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Abstract

Modelling human thermal response is not a new research study field. There are many

studies concerning with the human thermophysiological responses but only a few in-

tegrate transient and three-dimensional whole-body responses to heat exposure. The

main goal of this work was to integrate several mathematical modelling approaches

based on the best current rational models available and presents a new model imple-

mented in a modern programming language that could support a sustainable devel-

opment. Bibliographic review allowed gathering information about the best rational

approaches to define the mathematical model. The search for programming languages

elects Python as the new generation language used in scientific simulation. Imple-

mentation was based on the best numerical systems, such as numpy, scipy and fipy,

as commonly used by scientific communities. The code was implemented considering

a three dimensional diffusion. Last model version is presented in form of annotated

listings. The final structure followed an object oriented approach, allowing a high

level of parametrization. It is based on 15 segments (head, neck, trunk, upper arms,

forearm, hands , thighs, legs and feet). Right limbs are distinguished from the left.

Initial conditions can be settled to each type of biological tissue at each segment of the

body. Boundary values change over the time at each segment of the mesh. Current

implementation gives the output responses of a mean male subject at thermoneutral

basal conditions. However, the final passive system implementation is prepared to

respond to simulations of three-dimensional heat diffusion in transient environments.

Results are given under the form of ‘.TSV’ text files, bi-dimensional plots or animation

of 4-dimensional plots. Active system mathematical model approaches are presented

and exemplification of how it should be implemented in presented and suggestions

for future updates based on current development are also defined. The passive system

was tested to find faults and parametrization difficulties, before connect the passive to

the active system.

Key-Words: Whole-body thermal modelling, Annotated listings.





Resumo

A modelação da termorregulação humana não é um novo campo de investigação.

Contudo apenas alguns modelos integram numa abordagem tridimensional de corpo

inteiro, os estados transitórios da exposição ao calor. Assim, o principal objetivo do

trabalho consiste em integrar diversas abordagens de modelação matemática, com

base nos melhores modelos disponíveis, apresentando um modelo integrado, imple-

mentado numa linguagem que pudesse apoiar o seu desenvolvimento sustentável.

O modelo matemático foi definido a partir das melhores soluções encontradas na re-

visão bibliográfica. O Python foi escolhido por ser a linguagem de programação de

nova geração usada em simulação científica. A implementação foi baseada em ferra-

mentas de cálculo numérico, como por exemplo numpy, scipy e fipy, utilizados ha-

bitualmente pela comunidade científica . A implementação considerou uma difusão

tridimensional do calor. O modelo é apresentado na forma de itens anotados. A es-

trutura final seguiu uma abordagem orientada a objetos, utilizando dezenas de parâ-

metros para cada um dos 15 segmentos (cabeça, pescoço, tronco, braços, antebraços,

mãos, coxas, pernas e pés). Os membros direitos são diferenciados dos esquerdos. As

condições iniciais podem ser descritas para cada tipo de tecido biológico em cada um

dos segmentos do corpo. Os valores limite mudam ao longo do tempo em cada seg-

mento da malha permitindo observação dos regimes transitórios. A implementação

atual dá a resposta de um indivíduo do sexo masculino médio, em condições basais

termoneutrais. Contudo, a implementação final do sistema passivo já está preparada

para responder à difusão de calor tridimensional em ambientes transitórios. Os res-

ultados são apresentados sob a forma de arquivos ”.TSV” de texto, gráficos bidimen-

sionais e animação com 4-dimensões. É apresentada uma abordagem matemática do

modelo do sistema ativo e é exemplificado o modo como deve ser implementado,

com sugestões para futuras atualizações com base no conhecimento atual. O sistema

passivo foi testado no sentido de procurar eventuais falhas e dificuldades de paramet-

rização, previamente à implementação do sistema ativo de termorregulação.

Palavras-Chave: Modelação térmica de corpo inteiro, código anotado.
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Chapter 1

Introduction

Human thermal modelling starts many years ago with the definition of the bioheat

equation in 1948 (Pennes, 1948). Since then, many studies have been developed trying

to simulate biological heat transfer and physiological response. Several whole-body

models were developed that include physiological parameters and predict sweat rate,

heart rate, core and shell temperatures.

Different research guidelines were created and followed in whole-body and local

thermal modelling. Some try to map temperatures all over the body (Wissler, 1964;

Fiala et al., 1999; Ferreira and Yanagihara, 2009; Albuquerque-Neto and Yanagihara,

2009), others use global heat balance principles to predict the amount of body heat

gain/loss to predict other physiological parameters (Givoni and Goldman, 1972; Pan-

dolf et al., 1986; Fanger and Toftum, 2002).

Human thermal models are quite important for research and practice in health

and safety at work. When complete and integrated with a thermoregulatory system

models can be used to evaluate:

• Critical exposure to high or low temperatures;

• Long term exposure periods;

• Unpleasant submersions in cold or hot fluids;

• Whole-body discomfort, local discomfort or pre-burning stage exposure;

• Exposure time period limits;

1
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• Sweat rate and dehydration level;

• Physiological indicators of excess of thermoregulation;

• Overheat process and individual heat tolerance limits;

• and so on.

The biggest advantage of this kind of research is to avoid the need to submit people to

unpleasant and/or unsafe conditions to analyse individual physiological responses.

Models allow to test quickly different exposure conditions. Tests with models are

low cost comparatively to experimental research. Assuring a correct and rigorous

validation process, results can be as reliable as those obtained with the most advanced

experimental techniques. In practice, models can be a competitive management tool

that can help engineers and managers in planning and testing work conditions, even

before implementing solutions, without submit anyone at risk or under an unpleasant

situation.

Exmples of Successful Models

Givoni and Goldman (1972) and Pandolf et al. (1986) developed and applied pre-

dictive models that combine statistical black-box modelling with parameter related

throughout a phenomenological basis. Models were specifically developed, tested

and validated for military enforcement. The final adjusts to real data were accurate

enough and simple, what make them easy to be used in the field as important tactical

decision making tool. It relates physiological parameters (core temperature, heart rate

and sweat rate) with the time, which allow to build a response profile over the time.

Pandolf et al. (1986) model was tested and validated with a large number of samples

and data from many critical conditions collected in controlled environment and in the

operational field. Givoni and Goldman (1972) model was validated by comparison

with experimental data collected in controlled environment only.

In spite of both models had been an application success, other scientific areas re-

quired more sophisticated, accurate and even more reliable models. The inclusion of

individual aspects and health condition help to predict the decrease in physiological

2
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tolerance that is, in the case of health and safety at work, important for special popu-

lations during dangerous works, like firefighters, mineworkers, divers, pilots,soldiers

or even astronauts. But, even to accomplish the increase demand for production and

quality, the development of models capable to respond to changes in time and space

increase the potential for product design, building comfort environment and energy

efficiency, or even assess outdoor thermal environments.

The development of whole-body thermal models to predict thermal and physiolo-

gical responses to heat, are not new in this field of research. In fact, in the time line,

rational model were the first ones to appear, and still most suitable for appliance in

a wide range of environmental exposures and give the most reliable predictions of

thermophysiological responses.

Although there is a large quantity of models already developed there is no free

program code published or available, with the exception of Stolwijk (1971), Gagge

et al. (1972) (whose complete Fortran annotated listings were published in final report

version to NASA and scientific paper respectively) and Fiala et al. (1999), that have is

UTCI-model available for public release in 2008 (beta version) being the final version

presented in the subsequent year.

Wissler (1964) model was and it still is, with the upgrades made in 1985, one of the

most complete thermal models, that include the simulations of oxygen and carbon di-

oxide mass exchange, lactate production and distribution along the body. Regardless

of that fact, disadvantages come from unavailable information to allow a complete

reproduction of the model.

Easy access to full code of some models, easier to implement, and the difficulty to

recreate the others, due to the complexity and lack of information, lead most of sub-

sequent researchers to use simpler versions re-adapted, instead of others sophisticated

approaches. This is probably the reason that took more complex models, with higher

level of mathematical description associated to human heat exchange phenomena, be-

ing put aside.

Even so, none of the mentioned models were able to join three-dimensionality to

transient, non-homogeneous environments, as the present study did with BioHeatSIM

model proposal.

3





Chapter 2

State of Art

Human thermal modelling is not a new research field. Since the last seven decades

that many models have been developed and implemented in practice. From simpler

empirical models – as effective temperature (ET), wet bulb globe temperature (WBGT)

and heat strain index (HSI) (Belding and Hatch, 1955) – to complex rational ones -

Stolwijk and Hardy 25-node model, Gagge and Nishi 2-node model or Wissler model

– a large path has been trilled in order to get the most accurate, reliable and effective

model.

Simple indexes have been developed based on environmental and basic physiolo-

gic parameters. Soon it was noticed that as more basic it was the index/model more

difficult it was to adapt it to the different circumstances. Until the present data, in par-

ticular indexes are divided according to the type of environment. Heat exposure, cold

exposure and thermal comfort are still the three main areas of modelling. Even now,

the performance of modern rational models are not similar to all kind of environments

or physical efforts.

With computer science advances thermal modelling also increase the potential to

developed more complex models. With complexity, increased enforcement potential,

so, there was a natural tendency to follow rational modelling in the last 10 years.

Currently, to fit specific requirements for individual differences and escape to the

average response prediction, black box modelling techniques are being added to ra-

tional models, creating modern actual hybrid models. According to Gonzalez (2004),

research has shown that data representing a random or stochastic physical phenomenon

5
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cannot be wholly described by an explicit mathematical relationship structured around

the average response criteria because each observation of the phenomenon will be

unique. So, the inclusions of probabilistic models or neural networks are being used

to increase the predictive power of the older phenomenological approaches.

The next sections intend to provide a historical perspective of whole body thermal

modelling research for predicting thermal and physiological responses of human body

in steady or transient states with a particular attention to heat stress exposure. It is

intended to describe the most important models in each research approach: from the

most simplest to the most sophisticated; models based on different concepts regarding

different types of field enforcement; and finally give a holistic perspectives of what

could be done in this research field in order to justify current modelling options.

2.1 Empirical Models

Empirical models can be developed by exposing human subjects to a range of

thermal environments and “fitting” mathematical models to the human response data

collected (Parsons, 2014). These models are considered operational in the sense that

they predict a series of physiologic responses from empirically derived equations cal-

culated assuming that the exposure to an environmental challenge is for a finite inter-

val of time. Mathematical equations, of rational models, can be seen as an extension of

thermal balance equations or use the classical formulation of heat diffusion. The main

goal is to maintain thermal neutrality between acceptable ranges. The highest quality

models that have been developed in this area that allow a time dependent prediction

in steady and transient states will be presented.

From the pioneers Givoni and Goldman (1972) to the latest revision of evaporat-

ive required sweat rate by Malchaire et al. (2001) and purpose of predicted heat strain

(PHS), it is shown that this practical tools are easy to implement. To reproduce and im-

plement empirical models it is not needed expert skills in physics, thermodynamics,

mathematics or computational. Of course that the potential for practical application

in specific conditions is limited, but when accuracy is not a priority and generic eval-

uations fit the requirements, these models can be useful.

6
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2.1.1 Givoni and Goldman Model (1972-1973)

Givoni and Goldman (1972, 1973b) were pioneers at Ergonomic Division of the US

Army Institute of Environmental Medicine. They establish an empirical mathemat-

ical model, easy to implement, with a mix of phenomenological base and statistical

adjustments. Model consists in distinct equations to predict core temperature applied

considering if the person was exercising, resting or recovering. It is necessary to have

information about the task energy expenditure and clothing insulation. Core temper-

ature at zero seconds is used as initial condition. Final result is the core temperatures

over the time.

The application of the model is quite restrictive. As other empirical models, it only

follows the tendency inside the range to which was designed.

2.1.2 Pandolf Model (1986)

Pandolf et al. (1986) specifically gather information from research team of Ergo-

nomic Division of the US Army Institute of Environmental Medicine, where he was

director at the time. He published the mathematical equation for predicting rectal

temperature, heart rate and sweat loss as function of work intensity and clothing en-

semble. Model was based on Givoni and Goldman (1972, 1973b) and Shapiro et al.

(1982). He also include further specific information from research team that include

solar heat load (Breckenridge and Goldman, 1971), influence of acclimation to heat

(Givoni and Goldman, 1973a) and energy expenditure (Pandolf et al., 1977).

2.1.3 Malchaire Model (2000)

Malchaire et al. (2001) predicted heat strain model (PHS) it was developed by large

research team composed by Belgian, German, Swedish, Netherlander, British, and

Italian elements. Important researchers like K. Parsons and G. Havenith, whose mod-

els and extensive work in human thermal physiologic responses are largely known,

have participated. PHS was a product of the revised theoretical concepts and mod-

ern scientific knowledge of international standard ISO 7933:1989 – required sweat rate

index.
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Model was developed and validated considering a database with 909 laboratory

and field experiments collected from partners. The problem it was that part of the data

were used to develop PHS and the other part was used to validate it.

2.2 Rational Models

Rational models most of the times can be seen as an extension of the heat bal-

ance equations used to describe rational thermal indexes. However the expression is

nowadays commonly used to describe dynamic mathematical simulation of the hu-

man thermal and physiological responses. Usually consists in two systems modelled

in separate, the controlled or passive system, and the active or control system. The

complexity of mathematical simulations should be, somehow, related to technological

developments, however here is going to be seen that the most complex mathematical

models were described in the beginning of 60’s and 70’s, and their phenomenological

basis are followed by recent researchers.

2.2.1 Wissler Model (1961-1985)

From Department of Chemical Engineering of the University of Texas, Wissler is

one of most important researchers in thermophysiological modelling. He starts earlier

studying deeply the physiological concepts of human thermoregulation and applying

them in a revolutionary way. The base of the described model is completely phe-

nomenological, with a high level of detail, particularly for the time. Model devel-

opment was supported by the office of Surgeon General of the united States Army

(Wissler, 1964).

Before him, the developed mathematical models were based on simple equations,

using a core-shell approach. According to the author, the most sophisticated previous

works have been developed by: (1) C.H. Wyndham and A. R. Atkins (1960), that rep-

resent the human body by a series of concentric cylinders; (2) after R.J. Crosbie, J. D.

Hardy, and E. Fessenden (1961), that have adopted a very similar approach using an

infinite slab rather than a cylinder; (3) meanwhile, in 1964 Wyndham and Atkins were

trying to adapt their model to include regional variations by using a physical system
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similar to the one discussed here. The biggest difficulty, at the time, it was to solve

heat conduction equation with endogenous heat production for transient state with

limited computational resources (Wissler, 1964).

Wissler’s firsts publications date from 1961, focused on find the mathematical solu-

tion for both steady (Wissler, 1961) and transient states (Wissler, 1963) for an human

model represented by six cylinders. In 1964 he presented the final model purpose

implementing the solution of bioheat equation by using finite difference technique.

Figure 2.1: Passive or controlled system of Wissler models. [Adapted from Wissler
(1964)].

This version, that was the base for the final model (presented in 1985) , describing

a human geometrical model with cylinders, for arms, legs, trunk and head. Each lon-

gitudinal segment divided into 4 layers of tissue (bone, muscle, fat and skin). Arteries

and veins cross the 15 segments carrying the blood from one element to the other and

a network of capillaries supplying blood to the tissue layers of each element. Heat
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is generated, stored and carried away from an element through blood circulation, or

conducted to the outside of skin surface (see figure 2.1). The equation of heat diffusion

in biological tissues was published by Pennes (1948), and is a simple statement of the

first law of thermodynamics (equation 2.1 1).

ρCi
∂Ti

∂t
=

1
r

∂

∂r

(
kir

Ti

dr

)
+hmi +Qci (Tai−Ti)+Hai (Tai−Ti)+Hvi (Tvi−Ti) (2.1)

Where:

• Ti(t,r) is the instantaneous temperature of the tissue a the radial distance r from

the axis of the ith element,

• ρi(r) is the tissue density,

• Ci(r) is specific heat of the tissue,

• ki(r) is thermal conductivity of the tissue;

• hmi(t,r) is metabolic heat generated by unit of volume;

• Qci(t,r) is the quantity of heat, result from the product of mass flow rate and

specific heat of blood per unit of volume;

• Hai(t,r) is the heat transfer coefficient between the arteries and tissue per unit of

volume;

• Hvi(t,r) is the heat transfer coefficient between the veins and tissues per unit of

volume;

• Tai(t) is arterial temperature of blood in the ith element;

• Tvi(t) is venous temperature of blood in the ith element.

The equation 2.1 is used to determine tissue temperature changing in radial direc-

tion. It depends on time and space domains. Also considers endogenous heat produc-

tion of the tissues, where can be included the estimation of metabolic heat generated

1The units were not available in the original publication.
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by work (hmi); the amount of heat exchange with arterial and venous reservoirs/pools

(large vessels heat exchange); and the heat changed between tissues and capillaries

(small vessels).

Variables that depend on space (r) can be seen as constants if the correct values are

associated to the type of tissue. However, variables that depend on time (t) need to

be modelled through another equations, or assumptions and simplifications must be

defined.

As blood circulation is the most important mechanism to transport the heat and

it is stated that blood temperatures change over the time, the inclusion of two extra

mathematical expressions to predict the changes in arterial and venous reservoirs are

necessary in each segment. Temperature changes in arterial pool 2 of a segment is

described by equation 2.2 3:

(MC)ai
dTai

dt
= Qai(Tam−Tai)+2πLi

∫ ai

0
Hai(Ti−Tai)rdr+Havi(Tvi−Tai) (2.2)

in which:

• Mai the mass of blood contained in the arterial pool of the ith segment;

• Cai is the specific heat of the arterial blood;

• Qai(t) the product of the mas flow rate and specific heat for blood entering the

arterial pool;

• Tam(t) is the temperature of the blood entering the arterial pool;

• Li the length of the ith element;

• Havi heat transfer coefficient for direct transfer between large arteries and veins.

The analogous generic equation 2.3 4, predicts temperature changes of venous

2Is the name given to an arterial reservoir that represents a large vessel containing the arterial blood
in a segment.

3The units of the variables were not available in the original publication.
4The units of the variables were not available in the original publication.
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blood in the venous pool for each segment.

(MC)vi
dTvi

dt
= Qvi(Tvn−Tvi)+2πLi

∫ ai

0
(Qci +Hvi)(Ti−Tvi)rdr+Havi(Tai−Tvi) (2.3)

Being:

• Mvi the mass of blood contained in the venous pool of the ith segment;

• Cvi the specific heat of the venous blood;

• Qvi the product of mass flow rate and specific heat for venous blood entering on

the ith segment venous pool coming from the nth segment;

• Tvn the temperature of the blood that come from the nth segment.

These three equations are the principle of passive system modelling. Of course that

in the case of thorax element, or pelvis, the equations must be slightly different. They

need to incorporate more than one branch of veins to determine final temperature in

venous pool, and to consider the heat exchange along the respiratory tract.

This equations describe the controlled or passive system of the human body, as it

stills being used nowadays. The gap of such detailed descriptive equations, is the need

of a large set of information that cannot be directly measured or evaluated. That is the

case of the heat transfer coefficients (Hai, Hvi, Havi), thermal properties of the biological

tissues and mass flow rates.

As a physician, mathematician, biophysic and physiologist, Wissler described a

mathematical model with several doors opened to the future. He was the first re-

searcher developing a multi-segmental model of the human body to predict physiolo-

gic responses to a wide range of environments.

This is only a small part of his brilliant work. Heat transfer form outer skin to en-

vironment was also presented by him as a sequence of equations describing the heat

transfer coefficients of radiant, convective and evaporative heat transfer as depending

on: environmental conditions (temperature of the air, relative humidity and radiant

temperature), body wetness and outer skin temperature. The same was stated for heat

exchange due to respiration, that depend on breath rate, temperature and humidity of
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the inspired air. In the “final version” of the model published by Wissler (1985), it is

perceived, by the equations 2.1, 2.2 and 2.3, the 15 profiles of temperature in each ele-

ment (225 node model), inclusion of oxygen uptake, production of carbon dioxide and

lactate concentration of the blood, that final goal increases the accuracy of results by

adjusting metabolic heat production and the change, over the time, of thermal prop-

erties. This is the proof that the whole model was built from the beginning thinking

about future developments.

This final version was not extensively reproduced or tested by other researchers in

the field, not only due to its increased complexity, but also due to the lack of informa-

tion available in published contents (Haslam, 1989).

2.2.2 Stolwijk and Hardy 25-node Model (1971)

The model proposed by Stolwijk (1971) came from investigation work in partner-

ship with Hardy years before (Stolwijk and Hardy, 1966). Although their experience

in the area, have by reference the remarkable and innovate work developed by Wissler

(1964).

This mathematical model of physiological temperature regulation in man, fully

published in 1971 in report format with annotated listing of Fortran , was sponsored

by National Aeronautics and Space Administration (NASA), and performed by John

B. Pierce Foundation Laboratory, from Department of Epidemiology and Public Health

of Yale University School of Medicine.

Comparatively to Wissler’s models (225 nodes), this model is quite simpler and

much easier to implement. The passive system is constituted by 5 cylinder, with size

closed to the average dimensions of a real man, representing the trunk, arms, hands,

legs and feet and a sphere for the head. Each body segment was divided in 4 concentric

layers: core, muscle, fat and skin. The six elements divided in 4 compartments make

24 nodes. The 25th is the central blood pool that represents large arteries and veins.

Figure 2.2 shows in a) the scheme of the controlled system, and in b) the scheme of

heat diffusion through the tissues and respective connection to the central blood pool.

This representation of the circulatory system works as the principal mean of heat dis-

sipation. Without him temperatures rise to irrational values.
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Figure 2.2: a) Representation of the passive system of Stolwijk model, b) Heat echange
scheme between compartments. [From: van Beek et al. (2011)]

2.2.3 Nishi and Gagge 2-node Model (1972)

It is important to refer that Gagge worked with Hardy and Stolwijk at John B.

Pierce Foundation Laboratory, so the version of Nishi and Gagge 2-node model, also

known as Pierce 2-node model, in fact, it was a simplification of the Stolwijk model

for practical applications. It follows the same concept but in a simplified core-shell

approach with a layer of cloth (see figure 2.3)

With only two compartments it is much simpler to implement heavy complex
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Figure 2.3: Representation of Gagge and Nishi 2-node model. [From: Haslam (1989);
Parsons (2014)]

parametrization features. In spite of following the same school, they stretch the ap-

plication of thermal models to other fields. Being members of the America Society of

Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE), lead the models

and SET scales to improve energy performance of building and lately in occupational

health and safety, based on the analysis of human thermal comfort.

Their final goal it was to build an environmental temperature scale based on their

current knowledge or, by other words, a practical operational tool, based on the com-

puted results of a simple thermophysiological model (Gagge et al., 1972).

Nishi and Gagge (1977) present the SET (Standard Effective Temperature scale)

for application in hyperbaric and hypobaric environments. The application of SET

concept require measurement of prevailing environmental conditions, the correct eval-

uations of metabolic heat loss from skin surface by energy metabolism, estimation

clothing insulation worn, measure of exposure time, and using this inputs to predict

the mean body temperature.

2.2.4 Haslam’s and Parsons’ Models

Haslam and Parsons (1987) developed a set of 4 models based on ISO 7933:1989,

Givoni & Goldman, Stolwijk & Hardy, and Nishi & Gagge , respectively named LUTISO,

LUTtre, LUT25node and LUT2node. They develop this study particularly to answer

to British army, that required reliable tools to evaluate the thermal stress in a wide

range of environmental conditions. The criteria for chose the models seem to be the

different types of models, rational and empirical, more complex or simpler versions.
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Modifications to the original models consist in making them useful to provide pre-

dictions for work/rest cycles and people wearing cloths, considering both dry and

vapour heat transfer. What means that there were no significant improvements. Re-

markable it was the independent process of validation and comparison between the

models. This was the first time that the same validation procedure and data was used

to compare the performance of different types of models to a large set of environ-

mental conditions (see table 2.1).

Table 2.1: Accuracy of Haslam’s and Parsons’ models over thermal conditions. [adap-
ted from:(Parsons, 2014)].

Thermal
Conditions

ta ≤ 5◦C 5◦C < ta ≤ 15◦C 15◦C < ta ≤ 25◦C 25◦C < ta ≤ 35◦C 35◦C < ta

Tcr Tsk Tcr Tsk Tcr Tsk Tcr Tsk Tcr Tsk

Nude,
rest,
no wind

none lut2 lut2 lut25 luttre lut2 lut25 lut2 lut25 lut25
lut2 lut2 lut25 lut2 lut25 lut2 lut2

lut25 luttre luttre

Nude,
rest, wind

- - lut2 lut25 luttre lut25 - - - -
lut2

Nude,
work,
no wind

- - - - lut25 lut2 lut25 lut25? lut25 lut2
luttre lut25 luttre lut2? lut2 lut25

lut2

Nude,
work,
wind

- - - - - - lut2 - lut25 lut2
lut25 lut25
luttre

Clothed,
rest,
no wind

none lut2 lut2 lut2 - - - - - -
lut25 lut25

Clothed,
rest, wind

none none none lut2 - - - - - -

Clothed,
work,
no wind

lut25 lut25 lut2 lut25 - - lut2 lut2 none lut2
lut25 lut25 lut25

Clothed,
work,
wind

none none - - - - lut25 - - -

Note: Are presented the most accurate models in descending order that accomplish the maximum
rmsds (the average root mean square standard deviation) of 0.5 ◦C for core temperature and 1.6 ◦C
for mean skin temperature.
‘none’ – prediction values out of the range for all the models.
ta - air temperature in Celsius degrees.
Tcr - core temperature in Celsius degrees.
Tsk - mean skin temperature in Celsius degrees.
Dash means that there is no data available for comparison.
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It is important to underline the fact that empirical model loses in terms of accuracy

and range of environmental application comparing with rational models. In partic-

ular, for clothed situations his level of accuracy did not fit the maximum rmsds (root

mean square standard deviation) criteria. As expected and described by other authors

the numbers of nodes is important in cold but when thinking about hot temperatures

when temperatures over the tissues become more homogeneous, level of detail de-

pends on the application goal, because not always offer higher predictive power. The

model with best predictive power for core and skin temperature above 25◦C, at work,

clothed, with no-wind it was the LUT2-node model (i.e. 0.3◦C for tcr and 0.8◦C for

tsk)(Parsons, 2014).

2.2.5 Kraning & Gonzalez Model (1997)

This modelling proposal was developed by the research team from Military Ergo-

nomic Division of the US Army Institute of environmental medicine Kraning II and

Gonzalez (1997). Gonzalez was co-author in the Pandolf predictive model and both

worked Givoni and Goldman in parallel projects to collect data and general and indi-

vidual physiological responses to heat exposures.

SCENARIO is a soldier-based physiological/thermoregulatory model that reliably

incorporates novel schemes for calculating changes in blood flow to muscle, visceral

areas and skin, and changes in stroke volume, heart rate and cardiac output along with

previous depictions for control of core temperature and sweating rate (Kraning II and

Gonzalez, 1997). Passive system is modelled as a single cylinder divided into 5 layers

(core, muscle, fat, vascular skin and outer skin), plus a central blood compartment.

Predicted results are average values for an individual with W = 70 kg of weight and

surface area AD = 1.8m2.

The rates of metabolic heat in core, fat and avascular skin, are assumed to be fixed

percentages of total resting metabolic rate. Endogenous heat production in muscle

layer (Hmu) depends on the total energy expenditure (Mtot) and external work per-

formed (W ).

The heat flows through radial direction by conduction along adjacent compart-

ments (figure 2.4). Between central blood compartment and the first 4 layers (core,
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muscle, fat and vascular skin) heat is exchanged by controlled forced convection.

From avascular skin heat is lost to the air by sweat evaporation, radiation and con-

vection.

Figure 2.4: Cross-section of cylindrical model containing five concentric annular tissue
compartments.

The heat lost due to respirations is the result of evaporation and convection. As

input variables to simulate individual characteristics are given: body weight (W),

stature (H) and percentage of body fat. These inputs allow calculating metabolic heat

production, size of compartments and thermal conductances between adjacent layers

(K(n−1).n or Kn.(n+1)). The heat flow that vary between compartments is described by

equation 2.4.

d
dt

Qn(t) = Hn(t)+
(
K(n−1).n · [Tn−1(t)−Tn(t)]

)
−
(
Kn.(n+1) · [Tn(t)−Tn+1(t)]

)
−(BFn(t) ·ρbl · cbl [Tn(t)−Tbl(t)])

(2.4)

Variable Qn is the heat content, Tn is the temperature, Hn is the rate of heat produc-

tion and BFn is the rate of blood flow through compartment n. Temperature of blood

is defined by Tbl . The variables Tn−1 and Tn+1 are the temperatures in the adjacent

compartments to n. Core layer does not have compartment n− 1 and the outer skin

layer does not have heat exchange with the central blood compartment and the outer

compartment n+1 is replaced by E +R+C.

d
dt

Qbl = ρblcbl · (BFcr · (Tcr−Tbl)+BFmu · (Tmu−Tbl)+BFf at · (Tf at −Tbl)

+BFask · (Task−Tbl))− (Cres +Eres)

(2.5)
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Equation 2.5 represents the heat exchanged in central blood compartment. It in-

tegrates the heat lost by breathing and the heat exchanged with the four considered

layers (being the subscripts representing bl the blood, cr the core, mu the muscle, f at

the fat, ask the non-vascularized skin layer).

Controlling/active system: integrates a vascular model with distinct blood dis-

tribution along the tissue layers; modulates the sweat rate secretion; adjusts level of

conductance between vascular and avascular skin layers; and occasionally, corrects

heat balance by shivering.

Input variables for control system include blood temperature, average skin tem-

perature, oxygen uptake, heat production and body weight decrement in percentage.

All algorithms are updated in intervals of ∆t. As shorter the interval better would

be the response for transient states.

Figure 2.5: Scenario - MC block diagram Gonzalez (2004).

After some years of research, Gonzalez (2004) due to limitation of mathematical

modelling of physiological human thermal responses, proposed an improvement by

using a probabilistic application of Bayesian statistical paradigms joined with Monte

Carlo’s methods. The current control diagram showing the passive and active com-

ponents of the model with the key feedback loops, effector and non-thermal properties

along the “MC additions” to the input design (figure 2.5).

The innovations are to use statistical predictive adjustments to set point values in
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the control system, and act directly on the vasomotion and sweating capacity of the

individuals. This way by integrating the probability of cause effect due to circadian

cycle, malignant hyperthermia and hormonal cycle, the sensitiveness of the model to

individual characteristics improved significantly.

2.2.6 Fiala Models (1999-2012)

In the past three decades, several multi-segmental mathematical models of hu-

man thermoregulation have been developed (Wissler, 1985; Stolwijk, 1971) and have

become valuable tools in the contribute of a deeper understanding of regulatory pro-

cesses.

At the time Fiala et al. (1999) considered that the reasons why they did not became

widespread, include lack of confidence in their predictive abilities, limited range of

applicability, and poor modelling of the heat exchange with the environment. In his

words, Fiala et al. (1999) intend to contribute to research efforts to formulate a more

precise, flexible and universal model of the human thermoregulatory system.

In order to overcome limitations of previous models Fiala (1998); Fiala et al. (1999)

present a new multi-segmental model (DTS - dynamic thermal sensation). Model in-

cludes metabolic heat produced within the body, respective heat distributed over body

regions by blood circulation and heat conducted to the body surface. Insulated by

clothing, the heat is lost from body surface to the surroundings by convection, radi-

ation, and evaporation. Heat exchange by respiratory tract is also included. To achieve

more realistic results all the phenomena of heat diffusion counts with geometric and

anatomic characteristics of the human body and considers the thermophysical and the

basal physiological properties of tissue materials.

The body was idealized as 15 spherical or cylindrical body elements: head, face,

neck, shoulders, arms, hands, thorax, abdomen, legs, and feet. The multilayer model

consists of annular concentric tissue layers and uses seven different tissue materials:

brain, lung, bone, muscle, viscera, fat and skin. The criteria for division consist in

separate layers whenever a significant change in tissue properties occurs. As shown

in figure 2.6 the model is composed by 19 compartments and 342 nodes, and it is able

to consider asymmetry and heat transfer direction for each compartment.
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Figure 2.6: Sheme of the passive system of Fiala’s DTS model. [From: Fiala et al.
(1999)].

Figure 2.7: Fiala’s DTS and UTCI block diagram of active system. [From: Fiala et al.
(2012)].

The first version of the model purposed by Fiala et al. (1999) (DTS version), was

initially developed to be applied in thermal comfort assessment in buildings, however,

the huge potential of the model was quickly discovered. Several generic and specific

applications were object of validations studies regarding: human and thermal regu-

latory behaviours; transient indoor climate conditions in cars; asymmetric radiation

scenarios and exposures to high intensity sources; anaesthesia and clinical trials (Fiala

et al., 2012).
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The active system modelling proposal consist in reacting loops. Central nervous

system physiological reactions (shivering, skin blood flow) are continuously adjusted

according the values of hypothalamic temperature and mean skin temperature. Local

adaptation, due to Q10-effect, is modelled using the temperatures of the skin and tis-

sues of the element of the body adjusting the sweating, heat production and blood

flow. The block diagram that describes Fiala’s modelling of the active system can be

described in figure 2.7.

The need to simplify the DTS models lead Fiala et al. (2012) to develop a new ver-

sion called UTCI model (universal thermal climate index) . Simplification consists in

assuming body symmetry, reducing the 19 compartments to 12, what means 187-node

model. These final UTCI model, was the base (target) for other developments, includ-

ing a purpose to incorporate a clothing system and, most important, an independent

study of validations in a wide range of environmental contexts and working condi-

tions (Parsons, 2014). It is one of the models that came a free calculator available on

the internet.

2.2.7 Other important models

After pioneer models, potential for innovations is based on the integration of other

perspectives or other pioneers models in order to improve the phenomenological ap-

proach or to find through experiments more accurate values for thermal properties

of environment or biological tissues, to better describe mathematically the interface

between man and environment.

Fu Model (1995)

Fu (1995), in his Ph. D. thesis presents a three-dimensional model that responds

to transient environmental conditions. Part of his research it was dedicated to experi-

mental work in order to find threshold values for active system, in particular relating

the arterial radii with the Cardiac Output.
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Tanabe (2002)

Application of whole-body thermal models has gaining widespread integration

with new systems and new ways to apply it became research advances. Tanabe et al.

(2002) present a 65-node model, similar to Stolwijk and many others, with passive

and active systems. But this time, he compare the heat dynamics between man and

environment by integrating the human model in a computer fluid mechanics ( the

well-known CFD) system.

This application got very important developments in particular for indoor applic-

ations.

Salloum (2007)

Salloum et al. (2007) described a new transient bioheat model with a lot of poten-

tial. Once again passive system model followed closely the Stolwijk (1971) version.

Body was divided into 15 body segments composed by four layers. However instead

a singe blood pool they divide circulatory system in arterial blood and venous blood.

The challenge it was the adoption of arterial model of Avolio (1980) to simulate blood

flow. Blood circulation and flow rates were based real physiological data, real dimen-

sions and positions of arterial branches in the human body. The best advantage of

Avolio’s model is that, with the impedances calculated along the artery branches,with

a pulsating signal of CO at the entry of aortic branch, is able to estimate blood velocity

and pressure at any point of the arterial tree (Avolio, 1980).

With a realistic blood flow and cardiac output distribution, with a good repres-

entation of the change in stroke volume and central blood volume, the potential for

predicting heat illnesses, in particular heat syncope, heat exhaustion and heat stroke,

is significantly higher.

Active system approach is also based on the work presented by Fu (1995).

Ferreira and Yanagihara (2009)

Based on the studies of Penne and Wissler, Ferreira and Yanagihara (2009) presen-

ted the mathematical solution for three-dimensional thermal diffusive model, in par-
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ticular for cylindrical and elliptical geometries. It also gives important contributions in

the calculation of thermal coefficients between arteries and veins Hav, and the settled

of other parameters of passive system.

Neto (2010)

Behind the pioneer models of Wissler (1964, 1985) and Stolwijk (1971), Albuquerque-

Neto and Yanagihara (2009) present a mathematical model of the human thermal and

respiratory systems to predict temperature distributions and oxygen and carbon di-

oxide concentrations along the body from environmental parameters and metabolic

physical effort. Despite being a bi-dimensional heat diffusion model, the upgrade

done to circulatory system, based on the principle established byWissler (1964), that

depends on the concentration of the respiratory gases in the body, temperature and

metabolic rate, make from this model one of the more complex models built since

Wissler (1964). This mode have shown the ability to predict the complex interaction

between thermal and respiratory model, as the decrease of body temperature due to

the increase of breath rate (that depends on O2 and CO2 concentrations) and the re-

duction in partial pressure of the gases in the end parts of body segments due to the

effect of temperature in the ability of blood to carrying them.

2.3 Closing remarks

Traditional whole-body thermal models, born in America, linked to US army med-

ical (Wissler, 1961), aeronautical (Stolwijk, 1971) and environmental ergonomic de-

partments (Givoni and Goldman, 1972; Pandolf et al., 1977).

In spite of this two branches of American research teams (empirical and rational

research), they were aware of each other and integrate the knowledge in order to get

the best solution for their practical application. The researcher’s from NASA invest in

high complex models to develop safer condition with aeronautic application, and for

military enforcement develop practical portable tools that support decision making at

the field.

It is important to state that many models did not suffer an independent validation
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with clear criteria design for the effect. Most of them are validated by the authors,

usually not physiologists or physicians. This means that in spite of suffering com-

parison with real data, a non-systematized process of validation and different criteria

goals and data types make difficult to elect the best option to fit the best practical

application.

Haslam and Parsons (1987) work was a step in comparing the potential for prac-

tical use of very distinct models, from simple empirical indexes to more complex

whole-body phenomenological models. For the first time it could be compared the

accuracy level of such distinct models. Once again this was a study made for a project

for UK army. It also became clear that complex models are the ones who have the

ability to adapt to the different kind of environment. To model thermal response to

hot environments the rational complex models had the best behaviour.

To achieve a good level of accuracy in heat stress prediction a powerful control

system is necessary.

The most important enforcement field of research was focused on military field,

but generic civil enforcements gain position with European researchers (Fiala et al.,

1999; Malchaire et al., 2001), from environmental ergonomics, to building energy effi-

ciency, passing by the development of new tools or products, all have been motive for

the use whole-body thermophysiological models.

Curiously, considering the more than 50 year of research, there are no significant

tools available to evaluate exposures to hot environments, being the UTCI calculator 5

from Dunsan Fiala , and a program for risk assessment using PHS model 6, two of the

tools recognized by the scientific community that are available for free on the inter-

net. The availability of the source codes of the programs are even more rare. With the

exception of the programs published by Gagge and Nishi in scientific article (Gagge

et al., 1972), and previously by annotated listings by Stolwijk in Nasa’s report (Stol-

wijk, 1971), both in Fortran code, there are published for full, most of the models do

not allow reliable reproduction for further studies.

5Calculator for the Universal Thermal Climate Index (UTCI) - www.utci.org
6Program for risk assessment using PHS model - http://www.deparisnet.be/chaleur/Chaleur.htm
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Chapter 3

Problem State and Study Goals

3.1 Introduction

The literature review presented in the state of art have shown that there are a few

rational models that can be considered the origin of whole-body thermal modelling.

Wissler, Stolwijk and Hardy, Nishi and Gagge can be considered the fathers of new

rational modelling approaches. However, from the three approaches, Wissler’s math-

ematical description of the models presents a significant lack of information that do

not allow a faithful reproduction, as the other models do, with a simple and available

Fortran code. This is probably the reason that most of the recent developments of

rational models are based on Stolwijk 25-node model and Gagge 2-node model.

None of these models was able, in their original formulation, to simulate heat dif-

fusion in three dimensions or respond to transient and non-homogeneous environ-

ments, which are necessary requirements to accomplish reliable simulations of real

life conditions. The recent researches based on these works were able to respond to

one or two of those requirements, but not to all at the same time. One reason for this

gap can be justified by the increased complexity of the model that would need a higher

level of detail and result in non reasonable simulation time.

Besides, with the exception of Gonzalez work, whole-body models try to simulate

the average human response instead of following the trend of individual aspects for

accurate and representative results.

All of these aspects allied to the fact of models had been implemented in older pro-
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gramming schemes and did not use the new potentialities of recent high performance,

top level languages, leads to a new research opportunity that can be seen as:

The design of new mathematical model based on the best practices of previous

models, and solve the differences between them in order to find the most suitable

prediction of thermophysiological responses to hot environments, and implement it

through an high performance language that allow to simulate complex real life condi-

tions of exposure.

3.2 Study Goals

Develop a whole-body bioheat model, based on phenomenological concepts, whose

system is able to:

• simulate heat diffusion in three dimensions;

• respond to steady and transitory environments;

• allow infinite combinations for settling boundary and initial conditions;

• detailed mapping of temperatures profile.

From actual scientific knowledge must be found informations to:

• built the physical model -

– number of segments;

– number of tissue layers ;

– size and shape of the segments.

• define mathematical model of bioheat diffusion -

– recognize significant bioheat exchanges inside the organism;

– establish mathematical equations that describe those exchanges;

– found values to describe thermal properties and thermal behaviour of bio-

logical tissue;

– propose a suitable method to solve mathematical model numerically.

To allow a sustainable development of the program, software tools should:
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• be freeware, multiplatform, made by scientific community, validated and ap-

proved by them;

• programming language must be easy readable and easy to learn;

• have appropriate tools for large dataset handling namely - definition, paramet-

rization and visualization;

• have the ability to plot in real time the simulated results.

