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“Light thinks it travels faster than anything but it is wrong.  

No matter how fast light travels, it finds the darkness has 

always got there first, and is waiting for it.” 

Terry Pratchett 

 

“Yehi 'Or! (Let there be light!)” 

The Book of Genesis 1:3 
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Abstract 

Transportation systems are vital in modern societies as they represent one of the most 

important means to achieve both social and economic development on a more than ever global 

world. Presently a fast, safe, efficient and, if possible, environmentally friendly mobility of 

people and goods is paramount. It is in this context that the high-speed railway systems arises 

as one of the most interesting alternatives to other means of transportation, explaining its rapid 

expansion across the globe in the last decades. 

Bearing in mind the importance of a safe and reliable high-speed railway network it was 

decided that the focus of this thesis should be directed to the development of a probabilistic 

methodology that enables the accurate safety assessment of short span railway bridges. This 

would complement most of the works done on this field to this date (that have adopted a 

deterministic approach) and would help understanding the effects of the intrinsic variability of 

parameters related to the train, track and bridge parameters on the dynamic behaviour of the 

system. 

A review of the state of the art regarding the dynamics of railway bridges is presented, with 

particular attention given to the resonance phenomenon due to its significance to small and 

medium span bridges. Excessive accelerations have caused several problems to short span 

railway bridges within the European high-speed railway network and it is important to 

understand the advantages, drawbacks and limitations of the different methods used to assess 

the dynamic response of railway bridges. Additionally, it is important to review the limit states 

prescribed by the current European standards and understand their origin to evaluate the 

adequacy of these proposals. 

Different probabilistic approaches were analysed and, taking into account the problem being 

studied, it became evident that the use of simulation techniques would be the most adequate 

approach. Two different simulation methods, namely the Monte Carlo and the Latin 

Hypercube, are combined with two different procedures to enhance the efficiency of the 

assessment. One of the methods is a tail modelling approach based on the extreme value theory 



  

 

 

that uses adequate functions to model the tail of the obtained distribution. The other one is an 

Enhanced Simulation procedure which uses an approximation procedure based on the estimates 

of the failure probabilities at moderate levels for the prediction of the far tail failure 

probabilities by extrapolation. 

To test the efficiency and accuracy of the different methodologies that are proposed a case 

study bridge was selected based on carefully selected range of potential solutions and taking 

into consideration the existing bridge portfolio on the current high-speed railway network. A 

ballasted filler beam bridge composed by six simply supported spans of 12 m each was selected 

and its behaviour was analysed for the crossing of a TGV-Double train. Several modelling 

particularities, including the complexity of the model used for both the train and the track, the 

consideration of train-bridge interaction and the existence of track irregularities are discussed in 

detail to understand their impact on the accurate assessment of the dynamic response of short 

span railway bridges. Additionally, a sensitivity analysis was carried out to determine the 

influence of each of the basic random variables on the dynamic behaviour of the train-bridge 

system. 

The proposed probabilistic methodologies are used to assess the safety of the case study 

bridge for two different criteria: the running safety of trains due to loss of contact between the 

wheel and the rail and the track instability due to excessive deck vibrations. The use of these 

criteria provide examples of limit state functions with varying degrees of complexity that test 

and validate their efficiency, robustness and reliability. Globally, the Enhanced Simulation 

procedure proved to be significantly more efficient than the tail modelling approach. It was also 

observed that if the response is not monotonic the use of Latin Hypercube simulation may 

affect the efficiency of safety assessment. Furthermore, it was demonstrated that if the 

computational costs can be reduced through a refined simulation method then the use of the 

Enhanced Simulation approach will results in even further benefits. The obtained results are 

extremely promising and indicate the feasibility of the application of this type of methodology 

more frequently due to the reasonable computational costs that are required.  



 

Resumo 

Os sistemas de transporte são vitais para as sociedades modernas uma vez que são um dos 

mais importantes meios de desenvolvimento económico e social num Mundo cada vez mais 

globalizado. Atualmente, a deslocação rápida, segura, eficiente e, se possível sustentável, de 

pessoas e bens assume extrema importância. Por estes motivos o transporte ferroviário de alta 

velocidade emergiu como uma alternativa muito apelativa aos meios de transporte mais 

tradicionais, explicando-se assim o seu rápido desenvolvimento nas últimas décadas. 

Tendo em consideração a relevância de uma rede ferroviária de alta velocidade segura e 

eficiente, a presente dissertação dedica a sua atenção ao desenvolvimento de uma metodologia 

probabilística que permita a avaliação da segurança de pontes ferroviárias de pequeno vão. Esta 

opção permite complementar o trabalho anteriormente desenvolvido nesta área (de carácter 

predominantemente determinístico) ajudando ainda a compreender os efeitos da variabilidade 

intrínseca aos parâmetros que condicionam a resposta do sistema ponte-via-comboio. 

Foi realizada uma revisão do estado da arte relativa ao comportamento dinâmico de pontes 

ferroviárias, dando-se particular atenção aos fenómenos ressonantes que são especialmente 

importantes para pontes de pequeno e médio vão. Diversos problemas devido a acelerações 

excessivas neste tipo de estruturas inseridas na rede ferroviária de alta velocidade Europeia 

foram reportados no passado. Deste modo é imperativo compreender-se as vantagens, 

desvantagens e limitações das diferentes metodologias utilizadas para aferir a resposta 

dinâmica das pontes. Adicionalmente, é importante rever os estados limites definidos nas 

normas Europeias e compreender a sua génese de modo a avaliar se são adequados. 

Foram analisadas diferentes metodologias probabilísticas para abordar o problema a estudar 

tendo-se concluído que a utilização de métodos de simulação seria a solução mais adequada. 

Deste modo, dois métodos de simulação, o método de Monte Carlo e o método do Hipercubo 

Latino, foram utilizados. Estes métodos foram combinados com dois procedimentos distintos 

de modo a melhorar a eficiência da avaliação da segurança. A primeira técnica baseia-se na 

teoria dos valores extremos e consiste na modelação das caudas das distribuições através de 



  

 

 

funções apropriadas. A outra metodologia é uma técnica de simulação melhorada que utiliza 

um ajuste para níveis de probabilidade mais moderados estimando a probabilidade de falha 

para os valores mais extremos por extrapolação.  

Atendendo às soluções tipicamente adotadas na rede ferroviária de alta velocidade Europeia 

para pontes de pequeno vão procedeu-se à seleção de um caso de estudo adequado de modo a 

permitir testar a eficiência e a precisão das metodologias propostas. Uma ponte mista do tipo 

“filler beam” com via balastrada e composta por seis tramos simplesmente apoiados de 12 m de 

vão foi escolhida. O comportamento dinâmico da ponte selecionada foi avaliada para a 

passagem de um comboio TGV duplo. De modo a melhorar a compreensão do impacto de 

alguns aspetos relacionados com a modelação numérica na avaliação rigorosa da resposta 

dinâmica, foram analisados e discutidos em detalhe aspetos específicos como o tipo de modelo 

a utilizar tanto para o comboio como para a via, a influência da interação entre comboio e ponte 

e ainda a importância de tomar em consideração a existência de irregularidades da via-férrea. 

Para além disso, foi ainda levada a cabo uma análise de sensibilidade de modo a avaliar a 

influência apresentada por cada uma das variáveis aleatórias no comportamento dinâmico do 

sistema comboio-ponte. 

As metodologias probabilísticas propostas são aplicadas na avaliação da segurança da ponte 

adotada como caso de estudo tendo a análise sido efetuada para dois critérios de segurança 

distintos: um relacionado com a segurança de circulação dos comboios devido à perda de 

contacto entre roda e carril e outro relacionado com a estabilidade da via associada a vibrações 

excessivas do tabuleiro da ponte. A utilização de dois estados limites distintos permite a 

avaliação de funções com graus de complexidade distintos, permitindo assim testar e validar a 

eficiência, robustez e precisão das metodologias propostas. Foi possível verificar que, no geral, 

a técnica de simulação melhorada é mais eficiente que a metodologia baseada na modelação 

das caudas das distribuições. Conclui-se ainda que caso a função estado limite não seja 

monotónica, a utilização do método do Hipercubo Latino pode afetar a eficiência da avaliação 

da segurança. Finalmente, foi ainda demonstrado que caso a utilização de uma técnica de 

simulação mais refinada torne possível obter ganhos de eficiência, a utilização da metodologia 

de simulação melhorada introduz ainda um maior benefício. Pode então dizer-se que os 

resultados obtidos são extremamente promissores e apontam para a viabilidade da utilização 

deste tipo de análise de uma forma mais recorrente tendo em consideração os custos 

computacionais bastante razoáveis que lhe estão associados. 
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Chapter 1 

Introduction 

1.1 Scope of the thesis 

Transportation systems play a key role in modern societies. Social and economic development 

depend on the fast and efficient mobility of both people and goods. In this context, the high-

speed railway system emerges as a reliable and appealing alternative to road-based means of 

transportation. The popularity and success of the high-speed railway network relies on two main 

aspects: firstly it is a safe and low energy means of transportation and secondly because of its 

high on-schedule rate. For this reason the high-speed railway network has developed and 

expanded rapidly across the world in the last decades. The first high-speed railway line was the 

Tōkaidō Shinkansen in Japan which connected Tokyo to Osaka and started operating in 1964, 

with trains running at 210 km/h. In Europe the first high-speed railway line started operating 

nearly 20 years later in 1981 in France, connecting Paris to Lyon, with a maximum speed of 260 

km/h. Since then the European high-speed railway network has been expanding continuously and 

the operation speed has also increased. Nowadays it is already well established in several 

countries such as France, Germany, Italy, Spain and the United Kingdom and is planned to keep 

expanding in the near future, as is shown in Figure 1.1 and Figure 1.2. 
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Figure 1.1 – European High-speed railway network [adapted from Institut d’aménagement et 

d’urbanisme - Île-de-France (2012)]. 

 

Driven by the socio-economic potential of a European high-speed railway network the 

European directive 69/48/EC was published in July 1996 and was the initial step to establish the 

basis of the operational standards within the network. This work finally culminated with the 

publication of the Technical Specifications for Interoperability [TSI (2002)]. This document 

aimed to harmonise the European standards regarding the several components of the network, 

the rolling stock, the infrastructure and operation, and defines the technical basis for operational 

safety within the European high-speed railway network. 

Amongst the several components of the railway network, railway bridges have been identified 

as some of the most sensitive elements. Despite this fact, due to the several constraints involved 

in the planning of high-speed railway networks, which can either be political, territorial or 

technical, it can be observed that most networks have a significant percentage of bridges and 

viaducts. In China and Japan, for example, the percentage of bridges and viaducts in several of 

the lines exceeds 75% of the total length [Ishibashi (2004); Dai et al (2010)]. The European 

reality is slightly different and the percentage of bridges or viaducts tends to be lower. However, 

if we analyse the case of HS2, which is the biggest planned high-speed development in Europe 

and previewed to begin in 2017 in the UK, in a line with a length of approximately 200 km  there 

will be around 350 bridges, which is still quite significant. 
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Figure 1.2 –High-speed railway network in numbers [http://www.uic.org/highspeed]. 

 

Therefore, the dynamic behaviour of railway bridges has been the research subject for many 

engineers since the introduction of railway as a means of transportation due to the importance of 

the dynamic effects caused by trains crossing over them. This is one of the most relevant aspects 

to take into account for a safe design and operation. However, the generalisation of high-speed 

railway lines over the last decades, the continuous demand for higher operational speed and the 

introduction of high-speed freight traffic has introduced new engineering challenges. Within the 

high-speed railway network the dynamic amplifications caused by trains moving over the bridges 

have proven to be the governing factor for bridge design. Recent research has shown that 

excessive vibrations have a higher tendency to occur for speeds above 200 km/h as a consequence 

of the resonance phenomena [ERRI (1999)]. This can lead to several problems, namely the 

instability of the ballast layer, the loss of contact between the wheel and the rail, the increase of 

fatigue-related damage or even affect the comfort of the passengers. The current European 

standards reflect the concern for excessive vibrations and all the consequences that arise from 

inadequate/inefficient design by imposing the application of a dynamic analysis in almost every 

case where the maximum line speed exceeds 200 km/h [EN1991-2 (2003)]. 

Short span railway bridges have been particularly identified as most critical as they are more 

prone to experiencing resonant effects. This has become evident following the reports of 

problems due to excessive vibrations in several bridges in the first European high-speed railway 

http://www.uic.org/highspeed
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line in France [Hoorpah (2005); Zacher & Baeβler (2009)], which required immediate repairs to 

the bridges shortly after construction to ensure they had adequate dynamic behaviour. Besides 

being very sensitive to resonance the dynamic response of short span railway bridges is also 

strongly affected by the non-structural environment, namely the track and train properties and 

even by the structural boundary conditions. All these aspects are particularly difficult to 

adequately quantify during the design stage and this was identified as one of the reasons why the 

initial design proved ineffective. 

It became evident that a better understanding of the resonance mechanisms was required in 

order to try to establish which parameters govern the dynamic response of these structures. The 

works of the European Railway Research Institute ERRI (1999), Majka & Hartnett (2008) and 

more recently of Doménech et al (2014) have tried to provide a response to this problem. Despite 

being extremely useful and providing some excellent insight into this issue none of the works 

has simultaneously considered the variability of the parameters related to the bridge, the track 

and the trains nor have they taken into consideration the existence of track irregularities in the 

analysis.  

It is also clear that the majority of the research studies on the assessment of the dynamic 

behaviour of railway bridges are deterministic in nature. The analysis is often limited to a specific 

scenario even when the existence of track irregularities is accounted for. This conventional 

approach uses fixed values to define the parameters, it may use a parametric analysis to assess 

the dynamic response and evaluates the results and safety based on deterministic limits defined 

in the standards which are the result of semi-probabilistic methods. In the few works that took 

the variability of parameters into account it is noticed that generally the variability is defined for 

only one of the components of the system and usually limited to a specific train speed.  

Taking advantage of the increasing computational capacity, the use of reliability based 

methodologies to assess the safety of railway bridges can be a reality in the present. This type of 

approach enables a more realistic assessment of the dynamic behaviour of the train-bridge system 

as it reflects the real variability of the parameters that affect the dynamic response. Furthermore, 

the output of this approach is a probability of a defined limit being reached (usually understood 

as a probability of failure) which allows the adjustment of the risk level according to the limit 

state being analysed and the problem that is being studied. This versatility is also reflected in the 

type of problems that can be addressed which are not limited to the design of new structures but 
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can also be applied to the assessment of existing structures when the lines are upgraded for higher 

speeds or heavier traffic. 

In the absence of sufficient studies and due to the existing knowledge gap in this topic the 

present thesis intends to propose an efficient, robust and accurate probabilistic methodology to 

assess the safety of short span railway bridges. 

 

1.2 Motivation and objectives 

The motivation for the research work presented in this thesis is the paucity of studies carried 

out to assess the safety of high-speed railway bridges using probabilistic approaches that enable 

the variability of the parameters that govern the dynamic behaviour of the train-bridge system to 

be taken into account. As previously highlighted, most of the work developed in this field is 

deterministic in nature and the analysis is often limited to a specific scenario even when the 

existence of track irregularities is accounted for. As a consequence, there has been some debate 

about the adequacy of some of the limits defined in the current European standards, particularly 

with respect to the bridge deck acceleration limits. 

Due to the importance of accurately assessing the response of the train-bridge system, both 

for a cost efficient and safe design and operation, the development of adequate and efficient 

probabilistic methodologies is of the utmost importance and is extremely useful for Engineers 

both at the design stage and for the assessment of existing structures. Therefore, the main 

objective of this thesis consists of developing a probabilistic methodology that enables an 

accurate and efficient assessment of the safety of short span high-speed railway bridges whilst 

accounting for the variability of parameters of the bridge, the track and the train as well as for 

the existence of track irregularities. 

The use of such an approach enables a more realistic analysis of the behaviour of the train-

bridge system which is translated into an increase in the accuracy of the assessment. Furthermore, 

this type of approach also enables the definition of the safety/risk level by an adequate selection 

of the probability threshold which can be adjusted according to the problem being studied. For 

this reason, and despite the fact that in this thesis the design stage view is adopted, this type of 

methodology can bring benefits to the analysis of either new or existing structures. 
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Additionally, the research presented in this thesis focus its attention on the short span high-

speed railway bridges due to the fact that these structures are particularly sensitive to resonant 

effects as well as to the influence of the non-structural elements (such as the track properties and 

the train-bridge interaction effects) on the response of the train-bridge system. It is also an 

objective of this study to identify the parameters that govern the dynamic behaviour of this type 

of bridges and how their intrinsic variability affects the safety of the train-bridge system. 

In order to achieve these objectives a case study bridge that is representative of the population 

of short span bridges in the European high-speed railway network is selected and different limit 

states are analysed using the proposed methodologies in order to check the accuracy, efficiency 

and robustness of the methodologies as well as analysing the feasibility of the application of these 

methods in the future.    

 

1.3 Layout of the thesis 

Taking into account the motivation and objectives of this thesis that have just been presented 

in the previous section, the contents of this thesis have been divided into seven chapters. A 

schematic representation of the contents of the thesis can be seen in Figure 1.3.  

 

 

Figure 1.3 – Schematic representation of the contents of the thesis. 
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The current chapter is the introduction and aims to present the scope and the reasons for the 

research work that has been developed as well as the objectives that were aimed to be achieved 

by this work. 

Chapter 2 is dedicated to the review of the state of the art regarding the dynamic behaviour of 

railway bridges, with special attention given to the resonance phenomenon which is particularly 

important for small to medium span bridges.  A review of the limit states defined in the European 

standards to ensure structural and traffic safety in the high-speed railway network is also 

presented along with a review of some of the most up to date research studies and 

recommendations about the safety topic. Due to its importance for an accurate assessment of the 

dynamic response of the train bridge-system a review of the most common numerical methods is 

presented and the main advantages and drawbacks of each methodology are discussed. 

As described in the previous section the main objective of the current thesis is the development 

of an efficient and accurate probabilistic methodology to assess the safety of railway bridges 

while accounting for the variability of the parameters that govern the dynamic behaviour of the 

train-bridge system. Therefore, it is key to review the basic concepts of structural reliability and 

this is presented in Chapter 3 along with some of the most usual methods used to address these 

problems in Civil Engineering. In this chapter the methodologies that are proposed to assess the 

safety of the train-bridge system are presented, the selection of the methodologies is justified and 

the main advantages and potential drawbacks are analysed. 

In Chapter 4 the case study bridge is presented along with the numerical models developed 

for both the bridge and the train. A literature review of the usual numerical models is presented 

and the options chosen in the modelling are explained. Furthermore, some particular aspects of 

the numerical models like the track length before the bridge, the generation of the track 

irregularities profiles and the track model are discussed in greater detail due to the importance 

that the adequate modelling of these elements has to the accurate assessment of the dynamic 

response of the train-bridge system. Finally, a discussion on the influence that each of the selected 

random variables has on the safety of the train-bridge system, based on the results obtained by a 

sensitivity analysis, is presented and the variables that govern the dynamic response of the train-

bridge system are identified.  

In Chapter 5 the proposed probabilistic methodologies are applied to the analysis of the track 

stability assessment. A preliminary assessment is carried out using a simpler approach (moving 

loads) and accounting only for the variability of bridge related parameters. The aim of this 



Chapter 1  

 

1.8 

preliminary analysis was to test the applicability of simulation methods to assess the safety of 

the train-bridge system and to identify the parameters that govern the dynamic behaviour. 

Afterwards, a safety assessment that accounts for the train-bridge interaction effects, including 

the variability of parameters related to the bridge, the track as well as for the existence of track 

irregularities is carried out and the obtained results are discussed and the efficiency and accuracy 

of the different methods is analysed.  

Chapter 6 is dedicated to the assessment of train running safety which is analysed by the 

evaluation of the wheel unloading rates. The two most efficient methodologies identified in 

Chapter 5 are applied and the obtained results and the efficiency of the different methodologies 

are again discussed, highlighting the advantages and drawbacks of each of methods. 

Finally, Chapter 7 presents the main conclusions and contributions from the work carried out 

in this thesis and discusses some lines of research that could be worthy of pursuing in the future 

in order to complement the work developed in this dissertation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



2.1 

Chapter 2 

Dynamic behaviour of railway bridges 

2.1 Introduction 

The introduction of high-speed railway has brought new challenges to Engineering, 

particularly to what concerns assessing and designing bridges, which have been identified as 

being some of the most sensitive elements of the network. The generalisation of high-speed 

railway lines over the last decades, the continuous demand for higher operational speed and the 

introduction of high-speed freight traffic represent some of these challenges.  

High-speed trains can travel at speeds greater than 300 km/h which introduce loads of higher 

intensity due to the significant increase of the dynamic component of the loading. The dynamic 

amplifications originated by trains moving over a bridge at such high speeds have proved to be 

the governing factor for bridge design in most cases. Short span railway bridges (spans up to 15 

m), in particular, have been reported as problematic since the introduction of the first high-speed 

lines in France due to excessive deck vibrations related to resonance effects [Hoorpah (2005); 

Zacher & Baeβler (2009)]. Research carried out by the European Rail Research Institute (ERRI) 

[ERRI (1999)] also indicates that excessive vibrations have a higher tendency to occur for speeds 

above 200 km/h, as a consequence of the resonance phenomena. This can lead to several 

problems, namely the instability of the ballast layer, the loss of contact between the wheel and 

the rail, the increase of fatigue-related damage or can even affect the comfort of the passengers. 
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Despite the small number of accidents that have occurred in the past in high-speed railway 

lines, the safety subject requires continuous research in order to guarantee a safe and reliable 

operation. The European Standards and the Technical Specifications for Interoperability (TSI) 

define several criteria for the rolling stock, the infrastructure and the operation in order to 

guarantee a safe design and adequate performance of railway bridges throughout their design 

life. 

In this Chapter the general aspects of the dynamic behaviour of railway bridges are analysed 

and discussed. Special attention is dedicated to the identification of the main aspects that 

influence the dynamic response of railway bridges and consideration is given to a particular 

response case that is critical for the safety of railway bridges: resonance. In addition to this, the 

numerical evaluation of the dynamic response is also addressed. The most typical approaches are 

presented, their advantages and drawbacks are discussed and the influence of each method on the 

accuracy of the obtained results is analysed. Lastly, an overview of the several limit states defined 

in the European standards, which aim to guarantee both the structural and operational safety of 

railway bridges in high-speed railway lines, is presented. 

 

2.2 Dynamic effects 

2.2.1 Overview 

Generally, the most relevant loads acting on railway bridges have a dynamic nature. This 

dynamic nature results from the crossing of vehicles over the bridge at a certain speed, 

transmitting their loads and inertial actions to the structure. At very low speeds the load effects 

still vary with time but are equivalent to those of a static loading. However, as the train speed 

increases the load effects also rise due to dynamic amplification and, consequently, the bridge 

response (stresses, displacements, etc.) also tends to increase. It is well known that the response 

of a structure subjected to dynamic loading can be significantly higher than the response obtained 

in the case of static loading. The works of Timoshenko & Young (1974), Frýba (1996), Yang et 

al (1997) and Xia et al (2003) are some of the most comprehensive studies on this topic. The 

increment of the dynamic loading compared to static effects corresponds to the dynamic 

amplification factor and depends on the following aspects [ERRI (1999)]: 
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 The response of the bridge to the loads travelling at a certain speed and the inertial 

response of the bridge; 

 The effects of regularly spaced groups of loads crossing the bridge at a certain speed, 

which can lead to resonance phenomena; 

 The effects of loads passing over track defects, the existence of track irregularities or 

wheel defects that lead to an increase of the loading due to impulsive effects.  

Therefore, it can be said that the dynamic response of the bridge results from a complex system 

composed by three different parts: the bridge, the track and the train. Regarding the bridge some 

of the most important properties are the span length, the mass, the natural frequencies (itself a 

function of the span, the stiffness, the mass and support conditions) and the damping [Frýba 

(1996)]. With respect to the track one of the most important properties are the track irregularities, 

in particular their profiles (shape and amplitude) and the existence of regularly spaced defects or 

isolated defects. Finally, the train properties with more influence on the dynamic behaviour of 

the system are the train speed, the spacing of regular groups of axles, the variation in magnitude 

of the axle loads and the length of the train (which influences the number of regularly repeated 

loads) [ERRI (1999)]. These conclusions were backed up by results obtained by Majka & 

Hartnett (2008) who analysed the effects of several parameters on the dynamic amplification of 

railway bridges. A parametric analysis was performed in order to identify the key variables 

influencing the dynamic response of railway bridges. The authors concluded that the speed of the 

train, train-to-bridge frequency, mass and span ratios, as well as bridge damping were the most 

significant variables. 

 

2.2.1.1 Influence of the mass and stiffness of the bridge  

Other authors [Rigueiro (2007); Figueiredo (2007)] have also carried out parametric studies 

to complement some of the findings reported by the ERRI and to identify how different 

parameters affect the dynamic response of railway bridges. These studies analysed, amongst 

other aspects, the influence of the mass of the structure and its stiffness on the dynamic response. 

It was concluded that the dynamic amplification is inversely proportional to the mass of the 

bridge. These results were expected as the increase of the mass leads to the increase of the inertial 

effects that directly oppose to the effects of the dynamic loading. However, the study showed 

that despite the acceleration levels are reduced for an increase of the bridge mass, the 
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displacement level is unaffected by this parameter (in terms of maximum value). As for the 

stiffness of the bridge, it affects mostly the displacements of the structure and being the relation 

also inversely proportional. It was also noted that the stiffness of the bridge only influences the 

level of displacement and does not affect the maximum acceleration value. 

 

2.2.1.2 Influence of the structural damping  

Damping is another key structural parameter for the dynamic response of the train-track-

bridge system. Structural damping occurs due to energy dissipation caused by the loss of energy 

during oscillation cycles. The damping mechanisms are extremely complex and may be due to a 

combination of several different aspects such as the energy dissipation due to the bending of 

materials, friction at the bearings or energy dissipation along structural boundaries, energy 

dissipation in the ballast layer and the opening and closing of cracks in materials (particularly in 

concrete structures). Due to the complexity of the damping phenomenon its exact quantification 

is extremely difficult to calculate and usually structural damping values are determined using the 

results obtained during experimental tests. When this is not possible, a lower bound value is 

selected based on the bridge material. An ERRI (1999) study concluded that the structural 

response at resonance is extremely dependant on the structural damping value. Since the dynamic 

response is inversely proportional to the structural damping it is important to adopt a lower bound 

value for the damping in order to ensure conservative results. This study also carried out several 

experimental tests on different bridges and bridge types in order to try to identify trends and the 

existence of correlation between damping and other structural parameters. However, the results 

were inconclusive due the limited amount of data gathered for each bridge type. Nevertheless, 

these results provide a useful insight on structural damping to be considered for railway bridges 

and allowed the definition of a lower bound to be used for different bridge types according to the 

span length, which has been reflected in EN1991-2 (2003). 

 

2.2.1.3 Influence of the numerical modelling  

When assessing the dynamic response of the train-track-bridge system another important 

aspect is the adequate modelling of each subsystem. Due to the advances in the processing 

capacity of computers the models used to model the bridge, the track and the train have been 

continuously increasing in complexity, enabling a more detailed simulation of the phenomena. 
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Despite the several modelling possibilities the model should be selected carefully in order to 

guarantee the best possible balance between the accuracy of the results and the computational 

costs. Dieleman & Fournol (2003) refer that in the particular case of short span bridges a 

significant difference between numerical and experimental results is often observed. The authors 

identified the following aspects as the main reasons for the observed differences: i) inaccurate 

definition of the span length; ii) inaccurate definition of the boundary conditions; iii) neglecting 

the track-bridge composite effect; iv) the use of moving loads to model the train; and v) 

neglecting the train-bridge interaction effects. Amongst the several aspects these authors focused 

mostly on the influence of the bearings stiffness on the dynamic response and were able to 

conclude that the use of elastic supports generally leads to satisfactory results. However, they 

point out that the bearings stiffness is a very difficult parameter to be accurately measure and 

represents a very sensitive modelling parameter. 

With respect to the modelling of the track several different proposals can be found in the 

literature. However, there are some aspects to distinguish between these models. Primarily they 

can be split according to the number of dimensions that are considered, dividing them into 2D 

[Calçada (1995); Zhai et al (2004)], 3D [Chellini & Salvatore (2007); Zabel & Brehm (2009)] 

and even 2.5D models, for some specific problems, such as the analysis of ground vibrations, 

[Costa (2011)]. This choice is mostly related with the type of analysis that is intended to be 

carried out. Another aspect concerns the track elements that are included in the numerical model, 

with some including all the track elements such as the rail, rail pads, sleepers, ballast and the 

existence of track irregularities, as well as the track-bridge composite effect [Calçada (1995); 

Zhai et al (2004)], whereas other authors choose fewer elements [Lou (2005)]. The latter models 

often neglect this effect but a parametric analysis carried out for a simply supported bridge with 

a small span shows the impact of the track-bridge composite effect on the dynamic response. The 

analysis considered both the higher and lower limits proposed in the European Standard EN1991-

2 (2003), which represent a loaded and an unloaded track, respectively, as well as a scenario 

where the composite effect is neglected. The results are presented in Figure 2.1 and clearly 

indicate that the variation from loaded to unloaded track has a small impact on the dynamic 

response. However, when the track-bridge composite effect is neglected significant changes can 

be observed and the dynamic amplification shows an important increase. 
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a) Maximum deck acceleration at ½ span. 

 

b) Maximum deck acceleration at ¾ span. 

Figure 2.1 – Example of the influence of the track-bridge composite effect on the dynamic response. 

 

Finally, regarding the train model a different range of options can also be found in the 

literature. There are generally two main types of formulation used to model trains: one is the 

multibody dynamics formulation [Pombo (2004); Kwark et al (2004)], very common in 

Mechanical Engineering, and the other is the Finite Elements Method, mostly used in Civil 

Engineering [Calçada (1995); Yang et al (2004)]. The numerical models can either be two 

dimensional [Zhai et al (2001); Goicolea et al (2004); Doménech & Museros (2011)] or three 
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dimensional [Kwark et al (2004); Xia & Zhang (2005); Zhang et al (2008); Lee & Kim (2010)]. 

The 2D models are the most commonly found in the literature and this can be explained by the 

fact that these are simpler, require less information about the train dynamic properties (which is 

often difficult to find) resulting in a model with fewer degrees of freedom and, consequently, 

with higher computational efficiency. However, the main drawback of these models is that they 

limit the analysis to a single direction (generally, the vertical direction). The 3D models are more 

versatile as they allow the analysis of all directions. These models tend to be more realistic and 

for some particular cases, namely when assessing passenger riding comfort, are necessary to 

obtain accurate results. The consequence of using more complex models is the increase of the 

computational time as the number of degrees of freedom that are taken into account is 

considerably larger. 

Given the importance of numerical modelling on the accuracy and efficiency of the dynamic 

analysis this topic is discussed in greater detail on Chapter 4. Several types of models that can be 

found in the literature are presented and the models used in this work are introduced and 

discussed. It is therefore important that the selection of the numerical model is carefully made 

and the degree of complexity to employ should always be related with the results that are to be 

analysed. This is to ensure that the computational costs of the analysis are feasible and adequate 

to the aim of the study. 

Besides the modelling of each subsystem their interaction is accounted for in the analysis is 

another aspect of great importance. Generically, this can be divided into two distinct groups: 

analysis that do or do not account for the train-bridge interaction. Due to the relevance of this 

topic for the present dissertation this is discussed in more depth on Section 2.3 where the different 

alternatives are presented and their advantages and disadvantages are analysed. 

 

2.2.2 Resonance 

A particular case of dynamic amplification, which is particularly relevant due to the 

consequences of its occurrence, is resonance. Bridge resonance occurs when the excitation 

frequency, λ, matches or is a multiple of a natural frequency, nj, of the bridge. The resonant speed, 

vres, can then be estimated by: 
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where d represents the spacing between regular groups of axles. 

Recent research has shown that excessive vibrations have a higher tendency to occur for 

speeds above 200 km/h as a consequence of the resonance phenomena [ERRI (1999)]. Therefore, 

this is a crucial aspect to take into consideration when designing bridges for high-speed railway 

lines.  

The existence of resonance can significantly increase the dynamic response, which can lead 

to several problems. Some of these problems include the instability of the ballast layer, loss of 

contact between the wheel and the rail, increase of fatigue-related damage, discomfort of the 

passengers and, in more extreme cases, it can even lead to the collapse of the bridge.  

In the first high-speed railway line in Europe, which connected Paris to Lyon, several 

problems were reported due to the existence of resonance, resulting in significant maintenance 

and repair costs [ERRI (1999); Hoorpah (2005); Zacher & Baeβler (2009)]. Museros (2002) 

summarised the main problems that were detected due to excessive vibrations. The problems 

reported included the flying ballast phenomenon, which reduced the support to the rails, the 

enhancement of the ballast layer deterioration rate that affected the ballast bonding and promoted 

the appearance of voids beneath some sleepers (originating hanging sleepers). Moreover, the 

cracking of concrete elements was also observed, leading to a global stiffness reduction of the 

bridge which changed the critical train speeds over the structure. In order to provide a better 

understanding of this dynamic phenomenon and to prevent the serious consequences associated 

to its occurrence several researches have been dedicated to this topic in recent years. The aim of 

these studies is mainly to ensure the adequate performance of the train-track-bridge system and 

to develop methodologies that enable guaranteeing the safe design and operation of railway 

bridges and also the minimisation of operational/maintenance costs. 

