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Abstract  

Many researchers have devoted their time to develop software agents intended for 

strategic games. These agents obtained outstanding results in popular games such as 

Chess in which current agents cannot be consistently beaten by the best human 

players. However, for stochastic games with incomplete information there are still no 

optimal solutions, especially for games with large search spaces, where research is 

limited by current hardware. Poker is a game that is frequently used to measure 

progress in this domain, given its key features: simplicity; large number of decision 

points; hidden cards. Major scientific advances have already been achieved: agents are 

unbeatable in Head’s up Limit Poker. However, in more popular Poker variants, agents 

are still far from perfect. In this thesis Poker is approached in-depth by addressing all 

necessary aspects to create Poker software agents, both in scientific and engineering 

terms. First, new tools for creating and testing agents are shown, namely a tool for 

automatic online playing. Next, advances on abstraction techniques are shown, namely 

a new no-domain specific method. Finally, techniques to enhance game play and 

decision making are analysed and compared. This includes agent architectures based 

on expert knowledge and optimizations in the usage of the current state-of-the-art 

algorithm for game playing (Counterfactual Regret Minimization). All developed 

methodologies were validated on simulated games or real games. Simulations show 

great efficiency improvements on current techniques.  In real games the developed 

agents achieved a good result on the AAAI Annual Computer Poker Competition (2nd 

place in the Kuhn track) and, for the first time reported, they were also profitable in 

real money multiplayer online matches, against human players. 

Keywords: Poker; Game Theory; Opponent Modelling; Simulation; Bot; General Game 

Playing; Game Description Languages. 
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Resumo 

Muitos investigadores dedicam tempo a desenvolver agentes destinados a jogos 

estratégicos. Estes obtiveram excelentes resultados em jogos populares como Xadrez, 

tendo ultrapassando o desempenho de jogadores humanos. No entanto, nos jogos 

estocásticos de informação incompleta não existem soluções ideais, especialmente 

para jogos com grande espaço de pesquisa, devido a limitações de hardware. O póquer 

é atualmente o jogo mais popular para medir os avanços nesta área pois tem regras 

simples, elevado número de pontos de decisão e cartas escondidas. Avanços científicos 

relevantes foram alcançados onde, inclusivamente, foram criados agentes imbatíveis 

na variante Head’s up Limit. No entanto, em variantes mais populares, os agentes 

ainda não são perfeitos. Nesta tese são abordados todos os aspetos essenciais para a 

criação de agentes póquer, tanto em termos científicos como da engenharia da 

solução. Primeiro, foram criadas novas ferramentas para criar e testar agentes, com 

destaque para um programa que permite aos agentes jogarem online. De seguida, são 

abordadas técnicas de abstração, incluindo um novo método independente do 

domínio do jogo. Por fim, demonstram-se técnicas para melhorar a tomada de decisão, 

baseadas em arquiteturas de agentes com base no conhecimento de especialistas e 

otimizações no uso do algoritmo Counterfactual Regret Minimization, abordagem com 

melhores resultados teóricos nesta área atualmente. As metodologias desenvolvidas 

foram validadas via simulação e jogos reais. Nas simulações foi possível observar 

melhoramento da velocidade dos algoritmos. Nos testes em ambiente real, os agentes 

obtiveram bons resultados na competição do AAAI (2º lugar em Kuhn) e nos jogos 

online, demonstrando-se que um agente pode ser rentável a jogar contra humanos. 

Palavras-chave: Póquer; Teoria de Jogos; Modelação de Oponentes; Simulação; 

Agentes Automáticos; Jogos Genéricos; Linguagens de Descrição de Jogos.
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Chapter 1  

Introduction 

This chapter provides an overview of this thesis and all the developed work that led to 

its writing. First, the context and motivation of the work are presented in order to 

justify it. To further emphasize the work’s motivation, the main scientific challenges of 

this kind of work are also listed. Next, the main objectives and contributions of this 

thesis are described. The chapter is finalized by outlining the structure of this thesis.   

1.1 Context 

Artificial intelligence (AI) research is a field of study aimed at developing pieces of 

software and/or hardware that can replace or assist human beings in performing tasks 

that require intelligence i.e. tasks that are not methodical and that require expert 

knowledge about on how to deal with unforeseen events. This is contrary to common 

machines (such as appliances1) or software (such as Notepad) whose aim is the 

systematic fulfilment of tasks that are composed by sets of instructions. Software 

applications or machines with intelligence also have the capacity to make decisions 

and control other systematic systems. 

In the beginning, the main goal of AI research was to create a Strong AI: an 

intelligence that imitates brain functions or human behaviour, with the goal of creating 

intellects that match or exceed humans’ one – towards a technological singularity2 [1].  

As years and research went by it was verified that such project was impracticable at 

                                                      
1 Some modern appliances can perform intelligent tasks such as heat controlling.  
2 A time when machines are so smart that they are able to create smarter versions of themselves. 
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the time, so AI researchers focused on solving particular problems, with that being 

known as weak AI. However this paradigm might change in a recent future, as the 

capacity of CPUs progresses at geometric rate [2]. Projects, such as the Blue Brain3 –  

which is an attempt to replicate a synthetic brain by reverse-engineering the 

mammalian brain down to the molecular level [3] –  clearly support the research on 

strong AIs. However, weak AI research has achieved far greater results than strong AI 

research. 

One of the most explored fields within weak AI research is the development of 

game playing software agents4 – autonomous software entities that perform 

intelligent tasks without human intervention. It is important to differentiate game 

playing agents from some types of “intelligent” game strategies. In most games with 

AIs, the software responsible for playing as the computer has access to more 

information than the human, can control human avatars or control the seeds of the 

supposedly random events – this AIs are known as Fake AIs (FAIs). Good examples of 

FAIs can be found in several Texas Hold’em videogames – the FAIs know which cards 

their human opponents have and they shuffle the cards in a controlled manner to 

benefit themselves, especially in harder difficulties.  This thesis focuses on weak AI for 

games, but only on game playing agents rather than fake AIs, since despite the great 

utility of fake AIs, they do not pose any challenge to science and thus not allowing the 

achievement of this research’s goal – the primary goal of researching games is to 

transport the acquired knowledge to solve other, potentially and arguably more 

beneficial, real-life problems.  

1.2 Motivation 

There are many games that pose interesting challenges for AI. Classic games such as 

chess or checkers serve as a test bed to test AI problems in well-defined domains, with 

the goal to adapt the developed expertise to real-life problems. Significant results 

were achieved when developing game playing agents – the most well-known example 

is the Deep Blue computer, which was the first machine to ever defeat a human chess 

                                                      
3 Project website: http://bluebrain.epfl.ch/ 
4 Software agents are also known as the robots  

http://bluebrain.epfl.ch/
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world champion [4]. Nowadays, current chess programs have completely surpassed 

human players thus diminishing down the scientific challenge in this kind of games – 

complete information games (CIG). Moreover, solving games like chess or checkers 

also greatly differs from solving real-file problems, due to the lack of incomplete 

information and stochasticity. As John von Neumann says:  

Real life is not like that. Real life consists of bluffing, of little tactics of 

deception, of asking yourself what is the other man going to think I 

mean to do. And that is what games are about in my theory. 

John von Neumann5 

Therefore, incomplete information games (IIG) provide a much richer domain to 

study AI and adapt the developed methodologies to other domains. One great 

example of such games is Poker. Poker is probably the most popular card betting game 

in the world. It is played by millions around the world and has become a very 

profitable industry6, with massive media coverage7. Given its popularity and the 

amounts of money involved (in the order of billions of dollars each year), Poker also 

became a research subject in other domains such as Economics (the economic impact 

of gambling [5]) or Phycology (studies of addictive behaviour [6], [7]). 

Poker’s key features such as incomplete knowledge, risk management, need for 

opponent modelling and dealing with unreliable information, turned this game into an 

important topic in Computer Science, especially for AI. These features make it possible 

to use this game as an easy tool to measure progress in AI research itself. This is so 

given the fact that in order to assess new approaches one only has to test them against 

the former ones – these tests can be easily performed by running simulations (the 

easiness of simulation is actually one of the main advantages of using games). 

Dedicated Poker research started about 20 years ago [8]. Even before that, the 

well-known scientist John Forbes Nash, also used Poker games to demonstrate his also 

well-known concept of Nash-Equilibrium (NE) [9], which granted him a Nobel Prize and 

is nowadays a fundamental concept in the Game Theory. Poker presents a radically 

                                                      
5 In this statement John von Neumann was referring to Chess. 
6 Growth of Poker industry in the news: http://www.newsweek.com/going-all-online-poker-117991 
7 One good example is a TV channel exclusively dedicated to Poker: The Poker Channel 

http://www.newsweek.com/going-all-online-poker-117991
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different challenge as compared to other games like chess. In chess or checkers, the 

two players are always aware of the full state of the game. This means that it is 

possible, in principle, to understand the opponent’s strategy just by observing the 

movement of the game pieces. On the other hand, a Poker game state is partially 

hidden: each player can only see his/her cards and the community cards (see Chapter 

2). Only at the end of each game the opponents might show their cards (this may not 

even happen in Poker!), being for that reason much more difficult to understand and 

learn how the opponent plays. Poker is also a stochastic game: it admits the element 

of chance, given that the player cards are randomly dealt, which means that the 

decisions must be made thinking in probabilities and mathematical expectation over a 

series of games and not just a particular game (e.g. winning a particular game of Poker 

does not have the same meaning as winning a chess game because, due to random 

events, only several games may assess the player’s skill level). 

1.3 Main Challenges 

Several scientific challenges arise while developing contributions to the Computer 

Poker research domain. While some of these challenges are also present in other 

games, some are Poker-specific. The main challenges are: 

 Incomplete Information – there are always hidden cards in a game of 

Poker. This means that the game state is not fully visible in any stage of 

the game, thus from a player’s point of view there is no fixed solution for 

a given problem. Therefore the solutions must be probabilistic (e.g. 55% 

of the times the agent takes option A and in the other 45% the agent 

takes option B). In sum, the main challenge that arises from incomplete 

information is the selection of actions and the understanding of the 

opponents’ behaviour (since he or she only picks an action, the agent 

does not know the probability of that action). 

 Hand Evaluation – in Poker, players have hands of cards that constitute 

the game’s score. It is difficult to measure how valuable a hand is, since it 

greatly depends on the opponent: even a hand with low hand strength 
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(see Chapter 2) can be very powerful against a weak opponent by, for 

instance, bluffing him or her. Moreover, there are usually8 a large number 

of hand combinations (e.g. 2,598,960 in 5-card Poker and 133,784,560 in 

7-card Poker). 

 Size of the decision tree – the Poker game decision tree is usually very 

large. While there are smaller versions9 of Poker like 4 card Kuhn Poker 

with 12 different decisions points (possible sequence of game events), 

the simplest version of Limit Texas Hold’em has 3.19 × 1014 decisions 

points (considering card isomorphism10) and the simplest version of No-

Limit Texas Hold’em has 9.37 × 1071 decision points which would require 

about 1.241 × 1049 yottabytes of memory to store a full strategy [10].  For 

this kind of game tree it is absolutely necessary to use the concept of 

abstraction – grouping similar decision points. 

 Low number of observations – this is important especially against human 

players. Since in Poker players usually bet their own money, they have 

limited resources. Therefore they have short time to understand how his 

/ her opponents are playing before running out of cash. The size of the 

game discussed above, makes it even harder: the probability of reaching 

the exact same decision point is very low.  

 Partial Results – in order to understand the opponent’s behaviour and its 

driving strategy, it is crucial to know which cards he or she had. However, 

most Poker games do not reach the so-called showdown phase and even 

when they do it is very usual that some participants are missing because 

they already forfeit. Even in a showdown round, there is the possibility to 

muck the cards (see Appendix B for further understanding). 

 No guaranteed optimal solution – this happens in multiplayer Poker 

variants. Even a Nash-Equilibrium (NE) strategy profile does not 

                                                      
8 There are Poker variants that only use a small portion of the deck instead of the full-deck. 
9 These smaller versions are mainly used for research purposes. 
10 Hand isomorphism – There are different hands with exactly the same value (due to the existence of 

card suits).  
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guarantee profit, because if there is any kind of coordination between the 

opponents, an agent with a NE profile may lose. Moreover, despite the 

robustness of NE strategies, they are not optimized against particular 

players.  

 Continuous values in bets / translation – in No-Limit versions of Poker, 

one of the main challenges in abstraction is to select the correct amount 

of chips to bet. This is the reason why decision techniques in No-Limit 

Poker produce much larger trees. 

1.4 Main Goals 

Taking into account the previously presented context, the aim of this thesis is to 

contribute with new methodologies and technologies for the development of Poker 

software agents. Specifically, this research targets the following: 

 Explore how methodologies used on the Computer Poker domain can 

potentially be used or at least hint to the solution of other AI-related 

problems; 

 Create domain validation methodologies and tools for better assessment 

of scientific advances; 

 Present necessary engineering aspects for the construction of Poker 

agents as opposed to a more theoretical approach; 

 Improve the efficiency of current techniques in order to reduce the huge 

amount of resources that they need; 

 Find out how to combine current techniques and technologies to create a 

Poker agent that finally surpasses human players by being profitable in 

online multiplayer matches; 

 Overcome the limitations of current methodologies on multiplayer 

games. 

Considering the identified goals, some research questions were framed: 
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 Is it possible to improve current simulation tools for Poker games? If so, 

will this improvement help on the construction of more competitive 

Poker playing agents? 

 With currently available technology is it already possible for a Poker 

playing software agent to be profitable in online multiplayer matches 

with real money bets? If not, what needs to be improved in software 

agents to do so? 

 In which way can abstraction techniques be improved in order to be 

domain-free and to better represent their corresponding unabstracted 

games? 

 How is it possible to reduce the large number of resources needed by 

current techniques without compromising the final results?  

1.5 Document Structure 

The rest of this thesis can be divided into three different groups: Chapters 2 and 3 are 

the domain presentation chapters; Chapters 4, 5, 6 and 7 describe the contributions of 

this thesis; Chapter 8 concludes this document by summarizing this thesis’s key 

contributions and by indicating pointers for future research questions.  Each of the 

remaining chapters specifically presents: 

 Chapter 2 presents fundamental background material to understand the 

contents of this thesis. This includes an overview about game theory and 

specific concepts about Poker games. Additionally, the main concepts are 

also formalized for the better description of the contributions of this 

thesis through the development Chapters. 

 Chapter 3 presents a literature Review for the state of the art material on 

the Computer Poker domain. This includes a review of simulation 

systems, bot applications and a summary of approaches for the creation 

of game playing agents. 
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 Chapter 4 presents the main contributions of this thesis in the domain of 

simulation, by presenting a new simulation system especially developed 

for researchers. The architecture of the game playing bot software is also 

presented as well as the Poker variant specification language. 

 Chapter 5 presents the contributions in the domain of game abstraction, 

by presenting some techniques whose aim is to reduce large games’ sizes 

in order to make those games tractable by game playing algorithms. Most 

of the presented techniques are Poker specific, but one new domain 

independent is also presented. 

 Chapter 6 presents the contributions in the domain of game playing. This 

includes optimizations in current game playing methodologies, opponent 

modelling techniques, strategy inferring from data and software agent 

architectures. The validation of each contribution is included in this 

chapter. 

 Chapter 7 validates the developed agent architectures by presenting 

practical results of game playing agents’ performance in the AAAI 

scientific competition and in online games. 

 Chapter 8 finalizes this document by providing this thesis’s conclusions 

and giving suggestions on future research work.  
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Chapter 2  

Background 

 

This chapter provides an overview of fundamental notions to understand the main 

concepts of this thesis – game theory and Poker games. The formalization of certain 

definitions (used throughout the remainder of the document) is also included in this 

chapter. 

2.1 Importance of Games 

Research on strategic games was one of the first sub-domains to be studied in artificial 

intelligence. At first, this research focused on the development of software agents 

whose goal was just to win. Later, with the development of Game Theory another goal 

emerged: maximize utility. This is rather different than wining or maximizing profit as 

this definition considers wishes, desires, beliefs or even emotions of the agents [11].  

Utility is the measurement of the agent’s satisfaction towards the completion of 

its goals. In the case of games it is usually associated with the game’s payoff, but not 

necessarily. One good  example can be found in [12], where an agent theoretically 

mimics human behaviour:  it loses on purpose against a specific opponent for whom it 

nurses sympathy. From the utility we can take another important measure of extreme 

importance to game players – the mathematical expectation of an action. This gives us 

how much we get on average from an action by providing its average utility.  
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Many known scientists dedicated their time to develop game playing agents with 

intelligent strategies for games like chess because those games have a clearly defined 

set of rules and goals which allows them to be an easy domain to experiment on [8] – 

the main benefit resides on the fact that it is relatively easy to validate new 

approaches, especially through simulation of game plays. This presents an advantage 

as it a form of low cost validation of new AI approaches as it is possible to accurately 

measure the degree of success of a particular approach just by comparing results of 

many games played against programs based on other approaches or human players – 

the results are usually measured in terms of agent’s average utility growth. This means 

that games have a well-defined metric for measuring the development progress – in 

other words, it is possible to determine with more certainty if one is approaching (or 

not) a more optimal solution to solve a given problem.  

Another advantage of games research is that the knowledge gained from solving 

them can and has been used to solve other AI-related problems. 

These and other features like the fact of games having a “recreational factor” 

and a great impact in the entertainment industry today, make games an extremely 

important challenge for AI.  

2.2 Game Theory 

Game Theory is a branch of applied mathematics that models strategic situations – 

games – in which one’s success depends on one’s opponents choices [13]. This field of 

research was initially introduced by John von Neumann in 1928 [14]. 

Game Theory models problems or situations as a game. A game is any strategic 

situation that can be described by the following features (for more details on these 

features see Section 2.3): 

 Set of players or actors (at least 2); 

 Set of possible moves (decisions) for each player; 

 Set of strategies; 

 Set of rules; 
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 State; 

 Utility (game’s payoff). 

The game players are the entities that participate in the situation. Each one can 

follow its own strategy in a competitive environment with the objective of maximizing 

the utility (score obtained by the player at the end of the game). For instance, in a 

game like Poker, the utility would be the money balance of the player at the end of the 

game. The winning player(s) always have a positive balance, getting for that reason a 

positive utility. In contrast, the losing players get a negative utility. A game also has a 

state that represents the current value of the variables involved in the game. Any 

game move made by any player may alter the game state and the current state may 

terminate the game, depending on the game’s rules. 

2.2.1 Strategies in games  

In a game, the agents’ behaviour is described by their strategies – a function that 

receives as parameter a game state or information set – in the case of incomplete 

information games – and returns an action (or decision). Commonly, in game theory, 

three types of game strategies are considered: 

 Pure Strategy: for each specific game state, the players always make the same 

move; 

 Mixed Strategy: the player assigns a probability to each pure strategy and 

stochastically picks one; 

 Totally Mixed Strategy: a particular type of mixed strategy. It consists of a set 

of pure strategies where each has a strictly positive probability of being chosen. 

It should be noted that in game theory each player has its own strategy set which 

is smaller than the set of all possible strategies for the game in question. 

2.2.2 Extensive-form games 

An extensive-form game is a representation of a game in game theory in a form of a 

game tree. This representation allows for the demonstration of certain games’ 
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important aspects, like the sequencing of players' possible moves or their possible 

choices at every decision point.  

One example of such representation of a simple game (Rock Paper Scissors) can 

be seen in Figure 1. The numbers on the bottom of the game tree represent the 

game’s payoff for each player. The letters R, P and S represent the possible game’s 

actions, respectively actions Rock, Paper and Scissors. 

P

(0, 0) (-1, +1) (+1, -1) (+1, -1) (0, 0) (-1, +1) (-1, +1) (+1, -1) (0, 0)

P P

Player 1 decides

Player 2 decides

 

Figure 1 – Rock Paper Scissors represented in extensive -form 

 

Table 1 – Rock Paper Scissors represented in normal -form 

 
Player 2 

P
la

ye
r 

1
 

 Rock Paper Scissors 

Rock (0, 0) (-1, +1) (+1, -1) 

Paper (+1, -1) (0, 0) (-1, +1) 

Scissors (-1, +1) (+1, -1) (0, 0) 
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2.2.3 Normal-form game representation 

The normal-form game is a matrix representation of the game, which shows the 

players, strategies and the final payoffs. One example of that representation of a 

simple game (Rock Paper Scissors) can be seen in Table 1. Each matrix position 

contains the payoffs for both players considering the chosen actions. 

2.2.4 Nash-equilibrium in Game Theory 

John Forbes Nash is a mathematician who did remarkable research in the area of game 

theory. He introduced the famous Nash-Equilibrium-Theory [9] in 1950. The Nash-

Equilibrium represents a set of mixed strategies in a game where if any player i were to 

change its strategy, it would decrease its overall utility. This change is sole, i.e. it 

assumes that every other player maintains its strategy.  

A set of Nash-equilibrium strategies usually provides a very stable solution, 

especially for developing game playing agents for 2 player games. Usually, a Nash-

Equilibrium is computed by self-play11 algorithms or linear programming which results 

in two strategies (one for player 1 and the other for player 2). Then, the idea is for the 

game playing agent to use player 1’s strategy when it is in the player 1 position, 

otherwise it uses the strategy of player 2. This way, an agent can assure a minimum 

average utility against any opponent. The biggest disadvantage of this method is that it 

is conservative – it does not optimize results against particular players. When the game 

is unsolvable, an approach of this type may even not guarantee positive utility – it only 

warrants that the utility will not go below or above a certain threshold. One example 

of such a game is Kuhn Poker for 3 players (see 2.5.3).  Nash-Equilibrium can be 

formally defined as follows: 

 

∀𝑖, 𝑥𝑖 ∈ 𝑆𝑖, 𝑥𝑖 ≠ 𝑥𝑖
∗: 𝑓𝑖(𝑥𝑖

∗, 𝑥−𝑖
∗ ) ≥ 𝑓𝑖(𝑥𝑖, 𝑥−𝑖

∗ ) 

EQ1 

 

                                                      
11 It is a type of reinforcement learning algorithm for games. It consists of an approach where the game 

playing agent optimizes its strategy over time by playing several games against itself. 
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The notation for EQ1 is defined below: 

(S, f) is a game with n players, where: 

 i   player 

 𝑥𝑖  a mixed strategy profile12 for player i.  

 𝑥𝑖
∗ a mixed strategy profile for player i that is in Nash-Equilibrium. 

 𝑆𝑖 the set of all possible strategy profiles for player i. 

 -i an opponent 

 fi  a function that takes two strategy profiles as arguments and 

returns the average utility for player i in matches between those strategy 

profiles. 

The equation formalizes that if player i deviates from his * profile (Nash-

equilibrium) strategy, its utility will never increase. 

2.2.5 Evolutionary Game Theory 

Evolutionary game theory (EGT) is a branch of game theory that studies games in a 

biological context base on Charles Darwin and Herbert Spender principle: “The Survival 

of the Fittest”. Thus, EGT is based on the idea of natural selection: over time the 

population evolves and during that evolution the stronger individuals will survive and 

the weaker ones will perish. In other words, the population always evolves in order to 

adapt to the environment that it is in, therefore optimizing its processes taking into 

account the available resources. 

Evolutionary game theory was first introduced [15] by John Maynard Smith in 

1973. He found that the fitness of a strategy should not be measured in isolation; it 

should be measured in interaction with other strategies. Thus, EGT analyses the payoff 

of a set of strategies rather than individual payoffs, thus focusing on the dynamics of 

strategy shifting within a population. 

                                                      
12 Strategy profile - it is a tuple of probabilities of a given player performing each game’s possible 

action: the sum of the tuple’s elements is always 1. 
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2.3 Formalizing Extensive-form Games 

An extensive-form game is a generic representation of a sequential decision problem 

in form of a tree where each edge represents a decision and each node represents a 

sequence of performed actions (history). The history is hereinafter denoted by h 

considering that h ∈ H, being H the set of all possible game sequences according to the 

game’s rules. Also consider h’ a history-prefix where h = h’ || x. Therefore, a game G 

can be represented as the following tuple: 

𝐺 = < 𝐻, 𝑍, 𝑁, 𝐴, 𝑎, 𝑢, 𝑝 >|𝑍 ⊂ 𝐻 

𝑤ℎ𝑒𝑟𝑒 

     𝑎: 𝐻 → 𝐴′: 𝐴′ ⊆ 𝐴 

     𝑢: 𝑁 × 𝑍 → ℚ 

     𝑝: 𝐻 → 𝑁 

EQ2 

Z is a subset of H and represents the game’s terminal nodes i.e. the nodes where the 

game ends. N represents the set of players in the game and A is the set of all possible 

actions.  

An extensive-form game also requires the definition of three functions. Function a 

gives the set of all possible actions for a given node (or history) A’ (that is a subset of A) 

where for any particular node z ∈ Z we have that a(z) = ∅ and for any particular node h 

∈ H\Z we have that a(h) ≠ ∅. Function p returns the acting player of any game 

sequence. Finally, function u returns the utility (or score) of a given player at a terminal 

node. 

2.4 Game Classification 

Games can be classified taking into account different aspects such as visibility of the 

game state, duration of the game and the occurrence of random events. Some possible 

game classifications will now be presented.  

It is possible to classify games taking into account the visibility of the game state: 
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 Complete Information Games – when the state of the game is always available 

to every player. Most board games are complete information games. 

 Incomplete Information Games – when the state of the game is hidden or 

partially hidden. Most card games are incomplete information games. 

There are two types of classifications regarding the existence of a playing history: 

 Sequential Games – when the game has sequences of actions and its players 

play in turns (not necessarily rotated). In this kind of games, players can take 

into account past opponents’ decisions because their actions are observable. 

 Simultaneous Games – there is no history, the players decide simultaneously. 

There are two types of classifications regarding cooperation between players: 

 Cooperative Games – the players’ utility could be shared, i.e. each player does 

not depend on its individual success but rather its group’s success. Not to be 

confused with each player’s individual notion of utility. 

 Non Cooperative Games – the utility is individual, i.e. the players are only 

interested on their own individual success. 

Taking into account the duration of the game, it is possibly to classify it as: 

 Finitely Long Game – game that cannot last forever. 

 Infinitely Long Game – game that can last forever – they can loop forever 

between the same states. 

There are two types of games regarding the sum of payoffs at the end: 

 Zero-sum Games – the sum of all players payoff is 0, which means that for a 

player to win a certain amount of points, one or more players must lose the 

same amount. 

 Non-zero-sum Games – the sum of all players payoffs is not 0. One good 

example is the Casino commissions on Poker or Blackjack games, which turn 

Zero-sum games into non-zero sum games. 
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Regarding the occurrence of random events, there are two types of games: 

 Deterministic Games – no occurrence of random events; 

 Stochastic Games – occurrence of random events (e.g. dice roll). 

2.4.1 Examples of games 

In order to better understand the types of games described previously, Table 2 is 

presented – it contains examples of several well-known games and their classification 

(Blank – it has the opposite classification, ✓ – it has that classification, ? – it may have 

both classifications, depending on the version of game’s rules). 

Table 2 – Examples of  games and their  respective classif ications.   

Game Complete Inf. Sequential Cooperative Finite Zero-sum Deterministic 

Poker  ✓  ✓ ?13  

Stock Market  ✓ ?  ✓  

Minesweeper  ✓  ✓   

Backgammon ✓ ✓  ✓ ✓  

Checkers ✓ ✓  ✓ ✓ ✓ 

Go ✓ ✓  ✓ ✓ ✓ 

Chess ✓ ✓  ✓ ✓ ✓ 

Prisoner's 

dilemma 
?   ✓  ✓ 

Monopoly  ✓ ✓ ✓   

Go-Fish  ✓ ✓    

Football ✓ ✓ ✓ ✓  ✓ 

Diplomacy   ✓  ✓ ✓ 

                                                      
13 Poker is not zero-sum in casinos. 
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2.5 Poker 

“Poker is a generic name for literally hundreds of games, but they all 

fall within a few interrelated types” [16]. 

David Sklansky14 

Poker is a card game in which players bet that their current hand is stronger than 

the hands of their opponents. All bets throughout the game are placed in the pot and, 

at the end of the game, the player with the highest ranked hand wins. Alternatively, it 

is also possible to win the game by forcing the opponents to fold their hands by making 

bets that they are not willing to match. For this reason, since the players do not know 

the cards of the opponents, it is possible to win the game with a hand with lower 

score, by convincing the opponents that one’s hand is the highest ranked.  

2.5.1 Poker Game Classification 

By using the classifications presented in Section 2.4, most Poker games can be 

classified as follows: 

 Incomplete Information: because the player does not know the 

opponents’ cards. 

 Non Cooperative: in Poker there is no cooperation between players. Each 

player wants to maximize his/her profit. Also, cooperation in Poker is 

considered cheating. 

 Finitely Long: a Poker game cannot last forever, because each player has 

a finite amount of cash. Even if players were continuously raising, they 

would eventually run out of money which means that they would be 

forced to go all-in. 

 Zero-sum: the money won by any player is lost by others, so the sum of 

gains and losses is always 0. However, when played in casinos, Poker is no 

longer a zero sum game because the casino is entitled to a percentage of 

the pot. 

                                                      
14 David Sklansky – an well-known and renowned expert in gambling.  



  2 – Background 

 

19 
 

 Stochastic: the cards are randomly dealt to all players. 

 Sequential: in Poker, players play sequentially. Typically the history 

sequences are very large as discussed in [10]. 

2.5.2 Texas Hold’em Poker 

Texas Hold’em is a Poker variation that uses community cards. This variant of Poker 

was chosen because its rules have specific characteristics that allow new developed 

methodologies to be adapted to other Poker variations with reduced effort [17]. 

2.5.2.1 Rules 

At the beginning of every game, two cards are dealt to each player. The dealer player is 

assigned and marked with a dealer button. The dealer position rotates clockwise from 

game to game. After that, the two players to the left of dealer post the blind bets. The 

first player is called small blind, and the other one is called big blind. They respectively 

post half of minimum and the minimum bet. The player that starts the game is the one 

on the left of the big blind. One example of an initial table configuration is shown in 

Figure 2. The dealer is the player at seat F and the small and big blind players are 

respectively the A and B seats. 

 

Figure 2 -  Poker table layout  (from [18])  

The first player to act is the player to the left of the big blind (player C) and the 

next player is the closest one to the left of the current player. Each player can choose 

one of the following actions: 

 Call: match the current highest bet. If it is not necessary to put more money 

in the pot, this action is also known as Check. 
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 Raise: bet higher than the current highest bet. If the player bets its entire 

stack, this action is known as All-In. If no one has bet/raise previously, the 

action is called Bet. 

 Fold: forfeit the hand and thus give up the pot. All the money previously put 

into the pot cannot be recovered by the folding player. 

In order to continue to dispute the pot, a player must either call or raise the 

maximum current bet. In No Limit Texas Hold'em there is no bet limit, therefore the 

value of the bet can go from the minimum bet up to the player’s full bankroll. After all 

the remaining players either called their hands or went all-in, a round is finished. There 

are four betting rounds in Texas Hold'em, where in each round new community cards 

are revealed: 

 Pre-Flop: no community cards; 

 Flop: three community cards are revealed; 

 Turn: the forth community card is revealed; 

 River: the fifth and final community card is revealed. 

After the river, if at least 2 players agree to call the pot, the showdown round 

comes. In the showdown players may show their cards and the one with the best hand 

wins the pot. If two players or more have similar ranked hand, there is a tie and the 

pot is divided. Next, the hand ranks will be discussed. 

2.5.2.2 Hand Ranking 

A poker hand is a set of five cards that identifies the score of a player in Poker. The 

player’s hand is made by combining the player's personal cards with the community 

cards – cards that belong to all players. The set of five cards comprising the pocket and 

community cards that has the highest possible score is the player's hand ranking.  

In Table 3 it is possible to see every possible Poker hand with a description and 

an example of combination, in descending order of score. In case of draw, for hands of 

at least one pair, the winning hand is the one with higher ranked cards that are not 

kickers (see the definition of kicker in Appendix B). If a draw persists, the winner is the 

one that has kickers with higher ranks. 
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Table 3 – Poker Hand Ranks  

Hand Description Hand Example 

Royal Flush: this is the best possible hand in 

standard five-card Poker. Ace, King, Queen, 

Jack and 10, all of the same suit. 
     

Straight Flush: Any five-card sequence in the 

same suit.      

Four of a Kind: Any set with four cards with 

the same rank.      

Full House: Three cards with the same rank 

plus two cards with the same rank.      

Flush: Any set with five cards of the same suit, 

but not in sequence.      

Straight: Five cards in sequence, but with 

different suit.      

Three of a kind: three cards with the same 

rank.      

Two Pair: Two separate pairs, and one kicker 

of different value. The kicker is used to decide 

upon a tie of the same two pairs. 
     

One Pair: Two cards with the same rank and 

three kicker cards.       

High Card: Any hand that does not qualify as 

one of the better hands above. Ranked by top 

card, then the second card and so on. 
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2.5.3 Other versions of Texas Hold’em Poker 

In order to study very large games such as Texas Hold’em Poker, sometimes simplified 

versions of the game are created mainly for research purposes. These versions do not 

allow for testing the scalability of the solutions, but they permit observing the 

algorithms’ behaviour. 

The most popular simplified versions of Texas Hold’em currently used in 

academics are Kuhn Poker and Leduc Hold’em Poker. 

Kuhn Poker is the simplest version of Texas Hold’em. It uses a deck only 

containing 4 cards of the same suit and with different values (e.g. Jack of Spades, 

Queen of Spades, King of Spades and Ace of Spades) and it is played by up to 4 players. 

Each player receives a private card from the deck which remains hidden throughout 

the game to his or her opponents. Players have to put an ante of 1$ and then the game 

starts. Each player can do one of the following actions: 

 Bet – put 1$ on the pot. 

 Pass – don’t put any cash in the pot. If any player has betted before, this 

means that the player that is passing forfeits the game. 

To better show the simplicity of this game, Figure 3 illustrates a partial game 

tree, for one possible configuration of card dealings in Kuhn Poker (player 1 gets a 

Queen and players 2 gets a King). 

For each configuration of card dealings, there are only 4 decision points or 

information sets (see Section 2.5.4.3) in Kuhn Poker. Since there are only 4 possible 

cards, this game only has 16 information sets (see Table 4 for the size of simplified 

Poker games). 

Table 4 – The size (number of information sets)  of s implif ied vers ions of 
Poker 

Number of 

Players 
Kuhn 

Leduc 

Hold’em 

2 16 64 

3 48 192 
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Player 1 decides

Player 2 decides

Stochastic event

P
2 gets K

... ...

(-1, +1)

(-1, +1) (-2, +2)

(+1, -1) (-2, +2)

 

Figure 3 – Partial  game tree for Kunh Poker with 2 players  

Leduc Hold’em is a little bit more complex version of Kuhn Poker. The deck has 

the double number of cards, 4 different values and two suits (e.g. Ace of Spades, Ace 

of Clubs, King of Spades, King of Clubs, Queen of Spades, Queen of Clubs, Jack of 

Spades and Jack of Clubs). The main difference is the existence of another betting 

round, which shows up a community card (which allows players to get the rank pair). 
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The number of information sets per round is still 4, so there are 16 decision points for 

each deck card.  

2.5.4 Formalizing Texas Hold’em Poker 

2.5.4.1 Scoring 

At the beginning of a game G (see Section 2.3), each player i ∈ N is given a set of two 

playing cards (private cards) which we will denote as Pi ⊂ D, where D is the deck – set 

of all playing cards (usually a regular 52 card deck without Jokers) – and ∀i,j ∈ N: Pi ∩ Pj 

= ∅. The private cards Pi are only visible to player i and may never be unveiled to other 

players (only if the game reaches a showdown15). At certain moments of the game, 

some shared cards are revealed – we will denote S ⊂ D the set of shared cards and Sr ⊆ 

S the set of visible shared cards at round r ∈ {preflop, flop, turn, river}, where ∀i ∈

N: Sr ∩ Pi = ∅ and ∀𝑟: 𝑆𝑟 ⊂ 𝐷⋀S𝑟 ∩ 𝑃𝑖 = ∅. The shared cards are always visible to all 

players and are used in combination with the private cards to determine a particular 

player’s score. For any No-Limit Poker variant, Spreflop ⊂ Sflop ⊂ Sturn ⊂ Sriver = S (for 

Texas Hold’em Poker: |Spreflop| = 0, |Sflop| = 3, |Sturn| = 4, |Sriver| = 5). 

In Poker, the score of a player i is given by the best possible subset of five cards: 

[Pi ∪ S]5 where the score is maximized, being score : [D]5 → ℕ+ a function that returns 

the score of a 5 card set. Therefore, for any remaining pair of players i and j, player i 

wins against player j in the conditions of EQ3. 

𝑚𝑎𝑥 𝑠𝑐𝑜𝑟𝑒([𝑃𝑖 ∪ 𝑆]
5) ≥ 𝑚𝑎𝑥 𝑠𝑐𝑜𝑟𝑒 ([𝑃𝑗 ∪ 𝑆]

5
) 

EQ3 

The score of 5 card sets is divided in ranks (High Card, Pair, Two Pairs, Three of a 

Kind, Straight, Flush, Full House, Four of a Kind and Straight Flush), each of which is 

divided into several sub-ranks. The total number of sub-ranks is 7462, therefore ∀𝑤 ∈

[𝐷]5: 𝑠𝑐𝑜𝑟𝑒(𝑤) ∈ [0;  7461]. 

                                                      
15 Showdown – a game’s terminal node with at least 2 standing players and all bets matched. 
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2.5.4.2 Rules and Utility 

After dealing the cards, the game begins. The game is played in turns that are grouped 

in four Rounds (Pre-Flop, Flop, Turn and River). In each player’s turn, he or she can 

choose one action which may or may not increase the pot value (prize). 

