

∑
s

po ·X js

(5.17)

The objective is to minimize a cost function which comprises the orders backlog costs,
machine sequence-dependent setup costs and penalties for changing production rates (which
cause wear to equipment and break plant’s stability in the reactor and machine). In addition,
the maximization of the plant’s output is promoted with a negative term. This last criteria
seeks to make the most of installed (capital intensive) equipment, reducing the industrial
cost per product unit.

5.4. Solution method: VND-LP

The problem formulated in the previous section has both binary and continuous variables
and is further complicated by nonlinearity (the multiplication of the slots’ lengths by pro-
duction rates). Given that for large real-world instances exact solvers fail to produce good
quality solutions within reasonable time, even for a linearized version of the model, we rely
on heuristic methods.

The solution method is based on that proposed by Figueira et al. (2013b). We combine
a metaheuristic which focuses on the binary variables and an exact solver for the contin-
uous part. The metaheuristic thus iterates through different setup patterns (the solution
representation, consisting only of the setup and changeover variables) and for each pattern
(each solution visited), it calls the exact solver to decode the pattern into a final plan. To
avoid the nonlinearity of this problem, the decoding is performed in two steps:

1. the linear programming (LP) solver is called without the rates variation part – equa-
tions (5.13)-(5.16);

2. the rates variation part is added to the model, the slots’ lengths Ns are fixed (to the
values obtained in step 1) and it is solved again.

This decoding procedure is more expensive than that of Figueira et al. (2013b), but also
more accurate. Nevertheless, the number of solutions visited will be reduced. Two other
factors will also contribute to this reduction. First, simulation will consume additional time.
Second, the use of the dual reoptimization procedure will no longer be possible, since the



5.5. Discrete-event simulation model 117

VND

Decoder

Solver

Optimization Algorithm

LP

setup pattern

Figure 5.2: Optimization algorithm: the VND iterates through different setup patterns,
whereas an exact solver is called to optimize the continuous variables of a linear program.

solution of the analytical part may worsen, even for better (more robust) plans. Therefore,
the perturbation of the original variable neighbourhood search (VNS) is discarded here and
the method remains a variable neighbourhood descent (VND). This method is still able to
escape from local optima, since it alternates between different neighbourhood structures.
Figure 5.2 exhibits the main blocks of the algorithm.

5.5. Discrete-event simulation model

The analytical model previously presented does not account for process variability or dis-
turbances, since all the parameters are deterministic. These stochastic elements are ad-
dressed now in a simulation model, which is used to analyse the dynamics of the imple-
mentation of production plans. These dynamics, mainly those with respect to disturbances,
cannot be properly evaluated with (static) Monte Carlo simulations. Therefore, we chose
to build a dynamic simulation model.

In dynamic models, time can be represented in a continuous or discrete manner. The
process industries are characterized by continuous materials, whose state changes continu-
ously along the time, especially in continuous systems like the one studied here. However,
at the level of detail required (and desirable) by the planning process, the system can be
seen as changing its state at discrete points in time and hence, modelled by a discrete-event
approach.

In our model, events can be production orders to be executed, disturbances beginning
or ending, units changing their rate or processes changing their yield. These events then
modify the state of the production units (entities), which is accomplished when the produc-
tion task (activity) is executed. The state of an entity may consist of a given quantity of a
specific product being produced, a specified production rate or simply a certain inventory
level.

A general overview of the simulation process is provided in Figure 5.3. After, reading
the plan, production orders (each corresponding to a time slot of the optimization model)
are given one at a time, first to the machine and then to the reactor. During this time, dis-
turbances may appear in the machine. In that case, the completion time of the current slot
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Read production plan

Figure 5.3: Simulation process flowchart.

will be extended, since the amounts to be produced are fixed, to properly satisfy demand.
The operation of the reactor uses those time periods (in order to keep synchronization), for
which given production rates are to be followed. Disturbances may also arise in the reac-
tor. In addition, both the production and consumption of the material that flows between
the two production units is subject to variability. Therefore, each period was divided into
sub-periods, independently of the time slots, where those stochastic parameters assume par-
ticular values. At the end of each iteration, the tank levels are computed for every elapsed
event. Thus, whenever a disturbance started or ended or a stochastic parameter changed its
value, the tank level is evaluated. In this way, we make sure that any tank violation is taken
into account. These violations, along with all the objectives that may have been impacted
(such as production and backlog), are then returned at the end of the simulation.