3.3 Technical and Scientific Contributions

Every year people die due to episodes of critical heat exposure. Even at work the

assessment through the traditional indexes (ET, ETC, WBGT or PHS) do not assure a

safe environment due to a limitation of their applicability. As heat stress is typically

linked to uncontrolled environmental conditions (unstable temperatures, air turbu-

lence and asymmetric radiance), and individual aspects, is important to build a model

that can reply to it. The mathematical modelling proposal presents features that the

previous models were not able to join in a single model (three dimensional heat dif-

fusion to transient and non-homogeneous boundaries). So, a program that is able to

predict the distribution of temperature along several body parts, and respective arter-

ial and venous temperatures, as function of time and skin temperature in any type of

environment considered out of control or unhealthy.

The release of the source code of the program give an important technical and

scientific contribution, because it makes clear the interpretation of the mathematical

equations and the relation between variables that allow go forward from the tradi-

tional models to the one that is able to include all previously mentioned features for

future developments by the community.
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Chapter 4

Model Conception and

Development

4.1 Introduction

This chapter is dedicated to present the materials used, its features and the se-

quence of steps required in model conception and development processes. It is di-

vided in two sections: one where are detailed the computational materials used, its

advantages/disadvantages and the reasons that support the options and decisions;

and other where model conception and development is detailed step by step accord-

ing the chronology of the model construction process.

This second section includes information about:

• mathematical equations;

• numerical methods used to solve the equations;

• computational implementation materials;

• behavioural test of the program modules.

The detailed description of the model and the respective conception and test intends

to contribute to the construction of a Free Software that can serve the social community

of potential users that will be able to use a tool to assess the thermal stress for free, and
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more than that, that can be adapted to specific situations by adding and/or changing

the source code.
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4.2 Materials

The choice of the software and programming language was based on three main

issues:

1. create a multiplatform tool for universal usage;

2. a tool that allow a sustainable development of the present model;

3. open source code to allow how numeric solving is implemented.

Multi-platform opensource software, easily integrable with other scientific software

packages and library routines (namely 3D Scientific Data Visualization and Plotting,

graphical user interface packages (GUI) and numerical computation) where chosen.

Questions such as quality and quantity of the technical and scientific information

available in internet official sites, as well as the opinion of the scientific user’s com-

munity (checked in official blogs, forum discussions and so on) was also considered.

4.2.1 Python Language

The Python language was created by the German programmer Guido van Rossum

in the late 80s, during their collaboration in the Centrum Voor Wiskunde in Inform-

atics (CWI) 1. Rossum still representing an important role, being known among the

members of Python community as BDFL (Benelovant Dictator For Life). He continues

to take the main decisions on the development direction of this language.

All the versions of Python are open source which means, among other features that

the program, or produced program modules, can easily be programmed, tested and

distributed free of charge. Although interpreted, Python is an high performance lan-

guage, simple, fast and powerful, with different application fields:

• Web and Internet development;

• scientific and numerical computing;

• educational tool in introductory and advanced programming courses;

1History and License of Python - official documents of the version 2.7 - http://docs.python.org/
release/2.7/license.html - acessed February 2nd of 2014.
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• graphical user interfaces programming;

• software development.

The potential of Python can be easily expanded using small modules in C and C +

+.The huge amount of existing libraries and packages, enables an endless program-

ming and calculation alternatives. Python language has a structure and a Code simple

to write, directed to a modular programming by objects. All these features and capab-

ilities justify the choice by this programming language. It allows the construction of

modular mathematical models, able of undergoing evolution in different fields, either

computation or interface. It is recalled that the ultimate aim is, rather than presenting

a model, it is to present, a possible tool able to evolve and adapt.

Python language also has the advantage of being cross-platform, meaning it is com-

patible with different operating systems such as Windows and Linux. These were the

main reasons why Python language proved to be the most suitable for developing this

kind of software and make it a tool for universal use.

Python Libraries

The proposed computation model is integrated in scientific and numerical com-

puting. To this end, there is a community of users / developers of libraries, with

routines that can be integrated with python to support this kind of programming.

Among the different available packages were found some that have proven to be the

most relevant for this calculation approach, they are:

• NumPy - is the fundamental package for scientific and numeric computation. It

contains useful linear algebra, Fourier transform, random number capabilities,

N-dimensional array objects and tools for integrating C/C++ and Fortran code.

• SciPy Library - a collection of numerical algorithms and domain-specific tool-

boxes, including signal processing, optimization, statistics and more.

• Matplotlib - a package of data visualization that provides publication-quality 2D

and simpler 3D plotting.

• IPython - an interactive interface that allows process data and test ideas quickly.
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• Fipy - a tool for numerical problems resolution, based on Finite Volume Methods,

for solving partial differential equations.

• Mayavi - provide easy and interactive visualization of 3D data. Additional in-

stalling features allow simple and clean scripting interface in Python, including

one-liners, or an object-oriented programming interface. Mayavi integrates eas-

ily with NumPy and SciPy for 3D plotting and can even be interactively used in

IPython, similarly to Matplotlib. Additionally Mayavi is a reusable tool that can

be embedded in applications in different ways or combined with the Envisage

application-building framework to assemble domain-specific tools.

Although the availability of many "open source" tools with an easy integration

with Python, the option to program a graphical interface in Qt, through PyQt, proved

to be an option simple to implement. However, more complex and/or complete inter-

faces can be performed in Eclipse, by using PyDev, wxGlade through wxPython, Tkinter

or with its integrative tools.

4.2.2 Mesh Creator

To solve partial differential equations that are part of the model, it was needed to

define the physical volume that should be used to make the calculations. Fipy is a

numeric solver package that handles with the data integrating them in a single cell

variable. To create it, Fipy needs the mesh that is interpreted as the physical volume

were heat diffusion take place. Cell variable relates the instant temperature at each

cell to the position in the mesh. This is the kind of variable that is used to supply the

information that is needed to numerically solve the mathematical expressions. Mesh

creator was defined based on the file extension accepted as an input by the Fipy cell

variable. Gmsh was pointed by Fipy creator as an open source mesh creator with

potential and easy integration with Fipy routines, what mean that fills the minimal

purposes to be included as tool for mesh creation. It allows a very simple and easy

programming of simple geometrical grids and structures. More sophisticated non

geometric shapes can also be created and implemented with using Gmsh interface.

There is the awareness that the quality of the mesh is very important to the accuracy
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of the results and Gmsh is a good solution for creating regular and irregular meshes,

and does not limit the upgrade potential of the model.

4.2.3 Ubuntu Operative System

Python is, as mentioned above, a multiplatform programming language, however

it is easier to install and manage the package dependencies of Python routines in Linux

based Operative System, than Windows Operative System. That is why Ubuntu was

chosen to be the platform to implement the model and develop the program software.

4.2.4 Python IDE

There are many free Python editors that are Windows and Linux compatible. As

Linux operative system is the best choice to solve package dependencies, the option

based on the most user friendly Python Editor. A simple editor, like VIM or Gedit,

have colouring options and special functions that help correct syntax errors. How-

ever, Integrated Development Environments (IDE), can join these features to object

inspection, variable explorer, file explorer, Python run shells and debug features.

Spyder is a IDE for Python commonly used, and the Graphical User Interface (GUI)

interface is quite similar to Matlab. As, in engineering, Matlab is a popular tool used

very often, and being interfaces similar, Spyder becomes easy to learn.
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4.3 Methodology

Simulation is a very important tool in science. These input and output variables

and conditions are the guide lines for the model design. When thinking in complex

simulation models, only the exercise of define precisely the inputs, such as variables

boundary conditions, initial conditions, constants, among others, can be an hard work.

The same can happens with the output data, specially because output always depend

on the input conditions.

So, methodology definition when modelling and implementing the model is not

always an easy process, but there are some techniques that helps to organize the de-

velopment of complex and extent models.

4.3.1 Design Approaches

Modelling techniques can be essentially divided into three main design approaches,

there are: Top-Down Design, Bottom-Up Design and Spiral Design.

Top-Down Design

This method involves a hierarchical or tree-like structure for a system as illustrated

by figure4.1. Only in some words, in top-down design, a complex problem is expressed

Figure 4.1: Top-down Design diagram.

as a solution in terms of smaller, simpler problems. These smaller problems are then

solved by expressing even more smaller and simpler questions. This process continues

until the modular programs are completely trivial solutions. Finally all the small parts

are put back together and and thus achieves the prototype model. Here is defined

the top-level module, structuring all down in a tree structure, creating routines to the

smaller tasks .
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Bottom-Up Design

The bottom-up design can be considered the opposite design process. As the name

suggests, the design process begins by defining the most basic routines of the tree

chart’s bottom (figure 4.1) till the top of it, in the reverse order of the tasks process.

Spiral Design

This design process is known by a systematic iterative process that assures the cyc-

lic development. At each step it is included a new feature from the bottom-level until

the top-level. The process stops when there are no more components to include.

In spite of modelling process could result in better or worse models, can not be said

that there is such thing as good or bad design techniques. Usually, in complex pro-

grams, all the designs are mixed and that is it which can adapt the design process to

the complexity of the model. “Good design is as much creative process as science, and as

such, there are no hard and fast rules” Langtangen (2006).The advice is to practice and

test several possibilities until get, even if not the best, one suitable option or result.

4.3.2 Model Design

Obviously, in a complex modelling process such as whole-body human thermal

modelling, mixing the techniques is the suitable choice.

The process starts by aligning the phenomenological and mathematical concepts of

the model with the program architecture and potential features. According to it:

1. To forecast the diffusion of heat in the three directions of a three-dimensional

physical element;

2. Mathematical model must take into account with the importance of a phenomen-

ological interpretation;

3. Should respond not only to steady-state conditions but also to transitory-state

situations;

4. Which parametrization should be as detailed as possible to include individual

characteristics, all possibilities of boundary and initial conditions.
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4.4 Whole-Body Thermoregulation

Firstly some techniques of top-down design to describe the model and its features

were applied. A complete whole-body human thermal model can be divided in two

large systems - passive and active - being each section is subdivided in smaller func-

tions. The structure adopted to the present model can be consulted in figure 4.2.

Whole-body
Human

Thermal Model

Passive
System

Body
Segments

Middle Body
Elements

End Body
Elements

Trunk
Element

Large Vessels Tissues and
Small Vessels

Lung Com-
partment

Active
System

...

Figure 4.2: Model design.

In the passive/controlled system is simulated the heat diffusion throughout the

biological tissues. This part gathers the circulatory system with several tissue layers

that compose the “solid” physical structure. It predicts heat diffusion and heat dissip-

ation inside the human body according to initial conditions, tissues thermal properties

and boundary conditions.

Heat transfer in biological tissues occurs due to the important role of blood flow.

Blood is life. It transports oxygen and all other important nutrients to the cells, all

over the organism, as well as it carries the heat from the inside out, or the opposite,

to assure temperatures compatible with life. Blood circulation is the main mechanism

used to warm up or cool down the body. Blood flows from the inner core layer to

the outer external layers through a complex system of arterial and venous vessels that
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change in size and in number according to the kind of biological tissues or organ. The

inner vessels are bigger and are the responsible for the massive blood transport to the

numerous body segments. So, there are a few number of huge vessels responsible

for this massive distributions in the core layers of the body. But, as the vessels get

to extremities and external layers of the organs, they increase dramatically in number

and decrease in size. Here, small vessels and capillary beds mix within the tissue

layers. The vessels and capillary densities are so high that they almost become an

“homogeneous structure”. It is in this structures that is found the highest heat transfer

rate between blood and tissues.

Big arteries and veins, also exchange heat with surrounding tissues. However, the

amount of heat exchanged occur by conduction, specially in radial direction, through-

out the tick tissue of the vessels. The most significant heat transfer occurs between

the large countercurrent vessels. As blood goes from the heart through arteries to the

tissues and return trough veins, heat is swapped along the path between the main

vessels (arteries and veins) that cross the body side by side (figure 4.3).

Figure 4.3: Circulatory system. The countercurrent vessels, artery and vein pair.

Remember that the blood function is fundamental to assure homoeostasis. Blood

carries nutrients, oxygen, metabolic wastes and transports heat from all biological
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structures of the body. Of course there are several parameters used to compute the

heat transfer in the biological tissues that are not constant and are constrained by the

active system response. Moreover the importance of the passive system modelling is

to establish the relationship between all those variables and simulate the heat transfer

to each values that the variables can assume.

The active system should include the basic thermoregulation mechanisms such

as shivering, vasocontriction, vasodilation and sweating and set biological response

according to the needs. These decisions are made at the central nervous system, in

particular area known as hypothalamus. This part of the brain feels the most slightly

change in core temperature or anywhere inside and outside the body. Several nerves

act in the whole body, as thermal-receptors and sent special information about tem-

perature changes and levels. In the skin, these thermal-receptors are the responsible

for thermal sensation. So, according to the information, if hypothalamus decodes cold

sensation reduces radiant heat losses through skin by reducing the blood flow with

vasoconstriction and increases metabolic heat production by shivering. If it feels hot,

increase heat losses allowing vasodilation and a high level of blood flow at skin what

increases radiant and convective heat losses and sweating (that is the most effective

mechanism of heat dissipation). But this is a non-linear process. On one hand exists

metabolism that is the life-base mechanism. Metabolism is known for creating per-

manent disturbs producing mechanical energy (when exercising) and sustaining life.

On other hand, homeostatic processes are responsible for keeping normal biological

conditions. Here, some clues about the complexity of the active system modelling can

be found.

A simple example is the exercise in hot environments. Exercising produces a huge

amount of endogenous heat that needs to be eliminated. Vasodilation and sweating

are the most used mechanisms that help to keep core temperature at reasonable values.

However, the excess of regulation leads the organism to fail and overheat (developing

pathological heat conditions). Vasodilation and the increase of blood flow is not only

used to cool down the body but also to assure arterial blood pressure and a good level

of oxygen supply to the muscles in exercise. For an efficient sweating process, high

water levels in the body are essential. If the body sweats to much to maintain core
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temperature, blood pressure will decrease due to blood level depletion and might

also begin an electrolyte imbalance combined with dehydration. These conditions can

result in serious health problems that could even lead to death.

In brief, active system acts in the passive system to keep temperature under con-

trol. Together they build a closed loop mode process where environment and physical

activity can become a disturbance. Thermal sensors in passive system gather inform-

ation about body elements and hypothalamus decides the reaction mechanism. This

cycle of measuring/acting is the main basis of the thermal homoeostatic process. The

active system, continuously analyses the passive one acting together to keep the ne-

cessary body balances. This positive interaction is only broken if the biological break

point is reached.This is another important feature that should not be forgotten. Pre-

dict the individual break point is a challenge because it depends on many individual,

lifestyle and instant factors. But it is important for the success of the simulation to

critical environmental exposures that the limits have been established, otherwise heat

tolerance could never be predicted.
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4.5 Model design

Modelling process began by defining the main modules of the program. To do

so, were applied top down design techniques. Human thermal heat response were

divided in:

1. physical body components as physical dimension subjected to heat diffusion

processes (the called passive system);

2. central nervous system, that reacts to differences in temperature perceived by

the thermal receptors (located in the skin and hypothalamus) cooling or heating

the body through thermoregulation mechanisms.

To describe the passive system the body was considered as a whole. Different

parts of the body has different characteristics and the heat transfer is done by different

ways. For example, the limbs have similar structure, with the same kind of biological

tissues and disposition. However, trunk include extra features, because of the respir-

atory tract. When modelling the breathing process is important to include the mass

exchange. Heat exchange in the head is also affected by respiration, specially in critical

exposures. The first step was to segment the body into pieces. The division consists

in get body elements small enough to represent the different body positions, contacts

to set respective boundary conditions. Limbs can be divided into three pieces each

according to the main joints. Hands and feet are considered similar because they are

all extremities and have almost the same anatomical structure and circulatory model

approach. The same happens in the intermediate structures of the limbs.

In spite of the differences between structure and circulatory process, each body

element is composed by large blood vessels reservoirs (which intend to model heat

transfer between the two pipes containing liquid at different temperatures) and biolo-

gical tissues (that gathers the heat diffusion through tissues and includes small vessel

impact by considering blood irrigation). In short, the base of the passive system model

is represented through:

1. Heat diffusion throughout tissues and small vessels;

2. Heat transfer between countercurrent large vessels.
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The active system is more complex to model. Although the passive system mod-

elling is multi-factorial, the active system involves a larger number of variables which

impact is, usually, impossible to predict. In this context this modelling is trying to find

common guidelines from which will can begin to have sufficient resources to adapt a

general forecast to any particular individual. Mainly, the active system here is defined

through :

1. Complete cardiovascular modelling ;

2. Local sweating response.

4.5.1 Body Element Design

Body segments are the key of the passive system modelling. Gathering all the

segments is obtained a whole body thermal model. By programming the interaction

between some variables (such as endogenous heat production and blood flow) it is

settled the thermoregulatory system. As mentioned above, the model of human ther-

moregulatory system is composed by active system, that includes the physiological

mechanisms of thermoregulation, and the passive system that models the thermal be-

haviour of the biological tissues, its geometry and distribution.

The passive system is modelled through thermodynamic laws of heat transfer. The

general heat transfer equation in space and time can be written as shown in equa-

tion 4.1:

∂u
∂t

= α∇
2u (4.1)

Being u(x,y,z, t) function of space and time and α the thermal diffusivity. Consid-

ering the kind of geometry, Laplacian Operator (∇2) can assume Cartesian, cylindrical

and sphere coordinates in one, two or three dimensions. If a volume generate, itself,

heat the equation 4.1 becomes:

∂u
∂t

= α∇
2u+q (4.2)
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where q represents a known function that depends on both, time and space.

The bioheat equation developed by Pennes in 1948, was based on the heat trans-

fer equation that comes from the general conservation equation. It gathers in a single

equation the heat diffusion in space over the time including the endogenous heat pro-

duction and tissues blood irrigation.

Tissue and Small Vessels Heat Transfer Modelling

The reference to the heat transfer in biological tissues presents the first important

development in 1948 with Pennes’ bioheat equation . One of the biggest challenges of

the bioheat modelling it was how to adapt the basic principles of thermodynamic to

the heat transfer in biological tissues once it depends a lot on tissues blood flow.

Is this characteristic that makes difficult modelling heat transfer in living tissues

(Chen and Holmes, 1980). Modelling heat transfer considering the full anatomical

model of the human-being was, at the time, impracticable. In order to overcome this

difficulty, new modelling techniques were investigated about how to include the con-

tribute of small vessels and capillaries in the mathematical approach. The bioheat

equation, as presented by Pennes (1948), assume the original form of equation 4.3.

cp
∂2θ

∂r2 =−K∇
2
θ+hm +hb (4.3)

In 1984 become clear that the bioheat equation should be applied to body elements

with multiple tissues by dividing it, at least in three layers (bone, muscle and skin)

being adipose tissue considered inside the skin layer. The micro blood supply of the

tissues vary with tissues’ deepness in the organism (Weinbaum et al., 1984) and with

the kind of biological tissue (Kuznetz, 1979). This differences do not influence signi-

ficantly the way as heat is transferred through tissues and is diffused to outside the

organism. The model suggested by Weinbaum et al. (1984) define a way to include the

change of density, size and velocity of the countercurrent blood flow of artery-venous

function of deepness (relatively to skin surface), direction of blood perfusion in trans-

versal vessels’ layer and the siding of the blood to the cutaneous layer (Jiji et al., 1984).
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So, based on these two studies, Weinbaum and Jiji (1985) published an article with a

new, improved version of the bioheat transfer equation (known as the W-J equation).

From here it is concluded that the term considering the isotropic blood perfusion,

in Pennes’ bioheat equation, is negligible due to microvascular organization, and that

the primary mechanism for energy exchange between blood and tissue is the incom-

plete exchange in thermally significant microvessels (Weinbaum and Jiji, 1985). In

their equation, Weinbaum and Jiji (1985) include the effect of tissue’s conductivity

tensor as function of local vascular geometry and the blood flow velocity in thermally

significant countercurrent vessels. These studies become very important in the as-

certainment of heat transfer in the human body and are very important modelling

proposals in the whole-body human thermal phenomenological mathematical model-

ling.

Following this research guidelines Song, in partnership with Weinbaum and Jiji

present a new implementation solution of the W-J equation to model the periperal

tissue, equation that can be adapted to model heat transfer in limbs or whole-body

(Song et al., 1987).

In spite of the numerous criticism about Pennes’ bioheat equation, Wissler (1998)

proved in his study that the assumptions made by Penne in his model are reliable and

that the criticism about his study has no serious fundamentals. From Pennes’ study

it becomes clear that the heat exchange between large blood vessels and surrounding

tissue affects tissue temperature profiles. Further studies proved that even the heat

transfer that occurs between smaller vessels that supply the capillary beds affects the

blood temperature entering those beds. That’s why the arterial temperature, Tar in

Pennes’ equation is not a constant but a time function.

It is truth that both, Pennes (1948) and Wissler (1998), ignore many factors that can

influence the accuracy and reliability of results but they were aware of it. It is known

that the geometry and the inhomogeneity of the examples structures influences the

accuracy and reliability of the results, however, with new and more efficient numer-

ical methods, nowadays, with computers technology, this problem became relatively

simple to solve. Heat transfer between thermal significant vessels are more difficult to

resolve (Wissler, 1998).
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Nevertheless, the need for models based on microscale modelling technique in op-

posed to the macroscale mentioned above (Wang, 2000). The micro-scale modelling

focuses its efforts in reproducing the exact phenomena that occur in biological tissues

by taking into account the exact structure and biology of the element. In other words,

it starts to model the heat transfer from a microscale perspective, at an almost cellu-

lar level. This approach based itself in Porous Media, while macroscale models based

their theories in Continuum Mechanics.

In their study, Wang and Fan (2011) extensively reviewed the equations and the sim-

plification methods, in order to maximize the predictive power of the models. Ac-

cording to , models that come from the Porous Media are more accurate, and have a

powerful predictive ability than those that come from Continuum Mechanics. On the

other hand , they are too complex and difficult to implement on macroscale. That is

why this technique is widely used in areas where accuracy of the results are vital, and

where there is no need for extensive macro scale process.

The reliability of the results produced by Pennes’ bioheat equation and the simpli-

city of its implementation make of this model an example of success in the whole-body

thermal modelling and it stills been applied nowadays (Wissler, 1998; Fiala et al., 1999;

Ferreira and Yanagihara, 2009; Albuquerque-Neto and Yanagihara, 2009).

To solve the equation, thermal properties of the biological tissues need to be defined.

In the present model, solution domain consider 8 types of human tissues. Limbs and

neck are constituted by four layers of tissue skin, fat, muscle and bone. The head and

trunk are the most complex structures that, beyond these layers, include respectively

brain and lung, heart and viscera tissues. Table 4.1 gathers thermal properties for each

type of tissue, such specific weight (ρt), specific heat (ct) and thermal conductivity (kt),

assuming that for each type of tissue there are no significant differences between the

molecular composition of the body elements. This assumption allows to simplify the

modelling process, however it is possible, by gathering further information, to change

the method of calculus and program the spatial variation of thermal properties inside

each body element (Guyer et al., 2009).

As discussed above, not only thermal properties are needed to achieve the solu-

tion of Penne’s equation. Basal values of blood flow, endogenous heat and arterial
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Table 4.1: Thermal properties according to the type of tissue [adapted
from:(Albuquerque-Neto and Yanagihara, 2009)].

Tissue Property

Volume
(cm3)

Basal
Blood Flow
(cm3/m3.s)

Specific
Weight
(kg/m3)

Specific
Heat
(J/kg.◦C)

Thermal
Conductivity
(W/m.◦C)

Endogenous
Heat (W/m3)

Skin 3541 362 1085 3680 0,47 368
Fat 10657 3,6 920 2300 0,21 4
Muscle 26330 543 1085 3800 0,51 684
Bone 7576 0 1357 1700 0,75 0
Brain 1514 9000 1080 3850 0,49 9472
Lung 2481 834 560 3520 0,28 339
Heart 298 14400 1080 2550 0,47 24128
Viscera 10301 5800 1080 3504 0,49 3852

blood temperature are necessary as an input. For resting response at thermoneutral

conditions, basal values of blood flow and endogenous heat can be settled as con-

stant without compromise accuracy and efficiency of the model. Of course that indi-

vidual differences and sickness result in changes of basal values and might produce

non constant, abnormal responses. As in all modelling processes specific situations

must be simplified in order to get the best balance between number of program fea-

tures and produced accuracy and efficiency. For exercise/work or non-thermoneutral

states both, blood flow and endogenous heat production, change over the time. This

changes are modelled by other mathematical functions. Blood flow depends on the

cardiac output and cardiovascular impedance modelling that are dependent on exer-

cise. Endogenous heat depends on the active elements of the body and the type of

exercise. The input values also need to be predicted by other functions and depend

mainly on the V̇O2 uptake. Arterial blood temperature is not a constant vale such as

was suggested by Pennes (1948) and Wissler (1998), but another variable modelled by

a differential equation. Further information can be consulted in section .

Model must show sensitiveness but a structure easy to change and adapt that is

able to easily produce clear outputs is an important goal to achieve.
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Counter Current Large Vessels Modelling

The named, conventional models, are the base of all the modern and accurate new

bioheat models. New models can be evaluated as upgrade, a mixture of the prin-

ciples of the oldest models. As all pioneer studies, their principles and decisions have

been widely discussed and severely criticised. The new mathematical models (such

as dual-fase-lag bioheat model, porous media based in bioheat models, the discrete

vascular bioheat model) used that criticisms to improve the model in order to reach

more realistic results.

One of the main critics in all continuum models, is that they are based in the Four-

ier’s law of heat conduction that assumes that a perturbation in the thermal state of a

structure is felt, at the same time, in all regions of that structure. One problem is that

if the generalized form of Fourier’s law is applied to non homogeneous structures it

gives non realistic results.

To correct this miss purpose in the heat conduction equation it is included phase-

lag arising due to inertia (phase-lag of heat flux which is the relaxation time due to fast

transient effects or small scale effect of heat transport in time) and micro-structural in-

teraction (phase-lag of temperature gradient observed at the micro scale heat transfer).

These corrections are particularly efficient and important when modelling local heat-

ing in hyperthermia treatments. In their study Askarizadeh and Ahmadikia (2014)

shown that when heat flux relaxation time and temperature gradient relaxation time

are equal, dual-phase lag equation is reduced to Penne’s bioheat equation. The dif-

ferences remain when the relaxation times parameters are different. In that case the

results of Pennes’ bioheat equation over estimate the temperature and damage profiles

in skin tissues. Porous media modelling based on the detail of the biological tissues

where velocity vector, local porosity which is the ratio of blood sub-volume to total

volume, thermal conductivity, permeability tension, specific surface area, inter-facial

convection heat transfer coefficient, blood perfusion rate, are mixed in a simple math-

ematical model. However the mathematical implementation of these models depend

on detailed informations about human local anatomy and are much difficult to solve,

specially in macro-scale whole-body models.
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It is clear that the discussion of large vessels modelling falls into bioheat modelling

of thermal diffusion adopted for modelling tissues and small vessels. In this context

it was a big step for whole-body thermal modelling to associate more than one math-

ematical approach in a single model. This was already tried by Neto (2010) and final

results found good agreement with experimental data found in literature.

Cbl,a ·
dTbl,a

dt
=−

 ∑
arteries

arterioles

h(t) ·Aartery

n ·(Tbl,a−Tcr)+ ṁ ·cbl ·(Tbl,a,ad jacent−Tbl,a) (4.4)

Here is intended to follow similar approach but this time by modelling the circulat-

ory system as a parallel system where are determined the values of arterial and venous

temperatures and blood flows. For modelling the heat transfer due to large vessels it

was assumed that at each segment it is found an arterial and a venous node. So heat

transfer is calculated based on the equations for arterial end venous blood (Salloum

et al., 2007). Here arteries and veins are considered two cylinders positioned side by

side (Weinbaum et al., 1984; Ferreira and Yanagihara, 2009; Neto, 2010). From one to

the other there are a heat exchange that depends on the volume of blood flow and

respective temperature over the time. Convective heat transfer is distinguished from

one to another due to the pulsating effect of the blood flow. So, while the convective

heat transfer from arteries to veins depends on time.

Salloum et al. (2007) in his thermal transient model defines the total heat exchange

from the core to the arterial blood as equation 4.4. Not only blood flow changes pulsa-

tion over the time, as discussed next section, but is also depends on the length of the

arteries.

The implemented model approach simplifies, somehow, this approach by using

the equations 4.5 and4.6 proposed by Wissler (1964) as followed by Ferreira and Yanagi-

hara (2009) and Neto (2010).

Varρblcbl
dTar

dt
= V̇arρblcbl · (Tar,in−Tar)+Hav · (Tve−Tar) (4.5)
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Table 4.2: Heat transfer coefficients between arteries and veins for each segment, re-
spective length and blood volume per reservoir. [adapted from:(Ferreira and Yanagi-
hara, 2009)].

Property

Tissue
Arterial
Vol.
(cm3)

Venous Vol.
(cm3)

Length
(cm)

Pairs
Num.

hav
(W.K−1.pair−1)

Hav
(W.K−1.pair−1)

Head 40 180 19 - 0 0,00
Neck 15 66 8 16 0,097 1,55
Trunk 446 1484 58 - 0 0,00
Arm 24 107 31 7 0,377 2,55
Forearm 13 60 28 4 0,341 1,43
Hand 7 30 19 3 0,231 0,72
Thigh 78 349 44 15 0,535 8,26
Leg 35 155 40 8 0,487 3,67
Foot 15 66 26 5 0,316 1,55

Vveρblcbl
dTve

dt
= ρblcbl ·

(
∑V̇svi T̄vei +V̇ve,inTve,in−V̇veTve

)
+Hav · (Tar−Tve) (4.6)

The biggest difference from Wissler’s original formulation to Ferreira and Yanagi-

hara (2009) and Neto (2010), is on the use of a single convective heat transfer coefficient

between arterial an venous reservoirs Hav. These values were calculated using shape

factor for two-dimensional conduction between two cylinders immersed in an infinite

medium. It was assumed that arteries and veins got the same radii and the distance

between them was two times their diameter in basal thermoneutral conditions. Result-

ant values (hav) was multiplied by the number of arterio-venous pairs at the segment

and Hav was found. Volumes of the reservoirs were based on vascular volume data

of Chen and Holmes (1980), and the blood distributions followed normal adult male

of 67 kg with approximately 5.5 L of blood. Detailed cardiovascular data used in the

dissolution of arterio-venous heat exchange coefficients are shown in table 4.2.

The implemented model, BioHeatSIM, followed the research lines of Ferreira and

Yanagihara (2009). Large arteries are seen as two parallel pipe reservoirs that exchange

heat with each other but, with surrounds heat exchange is modelled by the blood flow
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through tissues and small vessels.

Varρblcbl
dTar

dt
= V̇arρblcbl · (TL−Tar)+Hav · (Tve−Tar) (4.7)

Vveρblcbl
dTve

dt
= ρblcbl ·

(
∑V̇svi T̄vei +∑V̇ve,inTve,in−V̇veTve

)
+Hav · (Tar−Tve) (4.8)

The two segments that do not consider the exchange between large vessels is the

head and the trunk (Hav = 0). In the head due to the significant quantities of blood

spread throughout all brain tissue and other layers do not have significant large ves-

sels to consider. In the trunk, probably due to the close connection between reservoirs,

that occurs through the lungs that represent the higher heat exchange rate. All blood

is received by the limbs and trunk tissues (eq. 4.8) and sent to the lungs, becoming

arterial blood that gets in the trunk arterial reservoir (eq. 4.7). This way arterial tem-

perature of the trunk depends on temperature of the blood that come from the lung

(TL).

Body Segment Structure

Heat diffused through tissues and small vessels is done by using the bioheat partial

differential equation and differential equation to large vessels . However to be solved

they follow some structured rules according to human anatomy and physiology.

Figure 4.4 resumes the process of heat diffusion within one intermediate segment

of the body. Layers represent the different types of tissues (skin,fat, muscle and bone).

Blood flows from a anterior element into segment with temperature (Tar) and flow

(V̇ar). Part is diffused among tissue layers (V̇sv) and the rest goes to posterior element

(V̇ar,out) (eq. 4.9).

V̇ar,out = V̇ar−∑V̇svi (4.9)
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V̇ar,in,
Tar,in

V̇ar,out ,
Tar,out

V̇ve,in,
Tve,in

V̇ve,out ,
Tve,out

V̇sv, Tt

Figure 4.4: Heat exchange in middle elements.

Through venous reservoir receives the blood from the tissues (∑V̇sv) and posterior

elements (V̇ve). So, venous blood that flows out of the segment is given by the sum of

all the flows that come from the ith volume of tissue layer plus the blood flow from

posterior element (Vve) (eq. 4.10).

V̇ve,out = ∑V̇svi +V̇ve (4.10)

In opposite to the V̇sv in bioheat equations, that uses the flow per unit of volume,

the tissue blood flow here already considers the volumes of the ith element of the tissue

(eq. 4.11).

V̇svi =
∫

V̇svdV (4.11)

In body segment the calculus needs; first the blood flows that get in the segment

(V̇ar and V̇ve); and second the tissue blood flow (V̇svi) characteristic from that segment.

The temperatures are calculated based on the sequence of blood circulation. First ar-

terial blood temperature, then tissue temperature and finally venous temperature. No-

tice that final temperature at venous reservoir needs the final temperature of arterial
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reservoir. And the arterial temperature that gets in the tissues at that instant is the

initial temperature of arterial reservoir. And at the same time the blood that gets in

the venous reservoir is based on initial temperatures of the tissue.

All the segments with exception of the ends and trunk follow this approach. End

segments have shunts between arteries an veins called arteriovenous anastomoses. In

physiology the explanations and modulations of these shunts can be a difficult part of

hypothermia modelling Karaki et al. (2013).

But in heat stress the typical modelling allow model the ends with the same two

blood reservoirs linked, where the output and input blood that crosses the segment

can be approximated by equation 4.12 and, as the input blood flow is based on seg-

ment tissues’ blood requirements, V̇ar,out ≈ 0.

V̇ve,out = ∑V̇svi +V̇ar,out (4.12)

The success to the implementation of these principles and equations is a carefully

synchronization and parametrization.

4.5.2 Integrating Segments - Whole Body Structure

Basically the final integration of the segment is done through the trunk segment.

As suggested and presented by several authors (Wissler, 1985; Stolwijk, 1971; Fiala,

1998; Tanabe et al., 2002; Ferreira and Yanagihara, 2009; Albuquerque-Neto and Yanagi-

hara, 2009), body physical structure can be approximated through geometrical seg-

ments, with size and dimensions, and composition similar to the real humans.

Here the pieces are connected to each other through arteries and veins that carry

the blood among segments. The connection resumes to sequential blood flows and re-

spective temperature that represent the heat that crosses from one segment to another.

As shown in figure 4.5, hands and feet segments are represented by parallelepi-

pedal geometries and the rest of the elements are based on cylindrical geometries.

Geometries are represented at real size volumes. All geometries are represented by

concentric layers of different types of tissues as the axial cut in figure 4.4 represents.
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Cylindric
Segments

Parallelepiped
Segments

Figure 4.5: Structure of model’s segments and blood flow scheme.

The only exception is the trunk structure that is composed by 3 cylindrical struc-

tures (one first end at the beginning of the heart layer, the other at the end of heart,

lung and bone layer and the rest including the viscera at the abdomen level).

At the trunk, calculations need to consider the several connections of core venous

pool to the 5 posterior parts (the limbs and the head), so that the venous final temper-

atures and flows depend on them. The linkage between arterial and venous reservoirs

is done as occurs in small circulation, through the lungs. This way lungs receive blood

Table 4.3: Geometrical data of body elements currently used. [adapted from:(Ferreira
and Yanagihara, 2009)].

Element
Volume
(cm3)

Surface
Area (cm2)

Length
(cm)

Diameter
(cm)

Head 3.542 1.135 20 14,6
Neck 850 294 8 11,
Trunk 34.758 5.985 58 26,0
Arm 1.766 831 31 9,0
Forearm 988 601 28 7,4
Hand 500 450 19 -
Thigh 5.224 1.701 44 13,4
Leg 2.317 1.080 40 8,6
Foot 980 630 26 -
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equal to CO (eq. 4.13) and that would be approximated equal to the sum of the venous

blood that come from all segments (right arm, left arm, right leg, left leg and head),

plus the amount that comes from trunk tissues (with the exception of lungs layer)

(eq. 4.13).

V̇velungs =CO≈ V̇ve,out (4.13)

V̇ve,out = ∑V̇svi +V̇ve,outarmr
+V̇ve,outarml

+V̇ve,outthighr
+V̇ve,outthighl

+V̇ve,outneck (4.14)

The elements used to build the physical structure of the human body are presented

in table 4.3.
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Chapter 5

Program Implementation,

Development and Test

As mentioned before, in spite of modelling process design began from the top

level, the implementation process, due to complexity and the need for systematic test-

ing use a spiral design technique. So, the program starts with the basic routine for the

simulation of heat diffusion in tissues and small vessels, in the simplest form (unidi-

mensional transfer in a 4 layer cylindrical object divided into 4 cells across the ray) and

the development was assured by adding continuously new features to the program.

The improvements done to the previous routines are only done after they were fully

tested and the results produced validated.

The program began with a single small routine that gathered all tasks (meshing, plot-

ting, visualization tasks and others). When this file become more complex and too

long it was changed to a modular design, to allow independent development of each

task and make it faster. In the modular version all functions were rewritten into smal-

ler and simpler files that were divided according to its functionality and saved in

folders. Those functions could be classified as meshing, plotting, viewing and heat

diffusion routines. They were saved in folders with the name of the respective classi-

fication. The following section details the content of the routines and the development

process.
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5.1 Implementation

The program consists in a group of routines that interact each other in order to

produce the required result. They are organized in folders according to their type or

functionality. So, the main folder contains the main routine to run the program and

the sub-folders contain the routines responsible for meshing, plotting, viewing and

those which relate the basic routines for body segments, the middle elements routine,

the extremity elements routine, trunk routines and so on. This results into a modular

structure that allow adding separate development features

5.1.1 Tissue and Small Vessels

The bioheat equation

The heat transfer through tissues and small vessels is properly reproduced by the

classical equations of heat diffusion that consider the properties and geometry of the

tissues from body elements.

The internal heat through tissues follows the energy conservations equations, being

the presented bioheat equation, by Pennes (1948), an evolution of the general heat

conduction.

So, the equation 5.1 establishes the heat transfer between the different biological tissue

layers (bone, muscle, fat and skin).

ρtct

∂Tt

∂t
= kt∇

2Tt +
ˆ̇Vsvρblcbl (Tar−Tt)+ ˆ̇qt (5.1)

being:

• ρt→ specific weight of the tissue (Kg/m3);

• ct→ specific heat of the tissue (J/Kg. ◦C);

• Tt→ temperature of the tissue (◦C );

• kt→ thermal conductivity of the tissue (W/m. ◦C);
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• ∇2Tt→ temperature gradient of the tissue (◦C/m);

• ˆ̇Vsv→ arterial blood flow of the body segment (m3/m3.s);

• ρbl→ specific weight of the blood (Kg/m3);

• cbl→ specific heat of the blood (J/Kg.◦C);

• Tar→ arterial blood temperature (◦C );

• ˆ̇qt→ endogenous heat production of the tissue (W/m3).

The scheme of tissues’ temperature gradient depends on the geometry of the volume

that is being modelled (cylinder or parallelepiped) and the number of dimensions for

which heat transfer is modelled (uni-dimensional, bi-dimensional or three-dimensional

transfer).

The gradient for a three-dimensional heat transfer in a parallelepiped, adopting

orthogonal coordinates, assume the form of 5.2:

∂2Tt

∂x2 +
∂2Tt

∂y2 +
∂2Tt

∂z2 (5.2)

where:

x, y, z→ orthogonal coordinates (m).

The gradient above can be adapted to the other uni or bi-dimensional diffusions.

To do so it is enough to delete the element(s) correspondent to the coordinate(s) for

which the heat conduction is nearly null or null.

In the case of cylindrical volumes the implementation of cylindrical coordinates is

more convenient. In these cases the gradient that corresponds to a three-dimensional

heat transfer presents itself in (5.3):

1
r

∂

∂r

(
r

∂Tt

∂r

)
+

1
r2

∂2Tt

∂θ2 +
∂2Tt

∂z2 (5.3)

being:

59



DemSSO Program Implementation, Development and Test

• r, z→ cylindrical coordinates (m);

• θ→ cylindrical coordinate (rad).

Similarly to what happens with the gradient in polar coordinates, so the gradient

in cylindrical coordinates can be resized. According the elements that reach null val-

ues result different situations of heat transfer. When the gradient in θ component reach

zero, the heat transfer resumes to a bi-dimensional heat transfer of a orthogonal mat-

rix, whit the same characteristics of a bi-dimensional gradient in a parallelepiped. In

the case of the gradient be along the z component it is obtained a polar bi-dimensional

heat diffusion. There is even the case of unidimensional heat diffusion that in the case

of cylindrical geometrical volumes eliminate, typically, the θ and z coordinates. This

situations are, in everything, similar to the unidimensional heat diffusion in tissues in

orthogonal coordinates.

Form and Terms of the Bioheat Equation

Partial Differential Equation (PDE) are commonly used to mathematically describe

physical, chemical and biological phenomena. Processes involving changes in space

and time are only solved through PDE. Pennes’ bioheat equation come from the en-

ergy conservation equation in three dimensions. The energy conservation equation

can simulate different kind of energy transference.

The energy flow due to heat conduction is a particular case (Neto, 2010; Pennes, 1948).

So, it is possible to characterize bioheat equation, considering the homologous terms,

in the energy conservation equation (5.1):

1. ρtct

∂Tt

∂t
- Represents the transient term of the equation, in other words, the change

in temperatures over the time;

2. kt∇
2Tt - Represents the spacial diffusion term, that shows temperature variation

over the physical geometry;

3. ˆ̇Vsvρblcbl (Tar−Tt)+ ˆ̇qt - Represents the source term, responsible for the endogen-

ous heat production and the quantity of heat provided to the body segment.
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Table 5.1: Summary of the classification and behaviour of general forms of the equa-
tion of heat conduction [adapted from: (Versteeg and Malalasekera, 2007).]