A round ends when all standing players have bet the same amount (but each one 

must act at least once in that round). When the last round finishes, the player with the 

highest ranked set of cards wins the game and collects the pot. Alternatively, it is also 

possible to win the game by inducing opponents to fold by making bets that they are 

not willing to match. Thus, since players’ cards (pocket cards) are hidden, it is possible 

to win the game with a lower score hand. This particular feature of the game’s rules 

makes it difficult to assess a player’s decision. Regardless of the winning situation, the 

condition on EQ4 must always be verified (definition of zero-sum game). 

∀𝑧 ∈ 𝑍:∑ 𝑢(𝑖, 𝑧)
𝑖∈𝑁

= 0 

EQ4 

However, usually (but not only) in online Poker the game is not zero-sum due to 

the casino’s profit margin 𝑒 ∈ [0,1]. Considering e ≠ 0, the real utility of player i in 

node z is usually given by 𝑢(𝑖, 𝑧) × (1 − 𝑒) if u(i, z) is positive and u(i, z) otherwise. In 

order to complete the definition of a Poker game, we define the new game tuple 

based on G as specified in EQ5. 

𝐺𝑃 =

(

 
 
 
 

𝐻, 𝑍,𝑁, A, P, S, 𝑎, p, 𝑢,
𝑠: 𝑁 × 𝐻 → ℚ

≥0

𝑏:𝑁 × 𝐻 → ℚ
≥0

𝑟: 𝐻 → 2𝑅 , |𝑟| > 0
𝑐:𝐻 → ℚ

≥0

𝑣:𝐻 → 2𝑆, |𝑣| ≥ 0 )

 
 
 
 

|

|

𝑍 ⊂ 𝐻 

EQ5 

First, the sets P and S were included and they respectively correspond to the 

private and community card sets (∀𝑖: 𝑃𝑖 ∈ 𝑃). Functions s, b, c, v, and r were added to 

the original definition of G. Function s denotes the amount of remaining cash and b the 

amount of cash betted by a particular player for a given history h, which means that  

𝑠(𝑖, ℎ) + 𝑏(𝑖, ℎ) for any i and h is the amount of cash of player i at the start of the 
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game. Function c returns the value of the current maximum bet. Function v returns the 

visible shared cards for a given history. Finally, r is the function that determines the set 

of remaining players for a given history (it excludes the players that have folded). 

Given these functions, we can determine the utility of a player. The value of the pot in 

ℎ ∈ 𝐻 is ∑ 𝑏(𝑖, ℎ)𝑁
𝑖  then, given Texas Hold’em Poker rules, player i’s utility in a 

terminal node z is given by EQ6. 

𝑢(𝑖, 𝑧) ∈ {−𝑏(𝑖, 𝑧),∑𝑏(𝑗, 𝑧)

𝑁

𝑗

− 𝑏(𝑖, 𝑧)}| 𝑖 ∈ 𝑁 ∧ 𝑧 ∈ 𝑍 

EQ6 

Given these definitions we can also detail the a function, which given a history returns 

the possible betting amounts. The No Limit variant of Texas Hold’em Poker is 

characterized for having no limits in bets – the players can raise up to their remaining 

money (see EQ7), where 0 corresponds to a fold action, the lower limit 

min(𝑠(𝑝(ℎ), ℎ), 𝑐(ℎ) − 𝑏(𝑝(ℎ), ℎ)) to a call and the higher limit 𝑠(𝑝(ℎ), ℎ) to an all-

in. The lower and the upper limit might be equal, if the player doesn’t have enough 

cash to call – in that case, the player goes all-in. 

∀ℎ ∈ 𝐻: 𝑎(ℎ) ∈ [
min(𝑠(𝑝(ℎ), ℎ), 𝑐(ℎ) − 𝑏(𝑝(ℎ), ℎ)) ,

𝑠(𝑝(ℎ), ℎ)
] ∪ {0} ∧ 𝐴 = ℚ≥0 

EQ7 

2.5.4.3 Information sets 

An information set is the name of a decision point in Poker; contrarily to complete 

information games, a player in Poker does not have the full game state information. 

Poker information sets 𝐼𝑖,ℎ = {ℎ, 𝑃𝑖 , 𝑣(ℎ)}|𝐼𝑖,ℎ ∈ 𝐼 are composed of the game’s action 

sequence, the player’s private cards and the visible community cards. Other features 

can be extrapolated from the basic features, such as the Hand Strength measure, later 

described in this thesis. 
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2.6 Summary 

In this chapter this thesis’s domain was presented by clarifying several basic concepts 

about game theory and research in games. The game object of this study – Poker – was 

also introduced by explaining its most important rules and motivation for its research. 

The main Poker variants used in this thesis were also presented, namely Kuhn, Leduc 

and Texas Hold’em Poker.  
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Chapter 3  

Literature Review 

 

This chapter describes the current tools, trends, techniques and approaches into 

building artificial intelligent programs capable of playing Poker. Some brief summaries 

of areas that may be required for the development of this thesis work are also 

presented: Section 3.1 gives a brief overview about what is being done in this thesis 

domain and by whom; Section 3.2 summarizes the current algorithms used by the 

research community. Section 3.3 presents the main agents that were developed until 

today. Section 3.4 presents ways on how to efficiently compute ranks of sets of cards. 

Section 3.5 presents algorithms for computing estimators to aid Poker game playing. 

Sections 3.6 and 3.7 present expert knowledge. Sections 3.8 and 3.9 present the tools 

for respectively simulating games and having agent playing online; finally on Section 

3.10 a brief summary about emotional agents is given. 

3.1 Computer Poker Research 

Research on computer Poker has been active over the past 20 years, which is 

evidenced by the relatively high number of publications in top conferences [19]–[23] 

and journals [17], [24], as well as master and doctoral theses [25]–[27]. However, none 

of these works focused on creating Poker players to match with humans. Besides Darse 

Billings work [25], most of the approaches focused more on the theoretical aspects of 

game-playing, making them only valid on more theoretical scenarios with theoretical 

environments. An exception to this is a recent achievement, where a perfect agent was 
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created for Texas Hold’em Head’s On Limit [24]. However, the described approach is 

(currently) unfeasible for multiplayer no-limit Poker, due to memory and CPU capacity 

constraints.  For this reason there is still a long way to go to create a Poker agent that 

is capable of consistently beating the best human players, especially in multi-player 

environments. 

3.1.1 Research Groups 

The most relevant work in the area was mainly done by research groups exclusively 

dedicated to Computer Poker. These are the most relevant institutions that produce 

relevant research work in the area: 

 Computer Poker Research Group (CPRG) at University Alberta16 – CPRG 

is probably the most active group on computer Poker research in the 

world today. They have produced the first Ph.D. thesis [25] about 

computer Poker, many other master theses with quite relevant advances 

and have published several papers in the top artificial intelligence 

conferences. Most of the research conducted in this group emphasizes on 

game theory applied to Poker. In most editions they achieve medals in 

the Annual Computer Poker competition as well (especially on the Limit 

competitions) [28]. To start exploring this domain, it is very important to 

thoroughly study the work done by this group.  

 Carnegie Mellon University17 – CMU does not have a research group 

exclusively dedicated to Computer Poker. However, some CMU students, 

coordinated by Professor Tuomas Sandholm, developed several winning 

agents at the Annual Computer Poker competition, especially in the No-

Limit competition (they developed several abstraction techniques for no-

limit Poker).  

 Faculdade de Engenharia da Universidade do Porto / LIACC – Research in 

computer Poker started at FEUP around 2008 with two Master theses. 

Like CMU, there is no research group just for Poker. However, several 

                                                      
16 CPRG homepage: http://poker.cs.ualberta.ca 
17 See some CMU Poker papers at http://www.cs.cmu.edu/~sandholm/ 

http://poker.cs.ualberta.ca/
http://www.cs.cmu.edu/~sandholm/
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publications were made during the last years (see Appendix A for 

examples). 

3.1.2 Conferences and competitions 

The most relevant work in the domain of Computer Poker can be found in the 

following conferences. These conferences are top conferences in the area of artificial 

intelligence, with very low acceptance rates (on average < 10%): 

 AAMAS – International Conference on Autonomous Agents and Multi 

Agent Systems 

 AAAI – International Conference on Artificial Intelligence 

 IJCAI – International Joint Conference on Artificial Intelligence 

There is also relevant work in top journals such as: 

 Artificial Intelligence Journal 

 The International Computer Games Association Journal 

 Science 

Most of the work is tested and validated in agent competitions. The most 

relevant competitions are organized by the CPRG: 

 CPRG Annual Poker Bot Competition18 [28] – The Annual Computer 

Poker Competition has run since 2006.  The competition takes place each 

summer at the AAAI or IJCAI Conferences.  The event attracts 

competitors, both academics and hobbyists alike, from countries all over 

the world. The main focus of the competition is on developing a further 

understanding of how poker research can benefit artificial intelligence. 

The competition has four tracks (not all tracks run every year): 

o Limit Texas Hold’em Poker (2 Players) – the goal of this 

competition is to assess agents in game theory applied to large 

and sequential games. 

                                                      
18 Official website: http://www.computerpokercompetition.org/ 

http://www.computerpokercompetition.org/
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o Limit Texas Hold’em Poker (3 Players) – same goal as the 2 player 

competition but with and even larger game and the multi-player 

facet, which makes it hard to use Nash-Equilibrium based 

strategies. Moreover, the existence of a third player greatly 

reduces the strength of the playing hands. 

o No-limit Texas Hold'em Poker (2 Players) – the main challenge of 

this competition is to assess abstraction techniques. Given the fact 

that No-Limit variants of Poker are much larger, abstraction 

techniques are essential to make a good game playing agent. 

o Kuhn Poker (3 Players) – the main challenge of this competition is 

to assess opponent modelling capabilities in the agents. Given 

that this variant of Poker is much smaller than the others (as 

explained in Section 2.5.3), agents must model their opponents to 

maximize their utility. 

 Bot VS Human competition – three competitions between agents and 

very good human players were held. The first competition that opposed 

poker agents and professional players was in 200719. At this competition, 

an agent defeated for the first time a professional Poker player in a group 

of matches in Limit Poker, but lost the series. On the same competition in 

the following year20, the competing agent was able to win by a low 

margin. Finally and more recently in 2015, the competition Brain Vs AI21 

was held. It was the first competition in the No-Limit variant between 

agents and humans. In this competition, humans managed to get more 

cash but it is stated that scientifically it was a tied competition.  

                                                      
19 http://webdocs.cs.ualberta.ca/~games/poker/man-machine/2007/ 
20 http://webdocs.cs.ualberta.ca/~games/poker/man-machine/ 
21 https://www.cs.cmu.edu/brains-vs-ai 

http://webdocs.cs.ualberta.ca/~games/poker/man-machine/2007/
http://webdocs.cs.ualberta.ca/~games/poker/man-machine/
https://www.cs.cmu.edu/brains-vs-ai
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3.2 Current Approaches 

There are several different approaches for building artificial poker players such as 

Heuristic-based, Simulation-based, Pattern Matching-based and Monte Carlo Search 

Tree-based approaches.  

In the following sub-sections, the main approaches to create Poker agents will be 

presented and discussed. 

3.2.1 Rule Based 

A rule based approach is the most direct and simple approach to start developing 

Poker agents. It consists in defining the agent’s behaviour with a set of conditional if-

then-else rules, which means selecting an action for a given information set. 

A hypothetical rule-based approach is shown on Figure 4. In this particular example the 

player will fold with a probability of 20%, call with a probability of 30% and raise with a 

probability of 50%, if the pot value and the hand score is high. 

Action flopAction(Hand hand, GameState state){ 

  if(state.pot > 100 && hand.score > 3000 && 

state.numActivePlayers <= 2){ 

    return new Action(0.20, 0.30, 0.50); 

  } else if... 

}  

Figure 4 – A hypothetical  rule within a rule -based system for Texas Hold’em 
Poker (based on Figure 1 in [29])  

This approach is very intuitive but has several limitations. First, it requires expert 

knowledge. Moreover, even with expert knowledge, manually abstracting very large 

variants of Poker such as Texas Hold’em cannot capture several strategy nuances that 

expert players use with their intuition, which makes it very hard to formalize. 

 

3.2.2 Simulation Based 

Simulation based approaches for Poker game playing consist in generating many 

random possible match outcomes in order to obtain empirically the statistical average 

best response for a given game state – Monte Carlo Simulation. Monte Carlo 
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Simulations rely on simulating the opponents’ behaviour when their playing nodes are 

reached; using random action sampling for every node not only uses a large number of 

iterations but also could produce not very accurate predictions in games of incomplete 

information. In order to speed-up the sampling process, the sampling is biased taking 

into account the opponent profile (pre-established profiles learned from, for instance, 

game logs [30]) . One of such techniques is called selective sampling [31], which 

combines this with reinforcement learning, which goal is to maximize the information 

gain – in this work selective bias was introduced in private cards i.e. instead of just 

considering the opponent’s possible private cards, a weighted table with the frequency 

of those cards is maintained throughout the game and it is filled by all observable 

actions. A similar technique was also applied to the game of Scrabble [32].  

This approach has good practical results in small games, but for very large games 

such as Poker, the lack of information and observations (only about 10% of the hands 

provide information about the cards of the opponents) makes the agent play just 

based on card probabilities, which makes it very predictable. 

One particular case of a simulation based approach is the Monte-Carlo Tree Search 

algorithm (MCTS). The MCTS is a simulation based algorithm that is adapted for 

sequential problems – it estimates the values of moves by sampling them in a game 

tree [33]. It consists of applying Monte Carlo Methods on game trees, by selecting 

random branches of possible outcomes and then selecting the branch that will likely 

produce the best results. The accuracy of this algorithm greatly depends on the 

number of simulations: the more simulations, the better the estimate. 

The algorithm starts by initializing the game tree, creating a single root node with 

the current game state. After that, the following steps (see Figure 5 and Figure 6) are 

repeated a fixed number of times: 

 Selection: consists on selecting the leaf node of the tree to be expanded; 

 Expansion: add child nodes to the selected node; 

 Simulation: game simulation until the leaf node of the game tree is 

reached; 
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 Backpropagation: the final value of the simulation is stored on the nodes 

that define the followed path. 

 

Figure 5 -  The Monte Carlo Tree Search algorithm (from [46]).  

In this work [33] the author created a complete Poker agent that combines 

typical player clusters (previously extracted) to predict card holdings and the MCTS 

algorithm, as explained in Figure 5. The results produced by this algorithm worked well 

against agents with static strategies but event against those, sometimes problems 

related with local maxima occurred which prevented the algorithm to properly model 

the opponents, thus the average winnings were not optimized. Other relevant works 

about the MCTS algorithm and its applications in Poker are [34], [35]. 

 

Figure 6 – Poker Agent Architecture that combines MCTS and Clustering 
(from [46]).  

3.2.3 Nash-Equilibrium 

A Nash Equilibrium, as defined in Section 2.2.4, is an equilibrium point between a set 

of mixed strategies, for the game participants, where each one cannot perform better 
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by changing its strategy, assuming that the opponents maintain their strategies – 

changing the strategy always results in a worse performance [36]. However, this set of 

strategies assumes that the players always make the best possible move, which is not 

the case in Poker, where players are highly fallible. Moreover, a Nash-equilibrium 

strategy cannot be used to maximize the profit against a particular opponent – it may 

guarantee a certain utility but it is not able to exploit the opponent. This is especially 

the case for very weak opponents, where their strategies are very easily exploitable, 

and using a Nash-Equilibrium against them may produce little profit. Nevertheless, the 

use of Nash equilibrium strategies in Poker represents a great achievement, especially 

in heads-up limit poker [24], where the Cepheus agent is taken to be unbeatable. This 

type of agents are immune to one of the biggest problems of building a Poker agent – 

they do not require opponent modelling to work. A summary of the application of 

Nash-Equilibrium profiles to Poker can be found here [37]. 

Nash equilibrium strategy profiles for two-player Poker or other zero-sum 

sequential games can be generated using linear programming techniques (such as 

Simplex [38]) when the game search space is small. However, due to the large number 

of information sets of common Poker variants, this is currently unfeasible. Instead, 

what is usually computed is a Nash-equilibrium over an abstracted version of the game 

(joining information sets into the same bucket) producing therefore a ε-Nash 

Equilibrium, resulting in an optimal set of strategies within the abstraction – see the 

summarized steps in Figure 7. The Nash-equilibrium strategy profile on the smaller 

abstract game has to be translated to the real game. This usually happens when bet 

amounts are abstracted in No-Limit Poker – the translation step will usually return a 

range of possible bet values and a random bet value will be generated. One of the 

problems of this approach is that we are not solving the exact same game, which can 

add noise to the strategies. Moreover these strategies are still exploitable, and they 

could even become predictable, because they highly depend on the used abstraction. 

If the opponent discovers the abstraction that is being used, he or she can easily 

exploit the agent.   
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Figure 7 – Reducing the size of a large game (adapted from [36])  

There are some ways to improve a strategy based on a set of Nash-equilibrium 

strategy profiles: 

 Best Response – the best response is the definition of a counter-strategy for a 

given strategy s – it always makes the statistically best decision against s.  

Computing a best response is computationally expensive, so usually only an 

approximation is calculated (could be done with Monte-Carlo methodologies) 

– this assumes that the strategy s is completely open (we can see the 

information sets and the decision on strategy s) because it is not possible to 

compute a best response online. Computing the best response to a set of 

Nash-equilibrium strategies leads to the exploitability. The reason behind this 

is that a true Nash-Equilibrium strategy has 0 exploitability: this way, we can 

compute how far we are from a perfect Nash-Equilibrium. A formal description 

of this algorithm is presented in [36]. One possible way of using the Best 

Response during online gaming is to use a technique called Frequentist Best 

Response – creation of an opponent model for the abstract game by observing 

the logs on unabstracted data, thus creating the action selection tuples in form 

of frequencies (e.g. Fold 20%, Call 40% and Raise 40%). This assumes having 

the logs with lots of data of the opponent before having matches with him / 

her, which is not feasible. However, experiences with simple agents proved 

that this works, at least in theory [39]. 

 Restricted Nash Response – this method [36] combines the Nash Equilibrium 

and the Frequentist Best Response approaches. It is composed by several 

strategies that are frequentist responses to several types of opponents {sot1, 

sot2, sot3… sotn} and an additional Nash-Equilibrium strategy SE. The reason 
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behind this is that it usually takes a lot of iterations (games) until we find out in 

which profile tplayer we can assume that our opponent is playing with. So, while 

we do not know this, we can use a Nash-Equilibrium strategy (which is more 

conservative) to keep in the game without losing too much cash / profiting less 

cash. As it was written before, besides being a very robust strategy against a 

random opponent, a Nash-Equilibrium strategy does not maximize profit 

against particular sets of opponents. The combination of these two methods 

solves one of the Nash-Equilibrium strategy issues. However there are some 

limitations with this approach. Making models is a very hard task, as it requires 

lots of domain knowledge. In case our models are inaccurate or incomplete 

due to a limited number of observations, this kind of approach could perform 

poorly. 

 Data Biased Response – this approach [40] tries to address some of the 

limitations found in the restricted Nash response approach. The improvement 

was made by including not only the frequencies of actions but also the 

probability of reaching a given information set – if we are playing against the 

opponent with an information set which is not likely to be reached, we can 

switch to another strategy (even to pure abstracted Nash-Equilibrium 

strategy), solving partially the problem of having limited observations. Another 

advantage of this methodology is that it actually does not need full opponent 

profiles but instead opponent profiles per information set.  

The current state of the art algorithm for computing a Nash-Equilibrium (see Section 

3.2.4) for a large sequential game is Counterfactual Regret Minimization (CFR). 

3.2.4 Counterfactual Regret Minimization 

Counterfactual Regret Minimization (CFR) is an algorithm that is used to find approximate 

Nash-Equilibrium solutions for very large sequential games. This algorithm is based on the 

concept of counterfactual regret first defined by Zinkevich et al. in [41]. Regret is a measure 

for decisions – it is the difference between the utility of any action and the utility of the action 

that was actually chosen. To better illustrate this definition, consider the Rock-Paper-Scissors 

game (see extensive-form and normal-form in Figure 1 and Table 1, respectively). Consider 

the follow events: 



Chapter 3 – Literature Review 

 

39 
 

 Player A chooses Rock 

 Player B chooses Paper 

 Player B wins, thus the utility for player A is -1 and for player B it is +1. 

The regrets for player A are: 

 Rock: 0, because it was the action actually selected by player A. 

 Paper:  1, because he lost 1 point, but if he had chosen Paper he would tie and 

therefore not lose any point. 

 Scissors: 2, because he lost 1 point, but if he had chosen Scissors he would win the 

game and would have 2 more points of utility. 

The counterfactual regret is obtained by using the regret matching technique, i.e. by 

normalizing the accumulated positive regret of the simulated games and weight it with the 

probability of the opponent reaching that information set (in this case the probability is equal 

for every information set: 1/3). Therefore, after this first match the counterfactual regret 

would be: 

 Rock: 0 

 Paper: 1/3 

 Scissors: 2/3 

The regret matching technique leads to a best response. CFR is recursive algorithm that 

consists of having two or more agents using the regret matching technique against themselves 

in several consecutive iterations. Since each agent is adapting to its opponent they will both 

converge to an equilibrium point where both of their strategies are in a Nash-Equilibrium. The 

CFR algorithm is only proved to mathematically converge for two player games [42]. The steps 

for performing the CFR algorithm are (see Figure 8 for an example information set): 

 Compute the expected utility of each action 

 Calculate the counterfactual regret for each action 

 Update the accumulated counterfactual regret 

 Compute the new strategy probabilities proportionally to all positive counterfactual 

regret values. 
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Figure 8 – Information set example (adapted from [36])  

One important thing is that the probabilities of all actions should be initialized with an uniform 

probability distribution (in case of Poker (1/3, 1/3, 1/3)). Using a random distribution may 

cause that some important information sets will never be reached. 

There are several variants of CFR built over the years: 

 Monte Carlo CFR – CFR is a recursive algorithm that visits all game nodes. The number 

of game nodes in Poker is huge, therefore the game is abstracted to reduce the 

amount of game nodes. In order to reduce the amount of abstraction needed, this 

technique [43] combines the CFR algorithm with MCTS. Instead of expanding all 

actions nodes, some of the nodes are randomly ignored when calculating the 

counterfactual-regret. Results showed that it usually performed better than the 

regular CFR. There are three heuristics to ignore action nodes: opponent-public chance 

sampling, self-public chance sampling and public chance sampling. In [44] it is 

demonstrated that the Public Chance Sampling version performs better. 

 CFR-BR – in this version of the algorithm, instead of being executed with two agents 

that know the abstracted game, CFR leaves one of the agents unabstracted. For this to 

work, it is assumed that the unabstracted agent uses a best-frequentist response on 

each iteration and we try to find the optimal strategy for the abstracted agent. Like in 

Monte-Carlo CFR, abstraction techniques are also used, leading to a not exact best 

response. With these improvements, the exploitability of the strategies produced by 
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CFR-BR are much lower than the ones produced by regular CFR or Monte-Carlo CFR 

[21]. 

 CFR+ – this version of the algorithm [24] uses a technique called regret matching plus 

which constrains the counterfactual regret computations to be non-negative. This 

version of CFR does not require abstraction, thus leading to the very first solution of 

Limit Texas Hold’em Poker – with parallelisation, 4800 CPUs and 68 days of intensive 

computation.  

3.2.5 PokerLang 

Due to its stochastic nature, Poker players use specific strategies for similar game 

conditions. A strategy is used under certain information sets that are described by 

specific visible game conditions such as the card probabilities (hand strength), player’s 

cash, number of opponents, playing order, among others. These are known as the 

game features – characteristics of the information set that influence player decisions. 

A strategy S can be conceptualized as a set of tactics. A tactic t ∈ T is a mapping 

between a set of information sets and a set of actions: 

𝑡: 𝐼′ → 𝐴′|𝐼′ ⊂ 𝐼 ∧ 𝐴′ ⊂ 𝐴 

EQ8 

I’ and A’ represent two types of game abstraction: information set abstraction 

and action abstraction (respectively). This is done by transforming F into F’, where the 

features of F’ are simplified so that |𝐼′| < |𝐼|. The information set abstraction is 

particularly essential because Poker has so many information sets that it would not be 

possible, with current hardware, to store the corresponding action for each one. For a 

similar reason, action abstraction is also handy; in No-Limit Poker there is a continuous 

interval of possible decisions. Usually this interval is discretized into a fixed number of 

possible decisions: fold, call, intervals of raise values and all-in (betting the remaining 

cash). Using a fixed number of decisions simplifies search-tree strategy based 

algorithms, because it greatly reduces the horizontal and vertical expansion of the 

decision tree by reducing its branching factor. 

In order to specify these concepts, high-level language was created – PokerLang 

– whose syntax and grammar was based on Coach Unilang. Its specification is 



Chapter 3 – Literature Review 

 

42 
 

described in [45]. The generic approach of this language allows for its easy adaptation 

to other domains. 

The language root starts by defining the concept of strategy: a strategy is a set of 

tactics each of which is a tuple composed by an activation condition and a behavior for 

that tactic. The activation condition consists of abstracting decision points or 

information to define I’. They correspond to a set of verifications of the visible game 

features (through evaluators) or predictions about uncertain events (through 

predictors). A tactic’s behaviour is the procedure followed by the player when the 

activation condition is met (the behavior itself has a second layer of verifications that 

can abstract the information set even further). The tactic’s behaviour could be either 

user-defined or language predefined (based on common expert tactics). In the next 

sub-sections we describe PokerLang’s main language concepts. Below the main 

elements of this language are presented, in the BNF notation. 

<STRATEGY>::= {<TACTIC>} 

<TACTIC>::= <ACTIVATION_CONDITION> <TACTIC_BEHAVIOUR> 

<ACTIVATION_CONDITION>::= {<EVALUATOR>} 

<TACTIC_BEHAVIOUR>::= <PREDEFINED_BEHAVIOUR>|<BEHAVIOUR> 

<PREDEFINED_BEHAVIOUR>::= loose_agressive|loose_passive|   

         

tight_agressive|tight_passive 

<BEHAVIOUR>::= {<RULE>} 

<RULE>::= {<EVALUATOR> | <PREDICTOR>} <ACTION> <VALUE> 

<ACTION>::={<PREDEFINED_ACTION><PERC>|   

 <DEFINED_ACTION><PERC>} 

__________________ 

Language: BNF 

To allow the easy creation of Poker-Lang document, an interface was also 

created. This interface is called PokerBuilder and its appearance can be seen on Figure 

9. With a smooth interface and simple features, PokerBuilder is accessible to any user 

that understands the main concepts of poker.  
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Figure 9 – Poker Builder (from [45])  

 

3.2.6 Other approaches 

Several other approaches were used for building poker playing software agents but 

with less scientific significance. However, some of the agents developed with such 

approaches actually got some very good results in practice, often surpassing more 

theoretical approaches (with emphasis for a Case Based Reasoning Bot that got 2nd and 

3rd places at the Computer Poker Competition even against Nash-Equilibrium agents). 

These approaches are: 

 Miximax and miximix– these algorithms were presented on [46], [47] and they 

can be considered to be versions of the minimax algorithm adapted to 

incomplete information games. These algorithms are adaptive: they assume 
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the existence of opponent profiles with online information from the games 

assigning one of the profiles to the current opponents. This will enable to 

better estimate the probabilities of all actions on a given information set thus 

permitting the agent to traverse the game tree with much more accuracy. This 

approach is closer to what real players do, thus having the disadvantage of 

needing a strong starting database in order to properly estimate how the 

opponents will proceed in order to select the best possible action. Another 

problem is the predictability of this kind of approach, after the opponent learns 

which models we know. 

 Teams of Computer Programs – This approach is in reality an aggregation of 

several methodologies – it consists of using several agents at the same time. 

Each agent has strengths and weaknesses. When facing an unknown opponent, 

there is no information regarding which strategy should be used. An 

approximation to a Nash-Equilibrium is not likely to lose, but it is always 

possible and it was already explained that the goal is to earn as much as 

possible. Therefore using heuristics to switch strategy during the game (if one is 

not performing well) is a good option, with very good results demonstrated 

empirically [30], [48]. The agent that is responsible for changing the strategy is 

called coach agent. It observes the conditions of the game and decides which of 

the game playing agents is going to play.  

 Pattern Matching Methods – pattern matching methods consist of creating 

agents that adapt their strategies based on past experience. The idea of these 

methods is to model the game, by defining which game variables represent a 

strategy and then build statistical models of past game data based on those 

variables. For instance, the work described in [18] showed that it is possible to 

build a Poker agent that behaves like a human player, using supervised learning 

methods. The author defined game variables and then used game logs of past 

games between human players to copy their strategies. The agent is also able 

to combine different tactics from different human players. This way, the agent 

does not have a static strategy; therefore it can confuse the opponent 

modelling mechanics of its opponents. Another similar approach [49] used the 

expectation-maximization (EM) algorithm to build cluster models, where a 
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cluster model is a mixture model of players. This approach focused on learning 

quickly instead of learning accurately because if a player wants to win against 

an opponent that it has never seen, it has to learn fast before losing its chips. 

This approach performed well in short term games, outperforming agents 

based on Bayesian methodologies. 

 Case-Based Reasoning (CBR) – is a group of learning algorithms that consist on 

having a set of previously observed cases as a knowledge base to aid in the 

decisions during the game. In the case of Poker it uses classified game logs as a 

knowledge base, with each play classified as being good or bad. When the 

agent has to decide which action it is going to take it searches on the 

knowledge base for the case that more reassembles the current game state. 

The decided action is similar to the one that was taken in the past (if the action 

was good in the past). The most successful applications of CBR to Poker were 

Casey[50], Casper[51] and Sartre[52]. They got very good standings in the ACPC 

competition (including a 3rd place in No-Limit). 

 

3.3 Poker Agents 

The number of poker software agents has been increasing in the last years. Many have 

been created during, and as a part of, academic research but as this research matures 

and becomes widespread, so does the number of individuals tackling and researching 

on this subject.  

This section provides a brief description and resources for the most popular 

poker agents at this time, with emphasis on the ones that participated in the Annual 

Computer Poker Competition or that produced some academic results. There is not 

much info about other potential agents that are being used in Online Poker. The 

limitations imposed by casino clients in their use makes them being hidden to the 

general public. However, there is strong belief among Poker professionals that bots are 

playing everywhere online. 
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Table 5 – Summarized description of some notable Poker Agents  

Year Name Type 
1997 Loki Rule Based 

Loki [53]  was the first agent made by the CPRG. Loki uses a rule based approach which 
was made by game experts. Its decisions were mainly based on profile opponent 
models based on expert knowledge and Effective Hand Strength computation. This 
approach was not very successful in online matches (on IRC) against low/mid-level 
opponents. Also it was not very accurate with opponent modelling and it had a huge 
exploitability. When CFR agents emerged, Loki became quickly deprecated. 

1999 Poki Rule Based 

Poki [46] is the new version of Loki, completely revised.  It was the first agent to 
feature the miximax and miximix techniques. This version had a revised opponent 
modelling system which made it rather successful in IRC matches. It also won the 2008 
ACPC 6 players limit competition – even against CFR agents. This happened because 
currently CFR agents are not yet proficient in multiplayer. In games with lower number 
of players, this agent can be easily beaten by a CFR. Even so, it is still an important 
agent, with potential applicability for online game playing against humans. 

2002 PsOpti/Sparbot Nash-Equilibrium / Linear Prog. 

PsOpti [54] was the first one to use a Nash-Equilibrium based approach with 
abstraction. This agent only played Texas Hold’em Pre-Flop. Even so, tests indicated 
that it outperformed some human players (on IRC) and all agents developed until then. 
However, the winning rates of this agent were low, because it did not possess any 
opponent modelling capabilities. It participated in the ACPC competition in 2006 and 
won the Head’s on Limit competition under the name of Hyperborean 06. Its code was 
also included in the Poker Academy software under the name of Sparbot. 

2003 Vexbot / BRPlayer Adaptive game tree search 

Vexbot [55] uses context tree data structures to store the opponent models. These 
models disregard chance nodes and only store betting sequences. It was the bot that 
firstly stored decisions with abstracted game betting sequences as the key for 
retrieving the probabilities to play on given information sets. This agent was also the 
first to be able to detect weaknesses in a Nash-Equilibrium strategy by exploiting the 
older PsOpti versions. 

2006 Hyperborean CFR / Nash-Equilibrium 

Hyperborean [41] first emerged as a team of poker programs composed by all PsOpti 
agents. It participated and won the first ACPC competition on Limit Poker variant. 
Furthermore, this agent marked the introduction of the CFR algorithm as the state of 
the art algorithm to create Near-Equilibrium agents. 

2007 Polaris CFR / Restricted Nash Response 

Polaris [36] innovated by using the restricted Nash response technique described in 
Section 3.2.3. It was the first game playing agent to have reported wins against some 
of the best human Poker players in the first Human VS Machine competition. 

2007 Hyperborean (No-Limit) CFR / Restricted Nash Response 

Hyperborean (no-limit) [56] was the first bot to apply the CFR and Nash-Equilibrium 
approach to a No-Limit Poker version. This agent was the first that needed to explore 
an extra step required for game abstraction, called translation. The translation was 



Chapter 3 – Literature Review 

 

47 
 

required to correct the betting amounts between the abstracted and the real game 
because in No-Limit Poker the betting amounts are continuous. 

2009 Hyperborean (Ring) Data biased response 

Hyperborean (ring) [42] was the first one based on the CFR algorithm that performed 
well in multiplayer games. Despite the lack of theoretical guarantees that CFR 
produces Nash-Equilibrium strategies for multiplayer games, this agent is the proof 
that the generated strategies are still very robust for game play. 

2015 Cepheus CFR+ 

Cepheus was the first agent [24] to solve the Limit Texas Hold’em variant of Texas 
Hold’em without abstraction. Despite having the problems of still not being able to 
optimize winnings against specific players, it is unbeatable in the long run, because its 
exploitability is almost zero. The main issue is that the used algorithm (CFR+) requires a 
lot of computational power and memory to deal with such large variants of Poker. 

2006 Casey Case Based Reasoning 

Casey [50] is a case based reasoning bot that starts off with an empty knowledge base. 
It starts playing with random decisions and recording all of them. The more it plays the 
more it learns. This version made some erratic assumptions of the game without an 
initial training period. 

2007 Casper Case Based Reasoning 

Casper [51] is another Poker agent that can play in a Full Texas Hold’em Poker table 
which demonstrates the usefulness of these approaches over more theoretical 
approaches when it comes to multiplayer Poker. This agent does not learn from 
scratch like Casey, it uses game logs from playing against Poker Academy to learn new 
cases to make its decisions. This agent did well against the agents at Poker Academy 
and also against humans with fake money, but it did not do as well against humans in 
real money tables with very small stakes. 

2009 / 2010 Sartre Case Based Reasoning 

Sartre [52] is the updated version of Casper but Nash-Equilibrium based agents. In 
2010 it got the 3rd place in the Limit competition of the ACPC and the 2nd place in the 
No-Limit variant. 

2006 / 2007 GS Family Nash-Equilibrium 

GS is bot similar to PsOpti that uses the Game Shrink system. That algorithm, given a 
description of the game tree is capable of generating a Near-Nash Equilibrium solution 
using lossless or lossy abstractions. This agent also combines offline and real-time 
game solving, using offline learning for the Pre-Flop and Flop rounds of the game and 
for the other the solution is computed online.  

2007 / 2015 Tartanian Evolutionary game theory 

Tartanian is a group of game playing agents that innovated by their abstraction 
techniques on No-Limit versions of Poker. It is also the first reported agent that applies 
EGT to Equilibrium solution learning, by breeding and merging different equilibrium 
profiles to speed-up reaching a more stable solution. It placed 2nd at the 2007 ACPC 
competition.  

2010 HoldemML Pattern Matching 

HoldemML is a group of No-Limit Texas Hold’em game playing agents that used 
pattern matching to build their behaviour from game logs [48]. The results 
demonstrated that these agents imitated well their human counterparts but the lack of 
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3.4 Hand Rank Computation 

A Poker hand is a set of five cards that expresses the player’s score. Let’s consider the 

same notation described on Section 2.5.4. Being D the set of all cards in the deck, Pi 

the set of pocket cards of a particular player i and S the set of community cards so that 

P1  P2 …  P𝑁  S ⊆ D, and P𝑖  S for any i is equal to . Thus, the score function is 

defined as 𝑠𝑐: [D]5 → ℕ. For a particular player, the hand ℎ𝑖  is the union of the pocket 

cards and the community cards (P𝑖 ∪ S). Thus, the player’s score is given by the rank 

function, as follows (EQ9): 

𝑅𝑎𝑛𝑘(ℎ𝑖) = max({𝑠𝑐(𝑥): 𝑥 ∈ [P𝑖 ∪ S]
5}) 

EQ9 

The possible hand ranks are from stronger to weaker (see with more detail in 

Section 2.5.4.1): Straight Flush (sequence of same suit), Four of a Kind (4 cards with 

same rank), Full House (Three of a Kind + Pair), Flush (5 cards with same suit), Straight 

(sequence), Three of a Kind (3 cards with same rank), Two Pair, One Pair (2 cards with 

same rank) and Highest Card (not qualifying to other ranks). Examples of each rank are 

demonstrated in Table 3. These ranks are not equally valued. Each rank has sub-ranks 

essentially based on the score of the top cards (e.g.: a pair of aces scores higher than a 

pair of queens). In total, there are 7,462 possible sub-ranks in Texas Hold’em Poker.  