To model the variability and disturbances, the following parameters were used:

• reactor’s production yield and machine’s consumption rate (αi and b ji, respectively
– where i is the sub-period);

• time between failures and time to repair of the reactor and machine (tb f reac, ttrreac,
tb f mach and ttrmach, respectively).

In the presence of stochastic parameters, the simulation model has to run multiple times
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and the results have to be aggregated, so that one can have a certain confidence on them.
The confidence level is naturally correlated to the number of simulation replications. How-
ever, there are techniques to reduce the variance of results without increasing the num-
ber of simulations (see Subsection 5.6.4). This is particularly important for simulation-
optimization algorithms, where the simulation is executed iteratively.

The model was implemented in C++, since it was of moderate complexity. A general
purpose programming language like C++ allows for a very high computational perfor-
mance, when compared to commercial simulation packages. In addition, it gives more
flexibility in the model implementation. For instance, one has control over the sampling
from the distributions, hence enabling the application of variance reduction techniques.

5.6. Hybridizing simulation and optimization

5.6.1 Simulation purpose

The simulation model can be hybridized with optimization in different ways. The main S-
O approaches of the literature were identified and classified by Figueira and Almada-Lobo
(2014). The most distinctive aspect is the purpose of simulation in the whole procedure.
The authors divided this dimension in four categories:

• Evaluation Function (EF), where simulation evaluates every single solution visited
by an optimization algorithm;

• Surrogate Model Construction (SMC), where simulation evaluations are used to cre-
ate a surrogate (analytical) model;

• Analytical Model Enhancement (AME), where simulation feedback is applied on the
refinement or extension of a problem-specific analytical model;

• Solution Generation (SG), where simulation computes part of the solution, using
optimization for other computations.

The selection of the appropriate approach strongly depends on the characteristics of
the problem. For small solution spaces and inexpensive simulations, EF should be the
right choice, since it will always rely on more accurate simulation evaluations to select a
solution. As we move to the other approaches, the number of simulations (and hence the
computational time) tends to decrease and the consideration of assumptions tends to grow.
SMC assumes the landscape of solutions can be represented by some analytical model,
AME assumes that model is known a priori (but needs some refinements) and SG that the
model is completely known.

In our case the analytical model needs the feedback from simulation to generate robust
plans, therefore SG is not suitable. On the other hand, an EF design would result in an
extremely large amount of simulations. In spite of the simulation runs being very fast, they
would be called hundreds of thousands of times in real world instances. Moreover, using
simulation as the evaluation function of the VND (see Figure 5.4a) would give feedback just
to the optimization of the setup patterns. Indeed, in order to consider stochastic elements
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Figure 5.4: Using simulation as the evaluation function of: (a) the VND; (b) the whole
optimization process.

in the optimization of the continuous variables, simulation has to be incorporated in that
optimization (see Figure 5.4b). The issue of this second approach is that all the linear
relationships between input and output variables are lost and the efficient LP solver can
no longer be applied, being replaced by a heuristic. The same would happen with SMC
methods, which in addition would not use the problem-specific neighbourhood structures
of the VND.

