

Methodologies and Tools for Creating Competitive

Poker Playing Agents

Luís Filipe Guimarães Teófilo

PROGRAMA DOUTORAL EM ENGENHARIA INFORMÁTICA

Supervisor: Luís Paulo Gonçalves dos Reis (Ph.D.)

Co-supervisor: Henrique Daniel de Avelar Lopes Cardoso (Ph.D.)

2016, January

© Luís Filipe Guimarães Teófilo

i

Abstract

Many researchers have devoted their time to develop software agents intended for

strategic games. These agents obtained outstanding results in popular games such as

Chess in which current agents cannot be consistently beaten by the best human

players. However, for stochastic games with incomplete information there are still no

optimal solutions, especially for games with large search spaces, where research is

limited by current hardware. Poker is a game that is frequently used to measure

progress in this domain, given its key features: simplicity; large number of decision

points; hidden cards. Major scientific advances have already been achieved: agents are

unbeatable in Head’s up Limit Poker. However, in more popular Poker variants, agents

are still far from perfect. In this thesis Poker is approached in-depth by addressing all

necessary aspects to create Poker software agents, both in scientific and engineering

terms. First, new tools for creating and testing agents are shown, namely a tool for

automatic online playing. Next, advances on abstraction techniques are shown, namely

a new no-domain specific method. Finally, techniques to enhance game play and

decision making are analysed and compared. This includes agent architectures based

on expert knowledge and optimizations in the usage of the current state-of-the-art

algorithm for game playing (Counterfactual Regret Minimization). All developed

methodologies were validated on simulated games or real games. Simulations show

great efficiency improvements on current techniques. In real games the developed

agents achieved a good result on the AAAI Annual Computer Poker Competition (2nd

place in the Kuhn track) and, for the first time reported, they were also profitable in

real money multiplayer online matches, against human players.

Keywords: Poker; Game Theory; Opponent Modelling; Simulation; Bot; General Game

Playing; Game Description Languages.

iii

Resumo

Muitos investigadores dedicam tempo a desenvolver agentes destinados a jogos

estratégicos. Estes obtiveram excelentes resultados em jogos populares como Xadrez,

tendo ultrapassando o desempenho de jogadores humanos. No entanto, nos jogos

estocásticos de informação incompleta não existem soluções ideais, especialmente

para jogos com grande espaço de pesquisa, devido a limitações de hardware. O póquer

é atualmente o jogo mais popular para medir os avanços nesta área pois tem regras

simples, elevado número de pontos de decisão e cartas escondidas. Avanços científicos

relevantes foram alcançados onde, inclusivamente, foram criados agentes imbatíveis

na variante Head’s up Limit. No entanto, em variantes mais populares, os agentes

ainda não são perfeitos. Nesta tese são abordados todos os aspetos essenciais para a

criação de agentes póquer, tanto em termos científicos como da engenharia da

solução. Primeiro, foram criadas novas ferramentas para criar e testar agentes, com

destaque para um programa que permite aos agentes jogarem online. De seguida, são

abordadas técnicas de abstração, incluindo um novo método independente do

domínio do jogo. Por fim, demonstram-se técnicas para melhorar a tomada de decisão,

baseadas em arquiteturas de agentes com base no conhecimento de especialistas e

otimizações no uso do algoritmo Counterfactual Regret Minimization, abordagem com

melhores resultados teóricos nesta área atualmente. As metodologias desenvolvidas

foram validadas via simulação e jogos reais. Nas simulações foi possível observar

melhoramento da velocidade dos algoritmos. Nos testes em ambiente real, os agentes

obtiveram bons resultados na competição do AAAI (2º lugar em Kuhn) e nos jogos

online, demonstrando-se que um agente pode ser rentável a jogar contra humanos.

Palavras-chave: Póquer; Teoria de Jogos; Modelação de Oponentes; Simulação;

Agentes Automáticos; Jogos Genéricos; Linguagens de Descrição de Jogos.

v

Acknowledgments

I would like to express my appreciation towards my supervisors: Luís Paulo Reis and

Henrique Lopes Cardoso, for all the support over the last years: Luís gave me the

opportunity to extend my previous Master Thesis work as a Ph.D., again under his

supervision, and helped me to get funding for this project; Henrique always gave me

the best advice and very good revisions on my work.

I would like to thank to Professor Eugénio Oliveira for giving me good advice on

scientific work and for helping me to get work resources (equipment, conferences).

I also give my thanks to the students that finished their master theses under my

supervision. The contribution of their work for this thesis was crucial.

On a more personal note, I would like to thank to my beloved girlfriend Rita. She

was very important to cheer me up in a difficult phase of my life, where I had to

reconcile my job with the writing of this thesis and a house moving.

Finally, and most importantly, I would like to thank to my family members, in

particular to my parents and sister. They were and they will always be there for me.

They have encouraged me in pursuing Ph.D. studies and they helped become who I

am. They have also always supported me on the most difficult times of my life.

This work was supported by the Portuguese Foundation for Science and

Technology (FCT), under Doctoral Grant with reference SFRH/BD/71598/2010.

Luís Filipe Guimarães Teófilo

vii

“Where there's a will there's a way”

Samuel Smiles

ix

Contents

Abstract ..i

Resumo ... iii

Acknowledgments ... v

Contents ... ix

List of Figures .. xiii

List of Tables .. xvii

Abbreviations and Acronyms ... xix

Chapter 1 Introduction .. 1

1.1 Context ... 1

1.2 Motivation.. 2

1.3 Main Challenges ... 4

1.4 Main Goals ... 6

1.5 Document Structure .. 7

Chapter 2 Background ... 9

2.1 Importance of Games .. 9

2.2 Game Theory .. 10

2.3 Formalizing Extensive-form Games ... 15

2.4 Game Classification .. 15

2.5 Poker .. 18

2.6 Summary .. 27

x

Chapter 3 Literature Review ... 29

3.1 Computer Poker Research ... 29

3.2 Current Approaches ... 33

3.3 Poker Agents .. 45

3.4 Hand Rank Computation .. 48

3.5 Hand Odds Computation ... 54

3.6 Opponent Modeling in Poker .. 61

3.7 Poker Books ... 64

3.8 Poker Simulators .. 67

3.9 Interaction between Poker Agents and Human Players 71

3.10 Emotions in Poker .. 73

3.11 Summary .. 74

Chapter 4 Simulation and Tools .. 75

4.1 LIACC Poker Simulator ... 75

4.2 Poker Game Description Language (PGDL) .. 89

4.3 Poker Bot .. 110

4.4 Summary .. 122

Chapter 5 Abstraction Techniques .. 123

5.1 Definition ... 123

5.2 Improving Current Algorithms ... 125

5.3 Reduced Game Utility Abstraction (RGU) .. 132

5.4 Summary .. 134

Chapter 6 Game Playing .. 135

6.1 Inferring Poker-Lang Strategies from Game Logs .. 135

6.2 Optimizations on the CFR algorithm .. 140

6.3 The ACPC Participation – Lucifer Agent Architecture 151

xi

6.4 Online Game Playing – Hermes Agent Architecture 155

6.5 Summary .. 162

Chapter 7 Validation .. 163

7.1 Online Game Playing (Hermes) .. 163

7.2 AAAI 2014 Competition (Lucifer) ... 172

7.3 Summary .. 177

Chapter 8 Conclusions ... 179

8.1 Contributions ... 180

8.2 Goals Achievement .. 181

8.3 Future Work ... 183

References .. 185

Appendices ... 193

Appendix A List of Publications ... 193

Appendix B Glossary of Poker Terms .. 197

Appendix C PGDL Documents ... 205

xiii

List of Figures

Figure 1 – Rock Paper Scissors represented in extensive-form 12

Figure 2 - Poker table layout (from [18]) .. 19

Figure 3 – Partial game tree for Kunh Poker with 2 players .. 23

Figure 4 – A hypothetical rule within a rule-based system for Texas Hold’em Poker

(based on Figure 1 in [29]) .. 33

Figure 5 - The Monte Carlo Tree Search algorithm (from [46]). 35

Figure 6 – Poker Agent Architecture that combines MCTS and Clustering (from [46]). 35

Figure 7 – Reducing the size of a large game (adapted from [36]) 37

Figure 8 – Information set example (adapted from [36]) .. 40

Figure 9 – Poker Builder (from [45]) ... 43

Figure 10 – Hand rank distributions in Flop (top), Turn (middle) and River (bottom) ... 49

Figure 11 – Hypothetical Naïve Hand Rank Evaluator .. 50

Figure 12 – Cactus Kev’s card representation .. 51

Figure 13 – Using the TwoPlusTwo evaluator .. 54

Figure 14 – Heat maps for hand strength against a variable number of opponents. The

horizontal and vertical axis represent a card and the ‘heat’ is the value of the average

hand strength for the pair of cards. ... 56

Figure 15 – Heats maps for PPOT and NPOT against 1 opponent. 58

Figure 16 – Effective hand strength heat map against with 1 opponent. 59

Figure 17 – Difference between effective hand strength and the hand strength. 59

Figure 18 – Chen code implementation example .. 60

Figure 19 – LIACC’s Texas Hold’em Simulator. ... 67

Figure 20 – Poker Academy. ... 68

Figure 21 – ACPC Poker Server – server configuration .. 69

xiv

Figure 22 – ACPC Poker Server – User interface. ... 69

Figure 23 – Open Meerkat Poker Test bed... 70

Figure 24 – WinHoldEm graphical interface ... 72

Figure 25 – Poker Agents class model. ... 78

Figure 26 – Communication between the Socket Agent and the External agent. 79

Figure 27 – Poker Simulation System Architecture. ... 80

Figure 28 – Game moves database class model. .. 82

Figure 29 – Poker simulation module. .. 84

Figure 30 - LIACC Poker Simulator .. 85

Figure 31 –LIACC Poker Simulator 2D visualizer ... 85

Figure 32 – Evolutionary simulation module. .. 86

Figure 33 – PGDL Specification ... 95

Figure 34 – PDGL Builder System workflow. .. 100

Figure 35 – PGDL GUI Games Module .. 108

Figure 36 – PGDL GUI Rounds Module ... 108

Figure 37 – PGDL GUI Deck Module ... 108

Figure 38 – Card position recognition – the chips occluded the third card 112

Figure 39 – Detecting cards regions algorithm .. 112

Figure 40 – Cutting the card for recognition. ... 113

Figure 41 – Detecting the card template.. 114

Figure 42 – Detecting the dealer button position .. 116

Figure 43 – Chips representation in the casino interface software. 116

Figure 44 – Action representation in the casino interface software. 117

Figure 45 – Action and bet amounts detection. ... 117

Figure 46 – Average detection rate per scale factor .. 118

Figure 47 – Bezier curve example between points A and B (degree = 2). 119

Figure 48 – Computing the mouse movement trajectory from one point the other .. 120

Figure 49 – Poker Bot user interface .. 122

Figure 50 – ARS tables lookup process and architecture. .. 129

Figure 51 – Average rank strength VS E[HS] heat maps at River 131

Figure 52 – Reduced game utility abstraction .. 133

xv

Figure 53 – Hand Strength relative distribution observed from the dataset in the Pre-

Flop round. ... 136

Figure 54 – Hand Strength relative distribution observed from the dataset in Post-Flop

rounds. .. 136

Figure 55 – Betting distributions for Pre-Flop round. .. 137

Figure 56 – Betting distributions for Post-Flop rounds. ... 137

Figure 57 – CFR recursive implementation for generic Poker variants 141

Figure 58 – Kuhn Poker’s strategy into sparse arrays. ... 144

Figure 59 – GetStrategy function (CFR implementation) is the function that updates the

actual strategy probabilities taking into account the current accumulated regrets. .. 145

Figure 60 – Liner CFR algorithm ... 146

Figure 61 – Building the CFR actions tree (C++) ... 149

Figure 62 – Eliminating search nodes based on actions dominance (C++) 150

Figure 63 – Lucifer’s Architecture ... 151

Figure 64 – Main parts of Lucifer’s source code (C++) ... 154

Figure 65 – K-Current-Best-Utility strategy selection example for K=3 155

Figure 66 – Hermes’s decision workflow. ... 156

Figure 67 – Hermes’s architecture. .. 156

Figure 68 – Hermes equity computation algorithm ... 159

Figure 69 – Hermes expected return algorithm. .. 160

Figure 70 – Hermes game playing algorithm.. 161

Figure 71 – Hermes’s all time profit ... 165

Figure 72 – Hermes’s stealing blinds results .. 169

Figure 73 – AAAI Computer Poker Competition 2014 – highest ranked teams in the

Kuhn 3P track. ... 174

xvii

List of Tables

Table 1 – Rock Paper Scissors represented in normal-form .. 12

Table 2 – Examples of games and their respective classifications. 17

Table 3 – Poker Hand Ranks ... 21

Table 4 – The size (number of information sets) of simplified versions of Poker 22

Table 5 – Summarized description of some notable Poker Agents 46

Table 6 - Tight Aggressive Players. ... 62

Table 7 – Nit/Rock players. ... 62

Table 8 – Loose Aggressive Players. ... 62

Table 9 – Manic/Aggro Donk players. .. 63

Table 10 – Calling station player... 63

Table 11 – Short stacker player. ... 63

Table 12 – Loose passive player. .. 63

Table 13 – Sklansky and Malmuth groups .. 65

Table 14 – Hand Ranking Server Commands.. 81

Table 15 – Player statistical indicators. .. 87

Table 16 – Simulator benchmark test results for 1.000 tries with 100.000 games and

four players. .. 88

Table 17 – Poker Simulators Comparison table. .. 88

Table 18 – Differences between Poker Variants .. 94

Table 19 – PGDL in-built agent's strategy... 106

Table 20 – PGDL usability tests ... 109

Table 21 – Card detection rates ... 115

Table 22 – Amount detection rates .. 118

Table 23 – Identify mouse movement.. 121

xviii

Table 24 – Hand rank function benchmark .. 125

Table 25 – Hand rank comparison .. 126

Table 26 – Sampling board cards in E[HS] algorithm ... 127

Table 27 – Benchmarking Average Rank Strength ... 130

Table 28 – Reduced game utility abstraction tests in mili big blinds/h 134

Table 29 – PokerLang strategy inferring accuracy. .. 140

Table 30 – Recursive CFR vs Linear CFR (time in seconds) ... 147

Table 31 – Recursive CFR vs Linear CFR (memory usage in MB) 147

Table 32 – Possible game state abstractions considered by Hermes 159

Table 33 – Starting cards classification for Hermes. 1 for top scored hands and 8 for low

scored hands. Hands without classification in this table are considered unplayable thus

Hermes folds immediately when holding such hands. ... 160

Table 34 – Some statistics about the hand played by the Hermes agent. 164

Table 35 – Hermes’s playing style statistics ... 168

Table 36 – Hermes’s defending and stealing blinds statistics 169

Table 37 – Hermes’s against the 10 most profitable opponents 171

Table 38 – Hermes’s against the 10 less profitable opponents 171

Table 39 – Results from the top scored teams in the 2014 three player Kuhn poker

AAAI competition. .. 175

Table 40 – Played matches results in the 2014 three player Kuhn poker AAAI

competition. ... 175

Table 41 – Global compressed results by team from the top scored teams in the 2014

three player Kuhn poker AAAI competition. .. 176

xix

Abbreviations and Acronyms

AAAI – Association for the Advancement of Artificial Intelligence.

ACPC – Annual Computer Poker Competition (organized in the AAAI conference).

AI – Artificial Intelligence.

CIG – Complete Information Games

CFR – Counterfactual Regret Minimization.

CPRG – Computer Poker Research Group (University Alberta, Canada).

DEI – Informatics Engineering Department (FEUP).

EGT – Evolutionary game theory (EGT)

FAI – Fake Artificial Intelligence

FCT – Foundation for Science and Technology

FEUP – Faculty of Engineering, University of Porto

GDL – Game Description Language

IIG – Incomplete Information Games

IRC – Internet Relay Chat

LIACC – Artificial Intelligence and Computer Science Laboratory

NE – Nash-Equilibrium

UP – University of Porto

xx

1

Chapter 1

Introduction

This chapter provides an overview of this thesis and all the developed work that led to

its writing. First, the context and motivation of the work are presented in order to

justify it. To further emphasize the work’s motivation, the main scientific challenges of

this kind of work are also listed. Next, the main objectives and contributions of this

thesis are described. The chapter is finalized by outlining the structure of this thesis.

1.1 Context

Artificial intelligence (AI) research is a field of study aimed at developing pieces of

software and/or hardware that can replace or assist human beings in performing tasks

that require intelligence i.e. tasks that are not methodical and that require expert

knowledge about on how to deal with unforeseen events. This is contrary to common

machines (such as appliances1) or software (such as Notepad) whose aim is the

systematic fulfilment of tasks that are composed by sets of instructions. Software

applications or machines with intelligence also have the capacity to make decisions

and control other systematic systems.

In the beginning, the main goal of AI research was to create a Strong AI: an

intelligence that imitates brain functions or human behaviour, with the goal of creating

intellects that match or exceed humans’ one – towards a technological singularity2 [1].

As years and research went by it was verified that such project was impracticable at

1 Some modern appliances can perform intelligent tasks such as heat controlling.
2 A time when machines are so smart that they are able to create smarter versions of themselves.

Chapter 1 – Introduction

2

the time, so AI researchers focused on solving particular problems, with that being

known as weak AI. However this paradigm might change in a recent future, as the

capacity of CPUs progresses at geometric rate [2]. Projects, such as the Blue Brain3 –

which is an attempt to replicate a synthetic brain by reverse-engineering the

mammalian brain down to the molecular level [3] – clearly support the research on

strong AIs. However, weak AI research has achieved far greater results than strong AI

research.

One of the most explored fields within weak AI research is the development of

game playing software agents4 – autonomous software entities that perform

intelligent tasks without human intervention. It is important to differentiate game

playing agents from some types of “intelligent” game strategies. In most games with

AIs, the software responsible for playing as the computer has access to more

information than the human, can control human avatars or control the seeds of the

supposedly random events – this AIs are known as Fake AIs (FAIs). Good examples of

FAIs can be found in several Texas Hold’em videogames – the FAIs know which cards

their human opponents have and they shuffle the cards in a controlled manner to

benefit themselves, especially in harder difficulties. This thesis focuses on weak AI for

games, but only on game playing agents rather than fake AIs, since despite the great

utility of fake AIs, they do not pose any challenge to science and thus not allowing the

achievement of this research’s goal – the primary goal of researching games is to

transport the acquired knowledge to solve other, potentially and arguably more

beneficial, real-life problems.

1.2 Motivation

There are many games that pose interesting challenges for AI. Classic games such as

chess or checkers serve as a test bed to test AI problems in well-defined domains, with

the goal to adapt the developed expertise to real-life problems. Significant results

were achieved when developing game playing agents – the most well-known example

is the Deep Blue computer, which was the first machine to ever defeat a human chess

3 Project website: http://bluebrain.epfl.ch/
4 Software agents are also known as the robots

http://bluebrain.epfl.ch/

Chapter 1 – Introduction

3

world champion [4]. Nowadays, current chess programs have completely surpassed

human players thus diminishing down the scientific challenge in this kind of games –

complete information games (CIG). Moreover, solving games like chess or checkers

also greatly differs from solving real-file problems, due to the lack of incomplete

information and stochasticity. As John von Neumann says:

Real life is not like that. Real life consists of bluffing, of little tactics of

deception, of asking yourself what is the other man going to think I

mean to do. And that is what games are about in my theory.

John von Neumann5

Therefore, incomplete information games (IIG) provide a much richer domain to

study AI and adapt the developed methodologies to other domains. One great

example of such games is Poker. Poker is probably the most popular card betting game

in the world. It is played by millions around the world and has become a very

profitable industry6, with massive media coverage7. Given its popularity and the

amounts of money involved (in the order of billions of dollars each year), Poker also

became a research subject in other domains such as Economics (the economic impact

of gambling [5]) or Phycology (studies of addictive behaviour [6], [7]).

Poker’s key features such as incomplete knowledge, risk management, need for

opponent modelling and dealing with unreliable information, turned this game into an

important topic in Computer Science, especially for AI. These features make it possible

to use this game as an easy tool to measure progress in AI research itself. This is so

given the fact that in order to assess new approaches one only has to test them against

the former ones – these tests can be easily performed by running simulations (the

easiness of simulation is actually one of the main advantages of using games).

Dedicated Poker research started about 20 years ago [8]. Even before that, the

well-known scientist John Forbes Nash, also used Poker games to demonstrate his also

well-known concept of Nash-Equilibrium (NE) [9], which granted him a Nobel Prize and

is nowadays a fundamental concept in the Game Theory. Poker presents a radically

5 In this statement John von Neumann was referring to Chess.
6 Growth of Poker industry in the news: http://www.newsweek.com/going-all-online-poker-117991
7 One good example is a TV channel exclusively dedicated to Poker: The Poker Channel

http://www.newsweek.com/going-all-online-poker-117991

Chapter 1 – Introduction

4

different challenge as compared to other games like chess. In chess or checkers, the

two players are always aware of the full state of the game. This means that it is

possible, in principle, to understand the opponent’s strategy just by observing the

movement of the game pieces. On the other hand, a Poker game state is partially

hidden: each player can only see his/her cards and the community cards (see Chapter

2). Only at the end of each game the opponents might show their cards (this may not

even happen in Poker!), being for that reason much more difficult to understand and

learn how the opponent plays. Poker is also a stochastic game: it admits the element

of chance, given that the player cards are randomly dealt, which means that the

decisions must be made thinking in probabilities and mathematical expectation over a

series of games and not just a particular game (e.g. winning a particular game of Poker

does not have the same meaning as winning a chess game because, due to random

events, only several games may assess the player’s skill level).

1.3 Main Challenges

Several scientific challenges arise while developing contributions to the Computer

Poker research domain. While some of these challenges are also present in other

games, some are Poker-specific. The main challenges are:

 Incomplete Information – there are always hidden cards in a game of

Poker. This means that the game state is not fully visible in any stage of

the game, thus from a player’s point of view there is no fixed solution for

a given problem. Therefore the solutions must be probabilistic (e.g. 55%

of the times the agent takes option A and in the other 45% the agent

takes option B). In sum, the main challenge that arises from incomplete

information is the selection of actions and the understanding of the

opponents’ behaviour (since he or she only picks an action, the agent

does not know the probability of that action).

 Hand Evaluation – in Poker, players have hands of cards that constitute

the game’s score. It is difficult to measure how valuable a hand is, since it

greatly depends on the opponent: even a hand with low hand strength

Chapter 1 – Introduction

5

(see Chapter 2) can be very powerful against a weak opponent by, for

instance, bluffing him or her. Moreover, there are usually8 a large number

of hand combinations (e.g. 2,598,960 in 5-card Poker and 133,784,560 in

7-card Poker).

 Size of the decision tree – the Poker game decision tree is usually very

large. While there are smaller versions9 of Poker like 4 card Kuhn Poker

with 12 different decisions points (possible sequence of game events),

the simplest version of Limit Texas Hold’em has 3.19 × 1014 decisions

points (considering card isomorphism10) and the simplest version of No-

Limit Texas Hold’em has 9.37 × 1071 decision points which would require

about 1.241 × 1049 yottabytes of memory to store a full strategy [10]. For

this kind of game tree it is absolutely necessary to use the concept of

abstraction – grouping similar decision points.

 Low number of observations – this is important especially against human

players. Since in Poker players usually bet their own money, they have

limited resources. Therefore they have short time to understand how his

/ her opponents are playing before running out of cash. The size of the

game discussed above, makes it even harder: the probability of reaching

the exact same decision point is very low.

 Partial Results – in order to understand the opponent’s behaviour and its

driving strategy, it is crucial to know which cards he or she had. However,

most Poker games do not reach the so-called showdown phase and even

when they do it is very usual that some participants are missing because

they already forfeit. Even in a showdown round, there is the possibility to

muck the cards (see Appendix B for further understanding).

 No guaranteed optimal solution – this happens in multiplayer Poker

variants. Even a Nash-Equilibrium (NE) strategy profile does not

8 There are Poker variants that only use a small portion of the deck instead of the full-deck.
9 These smaller versions are mainly used for research purposes.
10 Hand isomorphism – There are different hands with exactly the same value (due to the existence of

card suits).

Chapter 1 – Introduction

6

guarantee profit, because if there is any kind of coordination between the

opponents, an agent with a NE profile may lose. Moreover, despite the

robustness of NE strategies, they are not optimized against particular

players.

 Continuous values in bets / translation – in No-Limit versions of Poker,

one of the main challenges in abstraction is to select the correct amount

of chips to bet. This is the reason why decision techniques in No-Limit

Poker produce much larger trees.

1.4 Main Goals

Taking into account the previously presented context, the aim of this thesis is to

contribute with new methodologies and technologies for the development of Poker

software agents. Specifically, this research targets the following:

 Explore how methodologies used on the Computer Poker domain can

potentially be used or at least hint to the solution of other AI-related

problems;

 Create domain validation methodologies and tools for better assessment

of scientific advances;

 Present necessary engineering aspects for the construction of Poker

agents as opposed to a more theoretical approach;

 Improve the efficiency of current techniques in order to reduce the huge

amount of resources that they need;

 Find out how to combine current techniques and technologies to create a

Poker agent that finally surpasses human players by being profitable in

online multiplayer matches;

 Overcome the limitations of current methodologies on multiplayer

games.

Considering the identified goals, some research questions were framed:

Chapter 1 – Introduction

7

 Is it possible to improve current simulation tools for Poker games? If so,

will this improvement help on the construction of more competitive

Poker playing agents?

 With currently available technology is it already possible for a Poker

playing software agent to be profitable in online multiplayer matches

with real money bets? If not, what needs to be improved in software

agents to do so?

 In which way can abstraction techniques be improved in order to be

domain-free and to better represent their corresponding unabstracted

games?

 How is it possible to reduce the large number of resources needed by

current techniques without compromising the final results?

1.5 Document Structure

The rest of this thesis can be divided into three different groups: Chapters 2 and 3 are

the domain presentation chapters; Chapters 4, 5, 6 and 7 describe the contributions of

this thesis; Chapter 8 concludes this document by summarizing this thesis’s key

contributions and by indicating pointers for future research questions. Each of the

remaining chapters specifically presents:

 Chapter 2 presents fundamental background material to understand the

contents of this thesis. This includes an overview about game theory and

specific concepts about Poker games. Additionally, the main concepts are

also formalized for the better description of the contributions of this

thesis through the development Chapters.

 Chapter 3 presents a literature Review for the state of the art material on

the Computer Poker domain. This includes a review of simulation

systems, bot applications and a summary of approaches for the creation

of game playing agents.

Chapter 1 – Introduction

8

 Chapter 4 presents the main contributions of this thesis in the domain of

simulation, by presenting a new simulation system especially developed

for researchers. The architecture of the game playing bot software is also

presented as well as the Poker variant specification language.

 Chapter 5 presents the contributions in the domain of game abstraction,

by presenting some techniques whose aim is to reduce large games’ sizes

in order to make those games tractable by game playing algorithms. Most

of the presented techniques are Poker specific, but one new domain

independent is also presented.

 Chapter 6 presents the contributions in the domain of game playing. This

includes optimizations in current game playing methodologies, opponent

modelling techniques, strategy inferring from data and software agent

architectures. The validation of each contribution is included in this

chapter.

 Chapter 7 validates the developed agent architectures by presenting

practical results of game playing agents’ performance in the AAAI

scientific competition and in online games.

 Chapter 8 finalizes this document by providing this thesis’s conclusions

and giving suggestions on future research work.

9

Chapter 2

Background

This chapter provides an overview of fundamental notions to understand the main

concepts of this thesis – game theory and Poker games. The formalization of certain

definitions (used throughout the remainder of the document) is also included in this

chapter.

2.1 Importance of Games

Research on strategic games was one of the first sub-domains to be studied in artificial

intelligence. At first, this research focused on the development of software agents

whose goal was just to win. Later, with the development of Game Theory another goal

emerged: maximize utility. This is rather different than wining or maximizing profit as

this definition considers wishes, desires, beliefs or even emotions of the agents [11].

Utility is the measurement of the agent’s satisfaction towards the completion of

its goals. In the case of games it is usually associated with the game’s payoff, but not

necessarily. One good example can be found in [12], where an agent theoretically

mimics human behaviour: it loses on purpose against a specific opponent for whom it

nurses sympathy. From the utility we can take another important measure of extreme

importance to game players – the mathematical expectation of an action. This gives us

how much we get on average from an action by providing its average utility.

 2 – Background

10

Many known scientists dedicated their time to develop game playing agents with

intelligent strategies for games like chess because those games have a clearly defined

set of rules and goals which allows them to be an easy domain to experiment on [8] –

the main benefit resides on the fact that it is relatively easy to validate new

approaches, especially through simulation of game plays. This presents an advantage

as it a form of low cost validation of new AI approaches as it is possible to accurately

measure the degree of success of a particular approach just by comparing results of

many games played against programs based on other approaches or human players –

the results are usually measured in terms of agent’s average utility growth. This means

that games have a well-defined metric for measuring the development progress – in

other words, it is possible to determine with more certainty if one is approaching (or

not) a more optimal solution to solve a given problem.

Another advantage of games research is that the knowledge gained from solving

them can and has been used to solve other AI-related problems.

These and other features like the fact of games having a “recreational factor”

and a great impact in the entertainment industry today, make games an extremely

important challenge for AI.

2.2 Game Theory

Game Theory is a branch of applied mathematics that models strategic situations –

games – in which one’s success depends on one’s opponents choices [13]. This field of

research was initially introduced by John von Neumann in 1928 [14].

Game Theory models problems or situations as a game. A game is any strategic

situation that can be described by the following features (for more details on these

features see Section 2.3):

 Set of players or actors (at least 2);

 Set of possible moves (decisions) for each player;

 Set of strategies;

 Set of rules;

 2 – Background

11

 State;

 Utility (game’s payoff).

The game players are the entities that participate in the situation. Each one can

follow its own strategy in a competitive environment with the objective of maximizing

the utility (score obtained by the player at the end of the game). For instance, in a

game like Poker, the utility would be the money balance of the player at the end of the

game. The winning player(s) always have a positive balance, getting for that reason a

positive utility. In contrast, the losing players get a negative utility. A game also has a

state that represents the current value of the variables involved in the game. Any

game move made by any player may alter the game state and the current state may

terminate the game, depending on the game’s rules.

2.2.1 Strategies in games

In a game, the agents’ behaviour is described by their strategies – a function that

receives as parameter a game state or information set – in the case of incomplete

information games – and returns an action (or decision). Commonly, in game theory,

three types of game strategies are considered:

 Pure Strategy: for each specific game state, the players always make the same

move;

 Mixed Strategy: the player assigns a probability to each pure strategy and

stochastically picks one;

 Totally Mixed Strategy: a particular type of mixed strategy. It consists of a set

of pure strategies where each has a strictly positive probability of being chosen.

It should be noted that in game theory each player has its own strategy set which

is smaller than the set of all possible strategies for the game in question.

2.2.2 Extensive-form games

An extensive-form game is a representation of a game in game theory in a form of a

game tree. This representation allows for the demonstration of certain games’

 2 – Background

12

important aspects, like the sequencing of players' possible moves or their possible

choices at every decision point.

One example of such representation of a simple game (Rock Paper Scissors) can

be seen in Figure 1. The numbers on the bottom of the game tree represent the

game’s payoff for each player. The letters R, P and S represent the possible game’s

actions, respectively actions Rock, Paper and Scissors.

P

(0, 0) (-1, +1) (+1, -1) (+1, -1) (0, 0) (-1, +1) (-1, +1) (+1, -1) (0, 0)

P P

Player 1 decides

Player 2 decides

Figure 1 – Rock Paper Scissors represented in extensive -form

Table 1 – Rock Paper Scissors represented in normal -form

Player 2

P
la

ye
r

1

 Rock Paper Scissors

Rock (0, 0) (-1, +1) (+1, -1)

Paper (+1, -1) (0, 0) (-1, +1)

Scissors (-1, +1) (+1, -1) (0, 0)

 2 – Background

13

2.2.3 Normal-form game representation

The normal-form game is a matrix representation of the game, which shows the

players, strategies and the final payoffs. One example of that representation of a

simple game (Rock Paper Scissors) can be seen in Table 1. Each matrix position

contains the payoffs for both players considering the chosen actions.

2.2.4 Nash-equilibrium in Game Theory

John Forbes Nash is a mathematician who did remarkable research in the area of game

theory. He introduced the famous Nash-Equilibrium-Theory [9] in 1950. The Nash-

Equilibrium represents a set of mixed strategies in a game where if any player i were to

change its strategy, it would decrease its overall utility. This change is sole, i.e. it

assumes that every other player maintains its strategy.

A set of Nash-equilibrium strategies usually provides a very stable solution,

especially for developing game playing agents for 2 player games. Usually, a Nash-

Equilibrium is computed by self-play11 algorithms or linear programming which results

in two strategies (one for player 1 and the other for player 2). Then, the idea is for the

game playing agent to use player 1’s strategy when it is in the player 1 position,

otherwise it uses the strategy of player 2. This way, an agent can assure a minimum

average utility against any opponent. The biggest disadvantage of this method is that it

is conservative – it does not optimize results against particular players. When the game

is unsolvable, an approach of this type may even not guarantee positive utility – it only

warrants that the utility will not go below or above a certain threshold. One example

of such a game is Kuhn Poker for 3 players (see 2.5.3). Nash-Equilibrium can be

formally defined as follows:

∀𝑖, 𝑥𝑖 ∈ 𝑆𝑖, 𝑥𝑖 ≠ 𝑥𝑖
∗: 𝑓𝑖(𝑥𝑖

∗, 𝑥−𝑖
∗) ≥ 𝑓𝑖(𝑥𝑖, 𝑥−𝑖

∗)

EQ1

11 It is a type of reinforcement learning algorithm for games. It consists of an approach where the game

playing agent optimizes its strategy over time by playing several games against itself.

 2 – Background

14

The notation for EQ1 is defined below:

(S, f) is a game with n players, where:

 i player

 𝑥𝑖 a mixed strategy profile12 for player i.

 𝑥𝑖
∗ a mixed strategy profile for player i that is in Nash-Equilibrium.

 𝑆𝑖 the set of all possible strategy profiles for player i.

 -i an opponent

 fi a function that takes two strategy profiles as arguments and

returns the average utility for player i in matches between those strategy

profiles.

The equation formalizes that if player i deviates from his * profile (Nash-

equilibrium) strategy, its utility will never increase.

2.2.5 Evolutionary Game Theory

Evolutionary game theory (EGT) is a branch of game theory that studies games in a

biological context base on Charles Darwin and Herbert Spender principle: “The Survival

of the Fittest”. Thus, EGT is based on the idea of natural selection: over time the

population evolves and during that evolution the stronger individuals will survive and

the weaker ones will perish. In other words, the population always evolves in order to

adapt to the environment that it is in, therefore optimizing its processes taking into

account the available resources.

Evolutionary game theory was first introduced [15] by John Maynard Smith in

1973. He found that the fitness of a strategy should not be measured in isolation; it

should be measured in interaction with other strategies. Thus, EGT analyses the payoff

of a set of strategies rather than individual payoffs, thus focusing on the dynamics of

strategy shifting within a population.

12 Strategy profile - it is a tuple of probabilities of a given player performing each game’s possible

action: the sum of the tuple’s elements is always 1.

 2 – Background

15

2.3 Formalizing Extensive-form Games

An extensive-form game is a generic representation of a sequential decision problem

in form of a tree where each edge represents a decision and each node represents a

sequence of performed actions (history). The history is hereinafter denoted by h

considering that h ∈ H, being H the set of all possible game sequences according to the

game’s rules. Also consider h’ a history-prefix where h = h’ || x. Therefore, a game G

can be represented as the following tuple:

𝐺 = < 𝐻, 𝑍, 𝑁, 𝐴, 𝑎, 𝑢, 𝑝 >|𝑍 ⊂ 𝐻

𝑤ℎ𝑒𝑟𝑒

 𝑎: 𝐻 → 𝐴′: 𝐴′ ⊆ 𝐴

 𝑢: 𝑁 × 𝑍 → ℚ

 𝑝: 𝐻 → 𝑁

EQ2

Z is a subset of H and represents the game’s terminal nodes i.e. the nodes where the

game ends. N represents the set of players in the game and A is the set of all possible

actions.

An extensive-form game also requires the definition of three functions. Function a

gives the set of all possible actions for a given node (or history) A’ (that is a subset of A)

where for any particular node z ∈ Z we have that a(z) = ∅ and for any particular node h

∈ H\Z we have that a(h) ≠ ∅. Function p returns the acting player of any game

sequence. Finally, function u returns the utility (or score) of a given player at a terminal

node.

2.4 Game Classification

Games can be classified taking into account different aspects such as visibility of the

game state, duration of the game and the occurrence of random events. Some possible

game classifications will now be presented.

It is possible to classify games taking into account the visibility of the game state:

 2 – Background

16

 Complete Information Games – when the state of the game is always available

to every player. Most board games are complete information games.

 Incomplete Information Games – when the state of the game is hidden or

partially hidden. Most card games are incomplete information games.

There are two types of classifications regarding the existence of a playing history:

 Sequential Games – when the game has sequences of actions and its players

play in turns (not necessarily rotated). In this kind of games, players can take

into account past opponents’ decisions because their actions are observable.

 Simultaneous Games – there is no history, the players decide simultaneously.

There are two types of classifications regarding cooperation between players:

 Cooperative Games – the players’ utility could be shared, i.e. each player does

not depend on its individual success but rather its group’s success. Not to be

confused with each player’s individual notion of utility.

 Non Cooperative Games – the utility is individual, i.e. the players are only

interested on their own individual success.

Taking into account the duration of the game, it is possibly to classify it as:

 Finitely Long Game – game that cannot last forever.

 Infinitely Long Game – game that can last forever – they can loop forever

between the same states.

There are two types of games regarding the sum of payoffs at the end:

 Zero-sum Games – the sum of all players payoff is 0, which means that for a

player to win a certain amount of points, one or more players must lose the

same amount.

 Non-zero-sum Games – the sum of all players payoffs is not 0. One good

example is the Casino commissions on Poker or Blackjack games, which turn

Zero-sum games into non-zero sum games.

 2 – Background

17

Regarding the occurrence of random events, there are two types of games:

 Deterministic Games – no occurrence of random events;

 Stochastic Games – occurrence of random events (e.g. dice roll).

2.4.1 Examples of games

In order to better understand the types of games described previously, Table 2 is

presented – it contains examples of several well-known games and their classification

(Blank – it has the opposite classification, ✓ – it has that classification, ? – it may have

both classifications, depending on the version of game’s rules).

Table 2 – Examples of games and their respective classif ications.

Game Complete Inf. Sequential Cooperative Finite Zero-sum Deterministic

Poker ✓ ✓ ?13

Stock Market ✓ ? ✓

Minesweeper ✓ ✓

Backgammon ✓ ✓ ✓ ✓

Checkers ✓ ✓ ✓ ✓ ✓

Go ✓ ✓ ✓ ✓ ✓

Chess ✓ ✓ ✓ ✓ ✓

Prisoner's

dilemma
? ✓ ✓

Monopoly ✓ ✓ ✓

Go-Fish ✓ ✓

Football ✓ ✓ ✓ ✓ ✓

Diplomacy ✓ ✓ ✓

13 Poker is not zero-sum in casinos.

 2 – Background

18

2.5 Poker

“Poker is a generic name for literally hundreds of games, but they all

fall within a few interrelated types” [16].

David Sklansky14

Poker is a card game in which players bet that their current hand is stronger than

the hands of their opponents. All bets throughout the game are placed in the pot and,

at the end of the game, the player with the highest ranked hand wins. Alternatively, it

is also possible to win the game by forcing the opponents to fold their hands by making

bets that they are not willing to match. For this reason, since the players do not know

the cards of the opponents, it is possible to win the game with a hand with lower

score, by convincing the opponents that one’s hand is the highest ranked.

2.5.1 Poker Game Classification

By using the classifications presented in Section 2.4, most Poker games can be

classified as follows:

 Incomplete Information: because the player does not know the

opponents’ cards.

 Non Cooperative: in Poker there is no cooperation between players. Each

player wants to maximize his/her profit. Also, cooperation in Poker is

considered cheating.

 Finitely Long: a Poker game cannot last forever, because each player has

a finite amount of cash. Even if players were continuously raising, they

would eventually run out of money which means that they would be

forced to go all-in.

 Zero-sum: the money won by any player is lost by others, so the sum of

gains and losses is always 0. However, when played in casinos, Poker is no

longer a zero sum game because the casino is entitled to a percentage of

the pot.

14 David Sklansky – an well-known and renowned expert in gambling.

 2 – Background

19

 Stochastic: the cards are randomly dealt to all players.

 Sequential: in Poker, players play sequentially. Typically the history

sequences are very large as discussed in [10].