A poker hand rank evaluator is a software program that computes the value of 

the rank function, partially computed by the score function 𝑠: [D]5 → ℕ. In Texas 

Hold’em Poker this evaluator receives as parameter the set of cards Pi + S, 

where |P𝑖| = 2 ∧ |S| ∈ {5,6,7}. The evaluator returns a natural number representing 

the relative value of that hand (typically from 0 to 7,461, where 7,461 corresponds to 

one of the top scored Straight Flushes). The charts in Figure 10 show the relative 

available data makes this approach very hard to be feasible for online play. 

2015 Lucifer Hold’em Iterative CFR / Teams of CFR  

This is an agent that used, for the first reported time, a non-recursive version of the 
CFR algorithm. Despite the lack of training time (1 hour against the average of 2 weeks) 
and computational resources it still could get the 9th place out of 16 at the Head’s on 
Texas Hold’em Limit Competition. Some of the used techniques are described in 
Chapter 6. 



Chapter 3 – Literature Review 

 

49 
 

frequencies of each score for Flop, Turn and River, respectively |S| = 5, |S| = 6 and 

|S| = 7. The horizontal axis represents the hand ranks (ordered) and the vertical axis is 

the relative frequency of that hand. 

 

 

 

Figure 10 – Hand rank distributions in Flop (top),  Turn (middle) and River 
(bottom) 

It is possible to observe a stair step layout in the first chart (|S| = 5). Each stair 

represents a hand name in Table 3. It is also possible to observe large peeks near the 
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end of each chart. They represent the straight hands, because there are plenty of ways 

of combining 5 cards to score a straight, but only 10 possible types of straights (Five 

high, Six High …). 

To compute the probability of success of a given hand – odds – it is usually 

necessary to compute several hand ranks before. For instance, the odds calculation 

methodologies presented in the next section require the computation of hand ranks. 

Programming an algorithm to determine the hand’s rank is a relatively trivial 

task. This can be done using a naïve approach, i.e. using an algorithm that intuitively 

makes sense and that is humanly readable. Naïve hand rank evaluators usually consist 

of the following steps: 

 Sort the hand by card value (deuce has the lowest value and ace has the 

highest); 

 Iterate through the hand, collecting information about ranks and suits of 

the cards; 

 Make specific tests to check, iteratively, if the hand is of a certain rank, 

starting at the higher ranks. 

One example to illustrate this idea can be found in Figure 11. This example does 

not consider the whole set of Texas Hold’em rules. 

Function HandRank(Hand) { 

 Sort(Hand); 

 If IsStraightFlush(Hand) Return 9; 

 If IsIsFourOfAKind(Hand) Return 8;  

 If IsFullHouse(Hand) Return 7; 

 If IsFlush(Hand) Return 6; 

 If IsStraight(Hand) Return 5; 

 If IsThreeOfAKind(Hand) Return 4; 

 If IsTwoPairs(Hand) Return 3; 

 If IsOnePair(Hand) Return 2;  

 Return 1; 

} 

Figure 11 – Hypothetical  Naïve Hand Rank Evaluator  

The problem with naive evaluators resides in their efficiency, which is important 

because the rank evaluator is used by a hand odds evaluator several times per 
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computation. The solution to this problem resides in top-down dynamic programming 

algorithms in order to speed up the rank function. The next subsections will present 

some developed approaches to solve this issue. 

3.4.1 Pokersource Poker-Eval 

Poker-Eval is a C implementation of a Poker Hand rank evaluator [57]. As described at 

the beginning of this section, given a hand, this evaluator returns a natural number 

that represents the hand score. This evaluator uses a naïve approach and, to the best 

of our knowledge, the fastest one.  

The main advantages of this evaluator are its architecture which supports multi 

Poker variants, multi-platform usage, since there are wrappers for other programming 

languages and its low memory usage when compared to look-up table based 

approaches. The main issue of this evaluator is its low level API which makes it hard to 

use by programmers.  

3.4.2 Cactus Kev 

The Cactus Kev's 5-Card Evaluator [58] is a system to compute  5 card hand rank. The 

idea behind its algorithm is the construction of a pre-computed look-up table with 

every possible rank. However, since the number of possible 5 card sequences is 𝑃552
 , 

the size of the table would be about 2.5 GB of memory (considering 8 bytes to store 

the hand and its rank).  

To solve this problem one can group similar hands (same cards, different order), 

resulting in (52
5
) hands, making this approach feasible (the size of the new look-up 

table would be about 20 MB). However, this solution requires sorting the hand cards 

before accessing the look-up table, wasting additional CPU time. To solve this, Cactus 

uses a 32 bit integer representation of the cards (Figure 12). 

 

Figure 12 – Cactus Kev’s card representation 

P (6 bits) represents the value of a card in a form of a prime number, with the 

following values Two – 2; Three – 3; Four – 5; Five – 7; Six – 11; Seven – 13; Eight – 17; 

Nine – 19; Ten – 23; Jack – 29; Queen – 31; King – 37; Ace – 41. The reason behind this 
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decision resides the fact that the multiplication of two prime numbers always 

generates a unique value. This allows for avoiding the step of sorting the hand cards, 

saving CPU time. Therefore, the product of these values can be used to index the 

hands. 

R (4 bits) represents the rank of the card (Two – 0; Three – 1; Four – 2; …). CDHS 

represents the card’s suit mask, where one of the bits is activated (C if the card is 

Clubs, D if the card is diamonds …). The B (13 bits) represents the card’s rank mask, 

where the first bit is activated when the card is a Two, the 2nd bit is activated when the 

card is a Three, and so on. 

Three look up tables are used in this evaluator: flushes (the ranks of all flushes 

and straight flushes hands), unique5 (the ranks of all hands with cards with different 

ranks) and values (the remaining cards). To build the look-up tables, a naïve evaluator 

is required. 

To find the value of a certain hand, the three tables are consulted. Assuming the 

cards of the hand are labelled as C1, C2, C3, C4 and C5, Cactus first verifies if the hand is 

a flush: Index = C1 AND C2 AND C3 AND C4 AND C5 AND 0x0F00 

For the calculated index, the table can either return the value of the hand or 0, if 

the hand is not a flush or a straight flush. The next step is to verify if the hand belongs 

to unique5 by calculating the following way: Index = (C1 OR C2 OR C3 OR C4 OR C5) >> 

16 

Once again, if the value of the table at the calculated index is 0, we have to look 

for the result in another table. The final index uses the described prime number 

strategy. 

𝐼𝑛𝑑𝑒𝑥 =∏(𝐶𝑖 𝐴𝑁𝐷 0𝑥𝐹𝐹)

5

𝑖=1

 

EQ10 

The problem of using this index system is that it would result in a very large look-

up table of size 41 × 41 × 41 × 41 × 37 = 104,553,157. The author of this technique 
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solves this problem by storing the indexes in a binary search tree for fast hand value 

retrieval.  

The main limitation of this hand evaluator is that it can only be used to evaluate 

5-card hands. This means that to use it in Texas Hold'em (which needs to evaluate 7-

card hands in the River round), the function has to evaluate all possible 21 

combinations of 5 cards to determine the hand value. 

3.4.3 Paul Senzee 

Paul Senzee’s hand evaluator is an improved version of Cactus Kev. However, instead 

of using a binary search, Senzee uses a pre-computed perfect hash table.  

A perfect hash table guarantees no collisions in the storage of the hands’ values. 

Also it allows for acquiring the values in constant time instead of the  𝑂(log 𝑛) 

complexity of the binary search. The used hash function was based on [59]. This 

approach produced a time improvement factor of about 2.7 times [60].  

Another advantage of Paul Senzee’s evaluator is that it provides 7 card hand 

evaluation (River round), without having to compute all possible ranks (21) to pick the 

best one. 

Paul Senzee's 7 Card Evaluator also uses a pre computed hand table to quickly 

determine the integer value of a given 7 card hand. For 7 hand cards lookup, Paul 

represents each hand with a 52 bit string, where each bit represents an activated card. 

The total number of activated bits is 7, representing a 7 card hand. 

If unlimited memory was available, it would be possible to index the resulting 

rank value into an enormous and very sparse array with 252 entries of about 9 

petabytes of memory (9 million gigabytes). To solve this problem, Paul Senzee's 

developed a hash function that turns the hand value into an index between 0 and 

roughly 133 million and, by using the Cactus Kev’s evaluator, it is possible to produce a 

266MB lookup table. The author of this approach does not provide information about 

the hash generation code. The main limitation of the 7 card version of Paul’s evaluator 

is that only supports 7 cards (it does not support Flop and Turn rounds). 
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3.4.4 TwoPlusTwo Evaluator 

TwoPlusTwo evaluator is a lookup table Poker hand evaluator that uses a table of 

32,487,834 entries with a total size of ~130 MB [61]. The TwoPlusTwo Evaluator is 

extremely fast and probably the fastest hand evaluator there is. This is because the 

ranks of the hands are stored in a non-sparse array with low redundancy. 

To store the hands, the implementation of this evaluator is based on a direct 

acyclic graph of seven layers, with each edge representing a card value. Therefore, 

each node of this graph represents a card sequence and it links to nodes with the same 

card sequence but with one extra card. In the final layers (5, 6 or 7), the node contains 

the hand value. This representation would require 
52!

(52−𝑛)!
 positions for layer 𝑛. 

However, the author of this method grouped similar hands, since the order and the 

suits (except for flushes) of the cards do not matter for the hand score. Using this 

structure, to get the value of a given hand, only one lookup per card is performed. For 

instance, the following function will compute a 7 card hand value, being HR the lookup 

table. 

Function Rank(Hand) { 

 Return HR[HR[HR[HR[HR[HR[HR[53 + Hand[0]] + 

Hand[1]] + Hand[2]] + Hand[3]] + Hand[4]] + 

Hand[5]] + Hand[6]]  

} 

Figure 13 – Using the TwoPlusTwo evaluator  

There is also an improved version of this evaluator by Jan Varho. Varho method 

splits the entire lockup table into 7 distinct tables, each one of them representing a 

lookup layer. This way, Varho was able to save memory by using short numbers (16 

bits) to store the final layer. The total size of all tables is now about 80 Mb [62].  

3.5 Hand Odds Computation 

Evaluating the odds of a hand consists of measuring its quality at any state of the 

game. This section describes how to compute the probability of a complete hand 

(hands with 5 or more cards) being successful at Showdown (last round of Poker where 

the players show their cards and the winner is decided). By evaluating the hand it is 
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possible to determine the probability of winning or losing the current game. This 

knowledge can be used to inform the agent's decision of either fold the hand or play it, 

as well as to assess the probability of success and the risk that the agent is facing. 

Computing the hand odds may consider the following variables: Pocket cards; Number 

of opponents; Community cards; possible community cards to come and possible 

opponents’ cards. 

The hand evaluation method typically returns a probability. If it returns the lower 

limit, this means that the hand will lose regardless of future events in the game, unless 

the player uses deception to bring opponents to forfeit. Conversely, obtaining the 

upper limit from the hand evaluation function means that victory (or at least draw) is 

mathematically assured – the only way of losing is to unwisely fold the hand. 

3.5.1 Hand Strength 

The hand strength [17] is the probability of the current hand being the best if the game 

reaches a showdown with all remaining players. It consists of enumerating all possible 

hands that an opponent can have and checking if the agent's hand is better than the 

hands in the enumeration. By counting the number of times the player’s hand is found 

to be better, it is possible to measure the quality of the hand. Using Section 2.5.4 

terminology, the hand strength (HS) for a given number of opponents n is given by: 

𝐴ℎ𝑒𝑎𝑑(ℎ𝑖) = |{∀x ∈ [D\P𝑖]
5: sc(x) < Rank(ℎ𝑖) ∧ x ⊇ S}| 

𝑇𝑖𝑒𝑑(ℎ𝑖) = |{∀x ∈ [D\P𝑖]
5: sc(x) = Rank(ℎ𝑖) ∧ x ⊇ S }| 

𝐵𝑒ℎ𝑖𝑛𝑑(ℎ𝑖) = |{∀x ∈ [Δ\P𝑖]
5: sc(x) > Rank(ℎ𝑖h) ∧ x ⊇ S }| 

𝐻𝑆𝑛(ℎ𝑖) = (
𝐴ℎ𝑒𝑎𝑑(ℎ) +

𝑇𝑖𝑒𝑑(ℎ)
2

𝐴ℎ𝑒𝑎𝑑(ℎ) + 𝑇𝑖𝑒𝑑(ℎ) + 𝐵𝑒ℎ𝑖𝑛𝑑(ℎ)
)

𝑛

 

EQ11 

The Hand Strength may be used in any round of the game. However hand 

strength does not address the possibility of the hand improving in subsequent rounds 

of the game, which is possible because in Texas Hold’em new cards are revealed at the 

start of every round (community cards). This issue is addressed by the Hand Potential 

Formula [17] which sums up possible hand strengths in subsequent rounds (described 

in Section 0). 
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In [63], the authors suggest it is possible to combine the hand strength algorithm 

with opponent modelling in order to calculate the hand strength taking into account 

the opponents. For this purpose, the proposed algorithm would use 𝑅𝑒𝑚𝑎𝑖𝑛′ =

[D\P𝑖\ ∂]
5 where ∂ is the set of cards that the opponent probably does not have, given 

that (P𝑖  S  ∂) ≠ D, and (P𝑖  S  ∂) = . This approach was successfully tested in 

Texas Hold’em heads up games. 

In Figure 14 it is possible to observe the heat map for the average hand strength 

against 1, 2, 3 or 4 opponents. For the following heat map, the colours have the 

following meaning (blue – (probability ≥ 90%); purple (probability ≥ 70% and < 90%); 

green (probability ≥ 50% and < 70%); red (probability < 50%). 

 

 
Figure 14 – Heat maps for hand strength against a variable number of 
opponents.  The horizontal  and vertical  axis  represent a card and the ‘heat’  
is  the value of the average hand strength for the pair  of cards.  
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As expected, it is possible to notice that there is a larger concentration of high 

hand strength values next to the higher cards. Moreover, as the number of players 

increase, the area of high hand strength values decreases. This means that players 

should be more careful when playing against a higher number of players, since there is 

a greater probability of one of them having a better scored hand. 

3.5.2 Hand Potential 

Hand potential [17], [63] is an algorithm that calculates the possible evolution of the 

hand quality throughout the game. In Texas Hold’em, when the game reaches the Flop 

round, there are still two more deck cards to be revealed. This means that the current 

hand rank may improve, since the hand is composed of the set of five available cards 

(pocket or community cards) that has the highest rank among all available cards. This is 

an extension of hand strength, but instead of only considering the current available 

cards, it considers the possible community cards that have not been revealed yet. This 

also considers that the opponents' hands might improve as well. Hand potential has 

two components: 

 Positive potential: of all possible games with the current hand, all 

scenarios where the agent is behind but wins at the end. 

 Negative potential: of all possible games with the current hand, all the 

scenarios where the agent is ahead but loses at the end. 

The components of hand potential can be calculated as follows:  

𝑃𝑃𝑂𝑇𝑛(ℎ𝑖) = |{∀x ∈ [D\h𝑖]
5: ∀y ∈ [D\P𝑖]

nround: 𝐻𝑆𝑛(ℎ)

≤ 𝐻𝑆𝑛(𝑥) ∧ 𝐻𝑆𝑛(ℎ + ж(y)) ≥ 𝐻𝑆𝑛(𝑦) ∧ x ⊇ S ∧ y ⊇ S}| 

𝑁𝑃𝑂𝑇𝑛(ℎ𝑖) = |{∀x ∈ [D\h𝑖]
5: ∀y ∈ [D\P𝑖]

nround: 𝐻𝑆𝑛(ℎ)

> 𝐻𝑆𝑛(𝑥) ∧ 𝐻𝑆𝑛(ℎ + ж(y)) < 𝐻𝑆𝑛(𝑦) ∧ x ⊇ Ω ∧ y ⊇ S}| 

EQ12 

given that nround is 2 when calculating for the Flop round and 1 when 

calculating for the Turn round.  We also consider the function ж: [Δ]5..7 → [Δ]3..5 which 

extracts the community cards from any given hand of 5 to 7 cards. The main advantage 
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of this method is the consideration of Texas Hold’em upcoming rounds. In Figure 15, 

the average distribution of the PPOT and the NPOT components is shown, through 

heat maps. It is possible to perceive that there are higher concentrations of high PPOT 

values for closer cards (which are more likely to score a straight). As for the NPOT 

values, the hands with cards with lower ranks have a higher negative potential. 

This presents the same result as Hand Strength in the River round (because the 

hand cannot evolve any further).  Moreover, this method cannot be used in Pre Flop 

rounds, because it is not possible to calculate the hand strength for a two cards hand. 

This might be solved by combining this algorithm with Chen Formula (see at the end of 

this section). Similarly to the hand strength, if the Hand Potential is modified to only 

iterate over cards that the opponents might have [63], it is possible to obtain a better 

estimate of the winning ratio. 

 

 

Figure 15 – Heats maps for PPOT and NPOT against 1 opponent.    

3.5.3 Effective Hand Strength 

The probability of winning can be calculated by combining the Hand Strength with the 

PPOT and NPOT components.  

P𝑛(win) = HS𝑛 × (1 − NPot𝑛) + (1 − HS𝑛) × PPot𝑛  

EQ13 



Chapter 3 – Literature Review 

 

59 
 

By setting the NPOT to 0, it is possible to determine the effective hand strength, 

which is the probability of the hand either being the best or improving to it. 

EHS𝑛 = HS𝑛 + (1 − HS𝑛) × PPot𝑛 

EQ14 

Through the observation of the Effective Hand Strength heat map (Figure 16), 

one can find that it has a similar structure to the simple Hand Strength map.  

 

Figure 16 – Effective hand strength heat map against with 1 opponent.  

 
Figure 17 – Difference between effective hand strength and the hand 
strength.  
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For this reason, the additional computation time needed to calculate the 

effective hand strength might not be worth. To confirm this suspects, we computed 

the 𝐸𝐻𝑆1 − HS1 heat map (Figure 17). In this map, it is possible to observe that the 

EHS method increases the value of all hands with special focus on hands with less hand 

strength. This happens because low scored hands have more potential to grow than 

“already made hands”. 

3.5.4 Incomplete Hands 

In this section the Pre-Flop round of the game is addressed by showing how to 

compute odds when all community cards are still hidden. 

One example is the Chen method. Chen is a fast naïve method developed by the 

professional poker player William Chen [64]. This can determine the relative value of 

the pocket hand. The main advantage of this over hand strength is that it does not 

need to generate permutations of card sets. For this reason, this algorithm is much 

faster than previously presented approaches. 

function Chen(card1, card2){ 

 score = Max(Score(card1), Score(card2)) 

 if(card1.suit == card2.suit)  

  score = score + 2 

 switch(abs(card1.rank-card2.rank)) 

  case 0: score = score * 2 

  case 1: score = score + 1 

  case 2: score = score – 1 

  case 3: score = score – 2 

  case 4: score = score – 4 

  default: score = score – 5 

 return score 

} 

Figure 18 – Chen code implementation example 

The algorithm is composed of two functions. The Score function returns a real 

number that scores a card (10 for Ace, 8 for King, 7 for Queen, 6 for Jack and rank / 2 

for remaining). For instance, any ace card has the highest score possible (10). The Chen 

Formula function returns an integer which represents the value of the hand. Thus, the 

maximum returned value is 20 for a double Ace hand.  
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3.6 Opponent Modeling in Poker 

Opponent modelling consists in classifying the opponents in order to make accurate 

predictions of their future actions in the game. In this section we present some 

techniques based on expert knowledge that are still the baseline approaches for 

abstracting used in very recent agents. 

One of the most used player classification is the Sklansky classification, explained 

in [16]. The classification is based on statistical measures about the opponents and 

they do not usually consider the game results. The measures that can be used to 

classify players are: 

 Voluntary Put In Pot (VPIP) – The percentage of how often a player puts 

money in the pot in Pre-Flop round by calling or raising. It does not count 

blind-bets. 

 Pre-Flop Raise (PFR) - A percentage measure of how often a player raises 

pre-flop compared to calling or folding. 

 Aggression Factor (AF) - The ratio between raises and call actions 

(Number of Raises / Number of Calls). Checks do not count. 

 Flop Continuation Bet (FCB) – The percentage of times where a player 

makes more than one raise on the same Flop. 

 Fold Versus Flop Continuation Bet (FvFCB) – The percentage of times 

that a player folds after doing two or more raises on the same Flop. 

 

On the following tables (adapted from22) we present several player classifications 

based on these measures and ways to explore the opponents that classify on them. 

 

 

                                                      
22 The explanation of Poker Statistics: http://pokerai.org/wiki/index.php/Player_statistics 

http://pokerai.org/wiki/index.php/Player_statistics
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Table 6 -  Tight Aggressive Players.  

Classification Tight Aggressive 

Conditions VPIP: 12-16, PFR: 9-14, AF: >2.0 

Description This type of player will play a few times, but when he does he 

probably has a premium hand. When in game, this type of player plays 

very aggressively (high stakes). 

Exploit This type of players is difficult to exploit because they only play 

premium hands, despite being predictable. However, a good loose 

player cannot take advantage over tight aggressive players. 

 

Table 7 – Nit/Rock players.  

Classification Nit/Rock 

Conditions VPIP: 7-11, PFR: 5-7 

Description This type is even stricter than the tight aggressive player. A rock player 

only plays a very small set of hands, usually above QQ in Pre-Flop and 

Pair after the Flop. 

Exploit Blind stealing. Since this type of players play fewer hands, any flat Call 

on the Pre-flop round should be answered with a Raise. 

 

Table 8 – Loose Aggressive Players.  

Classification Loose Aggressive 

Conditions VPIP: 17-24, PFR: 15-22, AF: 2.0-5.0 

Description They play aggressively a wide range of hands. They usually use 

position and present good opponent modelling capabilities, being able 

to make great profit from getting their opponents to fold their better 

hands, using the concept of fold equity. 

Exploit Good Loose Aggressive players present few weaknesses. Strategies 

that could work against this type of opponents are Hammer or Rope-

a-dope. 
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Table 9 – Manic/Aggro Donk players.  

Classification Maniac/Aggro Donk 

Conditions VPIP: 30-100, PFR: 30-60, AF >4.0 

Description This type of players bet and raises almost any hand and they rarely 

fold. In the long run, these players lose a lot of money. 

Exploit A good tight strategy works against these players. 

 

Table 10 – Cal l ing stat ion player  

Classification Calling Station 

Conditions VPIP: 18-100, PFR: 0-15, AF: <2.0 

Description These players call almost every hand and they only raise (little) when 

they have a very strong hand. 

Exploit Tight strategy. 

 

Table 11 – Short stacker player.  

Classification Short Stacker 

Conditions VPIP: 5-9, PFR: 4-9 

Description This type of player only applies in cash games. These players only 

enter the table with a 20 Big Blind stack and they either fold the hand 

or go All-In (with premium hands) at the Pre-Flop. They often play in 

position and only with hands above TT. 

Exploit These players are predictable. Blind stealing works well against this 

type of players. 

 

Table 12 – Loose passive player.  

Classification Loose Passive 

Conditions VPIP: >30, PFR <15, AF <2.0 

Description Plays a wide range of hands passively. They are similar to calling 

stations but they fold more often. 

Exploit Tight and aggressive strategy. 
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3.7 Poker Books 

There are many books that give advices on how to proficiently play Poker, written by 

known professional players or mathematicians. A Poker book normally gives a set of 

tips about game strategies and how these can be explored, showing common errors of 

each type of player and real examples of plays in important tournaments. Obviously, 

many of these tips are subjective and depend heavily on the game situation, so each 

player should always make his or her own strategy depending on its opponent’s 

behaviour. 

The next sub-sections briefly describe some of these well-known books. Many of 

the concepts present in these books have been constantly used in the development of 

the current state of the art approaches on computer Poker, especially for wisely 

abstracting the game information. The concepts in Section 3.6 were based mainly on 

the work of these authors. 

3.7.1 The Theory of Poker 

The Theory of Poker [16] is one of the most important books about Poker playing ever 

printed. It was written by the professional gambler David Sklansky and the first edition 

came out in 1987 (almost three decades ago!). Although being old, much of the 

content is still a reference for professional poker players and computer Poker 

researchers. 

This book presents a complete overview of Poker theory in all main variants with 

some examples about each concept. Sklansky starts the book by explaining what he 

calls “The Fundamental Theorem of Poker”: 

Every time you play a hand differently from the way you would have 

played it if you could see all your opponents’ cards, they gain; and 

every time you play your hand the same way you would have played 

it if you could see all their cards, they lose. Conversely, every time 

opponents play their hands differently from the way they would have 

if they could see all your cards, you gain; and every time they play 
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their hands the same way they would have played if they could see all 

your cards you lose. 

David Sklansky [16] 

In this theorem, Sklansky is clearly talking about Nash-equilibrium theory. When 

a player does not play its optimal strategy and deviates, he or she makes a mistake, 

therefore losing. For this reason, to win in Poker a player should take advantage of 

situations where the opponents do not use their equilibrium strategy. 

The book also presents concepts about pot odds, the value of deception, getting 

and giving a free card, semi-bluff, raising correctly, check-raising, using position, 

bluffing and techniques for reading hands. 

3.7.2 Hold’em Poker for Advanced Players 

This [65] is another book written by David Sklansky (and Mason Malmuth) with the 

first edition coming out in 1988. This book is considered the continuation of The 

Theory of Poker but focused on the Texas Hold’em variant of Poker. 

This book introduces the Sklansky groups of cards in Texas Hold’em. There are 

169 distinct sets of two card starting hands in Texas Hold’em. In this book, the authors 

divided those sets into eight different groups (see Table 13), according to strength and 

playability. Each group has a description of how to play with those cards. 

Table 13 – Sklansky and Malmuth groups  

Group Hands 

1 AA, AKs, KK, QQ, JJ 

2 AK, AQs, AJs, KQs, TT 

3 AQ, ATs, KJs, QJs, JTs, 99 

4 AJ, KQ, KTs, QTs, J9s, T9s, 98s, 88 

5 A9s...A2s, KJ, QJ, JT, Q9s, T8s, 97s, 87s, 77, 76s, 66 

6 AT, KT, QT, J8s, 86s, 75s, 65s, 55, 54s 

7 K9s...K2s, Q8s, J9, T9, T7s, 98, 64s, 53s, 44, 43s, 33, 22 

8 A9, K9, Q9, J8, J7s, T8, 96s, 87, 85s, 76, 74s, 65, 54, 42s, 32s 
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It is possible to easily compute this table using the professional player Bill Chen’s 

formula (see 3.5.4). This formula is presented in his book “The Mathematics of Poker” 

[64] and it calculates the relative value of the pocket cards.  

3.7.3 Super/System: A Course in Power Poker 

This book [66]  written by Doyle Brunson and other known professional Poker players 

was first published in 1978. This was the book that presented some of the most 

important concepts about strategy in Poker for the first time, even before Sklansky’s 

publications. 

One important characteristic of this book is that the author defends his own 

aggressive playing style over passive playing styles. Solid theoretical proof now proves 

that aggressive play is usually superior to a more conservative style, but until the date 

of publication of this book, there were no previous studies about it [25].   

3.7.4 Gambling Theory and Other Topics 

This book [67] gives a understanding of how gambling works generally, by explaining 

the fluctuation that create illusions among the players about how strong they are in 

the game. It focuses particularly on the mathematics of poker, and how a player can 

take advantage of them to win. 

3.7.5 Every Hand Revealed 

Every Hand Revealed [68] is a more recent book written by Gus Hansen (known by 

Poker players as “the madman”).  This book presents a very practical approach for 

learning Poker, where the author shows all the hands that he played during Aussie 

Millions Poker Tournament in 2007 – one of the most important Poker tournaments 

that he won against 746 competitors. For each hand, Hansen explains the logic behind 

his decision usually with mathematical support.  

Since he is a Loose-Aggressive player, he plays differently than most of the best 

professional Poker players. For this reason, this book presents an interesting approach 

for a different winning strategy. 
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3.8 Poker Simulators 

A Poker Simulator is a software tool that allows for Computer Poker researchers to test 

their agents against other agents or human players, allowing them to predict the 

agents’ success at long term, before putting them in a real life environment. In the 

case of Poker this is especially important, because assessing agents in real-life 

environments can cost a lot of money. 

3.8.1 LIACC’s Texas Hold’em Simulator 

LIACC Texas Hold’em Simulator (Figure 19) is a software capable of simulating Limit or 

No-Limit Texas Hold’em games. It has a client-server architecture where the server 

communicates with clients (agents) through sockets with a predefined TCP 

communication protocol. The software was developed in C/C++ [63]. 

This simulation software supports up to 10 players which could be either human 

or automated agents (it provides a client for games with human players). The 

communication protocol between clients and server is based on the ACPC competition 

protocol (see Section 3.8.3), so the developed agents are ready to compete there. 

Before starting the simulation, some game options can be defined, such as chip 

stacks, blind value, log file name, etc. The created log file stores information about 

bets and how much money each player wins/loses in each game.  

 

Figure 19 – LIACC’s Texas Hold’em Simulator.  
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3.8.2 Poker Academy 

One of the best resources for testing a Poker agent is the simulation software named 

Poker Academy23 (Figure 20). In this simulator it is possible to compete against the 

best agents developed by CPRG at the University of Alberta. It was launched in 

December 2003 as a tool for professional player training. 

Poker Academy provides a Java based API (named the Meerkat API) that allows 

Computer Poker researchers to plug in their own custom bots. This gives an excellent 

environment for bot development as it is possible to easily put a custom bot playing 

against the best bots developed until now, in a quality GUI. The program also keeps 

track of all the hands played and can display comprehensive charts and analysis of the 

player statistics over time. 

One of the problems of Poker Academy is that it is misfit for extensive 

simulations, because of the heavy user interface that results in low simulation speeds. 

Another problem is that it is not possible to start a simulation without a human player, 

which means that in each simulation there will always be an additional ghost player 

that the user must configure to always fold its hands, adulterating for this reason the 

simulation results.  

The project was discontinued because it failed commercially, but then got back in 

2015 as a new training tool called Poker Genius24. 

 

Figure 20 – Poker Academy.  

                                                      
23 Official website: http://www.poker-academy.com/ 
24 Poker Genius Official Website: http://poker-genius.com/ 

http://www.poker-academy.com/
http://poker-genius.com/
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3.8.3 ACPC Poker Server 

The ACPC Poker Server (Figure 22) is the application built for the AAAI Annual 

Computer Poker Competition. It is known for being fast, by simulating thousands of 

games between poker agents in milliseconds (with a personalized timeout that kicks an 

agent out if it is very slow). It is composed by three applications: 

 Client – a sample client (in C) that is provided with the software package 

that gives a good starting point for personalizing agents. 

 Server – it runs the game and deals cards for the several connected 

agents. Its architecture and its communication module (simplistic 

protocol over TCP) allows for any agent written in any language to 

connect to it. 

 Observer – it is possible to implement observer applications that can 

watch the match (however without knowing the hidden cards of each 

player). 

This simulator is very simple but it lacks an easy to use API (all it has is a library written 

in C that is efficient but very hard to use). It has some personalization options. See the 

configuration file example in Figure 21. 

GAMEDEF 

limit 

numPlayers = 3 

numRounds = 1 

blind = 1 1 1 

raiseSize = 1 

firstPlayer = 1 

maxRaises = 1 

numSuits = 1 

numRanks = 4 

numHoleCards = 1 

numBoardCards = 0 

END GAMEDEF 

Figure 21 – ACPC Poker Server  – server configuration  

 

Figure 22 – ACPC Poker Server  – User interface.  
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3.8.4 Open Meerkat Poker Test bed 

Open Meerkat Poker Test bed25 (see Figure 23) is an open source implementation of 

the Meerkat API for running Poker games. It imitates the Poker Academy simulator; 

however it is much faster because it lacks a heavy user interface. 

This application supports Fixed/No-Limit cash games with automatic rebuy. It 

generates bankroll evolution plots, implements seat permutation to reduce game 

variance (replay games with same cards but with different seat order) and generate 

game logs. It also shows an online bankroll evolution chart. The main issue of this 

application is that it still has some bugs in the game’s algorithm, only supports even 

number of players and it does not have built-in playing agents (only dummy agents 

with very basic strategies).  

 

Figure 23 – Open Meerkat Poker Test bed.  

3.8.5 IRC Poker Server 

Even before the real-money online poker sites were popular, several human players 

played with text based scripts for the Internet Relay Chat protocol. At the same time, 

the first agents appeared, which allowed the first matches (without real money) of 

Texas Hold’em Poker. Many versions of the first rule-based Poker agents (see Section 

3.2.1) such as Loki were assessed in matches on those servers. Despite the fact that 

                                                      
25 Available at https://code.google.com/p/opentestbed/ 

https://code.google.com/p/opentestbed/
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matches didn’t use real-money, the players needed to raise their skill level in the 

system to be entitled to play against stronger opponents, which increased the 

challenge factor on those matches. Some software agents were relatively successful 

there but notwithstanding the levelling system, the players never play the same way as 

if they were betting real money (we also do not know how skilled were the players 

there). Both the software and several gigabytes of match logs are still freely available 

for download. 

3.9 Interaction between Poker Agents and Human Players 

Testing Poker agents in simulated environments is very important and can give 

empirical proof of the agent’s potential and theoretical success. Nevertheless, without 

testing agents in a “real life” environment against human players, their skills can never 

be properly validated. There are some tools that provide this type of interaction 

between Poker agents and human players, which will now be presented.  

This kind of applications are called Poker bots. The tools presented in Sections 

3.9.1 and 3.9.2 are already deprecated, since their compatibility with the most 

important Poker rooms is non-existing or with a lot of bugs – however they still work 

on less popular rooms.  

The creation of an application that plays Poker in rooms is very complex task 

because the online casinos usually do not provide an API for it – it requires an 

application that interacts with the casino client through image processing. Moreover, 

these applications require constant updates, because the casino client applications are 

always changing. For this reason there are not much public software that supports 

these functionalities. There is also no research on how to construct this type of 

applications, to the best of the author’s knowledge. 

3.9.1 WinHoldEm 

WinHoldEm26 is a commercial programmable poker bot (see Figure 24) that allows for 

users to connect their agents to real money tables in online casinos. Users that have 

                                                      
26 Available online at http://www.winholdem.net/ 

http://www.winholdem.net/
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software development skills can develop and compile their own bots in standard 

C/C++. 

This type of application is often not permitted in Poker tables, and its usage 

could result in banning. However, WinHoldEm uses an advanced stealth module to 

avoid detection, and it can be used on some important sites like PartyPoker27 without 

significant problems. This tool also allows for automated collusion (teamwork between 

players to get an unfair advantage). 

Despite not being permitted, this type of applications may present the only way 

to test the agent in a real-life environment. There are also some Poker sites that do not 

officially support the use of these tools but they allow them (if no collusion happens 

between bots). 

 

Figure 24 – WinHoldEm graphical  interface  

3.9.2 OpenHoldEm 

OpenHoldEm28 is an open source screen scraping framework and programmable logic 

engine for the online Texas Hold'em poker game. This framework has similar 

functionalities to WinHoldEm but it has the advantage of being free (it is usually known 

as a free WinHoldEm). Unlike WinHoldEm, this tool does not support automated 

collusion. This tool’s main components are: 

 A parameter driven engine for screen scraping and interpreting game 

states (Table Maps) 

 A logic engine for making poker decisions based on the game states 

 A simplistic scripting language for describing how these poker decisions 

should be made (using the Spirit parser library) 

                                                      
27 Official website: https://www.partypoker.com 
28 https://code.google.com/p/openholdembot/ 

https://www.partypoker.com/
https://code.google.com/p/openholdembot/
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 Various interface mechanisms allowing for the creation of decision logic 

via alternative means (C++, Perl, etc.) 

 An engine for applying the poker decision to the casino table (Auto 

player) 

This open-source project was recently archived, however there are video reports 

(on YouTube) from 2014 / 2015 claiming that it still works.  

3.10 Emotions in Poker 

Affective computing is a research domain whose goal is to attempt to create systems 

that can recognize, interpret, process, and or simulate human emotions. It is an 

interdisciplinary field spanning from computer science and psychology [69]. 

In competitive games, if an artificial player is capable of interpreting the 

emotional state of human opponents, it can adapt its strategy, giving a more 

appropriate response: e.g. being more aggressive when the opponent is in a 

depressive state or being more conservative when the opponent seems more serious. 

Since the machines currently do not possess emotions, except when simulated, they 

also do not have the disadvantages associated with them during a game, i.e., they do 

not get tired, frustrated, anxious, etc. Thus, a match between a human player and an 

agent of similar skill level would often result in victory for the agent because it is not 

affected by any emotional state, thus being able to keep its strategy and make no 

mistakes. A very complete review about this issue can be found in [69]. 

One important concept is tilt. Tilt is an emotional state in a game of Poker, based 

on emotional confusion or frustration that affects the player’s behaviour in the game, 

which causes the player to use a less optimal strategy than usual. 

This concept is defined and explored in [70]. The authors state that all gamblers 

experience tilt, and their reactions to tilt and to tilt-inducing situations partly 

determine whether or not gambling becomes a major problem. 

Generally tilt is experienced by big losses of money in Poker. However, not only 

big losses bring a deviation from the original optimal strategy. Big gains can also affect 
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the strategy of a human player because they might stimulate overconfidence, which 

can result in careless play [71]. 