Therefore, enhancing the linear programming model with the simulation’s feedback
seems to be the most appropriate approach. One key aspect of these AME methods is
the choice of the parameters to be refined in the analytical model. Indeed, they do not
have necessarily to correspond to the stochastic parameters listed in the previous section,
especially because there is no direct correspondence of the TBFs and TTRs in the analytical
model. The impact of these disturbances (and of the process variability) will be primarily
on the tank level. Only if it reaches one of the limits, then it will force the production
units to change their rates (or even to stop). Thus, we consider slacks in the tank, so that
the system is able to accommodate some variability and disturbances, without the need for
drastic actions. The consideration of slacks is indeed an industrial practice. However, here
those slacks will be optimized with the simulation’s feedback.

5.6.2 Refinement process

Depending on the problem and on the parameters to be refined, the refinement process can
be more or less complex. For instance, Albey and Bilge (2011) approached a deterministic,
yet complex, production system and used simulation to check if the capacity considered in
the analytical model was appropriate. In this case the refinement is straightforward: the
capacity is changed to match the simulation result.

Stochastic problems usually require a more sophisticated process. Almeder et al.
(2009) aggregated the simulation results of multiple replications not by average, but by
quantiles of 50, 70 and 90%. The 90%-quantile resulted better for most of the instances,
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but in a few of them the 70% appeared as more suitable. The S-O algorithm was not able
however to alternate between these values to evaluate the best refinement strategy. The
quantile was a fixed input parameter.

Jung et al. (2004) on the other hand devised an outer optimization layer, which applied
a gradient search procedure to refine the safety stock levels used in the analytical model.
The refinement of the safety stocks of the different products and facilities was performed
in an aggregated way, i.e. all the parameters were changed simultaneously in a specific
direction (either increasing or decreasing).

In our case, we apply a heuristic process which refines the upper and lower tank slacks
independently. According to the violations observed in the simulation, one of the slacks
may increase while the other decreases. In this way, the slacks correctly weigh the vari-
ability and disturbances occurring up and downstream.

5.6.3 S-O structures

The refinement process may be executed at different moments. Three alternatives are here
identified (illustrated in Figure 5.5):

• refining at the beginning of the optimization (a pure sequential procedure);

• refining at the end of the optimization, in an iterative process;

• refining during optimization (progressive refinement).

The first structure is the most simple. Once the simulation process (including multiple
replications) is finished, it is not called again, giving way to the optimization. This proce-
dure is computationally less expensive than the other approaches. However, if the optimal
slacks are dependent on the solution (namely the production sequence), the sequential ap-
proach may not be effective. In that case either the iterative or the progressive methods
would be more suitable. The latter seeks to save computational time by performing simul-
taneously the convergence to a solution and the refinement of the analytical model.

5.6.4 Variance reduction

In order to increase the confidence on the simulation results without increasing the number
of simulations (which results in higher computational effort), variance reduction (VR) tech-
niques are applied. We combine here two of these techniques: Latin hypercube sampling
(LHS) (McKay et al., 2000) and antithetic variates (AV) (Hammersley and Morton, 1956).

The first technique consists of defining n strata for each of the m stochastic parameters,
where all the strata have the same probability of occurrence. Then, n scenarios are gener-
ated, each sampling from a distinct stratum of each parameter. For instance, for n = 2 and
m = 3, two scenarios could be created as follows:

1. sampling from the second, first and second strata of the first, second and third pa-
rameters, respectively;
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Figure 5.5: Using simulation to refine the LP, giving feedback to the whole optimization
process: (a) at the beginning; (b) iteratively; (c) progressively.

2. sampling from the first, second and first strata of the first, second and third parame-
ters, respectively.

In this way we ensure the scenarios are well distributed in the probability space and the
sample is more representative. LHS has the advantage over the standard stratified sampling
of resulting in only n scenarios (rather than n ·m, if all the combinations were considered).

On top of LHS, we apply AV, which establishes the use of symmetric random seeds in
the sampling process. This means that for every sample path obtained, its antithetic path is
also considered, thus requiring the definition of an even number of strata in LHS.

5.7. Case study and preliminary experiments

This section describes a case study where the proposed S-O method is applied. First, the
processing of the input data is presented and then, the results of preliminary experiments
are exposed. These experiments seek to perform a first assessment of the S-O method
proposed.