Problem Type Equation Type Equation Prototype Conditions Solution
Domain

Solution
Stability

Balance problems Elliptical divgradφ = 0
Boundary
Conditions

Closed
Domain

Stable
Solution

Dynamical problems
with dissipation Parabolic ∂φ

∂t = α div grad φ
Initial and
Boundary

Open
Domain

Stable
Solution

The general conservation equation can be solved by applying the Finite Volume

Methods (FVM) to any combination of the following terms (Guyer et al., 2009):

• Transient;

• Convective;

• Diffusive;

• Source.

In the particular case of solving the bioheat equation, that models the heat transfer

through tissues and small vessels, convective term does not exist. In turn, the transient

term assume a null value when lets to depend on time. That happens when is reached

the called steady-state. Heat conduction over the tissue is represented in steady-state

by an Elliptical equation ( ∂φ

∂t = 0) or, in transient state by a Parabolic equation ( ∂φ

∂t 6= 0)

(see Table 5.1).

The physical meaning, classification and term definition, as well as the form that

bioheat equation assumes, are critical to choose the suitable method for numeric solv-

ing.

5.1.2 Solving the Bioheat Equation

The bioheat equation is a partial differential equation that can assume, in the present

work Parabolic and Elliptical forms. To solve partial differential equation there three

methods that fit frequently used:

• Finite Element Methods - FEM;
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• Finite Difference Methods - FDM;

• Finite Volume Methods - FVM.

FEM has been the most used among the choices. The method consists in using a

simple approach to unknown variables to transform partial differential equations into

algebraic equations, called finite elements, and uses variational methods to solve and

minimize the error (Dhatt et al., 2012).

FDM is based on discretization method, in the opposite to variational method of

FEM, to solve partial differential equations by approximating them with difference

equations, in which finite differences approximate the derivatives.

FVM are closely related to FDM, and a FVM can often be interpreted directly as

a finite difference approximation to the differential equations. Both use discretiza-

tion methods to describe the problem. However, finite volume methods are derived

on the basis of the integral form of the conservation law, a starting point that turns

out to have many advantages (LeVeque, 2002). There were a few methods commonly

used to solve the model. FEM and FVM were pointed as the most used due to sim-

plicity and accuracy. In spite of some specialists defend that the accuracy level of the

FEM method is higher but, usually, solution produced with FVM algorithms are more

stable. The truth is that both methods has advantages and disadvantages. Depending

on the problem formulations results can be accurate, precise and quite fast using any

of these methods.

In his research Wang et al. (2010) tested the application of FVM to transient heat

transfer and found that the success of the precision was the method for selecting Con-

trol Volume. By comparing the results that come out for FVM and FEM they found

that the results calculated by FVM where more similar to the theoretical solution.

Finite Volume Methods

To apply the FVM the solution domain must first be defined by a mesh. A mesh

consists in groups of cells, faces and vertexes, that divide the solution domain into

non-overlapping polyhedral elements. A mesh can assume uni-dimensional, bi-dimensional

or three-dimensional shape. So cells can be reduced to areas or extended to volumes.
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There are several numeric techniques of FVM. Most of them depend on the way the CV

is selected. Basically there are two processes of grid definition. Cell centred (CC-FMV)

CV , where cells match CV; and vertex centred (VC-FMV) CV each cell is subdivided

into sub-control volumes. In VC-FVM the variable values are “stored in the vertexes,

CC-FVM “stores” it in the centre of the cells (Figure 5.1). But the big difference is that

VC-FMV need to construct their own faces within the cells instead of use the face cells.

So, face fluxes use all the vertex values from the cell to calculate interpolations instead

of approximate them by using the variable values in the two adjacent cells surround-

ing the face. That is why the VC-FVM is not so fast and requires more storage do

execute the calculus, in spite of being more suitable to any kind of topology (Guyer

et al., 2009).

Figure 5.1: Control Volume structure for an unstructured mesh. (a) Ωa represents a
vertex centred control volume and (b) Ω1, Ω2, Ω3 and Ω4 represent cell centred control
volumes.

Then the discretization process consists in integrate all the terms of the partial

differential equation in the CV defined by the mesh. In transient problems the calcu-

lations are repeated for small steps of ∆t being the initial values of the mesh the ones

that came from the previous calculus step. The final result is obtained when t reaches

the ti +∆t.

FiPy Tool - Calculation Method

The tool used to solve partial differential equation is, as mentioned before, Fipy.

The differential equations can be analysed as a combination of terms (transient, con-

vection, diffusion and source), each of them representing an influence on the unit-

volume basis. Together they describe a balance or a conservation.

The dependent variable φ of general differential equation 5.4, presented below, is usu-
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ally specific property (such as mass fraction, velocity and specific enthalpy), or, in

other words, quantities expressed on a unit-mass basis (Patankar, 1980).

∂

∂t
(ρφ)+div(ρuφ) = div(Γφgradφ)+Sφ (5.4)

Translating it into words it means that: the Rate of increase of φ of element, plus

the Net rate of flow of φ out of the element, is equal to the Rate of increase φ due to

diffusion, plus the Rate of increase of φ due to sources (Versteeg and Malalasekera,

2007).

This equation can be transformed to adapt to the physical meaning of the problem that

need to be solved. The transient coefficient ρ, the convection coefficient u, the diffusion

coefficient Γφ and the source term Sφ have an appropriate meaning according to the

property in study. The dependent variable can be a function of three space coordinates

and time (Equation 5.5).

φ = φ(x,y,z, t) (5.5)

The independent variables (x, y, z and t) help to define the dimension of the solu-

tion variable in time and space. So, in its extensive form, can be a three-dimensional

unsteady problem.

This general formulation of partial differential equations is the key of the Fipy tool.

Being the numeric algorithm based on this general assumption.

The discretization process is done by integrating each term of the equation 5.4 over

the CV by using the CC-FVM approach. Then are made the appropriate approxima-

tions for fluxes across the boundary of each CV. Figure 5.2 shows an interpretation of

the control volume in three dimensions using orthogonal coordinates. For the Transi-

ent Term
∂(ρφ)

∂t
the discretization over the control volume V for the P node is given by
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Figure 5.2: Control volume. Black squares represent the vertexes and dots represent
the nodes in the middle of the control volumes. .

equation 5.6.

∫
V

∂(ρφ)

∂t
dV ' (ρPφP−ρold

P φold
P )VP

δt
(5.6)

The φP represents the average value of φ in the centred point P and the superscript

“old” indicates the previous time-step value. Values VP and δt are respectively: the

volume of the control volume with the centre in P and the time step size. The Fipy

function used to set the transient term is defined by the following code:

1 >>> TransientTerm(coeff=rho)

Once again, the discretization for the convection term - ∇ ·(~uφ) - use the divergence

theorem to transform the integral over the volume into and integral over the surface

of the CV (Guyer et al., 2009). The solution of the integral is approximately equal to

the sum over all the faces of the control volume (Equation 5.7).

∫
V

∇ · (~uφ)dV =
∫

S
(~n ·~u)φ dS' ∑

i
(~n ·~u)iφiAi (5.7)

The vector~n is a normal vector to the face of the CV that points out to the node of

the adjacent cell. The vector ~u is the one which represents the velocity of the fluid in
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magnitude and direction. The underscript i assumes the form of the faces ( f ,b,w,e,s)

as shown in Figure 5.2. The variable of interest φi is calculated taking into account, in

a first order approximation, the value in the centre of the cell - the node P - and the

values of the adjacent cell - I = F, B,W, E, S or N. Its general form can be represented

by Equation 5.8.

φi = αiφP +(1−αi)φI (5.8)

The αi factor depends on the convection scheme and can be defined by sorting

the respective convection term function in FiPy. The selection can vary between the

central differencing scheme, the upwind, exponential, hybrid, power law schemes by

using the following functions respectively:

• CentralDifferenceConvectionTerm,

• UpWindConvectionTerm,

• ExponentialConvectionTerm,

• HybridConvectionTerm,

• PowerLawConvectionTerm.

The formulation code into Python becomes:

1 >>> <ConvectionTerm_function >(coeff=u)

where u is the velocity coefficient that must be represented numerically, in pro-

gramming language by a list, a tuple or a FiPy FaceVariable.

Also the Diffusion Term is discretized by integrating it over the volume and can be

simplified by transforming it into a surface integral which is similar to the flows over

each face of the cell (Equation 5.9).

∫
V

∇(Γ∇φ)dV =
∫

S
Γ(~n ·∇φ)dS ' ∑

i
Γi(~n ·∇φ)iAi (5.9)

This represents a simple diffusion, whose code can be written as:
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1 >>> DiffusionTerm(coeff=Gamma)

But higher order diffusion expressions can be defined and solved by specifying the

various Γ so that the number of coefficients provided determines the order of the term.

The flux over the faces is estimated making the difference between the φ variable of the

successive cells and dividing it by the distance of the respective nodes (equation 5.10).

(~n ·∇φ) f '
φI−φP

dAP
(5.10)

This assumptions relies on the orthogonality of the mesh, what means that accur-

acy level decreases as the non-orthogonality increases. For last but not the least, any

term of the mathematical expressions that do not belong the previous forms are con-

sidered part of the Source Sφ. The discretization for the Source Term, analogously to

the other terms, is done by integrating it over the volume.

∫
V

Sφ dV ' SφVP (5.11)

The equation (5.11) does not include the negative dependence of Sφ on φ. This is

done by adding a source S0 which is independent on φ and a coefficient S1 linearly

dependent on φ, so that Equation 5.11 become Equation 5.12.

VP(S0 +S1φP) (5.12)

Other explicit function could be chosen, however implicit method are always pre-

ferred for modelling, explicit functions are only used for illustrative purposes.

The Source Term can be codded in Fipy by:

1 >>> S_0 + ImplicitSourceTerm(coeff=S_1)

So, by adding the equations (5.6), (5.7), (5.9) and (5.12) it is obtained the general
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equations discretized for each CV (Equation 5.13).

(ρPφP−ρold
P φold

P )VP

δt
+∑

i
(~n ·~u)iφiAi = ∑

i
Γi(~n ·∇φ)iAi +VP(S0 +S1φP) (5.13)

The goal of this discretization is to achieve a set of discrete linear equations used

to calculate the value of the dependent variable at each CV, that results into sparse

linear systems easily solved by iterative schemes (in FiPy encapsulated by PySparse

and PyTrilinos solvers). The general equation 5.13 is in the form of a set of linear

combinations between the control volume with the centre on P and their neighbours

control volumes and can be rewritten as:

aPφP = ∑
f

aIφI +bP (5.14)

where coefficients aA, aP and bP are given by Equations 5.15, 5.16 and 5.17:

aP =
ρPVP

δt
+∑

f
(aI +Fi)−VPS1 (5.15)

aI = Di− (1−αi)Fi (5.16)

bP =VPS0 +
ρPVPφoldP

δt
(5.17)

and the convective strength and diffusive conductance, Fi and Di, are calculated

trough Equations 5.18 and 5.19 respectively.

Fi = A f (~u ·~n) f (5.18)
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Di =
AiΓi

dAP
(5.19)

The term definition, is not the only success key for the generic application of the

FiPy solver. Object oriented design divides the Fipy in three fundamental classes: the

Mesh, Variable and Term. The names of the classes indicate the type of objects that

can be created. Mesh objects define the domain of interest. Variable object define the

type of variable. And the term object allow to formulate a bigger term that defines the

mathematical model of interest. Associated to the main classes there are other classes,

and it is based on their relation that FiPy works (Figure 5.3).

Figure 5.3: Objects and respective relation in FiPy.

As there are many types of functions to build the terms and the same happens with

Mesh. Different types of mesh can be build and all of them have their own parameters

that need to be settled. But in the end all of them end being object composed by cells,

each cell defined by faces and boundary vertices. The Variable object needs the Mesh

object associated to be defined and solved. The Term objects interprets the Boundary

Condition and encapsulates the contribution to the Sparse Matrix. After applying a

linear solver and get the solution, at each step of time it can be displayed in a Viewer

object.

The high performance language that Python is, made Fipy an easy tool to operate

using a few commands and lines of code to build up complex models. A simple model

codded in FiPy resumes to:
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• build the mesh;

• define the variable;

• specify the equation;

• and set a viewer.
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5.2 Development Process

5.2.1 Unidimensional Diffusion - Annotated listing

The implementation of the program starts by modelling the heat diffusion through

small vessels and tissues considering a 4 layer cylinder over the radial direction. This

simple code was only used to test the stability of the solution over the 4 cell all with

different thermal properties, boundaries and initial conditions.

In this case the mesh that represents the solution is created by a predefined func-

tion of FiPy. The following code lines (listing 5.1) create the cylindrical structure and

take into account the thickness of each tissue layer. The CylindricalGrid1D function

uses the number of cells over the x axis (nx) and their respective size (dx) to build the

structure.

1 nx = 4 #number of cells of the mesh - correspond to the tissue layers

2 dx = array([2.68, 2.72, 0.31, 0.11]) # 2.68, 5.40, 5.71, 5.82 end of each

layer in (cm)

3 dx = dx*10**-2

4

5 #Adaptation to neck cylindrical mesh# http://www.ctcms.nist.gov/fipy/fipy/

generated/meshes.numMesh.html

6

7 fipy.meshes.numMesh.cylindricalGrid1D

Listing 5.1: Code lines that create the cylindrical mesh divided in 4 cells.

After defining the solution domain it is created the dependent variable T_t, that

represents temperature of the tissue in each cell of the mesh. The variable T_t consists

in a CellVariable object that works as a storage variable for later use. It integrates the

initial conditions and is able to represent the field of values of any variable on a mesh.

1 T_t = CellVariable(name="Neck Temperatures Distribution",

2 mesh=mesh ,

3 value=(36.5,36.,34.,33.))

Listing 5.2: Dependent variable definition.

The listing 5.2 shows the parameters that were settled. The mesh requires the grid

data that divides the solution domain in control volumes as defined in the line 7 of

the listing 5.1. The value parameter accept single values, vector or array variables
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according to the kind of initial conditions. So, by using arrays it is possible to set the

value of a particular cell or group of cells according to the needs. This case specifies

different temperatures to each one of the four cells of the mesh (listing 5.2, ln 3).

Each kind of tissue have its own values of specific heat (c_t or c_bl), specific mass

(rho_t) and thermal conductivity (k_t). These constant values define the thermal

properties of the tissues and are specific of the organic material and are saved in array

lists (listing 5.3, ln 2-3, ln 11, ln 16-20). By the opposite, small vessels blood flow (V_sv)

and internal heat production (q_t) depends not only on the kind of tissue, but also

vary according to metabolic expenditure of the individuals and the body element. So

the same organic tissue, i.e. in leg or in trunk, have different values in time and over

the time. These key variables are the focus of the improvement of the model. The ar-

terial blood temperature (T_ar) itself is settled as a constant, but in reality is a variable

that depends on both, time and body element.

1 #Defining the coefficient of the transient term - specific weight and

specific heat of the tissues

2 rho_t = array( [1357.,1086., 920., 1085.] ) # 1357 1085 920 1085 (Kg/m3)

3 c_t = array([1700., 3800., 2300., 3680.]) # 1700 3800 2300 3680 (J/(Kg.C))

4

5 transcoeff = CellVariable(name="Transient Term Coefficient",

6 mesh=mesh ,

7 value=rho_t*c_t)

8 print transcoeff

9

10 #Definition of the diffusion term coefficient - thermal conductivity of the

tissues

11 k_t = CellVariable(name="Difusion Term Coefficient",

12 mesh=mesh ,

13 value=(0.75, 0.51, 0.21, 0.47)) # 0.75 0.51 0.21 0.47 (W

/(m.C))

14

15 #Defining Source Term - Tissue Blood Flow , specific weight and specific heat

of the blood

16 V_sv = array([0., 483., 398.7, 362.]) # 0. 483. 398.7 362. (cm3/(m3.s))

17 rho_bl = 1059. # 1059 de Ferreira e Yanihara , original from Werner and Buse(

Kg/m3)

18 c_bl = 3850. # 3850 the same source of rho_bl variable (J/(Kg.C))

19 T_ar = 37. # Arterial blood temperature (C)

20 q_t = array([0., 501., 4., 368.]) # 0. 501. 4. 368 (W/m3) - Endogenous heat

production of each tissue layer

21

22 sorcoeff=CellVariable(name="Source Term Coefficient",

23 mesh=mesh ,

24 value=V_sv*rho_bl*c_bl*10**-6)

25 print sorcoeff
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26

27 indsourceterm=CellVariable(name="Internal Heat Production",

28 mesh=mesh ,

29 value=V_sv*rho_bl*c_bl*T_ar*10**-6 + q_t)

30 print indsourceterm

Listing 5.3: Term coefficients and respective constants and variables.

The relations between variables are established according to equation 5.1. The

constants rho_t and c_t are used to calculate transient term coefficient transcoeff

(listing 5.3, ln 5-7) and the diffusion coefficient is k_t (listing 5.3, ln 11-13). The source

coefficient is divided in; dependent source term, sourcecoeff (listing 5.3, ln 22-24),

calculated by rho_bl, c_bl and V_sv (the source term that depends on the depend-

ent variable); and the independent source term indsourceterm (listing 5.3, ln 27-29)

that includes the additional effect of T_ar and q_t on the equation. All source terms

defined are CellVariable objects. This is because equation that governs the heat diffu-

sion change their coefficients all over the mesh, depending on the thermal properties

of the physical volumes. Once again, by using CellVariable object, the values can

be settled cell by cell to fit the needs of the simulation process. In this first module

is simple to understand how does it works. The mesh is composed by 4 cells, each

one corresponding to a different type of organic tissue, so, each value matching the

coefficient that need to be used in a specific control volume (CV).

All those objects have the same size and form of the solution domain because they

are build using the mesh variable (listing 5.1, ln 7) when setting the mesh parameter

(listing 5.3, Ln 6, 12, 23, 28).

The equation is stored in a variable eqX, that relates the several terms of the equa-

tion and respective coefficients, and is used with an attribute function solve inside

a iterative cycle (listing 5.5, ln 27-36) that calculates the solution (listing 5.5, ln 31-

32) over a predefined time step (listing 5.5, ln 5). However, as discussed in previous

chapter, it is needed to define boundary conditions in order to reach a stable solution.

1 valueRight = array([35., 36., 37., 37., 37., 37., 37., 37., 37., 37., 37.,

37.,

2 37., 37., 37., 37., 38., 38., 38., 38., 38., 38., 38.,

38., 38., 38., 38., 38., 37., 37., 37., 37.,

3 38., 38., 38., 38., 38., 38., 38., 38., 38., 38., 38.,

38., 37., 37., 37., 37., 37., 37., 37., 37.,
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4 38., 38., 38., 38., 38., 38., 38., 38., 38., 38., 38.,

38., 37., 37., 37., 37., 37., 37., 37., 37.,

5 38., 38., 38., 38., 38., 38., 38., 38., 38., 38., 38.,

38., 37., 37., 37., 37., 37., 37., 37., 37.,

6 38., 38., 38., 38., 38., 38., 38., 38., 38., 38., 38.,

38., 37., 37., 37., 37., 37., 37., 37., 37.,

7 38., 38., 38., 38., 38., 38., 38., 38., 38., 38., 38.,

38., 37., 37., 37., 37., 37., 37., 37., 37.,

8 38., 38., 38., 38., 38., 38., 38., 38., 38., 38., 38.,

38., 37., 37., 37., 37., 37., 37., 37., 37.,

9 38., 38., 38., 38., 38., 38., 38., 38., 38., 38., 38.,

38., 37., 37., 37., 37., 37., 37., 37., 37.,

10 37., 37., 37., 37., 39., 39., 40., 40.])# this

represents skin temperature changing over the time - 5s

Listing 5.4: Boundary condition values.

This is done by using attribute function constrain applied to the T_t variable, set-

ting the value at the respective place in the mesh. This program allows to set constant

or variable boundary conditions over the time. The example (listing 5.4) shows an

array list of values, named valueRight, that intends to simulate the transient state

boundary conditions that constrain the T_t variable. Each value can be interpreted as

an instant value of temperature that represents the temperature over the time step. In

brief, it is one value for each calculation step (180 steps in the example mean 180 val-

ues of temperature in the array). That is why this is done during the iteration, inside

the for ... in ... : cycle (listing 5.5, ln 27-36).

1 eqX = TransientTerm(coeff=transcoeff) == DiffusionTerm(coeff=k_t)

2 - ImplicitSourceTerm(coeff=sorcoeff) + indsourceterm

3

4 #timeStepDuration = 0.9 * 5.82**2 / (2 * (k_t)) - 5.82 is the ray of the

cylinder

5 timeStepDuration=5. #s

6 steps=180 #3600s/20s

7

8 T_tss = CellVariable(name="SS Neck Temperatures Distribution",

9 mesh=mesh ,

10 value=(36.5,36.,34.,33.))

11

12 T_tss.constrain(valueRight[0], (mesh.exteriorFaces & mesh.facesRight))

13 #T_tss.constrain(valueLeft , mesh.facesLeft)

14

15

16 if __name__ == ’__main__’:

17 viewer = Viewer(vars=(T_t,T_tss),

18 datamin=32., datamax=40.)

19 viewer.axes.set_xlabel(’r (m)’)

20 viewer.axes.set_ylabel(’Temp. ($\circ$C)’)
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21

22 viewer.plot()

23

24 if __name__ == ’__main__’:

25 raw_input("Viewer created. Press <enter > to proceed...")

26

27 for step in range(steps):

28

29 T_t.constrain(valueRight[step], (mesh.exteriorFaces & mesh.facesRight))

30

31 eqX.solve(var=T_t,

32 dt=timeStepDuration)

33

34 if __name__ == ’__main__’:

35 viewer.plot()

36 print T_t

37

38 if __name__ == ’__main__’:

39 raw_input("Transient Diffusion. Press <enter > to proceed...")

40

41 eqxss= 0 == DiffusionTerm(coeff=k_t) - ImplicitSourceTerm(coeff=sorcoeff) +

indsourceterm

42 eqxss.solve(var=T_tss)

43

44 figname = raw_input("Insert Figure’s name...")

45

46 viewer.plot(filename = figname)

Listing 5.5: Equation storage, solving and plotting.

Total simulation period can be calculated through the timeStep Duration and the

step variable. Time of the step is a very important parameter for numerically solving

the equations. Use explicit formulation might lead to inaccurate results that suffer un-

realistic oscillations. The implicit formulation used in this example is unconditionally

stable for any size of time step, however too large steps still compromise the accuracy

of the results (Versteeg and Malalasekera, 2007). So, small time steps still be prefer-

able. To define a small time steps it is used the condition imposed by the explicit

formulation of the discretization in one dimension. For a constant values of thermal

coefficient and uniform grid spacing this resumes to the equation 5.20.

∆t < ρc
(∆x)2

2k
(5.20)

The minimum value of ∆t is reached for high values of k and small values of ∆x,

ρ and c corresponds to the maximum value accepted in explicit formulation. In this
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case the value should not exceed 20 seconds. For accurate results a 5 seconds time

step was used. For 180 steps simulates about 15 minutes of heat diffusion (listing

5.5, ln 5-6). Iterative process of calculus can be divided in three stages: 1 - establish the

boundary conditions (listing 5.5, ln 29); 2 - solve the equation (listing 5.5, ln 31-32); and

3 - plot and print the results (listing 5.5, ln 35-36). Every cycle of the iteration consists

in updating boundary condition values, solve the equation for the new values (initial

and boundary), and update the viewer by plotting the results.

Present example also solves the bioheat equation in steady state formulation (eqxss).

To plot both results it was also created another tissue temperature cell variable (T_tss).

As the steady state diffusion does not depends on time, it does not need to be calcu-

lated by an iterative process and that is why the equation is defined and solved after

getting the solution of the heat diffusion at transient state in transient environment

(listing 5.5, ln 41-42).

Extra code is used to print values in the prompt / python shell, or pause the pro-

gram in order to give extra informations about the stage of calculus, or even ask file

name and save the plot figures. So, they are not directly linked to the main goal of the

simulation. This simple code intend to assure the correct implementation of Penne’s

Bioheat equation for several layers of tissue and considering transient conditions and

test the scheme of the steps of the program.

5.2.2 Three-dimensional Heat Diffusion - Annotated listing

The code developed for 3D diffusion was based on unidimensional diffusion. The

biggest improvement was adapt the code assuring that the coefficients of the bioheat

equation change according to the thermal properties of tissue layers. At first, code

for constant boundary conditions was tested, only then upgraded for responding to

transient-states.

1 from fipy import *

2 from numpy import array

3 from viewers.update import update3D

4 from viewers.viewer3D import my_grid , view

Listing 5.6: Importing routines/function for 3D heat diffusion code.
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The first few lines import the routines that are necessary to execute the program.

Some of these routines were developed specifically to manage the visualization, plot-

ting and data update of the variables (listing 5.6, ln 3-4). So, modularization started

here, due to the need for particular structure of the data that allowed to create anim-

ated views of the data over calculation period. First it was created my_grid function,

that belong to the viewer3D file system dedicated to reorganize the data of the T_t into

a readable matrix to plot data using Mayavi functions. The view create the viewer,

where is defined window size, quality of the printing image, data ranges, etc., and

read the data returned by my_grid.

1 # Import Mesh

2 mesh = Gmsh3D(’geometries/neck.geo’)

Listing 5.7: Creating variable mesh by importing a file with the geometry.

A very important step it was creating a three-dimensional solution domain by de-

fining a mesh with the same characteristics of the individual that is being simulated.

As mentioned in paragraph 5.2.3 these structures were created by program Gmsh and

are programmed allowing easy change in size and cell dimensions. This occurs by the

same order stated in the unidimensional diffusion. The mesh used now is created by

the function Gmsh3D, a 3D mesh creator from Fipy, by importing a geometric structure

(neck.geo) programmed in Gmsh , is similar to other geometric element that compose

the body in final BioHeatSIM program (listing 5.7).

1 # Define Tissue variable

2 T_t = CellVariable(name="Neck Temperatures Distribution",

3 mesh=mesh ,

4 value=0.)

5

6 # Set initial Condition for each layer

7 T_t.setValue(36.5, where=mesh.physicalCells[’Bone’])

8 T_t.setValue(36., where=mesh.physicalCells[’Muscle’])

9 T_t.setValue(34., where=mesh.physicalCells[’Fat’])

10 T_t.setValue(33., where=mesh.physicalCells[’Skin’])

11

12 # Set boundary conditions

13

14 sidecells = ~(mesh.facesBack | mesh.facesFront) & mesh.exteriorFaces

15

16 T_t.constrain(40., where=sidecells)
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Listing 5.8: Creating cell variable for temperatures distribution.

Variable T_t that relates the tissue temperature with the spatial position is cre-

ated with CellVariable function but, in opposite to 1D code, initial conditions are not

settled within the function fields in separate code. Initial conditions and boundary

conditions are settled by attribute function of CellVariable, respectively setValue

and constrain. In both functions it is needed to set the numeric value of temperature

and the spatial position where those temperature values must be allocated.

Listing 5.27 shows in setValue function how useful can be the use of physical

volumes in mesh construction. When building the mesh, the definition of the physical

volumes allow here to manipulate that particular volume, or group of cells, independ-

ently. In the present example different values of temperature are settled to each tissue

layer.

Figure 5.4: Faces of the mesh where is applied the boundary condition.

It is important to underline the fact that variable handling, as FiPy tool enables, is a

strength of this modelling process. There are a wide range of combination that assure

infinite ways to set de desired boundary or initials. For example, set values according

to distance along one axis, set values to specific group of cells, relate it with the cyl-

inder radius, or combine any of this preferences. The same happens with boundaries

defined with constrain. The where field in constrain uses the same scheme as where
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in setValue what mean that the structure and combination used in one can be used in

the other. For example, different surfaces can be submitted to different temperatures

values or even to patterns of temperatures (by using matrices). These constrictions

can be made inside, outside, or in any other part of the structure.

In listing 5.27 (ln 14) a variable sidecells define the exterior faces of the cylinder

as the place to be constricted. The code excludes the top and the bottom surfaces from

the exterior faces of the cylindrical mesh leaving exterior faces of the skin layer as the

boundary (figure 5.4) and assure that the cell faces are at a constant temperature of

40◦C (listing 5.27, ln 16). As shown in 1D heat diffusion, the updating of boundaries

at each step of calculus, is a reliable approach to simulate transient states.

1 # Define terms for the equation and set the coefficients to each layer

2

3 #Set the values for specific heat and mass of each tissue layer to define

transient term coefficient

4

5 rho_t=array([1357., 1085., 920., 1085.])# 1357 1085 920 1085 (Kg/m3)

6 c_t=array([1700., 3800., 2300., 3680.]) # 1700 3800 2300 3680 (J/(Kg.oC))

7

8 transcoeff=CellVariable(mesh=mesh , value=0.)

9

10 # Set values for thermal conductivity of tissues to define diffusion

coefficient term

11

12 k_t =array([0.75, 0.51, 0.21, 0.47]) # 0.75 0.51 0.21 0.47 (W/(m.oC))

13

14 diffcoeff=CellVariable(mesh=mesh , value=0.)

15

16 #Set values of tissue blood flow , specific mass and heat of the blood

17 V_sv=array([0., 483., 398.7, 362.]) # 0. 483. 398.7 362. (cm3/(m3.s))

18

19 rho_bl = 1059. # 1059 (Kg/m3)

20 c_bl = 3850. # 3850 (J/(Kg.oC))

21

22 T_ar= 37. # Arterial blood temperature values (oC)

23

24 q_t = array([0., 501., 4., 368.]) # 0. 501. 4. 368 (W/m3)/ basal heat

production for tissue layers

25

26 sourcecoeff=CellVariable(mesh=mesh , value=0.)

27

28 indsourceterm = CellVariable(mesh=mesh , value=0.)

29

30 for i in range(4):

31 if i==0 : string=’Bone’

32 elif i==1 : string=’Muscle’

33 elif i==2 : string=’Fat’

79



DemSSO Program Implementation, Development and Test

34 elif i==3 : string=’Skin’

35

36 transcoeff.setValue(rho_t[i]*c_t[i], where=mesh.physicalCells[string])

37

38 diffcoeff.setValue(k_t[i] , where=mesh.physicalCells[string])

39

40 sourcecoeff.setValue(V_sv[i]*rho_bl*c_bl*10**-6, where=mesh.

physicalCells[string])

41

42 indsourceterm.setValue(V_sv[i]*rho_bl*c_bl*T_ar*10**-6 + q_t[i], where=

mesh.physicalCells[string])

Listing 5.9: Defining bioheat equation terms and set values according to tissue layers.

The type of coefficients being used in 3D were defined as CellVariable. This type

variable recognizes the space domain and let allocate the values of thermal properties

at the correct place. Once again, by specifying the physical volumes using a iterative

cycle, it is possible to place thermal conductivity, specific weight and specific heat of

the layers bone, muscle, fat and skin at their exact place (listing 5.9, ln 30-42). One

of the advantages implementing the bioheat equation with this tool is that it can be

created a continuum heat flux through the tissue layers with complete different prop-

erties in a single step of calculus (listing 5.10, ln 12-19).

1 # Bioheat transfer equation

2 eqX = TransientTerm(coeff=transcoeff) == DiffusionTerm(coeff=diffcoeff) -

ImplicitSourceTerm(coeff=sourcecoeff) + indsourceterm

3

4 #Solution obtained for step by step

5 timeStepDuration =20.

6 steps=180

7

8 dataset=my_grid(T_t)

9 viewer=view(dataset)

10

11 for step in range(steps):

12

13 eqX.solve(var=T_t,

14 dt=timeStepDuration)

15

16 t = timeStepDuration*step + 10

17 update3D(dataset , T_t)

18 print T_t, ’t=’, t,’s’

Listing 5.10: Calculation and visualization of the data.

After defining eqX equation the same procedure of 1D diffusion is followed with

the slightly differences of the new variable created t, and the management of three-
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dimensional dataset. So, first the definition of time step, then the number of steps,

finally it is created the viewer. In the for...in: cycle new temperature values are

calculated and updated in viewer at each step. The result is visualization of the heat

diffusion process along the layers of the neck.

The algorithm also displays in prompt the matrices of tissue temperatures and re-

spective time of simulation. Uni-dimensional code helped in testing the command

sequence and helped structured the data management over calculation and plotting

by using Fipy, NumPy, and SciPy tools. It also demonstrates some potential and lim-

itation of the predefined functions of Fipy when integrate Mayavi for 3D plotting. To

overtake this were developed special function that were tested in the 3D code. This

implement the bioheat diffusion in a 4 layer structure with different thermal proper-

ties, allowing dataset management and visualization with step by step updating.

At this stage program changed to modular structure in order to provide flexibility,

improve performance and make it easier to develop.

5.2.3 BioHeatSIM Program Modules - Annotated Listings

As mentioned above the BioHeatSIM program is organized by folders according

to their role. Each folder have one or more files where can be found specific func-

tions used to fulfil those roles. Figure 5.5 shows a flowchart of information across the

folders. To integrate all the features there is a main file in the root of the program

folder that is used to manage the modules and run the BioHeatSIM from a terminal or

python/ipython shell.

In brief, the code from main file picks information from geometries, create the meshes

and then they are used to declare variables using variables folder. After variables being

declared, initial conditions and boundary conditions are settled using functions inside

the respective folders. The most important folder of all is the solvers folder. Functions

programmed in each file of solvers dedicate themselves to implement the mathematical

functions that characterize the BioHeatSIM model. Data is saved in data folder and

then visualized throughout the functions inside view folder. The main.py file calls

solvers, save outputs and calls viewers functions to recreate and update the dataset

to plot the results. So, sequence of calculus is assured by main being the inputs and
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main.py ...

input data
body structure

geometries

variables

input data
initial conditions

initials

input data
boundary conditions

boundaries

solvers

data

viewers

Figure 5.5: BioHeatSIM folder organization and information flow.

outputs of every stage conducted by it. Details about the code and implementation of

the calculus procedures are presented in the following subsections.

Geometries

The physical structure of the human body that represents the domain of interest

was drawing nearer simple geometric elements. This was not because program limit-

ations of GMSH, but due to simplicity to building and manage the mesh parameters

during the solving and plotting processes. Meshing process based itself in dividing

the body into segments which geometry is reproducible by a single kind of geometry.

Taking into account the accuracy level of the results, both parameters, the dimension

and shape of the mesh, tried to reproduce the very own size and shape of the real

body but using, whenever possible, regular structures to reach orthogonal meshes.

This point in particular is important because the FiPy’s accuracy depends on having a

regular mesh because discretized process of Fipy is based on the orthogonality of the

mesh.
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geometies

head

neck

trunk

upper_arm

lower_armhand

thigh

leg

foot

Figure 5.6: Geometries folder content - geometries that constitute the solution domain.

To attend individual characteristics of the body, meshing is based on variables that

allow to change body segment length, width or radius and even the size of the control

volumes (listing 5.11, ln 3-8). This feature is important not only because allow to adapt

the simulation to particular physical structures, in order to get feasible results, but also

because the density of the mesh (dictated by cells size) is an important way to adjust

the compromise of accuracy and performance when simulating. Mesh parameters can

be adjusted individually or all at once without compromising the speed of calculus.

1 // ======================================================================//

2 // Mesh Data //

3 // ======================================================================//

4

5 Size = .01;

6

7 rbn = 0.0268; // Bone (m)

8 rmsc = 0.0540; // Muscle (m)

9 rf = 0.0571; // Fat (m)

10 rsk = 0.0582; // Skin (m)

11

12 z = 0.080; // Neck length (m)

13

14 // Divisions of the mesh

15
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16 NDc = 5; // Div. circ.

17

18 NDlbn = 4; // Div. Lines Bone

19 NDlmsc = 5; // Div. Lines Muscle

20 NDlf = 3; // Div. Lines Fat

21 NDlsk = 3; // Div. Lines Skin

22

23 NL = 8; // Number of Layers

Listing 5.11: Code lines that declare variables to define the mesh.

All the geometric segments are written in separate folders (figure 5.6). Each folder

contain: a header where variables are defined; a body where come the code for build-

ing the structure; and a footer where the physical volumes are defined. The follow-

ing code is an example of the cylindrical mesh that describes the neck segment. The

header describes the parameter of the mesh, that are linked to individual characterist-

ics of the individual, where the main adjustments are done by changing the element

length and the ray, or thickness, of tissue layers.

1 // ======================================================================//

2 // Points //

3 // ======================================================================//

4

5 Point(1)={0., 0., 0., Size}; // Centre of cylinder base

6

7 // Points Circumference Bone rbn

8 Point(2)={0.,rbn ,0.,Size};

9 Point(3)={rbn ,0.,0.,Size};

10 Point(4)={0.,-rbn ,0.,Size};

11 Point(5)={-rbn ,0.,0.,Size};

12

13 // Points Circumference Fat rmsc

14 Point(6)={0.,rmsc ,0.,Size};

15 Point(7)={rmsc ,0.,0.,Size};

16 Point(8)={0.,-rmsc ,0.,Size};

17 Point(9)={-rmsc ,0.,0.,Size};

18

19 // Points Circumference Muscle rf

20 Point(10)={0.,rf,0.,Size};

21 Point(11)={rf,0.,0.,Size};

22 Point(12)={0.,-rf,0.,Size};

23 Point(13)={-rf,0.,0.,Size};

24

25 // Points Circumference Skin rsk

26 Point(14)={0.,rsk ,0.,Size};

27 Point(15)={rsk ,0.,0.,Size};

28 Point(16)={0.,-rsk ,0.,Size};

29 Point(17)={-rsk ,0.,0.,Size};

Listing 5.12: Settling the points to create arcs and lines.
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To built the grid the steps are almost the same from peace to peace. First are

defined the points (listing 5.12) that are going to be the vertices of surfaces to extrude.

The lines between the points designing the edges of the surfaces (listing 5.13, ??).

Cell size is defined but this is only used when Gmsh needs to built the structured

grid using internal routines. However tetrahedral grids, built by Gmsh, are not the

best option to model heat diffusion through body. In order to achieve the desired or-

thogonal grid, with regular elements, it was necessary to set the number of divisions

for each segment and define the grid construction on the program.

1 // ======================================================================//

2 // Circumferences //

3 // ======================================================================//

4

5 //Circumference Arcs Bone

6 Circle( 1)={2,1,3}; Transfinite Line{ 1}=NDc;

7 Circle( 2)={3,1,4}; Transfinite Line{ 2}=NDc;

8 Circle( 3)={4,1,5}; Transfinite Line{ 3}=NDc;

9 Circle( 4)={5,1,2}; Transfinite Line{ 4}=NDc;

10

11 //Circumference Arcs Muscle

12 Circle( 5)={6,1,7}; Transfinite Line{ 5}=NDc;

13 Circle( 6)={7,1,8}; Transfinite Line{ 6}=NDc;

14 Circle( 7)={8,1,9}; Transfinite Line{ 7}=NDc;

15 Circle( 8)={9,1,6}; Transfinite Line{ 8}=NDc;

16

17 //Circumference Arcs Fat

18 Circle( 9)={10,1,11}; Transfinite Line{ 9}=NDc;

19 Circle(10)={11,1,12}; Transfinite Line{10}=NDc;

20 Circle(11)={12,1,13}; Transfinite Line{11}=NDc;

21 Circle(12)={13,1,10}; Transfinite Line{12}=NDc;

22

23 //Circumference Arcs Skin

24 Circle(13)={14,1,15}; Transfinite Line{13}=NDc;

25 Circle(14)={15,1,16}; Transfinite Line{14}=NDc;

26 Circle(15)={16,1,17}; Transfinite Line{15}=NDc;

27 Circle(16)={17,1,14}; Transfinite Line{16}=NDc;

Listing 5.13: Code lines that create the arcs of the mesh.

1 // ======================================================================//

2 // Dividing Circumferences in 4 //

3 // ======================================================================//

4

5 // Lines Bone

6 Line(21)={1,2}; Transfinite Line{21}=NDlbn Using Progression 0.5 ;

7 Line(22)={1,3}; Transfinite Line{22}=NDlbn Using Progression 0.5 ;

8 Line(23)={1,4}; Transfinite Line{23}=NDlbn Using Progression 0.5 ;

9 Line(24)={1,5}; Transfinite Line{24}=NDlbn Using Progression 0.5 ;

10
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11 //Lines Muscle

12 Line(25)={2,6}; Transfinite Line{25}=NDlmsc;

13 Line(26)={3,7}; Transfinite Line{26}=NDlmsc;

14 Line(27)={4,8}; Transfinite Line{27}=NDlmsc;

15 Line(28)={5,9}; Transfinite Line{28}=NDlmsc;

16

17 // Lines Fat

18 Line(29)={6,10}; Transfinite Line{29}=NDlf Using Progression 0.8 ;

19 Line(30)={7,11}; Transfinite Line{30}=NDlf Using Progression 0.8 ;

20 Line(31)={8,12}; Transfinite Line{31}=NDlf Using Progression 0.8 ;

21 Line(32)={9,13}; Transfinite Line{32}=NDlf Using Progression 0.8 ;

22

23 //Lines Skin

24 Line(33)={10,14}; Transfinite Line{33}=NDlsk;

25 Line(34)={11,15}; Transfinite Line{34}=NDlsk;

26 Line(35)={12,16}; Transfinite Line{35}=NDlsk;

27 Line(36)={13,17}; Transfinite Line{36}=NDlsk;

Listing 5.14: Creating the lines that divide the concentric circumferences in quarters.

When lines are created the number of divisions can be programmed by using

Transfinite Line command. Progression can be used to divide the segments us-

ing a gradient. Final results are having shorter layers at the bounds of physical layers.