3.11 Summary 

In this chapter the current most relevant methodologies for the creation of Poker 

agents were presented and discussed. Some tools to support agent’s development 

were also presented as well as some expert knowledge notions and information 

sources. This chapter serves as support for the rest of the document and is referenced 

throughout the document when necessary.  
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Chapter 4  

Simulation and Tools 

 

This chapter describes the general architecture of the simulation systems and tools 

developed to support Computer Poker research. Three different systems were 

developed: one simulation system that is used to test Poker agents before entering 

competitions or playing online, which provides several features that facilitate their 

assessment; a Poker description language which allows for describing sets of rules to 

define customized Poker games – allowing future contributions in the domain of 

general game playing and finally a Poker Bot system which allows for software agents 

to play online without human players knowing that they are actually playing against an 

agent, which reduces the psychological impact on humans that participated on some 

of the tests described in Chapter 7. 

4.1 LIACC Poker Simulator 

New Computer Poker developments are usually made through the implementation of 

software agents. A Poker agent is software that replaces a human in the task of playing 

Poker, by taking decisions without any human intervention. Since playing Poker can be 

considered a repetitive task for a human player, the development of software agents 

not only allows progresses in computer science (as explained in Chapter 2) but also has 

potential commercial value to professional Poker players. If they were able to create 

agents in their image, they could be rewarded for their effective know-how of the 
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game and not by their physical endurance or patience. This is true, because most 

lucrative players are usually the ones that play more carefully and more games. 

The challenge in developing agents for incomplete information games resides in 

the fact that the decision that gives maximum utility for a given information set is not 

always ascertainable. In light of this, simulation systems are indispensable for accurate 

assessment of agents’ capabilities. Nevertheless, and as reviewed in Section 3.8, 

current systems do not accommodate the needs of computer poker research since 

they were strictly designed as training tools for human players to improve their skills  

(with the exception of the ACPC simulator). In order to contribute towards the 

improvement of computer poker research, a new version of the LIACC Poker Simulator 

was developed from scratch (it was not based on the one described in Section 3.8.1). 

This simulator considers scientifically unexplored game modes with the purpose 

of providing a more realistic simulation environment, where the agent must play 

carefully to manage its initial resources – the environment follows more closely what 

actually happens in online rooms at popular casinos. Several other features were 

introduced in the simulated environment to speed-up the simulator, namely the 

inclusion of table seat permutation [28], which reduces the variance of the results, 

requiring therefore much less iterations to properly validate an agent.  

An evolutionary simulation feature was also included so as to provide support for 

the improvement of adaptive strategies. The simulator has built-in odds calculation, an 

agent development API, other platform agents and several variants support and an 

agent classifier with realistic game indicators including exploitability estimation.  

Another important aspect of the new system is the consideration of bankroll29 

management – a key concept considered essential by professionals for proper game 

play. The importance of bankroll management can be explained by the gamblers ruin 

theorem [72]. This theorem states that even if players use a strategy that has positive 

expected value30, they will still be very likely to be bankrupt if they raise the stakes31 

when they win but do not lower them when they lose. 

                                                      
29 Bankroll – amount of money that a given player reserved for playing Poker. 
30 Expected value – average amount of money won per play. 
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4.1.1 Goals 

In order to overcome the limitations found in previously developed Poker simulators, a 

new simulator has been created which aims to integrate the most important features 

present in other simulators with new features that will certainly lead Computer Poker 

research into new directions. The requirements of the new simulation system are: 

 An expandable architecture to support the creation of agents or the 

introduction of game variants. This includes an agent development API. 

 New game modes such as ring, which allow researchers to explore the 

paradigm of bankroll management. 

 Evolutionary simulation of Poker games, which encourages studies about 

strategy evolution through the principle of natural selection. This feature 

is not known to be natively supported by any Poker simulator. 

 A set of validation tools that allow for a quick and precise assessment of 

the agent capabilities to predict their performance in different real-life 

like environments. 

4.1.2 Agent Modelling 

The simulation system described in this thesis uses a multi-agent architecture where 

an agent represents a Poker player. Many types of agents were created for this 

simulation platform, each one of them represented in the code by a class. The way 

each class relates to others is depicted in the UML class diagram of Figure 25. 

Poker Agent – it is an abstract class based on the Meerkat API [73] that 

represents any agent in the system. The class contains a set of abstract methods that 

represent the events that each agent has to answer to during the simulation. Thus, to 

create an agent that works in this system it is necessary to extend this class. Agents 

must implement a set of methods corresponding to events of the game: 

 pocketCards(Card[], Seat) – occurs when the agent receives its pocket 

cards. 

                                                                                                                                                            
31 Stake – amount of betted money per game. 
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 observeAction(GameInfo) – the main routine of the agent. It is called 

when the agent is requested to perform an action. 

 actionEvent(Seat, Action) – A player in a given seat has performed an 

action. 

 winEvent(Seat, Amount, Card[]) – A player in a given seat has won an 

amount of chips with a given hand. 

 showdownEvent(Seat, Card[]) – player in a given seat has shown his cards. 

 gameOverEvent() – the current game is now over. 

  

Figure 25 – Poker Agents class model.  

HumanAgent – this agent extends the class PokerAgent and redirects the game 

events to a graphical user interface (GUI). This GUI is controlled by a human player. 

Thus, this class represents a form of interaction between human and artificial players. 

PGDLAgent – this agent extends the class PokerAgent and allows for integrating 

agents developed with the PGDL System. This agent requires the PGDL Translator 

which is a parser for PGDL documents. The specifications of the PGDL System are 

described in Section 4.2. 
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SocketAgent – the socket agent is responsible for communicating with external 

agents developed for other simulation platforms. This way, any external agent from 

Poker Academy [73] or AAAI Server [28] can be used in this simulator without need of 

recoding, using the new PokerAgent class. The communication process is 

demonstrated in Figure 26. When a SocketAgent receives a request, it chooses the 

correct translator and then sends a translated request via sockets to an external 

application that is linked to the external agent. The external agent then sends the 

response all the way back to the SocketAgent and then the SocketAgent plays 

accordingly.  

Game SocketAgent
Choose

Translator
Translate
Request

External 
Agent

External 
Socket

Application

Request

Response

Response  

Figure 26 – Communication between the Socket Agent and the External  
agent.  

IEvolutionary – this optional interface adds three methods to any class that 

extends from PokerAgent. These methods allow the agent to participate in 

evolutionary simulations. The methods of this interface are the following: 

 ReproduceAsexually – this method should return a new child agent 

created by the current one, with upgraded parent features; 

 ReproduceSexually – this method should return a new agent created by 

crossing characteristics from both this agent and another one; 

 Fitness – this method returns a number that measures the level of 

adaptation of the agent to the current environment. The fitness could be 

for instance the average expected value against all opponents. 

4.1.3 Simulation System Architecture 

The architecture of the simulator is depicted in Figure 27. The simulator was 

implemented in JAVA to maximize the compatibility with several systems. The 

simulator is composed of the following components: 
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 Hand Rank Server – a server that is used to calculate the rank of the 

Poker hands based on the algorithms described in Chapter 5; 

 Simulation Server/Poker Simulation Library – the application that is 

responsible for simulating Poker games; 

 Logging database – all agent moves are registered in a database for 

future profiling and result analysis; 

 Poker Agent – this entity represents an abstract Poker agent; 

 Poker Library – definition of general Poker data structures; 

 Poker Statistics Library – calculates statistical indicators and thus 

validates agents; 

 Poker GUI – user-friendly GUI to allow humans to play against the agents. 

 

Figure 27 – Poker  Simulation System Architecture.  

4.1.3.1 Hand Rank Server 

The hand rank server is a process that runs concurrently with the simulation server and 

that evaluates Poker hands for all agents. This was created to save memory since the 

fastest hand evaluating algorithm – TwoPlusTwo Evaluator [74] – must load a 130 MB 
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table. If each agent were to load the table individually it would be problematic in terms 

of memory usage, especially in the evolutionary simulation module where thousands 

of agents might be needed.  

The hand ranking server uses a simple TCP communication protocol to provide 

different measures that evaluate the chance of winning: hand rank; hand strength; 

hand potential; effective hand strength and Chen formula. Table 14 presents the 

commands that can be sent to the server (<Hand> is a string composed of 5 to 7 cards 

like ‘AsAd7s4d2c’). Already computed results can be optionally saved by the hand 

ranking server in a private database in order to speed up future requests. Pre-

computed results consider hand isomorphisms, since that for instance, asking the 

Hand Strength for A♣A♥ is the same as asking for A♦A♠.  

Table 14 – Hand Ranking Server Commands.  

Command Description 

RANK <Hand> Retrieves the rank of the hand. 

HS <Hand> <NO> Retrieves the hand’s strength. <NO> = remaining adversaries. 

HP <Hand> <NO> Retrieves the hand’s potential. 

EHS <Hand> <NO> Retrieves the effective hand strength. 

CHEN <Card> <Card> Retrieves the relative value of a hand with 2 cards. 

ARS <Hand> <NO> Retrieves the effective hand strength approximated using the 

Average Rank Strength tables (see Chapter 5) 

4.1.3.2 Logging Database 

The simulator has a database that contains records of all moves made by registered 

players, if the logging option is set. Figure 28 presents the class model of the database 

that was subsequently converted to a relational database model. 

The database uses a data warehouse model which will help researchers to 

process the raw data. This produces some intentional redundancy in the data, namely 

the link between the Player and the Game classes that can be used to facilitate game 

analysis, reporting and data mining. The model is composed by the following classes: 
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 Action – represents an action in a given game performed by a player. This 

class represents the star table and thereby a key aspect of the simulator 

database. An action presents the full state of the game table when it took 

place, instead of only containing the action type and the value; 

 Game – represents a game which is a set of actions; 

 Player – represents a registered player in the game; 

 Simulation – represents a simulation run on a date and time. It is a set of 

consecutive games; 

 Room – some simulation modes require the concept of room/table i.e. 

the occurrence of games in parallel in the same simulation. 

 

Figure 28 – Game moves database class model.  

 

The used format is also helpful for case based reasoning agents, because of the 

presence of redundancy in the action table that aids the computation of approximate 

information sets [75]. 

 

4.1.3.3 Poker Simulation Module (Poker Simulation Library) 

This module is responsible for performing the simulation itself. When the simulation 

starts the user will be asked which players will be part of the game, which simulation 
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mode to use and which Poker rules. The class diagram in Figure 29 shows the entity 

structure of the simulation module. The existence of simulation modes is one of the 

innovative aspects of the system and five different modes were considered. 

 

 Simple Tournament – a simple tournament is a set of games that only 

ends when only one player remains. This kind of simulation allows testing 

the capabilities of the agent to manage its cash and the blind increase in 

order to win the tournament and avoid the gamblers ruin theorem [72]. 

 Full Tournament – this mode is similar to a simple tournament but with 

several gaming tables. 

 Cash Games – the common type of simulation that is used to validate 

Poker Agents. It consists of a finite set of games with static blinds and 

player money reset at the beginning of each game. To reduce the 

variance of the results, table seat permutations is used – for each game 

positions are switch and the same cards are dealt, so everyone has equal 

chances. This type of simulation allows players to be tested on the long 

run, always on equal footing. 

 Ring Games – this mode is similar to what happens in online casinos. The 

agent starts with a given amount of chips and must manage it in order to 

survive. In addition, the agent should choose the table that contains 

opponents that are more susceptible to its strategy and tables with blinds 

that do not present a risk of quickly losing all cash. 

 Evolutionary Cash Games – this mode is similar to cash games simulation. 

However, in this mode, from time to time, natural selection is applied. 

This means that the agents with less fitness will be discarded and the 

other agents will reproduce, creating child agents that contain 

characteristics of both parents. 
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Figure 29 – Poker simulation module.   

There are four main game types: Limit Texas Hold’em, No Limit Texas Hold’em, 

Limit Texas Hold’em Only Pre-Flop and No Limit Texas Hold’em Only Pre-Flop. The 

innovative part of the game types is the presence of “Only Pre-Flop” variants. These 

are variants of Texas Hold’em that only last until the Flop round therefore they do not 

have community cards. This variant is popular among new Poker researchers, given the 

much lower number of information sets than in full Texas Hold’em resulting in less 

abstraction for strategy computation. This system can be easily expanded by inheriting 

from the PokerGame class or by implementing game rules using the PGDL system 

(described on 4.2). 

For the same reason, the variant Kuhn Poker was also included (as a particular 

implementation of a PGDL Game, later described in this Chapter). Kuhn Poker is a 

variant that only uses 3 to 13 cards (the number of card is a simulation parameter) and 

no community cards, resulting in a maximum number of 52 possible information sets. 

This allows researchers to quickly validate new approaches, with much less effort and 
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computation time needed, especially when working with algorithms such as CFR that 

can take weeks to finish for full Texas Hold’em. 

4.1.3.4 User interface 

In order to quickly configure the simulation parameters, a configuration GUI was 

developed (Figure 30). This GUI includes an optional and minimalist 2D visualizer 

(Figure 31) to observe the agents in action. 

 

Figure 30 -  LIACC Poker Simulator  

 

Figure 31 –LIACC Poker Simulator 2D visualizer  
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4.1.3.5 Evolutionary Simulation Model 

The evolutionary model follows as the diagram in Figure 32. The simulation can be 

started by selecting the evolutionary parameters (number of iterations, population 

size: M, percentage of agents eliminated per iteration: n) and the agents that take part 

in the simulation. The population size is maintained throughout the simulation but it is 

renewed on every iteration. The simulation ends after a defined number of iterations. 

Initial Population 
with size M with 

randomized 
parameters

Max number of 
iterations reached?

Matches between 
pairs of agents

No

Computation of 
crossing tables

Elimination of n% of 
the agents with less 

fitness

Reproduction of a 
random agent or 

two gendered 
agents

Yes

Size of 
population >= 

M?

Number of 
Iterations++

Selection and 
combination of 

agents
Simulation Ends

Yes

Simulation Begins

No

 

Figure 32 – Evolutionary simulation module.  

4.1.4 Agent Assessment 

After performing the simulations, the statistics module can be used to analyse the 

results. Three types of statistics were included: 

Bankroll evolution – the evolution of the player cash during the simulation. This 

statistic shows the evolution of the agents’ profit during a simulation. 

Player indicators evolution – several indicators used by Poker experts are 

available in evolution plots and described in Table 15. 
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Exploitability analysis – the exploitability is the agent’s utility against a best 

response agent. A best response agent is the average best possible strategy against 

one’s own strategy. Calculating a best response can be done using CFR. Since Poker is a 

very large game, abstraction is needed to perform this operation in a timely manner. 

This simulator provides exploitability computation by following the next steps: 

 Selection of the level of card abstraction (0 to 100). The results are more 

accurate for lower levels of abstraction. 

 Selection of the level of action sequence abstraction (0 to 100). 

 Selection of the number of iterations for CFR and for final simulation. 

 Computation of the best response strategy using the CFR algorithm with a 

desired level of abstraction; 

 Final simulation and computation of the exploitability level. 

Table 15 – Player stat istical  indicators.  

Indicator Description Round 

VPIP Percentage of games where the player puts money in the pot. Pre-Flop 

PFR Number of Raises / (Number of Calls + Number of Folds) Pre-Flop 

AF Number of Raises / Number of Calls Flop 

4.1.5 Tests and simulator evaluation 

The developed simulator was tested against other simulators in the matters of speed 

and features. 

4.1.5.1 Benchmark Tests 

In order to compare the speed of this simulator against previously developed 

simulators, a benchmark test was performed. The test consisted of repeating for 1.000 

tries a simulation of 100.000 cash games, with 4 players without table permutation 

(since Poker Academy does not support it). The results are shown in Table 16. 

As can be observed, the new LIACC simulator is the fastest one. The results were 

very close to the Open Meerkat Testbed, however the Poker Academy simulator was 
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much slower. This was due to the heavy user interface present in the Poker Academy 

software that slowed down the simulation process. 

Table 16 – Simulator  benchmark test results for 1.00 0 tr ies  with 100.000 
games and four  players.  

Simulator 
Average Time  

(seconds) 

Std. Deviation 

(seconds) 

Open Meerkat Test Bed [76] 43.0 6.3 

Poker Academy [73] 660.3 48.7 

LIACC Simulator 27.7 1.8 

 

Table 17 – Poker Simulators Comparison table.  

Feature 
LIACC 

Simulator 

Open 

Meerkat 

Poker 

Academy 

Is Key 

Feature? 

2D visualizer Yes, Simple No Yes No 

Agent Development API Yes Yes Yes Yes 

Bankroll Analysis Simple Simple Complete Yes 

Card Rank Computation Yes No Partially Yes 

Database support Yes No ? No 

Evolutionary Simulation Yes No No Yes 

Expansible Architecture Yes Yes No Yes 

Exploitability Yes No No Yes 

Human players Yes No Yes No 

Logging Yes Yes Yes Yes 

Online play No No Yes No 

Pre-developed agents No (but PGDL) Yes, Simple Yes Yes 

Simulation Speed Fast Fast Slow Yes 

Table seat permutation Yes Yes No Yes 

Former agent support Yes No No No 
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4.1.5.2 Qualitative Comparison 

 

Table 17 summarizes the comparison between the main Poker simulators. The first 

column presents the feature. The 3 subsequence columns present the main available 

simulators. The last column indicates if the feature is considered to be essential (in the 

author’s opinion) for implementing a simulator that is fully suited for Computer Poker 

research. 

The only missing features in LIACC’s simulator are online play and pre-developed 

agents. Despite this simulator not providing pre-developed agents, this can be 

balanced by the Former Agent Support feature which allows the use of agents 

developed for other platforms. Moreover, the PGDL pre-built agents might also be 

used because this simulator is compatible with the PGDL system. 

4.1.6 Summary 

The new LIACC Poker simulator is scalable, fast and is able to lead Computer Poker 

research to unexplored paths. The key features of this system are the possibility of 

performing evolutionary simulations, tournament simulation and support for external 

agents. Also, this simulation system provides access to an extensive database that 

could be easily used for data-mining and better opponent modelling profiling in the 

future. Moreover, there could be significant improvement of agents’ performance in 

real-life environments by analysing the comprehensive statistical indicators generated 

by the system. 

This simulator is in final stages of development, with some extensive testing 

already done. Performance tests demonstrated that this simulator is faster than all the 

others it was compared with. The qualitative analysis also shows that this simulator 

outperforms previously developed simulators in terms of research aiding features and 

proper agent assessment. 

4.2 Poker Game Description Language (PGDL) 

The term Poker is commonly wrongly recognized as a game. Poker is actuality a 

category of games with hundreds of different variants, which differ from each other by 
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their betting structure, the number of cards in the deck, the way the winner is 

determined, among other rules. These features represent by themselves unique 

challenges in Poker agent development. 

However, to the best of the author’s knowledge there is not a single unified 

description model that allows for game playing agents to be tested across different 

Poker variants inexpensively. This is rather important when developing new Poker 

playing agents for two main reasons: 

 Each poker variant has unique characteristics in its rules that assess 

different components of the agents’ strategies. If one develops an agent 

under a representative formal model of Poker rules, one can more easily 

adapt and test the agent in new environments thus improving the overall 

agent’s capacity and robustness in game playing, allowing it to have a 

much more complete strategy. The goal of this approach is to answer to 

even more research questions when developing Poker game playing 

agents. 

 Interoperability between game playing agents. In fact, nowadays, most 

Computer Poker researchers use different technologies to develop their 

game playing agents, which makes it difficult to test new approaches 

against previously developed ones. Some simulation systems try to solve 

this, like [22], [77] but they only provide the API and not the 

communication protocol. Agents can also be assessed in the ACPC 

competition by AAAI [28] but its benchmark server is only available for 

people that participated in the last year competition. A unique rule and 

communication representation model would certainly allow for more 

proper agent assessment, while maintaining the developers’ preferences 

regarding technology. 

For these reasons we propose a new Game Description Language (GDL) for Poker 

games –Poker Game Description Language (PGDL) – was developed based on XML. The 

goal of a GDL is to describe the state of a game as a series of facts and the game 

mechanics as series of logical rules. GDL’s are typically used by General Game-Playing 
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Systems (GGPS) as input. GGPS are systems that are capable of recognizing a formal 

description of a game and play the game effectively without human intervention, such 

as Zillions of Games32. 

PGDL, unlike other incomplete information GDLs, is uniquely focused on Poker 

agent development and testing. Therefore, PGDL was developed to only identify the 

key concepts of Poker games rules in order to facilitate the definition of known or non-

existent Poker variants by users with Poker domain knowledge. The reason behind the 

creation of a Poker specific GDL is to balance the definition and implementation time 

of a generic Poker playing agent. The usage of a more generic GDL would hinder the 

development because of its lower level nature, which would make simple strategies 

really hard to understand and implement. With a Poker specific GDL one sacrifices the 

agent’s capacity to play other games but agents’ strategies will surely benefit of the 

extra domain knowledge available. 

 To support the creation and assessment of PGDL entities, a general game 

playing system was also developed. This system allows users to not only play the PGDL 

described game against basic agents but also provides a proof of concept API that 

allows for game playing agent development. The development of the PGDL 

simulation/game playing system was divided in the following stages: 

 Identification of Poker base rules with emphasis on the differences 

between its variants. 

 Conception of a XML based language capable of specifying the identified 

rule differences and the creation of PGDL instances. 

 Creation of a XML-Schema that validates PGDL instances. 

 Construction of a system that recognizes the XML language (in Prolog) 

and that is capable of generating the specified game. 

 Construction of an application (PGDL Builder) that supports the creation 

of PGDL documents. 

                                                      
32 http://www.zillions-of-games.com/ 

http://www.zillions-of-games.com/
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 Development of a generic game playing agent that can play competently 

any variant described by PGDL.  

4.2.1 Poker Variants 

Poker is a group of similar games with the same base rule set. The denomination for a 

specific set of rules is called variant. The variants of Poker can be divided in 3 groups: 

 Draw Poker – each player receives a set of private cards that only he/she 

can see and can improve the hand by card replacement. This group of 

games is usually played by casual players. Examples of Poker games that 

are part of this group are Five-Card Draw, Badugi and Kansas City Lowball; 

 Stud Poker – each player receives a set of exposed cards (cards that 

belong to the player but everybody at the table can see) and a set of 

pocket cards that only the player can see, in multiple betting rounds. Six-

Card Stud, Razz, Eight-or-better and high-low stud are variations of Stud 

Poker; 

 Community Card Poker – games in which each player receives a variable 

number of private cards to form an incomplete hand, which is completed 

by combining private cards with public shared cards (exposed to every 

player). The most popular poker variant nowadays, Texas Hold'em, 

belongs to this group as well as Omaha Hold'em and Manila.  

Poker variants rules differ on the following features: 

 Number of betting rounds – for instance, Texas Hold'em has 4 betting 

rounds and Five-card draw has 3 betting rounds. 

 Number of private and public cards (and the way they are dealt) – in 

Texas Hold'em 5 public cards are dealt and each player receives 2 private 

cards, while in Cincinnati 4 community cards are dealt, one before each 

round of betting, and each player has 4 private cards.  

 Forced antes – some variants force all players to bet a certain quantity of 

money before the cards are dealt. This amount is called ante.  
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 The betting order – there are variants such as Seven-card stud in which 

the first player to act is the one with the lowest exposed card and 

variants such as Omaha Hold'em where the first player is the one to the 

left of the big blind.  

 The maximum number of players. 

 Scoring – there are high-games in which the highest hand wins and low-

games where the lowest hand wins. There are also high-low split games, 

where the best and the worst hands split the pot. 

 Deck composition – there are variants that are played with only a few 

cards from the deck, such as Manilla (only cards above 7 with a total of 32 

cards). 

 Existence of wild cards – special cards that can score as any card (usually 

Jokers). 

 Replacing cards – some variants, like Anaconda, allow players to pass 

cards between them in various ways. In other variants, like Badugi, 

players have the opportunity to improve their hand by discarding some 

cards and obtaining replacements from the dealer. There are also variants 

that force players to discard a fixed number of cards, without 

replacement. 

 Betting structure – Another major difference between the variants of 

poker is the betting structure. The structure can be limited, pot-limited 

and no-limit. The limit games are the ones in which there is a fixed value 

for each bet made by a player. In a pot-limited game no player can raise 

more than the size of the total pot. In these last two structures, until 

winning the game there can be a limited number of raises during a round. 

In no-limit games there are no limits on bets. 

Table 18 summarizes the main differences of the most popular and played Poker 

variants. 
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Table 18 – Differences between Poker Variants  

Variant #Rounds 
Cards 

#Players 
Number Shared Exposed Closed Wild 

Texas 

Hold’em 
4 52 Yes (5) No 2 No 2 to 9 

Omaha 

Hold’em 
4 52 Yes (5) No 4 No 2 to 10 

Baseball 4 52 No Yes (4) 3 3/9 2 to 8 

Cincinnati 5 52 Yes (5) No 5 No 2 to 9 

Five-card 

draw 
2 52 No No 5 No 2 to 6 

Anaconda 4 52 No No 7 No 2 to 7 

Manilla 5 32 Yes (5) No 2 No 2 to 9 

Seven-

card stud 
6 52 No Yes (4) 3 No 2 to 8 

Kuhn 1 4 No No 1 No 2 to 3 

Leduc 1 8 Yes (1) No 1 No 2 to 3 

4.2.2 PGDL Language Specification 

In this section the structure of PGDL files is described. The PDGL format is based on 

XML. The format is enclosed in a hierarchical description of game rounds. The 

description of each game round compromises the flow of the game. There are also 

other elements to describe generic rules of the variant (such as the number of players) 

or meta-information (such as the name of the variant). Figure 33 summarizes the key 

components of the language by presenting the tree structure of a PGDL file. 

Examples of PGDL documents representing popular Poker games can be found in 

PGDL Documents. 

4.2.2.1 Initial setup 

The PokerGame is the root component of PGDL which includes the name, the winning 

determination (High, Low or Mixed), the ante value if the game is played with or 

without wild cards. 
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<PokerGame  

   name=”Leduc” 

   wildCards=”No” 

   winningType=”High” 

   ante=”1” /> 

__________________ 

Language: XML 

Every PokerGame node must have a Players child node where the maximum and 

minimum number of players is defined. 

<Players  

   minimum=”2”  

   maximum=”4” /> 

__________________ 

Language: XML 

-name
-wildCards
-winningType
-ante

PokerGame

-minimum
-maximum

Players Rounds

-number
-name
-communityCardsNumber
-faceUpCardsDealt
-faceDownCardsDealt
-blinds
-forceBet

Round

-type

BettingStructure BlindStructure

-min
-max

DrawCards

-value
-direction

PassCards

-value

DiscardCards

-order
-firstPlayerBetting

BettingOrder
-id
-name
-position
-value

Blind

-value
-maxNumRaises

Bet

-standardDeck
-jokers

Deck

-id
-name
-value
-suit
-wild

Card

 

Figure 33 – PGDL Specification  
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4.2.2.2 Deck 

Poker games can be played with a standard deck (52 cards without Jokers) or with a 

partial deck with a given number of Jokers. 

<Deck standardDeck=”Yes” jokers=”0” /> 

__________________ 

Language: XML 

If the game is played with wild cards, any card can be used as wild (usually Jokers 

are used as the default wild card). The deck definition allows not only using directly a 

standard deck but also personalize which cards belong to the deck, with custom 

names. This way one can even define Poker variants with two decks for instance. For 

each card one has to indicate the id and name of the card, the suit, its value (any value 

of a standard card) and if that card is wild. This representation does not cover variants 

with dynamic wild cards. 

The example of deck for Kuhn Poker (one of the simplest versions of Poker, used 

mainly for research purposes). 

<Deck standard=”No” jokers=”0”> 

   <Card id=”k” name=”King” value=”K” suit=”h” 

wild=”No” /> 

   <Card id=”q” name=”Queen” value=”Q” suit=”h” 

wild=”No” /> 

   <Card id=”j” name=”Jack” value=”J” suit=”h” 

wild=”No” /> 

</Deck> 

__________________ 

Language: XML 

4.2.2.3 Rounds 

The Round element is the most important component of the PGDL file structure 

because it is associated with the game flow.  It describes how the rounds will take 

place during the game. Each round has a round number (to control the order of 

rounds), a name, the number of dealt shared cards, the number of faced up and faced 

down cards that each player is dealt, one Boolean to control if the round must start 

with a bet and another one to check if the round has blinds. 
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<Round  

   number=”1” 

   name=”Round One”  

   communityCardsNumber=”1”  

   faceUpCardsDealt=”0”  

   faceDownCardsDealt=”1”  

   blinds=”yes”  

   forceBet=”no”> 

        … 

</Round> 

__________________ 

Language: XML 

Furthermore, each round has sub-components: the Betting and Blind Structure 

of that round, the Cards Rules and the orders of the bets. Each round must have an 

individual betting structure defined.  

The Betting Structure must be one of the three available types: Limit, No Limit 

and Pot Limit. Depending on the picked type, one has to indicate the maximum 

number of raises allowed per player and the bets’ default value. 

<BettingStructure type=”noLimit”> 

 <Bet value=”1” maxNumRaises=”3” /> 

</BettingStructure> 

__________________ 

Language: XML 

Blind Structure only exists if the attribute blinds is activated (equals to ‘yes’). This 

element contains a non-empty set of Blind elements. A Blind is described by a name, a 

unique id, the value of the blind and the position of the player that will post the blind. 

<BlindStructure type=”noLimit”> 

 <Blind id=”smallBlind” value=”1” 

name=”Small Blind” position=”nextDealer” /> 

</BlindStructure>  

__________________ 

Language: XML 

Card Rules are specified by three different elements: Draw Cards, Discard Cards 

and Pass Cards. Draw Cards indicates the minimum and maximum number of cards 

that each player can draw in a round. Discard Cards specifies the number of cards that 
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each player must discard in that round. Pass Cards defines the number of cards that 

each player must pass and in which direction (clockwise or counter clockwise). 

<DrawCards min=”0” max=”0” /> 

<PassCards value=”1” direction=”clockwise” /> 

<DiscardCards value=”1” /> 

__________________ 

Language: XML 

Betting Order it’s a sub-component of the Round. To specify it, it is necessary to 

indicate in what order that round will occur (Clockwise or Counter clockwise). The first 

player to act is also defined in this element.  

<BettingOrder order=”clockwise”  

 firstPlayerBetting=”nextDealer” /> 

__________________ 

Language: XML 

4.2.2.4 Scoring 

With PGDL it is also possible to customize the Poker scoring system.  To customize the 

score we need to add the element Scoring as child of PokerGame root node. After 

adding it, two options are available: 

 Use the standard scoring (explained in Sections 2.5.2.2 and 2.5.4.1): there 

we just need to select the size of the hands used throughout the game 

(the standard value is 5) and put the element standard attribute as being 

true. If the Scoring element is not present in the document, the standard 

scoring will be used. 

 Use nonstandard scoring:  the attribute standard must be false and the 

handSize must still be specified. In this case we need to have several 

Score child elements with the formulas (as text under the Subrank child 

element) to assign that particular score type. The formulas have access to 

the card values by using $ci where i is the index of the card (between 1 

and handSize).  
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<Scoring standard="false" handSize="5"> 

 <Score name="high card" rank="0" 

default="true" sort="true" > 

  <Subrank> 

   $c5.rank * 28561 + $c4.rank * 2197 + 

$c3.rank * 169 + $c2.rank * 13 + $c1.rank 

  </Subrank> 

 </Score> 

 <Score name="pair" rank="1" default="false" 

sort="true"> 

  <Conditions> 

  </Conditions> 

  <Subrank> 

   $c5.rank == $c4.rank? 

    $c5.rank * 100000 + $c3.rank * 169 + 

$c2.rank * 13 + $c1.rank: 

   $c4.rank == $c3.rank? 

    $c4.rank * 100000 + $c5.rank * 169 + 

$c2.rank * 13 + $c1.rank: 

   $c3.rank == $c2.rank? 

    $c3.rank * 100000 + $c5.rank * 169 + 

$c4.rank * 13 + $c1.rank 

    $c2.rank * 100000 + $c5.rank * 169 + 

$c4.rank * 13 + $c3.rank 

  </Subrank> 

 </Score> 

 <Score name="two pairs" rank="2" 

default="false" sort="true" > 

  ... 

 </Score> 

 ... 

</Scoring> 

__________________ 

Language: XML 

4.2.3 PGDL System 

The PGDL system is a set of sofware applications that contemplate the following 

features: 

 Support the creation of PGDL files through an intuitive GUI; 

 Generate the user-defined Poker variants from a PGDL file or through the 

GUI; 

 Allow the user to play and create a PGDL-specified Poker variant through 

a simple 2D game visualizer. 
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Figure 34 explains the workflow of the PGDL system. With PGDL Builder the user 

specifies the rules of a Poker game. That specification generates a PGDL XML 

Document that is validated by the PGDL XML Schema, to determine if the specification 

format is valid. After the validation has succeeded, the PGDL XML Document is then 

translated to a Prolog file that contains the terms needed to configure a generic Poker 

implementation in Prolog. The Prolog implementation can be extended by a very 

simple Agent Development API that integrates the Poker simulator described in 

Section 4.1. Two agents that used the agent development API are natively included: a 

Random Agent that picks a random action and a E[HS] Agent that plays based on the 

Expected Hand Strength of the current hand. After that, the game can be played in a 

2D Visualizer by the user against the generated agents. 

PGDL Builder
(C#)

PGDL XML 
DocumentGenerates

Prolog
PGDL System

Rule 
configuration

Generates

2D Visualizer

Random Agent E[HS] Agent

Agent Development
APIPGDL XML Schema

Validates

 

Figure 34 – PDGL Builder System workflow.  

During the development of the PGDL system, several issues were addressed. In 

the following subsections we present implementation details of solutions to those 

issues. 

4.2.3.1 Game rules configuration 

The first problem to solve was to choose the best way to represent the list of terms in 

Prolog that specify the rules of a Poker variant. This set of terms was made to be 

accessible to support the conversion of a PGDL file to Prolog and to be easily used by 
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the generic Prolog system. Next an example of game rules configuration is 

demonstrated for the variant Leduc Hold’em (a simple variant mainly used for research 

purposes). 

minPlayers(2). 

maxPlayers(2). 

stack(15). 

name(‘Leduc’). 

winningType(high). 

wildCards(0). 

card(qs,’Queen of Spades’,queen,spades,1,0). 

card(js,’Jack of Spades’,jack,spades,2,0). 

card(ks,’King of Spades’,king,spades,3,0). 

card(qh,’Queen of Hearts’,queen,hearts,4,0). 

card(jh,’Jack of Hearts’,jack,hearts,5,0). 

card(kh,’King of Hearts’,king,hearts,6,0). 

round(1,1,1,0,1,’Pre Flop’). 

bettingStructure(1,noLimit,1,3). 

blind(1,’Small Blind’,1,leftDealer). 

blind(1,’Big Blind’,2,twoleftDealer). 

bettingOrder(1,clockwise,leftDealer). 

passCards(1,1,clockwise). 

drawCards(1,1). 

__________________ 

Language: PROLOG 

A round is a term that is composed of six atoms: number of round (order), the 

ante value, the number of faced up cards, the number of faced down cards, the 

number of shared cards and the name of the round. 

BettingStructure is a term that has four atoms: the number of the round where it 

belongs, the type of betting structure, the value (that is only used when the structure 

is ‘limit’) and the maximum number of raises that are allowed in the corresponding 

round. 

The term for card description is composed of an id, the name of the card, the 

value of the card, the suit, an auxiliary value and a binary value (1 or 0) that indicates if 

that card is wild or not. 

4.2.3.2 Representing a player state 

During a game, the player is expressed as follows: 
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player(Id, Cards, PlayerType, 

 PlayerAvailability, LastBet, Stack). 

__________________ 

Language: PROLOG 

Id is a unique identifier for the player in the game. The argument Cards is a list 

that contains the player’s private cards. PlayerType indicates if a player is human or an 

agent (to allow it to be controlled by the GUI or not). PlayerAvailability indicates if that 

player is allowed to bet. The player will not be allowed to bet if it is in all-in mode or 

has forfeited the match. LastBet represents the total amount of cash that the player 

has bet during the current round (when a new round starts this value is set to 0 and is 

used to check if all player bets are matched). Stack represents the total amount of 

remaining chips of that player, in order to control the value of bets that the player can 

make. 

4.2.3.3 Representing the game state 

The game state is represented by a list that contains a list of all players, the current 

value of the pot which is awarded to the winning player at the end of the game, the 

number of raises made so far (to be used in games that limit the number of raises), a 

list of shared cards and the position of the dealer. The latter is used to locate the 

players in the table (relative positions to the dealer are used). 

GameState = [NumberRaises-Pot-Dealer- 

       SharedCards,PlayersList] 

__________________ 

Language: PROLOG 

4.2.3.4 Determining the end of a round 

To determine if a round ended, the bet values of all available players are asserted to 

be the same as follows: 

pass_aux(BetsList):-  

 max_member(Max, BetsList),  

 min_member(Min, BetsList), 

 Max =:= Min. 

__________________ 

Language: PROLOG 
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When this happens, the round ends and the system moves to the next round. As 

described in the code, the condition for this to happen is the minimum bet being equal 

to the maximum bet on the BetsList. If there are no more rounds left, the winner of the 

game is determined. 

4.2.3.5 Determining the winner 

Another problem faced was the way the winner is determined. To do this, the player 

with the best hand must by chosen. There are already lots of applications to compare 

Poker hands efficiently (described in [78]) but those are targeted to the most popular 

variants in which the hands are composed of at least 5 cards and a maximum of 7 

cards. The fastest known evaluator is TwoPlusTwo Evaluator, which can evaluate about 

15 millions of hands per second (see Chapter 5).  