The European Rail Research Institute (ERRI) carried out extensive studies that aimed to 

expand the knowledge on the dynamic behaviour of bridges in high-speed lines and to serve as a 

guideline to verify the safety demands and guarantee an adequate performance in service [ERRI 

(1999)]. The scope of the study was quite broad and dedicated some attention to the resonance 

phenomena. The report points out that for simply supported structures the design is generally 
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governed by resonant effects that originate excessive deck accelerations, affecting the stability 

of the ballast layer and, consequently, creating a running safety risk. 

Yang et al (1997) investigated the dynamic behaviour of simply supported beams subjected 

to the passage of high-speed trains. This study identified the parameters that govern the dynamic 

behaviour of the structure and proposed an optimal design criterion for high-speed railway 

bridges based on both the condition of resonance and suppression. 

Xia et al (2006) evaluated the resonance effects on a high-speed railway bridge using 

theoretical formulations, numerical simulation and experimental tests. The authors divide the 

resonant response into three types according to different resonance mechanisms: the first is due 

to the periodical effects of the loading, the second is due to the rate of the loading and the third 

is a result of the periodically loading of the swing caused by track irregularities and wheel hunting 

movements.  

The work of Rigueiro (2007) was focused on the study of the dynamic behaviour of short to 

medium span railway bridges. The study analysed both the resonance and the suppression 

phenomena, highlighting the governing parameters. Furthermore, the influence of the track 

model in the dynamic response of the train-track-bridge system was also studied. The author 

observed that accounting for the track in the numerical model enabled the dissipation of the 

higher frequencies. It was also possible to conclude that neglecting the track in the model leads 

to an overestimation of the maximum bridge deck accelerations, particularly for resonant speeds. 

Rauert et al (2010) dedicated his attention to the influence of the continuous ballast layer over 

bridges with two structurally independent decks since generally this aspect is neglected in most 

research works. Through a monitoring campaign the authors observed that there is a considerable 

load transfer from the loaded to the unloaded deck (see Figure 2.2). This study concluded that 

the continuous ballast layer leads to a considerable increase of the overall stiffness of the 

structure, leading to a significantly lower dynamic response of the bridge, particularly for 

resonant speeds. This is explained by the fact that the resonant effects are generally associated 

with the structure’s first natural frequencies, which are the most affected by the additional 

stiffness provided by the continuous ballast. For research purposes the ballast interaction was 

simulated through spring elements that coupled the two separated bridge decks, requiring a 

complex 3D model. However, the authors recognised that in terms of common design practice a 

simplified approach would be of great advantage. For this reason, the introduction of a 
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component of additional bending stiffness which reproduces the effects of the continuous ballast 

over the independent decks was suggested. 

 

 

Figure 2.2 – Example for load transfer between loaded and unloaded bridge decks [Rauert et al (2010)]. 

 

Martínez-Rodrigo et al (2010) applied passive control techniques to mitigate the excessive 

vibrations due to resonance on short simply supported railway bridges. Two real bridges in Spain, 

one inserted in the high-speed railway network and the other inserted in the conventional railway 

network, were investigated in order to reduce their dynamic responses under the circulation of 

high-speed traffic. This work had two main objectives: to verify if the use of passive control 

techniques, through the application of fluid viscous dampers (FVDs), enabled the correction of 

the dynamic behaviour of the bridge, reducing the level of vertical acceleration to admissible 

values according to the European standards and to evaluate the technical feasibility of the 

proposed solution to real structures. The authors concluded that the introduction of the FVDs 

allowed an efficient control of the deck vibrations (see Figure 2.3) and that its application in a 

real bridge did not prove problematic from a technical point of view. 
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Figure 2.3 – Influence of the fluid viscous dampers in the dynamic response [Martínez-Rodrigo et al 

(2010)]. 

 

Shin et al (2010) on the other hand focused their attention in the vehicles, namely in Korean 

Train eXpress (KTX) train. In order to prevent resonance due to the periodical effects of the 

loading the authors suggest the modification of the high-speed train configuration by inserting 

size-adjusted vehicle(s) into the existing train arrangement (see Figure 2.4). However, from a 

practical point of view this approach does not seem feasible due to the large variability of the 

dynamic properties of bridges that are inserted in the high-speed railway networks. Nevertheless, 

the work presents some very interesting observations regarding the potential of exploring 

resonance suppression. 

 

 

Figure 2.4 – Vibration reduction scheme based on insertion of size-adjusted vehicles [Shin et al (2010)]. 
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Romero et al (2011) studied the problem of confined structures, which represent a quite 

common case in the railway network for hydraulic passages or box culverts. The typical 

configuration of these structures is characterised by very short spans which are very prone to 

experience resonance phenomena. The main objective of this work was to understand the 

influence of soil-structure interaction in the dynamic response of the railway bridge. The results 

showed that this aspect is particularly important for the resonant speeds, as disregarding it may 

lead to a significant overestimation of the dynamic response (see Figure 2.5). 

 

 

Figure 2.5 – Influence of the soil-structure interaction in the dynamic behaviour of confined structures 

[Romero et al (2011)]. 

 

2.3 Numerical evaluation of the dynamic response 

The methodologies to assess the dynamic behaviour of railway bridges have been evolving 

throughout the years. The Union International de Chemin de Fer (UIC) has been responsible for 

recommendations and codes of practice for the design and assessment of railway bridges in 

Europe. An extensive historical review of the UIC recommendations can be found in the works 

of James (2003) and Museros (2002). In the work of Museros (2002) an overview of the most 

important publications in the design and evaluation of the dynamic behaviour of railway bridges, 

highlighting their main contributions, is also included.  

Presently, the most recent recommendations of UIC have been incorporated in EN1991-2 

(2003), which is the current guideline for the design of railway bridges.  In order to numerically 

assess the dynamic response of a railway bridge EN1991-2 (2003) allows two different types of 

approach: quasi-static analysis or dynamic analysis. The selection of the most suitable method 

can be done by consulting the flowchart that is illustrated in Figure 2.6. 
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Figure 2.6 – Flowchart for determining the need of performing a dynamic analysis [EN1991-2 (2003)]. 

 

It can be observed that for some very specific cases EN1991-2 (2003) allows using a quasi-

static analysis, which results from the response obtained by a static analysis multiplied by a 

dynamic factor, Φ, that is introduced in order to account for dynamic nature of the loading. This 



Chapter 2  

 

2.14 

method is addressed in Section 2.3.1. For all the remaining cases EN1991-2 (2003) proposes the 

use of dynamic analysis, as described in Section 2.3.2. 

 

2.3.1 Quasi-static calculation method 

If the requirements established by EN1991-2 (2003), shown in Figure 2.6, are verified a static 

analysis can be performed. The static response of the bridge must be evaluated under Load 

Models 71, SW/0 and SW/2. Furthermore, these results must be multiplied by a dynamic factor, 

Φ, which enhances the static effects of the load models. This dynamic factor is not to be perceived 

as a dynamic amplification factor since its application is limited to load models. The value this 

coefficient takes was defined according to a study that involved the analysis of several real 

bridges and intends to cover the dynamic envelope of all trains operating in the European high-

speed railway network. 

The value of the dynamic factor depends on the quality of track maintenance and also on the 

“determinant” length, LΦ, which represents the length of the influence line for deflection of the 

element being analysed. Initially the application of this factor was limited to simply supported 

bridges, however, the introduction of LΦ enabled its application to any type of bridge. 

For standard maintenance tracks the dynamic factor, Φ3, can be determined by: 
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Additionally, the value of Φ3 is limited to the interval 1 ≤ Φ3 ≤ 2. 

In the case of carefully maintained tracks the dynamic factor, Φ2, is given by: 
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 (2.3) 

 

where Φ2 is limited to the interval 1 ≤ Φ2 ≤ 1.67. The values to be adopted for LΦ can be consulted 

in EN1991-2 (2003). 
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This simplified approach is particularly useful for preliminary design stages. As long as the 

analysis is limited to structures that present properties that fall within the range of application of 

a general case scenario it enables simplifying some of the calculations while ensuring an adequate 

design of the structure. Due to these simplifications the approach is necessarily more 

conservative. Furthermore, it should be noted that the dynamic factor does not account for 

resonance effects. For such cases a dynamic analysis must be carried out in order to accurately 

determine the bridge response. 

 

2.3.2 Dynamic analysis 

Another methodology involves carrying out a dynamic analysis. In this approach two types of 

trains must be considered: real trains, which currently operate in the European railway networks, 

and the High Speed Load Models (HSLM) trains, which were defined taking into account the 

interoperability criteria defined in TSI (2002). Several train speeds should be analysed up to a 

maximum of 1.2 times the maximum allowable speed on the line. Furthermore, the selected speed 

step must enable a clear identification of the dynamic behaviour of the bridge, particularly of the 

resonant peaks. 

EN1991-2 (2003) suggests the determination of the dynamic amplification, φ, obtained in the 

dynamic analysis. This dynamic amplification also includes the effects of track irregularities and 

vehicle imperfections and can be written as follows: 

 

 '''11    (2.4) 

 

φ’ – factor related with the dynamic amplification due to the train crossing the bridge at speed, 

assuming a perfect track; 

φ’’ – corrective factor to account for the existence of track irregularities and vehicle 

imperfections; 

λ – factor that accounts for the quality of the track maintenance. 

Regarding the dynamic analysis several methodologies, presenting different degrees of 

sophistication, including analytical [Timoshenko & Young (1955); Frýba (1996); Yang et al 
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(1997)], simplified [ERRI (1999)] or numerical [Frýba (2001); Museros & Alarcon (2005); 

Johansson et al (2013)], are suggested in the literature. The procedures can be formulated either 

in time domain or in the frequency domain. The selection of the formulation is generally 

dependent on the problem that is being studied. The frequency domain formulation is usually 

applied in problems where the soil properties are a key aspect, as it tends to be more efficient 

from a computational point of view. However, this approach presents some limitations, namely 

the fact that it may impose some restrictions when dealing with non-periodic effects and 

nonlinear structural models [Popp et al (1999)]. The use of the time domain formulation is more 

common and tends to be selected in the analysis of the dynamic behaviour of railway bridges. 

According to Neves et al (2012) there are several nonlinearities in the vehicle–structure system 

that should be considered, such as the nonlinear contact or the state-dependent rail pads and 

ballast properties. In these cases the use of time domain methods is more appropriate. In the 

present dissertation the time domain formulation was adopted. A brief review of some of these 

methods is presented in the following sections.  

 

2.3.2.1 Analytical methodologies 

The analytical methodologies enable a complete understanding of the basic principles of the 

dynamic behaviour of railway bridges. Typically, this problem tends to be particularly complex 

limiting the application of such an approach to very simple cases. A classic example is the 

analysis of the dynamic response of a simply supported beam subjected to the passage of a single 

moving load [Timoshenko & Young (1955); Frýba (1996)] or a set of moving loads [Yang et al 

(1997)]. Yau et al (2001) formulated the solution of the dynamic response of a simply supported 

beam with elastic bearings subjected to a moving load. There is also an analytical formulation 

for determining the solution of the problem related to the response of a simply supported beam 

subjected to a moving sprung mass [Yang et al (2004)]. Recently, Johansson et al (2013) 

proposed a closed-form solution for the analysis of the dynamic response of multi-span beam 

bridges under moving loads. The authors point out that the solution assumes the Bernoulli beam 

theory and that its accuracy depends on how well the structure can be represented by this theory. 

As it can be seen the application of analytical methods is very limited. Nevertheless, these 

methodologies were very useful to understand the parameters that govern the dynamic behaviour 

of railway bridges and were used to set out the basis for simplified methodologies that will be 

present in the following section. 
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2.3.2.2 Simplified methodologies 

Based on the analytical solutions for the problem of a series of loads moving over a simply 

supported beam some other methods have been proposed. In this section two different simplified 

methods are presented: the Decomposition of Excitation at Resonance (DER) method, proposed 

by ERRI Committee D 214 [ERRI (1999)], and the Virtual Influence Line method, which was 

proposed by SNCF as alternative to the DER approach. The application of such methods is 

limited to isostatic bridges that present a behaviour similar to that of a simply supported beam 

and also that the dynamic response can be adequately represented by simply taking into account 

the contribution of the first vertical bending mode. 

 

a) Decomposition of Excitation at Resonance (DER) method 

The DER method is particularly suitable for analysing the response of simple supported spans 

at resonance. It decomposes the dynamic response of the bridge in Fourier series and assumes 

that the incremental contribution to the acceleration is provided by the term corresponding to 

resonance. Therefore, in the analysis only the term from the Fourier series closest to resonance 

is used. 

The acceleration response of a beam, y , is given by: 
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The response can be divided into three terms, where the first two terms depend on the 

characteristics of the bridge, whereas the final term depends on the properties of the train. In 

particular, Ct is a constant term that can be computed by: 
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where m is the mass per unit length of the bridge deck. The term  /LA  represents a influence 

line: 
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where L is the span length of the bridge and λ is the wavelength of the excitation which is a 

function of the train speed, v, and the natural frequency of the bridge, n0. 

Finally, the term  G  reflects the excitation due to the train and the response of the deck to 

resonance and is designated by train spectrum, which is the so called dynamic signature of the 

train: 
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where Pk and xk represent the load k and the corresponding position, respectively, relative to the 

first load that crosses the bridge (first axle of the first locomotive) and ξ represents the damping 

rate of the bridge. The maximum response is not necessarily obtained when the whole train has 

crossed the bridge. The train spectrum must correspond to the envelope of the response, thus 

explaining the use of the maximum function in Eq. (2.8). 

 

b) Virtual Influence Line method 

The Virtual Influence Line method divides the response of the beam into two different stages: 

the first stage corresponds to the forced vibration of the beam, which represents the period of 

time where the train loads are on the bridge, whereas the second stage corresponds to the free 

vibration of the beam, representing the period of time after the loads have crossed the bridge. 
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The main assumptions of the method rely on the fact that the length of the train is much longer 

than the span of the bridge and also in the fact that the maximum dynamic response is obtained 

in the moment where the last train load leaves the structure. Therefore, the dynamic response of 

the beam with respect to the accelerations is given by: 

 

    GrACy acel   (2.9) 

 

where Cacel is a constant term that depends on the mass per unit length of the bridge deck: 
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A(r) is designated by dynamic response factor, which only depends on parameters related to 

the bridge and the train speed: 
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where r is given by: 
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The term G(λ) depends solely on parameters related to the train and translates the accumulation 

of the effects of several train loads: 
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Like in the DER method the maximum function must be used since the maximum response is 

not necessarily obtained when the whole train has crossed the bridge. 

As a final remark it should be noted that both methodologies presented in this section have a 

very narrow practical application range and their use is limited to preliminary design stages of 

simply supported structures in order to estimate the maximum dynamic response and identify the 

critical train speeds. 

 

2.3.2.3 Moving loads method 

One of the most commonly used methodologies when analysing the dynamic behaviour of a 

bridge subjected to the loading of a vehicle is the moving loads method. This numerical method 

is relatively simple but enables the analysis of any type of structure, regardless of its complexity 

and represents the simplest way to represent a moving vehicle. Some examples of the application 

of such a method in the analysis of the dynamic response of railway bridges can be found in the 

works of Klasztorny & Langer (1990), Yang et al (1997), and Yau et al (2001). 

This method is based on the time integration of the dynamic equations for the structure when 

subjected to a series of moving loads, representing each axle of a given train. As was previously 

stated the method is fairly simple, which translates into both reduced computational times and 

effort. However, this approach assumes some simplifications, namely by neglecting the 

interaction effects between the train and the structure. 

The equations of motion represent the force equilibrium for every degree of freedom of the 

system and can be expressed as: 

 

 tttt FFFF eai  )()()(  (2.14) 

 



Dynamic behaviour of railway bridges 

2.21 

This equation indicates that for any given time step t the external forces, F(t), and the internal 

forces, that can be divided into inertial forces, Fi(t), damping forces, Fa(t), and elastic forces, 

Fe(t), are in equilibrium. 

Scrutinising Eq. (2.14) and taking into account that the inertial forces can be obtained by 

multiplying the mass matrix, M, the viscous damping matrix, C, and the stiffness matrix, K, by 

the acceleration vector, u, the velocity vector, u, and the displacement vector, u, respectively, it 

is noticed that it can be re-written in the following form: 

 

 tuuu FKCM    (2.15) 

 

Due to its simplicity it has been reported that this method may not be sufficiently accurate for 

cases where the coupled behaviour of the train and the bridge significantly affect the dynamic 

response, which corresponds to cases where the mass of the vehicle is not negligible compared 

to that of the bridge. Short to medium span bridges are within the sort of structures where the 

effects of the mass of the vehicle are not small compared to that of the bridge and, in these cases, 

the moving loads method tends to overestimate the maximum accelerations of the bridge deck. 

 Museros et al (2002) compared the dynamic behaviour of 25 simply supported bridges using 

both the moving loads method and the train-bridge interaction method. This study concluded that 

the interaction effects lead to a significant reduction (around 25%) of the maximum dynamic 

response. 

Similar conclusions were drawn in the research work of Goicolea et al (2002). In this work 

the two methods were also compared and scenarios with different bridge spans and damping were 

analysed. It was noticed that the differences were higher for structures with structural damping 

lower than 2%. 

For this reason EN1991-2 (2003) suggests the use of an additional damping, Δζ, which is a 

function of the span length, to reproduce the effects of the vehicle-bridge interaction and to 

overcome the referred limitations. Nonetheless, the additional damping method should be used 

with caution as Doménech et al (2014) concluded that in certain cases this approach 

overestimates the interaction benefits, which leads to a non-conservative prediction of the bridge 

dynamic response. 
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2.3.2.4 Train-bridge interaction method 

To perform a more realistic and accurate method to assess the dynamic behaviour the train-

bridge interaction effects need to be taken into consideration. The train-bridge interaction method 

accounts not only to the dynamic properties of the bridge but also takes into account the dynamic 

properties of both the train and the track. In addition, and contrary to what is observed in the 

moving loads method, the load of each wheel varies in time due to the variation of the wheel-rail 

contact forces. This is a more advanced assessment method which requires specific software to 

be used. For this reason, this approach requires higher computational capacity and is more time 

consuming when compared to the moving loads approach. 

Due to the significance of the train-bridge interaction effects for an accurate assessment of the 

dynamic behaviour of railway bridges, particularly those with short to medium spans, the 

methodology is becoming more usual. The principles of the train-bridge interaction method are 

similar to those presented in the case of the moving loads method.  Several approaches have been 

proposed to solve the train-bridge interaction problem. Regardless of the approach that is 

employed it is necessary to establish the equations of motion of the two systems, vehicle and 

structure, which can be achieved using either coupled or uncoupled sets of equations. A review 

of the advantages and disadvantages of each approach can be found in the works of Yang & 

Fonder (1996) and Lei & Noda (2002).  

As the name indicates, in the coupled approach the equations of motion of the vehicle and the 

structure are coupled into a single system of equations. Examples of application of this 

methodology can be found in Yang et al (1999), Yang et al (2004) and Neves et al (2012). Yang 

& Wu (2001) point out that this approach may demand a considerable computational effort since 

the position of each contact point changes over time, thus generally making the system matrix 

time–dependent and requiring it to be updated and factorised at each time step. 

The uncoupled approach formulates the interaction problem using two distinct sets of 

equations (one for each subsystem) which are solved separately. The uncoupled equations of 

motion are complemented with an additional equation in order to ensure the compatibility of the 

two subsystems. However, the compatibility of the two systems, train and bridge, must be 

verified at each instant in order to guarantee contact. This means that both subsystems are coupled 

by the compatibility of displacements and equilibrium of forces at the contact points. On the one 

hand, the train loading results in the deformation of the bridge. Simultaneously these 

displacements translate into actions on the train similar to an imposed settlement. The reactions 
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on each of the train’s axles (which represent the contact points) represent the dynamic interaction 

forces between the two systems. Examples of application of this approach can be found in [Cruz 

(1994); Calçada (1995); Yang & Fonder (1996)]. To solve these two sets of equations iterative 

procedures are often used [Cruz (1994); Calçada (1995); Yang & Fonder (1996)]. Antolín (2013) 

points out that this approach has the advantage of reducing the size of the matrix used in the 

dynamic calculations. The equations of motion can be written as follows: 
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where the subscripts s and v represent the structure and the vehicle, respectively. 

However, Yang & Wu (2001) indicate that this procedure may exhibit a slow rate of 

convergence, particularly when a large number of contact points is considered. In order to 

overcome this drawback Neves et al (2012) developed a procedure in which the equations of 

motion are solved directly using an optimised block factorisation algorithm. Ribeiro (2012) 

proposed another development to the iterative procedure used by Cruz (1994) and Calçada (1995) 

by solving the equations of motion combining both the Mode Superposition method to solve the 

bridge subsystem and the Newmark method to solve the train subsystem. The use of the Mode 

Superposition method allows a more efficient analysis from a computational point of view, thus 

reducing the computational timings. However, Ribeiro (2012) points out that the existence of 

dampers on the trains does not enable the equations of motion of the train to be uncoupled, 

requiring therefore the use of the Newmark Method.  In this work the approach introduced by 

Neves et al (2012) was used. 

Furthermore, it should be noted that most of the work done on this field, including the present 

dissertation, limits the analysis to the vertical interaction phenomenon. However, lateral 

interaction effects are extremely important in cases where lateral forces (such as wind or seismic 

actions) act on the trains. For this reason, this has been the subject of research work in recent 

years and several methodologies account for full interaction, i.e. account for both vertical and 

lateral interaction, have been proposed [Zhai et al (2009); Nguyen et al (2009); Antolín (2013); 

Montenegro (2015)]. 
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2.3.2.5 Methods to solve the equations of motion 

Besides the procedure selected to formulate the train-bridge interaction problem there are also 

several techniques to solve the system of equations of motion when using the Finite Element 

Method. The most common techniques are the Mode Superposition method and the direct 

integration methods [Clough & Penzien (1993); Chopra (1995)]. 

The Mode Superposition method consists on uncoupling the equations of motion by 

transforming the generalised coordinates into modal coordinates. Due to the orthogonality 

properties of the mode shapes the equations of motion from the set of N coupled differential 

equations can be transformed into a system of N independent linear equations. Therefore, it is 

possible to assess the contribution of each of the mode shapes to the global structural response.  
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where 
iY , 

iY  and 
iY  represent the generalised acceleration, speed and displacement, 

respectively, i  is viscous damping ratio, i  is the angular frequency, 
iP  is the generalised load 

and iM  is the generalised mass for mode i. 

To obtain the global response of the structure one simply needs to solve the N uncoupled 

modal equations and superposing the effects of each of the modal contributions, hence explaining 

the name of the methodology. 

 

       tYtYtYtu nn   2211  (2.18) 

 

where ϕn is the natural mode of order n. 

One of the features of this method is the fact that it enables the selection of the mode shapes 

that will be accounted for in the analysis of the dynamic response. This is particularly useful 

because it simplifies solving the system of equations of motion, making the method particularly 

efficient. Another advantage of the method is the possibility to define the damping ratio for each 

mode, which is more convenient and generally more reasonable since the modal damping ratios 
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can normally be determined experimentally or estimated with adequate precision in many cases. 

One of the drawbacks of the method is the fact that it requires performing a modal analysis prior 

to the dynamic analysis in order to identify the structure mode shapes and the corresponding 

natural frequencies. Owed to the fact that superposition is applied this method is not suitable for 

the analysis of nonlinear problems. 

Another typical option to solve the equations of motion is based on direct integration methods, 

which adopt a step-by-step approach and makes use of integration techniques. Unlike the 

previous method, no transformation of the integration space is required. Among the several 

methods that use such an approach are the Newmark method, the Wilson-θ method and Hilber-

Hughes-Taylor (HHT) method [Cruz (1994); Calçada (1995); Neves (2008)]. In the present 

dissertation only the Newmark method is addressed. 

The Newmark method adopts a step-by-step approach and, as previously stated, makes use of 

integration techniques to solve the dynamic equilibrium problem. In this method the contribution 

of all natural frequencies is taken into account. Two parameters define the variation of 

acceleration over a time step and determine the stability and accuracy of the method: γ and β. 

The factor γ provides a liner varying weighting for the contribution of the initial and the final 

accelerations on the change of velocity, whereas the factor β provides a weighting between the 

initial and the final accelerations on the change of displacement. 

The Newmark method becomes unconditionally stable for: 
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It is also possible to observe that the maximum efficiency in terms of numerical dissipation is 

registered for: 
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If 2/1  and 4/1  are adopted, the Newmark method is usually referred as the constant 

average acceleration method and satisfactory results are obtained from all points of view, 

including that of accuracy. 

Contrarily to the Mode Superposition method when using the Newmark method it is not 

possible to define a modal damping ratio. For this reason it is necessary to derive appropriate 

proportional damping matrices. Typically Rayleigh damping is used and is expressed as being 

proportional to both the mass and the stiffness matrices [Clough & Penzien (1993)]: 

 

KMC  21 aa  (2.21) 

 

The two Rayleigh damping factors, a1 and a2, are obtained from the following equation: 

 










































n

m

mn

mn

mn

nm

a

a












112

22

2

1  (2.22) 

 

where ωm and ωn are the angular frequencies of the modes of order m and n, respectively, and ξm 

and ξn are the corresponding damping ratios. 

 

 

Figure 2.7 – Rayleigh damping [Clough & Penzien (1993)]. 
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2.3.2.6 Time step selection 

A particularly important aspect to take into consideration when performing a dynamic analysis 

is the selection of the time step, Δt, to adopt in the analysis. The selection of an adequate time 

step is essential to accurately assess the dynamic response and to ensure that the most important 

modes of vibration are considered. 

There are several criteria in the literature regarding the selection of the most adequate time 

steps to adopt in dynamic analysis. One criterion is adopting a time step between Tn/10 and Tn/20, 

where Tn is the period of the highest mode that is to be considered in the dynamic analysis. 

 ERRI (1999) suggests that the selected time step should be the minimum of the following 

two values: 
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where fmax is the frequency of the highest mode of vibration considered in the analysis, and 

 

max4 vn

L
t
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where L is the span of the bridge, n is the number of modes considered in the analysis and vmax is 

the maximum train speed. The first criterion guarantees that the highest mode of vibration is 

represented by a minimum of eight points. This criterion is similar to those that had been referred 

previously, although it is slightly less conservative. The second criterion is defined in order to 

ensure that the excitation is accurately accounted in the dynamic analysis. It intends to guarantee 

that a given load moving over the bridge at a speed, vmax, is discretised into 4n intervals. Meixedo 

(2012) points out that the time step selection should not only be a function of the bridge natural 

frequencies but should also take into consideration the train frequencies as well as the frequencies 

related with the excitation promoted by track irregularities. Generally, the train frequencies are 

less limitative than those of the bridge. However, depending on the train speed to be analysed 

and on the irregularities wavelength range that is used in the analysis the latter criterion might 
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sometimes require a smaller time step than that predicted by the bridge natural frequencies to 

adequately model the excitation and obtain an accurate response. 

It is important to mention that when using the Newmark method and 2/1  and 4/1  is 

adopted the method does not introduce any dissipation to the higher frequencies. When 

proceeding to the integration of the equations of motion the contribution from very high 

frequencies related to higher modes can be observed. However, these effects are generally 

spurious due to the fact that these frequencies are not being adequately taken into account in the 

numerical integration [Rigueiro (2007)]. Since in this method no upper limit to the frequency of 

the modes considered is established the time step acts as a cut-off, solving this problem. 

 

2.4 Limit states 

The European standards define several limit states that must be verified in order to guarantee 

the structural and traffic safety in the high-speed railway network. In order to perform according 

to the safety demands of the European standards a structure must verify Ultimate Limit States 

(ULS) as well as Serviceability Limit States (SLS), related to passenger comfort. Besides the 

traditional verifications, the European standard EN1990-A2 (2005) also define some specific 

verifications for bridges inserted in the high-speed railway network, which are labelled as Traffic 

Safety Checks and apply limits regarding deformations and vibrations of the bridge deck. In the 

following sections a review of the verifications required by the European standards to assess the 

safety of railway bridges is presented. 

 

2.4.1 Structural safety 

Regarding structural safety, the design of bridges requires performing a dynamic analysis for 

the most unfavourable value of the two following scenarios: 
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or 

 

 0/""71 SWLM   (2.26) 

 

where RT represents the real trains operating in the European high-speed railway network, 

HSLM represent the High Speed Load Models, LM 71 represents the static effects of vertical 

loading due to normal rail traffic and SW/0 which  represents the static effects of vertical loading 

due to normal rail traffic on continuous beams. 

For the cases where no dynamic analysis is required the dynamic amplification factor, φ’, is 

given by: 

 




















76,0,325,1

76,0,
1

'

4

K

K
KK

K

  (2.27) 

 

with  

 

02 nL

v
K






 (2.28) 

 

The term φ’’ that has been previously introduced and represents an amplification factor to 

account for the existence of track irregularities and vehicle imperfections can be determined by: 
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where the parameter α is given by: 
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For the cases of carefully maintained track EN1991-2 (2003) allows a 50% reduction of the 

parameter φ’’. 

 

2.4.2 Traffic Safety Checks 

These verifications correspond to Serviceability Limit States from a structural point of view 

that must be verified in order to guarantee an adequate performance of the railway bridge. Despite 

corresponding to SLS from a structural perspective they represent an Ultimate Limit State for the 

running safety of the trains.   

The verifications regarding the running safety of trains over bridges include the assessment of 

the vertical acceleration of the deck, deck twist, vertical deformation of the deck, transverse 

deformation and vibration of deck and the longitudinal displacement of the deck. Furthermore, 

EN1990-A2 (2005) also includes a Serviceability Limit State that aims to guarantee passenger 

comfort. Since the focus of this dissertation is the vertical behaviour of the bridge only the 

verifications related to this behaviour will be discussed in the following sections.   

 

2.4.2.1 Vertical acceleration of the deck 

Limiting the vertical acceleration of the bridge deck has two main objectives: the first is to 

avoid track instability due to the loss of interlock between ballast grains in ballasted tracks and 

the second is to prevent the loss of contact between the wheel and the rail due to excessive 

reduction of the wheel-rail contact forces. The ballast instability leads to the loss of the lateral 

resistance of the track which affects the running safety of the trains. The loss of contact between 

the wheel and the rail can originate the derailment of the train. 
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For bridges that require performing a dynamic analysis the maximum deck acceleration must 

be assessed for both real trains and HSLM considering frequencies up to 30 Hz or 1.5 times the 

value of the frequency of the fundamental mode of vibration and should include a minimum of 

three vibration modes. 

EN1990-A2 (2005) limits the maximum peak values of the bridge deck acceleration to 

3.5 m/s2 for ballasted track and to 5 m/s2 for ballastless tracks. More recently, Zacher & Baeβler 

(2009) carried out laboratory tests in order to obtain a better understanding of the behaviour of 

the ballast layer and to assess what deck acceleration level leads to its instability. The test rig 

consists of a steel box that was filled with ballast to a thickness of 35 cm. A concrete bloc 

representing the sleeper was embedded in the ballast. The box was guided with rails on both sides 

and was supported with a servo-hydraulic shaker which is able to excite the box to vertical 

vibrations up to 2g and to frequencies up to 60 Hz. A second servo-hydraulic shaker can also 

load the sleeper. A schematic representation of the test rig and the built steel box are illustrated 

in Figure 2.8. 

 

  

 

Figure 2.8 – Test rig used to test the ballast dynamic behaviour [Zacher & Baeβler (2009)]. 

 

Zacher & Baeβler (2009) point out that the results of the test are strongly dependent on the 

initial state of the ballast configuration. Therefore, prior to the test the ballast was pre-loaded in 



Chapter 2  

 

2.32 

order to reproduce its configuration on a real track and to ensure that the initial state is 

approximately the same for all test series. The obtained results are shown in Figure 2.9. 

 

 

Figure 2.9 – Lateral displacement of the sleeper [Zacher & Baeβler (2009)]. 

 

The results show that the lateral resistance of the sleeper, which is an indicator of the interlock 

of the ballast grains, is significantly affected when the acceleration level reaches 7 m/s2. 

Furthermore, the results indicate that the acceleration limit suggested in the European standards 

to ballasted tracks results from the application of a safety factor of 2, which seems too 

conservative. Since this criterion often turns out to be the most restrictive aspect of the dynamic 

response of railway bridges, particularly those with short to medium spans, Zacher & Baeβler 

(2009) propose a reduction of the safety factor from 2 to 1.3, which would translate into limiting 

the deck acceleration on ballasted tracks to 5.5 m/s2 and to 7.5 m/s2 in ballastless tracks. 

Norris (2005) also analysed the influence of the deck vibration level on the stability of the 

ballast layer and his research was based on more than 100 experimental tests carried out on 

railway bridges across the United Kingdom. It was possible to conclude that even if in some 

small areas the acceleration levels are very high the ballast layer remains stable as adjacent ballast 

provides confinement and prevents local instability (see Figure 2.10). Based on these results 

Norris suggests that the deck acceleration limit be changed to 5 m/s2 for most of ballasted bridges 

and this value be even increased to 6 m/s2 for bridges with higher structural damping levels.  
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Figure 2.10 – Confinement of the localised areas of ballast of high acceleration levels [Norris (2005)]. 

 

In addition, the highest frequency that should be included in the analysis was also a topic of 

the research. As previously mentioned, the European standards define that the maximum 

frequency to be considered should be the maximum between the frequency of the third mode 

shape or 30 Hz. However, Zacher & Baeβler (2009) observed that the maximum value of the 

transfer function occurs at a frequency of 60 Hz, as depicted in Figure 2.11. 

 

 

Figure 2.11 – Transfer function between ballast and sleeper [Zacher & Baeβler (2009)]. 