2.5.2 Texas Hold’em Poker

Texas Hold’em is a Poker variation that uses community cards. This variant of Poker

was chosen because its rules have specific characteristics that allow new developed

methodologies to be adapted to other Poker variations with reduced effort [17].

2.5.2.1 Rules

At the beginning of every game, two cards are dealt to each player. The dealer player is

assigned and marked with a dealer button. The dealer position rotates clockwise from

game to game. After that, the two players to the left of dealer post the blind bets. The

first player is called small blind, and the other one is called big blind. They respectively

post half of minimum and the minimum bet. The player that starts the game is the one

on the left of the big blind. One example of an initial table configuration is shown in

Figure 2. The dealer is the player at seat F and the small and big blind players are

respectively the A and B seats.

Figure 2 - Poker table layout (from [18])

The first player to act is the player to the left of the big blind (player C) and the

next player is the closest one to the left of the current player. Each player can choose

one of the following actions:

 Call: match the current highest bet. If it is not necessary to put more money

in the pot, this action is also known as Check.

 2 – Background

20

 Raise: bet higher than the current highest bet. If the player bets its entire

stack, this action is known as All-In. If no one has bet/raise previously, the

action is called Bet.

 Fold: forfeit the hand and thus give up the pot. All the money previously put

into the pot cannot be recovered by the folding player.

In order to continue to dispute the pot, a player must either call or raise the

maximum current bet. In No Limit Texas Hold'em there is no bet limit, therefore the

value of the bet can go from the minimum bet up to the player’s full bankroll. After all

the remaining players either called their hands or went all-in, a round is finished. There

are four betting rounds in Texas Hold'em, where in each round new community cards

are revealed:

 Pre-Flop: no community cards;

 Flop: three community cards are revealed;

 Turn: the forth community card is revealed;

 River: the fifth and final community card is revealed.

After the river, if at least 2 players agree to call the pot, the showdown round

comes. In the showdown players may show their cards and the one with the best hand

wins the pot. If two players or more have similar ranked hand, there is a tie and the

pot is divided. Next, the hand ranks will be discussed.

2.5.2.2 Hand Ranking

A poker hand is a set of five cards that identifies the score of a player in Poker. The

player’s hand is made by combining the player's personal cards with the community

cards – cards that belong to all players. The set of five cards comprising the pocket and

community cards that has the highest possible score is the player's hand ranking.

In Table 3 it is possible to see every possible Poker hand with a description and

an example of combination, in descending order of score. In case of draw, for hands of

at least one pair, the winning hand is the one with higher ranked cards that are not

kickers (see the definition of kicker in Appendix B). If a draw persists, the winner is the

one that has kickers with higher ranks.

 2 – Background

21

Table 3 – Poker Hand Ranks

Hand Description Hand Example

Royal Flush: this is the best possible hand in

standard five-card Poker. Ace, King, Queen,

Jack and 10, all of the same suit.

Straight Flush: Any five-card sequence in the

same suit.

Four of a Kind: Any set with four cards with

the same rank.

Full House: Three cards with the same rank

plus two cards with the same rank.

Flush: Any set with five cards of the same suit,

but not in sequence.

Straight: Five cards in sequence, but with

different suit.

Three of a kind: three cards with the same

rank.

Two Pair: Two separate pairs, and one kicker

of different value. The kicker is used to decide

upon a tie of the same two pairs.

One Pair: Two cards with the same rank and

three kicker cards.

High Card: Any hand that does not qualify as

one of the better hands above. Ranked by top

card, then the second card and so on.

 2 – Background

22

2.5.3 Other versions of Texas Hold’em Poker

In order to study very large games such as Texas Hold’em Poker, sometimes simplified

versions of the game are created mainly for research purposes. These versions do not

allow for testing the scalability of the solutions, but they permit observing the

algorithms’ behaviour.

The most popular simplified versions of Texas Hold’em currently used in

academics are Kuhn Poker and Leduc Hold’em Poker.

Kuhn Poker is the simplest version of Texas Hold’em. It uses a deck only

containing 4 cards of the same suit and with different values (e.g. Jack of Spades,

Queen of Spades, King of Spades and Ace of Spades) and it is played by up to 4 players.

Each player receives a private card from the deck which remains hidden throughout

the game to his or her opponents. Players have to put an ante of 1$ and then the game

starts. Each player can do one of the following actions:

 Bet – put 1$ on the pot.

 Pass – don’t put any cash in the pot. If any player has betted before, this

means that the player that is passing forfeits the game.

To better show the simplicity of this game, Figure 3 illustrates a partial game

tree, for one possible configuration of card dealings in Kuhn Poker (player 1 gets a

Queen and players 2 gets a King).

For each configuration of card dealings, there are only 4 decision points or

information sets (see Section 2.5.4.3) in Kuhn Poker. Since there are only 4 possible

cards, this game only has 16 information sets (see Table 4 for the size of simplified

Poker games).

Table 4 – The size (number of information sets) of s implif ied vers ions of
Poker

Number of

Players
Kuhn

Leduc

Hold’em

2 16 64

3 48 192

 2 – Background

23

Player 1 decides

Player 2 decides

Stochastic event

P
2 gets K

... ...

(-1, +1)

(-1, +1) (-2, +2)

(+1, -1) (-2, +2)

Figure 3 – Partial game tree for Kunh Poker with 2 players

Leduc Hold’em is a little bit more complex version of Kuhn Poker. The deck has

the double number of cards, 4 different values and two suits (e.g. Ace of Spades, Ace

of Clubs, King of Spades, King of Clubs, Queen of Spades, Queen of Clubs, Jack of

Spades and Jack of Clubs). The main difference is the existence of another betting

round, which shows up a community card (which allows players to get the rank pair).

 2 – Background

24

The number of information sets per round is still 4, so there are 16 decision points for

each deck card.

2.5.4 Formalizing Texas Hold’em Poker

2.5.4.1 Scoring

At the beginning of a game G (see Section 2.3), each player i ∈ N is given a set of two

playing cards (private cards) which we will denote as Pi ⊂ D, where D is the deck – set

of all playing cards (usually a regular 52 card deck without Jokers) – and ∀i,j ∈ N: Pi ∩ Pj

= ∅. The private cards Pi are only visible to player i and may never be unveiled to other

players (only if the game reaches a showdown15). At certain moments of the game,

some shared cards are revealed – we will denote S ⊂ D the set of shared cards and Sr ⊆

S the set of visible shared cards at round r ∈ {preflop, flop, turn, river}, where ∀i ∈

N: Sr ∩ Pi = ∅ and ∀𝑟: 𝑆𝑟 ⊂ 𝐷⋀S𝑟 ∩ 𝑃𝑖 = ∅. The shared cards are always visible to all

players and are used in combination with the private cards to determine a particular

player’s score. For any No-Limit Poker variant, Spreflop ⊂ Sflop ⊂ Sturn ⊂ Sriver = S (for

Texas Hold’em Poker: |Spreflop| = 0, |Sflop| = 3, |Sturn| = 4, |Sriver| = 5).

In Poker, the score of a player i is given by the best possible subset of five cards:

[Pi ∪ S]5 where the score is maximized, being score : [D]5 → ℕ+ a function that returns

the score of a 5 card set. Therefore, for any remaining pair of players i and j, player i

wins against player j in the conditions of EQ3.

𝑚𝑎𝑥 𝑠𝑐𝑜𝑟𝑒([𝑃𝑖 ∪ 𝑆]
5) ≥ 𝑚𝑎𝑥 𝑠𝑐𝑜𝑟𝑒 ([𝑃𝑗 ∪ 𝑆]

5
)

EQ3

The score of 5 card sets is divided in ranks (High Card, Pair, Two Pairs, Three of a

Kind, Straight, Flush, Full House, Four of a Kind and Straight Flush), each of which is

divided into several sub-ranks. The total number of sub-ranks is 7462, therefore ∀𝑤 ∈

[𝐷]5: 𝑠𝑐𝑜𝑟𝑒(𝑤) ∈ [0; 7461].

15 Showdown – a game’s terminal node with at least 2 standing players and all bets matched.

 2 – Background

25

2.5.4.2 Rules and Utility

After dealing the cards, the game begins. The game is played in turns that are grouped

in four Rounds (Pre-Flop, Flop, Turn and River). In each player’s turn, he or she can

choose one action which may or may not increase the pot value (prize).

A round ends when all standing players have bet the same amount (but each one

must act at least once in that round). When the last round finishes, the player with the

highest ranked set of cards wins the game and collects the pot. Alternatively, it is also

possible to win the game by inducing opponents to fold by making bets that they are

not willing to match. Thus, since players’ cards (pocket cards) are hidden, it is possible

to win the game with a lower score hand. This particular feature of the game’s rules

makes it difficult to assess a player’s decision. Regardless of the winning situation, the

condition on EQ4 must always be verified (definition of zero-sum game).

∀𝑧 ∈ 𝑍:∑ 𝑢(𝑖, 𝑧)
𝑖∈𝑁

= 0

EQ4

However, usually (but not only) in online Poker the game is not zero-sum due to

the casino’s profit margin 𝑒 ∈ [0,1]. Considering e ≠ 0, the real utility of player i in

node z is usually given by 𝑢(𝑖, 𝑧) × (1 − 𝑒) if u(i, z) is positive and u(i, z) otherwise. In

order to complete the definition of a Poker game, we define the new game tuple

based on G as specified in EQ5.

𝐺𝑃 =

(

𝐻, 𝑍,𝑁, A, P, S, 𝑎, p, 𝑢,
𝑠: 𝑁 × 𝐻 → ℚ

≥0

𝑏:𝑁 × 𝐻 → ℚ
≥0

𝑟: 𝐻 → 2𝑅 , |𝑟| > 0
𝑐:𝐻 → ℚ

≥0

𝑣:𝐻 → 2𝑆, |𝑣| ≥ 0)

|

|

𝑍 ⊂ 𝐻

EQ5

First, the sets P and S were included and they respectively correspond to the

private and community card sets (∀𝑖: 𝑃𝑖 ∈ 𝑃). Functions s, b, c, v, and r were added to

the original definition of G. Function s denotes the amount of remaining cash and b the

amount of cash betted by a particular player for a given history h, which means that

𝑠(𝑖, ℎ) + 𝑏(𝑖, ℎ) for any i and h is the amount of cash of player i at the start of the

 2 – Background

26

game. Function c returns the value of the current maximum bet. Function v returns the

visible shared cards for a given history. Finally, r is the function that determines the set

of remaining players for a given history (it excludes the players that have folded).

Given these functions, we can determine the utility of a player. The value of the pot in

ℎ ∈ 𝐻 is ∑ 𝑏(𝑖, ℎ)𝑁
𝑖 then, given Texas Hold’em Poker rules, player i’s utility in a

terminal node z is given by EQ6.

𝑢(𝑖, 𝑧) ∈ {−𝑏(𝑖, 𝑧),∑𝑏(𝑗, 𝑧)

𝑁

𝑗

− 𝑏(𝑖, 𝑧)}| 𝑖 ∈ 𝑁 ∧ 𝑧 ∈ 𝑍

EQ6

Given these definitions we can also detail the a function, which given a history returns

the possible betting amounts. The No Limit variant of Texas Hold’em Poker is

characterized for having no limits in bets – the players can raise up to their remaining

money (see EQ7), where 0 corresponds to a fold action, the lower limit

min(𝑠(𝑝(ℎ), ℎ), 𝑐(ℎ) − 𝑏(𝑝(ℎ), ℎ)) to a call and the higher limit 𝑠(𝑝(ℎ), ℎ) to an all-

in. The lower and the upper limit might be equal, if the player doesn’t have enough

cash to call – in that case, the player goes all-in.

∀ℎ ∈ 𝐻: 𝑎(ℎ) ∈ [
min(𝑠(𝑝(ℎ), ℎ), 𝑐(ℎ) − 𝑏(𝑝(ℎ), ℎ)) ,

𝑠(𝑝(ℎ), ℎ)
] ∪ {0} ∧ 𝐴 = ℚ≥0

EQ7

2.5.4.3 Information sets

An information set is the name of a decision point in Poker; contrarily to complete

information games, a player in Poker does not have the full game state information.

Poker information sets 𝐼𝑖,ℎ = {ℎ, 𝑃𝑖 , 𝑣(ℎ)}|𝐼𝑖,ℎ ∈ 𝐼 are composed of the game’s action

sequence, the player’s private cards and the visible community cards. Other features

can be extrapolated from the basic features, such as the Hand Strength measure, later

described in this thesis.

 2 – Background

27

2.6 Summary

In this chapter this thesis’s domain was presented by clarifying several basic concepts

about game theory and research in games. The game object of this study – Poker – was

also introduced by explaining its most important rules and motivation for its research.

The main Poker variants used in this thesis were also presented, namely Kuhn, Leduc

and Texas Hold’em Poker.

29

Chapter 3

Literature Review

This chapter describes the current tools, trends, techniques and approaches into

building artificial intelligent programs capable of playing Poker. Some brief summaries

of areas that may be required for the development of this thesis work are also

presented: Section 3.1 gives a brief overview about what is being done in this thesis

domain and by whom; Section 3.2 summarizes the current algorithms used by the

research community. Section 3.3 presents the main agents that were developed until

today. Section 3.4 presents ways on how to efficiently compute ranks of sets of cards.

Section 3.5 presents algorithms for computing estimators to aid Poker game playing.

Sections 3.6 and 3.7 present expert knowledge. Sections 3.8 and 3.9 present the tools

for respectively simulating games and having agent playing online; finally on Section

3.10 a brief summary about emotional agents is given.

3.1 Computer Poker Research

Research on computer Poker has been active over the past 20 years, which is

evidenced by the relatively high number of publications in top conferences [19]–[23]

and journals [17], [24], as well as master and doctoral theses [25]–[27]. However, none

of these works focused on creating Poker players to match with humans. Besides Darse

Billings work [25], most of the approaches focused more on the theoretical aspects of

game-playing, making them only valid on more theoretical scenarios with theoretical

environments. An exception to this is a recent achievement, where a perfect agent was

Chapter 3 – Literature Review

30

created for Texas Hold’em Head’s On Limit [24]. However, the described approach is

(currently) unfeasible for multiplayer no-limit Poker, due to memory and CPU capacity

constraints. For this reason there is still a long way to go to create a Poker agent that

is capable of consistently beating the best human players, especially in multi-player

environments.

3.1.1 Research Groups

The most relevant work in the area was mainly done by research groups exclusively

dedicated to Computer Poker. These are the most relevant institutions that produce

relevant research work in the area:

 Computer Poker Research Group (CPRG) at University Alberta16 – CPRG

is probably the most active group on computer Poker research in the

world today. They have produced the first Ph.D. thesis [25] about

computer Poker, many other master theses with quite relevant advances

and have published several papers in the top artificial intelligence

conferences. Most of the research conducted in this group emphasizes on

game theory applied to Poker. In most editions they achieve medals in

the Annual Computer Poker competition as well (especially on the Limit

competitions) [28]. To start exploring this domain, it is very important to

thoroughly study the work done by this group.

 Carnegie Mellon University17 – CMU does not have a research group

exclusively dedicated to Computer Poker. However, some CMU students,

coordinated by Professor Tuomas Sandholm, developed several winning

agents at the Annual Computer Poker competition, especially in the No-

Limit competition (they developed several abstraction techniques for no-

limit Poker).

 Faculdade de Engenharia da Universidade do Porto / LIACC – Research in

computer Poker started at FEUP around 2008 with two Master theses.

Like CMU, there is no research group just for Poker. However, several

16 CPRG homepage: http://poker.cs.ualberta.ca
17 See some CMU Poker papers at http://www.cs.cmu.edu/~sandholm/

http://poker.cs.ualberta.ca/
http://www.cs.cmu.edu/~sandholm/

Chapter 3 – Literature Review

31

publications were made during the last years (see Appendix A for

examples).

3.1.2 Conferences and competitions

The most relevant work in the domain of Computer Poker can be found in the

following conferences. These conferences are top conferences in the area of artificial

intelligence, with very low acceptance rates (on average < 10%):

 AAMAS – International Conference on Autonomous Agents and Multi

Agent Systems

 AAAI – International Conference on Artificial Intelligence

 IJCAI – International Joint Conference on Artificial Intelligence

There is also relevant work in top journals such as:

 Artificial Intelligence Journal

 The International Computer Games Association Journal

 Science

Most of the work is tested and validated in agent competitions. The most

relevant competitions are organized by the CPRG:

 CPRG Annual Poker Bot Competition18 [28] – The Annual Computer

Poker Competition has run since 2006. The competition takes place each

summer at the AAAI or IJCAI Conferences. The event attracts

competitors, both academics and hobbyists alike, from countries all over

the world. The main focus of the competition is on developing a further

understanding of how poker research can benefit artificial intelligence.

The competition has four tracks (not all tracks run every year):

o Limit Texas Hold’em Poker (2 Players) – the goal of this

competition is to assess agents in game theory applied to large

and sequential games.

18 Official website: http://www.computerpokercompetition.org/

http://www.computerpokercompetition.org/

Chapter 3 – Literature Review

32

o Limit Texas Hold’em Poker (3 Players) – same goal as the 2 player

competition but with and even larger game and the multi-player

facet, which makes it hard to use Nash-Equilibrium based

strategies. Moreover, the existence of a third player greatly

reduces the strength of the playing hands.

o No-limit Texas Hold'em Poker (2 Players) – the main challenge of

this competition is to assess abstraction techniques. Given the fact

that No-Limit variants of Poker are much larger, abstraction

techniques are essential to make a good game playing agent.

o Kuhn Poker (3 Players) – the main challenge of this competition is

to assess opponent modelling capabilities in the agents. Given

that this variant of Poker is much smaller than the others (as

explained in Section 2.5.3), agents must model their opponents to

maximize their utility.

 Bot VS Human competition – three competitions between agents and

very good human players were held. The first competition that opposed

poker agents and professional players was in 200719. At this competition,

an agent defeated for the first time a professional Poker player in a group

of matches in Limit Poker, but lost the series. On the same competition in

the following year20, the competing agent was able to win by a low

margin. Finally and more recently in 2015, the competition Brain Vs AI21

was held. It was the first competition in the No-Limit variant between

agents and humans. In this competition, humans managed to get more

cash but it is stated that scientifically it was a tied competition.

19 http://webdocs.cs.ualberta.ca/~games/poker/man-machine/2007/
20 http://webdocs.cs.ualberta.ca/~games/poker/man-machine/
21 https://www.cs.cmu.edu/brains-vs-ai

http://webdocs.cs.ualberta.ca/~games/poker/man-machine/2007/
http://webdocs.cs.ualberta.ca/~games/poker/man-machine/
https://www.cs.cmu.edu/brains-vs-ai

Chapter 3 – Literature Review

33

3.2 Current Approaches

There are several different approaches for building artificial poker players such as

Heuristic-based, Simulation-based, Pattern Matching-based and Monte Carlo Search

Tree-based approaches.

In the following sub-sections, the main approaches to create Poker agents will be

presented and discussed.

3.2.1 Rule Based

A rule based approach is the most direct and simple approach to start developing

Poker agents. It consists in defining the agent’s behaviour with a set of conditional if-

then-else rules, which means selecting an action for a given information set.

A hypothetical rule-based approach is shown on Figure 4. In this particular example the

player will fold with a probability of 20%, call with a probability of 30% and raise with a

probability of 50%, if the pot value and the hand score is high.

Action flopAction(Hand hand, GameState state){

 if(state.pot > 100 && hand.score > 3000 &&

state.numActivePlayers <= 2){

 return new Action(0.20, 0.30, 0.50);

 } else if...

}

Figure 4 – A hypothetical rule within a rule -based system for Texas Hold’em
Poker (based on Figure 1 in [29])

This approach is very intuitive but has several limitations. First, it requires expert

knowledge. Moreover, even with expert knowledge, manually abstracting very large

variants of Poker such as Texas Hold’em cannot capture several strategy nuances that

expert players use with their intuition, which makes it very hard to formalize.

3.2.2 Simulation Based

Simulation based approaches for Poker game playing consist in generating many

random possible match outcomes in order to obtain empirically the statistical average

best response for a given game state – Monte Carlo Simulation. Monte Carlo

Chapter 3 – Literature Review

34

Simulations rely on simulating the opponents’ behaviour when their playing nodes are

reached; using random action sampling for every node not only uses a large number of

iterations but also could produce not very accurate predictions in games of incomplete

information. In order to speed-up the sampling process, the sampling is biased taking

into account the opponent profile (pre-established profiles learned from, for instance,

game logs [30]) . One of such techniques is called selective sampling [31], which

combines this with reinforcement learning, which goal is to maximize the information

gain – in this work selective bias was introduced in private cards i.e. instead of just

considering the opponent’s possible private cards, a weighted table with the frequency

of those cards is maintained throughout the game and it is filled by all observable

actions. A similar technique was also applied to the game of Scrabble [32].

This approach has good practical results in small games, but for very large games

such as Poker, the lack of information and observations (only about 10% of the hands

provide information about the cards of the opponents) makes the agent play just

based on card probabilities, which makes it very predictable.

One particular case of a simulation based approach is the Monte-Carlo Tree Search

algorithm (MCTS). The MCTS is a simulation based algorithm that is adapted for

sequential problems – it estimates the values of moves by sampling them in a game

tree [33]. It consists of applying Monte Carlo Methods on game trees, by selecting

random branches of possible outcomes and then selecting the branch that will likely

produce the best results. The accuracy of this algorithm greatly depends on the

number of simulations: the more simulations, the better the estimate.

The algorithm starts by initializing the game tree, creating a single root node with

the current game state. After that, the following steps (see Figure 5 and Figure 6) are

repeated a fixed number of times:

 Selection: consists on selecting the leaf node of the tree to be expanded;

 Expansion: add child nodes to the selected node;

 Simulation: game simulation until the leaf node of the game tree is

reached;

Chapter 3 – Literature Review

35

 Backpropagation: the final value of the simulation is stored on the nodes

that define the followed path.

Figure 5 - The Monte Carlo Tree Search algorithm (from [46]).

In this work [33] the author created a complete Poker agent that combines

typical player clusters (previously extracted) to predict card holdings and the MCTS

algorithm, as explained in Figure 5. The results produced by this algorithm worked well

against agents with static strategies but event against those, sometimes problems

related with local maxima occurred which prevented the algorithm to properly model

the opponents, thus the average winnings were not optimized. Other relevant works

about the MCTS algorithm and its applications in Poker are [34], [35].

Figure 6 – Poker Agent Architecture that combines MCTS and Clustering
(from [46]).

3.2.3 Nash-Equilibrium

A Nash Equilibrium, as defined in Section 2.2.4, is an equilibrium point between a set

of mixed strategies, for the game participants, where each one cannot perform better

Chapter 3 – Literature Review

36

by changing its strategy, assuming that the opponents maintain their strategies –

changing the strategy always results in a worse performance [36]. However, this set of

strategies assumes that the players always make the best possible move, which is not

the case in Poker, where players are highly fallible. Moreover, a Nash-equilibrium

strategy cannot be used to maximize the profit against a particular opponent – it may

guarantee a certain utility but it is not able to exploit the opponent. This is especially

the case for very weak opponents, where their strategies are very easily exploitable,

and using a Nash-Equilibrium against them may produce little profit. Nevertheless, the

use of Nash equilibrium strategies in Poker represents a great achievement, especially

in heads-up limit poker [24], where the Cepheus agent is taken to be unbeatable. This

type of agents are immune to one of the biggest problems of building a Poker agent –

they do not require opponent modelling to work. A summary of the application of

Nash-Equilibrium profiles to Poker can be found here [37].

Nash equilibrium strategy profiles for two-player Poker or other zero-sum

sequential games can be generated using linear programming techniques (such as

Simplex [38]) when the game search space is small. However, due to the large number

of information sets of common Poker variants, this is currently unfeasible. Instead,

what is usually computed is a Nash-equilibrium over an abstracted version of the game

(joining information sets into the same bucket) producing therefore a ε-Nash

Equilibrium, resulting in an optimal set of strategies within the abstraction – see the

summarized steps in Figure 7. The Nash-equilibrium strategy profile on the smaller

abstract game has to be translated to the real game. This usually happens when bet

amounts are abstracted in No-Limit Poker – the translation step will usually return a

range of possible bet values and a random bet value will be generated. One of the

problems of this approach is that we are not solving the exact same game, which can

add noise to the strategies. Moreover these strategies are still exploitable, and they

could even become predictable, because they highly depend on the used abstraction.

If the opponent discovers the abstraction that is being used, he or she can easily

exploit the agent.

Chapter 3 – Literature Review

37

Figure 7 – Reducing the size of a large game (adapted from [36])

There are some ways to improve a strategy based on a set of Nash-equilibrium

strategy profiles:

 Best Response – the best response is the definition of a counter-strategy for a

given strategy s – it always makes the statistically best decision against s.

Computing a best response is computationally expensive, so usually only an

approximation is calculated (could be done with Monte-Carlo methodologies)

– this assumes that the strategy s is completely open (we can see the

information sets and the decision on strategy s) because it is not possible to

compute a best response online. Computing the best response to a set of

Nash-equilibrium strategies leads to the exploitability. The reason behind this

is that a true Nash-Equilibrium strategy has 0 exploitability: this way, we can

compute how far we are from a perfect Nash-Equilibrium. A formal description

of this algorithm is presented in [36]. One possible way of using the Best

Response during online gaming is to use a technique called Frequentist Best

Response – creation of an opponent model for the abstract game by observing

the logs on unabstracted data, thus creating the action selection tuples in form

of frequencies (e.g. Fold 20%, Call 40% and Raise 40%). This assumes having

the logs with lots of data of the opponent before having matches with him /

her, which is not feasible. However, experiences with simple agents proved

that this works, at least in theory [39].

 Restricted Nash Response – this method [36] combines the Nash Equilibrium

and the Frequentist Best Response approaches. It is composed by several

strategies that are frequentist responses to several types of opponents {sot1,

sot2, sot3… sotn} and an additional Nash-Equilibrium strategy SE. The reason

Chapter 3 – Literature Review

38

behind this is that it usually takes a lot of iterations (games) until we find out in

which profile tplayer we can assume that our opponent is playing with. So, while

we do not know this, we can use a Nash-Equilibrium strategy (which is more

conservative) to keep in the game without losing too much cash / profiting less

cash. As it was written before, besides being a very robust strategy against a

random opponent, a Nash-Equilibrium strategy does not maximize profit

against particular sets of opponents. The combination of these two methods

solves one of the Nash-Equilibrium strategy issues. However there are some

limitations with this approach. Making models is a very hard task, as it requires

lots of domain knowledge. In case our models are inaccurate or incomplete

due to a limited number of observations, this kind of approach could perform

poorly.

 Data Biased Response – this approach [40] tries to address some of the

limitations found in the restricted Nash response approach. The improvement

was made by including not only the frequencies of actions but also the

probability of reaching a given information set – if we are playing against the

opponent with an information set which is not likely to be reached, we can

switch to another strategy (even to pure abstracted Nash-Equilibrium

strategy), solving partially the problem of having limited observations. Another

advantage of this methodology is that it actually does not need full opponent

profiles but instead opponent profiles per information set.

The current state of the art algorithm for computing a Nash-Equilibrium (see Section

3.2.4) for a large sequential game is Counterfactual Regret Minimization (CFR).

3.2.4 Counterfactual Regret Minimization

Counterfactual Regret Minimization (CFR) is an algorithm that is used to find approximate

Nash-Equilibrium solutions for very large sequential games. This algorithm is based on the

concept of counterfactual regret first defined by Zinkevich et al. in [41]. Regret is a measure

for decisions – it is the difference between the utility of any action and the utility of the action

that was actually chosen. To better illustrate this definition, consider the Rock-Paper-Scissors

game (see extensive-form and normal-form in Figure 1 and Table 1, respectively). Consider

the follow events:

Chapter 3 – Literature Review

39

 Player A chooses Rock

 Player B chooses Paper

 Player B wins, thus the utility for player A is -1 and for player B it is +1.

The regrets for player A are:

 Rock: 0, because it was the action actually selected by player A.

 Paper: 1, because he lost 1 point, but if he had chosen Paper he would tie and

therefore not lose any point.

 Scissors: 2, because he lost 1 point, but if he had chosen Scissors he would win the

game and would have 2 more points of utility.

The counterfactual regret is obtained by using the regret matching technique, i.e. by

normalizing the accumulated positive regret of the simulated games and weight it with the

probability of the opponent reaching that information set (in this case the probability is equal

for every information set: 1/3). Therefore, after this first match the counterfactual regret

would be:

 Rock: 0

 Paper: 1/3

 Scissors: 2/3

The regret matching technique leads to a best response. CFR is recursive algorithm that

consists of having two or more agents using the regret matching technique against themselves

in several consecutive iterations. Since each agent is adapting to its opponent they will both

converge to an equilibrium point where both of their strategies are in a Nash-Equilibrium. The

CFR algorithm is only proved to mathematically converge for two player games [42]. The steps

for performing the CFR algorithm are (see Figure 8 for an example information set):

 Compute the expected utility of each action

 Calculate the counterfactual regret for each action

 Update the accumulated counterfactual regret

 Compute the new strategy probabilities proportionally to all positive counterfactual

regret values.

Chapter 3 – Literature Review

40

Figure 8 – Information set example (adapted from [36])

One important thing is that the probabilities of all actions should be initialized with an uniform

probability distribution (in case of Poker (1/3, 1/3, 1/3)). Using a random distribution may

cause that some important information sets will never be reached.

There are several variants of CFR built over the years:

 Monte Carlo CFR – CFR is a recursive algorithm that visits all game nodes. The number

of game nodes in Poker is huge, therefore the game is abstracted to reduce the

amount of game nodes. In order to reduce the amount of abstraction needed, this

technique [43] combines the CFR algorithm with MCTS. Instead of expanding all

actions nodes, some of the nodes are randomly ignored when calculating the

counterfactual-regret. Results showed that it usually performed better than the

regular CFR. There are three heuristics to ignore action nodes: opponent-public chance

sampling, self-public chance sampling and public chance sampling. In [44] it is

demonstrated that the Public Chance Sampling version performs better.

 CFR-BR – in this version of the algorithm, instead of being executed with two agents

that know the abstracted game, CFR leaves one of the agents unabstracted. For this to

work, it is assumed that the unabstracted agent uses a best-frequentist response on

each iteration and we try to find the optimal strategy for the abstracted agent. Like in

Monte-Carlo CFR, abstraction techniques are also used, leading to a not exact best

response. With these improvements, the exploitability of the strategies produced by

Chapter 3 – Literature Review

41

CFR-BR are much lower than the ones produced by regular CFR or Monte-Carlo CFR

[21].

 CFR+ – this version of the algorithm [24] uses a technique called regret matching plus

which constrains the counterfactual regret computations to be non-negative. This

version of CFR does not require abstraction, thus leading to the very first solution of

Limit Texas Hold’em Poker – with parallelisation, 4800 CPUs and 68 days of intensive

computation.

3.2.5 PokerLang

Due to its stochastic nature, Poker players use specific strategies for similar game

conditions. A strategy is used under certain information sets that are described by

specific visible game conditions such as the card probabilities (hand strength), player’s

cash, number of opponents, playing order, among others. These are known as the

game features – characteristics of the information set that influence player decisions.

A strategy S can be conceptualized as a set of tactics. A tactic t ∈ T is a mapping

between a set of information sets and a set of actions:

𝑡: 𝐼′ → 𝐴′|𝐼′ ⊂ 𝐼 ∧ 𝐴′ ⊂ 𝐴

EQ8

I’ and A’ represent two types of game abstraction: information set abstraction

and action abstraction (respectively). This is done by transforming F into F’, where the

features of F’ are simplified so that |𝐼′| < |𝐼|. The information set abstraction is

particularly essential because Poker has so many information sets that it would not be

possible, with current hardware, to store the corresponding action for each one. For a

similar reason, action abstraction is also handy; in No-Limit Poker there is a continuous

interval of possible decisions. Usually this interval is discretized into a fixed number of

possible decisions: fold, call, intervals of raise values and all-in (betting the remaining

cash). Using a fixed number of decisions simplifies search-tree strategy based

algorithms, because it greatly reduces the horizontal and vertical expansion of the

decision tree by reducing its branching factor.

In order to specify these concepts, high-level language was created – PokerLang

– whose syntax and grammar was based on Coach Unilang. Its specification is

Chapter 3 – Literature Review

42

described in [45]. The generic approach of this language allows for its easy adaptation

to other domains.

The language root starts by defining the concept of strategy: a strategy is a set of

tactics each of which is a tuple composed by an activation condition and a behavior for

that tactic. The activation condition consists of abstracting decision points or

information to define I’. They correspond to a set of verifications of the visible game

features (through evaluators) or predictions about uncertain events (through

predictors). A tactic’s behaviour is the procedure followed by the player when the

activation condition is met (the behavior itself has a second layer of verifications that

can abstract the information set even further). The tactic’s behaviour could be either

user-defined or language predefined (based on common expert tactics). In the next

sub-sections we describe PokerLang’s main language concepts. Below the main

elements of this language are presented, in the BNF notation.

<STRATEGY>::= {<TACTIC>}

<TACTIC>::= <ACTIVATION_CONDITION> <TACTIC_BEHAVIOUR>

<ACTIVATION_CONDITION>::= {<EVALUATOR>}

<TACTIC_BEHAVIOUR>::= <PREDEFINED_BEHAVIOUR>|<BEHAVIOUR>

<PREDEFINED_BEHAVIOUR>::= loose_agressive|loose_passive|

tight_agressive|tight_passive

<BEHAVIOUR>::= {<RULE>}

<RULE>::= {<EVALUATOR> | <PREDICTOR>} <ACTION> <VALUE>

<ACTION>::={<PREDEFINED_ACTION><PERC>|

 <DEFINED_ACTION><PERC>}

Language: BNF

To allow the easy creation of Poker-Lang document, an interface was also

created. This interface is called PokerBuilder and its appearance can be seen on Figure

9. With a smooth interface and simple features, PokerBuilder is accessible to any user

that understands the main concepts of poker.

Chapter 3 – Literature Review

43

Figure 9 – Poker Builder (from [45])

3.2.6 Other approaches

Several other approaches were used for building poker playing software agents but

with less scientific significance. However, some of the agents developed with such

approaches actually got some very good results in practice, often surpassing more

theoretical approaches (with emphasis for a Case Based Reasoning Bot that got 2nd and

3rd places at the Computer Poker Competition even against Nash-Equilibrium agents).

These approaches are:

 Miximax and miximix– these algorithms were presented on [46], [47] and they

can be considered to be versions of the minimax algorithm adapted to

incomplete information games. These algorithms are adaptive: they assume

Chapter 3 – Literature Review

44

the existence of opponent profiles with online information from the games

assigning one of the profiles to the current opponents. This will enable to

better estimate the probabilities of all actions on a given information set thus

permitting the agent to traverse the game tree with much more accuracy. This

approach is closer to what real players do, thus having the disadvantage of

needing a strong starting database in order to properly estimate how the

opponents will proceed in order to select the best possible action. Another

problem is the predictability of this kind of approach, after the opponent learns

which models we know.

 Teams of Computer Programs – This approach is in reality an aggregation of

several methodologies – it consists of using several agents at the same time.

Each agent has strengths and weaknesses. When facing an unknown opponent,

there is no information regarding which strategy should be used. An

approximation to a Nash-Equilibrium is not likely to lose, but it is always

possible and it was already explained that the goal is to earn as much as

possible. Therefore using heuristics to switch strategy during the game (if one is

not performing well) is a good option, with very good results demonstrated

empirically [30], [48]. The agent that is responsible for changing the strategy is

called coach agent. It observes the conditions of the game and decides which of

the game playing agents is going to play.

 Pattern Matching Methods – pattern matching methods consist of creating

agents that adapt their strategies based on past experience. The idea of these

methods is to model the game, by defining which game variables represent a

strategy and then build statistical models of past game data based on those

variables. For instance, the work described in [18] showed that it is possible to

build a Poker agent that behaves like a human player, using supervised learning

methods. The author defined game variables and then used game logs of past

games between human players to copy their strategies. The agent is also able

to combine different tactics from different human players. This way, the agent

does not have a static strategy; therefore it can confuse the opponent

modelling mechanics of its opponents. Another similar approach [49] used the

expectation-maximization (EM) algorithm to build cluster models, where a

Chapter 3 – Literature Review

45

cluster model is a mixture model of players. This approach focused on learning

quickly instead of learning accurately because if a player wants to win against

an opponent that it has never seen, it has to learn fast before losing its chips.

This approach performed well in short term games, outperforming agents

based on Bayesian methodologies.

 Case-Based Reasoning (CBR) – is a group of learning algorithms that consist on

having a set of previously observed cases as a knowledge base to aid in the

decisions during the game. In the case of Poker it uses classified game logs as a

knowledge base, with each play classified as being good or bad. When the

agent has to decide which action it is going to take it searches on the

knowledge base for the case that more reassembles the current game state.

The decided action is similar to the one that was taken in the past (if the action

was good in the past). The most successful applications of CBR to Poker were

Casey[50], Casper[51] and Sartre[52]. They got very good standings in the ACPC

competition (including a 3rd place in No-Limit).

3.3 Poker Agents

The number of poker software agents has been increasing in the last years. Many have

been created during, and as a part of, academic research but as this research matures

and becomes widespread, so does the number of individuals tackling and researching

on this subject.

This section provides a brief description and resources for the most popular

poker agents at this time, with emphasis on the ones that participated in the Annual

Computer Poker Competition or that produced some academic results. There is not

much info about other potential agents that are being used in Online Poker. The

limitations imposed by casino clients in their use makes them being hidden to the

general public. However, there is strong belief among Poker professionals that bots are

playing everywhere online.

Chapter 3 – Literature Review

46

Table 5 – Summarized description of some notable Poker Agents

Year Name Type
1997 Loki Rule Based

Loki [53] was the first agent made by the CPRG. Loki uses a rule based approach which
was made by game experts. Its decisions were mainly based on profile opponent
models based on expert knowledge and Effective Hand Strength computation. This
approach was not very successful in online matches (on IRC) against low/mid-level
opponents. Also it was not very accurate with opponent modelling and it had a huge
exploitability. When CFR agents emerged, Loki became quickly deprecated.

1999 Poki Rule Based

Poki [46] is the new version of Loki, completely revised. It was the first agent to
feature the miximax and miximix techniques. This version had a revised opponent
modelling system which made it rather successful in IRC matches. It also won the 2008
ACPC 6 players limit competition – even against CFR agents. This happened because
currently CFR agents are not yet proficient in multiplayer. In games with lower number
of players, this agent can be easily beaten by a CFR. Even so, it is still an important
agent, with potential applicability for online game playing against humans.

2002 PsOpti/Sparbot Nash-Equilibrium / Linear Prog.

PsOpti [54] was the first one to use a Nash-Equilibrium based approach with
abstraction. This agent only played Texas Hold’em Pre-Flop. Even so, tests indicated
that it outperformed some human players (on IRC) and all agents developed until then.
However, the winning rates of this agent were low, because it did not possess any
opponent modelling capabilities. It participated in the ACPC competition in 2006 and
won the Head’s on Limit competition under the name of Hyperborean 06. Its code was
also included in the Poker Academy software under the name of Sparbot.

2003 Vexbot / BRPlayer Adaptive game tree search

Vexbot [55] uses context tree data structures to store the opponent models. These
models disregard chance nodes and only store betting sequences. It was the bot that
firstly stored decisions with abstracted game betting sequences as the key for
retrieving the probabilities to play on given information sets. This agent was also the
first to be able to detect weaknesses in a Nash-Equilibrium strategy by exploiting the
older PsOpti versions.

2006 Hyperborean CFR / Nash-Equilibrium

Hyperborean [41] first emerged as a team of poker programs composed by all PsOpti
agents. It participated and won the first ACPC competition on Limit Poker variant.
Furthermore, this agent marked the introduction of the CFR algorithm as the state of
the art algorithm to create Near-Equilibrium agents.

2007 Polaris CFR / Restricted Nash Response

Polaris [36] innovated by using the restricted Nash response technique described in
Section 3.2.3. It was the first game playing agent to have reported wins against some
of the best human Poker players in the first Human VS Machine competition.

2007 Hyperborean (No-Limit) CFR / Restricted Nash Response

Hyperborean (no-limit) [56] was the first bot to apply the CFR and Nash-Equilibrium
approach to a No-Limit Poker version. This agent was the first that needed to explore
an extra step required for game abstraction, called translation. The translation was

Chapter 3 – Literature Review

47

required to correct the betting amounts between the abstracted and the real game
because in No-Limit Poker the betting amounts are continuous.

2009 Hyperborean (Ring) Data biased response

Hyperborean (ring) [42] was the first one based on the CFR algorithm that performed
well in multiplayer games. Despite the lack of theoretical guarantees that CFR
produces Nash-Equilibrium strategies for multiplayer games, this agent is the proof
that the generated strategies are still very robust for game play.