The evaluator takes a poker hand and maps it to a unique integer rank such that 

any hand of equal rank is a tie, and any hand of higher rank wins. TwoPlusTwo was 

used to calculate the winner in games where the hands are composed at least by 5 

cards (for hands with more than 7 cards, we used the TwoPlusTwo 5 card lookup table 

and computed all combinations C(n,5) of 5 cards to pick the best possible score). To 

compute the score of hands that are composed by a maximum of 4 cards, a new 

evaluator was developed (since Straights and Flushes are not possible with less than 

5). To do this, we assigned a value to each possible hand based on the cards that 

compose that hand. For example, if we have a hand of 4 cards (C1, C2, C3, C4) and the 

cards are all different the way the value of the hand is calculated is: 

numEqualValue([C1,C2,C3,C4],HandValue):- 

 max_member(R1,[C1,C2,C3,C4]), 

 min_member(R4,[C1,C2,C3,C4]), 

 delete([C1,C2,C3,C4],R1,L), 

 delete(L,R4,L2),  

 max_member(R2,L2), 

 min_member(R3,L2),  

 HandValue is 

  Rank(R1) * 1000000 + Rank(R2) * 10000 +  

  Rank(R3) * 100 + Rank(R4). 

__________________ 

Language: PROLOG 
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In this example we obtain the order of the cards 4 cards (C1, C2, C3, C4) by 

transforming them into R1, R2, R3, R4, where R1 is the card with the highest rank, the 

R2 the following card and so on. Then we just apply a different factor to transform the 

hand into a score, by multiplying the highest card by the highest factor. The card ranks 

go from 1 to 13. We selected the factors in a way to use two digits of the final results. 

4.2.3.6 Dealing with wild cards 

Another issue found was how to deal with wild cards when a player has in his hand 

wild cards and it is necessary to calculate the hand value. In that case the wild cards 

are identified and removed from the hand, creating a new hand. Then, the cards of the 

new hand are removed from the deck and with the new deck are generated all the 

possible combinations of the number of wild cards presented in the hand. Each one of 

those combinations is added to the hand and the value for that hand is calculated. The 

hand value is chosen from all the combinations of hands, according to the winning 

type of the game. 

retrieveWildHandValue(Hand,WildCards,Value):- 

 minus(Hand,WildCards,HandWWC), 

 findall(C,card(C),TempDeck), 

 minus(TempDeck,Hand,Deck), 

 findall(Combination,  

  foreach( 

   in(Card, Deck), 

   append(HandWWC, Card, Combination) 

  ), 

  AllCombs 

  ), 

 getValue(NewHand,AllCombs,0,Value,_Card). 

__________________ 

Language: PROLOG 

This prolog term represents what was exposed above. It starts by generating a 

hand HandWWC and a deck Deck without the wildcards with the minus operation 

(minus term is true if the third argument contains all elements that are on the first 

argument but non on the second). Next it generates all combinations, using findall and 

foreach terms, generating AllCombs. Finally it returns the maximum value of all 

combinations using the helper term getValue. 
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4.2.3.7 Integration with the agent development API 

The LIACC’s simulator agent development API is integrated with the PGDL system. To 

do this integration, two agents were developed: one that expands the original and 

abstract PokerAgent class from the simulator called PGDLAgent (see Figure 25) and 

that communicates through sockets with an agent developed in Prolog. The new agent 

developed in Prolog supports new methods (that were bridged to the agent in JAVA) 

that deal with information set abstraction features. The reason behind this is the fact 

that most Poker games usually have a very large decision tree which makes it essential 

to abstract information sets (by making different cases undistinguishable) to enable 

agents to make decisions in reasonable time. There are three types of abstraction: 

moves sequence abstraction, information abstraction (card set abstraction in the case 

of Poker) and action abstraction (more useful for No Limit games with multiple 

possible raise amounts to choose from). 

To overcome this, in the Prolog agent implementation the following Prolog terms 

were added: 

 abstract_hand(+Hand,-AbstractedHand) – abstracts the hand of the 

player (private and shared cards). The default term is no abstraction 

(abstract_hand(H,H)). 

 abstract_history(+History,-AbstractedHistory) – abstracts the sequence of 

game actions. Again, the default term is no abstraction. 

 play(+AbstractedHand,+AbstractedHistory,-AbstractedAction) – the actual 

term that is used to play. It returns an abstracted action.  

 translate(+AbstractedAction, -Action) – translates an abstracted action to 

an actual action to be executed by the agent.  

The generic implementation in prolog of a strategy of an agent is then defined as 

follows: 

strategy(PID,SharedCards,History,Action):- 

 player(PID, PCards, _,_,_,_), 

 concat(PCards, SharedCards, Hand), 

 abstract_hand(Hand,AbstractedHand), 
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 abstract_history(History,AbstractedHistory), 

 play(AbstractedHand, 

      AbstractedHistory, 

      AbstractedAction), 

 translate(AbstractedAction,Action). 

__________________ 

Language: PROLOG 

4.2.3.8 Built-in agents 

Two pre-built agents are included in the PGDL system: a random agent and a E[HS] 

(expected hand strength) based agent. The random agent picks a random action for 

any information set, avoiding folding (forfeit) when a check action (free pass) is 

possible. The E[HS] agent is based on adapted E[HS] equation (just like the Poki and 

Loki agents, see section 3.3). The Expected Hand Strength is the probability of the 

current hand of a given player being the best if the game reaches a showdown with all 

remaining players. For a player i against a giver number of opponents n, the E[HS] is 

given by: 

𝐸[𝐻𝑆]𝑛(𝑖) = (
𝐴ℎ𝑒𝑎𝑑(𝑖) +

𝑇𝑖𝑒𝑑(𝑖)
2

𝐴ℎ𝑒𝑎𝑑(𝑖) + 𝑇𝑖𝑒𝑑(𝑖) + 𝐵𝑒ℎ𝑖𝑛𝑑(𝑖)
)

𝑛

 

EQ15 

The implemented agent uses the E[HS] value to choose the action according to 

Table 19. For each betting structure, the agent has a fixed probability of following each 

action. This agent just served for testing purposes and these values were adjusted by 

the author’s own experience of the game. They were adjusted several times 

empirically after enough manual observations were made.  

Table 19 – PGDL in-built  agent's  strategy  

E[HS] Value 

Betting Structure 

Limit No-Limit 

Fold Call Raise Fold Call 
Raise 
10% 

Raise 
20% 

Raise 
50% 

All-
In 

< 30% 100% 0% 0% 100% 0% 0% 0% 0% 0% 

30-50% 50% 30% 20% 50% 30% 10% 3% 2% 0% 

50-80% 5% 50% 45% 5% 50% 25% 10% 5% 5% 

80-100% 1% 19% 80% 1% 19% 20% 15% 15% 30% 
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4.2.3.9 Graphical User Interface 

In order to make it easier and more intuitive for a user to specify the rules of a poker 

game, a GUI was developed using Microsoft C# 4.0 Windows Forms. The interface was 

divided in three parts: Game, Rounds and Deck. Three screenshots of each part are 

respectively presented in Figure 35, Figure 36 and Figure 37. 

The first screenshot presents the interface used to specify the Game’s general 

rules. In this window the user has to indicate the minimum and maximum number of 

players that can play the game, the way the winner is determined, the name of the 

game and if the game has dealer or not.  

In the second screenshot the interface used to define the rounds is shown. The 

user has the possibility to choose the name of the round, the betting structure, the 

betting order, the rules that involve cards, and the blind structure where he or she can 

add the blinds that will occur in the game and the cards dealt. Each round is defined in 

different tabs. In each tab it is possible to edit that round. The order of the rounds is 

defined by the order of the tabs in the interface. The rounds can be re-ordered 

through drag & drop.  

To specify the composition of the deck (third screenshot), the user has the 

possibility of choosing to use the standard deck in a checkbox. If not, the user has to 

select each card one by one from the list on the right. The user must also indicate if the 

game has wild cards or not. If it has, he or she has to indicate how many jokers will be 

used or indicate if a particular card is wild or not. 

To create the game the user has to click in the “Create Game” button. If the 

specification has errors the user will be notified. If not, the XML and Prolog file with 

the specification of the rules of the game will be created and the button to play the 

game in the simulator 2D visualizer (see Figure 31) will be available.  
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Figure 35 – PGDL GUI Games Module  Figure 36 – PGDL GUI Rounds Module  

 

Figure 37 – PGDL GUI Deck Module  

4.2.4 System validation 

To validate the PGDL system, several tests were performed. First several popular Poker 

variants were implemented to confirm that the PGDL specification was sufficient to 

describe them all (see examples in Appendix C). Next, we tested the E[HS] agent 

against the random agent to assess if it is competent enough against the most basic 

agent – the random agent. Finally, we tested the GUI with several users to assess if the 

system is user-friendly to implement Poker variants.  
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The following Poker variants were implemented successfully with the PGDL 

specification: No-limit / Limit Texas Hold’em, Kuhn, Leduc, Cincinnati, Five-card draw, 

Anaconda, Manilla and Seven-card stud.  

To check if the GUI is user-friendly and intuitive, usability tests were performed 

(Table 20). The test consisted of users (16 subjects in our tests, with at least some 

previous knowledge about Poker) implementing two simple variants of poker: Kuhn 

Poker (2 times, one with standard deck and one with 3 card deck) and Leduc Hold’em 

Poker. All subjects were able to complete the task with an average time of 3:42 

minutes (with our without help). By analysing the results, the time spent by the users 

doing the tests was very similar (standard deviation of 76 seconds). 

Table 20 – PGDL usabil ity tests  

Needed time (secs) Main issues 

Kuhn Leduc Kuhn Leduc 

150 120 Miss game name Miss game name 

420 270 - 
Community Cards 
vs Face Down Cards 

150 150 - - 

145 180 Betting structure Add rounds 

210 240 Bet values 
Community Cards 
vs Face Down Cards 

200 150 Betting structure - 

160 210 Max raises 
Community Cards 
vs Face Down Cards 

174 240 - Deck 

350 412 Deck Deck 

253 300 Nomenclature Betting Structure 

184 266 Number of cards - 

243 230 Missed blinds Rounds 

240 296 - Rounds 

122 116 - Rounds 

230 245 Miss game name - 

Avg: ~3:35 min Avg: ~3:48 min Total Avg: 3:42 min 
 

The biggest problems faced in the GUI usage were related to the understanding 

of the Poker specific nomenclature, even for users that said that they played Poker 

regularly. This is due to the fact of most Poker variants being unknown even for regular 



Chapter 4 – Simulation and Tools 

 

110 
 

Poker players (the most played are Limit and No Limit versions of Texas Hold’em and 

Omaha Hold’em). 

4.2.5 Summary 

PGDL is a generic system for creating poker variants. A XML dialect was defined to 

represent the specification of most known Poker variant rules. From that specification, 

the developed system can generate a playable implementation of the game in Prolog. 

All of the most popular Poker variants are implementable within our system, proving 

its usefulness. The results of tests showed that the interface is user-friendly, well 

designed and is easy to use, as shown by the similar time to specify the same poker 

variants. This approach can enhance not only the easy implementation of any poker 

variant but also the creation of new variants. For future work, the system could benefit 

from a general implementation of the Counterfactual Regret Minimization algorithm in 

order to generate Nash Equilibrium strategies for any specified variant thus providing 

very competitive agents with the system. The biggest difficulty of that implementation 

would be the creation of a generic abstraction system for any Poker variant (see 

Chapter 5 for some pointers on this).  

4.3 Poker Bot 

4.3.1 Goals 

A Poker Bot is a software application to serve as an interface between a Poker 

Software Agent and a Poker Online Casino. This kind of software enables developers to 

have their agents playing in real time online environments, without their adversaries 

knowing that an agent is playing – this is especially interesting because previous 

assessments of having Poker agents playing against humans, were with the human 

players’ knowledge that they were playing against a bot. This is very important 

because this way the human players will be playing with their regular strategies 

without modifying or adapting them to play against a bot.  

The development of the LIACC Bot was divided in several steps. Due to difficulty 

of generalization and development of this kind of applications, the recognition only 

works on No-Limit Texas Hold’em Games. To support its development, OpenCV was 
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used as well alongside a library to wrap it for C#. As explained in Section 3.9, currently 

Online Casinos do not support officially the use of bots, and they do not provide APIs 

to do it. Moreover, most of them also actually try to stop bots from playing in their 

software. For this reason, to build a bot several steps are needed to overcome this 

reality: 

 Since there is no API, the bot must interact with the regular user 

interface. Therefore it needs to apply image processing to the interface 

window in order to extract the information about the current state of the 

game. 

 The bot must control the mouse and the keyboard to be able to click on 

the interface controls. 

 Some Casinos actually record the interaction between the user and the 

client by taking screenshots or recording small videos. For this reason, the 

mouse movement must be similar to the way humans use it. 

 Casino software usually scans for the user’s pc to try to find suspect 

applications that maybe bots. Therefore, the bot must run in stealth 

mode in order to avoid detection i.e. it must disguise itself as being 

another application (in this case a calculator). 

The development of the bot was divided in the following steps: 

 Card recognition 

 Chips and bet amounts detection 

 Human like interaction with realistic mouse movements 

 Avoid detection: pressing randomly the interface buttons in random 

positions, random waiting time between plays... 

 Deal with Casino client software updates that change the position of 

interface buttons, colours… 

 Integrate the bot with the agent API described in Section 4.1 



Chapter 4 – Simulation and Tools 

 

112 
 

4.3.2 Card Recognition 

The first problem to solve to address in card recognition is to identify the regions of 

the application interface where the cards of the player and the community cards were 

placed. The first approach was to use an edge detection algorithm, using the cards 

white background and their contours. However, due to random card occlusions on the 

application interface (sometimes due to animations) and different displaying style, this 

method did not have good results – Figure 38 shows an example of this problem where 

one of the community cards had the chips overlapping it which made the edge 

detection algorithm to fail. The algorithm that detects the card regions is illustrated on 

Figure 39. 

 

Figure 38 – Card posit ion recognition – the chips occluded the third card  

 

 

Figure 39 – Detecting cards regions algorithm  
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Due to the method’s poor success rate (it failed about 25% of the times), it was 

decided to just use configurable regions with fixed positions, that is, the user of the bot 

has to configure it to select the desirable positions (select the square regions of the 

positions of the 20 player’s cards and the positions of the 2 player’s cards). This last 

method is error free (100% accuracy) but has the disadvantage of requiring the user to 

update the card’s positions when the casino software is updated. 

After getting the cards position, the following step is to guess which card it is. For 

this, the approach was template matching, i.e. having a classifier trained with all card 

templates in order to match the new ones that appear. Only the top left part of the 

card region was considered, as demonstrated in Figure 40. The reason behind this is 

that the selected region contains enough information for the card recognition (rank 

and suit). Using the whole card would not only take much more time (since the image 

has more pixels) but would also cause more errors. The detection of the top-left region 

is also by its relative width (27.35%), relative height (43.26%), relative starting position 

(6.89%, 8.28%) so only that part of the image had to be selected. 

 

Figure 40 – Cutting the card for  recognition.  

After cutting the interest region we only have to compare it with all stored 

templates as demonstrated in Figure 41. One important thing to add is that the 

templates are grouped by colour density (red and black). This helps in the suit 

detection because, for instance, the spades and the hearts symbol is somewhat 

similar. If no template is matched, another screenshot is taken and the process starts 

all over. If that fails again, two options can occur: 

 a random card is considered 

 the card that leads to the worst score possible is considered 
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Figure 41 – Detecting the card template  

 

4.3.2.1 Tests 

To test this approach 200 screenshots were taken with two different resolutions and 

the algorithm was run on every screenshot. The detection rates presented in Table 21 

were very good. The suit recognition is not presented on the table because when the 

card rank was correctly identified, the suit was also. All algorithm responses were 

manually verified and double-checked. 

The detection rates on the lower resolution were 100% correct. However, the 

detection on the higher resolution failed sometimes. One possible reason behind this 

is that the templates were made from screenshots at the lower resolution which 

means that the OpenCV template matching algorithm has to resize the sliced images 

provided. Since that the sliced cards resolution is very low (about 12 x 32 pixels), that 

could be the reason why this happens. Nevertheless the creation of new templates 

solved the problem. 
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Table 21 – Card detection rates  

Card 
Image Resolution 

1016×728 1158×826 

Ace 100% 93,9% 

2 100% 86,7% 

3 100% 97,5% 

4 100% 97,7% 

5 100% 86,2% 

6 100% 95,0% 

7 100% 100,0% 

8 100% 92,6% 

9 100% 97,6% 

Ten 100% 90,9% 

Jack 100% 100,0% 

Queen 100% 96,6% 

King 100% 95,9% 

Average 100% 95,1% 

4.3.3 Game State Recognition (dealer button position) 

Another important part of the interface recognition is the game state recognition. 

Without it, the agent would be playing blind.  

First, the current round of the game is identified. This step is rather easy to do 

because the positions of the community cards are pre-established, like it was referred 

in the last section. By that, we just have to detect if a card is there or not, by detecting 

the density of the white color. If we have no cards then we are at the Pre-Flop round, if 

we have 3 we are at Flop, 4 at Turn and 5 at River. This information is double checked 

with the bot knowledge. The bot itself reads and registers every play, so it knows the 

current state of the game just by the actions. This method is also used to detect the 

end of game, by detecting a new Pre-Flop round. 

Besides the round, one very important asset is to detect the position of the 

dealer button (see Figure 42). The approach to detect the dealer button is similar to 
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the one used with the cards: the user pre-selects the regions where the dealer button 

could appear and then every position is compared to the dealer button template 

(using template matching). The first position to identify the dealer button is the one to 

be assigned in the internal bot game state. This detection is important in order to 

correctly identify the blinds values and the order of plays. 

 

Figure 42 – Detecting the dealer button position  

4.3.3.1 Results 

The same process was applied to validate the detection of the dealer button. 200 

screenshots were used and the detection algorithm was run on all of them. The 

detection rate for the dealer button was 100%.  

4.3.4 Recognize betting amounts and actions 

The recognition of the betting amounts was by far the biggest challenge in developing 

this bot. In the used casino client the betting amounts are drawn by chips of different 

colours with each colour representing a different value.  Detecting the amounts 

through those images would be very difficult because the number of occlusions is very 

high and the chips are very small for this to be a viable solution (see Figure 43). 

 

Figure 43 – Chips representation in the casino interface software.  

The solution that was followed was to use OCR33 functionalities of OpenCV, more 

particularly the incorporated module called Tesseract. This approach was used not only 

                                                      
33 OCR – Optical character recognition 
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for the chip amounts but also to detect the players’ actions (which can be encountered 

below the nickname part – see Figure 44). The player’s actions could be either 

represented by amounts or sentences in Portuguese. The same approach was followed 

as for the cards: positions of interest are pre-defined by the user. The followed 

algorithm is represented by the diagram in Figure 45. One important thing to clarify is 

the image scale on the 3rd step. This image scale was made to increase the accuracy in 

character recognition. The average detection rate for each image scale is presented in 

Figure 46. As it can be seen, the detection success rate seems to stabilize for a scaling 

of 2.3 times. This means that there is no reason to scale over that since scaling also 

means processing an image with a higher number of pixels. 

 

Figure 44 – Action representation in the cas ino interface software.  

 

 

Figure 45 – Action and bet amounts detection.  
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Figure 46 – Average detection rate per scale factor  

4.3.4.1 Results 

The process for assessing the results was also the same as it was used in the last two 

sections. The same 200 screenshots were used and the algorithms response was 

manually compared and double-checked. The detection rate was not as good as it was 

with the cards but it was still accurate – please observe Table 22 for details. As it 

happened with the cards, the detection in higher resolutions performed slightly worse. 

However, for the global amount of detections the average was still the same (the 

detection on 1016×728 had much less “Fold / without player” messages to detect. The 

“Fold / without player” message was also the most difficult to detect but, however, the 

one that has less impact on the game. This is so because it is possible to easily detect a 

player that is not placed on that position or that is folding because the chips near the 

player disappear when this happens.  

Table 22 – Amount detection rates  

Type of amount  
Image Resolution 

1016×728 1158×826 

Bet amount (number) 100% 99,5% 

All-in 100% 93,5% 

Fold / Without player 87,9% 78,6% 

Average Global 98,7% 95,1% 
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4.3.5 Simulating human behaviour 

In order to simulate human behaviour on the interface, two things were done: 

 Sending messages to the chat 

 Simulating realistic mouse movement 

Sending messages to the chat was very straightforward. In order to not always 

send the same text messages, an approach similar to the “Lero-lero generator”34 was 

used (with more appropriate sentences).  

Simulating realistic mouse movement was based on the Bezier curves algorithm. 

The Bezier curves have control points that, depending on the function degree, can 

transform a line into a curved line, where parts of the line deviate from their original 

trajectory to approximate the control points (see Figure 47). 

 

Figure 47 – Bezier curve example between points A and B (degree = 2).  

The following equation can generate a Bezier curve, where P are the control 

points and t is the time resolution. 

𝑃(𝑡) =∑ 𝐶𝑖(1 − 𝑡)
𝑛−𝑖 × 𝑡𝑖 × 𝑃𝑖, 𝑤𝑖𝑡ℎ 𝑡 ∈ [0,1]

𝑛

𝑛

𝑖=0

 

EQ16 

The approach followed to define the points where the mouse must pass is in 

Figure 48. One important thing that was added was some noise to the trajectory. This 

will make the movement less precise, just like humans do. Moreover, the speed of the 

movement is also controlled – at the first moments the mouse moves more quickly 

and at the end the mouse moves more slowly (human players usually do that, first they 

                                                      
34 http://www.lerolero.com/ - a website that generates random Portuguese sentences similar to Lorem 

Ipsum. It combines 5 parts of sentences that all connect to themselves.  

http://www.lerolero.com/
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move the mouse quickly to reach a region near the target and then they just adjust it 

slowly. The creation of the curve follows the following parameters: 

 If the distance is below 80 pixel, no control points are used (straight line) 

 If the distance is between 80 and 200, 1 control point is used 

 If the distance is above 200 and below 400, 2 control points are used 

 If the distance is above 400 and below 700, 3 controls points are used 

 IF the distance is above 700, two Bezier curves are used with 3 control 

points each. 

  

 

Figure 48 – Computing the mouse movement trajectory from one point the 
other 

 

To validate the mouse movement methodology, several mouse movements were 

recorded into two movies: some from the agent and other from human users. 27 test 

subjects were asked if they could identify the bot mouse movement. 23 test subjects 

were able to identify which movie represented the agent, but 55% of them needed to 

watch the videos for a second time. Despite these results not being good, there are 

several things that conditioned the tests, but the main one was that they knew that 

one of the videos was from a bot. Table 23 summarizes the test results for this asset. 
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Table 23 – Identi fy mouse movement  

 
Only saw the video 

once 
Saw the video twice Total 

Identified the bot 8 15 23 

Couldn’t identify 
the bot 

3 1 4 

4.3.6 Graphical user interface and limitations 

In order to help the use of the bot, a simple graphical user interface that shows online 

the state of the game was implemented (Figure 49). The application has a 

configuration module to select (through screenshots) all the positions of the parts that 

needed to be identified (cards positions, possible dealer button positions, player 

amounts positions, etc.). The stats module is also useful – since this is an automatic 

player it is very important to check regularly its profit evolution.  

For now, this main limitation of this agent is that it is incapable of selecting the 

Poker table where it is going to play (that must be selected manually by clicking on the 

“Run Agent” button on the interface).  This should be improved in future version of 

this application, but it also requires algorithms that appropriately choose the best 

room that is more fitted to the agent’s level of skill. Another improvement point is to 

make it able to run on stealth mode (so it is not detected by the software random 

screenshots). This could be done now by running the casino client inside a virtual 

machine, but adding to the software would be a great feature. However, during the 

several hours of tests the bot was never detected.  

The resulting implementation is not perfect in its detection mechanisms and may 

confuse the software agent by giving it an non accurate information set. However, as 

the results demonstrated its accuracy is already very good for this kind of application. 

The implementation of this system enabled the results presented on Chapter 7 where, 

for the first time ever reported, an agent showed that it was possible to win money 

online consistently against human players without them having the knowledge that 

they were playing against a software agent. 
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Figure 49 – Poker Bot user interface  

4.4 Summary 

This chapter described the tools (and their evaluation) that were developed within this 

thesis work. They were built to support not only this thesis’s work but also enhance 

future developments in the Computer Poker and stochastic incomplete information 

games domain. 
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Chapter 5  

Abstraction Techniques 

 

This chapter describes the improvement of Poker related abstraction techniques that 

lead to the creation of two new methodologies – Average Rank Strength (ARS) – 

which is an improvement of the Effective Hand Strength formula and Reduced Game 

Utility Abstraction (RGU) – which is a more generic method that can be applied to 

other games (in Poker particularly, it does not require the Hand Strength).  

5.1 Definition 

Abstraction is the process of reducing the game search space by combining and 

grouping knowledge. In more practical terms it means having a group of decision 

points or conditions where we decide to act the same way when different, although 

similar game conditions are in place. One good example of this is to imagine defining a 

full rule based strategy for Texas Hold’em Poker (see Section 3.2.1). If no abstraction 

was done, it would be impossible to do so. But by saying something like “go all-in when 

you have two pairs or more”, we are already defining an action for a lot of possible 

hands – which is something that humans do naturally by instinct. 

In terms of the game of Poker (depending on the game’s rules) three types of 

abstraction are usually considered:  

 Card abstraction: for software agents, the cards are usually grouped into 

very small groups – this is commonly known as bucketing. For instance, 
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the first approaches of Nash-Equilibrium based agents grouped all card 

strength combinations into 20 different buckets (different bucket sets 

were used for each game round), which is very different than the 

numerous amount of possible scores that exist (however, even with 20 

buckets, the length   of the search   trees were still enormous).  Most 

common abstraction approaches in the last years are based on the Hand 

Strength Formula (see Section 3.5.1) which has a big problem – it is a 

simulation method that considers that the probability of playing any hand 

is equal. 

 History abstraction: this consists on abstracting betting sequences. A 

betting sequence is an ordered list of actions that can lead to a stage in 

the game. E.g. ‘ccr’ means that the first player called, then the player next 

to it called as well and the next one raised. Betting sequences always lead 

to the same state, round and acting player – only the current conditions 

(private and community cards) may change the action that should be 

selected. One possible way of combining betting sequences would be to 

replace previous rounds plays by the pot value (like any abstraction, this 

introduces an error – the way a certain amount of the pot is reached 

might reveal details about the opponents holdings). 

 Betting amounts abstraction:  abstracting the bet amounts is only 

applicable to No-Limit versions of Poker, where the value of a raise action 

is continuous. If we try, for instance, to build all game sequences for a No-

Limit game, that would be unfeasible. So, raise action values must be 

grouped. In Chapter 7 the amount of raises extracted from some game 

logs could give a hint for betting amounts abstraction, by considering 

clustering the relative betting amounts into same sized groups. 

In this thesis we only address card abstraction, by developing two new 

techniques. 
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5.2 Improving Current Algorithms 

In order to improve abstraction techniques for Poker, the first step was to try to 

improve already existing methodologies. Most methodologies are based on hand rank 

and odds comparators (see Sections 3.4 and 3.5). First the hand rank evaluators were 

compared in order to check which one should be used. Hand rank evaluators are very 

important because they transform the hand rank into a number, being therefore much 

easier to deal with it. One characteristic of hand rank evaluators is that the higher the 

number is the higher is the rank. Hand rank evaluators also distinguish between sub-

ranks within a rank group (e.g. all possible pairs and their combinations with the 

several card kickers). 

5.2.1 Hand Rank Benchmark 

In order to determine the fastest hand rank evaluator, a benchmark test was 

performed. To provide a fair assessment, the test consisted of ranking a pre-computed 

sequence of all possible combinations of 5 card hands (2,598,960 hands). The tests 

were performed 1000 times each on an Intel I7-3940XM CPU (8 cores) with or without 

parallelization. The set of hands was tested with each described hand rank evaluator(s) 

and the results are presented in Table 24. 

Table 24 –  Hand rank function benchmark   

Hand rank 
program 

Average elapsed time for 1.000 trials in milliseconds 
Non parallel Parallel 

Cactus Kev 807.13 591.22 
Paul Senzee 403.04 195.44 
Pokersource 2,520.44 980.14 
TwoPlusTwo 91.09 37.98 

 

From the tests, it is possible to verify that the TwoPlusTwo Evaluator is by far the 

fastest hand rank evaluator, performing the same calculations in at least roughly a 

quarter of the time needed by the other evaluators. After testing and using each 

evaluator, we also identified the main advantages and disadvantages. Below follows a 

table (Table 25) summing up the qualitative features of each evaluator, which 

demonstrate as well that the TwoPlusTwo evaluator is not only the fastest evaluator 
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there is, but also the one with the best features (except from memory, but in today’s 

computers 80Mb of ram is not a very serious limitation). 

Table 25 –  Hand rank comparison   

 Memory Speed Usage 
Hand’s size 

5 6 7 

Cactus < 1Mb ++ Normal ×   
Paul 266Mb ++ Normal ×  × 

Pokersource n/a + Hard × × × 
TwoPlusTwo 80Mb +++ Easy × × × 

5.2.2 Hand Odds improvement and benchmark 

While hand ranks are important, they are not directly used by abstraction techniques 

since there is not necessarily a clear inter-association between the produced integers 

by the hand rank functions (they are more used by simulators to assess the game’s 

winning agent). However hand rankers are essential to produce the hand odds 

algorithms like Hand Strength or the most currently used: Expected Hand Strength 

E[HS] (see EQ17 or EQ15 for the simple form). 

𝐸[𝐻𝑆]𝑛(𝑃𝑖, 𝑆) = {𝐻𝑆𝑛(𝑃𝑖, 𝑆 + 𝑥): 𝑥 ∈ [D]
5−|𝑆| ∧ 𝑥 ⊄ (𝑃𝑖 ∪ 𝑆)} 

EQ17 

The expected hand strength (E[HS]n) [79], also known as equity, is the probability 

of the current hand being the best if the game reaches a showdown, with all remaining 

players. It consists of enumerating all possible hands that an opponent can have and all 

possible unveiled shared cards. This methodology is very similar to the Hand Strength 

(HS), but it is far more accurate because it considers the score value that can be 

effectively used at the end of the game. However, the number of iterations needed by 

E[HS]n  is much higher than for HS, making it a much slower option.  

This method can be improved by using Monte Carlo. To do that, EQ17 was 

changed to sample possible board and opponent cards instead of enumerating them 

all, so instead of x belonging to all combinations of size 5 of the deck (with exception to 

the player’s private cards), x belongs to a subset of that superset with quadratic 

random sampling (with higher probably for higher cards). The obtained results are on 

Table 26. 
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Table 26 –  Sampling board cards in E[HS] algorithm  

Number of Samples 
Number of 
iterations 

Error 

All samples ≈ 3.17 × 1011 0 

10000 105 × 𝑃45,4 ~0.0005 

1000 104 × 𝑃45,4 ~0.001 

100 103 × 𝑃45,4 ~0.012 

10 102 × 𝑃45,4 ~0.151 

As it can be seen, the best number of samples to use in a Monte Carlo sampled 

version of E[HS] is 1000, because it already produces a very small error for the small 

number of iterations. The decrease of the error rate per number of iterations follows 

approximately a Chi-Square distribution (with 1 degree of freedom: k = 1, also see 

EQ18). Around the 1,000 iterations point the error decrease rate is so small, that it is 

not worth to increase the number of iterations.  

𝑓(𝑥) =
𝑥
𝑘
2
−1 × 𝑒−

𝑥
2

2
𝑘
2Γ (

𝑘
2)

 

EQ18 

5.2.3 Average Rank Strength 

In order to solve the efficiency problems of the previously presented methods, we 

introduce a new method called Average Rank Strength (ARS). This method consists of 

using the hand rank to estimate the future outcome of the match, without having to 

generate all card combinations. This is simply done by storing the average value of the 

Odds function in a look-up table, indexed by rank. Since there are only 7462 possible 

ranks, it is completely feasible to store pre-computed average future ranks in memory. 

Storing the Odds values for each rank is not enough, since it is necessary to 

identify the player’s private cards. To better illustrate this, let us analyse the following 

hand: A♣ A♦ A♥ K♥ K♠. This hand always scores a Full House regardless of which two 

cards belong to the player. However, depending on which two cards belong to the 

player, the odds can be different: if the player has the two Kings, an opponent could 

have the remaining Ace, thus being ahead of the player; if the player has two Aces, 

then victory is assured. 
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This problem was addressed by introducing a second dimension in the look-up 

table – the pocket hands id. The pocket hands id is a unique number for a pair of cards, 

which takes into consideration game isomorphisms. The total number of possible 

starting pair ids is 169 (this is the maximum number of possible combinations of two 

private cards with different meaning, considering the suit rotation: e.g. A♣ A♦ is the 

same as A♦ A♥). To quickly obtain the pair id, the ids are stored in a 52 × 52 pre-

computed table named pairs. Thus, the id of a pair P = {Card1, Card2} is given by 

pairs[Card1][Card2]. 

Giving the described look-up table structure, its total size is 7462 × 169 × 8 bytes 

≈ 9.62 MB, where 7462 is the number of possible card ranks, 169 the number of 

unique pairs and 8 the size of a double (in most machines). 

This approach was tested against the approximate computation of the E[HS]n, 

since it is the most common used technique. Moreover the TwoPlusTwo rank table 

was also needed to compute the index to search in the Average Rank Strength lookup 

table (since it is the fastest rank evaluator). Since TwoPlusTwo returns an index 

between 0 and 36874 with sparse values (only about 20% of the table values are used), 

an auxiliary table was created (similar to the pairs table) to convert the TwoPlusTwo 

rank to an index between 0 and 7461. This way we reduced each table’s size from 50 

MB to the 9.62 MB. 

The ARS value for a given position is given by EQ19, where n is the number of 

opponents, I is the index of the pair of cards, R is the integer value of the rank. The ARS 

lookup process and architecture is summarized in Figure 50. Both x and y are card 

hand iterators in this equation: they iterate respectively over all combinations of 2 and 

5 cards. x1, and x2 are respectively the first and the second card of the hand x. 

𝐴𝑅𝑆𝑛(𝐼, 𝑅) = {
𝐸[𝐻𝑆]𝑛(𝑥, 𝑦): 𝑥𝜖[𝐷]2 ∧ 𝑦𝜖[𝐷]5 ∧

𝑥 ⊄ 𝑦 ∧ 𝑅𝑎𝑛𝑘(𝑥, 𝑦) = 𝑅 ∧ 𝑝𝑎𝑖𝑟𝑠[𝑥1][𝑥2] = 𝐼
}

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
 

EQ19 

Since this method introduces an error, we included in our architecture the 

possibility of using a stochastic response. The look-up error δn for ARS is given by: 
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𝛿𝑛(𝑃𝑖, 𝑆) = |𝐸[𝐻𝑆]𝑛(𝑃𝑖, 𝑆) − 𝐴𝑅𝑆𝑛 (𝑝𝑎𝑖𝑟𝑠[𝑃𝑖1][𝑃𝑖2], 𝑟𝑎𝑛𝑘(𝑃𝑖, 𝑆))| 

EQ20 

The maximum δn,max and minimum δn,min look-up errors for each ARS position can 

then be stored in two additional look-up tables of the same size. This way, when 

consulting the ARS table we sum-up a random variable in the interval [δn,min , δn,max] to 

the value stored in the table.  

 

Pairs Table
(52 X 52 entries)

11KB

TwoPlusTwo Table
80MB
Rank

Hand

Φi ⋃ Ω

TPT Index 
Conversion Table

TPT Index (from 0 to 36874)

Average Rank 
Strength Table 

9,62 MB

Pairs Index (from 0 to 169)

Hand Value

Round

Error Intervals
Table 

9,62 MB × Number 
of Intervals

Converted Index (from 0 to 7461)

Φi ⋃ ΩΦi

 

Figure 50 – ARS tables  lookup process and architecture.  
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It is also possible to increase the precision of this methodology by having more 

than 2 additional look-up tables. These look-up tables can be used to store the 

discretized intervals of the error’s distribution by setting them with percentile 

medians. 

5.2.3.1 Results 

In order to determine the speed-up factor of the new method against the E[HS] 

method, a benchmark test was performed. The test consisted of ranking a pre-

computed sequence of 1,000,000 hands with 7 cards each. The tests were performed 

1000 times each on an Intel I7-3940XM CPU (8 cores) and are presented on Table 27. 

The obtained standard deviation from the mean of the presented values is negligible in 

all cases. The results described in Table 27 did not take into account the δn correction 

tables. 

Table 27 –  Benchmarking Average Rank Strength  

Hand rank program Round 
Average elapsed time for 1000 trials in 

seconds 
Non parallel Parallel (8 cores) 

Expected Hand Strength (E[HS]) 
Flop 387.71 108.90 
Turn 309.18 90.19 
River 263.79 75.98 

Average Rank Strength (ARS) 
Flop 0.32 0.06 
Turn 0.41 0.09 
River 0.43 0.10 

Speedup factor 
Flop 1211.59 1815.00 
Turn 754.10 1002.11 
River 613.47 759.8 

 

Our benchmark test demonstrates very promising results, with an average speed-up of 

1,044.24 (about 1,000 times faster). Poker agent strategies that use abstraction based 

E[HS] can benefit from this speed improvement. Methods such as CFR [23] need to 

perform these calculations billions of times. 

5.2.3.2 Error analysis 

We also analyzed the difference between this method and the hand strength method. 

The heat maps for E[HS] and ARS at the River round and against 1 opponent are in 

Figure 51. 
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This approach not only provides a much faster response to queries – about three 

orders of magnitude faster – but also it does so with negligible error, as can be seen 

from the heat maps in Figure 51. At the River, the average absolute difference 

between the two methods is 0.011, the maximum difference found was 0.062 and the 

summed squared error is 0.039. The use of a stochastic response with the δn correction 

tables also improved these results. The average maximum error found was 0.02 and 

the average is less than 0.001, with a speed-up reduction of only about 8%.  