The case study is conducted on an integrated pulp and paper mill. These plants com-
prise multiple production stages and a complex production flow structure. We focus on the
two most critical production resources: the pulp digester and the paper machine, as well as
the intermediate tank in between. This simplified system was indeed the inspiration of the
problem described in Section 5.2. Both production units are subject to disturbances and the
process is characterized by high variability.

We started by collecting data from the plant regarding all the uncertainty in the process.
Then, different probability distributions were approximated to the data. The procedure
consisted of the following steps:

1. general characterizing the underlying distribution, by computing summary descrip-
tive statistics and histograms;
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Figure 5.6: Approximation of probability distributions to real data of process variability
and disturbances.

2. selecting a set of candidate distributions and fitting them to the data using the method
of maximum likelihood;

3. determining which of the fitted distributions best represents the data using Kolmogorov-
Smirnov tests.

The final probability distributions and the histograms of the original data are illustrated
in Figure 5.6. These distributions were then introduced in the simulation model and the
average values (regarding process variability) were used in the analytical model.

In order to have a first validation of the effectiveness of the S-O method in generating
robust plans, a comparison is conducted relative to a non-proactive approach. Figure 5.7
shows the performance of both methods in the main KPIs. By sacrificing particular objec-
tives, such as the orders backlog, the S-O algorithm is able to generate plans that in the
simulation result in less over and underflows of the tank level. These violations in practice
would imply the adaptation of the plan, particularly the execution of abrupt changes to pro-
duction rates and consequently loss of productivity. Therefore, the penalization given to
the tank violation (in the objective function) corresponds to those adaptation costs. Over-
all, the method was able to improve by 89% the tank violation. Nevertheless, it would be
important to extend this computational study to more production settings, in order to obtain
a better understanding of the impact of the S-O method.

The production plan used in these experiments is illustrated in Figure 5.8. The non-
proactive approach does not consider slacks in the tank level and hence takes advantage
of the wider limits to contract the production cycle. The S-O method on the other hand,
extends the grades cycle, resulting in a smoother variation of the tank level, which does
not approach the limits. Operating with these slacks in the tank level, the system is more
prepared to accommodate possible disturbances that may occur either upstream (in the
digester) or downstream (in the paper machine).

5.8. Conclusions and further research

Simulation-optimization appears to be a very promising tool to approach planning and
scheduling problems subject to process variability and disturbances. Discrete-event sim-
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ulation is able to accurately model these different types of uncertainty. Moreover, this is
performed with no mathematical sophistication and hence the computational time does not
grow exponentially.

Nevertheless, the selection of an appropriate S-O design can have a huge impact on the
efficiency of the methods. Having an existing analytical model that represents the system
with reasonable detail is crucial for taking advantage of the problem structure and executing
simulation only to refine key parameters (instead of using it as a time-consuming evaluation
function).

Our preliminary experiments validated the effectiveness of the proposed S-O method
in generating robust plans. Still, there is a long research path on proactive planning for
continuous systems. First, it would be important to conduct a more comprehensive study,
considering different production settings and evaluating the impact of the S-O method. The
method should also be compared to proactive approaches that define tank slacks a priori.

Furthermore, the particular S-O design should be benchmarked against the other S-O
variants identified, namely those refining the slacks only at the beginning or in an iterative
way. The advantage of one approach over the others may depend on the problem settings.
Therefore, the features of the problem that favour a given strategy should also be identified.

Finally, statistical selection methods can be explored, in order to validate the search
of the optimization algorithm and possibly reducing the number of simulations needed.
Additional variance reduction techniques may also help enhancing further this aspect.

Bibliography

Erinç Albey and Ümit Bilge. A hierarchical approach to fms planning and control with
simulation-based capacity anticipation. International Journal of Production Research,
49(11):3319–3342, 2011.