2015 Cepheus CFR+

Cepheus was the first agent [24] to solve the Limit Texas Hold’em variant of Texas
Hold’em without abstraction. Despite having the problems of still not being able to
optimize winnings against specific players, it is unbeatable in the long run, because its
exploitability is almost zero. The main issue is that the used algorithm (CFR+) requires a
lot of computational power and memory to deal with such large variants of Poker.

2006 Casey Case Based Reasoning

Casey [50] is a case based reasoning bot that starts off with an empty knowledge base.
It starts playing with random decisions and recording all of them. The more it plays the
more it learns. This version made some erratic assumptions of the game without an
initial training period.

2007 Casper Case Based Reasoning

Casper [51] is another Poker agent that can play in a Full Texas Hold’em Poker table
which demonstrates the usefulness of these approaches over more theoretical
approaches when it comes to multiplayer Poker. This agent does not learn from
scratch like Casey, it uses game logs from playing against Poker Academy to learn new
cases to make its decisions. This agent did well against the agents at Poker Academy
and also against humans with fake money, but it did not do as well against humans in
real money tables with very small stakes.

2009 / 2010 Sartre Case Based Reasoning

Sartre [52] is the updated version of Casper but Nash-Equilibrium based agents. In
2010 it got the 3rd place in the Limit competition of the ACPC and the 2nd place in the
No-Limit variant.

2006 / 2007 GS Family Nash-Equilibrium

GS is bot similar to PsOpti that uses the Game Shrink system. That algorithm, given a
description of the game tree is capable of generating a Near-Nash Equilibrium solution
using lossless or lossy abstractions. This agent also combines offline and real-time
game solving, using offline learning for the Pre-Flop and Flop rounds of the game and
for the other the solution is computed online.

2007 / 2015 Tartanian Evolutionary game theory

Tartanian is a group of game playing agents that innovated by their abstraction
techniques on No-Limit versions of Poker. It is also the first reported agent that applies
EGT to Equilibrium solution learning, by breeding and merging different equilibrium
profiles to speed-up reaching a more stable solution. It placed 2nd at the 2007 ACPC
competition.

2010 HoldemML Pattern Matching

HoldemML is a group of No-Limit Texas Hold’em game playing agents that used
pattern matching to build their behaviour from game logs [48]. The results
demonstrated that these agents imitated well their human counterparts but the lack of

Chapter 3 – Literature Review

48

3.4 Hand Rank Computation

A Poker hand is a set of five cards that expresses the player’s score. Let’s consider the

same notation described on Section 2.5.4. Being D the set of all cards in the deck, Pi

the set of pocket cards of a particular player i and S the set of community cards so that

P1  P2 … P𝑁  S ⊆ D, and P𝑖  S for any i is equal to . Thus, the score function is

defined as 𝑠𝑐: [D]5 → ℕ. For a particular player, the hand ℎ𝑖 is the union of the pocket

cards and the community cards (P𝑖 ∪ S). Thus, the player’s score is given by the rank

function, as follows (EQ9):

𝑅𝑎𝑛𝑘(ℎ𝑖) = max({𝑠𝑐(𝑥): 𝑥 ∈ [P𝑖 ∪ S]
5})

EQ9

The possible hand ranks are from stronger to weaker (see with more detail in

Section 2.5.4.1): Straight Flush (sequence of same suit), Four of a Kind (4 cards with

same rank), Full House (Three of a Kind + Pair), Flush (5 cards with same suit), Straight

(sequence), Three of a Kind (3 cards with same rank), Two Pair, One Pair (2 cards with

same rank) and Highest Card (not qualifying to other ranks). Examples of each rank are

demonstrated in Table 3. These ranks are not equally valued. Each rank has sub-ranks

essentially based on the score of the top cards (e.g.: a pair of aces scores higher than a

pair of queens). In total, there are 7,462 possible sub-ranks in Texas Hold’em Poker.

A poker hand rank evaluator is a software program that computes the value of

the rank function, partially computed by the score function 𝑠: [D]5 → ℕ. In Texas

Hold’em Poker this evaluator receives as parameter the set of cards Pi + S,

where |P𝑖| = 2 ∧ |S| ∈ {5,6,7}. The evaluator returns a natural number representing

the relative value of that hand (typically from 0 to 7,461, where 7,461 corresponds to

one of the top scored Straight Flushes). The charts in Figure 10 show the relative

available data makes this approach very hard to be feasible for online play.

2015 Lucifer Hold’em Iterative CFR / Teams of CFR

This is an agent that used, for the first reported time, a non-recursive version of the
CFR algorithm. Despite the lack of training time (1 hour against the average of 2 weeks)
and computational resources it still could get the 9th place out of 16 at the Head’s on
Texas Hold’em Limit Competition. Some of the used techniques are described in
Chapter 6.

Chapter 3 – Literature Review

49

frequencies of each score for Flop, Turn and River, respectively |S| = 5, |S| = 6 and

|S| = 7. The horizontal axis represents the hand ranks (ordered) and the vertical axis is

the relative frequency of that hand.

Figure 10 – Hand rank distributions in Flop (top), Turn (middle) and River
(bottom)

It is possible to observe a stair step layout in the first chart (|S| = 5). Each stair

represents a hand name in Table 3. It is also possible to observe large peeks near the

0,00%

0,01%

0,01%

0,02%

0,02%

0,03%

0,03%

0,04%

0,04%

0,05%

Scores

|S| = 5

0,00%

0,05%

0,10%

0,15%

0,20%

0,25%

Scores

|S| = 6

0,00%

0,10%

0,20%

0,30%

0,40%

0,50%

0,60%

Scores

|S|= 7

Chapter 3 – Literature Review

50

end of each chart. They represent the straight hands, because there are plenty of ways

of combining 5 cards to score a straight, but only 10 possible types of straights (Five

high, Six High …).

To compute the probability of success of a given hand – odds – it is usually

necessary to compute several hand ranks before. For instance, the odds calculation

methodologies presented in the next section require the computation of hand ranks.

Programming an algorithm to determine the hand’s rank is a relatively trivial

task. This can be done using a naïve approach, i.e. using an algorithm that intuitively

makes sense and that is humanly readable. Naïve hand rank evaluators usually consist

of the following steps:

 Sort the hand by card value (deuce has the lowest value and ace has the

highest);

 Iterate through the hand, collecting information about ranks and suits of

the cards;

 Make specific tests to check, iteratively, if the hand is of a certain rank,

starting at the higher ranks.

One example to illustrate this idea can be found in Figure 11. This example does

not consider the whole set of Texas Hold’em rules.

Function HandRank(Hand) {

 Sort(Hand);

 If IsStraightFlush(Hand) Return 9;

 If IsIsFourOfAKind(Hand) Return 8;

 If IsFullHouse(Hand) Return 7;

 If IsFlush(Hand) Return 6;

 If IsStraight(Hand) Return 5;

 If IsThreeOfAKind(Hand) Return 4;

 If IsTwoPairs(Hand) Return 3;

 If IsOnePair(Hand) Return 2;

 Return 1;

}

Figure 11 – Hypothetical Naïve Hand Rank Evaluator

The problem with naive evaluators resides in their efficiency, which is important

because the rank evaluator is used by a hand odds evaluator several times per

Chapter 3 – Literature Review

51

computation. The solution to this problem resides in top-down dynamic programming

algorithms in order to speed up the rank function. The next subsections will present

some developed approaches to solve this issue.

3.4.1 Pokersource Poker-Eval

Poker-Eval is a C implementation of a Poker Hand rank evaluator [57]. As described at

the beginning of this section, given a hand, this evaluator returns a natural number

that represents the hand score. This evaluator uses a naïve approach and, to the best

of our knowledge, the fastest one.

The main advantages of this evaluator are its architecture which supports multi

Poker variants, multi-platform usage, since there are wrappers for other programming

languages and its low memory usage when compared to look-up table based

approaches. The main issue of this evaluator is its low level API which makes it hard to

use by programmers.

3.4.2 Cactus Kev

The Cactus Kev's 5-Card Evaluator [58] is a system to compute 5 card hand rank. The

idea behind its algorithm is the construction of a pre-computed look-up table with

every possible rank. However, since the number of possible 5 card sequences is 𝑃552
 ,

the size of the table would be about 2.5 GB of memory (considering 8 bytes to store

the hand and its rank).

To solve this problem one can group similar hands (same cards, different order),

resulting in (52
5
) hands, making this approach feasible (the size of the new look-up

table would be about 20 MB). However, this solution requires sorting the hand cards

before accessing the look-up table, wasting additional CPU time. To solve this, Cactus

uses a 32 bit integer representation of the cards (Figure 12).

Figure 12 – Cactus Kev’s card representation

P (6 bits) represents the value of a card in a form of a prime number, with the

following values Two – 2; Three – 3; Four – 5; Five – 7; Six – 11; Seven – 13; Eight – 17;

Nine – 19; Ten – 23; Jack – 29; Queen – 31; King – 37; Ace – 41. The reason behind this

Chapter 3 – Literature Review

52

decision resides the fact that the multiplication of two prime numbers always

generates a unique value. This allows for avoiding the step of sorting the hand cards,

saving CPU time. Therefore, the product of these values can be used to index the

hands.

R (4 bits) represents the rank of the card (Two – 0; Three – 1; Four – 2; …). CDHS

represents the card’s suit mask, where one of the bits is activated (C if the card is

Clubs, D if the card is diamonds …). The B (13 bits) represents the card’s rank mask,

where the first bit is activated when the card is a Two, the 2nd bit is activated when the

card is a Three, and so on.

Three look up tables are used in this evaluator: flushes (the ranks of all flushes

and straight flushes hands), unique5 (the ranks of all hands with cards with different

ranks) and values (the remaining cards). To build the look-up tables, a naïve evaluator

is required.

To find the value of a certain hand, the three tables are consulted. Assuming the

cards of the hand are labelled as C1, C2, C3, C4 and C5, Cactus first verifies if the hand is

a flush: Index = C1 AND C2 AND C3 AND C4 AND C5 AND 0x0F00

For the calculated index, the table can either return the value of the hand or 0, if

the hand is not a flush or a straight flush. The next step is to verify if the hand belongs

to unique5 by calculating the following way: Index = (C1 OR C2 OR C3 OR C4 OR C5) >>

16

Once again, if the value of the table at the calculated index is 0, we have to look

for the result in another table. The final index uses the described prime number

strategy.

𝐼𝑛𝑑𝑒𝑥 =∏(𝐶𝑖 𝐴𝑁𝐷 0𝑥𝐹𝐹)

5

𝑖=1

EQ10

The problem of using this index system is that it would result in a very large look-

up table of size 41 × 41 × 41 × 41 × 37 = 104,553,157. The author of this technique

Chapter 3 – Literature Review

53

solves this problem by storing the indexes in a binary search tree for fast hand value

retrieval.

The main limitation of this hand evaluator is that it can only be used to evaluate

5-card hands. This means that to use it in Texas Hold'em (which needs to evaluate 7-

card hands in the River round), the function has to evaluate all possible 21

combinations of 5 cards to determine the hand value.

3.4.3 Paul Senzee

Paul Senzee’s hand evaluator is an improved version of Cactus Kev. However, instead

of using a binary search, Senzee uses a pre-computed perfect hash table.

A perfect hash table guarantees no collisions in the storage of the hands’ values.

Also it allows for acquiring the values in constant time instead of the 𝑂(log 𝑛)

complexity of the binary search. The used hash function was based on [59]. This

approach produced a time improvement factor of about 2.7 times [60].

Another advantage of Paul Senzee’s evaluator is that it provides 7 card hand

evaluation (River round), without having to compute all possible ranks (21) to pick the

best one.

Paul Senzee's 7 Card Evaluator also uses a pre computed hand table to quickly

determine the integer value of a given 7 card hand. For 7 hand cards lookup, Paul

represents each hand with a 52 bit string, where each bit represents an activated card.

The total number of activated bits is 7, representing a 7 card hand.

If unlimited memory was available, it would be possible to index the resulting

rank value into an enormous and very sparse array with 252 entries of about 9

petabytes of memory (9 million gigabytes). To solve this problem, Paul Senzee's

developed a hash function that turns the hand value into an index between 0 and

roughly 133 million and, by using the Cactus Kev’s evaluator, it is possible to produce a

266MB lookup table. The author of this approach does not provide information about

the hash generation code. The main limitation of the 7 card version of Paul’s evaluator

is that only supports 7 cards (it does not support Flop and Turn rounds).

Chapter 3 – Literature Review

54

3.4.4 TwoPlusTwo Evaluator

TwoPlusTwo evaluator is a lookup table Poker hand evaluator that uses a table of

32,487,834 entries with a total size of ~130 MB [61]. The TwoPlusTwo Evaluator is

extremely fast and probably the fastest hand evaluator there is. This is because the

ranks of the hands are stored in a non-sparse array with low redundancy.

To store the hands, the implementation of this evaluator is based on a direct

acyclic graph of seven layers, with each edge representing a card value. Therefore,

each node of this graph represents a card sequence and it links to nodes with the same

card sequence but with one extra card. In the final layers (5, 6 or 7), the node contains

the hand value. This representation would require
52!

(52−𝑛)!
 positions for layer 𝑛.

However, the author of this method grouped similar hands, since the order and the

suits (except for flushes) of the cards do not matter for the hand score. Using this

structure, to get the value of a given hand, only one lookup per card is performed. For

instance, the following function will compute a 7 card hand value, being HR the lookup

table.

Function Rank(Hand) {

 Return HR[HR[HR[HR[HR[HR[HR[53 + Hand[0]] +

Hand[1]] + Hand[2]] + Hand[3]] + Hand[4]] +

Hand[5]] + Hand[6]]

}

Figure 13 – Using the TwoPlusTwo evaluator

There is also an improved version of this evaluator by Jan Varho. Varho method

splits the entire lockup table into 7 distinct tables, each one of them representing a

lookup layer. This way, Varho was able to save memory by using short numbers (16

bits) to store the final layer. The total size of all tables is now about 80 Mb [62].

3.5 Hand Odds Computation

Evaluating the odds of a hand consists of measuring its quality at any state of the

game. This section describes how to compute the probability of a complete hand

(hands with 5 or more cards) being successful at Showdown (last round of Poker where

the players show their cards and the winner is decided). By evaluating the hand it is

Chapter 3 – Literature Review

55

possible to determine the probability of winning or losing the current game. This

knowledge can be used to inform the agent's decision of either fold the hand or play it,

as well as to assess the probability of success and the risk that the agent is facing.

Computing the hand odds may consider the following variables: Pocket cards; Number

of opponents; Community cards; possible community cards to come and possible

opponents’ cards.

The hand evaluation method typically returns a probability. If it returns the lower

limit, this means that the hand will lose regardless of future events in the game, unless

the player uses deception to bring opponents to forfeit. Conversely, obtaining the

upper limit from the hand evaluation function means that victory (or at least draw) is

mathematically assured – the only way of losing is to unwisely fold the hand.

3.5.1 Hand Strength

The hand strength [17] is the probability of the current hand being the best if the game

reaches a showdown with all remaining players. It consists of enumerating all possible

hands that an opponent can have and checking if the agent's hand is better than the

hands in the enumeration. By counting the number of times the player’s hand is found

to be better, it is possible to measure the quality of the hand. Using Section 2.5.4

terminology, the hand strength (HS) for a given number of opponents n is given by:

𝐴ℎ𝑒𝑎𝑑(ℎ𝑖) = |{∀x ∈ [D\P𝑖]
5: sc(x) < Rank(ℎ𝑖) ∧ x ⊇ S}|

𝑇𝑖𝑒𝑑(ℎ𝑖) = |{∀x ∈ [D\P𝑖]
5: sc(x) = Rank(ℎ𝑖) ∧ x ⊇ S }|

𝐵𝑒ℎ𝑖𝑛𝑑(ℎ𝑖) = |{∀x ∈ [Δ\P𝑖]
5: sc(x) > Rank(ℎ𝑖h) ∧ x ⊇ S }|

𝐻𝑆𝑛(ℎ𝑖) = (
𝐴ℎ𝑒𝑎𝑑(ℎ) +

𝑇𝑖𝑒𝑑(ℎ)
2

𝐴ℎ𝑒𝑎𝑑(ℎ) + 𝑇𝑖𝑒𝑑(ℎ) + 𝐵𝑒ℎ𝑖𝑛𝑑(ℎ)
)

𝑛

EQ11

The Hand Strength may be used in any round of the game. However hand

strength does not address the possibility of the hand improving in subsequent rounds

of the game, which is possible because in Texas Hold’em new cards are revealed at the

start of every round (community cards). This issue is addressed by the Hand Potential

Formula [17] which sums up possible hand strengths in subsequent rounds (described

in Section 0).

Chapter 3 – Literature Review

56

In [63], the authors suggest it is possible to combine the hand strength algorithm

with opponent modelling in order to calculate the hand strength taking into account

the opponents. For this purpose, the proposed algorithm would use 𝑅𝑒𝑚𝑎𝑖𝑛′ =

[D\P𝑖\ ∂]
5 where ∂ is the set of cards that the opponent probably does not have, given

that (P𝑖  S  ∂) ≠ D, and (P𝑖  S  ∂) = . This approach was successfully tested in

Texas Hold’em heads up games.

In Figure 14 it is possible to observe the heat map for the average hand strength

against 1, 2, 3 or 4 opponents. For the following heat map, the colours have the

following meaning (blue – (probability ≥ 90%); purple (probability ≥ 70% and < 90%);

green (probability ≥ 50% and < 70%); red (probability < 50%).

Figure 14 – Heat maps for hand strength against a variable number of
opponents. The horizontal and vertical axis represent a card and the ‘heat’
is the value of the average hand strength for the pair of cards.

Chapter 3 – Literature Review

57

As expected, it is possible to notice that there is a larger concentration of high

hand strength values next to the higher cards. Moreover, as the number of players

increase, the area of high hand strength values decreases. This means that players

should be more careful when playing against a higher number of players, since there is

a greater probability of one of them having a better scored hand.

3.5.2 Hand Potential

Hand potential [17], [63] is an algorithm that calculates the possible evolution of the

hand quality throughout the game. In Texas Hold’em, when the game reaches the Flop

round, there are still two more deck cards to be revealed. This means that the current

hand rank may improve, since the hand is composed of the set of five available cards

(pocket or community cards) that has the highest rank among all available cards. This is

an extension of hand strength, but instead of only considering the current available

cards, it considers the possible community cards that have not been revealed yet. This

also considers that the opponents' hands might improve as well. Hand potential has

two components:

 Positive potential: of all possible games with the current hand, all

scenarios where the agent is behind but wins at the end.

 Negative potential: of all possible games with the current hand, all the

scenarios where the agent is ahead but loses at the end.

The components of hand potential can be calculated as follows:

𝑃𝑃𝑂𝑇𝑛(ℎ𝑖) = |{∀x ∈ [D\h𝑖]
5: ∀y ∈ [D\P𝑖]

nround: 𝐻𝑆𝑛(ℎ)

≤ 𝐻𝑆𝑛(𝑥) ∧ 𝐻𝑆𝑛(ℎ + ж(y)) ≥ 𝐻𝑆𝑛(𝑦) ∧ x ⊇ S ∧ y ⊇ S}|

𝑁𝑃𝑂𝑇𝑛(ℎ𝑖) = |{∀x ∈ [D\h𝑖]
5: ∀y ∈ [D\P𝑖]

nround: 𝐻𝑆𝑛(ℎ)

> 𝐻𝑆𝑛(𝑥) ∧ 𝐻𝑆𝑛(ℎ + ж(y)) < 𝐻𝑆𝑛(𝑦) ∧ x ⊇ Ω ∧ y ⊇ S}|

EQ12

given that nround is 2 when calculating for the Flop round and 1 when

calculating for the Turn round. We also consider the function ж: [Δ]5..7 → [Δ]3..5 which

extracts the community cards from any given hand of 5 to 7 cards. The main advantage

Chapter 3 – Literature Review

58

of this method is the consideration of Texas Hold’em upcoming rounds. In Figure 15,

the average distribution of the PPOT and the NPOT components is shown, through

heat maps. It is possible to perceive that there are higher concentrations of high PPOT

values for closer cards (which are more likely to score a straight). As for the NPOT

values, the hands with cards with lower ranks have a higher negative potential.

This presents the same result as Hand Strength in the River round (because the

hand cannot evolve any further). Moreover, this method cannot be used in Pre Flop

rounds, because it is not possible to calculate the hand strength for a two cards hand.

This might be solved by combining this algorithm with Chen Formula (see at the end of

this section). Similarly to the hand strength, if the Hand Potential is modified to only

iterate over cards that the opponents might have [63], it is possible to obtain a better

estimate of the winning ratio.

Figure 15 – Heats maps for PPOT and NPOT against 1 opponent.

3.5.3 Effective Hand Strength

The probability of winning can be calculated by combining the Hand Strength with the

PPOT and NPOT components.

P𝑛(win) = HS𝑛 × (1 − NPot𝑛) + (1 − HS𝑛) × PPot𝑛

EQ13

Chapter 3 – Literature Review

59

By setting the NPOT to 0, it is possible to determine the effective hand strength,

which is the probability of the hand either being the best or improving to it.

EHS𝑛 = HS𝑛 + (1 − HS𝑛) × PPot𝑛

EQ14

Through the observation of the Effective Hand Strength heat map (Figure 16),

one can find that it has a similar structure to the simple Hand Strength map.

Figure 16 – Effective hand strength heat map against with 1 opponent.

Figure 17 – Difference between effective hand strength and the hand
strength.

2c

3c

4c

5c

6c

7c

8c

9c

Tc

Jc

Qc

Kc

Ac

2c 3c 4c 5c 6c 7c 8c 9c Tc Jc Qc Kc Ac

0-0,15 0,15-0,3 0,3-0,45 0,45-0,6 0,6-0,75 0,75-0,9 0,9-1

2c

2s

3h

4d

5c

5s

6h

7d

8c

8s

9h

Td

Jc

Js

Q…

Kd

Ac

As

2c 2s 3h 4d 5c 5s 6h 7d 8c 8s 9h Td Jc Js Qh Kd Ac As

0-0,05 0,05-0,1 0,1-0,15 0,15-0,2 0,2-0,25

Chapter 3 – Literature Review

60

For this reason, the additional computation time needed to calculate the

effective hand strength might not be worth. To confirm this suspects, we computed

the 𝐸𝐻𝑆1 − HS1 heat map (Figure 17). In this map, it is possible to observe that the

EHS method increases the value of all hands with special focus on hands with less hand

strength. This happens because low scored hands have more potential to grow than

“already made hands”.

3.5.4 Incomplete Hands

In this section the Pre-Flop round of the game is addressed by showing how to

compute odds when all community cards are still hidden.

One example is the Chen method. Chen is a fast naïve method developed by the

professional poker player William Chen [64]. This can determine the relative value of

the pocket hand. The main advantage of this over hand strength is that it does not

need to generate permutations of card sets. For this reason, this algorithm is much

faster than previously presented approaches.

function Chen(card1, card2){

 score = Max(Score(card1), Score(card2))

 if(card1.suit == card2.suit)

 score = score + 2

 switch(abs(card1.rank-card2.rank))

 case 0: score = score * 2

 case 1: score = score + 1

 case 2: score = score – 1

 case 3: score = score – 2

 case 4: score = score – 4

 default: score = score – 5

 return score

}

Figure 18 – Chen code implementation example

The algorithm is composed of two functions. The Score function returns a real

number that scores a card (10 for Ace, 8 for King, 7 for Queen, 6 for Jack and rank / 2

for remaining). For instance, any ace card has the highest score possible (10). The Chen

Formula function returns an integer which represents the value of the hand. Thus, the

maximum returned value is 20 for a double Ace hand.

Chapter 3 – Literature Review

61

3.6 Opponent Modeling in Poker

Opponent modelling consists in classifying the opponents in order to make accurate

predictions of their future actions in the game. In this section we present some

techniques based on expert knowledge that are still the baseline approaches for

abstracting used in very recent agents.

One of the most used player classification is the Sklansky classification, explained

in [16]. The classification is based on statistical measures about the opponents and

they do not usually consider the game results. The measures that can be used to

classify players are:

 Voluntary Put In Pot (VPIP) – The percentage of how often a player puts

money in the pot in Pre-Flop round by calling or raising. It does not count

blind-bets.

 Pre-Flop Raise (PFR) - A percentage measure of how often a player raises

pre-flop compared to calling or folding.

 Aggression Factor (AF) - The ratio between raises and call actions

(Number of Raises / Number of Calls). Checks do not count.

 Flop Continuation Bet (FCB) – The percentage of times where a player

makes more than one raise on the same Flop.

 Fold Versus Flop Continuation Bet (FvFCB) – The percentage of times

that a player folds after doing two or more raises on the same Flop.

On the following tables (adapted from22) we present several player classifications

based on these measures and ways to explore the opponents that classify on them.

22 The explanation of Poker Statistics: http://pokerai.org/wiki/index.php/Player_statistics

http://pokerai.org/wiki/index.php/Player_statistics

Chapter 3 – Literature Review

62

Table 6 - Tight Aggressive Players.

Classification Tight Aggressive

Conditions VPIP: 12-16, PFR: 9-14, AF: >2.0

Description This type of player will play a few times, but when he does he

probably has a premium hand. When in game, this type of player plays

very aggressively (high stakes).

Exploit This type of players is difficult to exploit because they only play

premium hands, despite being predictable. However, a good loose

player cannot take advantage over tight aggressive players.

Table 7 – Nit/Rock players.

Classification Nit/Rock

Conditions VPIP: 7-11, PFR: 5-7

Description This type is even stricter than the tight aggressive player. A rock player

only plays a very small set of hands, usually above QQ in Pre-Flop and

Pair after the Flop.

Exploit Blind stealing. Since this type of players play fewer hands, any flat Call

on the Pre-flop round should be answered with a Raise.

Table 8 – Loose Aggressive Players.

Classification Loose Aggressive

Conditions VPIP: 17-24, PFR: 15-22, AF: 2.0-5.0

Description They play aggressively a wide range of hands. They usually use

position and present good opponent modelling capabilities, being able

to make great profit from getting their opponents to fold their better

hands, using the concept of fold equity.

Exploit Good Loose Aggressive players present few weaknesses. Strategies

that could work against this type of opponents are Hammer or Rope-

a-dope.

Chapter 3 – Literature Review

63

Table 9 – Manic/Aggro Donk players.

Classification Maniac/Aggro Donk

Conditions VPIP: 30-100, PFR: 30-60, AF >4.0

Description This type of players bet and raises almost any hand and they rarely

fold. In the long run, these players lose a lot of money.

Exploit A good tight strategy works against these players.

Table 10 – Cal l ing stat ion player

Classification Calling Station

Conditions VPIP: 18-100, PFR: 0-15, AF: <2.0

Description These players call almost every hand and they only raise (little) when

they have a very strong hand.

Exploit Tight strategy.

Table 11 – Short stacker player.

Classification Short Stacker

Conditions VPIP: 5-9, PFR: 4-9

Description This type of player only applies in cash games. These players only

enter the table with a 20 Big Blind stack and they either fold the hand

or go All-In (with premium hands) at the Pre-Flop. They often play in

position and only with hands above TT.

Exploit These players are predictable. Blind stealing works well against this

type of players.

Table 12 – Loose passive player.

Classification Loose Passive

Conditions VPIP: >30, PFR <15, AF <2.0

Description Plays a wide range of hands passively. They are similar to calling

stations but they fold more often.

Exploit Tight and aggressive strategy.

Chapter 3 – Literature Review

64

3.7 Poker Books

There are many books that give advices on how to proficiently play Poker, written by

known professional players or mathematicians. A Poker book normally gives a set of

tips about game strategies and how these can be explored, showing common errors of

each type of player and real examples of plays in important tournaments. Obviously,

many of these tips are subjective and depend heavily on the game situation, so each

player should always make his or her own strategy depending on its opponent’s

behaviour.

The next sub-sections briefly describe some of these well-known books. Many of

the concepts present in these books have been constantly used in the development of

the current state of the art approaches on computer Poker, especially for wisely

abstracting the game information. The concepts in Section 3.6 were based mainly on

the work of these authors.

3.7.1 The Theory of Poker

The Theory of Poker [16] is one of the most important books about Poker playing ever

printed. It was written by the professional gambler David Sklansky and the first edition

came out in 1987 (almost three decades ago!). Although being old, much of the

content is still a reference for professional poker players and computer Poker

researchers.

This book presents a complete overview of Poker theory in all main variants with

some examples about each concept. Sklansky starts the book by explaining what he

calls “The Fundamental Theorem of Poker”:

Every time you play a hand differently from the way you would have

played it if you could see all your opponents’ cards, they gain; and

every time you play your hand the same way you would have played

it if you could see all their cards, they lose. Conversely, every time

opponents play their hands differently from the way they would have

if they could see all your cards, you gain; and every time they play

Chapter 3 – Literature Review

65

their hands the same way they would have played if they could see all

your cards you lose.

David Sklansky [16]

In this theorem, Sklansky is clearly talking about Nash-equilibrium theory. When

a player does not play its optimal strategy and deviates, he or she makes a mistake,

therefore losing. For this reason, to win in Poker a player should take advantage of

situations where the opponents do not use their equilibrium strategy.

The book also presents concepts about pot odds, the value of deception, getting

and giving a free card, semi-bluff, raising correctly, check-raising, using position,

bluffing and techniques for reading hands.

3.7.2 Hold’em Poker for Advanced Players

This [65] is another book written by David Sklansky (and Mason Malmuth) with the

first edition coming out in 1988. This book is considered the continuation of The

Theory of Poker but focused on the Texas Hold’em variant of Poker.

This book introduces the Sklansky groups of cards in Texas Hold’em. There are

169 distinct sets of two card starting hands in Texas Hold’em. In this book, the authors

divided those sets into eight different groups (see Table 13), according to strength and

playability. Each group has a description of how to play with those cards.

Table 13 – Sklansky and Malmuth groups

Group Hands

1 AA, AKs, KK, QQ, JJ

2 AK, AQs, AJs, KQs, TT

3 AQ, ATs, KJs, QJs, JTs, 99

4 AJ, KQ, KTs, QTs, J9s, T9s, 98s, 88

5 A9s...A2s, KJ, QJ, JT, Q9s, T8s, 97s, 87s, 77, 76s, 66

6 AT, KT, QT, J8s, 86s, 75s, 65s, 55, 54s

7 K9s...K2s, Q8s, J9, T9, T7s, 98, 64s, 53s, 44, 43s, 33, 22

8 A9, K9, Q9, J8, J7s, T8, 96s, 87, 85s, 76, 74s, 65, 54, 42s, 32s

Chapter 3 – Literature Review

66

It is possible to easily compute this table using the professional player Bill Chen’s

formula (see 3.5.4). This formula is presented in his book “The Mathematics of Poker”

[64] and it calculates the relative value of the pocket cards.

3.7.3 Super/System: A Course in Power Poker

This book [66] written by Doyle Brunson and other known professional Poker players

was first published in 1978. This was the book that presented some of the most

important concepts about strategy in Poker for the first time, even before Sklansky’s

publications.

One important characteristic of this book is that the author defends his own

aggressive playing style over passive playing styles. Solid theoretical proof now proves

that aggressive play is usually superior to a more conservative style, but until the date

of publication of this book, there were no previous studies about it [25].

3.7.4 Gambling Theory and Other Topics

This book [67] gives a understanding of how gambling works generally, by explaining

the fluctuation that create illusions among the players about how strong they are in

the game. It focuses particularly on the mathematics of poker, and how a player can

take advantage of them to win.

3.7.5 Every Hand Revealed

Every Hand Revealed [68] is a more recent book written by Gus Hansen (known by

Poker players as “the madman”). This book presents a very practical approach for

learning Poker, where the author shows all the hands that he played during Aussie

Millions Poker Tournament in 2007 – one of the most important Poker tournaments

that he won against 746 competitors. For each hand, Hansen explains the logic behind

his decision usually with mathematical support.

Since he is a Loose-Aggressive player, he plays differently than most of the best

professional Poker players. For this reason, this book presents an interesting approach

for a different winning strategy.

Chapter 3 – Literature Review

67

3.8 Poker Simulators

A Poker Simulator is a software tool that allows for Computer Poker researchers to test

their agents against other agents or human players, allowing them to predict the

agents’ success at long term, before putting them in a real life environment. In the

case of Poker this is especially important, because assessing agents in real-life

environments can cost a lot of money.

3.8.1 LIACC’s Texas Hold’em Simulator

LIACC Texas Hold’em Simulator (Figure 19) is a software capable of simulating Limit or

No-Limit Texas Hold’em games. It has a client-server architecture where the server

communicates with clients (agents) through sockets with a predefined TCP

communication protocol. The software was developed in C/C++ [63].

This simulation software supports up to 10 players which could be either human

or automated agents (it provides a client for games with human players). The

communication protocol between clients and server is based on the ACPC competition

protocol (see Section 3.8.3), so the developed agents are ready to compete there.

Before starting the simulation, some game options can be defined, such as chip

stacks, blind value, log file name, etc. The created log file stores information about

bets and how much money each player wins/loses in each game.

Figure 19 – LIACC’s Texas Hold’em Simulator.

Chapter 3 – Literature Review

68

3.8.2 Poker Academy

One of the best resources for testing a Poker agent is the simulation software named

Poker Academy23 (Figure 20). In this simulator it is possible to compete against the

best agents developed by CPRG at the University of Alberta. It was launched in

December 2003 as a tool for professional player training.

Poker Academy provides a Java based API (named the Meerkat API) that allows

Computer Poker researchers to plug in their own custom bots. This gives an excellent

environment for bot development as it is possible to easily put a custom bot playing

against the best bots developed until now, in a quality GUI. The program also keeps

track of all the hands played and can display comprehensive charts and analysis of the

player statistics over time.

One of the problems of Poker Academy is that it is misfit for extensive

simulations, because of the heavy user interface that results in low simulation speeds.

Another problem is that it is not possible to start a simulation without a human player,

which means that in each simulation there will always be an additional ghost player

that the user must configure to always fold its hands, adulterating for this reason the

simulation results.

The project was discontinued because it failed commercially, but then got back in

2015 as a new training tool called Poker Genius24.

Figure 20 – Poker Academy.

23 Official website: http://www.poker-academy.com/
24 Poker Genius Official Website: http://poker-genius.com/

http://www.poker-academy.com/
http://poker-genius.com/

Chapter 3 – Literature Review

69

3.8.3 ACPC Poker Server

The ACPC Poker Server (Figure 22) is the application built for the AAAI Annual

Computer Poker Competition. It is known for being fast, by simulating thousands of

games between poker agents in milliseconds (with a personalized timeout that kicks an

agent out if it is very slow). It is composed by three applications:

 Client – a sample client (in C) that is provided with the software package

that gives a good starting point for personalizing agents.

 Server – it runs the game and deals cards for the several connected

agents. Its architecture and its communication module (simplistic

protocol over TCP) allows for any agent written in any language to

connect to it.

 Observer – it is possible to implement observer applications that can

watch the match (however without knowing the hidden cards of each

player).

This simulator is very simple but it lacks an easy to use API (all it has is a library written

in C that is efficient but very hard to use). It has some personalization options. See the

configuration file example in Figure 21.

GAMEDEF

limit

numPlayers = 3

numRounds = 1

blind = 1 1 1

raiseSize = 1

firstPlayer = 1

maxRaises = 1

numSuits = 1

numRanks = 4

numHoleCards = 1

numBoardCards = 0

END GAMEDEF

Figure 21 – ACPC Poker Server – server configuration

Figure 22 – ACPC Poker Server – User interface.

Chapter 3 – Literature Review

70

3.8.4 Open Meerkat Poker Test bed

Open Meerkat Poker Test bed25 (see Figure 23) is an open source implementation of

the Meerkat API for running Poker games. It imitates the Poker Academy simulator;

however it is much faster because it lacks a heavy user interface.

This application supports Fixed/No-Limit cash games with automatic rebuy. It

generates bankroll evolution plots, implements seat permutation to reduce game

variance (replay games with same cards but with different seat order) and generate

game logs. It also shows an online bankroll evolution chart. The main issue of this

application is that it still has some bugs in the game’s algorithm, only supports even

number of players and it does not have built-in playing agents (only dummy agents

with very basic strategies).

Figure 23 – Open Meerkat Poker Test bed.

3.8.5 IRC Poker Server

Even before the real-money online poker sites were popular, several human players

played with text based scripts for the Internet Relay Chat protocol. At the same time,

the first agents appeared, which allowed the first matches (without real money) of

Texas Hold’em Poker. Many versions of the first rule-based Poker agents (see Section

3.2.1) such as Loki were assessed in matches on those servers. Despite the fact that

25 Available at https://code.google.com/p/opentestbed/

https://code.google.com/p/opentestbed/

Chapter 3 – Literature Review

71

matches didn’t use real-money, the players needed to raise their skill level in the

system to be entitled to play against stronger opponents, which increased the

challenge factor on those matches. Some software agents were relatively successful

there but notwithstanding the levelling system, the players never play the same way as

if they were betting real money (we also do not know how skilled were the players

there). Both the software and several gigabytes of match logs are still freely available

for download.

3.9 Interaction between Poker Agents and Human Players

Testing Poker agents in simulated environments is very important and can give

empirical proof of the agent’s potential and theoretical success. Nevertheless, without

testing agents in a “real life” environment against human players, their skills can never

be properly validated. There are some tools that provide this type of interaction

between Poker agents and human players, which will now be presented.

This kind of applications are called Poker bots. The tools presented in Sections

3.9.1 and 3.9.2 are already deprecated, since their compatibility with the most

important Poker rooms is non-existing or with a lot of bugs – however they still work

on less popular rooms.

The creation of an application that plays Poker in rooms is very complex task

because the online casinos usually do not provide an API for it – it requires an

application that interacts with the casino client through image processing. Moreover,

these applications require constant updates, because the casino client applications are

always changing. For this reason there are not much public software that supports

these functionalities. There is also no research on how to construct this type of

applications, to the best of the author’s knowledge.

3.9.1 WinHoldEm

WinHoldEm26 is a commercial programmable poker bot (see Figure 24) that allows for

users to connect their agents to real money tables in online casinos. Users that have

26 Available online at http://www.winholdem.net/

http://www.winholdem.net/

Chapter 3 – Literature Review

72

software development skills can develop and compile their own bots in standard

C/C++.

This type of application is often not permitted in Poker tables, and its usage

could result in banning. However, WinHoldEm uses an advanced stealth module to

avoid detection, and it can be used on some important sites like PartyPoker27 without

significant problems. This tool also allows for automated collusion (teamwork between

players to get an unfair advantage).

Despite not being permitted, this type of applications may present the only way

to test the agent in a real-life environment. There are also some Poker sites that do not

officially support the use of these tools but they allow them (if no collusion happens

between bots).

Figure 24 – WinHoldEm graphical interface

3.9.2 OpenHoldEm

OpenHoldEm28 is an open source screen scraping framework and programmable logic

engine for the online Texas Hold'em poker game. This framework has similar

functionalities to WinHoldEm but it has the advantage of being free (it is usually known

as a free WinHoldEm). Unlike WinHoldEm, this tool does not support automated

collusion. This tool’s main components are:

 A parameter driven engine for screen scraping and interpreting game

states (Table Maps)

 A logic engine for making poker decisions based on the game states

 A simplistic scripting language for describing how these poker decisions

should be made (using the Spirit parser library)

27 Official website: https://www.partypoker.com
28 https://code.google.com/p/openholdembot/

https://www.partypoker.com/
https://code.google.com/p/openholdembot/

Chapter 3 – Literature Review

73

 Various interface mechanisms allowing for the creation of decision logic

via alternative means (C++, Perl, etc.)

 An engine for applying the poker decision to the casino table (Auto

player)

This open-source project was recently archived, however there are video reports

(on YouTube) from 2014 / 2015 claiming that it still works.

3.10 Emotions in Poker

Affective computing is a research domain whose goal is to attempt to create systems

that can recognize, interpret, process, and or simulate human emotions. It is an

interdisciplinary field spanning from computer science and psychology [69].

In competitive games, if an artificial player is capable of interpreting the

emotional state of human opponents, it can adapt its strategy, giving a more

appropriate response: e.g. being more aggressive when the opponent is in a

depressive state or being more conservative when the opponent seems more serious.

Since the machines currently do not possess emotions, except when simulated, they

also do not have the disadvantages associated with them during a game, i.e., they do

not get tired, frustrated, anxious, etc. Thus, a match between a human player and an

agent of similar skill level would often result in victory for the agent because it is not

affected by any emotional state, thus being able to keep its strategy and make no

mistakes. A very complete review about this issue can be found in [69].

One important concept is tilt. Tilt is an emotional state in a game of Poker, based

on emotional confusion or frustration that affects the player’s behaviour in the game,

which causes the player to use a less optimal strategy than usual.