 

 
 

Figure 51 – Average rank strength VS E[HS]  heat maps at River  
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5.3 Reduced Game Utility Abstraction (RGU) 

In the first sections of this chapter, several methods were discussed (with a new one 

presented) that are used for Poker game abstraction. The discussed method E[HS] and 

its variations or improvements (ARS), are usually used for card abstraction. Since they 

return a percentage of how valuable is the hand (100% means that it is unbeatable), 

those intervals can be split and form card buckets (e.g. goods hands with E[HS] > 80%, 

mid hands with 80% >= E[HS] > 50% and bad hands with E[HS] <= 50%). However, this 

kind of intervals do not seem to fairly represent the game probabilities because they 

always assume that the opponents will not fold their hands, during the simulation. 

Moreover, this abstraction technique is Poker specific, which means that in scientific 

terms it is not as interesting as a more generic algorithm. 

To overcome the limitations of the previous methods, a new methodology was 

created – Reduced game utility abstraction. The idea of this method comes from the 

concept of average utility or mathematical expectation – how much I will get from a 

certain action. This method considers games like Poker that have random pre-

conditions that influence the flow of the game (in this case private cards). The idea is 

to do abstraction of the pre-conditions by using their average utility obtained by a set 

of Nash-Equilibrium strategies, which represent the utility of a solved game. Then, the 

utility values of each pre-condition could be used to group those conditions into 

buckets. For instance, in Poker the average utility of playing with A♠A♣ is much higher 

than the average utility of playing with 2♣4♠, but similar to the utility of playing with 

K♥K♣. Since the utility of a pair of Kings is similar to the utility of a pair of Aces, these 

hands can be grouped together in the same bucket. 

The problem of the stated solution is that, for this to work, a Nash-Equilibrium 

strategy over the full unabstracted game is needed, which creates a recursive 

dependency. However, the Reduced game utility abstraction solves this problem by 

using a smaller similar game, with smaller sequences (in the case of Poker, smaller 

betting sequences).  
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We used the Limit Texas Hold’em game as example. Computing a Nash-

Equilibrium strategy for this game is now possible but it requires a large amount of 

computational resources [24]. However, it is possible to easily compute a Nash-

Equilibrium for unabstracted Leduc Poker, which is by far a much smaller game. 

Computing the Nash-Equilibrium for Leduc Poker with the full deck is still possible, 

because the number of game sequences is much lower than in Limit Texas Hold’em. 

After computing the Nash-Equilibrium strategies with CFR, the utility values are 

obtained either directly from the algorithm or they could be obtained by generating a 

high number of simulated games between the players of the Nash’s strategy. The 

utilities can then be used to abstract the original large game. Figure 52 summarizes the 

steps to perform this approach. 

 

Figure 52 – Reduced game uti l ity abstraction  

RGU was validated against the E[HS] abstraction approach. Two Nash-equilibriums, for 

RGU and for E[HS], were computed on Limit Texas Hold’em using Leduc Hold’em as the 

small game (with the full deck), with CFR and a training time of 2 hours each. Both 

abstraction approaches used uniform distributions to separate the N buckets. Then 

1,000,000 matches were run between the agents produced by those two Nash-

Equilibriums. The experience was repeated for different values of N. The obtained 

results are presented in Table 28 in total bankroll values.  
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Table 28 –  Reduced game uti l ity abstraction tests in mil i  big bl inds/h 

Number of buckets (N) E[HS] abstraction RGU abstraction 

5 -9.41 9.41 

10 0.52 -0.52 

15 7.35 -7.35 

20 -12.04 12.04 

50 -15.08 15.08 

100 -17.42 17.42 

Average -7.68 7.68 

 

The obtained results show that statistically (with a small advantage for RGU) 

there are no major differences between both abstractions. However, since RGU is 

much more generic, its usefulness is demonstrated by these results even without 

having knowledge about the Strength of the Hands, the RGU abstraction still created a 

very competitive agent. 

5.4 Summary 

In this chapter two new abstraction methods were discussed and assessed. The 

ARS is a Poker specific method that represents an improvement of indexation in 

storing tables with E[HS]. The method is an approximation to E[HS] with a very low 

error, but very fast (1000 times faster) and uses 16 Mb of memory instead of 2.5 Gb. 

The second presented method, RGU, is an abstraction method based on the average 

utility of initial conditions computed by a Nash-Equilibrium set of strategies on a 

smaller game. It is thus a more general approach to abstraction. 
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Chapter 6  

Game Playing 

 

This chapter presents the developed algorithms or techniques to improve the game 

playing methodologies. The first sections present some techniques (not necessarily 

related to each other) that propose new ways to approach the development of 

competitive Poker agents (this includes improvements on the current state of the art 

technology for sequential games – the CFR algorithm). Sections 6.3 and 6.4 present 

respectively the Lucifer and Hermes architecture that are validated in Chapter 7. 

6.1 Inferring Poker-Lang Strategies from Game Logs 

6.1.1 Method Description 

The first approach for building game playing algorithm during this thesis work was to 

try to imitate good Poker Players experts. One possible way of doing that is to have 

experts specifying PokerLang (see Section 3.2.5) documents. However, it takes a very 

long time to accurately describe a strategy with precision to achieve a good in game 

performance (even if they use the PokerBuilder interface). In order to surpass this 

problem, a new approach was designed to perform inference of rules from game logs – 

sets of recorded games GP. This way, if any user has game playing data available, this 

new method will allow him or her to import a strategy from games of agents or 

humans that play with a strategy similar to the intended one. In summary, this new 

approach generates PokerLang documents from game data. 
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The built inferring system does not consider PokerLang predictors (information 

set features that are estimated from observable data); it just considers the following 

language evaluators:  Stack: St (the amount of money that the copied player has in the 

language relative proportions: green, yellow, orange, red, dead); Hand Strength ranges 

Hi (see Section 3.5.1 for Hand Strength); Position at table: Po. These features are 

information selectors which represent game conditions to activate a given strategy. 

To build this system, we considered all possible combinations of these 

evaluators. However, since the hand strength is a continuous measure, its distribution 

has to be discretized. Let us analyse a distribution of hand strength values extracted 

from a particular collection of game logs35 (Figure 53 and Figure 54 – The horizontal 

axis contains the values of hand strength (ranging from 0 to 1) and the vertical axis is 

the relative frequency of that hand strength value). 

 

Figure 53 – Hand Strength relative distribution observed from the dataset in 
the Pre-Flop round.  

 

Figure 54 – Hand Strength relative distribution observed from the dataset in 
Post-Flop rounds.  

                                                      
35 The collection of game logs was provided by a professional Poker player. 
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As expected, the frequency of high values of hand strength is higher on later 

rounds (Figure 54). This happens because the players successively give up weaker 

hands. Since the distributions are rather distinct, we differentiate them during the 

inferring process: when inferring evaluators in Pre-Flop rounds we use the distribution 

illustrated on Figure 53, and for other rounds we use the distribution visible in Figure 

54. 

The discretization process was simple: a fixed number of hand strength intervals 

(k). The interval offsets were chosen to obtain a uniform distribution based on the 

relative frequency of HS values.   

 

Figure 55 – Betting distributions for Pre -Flop round.  

 

Figure 56 – Betting distributions for Post -Flop rounds.   

A similar strategy was considered for the action output for the selectors – Ad. 

The betting distribution was also obtained from the game logs collections (Figure 55 

and Figure 56 – the horizontal axis expresses the percentage of the player’s money 

that was bet). After that, from the betting distribution a fixed number of intervals were 

extracted (𝑞). Given this, the tuple that the inferring system must recognize is:  
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〈𝑆𝑡, 𝐻𝑖, 𝑃𝑜, 𝐴𝑑〉|

{
 

 
𝑆𝑡 ∈ {𝑔𝑟𝑒𝑒𝑛, 𝑦𝑒𝑙𝑙𝑜𝑤, 𝑜𝑟𝑎𝑛𝑔𝑒, 𝑟𝑒𝑑, 𝑑𝑒𝑎𝑑}

𝑃𝑜 ∈ {𝑏𝑎𝑑, 𝑛𝑜𝑟𝑚𝑎𝑙, 𝑔𝑜𝑜𝑑}

|𝐻𝑖| = 𝑘
|𝐴𝑑| = 𝑞 }

 

 
 

EQ21 

The number of recognizable tuples is given by qkAdPoHiSt  35|||||||| . In 

the experiments we arbitrarily used k = 10 and q = 10, making a total number of 1500 

cases. 

Three different approaches were tested to recognize a case from the game logs. 

The first one is a well-known classifier – the Random Forest Tree – that already proved 

empirically to be the best suited for Poker data [30]. The second strategy was to use 

the Euclidian distance between the extracted features and features from the static 

tuples – the closest case is the one to be activated. This was based on the 

methodology from [75] where two information sets have a degree of similarity equal 

to the average similarity of the game features. However, instead of the average, the 

degree of similarity was calculated as in [30] through the Euclidean distance between 

sets of features. Being i and j two information sets, 𝑓 ∈ 𝐹 and f ∈ Fa the game features 

and 𝑖𝑓 , 𝑗𝑓 the values of feature f on those information sets, the distance is given by 

EQ22. 

𝑒𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛(𝑖, 𝑗) ≔ √∑(𝑖𝑓 − 𝑗𝑓)
2

𝐹

𝑓

 

EQ22  

 Finally, a modified version of the Euclidean distance was used – weighted 

Euclidean distance. The weighted Euclidian (EQ23) distance considers a weight vector 

𝑤 where 𝑤𝑓 is the weight of feature f. 

𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑_𝑒𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛(𝑖, 𝑗) ≔ √∑𝑤𝑓 × (𝑖𝑓 − 𝑗𝑓)
2

𝐹

𝑓

 

EQ23  
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The weight vector was determined empirically by running the validation method 

described by EQ24. An agent that follows the inferred strategy was created and the 

accuracy for tuples with different weights was tested. The used weights greatly depend 

on the available data and on the copied player’s strategy but, for instance, the Hi has 

usually a weight over 40%. 

acc(𝑖, 𝐶, ℎ, 𝑖𝑎) ≔
|{1: 𝐺𝑃 ∈ 𝐶 ∧ ℎ ∈ 𝐺𝑃 ∧ 𝑖 ∈ 𝐺𝑃 ∧ 𝑝(ℎ) = 𝑖 ∧ ℎ𝑖

+ = ℎ𝑖
+𝑎}|

|𝐶|
 

EQ24 

In EQ24 C is the collection of cases for player i, ℎ𝑖
+is the history after the player i 

action and hia
+  is the action performed by the agent representing player i. The accuracy 

is the ratio between the number of cases where the agent selected an action similar to 

the player’s original action and the total number of cases. 

6.1.2 Weight selection and results 

In experiments, to determine the weight vector, its weights are randomly generated so 

that ∑ 𝑤𝑖
|𝐹|
𝑖 = 1. Next, the agent is generated and its accuracy is determined for a 

fixed number of iterations. The agent with better accuracy is the one that it is selected 

by the system.  Other policies can be used to determine the weights, namely genetic 

algorithms with populations of agents with different weight vectors. However, it is 

possible to check in Table 29 that the random generation policy already produced 

agents with very good accuracies.  

The weighted Euclidian distance always produced agents with greater accuracy 

than the two other methods, with an average accuracy of ~79% for datasets with 5000 

cases and 10.000 iterations, proving the usefulness of this method. In Table 29 logs of 

10 different players were used. For each player, 3 sets of cases with different sizes 

were extracted (1000, 2500 and 5000). The game logs contained full game state 

description of the players from whom the strategies were inferred. The developed 

strategy inferring system proved empirically to be accurate for generating strategies 

similar to human ones from past played games.  
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Table 29 –  PokerLang  strategy inferring accuracy.   

Method Random Forest Euclidian Distance Weighted Euclidian 

Iterations 1000 2500 5000 1000 2500 5000 1000 2500 5000 
A

cc
u

ra
cy

 

38,1% 42,3% 41,6% 45,0% 52,2% 47,0% 55,0% 75,2% 80,1% 

25,8% 50,2% 63,8% 56,0% 57,6% 67,5% 65,5% 56,9% 70,5% 

50,6% 56,0% 68,7% 60,0% 66,1% 84,1% 50,5% 84,7% 86,4% 

45,6% 68,2% 67,5% 70,5% 71,1% 72,2% 53,8% 69,8% 73,2% 

30,2% 52,0% 56,4% 55,4% 64,5% 70,3% 47,4% 77,8% 81,6% 

56,6% 77,8% 78,6% 67,1% 76,3% 77,9% 67,5% 59,0% 79,3% 

50,6% 76,1% 75,7% 49,7% 51,3% 70,2% 45,1% 59,4% 78,4% 

62,4% 70,8% 82,1% 30,1% 66,0% 70,4% 33,6% 81,5% 86,9% 

33,3% 41,0% 50,9% 40,5% 65,6% 53,1% 51,0% 70,6% 75,4% 

61,3% 64,8% 67,1% 51,2% 67,9% 71,9% 54,5% 71,4% 79,1% 

Average 
45.5 ± 
12.4 % 

59.9 ± 
12.8 % 

65.3 ± 
12.0 % 

52.5 ± 
11.5 % 

63.9 ± 
7.5 % 

68.4 ± 
10.3 % 

52.4 ± 
9.2 % 

70.6 ± 
9.2 % 

79.1 ± 
4.9 % 

6.2 Optimizations on the CFR algorithm 

6.2.1 A recursive implementation 

The counterfactual regret minimization algorithm (CFR) as explained before is the 

current state of the art algorithm to solve very large sequential games, being far 

superior to linear programming, because it requires much less iterations – they are 

proportional to the number of information sets instead of the number of game states 

(which in Poker means at least 6 orders of magnitude less). 

The CFR algorithm is a recursive algorithm, i.e. it transverses the game tree until 

it reaches the leaf nodes (in the case of Poker, nodes where the players show their 

cards to each other or nodes where the number of remaining players is 1). In this 

research work a regular recursive implementation was done to allow for the 

generation of Nash-Equilibrium strategies. The C++ implementation is presented in 

Figure 57. This implementation is generic and independent of the Poker variant and it 

uses the ACPC native C structures (this was done because this software was built to be 

an entry for the ACPC competition).  
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The recursivity of this regular CFR implementation can be seen in code line 40 

(where the defined function calc calls itself). The end of the recursion is in line 5, 

where the algorithm verifies if the game state reached a final state or not.  

01|void 

02|CFR::calc(Game* game, State* state, double probs[], uint8_t  

03| previousPlayer, double nodeUtil[]) 

04|{ 

05|    if(state->finished != 0) { 

06|        for(int player = 0; player != game->numPlayers; ++player) { 

07|            nodeUtil[player] = valueOfState(game, state, player); 

08|        } 

09|    } else { 

10|        //get the information set 

11|        uint8_t curPlayer = currentPlayer(game,state); 

12|        std::string infoSet = abstraction(state); 

13|        CFRNode* node = this->nodeMaps[curPlayer *  

14|        this->game->numRounds + state->round].at(infoSet); 

15|         

16|        double strategy[game->numPlayers]; 

17|        node->getStrategy(probs[curPlayer], strategy); 

18|         

19|        memset(nodeUtil,0,game->numPlayers*sizeof(double)); 

20|        Action act; 

21|         

22|        double util[MAX_ABSTRACTED_ACTIONS]; 

23|         

24|        for(int a = 0; a != MAX_ABSTRACTED_ACTIONS; ++a) { 

25|            if(node->isActionValid(a)) { 

26|                getAbstractedAction(a, state, &act); 

27|                State nextState= *state; 

28|                doAction(game,&act,&nextState); 

29|                 

30|                double newProbs[game->numPlayers]; 

31|                for(int p = 0; p != game->numPlayers; ++p) { 

32|                    if(p == curPlayer) { 

33|                        newProbs[p] = probs[p] * strategy[a]; 

34|                    } else { 

35|                        newProbs[p] = probs[p]; 

36|                    } 

37|                } 

38|                 

39|                double nextNodeUtilities[game->numPlayers]; 

40|                calc(game, &nextState, newProbs, curPlayer,  

41|                  nextNodeUtilities); 

42|                 

43|                util[a] = nextNodeUtilities[curPlayer]; 

44|                

45|                for(int p = 0; p != game->numPlayers; ++p) { 

46|                    nodeUtil[p] += strategy[a] *  

47|                          nextNodeUtilities[p]; 

48|                } 

49|            } 

50|        } 

51|        for (int a = 0; a < MAX_ABSTRACTED_ACTIONS; a++) { 

52|            if(node->isActionValid(a)) { 

53|                double regret = util[a] - nodeUtil[curPlayer]; 

54|                node->regretSum[a] += probs[previousPlayer] *  

55|                                                    regret; 

56|            } 

57|        } 

58|    } 

59|} 

Figure 57 – CFR recursive implementation for generic  Poker variants  

To better explain this implementation, it can be decomposed into the following 

parts: 
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 The information sets are stored in a dictionary that maps strings 

(concatenation of the private cards, community cards and game 

sequence) called nodeMaps. One particular detail about this 

implementation is that the round number is used (e.g. Texas Hold’em: 0 – 

PreFlop, 1 – Flop, 2 – Turn, 3 – River) to reduce the search for the 

information set probabilities, by separating it into 4 maps each of which 

containing the respective round’s information sets. 

 The algorithm checks if a final node was reached. In this case the node 

final utility is propagated (the players’ cash prizes) to its parent nodes, by 

filling the nodeUtil array (lines 5-8) 

 The algorithm tries to perform all actions over the current game state 

(line 24) if they are valid (line 25) 

 After getting the action’s utility (line 28), the strategy probabilities are 

updated for the current node (lines 30-49) 

 Finally, the counterfactual regret is updated for all actions (see lines 51-

57) 

To run the algorithm it is only necessary to do several iterations with it by 

simulating random games. The more iterations are done, the more the algorithm will 

possibly be closer to a Nash-Equilibrium unless overfitting happens, which is a rare 

event [80]. 

6.2.2 A new proposed solution – an iterative implementation of CFR 

One of the problems of a CFR implementation like the one that was described above 

(Figure 57) is that it needs a huge amount of iterations – this means that a lot of full 

tree traversals (one per simulation) must be performed and this is a problem especially 

on the leaf nodes where recursivity can greatly increase the heap size due to the large 

number of possible game sequences in Texas Hold’em. In order to overcome this 

problem, one proposed solution (that to the best of the author’s knowledge was not 

tried before) is an iterative implementation of the algorithm. Since CFR works with 

backpropagation of utilities, turning CFR into an iterative algorithm requires it to 
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process each level of the tree independently, from the deepest leaf node to the root 

node. The goal of this new implementation was to verify if it was faster than the 

original CFR (current implementations can take several days of computation even in 

very powerful computers). 

This approach has very good advantages with the main one being the possibility 

of using parallelization without error penalties on the algorithm and without any need 

for a synchronization mechanism.  Current parallelized versions of CFR just train the 

algorithm with several games at the same time – this simultaneous training can spoil 

some information sets that can be updated concurrently (especially when running on 

abstracted versions). Using semaphores to avoid collisions would solve this issue but it 

would make the algorithm even slower. Another advantage is that an iterative version 

of CFR would allow for using the GPU capabilities for concurrent operations. With 

linear arrays instead of tree structures, it is possible to create a GPU version of CFR 

that could benefit from high parallelization. The idea of using a GPU is also good 

because most CFR’s operations are arithmetical – GPUs are known to be very fast to 

perform this kind of operations. This was done later as an extension of this work in 

[81]. 

One potential disadvantage of an iterative CFR is information representation. 

Representing game trees in a linearized way generates very sparse arrays that occupy 

a lot of memory that is actually not used. For instance, to represent the 2 player’s Kuhn 

Poker variant game tree and the correspondent array that is used for storing the 

information (Figure 58 – consider the actions to the left a Call / Fold and the actions to 

the right a Raise). In this very small game (with only four levels of depth) there are 6 

unoccupied positions, meaning that 40% of the space is wasted – positions {7, 8, 11, 

12, 13, 14}. This is the biggest potential disadvantage of this approach. However, this 

could be partially solved with efficient sparse array representations such as hash maps. 

Nevertheless, one could argue that, in the last years, memory became much cheaper 

which allows for having a little prejudice on the amount of used memory in order to 

speed up the algorithms. 
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Figure 58 – Kuhn Poker’s strategy into sparse arrays.  

6.2.2.1 Implementation 

In order to implement a non-recursive CFR algorithm, it is necessary to represent all 

required variables in plain arrays, in order to store the data created by the algorithm’s 

recursivity. Referring to the implementation in Figure 57, the variables that need to be 

linearized are (for small games the linearization was done like in Figure 58 for 

simplification purposes, without supporting data structures): 

 RegretSum – the accumulated values of regret for a node 

 StrategySum – the accumulated sum of all strategy values i.e. the output of the 

algorithm for all game nodes (processed on getStrategy function in Figure 59 

and returned by the calc function on Figure 57) 

 Average Strategy (strategy) – the used strategy values for the current iteration 

 Node Utility (nodeUtil) – the node utility for the current iteration 

 Probabilities of Information sets (probs) – an array that contains for each node 

the probability of it being reached. 

To implement this approach, the order of the algorithm steps must be changed: 

 Update the probabilities (probs) and average strategy by levels – starting at the 

root level 

 Update the counterfactual regret and the node utilities in the reverse order – 

from the last level nodes to the top of the tree. 
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 The parallelism can be applied only to nodes of the same level, i.e. it only 

justifies dividing the work in levels where the tree is very large. Doing 

parallelization on the first levels would present a very high overhead for a small 

set of calculations 

01|CFRNode::getStrategy(double realizationWeight, double  

02|strategy[MAX_ABSTRACTED_ACTIONS]) 

03|{ 

04|  double normalizingSum = 0; 

05|  for (int a = 0; a < MAX_ABSTRACTED_ACTIONS; a++) { 

06|    if(isActionValid(a)) { 

07|      strategy[a] = regretSum[a] > 0 ? regretSum[a] : 0; 

08|      normalizingSum += strategy[a]; 

09|    } else { 

10|      strategy[a] = 0; 

11|    } 

12|  } 

13|  if(normalizingSum > 0) { 

14|    for (int a = 0; a < MAX_ABSTRACTED_ACTIONS; a++) { 

15|      if(isActionValid(a)) { 

16|        strategy[a] /= normalizingSum; 

17|        strategySum[a] += realizationWeight * strategy[a]; 

18|      } 

19|    } 

20|  } else { 

21|    double prob = 1.0 / getNumValidActions(); 

22|    for(int a = 0; a < MAX_ABSTRACTED_ACTIONS; a++) { 

23|      if(isActionValid(a)) { 

24|        strategy[a] = prob; 

25|        strategySum[a] += realizationWeight * strategy[a]; 

26|      } 

27|    } 

28|  } 

29|} 

Figure 59 – GetStrategy function (CFR implementation) is  the function that 
updates the actual  strategy probabil it ies taking into account the current 
accumulated regrets.  

One important thing is to determine inside the linearized trees (arrays) which nodes 

are the ones that belong to that level. That can be done by ϑmin and ϑmax described on 

EQ25. MAX_ABSTRACTED_ACTIONS represent the maximum number of actions in the 

variant that is being processed (in Kuhn / Leduc Poker this value is 2, in Limit Hold’em 

this value is 3 and in No Limit Texas Hold’em this value depends on the abstraction). 

 𝜗𝑚𝑖𝑛(0) = 0, 𝑎𝑛𝑑 𝜗𝑚𝑎𝑥(0) = 0 

𝜗𝑚𝑖𝑛(𝑙𝑒𝑣𝑒𝑙) = 𝜗𝑚𝑎𝑥(𝑙𝑒𝑣𝑒𝑙 − 1) + 1, 𝑙𝑒𝑣𝑒𝑙 > 0 

𝜗𝑚𝑎𝑥(𝑙𝑒𝑣𝑒𝑙) = 𝜗𝑚𝑎𝑥(𝑙𝑒𝑣𝑒𝑙 − 1) + 3
𝐿𝑒𝑣𝑒𝑙, 𝑙𝑒𝑣𝑒𝑙 > 0 

EQ25 

These values are pre-computed since their definition is recursive, in order to 

reduce the number of calculations. 
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The algorithm in Figure 60 summarizes the described steps for the final strategies 

computation. All the algorithm parameters are trees represented in linearized arrays 

like was explained in Figure 58. 

Algorithm 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑣𝑒𝐶𝐹𝑅(𝑅𝑒𝑔𝑟𝑒𝑡𝑆𝑢𝑚, 𝐴𝑣𝑔𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑦,𝑁𝑜𝑑𝑒𝑈𝑡𝑖𝑙𝑠, 𝑃𝑟𝑜𝑏, 𝐶𝑎𝑛𝐷𝑜𝐴𝑐𝑡) 

Let NLevels := 0 
Let CurLen := Length(RegretSum) + 2 
While CurLen > 1 
   CurLen = CurLen / 2 
   NLevels = NLevels + 1 
For Level := 0 to NLevels-1 
   For Index := 𝜗𝑚𝑖𝑛(Level) to 𝜗𝑚𝑎𝑥(𝑙𝑒𝑣𝑒𝑙)  
        strategy := getStrategy(RegretSum[index], AvgStrategy[index]) 
        updateAvgStrategy(AvgStrategy[Index], Prob[index]) 
        For Action := 0 to MaxActions 
           If 𝐶𝑎𝑛𝐷𝑜𝐴𝑐𝑡[Index] 
              updateProbs(Prob[Index]) 
For Level := NLevels – 1 to 0 
 For Index := 𝜗𝑚𝑖𝑛(Level) to 𝜗𝑚𝑎𝑥(𝑙𝑒𝑣𝑒𝑙)  
            For Action := 0 to MaxActions 

  childIndex := 𝜗𝑚𝑎𝑥(𝑙𝑒𝑣𝑒𝑙 + 1) + 𝑀𝑎𝑥𝐴𝑐𝑡𝑖𝑜𝑛𝑠
2 × ((𝐼𝑛𝑑𝑒𝑥 + 𝐴𝑐𝑡𝑖𝑜𝑛 −

𝜗𝑚𝑖𝑛(Level)) ÷ 𝑀𝑎𝑥𝐴𝑐𝑡𝑖𝑜𝑛𝑠)/) 

  nodeUtils[index] = nodeUtils[childIndex] * avgStrategy[Index][Action] 
    updateCfrRegret(nodeUtils[Index], RegretSum[Index], Prob[Index])    

return 

Figure 60 – Liner CFR algorithm  

Some notes about this implementation: 

 CanDoAct is an array of Booleans that marks all information sets as being 

possible or not (because of the sparse array problem described earlier in 

this section) 

 getStrategy – a function that returns the current strategy (see Figure 59) 

 updateAvgStrategy, updateProbs and updateCfrRegret – all refer to the 

methods described in Figure 57. 

6.2.2.2 Results 

In order to test the new iterative approach for the CFR algorithm, several Nash-

Equilibrium strategies were computed with both the recursive and the iterative 

versions of CFR, for Poker variants of different size. The results for respectively speed 
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and memory efficiency are presented below in Table 30 and Table 31 (10.000 

iterations were run without any abstraction). Tests on Limit Texas Hold’em or any 

Hold’em variant were not performed because of the high memory requirements and it 

is important to analyze the results without abstraction because they can potently 

change the depth of the game. 

Table 30 – Recursive CFR vs  Linear CFR (time in seconds)  

Game Recursive CFR Iterative CFR Difference (%) 

2P Kuhn 

(16 information sets) 
0,08 0,25 -212,50% 

2P Kuhn, Full Deck 

(33.390.720 information sets) 
0,22 0,42 -90,91% 

5P Kuhn, Half-Deck 

(43.080.840 information sets) 
382,15 180,61 52,74% 

8P Kuhn, Quarter-Deck 

(4.932.736 information sets) 
14.497,04 4.939,55 65,93% 

 

Table 31 – Recursive CFR vs Linear CFR (memory usage  in MB) 

Game Recursive CFR Iterative CFR Difference (%) 

2P Kuhn 

(16 information sets) 
1,32 1,56 -18,18% 

2P Kuhn, Full Deck 

(33.390.720 information sets) 
1835,82 1836,00 -0,01% 

5P Kuhn, Half-Deck 

(43.080.840 information sets) 
992,43 1046,19 -5,42% 

8P Kuhn, Quarter-Deck 

(4.932.736 information sets) 
201,71 1650,30 -718,15% 

From Table 30 it can be observed that the time reduction is very high when the 

variant is big enough (reduction of more than 50%). However, when the variant is 

small, the time spent even increases – probably due to the overheads of preparing and 

loading the game tree to memory. However, the penalty on memory usage when using 
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an iterative version of the CFR could be huge, with memory usage increases of more 

than 700% in the deepest game (we had memory increases in all tests, according to 

Table 31). Despite this last test, these results prove the usefulness of this approach, 

when a large amount of memory is available or when the game tree is not too deep. 

With improvements on the sparse arrays storage, this memory increase will certainly 

reduce (with a speed penalty). 

6.2.3 Pruning the CFR search tree 

One common procedure before using the CFR algorithm is to create and store the 

game tree before running it – this increases the efficiency of the algorithm because it 

now can assume that all information sets exist (it does not need to verify them every 

time). For this CFR implementation, the used approach is based on the code on Figure 

60. This approach slightly reduces the number of processed game nodes by 

considering some possible actions as impossible actions. This refers to not loading 

nodes that cannot be reached by considering completely unwise actions as impossible 

actions (e.g. folding a hand instead of doing a call when no money has to be spent – 

see line 23 and line 24 in Figure 61, where the action fold is removed when the money 

spent by the player is equal to the max amount that any player has spent so far). 

Although useful, this approach does not allow for removing a lot of game nodes 

– only about 0.5% of the nodes. In order to increment the algorithm’s efficiency even 

further, a new method was developed based on the concept of strategic dominance. A 

dominance occurs when, no matter what, a given player’s action will result in a win. 

One perfect example is when a player has to decide to Call or Fold, when holding a 

Royal Flush in No-Limit Texas Hold’em and all his or her opponents are in All-In state. 

The player does not know the cards of his or her opponents, but in this case it does not 

matter – he or she will win no matter what the opponents are holding – this is called a 

dominant play. Another way around is being in a very similar situation, but holding the 

worst possible hand. If the player calls, he or she will lose the game for sure – this is 

called a dominated play.  
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01|void 

02|CFR::createAbstractedGameTree(State* state) 

03|{ 

04|  if(state->finished != 0) { 

05|    return; 

06|  } else { 

07|    std::string infoSet = abstraction(state); 

08|    uint8_t curPlayer = currentPlayer(game,state); 

09|    if(this->nodeMaps[curPlayer * this->game->numRounds +  

10|           state->round].count(infoSet) == 0) { 

11|      this->nodeMaps[curPlayer * this->game->numRounds +  

12|      state->round].insert(std::pair<std::string, 

13|           CFRNode*>(infoSet, new CFRNode())); 

14|    } 

15|    CFRNode* node = this->nodeMaps[curPlayer *  

16|         this->game->numRounds + state->round].at(infoSet); 

17|     

18|    bool validActions[MAX_ABSTRACTED_ACTIONS]; 

19|    Action act; 

20|    for(int action = 0; action != MAX_ABSTRACTED_ACTIONS; 

21|         ++action){ 

22|      getAbstractedAction(action,state,&act); 

23|      if(act.type == a_invalid || (act.type == a_fold && 

24|           state->spent[curPlayer] == state->maxSpent)) { 

25|        validActions[action] = false; 

26|        continue; 

27|      } 

28|     

29|      State nextState = *state; 

30|     

31|      if(isValidAction(game,&nextState,0,&act)) { 

32|        doAction(game, &act, &nextState); 

33|        createAbstractedGameTree(&nextState); 

34|        validActions[action] = true; 

35|      } else { 

36|        validActions[action] = false; 

37|      } 

38|    } 

39|    node->initialize(validActions); 

40|  } 

41|} 

Figure 61 – Building the CFR actions tree (C++)  

 

The new developed method is based on the described concepts (dominant and 

dominated actions) and is comprehended in Figure 61. The idea is to consider almost 

dominant actions as dominant and almost dominated actions as dominated, using the 

winning probability as measure to do that. In order to allow for parameterizing and 

adapting the algorithm to several different situations, two parameters were included:   

MAX_WIN_PROB_THRESHOLD and MIN_WIN_PROB_THRESHOLD. These refer 

respectively to the minimum and maximum value of winning probability that will be 

considered dominant and dominated play. For instance, having 

MAX_WIN_PROB_THRESHOLD=5% means that any hand with less than 5% probability 

of winning will automatically be considered a dominated play and, therefore, all 

subsequent game nodes will be removed. By using the thresholds (5%, 95%) it is 

possible to reduce the tree length by about 8%, with minimum impact. 
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01|void 

02|CFR::eliminateActions() { 

03|    std::string idStr; 

04|    double prob; 

05|    unsigned long long count = 0; 

06|    for(int i = 0; i != (game->numPlayers*game->numRounds); ++i) { 

07|        for(std::map<std::string, CFRNode*>::iterator it = 

08|             nodeMaps[i].begin(); it != nodeMaps[i].end(); ++it) { 

09|            idStr = it->first.substr(4); 

10|            idStr = idStr.substr(0,idStr.find(':')); 

11|            prob = winProb(atoi(idStr.c_str())); 

12|            if(prob >= MAX_WIN_PROB_THRESHOLD) { 

13|                it->second->setActionInvalid(a_fold); 

14|                count++; 

15|            } 

16|        } 

17|    } 

18|    for(int i = 0; i != (game->numPlayers*game->numRounds); ++i) { 

19|        for(std::map<std::string, CFRNode*>::iterator it = 

20|             nodeMaps[i].begin(); it != nodeMaps[i].end(); ++it) { 

21|            idStr = it->first.substr(2); 

22|            idStr = idStr.substr(0,idStr.find(':')); 

23|            int round = atoi(idStr.c_str()); 

24|            if(round == (game->numRounds - 1)) { 

25|                bool anyRaiseAvailable = false; 

26|                for(int a = a_raise; a < MAX_ABSTRACTED_ACTIONS; 

27|                     ++a) { 

28|                    if(it->second->isActionValid(a)) { 

29|                        anyRaiseAvailable = true; 

30|                        break; 

31|                    } 

32|                } 

33|                if(!anyRaiseAvailable) {  

34|                    idStr = it->first.substr(4); 

35|                    idStr = idStr.substr(0,idStr.find(':')); 

36|                    prob = winProb(atoi(idStr.c_str())); 

37|                    if(prob <= MIN_WIN_PROB_THRESHOLD) { 

38|                        it->second->setActionInvalid(a_call); 

39|                        count++; 

40|                    } 

41|                } 

42|            } 

43|        } 

44|    } 

45|    if(AGENT_RANGE < 1.0) { 

46|        for(int i = 0; i != (game->numPlayers*game->numRounds); 

47|             ++i) { 

48|            for(std::map<std::string, CFRNode*>::iterator it = 

49|              nodeMaps[i].begin(); it != nodeMaps[i].end(); ++it) { 

50|                idStr = it->first.substr(4); 

51|                idStr = idStr.substr(0,idStr.find(':')); 

52|                prob = winProb(atoi(idStr.c_str())); 

53|                if(prob <= (1-AGENT_RANGE)) {  

54|                    for(int a = a_raise; a < 

55|                         MAX_ABSTRACTED_ACTIONS; ++a) { 

56|                        it->second->setActionInvalid(a); 

57|                    } 

58|                    if(it->second->isActionValid(a_fold) &&  

59|                          it->second->isActionValid(a_call)) { 

60|                        it->second->setActionInvalid(a_call); 

61|                    } 

62|                } 

63|            } 

64|        } 

65|    } 

66|} 

Figure 62 – El iminating search nodes based on actions dominance  (C++)  
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6.3 The ACPC Participation – Lucifer Agent Architecture 

In this section the methodology that was followed to implement the Lucifer agent is 

demonstrated as well as the K-Current-Best-Utility method. The Lucifer agent was 

made especially to participate in the 2014 ACPC competition, in the multiplayer Kuhn 

Poker track, a very simple variant for 3 players, 1 round and 4 playing cards (Jack, 

Queen, King and Ace). Rules and details about this competition track and results can be 

found in Section 7.2. 

 

Figure 63 – Lucifer’s  Architecture  

The Lucifer’s global architecture is depicted in Figure 63 and the main parts of 

the code in Figure 64. The agent’s architecture can be essentially divided into 3 parts: 

 CFR – the linear implementation described in 6.2 was used. Using the iterative 

version, despite its usefulness, would not benefit the agent because the 3 

player Kuhn game is too small. Several Nash-Equilibrium strategies are 

computed (in this particular case 1.000), with 1.000.000 iterations for training. 

All strategies are previously computed, so the CFR algorithm is not directly used 

by the agent – only the just strategies generated from it are used (see CFR 

usage between lines 57 and 67 in Figure 64). 
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 Selectors – these modules of the application are responsible for selecting 

possible actions for the algorithms actuator. In sum, they represent the agent’s 

strategies. There are 3 types: 

o Best Utility – this strategy selects the Nash-Equilibrium strategies for 

each position in the table (in this case 3, because there are 3 players). 

The selection of strategies is based on the average utility for the 

position obtained by CFR. So, the algorithm selects the strategy that 

maximizes utility for that position (see strategy selection between lines 

73 and 83, when the agent receives the hole cards; in line 62 the 

condition selects the CFR strategy for the player; in the getAction 

function, lines 87-93, the agent executes a best utility move). 

o Random – this strategy just selects one of the random and pre-

computed Nash-Equilibrium strategies to play. See lines 93-98. 

o Aggressive – this a very simple strategy without Equilibrium concept. It 

always raises when the agent has the top 2 cards (King and Ace), 

otherwise it Folds or Calls (if it is a free call). See lines 99-114. 