1 // ======================================================================//

2 // 1/4 Circumf. Construction //

3 // ======================================================================//

4

5 //Close the Loops Bone

6 Line Loop(1)={21,1,-22};

7 Line Loop(2)={22,2,-23};

8 Line Loop(3)={23,3,-24};

9 Line Loop(4)={24,4,-21};

10

11 //Close the Loops Muscle

12 Line Loop(5)={25,5,-26,-1};

13 Line Loop(6)={26,6,-27,-2};

14 Line Loop(7)={27,7,-28,-3};

15 Line Loop(8)={28,8,-25,-4};

16

17 //Close the Loops Fat

18 Line Loop( 9)={29, 9,-30,-5};

19 Line Loop(10)={30,10,-31,-6};

20 Line Loop(11)={31,11,-32,-7};

21 Line Loop(12)={32,12,-29,-8};

22

23 //Close the Loops Skin

24 Line Loop(13)={33,13,-34, -9};

25 Line Loop(14)={34,14,-35,-10};

26 Line Loop(15)={35,15,-36,-11};

27 Line Loop(16)={36,16,-33,-12};

Listing 5.15: Closing lines as loops to built surfaces
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1 // ======================================================================//

2 // 1/4 Circle Surfaces Construction //

3 // ======================================================================//

4

5 // Defining Surfaces Bone

6 Plane Surface( 1)={ 1}; Transfinite Surface{ 1}={ 1, 2, 3}; Recombine

Surface{1};

7 Plane Surface( 2)={ 2}; Transfinite Surface{ 2}={ 1, 3, 4}; Recombine

Surface{2};

8 Plane Surface( 3)={ 3}; Transfinite Surface{ 3}={ 1, 4, 5}; Recombine

Surface{3};

9 Plane Surface( 4)={ 4}; Transfinite Surface{ 4}={ 1, 5, 2}; Recombine

Surface{4};

10

11 //Defining Surfaces Muscle

12 Plane Surface( 5)={ 5}; Transfinite Surface{ 5}={ 2, 6, 7, 3}; Recombine

Surface{5};

13 Plane Surface( 6)={ 6}; Transfinite Surface{ 6}={ 3, 7, 8, 4}; Recombine

Surface{6};

14 Plane Surface( 7)={ 7}; Transfinite Surface{ 7}={ 4, 8, 9, 5}; Recombine

Surface{7};

15 Plane Surface( 8)={ 8}; Transfinite Surface{ 8}={ 5, 9, 6, 2}; Recombine

Surface{8};

16

17 //Defining Surfaces Fat

18 Plane Surface( 9)={ 9}; Transfinite Surface{ 9}={ 6,10,11, 7}; Recombine

Surface{ 9};

19 Plane Surface(10)={10}; Transfinite Surface {10}={ 7,11,12, 8}; Recombine

Surface{10};

20 Plane Surface(11)={11}; Transfinite Surface {11}={ 8,12,13, 9}; Recombine

Surface{11};

21 Plane Surface(12)={12}; Transfinite Surface {12}={ 9,13,10, 6}; Recombine

Surface{12};

22

23 //Defining Surfaces Skin

24 Plane Surface(13)={13}; Transfinite Surface{13}={10,14,15,11}; Recombine

Surface{13};

25 Plane Surface(14)={14}; Transfinite Surface{14}={11,15,16,12}; Recombine

Surface{14};

26 Plane Surface(15)={15}; Transfinite Surface{15}={12,16,17,13}; Recombine

Surface{15};

27 Plane Surface(16)={16}; Transfinite Surface{16}={13,17,14,10}; Recombine

Surface{16};

Listing 5.16: Creating the surfaces and divisions for the mesh.

By closing lines with Line Loop, perimeter of the surfaces are created and plains

are delimited by that perimeter (listing 5.15). To assume the transfinite division of

the lines and create the respective grid inside the perimeter, Transfinite Surface is

created (listing 5.16). Finally Recombine Surface joins the grid to plain surface. This

allow to extrude the plain and respective grid building, at the same time, the three
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dimensional geometry and grid structure (listing 5.17).

1 // ======================================================================//

2 // Volume Construction //

3 // ======================================================================//

4

5 Extrude{0.0,0.0,z} {Surface{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}; Layers{

NL}; Recombine;}

Listing 5.17: Surface extrusion to built volumes.

1 // ======================================================================//

2 // Physical Volume Construction //

3 // ======================================================================//

4

5 Physical Volume("Bone") = {1,2,3,4};

6 Physical Volume("Muscle") = {5,6,7,8};

7 Physical Volume("Fat") = {9,10,11,12};

8 Physical Volume("Skin") = {13,14,15,16};

9

10 Show ’’*’’

Listing 5.18: Definitions of physical volumes.

The last step after extrusion it is the creation of physical volumes, defined accord-

ing to the type of tissue that they represent (listing 5.18).

Initials

This folder contain the values of initial state of the system (T_t_init, T_ve_init,

T_ar_init) (listing 5.19), constants of thermophysical properties of the physical sys-

tem (rho_t, c_t, k_t, rho_bl, c_bl, H_av)(listing 5.20), and variables at thermoneut-

ral basal state variables (CO, V_sv (listing 5.21), q_t (listing 5.22), Vol_ar, Vol_ve (list-

ing 5.23)). Values are saved in array variables and exported to main file through simple

with no argument functions.

1 def import_init_temp():

2 T_ar_init = array([37.,37., #hands r-l

3 37.,37., #lower arms r-l

4 37.,37., #upper arms r-l

5 37.,37., #feet r-l

6 37.,37., #legs r-l

7 37.,37., #thighs r-l

8 37., # trunk

9 37., # neck

10 37.]) # head
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11 T_ve_init = array([37.,37., #hands r-l

12 37.,37., #lower arms r-l

13 37.,37., #upper arms r-l

14 37.,37., #feet r-l

15 37.,37., #legs r-l

16 37.,37., #thighs r-l

17 37., # trunk

18 37., # neck

19 37.]) # head

20 T_t_init = array([[36.5, 36., 34., 33.],[36.5, 36., 34., 33.], #hands r-

l

21 [36.5, 36., 34., 33.],[36.5, 36., 34., 33.], #lower arms

r-l

22 [36.5, 36., 34., 33.],[36.5, 36., 34., 33.], #upper arms

r-l

23 [36.5, 36., 34., 33.],[36.5, 36., 34., 33.], #feet r-l

24 [36.5, 36., 34., 33.],[36.5, 36., 34., 33.], #legs r-l

25 [36.5, 36., 34., 33.],[36.5, 36., 34., 33.], #thighs r-l

26 [36.5, 36., 34., 33., 36., 37., 37.,37], # trunk

27 [36.5, 36., 34., 33.], # neck

28 [37., 37., 35., 33., 37.]]) # head

29

30 return T_ar_init , T_ve_init , T_t_init

Listing 5.19: Exports the initial temperatures values.

1 def import_constants():

2 #Thermal Properties of the tissues

3 rho_t = array([[1357., 1085., 920., 1085.],[1357., 1085., 920., 1085.],

#hands r-l

4 [1357., 1085., 920., 1085.],[1357., 1085., 920., 1085.], #

lower arms r-l

5 [1357., 1085., 920., 1085.],[1357., 1085., 920., 1085.], #

upper arms r-l

6 [1357., 1085., 920., 1085.],[1357., 1085., 920., 1085.], #

feet r-l

7 [1357., 1085., 920., 1085.],[1357., 1085., 920., 1085.], #

legs r-l

8 [1357., 1085., 920., 1085.],[1357., 1085., 920., 1085.], #

thighs r-l

9 [1357., 1085., 920., 1085., 1080., 1080., 560.], # trunk

10 [1357., 1085., 920., 1085.], # neck

11 [1357., 1085., 920., 1085., 1080.]]) # head

12 c_t = array([[1700. ,3800. ,2300. ,3680.] ,[1700. ,3800. ,2300. ,3680.] , #hands

r-l

13 [1700.,3800.,2300.,3680.],[1700. ,3800. ,2300.,3680.] , #lower

arms r-l

14 [1700.,3800.,2300.,3680.],[1700. ,3800. ,2300.,3680.] , #upper

arms r-l

15 [1700.,3800.,2300.,3680.],[1700. ,3800. ,2300.,3680.] , #feet r

-l

16 [1700.,3800.,2300.,3680.],[1700. ,3800. ,2300.,3680.] , #legs r

-l

17 [1700.,3800.,2300.,3680.],[1700. ,3800. ,2300.,3680.] , #thighs

r-l

18 [1700.,3800.,2300.,3680., 3550.,3504., 3520.], # trunk
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19 [1700.,3800.,2300.,3680.], # neck

20 [1700.,3800.,2300.,3680., 3580.]]) # head

21 k_t = array([[0.75,0.51,0.21,0.47],[0.75,0.51,0.21,0.47], #hands r-l

22 [0.75,0.51,0.21,0.47],[0.75,0.51,0.21,0.47], #lower arms r-l

23 [0.75,0.51,0.21,0.47],[0.75,0.51,0.21,0.47], #upper arms r-l

24 [0.75,0.51,0.21,0.47],[0.75,0.51,0.21,0.47], #feet r-l

25 [0.75,0.51,0.21,0.47],[0.75,0.51,0.21,0.47], #legs r-l

26 [0.75,0.51,0.21,0.47],[0.75,0.51,0.21,0.47], #thighs r-l

27 [0.75,0.51,0.21,0.47,0.47,0.49,0.28], # trunk

28 [0.75,0.51,0.21,0.47], # neck

29 [0.75,0.51,0.21,0.47,0.49]]) # head

30 # Coeficientes for arterio -venous heat transfer

31 H_av = array([0.72,0.72, #hands r-l

32 1.43,1.43, #lower arms r-l

33 2.55,2.55, #upper arms r-l

34 1.55,1.55, #feet r-l

35 3.67,3.67, #legs r-l

36 8.26,8.26, #thighs r-l

37 0.00, # trunk

38 1.55, # neck

39 0.00]) # head

40 rho_bl = 1059. # 1059 (Kg/m3)

41 c_bl = 3850. # 3850 (J/(Kg.oC))

42 return rho_t , c_t, k_t, H_av , rho_bl , c_bl

Listing 5.20: Imports the constants.

1 def import_V_basal():

2 CO = 80.56 #cm3.s-1

3 Vol_lung = 2481.e-6 #m3

4 V_sv_lung = CO/Vol_lung

5

6

7 # Bn,msk,ft,sk,ln,hr,vsc,brn (cm3/(m3.s)) - basal state

8 V_sv = array([[0., 483., 77., 362.,0.,0.,0.],[0., 483., 77.,

362.,0.,0.,0.], #hands r-l

9 [0., 483., 77., 362.,0.,0.,0.],[0., 483., 77.,

362.,0.,0.,0.], #lower arms r-l

10 [0., 483., 77., 362.,0.,0.,0.],[0., 483., 77.,

362.,0.,0.,0.], #upper arms r-l

11 [0., 483., 77., 362.,0.,0.,0.],[0., 483., 77.,

362.,0.,0.,0.], #feet r-l

12 [0., 483., 77., 362.,0.,0.,0.],[0., 483., 77.,

362.,0.,0.,0.], #legs r-l

13 [0., 483., 77., 362.,0.,0.,0.],[0., 483., 77.,

362.,0.,0.,0.], #thighs r-l

14 [0., 483., 77., 362., 14400., 8925., V_sv_lung], # trunk

15 [0., 483., 77., 362.,0.,0.,0.], # neck

16 [0., 483., 77., 362., 9000.,0.,0.]])*10**-6 # head

17 return CO, V_sv

Listing 5.21: Calculated basal blood flow to the lung based on basal cardiac output
and return tissues blood flow at basal thermoneutral state.

1 def import_q_t():
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2 # Bn,msk,ft,sk,ln,hr,vsc,brn (W/m3) - basal heat production of the

tissues

3 q_t = array([[0., 501., 4., 368.],[0., 501., 4., 368.], #hands r-l

4 [0., 501., 4., 368.],[0., 501., 4., 368.], #lower arms r-l

5 [0., 501., 4., 368.],[0., 501., 4., 368.], #upper arms r-l

6 [0., 501., 4., 368.],[0., 501., 4., 368.], #feet r-l

7 [0., 501., 4., 368.],[0., 501., 4., 368.], #legs r-l

8 [0., 501., 4., 368.],[0., 501., 4., 368.], #thighs r-l

9 [0., 501., 4., 368., 24128., 3852.,339.], # trunk

10 [0., 501., 4., 368.], # neck

11 [0., 501., 4., 368., 9472.]]) # head

12 return q_t

Listing 5.22: Exports tissue heat production in basal state at thermoneutral conditions.

1 def import_vol_ar_ve():

2 #Arterial and venous volumes of blood reservoirs at basal thermoneutras

conditions

3 Vol_ar = array([7. ,7. , #hands r-l

4 13.,13., #lower arms r-l

5 24.,24., #upper arms r-l

6 15.,15., #feet r-l

7 35.,35., #legs r-l

8 78.,78., #thighs r-l

9 446., # trunk

10 15., # neck

11 40.])*10**-6 # head

12 Vol_ve = array([30.,30. , #hands r-l

13 60.,60., #lower arms r-l

14 107.,107., #upper arms r-l

15 66.,66., #feet r-l

16 155.,155., #legs r-l

17 349.,379., #thighs r-l

18 1484., # trunk

19 66., # neck

20 180.])*10**-6 # head

21 return Vol_ar , Vol_ve

Listing 5.23: Exports arterial and venous volumes of the reservoirs at each segment.

Structure of the arrays consist is 15 lines composed by vector as long as the differ-

ent types of tissues that compose the body segment. Different initial conditions can be

settled to hands, feet, arms and legs elements in order to respond to asymmetry even

during transient exposures.

Files of present folder also have functions to set the initial values to variables cre-

ated. The set_values_T_t function sets the initial values of tissue temperature vari-

ables (listing 5.24).

1 def set_values_T_t(T_t_handr , T_t_lowerarmr , T_t_upperarmr , T_t_handl ,
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2 T_t_lowerarml , T_t_upperarml , T_t_footr , T_t_legr ,

3 T_t_thighr , T_t_footl , T_t_legl , T_t_thighl ,

4 T_t_trunk ,T_t_neck , T_t_head , T_t_init):

5

6 # Initial conditions Right Arm

7 Tthandr = T_t_init[0]

8 Ttlowerarmr = T_t_init[2]

9 Ttupperarmr = T_t_init[4]

10

11 # Initial Conditions of the left Arm

12 Tthandl = T_t_init[1]

13 Ttlowerarml = T_t_init[3]

14 Ttupperarml = T_t_init[5]

15

16 #Initial Conditions of the Right Leg

17 Ttfootr = T_t_init[6]

18 Ttlegr = T_t_init[8]

19 Ttthighr = T_t_init[10]

20

21 #Initial Conditions of the Left Leg

22 Ttfootl = T_t_init[7]

23 Ttlegl = T_t_init[9]

24 Ttthighl = T_t_init[11]

25

26 #Initial Conditions of the Trunk

27 Tttrunk = T_t_init[12]

28

29 #Initial Conditions of the Neck

30 Ttneck = T_t_init[13]

31

32 # Intial Conditions Of the Head

33 Tthead = T_t_init[14]

34

35 for i in range(4):

36 if i==0 : string=’Bone’

37 elif i==1 : string=’Muscle’

38 elif i==2 : string=’Fat’

39 elif i==3 : string=’Skin’

40 # Arms

41 T_t_handr.setValue(Tthandr[i],

42 where=T_t_handr.mesh.physicalCells[string])

43 T_t_lowerarmr.setValue(Ttlowerarmr[i],

44 where=T_t_lowerarmr.mesh.physicalCells[string

])

45 T_t_upperarmr.setValue(Ttupperarmr[i],

46 where=T_t_upperarmr.mesh.physicalCells[string

])

47 T_t_handl.setValue(Tthandl[i],

48 where=T_t_handl.mesh.physicalCells[string])

49 T_t_lowerarml.setValue(Ttlowerarml[i],

50 where=T_t_lowerarml.mesh.physicalCells[string

])

51 T_t_upperarml.setValue(Ttupperarml[i],

52 where=T_t_upperarml.mesh.physicalCells[string

])

53 # Legs
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54 T_t_footr.setValue(Ttfootr[i],

55 where=T_t_footr.mesh.physicalCells[string])

56 T_t_legr.setValue(Ttlegr[i],

57 where=T_t_legr.mesh.physicalCells[string])

58 T_t_thighr.setValue(Ttthighr[i],

59 where=T_t_thighr.mesh.physicalCells[string])

60 T_t_footl.setValue(Ttfootl[i],

61 where=T_t_footl.mesh.physicalCells[string])

62 T_t_legl.setValue(Ttlegl[i],

63 where=T_t_legl.mesh.physicalCells[string])

64 T_t_thighl.setValue(Ttthighl[i],

65 where=T_t_thighl.mesh.physicalCells[string])

66 # Trunk

67 T_t_trunk.setValue(Tttrunk[i],

68 where=T_t_trunk.mesh.physicalCells[string])

69 # Neck

70 T_t_neck.setValue(Ttneck[i],

71 where=T_t_neck.mesh.physicalCells[string])

72 # Head

73 T_t_head.setValue(Tthead[i], where=T_t_head.mesh.physicalCells[

string])

74

75 for i in range(3):

76 if i==0 : string=’Lung’

77 elif i==1 : string=’Heart’

78 elif i==2 : string=’Viscera’

79 T_t_trunk.setValue(Tttrunk[i],

80 where=T_t_trunk.mesh.physicalCells[string])

81

82 T_t_head.setValue(Tthead[4], where=T_t_head.mesh.physicalCells[’Brain’])

83

84 return (T_t_handr , T_t_lowerarmr , T_t_upperarmr , T_t_handl ,

T_t_lowerarml ,

85 T_t_upperarml , T_t_footr , T_t_legr , T_t_thighr , T_t_footl ,

86 T_t_legl , T_t_thighl , T_t_trunk , T_t_neck , T_t_head)

Listing 5.24: Exports arterial and venous volumes of the reservoirs at each segment.

As input it need all the tissue temperature cell variable from the 15 body segments,

and the array with initial temperatures. One limitation of the routine, as presented

here, is that only allow to set one temperature per layer of tissue in one body segment.

Different types of initial conditions must be programmed apart.

Other two functions of the program allow settling and creating vectors to store

venous and arterial temperatures of reservoirs at each segments (listing 5.24).

1 def set_values_Tar(T_ar_init):

2 tar_handr = [T_ar_init[0]]

3 tar_lowerarmr = [T_ar_init[1]]

4 tar_upperarmr = [T_ar_init[2]]

5 tar_handl = [T_ar_init[3]]
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6 tar_lowerarml = [T_ar_init[4]]

7 tar_upperarml = [T_ar_init[5]]

8 tar_footr = [T_ar_init[6]]

9 tar_legr = [T_ar_init[7]]

10 tar_thighr = [T_ar_init[8]]

11 tar_footl = [T_ar_init[9]]

12 tar_legl = [T_ar_init [10]]

13 tar_thighl = [T_ar_init [11]]

14 tar_trunk = [T_ar_init [12]]

15 tar_neck = [T_ar_init [13]]

16 tar_head = [T_ar_init [14]]

17 return (tar_handr , tar_lowerarmr , tar_upperarmr , tar_handl ,

18 tar_lowerarml , tar_upperarml , tar_footr , tar_legr ,

19 tar_thighr , tar_footl , tar_legl ,tar_thighl ,tar_trunk ,

20 tar_neck , tar_head)

21

22 def set_values_Tve(T_ve_init):

23 tve_handr = [T_ve_init[0]]

24 tve_lowerarmr = [T_ve_init[1]]

25 tve_upperarmr = [T_ve_init[2]]

26 tve_handl = [T_ve_init[3]]

27 tve_lowerarml = [T_ve_init[4]]

28 tve_upperarml = [T_ve_init[5]]

29 tve_footr = [T_ve_init[6]]

30 tve_legr = [T_ve_init[7]]

31 tve_thighr = [T_ve_init[8]]

32 tve_footl = [T_ve_init[9]]

33 tve_legl = [T_ve_init [10]]

34 tve_thighl = [T_ve_init [11]]

35 tve_trunk = [T_ve_init [12]]

36 tve_neck = [T_ve_init [13]]

37 tve_head = [T_ve_init [14]]

38 return (tve_handr , tve_lowerarmr , tve_upperarmr ,

39 tve_handl ,tve_lowerarml ,tve_upperarml , tve_footr , tve_legr ,

40 tve_thighr , tve_footl ,tve_legl , tve_thighl , tve_trunk ,

41 tve_neck , tve_head)

Listing 5.25: Arterial and venous temperature arrays with settled initial conditions.

Variables

Variables folder have function to create tissue temperature variables and meshes.

Function importmeshs() exports meshes created with Gmsh3D function from Fipy,

by using the respective Gmsh geometric code. Function has no inputs and as outputs

gives meshes from the 9 different elements of the body. Notice that, in spite of ini-

tial values consider the 15 segments, distinguishing right from left elements, meshes

based themselves in the human body symmetry, so that left limbs of the body are equal

to right ones, reducing the number of meshes required (listing 5.26).
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1 """

2 The present code intend to setle the initial conditions of tissues

3 to the entire body.

4

5 Have the import mesh function , variable definition and the set value

function.

6 """

7

8

9 def set_values_T_t(T_t_handr , T_t_lowerarmr , T_t_upperarmr , T_t_handl ,

10 T_t_lowerarml , T_t_upperarml , T_t_footr , T_t_legr ,

11 T_t_thighr , T_t_footl , T_t_legl , T_t_thighl ,

12 T_t_trunk ,T_t_neck , T_t_head , T_t_init):

13

14 # Initial conditions Right Arm

15 Tthandr = T_t_init[0]

16 Ttlowerarmr = T_t_init[2]

17 Ttupperarmr = T_t_init[4]

18

19 # Initial Conditions of the left Arm

20 Tthandl = T_t_init[1]

21 Ttlowerarml = T_t_init[3]

22 Ttupperarml = T_t_init[5]

23

24 #Initial Conditions of the Right Leg

25 Ttfootr = T_t_init[6]

26 Ttlegr = T_t_init[8]

27 Ttthighr = T_t_init[10]

28

29 #Initial Conditions of the Left Leg

30 Ttfootl = T_t_init[7]

31 Ttlegl = T_t_init[9]

32 Ttthighl = T_t_init[11]

33

34 #Initial Conditions of the Trunk

35 Tttrunk = T_t_init[12]

36

37 #Initial Conditions of the Neck

38 Ttneck = T_t_init[13]

39

40 # Intial Conditions Of the Head

41 Tthead = T_t_init[14]

42

43 for i in range(4):

Listing 5.26: Definition of tissue temperature variables.

Tissue temperature variables are defined with function vars_Tt(). The function

simply creates cell variables using Fipy functions. As input uses the meshes that de-

scribe the physical body, and as output returns the 15 variables that are going to be

used to solve the equations of tissues and small vessels at each segment.
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Solvers

As mentioned, this is the most important folder. The routines programmed here

are dedicated to solve the mathematical expressions presented in the previous chapter.

Figure 5.7 shows the files and functions inside this folder. The functions can be divided

in 3 levels, being the higher level routines the ones that use or integrate lower level

ones. This model consider three core or basic routines, two 2nd level, and one top level,

respectively:

• T_t - calculate the spatial distributions of temperatures;

• func_t_ar - estimates temperature of arterial blood pool in a segment;

• func_t_ve - gives the temperature of venous blood pool in a segment;

• midd_body_elem - coordinate the calculus process of a body segment with two

connection (anterior and posterior);

• vazao - routine that gathers a set of functions to estimate the blood flow across

large vessels of all body segments based on the required basal tissues blood flow;

• head - functions that coordinate the heat exchange between large vessels and

small vessels and tissues of the head;

• trunk - manage core functions for the complex geometric structure and integrate

results from 5 connections.
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solvers

core

routines
T_t

func_

T_ar

func_

T_ve

vazao

2nd level

routines

midd_bo

dy_elem

head

3rd level

routines
trunk

Figure 5.7: Passive system solvers.

They have a typical structure of a function, that admits a group of variable as an

input, and return another group of variables, or the same variables “transformed”.

Function T_t models tissue temperature following the structure of calculus that

was previously tested. In other words, it solves Pennes’ bioheat equation and returns

the temperature distributed along the four tissue layers. Basically it uses the mesh

of the body element, builds the terms (listing 5.27, ln 17, 22, 27, 29), sets the thermal

properties of each tissue layer to the respective area of the mesh (listing 5.27, ln 33-45),

built equation (listing 5.27, ln 47) , solves the bioheat equation according to the time

step (listing 5.27, ln 49) and returns the matrices with the results (listing 5.27, ln 51).

1 def T_t(mesh , T_t_init , T_ar , V_sv , q_t, rho_t ,

2 c_t, k_t, rho_bl , c_bl , timeStep):

3

4 transcoeff=CellVariable(mesh=mesh , value=0.)

5

6 diffcoeff=CellVariable(mesh=mesh , value=0.)

7

8 sourcecoeff=CellVariable(mesh=mesh , value=0.)

9

10 indsourceterm = CellVariable(mesh=mesh , value=0.)

11

12 T__t = T_t_init

13
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14 for i in range(4):

15 if i==0 : string=’Bone’

16 elif i==1 : string=’Muscle’

17 elif i==2 : string=’Fat’

18 elif i==3 : string=’Skin’

19

20 transcoeff.setValue(rho_t[i]*c_t[i], where=mesh.physicalCells[string

])

21

22 diffcoeff.setValue(k_t[i] , where=mesh.physicalCells[string])

23

24 sourcecoeff.setValue(V_sv[i]*rho_bl*c_bl ,

25 where=mesh.physicalCells[string])

26

27 indsourceterm.setValue(V_sv[i]*rho_bl*c_bl*T_ar + q_t[i],

28 where=mesh.physicalCells[string])

29

30 eqX = TransientTerm(coeff=transcoeff) == (DiffusionTerm(coeff=diffcoeff)

31 - ImplicitSourceTerm(coeff=sourcecoeff) + indsourceterm)

32

33 eqX.solve(var=T__t , dt=timeStep)

34

35 return T__t

Listing 5.27: Code of temperature diffusion through tissues and small vessels.

This function might be called and used as any other function of python. Program-

ming structure allows to access the files and import respective functions, what confers

to it a modular object oriented structure. To use it, it is only necessary to fulfil the

variables as required in the code. To execute T_t(), is needed a mesh (from a body

element), a cell variable with initial values of temperature in the tissue, arterial blood

temperature at the moment of the perfusion, small vessels blood flow, endogenous

heat production of each type of tissue, and a time step.

1 def T_t_head(mesh , T_t_init , T_ar , V_sv , q_t, rho_t ,

2 c_t, k_t, rho_bl , c_bl , timeStep):

3

4 transcoeff=CellVariable(mesh=mesh , value=0.)

5

6 diffcoeff=CellVariable(mesh=mesh , value=0.)

7

8 sourcecoeff=CellVariable(mesh=mesh , value=0.)

9

10 indsourceterm = CellVariable(mesh=mesh , value=0.)

11

12 T__t = T_t_init

13

14 for i in range(5):

15 if i==0 : string=’Bone’

16 elif i==1 : string=’Muscle’
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17 elif i==2 : string=’Fat’

18 elif i==3 : string=’Skin’

19 elif i==4 : string=’Brain’

20

21 transcoeff.setValue(rho_t[i]*c_t[i], where=mesh.physicalCells[string

])

22

23 diffcoeff.setValue(k_t[i] , where=mesh.physicalCells[string])

24

25 sourcecoeff.setValue(V_sv[i]*rho_bl*c_bl ,

26 where=mesh.physicalCells[string])

27

28 indsourceterm.setValue(V_sv[i]*rho_bl*c_bl*T_ar + q_t[i],

29 where=mesh.physicalCells[string])

30

31 eqX = TransientTerm(coeff=transcoeff) == (DiffusionTerm(coeff=diffcoeff)

32 - ImplicitSourceTerm(coeff=sourcecoeff) + indsourceterm)

33

34 eqX.solve(var=T__t , dt=timeStep)

35

36 return T__t

Listing 5.28: Code of temperature diffusion through tissues and small vessels of the
head.

As head and trunk have different tissue composition, two extra function were cre-

ated. Function T_t_head is composed by 5 different types of tissues but variables

remain the same from layer to layer and the structure of T_t function remains (list-

ing 5.28.

In T_t_trunk (listing 5.29) it is necessary to redefine equation terms , in particular

the indsourceterm (listing 5.29, ln 27), where tissue temperature depends on venous

temperature (T_ve), instead of arterial temperature (T_ar), and respective venous flow

to the lungs (that is stored at V_ve as CO per unit of volume).

1 def T_t_trunk(mesh , T_t_init , T_ar , T_ve , V_sv , q_t, rho_t ,

2 c_t, k_t, rho_bl , c_bl , timeStep):

3

4 transcoeff=CellVariable(mesh=mesh , value=0.)

5

6 diffcoeff=CellVariable(mesh=mesh , value=0.)

7

8 sourcecoeff=CellVariable(mesh=mesh , value=0.)

9

10 indsourceterm = CellVariable(mesh=mesh , value=0.)

11

12 T__t = T_t_init

13

14 for i in range(6):
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15 if i==0 : string=’Bone’

16 elif i==1 : string=’Muscle’

17 elif i==2 : string=’Fat’

18 elif i==3 : string=’Skin’

19 elif i==4 : string=’Heart’

20 elif i==5 : string=’Viscera’

21

22 transcoeff.setValue(rho_t[i]*c_t[i], where=mesh.physicalCells[string

])

23

24 diffcoeff.setValue(k_t[i] , where=mesh.physicalCells[string])

25

26 sourcecoeff.setValue(V_sv[i]*rho_bl*c_bl ,

27 where=mesh.physicalCells[string])

28

29 indsourceterm.setValue(V_sv[i]*rho_bl*c_bl*T_ar + q_t[i],

30 where=mesh.physicalCells[string])

31

32 transcoeff.setValue(rho_t[6]*c_t[6], where=mesh.physicalCells[’Lung’])

33

34 diffcoeff.setValue(k_t[6] , where=mesh.physicalCells[’Lung’])

35

36 sourcecoeff.setValue(V_sv[6]*rho_bl*c_bl , where=mesh.physicalCells[’Lung

’])

37

38 indsourceterm.setValue(V_sv[6]*rho_bl*c_bl*T_ve + q_t[6],

39 where=mesh.physicalCells[’Lung’])

40

41 eqX = TransientTerm(coeff=transcoeff) == (DiffusionTerm(coeff=diffcoeff)

-

42 ImplicitSourceTerm(coeff=sourcecoeff) +

indsourceterm)

43

44 eqX.solve(var=T__t , dt=timeStep)

45

46 return T__t

Listing 5.29: Code of temperature diffusion through tissues and small vessels.

By looking at the variable used in each function, it becomes clear the order or

calculus and function’s dependency.

On the other hand, T_ar is dedicated to predict arterial temperature over the time.

It needs the actual mean values of the arterial and venous reservoirs of the body seg-

ment, the quantity of blood that comes in, the volume of the arterial blood pool at

the moment, a theoretical coefficient of convective heat exchange between arterial and

venous reservoirs and finally, once again, the time step for the calculus.

1 def T_ar(T_ar_init , T_ar_in , T_ve_init , H_av , V_ar ,

2 Vol_ar , rho_bl , c_bl , timeStep):
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3

4 def derivtar(T__ar ,t): # return derivatives of the array T_ar

5 return (V_ar*rho_bl*c_bl*(T_ar_in -T__ar[0])+

6 H_av*(T_ve_init -T__ar[0]))/(Vol_ar*rho_bl*c_bl)

7

8 time = linspace(0.0,timeStep ,2)

9

10 T__ar = odeint(derivtar ,T_ar_init ,time)

11

12 return T__ar[-1]

Listing 5.30: Function that predicts mean arterial temperature of a segments’ pool.

This simple code creates a derivative function of arterial temperature (listing 5.30,

ln 6-7) and uses a SciPy solver routine (odeint) to integrate the function in order to

time, using initial conditions to achieve a single result (listing 5.30, ln 11). To allow

synchronization, time is defined as a vector of size 2, beginning at 0 and ending at

timestep (listing 5.30, ln 19). Outcome solution is defined by T__ar in pair with the

vector t.

It is important to underline the fact that a complete human thermal model, as de-

scribed in model design chapter, uses non-steady H_av, V_ar and Vol_ar variables. The

artery volume Vol_ar comes from the length of the arterial branch (that depends on

individual characteristics) and the radii. Arteries radii change over the time depend-

ing on Cardiac Output and biologic active response to the environment, as stated by

Fu (1995), and implemented by Salloum et al. (2007) and Karaki et al. (2013). Cardiac

output is calculated based on skin and core temperatures and the final values allow to

calculate arteries radii. This belongs to cardiovascular response of large vessels mod-

elling. Blood supply that goes from one element to another (represented by V_ar), de-

pends directly on the cardiac output distribution and large artery radii that are input

values in Avolio (1980) cardiovascular model that after impedances calculated allow to

determine the velocity of blood along the arterial branches of the vascular net. Blood

supply decrease or increase in arterio-venous anastomoses constriction and dilations,

as skin blood flow, is predicted though the Avolio (1980) cardiovascular model, in-

cluding the adaptations imposed by heat and exercise loads described by Rowell et al.

(1965). However this part is included in small vessels blood supply defined in T_t

function as V_sv variable.
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The arterial temperature at the trunk does not depends on the same variable that

the ones at limbs and head. To estimate this value T_ar_trunkwas created(listing 5.31).

1 def T_ar_trunk(T_ar_init , T_t_trunk , Vazao_sv_lung ,

2 Vol_ar , rho_bl , c_bl , timeStep):

3

4 T_lung_V_lung = sum(T_t_trunk*Vazao_sv_lung)

5 V_ar = sum(Vazao_sv_lung)

6

7 def derivtar(T__ar ,t): # return derivatives of the array T_ar

8 return (rho_bl*c_bl*(T_lung_V_lung -V_ar*T__ar[0]))/(Vol_ar*rho_bl*

c_bl)

9

10 time = linspace(0.0,timeStep ,2)

11

12 T__ar = odeint(derivtar ,T_ar_init ,time)

13

14 return T__ar[-1]

Listing 5.31: Function that predicts mean arterial temperature of a trunk’s pool.

At the trunk, blood flows from central venous reservoir to the lungs, became arter-

ial blood and gets in arterial reservoir. This implies that final temperature of the pool

depends on initial temperature, and temperature of the lung and respective blood

flow. This works as temperature of the tissues. The array vazao_sv_lung, has the

same size and shape of T_t_trunk, but all cell flows which do not belong to lungs are

null. With the blood flow at each cell multiplied by the mean temperate at that cell

volume, results a weighed temperature of all cells of the lung volume that depends

on the size of the cell. As described by Ferreira and Yanagihara (2009) heat exchange

between large vessels is not considered at the trunk nor the head.

Function T_ve (listing 5.33) predicts venous temperature. In its structure it is more

complex than func_T_ar. It not only depends on initial value of venous blood temper-

ature T_ve_init, venous blood temperature that comes in from the posterior element

T_ve_in, volume of venous reservoirVol_ve, venous blood flow that comes from the

posterior element V_ve_in and heat transfer coefficient between arteries and veins for

a segment H_av, but also depends on temperature (T_t) and flow of venous blood that

come from the 4 layers of tissue (Val_sv). Remember that final temperature in the ven-

ous reservoir of a segment is a weighted result of the several amounts of blood and

respective temperatures that come into the reservoir.
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1 def T_ve(T_ve_init , T_t, T_ar , T_ve_in , Vol_ve , V_ve_in , H_av , Vazao_sv ,

2 rho_bl , c_bl , timeStep):

3

4 sum_Vsv_Tmt = sum(Vazao_sv*T_t.value)

5

6 V_ve = V_ve_in + sum(Vazao_sv)

7

8 def derivtve(T__ve ,t): # return derivatives of the array T_ve

9 return (rho_bl*c_bl*(sum_Vsv_Tmt+V_ve_in*T_ve_in -V_ve*T__ve[0])+

10 H_av*(T_ar -T__ve[0]))/(Vol_ve*rho_bl*c_bl)

11

12 time = linspace(0.0,timeStep ,2)

13

14 T__ve = odeint(derivtve ,T_ve_init ,time)

15

16 return T__ve[-1]

Listing 5.32: Function that predicts mean venous temperature of a segments’ pool.

First it is imported the volume of the cells from the cell variable T_t (listing 5.33,

ln 3). The calculation of the amount of blood is given by the product of the predicted

tissue blood flow (V_sv) and the volumes of cells (Cell_vol). The created variable

(Vazao_sv) is a matrix (with the same dimension and position code of the tissue tem-

perature variable T_t) of values with the amount of blood that goes into venous reser-

voir from each cell compartment (listing 5.33, ln 17). Contribution of each cell to the

final venous temperature T__ve, is given though the product of the amount of blood

that come from each cell , by the respective mean temperature value of the cell. The

relation between venous blood flow V_ve that exits a compartment, and venous blood

flow that come in from a posterior segment V_ve_in, is necessary to solve the differ-

ential equation (4.6), and is here defined in listing 5.33, line 24. With constants and

variables defined, the next step consists in solving the diferential equation by defining

a function of the derivative of array T__ve (listing 5.33, ln 29-30), create the time vector

for the needed time results (listing 5.33, ln 32), and solve the equation with odeint

function, by giving the initial conditions (listing 5.33, ln 34). Delivered values are the

time and temperature vectors, plus the output blood flow (listing 5.33, ln 36).

These are the main function of the model but they cannot be applied to the trunk.

As pools in trunk are considered core nodes, they are modelled inside of the element

trunk. In the trunk, the distribution of the blood to the lungs, trunk tissues, head and

limbs, and the recover from all of those elements, justifies the creation of new object to
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manage all the elements.

1 def T_ve_trunk(T_ve_init , T_t, T_ve_in_armr , T_ve_in_arml , T_ve_in_legr ,

2 T_ve_in_legl , T_ve_in_head , Vol_ve , V_ve_in_armr ,

V_ve_in_arml ,

3 V_ve_in_legr , V_ve_in_legl , V_ve_in_head , Vazao_sv , rho_bl ,

4 c_bl , timeStep):

5

6 sum_Vsv_Tmt = sum(Vazao_sv*T_t.value)

7 V_ve = (sum(V_ve_in_armr) + sum(V_ve_in_arml) + sum(V_ve_in_legr) +

8 sum(V_ve_in_legl) +

9 sum(V_ve_in_head) + sum(Vazao_sv))

10

11 def derivtve(T__ve ,t): # return derivatives of the array T_ve

12 return (rho_bl*c_bl*(sum_Vsv_Tmt + V_ve_in_armr*T_ve_in_armr +

13 V_ve_in_arml*T_ve_in_arml + V_ve_in_legr*T_ve_in_legr +

14 V_ve_in_legl*T_ve_in_legl + V_ve_in_head*T_ve_in_head -

15 V_ve*T__ve[0]))/(Vol_ve*rho_bl*c_bl)

16

17 time = linspace(0.0,timeStep ,2)

18

19 T__ve = odeint(derivtve ,T_ve_init ,time)

20

21 return T__ve[-1]

Listing 5.33: Function that predicts mean venous temperature of a trunk’s pool.

Function T_ve_trunk (listing 5.33), responds to the specific need of trunk’s venous

pool. It includes the venous flows from the 5 connections, heat, arms and legs, plus

the venous blood that come from the trunk tissues, with the exception of the lungs.

To the venous core reservoir at the trunk, lungs are seen as the single volume receptor

that links to arterial core pool.

Second level functions integrate basic functions. The information they use as in-

put, is the same that they need to give to basic functions. Their role is mainly dedicated

to organize the sequence of calculus.

1 def body_elem(T_ar_init , mesh , T_t_init , V_sv , q_t, rho_t , c_t, k_t, T_ar_in

,

2 T_ve_init , H_av , V_ar_in , Vol_ar , rho_bl , c_bl , T_ve_in ,

Vol_ve ,

3 V_ve_in , Vazao_sv , timeStep):

4

5 Tar = func_T_ar.T_ar(T_ar_init , T_ar_in , T_ve_init , H_av , V_ar_in ,

Vol_ar ,

6 rho_bl , c_bl , timeStep)

7

8 Tt = T_t.T_t(mesh , T_t_init , Tar, V_sv , q_t, rho_t , c_t, k_t, rho_bl ,
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9 c_bl , timeStep)

10

11 Tve = func_T_ve.T_ve(T_ve_init , Tt, Tar, T_ve_in , Vol_ve , V_ve_in , H_av ,

12 Vazao_sv , rho_bl , c_bl , timeStep)

13

14 return Tar, Tt, Tve

Listing 5.34: Function that models the body segments with the exception of trunk and
head.

Beginning with body_elem, this functions is used to simulate the thermal beha-

viour of middle elements at limbs and neck. Starts by calculating the arterial blood

temperature in the segment, that temperature is used as an input to the function that

calculates the tissue temperature, and the respective results are used to calculate the

contribution of cell tissue temperature to the final temperature of venous blood.

The only difference to use of body_elem routine to model an end segment, is that at

the extremities, approximately all arterial blood goes to the tissues, and all the venous

blood come from the tissues. In other words, the link between artery and vein is done

through tissues and small vessels. In practice the V_ve_in variable was settled as null

value, respective venous temperature T_ve_in too. As output, are the same temperat-

ure variables, but they only depend on arterial blood at entry, venous blood that goes

out, tissues and respective boundaries.