This concept is defined and explored in [70]. The authors state that all gamblers

experience tilt, and their reactions to tilt and to tilt-inducing situations partly

determine whether or not gambling becomes a major problem.

Generally tilt is experienced by big losses of money in Poker. However, not only

big losses bring a deviation from the original optimal strategy. Big gains can also affect

Chapter 3 – Literature Review

74

the strategy of a human player because they might stimulate overconfidence, which

can result in careless play [71].

3.11 Summary

In this chapter the current most relevant methodologies for the creation of Poker

agents were presented and discussed. Some tools to support agent’s development

were also presented as well as some expert knowledge notions and information

sources. This chapter serves as support for the rest of the document and is referenced

throughout the document when necessary.

75

Chapter 4

Simulation and Tools

This chapter describes the general architecture of the simulation systems and tools

developed to support Computer Poker research. Three different systems were

developed: one simulation system that is used to test Poker agents before entering

competitions or playing online, which provides several features that facilitate their

assessment; a Poker description language which allows for describing sets of rules to

define customized Poker games – allowing future contributions in the domain of

general game playing and finally a Poker Bot system which allows for software agents

to play online without human players knowing that they are actually playing against an

agent, which reduces the psychological impact on humans that participated on some

of the tests described in Chapter 7.

4.1 LIACC Poker Simulator

New Computer Poker developments are usually made through the implementation of

software agents. A Poker agent is software that replaces a human in the task of playing

Poker, by taking decisions without any human intervention. Since playing Poker can be

considered a repetitive task for a human player, the development of software agents

not only allows progresses in computer science (as explained in Chapter 2) but also has

potential commercial value to professional Poker players. If they were able to create

agents in their image, they could be rewarded for their effective know-how of the

Chapter 4 – Simulation and Tools

76

game and not by their physical endurance or patience. This is true, because most

lucrative players are usually the ones that play more carefully and more games.

The challenge in developing agents for incomplete information games resides in

the fact that the decision that gives maximum utility for a given information set is not

always ascertainable. In light of this, simulation systems are indispensable for accurate

assessment of agents’ capabilities. Nevertheless, and as reviewed in Section 3.8,

current systems do not accommodate the needs of computer poker research since

they were strictly designed as training tools for human players to improve their skills

(with the exception of the ACPC simulator). In order to contribute towards the

improvement of computer poker research, a new version of the LIACC Poker Simulator

was developed from scratch (it was not based on the one described in Section 3.8.1).

This simulator considers scientifically unexplored game modes with the purpose

of providing a more realistic simulation environment, where the agent must play

carefully to manage its initial resources – the environment follows more closely what

actually happens in online rooms at popular casinos. Several other features were

introduced in the simulated environment to speed-up the simulator, namely the

inclusion of table seat permutation [28], which reduces the variance of the results,

requiring therefore much less iterations to properly validate an agent.

An evolutionary simulation feature was also included so as to provide support for

the improvement of adaptive strategies. The simulator has built-in odds calculation, an

agent development API, other platform agents and several variants support and an

agent classifier with realistic game indicators including exploitability estimation.

Another important aspect of the new system is the consideration of bankroll29

management – a key concept considered essential by professionals for proper game

play. The importance of bankroll management can be explained by the gamblers ruin

theorem [72]. This theorem states that even if players use a strategy that has positive

expected value30, they will still be very likely to be bankrupt if they raise the stakes31

when they win but do not lower them when they lose.

29 Bankroll – amount of money that a given player reserved for playing Poker.
30 Expected value – average amount of money won per play.

Chapter 4 – Simulation and Tools

77

4.1.1 Goals

In order to overcome the limitations found in previously developed Poker simulators, a

new simulator has been created which aims to integrate the most important features

present in other simulators with new features that will certainly lead Computer Poker

research into new directions. The requirements of the new simulation system are:

 An expandable architecture to support the creation of agents or the

introduction of game variants. This includes an agent development API.

 New game modes such as ring, which allow researchers to explore the

paradigm of bankroll management.

 Evolutionary simulation of Poker games, which encourages studies about

strategy evolution through the principle of natural selection. This feature

is not known to be natively supported by any Poker simulator.

 A set of validation tools that allow for a quick and precise assessment of

the agent capabilities to predict their performance in different real-life

like environments.

4.1.2 Agent Modelling

The simulation system described in this thesis uses a multi-agent architecture where

an agent represents a Poker player. Many types of agents were created for this

simulation platform, each one of them represented in the code by a class. The way

each class relates to others is depicted in the UML class diagram of Figure 25.

Poker Agent – it is an abstract class based on the Meerkat API [73] that

represents any agent in the system. The class contains a set of abstract methods that

represent the events that each agent has to answer to during the simulation. Thus, to

create an agent that works in this system it is necessary to extend this class. Agents

must implement a set of methods corresponding to events of the game:

 pocketCards(Card[], Seat) – occurs when the agent receives its pocket

cards.

31 Stake – amount of betted money per game.

Chapter 4 – Simulation and Tools

78

 observeAction(GameInfo) – the main routine of the agent. It is called

when the agent is requested to perform an action.

 actionEvent(Seat, Action) – A player in a given seat has performed an

action.

 winEvent(Seat, Amount, Card[]) – A player in a given seat has won an

amount of chips with a given hand.

 showdownEvent(Seat, Card[]) – player in a given seat has shown his cards.

 gameOverEvent() – the current game is now over.

Figure 25 – Poker Agents class model.

HumanAgent – this agent extends the class PokerAgent and redirects the game

events to a graphical user interface (GUI). This GUI is controlled by a human player.

Thus, this class represents a form of interaction between human and artificial players.

PGDLAgent – this agent extends the class PokerAgent and allows for integrating

agents developed with the PGDL System. This agent requires the PGDL Translator

which is a parser for PGDL documents. The specifications of the PGDL System are

described in Section 4.2.

 class Class Mo...

PokerAgent

HumanAgent SocketAgent Translator

MeerkatTranslator

AAAITranslator

«interface»

IEv olutionary

GUI

PGDLTranslator

PGDLAgent

* 1

1

1

Chapter 4 – Simulation and Tools

79

SocketAgent – the socket agent is responsible for communicating with external

agents developed for other simulation platforms. This way, any external agent from

Poker Academy [73] or AAAI Server [28] can be used in this simulator without need of

recoding, using the new PokerAgent class. The communication process is

demonstrated in Figure 26. When a SocketAgent receives a request, it chooses the

correct translator and then sends a translated request via sockets to an external

application that is linked to the external agent. The external agent then sends the

response all the way back to the SocketAgent and then the SocketAgent plays

accordingly.

Game SocketAgent
Choose

Translator
Translate
Request

External
Agent

External
Socket

Application

Request

Response

Response

Figure 26 – Communication between the Socket Agent and the External
agent.

IEvolutionary – this optional interface adds three methods to any class that

extends from PokerAgent. These methods allow the agent to participate in

evolutionary simulations. The methods of this interface are the following:

 ReproduceAsexually – this method should return a new child agent

created by the current one, with upgraded parent features;

 ReproduceSexually – this method should return a new agent created by

crossing characteristics from both this agent and another one;

 Fitness – this method returns a number that measures the level of

adaptation of the agent to the current environment. The fitness could be

for instance the average expected value against all opponents.

4.1.3 Simulation System Architecture

The architecture of the simulator is depicted in Figure 27. The simulator was

implemented in JAVA to maximize the compatibility with several systems. The

simulator is composed of the following components:

Chapter 4 – Simulation and Tools

80

 Hand Rank Server – a server that is used to calculate the rank of the

Poker hands based on the algorithms described in Chapter 5;

 Simulation Server/Poker Simulation Library – the application that is

responsible for simulating Poker games;

 Logging database – all agent moves are registered in a database for

future profiling and result analysis;

 Poker Agent – this entity represents an abstract Poker agent;

 Poker Library – definition of general Poker data structures;

 Poker Statistics Library – calculates statistical indicators and thus

validates agents;

 Poker GUI – user-friendly GUI to allow humans to play against the agents.

Figure 27 – Poker Simulation System Architecture.

4.1.3.1 Hand Rank Server

The hand rank server is a process that runs concurrently with the simulation server and

that evaluates Poker hands for all agents. This was created to save memory since the

fastest hand evaluating algorithm – TwoPlusTwo Evaluator [74] – must load a 130 MB

Chapter 4 – Simulation and Tools

81

table. If each agent were to load the table individually it would be problematic in terms

of memory usage, especially in the evolutionary simulation module where thousands

of agents might be needed.

The hand ranking server uses a simple TCP communication protocol to provide

different measures that evaluate the chance of winning: hand rank; hand strength;

hand potential; effective hand strength and Chen formula. Table 14 presents the

commands that can be sent to the server (<Hand> is a string composed of 5 to 7 cards

like ‘AsAd7s4d2c’). Already computed results can be optionally saved by the hand

ranking server in a private database in order to speed up future requests. Pre-

computed results consider hand isomorphisms, since that for instance, asking the

Hand Strength for A♣A♥ is the same as asking for A♦A♠.

Table 14 – Hand Ranking Server Commands.

Command Description

RANK <Hand> Retrieves the rank of the hand.

HS <Hand> <NO> Retrieves the hand’s strength. <NO> = remaining adversaries.

HP <Hand> <NO> Retrieves the hand’s potential.

EHS <Hand> <NO> Retrieves the effective hand strength.

CHEN <Card> <Card> Retrieves the relative value of a hand with 2 cards.

ARS <Hand> <NO> Retrieves the effective hand strength approximated using the

Average Rank Strength tables (see Chapter 5)

4.1.3.2 Logging Database

The simulator has a database that contains records of all moves made by registered

players, if the logging option is set. Figure 28 presents the class model of the database

that was subsequently converted to a relational database model.

The database uses a data warehouse model which will help researchers to

process the raw data. This produces some intentional redundancy in the data, namely

the link between the Player and the Game classes that can be used to facilitate game

analysis, reporting and data mining. The model is composed by the following classes:

Chapter 4 – Simulation and Tools

82

 Action – represents an action in a given game performed by a player. This

class represents the star table and thereby a key aspect of the simulator

database. An action presents the full state of the game table when it took

place, instead of only containing the action type and the value;

 Game – represents a game which is a set of actions;

 Player – represents a registered player in the game;

 Simulation – represents a simulation run on a date and time. It is a set of

consecutive games;

 Room – some simulation modes require the concept of room/table i.e.

the occurrence of games in parallel in the same simulation.

Figure 28 – Game moves database class model.

The used format is also helpful for case based reasoning agents, because of the

presence of redundancy in the action table that aids the computation of approximate

information sets [75].

4.1.3.3 Poker Simulation Module (Poker Simulation Library)

This module is responsible for performing the simulation itself. When the simulation

starts the user will be asked which players will be part of the game, which simulation

Chapter 4 – Simulation and Tools

83

mode to use and which Poker rules. The class diagram in Figure 29 shows the entity

structure of the simulation module. The existence of simulation modes is one of the

innovative aspects of the system and five different modes were considered.

 Simple Tournament – a simple tournament is a set of games that only

ends when only one player remains. This kind of simulation allows testing

the capabilities of the agent to manage its cash and the blind increase in

order to win the tournament and avoid the gamblers ruin theorem [72].

 Full Tournament – this mode is similar to a simple tournament but with

several gaming tables.

 Cash Games – the common type of simulation that is used to validate

Poker Agents. It consists of a finite set of games with static blinds and

player money reset at the beginning of each game. To reduce the

variance of the results, table seat permutations is used – for each game

positions are switch and the same cards are dealt, so everyone has equal

chances. This type of simulation allows players to be tested on the long

run, always on equal footing.

 Ring Games – this mode is similar to what happens in online casinos. The

agent starts with a given amount of chips and must manage it in order to

survive. In addition, the agent should choose the table that contains

opponents that are more susceptible to its strategy and tables with blinds

that do not present a risk of quickly losing all cash.

 Evolutionary Cash Games – this mode is similar to cash games simulation.

However, in this mode, from time to time, natural selection is applied.

This means that the agents with less fitness will be discarded and the

other agents will reproduce, creating child agents that contain

characteristics of both parents.

Chapter 4 – Simulation and Tools

84

Figure 29 – Poker simulation module.

There are four main game types: Limit Texas Hold’em, No Limit Texas Hold’em,

Limit Texas Hold’em Only Pre-Flop and No Limit Texas Hold’em Only Pre-Flop. The

innovative part of the game types is the presence of “Only Pre-Flop” variants. These

are variants of Texas Hold’em that only last until the Flop round therefore they do not

have community cards. This variant is popular among new Poker researchers, given the

much lower number of information sets than in full Texas Hold’em resulting in less

abstraction for strategy computation. This system can be easily expanded by inheriting

from the PokerGame class or by implementing game rules using the PGDL system

(described on 4.2).

For the same reason, the variant Kuhn Poker was also included (as a particular

implementation of a PGDL Game, later described in this Chapter). Kuhn Poker is a

variant that only uses 3 to 13 cards (the number of card is a simulation parameter) and

no community cards, resulting in a maximum number of 52 possible information sets.

This allows researchers to quickly validate new approaches, with much less effort and

Chapter 4 – Simulation and Tools

85

computation time needed, especially when working with algorithms such as CFR that

can take weeks to finish for full Texas Hold’em.

4.1.3.4 User interface

In order to quickly configure the simulation parameters, a configuration GUI was

developed (Figure 30). This GUI includes an optional and minimalist 2D visualizer

(Figure 31) to observe the agents in action.

Figure 30 - LIACC Poker Simulator

Figure 31 –LIACC Poker Simulator 2D visualizer

Chapter 4 – Simulation and Tools

86

4.1.3.5 Evolutionary Simulation Model

The evolutionary model follows as the diagram in Figure 32. The simulation can be

started by selecting the evolutionary parameters (number of iterations, population

size: M, percentage of agents eliminated per iteration: n) and the agents that take part

in the simulation. The population size is maintained throughout the simulation but it is

renewed on every iteration. The simulation ends after a defined number of iterations.

Initial Population
with size M with

randomized
parameters

Max number of
iterations reached?

Matches between
pairs of agents

No

Computation of
crossing tables

Elimination of n% of
the agents with less

fitness

Reproduction of a
random agent or

two gendered
agents

Yes

Size of
population >=

M?

Number of
Iterations++

Selection and
combination of

agents
Simulation Ends

Yes

Simulation Begins

No

Figure 32 – Evolutionary simulation module.

4.1.4 Agent Assessment

After performing the simulations, the statistics module can be used to analyse the

results. Three types of statistics were included:

Bankroll evolution – the evolution of the player cash during the simulation. This

statistic shows the evolution of the agents’ profit during a simulation.

Player indicators evolution – several indicators used by Poker experts are

available in evolution plots and described in Table 15.

Chapter 4 – Simulation and Tools

87

Exploitability analysis – the exploitability is the agent’s utility against a best

response agent. A best response agent is the average best possible strategy against

one’s own strategy. Calculating a best response can be done using CFR. Since Poker is a

very large game, abstraction is needed to perform this operation in a timely manner.

This simulator provides exploitability computation by following the next steps:

 Selection of the level of card abstraction (0 to 100). The results are more

accurate for lower levels of abstraction.

 Selection of the level of action sequence abstraction (0 to 100).

 Selection of the number of iterations for CFR and for final simulation.

 Computation of the best response strategy using the CFR algorithm with a

desired level of abstraction;

 Final simulation and computation of the exploitability level.

Table 15 – Player stat istical indicators.

Indicator Description Round

VPIP Percentage of games where the player puts money in the pot. Pre-Flop

PFR Number of Raises / (Number of Calls + Number of Folds) Pre-Flop

AF Number of Raises / Number of Calls Flop

4.1.5 Tests and simulator evaluation

The developed simulator was tested against other simulators in the matters of speed

and features.

4.1.5.1 Benchmark Tests

In order to compare the speed of this simulator against previously developed

simulators, a benchmark test was performed. The test consisted of repeating for 1.000

tries a simulation of 100.000 cash games, with 4 players without table permutation

(since Poker Academy does not support it). The results are shown in Table 16.

As can be observed, the new LIACC simulator is the fastest one. The results were

very close to the Open Meerkat Testbed, however the Poker Academy simulator was

Chapter 4 – Simulation and Tools

88

much slower. This was due to the heavy user interface present in the Poker Academy

software that slowed down the simulation process.

Table 16 – Simulator benchmark test results for 1.00 0 tr ies with 100.000
games and four players.

Simulator
Average Time

(seconds)

Std. Deviation

(seconds)

Open Meerkat Test Bed [76] 43.0 6.3

Poker Academy [73] 660.3 48.7

LIACC Simulator 27.7 1.8

Table 17 – Poker Simulators Comparison table.

Feature
LIACC

Simulator

Open

Meerkat

Poker

Academy

Is Key

Feature?

2D visualizer Yes, Simple No Yes No

Agent Development API Yes Yes Yes Yes

Bankroll Analysis Simple Simple Complete Yes

Card Rank Computation Yes No Partially Yes

Database support Yes No ? No

Evolutionary Simulation Yes No No Yes

Expansible Architecture Yes Yes No Yes

Exploitability Yes No No Yes

Human players Yes No Yes No

Logging Yes Yes Yes Yes

Online play No No Yes No

Pre-developed agents No (but PGDL) Yes, Simple Yes Yes

Simulation Speed Fast Fast Slow Yes

Table seat permutation Yes Yes No Yes

Former agent support Yes No No No

Chapter 4 – Simulation and Tools

89

4.1.5.2 Qualitative Comparison

Table 17 summarizes the comparison between the main Poker simulators. The first

column presents the feature. The 3 subsequence columns present the main available

simulators. The last column indicates if the feature is considered to be essential (in the

author’s opinion) for implementing a simulator that is fully suited for Computer Poker

research.

The only missing features in LIACC’s simulator are online play and pre-developed

agents. Despite this simulator not providing pre-developed agents, this can be

balanced by the Former Agent Support feature which allows the use of agents

developed for other platforms. Moreover, the PGDL pre-built agents might also be

used because this simulator is compatible with the PGDL system.

4.1.6 Summary

The new LIACC Poker simulator is scalable, fast and is able to lead Computer Poker

research to unexplored paths. The key features of this system are the possibility of

performing evolutionary simulations, tournament simulation and support for external

agents. Also, this simulation system provides access to an extensive database that

could be easily used for data-mining and better opponent modelling profiling in the

future. Moreover, there could be significant improvement of agents’ performance in

real-life environments by analysing the comprehensive statistical indicators generated

by the system.

This simulator is in final stages of development, with some extensive testing

already done. Performance tests demonstrated that this simulator is faster than all the

others it was compared with. The qualitative analysis also shows that this simulator

outperforms previously developed simulators in terms of research aiding features and

proper agent assessment.

4.2 Poker Game Description Language (PGDL)

The term Poker is commonly wrongly recognized as a game. Poker is actuality a

category of games with hundreds of different variants, which differ from each other by

Chapter 4 – Simulation and Tools

90

their betting structure, the number of cards in the deck, the way the winner is

determined, among other rules. These features represent by themselves unique

challenges in Poker agent development.

However, to the best of the author’s knowledge there is not a single unified

description model that allows for game playing agents to be tested across different

Poker variants inexpensively. This is rather important when developing new Poker

playing agents for two main reasons:

 Each poker variant has unique characteristics in its rules that assess

different components of the agents’ strategies. If one develops an agent

under a representative formal model of Poker rules, one can more easily

adapt and test the agent in new environments thus improving the overall

agent’s capacity and robustness in game playing, allowing it to have a

much more complete strategy. The goal of this approach is to answer to

even more research questions when developing Poker game playing

agents.

 Interoperability between game playing agents. In fact, nowadays, most

Computer Poker researchers use different technologies to develop their

game playing agents, which makes it difficult to test new approaches

against previously developed ones. Some simulation systems try to solve

this, like [22], [77] but they only provide the API and not the

communication protocol. Agents can also be assessed in the ACPC

competition by AAAI [28] but its benchmark server is only available for

people that participated in the last year competition. A unique rule and

communication representation model would certainly allow for more

proper agent assessment, while maintaining the developers’ preferences

regarding technology.

For these reasons we propose a new Game Description Language (GDL) for Poker

games –Poker Game Description Language (PGDL) – was developed based on XML. The

goal of a GDL is to describe the state of a game as a series of facts and the game

mechanics as series of logical rules. GDL’s are typically used by General Game-Playing

Chapter 4 – Simulation and Tools

91

Systems (GGPS) as input. GGPS are systems that are capable of recognizing a formal

description of a game and play the game effectively without human intervention, such

as Zillions of Games32.

PGDL, unlike other incomplete information GDLs, is uniquely focused on Poker

agent development and testing. Therefore, PGDL was developed to only identify the

key concepts of Poker games rules in order to facilitate the definition of known or non-

existent Poker variants by users with Poker domain knowledge. The reason behind the

creation of a Poker specific GDL is to balance the definition and implementation time

of a generic Poker playing agent. The usage of a more generic GDL would hinder the

development because of its lower level nature, which would make simple strategies

really hard to understand and implement. With a Poker specific GDL one sacrifices the

agent’s capacity to play other games but agents’ strategies will surely benefit of the

extra domain knowledge available.

 To support the creation and assessment of PGDL entities, a general game

playing system was also developed. This system allows users to not only play the PGDL

described game against basic agents but also provides a proof of concept API that

allows for game playing agent development. The development of the PGDL

simulation/game playing system was divided in the following stages:

 Identification of Poker base rules with emphasis on the differences

between its variants.

 Conception of a XML based language capable of specifying the identified

rule differences and the creation of PGDL instances.

 Creation of a XML-Schema that validates PGDL instances.

 Construction of a system that recognizes the XML language (in Prolog)

and that is capable of generating the specified game.

 Construction of an application (PGDL Builder) that supports the creation

of PGDL documents.

32 http://www.zillions-of-games.com/

http://www.zillions-of-games.com/

Chapter 4 – Simulation and Tools

92

 Development of a generic game playing agent that can play competently

any variant described by PGDL.

4.2.1 Poker Variants

Poker is a group of similar games with the same base rule set. The denomination for a

specific set of rules is called variant. The variants of Poker can be divided in 3 groups:

 Draw Poker – each player receives a set of private cards that only he/she

can see and can improve the hand by card replacement. This group of

games is usually played by casual players. Examples of Poker games that

are part of this group are Five-Card Draw, Badugi and Kansas City Lowball;

 Stud Poker – each player receives a set of exposed cards (cards that

belong to the player but everybody at the table can see) and a set of

pocket cards that only the player can see, in multiple betting rounds. Six-

Card Stud, Razz, Eight-or-better and high-low stud are variations of Stud

Poker;

 Community Card Poker – games in which each player receives a variable

number of private cards to form an incomplete hand, which is completed

by combining private cards with public shared cards (exposed to every

player). The most popular poker variant nowadays, Texas Hold'em,

belongs to this group as well as Omaha Hold'em and Manila.

Poker variants rules differ on the following features:

 Number of betting rounds – for instance, Texas Hold'em has 4 betting

rounds and Five-card draw has 3 betting rounds.

 Number of private and public cards (and the way they are dealt) – in

Texas Hold'em 5 public cards are dealt and each player receives 2 private

cards, while in Cincinnati 4 community cards are dealt, one before each

round of betting, and each player has 4 private cards.

 Forced antes – some variants force all players to bet a certain quantity of

money before the cards are dealt. This amount is called ante.

Chapter 4 – Simulation and Tools

93

 The betting order – there are variants such as Seven-card stud in which

the first player to act is the one with the lowest exposed card and

variants such as Omaha Hold'em where the first player is the one to the

left of the big blind.

 The maximum number of players.

 Scoring – there are high-games in which the highest hand wins and low-

games where the lowest hand wins. There are also high-low split games,

where the best and the worst hands split the pot.

 Deck composition – there are variants that are played with only a few

cards from the deck, such as Manilla (only cards above 7 with a total of 32

cards).

 Existence of wild cards – special cards that can score as any card (usually

Jokers).

 Replacing cards – some variants, like Anaconda, allow players to pass

cards between them in various ways. In other variants, like Badugi,

players have the opportunity to improve their hand by discarding some

cards and obtaining replacements from the dealer. There are also variants

that force players to discard a fixed number of cards, without

replacement.

 Betting structure – Another major difference between the variants of

poker is the betting structure. The structure can be limited, pot-limited

and no-limit. The limit games are the ones in which there is a fixed value

for each bet made by a player. In a pot-limited game no player can raise

more than the size of the total pot. In these last two structures, until

winning the game there can be a limited number of raises during a round.

In no-limit games there are no limits on bets.

Table 18 summarizes the main differences of the most popular and played Poker

variants.

Chapter 4 – Simulation and Tools

94

Table 18 – Differences between Poker Variants

Variant #Rounds
Cards

#Players
Number Shared Exposed Closed Wild

Texas

Hold’em
4 52 Yes (5) No 2 No 2 to 9

Omaha

Hold’em
4 52 Yes (5) No 4 No 2 to 10

Baseball 4 52 No Yes (4) 3 3/9 2 to 8

Cincinnati 5 52 Yes (5) No 5 No 2 to 9

Five-card

draw
2 52 No No 5 No 2 to 6

Anaconda 4 52 No No 7 No 2 to 7

Manilla 5 32 Yes (5) No 2 No 2 to 9

Seven-

card stud
6 52 No Yes (4) 3 No 2 to 8

Kuhn 1 4 No No 1 No 2 to 3

Leduc 1 8 Yes (1) No 1 No 2 to 3

4.2.2 PGDL Language Specification

In this section the structure of PGDL files is described. The PDGL format is based on

XML. The format is enclosed in a hierarchical description of game rounds. The

description of each game round compromises the flow of the game. There are also

other elements to describe generic rules of the variant (such as the number of players)

or meta-information (such as the name of the variant). Figure 33 summarizes the key

components of the language by presenting the tree structure of a PGDL file.

Examples of PGDL documents representing popular Poker games can be found in

PGDL Documents.

4.2.2.1 Initial setup

The PokerGame is the root component of PGDL which includes the name, the winning

determination (High, Low or Mixed), the ante value if the game is played with or

without wild cards.

Chapter 4 – Simulation and Tools

95

<PokerGame

 name=”Leduc”

 wildCards=”No”

 winningType=”High”

 ante=”1” />

Language: XML

Every PokerGame node must have a Players child node where the maximum and

minimum number of players is defined.

<Players

 minimum=”2”

 maximum=”4” />

Language: XML

-name
-wildCards
-winningType
-ante

PokerGame

-minimum
-maximum

Players Rounds

-number
-name
-communityCardsNumber
-faceUpCardsDealt
-faceDownCardsDealt
-blinds
-forceBet

Round

-type

BettingStructure BlindStructure

-min
-max

DrawCards

-value
-direction

PassCards

-value

DiscardCards

-order
-firstPlayerBetting

BettingOrder
-id
-name
-position
-value

Blind

-value
-maxNumRaises

Bet

-standardDeck
-jokers

Deck

-id
-name
-value
-suit
-wild

Card

Figure 33 – PGDL Specification

Chapter 4 – Simulation and Tools

96

4.2.2.2 Deck

Poker games can be played with a standard deck (52 cards without Jokers) or with a

partial deck with a given number of Jokers.

<Deck standardDeck=”Yes” jokers=”0” />

Language: XML

If the game is played with wild cards, any card can be used as wild (usually Jokers

are used as the default wild card). The deck definition allows not only using directly a

standard deck but also personalize which cards belong to the deck, with custom

names. This way one can even define Poker variants with two decks for instance. For

each card one has to indicate the id and name of the card, the suit, its value (any value

of a standard card) and if that card is wild. This representation does not cover variants

with dynamic wild cards.

The example of deck for Kuhn Poker (one of the simplest versions of Poker, used

mainly for research purposes).

<Deck standard=”No” jokers=”0”>

 <Card id=”k” name=”King” value=”K” suit=”h”

wild=”No” />

 <Card id=”q” name=”Queen” value=”Q” suit=”h”

wild=”No” />

 <Card id=”j” name=”Jack” value=”J” suit=”h”

wild=”No” />

</Deck>

Language: XML

4.2.2.3 Rounds

The Round element is the most important component of the PGDL file structure

because it is associated with the game flow. It describes how the rounds will take

place during the game. Each round has a round number (to control the order of

rounds), a name, the number of dealt shared cards, the number of faced up and faced

down cards that each player is dealt, one Boolean to control if the round must start

with a bet and another one to check if the round has blinds.

Chapter 4 – Simulation and Tools

97

<Round

 number=”1”

 name=”Round One”

 communityCardsNumber=”1”

 faceUpCardsDealt=”0”

 faceDownCardsDealt=”1”

 blinds=”yes”

 forceBet=”no”>

 …

</Round>

Language: XML

Furthermore, each round has sub-components: the Betting and Blind Structure

of that round, the Cards Rules and the orders of the bets. Each round must have an

individual betting structure defined.

The Betting Structure must be one of the three available types: Limit, No Limit

and Pot Limit. Depending on the picked type, one has to indicate the maximum

number of raises allowed per player and the bets’ default value.

<BettingStructure type=”noLimit”>

 <Bet value=”1” maxNumRaises=”3” />

</BettingStructure>

Language: XML

Blind Structure only exists if the attribute blinds is activated (equals to ‘yes’). This

element contains a non-empty set of Blind elements. A Blind is described by a name, a

unique id, the value of the blind and the position of the player that will post the blind.

<BlindStructure type=”noLimit”>

 <Blind id=”smallBlind” value=”1”

name=”Small Blind” position=”nextDealer” />

</BlindStructure>

Language: XML

Card Rules are specified by three different elements: Draw Cards, Discard Cards

and Pass Cards. Draw Cards indicates the minimum and maximum number of cards

that each player can draw in a round. Discard Cards specifies the number of cards that

Chapter 4 – Simulation and Tools

98

each player must discard in that round. Pass Cards defines the number of cards that

each player must pass and in which direction (clockwise or counter clockwise).

<DrawCards min=”0” max=”0” />

<PassCards value=”1” direction=”clockwise” />

<DiscardCards value=”1” />

Language: XML

Betting Order it’s a sub-component of the Round. To specify it, it is necessary to

indicate in what order that round will occur (Clockwise or Counter clockwise). The first

player to act is also defined in this element.

<BettingOrder order=”clockwise”

 firstPlayerBetting=”nextDealer” />

Language: XML

4.2.2.4 Scoring

With PGDL it is also possible to customize the Poker scoring system. To customize the

score we need to add the element Scoring as child of PokerGame root node. After

adding it, two options are available:

 Use the standard scoring (explained in Sections 2.5.2.2 and 2.5.4.1): there

we just need to select the size of the hands used throughout the game

(the standard value is 5) and put the element standard attribute as being

true. If the Scoring element is not present in the document, the standard

scoring will be used.

 Use nonstandard scoring: the attribute standard must be false and the

handSize must still be specified. In this case we need to have several

Score child elements with the formulas (as text under the Subrank child

element) to assign that particular score type. The formulas have access to

the card values by using $ci where i is the index of the card (between 1

and handSize).

Chapter 4 – Simulation and Tools

99

<Scoring standard="false" handSize="5">

 <Score name="high card" rank="0"

default="true" sort="true" >

 <Subrank>

 $c5.rank * 28561 + $c4.rank * 2197 +

$c3.rank * 169 + $c2.rank * 13 + $c1.rank

 </Subrank>

 </Score>

 <Score name="pair" rank="1" default="false"

sort="true">

 <Conditions>

 </Conditions>

 <Subrank>

 $c5.rank == $c4.rank?

 $c5.rank * 100000 + $c3.rank * 169 +

$c2.rank * 13 + $c1.rank:

 $c4.rank == $c3.rank?

 $c4.rank * 100000 + $c5.rank * 169 +

$c2.rank * 13 + $c1.rank:

 $c3.rank == $c2.rank?

 $c3.rank * 100000 + $c5.rank * 169 +

$c4.rank * 13 + $c1.rank

 $c2.rank * 100000 + $c5.rank * 169 +

$c4.rank * 13 + $c3.rank

 </Subrank>

 </Score>

 <Score name="two pairs" rank="2"

default="false" sort="true" >

 ...

 </Score>

 ...

</Scoring>

Language: XML

4.2.3 PGDL System

The PGDL system is a set of sofware applications that contemplate the following

features:

 Support the creation of PGDL files through an intuitive GUI;

 Generate the user-defined Poker variants from a PGDL file or through the

GUI;

 Allow the user to play and create a PGDL-specified Poker variant through

a simple 2D game visualizer.

Chapter 4 – Simulation and Tools

100

Figure 34 explains the workflow of the PGDL system. With PGDL Builder the user

specifies the rules of a Poker game. That specification generates a PGDL XML

Document that is validated by the PGDL XML Schema, to determine if the specification

format is valid. After the validation has succeeded, the PGDL XML Document is then

translated to a Prolog file that contains the terms needed to configure a generic Poker

implementation in Prolog. The Prolog implementation can be extended by a very

simple Agent Development API that integrates the Poker simulator described in

Section 4.1. Two agents that used the agent development API are natively included: a

Random Agent that picks a random action and a E[HS] Agent that plays based on the

Expected Hand Strength of the current hand. After that, the game can be played in a

2D Visualizer by the user against the generated agents.

PGDL Builder
(C#)

PGDL XML
DocumentGenerates

Prolog
PGDL System

Rule
configuration

Generates

2D Visualizer

Random Agent E[HS] Agent

Agent Development
APIPGDL XML Schema

Validates

Figure 34 – PDGL Builder System workflow.

During the development of the PGDL system, several issues were addressed. In

the following subsections we present implementation details of solutions to those

issues.

4.2.3.1 Game rules configuration

The first problem to solve was to choose the best way to represent the list of terms in

Prolog that specify the rules of a Poker variant. This set of terms was made to be

accessible to support the conversion of a PGDL file to Prolog and to be easily used by

Chapter 4 – Simulation and Tools

101

the generic Prolog system. Next an example of game rules configuration is

demonstrated for the variant Leduc Hold’em (a simple variant mainly used for research

purposes).

minPlayers(2).

maxPlayers(2).

stack(15).

name(‘Leduc’).

winningType(high).

wildCards(0).

card(qs,’Queen of Spades’,queen,spades,1,0).

card(js,’Jack of Spades’,jack,spades,2,0).

card(ks,’King of Spades’,king,spades,3,0).

card(qh,’Queen of Hearts’,queen,hearts,4,0).

card(jh,’Jack of Hearts’,jack,hearts,5,0).

card(kh,’King of Hearts’,king,hearts,6,0).

round(1,1,1,0,1,’Pre Flop’).

bettingStructure(1,noLimit,1,3).

blind(1,’Small Blind’,1,leftDealer).

blind(1,’Big Blind’,2,twoleftDealer).

bettingOrder(1,clockwise,leftDealer).

passCards(1,1,clockwise).

drawCards(1,1).

Language: PROLOG

A round is a term that is composed of six atoms: number of round (order), the

ante value, the number of faced up cards, the number of faced down cards, the

number of shared cards and the name of the round.

BettingStructure is a term that has four atoms: the number of the round where it

belongs, the type of betting structure, the value (that is only used when the structure

is ‘limit’) and the maximum number of raises that are allowed in the corresponding

round.

The term for card description is composed of an id, the name of the card, the

value of the card, the suit, an auxiliary value and a binary value (1 or 0) that indicates if

that card is wild or not.

4.2.3.2 Representing a player state

During a game, the player is expressed as follows:

Chapter 4 – Simulation and Tools

102

player(Id, Cards, PlayerType,

 PlayerAvailability, LastBet, Stack).

Language: PROLOG

Id is a unique identifier for the player in the game. The argument Cards is a list

that contains the player’s private cards. PlayerType indicates if a player is human or an

agent (to allow it to be controlled by the GUI or not). PlayerAvailability indicates if that

player is allowed to bet. The player will not be allowed to bet if it is in all-in mode or

has forfeited the match. LastBet represents the total amount of cash that the player

has bet during the current round (when a new round starts this value is set to 0 and is

used to check if all player bets are matched). Stack represents the total amount of

remaining chips of that player, in order to control the value of bets that the player can

make.

4.2.3.3 Representing the game state

The game state is represented by a list that contains a list of all players, the current

value of the pot which is awarded to the winning player at the end of the game, the

number of raises made so far (to be used in games that limit the number of raises), a

list of shared cards and the position of the dealer. The latter is used to locate the

players in the table (relative positions to the dealer are used).

GameState = [NumberRaises-Pot-Dealer-

 SharedCards,PlayersList]

Language: PROLOG

4.2.3.4 Determining the end of a round

To determine if a round ended, the bet values of all available players are asserted to

be the same as follows:

pass_aux(BetsList):-

 max_member(Max, BetsList),

 min_member(Min, BetsList),

 Max =:= Min.

Language: PROLOG

Chapter 4 – Simulation and Tools

103

When this happens, the round ends and the system moves to the next round. As

described in the code, the condition for this to happen is the minimum bet being equal

to the maximum bet on the BetsList. If there are no more rounds left, the winner of the

game is determined.

4.2.3.5 Determining the winner

Another problem faced was the way the winner is determined. To do this, the player

with the best hand must by chosen. There are already lots of applications to compare

Poker hands efficiently (described in [78]) but those are targeted to the most popular

variants in which the hands are composed of at least 5 cards and a maximum of 7

cards. The fastest known evaluator is TwoPlusTwo Evaluator, which can evaluate about

15 millions of hands per second (see Chapter 5).

The evaluator takes a poker hand and maps it to a unique integer rank such that

any hand of equal rank is a tie, and any hand of higher rank wins. TwoPlusTwo was

used to calculate the winner in games where the hands are composed at least by 5

cards (for hands with more than 7 cards, we used the TwoPlusTwo 5 card lookup table

and computed all combinations C(n,5) of 5 cards to pick the best possible score). To

compute the score of hands that are composed by a maximum of 4 cards, a new

evaluator was developed (since Straights and Flushes are not possible with less than

5). To do this, we assigned a value to each possible hand based on the cards that

compose that hand. For example, if we have a hand of 4 cards (C1, C2, C3, C4) and the

cards are all different the way the value of the hand is calculated is:

numEqualValue([C1,C2,C3,C4],HandValue):-

 max_member(R1,[C1,C2,C3,C4]),

 min_member(R4,[C1,C2,C3,C4]),

 delete([C1,C2,C3,C4],R1,L),

 delete(L,R4,L2),

 max_member(R2,L2),

 min_member(R3,L2),

 HandValue is

 Rank(R1) * 1000000 + Rank(R2) * 10000 +

 Rank(R3) * 100 + Rank(R4).

Language: PROLOG

Chapter 4 – Simulation and Tools

104

In this example we obtain the order of the cards 4 cards (C1, C2, C3, C4) by

transforming them into R1, R2, R3, R4, where R1 is the card with the highest rank, the

R2 the following card and so on. Then we just apply a different factor to transform the

hand into a score, by multiplying the highest card by the highest factor. The card ranks

go from 1 to 13. We selected the factors in a way to use two digits of the final results.

4.2.3.6 Dealing with wild cards

Another issue found was how to deal with wild cards when a player has in his hand

wild cards and it is necessary to calculate the hand value. In that case the wild cards

are identified and removed from the hand, creating a new hand. Then, the cards of the

new hand are removed from the deck and with the new deck are generated all the

possible combinations of the number of wild cards presented in the hand. Each one of

those combinations is added to the hand and the value for that hand is calculated. The

hand value is chosen from all the combinations of hands, according to the winning

type of the game.

retrieveWildHandValue(Hand,WildCards,Value):-

 minus(Hand,WildCards,HandWWC),

 findall(C,card(C),TempDeck),

 minus(TempDeck,Hand,Deck),

 findall(Combination,

 foreach(

 in(Card, Deck),

 append(HandWWC, Card, Combination)

),

 AllCombs

),

 getValue(NewHand,AllCombs,0,Value,_Card).

Language: PROLOG

This prolog term represents what was exposed above. It starts by generating a

hand HandWWC and a deck Deck without the wildcards with the minus operation

(minus term is true if the third argument contains all elements that are on the first

argument but non on the second). Next it generates all combinations, using findall and

foreach terms, generating AllCombs. Finally it returns the maximum value of all

combinations using the helper term getValue.

Chapter 4 – Simulation and Tools

105

4.2.3.7 Integration with the agent development API

The LIACC’s simulator agent development API is integrated with the PGDL system. To

do this integration, two agents were developed: one that expands the original and

abstract PokerAgent class from the simulator called PGDLAgent (see Figure 25) and

that communicates through sockets with an agent developed in Prolog. The new agent

developed in Prolog supports new methods (that were bridged to the agent in JAVA)

that deal with information set abstraction features. The reason behind this is the fact

that most Poker games usually have a very large decision tree which makes it essential

to abstract information sets (by making different cases undistinguishable) to enable

agents to make decisions in reasonable time. There are three types of abstraction:

moves sequence abstraction, information abstraction (card set abstraction in the case

of Poker) and action abstraction (more useful for No Limit games with multiple

possible raise amounts to choose from).