 

This topic has been further investigated in Baeβler et al (2012) and it was concluded that 

higher frequencies cannot be regarded as less critical than the lower frequencies. Nevertheless, 

the higher frequencies correspond to smaller wavelengths, which are generally associated with a 

more localised phenomenon, restricting this problem to a small area. For this reason it can be 
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said that, normally, performing the analysis using the first three modes of vibration related with 

vertical bending of the bridge (which typically are below 60 Hz) is sufficient to accurately 

analyse the dynamic behaviour of railway bridges. Even so, in order to prevent ballast instability 

phenomena due to effects related with modes with higher frequencies a modification of the 

current European standards would be advisable. Instead of the 30 Hz limit suggested in the 

current version, this value should be extended to frequencies up to 60 Hz.   

  

2.4.2.2 Vertical deformation of the deck 

The excessive deformation of the bridge deck can lead to unacceptable changes in both the 

vertical and lateral geometry of the track and to excessive stresses in the rails. For this reason the 

European Standards limit the maximum deflection in order to prevent excessive bending of the 

track, which can accelerate its deterioration process, and which also indirectly controls the stress 

level on the rails, preventing their instability and failure. EN1990-A2 (2005) defines that the 

maximum total vertical deflection measured along any track due to rail traffic actions must not 

exceed 600/L , where L represents the span of the bridge. 

This standard also limits the relative longitudinal displacements between two consecutive 

decks or between the end of a deck and the adjacent abutment in order to reduce transition zones 

degradation and to prevent discontinuities in zones near rail expansion devices or expansion 

joints. For this reason the vertical displacement, δv, of the upper surface of a deck relative to the 

adjacent element (another deck or abutment) is limited to: 

 3 mm for sites where the maximum speed is limited to 160 km/h; 

 2 mm for sites where the maximum speed exceeds 160 km/h.  

 

2.4.3 Serviceability Limit State – Passenger riding comfort 

Another important aspect that needs to be taken into considering during the design of railway 

bridges is passenger riding comfort. Although this aspect exceeds the scope of the investigation 

that is presented in the current dissertation it is a topic that needed to be referred.  

The railway service should not only be attractive from the point of view of travelling time but 

should also provide a comfortable journey to its clients. For this reason it is crucial to limit the 
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vibration levels that the passengers experience during their journey in order to prevent unpleasant 

and discomfort sensations. EN1990-A2 (2005) defines the passenger comfort with respect to the 

acceleration level, bv, in the interior of the train carriages. The three different comfort levels that 

are recommended in EN1990-A2 (2005) are presented in Table 2.1. 

 

Table 2.1 – Recommended levels of comfort [EN1990-A2 (2005)]. 

Level of comfort Acceleration (m/s2) 

Very good 1.0 

Good 1.3 

Acceptable 2.0 

 

In order to assess the vertical acceleration level in the vehicle EN1990-A2 (2005) allows two 

different approaches. The first one is a simplified approach that relates the acceleration level with 

the vertical deflection of the bridge as a function of the train speed, the configuration of the 

bridge, the span length and the number of spans. This resulted in a chart that indicates the 

maximum allowable vertical deflection, δ, in a bridge in order to ensure a very good level of 

comfort as represented in Figure 2.12. 

 

 

Figure 2.12 – Maximum acceptable vertical deflection to ensure a very good level of comfort [EN1990-

A2 (2005)]. 
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It should be noted that these vertical deflections should be determined with LM 71 multiplied 

by the dynamic factor, Φ. Furthermore, the limits shown in Figure 2.12 are given for a succession 

of simply supported beam with three or more spans. For different bridge configurations a 

corrective factor should be used. Additionally, since the limits of the ratio L/δ indicated in Figure 

2.12 correspond to a scenario of very good level of comfort, these values must be divided by the 

corresponding bv for the analysis of other levels of comfort. 

As an alternative the vertical acceleration of the train carriages can be determined by a 

dynamic train-bridge interaction analysis. This approach is more complex since it requires 

modelling the train but it is also more accurate. The selected train models can vary in complexity 

and some works even propose including the passenger-seat interface [Wei & Griffin (1998); 

Carlbom (2000)]. A comprehensive review and discussion on this approach can be found in 

Carlbom (2000). More recently Ribeiro (2012) also assessed the passenger riding comfort in a 

real bridge on the Portuguese railway network for the passage of the Alfa-Pendular train using a 

dynamic train-bridge interaction analysis. 

2.4.4 Running safety 

Besides the criteria that have been previously presented and that indirectly assess the running 

safety of trains, there are also a few criteria that directly assess this issue, namely by analysing 

the possibility of train derailment. In these criteria the assessment of the running safety of the 

trains is generally based on the wheel rail contact forces. A detailed review of the several 

derailment mechanisms and the criteria that are typically used can be found in Antolín (2013) 

and Montenegro (2015). In the current dissertation a summary of the main criteria is presented 

in this section. 

 

2.4.4.1 Wheel flange climbing 

One of the most commonly used criteria to assess the train running safety is related with the 

wheel climbing the rail flange. This tends to occur for the combination of high wheel lateral 

forces with low vertical contact force on the flanging wheel. Nadal’s criterion [Nadal (1896)] is 

possibly the most common criterion to assess derailment due to wheel flange climbing. This 

criterion determines derailment according to the ratio of lateral, Y, to vertical, Q, contact force in 
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each wheel and depends on the dynamic friction coefficient, μ, and the contact angle, γ. The 

Nadal factor, ηN, can be expressed as: 

   






tan1

tan






Q

Y
N

 (2.31) 

 

Nadal’s criterion is of static nature and neglects the longitudinal creep forces. Furthermore, it 

was demonstrated to be conservative, particularly for small or negative values of angle of attack, 

since it does not account for the effects of friction in the non-flanging wheel. Therefore, a less 

conservative criterion was proposed by Weinstock (1984). This criterion presents a more realistic 

approach and is less sensitive to the variation of the friction coefficient. Weinstock’s criterion 

evaluates the flanging wheel using Nadal’s criterion but accounts for the non-flanging wheel by 

considering a Y/Q ratio equal to the friction coefficient. Therefore, the Weinstock factor, ηW, can 

be expressed as: 
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where the subscript A represents the flanging wheel, whereas the subscript B represents the non-

flanging wheel. 

According to the TSI (2002), the Y/Q ratio should not exceed 0.8 for either of the wheel flange 

climbing criteria. 

 

2.4.4.2 Track panel shift 

Another derailment mechanism is the track panel shift, which corresponds to the lateral 

displacement of the track panel. This phenomenon is due to excessive lateral forces acting on the 

track. As the lateral displacement of the track panel builds up in some of the track elements, such 

as the rails and the sleepers, the loss of guidance of the wheels might be observed resulting in 

one of the wheels falling between the rails and the outer side of the track. The track panel shift 
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has become increasingly important due to generalised use of continuously welded rail and also 

to the higher operational train speed. Prud’homme (1967) proposed a criterion that limits the 

maximum lateral force applied on the track by a wheelset in order to prevent track panel shift: 

 

3
210 stat
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Q
Y   (2.33) 

 

where Qstat represents the static load per wheel. This criterion was adopted by TSI (2002). 

Recently some variations have been proposed to the original criterion in order to account for 

different track maintenance levels, ballast compaction level and sleeper type [Iwnicki (2006)]. 

 

2.4.4.3 Wheel unloading 

The derailment by wheel unloading might occur when one or more wheels lose contact with 

the rails as a result of excessive vibrations. These excessive vibrations can be due to aspects such 

as track irregularities, crosswind or earthquakes.  

There are several methods to determine wheel unloading. A common method is the vector 

intercept, which is based on a geometrical analysis of the acting point of the overall resultant 

vertical forces [Andersson et al (2004)]. In its most usual form the wheel unloading factor, ηU, 

measures the reduction of the wheel load compared to its static value and is calculated by: 
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where Qdyn is the dynamic wheel load. When there is no unloading the parameter ηU takes the 

value of 0. On the contrary if a limit situation where the wheel loses contact with the rail is 

observed the dynamic wheel load is null and the parameter ηU is equal to 1. 

Carrarini (2006) refers that analysing a single wheel can be excessively conservative, as this 

criterion is not valid when complete unloading is reached, regardless of the severity of the wheel 

lift. A less conservative approach uses a similar principle but consists on analysing a complete 
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bogie/wheelset. It should be noted that both approaches are allowed by the current European 

standard as indicated in EN14067-6 (2009), which limits the wheel unloading to 90% of the value 

of the static load, corresponding to a value of ηU equal to 0.9. 

A criterion that is strongly associated with wheel unloading is the train overturning criterion 

since the degree of unloading of the critical wheels is usually also used as a criterion for the 

assessment of the risk of overturning. The overturn factor, ηO, can be expressed as: 
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where Q1 and Q2 are the vertical loads of each wheel of the same wheelset. Similarly to the wheel 

unloading TSI (2002) limit the overturn factor to 0.9. 
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Chapter 3 

Structural reliability assessment 

3.1 Introduction 

The safety of structures and their adequate performance while in service are the two key issues 

to take into account during the design stage. However, the complete safety of a structure is a 

concept that is not real as there is always some risk of failure. This risk is due to the uncertainties 

that characterise the parameters that influence the structural behaviour, which makes the 

structural reliability problem non-deterministic in nature.  In order to classify the structural safety 

EN1990 (2002) defines that structures should be designed and maintained in order to display an 

adequate performance throughout their service life, with an appropriate balance between 

economy and safety level. For this reason structural reliability theory is based on mathematical 

statistics where the uncertainties are modelled by stochastic variables. 

Until the 19th century the design of Civil Engineering structures was carried out in an empirical 

way, mostly based on the experience of masons and builders. However, it was clear that 

uncertainty was a significant part of the structural reliability problem. The structural behaviour 

depends on several parameters that display, in most cases, a certain degree of uncertainty thus 

making it intrinsically a probabilistic problem.  

With the research carried out in this field a scientifically based method was developed for the 

assessment of structural safety: the admissible stress method. The fundamental idea of the 

method was to ensure that the maximum stress in the critical zones was lower than the material 
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capacity divided by a safety factor. The selection of the safety factor was somewhat empirical. 

The enhancements in Structural Engineering, namely a better understanding of the behaviour of 

materials and a more adequate evaluation of the loadings resulted in a reduction and a 

diversification of the safety factors. However, the method proved to have some imperfections, 

particularly by providing different safety levels for different structural elements and by making 

it difficult to assess the overall safety of the structure. 

For this reason the introduction of a probabilistically based approach to the safety problem 

was a natural development. This approach offers a more realistic model of the real phenomena. 

However, it requires statistical information for the description of the parameters involved to be 

used properly. Significant research has been dedicated to the topic of probabilistic structural 

reliability and it is possible to say that nowadays this is a field that is adequately documented and 

consolidated within the academic community [Jacinto (2011)]. Despite this this approach is not 

yet a common practice in Structural Engineering. This can be explained by the adoption of semi-

probabilistic approaches by the design codes. In recent years the adoption of probabilistic 

approaches to assess structural safety has been increasing, indicating that these methods can now 

become more common and due to the advances in computational capacity their application to 

real structures is now becoming more feasible. 

In the particular field of railway bridges the use of probabilistic methods for safety assessment 

is very limited. From the literature review it can be seen that most of the work done in this 

research field was performed through deterministic analysis. This reveals that not much attention 

has been given to the variability of the parameters that are known to influence the dynamic 

response of the bridge or to the identification of the parameters that have a significant effect in 

the structural response. One of the few exceptions is the work of Cho et al (2010) which 

accounted for the variability of some parameters of both the bridge and the train and performed 

a reliability analysis of a box-girder railway bridge using an improved Response Surface Method. 

A prestressed concrete box girder bridge was used as a case study and the reliability analysis 

showed that bridge-related uncertainties have greater influence in the reliability indexes than 

train-related uncertainties. Nonetheless, the analysis was limited to a single train speed not 

enabling to conclude how the reliability of the train-bridge system is affected by this parameter. 

Even when the existence of track irregularities is accounted for, the analysis is often limited 

to a specific scenario. Au et al (2002) studied the behaviour of a cable stayed railway bridge for 

different track irregularity profiles and different track quality scenarios. It was found that the 



Structural reliability assessment 

3.3 

impact factor is not proportional to the magnitude of the roughness. However, it was noticed that 

this impact factor tends to increase for lower track quality. Lu et al (2009) proposed an extension 

of the pseudo excitation method for the analysis of the behaviour of vehicle-bridge coupled 

systems. Several examples are shown proving the efficiency of the proposed method against the 

Monte Carlo method. However, for both research works, the variability is limited to the track 

irregularity profiles. 

 Johansson et al (2014) recently proposed a methodology for the preliminary assessment of 

existing railway bridges for high-speed traffic. The methodology divides the bridges into groups 

with similar characteristics. Afterwards, prediction bounds for the properties of the bridges 

within a group are determined through statistical analyses for each group of bridges and a 

probability distribution is generated for the entire bridge network. The dynamic response is 

assessed using a closed-form solution previously developed by the same authors [Johansson et 

al (2013)]. To take into account the uncertainties associated with the prediction bounds the Monte 

Carlo method is used to assess the dynamic behaviour of the bridges and based on the simulation 

results the probability of failure is determined. 

In this chapter the basis of structural reliability is presented. An overview of the fundamental 

concepts and the different approaches used to address this problem is provided along with the 

description of different methods used to assess structural safety. Furthermore, some 

enhancements of the most usual methods are presented in order to increase the efficiency of the 

safety assessment. The chapter ends with the presentation of the safety assessment framework 

that includes the basis of the methodology used to assess the safety of the train-bridge system. 

 

3.2 Fundamentals 

In this section the fundamentals of structural reliability analysis are summarised. An overview 

of the basic concepts is presented along with the theoretical background to structural reliability. 

 

3.2.1 Basic concepts 

Since the safety and reliability of structures assumes such an important role in Engineering, 

structural reliability is a field that has been extensively studied in order to create tools for the 
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economic design of structures as well as accurate assessment of the safety level. A fundamental 

aspect to understand is the concept of reliability. According to EN1990 (2002) the term 

‘reliability’ should be considered as the ability of a structure to fulfil the specified requirements 

for which it has been designed during its service life. This code states that generally the ability 

to comply with the specified requirements is evaluated in terms of a probability, thus making 

reliability a probabilistic concept. Therefore the reliability is a quantity that can be calculated or 

estimated. 

For this reason, in order to be realistic, structural reliability methods have a probabilistic 

nature, to account for the several sources of uncertainty that characterise these problems. Both in 

Thoft-Christensen & Baker (1982) and in Melchers (1999) the sources of uncertainty are divided 

into four main groups: physical uncertainty, statistical uncertainty, modelling uncertainty and 

uncertainties due to human factors. Therefore, an important part of the method is the 

identification of the parameters that influence the structural behaviour, known as the basic 

variables, as well as the definition of an appropriate probability distribution family and the 

estimation of the parameters of this distribution. Usually the selection of the distribution family 

is based on subjective information whereas the parameters of the distribution are estimated on 

the basis of available data or experience [Faber (2012)]. 

While accounting for the several sources of uncertainty is important, the definition of 

boundaries that measure the performance level that a structure must display during its service life 

is another key aspect. Nowak & Collins (2000) define the limit state as the boundary between 

desired and undesired structural performance. Therefore, the limit state functions or performance 

functions can be perceived as the basic requirements for adequate structural behaviour. 

Generally, two types of limit states are defined: serviceability limit states and ultimate limit 

states. Ultimate limit states are associated with severe damage to the structure, that reduces the 

structural capacity and raises concerns regarding structural and/or people safety [EN1990 

(2002)]. In bridges the most common causes for ultimate limit states are bending, shear and loss 

of stability [Wisniewski (2007)]. Serviceability limit states are associated with less severe 

damage to the structure and generally concern the performance of the structure under normal use, 

the comfort of people, the structural appearance and its durability [EN1990 (2002)]. In railway 

bridges the most common serviceability problems are related with excessive deformations or 

vibrations and cracks. It is worth mentioning that EN1990 (2002) also distinguishes between 

reversible and irreversible serviceability limit states. Wisniewski (2007) points out that some 



Structural reliability assessment 

3.5 

authors separate the Fatigue Limit state from the ULS and recently some authors also propose 

the use of another limit state with respect to structural durability.  

If a structure does not meet the requirements established in the limit states it is considered to 

have failed. Since structural reliability relies on a probabilistic approach the structural response 

can be assessed statistically and the probability of violating a limit state, which represents the 

probability of failure, can be estimated. Assuming that the structural response is determined by 

the parameter x, the probability of failure can be expressed as: 
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where ΩF represents the failure region, which corresponds to the region where a given limit 

condition is not satisfied. The severity of the consequences that result from failing to meet a 

specific limit state is used to define the target reliability. Limit states that have greater 

consequences when exceeded must have a very small probability of occurrence and, 

consequently, higher reliability. Contrary to the reliability, safety is a qualitative concept 

[Schneider (2006)]. It is not possible to quantify the safety of a structure as it can only be 

classified as safe or unsafe. Therefore, it is necessary to assess the structural reliability and a 

structure is considered to be unsafe when its reliability is lower than a target reliability, which 

represents the minimum acceptable structural performance. 

 

3.2.2 Semi-probabilistic approach 

One of the most common methods to evaluate structural safety and reliability is based on a 

semi-probabilistic approach. It constitutes the basis of most of the current standards and 

guidelines for the design of structures. In this approach the actions, E, and the resistance, R, are 

represented by their design values, Ed and Rd, respectively. In order to ensure safety the following 

condition must be met: 

 

dd RE   (3.2) 
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The semi-probabilistic approach reflects the uncertainty in a simplified manner, through the 

introduction of partial safety factors. These safety factors are applied to the characteristic values 

of the actions, Ek, and resistance, Rk, in order to enhance the loading and reduce the resistance. 

Typically the characteristic value for the actions corresponds to the 95% quantile whereas in the 

case of the resistance the 5% quantile is used. However, other quantiles can be used provided 

that safety factors are adequately adapted. Therefore, Eq. (3.2) can be written as: 
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where f and M are partial safety factors with values greater than one. 

This method is based on more complex probabilistic approaches. However, the main purpose 

of this approach is to define a simple method to assess structural safety while ensuring the same 

safety level as more complex methodologies. It is within the designated Level I methodologies, 

which is a topic that is addressed in more detail in Section 3.3. 

 

3.2.3 Probabilistic approach 

Another possibility for the assessment of structural reliability is adopting a probabilistic 

approach. In this method both the structural response and the loading are characterised by random 

variables, offering a more realistic representation of the structural reliability problem. The 

probability of failure is evaluated by structural reliability techniques. The basic variables are 

defined according to real or theoretical distributions and comprise the mechanical properties of 

the materials, the geometric imperfections and the loading on the structure among other 

significant properties. 

The use of probabilistic approaches in structural reliability problems has become more 

widespread in recent decades mainly due to the evolution of computers and their increasing 

capacities. The application of these methodologies in Civil Engineering is not limited to 

structural design assessment but has been also frequently applied to the structural assessment of 

existing structures. Since most European standards do not differentiate the structural assessment 

of existing structures from the design of new ones this approach is very useful to provide an 
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adequate evaluation of the remaining service life of this type of structures, enabling the selection 

of adequate reliability levels. 

In order to assess structural safety the probability of occurrence of a given limit state is 

evaluated taking into consideration the uncertainties in the basic variables. The estimated 

probability is then compared to reference limit values, defined by EN1990 (2002) or JCSS (2001) 

in order to understand if the structure complies with the required target reliability and is able to 

perform adequately. 

Some methods to assess structural reliability adopting this approach are presented in 

Section 3.3. 

 

3.2.4 The Fundamental Reliability Case 

The basic reliability problem is a two dimensional case where both the resistance, R, and the 

effect of actions, E, are described by a single stochastic variable. These parameters can be 

described by their probability distribution functions, fR and fE, respectively. The probability of 

failure can then be defined by: 

 

 ERPp f   (3.4) 

 

This represents the probability of a given limit state not being satisfied. The limit state 

function, M, is often addressed as the difference between actions and resistance: 

 

  ERERgM  ,  (3.5) 

 

Considering the probability distribution function for each parameter along with the combined 

probability distribution function, fRE, and assuming that ΩF is the failure region, the probability 

of failure can be written as: 
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   
F

dedrerfMPp REf ,0  (3.6) 

 

If R and E are independent, which corresponds to the most common assumption, then: 

 

   efrff ERRE   (3.7) 

 

and Eq. (3.6) can be written as: 

 

      










re

ERf dedrefrfMPp 0  (3.8) 

 

Since the cumulative distribution function, FX(x), of a generic variable X is given by: 

 

     




x

xX dyyfxXPxF  (3.9) 

 

Therefore, the probability of failure can be expressed as: 

 

   




 dxxfxFp ERf
 (3.10) 

 

The integral in Eq. (3.10) is often referred to as the convolution integral [Melchers (1999)]. 

Figure 3.1 shows a schematic representation of the convolution integral. 
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Figure 3.1 – Graphical representation of the convolution integral [adapted from Wisniewski (2007)]. 

 

The analytical resolution of this integral is only possible for a few particular cases, namely 

when the resistance and the actions follow a Gaussian distribution. When this is the case, 

assuming the variables have a mean μR and μE and a variance 2

R  and 2

E  and taking into account 

that the safety margin, M, represents the difference between the resistance and the effect of 

actions, taking advantage of the additive properties of independent Gaussian random variables 

the probability of failure can be expressed as: 

 

    






 


Z

Z
f MPERPp






0
00  (3.11) 

 

where 

 

ERZ    (3.12) 

 

and 
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ERZ    (3.13) 

 

Due to the relation between the mean and variance of both variables E and R with the mean 

and variance of the safety margin, M, the probability of failure can be re-written in the following 

form: 

 

 

 
 




 




















2/122

ER

ER
fp  (3.14) 

 

The parameter β represents the reliability index and is also commonly named the Cornell 

reliability index (Cornell, 1969): 

 

M

M




   (3.15) 

 

 This index can be interpreted as the number of standard deviations by which the mean value 

of the safety margins exceeds zero (which represents the safety limit). There is an equivalent 

geometrical interpretation of the reliability index which is interesting and is the basis of the 

FORM and SORM methods that are discussed in Section 3.3.2, in which the index is interpreted 

as the distance from the mean value of the safety margin to the most likely failure point (see 

Figure 3.2). 
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Figure 3.2 – Distribution of the safety margin [Wisniewski (2007)]. 

 

3.3 Methods for the evaluation of the probability of failure 

The overview of the structural reliability theory provides a basis for a better understanding of 

the problem. It is also important to present the different methodologies that can be used to 

evaluate the probability of failure in Structural Engineering. The different levels that are 

presented correspond to increasingly probabilistic approaches. According to Henriques (1998) it 

is also possible to include Level 0 methodologies, which correspond to a purely deterministic 

approach. However, this has stopped being a common practice in Engineering and it is not within 

the scope of the present dissertation and, for this reason, only a reference is made to such 

methodologies. 

 

3.3.1 Level I Methods 

Usually the Level I methodologies are associated with semi-probabilistic approaches. The 

aforementioned method of partial safety factors is an example of such a method. The loading and 

the resistance are represented by their characteristic values and in order to guarantee the structural 

safety the characteristic value for the effect of actions must be lower than the characteristic value 

of the resistance, as expressed in Eq. (3.2). 
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This approach is the main one that is currently incorporated in the European standards. Despite 

the simplifications the aim of these methods is to provide a reliability level similar to that 

obtained by a probabilistic approach. For this reason, the adopted safety factors should be 

carefully selected in order to reflect the target reliability level obtained by more advanced 

methodologies. The calibration of the safety factors can result from either an empirical basis, 

resulting from previous experience, or by comparison with purely probabilistic methods [Jacinto 

(2011)]. In the case of EN1990 (2002) the safety factors are mostly obtained through an historical 

record of successfully designed and constructed structures. 

The drawback of this type of method is the fact that the Designer is not responsible for defining 

the reliability level but instead uses an unknown reliability target. For this reason trust is required 

when adopting the safety factors that are recommended. 

 

3.3.2 Level II Methods 

Level II methods include the First Order Reliability Method (FORM) and the Second Order 

Reliability Method (SORM) which are based on a geometrical interpretation of the reliability 

index. When the basic random variables, Xi, are all independent and follow a Gaussian 

distribution and the limit state function (or performance function), g(X), is linear then the 

reliability index, β, is easy to determine, regardless of the number of variables, by these methods, 

due to the additive properties of the Gaussian distribution, as previously shown. In this case the 

reliability index represents the minimum distance between the limit state to the origin of the 

standardised Gaussian distribution space. 

However, this is not the most common scenario for reliability problems. This fact has two 

main consequences: the first one is that both the mean and variance cannot be obtained by the 

additive properties of Gaussian distribution and the second is the fact that the safety margin, M, 

can also be non-Gaussian. In this case the results obtained by this approach are an approximation. 

Usually, the two statistical moments are obtained by adjusting an approximate function to the 

most representative point of the studied problem that is known as the design point [Henriques 

(1998)]. Jacinto (2011) points out that the degree of linearity is only important in the vicinity of 

this design point as this is what defines the quality of the estimated probability of failure. This 

means that despite the limit state function being highly non-linear as long as this is not observed 

near the design point the approximation can actually prove to be quite good. 
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The approximation function can be defined by expressing the performance function, g(X), in 

a Taylor series: 

 

         *2***
** |

2

1
XXgXXXXgXgZ

X

T

X
 (3.16) 

 

Where X* represent the design point and gk  corresponds to the partial derivatives in terms 

of k. Therefore, it can be said that the essence of the FORM or SORM methods is to find the 

point that leads to the minimum distance between the limit state function and the origin of the 

normalised space [Melchers (1999)].    

As the name indicates the FORM only accounts for the first order terms of the Taylor series 

of the function g(X) relative to the design point X*:  

 

   **

*

XX
X

g
XgZ

X





  (3.17) 

 

The limit state function is therefore approximated by a hyper surface tangent to the design 

point X* as illustrated in Figure 3.3. 

 

 

Figure 3.3 – Approximation to the performance function. 
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Generally second order surfaces such as paraboloids or spheres are used for the approximation 

in order to reduce the errors that result from using an approximation to the limit state function. 

Cornell (1969) introduced the reliability index concept by calculating the mean and the 

variance using first order approximation functions. 
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  (3.18) 

 

However, this formulation has an important drawback which is the dependency of the 

reliability index, β, on the design point. In order to overcome this problem Hasofer & Lind (1974) 

proposed a methodology that performs a transformation of the original space into the normalised 

space (zero mean and unit variance). The variables Xi are substituted by the reduced variables Yi. 

The limit state function is also reformulated in the new coordinate system. The subsequent 

procedure is similar to the procedure described for the fundamental reliability case, the design 

point Y* is determined and afterwards the reliability index, β, can be calculated. If the limit state 

function is non-linear the determination of the design point is carried out using an iterative 

procedure. An interesting concept that is associated to this methodology is related to the physical 

interpretation of the direction cosines. The obtained value represents a sensitivity measure of the 

performance function at the design point for each of the basic variables, Xi. 

In the case of correlated and/or nonnormal basic variables the problem is more complex and 

some specific methods need to be applied. The work of Carrarini (2006) discusses some of them, 

including the Rosenblatt transformation, Rackwitz-Fiessler formula and the Orthogonal 

transformation.  

One drawback of the FORM and SORM approach is that in its formulation the probability 

distributions of basic variables, Xi, are not considered but only the first and second moments. 
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3.3.3 Level III Methods 

The Level III reliability methods try to determine the probability of failure by calculating the 

integral that defines it. Considering performance function  XgM  , where X is the vector of 

the basic random variables, the probability of failure is represented by the following integral: 

 

    




F

dxxfXgPp Xf 0  (3.19) 

 

This integral can be solved analytically (only possible for a very limited number of cases) or 

numerically. Jacinto (2011) notes that the numerical solution of the integral can be difficult for 

problems with a significant number of basic random variables (generally higher than 5) or when 

the failure regions displays a complex geometry. Furthermore, it is not always possible to 

explicitly obtain the failure region function. This is typically the case when a problem is solved 

by the Finite Element Method, where these functions can only be defined point by point. The 

main consequence is that the failure domain is unknown and, consequently, the probability of 

failure cannot be calculated from an integral such as expressed in Eq. (3.19) as the domain is not 

completely known. In these cases one usual option to assess structural safety is by response 

surface methods. 

Seeing that the limit state function is not explicit the response surface method provides an 

analytical performance function,  Xg~ , generally of the polynomial type, that defines the limit 

state that is to be assessed from a few properly selected deterministic analyses. In order to obtain 

an accurate assessment of the structural reliability the approximation function must adequately 

represent the limit state function in the vicinity of the design point. The response surface method 

can be summarised in the following steps [Henriques (1998); Wisniewski (2007)]: 

 Define a set of values for the basic variables in order to obtain  Xg~  and assess the 

quality of the approximation; 

 Assess the structural response for each set of values that were defined using the Finite 

Element Method; 

 Determine the function coefficients using regression techniques based on the FEM 

analysis results; 
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 Based on the analytical performance function,  Xg~ , determine structural reliability 

through FORM/SORM methods or using simulation techniques. 

A careful choice of the polynomial degree of the analytical performance function must be 

carried out. The degree of  Xg~  must be smaller or equal to the degree of  Xg  in order to 

obtain a system of well-conditioned linear equations during the determination of the coefficients 

[Henriques (1998)]. However, Deng (2006) points out that this method becomes computationally 

impractical for problems involving a large number of nonlinear random variables, particularly 

when dependent random variables are involved.  

An enhancement to the traditional response surface methods is Artificial Neural Networks 

(ANN). When studying complex limit state functions this method proves to be particularly useful 

as obtaining an adequate fit, using the response surface method, might be very difficult. ANN 

are numerical algorithms that attempt to replicate the behaviour of the biological neural network 

in a computational model. One of the most interesting features of this methodology is the 

possibility of learning. This means that given a task to solve, such as determining the limit state 

function, ANN is capable of defining a model of the limit state surface from training examples 

and finding meaningful solutions without the need to specify the relationship between variables 

[Deng (2006)]. The main advantage of this methodology is that obtaining the limit state surface 

represents a small fraction of the computational time required by the numerical model, thus 

making it possible to analyse complex structures that display a non-linear behaviour [Chojaczyk 

et al (2012)]. Usually, and similarly to what is done with the traditional response surface methods, 

after determining the limit state surface using ANN the method is combined with Monte Carlo 

simulation or FORM/SORM methods in order to evaluate structural reliability. 

An alternative methodology is based on simulation techniques. This approach does not require 

an explicit limit state function, thus making it suitable to be used when FEM is applied in the 

assessment of the structural response. Since the determination of the integral presented in 

Eq. (3.19) is extremely difficult for most structural reliability problems, the use of simulation 

techniques allows one to obtain unbiased estimates of the value of the integral while adequately 

accounting for the non-regular structural behaviour. This method has emerged as an interesting 

alternative due to its simplicity and also because it is almost unaffected by the complexity of the 

studied problem and the number of basic random variables involved [Rubinstein (1981)]. 
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The Monte Carlo method is the basis of most simulation methods and is generally selected for 

the analysis of complex systems [Rubinstein, 1981; Shinozuka (1972)]. In this method values are 

generated for the random variables, X(i) = (X1
(i), X2

(i), … , Xn
(i)), according to their distribution. 

Next the structural response, Yi
 (i), is assessed for each trial and the global structural response is 

analysed as a sample with distribution of Y. Monte Carlo simulation is based on the random 

sampling concept and aims to artificially simulate a large number of experiments.  

The probability of failure, pf, or the structural reliability, β, can then be assessed using two 

distinct approaches. The most usual is a simple process that consists on counting the number of 

trials where the safety limit is exceeded over the total number of simulations: 

 

N

z
p f

0  (3.20) 

 

where z0 corresponds to the number (or realizations) where structural safety is not verified and N 

represents the total number of trials. The total number of trials depends on desired accuracy for 

pf and also on the order of magnitude of the target pf. The necessary number of trials is directly 

proportional to the desired accuracy and inversely proportional to the value of the target pf. 

The second approach consists of statistical analysis of the results of all the realisations using 

the limit state functions. This enables the determination of the probability density function of the 

performance function, g(X), as well as the mean value, μM, and the standard deviation, σM. 

Assuming that g(X) is normally distributed the reliability index, β, can be determined using 

Eq. (3.15). 

The use of Monte Carlo simulation for structural reliability problems can be divided into two 

different classes: pure simulation methods and semi-analytical methods. The first class 

corresponds to the original formulation whereas the second class corresponds to cases where 

simulation techniques are combined with other methods that enable a more efficient assessment 

of the structural reliability [Henriques (1998)]. 

In its most usual form the method is also known as Crude Monte Carlo (CMC), due to its 

somewhat brute force nature, and can be adequately described by the following steps 

[Haldar & Mahadevan (2000)]: 

 Definition of the structural reliability problem with all its basic variables; 
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 Definition of an appropriate probability distribution family and the estimation of the 

parameters of this distribution for each of the basic variables; 

 Numerical sampling of the basic variables based on their distribution; 

 Assessment of the structural response for each trial; 

 Obtain all the necessary statistical information from the N trials; 

 Evaluation of the quality of the estimation based on the accuracy and efficiency of the 

structural reliability assessment.  

The methodology is simple and its application depends essentially on the necessary number 

of trials, which define the computational costs. One way to estimate the necessary number of 

trials for an accurate assessment of the structural reliability is by analysing the variance or the 

coefficient of variation (CV) of pf. The variance or CV can be estimated assuming that each 

realisation is a Bernoulli trial. This way the number of failures in N Bernoulli trials has a 

Bernoulli distribution. The variance of pf can be expressed as: 

 

 
N

pp ff

p f




1
2  (3.21) 

 

Consequently, the CV can be written as: 

 

 

f

ff

p
p

N

pp

CV
f





1

 
(3.22) 

 

The statistical accuracy in the estimate of pf is inversely proportional to the value of CV. 