Christian Almeder, Margaretha Preusser, and Richard Hartl. Simulation and optimization
of supply chains: alternative or complementary approaches? OR Spectrum, 31:95–119,
2009.

J Balasubramanian and IE Grossmann. A novel branch and bound algorithm for scheduling
flowshop plants with uncertain processing times. Computers & chemical engineering,
26(1):41–57, 2002.

V. Camargo, F. Toledo, and B. Almada-Lobo. Three time-based scale formulations for the
two-stage lot sizing and scheduling in process industries. Journal of the Operational
Research Society, 63:1613–1630, 2012.

Pedro M Castro, Adrián M Aguirre, Luis J Zeballos, and Carlos A Méndez. Hybrid math-
ematical programming discrete-event simulation approach for large-scale scheduling
problems. Industrial & Engineering Chemistry Research, 50(18):10665–10680, 2011.

Yunfei Chu, Fengqi You, John M Wassick, and Anshul Agarwal. Integrated planning and
scheduling under production uncertainties: Bi-level model formulation and hybrid solu-
tion method. Computers & Chemical Engineering, 2014.



126 Bibliography

Sebastian Engell, Andreas Märkert, Guido Sand, and Rüdiger Schultz. Aggregated
scheduling of a multiproduct batch plant by two-stage stochastic integer programming.
Optimization and Engineering, 5(3):335–359, 2004.

Muge Erdirik-Dogan and Ignacio E Grossmann. Simultaneous planning and scheduling of
single-stage multi-product continuous plants with parallel lines. Computers & Chemical
Engineering, 32(11):2664–2683, 2008.

G. Figueira and B. Almada-Lobo. Hybrid simulation–optimization methods: A taxonomy
and discussion. Simulation Modelling Practice and Theory, 46:118–134, 2014.

Gonçalo Figueira, Marcos Furlan, and Bernardo Almada-Lobo. Predictive production plan-
ning in an integrated pulp and paper mill. In Manufacturing Modelling, Management,
and Control, volume 7, pages 371–376, 2013a.

Gonçalo Figueira, Maristela Oliveira Santos, and Bernardo Almada-Lobo. A hybrid vns
approach for the short-term production planning and scheduling: A case study in the
pulp and paper industry. Computers & Operations Research, 40(7):1804–1818, 2013b.

B. Fleischmann and H. Meyr. The general lotsizing and scheduling problem. OR Spectrum,
19:11–21, 1997. ISSN 0171-6468.

J. M. Hammersley and K. W. Morton. A new monte carlo technique: antithetic variates.
Mathematical Proceedings of the Cambridge Philosophical Society, 52(03):449–475,
1956.

I. Harjunkoski, R. Nyström, and A. Horch. Integration of scheduling and control — theory
or practice? Computers & Chemical Engineering, 33(12):1909–1918, 2009.

Stacy L Janak, Xiaoxia Lin, and Christodoulos A Floudas. A new robust optimization
approach for scheduling under uncertainty: Ii. uncertainty with known probability dis-
tribution. Computers & chemical engineering, 31(3):171–195, 2007.

June Young Jung, Gary Blau, Joseph F. Pekny, Gintaras V. Reklaitis, and David Eversdyk.
A simulation based optimization approach to supply chain management under demand
uncertainty. Computers & Chemical Engineering, 28(10):2087–2106, 2004.

Anna Lindholm, Charlotta Johnsson, Nils-Hassan Quttineh, Helene Lidestam, Mathias
Henningsson, Joakim Wikner, Ou Tang, Nils-Petter Nytzén, and Krister Forsman. Hi-
erarchical scheduling and utility disturbance management in the process industry. In
Manufacturing Modelling, Management, and Control, volume 7, pages 140–145, 2013.

T. Majozi and X.X. Zhu. A combined fuzzy set theory and {MILP} approach in integra-
tion of planning and scheduling of batch plants—personnel evaluation and allocation.
Computers & Chemical Engineering, 29(9):2029 – 2047, 2005.