To overcome this, in the Prolog agent implementation the following Prolog terms

were added:

 abstract_hand(+Hand,-AbstractedHand) – abstracts the hand of the

player (private and shared cards). The default term is no abstraction

(abstract_hand(H,H)).

 abstract_history(+History,-AbstractedHistory) – abstracts the sequence of

game actions. Again, the default term is no abstraction.

 play(+AbstractedHand,+AbstractedHistory,-AbstractedAction) – the actual

term that is used to play. It returns an abstracted action.

 translate(+AbstractedAction, -Action) – translates an abstracted action to

an actual action to be executed by the agent.

The generic implementation in prolog of a strategy of an agent is then defined as

follows:

strategy(PID,SharedCards,History,Action):-

 player(PID, PCards, _,_,_,_),

 concat(PCards, SharedCards, Hand),

 abstract_hand(Hand,AbstractedHand),

Chapter 4 – Simulation and Tools

106

 abstract_history(History,AbstractedHistory),

 play(AbstractedHand,

 AbstractedHistory,

 AbstractedAction),

 translate(AbstractedAction,Action).

Language: PROLOG

4.2.3.8 Built-in agents

Two pre-built agents are included in the PGDL system: a random agent and a E[HS]

(expected hand strength) based agent. The random agent picks a random action for

any information set, avoiding folding (forfeit) when a check action (free pass) is

possible. The E[HS] agent is based on adapted E[HS] equation (just like the Poki and

Loki agents, see section 3.3). The Expected Hand Strength is the probability of the

current hand of a given player being the best if the game reaches a showdown with all

remaining players. For a player i against a giver number of opponents n, the E[HS] is

given by:

𝐸[𝐻𝑆]𝑛(𝑖) = (
𝐴ℎ𝑒𝑎𝑑(𝑖) +

𝑇𝑖𝑒𝑑(𝑖)
2

𝐴ℎ𝑒𝑎𝑑(𝑖) + 𝑇𝑖𝑒𝑑(𝑖) + 𝐵𝑒ℎ𝑖𝑛𝑑(𝑖)
)

𝑛

EQ15

The implemented agent uses the E[HS] value to choose the action according to

Table 19. For each betting structure, the agent has a fixed probability of following each

action. This agent just served for testing purposes and these values were adjusted by

the author’s own experience of the game. They were adjusted several times

empirically after enough manual observations were made.

Table 19 – PGDL in-built agent's strategy

E[HS] Value

Betting Structure

Limit No-Limit

Fold Call Raise Fold Call
Raise
10%

Raise
20%

Raise
50%

All-
In

< 30% 100% 0% 0% 100% 0% 0% 0% 0% 0%

30-50% 50% 30% 20% 50% 30% 10% 3% 2% 0%

50-80% 5% 50% 45% 5% 50% 25% 10% 5% 5%

80-100% 1% 19% 80% 1% 19% 20% 15% 15% 30%

Chapter 4 – Simulation and Tools

107

4.2.3.9 Graphical User Interface

In order to make it easier and more intuitive for a user to specify the rules of a poker

game, a GUI was developed using Microsoft C# 4.0 Windows Forms. The interface was

divided in three parts: Game, Rounds and Deck. Three screenshots of each part are

respectively presented in Figure 35, Figure 36 and Figure 37.

The first screenshot presents the interface used to specify the Game’s general

rules. In this window the user has to indicate the minimum and maximum number of

players that can play the game, the way the winner is determined, the name of the

game and if the game has dealer or not.

In the second screenshot the interface used to define the rounds is shown. The

user has the possibility to choose the name of the round, the betting structure, the

betting order, the rules that involve cards, and the blind structure where he or she can

add the blinds that will occur in the game and the cards dealt. Each round is defined in

different tabs. In each tab it is possible to edit that round. The order of the rounds is

defined by the order of the tabs in the interface. The rounds can be re-ordered

through drag & drop.

To specify the composition of the deck (third screenshot), the user has the

possibility of choosing to use the standard deck in a checkbox. If not, the user has to

select each card one by one from the list on the right. The user must also indicate if the

game has wild cards or not. If it has, he or she has to indicate how many jokers will be

used or indicate if a particular card is wild or not.

To create the game the user has to click in the “Create Game” button. If the

specification has errors the user will be notified. If not, the XML and Prolog file with

the specification of the rules of the game will be created and the button to play the

game in the simulator 2D visualizer (see Figure 31) will be available.

Chapter 4 – Simulation and Tools

108

Figure 35 – PGDL GUI Games Module Figure 36 – PGDL GUI Rounds Module

Figure 37 – PGDL GUI Deck Module

4.2.4 System validation

To validate the PGDL system, several tests were performed. First several popular Poker

variants were implemented to confirm that the PGDL specification was sufficient to

describe them all (see examples in Appendix C). Next, we tested the E[HS] agent

against the random agent to assess if it is competent enough against the most basic

agent – the random agent. Finally, we tested the GUI with several users to assess if the

system is user-friendly to implement Poker variants.

Chapter 4 – Simulation and Tools

109

The following Poker variants were implemented successfully with the PGDL

specification: No-limit / Limit Texas Hold’em, Kuhn, Leduc, Cincinnati, Five-card draw,

Anaconda, Manilla and Seven-card stud.

To check if the GUI is user-friendly and intuitive, usability tests were performed

(Table 20). The test consisted of users (16 subjects in our tests, with at least some

previous knowledge about Poker) implementing two simple variants of poker: Kuhn

Poker (2 times, one with standard deck and one with 3 card deck) and Leduc Hold’em

Poker. All subjects were able to complete the task with an average time of 3:42

minutes (with our without help). By analysing the results, the time spent by the users

doing the tests was very similar (standard deviation of 76 seconds).

Table 20 – PGDL usabil ity tests

Needed time (secs) Main issues

Kuhn Leduc Kuhn Leduc

150 120 Miss game name Miss game name

420 270 -
Community Cards
vs Face Down Cards

150 150 - -

145 180 Betting structure Add rounds

210 240 Bet values
Community Cards
vs Face Down Cards

200 150 Betting structure -

160 210 Max raises
Community Cards
vs Face Down Cards

174 240 - Deck

350 412 Deck Deck

253 300 Nomenclature Betting Structure

184 266 Number of cards -

243 230 Missed blinds Rounds

240 296 - Rounds

122 116 - Rounds

230 245 Miss game name -

Avg: ~3:35 min Avg: ~3:48 min Total Avg: 3:42 min

The biggest problems faced in the GUI usage were related to the understanding

of the Poker specific nomenclature, even for users that said that they played Poker

regularly. This is due to the fact of most Poker variants being unknown even for regular

Chapter 4 – Simulation and Tools

110

Poker players (the most played are Limit and No Limit versions of Texas Hold’em and

Omaha Hold’em).

4.2.5 Summary

PGDL is a generic system for creating poker variants. A XML dialect was defined to

represent the specification of most known Poker variant rules. From that specification,

the developed system can generate a playable implementation of the game in Prolog.

All of the most popular Poker variants are implementable within our system, proving

its usefulness. The results of tests showed that the interface is user-friendly, well

designed and is easy to use, as shown by the similar time to specify the same poker

variants. This approach can enhance not only the easy implementation of any poker

variant but also the creation of new variants. For future work, the system could benefit

from a general implementation of the Counterfactual Regret Minimization algorithm in

order to generate Nash Equilibrium strategies for any specified variant thus providing

very competitive agents with the system. The biggest difficulty of that implementation

would be the creation of a generic abstraction system for any Poker variant (see

Chapter 5 for some pointers on this).

4.3 Poker Bot

4.3.1 Goals

A Poker Bot is a software application to serve as an interface between a Poker

Software Agent and a Poker Online Casino. This kind of software enables developers to

have their agents playing in real time online environments, without their adversaries

knowing that an agent is playing – this is especially interesting because previous

assessments of having Poker agents playing against humans, were with the human

players’ knowledge that they were playing against a bot. This is very important

because this way the human players will be playing with their regular strategies

without modifying or adapting them to play against a bot.

The development of the LIACC Bot was divided in several steps. Due to difficulty

of generalization and development of this kind of applications, the recognition only

works on No-Limit Texas Hold’em Games. To support its development, OpenCV was

Chapter 4 – Simulation and Tools

111

used as well alongside a library to wrap it for C#. As explained in Section 3.9, currently

Online Casinos do not support officially the use of bots, and they do not provide APIs

to do it. Moreover, most of them also actually try to stop bots from playing in their

software. For this reason, to build a bot several steps are needed to overcome this

reality:

 Since there is no API, the bot must interact with the regular user

interface. Therefore it needs to apply image processing to the interface

window in order to extract the information about the current state of the

game.

 The bot must control the mouse and the keyboard to be able to click on

the interface controls.

 Some Casinos actually record the interaction between the user and the

client by taking screenshots or recording small videos. For this reason, the

mouse movement must be similar to the way humans use it.

 Casino software usually scans for the user’s pc to try to find suspect

applications that maybe bots. Therefore, the bot must run in stealth

mode in order to avoid detection i.e. it must disguise itself as being

another application (in this case a calculator).

The development of the bot was divided in the following steps:

 Card recognition

 Chips and bet amounts detection

 Human like interaction with realistic mouse movements

 Avoid detection: pressing randomly the interface buttons in random

positions, random waiting time between plays...

 Deal with Casino client software updates that change the position of

interface buttons, colours…

 Integrate the bot with the agent API described in Section 4.1

Chapter 4 – Simulation and Tools

112

4.3.2 Card Recognition

The first problem to solve to address in card recognition is to identify the regions of

the application interface where the cards of the player and the community cards were

placed. The first approach was to use an edge detection algorithm, using the cards

white background and their contours. However, due to random card occlusions on the

application interface (sometimes due to animations) and different displaying style, this

method did not have good results – Figure 38 shows an example of this problem where

one of the community cards had the chips overlapping it which made the edge

detection algorithm to fail. The algorithm that detects the card regions is illustrated on

Figure 39.

Figure 38 – Card posit ion recognition – the chips occluded the third card

Figure 39 – Detecting cards regions algorithm

Chapter 4 – Simulation and Tools

113

Due to the method’s poor success rate (it failed about 25% of the times), it was

decided to just use configurable regions with fixed positions, that is, the user of the bot

has to configure it to select the desirable positions (select the square regions of the

positions of the 20 player’s cards and the positions of the 2 player’s cards). This last

method is error free (100% accuracy) but has the disadvantage of requiring the user to

update the card’s positions when the casino software is updated.

After getting the cards position, the following step is to guess which card it is. For

this, the approach was template matching, i.e. having a classifier trained with all card

templates in order to match the new ones that appear. Only the top left part of the

card region was considered, as demonstrated in Figure 40. The reason behind this is

that the selected region contains enough information for the card recognition (rank

and suit). Using the whole card would not only take much more time (since the image

has more pixels) but would also cause more errors. The detection of the top-left region

is also by its relative width (27.35%), relative height (43.26%), relative starting position

(6.89%, 8.28%) so only that part of the image had to be selected.

Figure 40 – Cutting the card for recognition.

After cutting the interest region we only have to compare it with all stored

templates as demonstrated in Figure 41. One important thing to add is that the

templates are grouped by colour density (red and black). This helps in the suit

detection because, for instance, the spades and the hearts symbol is somewhat

similar. If no template is matched, another screenshot is taken and the process starts

all over. If that fails again, two options can occur:

 a random card is considered

 the card that leads to the worst score possible is considered

Chapter 4 – Simulation and Tools

114

Figure 41 – Detecting the card template

4.3.2.1 Tests

To test this approach 200 screenshots were taken with two different resolutions and

the algorithm was run on every screenshot. The detection rates presented in Table 21

were very good. The suit recognition is not presented on the table because when the

card rank was correctly identified, the suit was also. All algorithm responses were

manually verified and double-checked.

The detection rates on the lower resolution were 100% correct. However, the

detection on the higher resolution failed sometimes. One possible reason behind this

is that the templates were made from screenshots at the lower resolution which

means that the OpenCV template matching algorithm has to resize the sliced images

provided. Since that the sliced cards resolution is very low (about 12 x 32 pixels), that

could be the reason why this happens. Nevertheless the creation of new templates

solved the problem.

Chapter 4 – Simulation and Tools

115

Table 21 – Card detection rates

Card
Image Resolution

1016×728 1158×826

Ace 100% 93,9%

2 100% 86,7%

3 100% 97,5%

4 100% 97,7%

5 100% 86,2%

6 100% 95,0%

7 100% 100,0%

8 100% 92,6%

9 100% 97,6%

Ten 100% 90,9%

Jack 100% 100,0%

Queen 100% 96,6%

King 100% 95,9%

Average 100% 95,1%

4.3.3 Game State Recognition (dealer button position)

Another important part of the interface recognition is the game state recognition.

Without it, the agent would be playing blind.

First, the current round of the game is identified. This step is rather easy to do

because the positions of the community cards are pre-established, like it was referred

in the last section. By that, we just have to detect if a card is there or not, by detecting

the density of the white color. If we have no cards then we are at the Pre-Flop round, if

we have 3 we are at Flop, 4 at Turn and 5 at River. This information is double checked

with the bot knowledge. The bot itself reads and registers every play, so it knows the

current state of the game just by the actions. This method is also used to detect the

end of game, by detecting a new Pre-Flop round.

Besides the round, one very important asset is to detect the position of the

dealer button (see Figure 42). The approach to detect the dealer button is similar to

Chapter 4 – Simulation and Tools

116

the one used with the cards: the user pre-selects the regions where the dealer button

could appear and then every position is compared to the dealer button template

(using template matching). The first position to identify the dealer button is the one to

be assigned in the internal bot game state. This detection is important in order to

correctly identify the blinds values and the order of plays.

Figure 42 – Detecting the dealer button position

4.3.3.1 Results

The same process was applied to validate the detection of the dealer button. 200

screenshots were used and the detection algorithm was run on all of them. The

detection rate for the dealer button was 100%.

4.3.4 Recognize betting amounts and actions

The recognition of the betting amounts was by far the biggest challenge in developing

this bot. In the used casino client the betting amounts are drawn by chips of different

colours with each colour representing a different value. Detecting the amounts

through those images would be very difficult because the number of occlusions is very

high and the chips are very small for this to be a viable solution (see Figure 43).

Figure 43 – Chips representation in the casino interface software.

The solution that was followed was to use OCR33 functionalities of OpenCV, more

particularly the incorporated module called Tesseract. This approach was used not only

33 OCR – Optical character recognition

Chapter 4 – Simulation and Tools

117

for the chip amounts but also to detect the players’ actions (which can be encountered

below the nickname part – see Figure 44). The player’s actions could be either

represented by amounts or sentences in Portuguese. The same approach was followed

as for the cards: positions of interest are pre-defined by the user. The followed

algorithm is represented by the diagram in Figure 45. One important thing to clarify is

the image scale on the 3rd step. This image scale was made to increase the accuracy in

character recognition. The average detection rate for each image scale is presented in

Figure 46. As it can be seen, the detection success rate seems to stabilize for a scaling

of 2.3 times. This means that there is no reason to scale over that since scaling also

means processing an image with a higher number of pixels.

Figure 44 – Action representation in the cas ino interface software.

Figure 45 – Action and bet amounts detection.

Chapter 4 – Simulation and Tools

118

Figure 46 – Average detection rate per scale factor

4.3.4.1 Results

The process for assessing the results was also the same as it was used in the last two

sections. The same 200 screenshots were used and the algorithms response was

manually compared and double-checked. The detection rate was not as good as it was

with the cards but it was still accurate – please observe Table 22 for details. As it

happened with the cards, the detection in higher resolutions performed slightly worse.

However, for the global amount of detections the average was still the same (the

detection on 1016×728 had much less “Fold / without player” messages to detect. The

“Fold / without player” message was also the most difficult to detect but, however, the

one that has less impact on the game. This is so because it is possible to easily detect a

player that is not placed on that position or that is folding because the chips near the

player disappear when this happens.

Table 22 – Amount detection rates

Type of amount
Image Resolution

1016×728 1158×826

Bet amount (number) 100% 99,5%

All-in 100% 93,5%

Fold / Without player 87,9% 78,6%

Average Global 98,7% 95,1%

Chapter 4 – Simulation and Tools

119

4.3.5 Simulating human behaviour

In order to simulate human behaviour on the interface, two things were done:

 Sending messages to the chat

 Simulating realistic mouse movement

Sending messages to the chat was very straightforward. In order to not always

send the same text messages, an approach similar to the “Lero-lero generator”34 was

used (with more appropriate sentences).

Simulating realistic mouse movement was based on the Bezier curves algorithm.

The Bezier curves have control points that, depending on the function degree, can

transform a line into a curved line, where parts of the line deviate from their original

trajectory to approximate the control points (see Figure 47).

Figure 47 – Bezier curve example between points A and B (degree = 2).

The following equation can generate a Bezier curve, where P are the control

points and t is the time resolution.

𝑃(𝑡) =∑ 𝐶𝑖(1 − 𝑡)
𝑛−𝑖 × 𝑡𝑖 × 𝑃𝑖, 𝑤𝑖𝑡ℎ 𝑡 ∈ [0,1]

𝑛

𝑛

𝑖=0

EQ16

The approach followed to define the points where the mouse must pass is in

Figure 48. One important thing that was added was some noise to the trajectory. This

will make the movement less precise, just like humans do. Moreover, the speed of the

movement is also controlled – at the first moments the mouse moves more quickly

and at the end the mouse moves more slowly (human players usually do that, first they

34 http://www.lerolero.com/ - a website that generates random Portuguese sentences similar to Lorem

Ipsum. It combines 5 parts of sentences that all connect to themselves.

http://www.lerolero.com/

Chapter 4 – Simulation and Tools

120

move the mouse quickly to reach a region near the target and then they just adjust it

slowly. The creation of the curve follows the following parameters:

 If the distance is below 80 pixel, no control points are used (straight line)

 If the distance is between 80 and 200, 1 control point is used

 If the distance is above 200 and below 400, 2 control points are used

 If the distance is above 400 and below 700, 3 controls points are used

 IF the distance is above 700, two Bezier curves are used with 3 control

points each.

Figure 48 – Computing the mouse movement trajectory from one point the
other

To validate the mouse movement methodology, several mouse movements were

recorded into two movies: some from the agent and other from human users. 27 test

subjects were asked if they could identify the bot mouse movement. 23 test subjects

were able to identify which movie represented the agent, but 55% of them needed to

watch the videos for a second time. Despite these results not being good, there are

several things that conditioned the tests, but the main one was that they knew that

one of the videos was from a bot. Table 23 summarizes the test results for this asset.

Chapter 4 – Simulation and Tools

121

Table 23 – Identi fy mouse movement

Only saw the video

once
Saw the video twice Total

Identified the bot 8 15 23

Couldn’t identify
the bot

3 1 4

4.3.6 Graphical user interface and limitations

In order to help the use of the bot, a simple graphical user interface that shows online

the state of the game was implemented (Figure 49). The application has a

configuration module to select (through screenshots) all the positions of the parts that

needed to be identified (cards positions, possible dealer button positions, player

amounts positions, etc.). The stats module is also useful – since this is an automatic

player it is very important to check regularly its profit evolution.

For now, this main limitation of this agent is that it is incapable of selecting the

Poker table where it is going to play (that must be selected manually by clicking on the

“Run Agent” button on the interface). This should be improved in future version of

this application, but it also requires algorithms that appropriately choose the best

room that is more fitted to the agent’s level of skill. Another improvement point is to

make it able to run on stealth mode (so it is not detected by the software random

screenshots). This could be done now by running the casino client inside a virtual

machine, but adding to the software would be a great feature. However, during the

several hours of tests the bot was never detected.

The resulting implementation is not perfect in its detection mechanisms and may

confuse the software agent by giving it an non accurate information set. However, as

the results demonstrated its accuracy is already very good for this kind of application.

The implementation of this system enabled the results presented on Chapter 7 where,

for the first time ever reported, an agent showed that it was possible to win money

online consistently against human players without them having the knowledge that

they were playing against a software agent.

Chapter 4 – Simulation and Tools

122

Figure 49 – Poker Bot user interface

4.4 Summary

This chapter described the tools (and their evaluation) that were developed within this

thesis work. They were built to support not only this thesis’s work but also enhance

future developments in the Computer Poker and stochastic incomplete information

games domain.

123

Chapter 5

Abstraction Techniques

This chapter describes the improvement of Poker related abstraction techniques that

lead to the creation of two new methodologies – Average Rank Strength (ARS) –

which is an improvement of the Effective Hand Strength formula and Reduced Game

Utility Abstraction (RGU) – which is a more generic method that can be applied to

other games (in Poker particularly, it does not require the Hand Strength).

5.1 Definition

Abstraction is the process of reducing the game search space by combining and

grouping knowledge. In more practical terms it means having a group of decision

points or conditions where we decide to act the same way when different, although

similar game conditions are in place. One good example of this is to imagine defining a

full rule based strategy for Texas Hold’em Poker (see Section 3.2.1). If no abstraction

was done, it would be impossible to do so. But by saying something like “go all-in when

you have two pairs or more”, we are already defining an action for a lot of possible

hands – which is something that humans do naturally by instinct.

In terms of the game of Poker (depending on the game’s rules) three types of

abstraction are usually considered:

 Card abstraction: for software agents, the cards are usually grouped into

very small groups – this is commonly known as bucketing. For instance,

Chapter 5 – Abstraction

124

the first approaches of Nash-Equilibrium based agents grouped all card

strength combinations into 20 different buckets (different bucket sets

were used for each game round), which is very different than the

numerous amount of possible scores that exist (however, even with 20

buckets, the length of the search trees were still enormous). Most

common abstraction approaches in the last years are based on the Hand

Strength Formula (see Section 3.5.1) which has a big problem – it is a

simulation method that considers that the probability of playing any hand

is equal.

 History abstraction: this consists on abstracting betting sequences. A

betting sequence is an ordered list of actions that can lead to a stage in

the game. E.g. ‘ccr’ means that the first player called, then the player next

to it called as well and the next one raised. Betting sequences always lead

to the same state, round and acting player – only the current conditions

(private and community cards) may change the action that should be

selected. One possible way of combining betting sequences would be to

replace previous rounds plays by the pot value (like any abstraction, this

introduces an error – the way a certain amount of the pot is reached

might reveal details about the opponents holdings).

 Betting amounts abstraction: abstracting the bet amounts is only

applicable to No-Limit versions of Poker, where the value of a raise action

is continuous. If we try, for instance, to build all game sequences for a No-

Limit game, that would be unfeasible. So, raise action values must be

grouped. In Chapter 7 the amount of raises extracted from some game

logs could give a hint for betting amounts abstraction, by considering

clustering the relative betting amounts into same sized groups.

In this thesis we only address card abstraction, by developing two new

techniques.

Chapter 5 – Abstraction

125

5.2 Improving Current Algorithms

In order to improve abstraction techniques for Poker, the first step was to try to

improve already existing methodologies. Most methodologies are based on hand rank

and odds comparators (see Sections 3.4 and 3.5). First the hand rank evaluators were

compared in order to check which one should be used. Hand rank evaluators are very

important because they transform the hand rank into a number, being therefore much

easier to deal with it. One characteristic of hand rank evaluators is that the higher the

number is the higher is the rank. Hand rank evaluators also distinguish between sub-

ranks within a rank group (e.g. all possible pairs and their combinations with the

several card kickers).

5.2.1 Hand Rank Benchmark

In order to determine the fastest hand rank evaluator, a benchmark test was

performed. To provide a fair assessment, the test consisted of ranking a pre-computed

sequence of all possible combinations of 5 card hands (2,598,960 hands). The tests

were performed 1000 times each on an Intel I7-3940XM CPU (8 cores) with or without

parallelization. The set of hands was tested with each described hand rank evaluator(s)

and the results are presented in Table 24.

Table 24 – Hand rank function benchmark

Hand rank
program

Average elapsed time for 1.000 trials in milliseconds
Non parallel Parallel

Cactus Kev 807.13 591.22
Paul Senzee 403.04 195.44
Pokersource 2,520.44 980.14
TwoPlusTwo 91.09 37.98

From the tests, it is possible to verify that the TwoPlusTwo Evaluator is by far the

fastest hand rank evaluator, performing the same calculations in at least roughly a

quarter of the time needed by the other evaluators. After testing and using each

evaluator, we also identified the main advantages and disadvantages. Below follows a

table (Table 25) summing up the qualitative features of each evaluator, which

demonstrate as well that the TwoPlusTwo evaluator is not only the fastest evaluator

Chapter 5 – Abstraction

126

there is, but also the one with the best features (except from memory, but in today’s

computers 80Mb of ram is not a very serious limitation).

Table 25 – Hand rank comparison

 Memory Speed Usage
Hand’s size

5 6 7

Cactus < 1Mb ++ Normal ×
Paul 266Mb ++ Normal × ×

Pokersource n/a + Hard × × ×
TwoPlusTwo 80Mb +++ Easy × × ×

5.2.2 Hand Odds improvement and benchmark

While hand ranks are important, they are not directly used by abstraction techniques

since there is not necessarily a clear inter-association between the produced integers

by the hand rank functions (they are more used by simulators to assess the game’s

winning agent). However hand rankers are essential to produce the hand odds

algorithms like Hand Strength or the most currently used: Expected Hand Strength

E[HS] (see EQ17 or EQ15 for the simple form).

𝐸[𝐻𝑆]𝑛(𝑃𝑖, 𝑆) = {𝐻𝑆𝑛(𝑃𝑖, 𝑆 + 𝑥): 𝑥 ∈ [D]
5−|𝑆| ∧ 𝑥 ⊄ (𝑃𝑖 ∪ 𝑆)}

EQ17

The expected hand strength (E[HS]n) [79], also known as equity, is the probability

of the current hand being the best if the game reaches a showdown, with all remaining

players. It consists of enumerating all possible hands that an opponent can have and all

possible unveiled shared cards. This methodology is very similar to the Hand Strength

(HS), but it is far more accurate because it considers the score value that can be

effectively used at the end of the game. However, the number of iterations needed by

E[HS]n is much higher than for HS, making it a much slower option.

This method can be improved by using Monte Carlo. To do that, EQ17 was

changed to sample possible board and opponent cards instead of enumerating them

all, so instead of x belonging to all combinations of size 5 of the deck (with exception to

the player’s private cards), x belongs to a subset of that superset with quadratic

random sampling (with higher probably for higher cards). The obtained results are on

Table 26.

Chapter 5 – Abstraction

127

Table 26 – Sampling board cards in E[HS] algorithm

Number of Samples
Number of
iterations

Error

All samples ≈ 3.17 × 1011 0

10000 105 × 𝑃45,4 ~0.0005

1000 104 × 𝑃45,4 ~0.001

100 103 × 𝑃45,4 ~0.012

10 102 × 𝑃45,4 ~0.151

As it can be seen, the best number of samples to use in a Monte Carlo sampled

version of E[HS] is 1000, because it already produces a very small error for the small

number of iterations. The decrease of the error rate per number of iterations follows

approximately a Chi-Square distribution (with 1 degree of freedom: k = 1, also see

EQ18). Around the 1,000 iterations point the error decrease rate is so small, that it is

not worth to increase the number of iterations.

𝑓(𝑥) =
𝑥
𝑘
2
−1 × 𝑒−

𝑥
2

2
𝑘
2Γ (

𝑘
2)

EQ18

5.2.3 Average Rank Strength

In order to solve the efficiency problems of the previously presented methods, we

introduce a new method called Average Rank Strength (ARS). This method consists of

using the hand rank to estimate the future outcome of the match, without having to

generate all card combinations. This is simply done by storing the average value of the

Odds function in a look-up table, indexed by rank. Since there are only 7462 possible

ranks, it is completely feasible to store pre-computed average future ranks in memory.

Storing the Odds values for each rank is not enough, since it is necessary to

identify the player’s private cards. To better illustrate this, let us analyse the following

hand: A♣ A♦ A♥ K♥ K♠. This hand always scores a Full House regardless of which two

cards belong to the player. However, depending on which two cards belong to the

player, the odds can be different: if the player has the two Kings, an opponent could

have the remaining Ace, thus being ahead of the player; if the player has two Aces,

then victory is assured.

Chapter 5 – Abstraction

128

This problem was addressed by introducing a second dimension in the look-up

table – the pocket hands id. The pocket hands id is a unique number for a pair of cards,

which takes into consideration game isomorphisms. The total number of possible

starting pair ids is 169 (this is the maximum number of possible combinations of two

private cards with different meaning, considering the suit rotation: e.g. A♣ A♦ is the

same as A♦ A♥). To quickly obtain the pair id, the ids are stored in a 52 × 52 pre-

computed table named pairs. Thus, the id of a pair P = {Card1, Card2} is given by

pairs[Card1][Card2].

Giving the described look-up table structure, its total size is 7462 × 169 × 8 bytes

≈ 9.62 MB, where 7462 is the number of possible card ranks, 169 the number of

unique pairs and 8 the size of a double (in most machines).

This approach was tested against the approximate computation of the E[HS]n,

since it is the most common used technique. Moreover the TwoPlusTwo rank table

was also needed to compute the index to search in the Average Rank Strength lookup

table (since it is the fastest rank evaluator). Since TwoPlusTwo returns an index

between 0 and 36874 with sparse values (only about 20% of the table values are used),

an auxiliary table was created (similar to the pairs table) to convert the TwoPlusTwo

rank to an index between 0 and 7461. This way we reduced each table’s size from 50

MB to the 9.62 MB.

The ARS value for a given position is given by EQ19, where n is the number of

opponents, I is the index of the pair of cards, R is the integer value of the rank. The ARS

lookup process and architecture is summarized in Figure 50. Both x and y are card

hand iterators in this equation: they iterate respectively over all combinations of 2 and

5 cards. x1, and x2 are respectively the first and the second card of the hand x.

𝐴𝑅𝑆𝑛(𝐼, 𝑅) = {
𝐸[𝐻𝑆]𝑛(𝑥, 𝑦): 𝑥𝜖[𝐷]2 ∧ 𝑦𝜖[𝐷]5 ∧

𝑥 ⊄ 𝑦 ∧ 𝑅𝑎𝑛𝑘(𝑥, 𝑦) = 𝑅 ∧ 𝑝𝑎𝑖𝑟𝑠[𝑥1][𝑥2] = 𝐼
}

̅̅ ̅̅

EQ19

Since this method introduces an error, we included in our architecture the

possibility of using a stochastic response. The look-up error δn for ARS is given by:

Chapter 5 – Abstraction

129

𝛿𝑛(𝑃𝑖, 𝑆) = |𝐸[𝐻𝑆]𝑛(𝑃𝑖, 𝑆) − 𝐴𝑅𝑆𝑛 (𝑝𝑎𝑖𝑟𝑠[𝑃𝑖1][𝑃𝑖2], 𝑟𝑎𝑛𝑘(𝑃𝑖, 𝑆))|

EQ20

The maximum δn,max and minimum δn,min look-up errors for each ARS position can

then be stored in two additional look-up tables of the same size. This way, when

consulting the ARS table we sum-up a random variable in the interval [δn,min , δn,max] to

the value stored in the table.

Pairs Table
(52 X 52 entries)

11KB

TwoPlusTwo Table
80MB
Rank

Hand

Φi ⋃ Ω

TPT Index
Conversion Table

TPT Index (from 0 to 36874)

Average Rank
Strength Table

9,62 MB

Pairs Index (from 0 to 169)

Hand Value

Round

Error Intervals
Table

9,62 MB × Number
of Intervals

Converted Index (from 0 to 7461)

Φi ⋃ ΩΦi

Figure 50 – ARS tables lookup process and architecture.

Chapter 5 – Abstraction

130

It is also possible to increase the precision of this methodology by having more

than 2 additional look-up tables. These look-up tables can be used to store the

discretized intervals of the error’s distribution by setting them with percentile

medians.

5.2.3.1 Results

In order to determine the speed-up factor of the new method against the E[HS]

method, a benchmark test was performed. The test consisted of ranking a pre-

computed sequence of 1,000,000 hands with 7 cards each. The tests were performed

1000 times each on an Intel I7-3940XM CPU (8 cores) and are presented on Table 27.

The obtained standard deviation from the mean of the presented values is negligible in

all cases. The results described in Table 27 did not take into account the δn correction

tables.

Table 27 – Benchmarking Average Rank Strength

Hand rank program Round
Average elapsed time for 1000 trials in

seconds
Non parallel Parallel (8 cores)

Expected Hand Strength (E[HS])
Flop 387.71 108.90
Turn 309.18 90.19
River 263.79 75.98

Average Rank Strength (ARS)
Flop 0.32 0.06
Turn 0.41 0.09
River 0.43 0.10

Speedup factor
Flop 1211.59 1815.00
Turn 754.10 1002.11
River 613.47 759.8

Our benchmark test demonstrates very promising results, with an average speed-up of

1,044.24 (about 1,000 times faster). Poker agent strategies that use abstraction based

E[HS] can benefit from this speed improvement. Methods such as CFR [23] need to

perform these calculations billions of times.

5.2.3.2 Error analysis

We also analyzed the difference between this method and the hand strength method.

The heat maps for E[HS] and ARS at the River round and against 1 opponent are in

Figure 51.

Chapter 5 – Abstraction

131

This approach not only provides a much faster response to queries – about three

orders of magnitude faster – but also it does so with negligible error, as can be seen

from the heat maps in Figure 51. At the River, the average absolute difference

between the two methods is 0.011, the maximum difference found was 0.062 and the

summed squared error is 0.039. The use of a stochastic response with the δn correction

tables also improved these results. The average maximum error found was 0.02 and

the average is less than 0.001, with a speed-up reduction of only about 8%.

Figure 51 – Average rank strength VS E[HS] heat maps at River

2c

2h

3c

3h

4c

4h

5c

5h

6c

6h

7c

7h

8c

8h

9c

9h

Tc

Th

Jc

Jh

Qc

Qh

Kc

Kh

Ac

Ah

2c 2s 3h 4d 5c 5s 6h 7d 8c 8s 9h Td Jc Js Qh Kd Ac As

Average Rank Strength

2c

2s

3h

4d

5c

5s

6h

7d

8c

8s

9h

Td

Jc

Js

Qh

Kd

Ac

As

2c 2s 3h 4d 5c 5s 6h 7d 8c 8s 9h Td Jc Js Qh Kd Ac As

E[HS]

0-0,2 0,2-0,4 0,4-0,6 0,6-0,8 0,8-1

Chapter 5 – Abstraction

132

5.3 Reduced Game Utility Abstraction (RGU)

In the first sections of this chapter, several methods were discussed (with a new one

presented) that are used for Poker game abstraction. The discussed method E[HS] and

its variations or improvements (ARS), are usually used for card abstraction. Since they

return a percentage of how valuable is the hand (100% means that it is unbeatable),

those intervals can be split and form card buckets (e.g. goods hands with E[HS] > 80%,

mid hands with 80% >= E[HS] > 50% and bad hands with E[HS] <= 50%). However, this

kind of intervals do not seem to fairly represent the game probabilities because they

always assume that the opponents will not fold their hands, during the simulation.

Moreover, this abstraction technique is Poker specific, which means that in scientific

terms it is not as interesting as a more generic algorithm.

To overcome the limitations of the previous methods, a new methodology was

created – Reduced game utility abstraction. The idea of this method comes from the

concept of average utility or mathematical expectation – how much I will get from a

certain action. This method considers games like Poker that have random pre-

conditions that influence the flow of the game (in this case private cards). The idea is

to do abstraction of the pre-conditions by using their average utility obtained by a set

of Nash-Equilibrium strategies, which represent the utility of a solved game. Then, the

utility values of each pre-condition could be used to group those conditions into

buckets. For instance, in Poker the average utility of playing with A♠A♣ is much higher

than the average utility of playing with 2♣4♠, but similar to the utility of playing with

K♥K♣. Since the utility of a pair of Kings is similar to the utility of a pair of Aces, these

hands can be grouped together in the same bucket.

The problem of the stated solution is that, for this to work, a Nash-Equilibrium

strategy over the full unabstracted game is needed, which creates a recursive

dependency. However, the Reduced game utility abstraction solves this problem by

using a smaller similar game, with smaller sequences (in the case of Poker, smaller

betting sequences).

Chapter 5 – Abstraction

133

We used the Limit Texas Hold’em game as example. Computing a Nash-

Equilibrium strategy for this game is now possible but it requires a large amount of

computational resources [24]. However, it is possible to easily compute a Nash-

Equilibrium for unabstracted Leduc Poker, which is by far a much smaller game.

Computing the Nash-Equilibrium for Leduc Poker with the full deck is still possible,

because the number of game sequences is much lower than in Limit Texas Hold’em.

After computing the Nash-Equilibrium strategies with CFR, the utility values are

obtained either directly from the algorithm or they could be obtained by generating a

high number of simulated games between the players of the Nash’s strategy. The

utilities can then be used to abstract the original large game. Figure 52 summarizes the

steps to perform this approach.

Figure 52 – Reduced game uti l ity abstraction

RGU was validated against the E[HS] abstraction approach. Two Nash-equilibriums, for

RGU and for E[HS], were computed on Limit Texas Hold’em using Leduc Hold’em as the

small game (with the full deck), with CFR and a training time of 2 hours each. Both

abstraction approaches used uniform distributions to separate the N buckets. Then

1,000,000 matches were run between the agents produced by those two Nash-

Equilibriums. The experience was repeated for different values of N. The obtained

results are presented in Table 28 in total bankroll values.

Chapter 5 – Abstraction

134

Table 28 – Reduced game uti l ity abstraction tests in mil i big bl inds/h

Number of buckets (N) E[HS] abstraction RGU abstraction

5 -9.41 9.41

10 0.52 -0.52

15 7.35 -7.35

20 -12.04 12.04

50 -15.08 15.08

100 -17.42 17.42

Average -7.68 7.68

The obtained results show that statistically (with a small advantage for RGU)

there are no major differences between both abstractions. However, since RGU is

much more generic, its usefulness is demonstrated by these results even without

having knowledge about the Strength of the Hands, the RGU abstraction still created a

very competitive agent.

5.4 Summary

In this chapter two new abstraction methods were discussed and assessed. The

ARS is a Poker specific method that represents an improvement of indexation in

storing tables with E[HS]. The method is an approximation to E[HS] with a very low

error, but very fast (1000 times faster) and uses 16 Mb of memory instead of 2.5 Gb.

The second presented method, RGU, is an abstraction method based on the average

utility of initial conditions computed by a Nash-Equilibrium set of strategies on a

smaller game. It is thus a more general approach to abstraction.

135

Chapter 6

Game Playing

This chapter presents the developed algorithms or techniques to improve the game

playing methodologies. The first sections present some techniques (not necessarily

related to each other) that propose new ways to approach the development of

competitive Poker agents (this includes improvements on the current state of the art

technology for sequential games – the CFR algorithm). Sections 6.3 and 6.4 present

respectively the Lucifer and Hermes architecture that are validated in Chapter 7.

6.1 Inferring Poker-Lang Strategies from Game Logs

6.1.1 Method Description

The first approach for building game playing algorithm during this thesis work was to

try to imitate good Poker Players experts. One possible way of doing that is to have

experts specifying PokerLang (see Section 3.2.5) documents. However, it takes a very

long time to accurately describe a strategy with precision to achieve a good in game

performance (even if they use the PokerBuilder interface). In order to surpass this

problem, a new approach was designed to perform inference of rules from game logs –

sets of recorded games GP. This way, if any user has game playing data available, this

new method will allow him or her to import a strategy from games of agents or

humans that play with a strategy similar to the intended one. In summary, this new

approach generates PokerLang documents from game data.

Chapter 6 – Game Playing

136

The built inferring system does not consider PokerLang predictors (information

set features that are estimated from observable data); it just considers the following

language evaluators: Stack: St (the amount of money that the copied player has in the

language relative proportions: green, yellow, orange, red, dead); Hand Strength ranges

Hi (see Section 3.5.1 for Hand Strength); Position at table: Po. These features are

information selectors which represent game conditions to activate a given strategy.

To build this system, we considered all possible combinations of these

evaluators. However, since the hand strength is a continuous measure, its distribution

has to be discretized. Let us analyse a distribution of hand strength values extracted

from a particular collection of game logs35 (Figure 53 and Figure 54 – The horizontal

axis contains the values of hand strength (ranging from 0 to 1) and the vertical axis is

the relative frequency of that hand strength value).

Figure 53 – Hand Strength relative distribution observed from the dataset in
the Pre-Flop round.

Figure 54 – Hand Strength relative distribution observed from the dataset in
Post-Flop rounds.