Brodig et al (1964) suggested the following formula to make an initial estimate of the 

necessary number of trials, N, based on the confidence level, c: 
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 

fp

c
N




1ln
 (3.23) 

 

Bjerager (1990) on the other hand suggested that the number of trials only needed to be related 

with the value of pf and a value in the range of 1/pf to 10/pf should be selected. [Melchers 1999] 

points out that despite being useful these ‘rules’ do not provide information about the accuracy 

of the method. One useful tool to assess accuracy is to analyse the evolution of both the estimated 

pf and its estimated variance for increasing sample sizes. 

The main criticism that is appointed to this method is the typically large number of simulations 

required for accurately assessing the reliability of Civil Engineering structures. Due to the rather 

small probabilities that are typically used in structural safety engineering problems 

[EN1990 (2002)], the computational costs of this method can, in some cases, be prohibitive. As 

an alternative to the Monte Carlo approach, the use of variance reduction techniques enables the 

refinement of the sampling process and increases the efficiency of the simulation. Among them 

the importance sampling techniques, the directional simulation method and the stratified 

sampling method are worth mentioning. The works of Rubinstein (1981) and Melchers (1999) 

provide a good overview of the various strategies for variance reduction when using simulation 

methods to solve structural reliability problems. 

Schuëler (2009) carried out a study in order to compare the efficiency of the standard Monte 

Carlo against methods where variance reduction techniques are employed. Using a building as a 

case study it was possible to observe that the use of importance sampling and directional 

simulation results in significant efficiency gains.    

Hurtado (2007) proposed a methodology that combines pattern recognition techniques with 

importance sampling. This work made it possible to conclude that the use of pattern recognition 

techniques achieves a significant improvement in the efficiency in the selection of the sample to 

use in the structural reliability analysis, resulting in an important reduction in the required number 

of samples. 

Grooteman focused his studies in directional simulation methods. In Grooteman (2011) an 

adaptive directional importance sampling was presented whereas in Grooteman (2008) a radial-

based importance sampling method is discussed. The author recognises that importance sampling 

can prove more efficient but in some cases it requires information about the limit state which can 
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prove hard to define. For this reason he suggests that directional simulation is a good option to 

assess structural reliability problems due to the efficiency displayed by the method. 

Another variance reduction technique is based on stratified sampling methods. These methods 

divide the entire sample space, S, of X into m strata of equal marginal probability, Ωi. The 

probability of failure associated with each strata, Ωi, is defined by: 

 

    
i

i
dXXhXfp Xf

 (3.24) 

 

Each interval is characterised by the following probability: 
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Thus, the probability of failure is determined by: 
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Using discrete Monte Carlo simulation an estimate of pf can be obtained by: 
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with a variance of: 
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where: 
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ni being the number of samples within the sub-space Ωi. 

Eq. (3.30) demonstrates that if an adequate stratification is selected a significant reduction of 

the variance is obtained, thus significantly increasing efficiency.  

One of the most common methods that uses stratified sampling techniques is the Latin 

Hypercube sampling method [Mckay et al (1979); Florian (1992)]. In this method the range of 

each variable Xi is divided into n strata of equal marginal probability, Ωi, ensuring that each 

variable Xi has all portions of its distribution represented by input values, sampling once from 

each stratum. Each interval is represented in the sample by the representative parameter which 

can be taken randomly within the interval or may be taken as the centroid of the interval [Florian 

(1992)]. Stein (1987) shows that this method is superior to standard Monte Carlo simulation with 

respect to both efficiency and precision of estimators provided that the response is a monotonic 

function (a function that is either entirely increasing or entirely decreasing) of the basic variables. 

The sampling process allows several possible configurations of the sample space. Therefore, the 

proper selection of samples representing the stratified sampled space is decisive for the efficiency 

of the method. The works of Morris & Mitchell (1995), Vořechovský & Novák (2003), Stocki 

(2005) and Beachkofski & Grandhi (2002) provide examples of different approaches regarding 

the selection of the optimal configuration of the sample space. 
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3.3.4 Level IV Methods 

The Level IV methods combine structural reliability with risk concepts. There are several 

definitions for risk, but the most general in the context of structural reliability is to understand it 

as the product of probability of occurrence of a given event, which in this case can correspond to 

the probability of violating a given limit state, by the consequences of the occurrence of such 

event, CF, namely the damages that are caused, the loss of lives, etc. [Melchers (1999)]. This 

perspective can be similar to a cost-benefit analysis and, therefore, the risk can be interpreted as 

the cost of the occurrence of a given event. The whole-life total cost of the structure, CT, 

corresponds to the sum of this cost with the initial costs (both of project and construction), CI, 

and the maintenance costs expected during the service life, CM. 

Taken this into consideration, the structural reliability assessment can be interpreted as an 

optimisation of problem with regard to finding an optimal probability of failure in order to 

maximise the following: 

 

   
FfMIT CpCCBCB  maxmax  (3.31) 

 

where B represents the benefits and, as previously explained, the last term represents the risk.  

Another formulation that can be employed is estimating the risk and ensuring that it is lower 

than the maximum admissible risk for structure. This type of approach is generally limited to 

structures that are extremely important, which are characterised by severe consequences when 

failure occurs. 

The use of methodologies that take risk into consideration has been more frequent in structural 

reliability problems in recent years. However, since this method exceeds the scope of the present 

dissertation this serves only as a brief reference and overview, acknowledging the existence of 

this approach and the potential that it offers when addressing this type of problem.  
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3.4 Enhanced methodologies for estimating the probability of failure 

One of the main objectives of the present dissertation is to analyse and implement an efficient 

methodology for the safety assessment of railway bridges while account for the variability of the 

parameters that govern their dynamic behaviour. For this reason the most adequate 

methodologies to achieve this goal are within the Level III methods. Due to the complexity of 

the problem that is being studied, in particular considering the fact that the obtained response 

might not be unimodal, the use of response surface methods is less attractive than the use of 

simulation techniques. 

With the aim of enhancing efficiency the simulation method is combined with other 

techniques in order to reduce the necessary number of simulations. In the following sections the 

several methods used in this dissertation are presented and discussed.  

 

3.4.1 Tail modelling 

One common way of reducing the necessary number of simulations and increasing the 

efficiency is combining simulation methods with tail modelling techniques. This approach does 

not take into account the central behaviour. Instead, it focuses on the upper or lower tail 

behaviour, which fits for the purpose of structural reliability analysis. Since structural reliability 

problems are determined by the tail of the obtained statistical distributions, the computational 

cost can be significantly reduced if an extrapolation of the Cumulative Distribution Function 

(CDF) is made using such an approach [Ramu et al (2010)]. The classical tail modelling is based 

on the extreme value theory and consists of approximating the tail portion of the CDF above a 

certain threshold, u, by the Generalised Pareto Distribution (GPD) [Castillo (1988)]. The 

approximation function, Fξ,ψ(z), can be written as [Ramu et al (2010)]: 
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where z is the exceedance, ξ and ψ are the shape and scale parameters respectively. 



Chapter 3  

 

3.24 

Examples of application of this procedure can be found in Caers & Maes (1998), Ramu et al 

(2010) and Acar (2011). However, the method should be applied with care as the tail needs to be 

modelled accurately, since small variations in the tail of the distribution can result in variation of 

the safety level by an order of magnitude. 

Besides the GPD other functions can also be used to model the tail of the distributions and 

typically include normal, lognormal, Weibull or exponential functions. Several of the most 

traditional functions were tested along with some less usual ones, namely sigmoid functions, 

which for the particular case of work carried in this dissertation provided the best fit to the 

obtained distribution tails. The sigmoid functions that were used to model the tails are expressed 

by: 
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An important aspect of the tail modelling approach relies on the threshold selection. Despite 

the importance of this aspect there is not a straightforward globally accepted method to select the 

threshold [Ramu (2007)]. Caers & Maes (1998) highlight the importance of the threshold 

selection by pointing out that it has important repercussions on the estimated value of the shape 

factor, extreme quantiles and other parameters that are important when addressing structural 

reliability problems. On the one hand, if the threshold is too close to the central data it will bias 

the estimation towards the central values thus affecting the quality of the fit to the tail. On the 

other hand, if the threshold is too high there is the risk of using a reduced number of points which 

can result in high estimation variance. For this reason, Ramu (2007) stated that the selection of 

the threshold is a trade-off between bias and variance. Several suggestions regarding the selection 

of the threshold can be found in the literature. Smith (1989) took a fixed threshold and a fixed 

number of points above the threshold. Boos (1984) suggested that the ratio between the number 

of points above the threshold, Nex, over the total number of data points, N, should be 0.02 for 50 

≤ N < 500 and 0.1 for 500 ≤ N < 1,000. Hasofer (1996) proposed taking NNex  5.1 . Caers & 

Maes (1998) suggested using a finite sample mean square error as a criterion for the threshold 
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selection. A parametric study was carried out in order to identify the most suitable threshold for 

the problem that is studied in the current dissertation. This will be discussed in Section 5.3.2.2. 

One possible drawback of this approach is the fact that the method relies significantly on the 

most extreme values, which are the ones that present the largest uncertainty. For this reason the 

estimated probability of failure may require, in some cases, a larger number of simulations until 

it stabilises. 

 

3.4.2 Enhanced simulation method 

Naess et al (2009) proposed an enhanced simulation method which is able to overcome some 

limitations of high computational cost due to large samples needed for a robust estimation as in 

the previously presented method. It exploits the regularity of the tail probabilities to set up an 

approximation procedure based on the estimates of the failure probabilities at more moderate 

levels for the prediction of the far tail failure probabilities. The safety margin, M, represents the 

difference between the capacity and the demand to define the probability of failure as  

Prob( 0)fp M    and is extended to a parameterised class of safety margins in the following 

way: 

 

     1MMM  (3.34) 

 

where μM is the mean value of the safety margin M and λ is the scaling parameter that assumes 

values in the interval 0 ≤ λ ≤ 1, putting the emphasis on the more reliable data points. Thus, the 

original system is obtained for λ = 1 while λ = 0 represents a system highly disposed to failure. 

For a sample of size N an empirically estimated probability of failure is given by: 
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where Nf(λ) represents the number of realisations where there was failure for the given λ level. 

Since the probabilities of failure are small, the coefficient of variation of this estimator can be 

approximated by: 
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The 95% confidence interval for the value pf(λ) can be reasonably estimated by [Wald & 

Wolfowitz (1939)]: 
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Figure 3.4 – Example of the empirically estimated probability of failure and corresponding confidence 

intervals. 
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Introducing an approximation function fitted to the estimates allows estimating the target 

probability of failure by extrapolation. As proposed by Naess et al (2009), it is assumed that the 

probability of failure in the tail is dominated by a function that can be written as a function of λ: 

 

      c

f baqp 
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

exp
1

 (3.38) 

 

where q(λ) is a function that varies slowly compared with the exponential function 

  c
baexp  . Thus, for practical applications it can be assumed that q(λ) = q and this can then 

be applied in the following form for a suitable value of λ0 [Naess et al (2009)]: 

 

    c

f baqp   exp  (3.39) 

 

Therefore, an important part of the method is the identification of this suitable λ0 so that Eq. 

(3.38) represents a good approximation of pf(λ) for λ ϵ [λ0, 1], and at least such that b0 . The 

optimum values for the four parameters q, a, b and c can be obtained through a least square 

optimisation method using the Levenberg-Marquardt algorithm to the failure probabilities 

obtained by the Monte Carlo simulation. This consists of optimising the fit on the log level by 

minimising the following mean square error function with respect to all the four arguments: 
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where wj represents a weight factor that puts more emphasis on the more reliable data points and 

is calculated by: 
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Similarly to Naess et al (2009), in the current dissertation θ = 2 was adopted for the optimised 

fitting. By scrutinising Eq. (3.40), Naess et al (2009) noticed that the mean square error function 

could be simplified. If b and c are fixed, the optimisation problem is reduced to a standard 

weighted linear regression problem. This way the optimum values of a and log q are found using 

a closed form linear weighted regression formula in terms of wj,  jfj py ˆlog  and 

 cjj bx   . Hence, the optimum values of a and log q are given by: 
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and 

 

    xcbaycbq  ,,log **  (3.43) 

 

The Levenberg-Marquardt algorithm can then be used on the function 

      cbcbacbqFcbF ,,,,,,
~ **   to find the optimum values *b  and *c , and the corresponding *a   

and *q  can be determined by Eqs. (3.42) and (3.43). For the estimation of the confidence intervals 

the empirical confidence band is re-adjusted to the optimal curve through Eq. (3.37). Then, the 

optimised confidence intervals are determined using a similar optimisation procedure based on 

the re-adjusted confidence band. An example is illustrated in Figure 3.5. 

The fact that the confidence intervals can also be obtained by extrapolation, reducing 

significantly the influence of the sample size, is an important feature of this method. This enables 

it to be used to determine the accuracy of the estimated probability of failure. The fitted curves, 

extrapolated to the level of interest, will determine an optimised confidence interval of the 

estimated target failure probability. This procedure seems to give confidence intervals that are 

consistent with the results obtained by a nonparametric bootstrapping method [Karpa & Naess 

(2013)]. 
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Figure 3.5 – Example of the empirically estimated probability of failure and corresponding confidence 

intervals. 

 

3.5 Safety assessment framework 

One of the objectives of this work was creating a simple, efficient and automatic procedure, 

which requires as little intervention from the user as possible, that allows the identification of the 

critical train speeds over a bridge and the assessment of the safety of the train-bridge system. A 

schematic representation of the proposed probabilistic methodology can be observed in the 

flowchart presented in Figure 3.6. 

After defining the basic random variables, which should include all the parameters which 

variability affects the dynamic behaviour of the train-bridge system, one has to generate the 

values that each variable will take for each simulation. To do so a random number generator can 

be used. This type of tool is available in a wide range of computer software. Afterwards the data 

files can be created. In this particular case study, two different data files need to be created: one 

for the structure, which includes the bridge and the track, and another for the train. An automatic 

data file generation procedure was developed for efficiency reasons. 
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Figure 3.6 – Proposed methodology. 

 

Following the generation of the data files, the dynamic analysis can be performed. An 

adequate time step needs to be selected for the dynamic analysis and batch processing is used to 

perform the dynamic analyses for efficiency purposes and to avoid the need for manual 

intervention. 

After the dynamic analyses the results must be processed. Due to the large amount of 

information an automatic procedure is used. The results processing tool obtains automatically the 

time history of the dynamic response for a selected bridge section and the maximum dynamic 

response for that simulation. 

To assess the safety of the train-bridge system the probability of failure is estimated using two 

different techniques. A tail modelling approach based on the extreme value theory that uses the 



Structural reliability assessment 

3.31 

appropriate functions to model the upper tail of the obtained distribution, as detailed in Section 

3.4.1. An Enhanced Simulation technique which uses an approximation procedure based on the 

estimates of the failure probabilities at moderate levels for the prediction of the far tail failure 

probabilities, as has been detailed in Section 3.4.2. In order to enhance efficiency and ensure the 

accuracy of the estimates some criteria have been defined for each methodology and will be 

discussed in Section 5 where practical examples will be used to demonstrate the purpose, 

application and advantages of each criterion. 

The train-bridge system is considered to be safe if the estimated probability of failure is lower 

than 10-4, which corresponds to a reference value in JCSS (2001) to assess ultimate limit states 

for systems where failure has severe consequences. 
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Chapter 4 

Modelling of the train-track-bridge system 

4.1 Introduction 

In the previous chapters the problem that is being studied in this dissertation, as well as the 

methodologies proposed to achieve the objectives of this thesis, were presented. The current 

chapter is dedicated to presenting the case study which will be used to test the adequacy, 

efficiency and accuracy of the proposed methodologies.  

A ballasted filler beam bridge was selected as case study as this structural solution is 

representative of a significant part of the short span bridges that compose the current European 

high-speed railway network. A similar criterion was used in the selection of the train to be used 

in the analyses. The TGV double train, which is currently in operation in the European high-

speed network, was selected due to having a particularly aggressive configuration for the span 

length in study. 

A thorough description of the case study bridge is presented along with the description of the 

geometrical and mechanical properties of the train. Based on the properties of both the bridge 

and the train, a set of random variables is selected and their variability and type of distribution is 

presented and discussed. Afterwards, the numerical models used to represent both the train and 

the bridge are presented, an explanation for all the options made during the development of the 

numerical models is provided and the numerical models are validated. Furthermore, several 
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particular modelling aspects are discussed in detail in order to provide a better understanding of 

their influence on the dynamic response of the train-bridge system. 

Finally, and due to the few probabilistic studies carried out in this field, it is important to 

understand which variables have more influence on the dynamic response. Therefore, a 

sensitivity analysis is carried out in order to identify the variables that govern several aspects of 

the dynamic response of the train-bridge system. 

 

4.2 Case study 

4.2.1 Description of Canelas Bridge 

For the purpose of this dissertation Canelas Bridge is selected as case study. Canelas Bridge 

is located in the Northern line of the Portuguese railway, near Estarreja at the 282.944 km, and 

is composed of six simply supported spans of 12 m each, with a total length of 72 m. The bridge 

deck is a composite structure consisting of a concrete slab with embedded rolled steel profiles. 

This kind of structural system is known as filler beam and is a common structural solution for 

small span bridges on the European high-speed railway network, especially in France and 

Germany [Martínez-Rodrigo et al (2010); Hoorpah (2005)]. The Canelas Bridge’s concrete slab 

has a height of 0.70 m and has embedded nine HEB 500 profiles. A side view of the bridge used 

as case study is shown in Figure 4.1. 

The bridge supports two ballasted tracks, however, each track is supported by a single half 

deck due to the existence of a longitudinal expansion joint (see Figure 4.2). Nonetheless, the 

abutments and columns support both decks. It should also be noted that despite the decks are 

independent the ballast layer is continuous over both half decks, which can originate some 

connection between them. This interaction between independent decks due to the continuous 

ballast layer is a topic that has been studied in recent investigations [Rauert et al (2010); Carvalho 

(2011)] but that is not considered in this dissertation. 
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a) Schematic representation  

 

b) Longitudinal section 

Figure 4.1 – Side view of the Canelas railway Bridge. 

 

 

Figure 4.2 – Detail of the longitudinal expansion joint. 

 

Furthermore, Canelas Bridge is located in a curve with radii of 892 m and 896 m for the inner 

and outer tracks, respectively. The grade line of the bridge along its longitudinal profile is 

horizontal and the rail is located at a 5.75m level. The maximum cant of the track is 0.179 m. 

The cross section of each deck has a width of 6.20 m and comprises of a concrete slab with a 
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width of 4.50 m and a height of 0.70m. There is also a cantilever walkay with a width of 1.70 m 

and a height that varies from 0.30 m to 0.50 m. Nine rolled steel profiles HEB 500 are embedded 

in the concrete slab with a spacing of 0.475 m. Headed studs with a diameter of 25 mm were 

welded to the top of the steel profiles in order to improve the bonding with the concrete slab. 

Cement plates were placed underneath the concrete slab, between the steel profiles, to be used as 

formwork during the concreting of the slab. It should also be pointed out that each deck has a 

small ballast retaining wall which forms part of the cantilever with a height of 0.60 m and a width 

of 0.30 m. Laminated neoprene elastomeric bearings are placed underneath each steel profile, 

with a total of 9 bearings per half deck in each abutment. The cross section of Canelas Bridge is 

depicted in Figure 4.3. 

 

 

Figure 4.3 – Canelas Bridge cross section. 

 

The reason for selecting of this bridge is that this is a very common structural form used on 

the European railway network. According to the European Project Sustainable Bridges (2004) 

composite bridges (steel/concrete or filler beam) represent 14% of the bridges in operation in the 

European lines, equivalent to more than 30,000 bridges. Furthermore, since the spans of the 

bridge are within the range of spans for which the European standards indicate that the interaction 

effects are more significant, it offers the possibility to improve the understanding of such effects 

on the dynamic behaviour of railway bridges.  
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4.2.2 Previous research studies on Canelas Bridge 

This bridge has already been used as case study in several research investigations. Rodrigues 

(2004) studied Canelas Bridge at the request of the Portuguese railway network infrastructure 

management company (REFER) to evaluate the consequences of increasing the line speed over 

the bridge from 140 km/h to 220 km/h. This investigation involved in situ dynamic tests in order 

to characterise the bridge from a dynamic point of view and to assess its dynamic response under 

train loading. Structural reliability, train running safety and passenger riding comfort were 

analysed to assess the bridge response to the increased line speed. Based on the obtained results 

it was concluded that all the safety criteria were verified for a higher train speed, thus validating 

the increase of the line speed over the bridge. 

Pimentel (2009) also carried out in situ tests on Canelas Bridge to determine its dynamic 

properties. This study aimed to characterise the railway traffic over the bridge and to assess its 

influence on the dynamic response. Ambient vibration tests were performed in order to identify 

the modal parameters of the bridge, namely its natural frequencies, modal configurations and 

damping coefficients. The characterisation of the railway traffic was carried out using a B-WIM 

(Bridge Weigh-in-Motion) algorithm. This algorithm is based on the strain measurement at three 

points of the structure, two located on the rail and another on the bridge deck. Such a technique 

enabled combining the advantages related with the strain measurement at the rail, which allow 

the identification of the train geometry, with the advantages of the strain measurements at the 

bridge deck, which allow obtaining the train axle loads. 

Silva (2010) developed several three-dimensional finite element numerical models of Canelas 

Bridge, with varying degrees of complexity. The aim of this study was to assess the influence of 

the inclusion of the track in the numerical model and also the effect of considering the adjacent 

span in the dynamic response of the bridge. The numerical models were calibrated using results 

from experimental tests on the bridge in order to guarantee a realistic representation of the 

existing structure. Structural safety was assessed for both static, using LM 71 multiplied by an 

adequate dynamic factor, and dynamic analysis, using the real trains that operate on the European 

railway network, as prescribed by the current European standards [EN1990 (2002)]. With the 

increasing complexity of the numerical model the obtained results are less conservative but 

demanded higher computational capacity and required longer computational times. The author 

also concluded that accounting for the connection between the decks due to the continuous ballast 

layer resulted in a significant decrease of the dynamic response, particularly for resonant speeds. 
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Carvalho (2011) continued the research carried out by Silva (2010), focusing his study on the 

model updating of Canelas Bridge using optimisation techniques. A genetic algorithm based on 

the theory of evolution was used for the optimisation in combination with results obtained from 

ambient vibration tests. Another aspect introduced in this research was the inclusion of elements 

that reflected the deterioration of the ballast connection between the decks in the numerical 

model, thus allowing a more realistic representation of the global dynamic behaviour of the 

bridge. This study concluded that the transversal connection due to the continuous ballast layer 

is reduced as the ballast in the “connection zone” is highly degraded as a consequence of the 

successive crossing of trains. 

Bonifácio (2012) also studied Canelas Bridge following the aforementioned research by 

Carvalho (2011). The main focus of this research was centred on the train-bridge interaction 

effects on the dynamic response of Canelas Bridge. This required the development of numerical 

models for the trains of both the Alfa-Pendular train, which operates in the Portuguese railway 

network, and the TGV train, that operates in the European high-speed network. This work 

concluded that the train-bridge interaction effects are only relevant for resonant speeds, enabling 

a more realistic analysis. Furthermore, it was not possible to notice significant differences of the 

dynamic response of the bridge due to the continuous ballast layer when using the moving loads 

method or the train-bridge interaction approach. This work also analysed the passenger riding 

comfort and it concluded that the maximum acceleration inside the vehicle tends to increase 

along the length of the train. 

 

4.3 Numerical models 

4.3.1 Track-Bridge numerical models 

The Finite Element Method (FEM) was used in the numerical modelling of Canelas Bridge. 

The bridge was discretised with 2D beam elements using the finite element software FEMIX 

[Azevedo (2012)]. The numerical model was defined taking into account the design drawings. A 

single span was modelled and, as the two half slab decks are independent, only a single track was 

analysed. Furthermore, the numerical model assumed the bridge was in a straight section of a 

high-speed railway line. Since the structural system is very simple (simply supported bridge) and 

the goal was to perform a safety assessment (which may require a large number of simulations), 
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the aim was to develop a numerical model that was also relatively simple, thus enabling to 

accurately assess the dynamic response of the bridge. 

The deck was modelled as a beam positioned at the corresponding centre of gravity. For 

accuracy reasons [Yang et al (2004); Martínez-Rodrigo et al (2010)] the bearings were included 

in the numerical model as springs positioned at the corresponding centre of rotation. Due to the 

configuration of the bearings (existence of steel plates between each neoprene layer) each layer 

acts as an individual spring. For this reason, the bearing, as a whole, works as a system of series-

connected layers. The bearing stiffness was calculated according to [Manterola (2006)]: 
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where G is the neoprene shear modulus, E is the neoprene equivalent elasticity modulus, a and b 

are the smallest and the largest dimensions of the bearings, respectively, ti is the thickness of 

each neoprene layer, γ is a coefficient that depends on the relationship between the dimensions 

of the bearings and R is a coefficient that takes into account the dynamic nature of the loading. 

Two different models were developed for the track. The first one was developed at a stage 

where the interaction effects between the train and the bridge were not taken into consideration 

[Rocha et al (2012)]. At this stage the vertical deformability of the track was neglected and only 
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the shear behaviour of the track, which enables reproducing the track-bridge composite effect, 

was taken into consideration. For this reason the connection between the track elements, the deck 

elements and the bearings was modelled through a series of rigid beams. Although the bridge 

consists of simply supported spans the rail is continuous and this continuity affects the dynamic 

response of the track-bridge system. For this reason the track was extended 10.5 m over the length 

of the bridge in both directions in order to reflect this effect on the numerical model. A schematic 

representation of this model is represented in Figure 4.4. 

 

 

 

a) Schematic representation of the numerical model 

 

b) Bridge bearing [units in mm] 

Figure 4.4 – Simplified track-bridge numerical model. 

This model is simple and proves to be adequate when analysing the dynamic response through 

the moving loads method. However, when the train-bridge interaction effects are taken into 
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account the model led to numerical problems because it neglects the vertical flexibility of the 

track. This results in an inaccurate assessment of the wheel-rail contact forces and ultimately 

affects the accuracy of the assessment of the dynamic response. 

To overcome the model limitations and to meet one of the objectives of this dissertation (to 

analyse the influence of the interaction effects on the dynamic response of short span railway 

bridges), a more adequate track model had to be developed to carry out an adequate analysis of 

the response of the train-bridge system when accounting for the interaction effects. Different 

track models with varying degrees of complexity and sophistication can be widely found in the 

literature. The works of Rigueiro (2007), Vale (2010) and Alves Ribeiro (2012) provide a detailed 

review of the several models that are typically used to simulate ballasted tracks. A very 

comprehensive study on the behaviour of ballasted tracks was carried out by Zhai et al (2004) 

and involved both numerical modelling and field experiment tests. One of the simplest ballasted 

track models simulates the track as a series of continuous springs and dampers that replicate the 

vertical stiffness and damping properties of the track elements that connect the rail and the 

structure [Lou (2005)]. Since this model only accounts for the vertical properties of the track, 

Yang et al (2004) proposed including the horizontal properties of the ballast layer through a 

systems of longitudinal springs and dampers. However, neither of these models accounts for the 

different properties of the several elements that compose a ballasted track. For this reason, 

Calçada (1995) divided the track model in two layers of springs and dampers. The top layer 

connects the rail to the sleepers, which are simulated by lumped masses, and simulates the rails 

pads. The bottom layer connects the sleepers to the structure and simulates the ballast layer. Zhai 

et al (2004) proposed a more complex model that introduces a third layer in order to take into 

account the vibrating ballast mass in the numerical model. In this thesis a two layer track model, 

similar to the one used by Calçada (1995), was adopted. In order to validate its accuracy the 

obtained results are compared to results obtained using the three layer model proposed by Zhai 

et al (2004) and this is discussed in Section 4.4.3.2. 

The rails were modelled as beams with the properties of a UIC 60 rail. The beam representing 

the rail is connected in parallel to a set of springs and dampers, with stiffness kpa and damping 

cpa, respectively, simulating the rail pads. Below the spring-dashpot set, a series of lumped 

masses, with mass Ms, are used to simulate the sleepers. These lumped masses are also connected 

in parallel to another set of springs and dampers, with stiffness kb and damping cb, respectively, 

simulating the ballast layer (see Figure 4.6). The load transmission from the sleepers to the ballast 
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follows approximately a cone distribution according to Ahlbeck et al (1978). The inclination of 

the cone, α, is the ballast stress distribution angle. Therefore, the effective acting region of the 

ballast under each sleeper is the cone region represented in Figure 4.5. 

 

  

Figure 4.5 – Ballast load distribution according to Ahlbeck, Meacham & Prause (1978). 

 

Consequently, the ballast layer can be modelled as a series of separate spring-dashpot 

elements placed underneath each sleeper [Zhai et al (2004)]. If there is no overlapping of adjacent 

cone regions of ballast, the vertical stiffness of the ballast layer is given by [Zhai et al (2004)]: 
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Otherwise, when the cone regions overlap, the vertical ballast stiffness is determined by [Zhai 

et al (2004)]: 
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where Eb is the ballast elasticity modulus, hb is the height of the ballast layer, ls is the sleeper 

spacing, le is the effective supporting length of half sleeper and lb is the width of the sleeper 

underside. 

Furthermore, the model accounted for the shear behaviour of the ballast layer due to the track-

bridge composite effects. The shear behaviour of the ballast was modelled through horizontal 

springs with stiffness sr. Since the track platform relative displacements are smaller than the limit 

of 0.002 m the ballast stiffness was computed in accordance with the elastic range of the bi-linear 

behaviour proposed by ERRI (1999), which is also currently prescribed in EN1991-2 (2003). 

Similarly to the previous model, the track continuity effect is also taken into consideration. 

However, in this case the track length before the bridge also influences the dynamic response of 

the train-bridge system. The effects of the sudden introduction of the train in the model should 

be dissipated along the length of the path the train makes prior to entering/crossing the bridge in 

the numerical model. This is discussed in Section 4.4.3.1 where the results from a parametric 

study regarding the influence of the track length before the bridge are presented and discussed. 

A schematic representation of the track-bridge numerical model is shown in Figure 4.6. It should 

be mentioned that the zoom in Figure 4.6 corresponds to the same section that is composed by 

an overlap of the two represented elements. 

The influence of accounting for the ballast shear behaviour and a comparison between the two 

layer model adopted in this thesis and the model proposed by Zhai et al (2004), in the dynamic 

response of the train-bridge system are analysed in Section 4.4.3. 
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Figure 4.6 – Track-bridge numerical model. 

 

4.3.2 Track irregularities modelling 

Track irregularities are an common source of excitation for both the vehicle and the structure, 

as well as being one of the main sources for the railway noise [Delgado & dos Santos (1997); 

Khadri et al (2013)]. Frýba (1996) defines track irregularities as a deviation of the inside edge of 

the rail from its ideal geometry. Track irregularities can enhance the bridge dynamic 

amplifications, originate resonant effects on the vehicles (affecting the passenger riding comfort) 

or promote the instability of the wheel-rail contact. Furthermore, they can also promote the 

damage of the several track components, accelerating track degradation and, consequently, 

increasing maintenance costs. 

Track irregularities can be divided into two main groups: isolated irregularities and distributed 

irregularities. The origin of isolated irregularities can be diverse and may be due to corrosion of 

the rail, transition zones due to the difference in stiffness of the adjacent sections, the existence 

of expansion joints, amongst others. The distributed irregularities (analysed in this dissertation) 

can be caused mainly by the deterioration of the track geometry and/or of the rail or even due to 

the bridge’s displacement [Rigueiro (2007)]. They can be periodic or random and are 

characterised by the amplitude and the wavelength of the defect. Irregularities that result from 

the deterioration of the track geometry lead to the change of alignment of the rails (both in the 

vertical and lateral directions) and can be caused by several reasons such as wear, insufficient 

maintenance of the permanent way, excessive speed of the trains, longitudinal forces due to the 

acceleration/braking of the trains, excessive axle loads or differential settlements of the track 

platform. Frýba (1996) divides this type of irregularities into 4 main groups: 
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 Elevation irregularities – variation in longitudinal-vertical plane; 

 Alignment irregularities – variation in the lateral direction of the horizontal plane; 

 Cross level irregularities – variation of the rail elevation along the longitudinal 

direction against the adjacent rail level; 

 Gauge irregularities – variation in the track gauge.  

An illustration of these types of irregularities is depicted in Figure 4.7. 

 

 

 

b) Elevation and cross level irregularities (side view) 

 
a) Schematic representation of the track c) Alignment irregularities (plan view) 

Figure 4.7 – Types of distributed irregularities (adapted from Rigueiro (2007)). 