1 def Vazao_sv(mesh , V_sv):

2 # Cell Volume

3 Cell_vol = mesh.cellVolumes

4

5 # Calculation of the volumes of flow

6 Val_sv = CellVariable(mesh=mesh , value=0.)

7

8 # Flow Matrix per unit of volume

9 for i in range(4):

10 if i==0 : string=’Bone’

11 elif i==1 : string=’Muscle’

12 elif i==2 : string=’Fat’

13 elif i==3 : string=’Skin’

14 Val_sv.setValue(V_sv[i] , where=mesh.physicalCells[string])

15

16 # Tissues Blood Flow

17 Vazao_sv = Val_sv.value * Cell_vol # Final Flow of each compartment of

each cell in m^3/s

18

19 return Vazao_sv

20

21 def Vazao_sv_lung(mesh , V_sv):
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22 # Cell Volume

23 Cell_vol = mesh.cellVolumes

24

25 # Calculation of the volumes of flow

26 Val_sv = CellVariable(mesh=mesh , value=0.)

27

28 # Flow Matrix per unit of volume

29 Val_sv.setValue(V_sv[6] , where=mesh.physicalCells[’Lung’])

30

31 # Tissues Blood Flow

32 Vazao_sv = Val_sv.value * Cell_vol # Final Flow of each compartment of

each cell in m^3/s

33

34 return Vazao_sv

35

36 def Vazao_sv_trunk(mesh , V_sv):

37 # Cell Volume

38 Cell_vol = mesh.cellVolumes

39

40 # Calculation of the volumes of flow

41 Val_sv = CellVariable(mesh=mesh , value=0.)

42

43 # Flow Matrix per unit of volume

44 for i in range(4):

45 if i==0 : string=’Bone’

46 elif i==1 : string=’Muscle’

47 elif i==2 : string=’Fat’

48 elif i==3 : string=’Skin’

49 elif i==4 : string=’Heart’

50 elif i==5 : string=’Viscera’

51 Val_sv.setValue(V_sv[i] , where=mesh.physicalCells[string])

52

53 # Tissues Blood Flow

54 Vazao_sv = Val_sv.value * Cell_vol # Final Flow of each compartment of

each cell in m^3/s

55

56 return Vazao_sv

57

58

59 def Vazao_sv_head(mesh , V_sv):

60 # Cell Volume

61 Cell_vol = mesh.cellVolumes

62

63 # Calculation of the volumes of flow

64 Val_sv = CellVariable(mesh=mesh , value=0.)

65

66 # Flow Matrix per unit of volume

67 for i in range(4):

68 if i==0 : string=’Bone’

69 elif i==1 : string=’Muscle’

70 elif i==2 : string=’Fat’

71 elif i==3 : string=’Skin’

72 elif i==4 : string=’Brain’

73 Val_sv.setValue(V_sv[i] , where=mesh.physicalCells[string])

74

75 # Tissues Blood Flow
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76 Vazao_sv = Val_sv.value * Cell_vol # Final Flow of each compartment of

each cell in m^3/s

77

78 return Vazao_sv

Listing 5.35: Functions to found amount of blood that flows through out a cell.

For last, the routine vazao is composed by 6 functions. The amount of blood that

flows from one element to another is considered to be dependent on the tissue/body

local blood supply requirements. Initial values found in literature give the amount of

blood required per type of tissue per unit of volume. The first 4 functions Vazao_sv,

Vazao_sv_lung, Vazao_sv_head, Vazao_sv_trunk give the amount of blood that flows

per cell. To found the total amount of blood that comes from each cell, the flow per unit

of volume was multiplied by the cell volume. The result are matrices with the same

size and shape of body meshes. Considering, once again, the differences in structure

of trunk and head, specific function were made for them. As lungs are not seen as

equal part of the trunk, extra variable was defined to lungs blood flow.

1 def Vazao_sv_seg(hand , lowerarm , upperarm , foot , leg, thigh , trunk , neck ,

head ,

2 V_sv):

3 vazao_sv_handr = Vazao_sv(hand , V_sv[0])

4 vazao_sv_lowerarmr = Vazao_sv(lowerarm , V_sv[2])

5 vazao_sv_upperarmr = Vazao_sv(upperarm , V_sv[4])

6 vazao_sv_handl = Vazao_sv(hand , V_sv[1])

7 vazao_sv_lowerarml = Vazao_sv(lowerarm , V_sv[3])

8 vazao_sv_upperarml = Vazao_sv(upperarm , V_sv[5])

9 vazao_sv_footr = Vazao_sv(foot , V_sv[6])

10 vazao_sv_legr = Vazao_sv(leg, V_sv[8])

11 vazao_sv_thighr = Vazao_sv(thigh , V_sv[10])

12 vazao_sv_footl = Vazao_sv(foot , V_sv[7])

13 vazao_sv_legl = Vazao_sv(leg, V_sv[9])

14 vazao_sv_thighl = Vazao_sv(thigh , V_sv[11])

15 vazao_sv_trunk = Vazao_sv_trunk(trunk , V_sv[12])

16 vazao_sv_lung = Vazao_sv_lung(trunk , V_sv[12])

17 vazao_sv_neck = Vazao_sv(neck , V_sv[13])

18 vazao_sv_head = Vazao_sv_head(head , V_sv[14])

19 return (vazao_sv_upperarmr , vazao_sv_lowerarmr , vazao_sv_handr ,

20 vazao_sv_upperarml , vazao_sv_lowerarml , vazao_sv_handl ,

21 vazao_sv_thighr , vazao_sv_legr , vazao_sv_footr , vazao_sv_thighl ,

22 vazao_sv_legl , vazao_sv_footl , vazao_sv_trunk , vazao_sv_neck ,

23 vazao_sv_lung , vazao_sv_head)

24

25 def V_ar_ve_in(Vazao_sv_upperarmr , Vazao_sv_lowerarmr , Vazao_sv_handr ,

26 Vazao_sv_upperarml , Vazao_sv_lowerarml , Vazao_sv_handl ,

27 Vazao_sv_thighr , Vazao_sv_legr , Vazao_sv_footr ,

Vazao_sv_thighl ,
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28 Vazao_sv_legl , Vazao_sv_footl , Vazao_sv_trunk , Vazao_sv_neck ,

29 Vazao_sv_lung , Vazao_sv_head):

30 V_ve = [0.,0.,

31 sum(Vazao_sv_handr),sum(Vazao_sv_handl),

32 sum(Vazao_sv_lowerarmr)+sum(Vazao_sv_handr),

33 sum(Vazao_sv_lowerarml)+sum(Vazao_sv_handl),

34 0.,0.,sum(Vazao_sv_footr),sum(Vazao_sv_footl),

35 sum(Vazao_sv_legr)+sum(Vazao_sv_footr),

36 sum(Vazao_sv_legl)+sum(Vazao_sv_footl),

37 [sum(Vazao_sv_upperarmr)+sum(Vazao_sv_lowerarmr)+sum(

Vazao_sv_handr),

38 sum(Vazao_sv_upperarml)+sum(Vazao_sv_upperarml),

39 sum(Vazao_sv_thighr)+sum(Vazao_sv_legr)+sum(Vazao_sv_footr),

40 sum(Vazao_sv_thighl)+sum(Vazao_sv_legl)+sum(Vazao_sv_footl),

41 sum(Vazao_sv_neck)+sum(Vazao_sv_head)],

42 sum(Vazao_sv_head), 0.]

43 V_ar = [sum(Vazao_sv_handr), sum(Vazao_sv_handl),

44 sum(Vazao_sv_lowerarmr)+sum(Vazao_sv_handr),

45 sum(Vazao_sv_lowerarml)+sum(Vazao_sv_handl),

46 sum(Vazao_sv_upperarmr)+sum(Vazao_sv_lowerarmr)+sum(

Vazao_sv_handr),

47 sum(Vazao_sv_upperarml)+sum(Vazao_sv_lowerarml)+sum(

Vazao_sv_handl),

48 sum(Vazao_sv_footr),sum(Vazao_sv_footl),

49 sum(Vazao_sv_legr)+sum(Vazao_sv_footr),

50 sum(Vazao_sv_legl)+sum(Vazao_sv_footl),

51 sum(Vazao_sv_thighr)+sum(Vazao_sv_legr)+sum(Vazao_sv_footr),

52 sum(Vazao_sv_thighl)+sum(Vazao_sv_legl)+sum(Vazao_sv_footl),

53 sum(Vazao_sv_lung),sum(Vazao_sv_neck)+sum(Vazao_sv_head),

54 sum(Vazao_sv_head)]

55 return V_ar , V_ve

Listing 5.36: Second level functions to found flows matrices per segment and arterial
an venous flow that get in a segment.

With the 4 basic blood flow functions are built the flow matrices for each body

element with the function Vazao_sv_seg. The output matrices that come from this

function are used as input in V_ar_ve to found the specific amount of blood that goes

from one segment to the other. The output matrices represent the venous and arterial

flows at an entry of a segment. That is why V_ve at hands and feet is settled as null.

Data

Data folder is where data is saved and where routines for saving tissue temper-

ature files are placed. Save file is composed by two functions save_T_t_init and

save_T_t. One to save initial temperature values at ′0seconds′ and other to save files

inside the cycle of calculus. Functions save_T_t is the generic version exemplified
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here in listing 5.37,it receives tissues temperature cell variables, from all 15 segments,

as input, and saves them in ‘.tsv’ format using a Fipy function named TSVViewer. The

name of the file is composed by the name of the segment and the time of simulation

calculated inside the cycle as savestep variable.

1 def save_T_t(T_t_handr , T_t_lowerarmr , T_t_upperarmr , T_t_handl ,

2 T_t_lowerarml , T_t_upperarml , T_t_footr , T_t_legr ,

3 T_t_thighr , T_t_footl , T_t_legl , T_t_thighl ,

4 T_t_trunk , T_t_neck , T_t_head , savestep):

5 str = repr(savestep) + ’s’

6 TSVViewer(vars=T_t_handr).plot(filename=T_t_handr.name + str)

7 TSVViewer(vars=T_t_lowerarmr).plot(filename=T_t_lowerarmr.name + str)

8 TSVViewer(vars=T_t_upperarmr).plot(filename=T_t_upperarmr.name + str)

9 TSVViewer(vars=T_t_handl).plot(filename=T_t_handl.name + str)

10 TSVViewer(vars=T_t_lowerarml).plot(filename=T_t_lowerarml.name + str)

11 TSVViewer(vars=T_t_upperarml).plot(filename=T_t_upperarml.name + str)

12 TSVViewer(vars=T_t_footr).plot(filename=T_t_footr.name + str)

13 TSVViewer(vars=T_t_legr).plot(filename=T_t_legr.name + str)

14 TSVViewer(vars=T_t_thighr).plot(filename=T_t_thighr.name + str)

15 TSVViewer(vars=T_t_footl).plot(filename=T_t_footl.name + str)

16 TSVViewer(vars=T_t_legl).plot(filename=T_t_legl.name + str)

17 TSVViewer(vars=T_t_thighl).plot(filename=T_t_thighl.name + str)

18 TSVViewer(vars=T_t_trunk).plot(filename=T_t_trunk.name + str)

19 TSVViewer(vars=T_t_neck).plot(filename=T_t_neck.name + str)

20 TSVViewer(vars=T_t_head).plot(filename=T_t_head.name + str)

Listing 5.37: Function used to save tissue temperature variables.

Viewers

Viewers are routines that allow to manage the data and display it. CellVariable

objects could be plot directly using routines from fipy but, when scale up was done,

it become more difficult to manage the results as desired. So here, the solution was to

built functions to view and update the data during the simulation process.

The most complex function was developed to convert the data from CellVariable

object to a readable format in Mayavi it calls my_grid (listing 5.38).

1 def my_grid(T_t):

2

3 cell_num = int(T_t.mesh.numberOfCells)

4 points=T_t.mesh.vertexCoords

5

6 vertex_numb = int(size(points)/len(points))

7
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8 vertex_points = [[row[i] for row in points] for i in range(vertex_numb)]

9

10 del points

11

12 cells=T_t.mesh._orderedCellVertexIDs.data

13

14 vertex_ids = [[row[i] for row in cells] for i in range(int(cells.size/

len(cells)))]

15

16 del cells , row

17

18 [vertex_ids[i].insert(0,len(vertex_ids[i])-vertex_ids[i].count(-1)) for

i in range(cell_num)];

19

20

21 num=[]

22 [num.append(vertex_ids[i][0]) for i in range(cell_num)];

23

24

25 vertex_ids = [numb for elem in vertex_ids for numb in elem] # flatten

the list

26 count = vertex_ids.count(-1)

27 [vertex_ids.remove(-1) for i in range(count)]; # remove -1

28

29 del elem

30

31

32 offset = []

33 c=0

34 for i in range(cell_num):

35 offset.append(c)

36 c=c+num[i]+1

37

38 hex_type = tvtk.Hexahedron().cell_type

39 pen_type = tvtk.Wedge().cell_type

40 cell_types=[]

41

42 for i in range(cell_num):

43 if num[i] == 8: type = hex_type

44 elif num[i] == 6: type = pen_type

45 cell_types.append(type)

46 #create cell_array data , firts number is numper of vertices of the cell

47 #and the next point give the vertex ids

48 cell_array = tvtk.CellArray()

49 cell_array.set_cells(cell_num , vertex_ids)

50 # Now create the UG.

51 ug = tvtk.UnstructuredGrid(points=vertex_points)

52 # Now just set the cell types and reuse the ug locations and cells.

53 ug.set_cells(cell_types , offset , cell_array)

54 scalars = T_t.value

55 ug.cell_data.scalars = scalars

56 ug.cell_data.scalars.name = ’Temperature Distribution’

57

58 return ug

Listing 5.38: Data conversion into tvtk unstructured grid type.
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Basically this function only needs a cell variable as input. First 25 lines of code are

dedicated to pick cell vertex identifiers and reorganize the matrix values to match the

requirements of Cell_Array function of tvtk library. Then the two for... in... cycles are

used to create the arrays offset (the offsets for the cells, i.e. the indices where the cells

start), and cell_types (array that defines the type of cells in the grid). This function

was created to deal specifically with hexahedrons and wedges cell types only. The ug

variable is an unstructured grid created to be defined through vertex_points. The

object properties allow to set the cell types, and reuse ug locations to set the scalars

and respective name.

Much simpler its the functions used to visualize the Mayavi scene and display the

dataset in it (listing 5.39).

1 def view(dataset):

2 """ Open up a mayavi scene and display the dataset in it.

3 """

4 fig = mlab.figure(bgcolor=(1, 1, 1), fgcolor=(0, 0, 0),

5 figure=dataset.cell_data.scalars.name)

6 surf = mlab.pipeline.surface(dataset , opacity=1, colormap=’jet’,

7 vmax=38., vmin= 33.)

8 mlab.colorbar(surf , title=’Temperature’,nb_labels=5)

9

10 return fig

Listing 5.39: Dataset displayer for three dimensional data.

The sequence of commands (listing 5.39) creates the figure, defines the surface to

plot and finally settles the colorbar legend. Several parameters can be redefined such

background colour, figure colour, opacity of the plotted grid, colour map used to scale

temperature in the grid, boundaries of values to which temperature is plotted, and so

on.

Finally the other type of functions considered in the viewers are the updaters.

Function update3D is used to, during the simulation process, update the values of

tissue temperatures(listing 5.40).

1 def update3D(dataset , filename , arr):

2

3 dataset.cell_data.scalars=arr

4 dataset.cell_data.scalars.name = filename

5 dataset.modified()
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Listing 5.40: Updater of tissues temperatures values of a segment.

On other hand, the updater update_tar_tve function repeats a sequence of code

used to actualize the data vectors tar and tve of all body elements, by adding the last

calculated value (listing 5.41).

1 def update_tar_tve(timestep , t, T_ar_handr , T_ar_handl , T_ar_lowerarmr ,

2 T_ar_lowerarml , T_ar_upperarmr , T_ar_upperarml ,

3 T_ar_footr ,T_ar_footl , T_ar_legr , T_ar_legl ,

4 T_ar_thighr , T_ar_thighl , T_ar_trunk , T_ar_neck ,

5 T_ar_head , T_ve_handr , T_ve_handl , T_ve_lowerarmr ,

6 T_ve_lowerarml , T_ve_upperarmr , T_ve_upperarml ,

7 T_ve_footr ,T_ve_footl , T_ve_legr ,T_ve_legl ,

8 T_ve_thighr ,T_ve_thighl , T_ve_trunk , T_ve_neck ,

9 T_ve_head , tar_handr , tar_lowerarmr , tar_upperarmr ,

10 tar_handl , tar_lowerarml , tar_upperarml , tar_footr ,

11 tar_legr , tar_thighr , tar_footl , tar_legl , tar_thighl ,

12 tar_trunk , tar_neck , tar_head , tve_handr , tve_lowerarmr ,

13 tve_upperarmr , tve_handl , tve_lowerarml , tve_upperarml ,

14 tve_footr , tve_legr , tve_thighr , tve_footl , tve_legl ,

15 tve_thighl , tve_trunk , tve_neck , tve_head):

16

17 tar_handr.append(T_ar_handr)

18 tar_lowerarmr.append(T_ar_lowerarmr)

19 tar_upperarmr.append(T_ar_upperarmr)

20 tar_handl.append(T_ar_handl)

21 tar_lowerarml.append(T_ar_lowerarml)

22 tar_upperarml.append(T_ar_upperarml)

23 tar_footr.append(T_ar_footr)

24 tar_legr.append(T_ar_legr)

25 tar_thighr.append(T_ar_thighr)

26 tar_footl.append(T_ar_footl)

27 tar_legl.append(T_ar_legl)

28 tar_thighl.append(T_ar_thighl)

29 tar_trunk.append(T_ar_trunk)

30 tar_neck.append(T_ar_neck)

31 tar_head.append(T_ar_head)

32 tve_handr.append(T_ve_handr)

33 tve_lowerarmr.append(T_ve_lowerarmr)

34 tve_upperarmr.append(T_ve_upperarmr)

35 tve_handl.append(T_ve_handl)

36 tve_lowerarml.append(T_ve_lowerarml)

37 tve_upperarml.append(T_ve_upperarml)

38 tve_footr.append(T_ve_footr)

39 tve_legr.append(T_ve_legr)

40 tve_thighr.append(T_ve_thighr)

41 tve_footl.append(T_ve_footl)

42 tve_legl.append(T_ve_legl)

43 tve_thighl.append(T_ve_thighl)

44 tve_trunk.append(T_ve_trunk)

45 tve_neck.append(T_ve_neck)
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46 tve_head.append(T_ve_head)

47 t.append(t[-1]+timestep)

Listing 5.41: Updater of the venous and arterial temperature of segments.

Data vectors created by update_tar_tve function plotted and saved by fig_bl

function of viewer2D routine. It uses a single couple of tar, tve and respective de-

scription name, to create a plot (listing 5.42).

1 def fig_bl(t, tar, tve, name):

2

3 figure(num="Blood Temperatures", figsize=(7, 5), dpi=100, facecolor=’w’,

edgecolor=’w’)

4 plot(t,tar, ’r-’,label=name + ’$\, Arterial \, Blood \, Temp$’)

5 plot(t,tve,’b-’, label=name + ’$\, Venous \, Blood \, Temp$’)

6 legend(fontsize=’large’,loc=4)

7 xlabel(r’$t\,(s)$’, fontsize=15)

8 ylabel(r’${Temp.}\,(\,^{\circ}{C}\,)}$’, fontsize=14)

9 ylim(35.,38.)

10 xlim(0,250)

11 savefig(’tartve.png’)

Listing 5.42: Function that creates and save the plots of arterial and venous
temperatures over the time.

As the data set generated during the simulation grows, the process of visualization

needs to be settled apart from the calculation. Final version of the program was then

divided the simulation in two stages. First stage was dedicated to the calculation or

simulation process. Results were generated and saved in separate folder called data.

Other stage is optional and can be done in separate moment, only to visualize the

saved data, it is data animation. Listing 5.43 is basic 3D routine dedicated to create the

animated view of the temperature change in a body segment over the time.

1 def anim_T_t(T_t, steps):

2

3 dataset = my_grid(T_t)

4 view(dataset)

5

6 for step in range(steps):

7

8 savestep = step*20+20

9

10 strn= T_t.name +repr(savestep)+’s’

11

12 foo = open(str, ’r’)

13 arr = numpy.loadtxt(foo, skiprows = 2, dtype = ’f8’, usecols = [3] )
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14 foo.close()

15

16 update3D(dataset , strn , arr)

17

18 sleep(1)

19 print strn

20

21 if __name__ == ’__main__’:

22

23 name = raw_input("Input segment name...")

24 time = raw_input("Input simulation time...")

25

26 T_t = CellVariable(name=name ,

27 mesh=Gmsh3D(’geometries/’+ name +’.geo’), value=0.)

28 anim_T_t(T_t, time)

Listing 5.43: Function that creates and save the plots of arterial and venous
temperatures over the time.

First two lines of code use my_grid and view function to create the figure and plot

the initial values, then the for...in... loop opens the saved data and updates the

viewer. Simulation time value is also printed. If file runs as main code, it asks inform-

ation about segment to visualize and the period to see (listing 5.43).

Main File

Main file is the file, as mentioned, is the responsible to manage all the information.

Constants and initial values are defined here as array variables, whose elements are

used as inputs in solver functions. All the constants, initial values and boundaries are

imported from the respective folders.

1

2 from fipy import *

3 from viewers.update import update_tar_tve

4 from viewers.viewer3D import my_grid , view

5 from matplotlib.pyplot import *

6 from pylab import *

7 from solvers.midd_body_elem import body_elem

8 from solvers.trunk import trunk

9 from solvers.head import head

10 from solvers.vazao import Vazao_sv_seg , V_ar_ve_in

11 from meshes.meshes import importmeshs

12 from variables.vars_T_t import vars_Tt

13 from initials.set_values import set_values_T_t , set_values_Tar ,

set_values_Tve

14 from initials.initial_cond import (import_init_temp , import_V_basal ,

15 import_constants , import_vol_ar_ve ,
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16 import_q_t)

17 from boundaries.b_values import bvalues

18 from boundaries.bound_cond import frontsidecells , sidecells , topsidecells

19 from boundaries.set_bounds import set_bounds

Listing 5.44: Main file ‘header’ with an itemization of used routines.

Using the typical structure of python code, first lines are dedicated to import librar-

ies and routines used in main code (listing 5.44). As in the simpler versions, the steps

to proceed the calculus are import/set initial conditions, import meshes and define

variables (listing 5.45).

1 #=========================================================================

2 # Initial Conditions - initial values can, and should ,

3 # be settled to each element at a time

4

5 T_ar_init , T_ve_init , T_t_init = import_init_temp()

6

7 #=========================================================================

8 # Import Meshes and set and save initial values

9 (hand , lowerarm , upperarm , foot ,

10 leg, thigh , trunk , neck , head) = importmeshs()

11

12 # Create Variables

13 (T_t_handr , T_t_lowerarmr ,

14 T_t_upperarmr , T_t_handl ,

15 T_t_lowerarml , T_t_upperarml ,

16 T_t_footr , T_t_legr , T_t_thighr ,

17 T_t_footl , T_t_legl , T_t_thighl ,

18 T_t_trunk , T_t_neck , T_t_head) = vars_Tt(hand , lowerarm , upperarm , foot ,

19 leg, thigh , trunk , neck , head)

20

21 # Set initial conditions to tissues

22 set_values_T_t(T_t_handr , T_t_lowerarmr , T_t_upperarmr , T_t_handl ,

23 T_t_lowerarml , T_t_upperarml , T_t_footr , T_t_legr ,

24 T_t_thighr , T_t_footl , T_t_legl , T_t_thighl ,

25 T_t_trunk , T_t_neck , T_t_head , T_t_init)

26

27 # Save the data

28 save_T_t_init(T_t_handr , T_t_lowerarmr , T_t_upperarmr , T_t_handl ,

29 T_t_lowerarml , T_t_upperarml , T_t_footr , T_t_legr ,

30 T_t_thighr , T_t_footl , T_t_legl , T_t_thighl ,

Listing 5.45: Code to import/set initial conditions to the mesh.

The main change of the large program code is that blood flow is calculated through

a double function routine based on blood need of each segment, this is, according to

segment composition, size and order in the body structure (listing 5.46).
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1 #=========================================================================

2 #Import Bloof flow values in basal thermoneutras conditions

3 CO, V_sv = import_V_basal()

4

5 #=========================================================================

6 # Calculate the amount of blood that cross the tissues (m3.s-1)

7 (vazao_sv_upperarmr , vazao_sv_lowerarmr ,

8 vazao_sv_handr , vazao_sv_upperarml ,

9 vazao_sv_lowerarml , vazao_sv_handl ,

10 vazao_sv_thighr , vazao_sv_legr ,

11 vazao_sv_footr , vazao_sv_thighl ,

12 vazao_sv_legl , vazao_sv_footl ,

13 vazao_sv_trunk , vazao_sv_neck ,

14 vazao_sv_lung , vazao_sv_head) = Vazao_sv_seg(hand ,lowerarm ,upperarm ,foot ,leg

,

15 thigh , trunk , neck , head , V_sv)

16

17 # Calculate the arterial and venous blood flow that goes in into each

segment

18 V_ar , V_ve = V_ar_ve_in(vazao_sv_upperarmr , vazao_sv_lowerarmr ,

vazao_sv_handr ,

19 vazao_sv_upperarml , vazao_sv_lowerarml ,

vazao_sv_handl ,

20 vazao_sv_thighr , vazao_sv_legr , vazao_sv_footr ,

21 vazao_sv_thighl , vazao_sv_legl , vazao_sv_footl ,

22 vazao_sv_trunk , vazao_sv_neck , vazao_sv_lung ,

23 vazao_sv_head)

Listing 5.46: Calculation of basal blood flows in large veins and arteries based on
tissue blood requirements.

Basal values of small vessels and tissue blood flow are the base of blood flow at

thermoneutral basal state. However exercise and hot temperatures influence tissue

requirements of blood flow. This adaptation must be considered during the incorpor-

ation of active thermoregulation mechanisms.

In practice result that impedances along the arterial branches are calculated at the

beginning of the calculation cycle, and are based on the arterial radii of the segments

Avolio (1980). This radii is estimated by skin and hypothalami temperature, through

relation stated by Fu (1995) in his experiments. All these will lead to+ update the

variables Vol_ve and Vol_ar, here imported as constants, along with tissues heat pro-

duction q_t (listing 5.47).

1 #=========================================================================

2 # Import Constants

3 rho_t , c_t, k_t, H_av , rho_bl , c_bl = import_constants()

4
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5 q_t = import_q_t()

6

7 Vol_ar , Vol_ve = import_vol_ar_ve()

Listing 5.47: Importing constants and basal values of passive system.

Mean cardiac output, in future, should also to be updated at each cycle. This is

done though simplifications of CO as suggested by Karaki et al. (2013), depending

only on core (estimated by hypothalamus), or mean skin temperature (estimated skin

temperate at all segments and surface area). If depends on exercise, the proposal of

Salloum et al. (2007) should be followed, that present a direct relation between fi-

nal mean cardiac output and metabolic effort. This changes should be kept up with

change of local heat production, such for example the increase in muscle heat pro-

duction during exercise, or the active mechanism shivering, and the redistribution of

blood from visceral tissue to skin and muscles.

Parametrization of boundaries are a key for the success of response of present

model to transient conditions. Listing 5.48 shows how functions of boundaries were

used to define the places of the mesh segment that exchange heat with surroundings.

Here the mesh where presents one condition per body segment, but more that one

boundary can be set per segment at a time. Notice that model present array is used

to say “where” are the bound. The condition value is settled in the loop step by step,

and this is what makes the model able to respond to transients.

1 # Set Boundary conditions - one diferent type per body segment

2

3 where = [frontsidecells(hand), frontsidecells(hand), #hands r-l

4 sidecells(lowerarm), sidecells(lowerarm), #lower arms r-l

5 sidecells(upperarm), sidecells(upperarm), #upper arms r-l

6 frontsidecells(foot), frontsidecells(foot), #feet r-l

7 sidecells(leg), sidecells(leg), #legs r-l

8 sidecells(thigh), sidecells(thigh), #thighs r-l

9 sidecells(trunk), # trunk

10 sidecells(neck), # neck

11 topsidecells(head)] # head

Listing 5.48: Defining variable to settle the place of the bounds where condition occurs.

After settle the bounds, are created vector variables to save time (t), arterial (tar)

and venous (tve) temperatures for each segment.
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The time step (timeStep) of calculus and number of steps (steps) are necessary to

define the number of times that loop needs to be repeated and time used to solve equa-

tions. Here is defined a time step of 5 second and 20 steps, what means 100 seconds of

simulation. As mentioned before this values must be settled according to the kind of

simulation. Severe an constant changes in boundaries, and high values require small

step to get accurate results, more stale conditions can be approximated through larger

time steps. In the future this values are going to be asked, in prompt, to the user. For

now default values used to exemplify and test routines (listing 5.49).

1 # Defining the steps for calculate the simulated values

2

3 t = [0]

4

5 (tar_handr , tar_lowerarmr , tar_upperarmr , tar_handl ,

6 tar_lowerarml , tar_upperarml , tar_footr , tar_legr ,

7 tar_thighr , tar_footl , tar_legl ,tar_thighl ,tar_trunk ,

8 tar_neck , tar_head) = set_values_Tar(T_ar_init)

9

10 (tve_handr , tve_lowerarmr , tve_upperarmr ,

11 tve_handl ,tve_lowerarml ,tve_upperarml , tve_footr , tve_legr ,

12 tve_thighr , tve_footl ,tve_legl , tve_thighl , tve_trunk ,

13 tve_neck , tve_head) = set_values_Tve(T_ve_init)

14

15 timeStep=5. #time step in seconds

16

17 steps=20 # number of steps per simulation

Listing 5.49: Defining arterial and venous temperature values and settling time step
and steps of simulation.

As mentioned above, the process of calculus occurs inside the for..in..: loop.

First by picking the boundary values for that step, then by calculating the temperat-

ures (arterial, venous and tissues) for all body segments. Once calculated the values

for that step, a redefinition of variables is carried out to settle the new initial values to

the next step of calculus (listing 5.50).

1 for step in range(steps):

2 set_bounds(T_t_handr , T_t_lowerarmr , T_t_upperarmr , T_t_handl ,

3 T_t_lowerarml , T_t_upperarml , T_t_footr , T_t_legr ,

4 T_t_thighr , T_t_footl , T_t_legl , T_t_thighl ,

5 T_t_trunk , T_t_neck , T_t_head , T_t_init , where , bvalues(step)

)

6

7 (Tar_handr , Tt_handr ,
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8 Tve_handr) = body_elem(T_ar_init[0], hand , T_t_handr , V_sv[0],

9 q_t[0], rho_t[0], c_t[0], k_t[0],

10 T_ar_init[2], T_ve_init[0],

11 H_av[0], V_ar[0], Vol_ar[0],

12 rho_bl , c_bl , 0., Vol_ve[0],

13 V_ve[0], vazao_sv_handr ,

14 timeStep)

15

16 (Tar_handl , Tt_handl ,

17 Tve_handl) = body_elem(T_ar_init[1],hand , T_t_handr , V_sv[1],

18 q_t[1], rho_t[1], c_t[1],k_t

[1],

19 T_ar_init[3], T_ve_init[1],

20 H_av[1], V_ar[1], Vol_ar[1],

21 rho_bl , c_bl , 0., Vol_ve[1],

22 V_ve[1], vazao_sv_handl ,

23 timeStep)

24

25 (Tar_footr , Tt_footr ,

26 Tve_footr) = body_elem(T_ar_init[6],foot , T_t_handr , V_sv[6],

27 q_t[6], rho_t[6], c_t[6],k_t

[6],

28 T_ar_init[8], T_ve_init[6],

29 H_av[6], V_ar[6], Vol_ar[6],

30 rho_bl , c_bl , 0., Vol_ve[6],

31 V_ve[6],vazao_sv_footr ,

timeStep)

32

33 (Tar_footl , Tt_footl ,

34 Tve_footl) = body_elem(T_ar_init[7],foot , T_t_handr , V_sv[7],

35 q_t[7], rho_t[7], c_t[7],k_t

[7],

36 T_ar_init[9], T_ve_init[7],

37 H_av[7], V_ar[7], Vol_ar[7],

38 rho_bl , c_bl , 0., Vol_ve[7],

39 V_ve[7],vazao_sv_footl ,

timeStep)

40

41 (Tar_lowerarmr , Tt_lowerarmr ,

42 Tve_lowerarmr) = body_elem(T_ar_init[2],lowerarm , T_t_lowerarmr ,

43 V_sv[2], q_t[2],

44 rho_t[2], c_t[2], k_t[2], T_ar_init[4],

45 T_ve_init[2], H_av[2], V_ar[2], Vol_ar[2],

46 rho_bl , c_bl , T_ve_init[0], Vol_ve[2], V_ve

[2],

47 vazao_sv_lowerarmr , timeStep)

48

49 (Tar_lowerarml , Tt_lowerarml ,

50 Tve_lowerarml) = body_elem(T_ar_init[3],lowerarm , T_t_lowerarml ,

51 V_sv[3], q_t[3],

52 rho_t[3], c_t[3], k_t[3], T_ar_init[5],

53 T_ve_init[3], H_av[3], V_ar[3], Vol_ar[3],

54 rho_bl , c_bl , T_ve_init[1], Vol_ve[3], V_ve

[3],

55 vazao_sv_lowerarml , timeStep)

56
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57 (Tar_upperarmr , Tt_upperarmr ,

58 Tve_upperarmr) = body_elem(T_ar_init[4],upperarm , T_t_upperarmr , V_sv

[4],

59 q_t[4], rho_t[4],

60 c_t[4], k_t[4], T_ar_init[12], T_ve_init[4],

61 H_av[4], V_ar[4], Vol_ar[4], rho_bl , c_bl ,

62 T_ve_init[2], Vol_ve[4], V_ve[4],

63 vazao_sv_upperarmr , timeStep)

64

65 (Tar_upperarml , Tt_upperarml ,

66 Tve_upperarml) = body_elem(T_ar_init[5],upperarm , T_t_upperarml , V_sv

[5],

67 q_t[5], rho_t[5],

68 c_t[5], k_t[5], T_ar_init[12], T_ve_init[5],

69 H_av[5], V_ar[5], Vol_ar[5], rho_bl , c_bl ,

70 T_ve_init[3], Vol_ve[5], V_ve[5],

71 vazao_sv_upperarml , timeStep)

72

73 (Tar_legr , Tt_legr ,

74 Tve_legr) = body_elem(T_ar_init[8],leg, T_t_legr ,

75 V_sv[8], q_t[8],

76 rho_t[8], c_t[8], k_t[8],

77 T_ar_init[10], T_ve_init[8],

78 H_av[8], V_ar[8], Vol_ar[8],

79 rho_bl , c_bl , T_ve_init[6],

80 Vol_ve[8], V_ve[8],

vazao_sv_legr ,

81 timeStep)

82

83 Tar_legl , Tt_legl , Tve_legl = body_elem(T_ar_init[9],leg, T_t_legl ,

84 V_sv[9], q_t[9],

85 rho_t[9], c_t[9], k_t[9],

86 T_ar_init[11], T_ve_init[9],

87 H_av[9], V_ar[9], Vol_ar[9],

88 rho_bl , c_bl , T_ve_init[7],

89 Vol_ve[9], V_ve[9],

vazao_sv_legl ,

90 timeStep)

91

92 Tar_thighr , Tt_thighr , Tve_thighr = body_elem(T_ar_init[10],thigh ,

93 T_t_thighr , V_sv[10],

94 q_t[10], rho_t[10], c_t

[10],

95 k_t[10], T_ar_init[12],

96 T_ve_init[10], H_av[10],

97 V_ar[10], Vol_ar[10],

rho_bl ,

98 c_bl , T_ve_init[8],

99 Vol_ve[10], V_ve[10],

100 vazao_sv_thighr , timeStep)

101

102 Tar_thighl , Tt_thighl , Tve_thighl = body_elem(T_ar_init[11],thigh ,

103 T_t_thighl , V_sv[11],

104 q_t[11], rho_t[11], c_t

[11],

105 k_t[11], T_ar_init[12],

120



Development Process Porto, 2015

106 T_ve_init[11], H_av[11],

107 V_ar[11], Vol_ar[11],

rho_bl ,

108 c_bl , T_ve_init[9],

109 Vol_ve[11], V_ve[11],

110 vazao_sv_thighl , timeStep)

111

112 Tar_neck , Tt_neck , Tve_neck = body_elem(T_ar_init[13],neck , T_t_neck ,

113 V_sv[13],q_t[13],rho_t[13],c_t

[13],

114 k_t[13], T_ar_init[12],

115 T_ve_init[13], H_av[13], V_ar

[13],

116 Vol_ar[13], rho_bl , c_bl ,

117 T_ve_init[14], Vol_ve[13],V_ve

[13],

118 vazao_sv_neck , timeStep)

119

120 Tar_head , Tt_head , Tve_head = head(T_ar_init[14],head , T_t_head , V_sv

[14],

121 q_t[14],rho_t[14],c_t[14],k_t[14],

122 T_ar_init[13],T_ve_init[14],

123 V_ar[14], Vol_ar[14],

124 rho_bl , c_bl , Vol_ve[14],

vazao_sv_head ,

125 timeStep)

126

127 Tar_trunk , Tt_trunk , Tve_trunk = trunk(T_ar_init[12],T_ve_init[12],

128 vazao_sv_lung ,Vol_ar[12], trunk ,

129 T_t_trunk , V_sv[12], q_t[12],

130 T_ve_init[4], T_ve_init[5],

131 T_ve_init[10], T_ve_init[11],

132 T_ve_init[13], Vol_ve[12], V_ve

[4],

133 V_ve[5], V_ve[10], V_ve[11],

134 V_ve[13], vazao_sv_trunk , rho_bl ,

135 c_bl , timeStep)

136

137 T_ar_init = array([Tar_handr ,Tar_handl ,

138 Tar_lowerarmr ,Tar_lowerarml ,

139 Tar_upperarmr ,Tar_upperarml ,

140 Tar_footr ,Tar_footl ,

141 Tar_legr ,Tar_legl ,

142 Tar_thighr ,Tar_thighl ,

143 Tar_trunk ,

144 Tar_neck ,

145 Tar_head])

146 T_ve_init = array([Tve_handr ,Tve_handl ,

147 Tve_lowerarmr ,Tve_lowerarml ,

148 Tve_upperarmr ,Tve_upperarml ,

149 Tve_footr ,Tve_footl ,

150 Tve_legr ,Tve_legl ,

151 Tve_thighr ,Tve_thighl ,

152 Tve_trunk ,

153 Tve_neck ,

154 Tve_head])
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155

156 T_t_handr = Tt_handr

157 T_t_lowerarmr = Tt_lowerarmr

158 T_t_upperarmr = Tt_upperarmr

159 T_t_handl = Tt_handl

160 T_t_lowerarml = Tt_lowerarml

161 T_t_upperarml = Tt_upperarml

162 T_t_footr = Tt_footr

163 T_t_legr = Tt_legr

164 T_t_thighr = Tt_thighr

165 T_t_footl = Tt_footl

166 T_t_legl = Tt_legl

167 T_t_thighl = Tt_thighl

168 T_t_trunk = Tt_trunk

169 T_t_neck = Tt_neck

170 T_t_head = Tt_head

171

172 update_tar_tve(timestep , t, T_ar_handr , T_ar_handl , T_ar_lowerarmr ,

173 T_ar_lowerarml ,T_ar_upperarmr , T_ar_upperarml , T_ar_footr

,

174 T_ar_footl , T_ar_legr , T_ar_legl ,T_ar_thighr , T_ar_thighl

,

175 T_ar_trunk , T_ar_neck , T_ar_head , T_ve_handr ,T_ve_handl ,

176 T_ve_lowerarmr , T_ve_lowerarml , T_ve_upperarmr ,

177 T_ve_upperarml , T_ve_footr ,T_ve_footl , T_ve_legr ,

T_ve_legl ,

178 T_ve_thighr ,T_ve_thighl , T_ve_trunk , T_ve_neck , T_ve_head

,

179 tar_handr , tar_lowerarmr , tar_upperarmr , tar_handl ,

180 tar_lowerarml , tar_upperarml , tar_footr , tar_legr ,

181 tar_thighr , tar_footl , tar_legl ,tar_thighl ,tar_trunk ,

182 tar_neck , tar_head , tve_handr , tve_lowerarmr ,

tve_upperarmr ,

183 tve_handl ,tve_lowerarml ,tve_upperarml , tve_footr ,

tve_legr ,

184 tve_thighr , tve_footl ,tve_legl , tve_thighl , tve_trunk ,

185 tve_neck , tve_head)

Listing 5.50: Calculating and redefining tissue, arterial and venous temperatures.

Arterial and venous blood temperatures are updated as vectors, but temperatures

of tissues are saved in files, one per body segment, in steps of 10 seconds. Of course

this value is to be settle for each kind of simulation according to user needs. Here, to

exemplify, in 100 seconds of simulation leads 10 files per body segment plus the initial

(zero second) condition (listing 5.51).

1 savestep=step*5+5

2

3 if (savestep/10. == int(savestep /10.)):

4 save_T_t(T_t_handr , T_t_lowerarmr , T_t_upperarmr , T_t_handl ,

5 T_t_lowerarml , T_t_upperarml , T_t_footr , T_t_legr ,
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6 T_t_thighr , T_t_footl , T_t_legl , T_t_thighl ,

7 T_t_trunk , T_t_neck , T_t_head , savestep)

8 print savestep +’s’

Listing 5.51: Save tissue temperatures if..: cycle.

Last few lines of code are dedicated to visualize the data. As the three-dimensional

data used to represent body segments require a large amount of memory, the incor-

poration in real time of a visualization process reveals to compromise the processing

time. The alternative was split the program into visualization and processing/simu-

lation parts.

Visualization routine can be run apart or, if required by the used, after the simu-

lation with a ‘Y’ in the prompt. As animation of tissue temperature variable can be

seen one at a time, loop cycle presents the tissue temperatures data one after the other

according to the preferences of the user (listing 5.52).