35 The collection of game logs was provided by a professional Poker player.

0%

5%

10%

15%

0
,0

0

0
,0

5

0
,1

0

0
,1

4

0
,1

9

0
,2

4

0
,2

9

0
,3

3

0
,3

8

0
,4

3

0
,4

8

0
,5

2

0
,5

7

0
,6

2

0
,6

7

0
,7

1

0
,7

6

0
,8

1

0
,8

6

0,
9

0

0
,9

5

1
,0

0

0%

2%

4%

6%

8%

10%

0,00 0,10 0,19 0,29 0,38 0,48 0,57 0,67 0,76 0,86 0,95

Chapter 6 – Game Playing

137

As expected, the frequency of high values of hand strength is higher on later

rounds (Figure 54). This happens because the players successively give up weaker

hands. Since the distributions are rather distinct, we differentiate them during the

inferring process: when inferring evaluators in Pre-Flop rounds we use the distribution

illustrated on Figure 53, and for other rounds we use the distribution visible in Figure

54.

The discretization process was simple: a fixed number of hand strength intervals

(k). The interval offsets were chosen to obtain a uniform distribution based on the

relative frequency of HS values.

Figure 55 – Betting distributions for Pre -Flop round.

Figure 56 – Betting distributions for Post -Flop rounds.

A similar strategy was considered for the action output for the selectors – Ad.

The betting distribution was also obtained from the game logs collections (Figure 55

and Figure 56 – the horizontal axis expresses the percentage of the player’s money

that was bet). After that, from the betting distribution a fixed number of intervals were

extracted (𝑞). Given this, the tuple that the inferring system must recognize is:

0%

20%

40%

60%

80%

0% 10% 19% 29% 38% 48% 57% 67% 76% 86% 95%

0%

10%

20%

30%

40%

50%

0% 10% 19% 29% 38% 48% 57% 67% 76% 86% 95%

Chapter 6 – Game Playing

138

〈𝑆𝑡, 𝐻𝑖, 𝑃𝑜, 𝐴𝑑〉|

{

𝑆𝑡 ∈ {𝑔𝑟𝑒𝑒𝑛, 𝑦𝑒𝑙𝑙𝑜𝑤, 𝑜𝑟𝑎𝑛𝑔𝑒, 𝑟𝑒𝑑, 𝑑𝑒𝑎𝑑}

𝑃𝑜 ∈ {𝑏𝑎𝑑, 𝑛𝑜𝑟𝑚𝑎𝑙, 𝑔𝑜𝑜𝑑}

|𝐻𝑖| = 𝑘
|𝐴𝑑| = 𝑞 }

EQ21

The number of recognizable tuples is given by qkAdPoHiSt  35|||||||| . In

the experiments we arbitrarily used k = 10 and q = 10, making a total number of 1500

cases.

Three different approaches were tested to recognize a case from the game logs.

The first one is a well-known classifier – the Random Forest Tree – that already proved

empirically to be the best suited for Poker data [30]. The second strategy was to use

the Euclidian distance between the extracted features and features from the static

tuples – the closest case is the one to be activated. This was based on the

methodology from [75] where two information sets have a degree of similarity equal

to the average similarity of the game features. However, instead of the average, the

degree of similarity was calculated as in [30] through the Euclidean distance between

sets of features. Being i and j two information sets, 𝑓 ∈ 𝐹 and f ∈ Fa the game features

and 𝑖𝑓 , 𝑗𝑓 the values of feature f on those information sets, the distance is given by

EQ22.

𝑒𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛(𝑖, 𝑗) ≔ √∑(𝑖𝑓 − 𝑗𝑓)
2

𝐹

𝑓

EQ22

 Finally, a modified version of the Euclidean distance was used – weighted

Euclidean distance. The weighted Euclidian (EQ23) distance considers a weight vector

𝑤 where 𝑤𝑓 is the weight of feature f.

𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑_𝑒𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛(𝑖, 𝑗) ≔ √∑𝑤𝑓 × (𝑖𝑓 − 𝑗𝑓)
2

𝐹

𝑓

EQ23

Chapter 6 – Game Playing

139

The weight vector was determined empirically by running the validation method

described by EQ24. An agent that follows the inferred strategy was created and the

accuracy for tuples with different weights was tested. The used weights greatly depend

on the available data and on the copied player’s strategy but, for instance, the Hi has

usually a weight over 40%.

acc(𝑖, 𝐶, ℎ, 𝑖𝑎) ≔
|{1: 𝐺𝑃 ∈ 𝐶 ∧ ℎ ∈ 𝐺𝑃 ∧ 𝑖 ∈ 𝐺𝑃 ∧ 𝑝(ℎ) = 𝑖 ∧ ℎ𝑖

+ = ℎ𝑖
+𝑎}|

|𝐶|

EQ24

In EQ24 C is the collection of cases for player i, ℎ𝑖
+is the history after the player i

action and hia
+ is the action performed by the agent representing player i. The accuracy

is the ratio between the number of cases where the agent selected an action similar to

the player’s original action and the total number of cases.

6.1.2 Weight selection and results

In experiments, to determine the weight vector, its weights are randomly generated so

that ∑ 𝑤𝑖
|𝐹|
𝑖 = 1. Next, the agent is generated and its accuracy is determined for a

fixed number of iterations. The agent with better accuracy is the one that it is selected

by the system. Other policies can be used to determine the weights, namely genetic

algorithms with populations of agents with different weight vectors. However, it is

possible to check in Table 29 that the random generation policy already produced

agents with very good accuracies.

The weighted Euclidian distance always produced agents with greater accuracy

than the two other methods, with an average accuracy of ~79% for datasets with 5000

cases and 10.000 iterations, proving the usefulness of this method. In Table 29 logs of

10 different players were used. For each player, 3 sets of cases with different sizes

were extracted (1000, 2500 and 5000). The game logs contained full game state

description of the players from whom the strategies were inferred. The developed

strategy inferring system proved empirically to be accurate for generating strategies

similar to human ones from past played games.

Chapter 6 – Game Playing

140

Table 29 – PokerLang strategy inferring accuracy.

Method Random Forest Euclidian Distance Weighted Euclidian

Iterations 1000 2500 5000 1000 2500 5000 1000 2500 5000
A

cc
u

ra
cy

38,1% 42,3% 41,6% 45,0% 52,2% 47,0% 55,0% 75,2% 80,1%

25,8% 50,2% 63,8% 56,0% 57,6% 67,5% 65,5% 56,9% 70,5%

50,6% 56,0% 68,7% 60,0% 66,1% 84,1% 50,5% 84,7% 86,4%

45,6% 68,2% 67,5% 70,5% 71,1% 72,2% 53,8% 69,8% 73,2%

30,2% 52,0% 56,4% 55,4% 64,5% 70,3% 47,4% 77,8% 81,6%

56,6% 77,8% 78,6% 67,1% 76,3% 77,9% 67,5% 59,0% 79,3%

50,6% 76,1% 75,7% 49,7% 51,3% 70,2% 45,1% 59,4% 78,4%

62,4% 70,8% 82,1% 30,1% 66,0% 70,4% 33,6% 81,5% 86,9%

33,3% 41,0% 50,9% 40,5% 65,6% 53,1% 51,0% 70,6% 75,4%

61,3% 64,8% 67,1% 51,2% 67,9% 71,9% 54,5% 71,4% 79,1%

Average
45.5 ±
12.4 %

59.9 ±
12.8 %

65.3 ±
12.0 %

52.5 ±
11.5 %

63.9 ±
7.5 %

68.4 ±
10.3 %

52.4 ±
9.2 %

70.6 ±
9.2 %

79.1 ±
4.9 %

6.2 Optimizations on the CFR algorithm

6.2.1 A recursive implementation

The counterfactual regret minimization algorithm (CFR) as explained before is the

current state of the art algorithm to solve very large sequential games, being far

superior to linear programming, because it requires much less iterations – they are

proportional to the number of information sets instead of the number of game states

(which in Poker means at least 6 orders of magnitude less).

The CFR algorithm is a recursive algorithm, i.e. it transverses the game tree until

it reaches the leaf nodes (in the case of Poker, nodes where the players show their

cards to each other or nodes where the number of remaining players is 1). In this

research work a regular recursive implementation was done to allow for the

generation of Nash-Equilibrium strategies. The C++ implementation is presented in

Figure 57. This implementation is generic and independent of the Poker variant and it

uses the ACPC native C structures (this was done because this software was built to be

an entry for the ACPC competition).

Chapter 6 – Game Playing

141

The recursivity of this regular CFR implementation can be seen in code line 40

(where the defined function calc calls itself). The end of the recursion is in line 5,

where the algorithm verifies if the game state reached a final state or not.

01|void

02|CFR::calc(Game* game, State* state, double probs[], uint8_t

03| previousPlayer, double nodeUtil[])

04|{

05| if(state->finished != 0) {

06| for(int player = 0; player != game->numPlayers; ++player) {

07| nodeUtil[player] = valueOfState(game, state, player);

08| }

09| } else {

10| //get the information set

11| uint8_t curPlayer = currentPlayer(game,state);

12| std::string infoSet = abstraction(state);

13| CFRNode* node = this->nodeMaps[curPlayer *

14| this->game->numRounds + state->round].at(infoSet);

15|

16| double strategy[game->numPlayers];

17| node->getStrategy(probs[curPlayer], strategy);

18|

19| memset(nodeUtil,0,game->numPlayers*sizeof(double));

20| Action act;

21|

22| double util[MAX_ABSTRACTED_ACTIONS];

23|

24| for(int a = 0; a != MAX_ABSTRACTED_ACTIONS; ++a) {

25| if(node->isActionValid(a)) {

26| getAbstractedAction(a, state, &act);

27| State nextState= *state;

28| doAction(game,&act,&nextState);

29|

30| double newProbs[game->numPlayers];

31| for(int p = 0; p != game->numPlayers; ++p) {

32| if(p == curPlayer) {

33| newProbs[p] = probs[p] * strategy[a];

34| } else {

35| newProbs[p] = probs[p];

36| }

37| }

38|

39| double nextNodeUtilities[game->numPlayers];

40| calc(game, &nextState, newProbs, curPlayer,

41| nextNodeUtilities);

42|

43| util[a] = nextNodeUtilities[curPlayer];

44|

45| for(int p = 0; p != game->numPlayers; ++p) {

46| nodeUtil[p] += strategy[a] *

47| nextNodeUtilities[p];

48| }

49| }

50| }

51| for (int a = 0; a < MAX_ABSTRACTED_ACTIONS; a++) {

52| if(node->isActionValid(a)) {

53| double regret = util[a] - nodeUtil[curPlayer];

54| node->regretSum[a] += probs[previousPlayer] *

55| regret;

56| }

57| }

58| }

59|}

Figure 57 – CFR recursive implementation for generic Poker variants

To better explain this implementation, it can be decomposed into the following

parts:

Chapter 6 – Game Playing

142

 The information sets are stored in a dictionary that maps strings

(concatenation of the private cards, community cards and game

sequence) called nodeMaps. One particular detail about this

implementation is that the round number is used (e.g. Texas Hold’em: 0 –

PreFlop, 1 – Flop, 2 – Turn, 3 – River) to reduce the search for the

information set probabilities, by separating it into 4 maps each of which

containing the respective round’s information sets.

 The algorithm checks if a final node was reached. In this case the node

final utility is propagated (the players’ cash prizes) to its parent nodes, by

filling the nodeUtil array (lines 5-8)

 The algorithm tries to perform all actions over the current game state

(line 24) if they are valid (line 25)

 After getting the action’s utility (line 28), the strategy probabilities are

updated for the current node (lines 30-49)

 Finally, the counterfactual regret is updated for all actions (see lines 51-

57)

To run the algorithm it is only necessary to do several iterations with it by

simulating random games. The more iterations are done, the more the algorithm will

possibly be closer to a Nash-Equilibrium unless overfitting happens, which is a rare

event [80].

6.2.2 A new proposed solution – an iterative implementation of CFR

One of the problems of a CFR implementation like the one that was described above

(Figure 57) is that it needs a huge amount of iterations – this means that a lot of full

tree traversals (one per simulation) must be performed and this is a problem especially

on the leaf nodes where recursivity can greatly increase the heap size due to the large

number of possible game sequences in Texas Hold’em. In order to overcome this

problem, one proposed solution (that to the best of the author’s knowledge was not

tried before) is an iterative implementation of the algorithm. Since CFR works with

backpropagation of utilities, turning CFR into an iterative algorithm requires it to

Chapter 6 – Game Playing

143

process each level of the tree independently, from the deepest leaf node to the root

node. The goal of this new implementation was to verify if it was faster than the

original CFR (current implementations can take several days of computation even in

very powerful computers).

This approach has very good advantages with the main one being the possibility

of using parallelization without error penalties on the algorithm and without any need

for a synchronization mechanism. Current parallelized versions of CFR just train the

algorithm with several games at the same time – this simultaneous training can spoil

some information sets that can be updated concurrently (especially when running on

abstracted versions). Using semaphores to avoid collisions would solve this issue but it

would make the algorithm even slower. Another advantage is that an iterative version

of CFR would allow for using the GPU capabilities for concurrent operations. With

linear arrays instead of tree structures, it is possible to create a GPU version of CFR

that could benefit from high parallelization. The idea of using a GPU is also good

because most CFR’s operations are arithmetical – GPUs are known to be very fast to

perform this kind of operations. This was done later as an extension of this work in

[81].

One potential disadvantage of an iterative CFR is information representation.

Representing game trees in a linearized way generates very sparse arrays that occupy

a lot of memory that is actually not used. For instance, to represent the 2 player’s Kuhn

Poker variant game tree and the correspondent array that is used for storing the

information (Figure 58 – consider the actions to the left a Call / Fold and the actions to

the right a Raise). In this very small game (with only four levels of depth) there are 6

unoccupied positions, meaning that 40% of the space is wasted – positions {7, 8, 11,

12, 13, 14}. This is the biggest potential disadvantage of this approach. However, this

could be partially solved with efficient sparse array representations such as hash maps.

Nevertheless, one could argue that, in the last years, memory became much cheaper

which allows for having a little prejudice on the amount of used memory in order to

speed up the algorithms.

Chapter 6 – Game Playing

144

Figure 58 – Kuhn Poker’s strategy into sparse arrays.

6.2.2.1 Implementation

In order to implement a non-recursive CFR algorithm, it is necessary to represent all

required variables in plain arrays, in order to store the data created by the algorithm’s

recursivity. Referring to the implementation in Figure 57, the variables that need to be

linearized are (for small games the linearization was done like in Figure 58 for

simplification purposes, without supporting data structures):

 RegretSum – the accumulated values of regret for a node

 StrategySum – the accumulated sum of all strategy values i.e. the output of the

algorithm for all game nodes (processed on getStrategy function in Figure 59

and returned by the calc function on Figure 57)

 Average Strategy (strategy) – the used strategy values for the current iteration

 Node Utility (nodeUtil) – the node utility for the current iteration

 Probabilities of Information sets (probs) – an array that contains for each node

the probability of it being reached.

To implement this approach, the order of the algorithm steps must be changed:

 Update the probabilities (probs) and average strategy by levels – starting at the

root level

 Update the counterfactual regret and the node utilities in the reverse order –

from the last level nodes to the top of the tree.

Chapter 6 – Game Playing

145

 The parallelism can be applied only to nodes of the same level, i.e. it only

justifies dividing the work in levels where the tree is very large. Doing

parallelization on the first levels would present a very high overhead for a small

set of calculations

01|CFRNode::getStrategy(double realizationWeight, double

02|strategy[MAX_ABSTRACTED_ACTIONS])

03|{

04| double normalizingSum = 0;

05| for (int a = 0; a < MAX_ABSTRACTED_ACTIONS; a++) {

06| if(isActionValid(a)) {

07| strategy[a] = regretSum[a] > 0 ? regretSum[a] : 0;

08| normalizingSum += strategy[a];

09| } else {

10| strategy[a] = 0;

11| }

12| }

13| if(normalizingSum > 0) {

14| for (int a = 0; a < MAX_ABSTRACTED_ACTIONS; a++) {

15| if(isActionValid(a)) {

16| strategy[a] /= normalizingSum;

17| strategySum[a] += realizationWeight * strategy[a];

18| }

19| }

20| } else {

21| double prob = 1.0 / getNumValidActions();

22| for(int a = 0; a < MAX_ABSTRACTED_ACTIONS; a++) {

23| if(isActionValid(a)) {

24| strategy[a] = prob;

25| strategySum[a] += realizationWeight * strategy[a];

26| }

27| }

28| }

29|}

Figure 59 – GetStrategy function (CFR implementation) is the function that
updates the actual strategy probabil it ies taking into account the current
accumulated regrets.

One important thing is to determine inside the linearized trees (arrays) which nodes

are the ones that belong to that level. That can be done by ϑmin and ϑmax described on

EQ25. MAX_ABSTRACTED_ACTIONS represent the maximum number of actions in the

variant that is being processed (in Kuhn / Leduc Poker this value is 2, in Limit Hold’em

this value is 3 and in No Limit Texas Hold’em this value depends on the abstraction).

 𝜗𝑚𝑖𝑛(0) = 0, 𝑎𝑛𝑑 𝜗𝑚𝑎𝑥(0) = 0

𝜗𝑚𝑖𝑛(𝑙𝑒𝑣𝑒𝑙) = 𝜗𝑚𝑎𝑥(𝑙𝑒𝑣𝑒𝑙 − 1) + 1, 𝑙𝑒𝑣𝑒𝑙 > 0

𝜗𝑚𝑎𝑥(𝑙𝑒𝑣𝑒𝑙) = 𝜗𝑚𝑎𝑥(𝑙𝑒𝑣𝑒𝑙 − 1) + 3
𝐿𝑒𝑣𝑒𝑙, 𝑙𝑒𝑣𝑒𝑙 > 0

EQ25

These values are pre-computed since their definition is recursive, in order to

reduce the number of calculations.

Chapter 6 – Game Playing

146

The algorithm in Figure 60 summarizes the described steps for the final strategies

computation. All the algorithm parameters are trees represented in linearized arrays

like was explained in Figure 58.

Algorithm 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑣𝑒𝐶𝐹𝑅(𝑅𝑒𝑔𝑟𝑒𝑡𝑆𝑢𝑚, 𝐴𝑣𝑔𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑦,𝑁𝑜𝑑𝑒𝑈𝑡𝑖𝑙𝑠, 𝑃𝑟𝑜𝑏, 𝐶𝑎𝑛𝐷𝑜𝐴𝑐𝑡)

Let NLevels := 0
Let CurLen := Length(RegretSum) + 2
While CurLen > 1
 CurLen = CurLen / 2
 NLevels = NLevels + 1
For Level := 0 to NLevels-1
 For Index := 𝜗𝑚𝑖𝑛(Level) to 𝜗𝑚𝑎𝑥(𝑙𝑒𝑣𝑒𝑙)
 strategy := getStrategy(RegretSum[index], AvgStrategy[index])
 updateAvgStrategy(AvgStrategy[Index], Prob[index])
 For Action := 0 to MaxActions
 If 𝐶𝑎𝑛𝐷𝑜𝐴𝑐𝑡[Index]
 updateProbs(Prob[Index])
For Level := NLevels – 1 to 0
 For Index := 𝜗𝑚𝑖𝑛(Level) to 𝜗𝑚𝑎𝑥(𝑙𝑒𝑣𝑒𝑙)
 For Action := 0 to MaxActions

 childIndex := 𝜗𝑚𝑎𝑥(𝑙𝑒𝑣𝑒𝑙 + 1) + 𝑀𝑎𝑥𝐴𝑐𝑡𝑖𝑜𝑛𝑠
2 × ((𝐼𝑛𝑑𝑒𝑥 + 𝐴𝑐𝑡𝑖𝑜𝑛 −

𝜗𝑚𝑖𝑛(Level)) ÷ 𝑀𝑎𝑥𝐴𝑐𝑡𝑖𝑜𝑛𝑠)/)

 nodeUtils[index] = nodeUtils[childIndex] * avgStrategy[Index][Action]
 updateCfrRegret(nodeUtils[Index], RegretSum[Index], Prob[Index])

return

Figure 60 – Liner CFR algorithm

Some notes about this implementation:

 CanDoAct is an array of Booleans that marks all information sets as being

possible or not (because of the sparse array problem described earlier in

this section)

 getStrategy – a function that returns the current strategy (see Figure 59)

 updateAvgStrategy, updateProbs and updateCfrRegret – all refer to the

methods described in Figure 57.

6.2.2.2 Results

In order to test the new iterative approach for the CFR algorithm, several Nash-

Equilibrium strategies were computed with both the recursive and the iterative

versions of CFR, for Poker variants of different size. The results for respectively speed

Chapter 6 – Game Playing

147

and memory efficiency are presented below in Table 30 and Table 31 (10.000

iterations were run without any abstraction). Tests on Limit Texas Hold’em or any

Hold’em variant were not performed because of the high memory requirements and it

is important to analyze the results without abstraction because they can potently

change the depth of the game.

Table 30 – Recursive CFR vs Linear CFR (time in seconds)

Game Recursive CFR Iterative CFR Difference (%)

2P Kuhn

(16 information sets)
0,08 0,25 -212,50%

2P Kuhn, Full Deck

(33.390.720 information sets)
0,22 0,42 -90,91%

5P Kuhn, Half-Deck

(43.080.840 information sets)
382,15 180,61 52,74%

8P Kuhn, Quarter-Deck

(4.932.736 information sets)
14.497,04 4.939,55 65,93%

Table 31 – Recursive CFR vs Linear CFR (memory usage in MB)

Game Recursive CFR Iterative CFR Difference (%)

2P Kuhn

(16 information sets)
1,32 1,56 -18,18%

2P Kuhn, Full Deck

(33.390.720 information sets)
1835,82 1836,00 -0,01%

5P Kuhn, Half-Deck

(43.080.840 information sets)
992,43 1046,19 -5,42%

8P Kuhn, Quarter-Deck

(4.932.736 information sets)
201,71 1650,30 -718,15%

From Table 30 it can be observed that the time reduction is very high when the

variant is big enough (reduction of more than 50%). However, when the variant is

small, the time spent even increases – probably due to the overheads of preparing and

loading the game tree to memory. However, the penalty on memory usage when using

Chapter 6 – Game Playing

148

an iterative version of the CFR could be huge, with memory usage increases of more

than 700% in the deepest game (we had memory increases in all tests, according to

Table 31). Despite this last test, these results prove the usefulness of this approach,

when a large amount of memory is available or when the game tree is not too deep.

With improvements on the sparse arrays storage, this memory increase will certainly

reduce (with a speed penalty).

6.2.3 Pruning the CFR search tree

One common procedure before using the CFR algorithm is to create and store the

game tree before running it – this increases the efficiency of the algorithm because it

now can assume that all information sets exist (it does not need to verify them every

time). For this CFR implementation, the used approach is based on the code on Figure

60. This approach slightly reduces the number of processed game nodes by

considering some possible actions as impossible actions. This refers to not loading

nodes that cannot be reached by considering completely unwise actions as impossible

actions (e.g. folding a hand instead of doing a call when no money has to be spent –

see line 23 and line 24 in Figure 61, where the action fold is removed when the money

spent by the player is equal to the max amount that any player has spent so far).

Although useful, this approach does not allow for removing a lot of game nodes

– only about 0.5% of the nodes. In order to increment the algorithm’s efficiency even

further, a new method was developed based on the concept of strategic dominance. A

dominance occurs when, no matter what, a given player’s action will result in a win.

One perfect example is when a player has to decide to Call or Fold, when holding a

Royal Flush in No-Limit Texas Hold’em and all his or her opponents are in All-In state.

The player does not know the cards of his or her opponents, but in this case it does not

matter – he or she will win no matter what the opponents are holding – this is called a

dominant play. Another way around is being in a very similar situation, but holding the

worst possible hand. If the player calls, he or she will lose the game for sure – this is

called a dominated play.

Chapter 6 – Game Playing

149

01|void

02|CFR::createAbstractedGameTree(State* state)

03|{

04| if(state->finished != 0) {

05| return;

06| } else {

07| std::string infoSet = abstraction(state);

08| uint8_t curPlayer = currentPlayer(game,state);

09| if(this->nodeMaps[curPlayer * this->game->numRounds +

10| state->round].count(infoSet) == 0) {

11| this->nodeMaps[curPlayer * this->game->numRounds +

12| state->round].insert(std::pair<std::string,

13| CFRNode*>(infoSet, new CFRNode()));

14| }

15| CFRNode* node = this->nodeMaps[curPlayer *

16| this->game->numRounds + state->round].at(infoSet);

17|

18| bool validActions[MAX_ABSTRACTED_ACTIONS];

19| Action act;

20| for(int action = 0; action != MAX_ABSTRACTED_ACTIONS;

21| ++action){

22| getAbstractedAction(action,state,&act);

23| if(act.type == a_invalid || (act.type == a_fold &&

24| state->spent[curPlayer] == state->maxSpent)) {

25| validActions[action] = false;

26| continue;

27| }

28|

29| State nextState = *state;

30|

31| if(isValidAction(game,&nextState,0,&act)) {

32| doAction(game, &act, &nextState);

33| createAbstractedGameTree(&nextState);

34| validActions[action] = true;

35| } else {

36| validActions[action] = false;

37| }

38| }

39| node->initialize(validActions);

40| }

41|}

Figure 61 – Building the CFR actions tree (C++)

The new developed method is based on the described concepts (dominant and

dominated actions) and is comprehended in Figure 61. The idea is to consider almost

dominant actions as dominant and almost dominated actions as dominated, using the

winning probability as measure to do that. In order to allow for parameterizing and

adapting the algorithm to several different situations, two parameters were included:

MAX_WIN_PROB_THRESHOLD and MIN_WIN_PROB_THRESHOLD. These refer

respectively to the minimum and maximum value of winning probability that will be

considered dominant and dominated play. For instance, having

MAX_WIN_PROB_THRESHOLD=5% means that any hand with less than 5% probability

of winning will automatically be considered a dominated play and, therefore, all

subsequent game nodes will be removed. By using the thresholds (5%, 95%) it is

possible to reduce the tree length by about 8%, with minimum impact.

Chapter 6 – Game Playing

150

01|void

02|CFR::eliminateActions() {

03| std::string idStr;

04| double prob;

05| unsigned long long count = 0;

06| for(int i = 0; i != (game->numPlayers*game->numRounds); ++i) {

07| for(std::map<std::string, CFRNode*>::iterator it =

08| nodeMaps[i].begin(); it != nodeMaps[i].end(); ++it) {

09| idStr = it->first.substr(4);

10| idStr = idStr.substr(0,idStr.find(':'));

11| prob = winProb(atoi(idStr.c_str()));

12| if(prob >= MAX_WIN_PROB_THRESHOLD) {

13| it->second->setActionInvalid(a_fold);

14| count++;

15| }

16| }

17| }

18| for(int i = 0; i != (game->numPlayers*game->numRounds); ++i) {

19| for(std::map<std::string, CFRNode*>::iterator it =

20| nodeMaps[i].begin(); it != nodeMaps[i].end(); ++it) {

21| idStr = it->first.substr(2);

22| idStr = idStr.substr(0,idStr.find(':'));

23| int round = atoi(idStr.c_str());

24| if(round == (game->numRounds - 1)) {

25| bool anyRaiseAvailable = false;

26| for(int a = a_raise; a < MAX_ABSTRACTED_ACTIONS;

27| ++a) {

28| if(it->second->isActionValid(a)) {

29| anyRaiseAvailable = true;

30| break;

31| }

32| }

33| if(!anyRaiseAvailable) {

34| idStr = it->first.substr(4);

35| idStr = idStr.substr(0,idStr.find(':'));

36| prob = winProb(atoi(idStr.c_str()));

37| if(prob <= MIN_WIN_PROB_THRESHOLD) {

38| it->second->setActionInvalid(a_call);

39| count++;

40| }

41| }

42| }

43| }

44| }

45| if(AGENT_RANGE < 1.0) {

46| for(int i = 0; i != (game->numPlayers*game->numRounds);

47| ++i) {

48| for(std::map<std::string, CFRNode*>::iterator it =

49| nodeMaps[i].begin(); it != nodeMaps[i].end(); ++it) {

50| idStr = it->first.substr(4);

51| idStr = idStr.substr(0,idStr.find(':'));

52| prob = winProb(atoi(idStr.c_str()));

53| if(prob <= (1-AGENT_RANGE)) {

54| for(int a = a_raise; a <

55| MAX_ABSTRACTED_ACTIONS; ++a) {

56| it->second->setActionInvalid(a);

57| }

58| if(it->second->isActionValid(a_fold) &&

59| it->second->isActionValid(a_call)) {

60| it->second->setActionInvalid(a_call);

61| }

62| }

63| }

64| }

65| }

66|}

Figure 62 – El iminating search nodes based on actions dominance (C++)

Chapter 6 – Game Playing

151

6.3 The ACPC Participation – Lucifer Agent Architecture

In this section the methodology that was followed to implement the Lucifer agent is

demonstrated as well as the K-Current-Best-Utility method. The Lucifer agent was

made especially to participate in the 2014 ACPC competition, in the multiplayer Kuhn

Poker track, a very simple variant for 3 players, 1 round and 4 playing cards (Jack,

Queen, King and Ace). Rules and details about this competition track and results can be

found in Section 7.2.

Figure 63 – Lucifer’s Architecture

The Lucifer’s global architecture is depicted in Figure 63 and the main parts of

the code in Figure 64. The agent’s architecture can be essentially divided into 3 parts:

 CFR – the linear implementation described in 6.2 was used. Using the iterative

version, despite its usefulness, would not benefit the agent because the 3

player Kuhn game is too small. Several Nash-Equilibrium strategies are

computed (in this particular case 1.000), with 1.000.000 iterations for training.

All strategies are previously computed, so the CFR algorithm is not directly used

by the agent – only the just strategies generated from it are used (see CFR

usage between lines 57 and 67 in Figure 64).

Chapter 6 – Game Playing

152

 Selectors – these modules of the application are responsible for selecting

possible actions for the algorithms actuator. In sum, they represent the agent’s

strategies. There are 3 types:

o Best Utility – this strategy selects the Nash-Equilibrium strategies for

each position in the table (in this case 3, because there are 3 players).

The selection of strategies is based on the average utility for the

position obtained by CFR. So, the algorithm selects the strategy that

maximizes utility for that position (see strategy selection between lines

73 and 83, when the agent receives the hole cards; in line 62 the

condition selects the CFR strategy for the player; in the getAction

function, lines 87-93, the agent executes a best utility move).

o Random – this strategy just selects one of the random and pre-

computed Nash-Equilibrium strategies to play. See lines 93-98.

o Aggressive – this a very simple strategy without Equilibrium concept. It

always raises when the agent has the top 2 cards (King and Ace),

otherwise it Folds or Calls (if it is a free call). See lines 99-114.

 Opponent Modelling – an opponent modelling module that uses the K-

Current-Best-Utility for deciding which strategy is going to be used from the

selectors.

Several functions of the Lucifer agent are presented in Figure 64, which

represent the main parts of the agent’s gameplay:

 getEv – this method is used by the K-Current-Best-Utility for computing

the strategy’s current utility;

 updateEv – updates the utility of the current selected strategy. It is called

when a game ends and it uses its result to update the utility.

 holeCards – the event when the agent receives the cards. Here the agent

just selects the current strategy.

 getAction – it contains the code for the agent to perform the action, from

the currently selected strategy.

Chapter 6 – Game Playing

153

001|double Lucifer::getEv(int stra)

002|{

003| double* arr;

004| int len;

005| if(stra == 0) {

006| arr=profit_nash;

007| len=len_nash;

008| } else if(stra == 1) {

009| arr=profit_br;

010| len=len_br;

011| } else if(stra == 2) {

012| arr=profit_agressive;

013| len=len_agressive;

014| }

015| double ev = 0;

016| for(int i = 0; i != RECALL_SIZE; ++i) {

017| ev+=arr[i];

018| }

019| return ev/RECALL_SIZE;

020|}

021|

022|void Lucifer::updateEv(int stra, double ev)

023|{

024| double* arr; int* len;

025| if(stra == 0) {

026| arr=profit_nash;

027| len=&len_nash;

028| } else if(stra == 1) {

029| arr=profit_br;

030| len=&len_br;

031| } else if(stra == 2) {

032| arr=profit_agressive;

033| len=&len_agressive;

034| }

035| if(*len == RECALL_SIZE) {

036| *len = 0;

037| }

038| arr[*len] = ev;

039| (*len) += 1;

040|}

041|

042|Lucifer::Lucifer() : PokerAgent()

043|{

044| for(int i = 0; i != RECALL_SIZE; ++i) {

045| profit_nash[i] = 0;

046| profit_br[i]=0;

047| profit_agressive[i]=0;

048| }

049| len_nash=0;

050| len_br=0;

051| len_agressive=0;

052| double curUtil[game->numPlayers];

053| double maxUtil[game->numPlayers];

054| for(int i = 0; i != game->numPlayers; ++i) {

055| maxUtil[i] = -100000.0;

056| }

057| CFR* cfr = new CFR(game);

058| for(int i = 0; i != FIND_EQUILIBRIUM_ITERATIONS; ++i) {

059| cfr->train(1000000);

060| cfr->calcUtility(curUtil);

061| for(int j = 0; j != game->numPlayers; ++j) {

062| if(curUtil[j] > maxUtil[j]) {

063| maxUtil[j] = curUtil[j];

064| this->cfr[j] = cfr;

065| }

066| }

067| }

068| for(int i = 0; i != MAX_KUHN_OPPONENTS; ++i) {

069| this->cfr[i]->calcUtility(curUtil);

070| }

071|}

072|

073|void Lucifer::holeCards(uint8_t* holeCards, uint8_t seat)

074|{

075| double maxEv = -1000;

076| for(int i = 0; i != 3; ++i) {

077| double ev = getEv(i);

Chapter 6 – Game Playing

154

078| if(ev > maxEv) {

079| currentStrategy = i;

080| maxEv = ev;

081| }

082| }

083|}

084|

085|void Lucifer::getAction(Action& action)

086|{

087| if(currentStrategy == 0) { //best nash

088| CFRNode* node = cfr[state.viewingPlayer]->findNode(&this-

089|>state.state);

090| int index = node->getRandomActionIndex();

091| cfr[state.viewingPlayer]->translate(index, &this-

092|>state.state, action);

093| } else if(currentStrategy == 1) { //random nash

094| CFRNode* node = cfr[pick_a_number(0,2)]->findNode(&this-

095|>state.state);

096| int index = node->getRandomActionIndex();

097| cfr[state.viewingPlayer]->translate(index, &this-

098|>state.state, action);

099| } else { //agressive

100|

101|if(rankOfCard(state.state.holeCards[state.viewingPlayer][0])>=2) {

102| action.type = a_raise;

103| action.size = 0;

104| } else {

105| if(state.state.maxSpent ==

106|state.state.spent[state.viewingPlayer]) { //free call

107| action.type = a_call;

108| action.size = 0;

109| } else {

110| action.type = a_fold;

111| action.size = 0;

112| }

113| }

114| }

115|}

116|

117|void Lucifer::gameOverEvent(double payoff)

118|{

119| updateEv(currentStrategy, payoff);

120|}

Figure 64 – Main parts of Lucifer’s source code (C++)

The K-Current-Best-Utility is the opponent modelling methodology that Lucifer

uses (see code above). It consists on selecting a strategy among several that has the

currently higher average utility. Selecting a strategy that has more utility against an

opponent is a plain choice, however this does not consider that the opponent might

change strategy or that the model could have been simply miscalculated. In order to

adapt to possible opponent strategy changes, this selection method also has a recall

value, i.e., the maximum number of games where we can store utility. If the value of K

is exceeded, the older utility values are forgotten (see Figure 65 for an example; for

K=3, the selected strategy is the last one, but if we had K=5 the selected strategy

would be the second one).

Chapter 6 – Game Playing

155

Figure 65 – K-Current-Best-Uti l ity strategy selection example for K=3

By default, if not enough utilities were computed yet, 0 utility is considered (the

utilities array starts with K zeros) – the utility that is stored is the profit on a given

game. This means that the first strategy (Best Utility) only changes when the average

utility is below 0, i.e. if by chance the strategy only made profit for groups of K games,

it would never be changed. The K value that was used by Lucifer in the ACPC

competition was 10. The determination method was merely empiric – i.e. several

simulations were done against other agents (random agents, aggressive agents and

Nash-Equilibrium agents) and best results were obtained with K = 10.

6.4 Online Game Playing – Hermes Agent Architecture

In this section the methodology that was followed to implement the online game

playing agent named Hermes is demonstrated. The development approach was

divided in three phases:

Online room interface – an interface which allows for Poker playing agents to

impersonate a human player. In other words, this interface recognizes what is going on

in a Poker room, provides the information to the software agents, receives the agent’s

response and finally controls the mouse and the keyboard to play accordingly to the

agent’s desire (see Section 4.3 for details).

Chapter 6 – Game Playing

156

Extracting opponent models – this consists of observing the opponents actions

and label each one with a strategy type. The action of our agent’s strategy depends on

the types of strategies of the current opponents. An external tool called Hold’em

Manager36 was used for support in this phase.

The agent’s strategy, which is based on a rule-based strategy from an expert

player. This module is completely independent of the aforementioned, i.e. the agent

can provide outputs and receive inputs from different platforms. This allows for testing

the agent in a simulation environment, against other previously developed agents,

without much extra effort. This was important to reduce the tests costs because the

performed experiments with this agent were online in real money games (see Section

7.1).

Figure 66 – Hermes’s decision workflow.

Figure 67 – Hermes’s architecture.

36 Hold’em manager website: http://www.holdemmanager.com/

http://www.holdemmanager.com/

Chapter 6 – Game Playing

157

The diagrams in Figure 66 and Figure 67 summarize the global view of the agent

and how the different components communicate. The decision workflow is an endless

cycle, i.e. the agent keeps reading events from the table. The cycle is interrupted when

the agent is unable to read from the Poker Game UI which causes a timeout in the

“Read an event from the game UI”.

6.4.1 Extracting opponent models

The opponent models are based on three common statistics about the players (VPIP,

Fold3Bet and PFR). These statistics are collected during the games. The more the agent

plays against a certain player, the more these statistics will reflect the opponents’

playing style.

 𝑣𝑝𝑖𝑝(𝑜𝑝𝑝𝑜𝑛𝑒𝑛𝑡 ∈ 𝑁) – This statistic value stands for “Voluntarily Put $

In Pot” and tells the percentage of times a player makes a call or a raise

on pre-flop round.

 𝑓𝑜𝑙𝑑3𝑏𝑒𝑡(𝑜𝑝𝑝𝑜𝑛𝑒𝑛𝑡 ∈ 𝑁) – This statistic value tells the percentage of

times a player folds the hand when one of its opponents raise at least two

times in the same round. That value will be useful to calculate if the

expected return is positive or negative against the hand the agent holds.

 𝑝𝑓𝑟(𝑜𝑝𝑝𝑜𝑛𝑒𝑛𝑡 ∈ 𝑁) – This statistic value tells the percentage of times a

player raises a hand on the Pre-Flop round.

All these statistics are computed automatically by the Hold’em Manager

software and are stored in a relational database. The agent extracts these through a

direct connection to the Hold’em Manager’s database.

6.4.2 The agent’s strategy

Let’s consider ℎ𝑒𝑟𝑚𝑒𝑠 ∈ 𝑁 being the developed agent playing a particular 𝐺𝑃. The

developed agent follows a short-stack strategy. A short stack strategy has the following

characteristics:

Chapter 6 – Game Playing

158

 Playing with a money stack (money brought to the game) of at most 20

big-blinds (minimum bet value).∀ℎ: 𝑠(ℎ𝑒𝑟𝑚𝑒𝑠, ℎ) + 𝑏(ℎ𝑒𝑟𝑚𝑒𝑠, ℎ) ≤

20 × 𝑐(ℎ0), being ℎ0 the history of the first game decision.

 Initial number of opponents between 4 and 6. 5 ≥ |𝑁| ≥ 7. One of the

conditions for a short-stack strategy to work well is the restriction of the

number of players. When this condition is not met, the wiser decision is

to exit that game and enter in another.

 Decisions are limited to the Pre-Flop round, knowing that |𝑆𝑓𝑙𝑜𝑝| = ∅,

which means that the decisions only consider the Hermes’s private cards.

 Hermes’ decision abstraction. Hermes only chooses from three possible

actions – fold, call and all-in – ignoring all possible raise values. The call

action is only used if the Hermes decides to fold when the call action is

free. In short, for a given history h where 𝑝(ℎ) = ℎ𝑒𝑟𝑚𝑒𝑠 (it is hermes’

turn) then 𝑎(ℎ) ∈ {0, 𝑠(𝑝(ℎ), ℎ)}.

Before describing the algorithm, it is important to describe how to compute the

equity (Algorithm in Figure 68). The equity is the probability of a certain player’s hand

winning when dealing the remaining hidden shared cards. It is similar to E[HS] or ARS

(see Section 5.2.3) but it considers more carefully possible opponents’ decisions.