 

There are two different ways to define the track irregularities: either using values measured 

experimentally [Xia et al (2003); Antolín et al (2013)] or through random generation using power 

spectral density functions [Claus & Schiehlen (1998); Nguyen et al (2009)]. Generally the use of 

experimentally measured track irregularities is limited to the analysis of specific cases. Since the 

aim of this study is to carry out a safety assessment of the train-bridge system, which requires a 

significant number of simulations, and due to the limited number of measured track irregularities 

profiles, the latter option proved to be more suitable. The generation of track irregularities using 

this method is possible because numerous measurements have shown that track irregularities 

represent a stationary and ergodic Gaussian random process that may be adequately described by 

power spectral density functions (PSD) [Claus & Schiehlen (1998)]. 
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Several railway administrations have proposed their own analytical expressions for the PSD 

functions, based on measured data, for practical application. Thus, each PSD function proposed 

depends on the maintenance and track quality levels used in each country. In this thesis the power 

spectral density function adopted by the French administration, SNCF, was selected. This 

function is expressed by: 
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where A is a parameter that depends on the track quality and varying between 160 or 550, for a 

good or bad quality tracks respectively, Ω is the distance frequency and Ωr is the reference 

frequency, which takes the value of 0.307 m-1 [Frýba (1996)]. Note that SNCF limits the use of 

Equation (4.9) to wavelengths between 2 m and 40 m. In this study the wavelengths were limited 

to an interval between 3 m and 25 m, which corresponds to the wavelength range D1 according 

to EN13484-5 (2008). 

The numerical process to generate track irregularities has been described in Hu & Schiehlen 

(1997). The irregularity profile, r(x), is given by: 
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where Ωi is the distance frequency within the wavelength range, Ai corresponds to the amplitude 

and θi is the independent random phase angle that is uniformly distributed in the range between 

0 to 2π. 

The distance frequency, Ω, corresponds to: 
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where λ is the wavelength of the irregularity. 

Whereas the amplitude, Ai, can be determined through the PSD function, G(Ω), as follows: 
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Usually the frequency increment is defined by establishing the lower and upper limits of the 

distance frequency range, Ωmin and Ωmax, respectively, and selecting an adequate number of 

discrete frequencies: 

 

N

ΩΩ
Ω minmax   (4.13) 

 

The adequate number of frequencies should be carefully selected because if the range of 

frequencies is large an inadequate value could cause the generated profiles to be dominated by a 

few frequencies and display patterns, which would make them not random.  Taking into account 

the distance frequency range considered in the current study a set of 1,000 frequencies proved to 

be sufficient. In addition to this, and in order to guarantee that the frequency range is within the 

defined limits, the generated profiles are filtered. Two Chebyshev type II filters have been 

applied: a low pass and a high pass. Two particular aspects have been considered in the design 

of the filters. The first filter was that the filters ensured that wavelengths smaller than 3 m were 

removed. The second filter took into account the difficulties of filtering low distance frequency 

values (has to guarantee that the contribution of wavelengths up to 25 m were taken into 

consideration) allowing in some cases the contribution of waves with a slightly higher length. 

Furthermore, there are several documents that define the quality expected for a railway track. 

A review of the most relevant documents, which include ETI (2002), UIC518 (2005) and 

EN13484-5 (2008), was carried out by Vale (2010). In order to guarantee that the generated track 

irregularity profiles are in agreement with the European standards the values established in 
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EN13484-5 (2008) must be respected. The values defined in this standard for the alert limit are 

indicated in Table 4.1 and Table 4.2 and are valid for a track length of 200 m. 

 

Table 4.1 – Standard deviation of the longitudinal level limit. 

Train speed (km/h) Limit (mm) 

V ≤ 80 2,3 – 3,0 

80 < V ≤ 120 1,8 – 2,7 

120 < V ≤ 160 1,4 – 2,4 

160 < V ≤ 220 1,2 – 1,9 

220 < V ≤ 300 1,0 – 1,5 

 

Table 4.2 – Mean to peak value isolated defect limit for the longitudinal level. 

Train speed (km/h) Limit (mm) 

V ≤ 80 12 – 18 

80 < V ≤ 120 10 – 16 

120 < V ≤ 160 8 – 15 

160 < V ≤ 220 7 – 12 

220 < V ≤ 300 6 – 10 

 

In order to validate the quality of the generated irregularities profile one simply needs to invert 

the generation process. Using the generated irregularities profile the corresponding PSD function 

can be obtained through the Fourier transformation of the autocorrelation function. Afterwards, 

the obtained function is compared with the theoretical power spectral density function. The 

irregularities profile is validated if a match between the two curves is obtained. An example of 

this comparison for a validated profile is shown in Figure 4.8. 
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Figure 4.8 – Example of the validation of a generated track irregularities profile. 

 

4.3.3 Basic random variables 

As previously indicated two numerical models were developed for the track-bridge system. 

The initial model was simpler and only intended to analyse the behaviour of the train-bridge 

system under moving loads models. This represented a preliminary assessment in order to 

understand and assess the feasibility of a probabilistic approach for the safety assessment of a 

railway bridge, to understand which variables were more significant for the dynamic response 

and also to evaluate how the number of variables considered influenced the required 

computational timings. For this reason, at this preliminary stage the basic variables of the 

problem to be studied were limited to bridge parameters.  

Taking into account the properties of the case study bridge, several bridge parameters that 

might have relevant nondeterministic properties, of which a variation might lead to a relevant 

variability on the structural response, were selected at this initial stage of the work. These 

variables may be divided into three different groups: mass, stiffness and damping. However, at 

this stage, and due to the importance of damping in the dynamic response of short span railway 

bridges, particularly for resonant speeds, this parameter was taken as deterministic and a damping 

coefficient, ξ, of 2% (which was obtained experimentally in previous research works on the 

structure [Pimentel (2009)]) was adopted. The selected random variables, their simulation 

identification number as well as their corresponding distribution and variability are defined in 
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Table 4.3. As it can be noticed from Table 4.3, besides bridge parameters only the contribution 

of the ballast to the overall weight of the structure was taken into consideration. 

 

Table 4.3 – Random variables, distribution functions and variability for the preliminary assessment. 

Variable (simulation) Distribution 

Mean (gaussian) 

or 

Min. (uniform) 

Std. Deviation (gaussian) 

or 

Max. (uniform) 

Concrete density weight (1,2) Gaussian 2.5 t/m3 0.1 (CV = 4%) 

Ballast density weight (3,4) Uniform 17 kN/m3 21 kN/m3 

Ballast area (5,6) Uniform 1.48659 m2 2.76081 m2 

HEB 500 area (7,8) Gaussian Nominal area 0.04 x nominal area 

Concrete elasticity modulus (9,10) Gaussian 36.1 GPa 2.888 (CV = 8%) 

Concrete weight (geometrical variation) (11,12) Uniform Minimum area Maximum area 

Concrete height (13,14) Gaussian Nominal value 10 mm 

Concrete width (15,16) Gaussian Nominal value 5 mm 

Neoprene shear modulus (17,18) Uniform 0.75 MPa 1.18 MPa 

Neoprene elasticity modulus (19,20) Uniform 420 MPa 600 MPa 

 

Regarding the second model, and having already the experience from this preliminary 

assessment, the variables that were considered included both bridge parameters as well as track 

parameters. This was possible because the preliminary assessment showed that a large number 

of random variables did not affect the efficiency of the analysis in a significant manner and, 

therefore, a higher number of random variables could be used without compromising the 

feasibility of the probabilistic approach. It should also be noted that in this model the presence 

of track irregularities is also accounted for and, as previously indicated, the track irregularity 

profiles were generated according to the process described in Section 4.3.2. Taken into account 

the numerical model that was developed (shown in Figure 4.6), the selected random variables for 

the bridge and the track are presented in Table 4.4 and Table 4.5, respectively. It should be noted 

that all variables where assumed to be independent. 
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Table 4.4 – Bridge random variables. 

Variable  Distribution 

Mean 

(gaussian) 

or 

Min. (uniform) 

Std. Deviation 

(gaussian) 

or 

Max. (uniform) 

Concrete density weight (c) Gaussian 2.5 t/m3 0.1 (CV = 4%) 

Concrete elasticity modulus (Ec) Gaussian 36.1 GPa 2.888 (CV = 8%) 

Concrete height (hc) Gaussian Nominal value 10 mm 

Concrete width (bc) Gaussian Nominal value 5 mm 

HEB 500 area (As) Gaussian Nominal value 0.04 x nominal area 

Neoprene shear modulus (G) Uniform 0.75 MPa 1.2 MPa 

Structural damping () Gaussian 2 % 0.3 % 

 

Table 4.5 – Track random variables. 

Variable Minimum Maximum Reference 

Ballast density weight (b) 1.5 t/m3 2.1 t/m3 Fortunato (2005) 

Ballast elasticity modulus (Eb) 80 MPa 160 MPa 
SUPERTRACK (2005); 

INNOTRACK (2008) 

Ballast height (hb) 0.30 m 0.60 m IAPF (2003); UIC (2008) 

Ballast load distribution angle () 15 º 35 º Zhai et al (2004) 

Sleeper weight (Ms) 220 kg 325 kg ETI (2002) 

Rail pad stiffness (kp) 100 kN/mm 600 kN/mm ETI (2002) 

Track shear resistance (sr) (per 

metre of track) 
1.0 × 104 kN/m 3.0 × 104 kN/m UIC (2001) 

Irregularity amplitude (A) 160 275  

 

With respect to the bridge related basic variables the variability of the parameters related to 

the concrete where based on the work of Wisniewski (2007) whereas the variability of the 

neoprene shear modulus was based on Manterola (2006). Regarding the structural damping its 

variation was defined in accordance with the findings in Rodrigues (2004) and the 

recommendations from Cantieni (2009). 

For the variability of the ballast density weight the results of experimental tests carried out by 

Fortunato (2005) in the Portuguese Northern Railway Line were taken into consideration. The 

experimental tests show that the density weight of clean granite ballast varies between 14.8 

kN/m3 and 17.7 kN/m3. In the case of contaminated ballast an increase of the density weight is 

observed reaching a maximum value of 21 kN/m3. 

The elasticity modulus of the ballast layer the variation range was defined by taking into 

consideration the results obtained from two European research projects: INNOTRACK (2008) 



Chapter 4  

 

4.20 

and SUPERTRACK (2005). INNOTRACK (2008) observed that the elasticity modulus for 

ballast made of soils with poor quality is 80 MPa. UIC719 (2008) recommendation suggests 

using an elasticity modulus of 130 MPa for current tracks where tests are not carried out to 

determine the characteristics of the ballast layer. SUPERTRACK (2005) identified that some 

ballasts where the elasticity modulus reached 160 MPa. Given the conclusions obtained by the 

aforementioned studies, it is possible to notice that the elasticity modulus of the ballast layer 

displays significant variability. For this reason, in the current work it was assumed that this 

parameter follows a uniform distribution ranging between the two most extreme values identified 

by previous research works. 

Another parameter that was taken as random was the area of the ballast layer. The 

recommendation from the Spanish standard IAPF (2003), which suggests a variation of 30% 

from the values specified by the design drawings, was used. Taking into account the 

recommendations for the variation of the ballast height produced by UIC (2008), a width of 5 m 

was defined for the ballast layer and the area variation is introduced by the variation of the height 

of ballast.  

The importance of the track shear resistance has already been highlighted in Section 2. This 

parameter depends essentially of two main aspects: the fastening system between rail and sleeper 

and the resistance to move of the rail-sleeper system relative to the bridge deck, which is due to 

the resistance provided by the ballast layer. Several railway administration companies have 

defined a plastic resistance, k, of 20 kN/m for unloaded tracks. The German Railway 

Administration (DB) considers a resistance of up to 60 kN/m for loaded tracks. Currently these 

limits are already part of EN1991-2 (2003). Therefore, the stiffness of the springs used to 

simulate the ballast shear resistance take the value of 1.0 × 104 kN/m per metre of track for an 

unloaded track scenario and 3.0 × 104 kN/m per metre of track for a loaded track scenario. 

Throughout the simulations the values used for the track shear resistance were randomly 

generated between these two limits. 

Finally, some other track parameters have been taken as deterministic due to the lack of 

sufficient information about an adequate distribution and because their variability would not 

significantly affect the results that are being analysed in this study. For the damping of both the 

ballast layer and the rail pads the value suggested by Zhai et al (2004) was used. The ballast 

damping value suggested by Zhai et al (2004) was 5.88 x 10-4 N.s/m and is based on experimental 

tests using the wheelset-dropping test (a typical test used in the Chinese and Japanese railway 
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lines). With respect to the rail pad damping the works of Zhai et al (2004) and Rigueiro (2007) 

were taken as reference. It was possible to observe that the values used in both works are very 

similar. For the purpose of coherency, the value adopted was the value suggested by 

Zhai et al (2004) that adopts a rail pad damping of 7.5 x 10-4 N.s/m. 

 

4.3.4 Dynamic properties of the track-bridge system 

In order to understand the dynamic behaviour of the complex coupled train-track-bridge 

system it is necessary to know the dynamic properties of each subsystem. Therefore, a modal 

analysis was carried out to identify the main natural frequencies and the corresponding mode 

shapes for the average scenario, where all the random variables take their mean value. 

The results for the model developed for the preliminary assessment are shown in Figure 4.9.  

 

 

a) First bending mode: f = 9.168 Hz. 

 

b) Second bending mode: f = 34.571 Hz. 

Figure 4.9 – Track-bridge natural frequencies and mode shapes for the preliminary model. 

 

Similarly, the results for the complete track-bridge numerical model are presented in Figure 

4.10. 

From the comparison between the two models it can be noticed that the first natural frequency 

is practically unaffected by accounting for the vertical deformability of the track. The second 

bending mode, due to the mode shape configuration, is more affected and accounting for the 
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track flexibility results in a reduction of the natural frequency. Both results are consistent and 

aligned with expectations considering the model assumptions. 

 

a) First bending mode: f = 8.926 Hz. 

 

b) Second bending mode: f = 31.550 Hz. 

Figure 4.10 – Track-bridge natural frequencies and mode shapes. 

 

It is also interesting to see how the variability of several parameters affects the natural 

frequency of the track-bridge system. For this reason, a modal analysis was carried out for a 

sample of 5,000 Monte Carlo simulations, which is a sample size that enables an accurate 

assessment of the obtained distribution. The obtained results (with the mean and standard 

deviation values) are illustrated in Figure 4.11. 
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a) First bending mode. 

 

b) Second bending mode. 

Figure 4.11 – Track-bridge natural frequencies distribution. 

 

The obtained distributions for the two main mode shapes of the bridge approximately follow 

a normal distribution. Furthermore, and even though the objective was not to model the existing 

structure, the obtained results for the bridge natural frequencies are in line with results obtained 

from experimental tests on the existing bridge by previous authors [Rodrigues (2004); Pimentel 

(2009)]. 
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4.3.5 Train numerical models 

The dynamic behaviour of the bridge will be assessed for the crossing of a TGV double high-

speed train. This is an articulated train composed by four power cars, four power passenger cars 

and twelve passenger cars, with a total of 400 m of length and 52 axles. The articulated structure 

does not include the power cars and only comprises the power passenger cars and the passenger 

cars. Therefore, the power cars have two independent bogies. In the articulated part of the train 

the carriages share the bogies as they are located between car bodies and are connected by car 

body–bogie joints. The power passenger cars have one shared bogie and one independent bogie, 

whereas the passenger cars have two shared bogies. 

 

 

 

Figure 4.12 – TGV train. 

 

4.3.5.1 Moving loads models 

As previously mentioned, at an initial stage the train was modelled as a series of moving loads, 

meaning that each axle is represented by a point constant-valued load.  
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Figure 4.13 – Schematic representation of the moving mass loads model. 

 

As pointed out in Section 2.3.2.3, this approach is one of the most commonly used to assess 

the dynamic behaviour of bridges due to its simplicity and versatility. However, this type of train 

model does not take into account the inertial effects of the train masses or the train-bridge 

interaction effects.  

 

4.3.5.2 Moving masses models 

A model that is slightly more sophisticated is the moving mass model, which is based on 

assuming the train is a moving mass moving over the structure. In this type of model the train-

bridge interaction is taken into account as the inertial effects of the train masses are included. 

 

 

Figure 4.14 – Schematic representation of the moving mass train model. 

 

This type of formulation is not commonly used in modern analysis but its application can be 

found in the research work of Stanisic & West (1985) and Akin & Mofid (1989). It should be 

noted that even though this model introduces some advances when compared to moving loads 

models it does not account for the trains’ suspension system which is particularly relevant for 
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their dynamic behaviour. Furthermore, and similarly to what is verified for the moving load 

models, this model does not enable the assessment of the passengers riding comfort.  

 

4.3.5.3 Suspended masses models 

Another enhancement is the suspended mass model. Compared to the moving mass model 

these models add the suspension system of the train to the analysis. To do so, a spring-dashpot 

element is introduced connecting the elements used to simulate the carbody and the bogie (see 

Figure 4.15).  

 

 

Figure 4.15 – Schematic representation of the suspended mass train model. 

 

Like the moving masses model, this model also accounts for the train-bridge interaction 

effects and is often selected when this type of analysis is required [Rigueiro (2007)]. Generally, 

the train axles are independent and the coupling effects caused by the carbodies or the bogies are 

neglected. This type of train model has been used by Au et al (2001) and Yang & Wu (2001) 

where the authors compared this model with other more complex train models.  

 

4.3.5.4 Complete models 

Although the previous numerical model of the train is able to reflect the interaction effects 

between train and structure, it does not for the dynamic response of the vehicle to be assessed. 

For this reason and due to the importance of assessing the passenger riding comfort more 

complex models have been proposed. These models include the car bodies, the bogies, the wheel 
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axles, the primary and secondary suspensions, the wheel contact and in some cases the connection 

between adjacent car bodies (articulated trains) or even the seats and passengers. 

There are several variations of the type of modelling to adopt, however, the most common 

typically consists on simulating the car bodies, bogies and wheel axles as rigid bodies with 

appropriate rotational inertias and masses. The primary and secondary suspensions are modelled 

as spring-dashpot sets with adequate stiffness and damping and the wheel-rail contact as springs 

with a suitable stiffness. When included, the seat is normally simulated by a spring-dashpot set 

with adequate properties and the passenger is simulated by a lumped mass. 

The models that can be found in the literature can be either 2D [Zhai et al (2001), Goicolea et 

al (2004), Doménech & Museros (2011)] or 3D [Kwark et al (2004), Xia & Zhang (2005), Zhang 

et al (2008), Lee & Kim (2010)] and the option chosen is typically based on the type of analysis 

to be carried out. If the focus is on the analysis of the vertical behaviour of the train-bridge system 

then the use of 2D models is generally satisfactory. However, if a more complete analysis (where 

lateral and torsional effects are important) the selection of a 3D model is required. 

 

 

Figure 4.16 – Schematic representation of a 2D numerical model of a train (adopted from Xia & 

Zhang (2005)) 
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a) Front view b) Pan view 

Figure 4.17 – Schematic representation of a 3D numerical model of a train (adapted from Xia & 

Zhang (2005)) 

 

4.3.5.5 Wheel-rail interaction 

Several contact models to describe the wheel-rail interaction can be found in the literature. 

The assumption of nonconformal contact between the two rigid bodies is often used, as the 

contact area is small when compared with the dimensions of the wheel and the rail [Shabana et 

al (2008)]. In this thesis only vertical interaction is taken into account. The Hertz contact theory, 

which assumes that the contact area is elliptical (see Figure 4.16), is adopted.  

 

 

Figure 4.18 – Schematic representation of the Hertz elliptical contact surface. 
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According to Hertz theory, the normal contact force, Fn, is given by [Shabana et al (2008)]: 
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where δ is the penetration, β is a constant that depends on the ratio A/B, which is related with the 

geometric properties of the bodies in contact, and Kh is a generalised stiffness coefficient that 

depends on the material properties of the bodies in contact and on the curvatures of the surfaces 

at the contact point: 
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and 
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where E and ν are the Young modulus and the Poisson ratio of the materials, respectively, and m 

and n are constants that take values which can be consulted in specific abacus [Iwnicki (2006)]. 

It can be noticed that the Hertz normal contact force equation is non-linear. However, when 

the penetration is small (general case) and assuming that the bodies in contact have the same 

material properties, it is possible to establish a linear relationship between the contact force and 

the penetration [Nguyen et al (2009)]: 
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where KwV is the linearised stiffness coefficient, rw is the wheel rolling radius and rr is the head 

radius of rail cross section. 

Given the importance of the wheel-rail contact stiffness on the evaluation of the contact forces 

and, consequently, on the wheel unloading coefficients, a parametric study is conducted in order 

to provide a better understanding on how the contact stiffness is influenced by the real variability 

of the parameters that affect its value. The variability of the Young modulus of the wheels and 

the rails in addition to the variability of the radius of both elements, is taken into consideration 

to account for the wear. The Young modulus of both the rail and the wheel are assumed to follow 

a normal distribution, whereas the radius of both elements are assumed to follow a uniform 

distribution. The parameters used for each variable are indicated in Table 4.6. 

 

Table 4.6 – Random variables for the parametric analysis of the linearised wheel-rail stiffness 

coefficient. 

Variable  Distribution 

Mean (gaussian) 

or 

Min. (uniform) 

Std. Deviation (gaussian) 

or 

Max. (uniform) 

Rail Young modulus Gaussian 205.0 GPa 5.0 GPa 

Wheel Young modulus Gaussian 192.5 GPa 7.5 GPa 

Rail head radius Uniform 200 mm 300 mm 

Wheel radius Uniform 850 mm 1020 mm 

 

 

The variation of the stiffness coefficient is analysed for a sample of 5,000 Monte Carlo 

simulations. The obtained probability density function (PDF) is plotted against the PDF of a 

normal distribution in Figure 4.19. 
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Figure 4.19 – Distribution of the wheel-rail stiffness coefficient. 

 

It can be observed that the linearised wheel-rail stiffness coefficient follows a normal 

distribution with a mean of 1.61x109 N/m and a standard deviation of 4.1x107 N/m. The kurtosis 

and the skewness coefficients tests confirm the assumption of the normal distribution. 

 

4.3.5.6 Train numerical model developed 

Bearing in mind the several types of train model referred in the literature and their advantages 

and drawbacks, at a subsequent stage a FEM model of the TGV train was also developed. A 

complete 2D numerical model of the TGV train was developed. The car bodies and bogies were 

simulated by rigid bodies with masses Mc and Mb and rotational inertias Ic and Ib, respectively. 

The primary and secondary suspensions were simulated by spring-dashpot sets with stiffness kp 

and ks and damping coefficient cp and cs, respectively. The wheel sets were simulated by lumped 

masses, Me, whereas the wheel-rail contact stiffness was simulated by a spring with stiffness kh. 

A schematic representation of this numerical model is shown in Figure 4.20. 
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Figure 4.20 – Complete train numerical model. 

 

According to Goicolea et al (2002) it is common that the main effects of vehicle interaction 

with railway bridges are adequately captured using simplified interaction models. Due to the 

large number of simulations that is expected to be performed, these simplifications can result in 

a significant reduction of the required computational time to assess the safety of the train-bridge 

system. Therefore, two simplified train models were developed. The first simplified model 

simulates the car bodies through lumped masses instead of rigid bodies. The second simplified 

model eliminates the secondary suspensions and concentrates the car body and bogie masses on 

lumped mass elements connected to the primary suspension system. The validation of the 

developed numerical models is analysed in detail on Section 4.4.3.3. 

Due to the difficulty of obtaining information from train manufacturers the dynamic properties 

of the train were defined mostly according to the values presented by ERRI (1999). The 

variability of suspension parameters is defined in order to guarantee that the frequency of the 

bogies is within the typical frequency range of 4 to 8 Hz [Museros et al (2013)]. Regarding the 

car body mass, its value is assumed to be constant and the values defined in ERRI (1999) are 

used. The car body mass used for the power cars, the power passenger and the passenger cars are 

51.5 tons, 35.86 tons and 22.525 tons, respectively. Moreover, the variation of the number of 

passengers on the train is also taken into account. The random variable selected to account for 

this feature is the occupancy rate of the train. 

The random variables selected for the train model are indicated in Table 4.7. 
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Table 4.7 – Train random variables. 

Variable  Distribution 

Mean (gaussian) 

or 

Min. (uniform) 

Std. Deviation (gaussian) 

or 

Max. (uniform) 

Occupancy rate Uniform 0 % 100 % 

Bogie mass Uniform 2.32 t 3.48 t 

Wheel set mass Uniform 1.6 t 2 t 

Primary suspension stiffness Uniform 1300 kN/m 3900 kN/m 

Primary suspension damping Uniform 6 kN.s/m 18 kN.s/m 

Secondary suspension stiffness Uniform 290 kN/m 870 kN/m 

Secondary suspension damping Uniform 10 kN.s/m 30 kN.s/m 

Wheel-rail contact stiffness Gaussian 1.61x106 kN/m 4.1x104 kN/m 

 

To validate the numerical model of the train, its main mode shapes were analysed for the 

average case scenario and the results are presented in Figure 4.21. 

 

  

a) b) 

  

c) d) 

Figure 4.21 – Train natural frequencies and mode shapes. 
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The obtained results are well within the typical limits referred in the literature which validated 

the developed model. 

Similarly to what has been done for the track-bridge system a modal analysis was also carried 

out for a sample of 5,000 Monte Carlo simulations to analyse the type of distribution obtained 

for the several train mode shapes. The obtained results are illustrated in Figure 4.22 and include 

the mean and standard deviation values. 

 

 

a) Car body vibration 

 

b) Bogie vibration 
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c) Wheel-rail contact vibration 

Figure 4.22 – Train natural frequencies distribution. 

 

Contrary to what had been observed for the track-bridge system for the train mode shapes, no 

clear distribution can be identified. However, it is important to point out that the obtained mode 

shapes are still within the typical range of frequencies documented in the literature. 

 

4.4 Dynamic response 

To provide a better understanding of the dynamic behaviour of the train-bridge system the 

average case scenario is analysed for different train speeds and the dynamic response is assessed 

for different sections of the bridge. Several significant modelling aspects are evaluated in detail 

to understand their effects on the dynamic response of the train-bridge system. Amongst these 

modelling aspects are the train-bridge interaction effects, the influence of the track irregularities 

and some other more specific modelling features such as influence of the track and train 

numerical models and the track extension before the bridge which are discussed in the following 

sub-sections. 

It should be noted that the time step selected for all the analyses is 0.002 s and all the analyses 

comprise a total of 5,000 steps, for a total of 10 s. The choice for the number of steps was based 

on the speed range analysed and aimed to guarantee that it allowed sufficient time for the train 

to cross the bridge and also to capture all significant response in free vibration after the train 
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leaves the structure. Regarding the selection of the time step value to adopt in the dynamic 

analysis, the recommendations presented in Section 2.3.2.6 were taken into consideration and a 

sensitivity study was also carried out. Time steps of 0.02 s, 0.005 s, 0.002 s and 0.001 s were 

analysed and it was possible to observe that the dynamic response of the train-bridge system can 

be adequately evaluate with a time step of 0.002 s, which offers a good balance between the 

accuracy and the computational time.  

 

4.4.1 Train-bridge interaction effects 

Due to its importance for the dynamic response of short to medium span railway bridges, the 

first modelling aspect to be analysed was the influence of the train-bridge interaction. The 

analysis was extended to the full range of speed analysed, which goes from 200 km/h to 

450 km/h, in incremental steps of 5 km/h. The maximum acceleration obtained for each speed in 

different sections of the bridge is shown in Figure 4.23, along with the comparison with results 

obtained using the moving loads method, which does not take into consideration the interaction 

effects. 

The results illustrated in Figure 4.23 indicate that, in general, accounting for the train-bridge 

interaction effects tends to reduce the maximum bridge deck acceleration. This difference is 

mostly noticeable in the resonant peaks. For non-resonant speeds, the differences between the 

two methods are not significant. However, it should be pointed out is that to be possible to 

compare the results between the two different methods, the analysis was carried out for a perfect 

track scenario. Another aspect worth noting was the observation that accounting for the 

interaction effects seems to originate a slight shift on the obtained dynamic response for speeds 

greater than 300 km/h. This suggests the existence of some degree of coupling between the two 

subsystems, in which the train mass contributes to global mass of the system, increasing the 

modal mass and affecting (in a small scale) the natural frequency of the system, which ultimately 

results in the differences in the dynamic behaviour of the structure. 
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a) ¼ span section. 

 

b) ½ span section. 

 

c) ¾ span section. 

Figure 4.23 – Influence of the train-bridge interaction effects on the dynamic response. 
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4.4.2 Track irregularities effects 

The importance of track irregularities on the dynamic behaviour of the train-bridge system is 

another aspect that requires adequate understanding. For this reason, a comparison was made 

between the bridge response obtained for a perfect track and for a track with irregularities and 

the obtained results are illustrated in Figure 4.24. 

 

 

a) ¼ span section. 

 

b) ½ span section. 
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c) ¾ span section. 

Figure 4.24 – Influence of the existence of track irregularities on the dynamic response. 

 

Interesting conclusions can be drawn when comparing the dynamic response obtained for a 

train running over a perfect track and when rail irregularities are taken into account. At mid span 

the results are very similar and only a slight increase is observed for the main resonant peaks and 

for lower train speeds. However, at the quarter span sections significant differences were 

detected. The significant increase of the dynamic amplification can be explained by the increase 

of the wheel-rail contact forces originated by the track irregularities. These impact forces excite 

the second mode shape of the bridge, particularly due to the bearing movement associated with 

it (see Figure 4.10b), thus originating an important amplification of the dynamic response in these 

sections. This leads to the conclusion that the behaviour of the quarter span sections is mostly 

controlled by impact forces that tend to grow proportionally with the train speed. The mid span 

section is controlled by resonant effects related to the first bending mode of the bridge and 

therefore is not significantly affected by the presence of track irregularities. In order to clarify 

this and guarantee that this was not observed only for that specific scenario, further tests were 

carried out using varying track irregularity profiles. Three different profiles were used and the 

results for each of them was once again compared to the perfect track scenario. The generated 

profiles are shown in Figure 4.25, and the obtained results are depicted in Figure 4.26.  
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a) Irregularities profile 1. 

 

b) Irregularities profile 2. 

 

c) Irregularities profile 3. 

Figure 4.25 –Track irregularities profiles used on the parametric analyses. 
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a) ¼ span section. 

 

b) ½ span section. 

 

c) ¾ span section. 

Figure 4.26 – Influence of the track irregularities profile on the dynamic response. 
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The results confirm what had been previously anticipated by the analysis of a single 

irregularities profile. It is interesting to observe the variation of the wheel-rail contact forces 

along the bridge complementing the information obtained from the analysis of the maximum 

bridge deck accelerations for different sections of the bridge. These results are illustrated for a 

single train wheel in Figure 4.27 for the different track irregularity profiles and for different train 

speeds. It should be noted that the black dots identify the quarter span sections. 

 

 

a) v = 295 km/h. 

 

b) v = 315 km/h. 
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c) v = 335 km/h. 

 

d) v = 370 km/h. 

Figure 4.27 – Wheel-rail contact force variation. 

 

The introduction of the track irregularity profiles induces significant changes to the wheel-rail 

interaction forces, as the dynamic response indicated. The different profiles do not show 

significant differences in terms of magnitude of variation of the contact force but do indicate the 

influence of the profile geometry. This leads to a very important conclusion that has not been 

clearly mentioned in previous studies. Several authors point out the importance of accounting for 

the train-bridge interaction effects specifically owing to the additional damping from the 

coupling between the train and the bridge. However, the existence of track irregularities 

significantly affects the wheel-rail contact forces which might induce a significant change in the 
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dynamic behaviour of the bridge. For bridges with relatively flexible supports (like the one 

selected as case study) this fact may be even more relevant than the change of methodology as it 

might alter the critical section, thus greatly affecting the safety assessment of the train-bridge 

system. 

 

4.4.3 Modelling particularities 

Besides the influence of the methodology used to assess the dynamic behaviour and the impact 

of accounting for track irregularities some other modelling aspects require a careful selection. In 

this section some of the most relevant aspects considered in the development of the numerical 

model are discussed. 

 

4.4.3.1 Influence of the track length before the bridge 

As previously mentioned, the track was extended over the length of the bridge in the numerical 

model in order to reflect the rail continuity. This was considered in the simpler model and needed 

to be taken into account in the numerical model where the train-bridge interaction effects are 

taken into consideration. However, the length of track before the train entering the bridge is even 

more important in the latter case. An adequate length is required in order to guarantee that the 

wheel-rail contact forces on the bridge are realistic and to ensure that the effects of the sudden 

introduction of the vehicle (which are merely a numerical effect and are characterised by the 

introduction of impact forces) are stabilised and have been dissipated before the train enters the 

bridge in order to guarantee an accurate assessment of the dynamic behaviour. 

To analyse this, a parametric analysis was carried out. The aim of such an analysis is to define 

the optimum track length for an accurate assessment. Models with excessive track lengths result 

in a more time consuming model, which for the purpose of safety assessment analysis may have 

a more significant impact due to the number of simulations typically associated with such 

problems. 

Initially, three scenarios were analysed: one with the same length as the simpler model 

(10.5 m), another with a track length of 60 m before the bridge and finally one with a track length 

of 110 m before the bridge, based on a suggestion by Ribeiro (2004). Three different irregularity 

profiles were analysed for each scenario but, for the sake of comparison, the geometry was 
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similar on the bridge for each simulation. The comparison is made in terms of wheel rail contact 

force over the structure, several train speeds are analysed and it should be noted that the results 

are presented in terms of distance, where the coordinate 0 m indicates the beginning of the bridge. 

The obtained results are shown in Figure 4.28. 

 

 

a) Irregularities profile 1. 

 

b) Wheel rail contact force for profile 1. 
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c) Irregularities profile 2. 

 

d) Wheel rail contact force for profile 2. 

 

e) Irregularities profile 3. 
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f) Wheel rail contact force for profile 3. 

Figure 4.28 – Influence of the track length on the wheel-rail contact forces. 

 

An almost perfect match can be observed for all the three track extensions 2.5 m after the train 

entered the bridge. This indicates that the 10.5 m length is not sufficient for the accuracy level 

that is intended. For this reason, a new analysis was carried out using a 20 m track extension. In 

this case, the results are only compared with the 110 m track extension scenario. The results are 

illustrated in Figure 4.29. 