 Opponent Modelling – an opponent modelling module that uses the K-

Current-Best-Utility for deciding which strategy is going to be used from the 

selectors.  

Several functions of the Lucifer agent are presented in Figure 64, which 

represent the main parts of the agent’s gameplay: 

 getEv – this method is used by the K-Current-Best-Utility for computing 

the strategy’s current utility; 

 updateEv – updates the utility of the current selected strategy. It is called 

when a game ends and it uses its result to update the utility. 

 holeCards – the event when the agent receives the cards. Here the agent 

just selects the current strategy. 

 getAction – it contains the code for the agent to perform the action, from 

the currently selected strategy. 
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001|double Lucifer::getEv(int stra) 

002|{ 

003|    double* arr; 

004|    int len; 

005|    if(stra == 0) { 

006|        arr=profit_nash; 

007|        len=len_nash; 

008|    } else if(stra == 1) { 

009|        arr=profit_br; 

010|        len=len_br; 

011|    } else if(stra == 2) { 

012|        arr=profit_agressive; 

013|        len=len_agressive; 

014|    } 

015|    double ev = 0; 

016|    for(int i = 0; i != RECALL_SIZE; ++i) { 

017|        ev+=arr[i]; 

018|    } 

019|    return ev/RECALL_SIZE; 

020|} 

021|     

022|void Lucifer::updateEv(int stra, double ev) 

023|{ 

024|    double* arr; int* len; 

025|    if(stra == 0) { 

026|        arr=profit_nash; 

027|        len=&len_nash; 

028|    } else if(stra == 1) { 

029|        arr=profit_br; 

030|        len=&len_br; 

031|    } else if(stra == 2) { 

032|        arr=profit_agressive; 

033|        len=&len_agressive; 

034|    } 

035|    if(*len == RECALL_SIZE) { 

036|        *len = 0; 

037|    } 

038|    arr[*len] = ev; 

039|    (*len) += 1; 

040|} 

041| 

042|Lucifer::Lucifer() : PokerAgent() 

043|{ 

044|    for(int i = 0; i != RECALL_SIZE; ++i) { 

045|        profit_nash[i] = 0; 

046|        profit_br[i]=0; 

047|        profit_agressive[i]=0; 

048|    } 

049|    len_nash=0; 

050|    len_br=0; 

051|    len_agressive=0; 

052|    double curUtil[game->numPlayers]; 

053|    double maxUtil[game->numPlayers]; 

054|    for(int i = 0; i != game->numPlayers; ++i) { 

055|        maxUtil[i] = -100000.0; 

056|    } 

057|    CFR* cfr = new CFR(game); 

058|    for(int i = 0; i != FIND_EQUILIBRIUM_ITERATIONS; ++i) { 

059|        cfr->train(1000000); 

060|        cfr->calcUtility(curUtil); 

061|        for(int j = 0; j != game->numPlayers; ++j) { 

062|            if(curUtil[j] > maxUtil[j]) { 

063|                maxUtil[j] = curUtil[j]; 

064|                this->cfr[j] = cfr; 

065|            } 

066|        } 

067|    } 

068|    for(int i = 0; i != MAX_KUHN_OPPONENTS; ++i) { 

069|        this->cfr[i]->calcUtility(curUtil); 

070|    } 

071|} 

072| 

073|void Lucifer::holeCards(uint8_t* holeCards, uint8_t seat) 

074|{     

075|    double maxEv = -1000; 

076|    for(int i = 0; i != 3; ++i) { 

077|        double ev = getEv(i); 
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078|        if(ev > maxEv) { 

079|            currentStrategy = i; 

080|            maxEv = ev; 

081|        } 

082|    } 

083|} 

084| 

085|void Lucifer::getAction(Action& action) 

086|{ 

087|    if(currentStrategy == 0) { //best nash 

088|        CFRNode* node = cfr[state.viewingPlayer]->findNode(&this-

089|>state.state); 

090|        int index = node->getRandomActionIndex(); 

091|        cfr[state.viewingPlayer]->translate(index, &this-

092|>state.state, action); 

093|    } else if(currentStrategy == 1) { //random nash 

094|        CFRNode* node = cfr[pick_a_number(0,2)]->findNode(&this-

095|>state.state); 

096|        int index = node->getRandomActionIndex(); 

097|        cfr[state.viewingPlayer]->translate(index, &this-

098|>state.state, action); 

099|    } else { //agressive 

100|        

101|if(rankOfCard(state.state.holeCards[state.viewingPlayer][0])>=2) { 

102|            action.type = a_raise; 

103|            action.size = 0; 

104|        } else { 

105|            if(state.state.maxSpent == 

106|state.state.spent[state.viewingPlayer]) { //free call 

107|                action.type = a_call; 

108|                action.size = 0; 

109|            } else { 

110|                action.type = a_fold; 

111|                action.size = 0; 

112|            } 

113|        } 

114|    } 

115|} 

116| 

117|void Lucifer::gameOverEvent(double payoff) 

118|{ 

119|    updateEv(currentStrategy, payoff); 

120|} 

Figure 64 – Main parts of Lucifer’s  source code (C++)  

The K-Current-Best-Utility is the opponent modelling methodology that Lucifer 

uses (see code above). It consists on selecting a strategy among several that has the 

currently higher average utility. Selecting a strategy that has more utility against an 

opponent is a plain choice, however this does not consider that the opponent might 

change strategy or that the model could have been simply miscalculated. In order to 

adapt to possible opponent strategy changes, this selection method also has a recall 

value, i.e., the maximum number of games where we can store utility. If the value of K 

is exceeded, the older utility values are forgotten (see Figure 65 for an example; for 

K=3, the selected strategy is the last one, but if we had K=5 the selected strategy 

would be the second one).  
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Figure 65 – K-Current-Best-Uti l ity strategy selection example for K=3  

By default, if not enough utilities were computed yet, 0 utility is considered (the 

utilities array starts with K zeros) – the utility that is stored is the profit on a given 

game. This means that the first strategy (Best Utility) only changes when the average 

utility is below 0, i.e. if by chance the strategy only made profit for groups of K games, 

it would never be changed. The K value that was used by Lucifer in the ACPC 

competition was 10. The determination method was merely empiric – i.e. several 

simulations were done against other agents (random agents, aggressive agents and 

Nash-Equilibrium agents) and best results were obtained with K = 10. 

6.4 Online Game Playing – Hermes Agent Architecture 

In this section the methodology that was followed to implement the online game 

playing agent named Hermes is demonstrated. The development approach was 

divided in three phases: 

Online room interface – an interface which allows for Poker playing agents to 

impersonate a human player. In other words, this interface recognizes what is going on 

in a Poker room, provides the information to the software agents, receives the agent’s 

response and finally controls the mouse and the keyboard to play accordingly to the 

agent’s desire (see Section 4.3 for details). 
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Extracting opponent models – this consists of observing the opponents actions 

and label each one with a strategy type. The action of our agent’s strategy depends on 

the types of strategies of the current opponents. An external tool called Hold’em 

Manager36 was used for support in this phase. 

The agent’s strategy, which is based on a rule-based strategy from an expert 

player. This module is completely independent of the aforementioned, i.e. the agent 

can provide outputs and receive inputs from different platforms. This allows for testing 

the agent in a simulation environment, against other previously developed agents, 

without much extra effort. This was important to reduce the tests costs because the 

performed experiments with this agent were online in real money games (see Section 

7.1). 

 

Figure 66 – Hermes’s decision workflow.  

 

Figure 67 – Hermes’s architecture.  

                                                      

36 Hold’em manager website: http://www.holdemmanager.com/ 

http://www.holdemmanager.com/
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The diagrams in Figure 66 and Figure 67 summarize the global view of the agent 

and how the different components communicate. The decision workflow is an endless 

cycle, i.e. the agent keeps reading events from the table. The cycle is interrupted when 

the agent is unable to read from the Poker Game UI which causes a timeout in the 

“Read an event from the game UI”.  

6.4.1 Extracting opponent models 

The opponent models are based on three common statistics about the players (VPIP, 

Fold3Bet and PFR). These statistics are collected during the games. The more the agent 

plays against a certain player, the more these statistics will reflect the opponents’ 

playing style. 

 𝑣𝑝𝑖𝑝(𝑜𝑝𝑝𝑜𝑛𝑒𝑛𝑡 ∈ 𝑁) – This statistic value stands for “Voluntarily Put $ 

In Pot” and tells the percentage of times a player makes a call or a raise 

on pre-flop round. 

 𝑓𝑜𝑙𝑑3𝑏𝑒𝑡(𝑜𝑝𝑝𝑜𝑛𝑒𝑛𝑡 ∈ 𝑁) – This statistic value tells the percentage of 

times a player folds the hand when one of its opponents raise at least two 

times in the same round. That value will be useful to calculate if the 

expected return is positive or negative against the hand the agent holds. 

 𝑝𝑓𝑟(𝑜𝑝𝑝𝑜𝑛𝑒𝑛𝑡 ∈ 𝑁) – This statistic value tells the percentage of times a 

player raises a hand on the Pre-Flop round. 

All these statistics are computed automatically by the Hold’em Manager 

software and are stored in a relational database. The agent extracts these through a 

direct connection to the Hold’em Manager’s database. 

6.4.2 The agent’s strategy 

Let’s consider ℎ𝑒𝑟𝑚𝑒𝑠 ∈ 𝑁 being the developed agent playing a particular 𝐺𝑃. The 

developed agent follows a short-stack strategy. A short stack strategy has the following 

characteristics: 



Chapter 6 – Game Playing 

 

158 
 

 Playing with a money stack (money brought to the game) of at most 20 

big-blinds (minimum bet value).∀ℎ: 𝑠(ℎ𝑒𝑟𝑚𝑒𝑠, ℎ) + 𝑏(ℎ𝑒𝑟𝑚𝑒𝑠, ℎ) ≤

20 × 𝑐(ℎ0), being ℎ0 the history of the first game decision. 

 Initial number of opponents between 4 and 6. 5 ≥ |𝑁| ≥ 7. One of the 

conditions for a short-stack strategy to work well is the restriction of the 

number of players. When this condition is not met, the wiser decision is 

to exit that game and enter in another.  

 Decisions are limited to the Pre-Flop round, knowing that |𝑆𝑓𝑙𝑜𝑝| = ∅, 

which means that the decisions only consider the Hermes’s private cards. 

 Hermes’ decision abstraction. Hermes only chooses from three possible 

actions – fold, call and all-in – ignoring all possible raise values. The call 

action is only used if the Hermes decides to fold when the call action is 

free. In short, for a given history h where 𝑝(ℎ) = ℎ𝑒𝑟𝑚𝑒𝑠 (it is hermes’ 

turn) then 𝑎(ℎ) ∈ {0, 𝑠(𝑝(ℎ), ℎ)}. 

Before describing the algorithm, it is important to describe how to compute the 

equity (Algorithm in Figure 68). The equity is the probability of a certain player’s hand 

winning when dealing the remaining hidden shared cards. It is similar to E[HS] or ARS 

(see Section 5.2.3) but it considers more carefully possible opponents’ decisions.  

Since Hermes is only making Pre-Flop decisions, there are no visible shared cards 

which means that we have to sample possible shared cards (with Monte Carlo 

simulation). The same happens for opponents’ cards, because they remain hidden the 

whole game (and they might not even be revealed at all). For the opponent card 

sampling, a new variable 𝑃𝑒𝑟𝑐 is introduced as input (and here resides the main 

difference of this method to the E[HS]). 𝑃𝑒𝑟𝑐 indicates the percentile of the strength of 

possible opponents’ starting hands. For instance, if 𝑃𝑒𝑟𝑐 = 28%, it means that we 

consider that our opponent is only likely to have the best 28% starting hands. This 

percentage reflects the hands’ strength on the Pre-Flop, because Hermes only plays on 

the Pre-Flop. This means that Hermes never considers how the opponents’ strategies 

work after the Flop. 
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Algorithm 𝐸𝑞𝑢𝑖𝑡𝑦(ℎ ∈ 𝐻, ℎ𝑒𝑟𝑜 ∈ 𝑁, 𝑝𝑒𝑟𝑐, 𝑛𝑖𝑡𝑒𝑟) 
𝑤𝑖𝑛 = 0 
𝑡𝑖𝑒 = 0 
𝑙𝑜𝑠𝑒 = 0 
𝑖𝑡𝑒𝑟 = 0 
 
𝐿𝑒𝑡 𝑝𝑎𝑖𝑟𝑠 = the list of the possible card pairs, ordered by value 

𝑝𝑝 = 𝑠𝑢𝑏𝑙𝑖𝑠𝑡(𝑝𝑎𝑖𝑟𝑠, (1 − 𝑝𝑒𝑟𝑐) × 𝑙𝑒𝑛(𝑝𝑎𝑖𝑟𝑠), 𝑙𝑒𝑛(𝑝𝑎𝑖𝑟𝑠)) 

 
for each 𝑝 in 𝑝𝑝\𝑃ℎ𝑒𝑟𝑜 

while 𝑖𝑡𝑒𝑟 < 𝑛𝑖𝑡𝑒𝑟 do  
𝐿𝑒𝑡 𝑏𝑜𝑎𝑟𝑑 = 𝑔𝑒𝑛_𝑟𝑎𝑛𝑑𝑜𝑚_𝑏𝑜𝑎𝑟𝑑(𝐷\𝑝\𝑃ℎ𝑒𝑟𝑜 , 5) 
𝑜𝑢𝑟𝑟𝑎𝑛𝑘 =  max

𝑤∈[𝑃ℎ𝑒𝑟𝑜∪𝑏𝑜𝑎𝑟𝑑]
5
𝑠𝑐𝑜𝑟𝑒(𝑤) 

𝑜𝑝𝑝𝑟𝑎𝑛𝑘 =  max
𝑤∈[𝑝∪𝑏𝑜𝑎𝑟𝑑]5

𝑠𝑐𝑜𝑟𝑒(𝑤) 

if 𝑜𝑢𝑟𝑟𝑎𝑛𝑘 > 𝑜𝑝𝑝𝑟𝑎𝑛𝑘 then 𝑤𝑖𝑛++ 
else if 𝑜𝑢𝑟𝑟𝑎𝑛𝑘 < 𝑜𝑝𝑝𝑟𝑎𝑛𝑘 then 𝑙𝑜𝑠𝑒++ 
else 𝑡𝑖𝑒𝑑++ 
end if 
𝑖𝑡𝑒𝑟++ 

end while 
end for each 
 

return (1 −
𝑙𝑜𝑠𝑒

𝑤𝑖𝑛+𝑡𝑖𝑒+𝑙𝑜𝑠𝑒
) 

Figure 68 – Hermes equity computation algorithm  

The next step is to evaluate the game state. The game state evaluation considers 

the number of players that have called (#𝑐𝑎𝑙𝑙𝑒𝑟𝑠), the number of players that have 

raised (#𝑟𝑎𝑖𝑠𝑒𝑟𝑠) and the number of players that are all-in (#𝑎𝑙𝑙𝑖𝑛𝑒𝑟𝑠). Table 32 

indicates the possible abstracted game states. 

Table 32 –  Possible game state abstractions considered by Hermes  

State #𝒄𝒂𝒍𝒍𝒆𝒓𝒔 #𝒓𝒂𝒊𝒔𝒆𝒓𝒔 #𝒂𝒍𝒍𝒊𝒏𝒆𝒓𝒔 
unopened 0 0 0 

limped 1 0 0 

raised 0 1 0 

allin 0 0 1 

limps >1 0 0 

 

Next, we need to classify the Hermes’ starting hand strength. For this, we need 

two measures: the hand classification function ℎ𝑐𝑙𝑎𝑠𝑠: 𝐷2 → {1,2,3,4,5,6,7,8}, given 

by Table 33 and the expected hand return given by algorithm in Figure 69. 
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Algorithm 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝑅𝑒𝑡𝑢𝑟𝑛(𝐻𝑒𝑟𝑚𝑒𝑠 ∈ 𝑁, 𝑜𝑝𝑝𝑜𝑛𝑒𝑛𝑡 ∈ 𝑁, ℎ ∈ 𝐻) 
𝐿𝑒𝑡 𝑓3𝑏 = 𝑓𝑜𝑙𝑑3𝑏𝑒𝑡(𝑜𝑝𝑝𝑜𝑛𝑒𝑛𝑡) 
 
𝐿𝑒𝑡 𝑏𝑏𝑠 = 𝑣𝑝𝑖𝑝(𝑜𝑝𝑝𝑜𝑛𝑒𝑛𝑡) 
 
𝐿𝑒𝑡 𝑒𝑞 = 𝐸𝑞𝑢𝑖𝑡𝑦(ℎ, ℎ𝑒𝑟𝑜, 𝑏𝑏𝑠, 10000) 
 
𝐿𝑒𝑡 ℎ0 be the prefix of ℎ where |ℎ0| = 0 

𝐿𝑒𝑡 𝑝𝑜𝑡 = ∑𝑏(𝑖, ℎ)

𝑁

𝑖

 

 

    return ((
(𝑓3𝑏 − |𝑁| × 𝑐(ℎ0) × 𝑝𝑜𝑡) +

((1 − 𝑓3𝑏) × (𝑒𝑞) × (𝑏𝑏𝑠 + 𝑝𝑜𝑡))
) − ((1 − 𝑒𝑞) × (𝑏𝑏𝑠 + 𝑝𝑜𝑡))) 

Figure 69 – Hermes expected return algorithm.  

 

Table 33 – Starting cards classi f ication for  Hermes.  1 for  top scored hands 
and 8 for low scored hands.  Hands without classif ication in this ta ble are 
considered unplayable thus Hermes folds immediately when holding such 
hands. 

 Offsuit 

A K Q J T 9 8 7 6 5 4 3 2 

Su
it

e
d

 

A 1 1 2 2 3 5 5 5 5 5 5 5 5 

K 2 1 2 3 4 6 7 7 7 7 7 7 7 

Q 3 4 1 3 4 5 7       

J 4 5 5 1 3 4 6 8      

T 6 6 6 5 2 4 5 7      

9 8 8 8 7 7 3 4 5 8     

8    8 8 7 4 5 6 8    

7       8 5 5 6 8   

6        8 6 7 7   

5         8 6 6 7  

4          8 7 7 8 

3            7 8 

2             7 

 

Finally, the Hermes game playing algorithm is presented in Figure 70. This 

algorithm uses a rule-based approach that considers the abstracted game state, and 

the expected return of the current hand, in order to decide either to fold or go all-in. It 

returns the bet value. 

 

 



Chapter 6 – Game Playing 

 

161 
 

Algorithm 𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑦(𝐻𝑒𝑟𝑚𝑒𝑠 ∈ 𝑁, ℎ ∈ 𝐻) 
𝐿𝑒𝑡 𝑓𝑜𝑙𝑑𝑂𝑟𝐶𝑎𝑙𝑙 = 0 
𝐿𝑒𝑡 𝑎𝑙𝑙𝑖𝑛 = 𝑠(𝑝(ℎ), ℎ) 
 
𝐿𝑒𝑡 𝑜𝑝𝑝 = the last playing opponent that went all-in. If none, select the last playing opponent that 
raised. If none, select the last playing opponent. If none, select the player in the dealer position. 
 
𝐿𝑒𝑡 𝑝𝑜𝑠 =the Hermes’s position in table. It can be bb (if the Hermes agent is the big-blind), sb (the 
small-blind position), btn (Hermes is the dealer – last to act), co (cut-off position – before dealer) and 
utg (under the gun position – first to act). 
 
𝐿𝑒𝑡 𝑝𝑜𝑠𝑜𝑝𝑝 = the opp position in table (with the same possible values as the Hermes’s position). 

𝐿𝑒𝑡 𝑒𝑟 = 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝑅𝑒𝑡𝑢𝑟𝑛(𝐻𝑒𝑟𝑚𝑒𝑠, 𝑜𝑝𝑝, ℎ) 
𝐿𝑒𝑡 𝑔𝑎𝑚𝑒𝑆𝑡𝑎𝑡𝑒 =the game’s state according to Table I. 
 
if ℎ𝑐𝑙𝑎𝑠𝑠(𝑃ℎ𝑒𝑟𝑜) = 1then 

return allin 
     else if ℎ𝑐𝑙𝑎𝑠𝑠(𝑃ℎ𝑒𝑟𝑜) = 2 ∧ 𝑒𝑟 ≥ 0 then 

switch gameState 
 case unopened 

if 𝑝𝑜𝑠 = 𝑠𝑏 then 
     return rand_real_between(0.0, 1.0)>0.4?allin:fold 
else if 𝑝𝑜𝑠 = 𝑐𝑜 ∨ 𝑝𝑜𝑠 = 𝑏𝑡𝑛 then 
     return allin 
end if 

 case limped ∨ allin 
if 𝑝𝑜𝑠 = 𝑏𝑏 ∨ 𝑝𝑜𝑠 = 𝑠𝑏 then 
     return allin 
end if 

 case limps 
if 𝑝𝑜𝑠 = 𝑏𝑏 then 
     return allin 
end if 

 case raised 
if 𝑝𝑜𝑠 = 𝑏𝑏 ∨ 𝑝𝑜𝑠 = 𝑠𝑏 ∨ 𝑝𝑜𝑠 = 𝑏𝑡𝑛 then 
     return allin 
end if 

return foldOrCall 
   else if ℎ𝑐𝑙𝑎𝑠𝑠(𝑃ℎ𝑒𝑟𝑜) = 3 ∧ 𝑒𝑟 ≥ 0 then 

switch gameState 
 case unopened 

if 𝑝𝑜𝑠 = 𝑏𝑡𝑛 ∨ 𝑝𝑜𝑠 = 𝑠𝑏 then 
     return allin 
end if 

 case limped ∨ raised 
if 𝑝𝑜𝑠 = 𝑏𝑏 then 
     return allin 
end if 

return foldOrCall 
end if 
 

if 𝑝𝑜𝑠 =  𝑏𝑏 ∧ 𝑔𝑎𝑚𝑒𝑆𝑡𝑎𝑡𝑒 = 𝑟𝑎𝑖𝑠𝑒𝑑 ∧ (𝑝𝑜𝑠𝑜𝑝𝑝 = 𝑏𝑡𝑛 ∨ 𝑝𝑜𝑠𝑜𝑝𝑝 = 𝑠𝑏) ∧  𝑓𝑜𝑙𝑑3𝑏𝑒𝑡(𝑜𝑝𝑝) ≥ 0.5 then 

     return allin 
else if 𝑝𝑜𝑠 =  𝑏𝑏 ∧ 𝑔𝑎𝑚𝑒𝑆𝑡𝑎𝑡𝑒 = 𝑟𝑎𝑖𝑠𝑒𝑑 ∧ 𝑝𝑜𝑠𝑜𝑝𝑝 = 𝑏𝑡𝑛 ∧ 𝑓𝑜𝑙𝑑3𝑏𝑒𝑡(𝑜𝑝𝑝) ≥ 0.5 then 

     return allin 
end if 
 
return foldOrCall 

Figure 70 – Hermes game playing algorithm.  
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6.5 Summary 

This chapter presented the methodologies for Poker game playing with emphasis for 

the two agents’ architecture: Lucifer and Hermes. Both these agents are validated in 

Chapter 7. 
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Chapter 7  

Validation 

 

This chapter presents the results obtained by the two agent architectures described in 

Chapter 6. Both agents have very different purposes: Hermes was built to play online 

and be profitable against humans; Lucifer was an entry to the ACPC competition – a 

competition that validates the agents in a more theoretical way. For the second case, 

the agent participated in the multiplayer Kuhn Poker track, a variant of Poker that is so 

small in terms of search space that enables the developed approaches to better 

concentrate on the opponent modelling aspects of the game – the lower number of 

information sets means that less games are needed to determine the best agent in the 

long run, which reinforces the importance of opponent modelling.   

7.1 Online Game Playing (Hermes) 

Given that the Hermes agent implementation only plays in a single table at a time and 

given that it was playing against humans, the result extraction is very time consuming. 

Even so, the results of 3814 games were extracted37 (see some statistics in Table 34).  

The overall profit of the agent was 1.48 big-blinds (minimum bets) for each 100 

games. Since we performed the experiments in tables where the blinds were 0.02€, 

the agent made an overall absolute profit of 1.13€. Considering that in each game the 

                                                      
37 Disclaimer: At the time the tests were performed, the use of agents was not illegal in the country 

where those tests occurred. Moreover, the authors did not find any mention in the software TOS against 

it. Even so, the account in which the tests were performed was closed short after the tests. 
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agent had to pay an average 5% commission over the amount of money that was bet, 

these results can be considered good. Moreover, this particular online casino refunds 

20% of the money paid on commissions, at the end of the month, when the player is 

profitable. This allowed for the agent to make an extra absolute profit value of 7.63€, 

making a total profit of 8.76€. This results in a final average profit of about 11.5 big-

blinds for each 100 games. 

Table 34 – Some statistics about the hand played by the Hermes agent.  

Feature Value 

Number of hands 3814 

VPIP 9.3 

PFR 9.0 

3Bet 8.9 

Winnings 1.13€ 

Bb/100 games 1.48 

Avg. All-in EV 54.6% 

Avg. Pre-flop All-in EV 54.3% 

Avg. Flop All-in EV 57.0% 

7.1.1 All-time results 

A graphical representation of the hands played and the agent’s profit balance overtime 

is shown in Figure 71. In this chart we consider that the commission refund function is 

linear. 

As can be observed in Figure 71, the agent’s total money balance increases 

overtime, ending up in a final absolute profit of 8.76€. In this graph, besides the global 

profit and the commission refunding profit, the showdown and non-showdown profit 

are also differentiated. The showdown profit includes money lost or won in all games 

where the agent decided to bet and at least one of the opponents covered that bet. 

Non-showdown profit includes all money lost when the agent folds or all the money 

won when the agent goes all-in and all opponents fold.   

One important concept to understand for these results’ analysis is the definition 

of stealing and defending blinds. The blinds are mandatory bets that are made by 

some players before the game begins and before they see their cards. Since that card 

dealing is a random event, it means that players sometimes are spending money on 

hands with very low rank. Therefore, defending blinds means to not to waste the 
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blinds money when the starting hand is good (or convince the opponents that it is 

good); stealing blinds means to be able to interpret when an opponent that did a blind 

bet has a weak hand, and therefore doing a high bet to make it forfeit that hand. This 

is rather important for this type of agent, because it only plays with information from 

the Pre-Flop, which means that a god amount of the agent’s profit comes from blinds.  

 A conclusion that can be taken from this graph is the importance of stealing and 

defending blinds (see Section 7.1.4). Since the agent is a tight player (it only raises on a 

very small number of hands), it ends up folding 0.02€ or 0.01€ too many times, when it 

is the blinds position. This results in the agent losing too much money (Non-showdown 

winnings). The only way to reduce these losses would be to play in other rounds 

instead of Pre-Flop. Being a less tight agent would probably reduce the showdown 

games earnings. 

However, it is possible to observe a slight difference in the non-showdown line, 

after the 2800 hands, where the gradient starts to decrease. The reason behind this is 

the gradual improvement of the agent’s evaluation on the opponents’ pre-flop steal 

ability. The authors believe that the results will improve if the agent played even more. 

However, the profit already made by the agent in the showdown winnings 

compensates its lack of defending blinds ability. 

 

Figure 71 – Hermes’s  al l  t ime profit  
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7.1.2 Playing style analysis 

In order to analyse the agent’s playing style, Table 34 presents some relevant statistics 

that summarize the agent’s online performance in this experiment. These statistics do 

not include the commission refunds, which are dealt independently. Now, each 

statistic meaning is described: 

 Number of hands – the total number of Poker games played in this experiment.  

 VPIP (Voluntary Put money In Pot) – indicates the percentage of games where 

the agent bets, excluding the money bet when the agent was in the blinds 

positions. As expected and as said earlier, since the agent’s strategy is tight, the 

agent only went all-in in about 9% of the games. 

 PFR (Pre-flop raise) – number of times the agent raises any amount in the Pre-

Flop round. Since the agent’s strategy only considers the Pre-Flop round, this 

value is very similar to VPIP. The agent only plays after the Pre-Flop if it can get 

a free Flop, which means that the agent is in the big-blind position and none of 

the opponents bet any amount, thus enabling the agent to just call the hand. 

 3Bet – the number of times the agent raises after any opponent has raised. As 

expected, this measure is also similar to VPIP since the agent usually only plays 

in table positions where it decides the action after other players. 

 Winnings – the absolute winnings excluding the commission refunds. These 

winnings, depending on the value of the blinds, are the ones that indicate if the 

agent is entitled to commission refunding. 

 Bb/100 games – the number of big-blinds (minimum bets) won for each 100 

games. This is the common measure that is used to evaluate if a player is good 

or not. The way the value of this measure has to be looked depends greatly on 

the value of the blinds. For instance, for games with blinds of 0.50-1.00€, a 

good player should have about 7Bb/game. In 0.02-0.01€ games, a good player 

should have about 10Bb/game [82]. 

 Avg. All-in EV – the expected value when the agent goes all-in. This measure is 

relative to the investment made by the agent. In these experiments, the 
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average EV is 54.6%, which means that when the agent goes all-in, it has a 

positive profit of 54.6% of the amount that was bet. For this stat, we indicate 

its average value in the game, in the Pre-Flop and after the Pre-Flop. 

From these stats it must be highlighted the positive expected value for all-in 

actions in all rounds. This means that when the agent goes all-in, it profits in average 

more than 50% of its investment. 

7.1.3 Playing with table position 

Now let’s analyse the agent’s ability to play in different positions in the table (Table 

35). Again the profit made from refunds is not being considered. The events on each 

position in this particular experiment are: 

 Small-blind – the player has to pay 0.01€ at the start of the game without 

seeing its cards. It is the penultimate player to choose his/her action. 

 Big-blind – the player has to pay 0.02€ at the start of the game without seeing 

its cards. It is the last player to act. 

 Early – no blinds. It is one of the first players to act. This position is 

disadvantageous because the player has to act without any feedback from 

his/her opponents. 

 Button – also known as dealer position. In the Pre-Flop is antepenultimate 

player to act or the last if only two players are playing. It is the most 

advantageous position since the player does not have mandatory bets and 

he/she can get feedback from the actions of most of the opponents. 

 Cutoff – position just before the button. 

 Middle – positions between the last early and the cut-off. 

The conclusions that we can take from these results are that playing in positions 

where blind bets are made, will always pose the threat of losing money (especially 

when the blinds are so low); the only way to lessen this leak is to improve the 

evaluation on the stealing probability. The agent’s performance in each position is 

overall satisfying, showing a profit on almost all positions excluding the blinds and the 
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cut-off. The cut-off negative income is probably due to the results’ variance (low 

number of games), since the expected value in that position is positive. A very 

satisfying statistic to highlight is the average all-in percentage which is above 50% in all 

positions. This surely proves that the more hands the agent plays the more profit it will 

attain. The small blind VPIP is the highest among all, which means that the agent tries 

to steal the big blind every chance he sees fit. Also the highest average all-in 

percentage comes from the early position, which is expected since it is the position the 

agent plays more seldom, making its hand ranges a lot stronger. It is also possible to 

observe the following facts: 

 The average EV for all positions where the agent has to bet blinds is 

negative, as expected (because the agent was to put money even with 

hands that it will forfeit; the only way of playing with those hands is if it is 

a free call). However, the global average EV is positive, which means that 

for the sum of all positions the agent is profitable.  

 The more similar the actual Profit is to the EV, the more stabilized are the 

statistics about the agent’s game play. This means that, in this case, the 

profit was over than what was statistically expected, because the agent 

was “lucky” or because the opponents fold their hand in response to 

more aggressive moves by the agent. 

Table 35 – Hermes’s playing style statistics  

Position Hands Profit EV VPIP% PFR% 3Bet% Avg All-In 

Small blind 695 -1.43€ -2.80€ 14.0% 13.5% 11.5% 51.8% 

Big blind 701 -4.47€ -4.73€ 10.4% 10.1% 9.5% 52.4% 

Early 411 1.54€ 1.86€ 5.6% 5.6% - 64.1% 

Middle 620 0.77€ 1.34€ 6.8% 6.8% 6.5% 57.5% 

Cut-off 685 -0.34€ 1.18€ 7.2% 6.9% 5.5% 56.0% 

Button 702 5.06€ 3.17€ 10.0% 9.5% 6.9% 55.6% 

Totals 3814 1.13€ 0.02€ 9.3% 9.0% 8.9% 54.6% 

7.1.4 Stealing and defending blinds 

In Table 36 the agent’s results when defending and stealing blinds situations (without 

profit refunds) are demonstrated. 
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Table 36 – Hermes’s defending and stealing bl inds statistics  

Type Hands Profit EV Fail | All-In EV% 

Stealing 102 3.59€ 1.81€ 55.1% 

Defending 51 0.51€ 1.60€ 49.3% 

 

Stealing blinds is a situation where the agent raises at Cut-off, Button or small-

blind positions. Stealing blind results are extremely positive, since the agent’s objective 

is to steal blinds while taking into account the fold chance of the opponents, since it 

does not play in other rounds. When the steal attempt fails, the most likely reason for 

that is the agent not accurately knowing yet the opponent’s range. However, the agent 

has still a very high relative expected value (55.1%) when it fails to steal the blinds and 

goes all-in. Giving the small amount of the blinds (used in these tests), this probably 

means that there is still a good margin for stealing more blinds by bluffing more, 

because for the presented expected values, it means that the agent only played 

premium hands (which means that it probably folded too much). These results show 

the high importance the steal factor has in the Poker game (3.59€ in only 2.67% of the 

games has a huge significance). In Figure 72 it is possible to observe the positive 

growing rate (about 3.5%) of the profit in these situations. 

 

Figure 72 – Hermes’s  steal ing bl inds results  
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Defending a blind is a situation where the agent is in a table position where it has 

to bet blinds, and has to reply to a raise from another player. In Table 36  the results 

when the agent tries to defend the blind by going all-in are demonstrated. Here it is 

possible to see that the calculations for expected value were fairly accurate, since 

among all the all-ins made, the average all-in expected value percentage is 49.3%, 

meaning when the agent is called it will still have a good winning rate, and when it 

does not get called it wins the blinds plus the raises of the opponents. The expected 

value from these plays is higher than the actual winnings: this mean that the agent 

played well, despite of the variance not being on his side. Nevertheless it is still a small 

amount of hands, and in the long run the winnings would possibly even with the 

expected value. It is a very good expected value of 1.60€, since the agent bets 0.20€ at 

a time.  

It is possible to conclude by these results that when the agent defends blinds, it 

defends them correctly. However, by looking again at the results in Figure 71, it is 

possible to assert that the agent either just does not defend the blinds enough times 

or that no more profit can be made from this choice. 

7.1.5 Results against particular players 

In Table 37, the results of Hermes against the players that allowed it to make more 

profit are presented. The most significant players to note here are the ones which have 

a number of hands higher than 100, namely: Player2, Player9 and Player10. These 

three players show fairly good statistics, making them tight aggressive players (VPIP < 

28%; most winning players are tight aggressive [16]), and still the agent was able to 

exploit them and make a good positive profit over time.  

In Table 38 the results of the players who gave negative profit to the agent are 

shown. Looking at the top five most unprofitable opponents, their stats vary from a 

very tight aggressive player, Player15, to a very loose aggressive player, Player13. A 

quick look at the hands played against these players allows us to verify that some of 

these opponents (Player15 or Player20) have dominated the agent’s strategy. Others, 

like Player11 or Player16 may be justified to the results high variance. 
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Table 37 – Hermes’s against the 10 most profitable opponents  

Opponent Hands VPIP PFR Profit 

Player1 14 42.9% 28.6 1.49€ 

Player2 271 17.7% 13.7% 1.00€ 

Player3 14 64.3% 21.4% 0.97€ 

Player4 41 82.9% 9.8% 0.79€ 

Player5 39 41.0% 12.8% 0.76€ 

Player6 5 40.0% 0.0% 0.73€ 

Player7 16 31.3% 18.8% 0.69€ 

Player8 45 57.8% 0.0% 0.62€ 

Player9 455 24.2% 11.2% 0.60€ 

Player10 860 19.8% 16.3% 0.56€ 

 

Table 38 – Hermes’s against the 10 less profitable opponents  

Opponent Hands VPIP PFR Profit 

Player11 54 55.6% 25.9 -1.07€ 

Player12 180 31.1% 12.2% -0.86€ 

Player13 38 84.2% 23.7% -0.62€ 

Player14 148 26.4% 23.0% -0.60€ 

Player15 277 27.8% 19.9% -0.59€ 

Player16 67 22.4% 20.9% -0.59€ 

Player17 136 20.6% 16.2% -0.56€ 

Player18 224 20.5% 19.2% -0.56€ 

Player19 25 72.0 40.0 -0.46€ 

Player20 774 15.0% 13.0% -0.46€ 

7.1.6 Summary 

As stated before, the Hermes implementation required background knowledge and 

expertise of a domain expert on the Texas Hold’em variant of Poker. Nevertheless, 

despite the strategy not being (yet) as good (profitable) as the one from the original 

player, the authors believe a great step was done towards the goal of making Poker 

agents more profitable than the best human players, by showing that it is now possible 

to create a winning agent. The most surprising aspect was the agent surpassing most 

of the human players found online, just by considering the Pre-Flop stage of the game. 