M. D. McKay, R. J. Beckman, and W. J. Conover. A comparison of three methods for
selecting values of input variables in the analysis of output from a computer code. Tech-
nometrics, 42(1):55–61, 2000. ISSN 0040-1706.



Bibliography 127

Kaushik Subramanian, Christos T Maravelias, and James B Rawlings. A state-space model
for chemical production scheduling. Computers & chemical engineering, 47:97–110,
2012.

Peter M Verderame and Christodoulos A Floudas. Integration of operational planning and
medium-term scheduling for large-scale industrial batch plants under demand and pro-
cessing time uncertainty. Industrial & Engineering Chemistry Research, 49(10):4948–
4965, 2010.

Martina Wittmann-Hohlbein and Efstratios N Pistikopoulos. Proactive scheduling of batch
processes by a combined robust optimization and multiparametric programming ap-
proach. AIChE Journal, 59(11):4184–4211, 2013.

Dan Wu and Marianthi Ierapetritou. Hierarchical approach for production planning and
scheduling under uncertainty. Chemical Engineering and Processing: Process Intensifi-
cation, 46(11):1129–1140, 2007.





Chapter 6

Conclusions and future work

This thesis approaches the operational production planning and scheduling of continuous
integrated pulp and paper mills. The work is driven by a case study from a P&P pro-
ducer. The research conducted in this thesis is divided in two main branches: reactive and
proactive planning. Chapters 2 and 3 are dedicated to the first branch. Here, problems are
formulated as deterministic and the focus is on obtaining good quality solutions in short
periods of time. Proactive planning on the other hand seeks to address uncertainty in or-
der to produce robust plans, which can accommodate variability and possible disturbances.
Given that the deterministic problems approached here are already very complex (exact
methods fail to provide reasonable solutions in feasible time), the promising combination
of simulation and optimization is studied, first in general and then in the specific context
of planning and scheduling in Chapters 4 and 5, respectively. The approaches developed
for reactive planning may also be proactive, in case they consider slacks. However, those
slacks would have to be defined a priori, not reflecting correctly the trade-off between op-
timality and robustness. Likewise, a proactive approach may be used in reactive planning,
but it would not be so effective (since it will need more computational time). The reactive
and proactive methods developed in this research may be adapted to other similar process
industries, especially those with continuous processes and shifting bottlenecks among pro-
duction resources. This chapter overviews the main results and contributions of the thesis
and pinpoints directions for ongoing and future research.

The PhD project starts by focusing on reactive approaches. All the production param-
eters are assumed to be deterministic, in order to maximize the efficiency of the methods.
Still, the models need to include the relevant features of the production process, such as
sequence-dependent setup times and costs, integration of multiple stages (to take into ac-
count shifting bottlenecks) and variable production rates. First, an efficient solution method
to tackle this complex problem is developed. The method consists of a variable neighbour-
hood search (VNS), hybridized with a linear programming solver and a specific heuristic
for the discrete speed rates. Starting with a constructive heuristic which devises a sim-
ple plan, the VNS is able to quickly improve the initial solution, searching alternately
in different neighbourhood structures, specifically designed for lot-sizing and scheduling
problems. The exact solver plays an essential role, since it efficiently addresses the contin-
uous variables (with the simplex method enhanced by the dual re-optimization technique).
Therefore, the method keeps its generality and optimality regarding continuous decisions,
while taking advantage of the problem structure for the combinatorial (harder) part of the
problem. When compared to Cplex, the method revealed a reasonable performance on the
smallest instances, with optimality gaps of 2 to 3%. On the largest (real world sized) in-
stances, the VNS clearly outperformed both Cplex and the original MIP-based heuristic
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and was able to find reasonable solutions much faster. The proposed method can be easily
adapted to approach other small bucket lot-sizing and scheduling problems (linear con-
straints are incorporated without any required modification), but will be especially relevant
for problems with independent continuous decisions (i.e., after the binary variables have
been fixed, continuous decisions still need to be optimized), such as the general lot-sizing
and scheduling problem (GLSP) and the proportional lot-sizing and scheduling problem
(PLSP). The method is a significant contribution to the literature, since not only it outper-
formed the existing approaches in that specific problem, but also contains novel ideas for
metaheuristics approaching these small-bucket problems.