1 ans = raw_input("Visualize the data T_ar/T_ve? ’Y’/’N ’...")

2

3 if ans==’Y’ or ’y’:

4 fig_bl(tar_handr , tve_handr , ’R. Hand’)

5 fig_bl(tar_lowerarmr , tve_lowerarmr ,’R. Forearm’)

6 fig_bl(tar_upperarmr , tve_upperarmr , ’R. Arm’)

7 fig_bl(tar_handl , tve_handl , ’L. Hand’)

8 fig_bl(tar_lowerarml , tve_lowerarml , ’L. Forearm’)

9 fig_bl(tar_upperarml , tve_upperarml , ’L. Upperarm’)

10 fig_bl(tar_footr , tve_footr , ’R. Foot’)

11 fig_bl(tar_legr , tve_legr , ’R. Leg’)

12 fig_bl(tar_thighr , tve_thighr , ’R. thigh’)

13 fig_bl(tar_footl , tve_footl , ’L. Foot’)

14 fig_bl(tar_legl , tve_legl , ’L. Leg’)

15 fig_bl(tar_thighl , tve_thighl , ’L. thigh’)

16 fig_bl(tar_trunk , tve_trunk , ’Trunk’)

17 fig_bl(tar_neck , tve_neck , ’Neck’)

18 fig_bl(tar_head , tve_head , ’Head’)

19

20 ans2 = raw_input("Visualize the data T_t? ’Y’/’N ’...")

21

22 while ans2 ==’Y’ or ’y’:

23 name = raw_input("Input segment name...")

24 time = raw_input("Input simulation time...")

25 anim_T_t(T_t, steps)

26

27 ans2 = raw_input("Visualize the data? ’Y’/’N ’...")

28

29 raw_input("Press ENTER to end...")

Listing 5.52: Data visualizations data cycles with prompt interaction.
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As present model admits distinguished values to each part of the body and new

boundaries at each stage of calculus, new features will provide adapted responses

to asymmetrical exposures, whether they are environmental or the exercise, during

transient states of exposure.
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5.3 Tests and Results

As mentioned, Penne’s Bioheat equation it was built to be a model based on a

single equation. However as it is known today, the thermal properties of the several

tissue layers are significantly different from each other, so it was important to consider

that differences by using different coefficients for each tissue layer at the different areas

of the body.

To test the results it is not only important to observe if the model respond to the

different boundary and initial conditions, but also if it considers the correct values

according to the spacial distribution of the tissues.

Figure 5.8: Arterial and venous temperatures at a 500s simulation.

To test the sensibility of the model values of each variable were changed, one at

a time, remaining the other variables constant. The process was repeated to all vari-

ables in order to assure that the model responds according the laws of physics of heat

diffusion.

For example, to test sensitivity to the thermal properties (such as specific weight,

specific heat and thermal conductivity) values were changed, one at the time, for each

layer of tissue remaining the other variables constants.

Following examples presented by figures 4.5 and figure 5.8 show the outputs of
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the neck mesh of the model. With no boundaries , the equivalent to adiabatic frontier

shell around the segment, temperature of the tissues all only collied by blood temper-

ature that crosses the element. At the end blood temperatures at the reservoirs tend to

stabilize. The temperatures of the tissues are cooler at outside and then start to heat

leaving the cooler area inside the cylinder.

(a) 500s (b) 1000s

(c) 2500s (d) 5000s

Figure 5.9: Temperature distribution over 5000 seconds of simulation considering
adiabatic frontier around the element.

These were the tests performed to check the behaviour of the individual body ele-

ments before scaling up to the final whole-body thermal model.

5.3.1 BioHeatSIM’s Tests Description

A sequence of tests were chosen to check the behaviour and the ability to respond

to the main goals, specifically a model that was able to respond to three-dimension

heat diffusion in non homogeneous transient environments. Performance tests can be
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divided, considering model features, in:

1. stability test at thermoneutral steady-state, homogeneous conditions;

2. response to steady-state, hot and cold homogeneous environments;

3. response to steady-state, non-homogeneous conditions;

4. heat diffusion response to transient, homogeneous environments;

5. model response to transient, non-homogeneous conditions.

At first, a thermoneutral steady state conditions is settled. This first neutral condi-

tion allow to check the stability of the model at conditions were thermoregulation is

not needed and gives the basal values for the comparison with the other performance

tests results. Secondly, the tests to the changes in boundaries along the time. In the

opposite to previous test, here values in space remain constant at each time instant,

but they change over the time. Thirdly, a test to verify the effect of local heating. Here

boundaries stay the same along the time, but values change in space. Fourtly a test

that checks responses to homogeneous changes of environments, such as moving from

a cold place to a hot place. Finally, the test for boundaries changing in time and space

at the same time. This was a final purpose of the model, to respond dynamically to

environmental changes and local discomfort problems. This are the mainly tests that

should assure if the model works properly. However, test and accuracy levels tests,

should also be considered before upgrade the BioHeatSIM version.

5.3.2 Summary of Main Results

All the tests were performed using the same initial conditions. All blood reservoirs

start calculus from 37◦C. Distinct temperatures were settled for all layers of the body

as shown the volumes and the respective cuts in figures 5.10 and 5.11. Values ranging

from 33◦C of the skin to 37◦C at the inner bones and tissues.

The places where boundary conditions are applied are constant and tend to rep-

resent the real situation, for example, hand and feet leave the smaller tops without

bounds, corresponding to the wrists and ankles joints. Forearm, upper arm, thigh, leg
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(a) Head (b) Neck (c) Trunk

(d) Right Arm (e) Right Forearm (f) Right Hand

(g) Left Arm (h) Left Forearm (i) Left Hand

(j) Right Thigh (k) Right Leg (l) Righ Foot

(m) Left Thigh (n) Left Leg (o) Left Foot

Figure 5.10: Initial conditions of body segments at t=0s. Isometric perspective.

and trunk are cylinders with lateral side bounded. The head is the only segment that

allow heat exchange all around it. Section where bounds are not applied are modelled

as adiabatic frontiers.
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(a) Head (b) Neck (c) Trunk

(d) Right Arm (e) Right Forearm (f) Right Hand

(g) Left Arm (h) Left Forearm (i) Left Hand

(j) Right Thigh (k) Right Leg (l) Righ Foot

(m) Left Thigh (n) Left Leg (o) Left Foot

Figure 5.11: Initial conditions of body segments at t=0s. Volume sections at z=0 plane.

Stability Test

General conditions of the model have been being presented along the deign and

model implementation. To test the behaviour of the model at thermoneutrality several
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temperatures were tested. The passive system is considered stable when the core tem-

perature, estimated from trunk’s arterial reservoir (considered equivalent to the gold

standard temperature pulmonary artery blood), remain stable at 37,0◦C.

(a) 28◦C (b) 29◦C (c) 30◦C

Figure 5.12: Temperature of arterial and venous reservoirs of the trunk for different
constant, homogeneous boundaries.

Stability was found for a nude man, immersed in an high conductible infinity me-

dium at 29◦C (Figure 5.12. According to the model, core temperature rise up to 40◦C

in about two hours when boundaries are kept at 35◦C. But the results imply immersed

head and static values for constant tissue blood perfusion for all layers. Fiala et al.

(1999) already used a planed matrix with distinct values of blood perfusion at the skin

in the different segments even at thermoneutral conditions. Present model use con-

stant values for all elements, but it is already prepared to accept distinct values for the

different segments, for all thermal properties and blood perfusion rates.

The blood in the limbs present a temperature gradient from the trunk to extremit-

ies. Lower temperatures are observed at the hands and the feet. This segments are the

smallest and have large area of contact with the exterior boundaries, so, are the firsts

reaching stability. Along all the limbs higher values of arterial blood are found next

to the trunk. Arterial temperature decrease along the limbs in particularly due to the

heat exchange between arterial and venous reservoirs. Common to the limbs is also

the fact that venous reservoirs have lower temperatures than the respective arterial

pairs. This occurs due to the the cooled blood received from the tissues.

The head and the neck must be considered separately from the limbs because of the

anatomy itself. The brain have peculiar specifications comparatively to the rest of the

biologic tissues. It produces huge amounts of heat and blood perfusion is the highest

found in the human body. Dissipation of the heat generated inside the head is done,
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Figure 5.13: Temperature of arterial and venous reservoirs of the legs for constant,
homogeneous boundaries of 29◦C.

mainly, by the blood. Considering the absolute values, in thermoneutral environments

the brain must remain between normothermic values. As suggested by Raimundo

and Figueiredo (2009) hypothalamus admits normal thermal regulations between the

34◦C and 39◦C degrees. Behind this occurs hyperthermia with introversion and violent

sweating , heat stroke (stop sweating and fainting) when temperature exceeds the

41◦C, permanent brain damage after 42◦C and reaching the 44◦C degrees or higher

death. To check the reliability of the available methods to access core temperature

Fulbrook (1997) found that tympanic temperature can be until 1,2◦C above and 1,3◦C

below the pulmonary artery blood temperature, considered the gold standard. This
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differences also rise the hypothesis that core blood have different temperature of the

brain. Here, for 29◦C the temperature of the brain rises till 38,32◦C degrees, what is

slightly above of the expected, but still considered normothermic value.

(a) 28◦C (b) 29◦C (c) 30◦C

Figure 5.14: Temperature of arterial and venous reservoirs of the head for different
constant, homogeneous boundaries.

Finally, in the opposite to the limbs, venous blood temperature is significantly

higher comparatively to the arterial blood. And as the neck is the segment that con-

nects the trunk to the head, it follows the same temperature profile of the head con-

sidering slightly lower values.

Constant Exposures

Steady-state homogeneous environments were tested for cooling and heating. For

cooling test, boundaries were settled at 10◦C for all segments for the 3 hour period.

The cooling temperature profiles of the head show the huge amount of heat pro-

duced by the brain. Without considering the active system most of body segments

reach values below 22◦C in the first hour of exposure however, due to the large quant-

ity of heat produced by the brain, the head takes more than 3 hours (figure 5.15). By

observing the interior temperature matrix of the head we can see that heat is diffused

in radial direction faster than diffused in axial direction. This is because of the physical

structure of the head that only considers the shell of bone, muscle, fat and skin around

the lateral of the cylindrical geometry. Core of brain, in the middle of the cylinder is

the hottest point of the entire mesh and is the last to cool down.

Three-dimensional heat dissipation, in hands and feet, can be verified. Temperat-

ure gradient along the limbs, as in the stability test for symmetric initials and bound-
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(a) 720s (b) 1440 s (c) 2160 s

(d) 2880 s (e) 3600 s (f) 4320 s

(g) 5040 s (h) 5760 s (i) 6480 s

(j) 7200 s (k) 7920 s (l) 8640 s

(m) 9360 s (n) 10080 s (o) 10800 s

Figure 5.15: Temperature decrease of the head over 3 hours of exposure at 10◦C.

aries, is symmetrical. Extremities are the first to cool down and warm up. Trunk’s

furthest segments have arterial and venous temperatures lower than the closest seg-
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ments.

The same test was repeated for different boundaries, respectively 22◦C, and 40◦C.

Results heating and cooling profiles were similar in all the tests. The comparison of

core temperature for each test shows that: the temperature gradient is as much higher

,as further are the boundaries from the thermoneutral value of the model (figure 5.19).

Local Heating

Local heating intend to test the model no non-homogeneous mediums. Here ini-

tial conditions remain the standard, presented in the previous tests. Boundaries were

changed for right arm and leg, settling their temperature to 40◦C. The rest of the body

was kept at 22◦C. In a total of 3 hours of simulation could be seen that the limbs re-

spond to the respective bounds. Influence of the heated limbs can be seen in the final

arterial and venous temperatures of the trunk and, once again, body extremities such

feet and hands are the first reaching stable results.

Figures 5.17 and 5.18 show the gradual heating over the period of 3 hours. The rest

of the body reacts to the constant 22◦C. The difference from the constant homogeneous

exposure at 22◦C can be check from figure 5.19 where the body core temperature (equi-

valent to arterial temperatures of the trunk), reacts to local heating by slight increase

in final values.

Transient Environments

Transient test checked model response to changes in boundaries. It was simulated

3 hours considering 3 different homogeneous conditions, one per hour. During the

first hour the body was kept at 35◦C, then heated at 40◦C and cooled at 30◦C.

The test intend to show the different profiles of heating and the cooling (figure 5.20).

All the segment heat slower in the first hour, at 35◦C temperature, than at the second

hour, at 40◦C. The cooling of 1 hour at 30◦C it was not enough to cool core temperature

at the initial values.

From the blood temperature reservoirs it is possible to check the precise moment

of the change in boundary values in all segments. Temperature profiles next to the
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trunk show softened differences comparatively to the extremities. Once again the head

presents the higher temperatures.

Transient and non-homogeneous Environments

For this tests body segments were alternately exposed at temperatures changing

between 22◦C and 40◦C. Changes were settled at the end of each hour to enhance the

possibility to compare the results with the other results. So while the right arm and

leg were at 40◦C the left arm, leg, trunk and head reamain at 22◦C. After one hour of

exposure the boundaries were changed so right arm and leg would be at 22◦C and the

left arm, leg, trunk and head raised to 40◦C. After another hour the boundaries switch

again.

The results show that all body segments respond individually to the boundary

conditions imposed (figure 5.21). The rising curves show the increase of temperature

and the downward curves revels the decrease in temperatures. Final core body tem-

perature response shows that is more sensitive to changes in the bigger and the most

vascularized segments.
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(a) 10◦C

(b) 22◦C

(c) 40◦C

Figure 5.16: Arterial and venous temperatures of the trunk considering different types
of boundaries.
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(a) Arm 3600s (b) Arm 7200s (c) Arm 10800s

(d) Forearm3600s (e) Forearm 7200s (f) Forearm 10800s

(g) Hand 3600s (h) Hand 7200s (i) Hand 10800s

Figure 5.17: Right Arm heating over 3 hours of simulation being heated at 40◦C.
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(a) Thigh 3600s (b) Thigh 7200s (c) Thigh 10800s

(d) Leg 3600s (e) Leg 7200s (f) Leg 10800s

(g) Foot 3600s (h) Foot 7200s (i) Foot 10800s

Figure 5.18: Right Leg heating over 3 hours of simulation at 40◦C.
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(a) All segments with the bounds constrained at 22◦C

(b) Right Arm and Leg at 40◦C, other segments at 22◦C

(c) All segments with bounds constrained at 40◦C

Figure 5.19: Arterial and venous temperatures of the trunk considering different types
of boundaries.
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Figure 5.20: Arterial and venous temperatures for all body segments during a transient
test. All segment constrained the boundaries at 35◦C during first hour, at 40◦C over
the second hour and at 10◦C in the last hour.

140



Tests and Results Porto, 2015

Figure 5.21: Arterial and venous temperatures for all body segments during a transient
test at non-homogeneous conditions. Boundary conditions switch every hour from
22◦C to 40◦C or contrariwise.
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Conclusions

Final tests only allow to see if responds to changes in variables, but agreement with

real data in terms core temperatures at thermoneutral conditions must be considered.

the boundary that satisfies thermoneutrality at resting is 29oC. Resting thermoneutral-

ity tests in water immersion, round the 33,0◦C (Reilly et al., 2003) to 35,0◦C (Nakanishi

et al., 1999). But even water immersion condition cannot be considered similar to the

simulated perfect constant boundary imposed in the model. All experiments relate

non significant physiological changes and assure core temperature to remain constant

around 37◦C, but there are some adaptations, such as water loss, slightly vascular

reactions and heart rate decrease, that still occur. In particular the heat exchanges

between skin and surrounding environment should be included when crossing the

results with the real data. Values from 29 to 33◦C are considered thermoneutral un-

der dynamic exercise in water immersion (Nakanishi et al., 1999) what is very closed

to the values found by the model. New hypothesis could be raised that could justify

that differences. The values found in literature and used in the model can be partially

inadequate, or outdated. Another possibility is the time lag effect imposed by the con-

nective tissue that, as suggested in local bioheat modelling, could be considered in

modelling process. Even so, it is possible to state that BioHeatSIM is a multi-segment

model prepared to respond to transient and asymmetric conditions.

Actual version does not allow interactivity in the parametrization of: physical

body segments, time, type of exposure or boundaries. This can be considered as a

disadvantage, however, all elements are settled in specific routines, are easy to found
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and all can be replace by the desired values.

Implementation of program in Python revels to increase the complexity of the

model and parametrization dealing with complex cell variable objects in a very simple

and organized way that allow to increase dramatically the level of detail comparat-

ively to previous models. BioHeatSim was tested considering more than 6000 thou-

sands of nodes (6186) what is much different from the 225 nodes of Wissler’s models

and even from the 386 nodes of Fialas’ first model . The memory requirements were

not compatible to real time animation of temperatures in physical structure, but this

was perfectly overcome by separating the visualization of the data from the simula-

tion.

Actual version of the program allow to make 3 hours of simulation, considering

a 60 seconds step in less than 1 hour in a Pentium i7 running at 3.6 GHz using 4Gb

of RAM in a 64bit version of Python2.7 using Ubuntu operative system. It must be

said that the presented version of BioHeatSIM did not reach the limit of potential of

Python capabilities. This time can be shorten and model complexity can be increased.

It is proved that new language such as Python bring new possibilities to the to increase

predictive power of the biological heat simulation.
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Currently Developed Work

Passive system model was designed thinking in future features and upgrades. So,

programming and mathematical modelling decisions were made based on future im-

plementation of the following suggestions for active system modelling. Innovation

is here is focused on detailed cardiovascular modelling and the implementation of

feed-forward loops to activate thermoregulation mechanisms.

7.1 Active System Modelling

In general active system can be seen as the central nervous system of the model

that act in negative feedback according to the physical thermal state. As in human

biology HBTM model try, with limited capabilities, to maintain homoeothermy of the

system. Sweating and vascular responses are the most important thermoregulator

mechanisms in hot environments.

Sweat response tried to incorporate a new approach that is being explored recently,

that include a double response of the effector for sweating not only a negative feed-

back response (to Tcr) but also including a feedforward reaction to environment (con-

sidering T _sk). Modelling decision and predictability is still being refined but results

are more interesting

To enable future high quality upgrades, in particular for modelling response to

prolonged and critical heat exposures during mild and heavy exertion, a complete

cardiovascular system is suggested. With the wide informations about cardiopath-
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ophisiology, it can also be adjusted to predict responses for populations with special

needs. To fight against hot environments during exercise, cardiovascular modelling is

crucial for many reasons. One is because the first response to heat consists in vasomo-

tor reaction, this is, significant increase in skin blood flow due vasodilation. However

this new adapted distribution have many cardiac implications such as the need for

redistribute the blood and adjust mean arterial temperature.

Figure 7.1: Human arterial tree system representa-
tion.

This features not only allow

to have others heat stress indic-

ators to monitor, as enable to ad-

just a wide range of new vari-

ables to increase sensibility and

adapt to new situations.

7.1.1 Circulation as input

of Large and Small Vessels

Blood Flow

Once the heat exchange in

the passive system is complete,

it is important to assure accur-

ate values for the input vari-

ables. As the main structure of

all heat exchange is the quantity

of blood that cross the tissues,

it is proposed by the present

work an integration with a par-

allel model of the circulatory

system. This consists in predict

from trivial parameters (such as

heart beat rate, and mean car-

diac output) the pulsating velo-
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city of the blood going through arteries across the fifteen body segments. Venous

blood does not suffer the effect of the heart pump. Blood flow in the veins are de-

termined by the mean velocity of the blood flow in the corresponding artery (Salloum

et al., 2007; Karaki et al., 2013).

The arterial multi-branched model, from Avolio (1980), was one of the most im-

portant representations of the circulatory system in terms of accurate physic prop-

erties. He implemented a routine to calculate the impedance along a set of arterial

branches. The outcome impedances allow to calculate velocities, pressures and find

cardiac outputs at each part/segment of the human body considering the realistic

pulsating property of blood delivery.

The Avolio’s model divide the arterial tree in 128 vessels with symmetrical distri-

bution on right and left body parts. Figure 7.1 shows the distribution of the arterial

tree as designed by Avolio (1980) and as implement to adjust the inputs along the body

by linking all the elements by predicting the radii of the arteries and veins, and estim-

ating the velocity of blood in each segment Salloum et al. (2007). These subdivision,

based on real anatomy of the human body, was selected to keep simplicity, however

assuring good agreement with real results.

7.1.2 Mean Cardiac Output Prediction

There are two main influences between basal Cardiac Output and the one reached

in real conditions. The CO does not only depends on the Heart Rate but also from

the thermal load of the environment itself. Karaki et al. (2013) relate the CO values,

in agreement with Fu (1995), as depending on the human thermal sensors in the skin

and core nodes. The authors define threshold mean values, stated experimentally, that

allowed to establish equations 7.1 and 7.2, as depending on skin (Tsk) and core(Tcr)
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temperatures.

COcon =



290×103 i f Tsk ≥ 33,7◦C

(Tsk−10,7) · 290×103−270×103

33,7−10,7
+270×103 i f 10,7◦C < Tsk < 33,7◦C

270×103 i f Tsk < 10,7◦C

(7.1)

COdil =



427,5×103 i f Tcr ≥ 41◦C

(Tcr−37,2) · 508×103−400×103

41−37,2
+400×103 i f 37,2◦C ≥ Tcr < 41◦C

(Tcr−36,8) · 427,5×103−290×103

37,2−36,8
+290×103 i f 36,8◦C < Tcr < 37,2◦C

290×103 i f Tcr ≤ 36,8◦C

(7.2)

This way it is possible relate CO with the thermal load of the body, as it happens

physiologically in healthy human beings. Final cardiac output can be found by the

product of dilated cardiac output (COdil) and constricted cardiac output (COcon) di-

vided by the basal cardiac output of 290×103 cm3.h−1 (eq. 7.3) (Fu, 1995; Karaki et al.,

2013).

CO =
COdil×COcon

290×103 (7.3)

The values 290× 103 can be used as the mean cardiac outup (Q̄) to normalize the

cardiac ejection waveform in rest.

The CO value achieved by this mathematical formulation includes the physiolo-

gical response to thermal load induced by the environment, but does not includes

the effect of exercise. This allow the CO values to ranged from a minimum of 270×

103 cm3.h−1, during maximum vasoconstriction, to a maximum of 427,5×103 cm3.h−1,
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over the maximum vasodilation, being the 290×103 cm3.h−1 the CO for the condition

of thermoneutrality (Karaki et al., 2013).

A generic model, also based on Fu (1995), is adopted by Salloum et al. (2007) that

integrates the ratio of metabolic expenditure as referred in equation 7.4.

CO =
Mtotal

Mbasal
·COdil ·COcon

CObasal
(7.4)

The actual metabolic rate (Mtotal) divided by the metabolic rate at thermoneutral

resting conditions (Mbasal) create a proportion of increase or decrease in the CO. In

spite of the accuracy of this modelling proposal, present work consider constant Stroke

Volume, what is a false purpose specially when modelling response during exercise.

In health toyota yaris hybridhy subjects the increase in CO during exercise is the res-

ult of a combined increase in heart rate and SV (Salmasi, 1993). According to Salmasi

(1993) there studies that prove that exercise have significant impact on cardiac output,

ranging values from 6,6 l.min−1, at rest, to 14,3 l.min−1, during exercise, in supine po-

sition, and from 5,3 l.min−1 to 13,8 l.min−1. This differences are due to the enhanced

contraction, and increase in the left ventricular end-diastolic pressure combined with

a decrease in the left ventricular end-systolic pressure, that results in an increase of

SV.

Brynjolf et al. (1983) found an increase of 14 % in the end-diastolic volume (EDV)

and a decrease 14% in the end-systolic volume (ESV) pumped into the heart at each

beat. Being the SV mathematically expressed by equation 7.5.

SV = EDV −ESV (7.5)

In prolonged aerobic exercise human adaptation allows the increase in stroke volume,

due to the reduction of resting heart rate. Reduced heart rate prolongs ventricular dia-

stole(filling) increasing EDV.

Also, during heat stress conditions, even in euhydrated subjects, stroke volume
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may suffer a significant reduction. This reduction might occur due to a decrease in

central blood volume and cardiac filling pressure that results from the rise in skin

blood flow and volume (González-Alonso et al., 2000).

The definition of SV, as the quantity of blood pumped from the heart at each beat,

results into the division of CO by the heart rate.

The values of stroke volume and and cardiac output also depend on individual

characteristics. Variables such as hight, body weight, skin area and body composition

and distribution influence the need for nutrients and oxygen under basal or work,

thermoneutral or stress conditions. To compare performances between individuals

cardiac index and stroke index are commonly used as cardiovascular indexes and are

particularly important during heat stress exposure.

It is well known that acclimatization to heat brings important physiological adapt-

ation that improve performance at work/exercise under heat exposures. An earlier

onset of sweating, an increase of sweat rate and evaporative cooling, decreases the

heart rate at the same time that reduces skin and core temperatures. Also special ad-

aptation occurs at stroke volume level,which increases at the same proportion of the

heart rate decreases, remaining a constant cardiac output (Rowell, 1974). According

Rowell (1974) there are studies that prove the volume (before and after) acclimation

process is quite similar. So, the major cardiovascular adjustments during heat accli-

matization are reciprocal changes in heart rate and SV while CO and blood pressure

remain essentially unaltered.

Physical shape, evaluated in terms of maximum oxygen uptake (V̇ O2max), can also

influence the distribution of blood flow and its relation. In cases where CO remain

constant by heat stress during exercise, the raises of skin blood flow must came from

the redistribution of CO in a way that the higher amount goes to the skin.

7.1.3 Cardiac Output Waveform

Modelling circulatory system is very important to accurately predict physiological

response to heat stress. Circulation is the main responsible for heat dissipation and one
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of the systems that is more affected when individuals overheat and get dehydrated.

Q1(t,n) = sinn(ωt) (7.6)

Q2(t,φ) = cos(ωt−φ) (7.7)

To predict the blood ejection to all body parts and parameters such as blood pres-

sure and arterial impedance an input waveform mus be given. This wave form is

defined in literature (Stevens et al., 2003) as a combination of overlap sine and cosine

that approach the real wave accurately (equation 7.6, 7.7).

The Q represents blood flow, n an integer odd value, ω the heart pulse frequency,

defined as π over the heart rate (b), and φ being a phase angle. The functions Q1 and

Q2, plotted in Figure 7.2a, are the envelope and internal functions of the preliminary

function Q3 =Q1 ·Q2 (Figure 7.2b), whose outcome, after normalization and calibration

results into the final waveform (equation 7.8) that is characteristic for each individual

in any exertion state.

Q(t,n,φ) =
v

A(n,φ)
· cos(ωt−φ) · sinn(ωt−φ) (7.8)

Calibration and normalization consist in adjust frequency and peak values so the

final waveform is able to represent a defined condition. In practice by settling the

ω = π

p , it can reached the desired frequency that depends on heart beat, once p = 1
b .

The outcome model Q(t,n,φ) is calculated from Q3 with ω adjusted, by normalizing

the function so that the outflow per period matches the output per stroke (v) that is

equal to Q̄
b . Calibration is made by adjusting mean cardiac output (Q̄), heart rate beat

(b) and peak to mean blood flow ratio (σ) obtained from the Qpeak

Q̄ .

Values like Q̄ and Qpeak to determine σ, can be found in literature (Nichols et al.,

1977; Murgo et al., 1980) for resting healthy people and people with cardiovascular
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(a) Envelope Q1 and interiorQ2 functions of cardiac waveform for
n = 13 and φ = 0.

(b) Preliminary cardiac flow waveform Q3 for n = 13 and φ = pi/10

Figure 7.2: Functions to model the cardiac output waveform.

disease. However peak values Qpeak of aortic blood flow are more difficult to get for

exercising (Mohiaddin et al., 1995), and it could not be found for environmental stress

situations.

Figure 7.3 shows the differences in shape that results from phase φ and from chosen

n.

The variable n is related to the relation of systole and diastole period in the cardiac

cycle. According Stevens et al. (2003), standard texts in physiology agree that the

systole periods approximately
1
3

of the cardiac cycle, what means that n = 13. As the
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(a) Shapes for different values of φ.

(b) Shapes for different values of n.

Figure 7.3: Influence of Q3 variables in function’s shape.

n value increases, smaller is the systole period. The variable φ is more difficult to

define once it depends on the peak-to-mean flow ratio σ and, as mentioned above,

common values are found for resting states. Equation 7.9 presents the definition of

σ transformed into the equation that must be solved to found φ. The t∗ is the time

to peak, between 0 and p, i. e. the time to reach the maximum value of Q in one

cardiac cycle. The value of t∗ can be found from the differentiation of the Q function

in order to time (equation 7.10), in other words the maximum and minimum values of

CO function. The algebric expression that result from isolating t after differentiation
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(equation 7.10), is divided in four parts, being the final result selected considering that

Q > 0 and d2Q
dt2 < 0.

σ =
Q(t∗,n,φ)

Q̄
(7.9)

dQ
dt

= 0 (7.10)

The value of t∗ to which φ need to be calculated, greatly depend on heart rate h,

what means that in spite of the considerations of Stevens et al. (2003), that said that

the final value of φ depends on n but not on h, but in fact are related to each other in

order to make Q̄, φ does depend on it indirectly.

7.1.4 Cardiac Output Distribution

Cardiac output distribution along the body depends on several factors. Here were

considered the two most important variables: the thermal stress and metabolic stress.

Cardiovascular adjustments, during heat stress, assure thermal homoeostasis. The in-

crease in skin blood flow allows an improved radiant heat loss, however to perform

work oxygen and nutrients must be supplied to the body, and during exercise muscu-

lar blood supply is a priority.

Even at rest there are several physiological adaptations that occur in organism in

order to maintain homoeostasis. It is vital that minimum volume of splanchnic blood

is ensured. For example, when arterial mean pressure decreases below 60 mmHg, it

is difficult to assume minimum oxygen values for vital organs, such as liver, which is

usually the first main organ suffering from ischemia. However during heat exposure,

most blood flow reduction is due to splanchnic vascular resistance and not for the

reduction in the arterial mean pressure.

A linear regression was found by Rowell et al. (1965) describing a linear relation

between the percentage of V̇ O2max and the percentage of resting splanchnic blood flow
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(SBF) at different dry bulb environmental temperatures and low levels of humidity,

that can be directly applied to the present model.

7.1.5 Sweat Rate Modelling

The sweat rate modelling is not a new research field, however the usual mod-

els predict amounts of sweat loss over a time period (usually the models based on

heat balance equations) and do not relate it with the physiological phenomena of act-

ive thermoregulation and exercise. It is known that sweating is triggered by central

nervous system when body temperature rises, but disturbs of nervous system (such

as stress, anxiety or hormone fluctuations) might also stimulate sweat glands. There

are two types of sweat glands: apocrine and eccrine. They perform different tasks but,

when body heats, both are stimulated. Their type and concentration depend on body

part. Apocrine glands are mainly located in underarms and groin areas. So eccrine

are the ones that are found all over the body, in higher quantities, and play a major

role in thermal homeostasis. Curiously local sweat rates are not linked to known local

density of sweat glands, nor to local skin temperature (Kanosue et al., 2010).

The perspiration, in some mammals, is the most important and effective thermore-

gulatory mechanism when sweat evaporates. The evaporative heat loss allows to loose

huge quantities of heat. From 1 gram of dripping sweat only result a few joules lost,

but the same amount of evaporated sweat can dissipate about 2400 J of heat (Ashton

and Gill, 2000). There are no other mechanisms that have the same effective cooling

power. As others homoeostatic processes, thermoregulation is seen as a negative feed-

back circuit which is the basis for phenomenological modelling. The intensity of sweat

rate depends on body core temperature and mean skin temperature. But sweating re-

sponse generated by an increase of temperature perceived by hypothalamus is more

effective than the one perceived by thermal sensors in the skin.

There are some several approaches when considering sweating rate prediction.

One of the best models use heat balance equation in order to achieve the required

value of sweat needed to compensate the disturbance caused by environmental thermal

load.

Sweat rate modelling is a useful tool to achieve accurate results in terms of human
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body thermal load, but the results of the amount of water loss and hydrations bal-

ance, are crucial indicators of the heat tolerance limits. Many modelling approaches

also take into account with a variable for water and heat loss by breathing. Present

model does not include this feature, however for extreme dry heat and cold thermal

simulations it is necessary to consider a breathing model integrated in parallel. The

adjustments of water and heat loss are significant and improve tolerance/performance

even by the natural induced tachycardia.
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Chapter 8

Future Development Perspectives

8.1 Further elements to include

It is evident that, in spite of the potentiality of the present modelling proposal,

a considerable set of upgrades must be implemented before scaling it into practice.

Present level of detail would not be necessary if features like blood circulation, respir-

atory system, metabolic expenditure, active thermoregulatory mechanisms, were not

included. Detailed local results from human body passive system also help to increase

the level of detail of heat exchange with the environment.

• The first improvement should be to model the interface human environment

by calculating the amount of heat lost by convection, radiation and evapora-

tion. There are already several studies that predict the maximal evaporative heat

loss linking this variable to the environmental water vapour pressure. Heat loss

by radiation is linked to skin blood flow. However with arterial blood circula-

tion, cardiac output distribution and arterial radii it is possible to achieve values

of local skin blood flow close to real values. New researches conducted with

thermal mannequins also bring new information about convective heat dissipa-

tion considering, more than the air velocity and humidity, the angle of incidence

of the air at the skin.

• Include a detailed respiratory model to predict heat exchange and gas exchange

would help to predict heat loss by respiration and metabolic expenditure. Since

157



DemSSO Future Development Perspectives

Wissler (1985) that thermoregulatory response is linked to oxygen uptake, car-

bon dioxide exchange and lactate production. Changes in thermal properties

of the blood are induced by levels of oxygen and carbon dioxide, as well as

hydration level. Body management of metabolic wastes in exercise also affect

it. Oxygen uptake is particularly linked to muscle endogenous heat production

that can be predicted through metabolic rate of a particular exercise.

• It is known and documented in physiology that global homoeostasis come from

a subgroup of homoeostatic processes that depend on each other. Water and

ion concentration, blood sugar, blood pressure etc., all are affected when the or-

ganism needs to cool down or warm up. All of these homoeostatic variables

are regulated by effector and response of effector feeds back to influence the

magnitude of the stimulus and return them to homoeostatic balance. Typically

all the models use the concept of threshold limit values to perform the control

using vasomotion, shivering and sweating. However threshold values and de-

cision mechanisms used in literature to perform this decisions rarely integrate

the several processes of decision making. Research in this area would allow to

increase the the potential for predicting tolerance limits in critical conditions, for

healthy and non healthy people.

• The model proposed by Avolio (1980) have many distinct applications that goes

from mean arterial pressure prediction to cardiovascular response due to central

volume depletion. In particular, this last feature is very important to predict the

tolerance limits in dry heat due to dehydration.

State of Art (chapter 2) gathers several references that can be used to easily develop

and implement this feature into the present model.

8.2 Methods for future updates

There are several areas where update are needed and justified, to improve accuracy

and sensitiveness.

One of the problems of this model, that can be also seen as it biggest advantage, is
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the level of detail of the model. It can predict the thermal diffusion and water loss by

relating these values to body location. Independently on the body element size, that

can be higher or lower according to programmer specifications, each place of the body

has his own values of temperature, wetness and influence on global thermal load by

local heating or cooling process can be achieved.

Validation procedure should be divided in three stages :

1. comparison of results with other models;

2. compare results with data collected from other researchers and laboratories;

3. validate results with experiments designed to the effect.

First stage should use one or more models from the three main guidelines of re-

search mentioned in chapter 2. Compare results from reproduced models of Givonni,

Pandolf and Stolwijk, PHS and compare with the published data of Salloum and Fiala,

could cover the different types of whole body models (from empirical to rational, cov-

ering the different types of models). BioHeatSIM is designed to respond accurately to

transient states what means that transient profile responses should be analysed. Com-

parison to real data should consider all types of environments and possible occupa-

tional demands. Should be tested three kinds of extreme heat exposure: extreme dry

heat, extreme humid heat and mild hot and humid temperatures. And three types of

workloads should also be considered: extreme heavy exercise, mild prolonged effort,

and resting.

8.3 Practice in Occupational Health and Safety

The return of the investment done in this kind of research could cover many times

the developing costs. The applicability of this kind of model, after a careful validation

process, is almost illimitable, as discussed in previous section and all along the thesis

report.

In terms of Safety and Hygiene can help directly to better plan production, higher

rates of production in safer conditions what mean profit increase. By doing individual

analysis of the work conditions, testing individual characteristics, personal protective
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clothing and so on can be found with the model. Indirectly safer conditions allow to

reduce the number of accidents.

The kind of updates that become important for Practice are slightly different from

those pointed in research field. Here create an user interface that linked user to all

variables that need be settled is the most important improvement to consider. This

way, any end user without programming skills, would be able to use this tool adapt-

ing it to his own needs. The set of variables to be adjusted and potential for changing

boundary and initial conditions automatically should be explored in order to provide

the suitable solution. As a multi-platform programming language, Python runs in

all operative systems. However when dealing with a large set of packages, its ver-

satility decreases. An alternative to management of the files for windows installer

is needed. Incompatibility and package dependency problems are much difficult, al-

most impossible, to solve in Windows. In theory the program should easily run in

Windows. But a problem with the dependency of Gmsh and an impossibility to in-

tegrate it with Fipy through python make the test in windows operative system to

fail.

In occupational field they can range from industry to military, sports or medicine

life threatening applications to thermal comfort or development of special protective

equipment. Basically all environments that deal with hot or particular types of expos-

ure can benefit form the model proposal.

With it potential for applications and development, present model intend to be

the basis of future sustainable work inside academic community. Freeware, free of

license is going to be distributed online for free for common use, with the hope that

improvement provided by others, create a friendly user tool to improve occupational

safety conditions.

160



Bibliography

Cyro Albuquerque-Neto and Jurandir Itizo Yanagihara. A passive model of the heat,

oxygen and carbon dioxide transport in the human body. In ASME 2009 International

Mechanical Engineering Congress and Exposition, pages 155–166. American Society of

Mechanical Engineers, 2009.

Indira Ashton and Frank Gill. Monitoring for health hazards at work. Wiley-Blackwell,

2000.

Hossein Askarizadeh and Hossein Ahmadikia. Analytical analysis of the dual-phase-

lag model of bioheat transfer equation during transient heating of skin tissue.

Heat and Mass Transfer, 50(12):1673–1684, 2014. ISSN 0947-7411. doi: 10.1007/

s00231-014-1373-6. URL http://dx.doi.org/10.1007/s00231-014-1373-6.

A.P. Avolio. Multi-branched model of the human arterial system. Medical and

Biological Engineering and Computing, 18(6):709–718, 1980. ISSN 0140-0118. doi:

10.1007/BF02441895. URL http://dx.doi.org/10.1007/BF02441895.

H Belding and T. Hatch. Index for evaluating heat stress in terms of resulting physiolo-

gical strain. Heat Pip Air Cond, 27(8):129 – 136, 1955.

J R Breckenridge and R F Goldman. Solar heat load in man. Journal of Applied

Physiology, 31(5):659–663, 1971. ISSN 8750-7587. URL http://jap.physiology.org/

content/31/5/659.

Ingelise Brynjolf, Jesper Qvist, Thorkild Mygind, Henrik Jordening, Sven Dorph, and

Ole Munck. Measurement of right and left ventricular ejection fraction in dogs.

161

http://dx.doi.org/10.1007/s00231-014-1373-6
http://dx.doi.org/10.1007/BF02441895
http://jap.physiology.org/content/31/5/659
http://jap.physiology.org/content/31/5/659


DemSSO Bibliography

Clinical Physiology, 3(4):335–348, 1983. ISSN 1365-2281. doi: 10.1111/j.1475-097X.

1983.tb00716.x. URL http://dx.doi.org/10.1111/j.1475-097X.1983.tb00716.x.

Michael M. Chen and Kenneth R. Holmes. Microvascular contributions in tissue heat

transfer. Annals of the New York Academy of Sciences, 335(1):137–150, 1980. ISSN 1749-

6632. doi: 10.1111/j.1749-6632.1980.tb50742.x. URL http://dx.doi.org/10.1111/

j.1749-6632.1980.tb50742.x.

Gouri Dhatt, Emmanuel Lefrançois, and Gilbert Touzot. Finite element method. John

Wiley & Sons, 2012.

P. Ole Fanger and JÃ¸rn Toftum. Extension of the {PMV} model to non-air-conditioned

buildings in warm climates. Energy and Buildings, 34(6):533 – 536, 2002. ISSN

0378-7788. doi: http://dx.doi.org/10.1016/S0378-7788(02)00003-8. URL http:

//www.sciencedirect.com/science/article/pii/S0378778802000038. Special Is-

sue on Thermal Comfort Standards.

M.S. Ferreira and J.I. Yanagihara. A transient three-dimensional heat transfer model

of the human body. International Communications in Heat and Mass Transfer, 36(7):718

– 724, 2009. ISSN 0735-1933. doi: 10.1016/j.icheatmasstransfer.2009.03.010. URL

http://www.sciencedirect.com/science/article/pii/S0735193309000773.

Dusan Fiala. Dynamic Simulation of Human Heat Transfer and Thermal Com-

fort. PhD thesis, Institute of Energy and Sustainable Development -

DE MONTFORT UNIVERSITY LEICESTER, June 1998. URL https:

//www.google.pt/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=

8&ved=0CB8QFjAA&url=https%3A%2F%2Fdspace.lboro.ac.uk%2Fdspace-jspui%

2Fbitstream%2F2134%2F9318%2F5%2FFiala.pdf&ei=DTxKVaHwNImuUaPWgdgK&usg=

AFQjCNEmDXLf6uu8q1d6HYI1bWCrjBjYWQ.