Since Hermes is only making Pre-Flop decisions, there are no visible shared cards

which means that we have to sample possible shared cards (with Monte Carlo

simulation). The same happens for opponents’ cards, because they remain hidden the

whole game (and they might not even be revealed at all). For the opponent card

sampling, a new variable 𝑃𝑒𝑟𝑐 is introduced as input (and here resides the main

difference of this method to the E[HS]). 𝑃𝑒𝑟𝑐 indicates the percentile of the strength of

possible opponents’ starting hands. For instance, if 𝑃𝑒𝑟𝑐 = 28%, it means that we

consider that our opponent is only likely to have the best 28% starting hands. This

percentage reflects the hands’ strength on the Pre-Flop, because Hermes only plays on

the Pre-Flop. This means that Hermes never considers how the opponents’ strategies

work after the Flop.

Chapter 6 – Game Playing

159

Algorithm 𝐸𝑞𝑢𝑖𝑡𝑦(ℎ ∈ 𝐻, ℎ𝑒𝑟𝑜 ∈ 𝑁, 𝑝𝑒𝑟𝑐, 𝑛𝑖𝑡𝑒𝑟)
𝑤𝑖𝑛 = 0
𝑡𝑖𝑒 = 0
𝑙𝑜𝑠𝑒 = 0
𝑖𝑡𝑒𝑟 = 0

𝐿𝑒𝑡 𝑝𝑎𝑖𝑟𝑠 = the list of the possible card pairs, ordered by value

𝑝𝑝 = 𝑠𝑢𝑏𝑙𝑖𝑠𝑡(𝑝𝑎𝑖𝑟𝑠, (1 − 𝑝𝑒𝑟𝑐) × 𝑙𝑒𝑛(𝑝𝑎𝑖𝑟𝑠), 𝑙𝑒𝑛(𝑝𝑎𝑖𝑟𝑠))

for each 𝑝 in 𝑝𝑝\𝑃ℎ𝑒𝑟𝑜

while 𝑖𝑡𝑒𝑟 < 𝑛𝑖𝑡𝑒𝑟 do
𝐿𝑒𝑡 𝑏𝑜𝑎𝑟𝑑 = 𝑔𝑒𝑛_𝑟𝑎𝑛𝑑𝑜𝑚_𝑏𝑜𝑎𝑟𝑑(𝐷\𝑝\𝑃ℎ𝑒𝑟𝑜 , 5)
𝑜𝑢𝑟𝑟𝑎𝑛𝑘 = max

𝑤∈[𝑃ℎ𝑒𝑟𝑜∪𝑏𝑜𝑎𝑟𝑑]
5
𝑠𝑐𝑜𝑟𝑒(𝑤)

𝑜𝑝𝑝𝑟𝑎𝑛𝑘 = max
𝑤∈[𝑝∪𝑏𝑜𝑎𝑟𝑑]5

𝑠𝑐𝑜𝑟𝑒(𝑤)

if 𝑜𝑢𝑟𝑟𝑎𝑛𝑘 > 𝑜𝑝𝑝𝑟𝑎𝑛𝑘 then 𝑤𝑖𝑛++
else if 𝑜𝑢𝑟𝑟𝑎𝑛𝑘 < 𝑜𝑝𝑝𝑟𝑎𝑛𝑘 then 𝑙𝑜𝑠𝑒++
else 𝑡𝑖𝑒𝑑++
end if
𝑖𝑡𝑒𝑟++

end while
end for each

return (1 −
𝑙𝑜𝑠𝑒

𝑤𝑖𝑛+𝑡𝑖𝑒+𝑙𝑜𝑠𝑒
)

Figure 68 – Hermes equity computation algorithm

The next step is to evaluate the game state. The game state evaluation considers

the number of players that have called (#𝑐𝑎𝑙𝑙𝑒𝑟𝑠), the number of players that have

raised (#𝑟𝑎𝑖𝑠𝑒𝑟𝑠) and the number of players that are all-in (#𝑎𝑙𝑙𝑖𝑛𝑒𝑟𝑠). Table 32

indicates the possible abstracted game states.

Table 32 – Possible game state abstractions considered by Hermes

State #𝒄𝒂𝒍𝒍𝒆𝒓𝒔 #𝒓𝒂𝒊𝒔𝒆𝒓𝒔 #𝒂𝒍𝒍𝒊𝒏𝒆𝒓𝒔
unopened 0 0 0

limped 1 0 0

raised 0 1 0

allin 0 0 1

limps >1 0 0

Next, we need to classify the Hermes’ starting hand strength. For this, we need

two measures: the hand classification function ℎ𝑐𝑙𝑎𝑠𝑠: 𝐷2 → {1,2,3,4,5,6,7,8}, given

by Table 33 and the expected hand return given by algorithm in Figure 69.

Chapter 6 – Game Playing

160

Algorithm 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝑅𝑒𝑡𝑢𝑟𝑛(𝐻𝑒𝑟𝑚𝑒𝑠 ∈ 𝑁, 𝑜𝑝𝑝𝑜𝑛𝑒𝑛𝑡 ∈ 𝑁, ℎ ∈ 𝐻)
𝐿𝑒𝑡 𝑓3𝑏 = 𝑓𝑜𝑙𝑑3𝑏𝑒𝑡(𝑜𝑝𝑝𝑜𝑛𝑒𝑛𝑡)

𝐿𝑒𝑡 𝑏𝑏𝑠 = 𝑣𝑝𝑖𝑝(𝑜𝑝𝑝𝑜𝑛𝑒𝑛𝑡)

𝐿𝑒𝑡 𝑒𝑞 = 𝐸𝑞𝑢𝑖𝑡𝑦(ℎ, ℎ𝑒𝑟𝑜, 𝑏𝑏𝑠, 10000)

𝐿𝑒𝑡 ℎ0 be the prefix of ℎ where |ℎ0| = 0

𝐿𝑒𝑡 𝑝𝑜𝑡 = ∑𝑏(𝑖, ℎ)

𝑁

𝑖

 return ((
(𝑓3𝑏 − |𝑁| × 𝑐(ℎ0) × 𝑝𝑜𝑡) +

((1 − 𝑓3𝑏) × (𝑒𝑞) × (𝑏𝑏𝑠 + 𝑝𝑜𝑡))
) − ((1 − 𝑒𝑞) × (𝑏𝑏𝑠 + 𝑝𝑜𝑡)))

Figure 69 – Hermes expected return algorithm.

Table 33 – Starting cards classi f ication for Hermes. 1 for top scored hands
and 8 for low scored hands. Hands without classif ication in this ta ble are
considered unplayable thus Hermes folds immediately when holding such
hands.

 Offsuit

A K Q J T 9 8 7 6 5 4 3 2

Su
it

e
d

A 1 1 2 2 3 5 5 5 5 5 5 5 5

K 2 1 2 3 4 6 7 7 7 7 7 7 7

Q 3 4 1 3 4 5 7

J 4 5 5 1 3 4 6 8

T 6 6 6 5 2 4 5 7

9 8 8 8 7 7 3 4 5 8

8 8 8 7 4 5 6 8

7 8 5 5 6 8

6 8 6 7 7

5 8 6 6 7

4 8 7 7 8

3 7 8

2 7

Finally, the Hermes game playing algorithm is presented in Figure 70. This

algorithm uses a rule-based approach that considers the abstracted game state, and

the expected return of the current hand, in order to decide either to fold or go all-in. It

returns the bet value.

Chapter 6 – Game Playing

161

Algorithm 𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑦(𝐻𝑒𝑟𝑚𝑒𝑠 ∈ 𝑁, ℎ ∈ 𝐻)
𝐿𝑒𝑡 𝑓𝑜𝑙𝑑𝑂𝑟𝐶𝑎𝑙𝑙 = 0
𝐿𝑒𝑡 𝑎𝑙𝑙𝑖𝑛 = 𝑠(𝑝(ℎ), ℎ)

𝐿𝑒𝑡 𝑜𝑝𝑝 = the last playing opponent that went all-in. If none, select the last playing opponent that
raised. If none, select the last playing opponent. If none, select the player in the dealer position.

𝐿𝑒𝑡 𝑝𝑜𝑠 =the Hermes’s position in table. It can be bb (if the Hermes agent is the big-blind), sb (the
small-blind position), btn (Hermes is the dealer – last to act), co (cut-off position – before dealer) and
utg (under the gun position – first to act).

𝐿𝑒𝑡 𝑝𝑜𝑠𝑜𝑝𝑝 = the opp position in table (with the same possible values as the Hermes’s position).

𝐿𝑒𝑡 𝑒𝑟 = 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝑅𝑒𝑡𝑢𝑟𝑛(𝐻𝑒𝑟𝑚𝑒𝑠, 𝑜𝑝𝑝, ℎ)
𝐿𝑒𝑡 𝑔𝑎𝑚𝑒𝑆𝑡𝑎𝑡𝑒 =the game’s state according to Table I.

if ℎ𝑐𝑙𝑎𝑠𝑠(𝑃ℎ𝑒𝑟𝑜) = 1then

return allin
 else if ℎ𝑐𝑙𝑎𝑠𝑠(𝑃ℎ𝑒𝑟𝑜) = 2 ∧ 𝑒𝑟 ≥ 0 then

switch gameState
 case unopened

if 𝑝𝑜𝑠 = 𝑠𝑏 then
 return rand_real_between(0.0, 1.0)>0.4?allin:fold
else if 𝑝𝑜𝑠 = 𝑐𝑜 ∨ 𝑝𝑜𝑠 = 𝑏𝑡𝑛 then
 return allin
end if

 case limped ∨ allin
if 𝑝𝑜𝑠 = 𝑏𝑏 ∨ 𝑝𝑜𝑠 = 𝑠𝑏 then
 return allin
end if

 case limps
if 𝑝𝑜𝑠 = 𝑏𝑏 then
 return allin
end if

 case raised
if 𝑝𝑜𝑠 = 𝑏𝑏 ∨ 𝑝𝑜𝑠 = 𝑠𝑏 ∨ 𝑝𝑜𝑠 = 𝑏𝑡𝑛 then
 return allin
end if

return foldOrCall
 else if ℎ𝑐𝑙𝑎𝑠𝑠(𝑃ℎ𝑒𝑟𝑜) = 3 ∧ 𝑒𝑟 ≥ 0 then

switch gameState
 case unopened

if 𝑝𝑜𝑠 = 𝑏𝑡𝑛 ∨ 𝑝𝑜𝑠 = 𝑠𝑏 then
 return allin
end if

 case limped ∨ raised
if 𝑝𝑜𝑠 = 𝑏𝑏 then
 return allin
end if

return foldOrCall
end if

if 𝑝𝑜𝑠 = 𝑏𝑏 ∧ 𝑔𝑎𝑚𝑒𝑆𝑡𝑎𝑡𝑒 = 𝑟𝑎𝑖𝑠𝑒𝑑 ∧ (𝑝𝑜𝑠𝑜𝑝𝑝 = 𝑏𝑡𝑛 ∨ 𝑝𝑜𝑠𝑜𝑝𝑝 = 𝑠𝑏) ∧ 𝑓𝑜𝑙𝑑3𝑏𝑒𝑡(𝑜𝑝𝑝) ≥ 0.5 then

 return allin
else if 𝑝𝑜𝑠 = 𝑏𝑏 ∧ 𝑔𝑎𝑚𝑒𝑆𝑡𝑎𝑡𝑒 = 𝑟𝑎𝑖𝑠𝑒𝑑 ∧ 𝑝𝑜𝑠𝑜𝑝𝑝 = 𝑏𝑡𝑛 ∧ 𝑓𝑜𝑙𝑑3𝑏𝑒𝑡(𝑜𝑝𝑝) ≥ 0.5 then

 return allin
end if

return foldOrCall

Figure 70 – Hermes game playing algorithm.

Chapter 6 – Game Playing

162

6.5 Summary

This chapter presented the methodologies for Poker game playing with emphasis for

the two agents’ architecture: Lucifer and Hermes. Both these agents are validated in

Chapter 7.

163

Chapter 7

Validation

This chapter presents the results obtained by the two agent architectures described in

Chapter 6. Both agents have very different purposes: Hermes was built to play online

and be profitable against humans; Lucifer was an entry to the ACPC competition – a

competition that validates the agents in a more theoretical way. For the second case,

the agent participated in the multiplayer Kuhn Poker track, a variant of Poker that is so

small in terms of search space that enables the developed approaches to better

concentrate on the opponent modelling aspects of the game – the lower number of

information sets means that less games are needed to determine the best agent in the

long run, which reinforces the importance of opponent modelling.

7.1 Online Game Playing (Hermes)

Given that the Hermes agent implementation only plays in a single table at a time and

given that it was playing against humans, the result extraction is very time consuming.

Even so, the results of 3814 games were extracted37 (see some statistics in Table 34).

The overall profit of the agent was 1.48 big-blinds (minimum bets) for each 100

games. Since we performed the experiments in tables where the blinds were 0.02€,

the agent made an overall absolute profit of 1.13€. Considering that in each game the

37 Disclaimer: At the time the tests were performed, the use of agents was not illegal in the country

where those tests occurred. Moreover, the authors did not find any mention in the software TOS against

it. Even so, the account in which the tests were performed was closed short after the tests.

Chapter 7 – Validation

164

agent had to pay an average 5% commission over the amount of money that was bet,

these results can be considered good. Moreover, this particular online casino refunds

20% of the money paid on commissions, at the end of the month, when the player is

profitable. This allowed for the agent to make an extra absolute profit value of 7.63€,

making a total profit of 8.76€. This results in a final average profit of about 11.5 big-

blinds for each 100 games.

Table 34 – Some statistics about the hand played by the Hermes agent.

Feature Value

Number of hands 3814

VPIP 9.3

PFR 9.0

3Bet 8.9

Winnings 1.13€

Bb/100 games 1.48

Avg. All-in EV 54.6%

Avg. Pre-flop All-in EV 54.3%

Avg. Flop All-in EV 57.0%

7.1.1 All-time results

A graphical representation of the hands played and the agent’s profit balance overtime

is shown in Figure 71. In this chart we consider that the commission refund function is

linear.

As can be observed in Figure 71, the agent’s total money balance increases

overtime, ending up in a final absolute profit of 8.76€. In this graph, besides the global

profit and the commission refunding profit, the showdown and non-showdown profit

are also differentiated. The showdown profit includes money lost or won in all games

where the agent decided to bet and at least one of the opponents covered that bet.

Non-showdown profit includes all money lost when the agent folds or all the money

won when the agent goes all-in and all opponents fold.

One important concept to understand for these results’ analysis is the definition

of stealing and defending blinds. The blinds are mandatory bets that are made by

some players before the game begins and before they see their cards. Since that card

dealing is a random event, it means that players sometimes are spending money on

hands with very low rank. Therefore, defending blinds means to not to waste the

Chapter 7 – Validation

165

blinds money when the starting hand is good (or convince the opponents that it is

good); stealing blinds means to be able to interpret when an opponent that did a blind

bet has a weak hand, and therefore doing a high bet to make it forfeit that hand. This

is rather important for this type of agent, because it only plays with information from

the Pre-Flop, which means that a god amount of the agent’s profit comes from blinds.

 A conclusion that can be taken from this graph is the importance of stealing and

defending blinds (see Section 7.1.4). Since the agent is a tight player (it only raises on a

very small number of hands), it ends up folding 0.02€ or 0.01€ too many times, when it

is the blinds position. This results in the agent losing too much money (Non-showdown

winnings). The only way to reduce these losses would be to play in other rounds

instead of Pre-Flop. Being a less tight agent would probably reduce the showdown

games earnings.

However, it is possible to observe a slight difference in the non-showdown line,

after the 2800 hands, where the gradient starts to decrease. The reason behind this is

the gradual improvement of the agent’s evaluation on the opponents’ pre-flop steal

ability. The authors believe that the results will improve if the agent played even more.

However, the profit already made by the agent in the showdown winnings

compensates its lack of defending blinds ability.

Figure 71 – Hermes’s al l t ime profit

-10,00 €

-8,00 €

-6,00 €

-4,00 €

-2,00 €

0,00 €

2,00 €

4,00 €

6,00 €

8,00 €

10,00 €

0 477 954 1 430 1 907 2 384 2 861 3 337 3 814

Showdown profit Non-showdown profit Refunds Global profit

Chapter 7 – Validation

166

7.1.2 Playing style analysis

In order to analyse the agent’s playing style, Table 34 presents some relevant statistics

that summarize the agent’s online performance in this experiment. These statistics do

not include the commission refunds, which are dealt independently. Now, each

statistic meaning is described:

 Number of hands – the total number of Poker games played in this experiment.

 VPIP (Voluntary Put money In Pot) – indicates the percentage of games where

the agent bets, excluding the money bet when the agent was in the blinds

positions. As expected and as said earlier, since the agent’s strategy is tight, the

agent only went all-in in about 9% of the games.

 PFR (Pre-flop raise) – number of times the agent raises any amount in the Pre-

Flop round. Since the agent’s strategy only considers the Pre-Flop round, this

value is very similar to VPIP. The agent only plays after the Pre-Flop if it can get

a free Flop, which means that the agent is in the big-blind position and none of

the opponents bet any amount, thus enabling the agent to just call the hand.

 3Bet – the number of times the agent raises after any opponent has raised. As

expected, this measure is also similar to VPIP since the agent usually only plays

in table positions where it decides the action after other players.

 Winnings – the absolute winnings excluding the commission refunds. These

winnings, depending on the value of the blinds, are the ones that indicate if the

agent is entitled to commission refunding.

 Bb/100 games – the number of big-blinds (minimum bets) won for each 100

games. This is the common measure that is used to evaluate if a player is good

or not. The way the value of this measure has to be looked depends greatly on

the value of the blinds. For instance, for games with blinds of 0.50-1.00€, a

good player should have about 7Bb/game. In 0.02-0.01€ games, a good player

should have about 10Bb/game [82].

 Avg. All-in EV – the expected value when the agent goes all-in. This measure is

relative to the investment made by the agent. In these experiments, the

Chapter 7 – Validation

167

average EV is 54.6%, which means that when the agent goes all-in, it has a

positive profit of 54.6% of the amount that was bet. For this stat, we indicate

its average value in the game, in the Pre-Flop and after the Pre-Flop.

From these stats it must be highlighted the positive expected value for all-in

actions in all rounds. This means that when the agent goes all-in, it profits in average

more than 50% of its investment.

7.1.3 Playing with table position

Now let’s analyse the agent’s ability to play in different positions in the table (Table

35). Again the profit made from refunds is not being considered. The events on each

position in this particular experiment are:

 Small-blind – the player has to pay 0.01€ at the start of the game without

seeing its cards. It is the penultimate player to choose his/her action.

 Big-blind – the player has to pay 0.02€ at the start of the game without seeing

its cards. It is the last player to act.

 Early – no blinds. It is one of the first players to act. This position is

disadvantageous because the player has to act without any feedback from

his/her opponents.

 Button – also known as dealer position. In the Pre-Flop is antepenultimate

player to act or the last if only two players are playing. It is the most

advantageous position since the player does not have mandatory bets and

he/she can get feedback from the actions of most of the opponents.

 Cutoff – position just before the button.

 Middle – positions between the last early and the cut-off.

The conclusions that we can take from these results are that playing in positions

where blind bets are made, will always pose the threat of losing money (especially

when the blinds are so low); the only way to lessen this leak is to improve the

evaluation on the stealing probability. The agent’s performance in each position is

overall satisfying, showing a profit on almost all positions excluding the blinds and the

Chapter 7 – Validation

168

cut-off. The cut-off negative income is probably due to the results’ variance (low

number of games), since the expected value in that position is positive. A very

satisfying statistic to highlight is the average all-in percentage which is above 50% in all

positions. This surely proves that the more hands the agent plays the more profit it will

attain. The small blind VPIP is the highest among all, which means that the agent tries

to steal the big blind every chance he sees fit. Also the highest average all-in

percentage comes from the early position, which is expected since it is the position the

agent plays more seldom, making its hand ranges a lot stronger. It is also possible to

observe the following facts:

 The average EV for all positions where the agent has to bet blinds is

negative, as expected (because the agent was to put money even with

hands that it will forfeit; the only way of playing with those hands is if it is

a free call). However, the global average EV is positive, which means that

for the sum of all positions the agent is profitable.

 The more similar the actual Profit is to the EV, the more stabilized are the

statistics about the agent’s game play. This means that, in this case, the

profit was over than what was statistically expected, because the agent

was “lucky” or because the opponents fold their hand in response to

more aggressive moves by the agent.

Table 35 – Hermes’s playing style statistics

Position Hands Profit EV VPIP% PFR% 3Bet% Avg All-In

Small blind 695 -1.43€ -2.80€ 14.0% 13.5% 11.5% 51.8%

Big blind 701 -4.47€ -4.73€ 10.4% 10.1% 9.5% 52.4%

Early 411 1.54€ 1.86€ 5.6% 5.6% - 64.1%

Middle 620 0.77€ 1.34€ 6.8% 6.8% 6.5% 57.5%

Cut-off 685 -0.34€ 1.18€ 7.2% 6.9% 5.5% 56.0%

Button 702 5.06€ 3.17€ 10.0% 9.5% 6.9% 55.6%

Totals 3814 1.13€ 0.02€ 9.3% 9.0% 8.9% 54.6%

7.1.4 Stealing and defending blinds

In Table 36 the agent’s results when defending and stealing blinds situations (without

profit refunds) are demonstrated.

Chapter 7 – Validation

169

Table 36 – Hermes’s defending and stealing bl inds statistics

Type Hands Profit EV Fail | All-In EV%

Stealing 102 3.59€ 1.81€ 55.1%

Defending 51 0.51€ 1.60€ 49.3%

Stealing blinds is a situation where the agent raises at Cut-off, Button or small-

blind positions. Stealing blind results are extremely positive, since the agent’s objective

is to steal blinds while taking into account the fold chance of the opponents, since it

does not play in other rounds. When the steal attempt fails, the most likely reason for

that is the agent not accurately knowing yet the opponent’s range. However, the agent

has still a very high relative expected value (55.1%) when it fails to steal the blinds and

goes all-in. Giving the small amount of the blinds (used in these tests), this probably

means that there is still a good margin for stealing more blinds by bluffing more,

because for the presented expected values, it means that the agent only played

premium hands (which means that it probably folded too much). These results show

the high importance the steal factor has in the Poker game (3.59€ in only 2.67% of the

games has a huge significance). In Figure 72 it is possible to observe the positive

growing rate (about 3.5%) of the profit in these situations.

Figure 72 – Hermes’s steal ing bl inds results

0,00 €

0,50 €

1,00 €

1,50 €

2,00 €

2,50 €

3,00 €

3,50 €

4,00 €

0 13 26 38 51 64 77 89 102

Showdown profit Non-showdown profit Global profit

Chapter 7 – Validation

170

Defending a blind is a situation where the agent is in a table position where it has

to bet blinds, and has to reply to a raise from another player. In Table 36 the results

when the agent tries to defend the blind by going all-in are demonstrated. Here it is

possible to see that the calculations for expected value were fairly accurate, since

among all the all-ins made, the average all-in expected value percentage is 49.3%,

meaning when the agent is called it will still have a good winning rate, and when it

does not get called it wins the blinds plus the raises of the opponents. The expected

value from these plays is higher than the actual winnings: this mean that the agent

played well, despite of the variance not being on his side. Nevertheless it is still a small

amount of hands, and in the long run the winnings would possibly even with the

expected value. It is a very good expected value of 1.60€, since the agent bets 0.20€ at

a time.

It is possible to conclude by these results that when the agent defends blinds, it

defends them correctly. However, by looking again at the results in Figure 71, it is

possible to assert that the agent either just does not defend the blinds enough times

or that no more profit can be made from this choice.

7.1.5 Results against particular players

In Table 37, the results of Hermes against the players that allowed it to make more

profit are presented. The most significant players to note here are the ones which have

a number of hands higher than 100, namely: Player2, Player9 and Player10. These

three players show fairly good statistics, making them tight aggressive players (VPIP <

28%; most winning players are tight aggressive [16]), and still the agent was able to

exploit them and make a good positive profit over time.

In Table 38 the results of the players who gave negative profit to the agent are

shown. Looking at the top five most unprofitable opponents, their stats vary from a

very tight aggressive player, Player15, to a very loose aggressive player, Player13. A

quick look at the hands played against these players allows us to verify that some of

these opponents (Player15 or Player20) have dominated the agent’s strategy. Others,

like Player11 or Player16 may be justified to the results high variance.

Chapter 7 – Validation

171

Table 37 – Hermes’s against the 10 most profitable opponents

Opponent Hands VPIP PFR Profit

Player1 14 42.9% 28.6 1.49€

Player2 271 17.7% 13.7% 1.00€

Player3 14 64.3% 21.4% 0.97€

Player4 41 82.9% 9.8% 0.79€

Player5 39 41.0% 12.8% 0.76€

Player6 5 40.0% 0.0% 0.73€

Player7 16 31.3% 18.8% 0.69€

Player8 45 57.8% 0.0% 0.62€

Player9 455 24.2% 11.2% 0.60€

Player10 860 19.8% 16.3% 0.56€

Table 38 – Hermes’s against the 10 less profitable opponents

Opponent Hands VPIP PFR Profit

Player11 54 55.6% 25.9 -1.07€

Player12 180 31.1% 12.2% -0.86€

Player13 38 84.2% 23.7% -0.62€

Player14 148 26.4% 23.0% -0.60€

Player15 277 27.8% 19.9% -0.59€

Player16 67 22.4% 20.9% -0.59€

Player17 136 20.6% 16.2% -0.56€

Player18 224 20.5% 19.2% -0.56€

Player19 25 72.0 40.0 -0.46€

Player20 774 15.0% 13.0% -0.46€

7.1.6 Summary

As stated before, the Hermes implementation required background knowledge and

expertise of a domain expert on the Texas Hold’em variant of Poker. Nevertheless,

despite the strategy not being (yet) as good (profitable) as the one from the original

player, the authors believe a great step was done towards the goal of making Poker

agents more profitable than the best human players, by showing that it is now possible

to create a winning agent. The most surprising aspect was the agent surpassing most

of the human players found online, just by considering the Pre-Flop stage of the game.

Some suggestions for possible improvements would be working on the blind stealing

ability on the three positions fit to do so: big blind, small blind and button. The agent

can also be improved in the matter of autonomy at the tables, for instance, leaving a

table when holding more than 20 big blinds (the used Poker Bot software does not

Chapter 7 – Validation

172

support this – see Section 4.3), entering a new table where the minimum players is 4,

leaving a table when it falls below 4 players, by this way optimizing the short-stack

strategy (which is proved to work better in tables with 4 to 6 players). In future work

the agent should also be tested in games with higher stakes, since they usually present

more skilled players. Another important feature to add is the ability to play in

simultaneous tables to allow for the agent to get profit much faster.

7.2 AAAI 2014 Competition (Lucifer)

7.2.1 Competition rules and goal

The Lucifer agent participated in the Kuhn 3P track of the Annual Computer Poker

Competitions that was held in 2014. The Kuhn track was held for the very first time in

2014 with the objective of encouraging teams to invest time in opponent modelling

techniques. The Kuhn Poker game is perfect to validate results in opponent modelling

because it is a very short game with a very small number of possible information sets.

The existence of 3 players also prevents the participants of using exclusively Nash-

Equilibrium based solutions, as current techniques do not give mathematical

guarantees that the agents are in fact in an equilibrium stage. The rules of the

competition38 were:

 Game: Limit Kuhn Poker. There is a single round of betting in Kuhn poker. Each

player first antes a single chip and is dealt a card from a deck containing one

jack, queen, king and ace. The first player then has the option to check, or bet

an additional chip. When facing a bet, a player can call the bet or fold. That is,

only a single bet is allowed by any player. At showdown, the highest card wins

the entire pot. The ace is the highest card.

 Competition Format: Series of 3-player duplicate matches. Introduced in the

2009 competition, multiplayer duplicate generalizes the heads-up duplicate

format for the 3 player matches. If we consider that there are 3 possible seats

that each bot can sit in, and 2 different relative orderings of the other 2 bots

given the position of one bot, then there are six total possible configurations of

38 From: http://www.computerpokercompetition.org/index.php/competitions/rules/96-2014-rules

http://www.computerpokercompetition.org/index.php/competitions/rules/96-2014-rules

Chapter 7 – Validation

173

3 players at a given table. If we choose to play N hands per match then the

following system will assure all players rotate through all possible seats and

relative orderings:

o Seat the players in some ordering, say bot 1 is the small blind, bot 2 the

big blind and bot 3 the button

o Play N/6 hands using standard poker rules: after every hand the button

and blinds rotate one seat to the left

o Reset the memory of the bots

o Rotate the seating of the players to the left, so in our example bot 1 is

now on the button, bot 2 is SB, bot 3 is BB

o Play N/6 hands again, dealing the same cards as before to the same

seats as before (bot 1's first hand is now bot 3's first hand from round 1)

o Reset the bots again

o Rotate once more

o Play the same N/6 hands again

o Reseat the players in the other relative ordering - bot 1 SB, bot 3 BB, bot

2 button

o Repeat the above process of dealing out the same N/6 hands to the

same seats, resetting the memories and rotating the bots between

rounds

 Hand Per Match: 3000

 Stack Sizes: Infinite

 Bet Size: 1 chip

 Ante Sze: 1 chip

 Showdown Mucking: No

 Illegal Actions: Any illegal action is interpreted as a check/call.

Chapter 7 – Validation

174

 Winner Determination: total bankroll. The total bankroll winner determination

rule encourages competitors to submit agents that can do one thing: maximize

their total winnings across all opponents.

7.2.2 Competition results

The Lucifer agent performed very well in the 2014 competition, getting the 2nd place in

the competition, only losing to the Alberta’s Computer Poker Research Group bot (see

Figure 73). The Hyperborean used a CFR based approach and HITSZ used case based

reasoning approach.

Hyperborean39 (University of

Alberta, Canada)

Lucifer (LIACC, University of

Porto, Portugal)

HITSZ (School of Computer

Science and Technology HIT,

China)

Figure 73 – AAAI Computer Poker Competit ion 2014 – highest ranked teams
in the Kuhn 3P track.

The full results of the competition are presented: in Table 39 – it demonstrates

the global results of the competitions by giving all combinations of three agents and

providing the global bankroll and variance for matches between those agents; Table 40

– a different view for Table 39, which displays the results per match; Table 41 – it

demonstrates the completion global results when combining the teams that

participated with different agents for each position in the table (in this case only the

Hyperborean agent played with 3 different programs). As it can be observed from the

tables, the winner of this competition was the Hyperborean agent, because it never

had prejudice in any match. All tables express their results on average absolute gains

(in blinds per 1.000 games) and their respective variances.

39 With 3 entries, one per different match

Chapter 7 – Validation

175

Table 39 – Results from the top scored teams in the 2014 three player Kuhn
poker AAAI competition 40.

Opponents
Competitors41

HB.RMPUE HB.BFO HB.AEWRM LUCIFER HITSZ_CS KYH42

Lucifer HB.RMPUE -17.40 ± 3.05 -74.22 ± 6.95

HITSZ_CS HB.RMPUE -21.33 ± 4.71 -61.98 ± 5.92

KYH HB.RMPUE 24.44 ± 5.93 -12.78 ± 5.54

Lucifer HB.BFO -6.52 ± 2.73 -78.18 ± 10.31

HITSZ_CS HB.BFO -3.12 ± 3.79 -35.50 ± 9.78

KYH HB.BFO 50.42 ± 7.15 -16.74 ± 5.96

Lucifer HB.AEWRM -8.80 ± 3.49 -46.50 ± 6.87

HITSZ_CS HB.AEWRM -7.15 ± 5.24 -44.95 ± 9.11

KYH HB.AEWRM 20.78 ± 5.99 18.35 ± 2.89

HITSZ_CS Lucifer 38.73 ± 4.27 9.64 ± 4.96 15.96 ± 4.05 -17.25 ± 7.04

KYH Lucifer 49.78 ± 5.23 27.76 ± 10.21 25.72 ± 7.90 -6.47 ± 2.26

KYH HITSZ_CS 74.76 ± 3.58 52.24 ± 9.74 26.60 ± 7.16 23.72 ± 5.23

Average 54.4231 29.8803 22.7593 15.0223 -7.0328 -43.6771

Table 40 – Played matches results in the 2014 three player Kuhn poker AAAI
competition.

Match ID HB.RMPUE HB.BFO HB.AEWRM LUCIFER HITSZ_CS KYH

M01 38.73 ± 4.27 -21.33 ± 4.71 -17.40 ± 3.05

M02 49.78 ± 5.23 24.44 ± 5.93 -74.22 ± 6.95

M03 74.76 ± 3.58 -12.78 ± 5.54 -61.98 ± 5.92

M04 9.64 ± 4.96 -3.12 ± 3.79 -6.52 ± 2.73

M05 27.76 ± 10.21 50.42 ± 7.15 -78.18 ± 10.31

M06 52.24 ± 9.74 -16.74 ± 5.96 -35.50 ± 9.78

M07 15.96 ± 4.05 -7.15 ± 5.24 -8.80 ± 3.49

M08 25.72 ± 7.90 20.78 ± 5.99 -46.50 ± 6.87

M09 26.60 ± 7.16 18.35 ± 2.89 -44.95 ± 9.11

M10 23.72 ± 5.23 -6.47 ± 2.26 -17.25 ± 7.04

40 Adapted from http://www.computerpokercompetition.org/index.php/competitions/results/105-2014-

results?showall=&start=4. Results are expressed in number of big-blinds for each 1000 games.
41 HB.RMPUE (hyperborean3pk.RMPUE), HB.BFO (hyperborean3pk.BFO) and HB.AEWRM

(hyperborean3pk.AEWRM) are all agents from the same competitor. The competition rules allow

participants to use different programs in a different table seat.
42 Full name: KuhnYouHandleIt

http://www.computerpokercompetition.org/index.php/competitions/results/105-2014-results?showall=&start=4
http://www.computerpokercompetition.org/index.php/competitions/results/105-2014-results?showall=&start=4

Chapter 7 – Validation

176

Table 41 – Global compressed results by team from the top scored teams in
the 2014 three player Kuhn poker AAAI competition.

Match ID Hyperborean LUCIFER HITSZ_CS KYH

C01 21.44 ± 4,43 -10.53 ± 4,58 -10.91 ± 3,09

C02 34.42 ± 7,78 31.88 ± 6,36 -66.30 ± 8,04

C03 51.20 ± 6,83 -3.72 ± 4,80 -47.48 ± 8,27

C04 23.72 ± 5,23 -6.47 ± 2,26 -17.25 ± 7,04

Average 35.69 ± 6,34 15.02 ± 5,39 -7.03 ± 3,38 -43.68 ± 7,78

The results of Lucifer agent were overall good. Lucifer only had negative

prejudice when one of the Hyperborean bots was participating in the game and when

the other one was HITSZ_CS (see Table 40 in matches M01, M04 and M07), because

Lucifer could exploit HITSZ_CS (see M10) but not as well as the KYH, which means that

most of the money lost goes to Hyperborean. However, Lucifer was able to make a

very good profit in all other games: it even surpassed Hyperborean’s profit once in

M05. When Hyperborean was not participating (see match C04 in Table 41), Lucifer’s

victory was unquestionable (none of the other competitors was able to make any

profit). In other matches, where HITSZ_CS was not participating, Lucifer even had a

game where its results were better than the Hyperborean (M05), which means that

Lucifer made a better model of the KYH agent than HITSZ_CS.

By combining the completion overall results in Table 41 (because Hyperborean

had 3 agents, one of each game position), it is possible to see the Lucifer had an

unquestionable 2nd place because its final bankroll is very far away from the 3rd place

(which had negative profit). The overall Lucifer’s profit in this competition was 15

blinds for each 1000 games, which means that it is capable of increasing its bankroll by

1.5% in each game. Considering the simplicity of the played variant, this result is very

good, since luck has a huge impact on this game (it is highly likely that one of the

players will get an Ace, making it the virtual winner of game) – this game is won by

who folds better.

Chapter 7 – Validation

177

7.3 Summary

This chapter summarized the results obtained by the two developed agent

architectures during this research work. The obtained results are very promising,

especially the results on online matches where, for the first time reported, it is shown

that an agent can be profitable in multiplayer tables against human players. Further

testing should be made in the future, against more competitive human players (the

limitation here are the amounts of the bet at tables with higher blinds, which would

require funding for these tests to be done). As for the ACPC competition, the results

demonstrate that the opponent modelling is the key for being successful at multiplayer

tables.

179

Chapter 8

Conclusions

Although there is a lot of finished research on Computer Poker there is still no known

Poker agent capable of beating the best human players in the Texas Hold’em variant in

full multiplayer tables (especially the No-Limit variant). Recent approaches like the

Cepheus agent show that such goal is not impossible and that we are getting closer.

However, there are still many challenges, most of which related to the size of the

problems and the current limited capacity of our hardware to deal with such huge

amounts of data. This might be easier to address one day with the popularization of

quantum computing (which will enable us to model problems in a different but more

capable way to deal with huge amounts of data) or the simulation or realization of

human like traits in computers, such as intuition, a skill humans use in so many

problems (like Poker) without us being able to explain how.

This research embraced many different areas, in order to help the development

of the Computer Poker research domain. The authors believe that the contributions

can be divided into two different parts: supporting tools (Chapter 4) and domain

advancements (Chapter 5, Chapter 6 and Chapter 7). The first part contributed to the

expansion of the Computer Poker research domain by analysing and describing several

tools that not only allow for a faster progression in this domain but also introduce new

challenges and goals to be achieved. Moreover, it is innovative because the simulation

and modelling area in Poker had very little research until now. The second part

Conclusions and Future Work

180

consists of improvements to already existing approaches that can be used to further

enhance current methodologies.

8.1 Contributions

The contributions that are considered to be the key contributions of this thesis are:

 A new simulation system that supports computer Poker research by

accommodating researchers needs. This system includes a new language for

specifying custom Poker variants, and a very simple general Poker game

playing agent.

 An online poker playing bot software and API which allows Poker playing

agents to compete against human players in real money games. This is done

without the knowledge of human players so as to eliminate the possible

psychological effects.

 New approach, with minimum memory usage, that greatly speeds-up the

computation of hand strengths, called Average Rank Strength. The same

method can be used to compute other prediction measures in Poker.

 A new configurable and domain-independent abstraction algorithm (RGU)

based on the average utility of a Nash-Equilibrium profile strategy. The size of

the abstraction depends on the computer resources and is completely

customizable.

 An algorithm for the inference of high-level strategies described in the

language [45]. It was demonstrated that this methodology works by empirically

inferring several strategies from human game playing data.

 A new live opponent modelling methodology named K-Current-Best-Utility

strategy, which allows an agent to dynamically adapt to the current opponents’

strategies, almost without any storage, which was validated empirically in the

AAAI Computer Poker Competition.

 Some optimizations in the Counterfactual Regret Minimization algorithm,

namely a non-recursive implementation (which increases the amount of

Conclusions and Future Work

181

necessary memory but greatly reduces the computation time) and decision tree

pruning optimizations which can greatly reduce the computation time with

almost no impact in the generated strategies.

 An agent architecture that got the first reported results of an agent being

profitable in online games against several human players. The reported

matches were played with real money.

8.2 Goals Achievement

Regarding the completion of this thesis’s goals, we now summarize the goals

accomplishment level. More or less, all goals have been addressed and have some

degree of achievement.

 Goal: Explore how methodologies used on the Computer Poker domain can potentially be used or at

least hint to the solution of other AI-related problems.

The final version of this thesis focused more on Computer Poker itself than its

applications to other knowledge areas. As explained in Sections 2.1 and 2.5, Poker

itself is import enough (in terms of public interest) to be the main focus of this thesis

but, however, the authors feel that there is room to improve on these aspects.

Nevertheless, the developed improvements on the Counterfactual Regret

Minimization algorithm (an algorithm that is domain independent), the K-Current-

Best-Utility method and the RGU abstraction represent contributions that are domain

independent and can be adapted to (at least) a great deal of sequential games.

 Goal: Create domain validation methodologies and tools for better assessment of scientific

advances.

As demonstrated in Chapter 4, the developed tools allow for the software agents

to be tested and validated in almost all important aspects of the Computer Poker

domain. The main limitation of the developed tools is in the Poker Bot software not

supporting the automatic selection of the table, which would make it completely

autonomous.

 Goal: Present necessary engineering aspects for the construction of Poker agents as opposed to a

more theoretical approach

Conclusions and Future Work

182

The completion of this goal is demonstrated by the implementation of the Poker

Bot Software described in Section 4.3 and the Lucifer and Hermes agent architectures,

respectively on Sections 6.3 and 6.4.

 Goal: Improve the efficiency of current techniques in order to reduce the huge amount of resources

that they need

Two of this thesis contributions helped achieving this goal: the execution time of

main state of art algorithm – Counterfactual Regret Minimization – can be greatly

reduced through a parallel and linear implementation with a memory usage increase;

the Average Rank Strength can reduce by a 1.000 times the computation time, with an

additional small memory usage increase. As described on Section 6.2.2, it is still

possible to improve even further the linear CFR execution time and decrease its

memory usage, but the hardware that was available to do the tests limited the

experiments.