Some suggestions for possible improvements would be working on the blind stealing 

ability on the three positions fit to do so: big blind, small blind and button. The agent 

can also be improved in the matter of autonomy at the tables, for instance, leaving a 

table when holding more than 20 big blinds (the used Poker Bot software does not 
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support this – see Section 4.3), entering a new table where the minimum players is 4, 

leaving a table when it falls below 4 players, by this way optimizing the short-stack 

strategy (which is proved to work better in tables with 4 to 6 players). In future work 

the agent should also be tested in games with higher stakes, since they usually present 

more skilled players. Another important feature to add is the ability to play in 

simultaneous tables to allow for the agent to get profit much faster. 

7.2 AAAI 2014 Competition (Lucifer) 

7.2.1 Competition rules and goal 

The Lucifer agent participated in the Kuhn 3P track of the Annual Computer Poker 

Competitions that was held in 2014. The Kuhn track was held for the very first time in 

2014 with the objective of encouraging teams to invest time in opponent modelling 

techniques. The Kuhn Poker game is perfect to validate results in opponent modelling 

because it is a very short game with a very small number of possible information sets. 

The existence of 3 players also prevents the participants of using exclusively Nash-

Equilibrium based solutions, as current techniques do not give mathematical 

guarantees that the agents are in fact in an equilibrium stage. The rules of the 

competition38 were: 

 Game: Limit Kuhn Poker. There is a single round of betting in Kuhn poker. Each 

player first antes a single chip and is dealt a card from a deck containing one 

jack, queen, king and ace. The first player then has the option to check, or bet 

an additional chip. When facing a bet, a player can call the bet or fold. That is, 

only a single bet is allowed by any player. At showdown, the highest card wins 

the entire pot. The ace is the highest card. 

 Competition Format: Series of 3-player duplicate matches. Introduced in the 

2009 competition, multiplayer duplicate generalizes the heads-up duplicate 

format for the 3 player matches. If we consider that there are 3 possible seats 

that each bot can sit in, and 2 different relative orderings of the other 2 bots 

given the position of one bot, then there are six total possible configurations of 

                                                      
38 From: http://www.computerpokercompetition.org/index.php/competitions/rules/96-2014-rules 

 

http://www.computerpokercompetition.org/index.php/competitions/rules/96-2014-rules
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3 players at a given table. If we choose to play N hands per match then the 

following system will assure all players rotate through all possible seats and 

relative orderings: 

o Seat the players in some ordering, say bot 1 is the small blind, bot 2 the 

big blind and bot 3 the button 

o Play N/6 hands using standard poker rules: after every hand the button 

and blinds rotate one seat to the left 

o Reset the memory of the bots 

o Rotate the seating of the players to the left, so in our example bot 1 is 

now on the button, bot 2 is SB, bot 3 is BB 

o Play N/6 hands again, dealing the same cards as before to the same 

seats as before (bot 1's first hand is now bot 3's first hand from round 1) 

o Reset the bots again 

o Rotate once more 

o Play the same N/6 hands again 

o Reseat the players in the other relative ordering - bot 1 SB, bot 3 BB, bot 

2 button 

o Repeat the above process of dealing out the same N/6 hands to the 

same seats, resetting the memories and rotating the bots between 

rounds 

 Hand Per Match: 3000 

 Stack Sizes: Infinite 

 Bet Size: 1 chip 

 Ante Sze: 1 chip 

 Showdown Mucking: No 

 Illegal Actions: Any illegal action is interpreted as a check/call. 
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 Winner Determination: total bankroll. The total bankroll winner determination 

rule encourages competitors to submit agents that can do one thing: maximize 

their total winnings across all opponents. 

7.2.2 Competition results 

The Lucifer agent performed very well in the 2014 competition, getting the 2nd place in 

the competition, only losing to the Alberta’s Computer Poker Research Group bot (see 

Figure 73). The Hyperborean used a CFR based approach and HITSZ used case based 

reasoning approach. 

   

Hyperborean39 (University of 

Alberta, Canada) 

Lucifer (LIACC, University of 

Porto, Portugal) 

HITSZ (School of Computer 

Science and Technology HIT, 

China) 

Figure 73 –  AAAI Computer Poker Competit ion 2014 –  highest ranked teams 
in the Kuhn 3P track.  

 

The full results of the competition are presented: in Table 39 – it demonstrates 

the global results of the competitions by giving all combinations of three agents and 

providing the global bankroll and variance for matches between those agents; Table 40 

– a different view for Table 39, which displays the results per match; Table 41 –  it 

demonstrates the completion global results when combining the teams that 

participated with different agents for each position in the table (in this case only the 

Hyperborean agent played with 3 different programs).  As it can be observed from the 

tables, the winner of this competition was the Hyperborean agent, because it never 

had prejudice in any match. All tables express their results on average absolute gains 

(in blinds per 1.000 games) and their respective variances.  

 

                                                      
39 With 3 entries, one per different match 
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Table 39 – Results from the top scored teams in the 2014 three player Kuhn 
poker AAAI competition 40.  

Opponents 
Competitors41 

HB.RMPUE HB.BFO HB.AEWRM LUCIFER HITSZ_CS KYH42 

Lucifer HB.RMPUE     -17.40 ± 3.05 -74.22 ± 6.95 

HITSZ_CS HB.RMPUE    -21.33 ± 4.71  -61.98 ± 5.92 

KYH HB.RMPUE    24.44 ± 5.93 -12.78 ± 5.54  

Lucifer HB.BFO     -6.52 ± 2.73 -78.18 ± 10.31 

HITSZ_CS HB.BFO    -3.12 ± 3.79  -35.50 ± 9.78 

KYH HB.BFO    50.42 ± 7.15 -16.74 ± 5.96  

Lucifer HB.AEWRM     -8.80 ± 3.49 -46.50 ± 6.87 

HITSZ_CS HB.AEWRM    -7.15 ± 5.24  -44.95 ± 9.11 

KYH HB.AEWRM    20.78 ± 5.99 18.35 ± 2.89  

HITSZ_CS Lucifer 38.73 ± 4.27 9.64 ± 4.96 15.96 ± 4.05   -17.25 ± 7.04 

KYH Lucifer 49.78 ± 5.23 27.76 ± 10.21 25.72 ± 7.90  -6.47 ± 2.26  

KYH HITSZ_CS 74.76 ± 3.58 52.24 ± 9.74 26.60 ± 7.16 23.72 ± 5.23   

Average 54.4231 29.8803 22.7593 15.0223 -7.0328 -43.6771 

 

Table 40 – Played matches results in the 2014 three player Kuhn poker AAAI 
competition.  

Match ID HB.RMPUE HB.BFO HB.AEWRM LUCIFER HITSZ_CS KYH 

M01 38.73 ± 4.27   -21.33 ± 4.71 -17.40 ± 3.05  

M02 49.78 ± 5.23   24.44 ± 5.93  -74.22 ± 6.95 

M03 74.76 ± 3.58    -12.78 ± 5.54 -61.98 ± 5.92 

M04  9.64 ± 4.96  -3.12 ± 3.79 -6.52 ± 2.73  

M05  27.76 ± 10.21  50.42 ± 7.15  -78.18 ± 10.31 

M06  52.24 ± 9.74   -16.74 ± 5.96 -35.50 ± 9.78 

M07   15.96 ± 4.05 -7.15 ± 5.24 -8.80 ± 3.49  

M08   25.72 ± 7.90 20.78 ± 5.99  -46.50 ± 6.87 

M09   26.60 ± 7.16  18.35 ± 2.89 -44.95 ± 9.11 

M10    23.72 ± 5.23 -6.47 ± 2.26 -17.25 ± 7.04 

 

                                                      
40 Adapted from http://www.computerpokercompetition.org/index.php/competitions/results/105-2014-

results?showall=&start=4. Results are expressed in number of big-blinds for each 1000 games. 
41 HB.RMPUE (hyperborean3pk.RMPUE), HB.BFO (hyperborean3pk.BFO) and HB.AEWRM 

(hyperborean3pk.AEWRM) are all agents from the same competitor. The competition rules allow 

participants to use different programs in a different table seat.  
42 Full name: KuhnYouHandleIt 

http://www.computerpokercompetition.org/index.php/competitions/results/105-2014-results?showall=&start=4
http://www.computerpokercompetition.org/index.php/competitions/results/105-2014-results?showall=&start=4
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Table 41 – Global  compressed results by team from the top scored teams in 
the 2014 three player  Kuhn poker AAAI competition.  

Match ID Hyperborean LUCIFER HITSZ_CS KYH 

C01 21.44 ± 4,43 -10.53 ± 4,58 -10.91 ± 3,09  

C02 34.42 ± 7,78 31.88 ± 6,36  -66.30 ± 8,04 

C03 51.20 ± 6,83  -3.72 ± 4,80 -47.48 ± 8,27 

C04  23.72 ± 5,23 -6.47 ± 2,26 -17.25 ± 7,04 

Average 35.69 ± 6,34 15.02 ± 5,39 -7.03 ± 3,38 -43.68 ± 7,78 

 

The results of Lucifer agent were overall good. Lucifer only had negative 

prejudice when one of the Hyperborean bots was participating in the game and when 

the other one was HITSZ_CS (see Table 40 in matches M01, M04 and M07), because 

Lucifer could exploit HITSZ_CS (see M10) but not as well as the KYH, which means that 

most of the money lost goes to Hyperborean. However, Lucifer was able to make a 

very good profit in all other games: it even surpassed Hyperborean’s profit once in 

M05. When Hyperborean was not participating (see match C04 in Table 41), Lucifer’s 

victory was unquestionable (none of the other competitors was able to make any 

profit). In other matches, where HITSZ_CS was not participating, Lucifer even had a 

game where its results were better than the Hyperborean (M05), which means that 

Lucifer made a better model of the KYH agent than HITSZ_CS. 

By combining the completion overall results in Table 41 (because Hyperborean 

had 3 agents, one of each game position), it is possible to see the Lucifer had an 

unquestionable 2nd place because its final bankroll is very far away from the 3rd place 

(which had negative profit). The overall Lucifer’s profit in this competition was 15 

blinds for each 1000 games, which means that it is capable of increasing its bankroll by 

1.5% in each game. Considering the simplicity of the played variant, this result is very 

good, since luck has a huge impact on this game (it is highly likely that one of the 

players will get an Ace, making it the virtual winner of game) – this game is won by 

who folds better. 
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7.3 Summary 

This chapter summarized the results obtained by the two developed agent 

architectures during this research work. The obtained results are very promising, 

especially the results on online matches where, for the first time reported, it is shown 

that an agent can be profitable in multiplayer tables against human players.  Further 

testing should be made in the future, against more competitive human players (the 

limitation here are the amounts of the bet at tables with higher blinds, which would 

require funding for these tests to be done). As for the ACPC competition, the results 

demonstrate that the opponent modelling is the key for being successful at multiplayer 

tables. 
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Chapter 8  

Conclusions 

 

Although there is a lot of finished research on Computer Poker there is still no known 

Poker agent capable of beating the best human players in the Texas Hold’em variant in 

full multiplayer tables (especially the No-Limit variant). Recent approaches like the 

Cepheus agent show that such goal is not impossible and that we are getting closer. 

However, there are still many challenges, most of which related to the size of the 

problems and the current limited capacity of our hardware to deal with such huge 

amounts of data. This might be easier to address one day with the popularization of 

quantum computing (which will enable us to model problems in a different but more 

capable way to deal with huge amounts of data) or the simulation or realization of 

human like traits in computers, such as intuition, a skill humans use in so many 

problems (like Poker) without us being able to explain how. 

This research embraced many different areas, in order to help the development 

of the Computer Poker research domain. The authors believe that the contributions 

can be divided into two different parts: supporting tools (Chapter 4) and domain 

advancements (Chapter 5, Chapter 6 and Chapter 7). The first part contributed to the 

expansion of the Computer Poker research domain by analysing and describing several 

tools that not only allow for a faster progression in this domain but also introduce new 

challenges and goals to be achieved. Moreover, it is innovative because the simulation 

and modelling area in Poker had very little research until now. The second part 
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consists of improvements to already existing approaches that can be used to further 

enhance current methodologies.  

8.1 Contributions 

The contributions that are considered to be the key contributions of this thesis are: 

 A new simulation system that supports computer Poker research by 

accommodating researchers needs. This system includes a new language for 

specifying custom Poker variants, and a very simple general Poker game 

playing agent. 

 An online poker playing bot software and API which allows Poker playing 

agents to compete against human players in real money games.   This is done 

without the knowledge of human players so as to eliminate the possible 

psychological effects. 

 New approach, with minimum memory usage, that greatly speeds-up the 

computation of hand strengths, called Average Rank Strength. The same 

method can be used to compute other prediction measures in Poker. 

 A new configurable and domain-independent abstraction algorithm (RGU) 

based on the average utility of a Nash-Equilibrium profile strategy. The size of 

the abstraction depends on the computer resources and is completely 

customizable. 

 An algorithm for the inference of high-level strategies described in the 

language [45]. It was demonstrated that this methodology works by empirically 

inferring several strategies from human game playing data. 

 A new live opponent modelling methodology named K-Current-Best-Utility 

strategy, which allows an agent to dynamically adapt to the current opponents’ 

strategies, almost without any storage, which was validated empirically in the 

AAAI Computer Poker Competition. 

 Some optimizations in the Counterfactual Regret Minimization algorithm, 

namely a non-recursive implementation (which increases the amount of 



Conclusions and Future Work 

181 
 

necessary memory but greatly reduces the computation time) and decision tree 

pruning optimizations which can greatly reduce the computation time with 

almost no impact in the generated strategies.  

 An agent architecture that got the first reported results of an agent being 

profitable in online games against several human players. The reported 

matches were played with real money. 

8.2 Goals Achievement 

Regarding the completion of this thesis’s goals, we now summarize the goals 

accomplishment level. More or less, all goals have been addressed and have some 

degree of achievement. 

 Goal: Explore how methodologies used on the Computer Poker domain can potentially be used or at 

least hint to the solution of other AI-related problems. 

The final version of this thesis focused more on Computer Poker itself than its 

applications to other knowledge areas. As explained in Sections 2.1 and 2.5, Poker 

itself is import enough (in terms of public interest) to be the main focus of this thesis 

but, however, the authors feel that there is room to improve on these aspects. 

Nevertheless, the developed improvements on the Counterfactual Regret 

Minimization algorithm (an algorithm that is domain independent), the K-Current-

Best-Utility method and the RGU abstraction represent contributions that are domain 

independent and can be adapted to (at least) a great deal of sequential games. 

 Goal: Create domain validation methodologies and tools for better assessment of scientific 

advances.  

As demonstrated in Chapter 4, the developed tools allow for the software agents 

to be tested and validated in almost all important aspects of the Computer Poker 

domain. The main limitation of the developed tools is in the Poker Bot software not 

supporting the automatic selection of the table, which would make it completely 

autonomous. 

 Goal: Present necessary engineering aspects for the construction of Poker agents as opposed to a 

more theoretical approach 
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The completion of this goal is demonstrated by the implementation of the Poker 

Bot Software described in Section 4.3 and the Lucifer and Hermes agent architectures, 

respectively on Sections 6.3 and 6.4. 

 Goal: Improve the efficiency of current techniques in order to reduce the huge amount of resources 

that they need 

Two of this thesis contributions helped achieving this goal: the execution time of 

main state of art algorithm – Counterfactual Regret Minimization – can be greatly 

reduced through a parallel and linear implementation with a memory usage increase; 

the Average Rank Strength can reduce by a 1.000 times the computation time, with an 

additional small memory usage increase. As described on Section 6.2.2, it is still 

possible to improve even further the linear CFR execution time and decrease its 

memory usage, but the hardware that was available to do the tests limited the 

experiments. 

 Goal: Find out how to combine current techniques and technologies to create a Poker agent that 

finally surpasses human players by being profitable in online multiplayer matches 

 This goal was achieved through the implementation of the Hermes software 

agent, which reported the first positive online results, with fair testing against human 

players. 

 Goal:  Overcome the limitations of current methodologies on multiplayer games. 

Until now, there was very little research on multiplayer Poker and the 

importance of opponent modelling techniques in those type of games. Lucifer agent 

achieved this goal by introducing the K-Current-Best-Utility method and by obtaining 

good results in the 2014 ACPC competition (see Section 7.2.2). 

Regarding the research questions of this thesis, we can outline the answers for 

them: 

 Question: Is it possible to improve current simulation tools for Poker games? If so, will this 

improvement help on the construction of more competitive Poker playing agents? 

Yes, by deeply analysing the game in all its aspects especially by using expert 

knowledge and not only the more scientific and theoretical aspects. This thesis 
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demonstrated the importance of having agents interacting with humans, because 

more theoretical approaches such as Nash-Equilibrium strategies are still unfeasible for 

online game play.  

 Question: With currently available technology is it already possible for a Poker playing software 

agent to be profitable in online multiplayer matches with real money bets? If not, what needs to be 

improved in software agents to do so? 

Yes, now software agents can be profitable online multiplayer matches with real 

money, against weak human players. However, it is still unclear if those agents can 

beat highly skilled players. 

 Question: In which way can abstraction techniques be improved in order to be domain-free and to 

better represent their corresponding unabstracted games? 

Abstraction techniques for sequential games should focus on the utility obtained 

from possible plays. On possible domain free implementation resides on using the 

utility of similar but smaller games that are tractable with current hardware. 

 Question: How is it possible to reduce the large number of resources needed by current techniques 

without compromising the final results? 

It is possible by using as less recursivity as possible on the methodologies. On this 

domain the recursive algorithms are easier to explain, implement and represent. 

However, they lack capacity of being easily applicable without a huge amount of 

computational resources.   

8.3 Future Work 

There are several improvement points that can be done in this work. Some potential 

improvements are: 

 Try to apply the K-Current-Best-Utility in online games with different agent 

architectures, by using teams of computer programs as was done in previous 

works such as [30]. 

 Improve the Average Rank Strength method in order to make it more generic. 

This would allow it to be adapted to other Poker variants and be therefore 

better integrated in the PGDL System. 



Conclusions and Future Work 

184 
 

 Some improvements in the tools that were created: enable the Poker bot to 

select the playing table instead of selecting it manually to truly automate the 

bot software. Allowing multiple tables at the same time would also enable 

software agents like Hermes to earn money faster. 

 Enable the Hermes agent to play in Post-Flop rounds of the game of No-Limit 

Texas Hold’em – this could make the agent much more profitable. 

 Improvements in Linear CFR by using a better way to store very large sparse 

arrays. 
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http://videos.sapo.pt/L0gobSW54S3bK7rokoSq 

  

http://videos.sapo.pt/L0gobSW54S3bK7rokoSq


Appendices 

197 
 

Appendix B Glossary of Poker Terms 

This glossary of poker terms was taken and adapted from the book “The Theory of 

Poker” by David Sklansky [16]. 

 Ante. A fee that is deposited in the pot before the game starts. 

 All-in. To have one's entire stake committed to the current pot. Action 

continues toward a side pot, with the all-in player being eligible to win 

only the main pot. 

 All-in Equity. The expected value income of a hand assuming the game 

will proceed to the showdown with no further betting (i.e., a fraction of 

the current pot, based on all possible future outcomes). 

 Bad Beat. An unlucky loss. In particular, losing a game where the 

opponent probably should have folded, but instead got extremely lucky 

to win. 

 Bankroll. The amount of money that the player has allocated to the 

game. 

 Bet. To make the first wager of a betting round (compare raise). 

 Bet for Value. To bet with the expectation of winning if called (compare 

bluff). 

 Big Bet. The largest bet size in Limit poker (e.g., $20 in $10-$20 Hold'em). 

 Big Blind (sometimes called the Large Blind). A forced bet made before 

the deal of the cards (e.g., $10 in $10-$20 Hold'em, posted by the second 

player to the left of the button). 

 Blind. A forced bet made before the deal of the cards (see small blind and 

big blind). 
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 Bluff. To play a weak hand as though it were strong, with the expectation 

of losing if called (see also semi-bluff and pure bluff, compare bet for 

value). 

 Board (or Board Cards). The community cards shared by all players. 

 Board Texture. Classification of the type of board, such as having lots of 

high cards, or not having many draws (see dry). 

 Button. The last player to act in each betting round in Texas Hold'em. 

Also called the dealer button, representing the person who would be the 

dealer in a home game. 

 Call. To match the current level of betting. If the current level of betting is 

zero, the term check is preferred. 

 Check. To decline to put money in the pot in a betting round (compare 

call). 

 Check-Raise. To check on the first action, with the intention of raising in 

the same betting round after an opponent bets. 

 Community Cards. The public cards shared by all players. 

 Connectors. Two cards differing by one in rank, such as 7-6. More likely to 

make a straight than other combinations. 

 Dominated. A Hold'em hand that has a greatly reduced chance of winning 

against another because one or both cards cannot make a useful pair 

(e.g., KQ is dominated by AK, AQ, AA, KK, and QQ, but not by AJ or JJ). 

 Draw. A holding with high potential to make a strong hand, such as a 

straight draw or a flush draw (compare made hand). 

 Draw Potential. The relative likelihood of a hand improving to be the best 

if it is currently behind. 

 Drawing Dead. Playing a draw to a hand that will only lose, such as 

drawing to a flush when the opponent already holds a full house. 
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 Drawing Hand. A hand that has a good draw (compare made hand). 

 Dry. Lacking possible draws or betting action, as in a dry board or a dry 

game. 

 Equity (or Pot Equity). An estimate of the expected value income from a 

hand that accounts for future chance outcomes, and may or may not 

account for the effects of future betting (e.g., all-in equity). 

 Expected Value (EV) (also called mathematical expectation). The average 

amount one expects to win in a given game situation, based on the 

payoffs for each possible random outcome. 

 Flop. The first three community cards dealt in Hold'em, followed by the 

second betting round (compare board). 

 Fold. To discard a hand instead of matching the outstanding bet, thereby 

losing any chance of winning the pot. 

 Fold Equity. The equity gained by a player when an opponent folds. In 

particular, the positive equity gained despite the fact that the opponent's 

fold was entirely correct. 

 Forward Blinds. The logical extension of blinds for heads-up (two-player) 

games, where the first player posts the small blind and the second player 

(button) posts the big blind (compare reverse blinds). (Both rules are seen 

in practice, with various casinos and online card rooms having different 

policies for multi-player games that have only two active players). 

 Free-Card Danger. The risk associated with allowing an opponent to 

improve and win the pot without having to call a bet (in particular, when 

they would have folded). 

 Free-Card Raise. To raise on the flop intending to check on the turn. 

 Game. (a) A competitive activity in which players contend with each other 

according to a set of rules (in poker, a contest with two or more players). 
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(b) A single instance of such an activity (in poker, from the initial dealing 

of the cards to the showdown, or until one player wins uncontested). 

 Game Theory. Among serious poker players, game theory normally 

pertains to the optimal calling frequency (in response to a possible bluff), 

or the optimal bluffing frequency. Both depend only on the size of the bet 

in relation to the size of the pot. 

 Hand. (a) A player's private cards (e.g., two hole cards in Hold'em). (b) 

One complete game of poker (see game (b)). 

 Heads-up. A two-player (head-to-head) poker game. 

 Hole Card. A private card in poker (Texas Hold'em, Omaha, 7-Stud, etc.). 

 Implied Odds. (a) The pot odds based on the probable future size of the 

pot instead of the current size of the pot (positive or negative 

adjustments). (b) The extra money a strong hand stands to win in future 

betting rounds (compare reverse implied odds). 

 Kicker. A side card, often deciding the winner when two hands are 

otherwise tied (e.g., a player holding Q-J when the board is Q-7-4 has top 

pair with a Jack kicker). 

 Large Blind (usually called the Big Blind). A forced bet made before the 

deal of the cards (e.g., $10 in $10-$20 Hold'em, posted by the second 

player to the left of the button). 

 Loose Game. A game having several loose players. 

 Loose Player. A player who does not fold often (e.g., one who plays most 

hands at least to the op in Hold'em). 

 Made Hand. A hand with a good chance of currently being the best, such 

as top pair on the op in Hold'em (compare draw). 

 Mixed Strategy. Handling a particular type of situation in more than one 

way, such as to sometimes call, and sometimes raise. 
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 Muck. On the showdown the players have the possibility of hiding the 

content of their hands and thus forfeiting the hand. 

 No-Limit. A poker variant that does not impose a limit on the value of 

raise actions. 

 Offsuit. Two cards of different suits (also called unsuited, compare 

suited). 

 Open-Ended Draw. A draw to a straight with eight cards to make the 

straight, such as 6-5 with a board of Q-7-4 in Hold'em. 

 Outs. Cards that will improve a hand to a probable winner (compare 

draw). 

 Pocket Pair. Two cards of the same rank, such as 6-6. More likely to make 

three of a kind than other combinations (see set). 

 Post-flop. The actions after the flop in Texas Hold'em, including the turn 

and river cards interleaved with the three betting rounds, and ending 

with the showdown. 

 Pot. The common pool of all collected wagers during a game. 

 Pot Equity (or simply Equity). An estimate of the expected value income 

from a hand that accounts for future chance outcomes, and may or may 

not account for the effects of future betting (e.g., all-in equity). 

 Pot Odds. The ratio of the size of the pot to the size of the outstanding 

bet, used to determine if a draw will have a positive expected value. 

 Pre-fop. The first round of betting in Texas Hold'em before the flop, 

beginning with the posting of the blinds and the dealing of the private 

hole cards. 

 Pure bluff. A bluff with a hand that can only win if the opponent folds 

(compare semi bluff). 
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 Pure Drawing Hand. A weak hand that can only win by completing a 

draw, or by a successful bluff. 

 Raise. To increase the current level of betting. If the current level of 

betting is zero, the term bet is preferred. 

 Raising for a Free-card. To raise on the op intending to check on the turn. 

 Rake. A portion of the pot withheld by the casino or host of a poker 

game, typically a percentage of the pot up to some maximum, such as 5% 

up to $3. 

 Re-raise. To increase to the third level of betting after a bet and a raise. 

 Reverse Blinds. A special rule sometimes used for heads-up (two-player) 

games, where the second player (button) posts the small blind and the 

first player posts the big blind (compare forward blinds). (Both rules are 

seen in practice, with various casinos and online card rooms having 

different policies for multi-player games that have only two active 

players). 

 Reverse Implied Odds. The unaccounted (negative) money a mediocre 

hand stands to lose in future betting rounds (compare implied odds (b)). 

 River. The fifth community card dealt in Hold'em, followed by the fourth 

(and final) betting round. 

 Semi-bluff. A bluff when there are still cards to be dealt, with a hand that 

might be the best, or that has a reasonable chance of improving to the 

best if it is called (compare pure bluff). 

 Second pair. Matching the second highest community card in Hold'em, 

such as having 7-6 with a board of Q-7-4. 

 Session. A series of games, typically lasting several hours in length. 
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 Set. Three of a kind, formed with a pocket pair and one card of matching 

rank on the board. A very powerful and well-disguised hand (compare 

trips). 

 Short-handed Game. A game with less than the full complement of 

players. 

 Showdown. The revealing of cards at the end of a game to determine the 

winner. 

 Side pot. A second pot for the remaining active players after another 

player is all-in. 

 Slow-play. To check or call a strong hand as though it were weak, with 

the intention of raising in a later betting round (compare smooth-call and 

check raise). 

 Small Bet. The smallest bet size in Limit poker (e.g., $10 in $10-$20 

Hold'em). 

 Small Blind. A forced bet made before the deal of the cards (e.g., $5 in 

$10-$20 Hold'em, posted by the first player to the left of the button). 

 Smooth-call. To only call a bet instead of raising with a strong hand, for 

purposes of deception (as in a slow-play). 

 Suited. Two cards of the same suit, such as both Hearts. More likely to 

make a flush than other combinations (compare offsuit or unsuited). 

 Table Image. The general perception other players have of one's play. 

 Table Stakes. A poker rule allowing a player who cannot match the 

outstanding bet to go all-in with his remaining money, and proceed to the 

showdown (also see side pot). 

 Texture of the Board. Classification of the type of board, such as having 

lots of high cards, or not having many draws (see dry). 
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 Tight Player. A player who usually folds unless the situation is clearly 

profitable (e.g., one who folds most hands before the flop in Hold'em). 

 Time Charge. A fee charged to the players in a poker game by a casino or 

other host of the game, typically collected once every 30 minutes. 

 Top Pair. Matching the highest community card in Hold'em, such as 

having Q-J with a board of Q-7-4. 

 Trap. To play a strong hand as though it were weak, hoping to lure a 

weaker hand into betting. Usually a check-raise or a slow-play. 

 Trips. Three of a kind, formed with one hole card and two cards of 

matching rank on the board. A strong hand, but not well-disguised 

(compare set). 

 Turn. The fourth community card dealt in Hold'em, followed by the third 

betting round. 

 Unsuited. Two cards of different suits (also called offsuit, compare 

suited). 

 Value Bet. To bet with the expectation of winning if called (compare 

bluff). 

 Wild Game. A game with a lot of raising and re-raising. Also called an 

action game. 
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Appendix C PGDL Documents 

C.1 Kuhn in PGDL 

<PGDL> 

 <PokerGame name="Kuhn" wildCards="false" 

winningType="high" ante="1" /> 

 <History /> 

 <Description /> 

 <Players minimun="2" maximum="2" /> 

 <Deck standard="false" jokers="0"> 

  <Card id="jh" name="Jack Hearts" rank="0" 

suit="hearts" wild="false" /> 

  <Card id="qh" name="Queen Hearts" rank="1" 

suit="hearts" wild="false" /> 

  <Card id="kh" name="King Hearts" rank="2" 

suit="hearts" wild="false" /> 

 </Deck> 

 <Scoring standard="true" handSize="1" /> 

 <Round number="1" name="Round One" 

communityCardsNumber="0" faceUpCardsDealt="0" 

faceDownCardsDealt="1" forceBet="false" 

blinds="false"> 

  <BettingStructure type="limit"> 

   <Bet value="1" maxNumRaises="1" /> 

  </BettingStructure> 

  <DrawCards min="0" max="0" /> 

  <PassCards value="0" direction="clockwise" /> 

  <DiscardCards value="0" /> 

  <BettingOrder order="Clockwise" 

firstPlayerBetting="nextDealer" /> 

 </Round> 

</PGDL> 

C.2 Leduc Hold’em in PGDL 

<PGDL> 

 <PokerGame name="Leduc Hold'em" 

wildCards="false" winningType="high" ante="1" 

/> 

 <History /> 

 <Description /> 

 <Players minimum="2" maximum="2" /> 

 <Deck standard="false" jokers="0"> 

  <Card id="jh" name="Jack Hearts" rank="0" 

suit="hearts" wild="false" /> 

  <Card id="qh" name="Queen Hearts" rank="1" 

suit="hearts" wild="false" /> 

  <Card id="kh" name="King Hearts" rank="2" 

suit="hearts" wild="false" /> 
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  <Card id="jc" name="Jack Clubs" rank="0" 

suit="clubs" wild="false" /> 

  <Card id="qc" name="Queen Clubs" rank="1" 

suit="clubs" wild="false" /> 

  <Card id="kc" name="King Clubs" rank="2" 

suit="clubs" wild="false" /> 

 </Deck> 

 <Scoring standard="true" handSize="2" /> 

 <Round number="1" name="Round One" 

communityCardsNumber="0" faceUpCardsDealt="0" 

faceDownCardsDealt="1" forceBet="false" 

blinds="false"> 

  <BettingStructure type="limit"> 

   <Bet value="1" maxNumRaises="1" /> 

  </BettingStructure> 

  <DrawCards min="0" max="0" /> 

  <PassCards value="0" direction="clockwise" /> 

  <DiscardCards value="0" /> 

  <BettingOrder order="clockwise" 

firstPlayerBetting="nextDealer" /> 

 </Round> 

 <Round number="2" name="Round Two" 

communityCardsNumber="1" faceUpCardsDealt="0" 

faceDownCardsDealt="0" forceBet="false" 

blinds="false"> 

  <BettingStructure type="limit"> 

   <Bet value="1" maxNumRaises="1" /> 

  </BettingStructure> 

  <DrawCards min="0" max="0" /> 

  <PassCards value="0" direction="clockwise" /> 

  <DiscardCards value="0" /> 

  <BettingOrder order="clockwise" 

firstPlayerBetting="nextDealer" /> 

 </Round> 

</PGDL> 

C.3 No Limit Texas Hold’em in PGDL 

<PGDL> 

 <PokerGame name="No-Limit Hold'em" 

wildCards="false" winningType="high" ante="0" 

/> 

 <History /> 

 <Description /> 

 <Players minimum="2" maximum="9" /> 

 <Deck standard="true" jokers="0" /> 

 <Scoring standard="true" handSize="5" /> 

 <Round number="1" name="Pre-Flop" 

communityCardsNumber="0" faceUpCardsDealt="0" 

faceDownCardsDealt="2" forceBet="false" 

blinds="true"> 
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  <BettingStructure type="no-limit"> 

   <Bet value="1" maxNumRaises="4" /> 

  </BettingStructure> 

  <DrawCards min="0" max="0" /> 

  <PassCards value="0" direction="clockwise" /> 

  <DiscardCards value="0" /> 

  <BettingOrder order="clockwise" 

firstPlayerBetting="nextDealer" /> 

  <BlindStructure> 

   <Blind id="smallBlind" value="0.5" 

name="Small-Blind" position="nextDealer" /> 

   <Blind id="bigBlind" value="1" name="Big-

Blind" position="nextSmallBlind" /> 

  </BlindStructure> 

 </Round> 

 <Round number="2" name="Flop" 

communityCardsNumber="3" faceUpCardsDealt="0" 

faceDownCardsDealt="0" forceBet="false" 

blinds="false"> 

  <BettingStructure type="no-limit"> 

   <Bet value="1" maxNumRaises="4" /> 

  </BettingStructure> 

  <DrawCards min="0" max="0" /> 

  <PassCards value="0" direction="clockwise" /> 

  <DiscardCards value="0" /> 

  <BettingOrder order="clockwise" 

firstPlayerBetting="nextDealer" /> 

 </Round> 

 <Round number="3" name="Turn" 

communityCardsNumber="1" faceUpCardsDealt="0" 

faceDownCardsDealt="0" forceBet="false" 

blinds="false"> 

  <BettingStructure type="no-limit"> 

   <Bet value="1" maxNumRaises="4" /> 

  </BettingStructure> 

  <DrawCards min="0" max="0" /> 

  <PassCards value="0" direction="clockwise" /> 

  <DiscardCards value="0" /> 

  <BettingOrder order="clockwise" 

firstPlayerBetting="nextDealer" /> 

 </Round> 

 <Round number="4" name="River" 

communityCardsNumber="1" faceUpCardsDealt="0" 

faceDownCardsDealt="0" forceBet="false" 

blinds="false"> 

  <BettingStructure type="no-limit"> 

   <Bet value="1" maxNumRaises="4" /> 

  </BettingStructure> 

  <DrawCards min="0" max="0" /> 

  <PassCards value="0" direction="clockwise" /> 

  <DiscardCards value="0" /> 
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  <BettingOrder order="clockwise" 

firstPlayerBetting="nextDealer" /> 

 </Round> 

</PGDL> 

C.4 5 Card Draw in PGDL 

<PGDL> 

 <PokerGame name="Five Card Draw" 

wildCards="false" winningType="high" ante="1" 

/> 

 <History /> 

 <Description /> 

 <Players minimum="2" maximum="6" /> 

 <Deck standard="true" jokers="0" /> 

 <Scoring standard="true" handSize="5" /> 

 <Round number="1" name="Round One" 

communityCardsNumber="0" faceUpCardsDealt="0" 

faceDownCardsDealt="5" forceBet="false" 

blinds="false"> 

  <BettingStructure type="limit"> 

   <Bet value="1" maxNumRaises="4" /> 

  </BettingStructure> 

  <DrawCards min="0" max="0" /> 

  <PassCards value="0" direction="clockwise" /> 

  <DiscardCards value="0" /> 

  <BettingOrder order="clockwise" 

firstPlayerBetting="nextDealer" /> 

 </Round> 

 <Round number="2" name="Round Two" 

communityCardsNumber="0" faceUpCardsDealt="0" 

faceDownCardsDealt="0" forceBet="false" 

blinds="false"> 

  <BettingStructure type="no-limit"> 

   <Bet value="1" maxNumRaises="4" /> 

  </BettingStructure> 

  <DrawCards min="0" max="3" /> 

  <PassCards value="0" direction="clockwise" /> 

  <DiscardCards value="0" /> 

  <BettingOrder order="clockwise" 

firstPlayerBetting="nextDealer" /> 

 </Round> 

</PGDL> 
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C.5 Custom Scoring Example 

<Scoring standard="false" handSize="5"> 

 <Score name="high card" rank="0" 

default="true" sort="true" > 

  <Subrank> 

   $c5.rank * 28561 + $c4.rank * 2197 + 

$c3.rank * 169 + $c2.rank * 13 + $c1.rank 

  </Subrank> 

 </Score> 

 <Score name="pair" rank="1" default="false" 

sort="true"> 

  <Conditions> 

  </Conditions> 

  <Subrank> 

   $c5.rank == $c4.rank? 

    $c5.rank * 100000 + $c3.rank * 169 + 

$c2.rank * 13 + $c1.rank: 

   $c4.rank == $c3.rank? 

    $c4.rank * 100000 + $c5.rank * 169 + 

$c2.rank * 13 + $c1.rank: 

   $c3.rank == $c2.rank? 

    $c3.rank * 100000 + $c5.rank * 169 + 

$c4.rank * 13 + $c1.rank 

    $c2.rank * 100000 + $c5.rank * 169 + 

$c4.rank * 13 + $c3.rank 

  </Subrank> 

 </Score> 

 <Score name="two pairs" rank="2" 

default="false" sort="true" > 

  ... 

 </Score> 

 ... 

</Scoring> 