Dusan Fiala, Kevin J. Lomas, and Martin Stohrer. A computer model of human ther-

moregulation for a wide range of environmental conditions: the passive system.

Journal of Applied Physiology, 87(5):1957–1972, 1999. URL http://jap.physiology.

org/content/87/5/1957.abstract.

162

http://dx.doi.org/10.1111/j.1475-097X.1983.tb00716.x
http://dx.doi.org/10.1111/j.1749-6632.1980.tb50742.x
http://dx.doi.org/10.1111/j.1749-6632.1980.tb50742.x
http://www.sciencedirect.com/science/article/pii/S0378778802000038
http://www.sciencedirect.com/science/article/pii/S0378778802000038
http://www.sciencedirect.com/science/article/pii/S0735193309000773
https://www.google.pt/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CB8QFjAA&url=https%3A%2F%2Fdspace.lboro.ac.uk%2Fdspace-jspui%2Fbitstream%2F2134%2F9318%2F5%2FFiala.pdf&ei=DTxKVaHwNImuUaPWgdgK&usg=AFQjCNEmDXLf6uu8q1d6HYI1bWCrjBjYWQ
https://www.google.pt/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CB8QFjAA&url=https%3A%2F%2Fdspace.lboro.ac.uk%2Fdspace-jspui%2Fbitstream%2F2134%2F9318%2F5%2FFiala.pdf&ei=DTxKVaHwNImuUaPWgdgK&usg=AFQjCNEmDXLf6uu8q1d6HYI1bWCrjBjYWQ
https://www.google.pt/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CB8QFjAA&url=https%3A%2F%2Fdspace.lboro.ac.uk%2Fdspace-jspui%2Fbitstream%2F2134%2F9318%2F5%2FFiala.pdf&ei=DTxKVaHwNImuUaPWgdgK&usg=AFQjCNEmDXLf6uu8q1d6HYI1bWCrjBjYWQ
https://www.google.pt/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CB8QFjAA&url=https%3A%2F%2Fdspace.lboro.ac.uk%2Fdspace-jspui%2Fbitstream%2F2134%2F9318%2F5%2FFiala.pdf&ei=DTxKVaHwNImuUaPWgdgK&usg=AFQjCNEmDXLf6uu8q1d6HYI1bWCrjBjYWQ
https://www.google.pt/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CB8QFjAA&url=https%3A%2F%2Fdspace.lboro.ac.uk%2Fdspace-jspui%2Fbitstream%2F2134%2F9318%2F5%2FFiala.pdf&ei=DTxKVaHwNImuUaPWgdgK&usg=AFQjCNEmDXLf6uu8q1d6HYI1bWCrjBjYWQ
http://jap.physiology.org/content/87/5/1957.abstract
http://jap.physiology.org/content/87/5/1957.abstract


Bibliography Porto, 2015

Dusan Fiala, George Havenith, Peter Bröde, Bernhard Kampmann, and Gerd Jend-

ritzky. Utci-fiala multi-node model of human heat transfer and temperature

regulation. International Journal of Biometeorology, 56(3):429–441, 2012. ISSN

0020-7128. doi: 10.1007/s00484-011-0424-7. URL http://dx.doi.org/10.1007/

s00484-011-0424-7.

G. Fu. A Transient, 3-D Mathematical Thermal Model for the Clothed Human. PhD

thesis, Kansas State University, 1995. URL http://books.google.pt/books?id=

QjpDOAAACAAJ.

Paul Fulbrook. Core body temperature measurement: a comparison of axilla, tym-

panic membrane and pulmonary artery blood temperature. Intensive and Critical

Care Nursing, 13(5):266 – 272, 1997. ISSN 0964-3397. doi: http://dx.doi.org/

10.1016/S0964-3397(97)80425-9. URL http://www.sciencedirect.com/science/

article/pii/S0964339797804259.

AP Gagge, JAJ Stolwijk, and Ysaunobu Nishi. An effective temperature scale based on

a simple model of human physiological regulatiry response. Memoirs of the Faculty of

Engineering, Hokkaido University, 13(Suppl):21–36, 1972. URL http://eprints.lib.

hokudai.ac.jp/dspace/bitstream/2115/37901/1/13Suppl_21-36.pdf.

B Givoni and R F Goldman. Predicting rectal temperature response to work, en-

vironment, and clothing. Journal of Applied Physiology, 32(6):812–22, 1972. URL

http://jap.physiology.org/content/32/6/812.short.

B Givoni and R F Goldman. Predicting effects of heat acclimatization

on heart rate and rectal temperature. Journal of Applied Physiology, 35

(6):875–879, 1973a. ISSN 8750-7587. URL @Article{rohtua,Title=

{Predictingeffectsofheatacclimatizationonheartrateandrectaltemperature.

},Author={Givoni,BandGoldman,RF},Journal={JournalofAppliedPhysiology},

Year={1973},Number={6},Pages={875--879},Volume={35},ISBN={1522-1601},

ISSN={8750-7587},Publisher={AmericanPhysiologicalSociety}}.

B. Givoni and R.F. Goldman. Predicting heart rate response to work, envir-

onment, and clothing. Journal of applied physiology, 34(2):201–204, 1973b.

163

http://dx.doi.org/10.1007/s00484-011-0424-7
http://dx.doi.org/10.1007/s00484-011-0424-7
http://books.google.pt/books?id=QjpDOAAACAAJ
http://books.google.pt/books?id=QjpDOAAACAAJ
http://www.sciencedirect.com/science/article/pii/S0964339797804259
http://www.sciencedirect.com/science/article/pii/S0964339797804259
http://eprints.lib.hokudai.ac.jp/dspace/bitstream/2115/37901/1/13Suppl_21-36.pdf
http://eprints.lib.hokudai.ac.jp/dspace/bitstream/2115/37901/1/13Suppl_21-36.pdf
http://jap.physiology.org/content/32/6/812.short
@Article{rohtua, Title = {Predicting effects of heat acclimatization on heart rate and rectal temperature.}, Author = {Givoni, B and Goldman, R F}, Journal = {Journal of Applied Physiology}, Year = {1973}, Number = {6}, Pages = {875--879}, Volume = {35}, ISBN = {1522-1601}, ISSN = {8750-7587}, Publisher = {American Physiological Society} }
@Article{rohtua, Title = {Predicting effects of heat acclimatization on heart rate and rectal temperature.}, Author = {Givoni, B and Goldman, R F}, Journal = {Journal of Applied Physiology}, Year = {1973}, Number = {6}, Pages = {875--879}, Volume = {35}, ISBN = {1522-1601}, ISSN = {8750-7587}, Publisher = {American Physiological Society} }
@Article{rohtua, Title = {Predicting effects of heat acclimatization on heart rate and rectal temperature.}, Author = {Givoni, B and Goldman, R F}, Journal = {Journal of Applied Physiology}, Year = {1973}, Number = {6}, Pages = {875--879}, Volume = {35}, ISBN = {1522-1601}, ISSN = {8750-7587}, Publisher = {American Physiological Society} }
@Article{rohtua, Title = {Predicting effects of heat acclimatization on heart rate and rectal temperature.}, Author = {Givoni, B and Goldman, R F}, Journal = {Journal of Applied Physiology}, Year = {1973}, Number = {6}, Pages = {875--879}, Volume = {35}, ISBN = {1522-1601}, ISSN = {8750-7587}, Publisher = {American Physiological Society} }
@Article{rohtua, Title = {Predicting effects of heat acclimatization on heart rate and rectal temperature.}, Author = {Givoni, B and Goldman, R F}, Journal = {Journal of Applied Physiology}, Year = {1973}, Number = {6}, Pages = {875--879}, Volume = {35}, ISBN = {1522-1601}, ISSN = {8750-7587}, Publisher = {American Physiological Society} }


DemSSO Bibliography

URL http://www.scopus.com/inward/record.url?eid=2-s2.0-0015579695&

partnerID=40&md5=fab9a14ba5976fbf6bb8ceb86d70204f. cited By 27.

R.R. Gonzalez. Scenario revisited: Comparisons of operational and rational mod-

els in predicting human responses to the environment. Journal of Thermal

Biology, 29(7-8 SPEC. ISS.):515–527, 2004. doi: 10.1016/j.jtherbio.2004.08.

021. URL http://www.scopus.com/inward/record.url?eid=2-s2.0-4744353340&

partnerID=40&md5=24968808f7af6d24bf26f448a52bed79. cited By 8.

José González-Alonso, Ricardo Mora-Rodríguez, and Edward F. Coyle. Stroke volume

during exercise: interaction of environment and hydration. American Journal of

Physiology - Heart and Circulatory Physiology, 278(2):H321–H330, 2000. ISSN 0363-

6135.

Jonathan E. Guyer, Daniel Wheeler, and James A. Warren. FiPy: Partial differential

equations with Python. Computing in Science & Engineering, 11(3):6–15, 2009. doi:

10.1109/MCSE.2009.52. URL http://www.ctcms.nist.gov/fipy.

R. A. Haslam and K. C. Parsons. A comparison of models for predicting human re-

sponse to hot and cold environments. Ergonomics, 30(11):1599–1614, 1987. doi: 10.

1080/00140138708966050. URL http://dx.doi.org/10.1080/00140138708966050.

PMID: 3443087.

Roger Haslam. An evaluation of models of human response to hot and cold environments.

PhD thesis, c© RA Haslam, 1989. URL https://dspace.lboro.ac.uk/2134/7027.

L. M. Jiji, S. Weinbaum, and D. E. Lemons. Theory and experiment for the effect of

vascular microstructure on surface tissue heat transfer—part ii: Model formulation

and solution. Journal of Biomechanical Engineering, 106(4):331–341, 1984. doi: 10.

1115/1.3138502. URL http://link.aip.org/link/?JBY/106/331/1.

Kazuyuki Kanosue, LarryI. Crawshaw, Kei Nagashima, and Tamae Yoda. Concepts

to utilize in describing thermoregulation and neurophysiological evidence for how

the system works. European Journal of Applied Physiology, 109(1):5–11, 2010. ISSN

164

http://www.scopus.com/inward/record.url?eid=2-s2.0-0015579695&partnerID=40&md5=fab9a14ba5976fbf6bb8ceb86d70204f
http://www.scopus.com/inward/record.url?eid=2-s2.0-0015579695&partnerID=40&md5=fab9a14ba5976fbf6bb8ceb86d70204f
http://www.scopus.com/inward/record.url?eid=2-s2.0-4744353340&partnerID=40&md5=24968808f7af6d24bf26f448a52bed79
http://www.scopus.com/inward/record.url?eid=2-s2.0-4744353340&partnerID=40&md5=24968808f7af6d24bf26f448a52bed79
http://www.ctcms.nist.gov/fipy
http://dx.doi.org/10.1080/00140138708966050
https://dspace.lboro.ac.uk/2134/7027
http://link.aip.org/link/?JBY/106/331/1


Bibliography Porto, 2015

1439-6319. doi: 10.1007/s00421-009-1256-6. URL http://dx.doi.org/10.1007/

s00421-009-1256-6.

W.a Karaki, N.a Ghaddar, K.a Ghali, K.b Kuklane, I.b HolmÃ c©r, and L.c

Vanggaard. Human thermal response with improved ava modeling of

the digits. International Journal of Thermal Sciences, 67:41–52, 2013. URL

http://www.scopus.com/inward/record.url?eid=2-s2.0-84874658580&

partnerID=40&md5=bf08cb9ea971ff8db982f5c758f05fcf. cited By 3.

K.K. Kraning II and R.R. Gonzalez. A mechanistic computer simulation

of human work in heat that accounts for physical and physiological ef-

fects of clothing, aerobic fitness, and progressive dehydration. Journal of

Thermal Biology, 22(4-5):331–342, 1997. doi: 10.1016/S0306-4565(97)00031-4.

URL http://www.scopus.com/inward/record.url?eid=2-s2.0-0031455661&

partnerID=40&md5=af1abd12d7d3e8a20c3b8f28754b0fa3. cited By 39.

L. H. Kuznetz. A two-dimensional transient mathematical model of human ther-

moregulation. American Journal of Physiology - Regulatory, Integrative and Compar-

ative Physiology, 237(5):R266–R277, 1979. URL http://ajpregu.physiology.org/

content/237/5/R266.abstract.

Hans Petter Langtangen. Python scripting for computational science, volume 3. Springer,

2006.

Randall J LeVeque. Finite volume methods for hyperbolic problems, volume 31. Cambridge

university press, 2002.

Jacques Malchaire, Alain Piette, B Kampmann, P Mehnert, HJ Gebhardt, G Havenith,

E Den Hartog, I Holmer, K Parsons, G Alfano, et al. Development and validation of

the predicted heat strain model. Annals of Occupational Hygiene, 45(2):123–135, 2001.

URL http://annhyg.oxfordjournals.org/content/45/2/123.full.pdf.

Raad H. Mohiaddin, Peter D. Gatehouse, and David N. Firmin. Exercise-related

changes in aortic flow measured with spiral echo-planar mr velocity mapping.

165

http://dx.doi.org/10.1007/s00421-009-1256-6
http://dx.doi.org/10.1007/s00421-009-1256-6
http://www.scopus.com/inward/record.url?eid=2-s2.0-84874658580&partnerID=40&md5=bf08cb9ea971ff8db982f5c758f05fcf
http://www.scopus.com/inward/record.url?eid=2-s2.0-84874658580&partnerID=40&md5=bf08cb9ea971ff8db982f5c758f05fcf
http://www.scopus.com/inward/record.url?eid=2-s2.0-0031455661&partnerID=40&md5=af1abd12d7d3e8a20c3b8f28754b0fa3
http://www.scopus.com/inward/record.url?eid=2-s2.0-0031455661&partnerID=40&md5=af1abd12d7d3e8a20c3b8f28754b0fa3
http://ajpregu.physiology.org/content/237/5/R266.abstract
http://ajpregu.physiology.org/content/237/5/R266.abstract
http://annhyg.oxfordjournals.org/content/45/2/123.full.pdf


DemSSO Bibliography

Journal of Magnetic Resonance Imaging, 5(2):159–163, 1995. ISSN 1522-2586. doi:

10.1002/jmri.1880050209. URL http://dx.doi.org/10.1002/jmri.1880050209.

JOSEPH P Murgo, NICO Westerhof, JOHN P Giolma, and STEPHEN A Altobelli. Aor-

tic input impedance in normal man: relationship to pressure wave forms. Circula-

tion, 62(1):105–116, 1980.

Yasuto Nakanishi, Tetsuya Kimura, and Yoshinori Yokoo. Maximal physiological re-

sponses to deep water running. Applied Human Science, 18(2):31–35, 1999. doi:

10.2114/jpa.18.31.

Cyro Albuquerque Neto. Modelo integrado dos sistemas térmico e respiratório do corpo

humano. Tese de doutorado em engenharia mecânica de energia de fluidos, Escola

Politécnica, Universidade de São Paulo, São Paulo, 2010. URL <http://www.teses.

usp.br/teses/disponiveis/3/3150/tde-28022011-124824/>.

WILMER W Nichols, C Richard Conti, WILLIAM E Walker, and WILLIAM R Milnor.

Input impedance of the systemic circulation in man. Circulation Research, 40(5):451–

458, 1977.

Y Nishi and AP Gagge. Effective temperature scale useful for hypo-and hyperbaric

environments. Aviation, space, and environmental medicine, 48(2):97–107, 1977. URL

http://www.cbe.berkeley.edu/research/other-papers/Nishi%20-%20Gagge%

201977%20Effective%20temperature%20scale%20useful%20for%20hypo-%20and%

20hyperbaric%20environments.pdf.

K. B. Pandolf, R. L. Burse, and R. F. Goldman. Role of physical fitness in heat accli-

matisation, decay and reinduction. Ergonomics, 20(4):399–408, 1977. doi: 10.1080/

00140137708931642. URL http://dx.doi.org/10.1080/00140137708931642. PMID:

908323.

Kent B. Pandolf, Leander A. Stroschein, Lawrence L. Drolet, Richard R. Gonzalez,

and Michael N. Sawka. Prediction modeling of physiological responses and human

performance in the heat. Computers in Biology and Medicine, 16(5):319 – 329, 1986.

166

http://dx.doi.org/10.1002/jmri.1880050209
<http://www.teses.usp.br/teses/disponiveis/3/3150/tde-28022011-124824/>
<http://www.teses.usp.br/teses/disponiveis/3/3150/tde-28022011-124824/>
http://www.cbe.berkeley.edu/research/other-papers/Nishi%20-%20Gagge%201977%20Effective%20temperature%20scale%20useful%20for%20hypo-%20and%20hyperbaric%20environments.pdf
http://www.cbe.berkeley.edu/research/other-papers/Nishi%20-%20Gagge%201977%20Effective%20temperature%20scale%20useful%20for%20hypo-%20and%20hyperbaric%20environments.pdf
http://www.cbe.berkeley.edu/research/other-papers/Nishi%20-%20Gagge%201977%20Effective%20temperature%20scale%20useful%20for%20hypo-%20and%20hyperbaric%20environments.pdf
http://dx.doi.org/10.1080/00140137708931642


Bibliography Porto, 2015

ISSN 0010-4825. doi: http://dx.doi.org/10.1016/0010-4825(86)90001-6. URL http:

//www.sciencedirect.com/science/article/pii/0010482586900016.

Ken Parsons. Human thermal environments: the effects of hot, moderate, and cold environ-

ments on human health, comfort, and performance. Crc Press, 3rd edition, 2014.

Suhas Patankar. Numerical heat transfer and fluid flow. CRC Press, 1980.

Harry H. Pennes. Analysis of tissue and arterial blood temperatures in the resting

human forearm. Journal of Applied Physiology, 1(2):93–122, 1948. URL http://jap.

physiology.org/content/1/2/93.short.

António M. Raimundo and António R. Figueiredo. Personal protective clothing and

safety of firefighters near a high intensity fire front. Fire Safety Journal, 44(4):514

– 521, 2009. ISSN 0379-7112. doi: http://dx.doi.org/10.1016/j.firesaf.2008.10.007.

URL http://www.sciencedirect.com/science/article/pii/S0379711208001458.

Thomas Reilly, Clare N Dowzer, and NT Cable. The physiology of deep-

water running. Journal of Sports Sciences, 21(12):959–972, 2003. doi: 10.1080/

02640410310001641368. URL http://dx.doi.org/10.1080/02640410310001641368.

PMID: 14748454.

L B Rowell. Human cardiovascular adjustments to exercise and thermal stress.

Physiological Reviews, 54(1):75–159, 1974. URL http://physrev.physiology.org/

content/54/1/75.

Loring B. Rowell, John R. Blackmon, Richard H. Martin, John A. Mazzarella, and

Robert A. Bruce. Hepatic clearance of indocyanine green in man under thermal and

exercise stresses. Journal of Applied Physiology, 20(3):384–394, 1965. ISSN 8750-7587.

URL http://jap.physiology.org/content/20/3/384.

M. Salloum, N. Ghaddar, and K. Ghali. A new transient bioheat model of the hu-

man body and its integration to clothing models. International Journal of Thermal

Sciences, 46(4):371 – 384, 2007. ISSN 1290-0729. doi: http://dx.doi.org/10.1016/j.

ijthermalsci.2006.06.017. URL http://www.sciencedirect.com/science/article/

pii/S129007290600175X.

167

http://www.sciencedirect.com/science/article/pii/0010482586900016
http://www.sciencedirect.com/science/article/pii/0010482586900016
http://jap.physiology.org/content/1/2/93.short
http://jap.physiology.org/content/1/2/93.short
http://www.sciencedirect.com/science/article/pii/S0379711208001458
http://dx.doi.org/10.1080/02640410310001641368
http://physrev.physiology.org/content/54/1/75
http://physrev.physiology.org/content/54/1/75
http://jap.physiology.org/content/20/3/384
http://www.sciencedirect.com/science/article/pii/S129007290600175X
http://www.sciencedirect.com/science/article/pii/S129007290600175X


DemSSO Bibliography

Abdul-Majeed Salmasi. Cardiac output during exercise. In Abdul-Majeed Sal-

masi and AbdulmassihS. Iskandrian, editors, Cardiac Output and Regional Flow in

Health and Disease, volume 138 of Developments in Cardiovascular Medicine, pages

91–96. Springer Netherlands, 1993. ISBN 978-94-010-4816-3. doi: 10.1007/

978-94-011-1848-4_9. URL http://dx.doi.org/10.1007/978-94-011-1848-4_9.

Y. Shapiro, K.B. Pandolf, and R.F. Goldman. Predicting sweat loss re-

sponse to exercise, environment and clothing. European Journal of Ap-

plied Physiology and Occupational Physiology, 48(1):83–96, 1982. doi: 10.

1007/BF00421168. URL http://www.scopus.com/inward/record.url?eid=2-s2.

0-0020078180&partnerID=40&md5=c383526991c1b841252408dfc0596286. cited By

59.

Wei Jie Song, Sheldon Weinbaum, and Latif M. Jiji. A theoretical model for peri-

pheral tissue heat transfer using the bioheat equation of weinbaum and jiji. Journal

of Biomechanical Engineering, 109(1):72–78, February 1987. ISSN 0148-0731. URL

http://dx.doi.org/10.1115/1.3138646.

Scott A. Stevens, William D. Lakin, and Wolfgang Goetz. A differentiable, peri-

odic function for pulsatile cardiac output based on heart rate and stroke volume.

Mathematical Biosciences, 182(2):201 – 211, 2003. ISSN 0025-5564. doi: http://

dx.doi.org/10.1016/S0025-5564(02)00200-6. URL http://www.sciencedirect.com/

science/article/pii/S0025556402002006.

JAJ Stolwijk. A mathematical model of physiological temperature regulation

in man. Technical report, 1971. URL http://scholar.google.pt/scholar_

url?url=http%3A%2F%2Fwww.ntrs.nasa.gov%2Farchive%2Fnasa%2Fcasi.ntrs.

nasa.gov%2F19710023925_1971023925.pdf&hl=en&sa=T&oi=ggp&ct=res&cd=5&ei=

IfJIVei5AYOVqAHx44G4BQ&scisig=AAGBfm3X2SgCUTaQjw0Vm4ayyjCBsXTURQ&nossl=

1&ws=996x955.

J.A.J. Stolwijk and J.D. Hardy. Temperature regulation in man — a theoretical study.

Pflüger’s Archiv für die gesamte Physiologie des Menschen und der Tiere, 291:129–162,

168

http://dx.doi.org/10.1007/978-94-011-1848-4_9
http://www.scopus.com/inward/record.url?eid=2-s2.0-0020078180&partnerID=40&md5=c383526991c1b841252408dfc0596286
http://www.scopus.com/inward/record.url?eid=2-s2.0-0020078180&partnerID=40&md5=c383526991c1b841252408dfc0596286
http://dx.doi.org/10.1115/1.3138646
http://www.sciencedirect.com/science/article/pii/S0025556402002006
http://www.sciencedirect.com/science/article/pii/S0025556402002006
http://scholar.google.pt/scholar_url?url=http%3A%2F%2Fwww.ntrs.nasa.gov%2Farchive%2Fnasa%2Fcasi.ntrs.nasa.gov%2F19710023925_1971023925.pdf&hl=en&sa=T&oi=ggp&ct=res&cd=5&ei=IfJIVei5AYOVqAHx44G4BQ&scisig=AAGBfm3X2SgCUTaQjw0Vm4ayyjCBsXTURQ&nossl=1&ws=996x955
http://scholar.google.pt/scholar_url?url=http%3A%2F%2Fwww.ntrs.nasa.gov%2Farchive%2Fnasa%2Fcasi.ntrs.nasa.gov%2F19710023925_1971023925.pdf&hl=en&sa=T&oi=ggp&ct=res&cd=5&ei=IfJIVei5AYOVqAHx44G4BQ&scisig=AAGBfm3X2SgCUTaQjw0Vm4ayyjCBsXTURQ&nossl=1&ws=996x955
http://scholar.google.pt/scholar_url?url=http%3A%2F%2Fwww.ntrs.nasa.gov%2Farchive%2Fnasa%2Fcasi.ntrs.nasa.gov%2F19710023925_1971023925.pdf&hl=en&sa=T&oi=ggp&ct=res&cd=5&ei=IfJIVei5AYOVqAHx44G4BQ&scisig=AAGBfm3X2SgCUTaQjw0Vm4ayyjCBsXTURQ&nossl=1&ws=996x955
http://scholar.google.pt/scholar_url?url=http%3A%2F%2Fwww.ntrs.nasa.gov%2Farchive%2Fnasa%2Fcasi.ntrs.nasa.gov%2F19710023925_1971023925.pdf&hl=en&sa=T&oi=ggp&ct=res&cd=5&ei=IfJIVei5AYOVqAHx44G4BQ&scisig=AAGBfm3X2SgCUTaQjw0Vm4ayyjCBsXTURQ&nossl=1&ws=996x955
http://scholar.google.pt/scholar_url?url=http%3A%2F%2Fwww.ntrs.nasa.gov%2Farchive%2Fnasa%2Fcasi.ntrs.nasa.gov%2F19710023925_1971023925.pdf&hl=en&sa=T&oi=ggp&ct=res&cd=5&ei=IfJIVei5AYOVqAHx44G4BQ&scisig=AAGBfm3X2SgCUTaQjw0Vm4ayyjCBsXTURQ&nossl=1&ws=996x955


Bibliography Porto, 2015

1966. ISSN 0365-267x. doi: 10.1007/BF00412787. URL http://dx.doi.org/10.

1007/BF00412787.

Shin-ichi Tanabe, K.Kozo Kobayashi, Junta Nakano, Yoshiichi Ozeki, and Masaaki

Konishi. Evaluation of thermal comfort using combined multi-node thermoregu-

lation (65mn) and radiation models and computational fluid dynamics (cfd). En-

ergy and Buildings, 34(6):637 – 646, 2002. ISSN 0378-7788. doi: http://dx.doi.org/

10.1016/S0378-7788(02)00014-2. URL http://www.sciencedirect.com/science/

article/pii/S0378778802000142. Special Issue on Thermal Comfort Standards.

Johannes H. G. M. van Beek, Farahaniza Supandi, Anand K. Gavai, Albert A. de Graaf,

Thomas W. Binsl, and Hannes Hettling. Simulating the physiology of athletes dur-

ing endurance sports events: modelling human energy conversion and metabol-

ism. Philosophical Transactions of the Royal Society of London A: Mathematical, Phys-

ical and Engineering Sciences, 369(1954):4295–4315, 2011. ISSN 1364-503X. doi:

10.1098/rsta.2011.0166.

H.K. Versteeg and W. Malalasekera. An introduction to computational fluid dynamics: the

finite volume method. Prentice Hall, 2007.

Liqiu Wang. Flows through porous media: A theoretical development at macro-

scale. Transport in Porous Media, 39(1):1–24, 2000. ISSN 0169-3913. doi: 10.1023/A:

1006647505709. URL http://dx.doi.org/10.1023/A%3A1006647505709.

Liqiu Wang and Jing Fan. Modeling bioheat transport at macroscale. Journal of Heat

Transfer, 133(1):011010, 2011. doi: 10.1115/1.4002361. URL http://link.aip.org/

link/?JHR/133/011010/1.

Yuehong Wang, Yueping Qin, and Jiuling Zhang. Application of new finite volume

method (fvm) on transient heat transferring. In Rongbo Zhu, Yanchun Zhang, Baox-

iang Liu, and Chunfeng Liu, editors, Information Computing and Applications, volume

105 of Communications in Computer and Information Science, pages 109–116. Springer

Berlin Heidelberg, 2010. ISBN 978-3-642-16335-7. doi: 10.1007/978-3-642-16336-4_

15. URL http://dx.doi.org/10.1007/978-3-642-16336-4_15.

169

http://dx.doi.org/10.1007/BF00412787
http://dx.doi.org/10.1007/BF00412787
http://www.sciencedirect.com/science/article/pii/S0378778802000142
http://www.sciencedirect.com/science/article/pii/S0378778802000142
http://dx.doi.org/10.1023/A%3A1006647505709
http://link.aip.org/link/?JHR/133/011010/1
http://link.aip.org/link/?JHR/133/011010/1
http://dx.doi.org/10.1007/978-3-642-16336-4_15


DemSSO Bibliography

S. Weinbaum and L. M. Jiji. A new simplified bioheat equation for the effect of blood

flow on local average tissue temperature. Journal of Biomechanical Engineering, 107

(2):131–139, 1985. doi: 10.1115/1.3138533. URL http://link.aip.org/link/?JBY/

107/131/1.

S. Weinbaum, D. E. Lemons, and L. M. Jiji. Theory and experiment for the effect of vas-

cular microstructure on surface tissue heat transfer part i: Anatomical foundation

and model conceptualization. Journal of Biomechanical Engineering, 106(4):321–330,

November 1984. ISSN 0148-0731. URL http://dx.doi.org/10.1115/1.3138501.

E. H. Wissler. Heat Transfer in Medicine and Biology, volume 1, chapter Mathematical

simulation of human thermal behavior using whole body models, page 325–373.

New York: Plenum, 1985.

Eugene H. Wissler. Steady-state temperature distribution in man. Journal of Applied

Physiology, 16(4):734–740, 1961. ISSN 8750-7587. URL http://jap.physiology.org/

content/16/4/734.

Eugene H Wissler. An analysis of factors affecting temperature levels in the nude

human. Temperature-its measurement and control in science and industry, 3:603–612,

1963.

Eugene H. Wissler. Pennes’ 1948 paper revisited. Journal of Applied Physiology, 85(1):

35–41, 1998. URL http://jap.physiology.org/content/85/1/35.

EugeneH. Wissler. A mathematical model of the human thermal system. The bul-

letin of mathematical biophysics, 26(2):147–166, 1964. ISSN 0007-4985. doi: 10.1007/

BF02476835. URL http://dx.doi.org/10.1007/BF02476835.

170

http://link.aip.org/link/?JBY/107/131/1
http://link.aip.org/link/?JBY/107/131/1
http://dx.doi.org/10.1115/1.3138501
http://jap.physiology.org/content/16/4/734
http://jap.physiology.org/content/16/4/734
http://jap.physiology.org/content/85/1/35
http://dx.doi.org/10.1007/BF02476835


Acronyms

default

∇2Tt

temperature gradient of the tissue (◦C/m ). 59

ρbl

specific weight of the blood (kg/m3 ). 59

ρt

specific weight of the tissue (Kg/m3). 58

C

cbl

specific heat of the blood (J/kg.◦C ). 59

ct

specific heat of the tissue (J/Kg. ◦C). 58

CO

Cardiac output (Q̇) is the quantity of blood that is pumped from the heart over

one minute. The units usually vary between cm3 ·h and l ·min.. 23, 56, 119, 150–

152, 155

Continuum Mechanics

Modelling an object as a continuum assumes that the substance of the object

completely fills the space it occupies. Modelling objects in this way ignores the

171
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fact that matter is made of atoms, and so is not continuous; however, on length

scales much greater than that of inter-atomic distances, such models are highly

accurate. Fundamental physical laws such as the conservation of mass, the con-

servation of momentum, and the conservation of energy may be applied to such

models to derive differential equations describing the behaviour of such objects,

and some information about the particular material studied is added through

constitutive relations.

http://en.wikipedia.org/wiki/Continuum_mechanics. 47

CV

Control Volume. 62, 63, 65, 66, 68, 75

E

Eclipse

The Eclipse Platform, and all the tools needed to develop and como corre a re-

visão da provadebug it: Java and Plug-in Development Tooling, Git and CVS.

http://pydev.org/screenshots.html. 35

F

FDM

Finite Difference Methods. 62

FEM

Finite Element Methods. 61, 62

Fipy

FiPy is an object oriented, partial differential equation (PDE) solver, written in

Python, based on a standard finite volume (FV) approach. The framework has

been developed in the Materials Science and Engineering Division (MSED) and

Center for Theoretical and Computational Materials Science (CTCMS), in the

Material Measurement Laboratory (MML) at the National Institute of Standards
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and Technology (NIST).

http://www.ctcms.nist.gov/fipy/. 35, 64, 79, 83, 96, 97, 111, 162

Free Software

Free Software is software free of charge, whose source code is completely access-

ible to the user. More than be able to see exactly what the program does, in Free

Software the user can also change the program features according to his will or

needs.. 31

FVM

Finite Volume Methods. 35, 61–63

G

Gedit

Gedit is the GNOME text editor. While aiming at simplicity and ease of use,

gedit is a powerful general purpose text editor.

https://wiki.gnome.org/Apps/Gedit. 36

Gmsh

Gmsh is a 3D finite element grid generator with a build-in CAD engine and post-

processor. Its design goal is to provide a fast, light and user-friendly meshing

tool with parametric input and advanced visualization capabilities. Gmsh is

built around four modules: geometry, mesh, solver and post-processing. The

specification of any input to these modules is done either interactively using

the graphical user interface or in ASCII text files using Gmsh’s own scripting

language.

http://geuz.org/gmsh/. 35, 36, 79, 96, 162

GUI

Graphical User Interface. 36

I
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IDE

Integrated Development Environments. ii, 36

IPython

IPython provides a rich architecture for interactive computing with: powerful

interactive shells (terminal and Qt-based); a browser-based notebook with sup-

port for code, text, mathematical expressions, in-line plots and other rich media;

support for interactive data visualization and use of GUI toolkits; flexible, em-

beddable interpreters to load into your own projects; easy to use, high perform-

ance tools for parallel computing.

http://ipython.org/. 34, 35

K

kt

thermal conductivity of the tissue (W/m. ◦C). 58

M

Matplotlib

matplotlib is a python 2D plotting library which produces publication quality

figures in a variety of hardcopy formats and interactive environments across

platforms. matplotlib can be used in python scripts, the python and ipython

shell (ala MATLAB R© or Mathematica R©), web application servers, and six graph-

ical user interface toolkits.

http://matplotlib.org/. 34, 35

Mayavi

The Mayavi project includes two related packages for 3-dimensional visualiza-

tion:

• Mayavi: A tool for easy and interactive visualization of data, with seamless

integration with Python scientific libraries.
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• TVTK: A Traits-based wrapper for the Visualization Toolkit, a popular open-

source visualization library.

These libraries operate at different levels of abstraction. TVTK manipulates visu-

alization objects, while Mayavi lets you operate on your data, and then see the

results. Most users either use the Mayavi user interface or program to its script-

ing interface; you probably don’t need to interact with TVTK unless you want to

create a new Mayavi module.

http://code.enthought.com/projects/mayavi/. 35, 79, 111, 113

mesh

a mesh is considered the group of elements (vertices, faces and cells) that define

the segmentation of the solution domain.

http://www.ctcms.nist.gov/fipy/documentation/numerical/discret.html. 63

N

NumPy

NumPy is the fundamental package for scientific computing with Python. It

contains among other things: a powerful N-dimensional array object; sophist-

icated (broadcasting) functions; tools for integrating C/C++ and Fortran code;

useful linear algebra, Fourier transform, and random number capabilities.

Besides its obvious scientific uses, NumPy can also be used as an efficient multi-

dimensional container of generic data. Arbitrary data-types can be defined. This

allows NumPy to seamlessly and speedily integrate with a wide variety of data-

bases.

http://www.numpy.org/. 34, 35, 83

P

PDE

Partial Differential Equation. 60
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Porous Media

A porous medium (or a porous material) is a material containing pores (voids).

The skeletal portion of the material is often called the "matrix" or "frame". The

pores are typically filled with a fluid (liquid or gas). The skeletal material is

usually a solid, but structures like foams are often also usefully analysed using

concept of porous media.

The concept of porous media is used in many areas of applied science and en-

gineering: filtration, mechanics (acoustics, geomechanics, soil mechanics, rock

mechanics), engineering (petroleum engineering, bio-remediation, construction

engineering), geosciences (hydrogeology, petroleum geology, geophysics), bio-

logy and biophysics, material science, etc. Fluid flow through porous media is a

subject of most common interest and has emerged a separate field of study. The

study of more general behaviour of porous media involving deformation of the

solid frame is called poromechanics.

http://en.wikipedia.org/wiki/Porous_medium. 47

PyDev

PyDev is a Python IDE for Eclipse, which may be used in Python, Jython and

IronPython development.

http://pydev.org/. 35

PyQt

PyQt is a set of Python v2 and v3 bindings for Digia’s Qt application framework

and runs on all platforms supported by Qt including Windows, MacOS/X and

Linux. http://www.riverbankcomputing.co.uk/software/pyqt/intro. 35

Q

ˆ̇qt

endogenous heat production of the tissue (W/m3 ). 59
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Qt

Qt is a cross-platform application and UI framework for developers.

http://qt-project.org/. 35

S

SciPy

The SciPy library is one of the core packages that make up the SciPy stack. It

provides many user-friendly and efficient numerical routines such as routines

for numerical integration and optimization.

http://www.scipy.org/. 34, 35, 70, 83, 103

Spyder

Spyder (previously known as Pydee) is a powerful interactive development en-

vironment for the Python language with advanced editing, interactive testing,

debugging and introspection features.

https://code.google.com/p/spyderlib/. 36

SV

Stroke Volume. 151, 152

T

Tar

arterial blood temperature (◦C ). 59

Tt

temperature of the tissue (◦C ). 58

Tkinter

Tkinter is Python’s de-facto standard GUI (Graphical User Interface) package.

https://wiki.python.org/moin/TkInter. 35

V
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ˆ̇Vsv

arterial blood flow of the body segment (m3/m3.s). 59

VIM

Vim is an advanced text editor that seeks to provide the power of the de-facto

Unix editor ’Vi’, with a more complete feature set.

http://www.vim.org/about.php. 36

W

wxGlade

wxGlade is a GUI designer written in Python with the popular GUI toolkit wx-

Python, that helps you create wxWidgets/wxPython user interfaces.

http://wxglade.sourceforge.net/. 35

wxPython

wxPython is a GUI toolkit for the Python programming language. It allows Py-

thon programmers to create programs with a robust, highly functional graphical

user interface, simply and easily. It is implemented as a Python extension mod-

ule (native code) that wraps the popular wxWidgets cross platform GUI library,

which is written in C++.

http://www.wxpython.org/. 35
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Appendix A

Source Code Listings of the Human

Body Geometry

A.1 Hand Geometric Code

1 // Hand Geometry - 4 layers

2

3 // ====================================================================//

4 // Mesh Chars //

5 // ====================================================================//

6

7 Size = .01;

8

9 xsk1 = 0.0;

10 xsk2 = 0.1098;

11 ysk1 = 0.0;

12 ysk2 = 0.0242;

13 xft1 = 0.0034;

14 xft2 = 0.1055;

15 yft1 = 0.00076;

16 yft2 = 0.0234;

17 xmsc1 = 0.0093;

18 xmsc2 = 0.0996;

19 ymsc1 = 0.00205;

20 ymsc2 = 0.0221;

21 xbn1 = 0.0167;

22 xbn2 = 0.0922;

23 ybn1 = 0.00699;

24 ybn2 = 0.0172;

25

26 z = 0.19; // hand length (m)

27

28 // Mesh Divisions

29

30 NDlx = 10; // Div. Lines Bone
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31 NDly = 5; // Div. Lines Muscle

32 NDlz = 19; // Div. Lines Gord

33

34 // ====================================================================//

35 // Points //

36 // ====================================================================//

37

38 // Outer Vertexes of the Prisma - Skin

39 Point(1)={0., 0., 0., Size};

40 Point(2)={0., ysk2 , 0., Size};

41 Point(3)={xsk2 , ysk2 , 0., Size};

42 Point(4)={xsk2 , 0., 0., Size};

43

44 // Outer Vertexes of the Prisma - Fat

45 Point(5)={xft1 , yft1 , 0., Size};

46 Point(6)={xft1 , yft2 , 0., Size};

47 Point(7)={xft2 , yft2 , 0., Size};

48 Point(8)={xft2 , yft1 , 0., Size};

49

50 // Outer Vertexes of the Prisma - Muscle

51 Point(9) ={xmsc1 , ymsc1 , 0., Size};

52 Point(10)={xmsc1 , ymsc2 , 0., Size};

53 Point(11)={xmsc2 , ymsc2 , 0., Size};

54 Point(12)={xmsc2 , ymsc1 , 0., Size};

55

56 //Outer Vertexes of the Prisma - Bone

57 Point(13)={xbn1 , ybn1 , 0., Size};

58 Point(14)={xbn1 , ybn2 , 0., Size};

59 Point(15)={xbn2 , ybn2 , 0., Size};

60 Point(16)={xbn2 , ybn1 , 0., Size};

61

62 // ====================================================================//

63 // Lines //

64 // ====================================================================//

65

66 //Lines SK

67 Line(1)={1,2}; Transfinite Line{1}=4;

68 Line(2)={2,3}; Transfinite Line{2}=10;

69 Line(3)={3,4}; Transfinite Line{3}=4;

70 Line(4)={4,1}; Transfinite Line{4}=10;

71

72 //Lines Ft

73 Line(5)={5,6}; Transfinite Line{5}=4;

74 Line(6)={6,7}; Transfinite Line{6}=10;

75 Line(7)={7,8}; Transfinite Line{7}=4;

76 Line(8)={8,5}; Transfinite Line{8}=10;

77

78 //Lines Msc

79 Line(9) ={9, 10}; Transfinite Line{9}=4;

80 Line(10)={10,11}; Transfinite Line{10}=10;

81 Line(11)={11,12}; Transfinite Line{11}=4;

82 Line(12)={12, 9}; Transfinite Line{12}=10;

83

84 //Lines Bone

85 Line(13)={13, 14}; Transfinite Line{13}=4;

86 Line(14)={14, 15}; Transfinite Line{14}=10;
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87 Line(15)={15, 16}; Transfinite Line{15}=4;

88 Line(16)={16, 13}; Transfinite Line{16}=10;

89

90 //Diagonals

91 Line(17)={1,5}; Transfinite Line{17}=2;

92 Line(18)={2,6}; Transfinite Line{18}=2;

93 Line(19)={3,7}; Transfinite Line{19}=2;

94 Line(20)={4,8}; Transfinite Line{20}=2;

95

96 Line(21)={5, 9}; Transfinite Line{21}=2;

97 Line(22)={6,10}; Transfinite Line{22}=2;

98 Line(23)={7,11}; Transfinite Line{23}=2;

99 Line(24)={8,12}; Transfinite Line{24}=2;

100

101 Line(25)={ 9,13}; Transfinite Line{25}=4;

102 Line(26)={10,14}; Transfinite Line{26}=4;

103 Line(27)={11,15}; Transfinite Line{27}=4;

104 Line(28)={12,16}; Transfinite Line{28}=4;

105

106 // ====================================================================//

107 // Loops //

108 // ====================================================================//

109

110 //Line Loops of the Sk, Ft, Msc, Bn

111 Line Loop(1)={ 1, 18, -5, -17};

112 Line Loop(2)={ 2, 19, -6, -18};

113 Line Loop(3)={ 3, 20, -7, -19};

114 Line Loop(4)={ 4, 17, -8, -20};

115

116 Line Loop(5)={ 5, 22, -9, -21};

117 Line Loop(6)={ 6, 23,-10, -22};

118 Line Loop(7)={ 7, 24,-11, -23};

119 Line Loop(8)={ 8, 21,-12, -24};

120

121 Line Loop( 9)={ 9, 26,-13, -25};

122 Line Loop(10)={ 10, 27,-14, -26};

123 Line Loop(11)={ 11, 28,-15, -27};

124 Line Loop(12)={ 12, 25,-16, -28};

125

126 Line Loop(13)={13,14,15,16};

127

128 // ====================================================================//

129 // Creating the Surfaces //

130 // ====================================================================//

131

132 Plane Surface( 1)={ 1}; Transfinite Surface{ 1}={ 1, 2, 6, 5}; Recombine

Surface{1};

133 Plane Surface( 2)={ 2}; Transfinite Surface{ 2}={ 2, 3, 7, 6}; Recombine

Surface{2};

134 Plane Surface( 3)={ 3}; Transfinite Surface{ 3}={ 3, 4, 8, 7}; Recombine

Surface{3};

135 Plane Surface( 4)={ 4}; Transfinite Surface{ 4}={ 4, 1, 5, 8}; Recombine

Surface{4};

136

137 Plane Surface( 5)={ 5}; Transfinite Surface{ 5}={ 5, 6,10, 9}; Recombine

Surface{5};
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138 Plane Surface( 6)={ 6}; Transfinite Surface{ 6}={ 6, 7,11,10}; Recombine

Surface{6};

139 Plane Surface( 7)={ 7}; Transfinite Surface{ 7}={ 7, 8,12,11}; Recombine

Surface{7};

140 Plane Surface( 8)={ 8}; Transfinite Surface{ 8}={ 8, 5, 9,12}; Recombine

Surface{8};

141

142 Plane Surface( 9)={ 9}; Transfinite Surface{ 9}={ 9,10,14,13}; Recombine

Surface{9};

143 Plane Surface(10)={10}; Transfinite Surface {10}={10,11,15,14}; Recombine

Surface{10};

144 Plane Surface(11)={11}; Transfinite Surface {11}={11,12,16,15}; Recombine

Surface{11};

145 Plane Surface(12)={12}; Transfinite Surface{12}={12, 9,13,16}; Recombine

Surface{12};

146

147 Plane Surface(13)={13}; Transfinite Surface {13}={13,14,15,16}; Recombine

Surface{13};

148

149 // ====================================================================//

150 // Volumes Construction //

151 // ====================================================================//

152

153 Extrude{0.0,0.0,z} {Surface{1,2,3,4,5,6,7,8,9,10,11,12,13}; Layers{NDlz};

Recombine;}

154

155 // ====================================================================//

156 // Defining Physical Volumes //

157 // ====================================================================//

158

159 Physical Volume("Bone") = {13};

160 Physical Volume("Muscle") = { 9,10,11,12};

161 Physical Volume("Fat") = { 5, 6, 7, 8};

162 Physical Volume("Skin") = { 1, 2, 3, 4};

163

164 Show "*";

165

166 Show "*";

167 Show "*";

A.2 Lower Arm Geometric Code

1 // Lower Arm Geometry - multiple layers

2

3 // ====================================================================//

4 // Mesh Data //

5 // ====================================================================//

6

7 Size = .01;

8

9 rbn1 = 0.0117; // Bone (m)

10 rbn2 = 0.0251; // Bone (m)

11 rmsc = 0.0278; // Muscle (m)
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Figure A.1: Hand mesh Geometry in GMSH.