 Goal: Find out how to combine current techniques and technologies to create a Poker agent that

finally surpasses human players by being profitable in online multiplayer matches

 This goal was achieved through the implementation of the Hermes software

agent, which reported the first positive online results, with fair testing against human

players.

 Goal: Overcome the limitations of current methodologies on multiplayer games.

Until now, there was very little research on multiplayer Poker and the

importance of opponent modelling techniques in those type of games. Lucifer agent

achieved this goal by introducing the K-Current-Best-Utility method and by obtaining

good results in the 2014 ACPC competition (see Section 7.2.2).

Regarding the research questions of this thesis, we can outline the answers for

them:

 Question: Is it possible to improve current simulation tools for Poker games? If so, will this

improvement help on the construction of more competitive Poker playing agents?

Yes, by deeply analysing the game in all its aspects especially by using expert

knowledge and not only the more scientific and theoretical aspects. This thesis

Conclusions and Future Work

183

demonstrated the importance of having agents interacting with humans, because

more theoretical approaches such as Nash-Equilibrium strategies are still unfeasible for

online game play.

 Question: With currently available technology is it already possible for a Poker playing software

agent to be profitable in online multiplayer matches with real money bets? If not, what needs to be

improved in software agents to do so?

Yes, now software agents can be profitable online multiplayer matches with real

money, against weak human players. However, it is still unclear if those agents can

beat highly skilled players.

 Question: In which way can abstraction techniques be improved in order to be domain-free and to

better represent their corresponding unabstracted games?

Abstraction techniques for sequential games should focus on the utility obtained

from possible plays. On possible domain free implementation resides on using the

utility of similar but smaller games that are tractable with current hardware.

 Question: How is it possible to reduce the large number of resources needed by current techniques

without compromising the final results?

It is possible by using as less recursivity as possible on the methodologies. On this

domain the recursive algorithms are easier to explain, implement and represent.

However, they lack capacity of being easily applicable without a huge amount of

computational resources.

8.3 Future Work

There are several improvement points that can be done in this work. Some potential

improvements are:

 Try to apply the K-Current-Best-Utility in online games with different agent

architectures, by using teams of computer programs as was done in previous

works such as [30].

 Improve the Average Rank Strength method in order to make it more generic.

This would allow it to be adapted to other Poker variants and be therefore

better integrated in the PGDL System.

Conclusions and Future Work

184

 Some improvements in the tools that were created: enable the Poker bot to

select the playing table instead of selecting it manually to truly automate the

bot software. Allowing multiple tables at the same time would also enable

software agents like Hermes to earn money faster.

 Enable the Hermes agent to play in Post-Flop rounds of the game of No-Limit

Texas Hold’em – this could make the agent much more profitable.

 Improvements in Linear CFR by using a better way to store very large sparse

arrays.

185

References

[1] R. Kurzweil, “The Singularity is Near”, Publisher: Gerald Duckworth & Co Ltd,

2006 (Book)

[2] G. E. Moore, “Cramming more components onto integrated circuits”,

Proceedings of IEEE, vol. 86, no. 1, pp. 82–85, 1998

[3] F. Schürmann et al, “The Blue Brain Project: building the neocortical column”,

Proceedings of CNS 2007, vol. 8, no. 2, pp. 109, 2007

[4] H. Berliner, “Kasparov Versus Deep Blue: Computer Chess Comes of Age”,

Publisher: Springer-Verlag New York, 1997 (Book)

[5] J. Doughney and T. Kelleher, “The impact of poker machine gambling on low-

income municipalities A Critical Survey of Key Issues”, Victoria University of

Technology, 1999 (Technical report, unpublished)

[6] J. A. McKenna, “Beyond Tells: Power Poker Psychology”, Publisher: Stuart (Lyle)

Inc., 2005 (Book)

[7] A. Schoonmaker, “The psychology of poker”, Publisher: Two Plus Two, 2000

(Book)

[8] D. Billings, “Computer Poker”, Master Thesis, University of Alberta, 1995

[9] J. Nash, “Equilibrium points in n-person games”, Proceedings of the National

Academy of Sciences of the United States of America, vol. 36, no. 1, pp. 48-49,

1950

[10] M. Johanson, “Measuring the Size of Large No-Limit Poker Games”, University

of Alberta, 2013 (Technical report, unpublished)

References

186

[11] E. Oliveira et al, “Emotional advantage for adaptability and autonomy”,

Proceedings of AAMAS ’03, pp. 305, 2003

[12] F. Huang, X. Luo, H.-F. Leung, and Q. Zhong, “Games Played by Networked

Players”, Proceedings of Intelligent Agent Technologies (IAT), 2013, vol. 2, pp.

1–8.

[13] R. Myerson, “Game theory: analysis of conflict”, Publisher: Harvard University

Press, 1991 (Book)

[14] J. Neumann, “Zur theorie der gesellschaftsspiele”, Publisher: Princeton

University Press, 1944 (Book)

[15] J. Smith et al, “The Logic of Animal Conflict”, Nature 246, 15, 1973

[16] D. Sklansky, “The Theory of Poker: A Professional Poker Player Teaches You How

to Think Like One”, 4th Edition, Publisher: Two Plus Two, 2007 (Book)

[17] D. Billings et al, “The challenge of poker”, Artificial Intelligence, vol. 134, no. 1–

2, pp. 201–240, 2002

[18] L. F. Teófilo, “Building a poker playing agent based on game logs using

supervised learning”, Master Thesis, University of Porto, 2010

[19] M. Johanson et al, “Evaluating state-space abstractions in extensive-form

games”, Proceedings of AAMAS ’13, pp. 271–278, 2013

[20] A. Gilpin et al, “Better automated abstraction techniques for imperfect

information games, with application to Texas Hold’em poker”, Proceedings of

AAMAS 07, pp. 1, 2007

[21] M. Johanson et al, “Finding Optimal Abstract Strategies in Extensive-Form

Games”, Proceedings of AAAI-12, pp. 1371–1379, 2012

[22] L. F. Teófilo et al, “A Simulation System to Support Computer Poker Research”,

Proceedings of MABS’12 - 13th International Workshop on Multi-Agent Based

Simulation at AAMAS, pp. 81–92, 2012

References

187

[23] M. Zinkevich, M. Bowling, and N. Burch, “A new algorithm for generating

equilibria in massive zero-sum games”, Proceedings of AAAI, pp. 788–793, 2007

[24] M. Bowling, N. Burch, M. Johanson, and O. Tammelin, “Heads-up limit hold’em

poker is solved”, Science Journal, vol. 347, no. 6218, pp. 145-149, 2015

[25] D. Billings, “Algorithms and assessment in computer poker”, Ph.D. Thesis,

University of Alberta, 2006

[26] R. Gibson et al, “Regret Minimization in Games and the Development of

Champion Multiplayer Computer Poker-Playing Agents”, Ph.D. Thesis, University

of Alberta, 2014

[27] J. Rubin, “On the Construction, Maintenance and Analysis of Case-Based

Strategies in Computer Poker”, Ph.D. Thesis, University of Auckland, 2013

[28] M. Zinkevich et al, “The 2006 AAAI Computer Poker Competition”, Journal

International Computer Games Association, no. 29, pp. 166–167, 2006

[29] J. Rubin et al, “Computer poker: A review”, Artificial Intelligence Journal, vol.

175, no. 5–6, pp. 958–987, 2011

[30] L. F. Teófilo et al, “Building a No Limit Texas Hold’em Poker Playing Agent based

on Game Logs using Supervised Learning”, Proceedings of 2nd International

Conference on Autonomous and Intelligent Systems, pp. 73–83, 2011

[31] D. Billings et al, “Using probabilistic knowledge and simulation to play poker”,

Proceedings of AAAI/IAAI, pp. 697-703, 1999

[32] B. Sheppard, “World-championship-caliber Scrabble”, Artificial Intelligence

Journal, vol. 134, no. 1, pp. 241-275, 2002

[33] A. Van der Kleij, “Monte Carlo Tree Search and Opponent Modeling through

Player Clustering in no-limit Texas Hold’em Poker”, Master Thesis, University

Groningen, Netherlands, 2010

[34] G. Broeck et al, “Monte-Carlo Tree Search in Poker Using Expected Reward

Distributions”, Proceedings of ACML ’09, pp. 367–381, 2009

References

188

[35] M. Ponsen et al, “Integrating Opponent Models with Monte-Carlo Tree Search

in Poker”, Proceedings of Interactive Decision Theory and Game Theory at AAAI,

2010

[36] M. Johanson, “Robust Strategies and Counter-Strategies: Building a Champion

Level Computer Poker Player”, Master Thesis, University of Alberta, 2007

[37] F. Oliehoek, “Game theory and AI: a unified approach to poker games”, Master

Thesis, University of Amsterdam, 2005

[38] R. J. Vanderbei, “Linear Programming: Foundations and Extensions

(International Series in Operations Research & Management Science)”,

Publisher: Springer, 4th edition, 2013 (Book)

[39] L. F. Teófilo et al, “Adapting Strategies to Opponent Models in Incomplete

Information Games: A Reinforcement Learning Approach for Poker”, in

Autonomous and Intelligent Systems - Third International Conference

(AIS2012), pp. 220–227, 2012

[40] M. Johanson et al, “Data biased robust counter strategies”, Proceedings of the

Twelfth International Conference on Artificial Intelligence and Statistics

(AISTATS), pp. 264–271, 2009

[41] M. Zinkevich et al, “Regret Minimization in Games with Incomplete

Information”, Proceedings of Advances in Neural Information Processing

Systems 20 (NIPS), pp. 1729–1736, 2008

[42] N. Risk et al, “Using counterfactual regret minimization to create competitive

multiplayer poker agents”, Proceedings of the Ninth International Conference

on Autonomous Agents and Multiagent Systems (AAMAS), 2010

[43] M. Lanctot et al, “Monte Carlo sampling for regret minimization in extensive

games”, Proceedings of Advances in Neural Information Processing Systems 22,

pp. 1078–1086, 2009

References

189

[44] M. Johanson et al, “Efficient Nash equilibrium approximation through Monte

Carlo counterfactual regret minimization”, Proceedings of AAMAS '12, vol. 2,

2012

[45] L. Reis et al, “High-Level Language to Build Poker Agents”, Advances in

Intelligent Systems and Computing, vol. 206, pp. 643–654, 2013

[46] A. Davidson, “Opponent modeling in poker: Learning and acting in a hostile and

uncertain environment”, Master Thesis, University of Alberta, 2002

[47] D. Billings et al, “Game-tree search with adaptation in stochastic imperfect-

information games”, Computers and Games Volume 3846 of the series Lecture

Notes in Computer Science, pp. 21–34, 2006

[48] L. F. Teófilo et al, “HoldemML: A framework to generate No Limit Hold’em Poker

agents from human player strategies”, 6th Iberian Conference on Information

Systems and Technologies (CISTI 2011), pp. 755–760, 2011

[49] A. S. VICTOR, “Learning in Simplified Poker by clustering opponents”, Master

Thesis, University of Manchester, 2008

[50] A. Sandven et al, “A case-based learner for poker”, Proceedings of the Ninth

Scandinavian Conference on Artificial Intelligence (SCAI 2006), 2006.

[51] J. Rubin et al, “Investigating the Effectiveness of Applying Case-Based Reasoning

to the Game of Texas Hold’em”, Proceedings of FLAIRS, 2007

[52] J. Rubin et al, “Similarity-based retrieval and solution re-use policies in the game

of Texas Hold’em”, Volume 6176 of the series Lecture Notes in Computer

Science pp 465-479, 2010

[53] D. Papp, “Dealing with imperfect information in poker”, Master Thesis,

University of Alberta, 1999

[54] D. Billings et al, “Approximating game-theoretic optimal strategies for full-scale

poker”, Proceedings of the 2003 International Joint Conference on Artificial

Intelligence (IJCAI), 2003.

References

190

[55] T. Schauenberg, “Opponent modelling and search in poker”, Master Thesis,

University Alberta, 2006.

[56] D. Schnizlein et al, “State translation in no-limit poker”, Master Thesis,

University of Alberta, 2009

[57] “Pokersource Poker-Eval”, Available at http://pokersource.sourceforge.net/

(Online)

[58] C. Kev, “Cactus Kev’s Poker Hand Evaluator”, Available at

http://www.suffecool.net/poker/evaluator.html (Online)

[59] E. A. Fox et al, “Practical minimal perfect hash functions for large databases”,

Communications of ACM, vol. 35, no. 1, pp. 105–121, 1992

[60] Senzee5, “Paul senzee on software, game development, technology and life”,

Available at http://www.paulsenzee.com/2006/06/some-perfect-hash.html

(Online)

[61] “Coding the Whell: Poker Hand Evaluator Roundup”, Available at

http://www.codingthewheel.com/archives/poker-hand-evaluator-roundup

(Online)

[62] J. Varho, “7 Card Poker Hand Evaluation”, Available at

http://jan.varho.org/?p=99

[63] D. Félix et al, “An Experimental Approach to Online Opponent Modeling in Texas

Hold’em Poker”, Proceedings of SBIA ’08 pp. 83 – 92, 2008

[64] B. Chen et al, “The Mathematics of Poker”, 1st edition, Publisher: Conjelco,

2006 (Book)

[65] D. Sklansky et al, “Hold’Em Poker for Advanced Players”, 3rd edition, Publisher:

Two Plus Two, 2001 (Book)

[66] D. Brunson, “Doyle Brunson’s Super System: A Course in Power Poker”, 3rd

edition, Publisher: Cardoza Publishing, 2003 (Book)

http://pokersource.sourceforge.net/
http://www.suffecool.net/poker/evaluator.html
http://www.paulsenzee.com/2006/06/some-perfect-hash.html
http://www.codingthewheel.com/archives/poker-hand-evaluator-roundup
http://jan.varho.org/?p=99

References

191

[67] M. Malmuth, “Gambling Theory and Other Topics”, 5th edition, Publisher: Two

Plus Two, 1990.

[68] G. Hansen, “Every Hand Revealed”, 1st Edition, Publisher: CITADEL, 2009

[69] J. Tao et al, “Affective computing: A review”, Volume 3784 of the series Lecture

Notes in Computer Science pp 981-995, 2005

[70] B. Browne, “Going on tilt: Frequent poker players and control”, Journal of

gambling behavior, vol. 5, no. 1, pp 3-21, 1989

[71] G. Smith et al, “Poker Player Behavior After Big Wins and Big Losses”,

Management Science Journal, vol. 55, no. 9, pp. 1547–1555, 2009

[72] R. A. Epstein, “The Theory of Gambling and Statistical Logic”, Revised Edition,

Publisher: Academic Press Inc, 1995 (Book)

[73] A. Davidson et al, “Poker Academy Pro - The Ultimate Poker Software”,

Available at http://www.poker-academy.com/ (Online)

[74] L. F. Teófilo, “Estimating the Probability of Winning for Texas Hold’em Poker

Agents”, Proceedings 6th Doctoral Symposium on Informatics Engineering,

2011, pp. 129–140.

[75] J. Rubin et al, “Case-based strategies in computer poker”, AI Communications,

vol. 25, no. 1, pp. 19–48, 2012

[76] D. Schatzberg, “Open Meerkat Bot Simulation Testbed”, Available at

http://code.google.com/p/opentestbed/ (Online)

[77] L. F. Teófilo et al, “Simulation and Performance Assessment of Poker Agents”,

Springer LNCS 7838 (MABS 2012), pp. 69–84, 2013

[78] L. F. Teófilo et al, “Computing Card Probabilities in Texas Hold’em”, Proceedings

of CISTI’2013 - 8a Conferência Ibérica de Sistemas e Tecnologias de Informação,

pp. 989–994, 2013

http://www.poker-academy.com/
http://code.google.com/p/opentestbed/

References

192

[79] L. F. Teófilo et al, “Speeding-up Poker Game Abstraction Computation: Average

Rank Strength”, Proceedings of Computer Poker and Imperfect Information:

Papers from the AAAI 2013 Workshop, 2013, pp. 59–64.

[80] K. Waugh et al, “Abstraction pathologies in extensive games”, Proceedings of

AAMAS ’13 Proceedings of the 2013 international conference on Autonomous

agents and multi-agent systems, pp. 271–278, 2009

[81] J. Reis, “A GPU implementation of Counterfactual Regret Minimization”, Master

Thesis, University of Porto, 2015

[82] J. Campos, “A Profitable Online Poker Agent”, Master Thesis, University of

Porto, 2013.

193

Appendices

Appendix A List of Publications

During the research that led to the writing of this thesis, several scientific publications

were made, which are listed below grouped by type of publication (conference paper,

journal paper, book, book chapter or talk):

 Book Chapters

o Luís Filipe Teófilo, Luís Paulo Reis. “Building a No Limit Texas

Hold’em Poker Agent Based on Game Logs Using Supervised

Learning”. Springer LNAI Vol. 6752 – AIS, 2011, pp 73-82

o Paulo Martins, Luís Paulo Reis, Luís Filipe Teófilo. “Poker vision:

playing cards and chips identification based on image processing”.

Springer LNCS Vol. 6669 – IBPRIA, 2011, pp 436-443

o Luís Filipe Teófilo, Nuno Passos, Luís Paulo Reis, Henrique Lopes

Cardoso. “Adapting Strategies to Opponent Models in Incomplete

Information Games: A Reinforcement Learning Approach for Poker”.

AIS 2012, Springer LNAI Vol. 7326 – AIS, 2012, pp 220-227

o Luís Filipe Teófilo, Rosaldo Rossetti, Luís Paulo Reis, Henrique Lopes

Cardoso, Pedro Alves Nogueira. “Simulation and performance

assessment of Poker Agents”. Springer LNAI Vol. 7838 – MABS, 2013,

pp 69-84

o Luís Paulo Reis, Pedro Mendes, Luís Filipe Teófilo. “High-Level

Language to Build Poker Agents”. Springer AISC Vol. 206 – WC, 2013,

pp 643-654

Appendices

194

 Books

o Luís Filipe Teófilo. “Programming a Texas Hold'em Poker AI”. Lap

Lambert, 2013, ISBN 978-3-659-45444-8

 Conference Proceedings

o Luís Filipe Teófilo, Luís Paulo Reis. “HoldemML: A framework to

generate No Limit Hold'em Poker agents from human player

strategies”. Proceedings of the 6th Iberian Conference on

Information Systems and Technologies, IEEE, 2011, pp 972-977

o Luís Filipe Teófilo, “Estimating the Probability of Winning for Texas

Hold’em Poker Agents”. Proceedings of the 6th Doctoral Symposium

on Informatics Engineering, 2011, pp 129-140

o Luís Filipe Teófilo, Luís Paulo Reis. “Identifying Player's Strategies in

No Limit Texas Hold'em Poker through the Analysis of Individual

Moves”. Proceedings of the 15th Portuguese Conference on Artificial

Intelligence (EPIA), APIA, 2011, pp 70-83

o Luís Filipe Teófilo, Rosaldo Rossetti, Luís Paulo Reis, Henrique Lopes

Cardoso. “A Simulation System to Support Computer Poker

Research”. Proceedings of MABS'12 - 13th International Workshop

on Multi-Agent Based Simulation at AAMAS, 2012, pp 81-92

o Luís Filipe Teófilo, Luís Paulo Reis, Henrique Lopes Cardoso.

“Computer Poker Research at LIACC”. Proceedings of the AAAI

Workshops – Computer Poker Symposium, AAAI, 2012

o Luís Filipe Teófilo, Luís Paulo Reis, Henrique Lopes Cardoso.

“Computing card probabilities in Texas Hold’em”. Proceedings of the

8th Iberian Conference on Information Systems and Technologies,

IEEE, 2013, pp 988-993

o Luís Filipe Teófilo, Luís Paulo Reis, Henrique Lopes Cardoso.

“Estimating the odds for Texas Hold'em Poker Agents”. Proceedings

of the IEEE/WIC/ACM International Conference on Intelligent Agent

Technology (IAT), ACM, 2013, pp 353-360

Appendices

195

o Luís Filipe Teófilo, Luís Paulo Reis, Henrique Lopes Cardoso. “A Poker

Game Description Language”. Proceedings of the IEEE/WIC/ACM

International Conference on Intelligent Agent Technology (IAT),

ACM, 2013, pp 369-374

o Luís Filipe Teófilo, Luís Paulo Reis. “Speeding-up Poker Game

Abstraction Computation: Average Rank Strength”. Proceedings of

the AAAI Workshops – Computer Poker Workshop, AAAI, 2013, pp

59-64

o Luís Filipe Teófilo, Luís Paulo Reis, Henrique Lopes Cardoso. “A

Profitable Online No-Limit Poker Playing Agent”. Proceedings of the

IEEE/WIC/ACM International Conference on Intelligent Agent

Technology (IAT), ACM, 2014, pp 286-293

 Journals

o Luís Filipe Teófilo, Luís Paulo Reis, Henrique Lopes Cardoso. “Rule

based strategies for large extensive-form games: A specification

language for No-Limit Texas Hold’em agents”, Journal Computer

Science and Information Systems (COMSIS), 2014, Volume 11, Issue

4, pp 1249-1269

o Luís Filipe Teófilo, Luís Paulo Reis, Henrique Lopes Cardoso. “A

General Poker Game Playing System”, Journal Web Intelligence and

Agent Systems: An International Journal (WIAS), 2015 (invited and

submitted)

 Supervised MSc Thesis (that made contributions for this thesis)

o Paulo Sérgio Ribeiro Martins. PokerVision - Perception Layer for a

Human-Robot Poker Table. Master Thesis, University of Porto, 2011

o Nuno Miguel da Silva Passos. Poker Learner: Reinforcement Learning

Applied to Texas Hold'em Poker. Master Thesis, University of Porto,

2012

Appendices

196

o João Castro Correia, PGDL: Sistema para definição genérica de jogos

de Poker. Master Thesis, University of Porto, 2013

o João Almeida Campos, A Profitable Online Poker Agent. Master

Thesis, University of Porto, 2013

o José Pedro Marques, Reinforcement Learning applied to non-

deterministic games, University of Porto, 2013

o Carlos Eduardo Frias, Developing an API to assess Poker agents

online, Master Thesis, University of Porto, 2014

o Nuno José Velho, Implementação iterativa do algoritmo

Counterfactual Regret Minimization, Master Thesis, University of

Porto, 2015

o João Reis, A GPU implementation of Counterfactual Regret

Minimization, University of Porto, 2015

 Talks

o Luís Filipe Teófilo. “Strategies in stochastic games with imperfect

information: No Limit Texas Hold'em Poker”. Invited talk at Sapo

Codebits, 2010, Lisbon, Available Online at

http://videos.sapo.pt/L0gobSW54S3bK7rokoSq

http://videos.sapo.pt/L0gobSW54S3bK7rokoSq

Appendices

197

Appendix B Glossary of Poker Terms

This glossary of poker terms was taken and adapted from the book “The Theory of

Poker” by David Sklansky [16].

 Ante. A fee that is deposited in the pot before the game starts.

 All-in. To have one's entire stake committed to the current pot. Action

continues toward a side pot, with the all-in player being eligible to win

only the main pot.

 All-in Equity. The expected value income of a hand assuming the game

will proceed to the showdown with no further betting (i.e., a fraction of

the current pot, based on all possible future outcomes).

 Bad Beat. An unlucky loss. In particular, losing a game where the

opponent probably should have folded, but instead got extremely lucky

to win.

 Bankroll. The amount of money that the player has allocated to the

game.

 Bet. To make the first wager of a betting round (compare raise).

 Bet for Value. To bet with the expectation of winning if called (compare

bluff).

 Big Bet. The largest bet size in Limit poker (e.g., $20 in $10-$20 Hold'em).

 Big Blind (sometimes called the Large Blind). A forced bet made before

the deal of the cards (e.g., $10 in $10-$20 Hold'em, posted by the second

player to the left of the button).

 Blind. A forced bet made before the deal of the cards (see small blind and

big blind).

Appendices

198

 Bluff. To play a weak hand as though it were strong, with the expectation

of losing if called (see also semi-bluff and pure bluff, compare bet for

value).

 Board (or Board Cards). The community cards shared by all players.

 Board Texture. Classification of the type of board, such as having lots of

high cards, or not having many draws (see dry).

 Button. The last player to act in each betting round in Texas Hold'em.

Also called the dealer button, representing the person who would be the

dealer in a home game.

 Call. To match the current level of betting. If the current level of betting is

zero, the term check is preferred.

 Check. To decline to put money in the pot in a betting round (compare

call).

 Check-Raise. To check on the first action, with the intention of raising in

the same betting round after an opponent bets.

 Community Cards. The public cards shared by all players.

 Connectors. Two cards differing by one in rank, such as 7-6. More likely to

make a straight than other combinations.

 Dominated. A Hold'em hand that has a greatly reduced chance of winning

against another because one or both cards cannot make a useful pair

(e.g., KQ is dominated by AK, AQ, AA, KK, and QQ, but not by AJ or JJ).

 Draw. A holding with high potential to make a strong hand, such as a

straight draw or a flush draw (compare made hand).

 Draw Potential. The relative likelihood of a hand improving to be the best

if it is currently behind.

 Drawing Dead. Playing a draw to a hand that will only lose, such as

drawing to a flush when the opponent already holds a full house.

Appendices

199

 Drawing Hand. A hand that has a good draw (compare made hand).

 Dry. Lacking possible draws or betting action, as in a dry board or a dry

game.

 Equity (or Pot Equity). An estimate of the expected value income from a

hand that accounts for future chance outcomes, and may or may not

account for the effects of future betting (e.g., all-in equity).

 Expected Value (EV) (also called mathematical expectation). The average

amount one expects to win in a given game situation, based on the

payoffs for each possible random outcome.

 Flop. The first three community cards dealt in Hold'em, followed by the

second betting round (compare board).

 Fold. To discard a hand instead of matching the outstanding bet, thereby

losing any chance of winning the pot.

 Fold Equity. The equity gained by a player when an opponent folds. In

particular, the positive equity gained despite the fact that the opponent's

fold was entirely correct.

 Forward Blinds. The logical extension of blinds for heads-up (two-player)

games, where the first player posts the small blind and the second player

(button) posts the big blind (compare reverse blinds). (Both rules are seen

in practice, with various casinos and online card rooms having different

policies for multi-player games that have only two active players).

 Free-Card Danger. The risk associated with allowing an opponent to

improve and win the pot without having to call a bet (in particular, when

they would have folded).

 Free-Card Raise. To raise on the flop intending to check on the turn.

 Game. (a) A competitive activity in which players contend with each other

according to a set of rules (in poker, a contest with two or more players).

Appendices

200

(b) A single instance of such an activity (in poker, from the initial dealing

of the cards to the showdown, or until one player wins uncontested).

 Game Theory. Among serious poker players, game theory normally

pertains to the optimal calling frequency (in response to a possible bluff),

or the optimal bluffing frequency. Both depend only on the size of the bet

in relation to the size of the pot.

 Hand. (a) A player's private cards (e.g., two hole cards in Hold'em). (b)

One complete game of poker (see game (b)).

 Heads-up. A two-player (head-to-head) poker game.

 Hole Card. A private card in poker (Texas Hold'em, Omaha, 7-Stud, etc.).

 Implied Odds. (a) The pot odds based on the probable future size of the

pot instead of the current size of the pot (positive or negative

adjustments). (b) The extra money a strong hand stands to win in future

betting rounds (compare reverse implied odds).

 Kicker. A side card, often deciding the winner when two hands are

otherwise tied (e.g., a player holding Q-J when the board is Q-7-4 has top

pair with a Jack kicker).

 Large Blind (usually called the Big Blind). A forced bet made before the

deal of the cards (e.g., $10 in $10-$20 Hold'em, posted by the second

player to the left of the button).

 Loose Game. A game having several loose players.

 Loose Player. A player who does not fold often (e.g., one who plays most

hands at least to the op in Hold'em).

 Made Hand. A hand with a good chance of currently being the best, such

as top pair on the op in Hold'em (compare draw).

 Mixed Strategy. Handling a particular type of situation in more than one

way, such as to sometimes call, and sometimes raise.

Appendices

201

 Muck. On the showdown the players have the possibility of hiding the

content of their hands and thus forfeiting the hand.

 No-Limit. A poker variant that does not impose a limit on the value of

raise actions.

 Offsuit. Two cards of different suits (also called unsuited, compare

suited).

 Open-Ended Draw. A draw to a straight with eight cards to make the

straight, such as 6-5 with a board of Q-7-4 in Hold'em.

 Outs. Cards that will improve a hand to a probable winner (compare

draw).

 Pocket Pair. Two cards of the same rank, such as 6-6. More likely to make

three of a kind than other combinations (see set).

 Post-flop. The actions after the flop in Texas Hold'em, including the turn

and river cards interleaved with the three betting rounds, and ending

with the showdown.

 Pot. The common pool of all collected wagers during a game.

 Pot Equity (or simply Equity). An estimate of the expected value income

from a hand that accounts for future chance outcomes, and may or may

not account for the effects of future betting (e.g., all-in equity).

 Pot Odds. The ratio of the size of the pot to the size of the outstanding

bet, used to determine if a draw will have a positive expected value.

 Pre-fop. The first round of betting in Texas Hold'em before the flop,

beginning with the posting of the blinds and the dealing of the private

hole cards.

 Pure bluff. A bluff with a hand that can only win if the opponent folds

(compare semi bluff).

Appendices

202

 Pure Drawing Hand. A weak hand that can only win by completing a

draw, or by a successful bluff.

 Raise. To increase the current level of betting. If the current level of

betting is zero, the term bet is preferred.

 Raising for a Free-card. To raise on the op intending to check on the turn.

 Rake. A portion of the pot withheld by the casino or host of a poker

game, typically a percentage of the pot up to some maximum, such as 5%

up to $3.

 Re-raise. To increase to the third level of betting after a bet and a raise.

 Reverse Blinds. A special rule sometimes used for heads-up (two-player)

games, where the second player (button) posts the small blind and the

first player posts the big blind (compare forward blinds). (Both rules are

seen in practice, with various casinos and online card rooms having

different policies for multi-player games that have only two active

players).

 Reverse Implied Odds. The unaccounted (negative) money a mediocre

hand stands to lose in future betting rounds (compare implied odds (b)).

 River. The fifth community card dealt in Hold'em, followed by the fourth

(and final) betting round.

 Semi-bluff. A bluff when there are still cards to be dealt, with a hand that

might be the best, or that has a reasonable chance of improving to the

best if it is called (compare pure bluff).

 Second pair. Matching the second highest community card in Hold'em,

such as having 7-6 with a board of Q-7-4.

 Session. A series of games, typically lasting several hours in length.

Appendices

203

 Set. Three of a kind, formed with a pocket pair and one card of matching

rank on the board. A very powerful and well-disguised hand (compare

trips).

 Short-handed Game. A game with less than the full complement of

players.

 Showdown. The revealing of cards at the end of a game to determine the

winner.

 Side pot. A second pot for the remaining active players after another

player is all-in.

 Slow-play. To check or call a strong hand as though it were weak, with

the intention of raising in a later betting round (compare smooth-call and

check raise).

 Small Bet. The smallest bet size in Limit poker (e.g., $10 in $10-$20

Hold'em).

 Small Blind. A forced bet made before the deal of the cards (e.g., $5 in

$10-$20 Hold'em, posted by the first player to the left of the button).

 Smooth-call. To only call a bet instead of raising with a strong hand, for

purposes of deception (as in a slow-play).

 Suited. Two cards of the same suit, such as both Hearts. More likely to

make a flush than other combinations (compare offsuit or unsuited).

 Table Image. The general perception other players have of one's play.

 Table Stakes. A poker rule allowing a player who cannot match the

outstanding bet to go all-in with his remaining money, and proceed to the

showdown (also see side pot).

 Texture of the Board. Classification of the type of board, such as having

lots of high cards, or not having many draws (see dry).

Appendices

204

 Tight Player. A player who usually folds unless the situation is clearly

profitable (e.g., one who folds most hands before the flop in Hold'em).

 Time Charge. A fee charged to the players in a poker game by a casino or

other host of the game, typically collected once every 30 minutes.

 Top Pair. Matching the highest community card in Hold'em, such as

having Q-J with a board of Q-7-4.

 Trap. To play a strong hand as though it were weak, hoping to lure a

weaker hand into betting. Usually a check-raise or a slow-play.

 Trips. Three of a kind, formed with one hole card and two cards of

matching rank on the board. A strong hand, but not well-disguised

(compare set).

 Turn. The fourth community card dealt in Hold'em, followed by the third

betting round.

 Unsuited. Two cards of different suits (also called offsuit, compare

suited).

 Value Bet. To bet with the expectation of winning if called (compare

bluff).

 Wild Game. A game with a lot of raising and re-raising. Also called an

action game.

Appendices

205

Appendix C PGDL Documents

C.1 Kuhn in PGDL

<PGDL>

 <PokerGame name="Kuhn" wildCards="false"

winningType="high" ante="1" />

 <History />

 <Description />

 <Players minimun="2" maximum="2" />

 <Deck standard="false" jokers="0">

 <Card id="jh" name="Jack Hearts" rank="0"

suit="hearts" wild="false" />

 <Card id="qh" name="Queen Hearts" rank="1"

suit="hearts" wild="false" />

 <Card id="kh" name="King Hearts" rank="2"

suit="hearts" wild="false" />

 </Deck>

 <Scoring standard="true" handSize="1" />

 <Round number="1" name="Round One"

communityCardsNumber="0" faceUpCardsDealt="0"

faceDownCardsDealt="1" forceBet="false"

blinds="false">

 <BettingStructure type="limit">

 <Bet value="1" maxNumRaises="1" />

 </BettingStructure>

 <DrawCards min="0" max="0" />

 <PassCards value="0" direction="clockwise" />

 <DiscardCards value="0" />

 <BettingOrder order="Clockwise"

firstPlayerBetting="nextDealer" />

 </Round>

</PGDL>

C.2 Leduc Hold’em in PGDL

<PGDL>

 <PokerGame name="Leduc Hold'em"

wildCards="false" winningType="high" ante="1"

/>

 <History />

 <Description />

 <Players minimum="2" maximum="2" />

 <Deck standard="false" jokers="0">

 <Card id="jh" name="Jack Hearts" rank="0"

suit="hearts" wild="false" />

 <Card id="qh" name="Queen Hearts" rank="1"

suit="hearts" wild="false" />

 <Card id="kh" name="King Hearts" rank="2"

suit="hearts" wild="false" />

Appendices

206

 <Card id="jc" name="Jack Clubs" rank="0"

suit="clubs" wild="false" />

 <Card id="qc" name="Queen Clubs" rank="1"

suit="clubs" wild="false" />

 <Card id="kc" name="King Clubs" rank="2"

suit="clubs" wild="false" />

 </Deck>

 <Scoring standard="true" handSize="2" />

 <Round number="1" name="Round One"

communityCardsNumber="0" faceUpCardsDealt="0"

faceDownCardsDealt="1" forceBet="false"

blinds="false">

 <BettingStructure type="limit">

 <Bet value="1" maxNumRaises="1" />

 </BettingStructure>

 <DrawCards min="0" max="0" />

 <PassCards value="0" direction="clockwise" />

 <DiscardCards value="0" />

 <BettingOrder order="clockwise"

firstPlayerBetting="nextDealer" />

 </Round>

 <Round number="2" name="Round Two"

communityCardsNumber="1" faceUpCardsDealt="0"

faceDownCardsDealt="0" forceBet="false"

blinds="false">

 <BettingStructure type="limit">

 <Bet value="1" maxNumRaises="1" />

 </BettingStructure>

 <DrawCards min="0" max="0" />

 <PassCards value="0" direction="clockwise" />

 <DiscardCards value="0" />

 <BettingOrder order="clockwise"

firstPlayerBetting="nextDealer" />

 </Round>

</PGDL>

C.3 No Limit Texas Hold’em in PGDL

<PGDL>

 <PokerGame name="No-Limit Hold'em"

wildCards="false" winningType="high" ante="0"

/>

 <History />

 <Description />

 <Players minimum="2" maximum="9" />

 <Deck standard="true" jokers="0" />

 <Scoring standard="true" handSize="5" />

 <Round number="1" name="Pre-Flop"

communityCardsNumber="0" faceUpCardsDealt="0"

faceDownCardsDealt="2" forceBet="false"

blinds="true">

Appendices

207

 <BettingStructure type="no-limit">

 <Bet value="1" maxNumRaises="4" />

 </BettingStructure>

 <DrawCards min="0" max="0" />

 <PassCards value="0" direction="clockwise" />

 <DiscardCards value="0" />

 <BettingOrder order="clockwise"

firstPlayerBetting="nextDealer" />

 <BlindStructure>

 <Blind id="smallBlind" value="0.5"

name="Small-Blind" position="nextDealer" />

 <Blind id="bigBlind" value="1" name="Big-

Blind" position="nextSmallBlind" />

 </BlindStructure>

 </Round>

 <Round number="2" name="Flop"

communityCardsNumber="3" faceUpCardsDealt="0"

faceDownCardsDealt="0" forceBet="false"

blinds="false">

 <BettingStructure type="no-limit">

 <Bet value="1" maxNumRaises="4" />

 </BettingStructure>

 <DrawCards min="0" max="0" />

 <PassCards value="0" direction="clockwise" />

 <DiscardCards value="0" />

 <BettingOrder order="clockwise"

firstPlayerBetting="nextDealer" />

 </Round>

 <Round number="3" name="Turn"

communityCardsNumber="1" faceUpCardsDealt="0"

faceDownCardsDealt="0" forceBet="false"

blinds="false">

 <BettingStructure type="no-limit">

 <Bet value="1" maxNumRaises="4" />

 </BettingStructure>

 <DrawCards min="0" max="0" />

 <PassCards value="0" direction="clockwise" />

 <DiscardCards value="0" />

 <BettingOrder order="clockwise"

firstPlayerBetting="nextDealer" />

 </Round>

 <Round number="4" name="River"

communityCardsNumber="1" faceUpCardsDealt="0"

faceDownCardsDealt="0" forceBet="false"

blinds="false">

 <BettingStructure type="no-limit">

 <Bet value="1" maxNumRaises="4" />

 </BettingStructure>

 <DrawCards min="0" max="0" />

 <PassCards value="0" direction="clockwise" />

 <DiscardCards value="0" />

Appendices

208

 <BettingOrder order="clockwise"

firstPlayerBetting="nextDealer" />

 </Round>

</PGDL>

C.4 5 Card Draw in PGDL

<PGDL>

 <PokerGame name="Five Card Draw"

wildCards="false" winningType="high" ante="1"

/>

 <History />

 <Description />

 <Players minimum="2" maximum="6" />

 <Deck standard="true" jokers="0" />

 <Scoring standard="true" handSize="5" />

 <Round number="1" name="Round One"

communityCardsNumber="0" faceUpCardsDealt="0"

faceDownCardsDealt="5" forceBet="false"

blinds="false">

 <BettingStructure type="limit">

 <Bet value="1" maxNumRaises="4" />

 </BettingStructure>

 <DrawCards min="0" max="0" />

 <PassCards value="0" direction="clockwise" />

 <DiscardCards value="0" />

 <BettingOrder order="clockwise"

firstPlayerBetting="nextDealer" />

 </Round>

 <Round number="2" name="Round Two"

communityCardsNumber="0" faceUpCardsDealt="0"

faceDownCardsDealt="0" forceBet="false"

blinds="false">

 <BettingStructure type="no-limit">

 <Bet value="1" maxNumRaises="4" />

 </BettingStructure>

 <DrawCards min="0" max="3" />

 <PassCards value="0" direction="clockwise" />

 <DiscardCards value="0" />

 <BettingOrder order="clockwise"

firstPlayerBetting="nextDealer" />

 </Round>

</PGDL>

Appendices

209

C.5 Custom Scoring Example

<Scoring standard="false" handSize="5">

 <Score name="high card" rank="0"

default="true" sort="true" >

 <Subrank>

 $c5.rank * 28561 + $c4.rank * 2197 +

$c3.rank * 169 + $c2.rank * 13 + $c1.rank

 </Subrank>

 </Score>

 <Score name="pair" rank="1" default="false"

sort="true">

 <Conditions>

 </Conditions>

 <Subrank>

 $c5.rank == $c4.rank?

 $c5.rank * 100000 + $c3.rank * 169 +

$c2.rank * 13 + $c1.rank:

 $c4.rank == $c3.rank?

 $c4.rank * 100000 + $c5.rank * 169 +

$c2.rank * 13 + $c1.rank:

 $c3.rank == $c2.rank?

 $c3.rank * 100000 + $c5.rank * 169 +

$c4.rank * 13 + $c1.rank

 $c2.rank * 100000 + $c5.rank * 169 +

$c4.rank * 13 + $c3.rank

 </Subrank>

 </Score>

 <Score name="two pairs" rank="2"

default="false" sort="true" >

 ...

 </Score>

 ...

</Scoring>