 

 

a) Profile 1. 
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b) Profile 2. 

 

c) Profile 3. 

Figure 4.29 – Assessment of the accuracy using a 20 m track length. 

 

The results obtained using a 20 m track extension are very similar to those obtained using a 

110 m extension. Therefore, this is the extension that was selected for the numerical model to be 

used when assessing the safety of the train-bridge system. 
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4.4.3.2 Validation of the track numerical model 

As previously discussed in Section 2 and also on Section 4.3.1 several track models, with 

different degrees of complexity, can be found in the literature. The model chosen in this study 

was the two layer model, used by Calçada (1995). The reason to choose this model is that it is as 

accurate as other more complex models despite being simpler, which enables it to be more 

computationally efficient. In order to confirm this a comparison was made with the three layer 

model proposed by Zhai et al (2004). The obtained results are shown in Figure 4.30. 

 

 

Figure 4.30 – Dynamic response: 2 layer models vs 3 layer model. 

 

The results obtained by both models show a very good agreement with a slightly larger 

difference being notice for train speeds over 350 km/h. However, the observed differences were 

minor which validates the results obtained by the two layer model. For this reason, and for the 

purposes of the present study, the two layer model is considered to be as accurate as the three 

layer model. 

 

4.4.3.3 Validation of the train numerical model 

Another important aspect that can have a significant impact on both the accuracy of the 

obtained results and the computational time required for the analysis is the train model. As 

previously mentioned, the work carried out by Goicolea et al (2002) demonstrated that the main 
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effects of vehicle interaction with railway bridges can be adequately captured using simplified 

interaction models. The two simplifications mentioned in Section 4.3.5.6 were tested to maximise 

the efficiency of the dynamic analysis in terms of computational timing. In order to validate the 

simplified model the results obtained using these models were compared with those obtained 

with the complete model, which was taken as the reference value. The results showed that 

disregarding the effects of the secondary suspension system leads to some variation to the results 

obtained when using the complete model. However, the model which simulates the car bodies 

through lumped masses showed similar results to those obtained with the complete model, as 

shown in Figure 4.31. 

 

 

Figure 4.31 – Validation of the simplified train numerical model. 

 

The results depicted in Figure 4.31 validate the use of the simplified model. Furthermore, and 

since the simplified model is 30% the size of the complete model, this large reduction in the total 

number of degrees of freedom resulted in a significant reduction of the required computational 

times thus making this model the most adequate to use in the safety assessment of the train-bridge 

system. 
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4.5 Variable screening procedure 

In order to understand the influence that each of the basic random variables has on the dynamic 

behaviour of the train-bridge system, a variable screening procedure (based on a simplified 

sensitivity analysis) was performed. The goal of such procedure is to identify which variables are 

relevant to the dynamic response of the bridge and which ones are not, being therefore considered 

deterministic in the simulation analysis. It should be noted that in this work four distinct response 

parameters were analysed in the screening procedure: natural frequencies, displacements, 

accelerations and wheel-rail contact forces. 

 

4.5.1 Description of the methodology 

The procedure used on the present work is similar to the procedure used in Henriques (1998). 

The first stage of the procedure consists of selecting the random variables that allow the definition 

of the problem: the basic variables. Afterwards, a structural analysis is performed adopting the 

mean values for all the variables. Next, the bridge dynamic response is computed keeping all the 

variables with their mean values except for the ‘tested’ variable. The ‘tested’ variable value is 

modified from its mean value by two times the standard deviation. This step is repeated for all 

variables allowing for the evaluation of the sensitivity coefficients and importance indicators for 

each variable. The sensitivity coefficients and the importance indicators are obtained by 

comparing the difference between the reference results (corresponding to the analysis where all 

the variables are represented by mean values) and the results obtained for each ‘tested’ variable, 

as expressed in Equations (4.19) and (4.20), where y denotes the results, while x denotes the basic 

random variables: 
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where σxk is the standard deviation of each variable, CV is the coefficient of variation for each 

variable and h is a coefficient related with the variation of the mean value of each variable (in 

this dissertation h = constant = 2). ym and xim are the reference value of the structural response 

and the mean value of the ‘tested’ variable, respectively, Δyk is the difference between the 

reference results of structural response and the results obtained for each ‘tested’ variable and Δxik 

is the difference between the mean value of the ‘tested’ variable and the value used in the 

analysis. 

After analysing these coefficients for all variables, the maximum importance indicator is 

determined and the relative importance of each variable is established by comparison with the 

maximum value obtained. 

 

4.5.2 Preliminary approach 

At an initial stage of this work the random variables analysed were only related to the bridge 

parameters, as indicated in Table 4.3. The analysis had two essential goals: the first (and most 

important) one was the identification of the parameters that displayed a higher influence on the 

dynamic response; the second was to understand how the number of variables influenced the 

safety assessment procedure. For this reason, at the preliminary analysis, variables with a 

relevance smaller than a pre-established value (a 10% value was defined) are considered 

irrelevant for the variability of the dynamic response of the bridge. In the safety assessment these 

are taken as deterministic and their mean value is used for the simulation. It should also be 

pointed out that four distinct response parameters were analysed in the screening procedure: 

natural frequencies, displacements, accelerations and reactions. 

Due to the importance of the train speed on the dynamic response of the bridge, the sensitivity 

analysis was performed for several train speed ranging from 80 km/h to 450 km/h (speed 

increased in steps of 5 km/h). Some of the results obtained from the variable screening procedure 

can be seen in Figure 4.32. 
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a) Mid-span bridge deck acceleration 

 

b) Mid-span bridge deck displacement 

Figure 4.32 – Results of the sensitivity analysis. 

 

For a better readability, only part of the results are presented, allowing for an understanding 

of the variable selection criteria. It should also be pointed out that despite considering only 10 

variables, both the upper and lower bound were analysed, leading to the 20 data sets presented 

in Figure 4.32, and the variable associated to the reference number in the picture is indicated in 

Table 4.3. When analysing all four response parameters previously referred, some variables stand 

out in terms of their influence on the dynamic response of the bridge. Among these variables are 

the inertia variation due to the variation of the section height, the ballast area, the elasticity 

modulus of the concrete and the vertical stiffness of the bridge bearings. The variables with less 

influence on the response (and which will hereafter be considered as deterministic) were the 
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geometric variation of the rolled steel profiles, the horizontal stiffness of the bridge bearings and 

the variation of the self-weight of the concrete elements due to the geometrical variations. 

However, since the last variable cannot be dissociated from the inertia variation, which has a 

significant relevance on the dynamic response, it was kept as random. 

 

4.5.3 Sensitivity analysis accounting for the train-bridge interaction 

At a subsequent stage of this work a similar procedure was carried out whilst accounting for 

the variability of parameters of the structure, the track and the train. In this stage the train-bridge 

interaction effects were taken into consideration and this represents a more realistic analysis. 

In this stage two particular aspects of the response were analysed: the bridge deck acceleration 

levels and the wheel unloading rate. These were selected because they are two of the most 

significant indicators of the running safety of high-speed trains. Unlike what was done in the 

previous analysis, the sensitivity analysis was limited to adequately selected speed ranges. In the 

case of the bridge deck acceleration the analysis was limited to the [270 – 300] km/h speed 

ranges, as this corresponds to the range where the resonant effects are most significant. As for 

the analysis of the wheel unloading rate, the sensitivity analysis was carried out for the 

[405 – 435] km/h speed range, as this is the range where the first cases of loss of contact between 

the wheel and the rail were observed. 

 

4.5.3.1 Bridge deck acceleration 

Having already analysed the most significant variables that affect the bridge deck acceleration, 

it is important to check if adopting a different type of methodology (train bridge interaction vs 

moving loads) leads to different conclusions. The obtained results of the sensitivity analysis for 

the bridge deck acceleration when accounting for the train-bridge interaction effects are 

illustrated in Figure 4.33. 
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Figure 4.33 – Bridge deck acceleration sensitivity analysis results. 

 

It can be observed that the results are very similar to those obtained in the preliminary stage. 

As expected, this indicates that the variables identified as key remain the same and that the 

interaction effects do not introduce any significant changes in the influence displayed by the 

variables. However, since there a few new variables that have been introduced in this analysis 

(and others have been defined in a slightly different manner), the obtained results need some 

discussion for a better interpretation. 

It can be concluded that the variables with a higher influence on the bridge deck acceleration 

are all structure-related. The variable that displays the highest influence is the elasticity modulus 

of the concrete, Ec. Other significant variables are the neoprene shear modulus, G, the height of 

the ballast layer, hb (which affects the overall weight, and consequently the natural frequency) 

and of the concrete elements, hc (which also affects the overall stiffness) and the density weight 

of both the concrete, γc, and the ballast, γb. Structural damping, ξ, which was only introduced as 

a variable in this stage, displays a slightly lower influence than the previous variables but is still 

significant, with a relative importance of around 30 %. It was also possible to conclude that the 

track-related variables, in particular those that do not affect the overall mass of the structure, 

display a very low influence on the bridge deck acceleration.  
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4.5.3.2 Wheel unloading rate 

The results of the sensitivity analysis for the wheel unloading rate are shown in Figure 4.34. 

 

 

Figure 4.34 – Wheel unloading rate sensitivity analysis results. 

 

With respect to the wheel unloading rate, it can be observed that this parameter is principally 

affected by track-related variables rather than by the bridge-related variables. The stiffness of the 

rail pads, kp, is the variable that most affects the wheel unloading. The ballast elasticity modulus, 

Eb, the height of the ballast layer, hb, and the ballast load distribution angle, α, (which are all 

variables that influence the way that the wheel loads are transmitted to the track) were other 

track-related parameters that showed a significant influence on the wheel unloading. The bridge-

related variables also have some significance, however, compared to the influence of the track-

related variables their contribution is significantly lower. The neoprene shear modulus, G, which 

influences the vertical stiffness of the bridge bearings, was the bridge-related parameter with the 

highest influence on the wheel unloading rate. The concrete elasticity modulus, Ec, and the 

variation of inertia due to geometric variation of the concrete section (both related with the 

stiffness of the bridge) are other variables with some degree of influence on the wheel unloading. 

The sensitivity analysis results show that the wheel unloading rate is very sensitive to variations 

of the track properties, as expected. 
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4.6 Concluding remarks 

The case study used to evaluate the efficiency, robustness and accuracy of the proposed 

probabilistic methodologies was presented in this chapter, along with the numerical models 

developed to assess the dynamic response. The influence of the dynamic analysis method was 

also analysed and comparisons were made to understand how accounting for the train-bridge 

interaction effects and the presence of track irregularities as opposed to the moving loads method 

or perfect track conditions affect the response of the train-bridge system. 

Several modelling aspects were analysed in detail in order to validate the selected models and 

guarantee that the obtained results are accurate. One of these aspects was the random generation 

of track irregularities, which included a discussion of the adopted methodology and the validation 

method used. The track length before the bridge was another aspect that was thoroughly 

discussed due to its importance for both an accurate assessment of the dynamic response of the 

train-bridge system and its significant influence on the efficiency of the dynamic analysis. 

Another relevant aspect is the track numerical model used in the dynamic analysis and the 

importance of accounting for the shear behaviour of the ballast layer was also demonstrated. 

Finally, another important feature of the case study bridge was the flexibility of its bearings, 

which were shown to have a crucial role in the dynamic response of the train-bridge system and 

demonstrate a key influence on the safety assessment. 

The last section of this Chapter was dedicated to a sensitivity analysis, which aimed to provide 

a better understanding of how accounting for the variability of some parameters affects the 

dynamic response. The identification of the influence that each of the selected basic random 

variables has on the dynamic behaviour of the train-bridge was another of the goals of such an 

analysis. It is possible to conclude that, as expected, the bridge-related variables display a higher 

influence on the dynamic response of the structure (both for accelerations and displacements), 

whereas the track-related variables show a higher impact on the wheel unloading rate. The most 

significant parameters of the bridge dynamic response are the section inertia, the area of the 

ballast layer (with influences the structural mass), the concrete elasticity modulus and the vertical 

stiffness of the bridge bearings. With respect to the wheel unloading rate, it could be concluded 

that the stiffness of the rail pads, the ballast elasticity modulus, the height of the ballast layer and 

the ballast load distribution angle (which are variables influencing the way that the wheel loads 

are transmitted to the track) are the governing parameters. 
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5.1 

Chapter 5 

Track stability assessment 

5.1 Introduction 

In this Chapter the assessment of the train-bridge system due to track instability is discussed. 

Following a brief explanation of the safety criterion used to asses track stability, the safety 

assessment is carried out using the methodologies introduced in Chapter 3. Through the 

application of the different methodologies to this case study it will be possible to understand 

how efficient each of them is, what the main aspects that influence both accuracy and 

efficiency for each method are and finally how they compare in terms of both these indicators. 

Two different analyses are carried out and their results are discussed and analysed. At an 

initial stage the assessment of the train-bridge system is analysed using the moving loads 

method. This corresponded to the first stage of the work and is divided into a preliminary 

assessment and a refined analysis to assess the safety [Rocha et al (2012)]. At this stage only 

the variability of the bridge related parameters is taken into consideration and the analysis is 

limited to the application of the tail modelling approach to estimate the probability of failure of 

the train-bridge system. 

The second part of the Chapter corresponds to the analysis of the safety assessment when 

accounting for the train-bridge interaction effects, including the variability of parameters 

related to the bridge, the track and the train were taken into account along with the existence of 

track irregularities [Rocha et al (2014); Rocha et al (2015)]. The differences to the previous 



Chapter 5  

 

5.2 

stage are highlighted and safety assessment results are analysed and compared for two distinct 

methodologies: the tail modelling approach and the enhanced simulation approach. The results 

are compared in terms of accuracy and efficiency and conclusions are drawn with respect to the 

advantages and drawbacks of each methodology along with the results obtained for each 

method. 

 

5.2 Safety criterion 

The track stability is governed by the vertical acceleration of the bridge deck. As discussed 

in Section 2.4.2.1 several studies have been carried out in order to establish the vibration levels 

that originate the instability of the ballast layer. This phenomenon leads to the loss of interlock 

between ballast grains which results in the loss of the lateral resistance of the track, affecting 

the running safety of the trains. 

The current European standard EN1990-A2 (2005) limits the maximum peak values of the 

bridge deck acceleration to 3.5 m/s
2
 for ballasted track and to 5 m/s

2
 for ballastless tracks. This 

standard also defines that if a dynamic analysis is required to determine the acceleration level 

of the bridge both real trains and HSLM should be analysed. Frequencies up to 30 Hz or 1.5 

times the value of the frequency of the fundamental mode of vibration should be included in the 

analysis, guaranteeing a minimum of three vibration modes. 

However, recent studies carried out by Zacher & Baeβler (2009) (detailed in Section 2.4.2.1) 

showed that the lateral resistance of the sleeper is only significantly affected when the 

acceleration level exceeds 7 m/s
2
.  These results indicate that the acceleration limit suggested in 

the European standards to ballasted tracks results from the application of a safety factor of 2. 

Since this criterion is often the most restrictive aspect of the dynamic response of short to 

medium span railway bridges, Zacher & Baeβler (2009) propose a reduction of the safety factor 

from 2 to 1.3, which would translate into limiting the deck acceleration on ballasted tracks to 

5.5 m/s
2
 and to 7.5 m/s

2
 in ballastless tracks. 

Another study carried out by Norris (2005) observed that even if some small and localised 

areas of the deck have very high acceleration levels the ballast layer remains stable as the 

adjacent ballast provides confinement and prevents local instability. Based on these findings 

Norris proposed that the deck acceleration limit should be changed to 5 m/s
2
 for most of 
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ballasted bridges and this value could even be increased to 6 m/s
2
 for bridges with higher 

structural damping. 

Taking all of this into consideration and bearing in mind that the variability of the several 

parameters that govern the train-bridge dynamic response are taken as random variables in this 

dissertation, it was decided not to apply any safety factor to the verification of the track 

stability. Therefore, failure is assumed when the vertical acceleration of the deck reaches the 

7.0 m/s
2
 limit. The probability of failure of the train-bridge system is estimated by assessing the 

probability of the bridge deck reaching this acceleration level. 

 

5.3 Safety assessment – results and discussion 

In this section the results from the safety assessment are presented and discussed. Initially, 

the results obtained from the simplified approach, using the moving loads method, are 

presented. Subsequently, the results from the analysis that accounts for the train-bridge 

interaction effects are presented along with the different techniques that have been employed to 

estimate the probability of failure of the train-bridge system.  

 

 

5.3.1 Simplified approach – moving loads 

In this preliminary stage the dynamic behaviour of the bridge was analysed for the crossing 

of the TGV Double train with a speed ranging from 200 km/h to 450 km/h, increasing in steps 

of 5 km/h. The track-bridge load model used is the one presented in Section 4.3.1 and the 

moving loads model described in Section 4.4.5.1 is selected to assess the dynamic behaviour. 

 

5.3.1.1 Dynamic response for a deterministic scenario 

First, the dynamic response of the bridge was analysed, considering that all random 

variables (defined in Table 4.3) take their mean value and the train that crosses the bridge is 

characterised according to the moving load model described in Section 4.4.5.1. This helps to 

understand the dynamic behaviour of the train-bridge system and is useful for the selection of 

the most adequate type of analysis to be made for the safety assessment. The distinct bridge 

dynamic responses for different train speeds are illustrated in Figure 5.1. 
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a) 290 km/h 

 

b) 305 km/h 
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c) 390 km/h 

Figure 5.1 – Bridge dynamic response at mid-span considering a moving loads scenario. 

 

Figure 5.1a illustrates the response for a non-resonant speed, Figure 5.1b shows the obtained 

response for a resonant speed and in Figure 5.1c an impact response, due to the train speed, can 

be seen. Although the speed values considered in Figure 5.1a and Figure 5.1b differ only by 

15 km/h (290 and 305 km/h, respectively) the difference between their responses is quite 

visible and reflects how resonance drastically effects affect structural behaviour. 

 An overview of maximum absolute values of acceleration at mid-span of the bridge for 

increasing train speeds is provided in Figure 5.2. 
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Figure 5.2 – Maximum acceleration values at mid-span of the bridge for a moving loads analysis. 

 

Resonant acceleration peaks can be observed around 310 km/h and 385 km/h. An estimate 

of resonant speeds can be given by: 

 

i

d
n jres v  (5.1) 

 

where nj is a natural frequency of the bridge, d is the regular spacing of groups of axles and i 

takes the values 1, 2, 3, etc. 

Since the first natural frequency of the bridge is 9.168 Hz and the axle distance, d, is 18.7 m, 

the first expected resonant speed, which occurs taking i equal to 2, is around 308 km/h, which 

is in compliance with the observed acceleration peaks. The observed behaviour for speeds near 

400 km/h is more related with speed effects than with resonance effects. The observed peaks 

are connected with the second and higher bending modes and for i values over 5. This explains 

the relatively small size of the observed peaks. 

In order to provide a more comprehensive analysis of the dynamic behaviour for different 

train speeds the FFT response was plotted. These results are shown in Figure 5.3. 
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a) 290 km/h 

 

b) 305 km/h 

 

c) 390 km/h 

Figure 5.3 – Maximum acceleration values at mid-span of the bridge. 
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Figure 5.3a illustrates a non-resonant response whereas Figure 5.3b shows a typical result 

for a resonant speed, with the peak located close to 9 Hz, which is the fundamental frequency 

of the bridge. In the case of Figure 5.3c the FFT results indicate that more frequencies are 

contributing to the structural vibration, demonstrating that the response is not exclusively due 

to the fundamental frequency. 

 

5.3.1.2 Preliminary simulation analysis 

Initially, and to provide a better understanding of the problem to be studied, both the Monte 

Carlo simulation method and the Latin Hypercube simulation were used to provide an overview 

of the type of response expected. To accomplish this, four distinct sample sizes were used for 

the Monte Carlo simulation with 5,000, 2,500, 2,000 and 1,000 simulations, respectively. For 

the case of the Latin Hypercube simulation only two scenarios were analysed, with samples of 

500 and 250 simulations. The option for these sample sizes was understood to be sufficiently 

representative for the estimation of the required safety level within ultimate limit states. 

As previously mentioned the dynamic analyses were performed using the FEMIX software 

with the formulation presented in Neves et al (2012), which for a time step of 0.002 s and a 

total of 5,000 steps, representing a 10 s analysis, taking roughly 30 s to be completed on a 

computer with an Intel Core i7 920 running at 2.67 GHz. 

An example of the results obtained from the simulations is shown in Figure 5.4. The results 

represent the scenario of 5,000 Monte Carlo simulations and are representative of the results 

obtained for the other simulation scenarios. 

Figure 5.4 shows two of the different scenarios observed in the dynamic response of the 

bridge. Figure 5.4a shows the results obtained for a non-resonant speed, where small variations 

of the acceleration values can be observed. On the other hand, in Figure 5.4b a larger scatter of 

acceleration values can be observed. This is due to the existence of two distinct types of 

dynamic response: some cases where bridges are undergoing resonant effects, which drastically 

increases the acceleration values, whereas others are not in resonance and, consequently, the 

acceleration values are much lower. To make these results even clearer the peak mid-span 

accelerations for each of the 5,000 Monte Carlo simulations are presented as a histogram in 

Figure 5.5 for different train speeds. 
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a) 220 km/h 

 

b) 285 km/h 

Figure 5.4 – Peak mid-span accelerations for each simulation. 
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a) 250 km/h 

 

b) 285 km/h 

 

c) 320 km/h 
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d) 420 km/h 

Figure 5.5 – Histogram of the peak mid-span accelerations for each simulation. 

 

Besides highlighting the distinct response for resonant and non-resonant bridges, the results 

depicted in Figure 5.5 are also particularly useful to show that due to this dual behaviour the 

structural response does not follow a Gaussian distribution. The existence of skewness is 

clearly visible in the results along with a combination of different curves (perfectly depicted by 

Figure 5.5b) particularly in the 285 km/h to 305 km/h speed range, where resonant behaviour is 

more significant. 

In order to complete the information about the obtained results, an overview of the 

maximum bridge deck acceleration for the 5,000 Monte Carlo simulation for the analysed 

speed range is illustrated in Figure 5.6. In this figure three curves are represented: one for the 

average value of the maximum acceleration, another for the average value increased by one 

standard deviation and also the maximum peak acceleration values obtained. 
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Figure 5.6 – Overview of the mid-span accelerations. 

 

It is also interesting to compare the results obtained for different sample sizes and different 

simulation methods. For this reason Figure 5.7 shows a comparison for the average and 

maximum values of the mid-span peak acceleration for the different analysed scenarios. 

 

 

Figure 5.7 – Comparison of the mid-span acceleration for different simulation scenarios. 
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It can be observed that in terms of mean values (and even standard deviation values, 

although not depicted in Figure 5.7) there was not a significant difference between different 

sample sizes and even between different simulation methods. However, when analysing the 

maximum response values obtained for the different simulation scenarios, a higher scatter is 

observed. This turns out to be a key issue for the analysis since these are the values that have a 

higher importance in structural reliability problems. The use of fewer simulations leads to a 

significant reduction of the number of points near the maximum values, thus affecting the 

representativeness of the upper end of the structural response distribution. This fact is mostly 

due to the existence of the two distinct types of structural response (resonant and non-resonant 

behaviour) and leads to an inadequate evaluation of the safety of the train-bridge system due to 

the reduced number of extreme points obtained even when using a sample of 5,000 Monte 

Carlo simulations. It should also be added that since the response is not monotonic this tends to 

affect the efficiency of the Latin Hypercube method, resulting in an increased number of 

required simulations. This is illustrated in Figure 5.8, where the evolution of the estimated 

probability of failure for increasing train speeds is shown for different Monte Carlo simulation 

scenarios. 

 

 

Figure 5.8 – Estimated probability of failure for different Monte Carlo simulation scenarios. 
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The variation of the results using different sample sizes is significant and shows that the 

accuracy of the results is insufficient. Therefore, estimating the probability of failure using 

these results is not adequate and can lead to substantial error. These results, however, can be 

used as a preliminary assessment and enable the identification of the critical speed range. In 

order to overcome the accuracy limitation, and having defined the critical speed range through 

this preliminary analysis, a simulation refinement was carried out for train speeds ranging from 

285 km/h to 300 km/h, which is discussed in Section 5.3.1.3. 

 

5.3.1.3 Simulation refinement 

The preliminary analysis showed that the number of simulations used to assess the safety of 

the train-bridge system was insufficient. For this reason, in order to overcome the limitations of 

that analysis a refinement was made in the critical speed range. Taking into consideration the 

safety threshold of 10
-4

 defined in this work, it was decided to carry out 100,000 Monte Carlo 

simulations for train speeds ranging from 285 km/h to 300 km/h. Furthermore, and in order to 

validate the screening procedure exposed in Section 4.5.2, a sensitivity analysis of the 

simulation results obtained in this refinement was also performed. This allows validating the 

sensitivity analysis as well as enabling the identification of the variables that have more 

influence on the dynamic response of the bridge.  

The sensitivity analysis was performed for each variable individually and also for the 

variables as a whole and both the acceleration and displacements of the bridge were studied. 

The obtained results of this sensitivity analysis are presented in Table 5.1 and Table 5.2. 

The analysis of Table 5.1 and Table 5.2 shows that, apart from inertia variation due to the 

variation of the concrete section width, all the other parameters have an individual correlation 

with the response greater than 10%, confirming the results obtained in the variable screening 

procedure. Similarly to what had been observed in the variable screening procedure, it can be 

seen that the concrete elasticity modulus, the concrete height and the ballast area are the 

parameters with higher influence on the dynamic response. It can also be observed that as the 

speed increases, and becomes closer to resonant speeds, the correlation between the response 

and the variables decreases. This fact can be explained by the existence of a dual behaviour of 

the response observed for these speeds (resonant and non-resonant behaviour) which affects the 

obtained correlation. 
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Table 5.1 – Correlation between acceleration and basic variables for increasing train speeds. 

 Speed (km/h) 

Variable 285 290 295 300 

Concrete density weight -0.197 -0.188 -0.155 -0.083 

Ballast density weight -0.126 -0.113 -0.083 -0.033 

Ballast area -0.378 -0.360 -0.284 -0.130 

Elasticity modulus concrete 0.640 0.612 0.533 0.376 

Concrete height 0.333 0.324 0.293 0.230 

Concrete width 0.046 0.044 0.040 0.031 

Elasticity modulus neoprene 0.231 0.231 0.270 0.257 

Global analysis 0.880 0.851 0.746 0. 534 

 

Table 5.2 – Correlation between displacement and basic variables for increasing train speeds. 

 Speed (km/h) 

Variable 285 290 295 300 

Concrete density weight -0.180 -0.164 -0.127 -0.066 

Ballast density weight -0.111 -0.094 -0.063 -0.022 

Ballast area -0.343 -0.308 -0.222 -0.087 

Elasticity modulus concrete 0.718 0.692 0.633 0.549 

Concrete height 0.388 0.382 0.365 0.337 

Concrete width 0.052 0.051 0.050 0.045 

Elasticity modulus neoprene 0.083 0.072 0.050 0.021 

Global analysis 0.916 0.874 0.780 0.656 

 

In order to estimate the value of pf two different methods were used. In one method pf is 

calculated by simply counting the number of cases where the limit acceleration is exceeded. In 

the other method pf was determined by fitting a curve to the upper end of the cumulative 

distribution function of the mid-span accelerations. It should be mentioned that the regressions 
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were performed for a different number of points. Three cases with 0.3%, 0.4% and 0.6% of the 

points from the upper end of the cumulative distribution function were used in the regression 

and in the end the choice was based on the obtained error. The regression with the smallest 

error for each speed was selected as the most accurate estimation of the probability of failure. 

For this safety assessment several types of regression functions were used, namely sigmoidal 

and exponential functions. The functions that provided a better regression were the sigmoidal 

functions which are expressed by: 
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(5.2) 

 

where P is the probability, a the acceleration and b, c, d, xo and y0 are the fitting parameters. 

Some of the performed regressions for a speed of 295 km/h and different sample sizes are 

shown in Figure 5.9. 

 

 

a) 5,000 simulations 
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b) 20,000 simulations 

 

c) 50,000 simulations 
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d) 100,000 simulations 

Figure 5.9 – Regression function for v = 295 km/h (0.3% of the points). 

 

As expected, the increase in the number of simulations leads to a better representation of the 

upper extremity of the cumulative distribution function, which is, as previously mentioned, the 

interest zone for safety assessment purposes. This also illustrates and justifies why the accuracy 

of the results obtained in the preliminary assessment is insufficient. 

This procedure was applied to all the train speeds in the refinement range in order to assess 

the safety of the train-bridge system. The evolution of the estimated probability of failure for 

increasing train speeds is shown in Figure 5.10. 

As previously mentioned, probability values up to 10
-4

 are considered to be acceptable to 

measure failure due to the instability of the ballast layer. The analysis of Figure 5.10 shows that 

this value is not exceeded for speeds lower than 295 km/h which, therefore, can be seen as an 

estimate of the train speed limit to be imposed on the bridge. It is also possible to observe that 

if a more conservative approach was performed, lowering the limit for the probability of failure 

to values up to 10
-5

, the speed limit would not be very different, decreasing only 5 km/h to 

290 km/h. 
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Figure 5.10 – Estimated probability of failure for increasing speeds. 

 

Detailed results of the estimated probability of failure for increasing sample sizes are 

presented in Table 5.3. It should be noted that these results will only be presented for the 

speeds where the acceleration exceeded 7 m/s
2
 since this is the acceleration limit, as previously 

mentioned.  For this reason, only the results obtained for 295 km/h and 300 km/h are presented, 

which are the first speeds where the acceleration limit is exceeded. This indicates that for lower 

speeds the probability of failure cannot be accurately estimated with the number of simulations 

used, due to lack of precision. However, this is not problematic since the values are much lower 

than 10
-4

, and for estimation purposes the precision used is sufficient. 

From the analysis of Table 5.3 it is possible to conclude that even for a speed of 295 km/h 

the number of simulations is not enough for the precision required to obtain the probability of 

failure associated with this case (smaller than 10
-5

) using the typical counting method. In Table 

5.4 the estimation error is presented. Due to what was just referred, the error analysis is limited 

to a speed of 300 km/h and the “exact” value is assumed to be obtained for the case of 100,000 

simulations using the counting method. 
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Table 5.3 – Probability of failure for different size sample (value x 10
-4

). 

 Speed (km/h) 

 295 300 

Number of Simulations count fit count  fit 

5,000 < 0.10 0.57 < 0.10 0.76 

10,000 < 0.10 0.70 3.00 2.32 

20,000 < 0.10 0.24 3.50 2.10 

30,000 < 0.10 0.23 3.33 1.70 

40,000 < 0.10 0.16 3.25 2.16 

50,000 < 0.10 0.21 3.40 2.43 

60,000 < 0.10 0.16 3.83 2.69 

70,000 < 0.10 0.29 3.71 3.02 

80,000 0.12 0.29 4.13 3.68 

90,000 0.11 0.28 3.89 3.59 

100,000 0.10 0.22 4.20 3.92 

 

 

Figure 5.11 – Evolution of the estimated probability of failure for increasing sample sizes 

(v = 300 km/h). 
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Table 5.4 – Estimated probability of failure error (value x 10
-4

) (v = 300 km/h). 

Number of Simulations count fit 

5,000 4.20 3.44 

10,000 1.20 1.88 

20,000 0.70 2.10 

30,000 0.87 2.50 

40,000 0.95 2.04 

50,000 0.80 1.77 

60,000 0.37 1.51 

70,000 0.49 1.18 

80,000 0.08 0.52 

90,000 0.31 0.62 

100,000 - 0.28 

 

Another interesting observation can be found when calculating the probability of reaching 

an acceleration of 7 m/s
2
 for the first speed where the acceleration limit imposed by the 

European standards is not satisfied. This occurs for a speed of 255 km/h, which is the lowest 

speed where accelerations values over 3.5 m/s
2
 can be observed. The estimate of reaching an 

acceleration of at least 7 m/s
2
 at mid-span of the bridge leads to a probability of 10

-8
, which is 

significantly lower than the limits normally used for ultimate limit states of the track. The 

comparison between the speed limit obtained when using EN1991-2 (2003) and the 

probabilistic approach following the limits determined experimentally by Zacher & Baeβler 

(2009) are indicated in Table 5.5. 

 

Table 5.5 – Speed limit comparison according to EN1991-2 (2003) and the probabilistic approach. 

 EN 1991-2 [6] Probabilistic approach 

Speed limit (km/h) 255 295 

P(a = 7m/s
2
) ~ 10

-8
 ~ 10

-5
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5.3.1.4 Preliminary conclusions 

By analysing the results obtained in this preliminary stage some conclusions can be drawn. 

First of all, the estimated speed limit obtained was 295 km/h. This limit was obtained 

considering the typical values used in ultimate limit states, using probability values up to 10
-4

. 

It could also be observed that if a more conservative approach was used, and this probability 

was lowered to values up to 10
-5

, no significant difference would be obtained, decreasing the 

speed limit by only 5 km/h to 290 km/h. 

Another interesting observation was the comparison between the results obtained when 

following the guidelines proposed in EN1991-2 (2003) and when adopting a probabilistic 

approach. The use of a safety factor of 2 leads to a speed limit which is 40 km/h lower than the 

limit obtained when considering the acceleration limit for the instability of the ballast layer 

observed in laboratory tests. This is equivalent to the use of a probability of 10
-8

 for the track 

ultimate limit state. 