The second objective of the thesis is the development of a decision support system
(DSS) to be used in practice. For that purpose, the mathematical model is completely re-
formulated. The main issue is the consideration of fixed campaigns. This is one of the
most important requirements, since the first campaigns to be produced have been previ-
ously optimized for the cutting stage. Moreover, it gives the DSS the ability to test manu-
ally devised campaigns or work as a hybrid (consider part of a manual plan and optimize
the remaining). The incorporation of this feature suggests the use of a continuous time
formulation where production slots can cross discrete time periods. In this way, one cam-
paign is represented by just one slot, thus avoiding the need to heuristically determine the
number of slots for each campaign. Other important industrial features include different
priority levels for orders, variable production rates in all units and scheduled stoppages.
The new formulation needs less binary variables for setups, but introduces additional ones
for the intersection of the time grids. Therefore, the adaptation of the proposed VNS is
not straightforward and hence, a MIP-based heuristic is applied. The method is wrapped
by pre- and post-processing steps, which essentially deal with the aggregation and disag-
gregation of production orders, and includes a post-optimization phase, where production
rates are smoothed. When compared to manual plans, the system’s plans have shown all
the desirable characteristics and proved to be superior in the most relevant KPIs. The DSS
is currently in function in the case study company. The main contribution of this DSS is
related to bridging the gap between research and practice, by bringing more insights from
the industry (in terms of operational issues), investigating the ability of the existing mod-
els in the literature to deal with those issues and showing how state-of-the-art models and
methods can be applied in practice. Moreover, it includes features which are essential for
reactive planning (and were not considered by the previous method), such as the possibility
of modelling stoppages (which can be used to characterize disturbance situations or sched-
uled maintenance) and fixing campaigns (indispensable for rolling-horizon frameworks).

From the aforementioned work two research papers have resulted:

• G. Figueira, M.O. Santos, B. Almada-Lobo. A hybrid VNS approach for the short-
term production planning and scheduling: A case study in the pulp and paper indus-
try. Computers & Operations Research, 40(70):1804–1818, 2013.

• G. Figueira, P. Amorim, L. Guimarães, M.A. Lopes, B. Almada-Lobo. A decision
support system for the operational production planning and scheduling of an inte-
grated pulp and paper mill. Submitted to Computers & Chemical Engineering, 2014.
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In the proactive perspective, simulation-optimization (S-O) methods appear to be promis-
ing. However, the existence of a a vast literature on these methods and the lack of a com-
prehensive classification motivated an in-depth study of this field. Most of the work on S-O
naturally results from two main disconnected communities, which contribute with differ-
ent methods and approaches. The Simulation community tends to rely more on simulation
models and hence uses them as evaluation (or fitness) functions of an optimization algo-
rithm, or at most to evaluate multiple solutions which serve to approximate a metamodel.
The Optimization community on the other hand is more willing to formulate a priori an-
alytical models which are specific of the problem, thus taking advantage of its structure.
Simulation is then used to enhance or complement those models. The purpose of simu-
lation is what distinguishes the main S-O approaches. The second key dimension is the
hierarchical structure that relates simulation with optimization. The matrix that results
from combining these two dimensions allows to put the main S-O methods in perspective,
which may help further understanding their differences and similarities, as well as identi-
fying possible designs not explored yet. Other two dimensions, more related to the search
design, also improve the comprehension of the different methods. The first (search method)
is indeed very close to the way the literature has been classifying S-O approaches, while
the second (search scheme) complements it by examining the alternation between the so-
lution and probability spaces. Exploring each of these dimensions, different S-O designs
are related to specific problem characteristics. The study thus contributes to the literature
with a taxonomy that contains key dimensions disregarded by previous classifications, gen-
eral guidelines concerning the use of S-O methods for different problems, insights into the
cross-fertilization of the ideas applied in distinct S-O methods and a standard for a better
communication in the S-O community.

The overview of S-O methods paves the way for an approach to proactive production
planning and scheduling. The main S-O designs are discussed in the context of these prob-
lems and a novel combination of simulation and optimization is proposed, where the ana-
lytical model is refined during the optimization process. The analytical model is determin-
istic, but considers the main features of the problem, like the previous reactive approaches.
Simulation is then responsible for evaluating how plans behave in a stochastic environ-
ment, subject to process variability and disturbances. The latter are accurately modelled
with events for their start and end. This discrete-event simulation model provides feedback
on the slacks used in the intermediate tank, so that the optimization algorithm is able to
generate good quality and robust solutions. The main contribution of this chapter is an S-O
framework that is applicable to a range of planning and scheduling problems, especially in
multi-stage scenarios, where the bottleneck may shift between stages.

The study on S-O has resulted in two research articles and in two proceedings:

• G. Figueira, B. Almada-Lobo. Hybrid simulation–optimization methods: A taxon-
omy and discussion. Simulation Modelling Practice and Theory, 46:118–134, 2014.

• G. Figueira, B. Almada-Lobo. Simulation-optimization for planning and scheduling
of two-stage continuous systems subject to variability and disturbances. Working
paper, 2014.
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• G. Figueira, B. Almada-Lobo. Robust Production Planning and Scheduling of a Pulp
Digester and a Paper Machine. Computer Aided Chemical Engineering, 33:499-504,
2014.

• G. Figueira, M. Furlan, B. Almada-Lobo. Predictive production planning in an inte-
grated pulp and paper mill. IFAC Proceedings Conference on Manufacturing Mod-
elling, Management, and Control, 371–376, 2014.

Ongoing research is comparing the performance of the proposed S-O method to other
variants, which call simulation at different points in the algorithm. Running simulation only
at the beginning can be more straightforward and efficient. However, the proper values of
the model’s parameters to be refined (in this case, the tank slacks) may depend on the
solution being simulated. Therefore, the values obtained with the initial solution will not
be valid for the final one. An iterative procedure should be able to address that issue, but
can be time consuming. The progressive refinement strategy aims at combining the best
of both worlds, converging to a solution with increasing model’s accuracy. Nevertheless,
its effectiveness should be validated by comparing to the aforementioned alternatives using
different problem settings. The features of the problem that favour a given strategy should
also be identified. In addition, statistical selection methods should be applied, in order to
validate search moves and possibly reducing the number of simulations.

With respect to reactive approaches, the comprehensive formulation proposed here,
when approached with the MIP-based heuristic, is already providing solutions that are good
enough for practice. Still, there is a long way to go until a reasonable optimality gap can be
achieved. Indeed, even the linear relaxation is problematic for current commercial solvers.
The VNS proposed could not be applied directly, due to the additional binary variables that
emerged from practical requirements. Therefore, it would be necessary to include in the
VNS a heuristic to deal with that issue or adapt the MIP-based heuristic to incorporate some
of the ideas of the VNS, such as adding/removing campaigns to/from certain positions. On
the other hand, the formulation may still be strengthened with additional valid inequalities
or reformulations. In addition, the model can still be enhanced with respect to reactive
planning. In a serious disturbance situation, the fixed campaigns may no longer be hard
constraints. Reactive planning should then weigh the cost of adapting the original plan to
converge the system towards recommended operating levels.

Finally, the coordination of proactive and reactive approaches is also a relevant subject
for future research. Determining the periodicity or the events that should trigger reac-
tive approaches and whether there is enough time to properly look at preventive issues are
important questions to be investigated. The trade-off between solution quality and compu-
tational time is always present, but it is also constantly evolving over time.
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