A final remark should be made regarding the type of response obtained. Two different types 

of response, resonant and non-resonant behaviour, could be observed for several speeds close 

to the obtained speed limit. Along with the very low values admissible in Civil Engineering 

problems, this fact increases the complexity of the studied problem, thus forcing the required 

number of simulations to increase significantly. For this reason the 5,000 simulations used 

initially proved to be insufficient and, taking into account that probability values up to 10
-4

 

were considered to be acceptable, the number of simulations was increased to 100,000 

simulations. Through the error analysis it is possible to observe that a minimum of 60,000 

Monte Carlo simulations are recommended. However, this number depends only on the 

intended accuracy, so other choices may be valid as well. The use of different methodologies to 

estimate the probability of failure of the train-bridge system may also lead to different results, 

as will be demonstrated in the next section. 

 

5.3.2 Train-bridge interaction 

Due to the importance of the train-bridge interaction effects on the dynamic response of 

short to medium span railway bridges, this was another aspect that needed to be taken into 

consideration when assessing the safety of the train-bridge system. The preliminary stage 

proved extremely useful to provide a better understanding of the dynamic behaviour, the most 
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significant parameters for the dynamic response and also enable identifying some of the 

potential issues that are to be faced when trying to carry out this task. 

Using the knowledge acquired during that stage, several distinct approaches were tried in 

order to assess the safety of the train-bridge system in an efficient and accurate manner. 

Similarly to what was done for the preliminary assessment, a brief description of the dynamic 

behaviour that is observed when the train-bridge interaction is taken into account is presented. 

Afterwards, different approaches are presented for the safety assessment and the obtained 

results are discussed. Both the standard Monte Carlo simulation and the Latin Hypercube 

sampling method are applied. Furthermore, both simulation methods are combined with two 

different approaches to enhance efficiency. One is based on the extreme value theory and uses 

different functions to model the tail of the distribution (described in Section 3.4.1). The other 

uses an approximation procedure based on the estimates of the failure probabilities at moderate 

levels to estimate the target probability of failure by extrapolation (described in Section 3.4.2). 

 

5.3.2.1 Dynamic response accounting for the interaction effects 

Similarly to what was done for the case of the moving loads analysis, this Section intends to 

illustrate some of the simulation results obtained when the train-bridge interaction effects are 

taken into account. Similarly to the moving loads analysis, the dynamic analyses that take into 

consideration the train-bridge interaction effects were performed using the FEMIX software  

with the formulation presented in Neves et al (2012), which for a time step of 0.002 s and a 

total of 5,000 steps, representing a 10 s analysis, takes approximately 40 s to be completed on a 

computer with an Intel Core i7 920 running at 2.67 GHz. 

The first of the results that are presented corresponds to the maximum bridge deck 

acceleration obtained for increasing train speeds and is shown in Figure 5.12. The black line 

represents the results for the case where all the variables take their mean value whereas the 

circles correspond to results obtained from MC simulation, illustrating the variability of the 

dynamic response for each of the different train speeds analysed.  
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Figure 5.12 – Maximum bridge deck acceleration for increasing train speeds. 

 

It is possible to observe that the variability tends to increase around the speeds where 

resonant effects can be observed. Furthermore, it is noticed that accounting for the flexibility of 

the bearings combined with the existence of track irregularities shifted the critical section from 

the mid-span to the ¾ span. The irregularities originate an important increase of the wheel-rail 

contact forces that lead to the excitation of the bridge second mode shape, resulting in a 

significant dynamic amplification at the quarter span sections. This indicates that at least for 

some specific cases the results obtained from a moving loads approach and a train-bridge 

interaction approach are not directly comparable, particularly if the track irregularities are taken 

into consideration. It is also possible to notice that for speeds greater than 350 km/h the 

dynamic response results from impulsive loading due to the passage of the train at high-speed 

rather than resonant effects. 

To illustrate the effects of resonance, which are particularly relevant for the track stability 

safety assessment, the results from the simulations are shown as a scatter plot in Figure 5.13 

and as a histogram in Figure 5.14. 
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a) 270 km/h 

 

b) 280 km/h 

0

1

2

3

4

5

6

7

8

Simulations

A
cc

el
er

at
io

n
 (

m
/s2

)

0

1

2

3

4

5

6

7

8

Simulations

A
cc

el
er

at
io

n
 (

m
/s2

)



Chapter 5  

 

5.26 

 

c) 290 km/h 

Figure 5.13 – Scatter plot of the maximum bridge deck acceleration for each simulation. 

 

The scatter plots are useful to illustrate how resonance affects the simulation results. As the 

train speed moves closer to the resonant speeds the maximum bridge deck acceleration tends to 

increase and the scatter of the response is also higher. For the train speed of 270 km/h the 

centroid of the results appears to be between 1 and 2 m/s
2
, with few cases far from that range. 

This changes as the speed increases to 280 km/h where it becomes harder to establish the 

centroid of the results due to the increase scatter of the response. For the train speed of 290 

km/h the scatter is still high but it seems to have increased to the range of 3 to 4 m/s
2
, 

indicating that most simulations are experiencing resonant effects. 

The same results are also plotted as a histogram in Figure 5.14 to show more clearly the 

existence of two different response curves and how they evolve as the train speed increases. 
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a) 270 km/h 

 

b) 280 km/h 
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c) 290 km/h 

Figure 5.14 – Histogram of the peak bridge deck accelerations. 

 

The results obtained for the train speed of 270 km/h resemble those obtained for a lognormal 

distribution but as the speed increases to 280 km/h two distinct curves can be clearly seen in the 

histogram indicating the existence of two distinct response types. Finally, the analysis of the 

histogram for a train speed of 290 km/h shows that most cases are undergoing resonant effects. 

Since two different simulation methods are used it is important to confirm that the results 

obtained for both of them are similar. This validation is shown in Figure 5.15 for a train speed 

of 285 km/h.  

A sample of 50,000 simulations was selected for the Monte Carlo method and a sample of 

30,000 simulations was used for the Latin Hypercube method. As expected, the results are 

practically identical for both simulation methods. 
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a) 50,000 Monte Carlo simulations 

 

b) 30,000 Latin Hypercube simulation 

Figure 5.15 – Comparison of the results using different simulation techniques. 

 

5.3.2.2 Tail modelling approach 

Bearing in mind that structural reliability problems are determined by the tail of the 

statistical distributions, the computational cost can be significantly reduced if an extrapolation 

of the Cumulative Distribution Function (CDF) is made using tail modelling techniques. To 

assess the safety of the train-bridge system the tail of the distribution is modelled using the 

sigmoid functions that proved to be useful in the preliminary assessment stage along with the 

traditional Generalised Pareto Distribution. 

As stated before, one important aspect that needs to be clearly defined is the accuracy that is 

desired with respect to the results obtained when estimating the probability of failure. Since the 
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tail modelling approach relies on data points with the largest uncertainty, the stabilisation of the 

probability of failure estimates may require a large number of simulations.  

When using this procedure two different aspects are particularly important: one is the 

process of modelling the tail, which is significantly dependent on the threshold that is selected 

and “defines” what is being taken as the tail of the distribution; and the second is the efficient 

identification of the critical speed range from a safety point of view, in order to direct the 

computational effort to the speeds where the safety of the train-bridge system is at risk.  

With respect to the first point that was mentioned, different thresholds were tested to 

understand which value should be selected in order to obtain more accurate estimations of the 

probability of failure from the tail fitting. Threshold values of 0.90, 0.95, 0.98 and 0.99 were 

analysed. Regarding the GPD fit, the results showed similar accuracy using thresholds of 0.95 

and 0.98. The threshold of 0.95 was selected for the safety assessment analysis, as it allows a 

better representation of the tail for smaller samples sizes. With respect to the sigmoid fit, 

further thresholds of 0.995 and 0.999 were analysed and it was concluded that the accuracy of 

the fit increased as the threshold moved closer to one, provided that the CDF tail was 

adequately represented. Therefore, when using the sigmoid fit instead of defining a specific 

threshold, 50 points of the tail were considered. Some examples of the performed fits for a 

sample of 50,000 simulations are illustrated in Figure 5.16. 
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b) Sigmoid fit 

Figure 5.16 – Tail modelling examples. 

 

Both methods proved that they provide excellent fits to the data, which is confirmed by the 

R
2
 index values being above 0.99. 

Another key aspect to take into account is efficiency. One should bear in mind that the 

methodology proposed aims to assess the safety of the train-bridge system. Therefore, 

determining the exact probability of failure is not required for every train speed. For this reason 

the procedure should direct the computational efforts to the critical train speeds in order to 

guarantee efficiency. To achieve this, two stopping criteria have been defined: one regarding 

the stability of the estimated reliability index, β, and the other related to the probability 

threshold being out of the confidence interval bounds (95%), using the Wald confidence 

intervals given by [Wald & Wolfowitz (1939)]: 
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where imp̂  is the estimated probability of failure, N is the sample size, α is confidence level and 

PLB and PUB are the lower and upper bounds confidence intervals of probability of failure, 

respectively. 
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The first criterion aims to analyse the stability of the estimated probability of failure through 

the analysis of the variation of the reliability index, β, over consecutive sets of simulations. 

Reliability index, β, and probability of failure, pf, are related as: 

 

 fp  (5.4) 

 

where Φ(•) is the CDF of the standard normal random variable. 

As the number of simulations increases so does the accuracy of the probability of failure 

estimates. This criterion imposes that the variation of β is smaller than 0.5% during three 

consecutive increases of the sample size (increase step of 500 simulations). This criterion is 

useful for speeds where the probability of failure is relatively far from the 10
-4

 limit but the 

confidence interval bounds exceed this value for a sample size that enables to understand that 

the estimated probability of failure has stabilised and will not be exceeding the safety threshold. 

To provide a better understanding of this criterion the dynamic response for a train speed of 

280 km/h is analysed as an example. Figure 5.17 shows the evolution of the estimated 

probability of failure for increasing sample sizes whereas Figure 5.18 shows the evolution of 

the estimated reliability index for increasing sample sizes. 

 

 

Figure 5.17 – Evolution of the estimated probability of failure at the quarter span section for a train 

speed of 280 km/h. 
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Figure 5.18 – Evolution of the estimated reliability index for increasing sample sizes. 

 

The upper bound of the confidence interval of the estimated probability of failure is over the 

safety threshold for samples smaller than 27,000 simulations. However, the estimated reliability 

index stabilises much sooner than this limit (with a slightly increasing tendency of the 

estimated reliability index). Using the specified criterion fewer than 15,000 simulations are 

sufficient to rule out this train speed as critical. 

The second criterion was based on the confidence of the estimated probability of failure 

through the Wald confidence intervals, as previously presented. This criterion proved 

extremely useful for train speeds where the probability of failure is far (an order of magnitude 

or more) from the 10
-4

 safety limit. Like for the previous criterion an illustrative example of the 

advantages of using such a criterion is shown for the case of trains crossing the bridge at 

270 km/h. The evolution of the estimated probability of failure is shown in Figure 5.19. 

The estimated probability of failure is much lower than the safety limit (difference of nearly 

two orders of magnitude) for this train speed. Although the number of simulations is not 

enough to accurately predict the probability of failure, the confidence interval of the estimated 

probability of failure is far below the safety limit after 3,000 simulations. 
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Figure 5.19 – Evolution of the estimated reliability index for increasing sample sizes. 

 

For this reason the required number of simulations can be greatly reduced as the safety of 

the train-bridge system is not at risk for this train speed. For the current example less than 

5,000 simulations would be required to rule out this train speed as critical for the mid-span 

section. For other cases even fewer simulations may be required. The practical example allows 

showing that through the application of such a criterion the number of simulations is greatly 

reduced and the critical speed range can be easily identified. However, the reduction of the 

number of simulations does not allow an accurate prediction of the probability of failure for 

these train speeds. Nevertheless, as highlighted earlier, determining the exact probability of 

failure of the train-bridge system is not required for every train speed since the objective is the 

safety assessment of the train-bridge system and this is only necessary for the train speeds 

where the train-bridge system safety is at risk.  It should also be added that a minimum of 2,000 

simulations are performed for every train speed. This number proved to be reasonable in 

preventing judgement errors that could lead to a failure in identifying a speed where the safety 

of the system could be at risk. 

If at least one of these criteria is satisfied then the number of simulations is adequate. 

Otherwise more simulations need to be carried out until one of the criteria is satisfied. These 

criteria are extremely useful to direct the computational effort to the speeds where the safety of 

the train-bridge system is at risk and enable reducing significantly the number of required 
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simulations. However, for speeds where the safety of the train-bridge system might be at risk, 

the criteria are disregarded to guarantee accurate estimates of the probability of failure. 

To complement some of the results provided in Section 5.3.2.1 the CDF plots of the peak 

bridge deck acceleration for different train speeds is illustrated in Figure 5.20. 

 

 

a) 270 km/h 
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c) 290 km/h 

Figure 5.20 – CDF plot of the peak bridge deck accelerations. 

 

The CDF plots are extremely useful to illustrate one of the main difficulties to be overcome 

by the tail modelling techniques. It is evident that the CDF curve is relatively stable for 

moderate to high levels of probability. However, as it approaches the most extreme points there 

is some perturbation to this stability which arises from the fact that these points are less reliable 

from a statistical point of view. This is identified as the main drawback of this approach and is 

also one of the main difficulties in structural safety problems. 

In order to estimate the probability of failure the tails of the distribution were modelled 

using both sigmoid functions and the GPD. Although both methods provide good fits to the 

data, it is important to confirm that they guarantee accurate estimates of the probability of 

failure. To do so, using the results from the Monte Carlo simulation, the estimated probability 

of failure was compared for different train speeds and increasing sample sizes. The estimated pf 

is also compared to the results obtained from the Monte Carlo method for further confirmation. 

The evolution of the estimated probability of failure of the train-bridge system for increasing 

train speeds is presented in Table 5.6.  
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Table 5.6 – Estimated probability of failure for increasing train speeds using the tail modelling 

approach. 

Speed (km/h)  pf β 

280 

MC 3.33E-05 3.988 

GPD 2.76E-05 4.032 

SIG 4.79E-05 3.901 

285 

MC 1.25E-04 3.662 

GPD 1.06E-04 3.704 

SIG 1.27E-04 3.658 

290 

MC 4.17E-04 3.341 

GPD 4.73E-04 3.306 

SIG 3.17E-04 3.417 

295 

MC 1.00E-03 3.090 

GPD 1.06E-03 3.073 

SIG 8.58E-04 3.135 

300 

MC 1.98E-03 2.881 

GPD 1.99E-03 2.880 

SIG 2.08E-03 2.866 

305 

MC 4.00E-03 2.652 

GPD 3.70E-03 2.678 

SIG 4.22E-03 2.634 

 

A good agreement between the three estimates is obtained, thus confirming the applicability 

of the selected methods. However, to assess robustness and efficiency the extrapolation 

accuracy and the stability of the estimated pf must also be analysed. To do so, the evolution of 

the estimated pf for increasing sample sizes was analysed for different train speeds. Some of 

these results are shown in Figure 5.21. 
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a) 280 km/h 

 

b) 285 km/h 
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c) 290 km/h 

Figure 5.21 – Comparison of the evolution of the estimated pf for increasing sample sizes for the 

different methods. 

 

The evolution of both fits is very similar in the critical speed range between 280 km/h and 

290 km/h. Compared to the MC both fits allow estimating pf with significantly fewer 

simulations, particularly when the amount of data above the safety threshold is reduced. For 

train speeds below 280 km/h long range extrapolation is required as the maximum deck 

acceleration is far from the safety limit. For these cases GPD is more accurate, whereas the 

sigmoid fit tends to be conservative. As the estimated probability is far from the safety limit 

this is not considered to be significant due to the applied stopping criteria. However, if the 

purpose is to accurately estimate probabilities smaller than 10
-5

, the use of GPD is 

recommended. For train speeds above 285 km/h both fits show similar accuracy, even for small 

sample sizes. This can be explained by the higher number of points in the vicinity of the failure 

region. 

Following the validation of the methodology it is also important to analyse how different 

simulation methods affect the efficiency and accuracy of the tail modelling approach. Since the 

GPD approach proved to be more efficient and accurate, only this method was used in the 

comparison. The results are indicated in Table 5.7 and are also compared with the “crude” 
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approach of estimating the probability of failure by simply counting the number of cases where 

the safety threshold is exceeded for both simulation methods. 

 

Table 5.7 – Estimated pf due to track instability using the tail modelling approach ( 10
-4

). 

Speed (km/h) MC LH GPD-MC GPD-LH 

275 0.20 < 0.1 0.05 0.14 

280 0.40 0.50 0.58 0.70 

285 1.40 1.33 1.32 1.03 

290 5.80 2.67 5.17 4.93 

295 10.30 8.33 13.00 7.81 

 

Another very important aspect to analyse is the number of simulations for each train speed 

required to assess the safety of the train-bridge system as this is an indicator of the efficiency of 

the methodology. The required number of simulations to accurately assess the probability of 

failure due to track instability are indicated in Table 5.8. 

 

Table 5.8 – Number of simulations required to accurately assess the probability of failure due to track 

instability using the tail modelling approach. 

Speed (km/h) SIG-MC GPD-MC GPD-LH 

275 4000 8000 8000 

280 20000 14000 7000 

285 22000 15000 25000 

290 12000 6000 7000 

295 6000 5000 5000 

 

The analysis of the results shows that the efficiency is almost similar for both simulation 

techniques. It is also observed that, in general, the GPD approach is more efficient than the 
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sigmoid approach. The GPD-MC proves to be slightly more efficient and the difference to the 

GPD-LH is 8%, corresponding to 4,000 simulations less on the critical speed range. The lower 

efficiency is due to the particular train speed of 285 km/h, where the estimated probability of 

failure is extremely close to the safety threshold of 10
-4

. Besides being close to threshold, the 

fact that response is not monotonic also affects LH efficiency.  The estimated probability of 

failure kept shifting from the safe to the unsafe side and ultimately required a larger sample size 

in order to stabilise above the safety limit. Since the goal was the accurate assessment of the 

probability of failure this particular speed required 25,000 simulations, corresponding to 48% 

of the total number of simulations for the analysis of the critical speed range. It should be added 

that for speeds outside the range presented in Table 5.8 less than 2,000 simulations are required 

to rule them out as critical, thus indicating that the methodology is very efficient in identifying 

the critical train speeds. 

 

5.3.2.3 Enhanced simulation approach 

The other method used to estimate the probability of failure of the train-bridge system is the 

Enhanced Simulation method. As detailed in Section 3.4.2, this method exploits the regularity 

of the tail probabilities to set up an approximation procedure based on the estimates of the 

failure probabilities at more moderate levels for the prediction of the far tail failure 

probabilities. This reduces the influence of the most extreme values, which are also less reliable 

from a statistical point of view, and may allow for a more efficient approach when compared to 

the tail modelling methodology. 

The Enhanced Simulation procedure enables quantifying the uncertainties of the estimated 

probability of failure using its optimisation procedure. This fact is very useful for two particular 

aspects: it significantly reduces the influence of the sample size and it also provides an extra 

tool to assess the quality of the failure estimation. 

Focusing on the accuracy and robustness of the estimates obtained by this method two 

different approaches were analysed in order to determine the necessary number of simulations. 

The first one considers the estimated confidence intervals obtained using a smaller sample size. 

In order to define the required sample size the estimated probability of failure for a reference 

sample needed to be within the bounds defined by the estimated confidence interval for that 

sample size. In the case of MC simulation 50,000 samples were considered whereas in the case 
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of LH simulation the reference was set for 30,000 samples. These values were identified as 

sufficient to provide a satisfactory estimate of the pf taking into account the target reliability 

level used in this work. In this case the obtained confidence interval band is large but ensuring 

that the estimated value for the reference sample size is within these limits guarantees an 

accurate prediction.  

The second approach determines that the estimated probability of failure is accurate enough 

for a sample size where the estimated value is within the boundaries defined by the confidence 

intervals predicted for the reference sample scenarios. Using this confidence interval results in 

a narrower band ensuring that the estimate provided by the smaller sample is accurate. 

Bearing in mind that the choice of the most suitable approach should ensure both accuracy 

and robustness it was decided to use the second criterion in order to define the required sample 

size. The use of such a criterion leads to the use of a very narrow confidence interval band 

which guarantees that the estimated probability of failure will be accurate and robust as it needs 

to be in agreement with the estimates obtained for a significanly larger sample. 

To illustrate the robustness of the estimates, an example of the application of the enhanced 

simulation method, using both MC and LH simulation, for a train speed of 285 km/h is 

presented in Figure 5.22. 

 

 

a) Enhanced Monte Carlo 
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b) Enhanced Latin Hypercube 

Figure 5.22 – Assessment of the probability of excessive deck vibration by the enhanced simulation 

procedure for a train speed of 285 km/h. 

 

Similarly to what was presented for the tail modelling approach, the safety assessment 

results using the Enhanced Simulation procedure are shown in Table 5.9 and are also compare 

with the “crude” results. It should also be noted that the estimated confidence interval bounds 

are also indicated in Table 5.9 as part of the obtained results. 

 

Table 5.9 – Estimated probability of failure due to track instability using the enhanced simulation 

approach ( 10
-4

). 

Speed (km/h) MC LH ES-MC (C
- 
; C

+
) ES-LH (C

- 
; C

+
) 

275 0.20 < 0.1 0.08 (0.06 ; 0.31) 0.08 (0.03 ; 0.22) 

280 0.40 0.50 0.44 (0.26 ; 1.47) 0.48 (0.24 ; 1.24) 

285 1.40 1.33 1.45 (0.81 ; 3.55) 1.19 (0.82 ; 3.49) 

290 5.80 2.67 4.40 (2.94 ; 8.17) 3.76 (2.11 ; 8.24) 

295 10.30 8.33 10.80 (7.45 ; 21.1) 10.30 (8.21 ; 14.4) 
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Again, a good agreement between the results can be observed, regardless of the simulation 

method used. To compare the efficiency of each simulation method the number of simulations 

that are required  to accurately assess the probability of failure due to track instability using the 

enhanced simulation procedure are indicated in Table 5.10. 

 

Table 5.10 – Number of simulations required to accurately assess the probability of failure due to track 

instability using the enhanced simulation approach. 

Speed (km/h) ES-MC ES-LH 

275 3000 9000 

280 3000 4000 

285 3000 3000 

290 3000 3000 

295 2000 9000 

 

The results show that for the assessment of the safety due to track instability the use of MC 

simulation proved to be more efficient. The LH requires twice as many simulations as the MC 

(28,000 and 14,000 simulations, respectively) for the assessment of the critical speeds. This 

difference is explained by the multi-modal distribution of the response. When the response is a 

non-monotonic function the LH tends to lose its efficiency, which was particularly noticed for 

the trains crossing the bridge at 275 km/h and 295 km/h. In these cases, the efficiency was 

severely affected and, therefore, the MC proved to be significantly more efficient. 

 

5.3.2.4 Efficiency comparison 

As a general comment, it can be noticed that the MC simulation tends to lead to slightly 

higher estimates of the probability of failure. Regardless of that fact, there is a good agreement 

between the estimates provided by the different methods. 

Comparing the two different approaches it can be observed that the ES proves to be more 

efficient than the GPD approach. Using the ES procedure resulted in reducing the necessary 
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number of simulations to slightly less than 30% (less 34,000 simulations) for the MC 

simulation and a little over 50% (less 24,000 simulations) for the LH simulation. 

 Globally, the safety assessment due to excessive deck acceleration can be accurately 

analysed with 14,000 simulations by enhanced MC simulation for the critical speed range (275 

– 295 km/h). In order to guarantee the track stability, the train speed over the bridge should be 

limited to 280 km/h. 

 

5.4 Concluding remarks 

The assessment of the train-bridge system safety due to track instability led to a few very 

interesting conclusions. First of all, the fact that the critical speed range from a safety point of 

view shows the existence of a multi-modal response, due to the existence of two distinct types 

of behaviour, resonant and non-resonant responses, increases the complexity of the studied 

problem. The consequence of this is the increase of the necessary number of simulations to 

accurately estimate the probability of failure, thus increasing the necessary computational 

times. The fact that the response is not monotonic also impacts the efficiency of some of the 

selected methodologies, which is shown by the efficiency reduction observed when Latin 

Hypercube simulation was used. 

Secondly, the case study selected showed that, at least for this particular case, the results 

obtained from a moving loads approach and a train-bridge interaction approach are not directly 

comparable due to the influence that track irregularities have on the dynamic response of the 

bridge. It is generally assumed that the moving loads model leads to more conservative results. 

However, the results obtained as part of the research presented in this dissertation showed a 

contrasting outcome. The influence of the combination of the bearing flexibility with the 

increase of the wheel-rail contact forces originated by the track irregularities resulted in a 

substantial increase of the dynamic amplification, which shifted the general critical section 

from mid-span (in the moving loads approach) to the quarter span sections (when train-bridge 

interaction is accounted for). This resulted in an estimated speed limit over the bridge of 295 

km/h when using the moving loads approach and a limit of 280 km/h when train-bridge 

interaction is accounted for. In the preliminary stage it was also interesting to observe that if a 

more conservative approach was adopted, reducing the safety threshold to 10
-5

, no significant 
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difference would be obtained and the speed limit would only decrease 5 km/h to 290 km/h. 

Furthermore, if the guidelines proposed in EN1991-2 (2003) were adopted, a 40 km/h reduction 

would be obtained and that would be equivalent to setting the safety threshold at 10
-8

 for the 

track ultimate limit state. 

Finally, it is also interesting to compare the sample sizes required to accurately estimate the 

probability of failure due to track instability for the different methodologies that have been 

applied and to notice the efficiency evolution as new approaches have been introduced. It is 

worth noticing that at an initial stage 100,000 Monte Carlo simulation were performed and after 

analysing the results a minimum of 60,000 simulations were recommended to accurately 

estimate the probability of failure for a single train speed. With the development and 

enhancement of the approach, using the experience acquired in that stage new features were 

introduced to improve efficiency. As a result the analysis of the whole critical speed range 

using the sigmoid approach required 64,000 simulations, slightly larger than the value required 

in the previous stage for a single train speed. The value is even lower if compared to the GPD, 

reaching 48,000 simulations using the MC method. The introduction of the Enhanced 

Simulation approach allowed even larger gains, requiring only 14,000 simulations to accurately 

evaluate the safety of the train-bridge system due to excessive deck vibration, which represents 

over four times less simulations than the initial value required. This demonstrates that the 

obtained results, particularly when using the Enhanced Simulation approach, are extremely 

promising and indicate the feasibility of the application of this type of methodology more 

frequently due to the reasonable computational costs that are required. 
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Chapter 6 

Train running safety assessment 

6.1 Introduction 

This Chapter is dedicated to the assessment of the train running safety. Like in the previous 

one, the methodologies presented and discussed in Chapter 3 are applied in order to estimate the 

probability of failure of the train-bridge system and to establish a speed limit over the bridge in 

order to guarantee the running safety of the trains. 

The several criteria to assess the train running safety have already been discussed in Section 

2.4.4, but due to the modelling constraints (only the vertical wheel-rail interaction is taken into 

consideration and it is assumed that no lateral forces act on the train) in this particular case the 

analysis is limited to the wheel unloading rate. Two different approaches are used: one where the 

train is analysed as a whole and the train-bridge system is considered to be unsafe in case a single 

wheel exceeds the unloading rate threshold; the other one consists on a wheel-by-wheel approach 

which represents more of an exercise to identify the critical wheels from the safety point of view 

[Rocha et al (2016)]. 

An overview of the simulation results is also presented and the type of response is compared 

to that obtained in the analysis of the bridge deck acceleration, discussing the potential 

consequences of the differences that are observed to the safety assessment. 

Finally, in order to assess the train running safety the two most efficient methodologies 

identified in the track stability assessment are used. The results are presented and again both 
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methodologies are compared in terms of efficiency and accuracy to identify advantages and 

drawbacks of each of them and to determine which proves to be the best.  

 

6.2 Safety criterion 

Despite the several existing methods to assess the train running safety (previously discussed 

in Section 2.4.4), in the current dissertation this limit state is assessed through the analysis of the 

wheel unloading coefficients due to the type of models selected and the constraints associated 

with a probabilistic analysis. Two different aspects were analysed: firstly, a global analysis is 

carried out to assess the running safety of the train-bridge system in a realistic perspective, where 

the train is analysed as a whole and the system is considered to be unsafe in the case of a single 

wheel exceeds the safety limit; then, simply as an exercise, a wheel-by-wheel analysis is 

performed and the safety is assessed for each of the train wheels, which enables identifying the 

critical wheels from the safety point of view. 

In the case of the global approach a single value is representative of each simulation and the 

selection of the representative wheel unloading coefficient is done by either choosing the first 

value that exceeds the safety limit or, in cases where this limit is not exceeded, the maximum 

value observed on that simulation. In the wheel-by-wheel approach the representative wheel 

unloading coefficient for each wheel corresponds to the maximum value obtained on each 

simulation. 

In its most usual form the wheel unloading, ηU, is calculated by: 

 

sta

dyn

U
Q

Q
 1  (6.1) 

 

where Qsta is the static load of each wheel and Qdyn is the dynamic wheel load. 

EN14067-6 (2009) limits the unloading to 90% of the static wheel load, corresponding to a 

10% safety margin. Since a stochastic analysis is performed and the variability of the train, the 

track and the bridge is accounted for, no margin was used to assess the train running safety. Thus, 

in this dissertation the limit for the wheel unloading coefficient is 1. Similarly to what has been 
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considered in the analysis of the track stability assessment, the train is considered to run safely 

on the bridge if the estimated probability of failure due to wheel unloading is lower than 10-4, 

which corresponds to a reference value in JCSS (2001). 

 

6.3 Safety assessment – results and discussion 

The safety assessment results are presented and discussed in this section. Initially, an overview 

of the simulation results is presented and discussed. A comparison between the response obtained 

in the train running safety analysis and the track stability analysis is also carried out and the 

influence of the observed differences is analysed and discussed. Next, the assessment of the train 

running safety is performed using the two methods that proved more efficient in the analysis of 

the safety due to track instability: the tail modelling approach using the Generalised Pareto 

Distribution and the Enhanced Simulation procedure. The results obtained for each method are 

presented and analysed. Finally, through the comparison of the results obtained for each method 

a discussion on the efficiency of the methodologies is presented. 

 

6.3.1 Simulation results 

This Section presents some of the simulation results, providing an overview of the obtained 

results for the wheel unloading coefficients. A comparison with the results obtained for the 

analysis of the bridge deck acceleration is also carried out in order to highlight the main observed 

differences and to discuss how these differences affect the safety assessment. 

Similarly to what was done for the bridge deck acceleration, the first results to be presented 

intend to show how the maximum wheel unloading coefficient evolves with the increase of the 

train speed. This is shown in Figure 6.1. Again, the solid black line represents the results for the 

case where all the variables take their mean value whereas the circles correspond to results 

obtained from MC simulation, illustrating the variability of the dynamic response for each of the 

different train speeds analysed.  
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Figure 6.1 – Train speed influence on the maximum wheel unloading rate. 

 

Both the maximum value and the dispersion of the unloading rate show a tendency to increase 

with speed. However, this is a rather complex phenomenon that depends on a large number of 

parameters. It is influenced not only by the dynamic response of the bridge (which is affected by 

both the bridge and track properties) but also by the track irregularities profile. Therefore, 

establishing a trend line did not prove possible, as the wheel unloading coefficient varies 

significantly with the change of the dynamic properties of the bridge and the track irregularities 

profile. However, it can be observed that the track-related variables have more influence on the 

wheel unloading rate than the bridge-related variables. 

In Figure 6.2 the wheel unloading coefficient obtained for each simulation of a sample of 

20,000 Monte Carlo simulations is illustrated under a histogram form, for trains crossing the 

bridge at different speeds. 
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a) v = 405 km/h b) v = 415 km/h 

  
c) v = 425 km/h d) v = 435 km/h 

Figure 6.2 – Wheel unloading coefficients for different train speeds. 

 

The results depicted in Figure 6.2 correspond to a global analysis. While the median values 

do not change significantly with the increase of the train speed, both the mean and standard 

deviation increase with the increase of the speed. The skewness and kurtosis of the distributions 

also show significant variations for different train speeds. However, regardless of the train speed, 

the obtained distribution for the wheel unload coefficient is unimodal unlike what had been 

observed in the analysis of the bridge deck acceleration (due to the resonant effects, as discussed). 

For this reason this analysis provides a new possibility to approach the safety assessment as it 

may be possible to fit a known distribution to the data obtained from the simulations. 

In Figure 6.3 the distribution of the wheel unloading coefficient is represented for several 

wheels of the train crossing the bridge at 425 km/h for a sample of 20,000 Monte Carlo 

simulations. 
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a) Wheel 9 b) Wheel 10 

  
c) Wheel 35 d) Wheel 36 

Figure 6.3 – Wheel unloading coefficient distribution for individual wheels. 

 

The results for the several train wheels regarding the distribution are very similar, as can be 

confirmed by the shape of the curves for each wheel and also by the obtained mean and standard 

deviation. The only differences occur for the upper tail of the distributions, which govern the 

estimation of the probability of failure. This is illustrated in Figure 6.4, where the upper tail of 

the cumulative distribution functions (CDF) obtained for each of the four wheels are represented 

and the differences can be noted. 

Similarly to what was shown for the bridge deck acceleration it is also important to validate 

the results obtained using different simulation techniques to confirm that they are similar. This 

is shown in Figure 6.5 where the maximum wheel unloading coefficients for a sample of 50,000 

Monte Carlo and 30,000 Latin Hypercube simulations for a train speed of 425 km/h are presented. 
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Figure 6.4 – Upper tail of the distributions for the wheel-by-wheel analysis. 

 

  
a) 50,000 MC simulations b) 30,000 LH simulations 

Figure 6.5 – Comparison of the maximum wheel unloading coefficients distribution using different 

simulation techniques. 
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possibility to approach the safety assessment arises as it may be possible to fit a known 

distribution to the data obtained from the simulations. From a visual analysis the fit of a 

lognormal distribution seemed to adequately model the data obtained from the simulations and, 

therefore, was attempted. To assess this possibility tests were carried out in order to confirm that 

the obtained distribution is lognormal. The Chen-Shapiro test and the Shapiro-Wilk test were 
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hypothesis that the wheel unloading coefficient follows a lognormal distribution. For this reason 

both methods used in the previous Section were applied to assess the running safety of trains due 

to wheel unloading. 

Another interesting observation comes from the quantification of the number of times that 

each wheel is identified as the one that displays the maximum wheel unloading. An example of 

the obtained results for train speeds ranging from 405 km/h to 435 km/h is shown in Figure 6.6 

for a sample of 20,000 Monte Carlo simulations. 

 

  
a) v = 405 km/h b) v = 415 km/h 

  
c) v = 425 km/h d) v = 435 km/h 

Figure 6.6 – Identification of the wheel with the highest unloading rate. 

 

Again, a trend could be observed regardless of the train speed. Two peaks can be clearly 

identified: the first is smaller and its centre ranges from wheel 9 to wheel 12; the second peak is 

the main one and is centred between wheel 34 and wheel 36. The wheel that is more often 

identified to be the one with the highest unloading is on the second half of the train, shifting from 

wheel 35 to wheel 34 as the train speed increases. The increase of the train speed also results in 

the reduction of the influence of the second peak. 
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6.3.2 Tail modelling approach 

Having introduce the results for the wheel unloading rate for different train speeds, providing 

an overview of how the wheel unloading rate varies along the length of the train and discussing 

some of the particularities of the safety assessment analysis of the wheel unloading  it is now 

possible to discuss the safety assessment in more detail. The methodologies applied in the 

assessment of the track stability are used again and the first method to be discussed is the tail 

modelling approach. Again, the same two different simulation methods used in the previous 

section are used and the results obtained from them compared and discussed. 

An example of the fit of the GPD to the data obtained from the simulations is shown in Figure 

6.7 for different train speeds using the Monte Carlo simulation. 

 

  

a) v = 405 km/h b) v = 415 km/h 

  

c) v = 425 km/h d) v = 435 km/h 

Figure 6.7 – GPD fit to the upper tail of the wheel unloading coefficient distribution. 

 

The fit to the data is very good and this is confirmed by the obtained R2 index values for the 

several fits performed, which are always above 0.99, regardless of the train speed that is analysed. 

Therefore, the accuracy of the estimates is assured. 
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The results of the estimated probability of failure due to loss of contact between the wheel and 

the rail are summarised in Table 6.1 and include an estimate of the probability of failure (pf) by 

counting the number of failures obtained for both simulation techniques (the results obtained 

using the counting method are merely indicative, as only 50,000 MC simulations and 30,000 LH 

simulation were used and an accurate assessment using this approach would require a 

significantly larger number of simulations). 

 

Table 6.1 – Estimated pf due to wheel unloading using the tail modelling approach ( 10-4). 

Speed (km/h) MC LH GPD-MC GPD-LH 

415 0.40 0.67 0.22 0.57 

420 0.80 2.00 0.58 0.96 

425 1.60 2.00 1.25 1.13 

430 1.80 3.00 1.91 1.83 

435 3.00 4.33 3.02 2.41 

 

The required sample size to accurately assess the probability of failure with respect to the train 

speed for each of the applied simulation methods taking into account the criteria specified in the 

previous section are presented in Table 6.2. 

Analysing the GDP approach in more detail, the results indicate that the combination of the 

GPD with the Monte Carlo simulation is more efficient than the combination with LH. For the 

critical speed range the use of MC resulted in reducing the necessary number of simulations to 

65% of the number required when using LH, which translates into 20,000 simulations less. The 

reason for this difference is mainly due to the fit dependency on the most extreme data points. 

Although the distribution is unimodal the tail is highly irregular. In the particular case of LH 

simulation the most extreme data only tend to appear for samples larger than 7,000 simulations, 

as shown in Figure 6.8. 
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Table 6.2 – Number of simulations required to accurately assess the probability of failure due to wheel 

unloading using the tail modelling approach. 

Speed (km/h) GPD-MC GPD-LH 

415 9000 9000 

420 6000 15000 

425 10000 15000 

430 5000 9000 

435 7000 9000 

 

 

Figure 6.8 – Empirical cumulative distribution functions (CDF) for LH samples with different sizes 

(v = 420 km/h). 

 

This affects the estimated probabilities and, as a consequence, requires larger sample sizes to 

comply with the variation limit that was used to ensure the accuracy of the estimates. 

Additionally, the estimated probability of failure for this simulation method was closer to the 

threshold. This fact also affected the efficiency of the LH method as the estimates were shifting 

from above and below the threshold and to fulfil the stopping criteria more simulations were 

required to accurately estimate the probability of failure. 
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As a merely indicative exercise a wheel-by-wheel safety assessment analysis is performed 

where the running safety is assessed for each of the train wheels. This makes it possible to identify 

the critical wheels from the safety point of view. The results obtained from such an analysis are 

shown in Figure 6.9, where the estimated probability of failure for each of the wheels for a train 

speed of 435 km/h, which corresponds to the first train speed where at least one of the wheels 

exceeds the threshold, is presented. 

 

 

Figure 6.9 – Estimated probability of failure for individual wheels using the GPD approach. 

 

Wheel 12 was identified as the critical one from a safety point of view. However, the wheel 

that turned out to have the highest unloading the most amount of times for this train speed was 

wheel 34. This fact is interesting because it shows that for the safety analysis the shape of the 

upper tail of the distribution (see Figure 6.4), which is highly dependent on the number of cases 

where the safety limit is exceeded, is more important than the number of times a wheel is 

identified as the one that displays the highest unloading, which might often occur for situations 

where the running safety is not at risk. 

Another interesting observation is that for the same wheelset the second wheel tends to show 

a higher probability of failure. This can be explained by the increase of vibration associated to 

the loading of the second axle of the wheelset. 

0 5 10 15 20 25 30 35 40 45 50 55
0

0.2

0.4

0.6

0.8

1

1.2

1.4
x 10

-4

Wheel unloading coefficient

P
f



Train running safety assessment 

6.13 

 

6.3.3 Enhanced Simulation approach 

Similarly to what was done for the track stability safety assessment the Enhanced Simulation 

method is also used. An example of the application of this method for the train speed of 425 km/h 

is illustrated in Figure 6.10, both for the MC and LH scenarios. 

 

 

a) Enhanced Monte Carlo 

 

b) Enhanced Latin Hypercube 
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Figure 6.10 – Assessment of the probability of loss of contact between the wheel and the rail by the ES 

procedure. 

The results of the estimated probability of failure due to loss of contact between the wheel and 

the rail using the ES method are summarised in Table 6.3. 

 

Table 6.3 – Estimated pf due to wheel unloading using the enhanced simulation approach ( 10-4). 

Speed (km/h) MC LH ES-MC (C- ; C+) ES-LH (C- ; C+) 

415 0.40 0.67 0.57 (0.26 ; 1.44) 0.27 (0.08 ; 1.07) 

420 0.80 2.00 1.03 (0.57 ; 2.36) 1.27 (0.82 ; 3.81) 

425 1.60 2.00 1.90 (0.57 ; 5.17) 2.10 (0.98 ; 5.42) 

430 1.80 3.00 2.81 (1.10 ; 6.45) 4.67 (2.78 ; 8.94) 

435 3.00 4.33 4.51 (2.76 ; 11.2) 7.22 (3.71 ; 14.4) 

 

Similarly to what had been shown in the case of the GPD approach the required sample size 

to accurately estimate the probability of failure for each of the applied simulation methods is 

presented in Table 6.4. 

 

Table 6.4 – Number of simulations required to accurately assess the probability of failure due to wheel 

unloading using the enhanced simulation approach. 

Speed (km/h) ES-MC ES-LH 

415 2000 3000 

420 3000 2000 

425 3000 2000 

430 6000 3000 

435 5000 2000 
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When using the ES method a different conclusion is made regarding the most efficient 

simulation method when compared to the GPD approach. The combination with LH turned out 

to be the most efficient method. It is observed that the necessary number of simulations using 

LH simulations was almost 60% lower (corresponding to 7,000 simulations) than in the case of 

MC simulation. Since the response is monotonic the use of LH sampling enabled this efficiency 

increase. This shows that if it is possible to reduce the MC predictions by LH then even further 

benefits can be obtained by applying the ES method.  

 

6.3.4 Efficiency comparison 

As a general comment, there is a good agreement between the estimates provided by the 

different simulation methods. Unlike what had been observed for the track stability analysis, for 

the wheel unloading assessment it can be noticed that the LH simulation tends to lead to slightly 

higher estimates of the probability of failure. 

Compared with the GPD results the Enhanced Simulation procedure proves again to be more 

efficient for both simulation techniques, requiring only nearly 50% of the total number of 

simulations  (18,000 simulations reduction) for the MC and even less, nearly 20% (45,000 

simulations reduction), for the LH. The lower dependency of the most extreme data, which show 

a considerably larger variation and are also less reliable from a statistical point of view, makes 

the enhanced simulation procedure significantly more efficient than the GPD approach. 

Overall, the train running safety assessment can be accurately analysed using only 12,000 

simulations in the critical speed range (415 – 435 km/h) by enhanced LH simulation. The analysis 

shows that in order to ensure the train running safety the speed over the bridge should not exceed 

415 km/h. 

 

6.4 Concluding remarks 

The safety assessment of the train-bridge system due to wheel unloading also enabled drawing 

some very interesting conclusions. First of all, the fact that the critical speed range from a safety 

point of view shows the existence of an unimodal response enables analysing the efficiency and 

accuracy of the proposed methodologies under significantly different conditions than those that 
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had been observed in the previous assessment. Despite of that fact, both methods proved once 

again to be efficient. Since the obtained distribution appeared to follow a lognormal distribution 

attempts were made to model the data using that type of function. However, adequate tests led to 

the rejection of this hypothesis and for this reason only the two most efficient methods identified 

in the previous analysis were applied. 

In terms of the number of simulations required to accurately estimate the safety of the train-

bridge system it could be observed that there are no significant differences. However, and as 

could be expected, since the limit state function is less complex for the scenario involving the 

analysis of the wheel unloading rate, this failure mode required a slightly lower number of 

simulations. 

Since the obtained distribution appeared to follow a lognormal distribution attempts were 

made to model the data using that type of function as this would probably results in a much more 

efficient analysis method. However, adequate tests led to the rejection of this hypothesis and 

prevented the application of such approach. 

It was also observed that although the median values do not change significantly with the 

increase of the train speed, both the skewness and kurtosis of the distributions depend 

significantly on the train speeds. Furthermore, the existence of some dependency between the 

bridge dynamic response and wheel unloading rate was observed. However, the wheel unloading 

is also significantly affected by the track irregularities. Therefore, it can be said that the estimated 

probability of failure depends on a rather complex combination of both the bridge and track 

dynamic properties and the irregularities profile. 

The wheel-by-wheel analysis, which was simply used as an exercise, showed that for the 

safety analysis the shape of the upper tail of the distribution is the most important aspect.  The 

shape of the tail is much more dependent on the number of cases where the safety limit is 

exceeded, rather than the number of times a wheel is identified as the critical one, which might 

often occur for situations where the running safety is not at risk. 

Finally, and comparing the speed limits obtained for the two different failure modes it can be 

observed that the speed limit to guarantee the running safety is significantly higher than that 

obtained when analysing the track stability. Therefore, it can be concluded that when no lateral 

actions are taken into account the safety of the train-bridge system is governed by the deck 

acceleration, which is related to the track stability. 
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Chapter 7 

Conclusions and future developments 

7.1 Conclusions 

This thesis is focused on assessing the safety of short span railway bridges using robust and 

efficient probabilistic methodologies. The main objective of the work was the development of a 

probabilistic methodology that enabled the accurate assessment of the safety of railway traffic 

over short span bridges while accounting for the variability of the parameters that govern the 

dynamic behaviour of the train-bridge system. It was also intended to develop adequate 

numerical models for both the bridge and the train that allowed for an efficient and accurate 

assessment of the dynamic response. Since the variability of several parameters was taken into 

account this work also aimed to identify the parameters that govern the dynamic behaviour of 

this type of bridges and how their intrinsic variability influences the safety of the train-bridge 

system. Finally, since most of the work previously done in this field is of a deterministic nature, 

adopting a probabilistic approach was also identified as important because it would help in the 

understanding of the adequacy of some of the limits defined in the current European standards. 

Chapter 2 was dedicated to the analysis and discussion of the dynamic behaviour of railway 

bridges. An overview of the most significant parameters for the dynamics of railways bridges 

was presented. Special attention is given to resonance, which is a particular problem in the 

dynamics of high-speed railway bridges, due to its significance and importance in the 

behaviour of short to medium span railway bridges. The chapter also includes a review of the 

most common numerical methods to evaluate the dynamic response of bridges subjected to 
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train loading, as the selection of an adequate methodology influences the accuracy of the 

assessment. This review highlights the main advantages and disadvantages of each 

methodology in terms of the relationship between accuracy and computational costs, as this is a 

key factor for the selection of the most appropriate method when performing a probabilistic 

analysis. In the last section of the chapter, the current limit states defined in the European 

standards to ensure the structural and traffic safety in the high-speed railway network are 

presented along with a review of some of the most up to date studies and recommendations 

about this topic. This enables the discussion of possible changes that could be made to the 

current guidelines in future versions, particularly to the vertical bridge deck acceleration limits. 

Since the main objective of this dissertation was to develop an efficient and accurate 

probabilistic methodology to assess the safety of railway bridges while accounting for the 

variability of the parameters that govern their dynamic behaviour of the train-bridge system it 

was fundamental to review the basic concepts of structural reliability. This was presented in 

Chapter 3 along with some of the most common approaches and methodologies used to address 

these problems in Civil Engineering. Based on this review and taking into account the 

complexity of the problem being studied it was concluded that the use of Level III methods is 

the most appropriate approach. Since the response of the train-bridge system is not likely to be 

unimodal due to resonance effects the use of response surface methods is also less attractive 

than the use of simulation techniques. In order to enhance the efficiency of the simulation 

methods they are combined with other techniques in order to reduce the necessary number of 

simulations. The methodologies employed are presented in Section 3.4 and the main 

advantages and drawbacks of each of them are discussed. One of the methods is a tail 

modelling approach based on the extreme value theory that uses adequate functions to model 

the tail of the obtained distribution. The other one is an Enhanced Simulation procedure which 

uses an approximation procedure based on the estimates of the failure probabilities at moderate 

levels for the prediction of the far tail failure probabilities by extrapolation. These techniques 

are combined with two simulation methods, the Monte Carlo and the Latin Hypercube, to 

enhance the efficiency of the assessment. 

To test the efficiency and accuracy of the different methodologies that are proposed they are 

applied to a case study bridge. The selected bridge is a ballasted filler beam structure composed 

by six simply supported spans of 12 m each. The option for this structure relies on the fact that 

this is a very common structural solution for small span bridges that compose the current 
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European high-speed railway network. The case study bridge is presented in detail in 

Chapter 4. The different numerical models used to represent and study the bridge and the train 

are also discussed in detail in this chapter along with a description of the methodology used to 

artificially generate random track irregularity profiles. 

Regarding the numerical modelling of the bridge it was possible to conclude that using a 

track extension of 20 m outside the bridge limits is sufficient to adequately model the dynamic 

behaviour of the train over the structure, as this extension enables the dissipation of all the 

dynamic effects that arise from the introduction of the train in the numerical analysis. 

Additionally, it was also possible to observe that using a two layer track model that accounts 

for the shear behaviour of the ballast layer is sufficient to obtain accurate results of the response 

of the train-bridge system. It is necessary to highlight the importance of accounting for the 

shear behaviour of the ballast layer to accurately assess the dynamic response of the bridge. It 

was observed that the variation from loaded to unloaded track has a small impact on the 

dynamic response. However, when the track-bridge composite effect is neglected significant 

changes can be noted and the dynamic amplification is greatly increased.  

It was also observed that a specific aspect of the case study bridge is the flexibility displayed 

by its bearings. This was particularly important when the train-bridge interaction was taken into 

consideration and significantly affected the dynamic response of the train-bridge system. 

Accounting for the track irregularities led to a significant increase of the wheel-rail contact 

forces. The combination of this increase in the contact forces with the bearing movement, 

associated with the second vibration mode shape of the bridge, results in an important 

amplification of the dynamic response in the quarter span sections. The conclusion is that the 

behaviour of the quarter span sections is mostly controlled by impact forces that tend to grow 

proportionally to the train speed, whereas the mid span section is controlled by resonant effects 

related to the first bending mode of the bridge and therefore is not so significantly affected by 

the presence of track irregularities. This indicates that at least for some specific cases the results 

obtained from a moving loads approach and a train-bridge interaction approach are not directly 

comparable, particularly if the track irregularities are taken into consideration. Moreover, in 

terms of safety assessment these effects changed the critical section from the mid-span to the 

three quarter span section of the bridge with respect to the analysis of the track stability. 

A review of the different train numerical models commonly used in the literature is also 

presented in Chapter 4 and the model identified to be most suitable and adequate to the safety 
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analysis is presented and the reasons for its choice explained. As previously highlighted by 

other authors, this work also confirmed that the main effects of train-bridge interaction can be 

adequately captured using simplified interaction models. The selection of the most appropriate 

model is therefore dependent on the problem being studied and on the type of results to be 

analysed. 

The variability of parameters related to the bridge, the track and the train have been taken 

into account, as well as the existence of track irregularities representing different track 

maintenance levels. All the random variables selected in this dissertation have been presented 

and discussed within Chapter 4. A sensitivity analysis was performed in order to understand the 

influence that each of the basic random variables has on the dynamic behaviour of the train-

bridge system. In terms of dynamic response of the bridge, it was observed that the bridge-

related variables show a significantly greater influence on the dynamic response than the track-

related variables. This is to be expected and it can be shown that the section inertia, the area of 

the ballast layer (which influences the structural mass), the concrete elasticity modulus and the 

vertical stiffness of the bridge bearings are the parameters that most affect the variability of the 

bridge response. 

With respect to the wheel unloading rate the opposite is observed and it could be concluded 

that the wheel unloading is more affected by track-related variables than by the bridge-related 

variables. The stiffness of the rail pads is the variable that exhibits the highest influence on the 

wheel unloading rate. The ballast elasticity modulus, the height of the ballast layer and the 

ballast load distribution angle (which are variables that influence the way that the wheel loads 

are transmitted to the track) are other track-related parameters that show a significant influence 

on the wheel unloading. Regarding the bridge-related variables the neoprene shear modulus, 

which influences the vertical stiffness of the bridge bearings, is the parameter with the highest 

influence on the wheel unloading rate. The concrete elasticity modulus and the variation of 

inertia due to geometric variation of the concrete section (both related with the stiffness of the 

bridge) are other variables with some influence on the wheel unloading. These results indicate 

that the wheel unloading rate is particularly sensitive to variations of the track properties. 

In Chapters 5 and 6 the probabilistic methodologies were applied to the safety assessment of 

the Canelas Bridge analysing the track stability and the train running safety, respectively. 

Regarding the track stability assessment a preliminary analysis was carried out using a moving 

loads approach and taking into consideration only the variability of the bridge parameters. The 
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main objectives of this preliminary analysis were to test the applicability of simulation methods 

to assess the safety of the train-bridge system and to identify the parameters governing the 

dynamic behaviour. With respect to the latter, the results confirmed those obtained in the 

sensitivity analysis, enabling the validation of the conclusions drawn by that analysis. 

Regarding the analyses with the simulation methods, they showed that the initial approach was 

excessively optimistic and that even for the largest sample size scenario of 5,000 Monte Carlo 

simulations the safety could not be accurately assessed. This could be explained by the 

existence of the two distinct types of structural response (resonant and non-resonant behaviour) 

which significantly increased the complexity of the studied problem in the critical speed region. 

The fact that the response is not monotonic also affects the efficiency of the Latin Hypercube 

method, resulting in an increase of the number of required simulations, as was shown in 

subsequent stages of the work. As a result of the insufficient number of extreme points on the 

upper tail of the distribution, it was not possible to adequately estimate the probability of 

failure. This demonstrated that a refinement of the simulation in the interest area was required. 

Taking into account that the safety threshold was set at 10-4 it was decided to carry out 100,000 

Monte Carlo simulations for train speeds ranging from 285 km/h to 300 km/h to accurately 

assess the safety of the train-bridge system. As expected, the increase in the number of 

simulations led to a better representation of the upper extremity of the cumulative distribution 

function and allowed an accurate estimation of the probability of failure. The error analysis of 

the results indicated that a minimum of 60,000 Monte Carlo simulations are recommended. 

However, this number depends on the intended/desired accuracy, so other choices may be valid 

as well.  

The results of the preliminary assessment showed that in order to guarantee the track 

stability the speed over the bridge should be limited to 295 km/h. Another interesting 

observation from the preliminary analysis was the fact that if a more conservative approach was 

adopted, reducing the safety threshold to 10-5, no significant difference would be obtained and 

the speed limit would only decrease 5 km/h to 290 km/h. Finally, a comparison between the 

results obtained when following the guidelines proposed in EN1991-2 (2003) and when 

adopting a probabilistic approach was also carried out. This comparison showed that the use of 

a safety factor of 2 leads to a speed limit which is 40 km/h lower than the limit obtained when 

considering the acceleration limit for the instability of the ballast layer observed in laboratory 

tests, which is equivalent to adopting a safety threshold of 10-8 for the track ultimate limit state. 
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Using the knowledge acquired during the preliminary assessment a more sophisticated and 

complete analysis was carried out in which the train-bridge interaction effects are taken into 

consideration along with the variability of parameters related to the bridge, the track and the 

train, as well as accounting for the existence of track irregularities. The developed probabilistic 

methodologies were applied and additional criteria were defined in order to guarantee the 

accuracy of the results and enhance the efficiency. Overall, these criteria prove to be extremely 

useful to direct the computational effort to the speeds where the safety of the train-bridge 

system is at risk. The success can be confirmed by the analysis of scenarios where the 

probability of failure is one order of magnitude apart from the safety threshold. In these cases a 

reduced number of simulations is required, which results in the identification of the critical 

trains speeds with a reduced computational cost, achieving one of the desired goals. With 

respect to the Enhanced Simulation method, accuracy was the key aspect to control and a 

criterion needed to be established to determine how to manage it. Therefore, the estimated 

probability of failure is accurate enough for a sample size if its value is within the boundaries 

defined by the confidence intervals predicted for the reference samples scenarios (50,000 

simulations for the MC simulation and 30,000 simulations for the LH method). The use of a 

very narrow confidence interval band, based on estimates of significantly larger samples, 

guarantees the robustness and accuracy of the estimated probability of failure. Another 

indicator of the accuracy and robustness of the results is given by the similarity of the estimates 

obtained using different probabilistic methodologies and different simulation methods. 

Regarding the safety assessment, it was possible to conclude that in order to guarantee the 

track stability the train speed over the bridge should be limited to 280 km/h. This corresponds 

to a reduction of 15 km/h from the results obtained from the analysis using the moving loads 

method. The difference is due to the previously explained impact of the introduction of rail 

irregularities in the analysis. 

In terms of efficiency comparison between the several applied methodologies it can be 

concluded that the ES approach is the most efficient. Using the ES procedure resulted in 

reducing the necessary number of simulations to slightly less than 30% (less 34,000 

simulations) for the MC simulation and a little over 50% (less 24,000 simulations) for the LH 

simulation when compared to the GPD approach. The combination of the ES procedure with 

MC simulation was the most efficient method to assess the track stability safety. This shows 

that when the response is not monotonic the efficiency of LH simulation is reduced which is 
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reflected in the increase in the necessary number of simulations when compared to the results 

obtained using MC simulation. Besides being more efficient it is also important to note that the 

ES procedure benefits from another important feature which is that it enables the uncertainties 

of the estimated probability of failure to be quantified. This provides an extra tool to assess the 

quality of the failure estimation and was used to ensure the accuracy and robustness of the 

results. 

It is also worth mentioning the evolution in terms of efficiency of the different 

methodologies that have been applied throughout the work presented in this dissertation. At an 

initial stage 100,000 MC simulations were used to accurately estimate the probability of failure 

for a single train speed. With the introduction of new methodologies and the enhancement of 

the approaches this value gradually decreased. Moreover, it was possible to accurately evaluate 

the safety of the train-bridge system due to excessive deck vibration using only 14,000 

simulations for the critical speed range through the application of the ES procedure combined 

with MC simulation. 

To test the efficiency and applicability of the proposed methodologies to different limit 

states they were also applied to the assessment of the train running safety, which is described in 

Chapter 6. Taking into account the selected numerical model the running safety of trains was 

analysed for the case of loss of contact between the wheel and the rail and it was assumed that 

no lateral forces act on the train. The analysis of the simulation results for the wheel unloading 

coefficient show that unlike what had been observed for the other limit state, the wheel 

unloading rate presents a unimodal distribution. This is particularly relevant as it enables the 

performance of the different methodologies for limit state functions with different degrees of 

complexity to be assessed. 

Two distinct analyses were carried out during the study of the running safety: a global 

analysis, which enabled assessing the safety of the system and defining a speed limit, and a 

wheel-by-wheel analysis, used merely to identify the critical wheel from a safety point of view. 

The global analysis concluded that the train speed must be limited to 415 km/h in order to 

ensure the running safety of the trains over the bridge. It was also observed that although the 

median values do not change significantly with the increase of the train speed, both the 

skewness and kurtosis of the distributions depend significantly on the train speed. Furthermore, 

the existence of some dependency between the bridge dynamic response and wheel unloading 

rate was observed. However, the wheel unloading is also significantly affected by the track 
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irregularities. Therefore, it can be noted that the estimated probability of failure depends on a 

rather complex combination of both the bridge and track dynamic properties and the 

irregularities profile.  

Compared to the results obtained in previous research stages it can also be observed that the 

speed limit to guarantee the running safety is significantly higher than that obtained when 

analysing the track stability. Therefore, it can be concluded that when no lateral actions are 

taken into account the safety of the train-bridge system is governed by the deck acceleration, 

which is related to the track stability. 

Analysing the efficiency of the different probabilistic methodologies and starting with the 

GPD approach it is observed that its combination with Monte Carlo simulation is more efficient 

than the combination with LH. For the critical speed range the use of MC resulted in reducing 

the necessary number of simulations to 65% of the number required when using LH, which 

translates into 20,000 simulations less. This is due to the estimated probability of failure for the 

LH method being very close to the safety threshold for the critical speeds. The estimates were 

shifting from above and below the threshold and to fulfil the stopping criteria more simulations 

were required to accurately estimate the probability of failure which ended up affecting the 

efficiency of the method. 

Regarding the ES method the opposite situation is observed and the combination with LH 

turned out to be the most efficient method. It is observed that the necessary number of 

simulations using LH simulations was almost 60% lower (corresponding to 7,000 simulations) 

than in the case of MC simulation. Since the response is monotonic the use of LH sampling 

enabled this increase in efficiency. This shows that if it is possible to reduce the MC 

predictions by LH then even further benefits can be obtained if the ES method is applied. 

Comparing the two methods, the ES approach proves once again to be the most efficient. 

Compared to the GPD results the ES procedure proves to be more efficient for both simulation 

techniques, requiring only nearly 50% of the total number of simulations  (18,000 simulations 

reduction) for the MC and even less, nearly 20% (45,000 simulations reduction), for the LH. 

The lower dependency of the most extreme data, which show a considerably larger variation 

and are also less reliable from a statistical point of view, makes the enhanced simulation 

procedure significantly more efficient than the GPD approach. 
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The train running safety assessment can be accurately analysed using only 12,000 

simulations in the critical speed range (415 – 435 km/h) by enhanced LH simulation and the 

train speed should be limited to 415 km/h. 

Another extremely interesting analysis can arise from the efficiency comparison for both 

limit states analysed within each of the applied methodologies. Regarding the GPD approach it 

can be noted that its combination with MC simulation proved to be the most efficient method to 

assess both the train running safety and the safety due to track instability. However, for the 

latter failure mode the LH results were significantly influenced by one particular train speed 

where the probability of failure was extremely close to the safety threshold and by the fact that 

response is not monotonic. For this reason this speed required almost 50% of the total number 

of simulations for the analysis of the critical speed range. Overall the results indicate that this 

approach is much more sensitive to the level of irregularity of the tail of the distribution rather 

than the complexity of the limit state function. 

As for the ES procedure the combination with the LH proved to the most efficient approach 

to assess the train running safety, whereas the use of MC simulation proved to be more 

effective for the safety assessment due to track instability. As previously stated, this show that 

in no-monotonic limit state functions the use of LH reduce the efficiency of the ES method.  

Globally, the ES procedure proved to be significantly more efficient than the GPD approach. 

Compared to the GPD procedure the ES required only 32% of the total number of simulation 

(25,000 simulations less) to assess the train running safety and 29% (34,000 simulations less) 

for the assessment of the safety due to track instability. The total number of simulations 

required to accurately assess the safety for each failure mode where 12,000 and 14,000 

simulations, respectively. Comparing the number of simulations required to accurately assess 

the safety of the train-bridge system for each of the limit states analysed, it can be observed that 

the analysis of the track stability requires 16% more simulations (2,000 simulations) than those 

required to analyse the train running safety. These results enable the influence of the limit state 

function on the required number of simulation to be commented on. As it could be expected, 

the more complex the limit state the higher the number of simulations required to assess the 

safety of the train-bridge system. It also became evident that if the response is not monotonic 

the LH affects the efficiency of the ES procedure. Furthermore, it is shown that if the 

computational costs can be reduced through a refined simulation method then the use of the ES 

approach will results in even further benefits.  



Chapter 7  

 

7.10 

7.2 Future developments 

The work presented in this thesis is focused on the development of probabilistic 

methodologies that accurately assess the safety of high-speed trains running on short span 

bridges. However, during the course of this research several other lines of investigation were 

identified as being worthy to study in the future in the author’s opinion. Some of these topics 

are summarised in the following paragraphs: 

a) During the work presented in this thesis the focus was always directed to the analysis of 

different probabilistic methodologies to analyse the safety of the train-bridge system. 

Even though the current dissertation analysed two different limit states with different 

degrees of complexity, the analysis was limited to a single case study. It would be 

interesting to investigate how the proposed methodologies behave when applied to a 

different structure. This would be a further validation of the applicability of the 

methodologies, demonstrate their versatility and confirm their robustness and efficiency. 

b) It would be interesting to apply these methodologies in the assessment of an existing 

structure. One of the options assumed during this dissertation was the fact that it is 

intended to deal with the analysis of a structure during the design stage. This is reflected 

by the large uncertainty of all the parameters related to the structure, the track and even 

the train. In the author’s opinion this line of investigation presents two particularly 

important goals: one is to analyse how reducing the uncertainty in the parameters that 

govern the train-bridge dynamic response (possible if a preliminary study of the structure 

is carried out and some of its material properties are obtained through adequate testing) 

influences the efficiency of the methodologies; the other is the possibility to address one 

of the most pressing Engineering challenges in the near future which is the assessment of 

the capacity of existing structures. This type of probabilistic tool could be extremely 

useful to the management of the existing railway networks and could prove decisive to 

the selection of the most appropriate future intervention on the structure (either 

strengthening or replacement), while reflecting the remaining life of the structure through 

an adequate selection of the admissible probability threshold. The applicability of this 

type of tool is not limited to this sort of analysis and can be extended to fit other purposes 

such as the analysis of the network capacity to be updated for higher train speed or 

heavier traffic. Therefore, the author believes that the application of the proposed 
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methodologies to the assessment of existing structures offers several extremely 

interesting lines of investigation that are worth pursuing in the future. 

c) Another improvement that can be made in the future is the inclusion of lateral interaction 

in the safety assessment analysis. At this stage the simplifications made were required as 

the computational costs associated with 3D analysis are still excessively high. However, 

recent research carried out within the FEUP group by Montenegro (2015), which 

dedicated his research to the development of a complete train-bridge interaction tool, may 

overcome this problem in the near future. The combination of the outputs presented in the 

current thesis with those presented by Montenegro (2015) can enable the probabilistic 

assessment of the safety of the train-bridge system while accounting for a complete train-

bridge interaction. This would offer the possibility to assess the influence that lateral 

forces acting on trains (such as earthquakes, crosswinds or simply centrifugal forces due 

to curves) have on the safety of the train-bridge system and would enable identifying the 

level of force for which the safety of the system starts being governed by the train 

stability instead of being limited by the bridge dynamic behaviour. 

d) Finally, since all the limit states discussed represent ultimate limit states regarding the 

train running safety it would also be interesting to apply the probabilistic methodologies 

in the analysis of serviceability limit states, in particular the passengers riding comfort 

which is of the utmost importance for the train operating companies. Carrying out an 

accurate assessment of the passenger riding comfort requires developing more 

sophisticated models of the train which include modelling the seat and potentially may 

also include modelling the passenger-seat interface and the passenger itself. However, 

since these limit states are characterised by a higher admissible probability threshold they 

required fewer simulations to be analysed, thus enabling the applicability of the 

methodologies proposed in this thesis. This topic may lead to a better understanding of 

the influence of the track quality on the riding comfort and may enable the optimisation 

of the track maintenance programme.  
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