12 rf = 0.0314; // Fat (m)

13 rsk = 0.0335; // Skin (m)

14

15 z = 0.280; // lower arm length (m)

16

17 // Mesh Divisions

18

19 NDc = 5; // Div. circ.

20

21 NDlbn1 = 2; // Div. Lines Bone

22 NDlbn2 = 2; // Div. Lines Bone

23 NDlmsc = 2; // Div. Lines Muscle

24 NDlf = 2; // Div. Lines Fat

25 NDlsk = 2; // Div. Lines Skin

26

27 NL = 28; // Number of layers

28

29 Point(1)={0., 0., 0., Size}; // Centre of the Cylinder

30

31 // ====================================================================//

32 // Points //

33 // ====================================================================//

34

35 // Circumference Points Bone init rbn1

36 Point(2)={0.,rbn1 ,0.,Size};

37 Point(3)={rbn1 ,0.,0.,Size};

38 Point(4)={0.,-rbn1 ,0.,Size};

39 Point(5)={-rbn1 ,0.,0.,Size};

40

41 // Circumference Points Bone final rbn2

42 Point(6)={0.,rbn2 ,0.,Size};

43 Point(7)={rbn2 ,0.,0.,Size};

44 Point(8)={0.,-rbn2 ,0.,Size};
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45 Point(9)={-rbn2 ,0.,0.,Size};

46

47 // Circumference Points Muscle rmsc

48 Point(10)={0.,rmsc ,0.,Size};

49 Point(11)={rmsc ,0.,0.,Size};

50 Point(12)={0.,-rmsc ,0.,Size};

51 Point(13)={-rmsc ,0.,0.,Size};

52

53 // Circumference Points Fat rf

54 Point(14)={0.,rf,0.,Size};

55 Point(15)={rf,0.,0.,Size};

56 Point(16)={0.,-rf,0.,Size};

57 Point(17)={-rf,0.,0.,Size};

58

59 // Circumference Points Skin rsk

60 Point(18)={0.,rsk ,0.,Size};

61 Point(19)={rsk ,0.,0.,Size};

62 Point(20)={0.,-rsk ,0.,Size};

63 Point(21)={-rsk ,0.,0.,Size};

64

65 // ====================================================================//

66 // Circumferences //

67 // ====================================================================//

68

69 //Circumf. Arcs Bone1

70 Circle( 1)={2,1,3}; Transfinite Line{ 1}=NDc;

71 Circle( 2)={3,1,4}; Transfinite Line{ 2}=NDc;

72 Circle( 3)={4,1,5}; Transfinite Line{ 3}=NDc;

73 Circle( 4)={5,1,2}; Transfinite Line{ 4}=NDc;

74

75 //Circumf. Arcs Bone2

76 Circle( 5)={6,1,7}; Transfinite Line{ 5}=NDc;

77 Circle( 6)={7,1,8}; Transfinite Line{ 6}=NDc;

78 Circle( 7)={8,1,9}; Transfinite Line{ 7}=NDc;

79 Circle( 8)={9,1,6}; Transfinite Line{ 8}=NDc;

80

81 //Circumf. Arcs Muscle

82 Circle( 9)={10,1,11}; Transfinite Line{ 9}=NDc;

83 Circle(10)={11,1,12}; Transfinite Line{10}=NDc;

84 Circle(11)={12,1,13}; Transfinite Line{11}=NDc;

85 Circle(12)={13,1,10}; Transfinite Line{12}=NDc;

86

87 //Circumf. Arcs Fat

88 Circle(13)={14,1,15}; Transfinite Line{13}=NDc;

89 Circle(14)={15,1,16}; Transfinite Line{14}=NDc;

90 Circle(15)={16,1,17}; Transfinite Line{15}=NDc;

91 Circle(16)={17,1,14}; Transfinite Line{16}=NDc;

92

93 //Circumf. Arcs Skin

94 Circle(17)={18,1,19}; Transfinite Line{17}=NDc;

95 Circle(18)={19,1,20}; Transfinite Line{18}=NDc;

96 Circle(19)={20,1,21}; Transfinite Line{19}=NDc;

97 Circle(20)={21,1,18}; Transfinite Line{20}=NDc;

98

99

100 // ====================================================================//
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101 // 1/4 Circle division lines //

102 // ====================================================================//

103

104 // Lines Bone1

105 Line(21)={1,2}; Transfinite Line{21}=NDlbn1 Using Progression 0.5 ;

106 Line(22)={1,3}; Transfinite Line{22}=NDlbn1 Using Progression 0.5 ;

107 Line(23)={1,4}; Transfinite Line{23}=NDlbn1 Using Progression 0.5 ;

108 Line(24)={1,5}; Transfinite Line{24}=NDlbn1 Using Progression 0.5 ;

109

110 //Lines Bone2

111 Line(25)={2,6}; Transfinite Line{25}=NDlbn2;

112 Line(26)={3,7}; Transfinite Line{26}=NDlbn2;

113 Line(27)={4,8}; Transfinite Line{27}=NDlbn2;

114 Line(28)={5,9}; Transfinite Line{28}=NDlbn2;

115

116 // Lines Muscle

117 Line(29)={6,10}; Transfinite Line{29}=NDlmsc Using Progression 0.8 ;

118 Line(30)={7,11}; Transfinite Line{30}=NDlmsc Using Progression 0.8 ;

119 Line(31)={8,12}; Transfinite Line{31}=NDlmsc Using Progression 0.8 ;

120 Line(32)={9,13}; Transfinite Line{32}=NDlmsc Using Progression 0.8 ;

121

122 //Lines Fat

123 Line(33)={10,14}; Transfinite Line{33}=NDlf;

124 Line(34)={11,15}; Transfinite Line{34}=NDlf;

125 Line(35)={12,16}; Transfinite Line{35}=NDlf;

126 Line(36)={13,17}; Transfinite Line{36}=NDlf;

127

128 // Lines Skin

129 Line(37)={14,18}; Transfinite Line{37}=NDlsk Using Progression 0.8 ;

130 Line(38)={15,19}; Transfinite Line{38}=NDlsk Using Progression 0.8 ;

131 Line(39)={16,20}; Transfinite Line{39}=NDlsk Using Progression 0.8 ;

132 Line(40)={17,21}; Transfinite Line{40}=NDlsk Using Progression 0.8 ;

133

134 // ====================================================================//

135 // 1/4 circle Sections //

136 // ====================================================================//

137

138

139 //Close Loops Bone

140 Line Loop(1)={21,1,-22};

141 Line Loop(2)={22,2,-23};

142 Line Loop(3)={23,3,-24};

143 Line Loop(4)={24,4,-21};

144

145 //Close Loops Bone

146 Line Loop(5)={25,5,-26,-1};

147 Line Loop(6)={26,6,-27,-2};

148 Line Loop(7)={27,7,-28,-3};

149 Line Loop(8)={28,8,-25,-4};

150

151 //Close Loops Muscle

152 Line Loop( 9)={29, 9,-30,-5};

153 Line Loop(10)={30,10,-31,-6};

154 Line Loop(11)={31,11,-32,-7};

155 Line Loop(12)={32,12,-29,-8};

156

185



DemSSO Source Code Listings of the Human Body Geometry

157 //Close Loops Fat

158 Line Loop(13)={33,13,-34, -9};

159 Line Loop(14)={34,14,-35,-10};

160 Line Loop(15)={35,15,-36,-11};

161 Line Loop(16)={36,16,-33,-12};

162

163 //Close Loops Skin

164 Line Loop(17)={37,17,-38,-13};

165 Line Loop(18)={38,18,-39,-14};

166 Line Loop(19)={39,19,-40,-15};

167 Line Loop(20)={40,20,-37,-16};

168

169 // ====================================================================//

170 // 1/4 Circumf. Surface Construction //

171 // ====================================================================//

172

173 // Defining Surfaces Bone (1/4 circle)

174 Plane Surface( 1)={ 1}; Transfinite Surface{ 1}={ 1, 2, 3}; Recombine

Surface{1};

175 Plane Surface( 2)={ 2}; Transfinite Surface{ 2}={ 1, 3, 4}; Recombine

Surface{2};

176 Plane Surface( 3)={ 3}; Transfinite Surface{ 3}={ 1, 4, 5}; Recombine

Surface{3};

177 Plane Surface( 4)={ 4}; Transfinite Surface{ 4}={ 1, 5, 2}; Recombine

Surface{4};

178

179 //Defining Surfaces Bone (pipe sections)

180 Plane Surface( 5)={ 5}; Transfinite Surface{ 5}={ 2, 6, 7, 3}; Recombine

Surface{5};

181 Plane Surface( 6)={ 6}; Transfinite Surface{ 6}={ 3, 7, 8, 4}; Recombine

Surface{6};

182 Plane Surface( 7)={ 7}; Transfinite Surface{ 7}={ 4, 8, 9, 5}; Recombine

Surface{7};

183 Plane Surface( 8)={ 8}; Transfinite Surface{ 8}={ 5, 9, 6, 2}; Recombine

Surface{8};

184

185 //Defining Surfaces Muscle (pipe sections)

186 Plane Surface( 9)={ 9}; Transfinite Surface{ 9}={ 6,10,11, 7}; Recombine

Surface{ 9};

187 Plane Surface(10)={10}; Transfinite Surface {10}={ 7,11,12, 8}; Recombine

Surface{10};

188 Plane Surface(11)={11}; Transfinite Surface {11}={ 8,12,13, 9}; Recombine

Surface{11};

189 Plane Surface(12)={12}; Transfinite Surface {12}={ 9,13,10, 6}; Recombine

Surface{12};

190

191 //Defining Surfaces Fat (pipe sections)

192 Plane Surface(13)={13}; Transfinite Surface {13}={10,14,15,11}; Recombine

Surface{13};

193 Plane Surface(14)={14}; Transfinite Surface {14}={11,15,16,12}; Recombine

Surface{14};

194 Plane Surface(15)={15}; Transfinite Surface {15}={12,16,17,13}; Recombine

Surface{15};

195 Plane Surface(16)={16}; Transfinite Surface {16}={13,17,14,10}; Recombine

Surface{16};

196

186



Lower Arm Geometric Code Porto, 2015

197 //Defining Surfaces Skin (pipe sections)

198 Plane Surface(17)={17}; Transfinite Surface{17}={14,18,19,15}; Recombine

Surface{17};

199 Plane Surface(18)={18}; Transfinite Surface{18}={15,19,20,16}; Recombine

Surface{18};

200 Plane Surface(19)={19}; Transfinite Surface{19}={16,20,21,17}; Recombine

Surface{19};

201 Plane Surface(20)={20}; Transfinite Surface{20}={17,21,18,14}; Recombine

Surface{20};

202

203 // ====================================================================//

204 // Volume Construction //

205 // ====================================================================//

206

207 Extrude{0.0,0.0,z} {Surface

{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20}; Layers{NL};

Recombine;}

208

209 // ====================================================================//

210 // Defining Physical Volumes //

211 // ====================================================================//

212

213 Physical Volume("Bone") = {6,8};

214 Physical Volume("Muscle") = {1,2,3,4,5,7,9,10,11,12};

215 Physical Volume("Fat") = {13,14,15,16};

216 Physical Volume("Skin") = {17,18,19,20};

217

218 Show "*";

Figure A.2: Lower Arm mesh Geometry in GMSH.
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A.3 Upper Arm Geometric Code

1 // Arm Geometry - 4 layers

2

3 //=================================================================//

4 // Mesh Data //

5 //=================================================================//

6

7 Size = .01;

8

9 rbn = 0.0180; // Bone (m)

10 rmsc = 0.0354; // Muscle (m)

11 rf = 0.0400; // Fat (m)

12 rsk = 0.0426; // Skin (m)

13

14 z = 0.310; // arm length (m)

15

16 // Divisions of the Mesh

17

18 NDc = 5; // Div. circumf.

19

20 NDlbn = 4; // Div. Lines Bone

21 NDlmsc = 5; // Div. Lines Muscle

22 NDlf = 3; // Div. Lines Fat

23 NDlsk = 3; // Div. Lines Skin

24

25 NL = 31; // Number of Layers

26

27 Point(1)={0., 0., 0., Size}; // Centre of the Cylinder

28

29 //=================================================================//

30 // Points //

31 //=================================================================//

32

33 // Circumference Points Bone rbn

34 Point(2)={0.,rbn ,0.,Size};

35 Point(3)={rbn ,0.,0.,Size};

36 Point(4)={0.,-rbn ,0.,Size};

37 Point(5)={-rbn ,0.,0.,Size};

38

39 // Circumference Points Fat rmsc

40 Point(6)={0.,rmsc ,0.,Size};

41 Point(7)={rmsc ,0.,0.,Size};

42 Point(8)={0.,-rmsc ,0.,Size};

43 Point(9)={-rmsc ,0.,0.,Size};

44

45 // Circumference Points Muscle rf

46 Point(10)={0.,rf,0.,Size};

47 Point(11)={rf,0.,0.,Size};

48 Point(12)={0.,-rf,0.,Size};

49 Point(13)={-rf,0.,0.,Size};

50

51 // Circumference Points Skin rsk

52 Point(14)={0.,rsk ,0.,Size};

53 Point(15)={rsk ,0.,0.,Size};
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54 Point(16)={0.,-rsk ,0.,Size};

55 Point(17)={-rsk ,0.,0.,Size};

56

57 //=================================================================//

58 // Circumferences //

59 //=================================================================//

60

61 //Circumference Arcs Bone

62 Circle( 1)={2,1,3}; Transfinite Line{ 1}=NDc;

63 Circle( 2)={3,1,4}; Transfinite Line{ 2}=NDc;

64 Circle( 3)={4,1,5}; Transfinite Line{ 3}=NDc;

65 Circle( 4)={5,1,2}; Transfinite Line{ 4}=NDc;

66

67 //Circumference Arcs Muscle

68 Circle( 5)={6,1,7}; Transfinite Line{ 5}=NDc;

69 Circle( 6)={7,1,8}; Transfinite Line{ 6}=NDc;

70 Circle( 7)={8,1,9}; Transfinite Line{ 7}=NDc;

71 Circle( 8)={9,1,6}; Transfinite Line{ 8}=NDc;

72

73 //Circumference Arcs Fat

74 Circle( 9)={10,1,11}; Transfinite Line{ 9}=NDc;

75 Circle(10)={11,1,12}; Transfinite Line{10}=NDc;

76 Circle(11)={12,1,13}; Transfinite Line{11}=NDc;

77 Circle(12)={13,1,10}; Transfinite Line{12}=NDc;

78

79 //Circumference Arcs Skin

80 Circle(13)={14,1,15}; Transfinite Line{13}=NDc;

81 Circle(14)={15,1,16}; Transfinite Line{14}=NDc;

82 Circle(15)={16,1,17}; Transfinite Line{15}=NDc;

83 Circle(16)={17,1,14}; Transfinite Line{16}=NDc;

84

85 //=================================================================//

86 // 1/4 Circle Division Lines //

87 //=================================================================//

88

89 // Lines Bone

90 Line(21)={1,2}; Transfinite Line{21}=NDlbn Using Progression 0.5 ;

91 Line(22)={1,3}; Transfinite Line{22}=NDlbn Using Progression 0.5 ;

92 Line(23)={1,4}; Transfinite Line{23}=NDlbn Using Progression 0.5 ;

93 Line(24)={1,5}; Transfinite Line{24}=NDlbn Using Progression 0.5 ;

94

95 //Lines Muscle

96 Line(25)={2,6}; Transfinite Line{25}=NDlmsc;

97 Line(26)={3,7}; Transfinite Line{26}=NDlmsc;

98 Line(27)={4,8}; Transfinite Line{27}=NDlmsc;

99 Line(28)={5,9}; Transfinite Line{28}=NDlmsc;

100

101 // Lines Fat

102 Line(29)={6,10}; Transfinite Line{29}=NDlf Using Progression 0.8 ;

103 Line(30)={7,11}; Transfinite Line{30}=NDlf Using Progression 0.8 ;

104 Line(31)={8,12}; Transfinite Line{31}=NDlf Using Progression 0.8 ;

105 Line(32)={9,13}; Transfinite Line{32}=NDlf Using Progression 0.8 ;

106

107 //Lines Skin

108 Line(33)={10,14}; Transfinite Line{33}=NDlsk;

109 Line(34)={11,15}; Transfinite Line{34}=NDlsk;
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110 Line(35)={12,16}; Transfinite Line{35}=NDlsk;

111 Line(36)={13,17}; Transfinite Line{36}=NDlsk;

112

113 //=================================================================//

114 // 1/4 circimf. section construction //

115 //=================================================================//

116

117 //Close Loopss Bone

118 Line Loop(1)={21,1,-22};

119 Line Loop(2)={22,2,-23};

120 Line Loop(3)={23,3,-24};

121 Line Loop(4)={24,4,-21};

122

123 //Close Loopss Muscle

124 Line Loop(5)={25,5,-26,-1};

125 Line Loop(6)={26,6,-27,-2};

126 Line Loop(7)={27,7,-28,-3};

127 Line Loop(8)={28,8,-25,-4};

128

129 //Close Loopss Fat

130 Line Loop( 9)={29, 9,-30,-5};

131 Line Loop(10)={30,10,-31,-6};

132 Line Loop(11)={31,11,-32,-7};

133 Line Loop(12)={32,12,-29,-8};

134

135 //Close Loopss Skin

136 Line Loop(13)={33,13,-34, -9};

137 Line Loop(14)={34,14,-35,-10};

138 Line Loop(15)={35,15,-36,-11};

139 Line Loop(16)={36,16,-33,-12};

140

141 //=================================================================//

142 // 1/4 Circle Surface Construction //

143 //=================================================================//

144

145 // Defining Surfaces Bone (1/4 circle surface)

146 Plane Surface( 1)={ 1}; Transfinite Surface{ 1}={ 1, 2, 3}; Recombine

Surface{1};

147 Plane Surface( 2)={ 2}; Transfinite Surface{ 2}={ 1, 3, 4}; Recombine

Surface{2};

148 Plane Surface( 3)={ 3}; Transfinite Surface{ 3}={ 1, 4, 5}; Recombine

Surface{3};

149 Plane Surface( 4)={ 4}; Transfinite Surface{ 4}={ 1, 5, 2}; Recombine

Surface{4};

150

151 //Defining Surfaces Muscle (pipe sections)

152 Plane Surface( 5)={ 5}; Transfinite Surface{ 5}={ 2, 6, 7, 3}; Recombine

Surface{5};

153 Plane Surface( 6)={ 6}; Transfinite Surface{ 6}={ 3, 7, 8, 4}; Recombine

Surface{6};

154 Plane Surface( 7)={ 7}; Transfinite Surface{ 7}={ 4, 8, 9, 5}; Recombine

Surface{7};

155 Plane Surface( 8)={ 8}; Transfinite Surface{ 8}={ 5, 9, 6, 2}; Recombine

Surface{8};

156

157 //Defining Surfaces Fat (pipe sections)

190



Trunk Geometric Code Porto, 2015

158 Plane Surface( 9)={ 9}; Transfinite Surface{ 9}={ 6,10,11, 7}; Recombine

Surface{ 9};

159 Plane Surface(10)={10}; Transfinite Surface {10}={ 7,11,12, 8}; Recombine

Surface{10};

160 Plane Surface(11)={11}; Transfinite Surface {11}={ 8,12,13, 9}; Recombine

Surface{11};

161 Plane Surface(12)={12}; Transfinite Surface {12}={ 9,13,10, 6}; Recombine

Surface{12};

162

163 //Defining Surfaces Skin (pipe sections)

164 Plane Surface(13)={13}; Transfinite Surface{13}={10,14,15,11}; Recombine

Surface{13};

165 Plane Surface(14)={14}; Transfinite Surface{14}={11,15,16,12}; Recombine

Surface{14};

166 Plane Surface(15)={15}; Transfinite Surface{15}={12,16,17,13}; Recombine

Surface{15};

167 Plane Surface(16)={16}; Transfinite Surface{16}={13,17,14,10}; Recombine

Surface{16};

168

169 //=================================================================//

170 // Volume Construction //

171 //=================================================================//

172

173 Extrude{0.0,0.0,z} {Surface{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}; Layers{

NL}; Recombine;}

174

175 //=================================================================//

176 // Defining Physical Volumes //

177 //=================================================================//

178

179 Physical Volume("Bone") = {1,2,3,4};

180 Physical Volume("Muscle") = {5,6,7,8};

181 Physical Volume("Fat") = {9,10,11,12};

182 Physical Volume("Skin") = {13,14,15,16};

183

184 Show "*";

A.4 Trunk Geometric Code

1 // Geometry of the Trunk

2

3 // ====================================================================//

4 // Mesh Data //

5 // ====================================================================//

6

7 Size = .01;

8

9 rh = 0.0368; // Heart (m)

10 rlu = 0.0737; // Lung (m)

11 rv = 0.0866; // Viscera (m)

12 rbn = 0.0941; // Bone (m)

13 rmsc = 0.1213; // Muscle (m)

14 rf = 0.1336; // Fat (m)
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15 rsk = 0.1358; // Skin (m)

16

17 zh = 0.600 -0.507; // init heart layer (m)

18 zh_lun_bn = 0.507 -0.437; // end layers (m)

19 z = 0.437; // trunk length (m)

20

21 // Mesh Divisions

22

23 NDc = 5; // Div. circ.

24

25 NDlh = 4; // Div. Lines Heart

26 NDllu = 7; // Div. Lines Lung

27 NDlv = 8; // Div. Lines Viscera

28 NDlbn = 3; // Div. Lines Bone

29 NDlmsc = 4; // Div. Lines Muscle

30 NDlf = 2; // Div. Lines Fat

31 NDlsk = 2; // Div. Lines Skin

32

33 NL = 40; // Number of layers

34

35 Point(1)={0., 0., 0., Size}; // Centre of the Cylinder

36

37 // ====================================================================//

38 // Points //

39 // ====================================================================//

40

41 // Circle Points Lung rlu

42 Point(2)={0.,rlu ,0.,Size};

43 Point(3)={rlu ,0.,0.,Size};

44 Point(4)={0.,-rlu ,0.,Size};

45 Point(5)={-rlu ,0.,0.,Size};

46

47 // Circle Points Bone rbn

48 Point(6)={0.,rbn ,0.,Size};

49 Point(7)={rbn ,0.,0.,Size};

50 Point(8)={0.,-rbn ,0.,Size};

51 Point(9)={-rbn ,0.,0.,Size};

52

53 // Circle Points Muscle rmsc

54 Point(10)={0.,rmsc ,0.,Size};

55 Point(11)={rmsc ,0.,0.,Size};

56 Point(12)={0.,-rmsc ,0.,Size};

57 Point(13)={-rmsc ,0.,0.,Size};

58

59 // Circle Points Fat rf

60 Point(14)={0.,rf,0.,Size};

61 Point(15)={rf,0.,0.,Size};

62 Point(16)={0.,-rf,0.,Size};

63 Point(17)={-rf,0.,0.,Size};

64

65 // Circle Points Skin rsk

66 Point(18)={0.,rsk ,0.,Size};

67 Point(19)={rsk ,0.,0.,Size};

68 Point(20)={0.,-rsk ,0.,Size};

69 Point(21)={-rsk ,0.,0.,Size};

70
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71 // ====================================================================//

72 // Circumference //

73 // ====================================================================//

74

75 //Draw circle arcs Lung

76 Circle( 1)={2, 1,3}; Transfinite Line{ 1}=NDc;

77 Circle( 2)={3, 1,4}; Transfinite Line{ 2}=NDc;

78 Circle( 3)={4, 1,5}; Transfinite Line{ 3}=NDc;

79 Circle( 4)={5, 1,2}; Transfinite Line{ 4}=NDc;

80

81 //Draw circle arcs Bone

82 Circle( 5)={6, 1,7}; Transfinite Line{ 5}=NDc;

83 Circle( 6)={7, 1,8}; Transfinite Line{ 6}=NDc;

84 Circle( 7)={8, 1,9}; Transfinite Line{ 7}=NDc;

85 Circle( 8)={9, 1,6}; Transfinite Line{ 8}=NDc;

86

87 //Draw circle arcs Muscle

88 Circle( 9)={10, 1,11}; Transfinite Line{ 9}=NDc;

89 Circle(10)={11, 1,12}; Transfinite Line{10}=NDc;

90 Circle(11)={12, 1,13}; Transfinite Line{11}=NDc;

91 Circle(12)={13, 1,10}; Transfinite Line{12}=NDc;

92

93 //Draw circle arcs Fat

94 Circle(13)={14, 1,15}; Transfinite Line{13}=NDc;

95 Circle(14)={15, 1,16}; Transfinite Line{14}=NDc;

96 Circle(15)={16, 1,17}; Transfinite Line{15}=NDc;

97 Circle(16)={17, 1,14}; Transfinite Line{16}=NDc;

98

99 //Draw circle arcs Skin

100 Circle(17)={18, 1,19}; Transfinite Line{17}=NDc;

101 Circle(18)={19, 1,20}; Transfinite Line{18}=NDc;

102 Circle(19)={20, 1,21}; Transfinite Line{19}=NDc;

103 Circle(20)={21, 1,18}; Transfinite Line{20}=NDc;

104

105 // ====================================================================//

106 // Lines that divide circumferences into 1/4 //

107 // ====================================================================//

108

109 // Lines Lung

110 Line(21)={1,2}; Transfinite Line{21}=NDllu Using Progression 0.5 ;

111 Line(22)={1,3}; Transfinite Line{22}=NDllu Using Progression 0.5 ;

112 Line(23)={1,4}; Transfinite Line{23}=NDllu Using Progression 0.5 ;

113 Line(24)={1,5}; Transfinite Line{24}=NDllu Using Progression 0.5 ;

114

115 //Lines Bone

116 Line(25)={2,6}; Transfinite Line{25}=NDlbn;

117 Line(26)={3,7}; Transfinite Line{26}=NDlbn;

118 Line(27)={4,8}; Transfinite Line{27}=NDlbn;

119 Line(28)={5,9}; Transfinite Line{28}=NDlbn;

120

121 // Lines Muscle

122 Line(29)={6,10}; Transfinite Line{29}=NDlmsc Using Progression 0.8 ;

123 Line(30)={7,11}; Transfinite Line{30}=NDlmsc Using Progression 0.8 ;

124 Line(31)={8,12}; Transfinite Line{31}=NDlmsc Using Progression 0.8 ;

125 Line(32)={9,13}; Transfinite Line{32}=NDlmsc Using Progression 0.8 ;

126
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127 //Lines Fat

128 Line(33)={10,14}; Transfinite Line{33}=NDlf;

129 Line(34)={11,15}; Transfinite Line{34}=NDlf;

130 Line(35)={12,16}; Transfinite Line{35}=NDlf;

131 Line(36)={13,17}; Transfinite Line{36}=NDlf;

132

133 // Lines Skin

134 Line(37)={14,18}; Transfinite Line{37}=NDlsk Using Progression 0.8 ;

135 Line(38)={15,19}; Transfinite Line{38}=NDlsk Using Progression 0.8 ;

136 Line(39)={16,20}; Transfinite Line{39}=NDlsk Using Progression 0.8 ;

137 Line(40)={17,21}; Transfinite Line{40}=NDlsk Using Progression 0.8 ;

138

139 // ====================================================================//

140 // Close loops of the 1/4 de circumf. //

141 // ====================================================================//

142

143 //Close Loops Lung

144 Line Loop(1)={21,1,-22};

145 Line Loop(2)={22,2,-23};

146 Line Loop(3)={23,3,-24};

147 Line Loop(4)={24,4,-21};

148

149 //Close Loops Bone

150 Line Loop(5)={25,5,-26,-1};

151 Line Loop(6)={26,6,-27,-2};

152 Line Loop(7)={27,7,-28,-3};

153 Line Loop(8)={28,8,-25,-4};

154

155 //Close Loops Muscle

156 Line Loop( 9)={29, 9,-30,-5};

157 Line Loop(10)={30,10,-31,-6};

158 Line Loop(11)={31,11,-32,-7};

159 Line Loop(12)={32,12,-29,-8};

160

161 //Close Loops Fat

162 Line Loop(13)={33,13,-34, -9};

163 Line Loop(14)={34,14,-35,-10};

164 Line Loop(15)={35,15,-36,-11};

165 Line Loop(16)={36,16,-33,-12};

166

167 //Close Loops Skin

168 Line Loop(17)={37,17,-38,-13};

169 Line Loop(18)={38,18,-39,-14};

170 Line Loop(19)={39,19,-40,-15};

171 Line Loop(20)={40,20,-37,-16};

172

173 // ====================================================================//

174 // 1/4 circle surfaces construction //

175 // ====================================================================//

176

177 // Surface Construction Lung

178 Plane Surface( 1)={ 1}; Transfinite Surface{ 1}={ 1, 2, 3}; Recombine

Surface{1};

179 Plane Surface( 2)={ 2}; Transfinite Surface{ 2}={ 1, 3, 4}; Recombine

Surface{2};
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180 Plane Surface( 3)={ 3}; Transfinite Surface{ 3}={ 1, 4, 5}; Recombine

Surface{3};

181 Plane Surface( 4)={ 4}; Transfinite Surface{ 4}={ 1, 5, 2}; Recombine

Surface{4};

182

183 //Surface Construction Bone (pipe sections)

184 Plane Surface( 5)={ 5}; Transfinite Surface{ 5}={ 2, 6, 7, 3}; Recombine

Surface{5};

185 Plane Surface( 6)={ 6}; Transfinite Surface{ 6}={ 3, 7, 8, 4}; Recombine

Surface{6};

186 Plane Surface( 7)={ 7}; Transfinite Surface{ 7}={ 4, 8, 9, 5}; Recombine

Surface{7};

187 Plane Surface( 8)={ 8}; Transfinite Surface{ 8}={ 5, 9, 6, 2}; Recombine

Surface{8};

188

189 //Surface Construction Muscle (pipe sections)

190 Plane Surface( 9)={ 9}; Transfinite Surface{ 9}={ 6,10,11, 7}; Recombine

Surface{ 9};

191 Plane Surface(10)={10}; Transfinite Surface {10}={ 7,11,12, 8}; Recombine

Surface{10};

192 Plane Surface(11)={11}; Transfinite Surface {11}={ 8,12,13, 9}; Recombine

Surface{11};

193 Plane Surface(12)={12}; Transfinite Surface {12}={ 9,13,10, 6}; Recombine

Surface{12};

194

195 //Surface Construction Fat (pipe sections)

196 Plane Surface(13)={13}; Transfinite Surface{13}={10,14,15,11}; Recombine

Surface{13};

197 Plane Surface(14)={14}; Transfinite Surface{14}={11,15,16,12}; Recombine

Surface{14};

198 Plane Surface(15)={15}; Transfinite Surface{15}={12,16,17,13}; Recombine

Surface{15};

199 Plane Surface(16)={16}; Transfinite Surface{16}={13,17,14,10}; Recombine

Surface{16};

200

201 //Surface Construction Skin (pipe sections)

202 Plane Surface(17)={17}; Transfinite Surface{17}={14,18,19,15}; Recombine

Surface{17};

203 Plane Surface(18)={18}; Transfinite Surface{18}={15,19,20,16}; Recombine

Surface{18};

204 Plane Surface(19)={19}; Transfinite Surface{19}={16,20,21,17}; Recombine

Surface{19};

205 Plane Surface(20)={20}; Transfinite Surface{20}={17,21,18,14}; Recombine

Surface{20};

206

207 //=====================================================================//

208

209 Point(22)={0., 0., zh, Size}; // Cylinder Centre

210

211 // ====================================================================//

212 // Points //

213 // ====================================================================//

214

215 // Circle Points Heart rh

216 Point(23)={0. ,rh ,zh,Size};

217 Point(24)={rh ,0. ,zh,Size};
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218 Point(25)={0. ,-rh ,zh,Size};

219 Point(26)={-rh ,0. ,zh,Size};

220

221 // Circle Points Lung rlu

222 Point(27)={0. ,rlu ,zh,Size};

223 Point(28)={rlu ,0. ,zh,Size};

224 Point(29)={0. ,-rlu ,zh,Size};

225 Point(30)={-rlu ,0. ,zh,Size};

226

227 // Circle Points Bone rbn

228 Point(31)={0.,rbn,zh,Size};

229 Point(32)={rbn ,0.,zh,Size};

230 Point(33)={0.,-rbn,zh,Size};

231 Point(34)={-rbn ,0.,zh,Size};

232

233 // Circle Points Muscle rmsc

234 Point(35)={0.,rmsc ,zh,Size};

235 Point(36)={rmsc ,0.,zh,Size};

236 Point(37)={0.,-rmsc ,zh,Size};

237 Point(38)={-rmsc ,0.,zh,Size};

238

239 // Circle Points Fat rf

240 Point(39)={0.,rf,zh,Size};

241 Point(40)={rf,0.,zh,Size};

242 Point(41)={0.,-rf,zh,Size};

243 Point(42)={-rf,0.,zh,Size};

244

245 // Circle Points Skin rsk

246 Point(43)={0.,rsk,zh,Size};

247 Point(44)={rsk ,0.,zh,Size};

248 Point(45)={0.,-rsk,zh,Size};

249 Point(46)={-rsk ,0.,zh,Size};

250

251 // ====================================================================//

252 // Circumference //

253 // ====================================================================//

254

255 //Draw circle arcs Heart

256 Circle( 41)={23,22,24}; Transfinite Line{ 41}=NDc;

257 Circle( 42)={24,22,25}; Transfinite Line{ 42}=NDc;

258 Circle( 43)={25,22,26}; Transfinite Line{ 43}=NDc;

259 Circle( 44)={26,22,23}; Transfinite Line{ 44}=NDc;

260

261 //Draw circle arcs Lung

262 Circle( 45)={27,22,28}; Transfinite Line{ 45}=NDc;

263 Circle( 46)={28,22,29}; Transfinite Line{ 46}=NDc;

264 Circle( 47)={29,22,30}; Transfinite Line{ 47}=NDc;

265 Circle( 48)={30,22,27}; Transfinite Line{ 48}=NDc;

266

267 //Draw circle arcs Bone

268 Circle(49)={31,22,32}; Transfinite Line{49}=NDc;

269 Circle(50)={32,22,33}; Transfinite Line{50}=NDc;

270 Circle(51)={33,22,34}; Transfinite Line{51}=NDc;

271 Circle(52)={34,22,31}; Transfinite Line{52}=NDc;

272

273 //Draw circle arcs Muscle
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274 Circle(53)={35,22,36}; Transfinite Line{53}=NDc;

275 Circle(54)={36,22,37}; Transfinite Line{54}=NDc;

276 Circle(55)={37,22,38}; Transfinite Line{55}=NDc;

277 Circle(56)={38,22,35}; Transfinite Line{56}=NDc;

278

279 //Draw circle arcs Fat

280 Circle(57)={39,22,40}; Transfinite Line{57}=NDc;

281 Circle(58)={40,22,41}; Transfinite Line{58}=NDc;

282 Circle(59)={41,22,42}; Transfinite Line{59}=NDc;

283 Circle(60)={42,22,39}; Transfinite Line{60}=NDc;

284

285 //Draw circle arcs Skin

286 Circle(61)={43,22,44}; Transfinite Line{61}=NDc;

287 Circle(62)={44,22,45}; Transfinite Line{62}=NDc;

288 Circle(63)={45,22,46}; Transfinite Line{63}=NDc;

289 Circle(64)={46,22,43}; Transfinite Line{64}=NDc;

290

291 // ====================================================================//

292 // 1/4 Circ. Division Lines //

293 // ====================================================================//

294

295 // Lines Heart

296 Line(65)={22,23}; Transfinite Line{65}=NDllu Using Progression 0.5 ;

297 Line(66)={22,24}; Transfinite Line{66}=NDllu Using Progression 0.5 ;

298 Line(67)={22,25}; Transfinite Line{67}=NDllu Using Progression 0.5 ;

299 Line(68)={22,26}; Transfinite Line{68}=NDllu Using Progression 0.5 ;

300

301 //Lines Lung

302 Line(69)={23,27}; Transfinite Line{69}=NDlbn;

303 Line(70)={24,28}; Transfinite Line{70}=NDlbn;

304 Line(71)={25,29}; Transfinite Line{71}=NDlbn;

305 Line(72)={26,30}; Transfinite Line{72}=NDlbn;

306

307 // Lines Bone

308 Line(73)={27,31}; Transfinite Line{73}=NDlmsc Using Progression 0.8 ;

309 Line(74)={28,32}; Transfinite Line{74}=NDlmsc Using Progression 0.8 ;

310 Line(75)={29,33}; Transfinite Line{75}=NDlmsc Using Progression 0.8 ;

311 Line(76)={30,34}; Transfinite Line{76}=NDlmsc Using Progression 0.8 ;

312

313 //Lines Muscle

314 Line(77)={31,35}; Transfinite Line{77}=NDlf;

315 Line(78)={32,36}; Transfinite Line{78}=NDlf;

316 Line(79)={33,37}; Transfinite Line{79}=NDlf;

317 Line(80)={34,38}; Transfinite Line{80}=NDlf;

318

319 // Lines Fat

320 Line(81)={35,39}; Transfinite Line{81}=NDlsk Using Progression 0.8 ;

321 Line(82)={36,40}; Transfinite Line{82}=NDlsk Using Progression 0.8 ;

322 Line(83)={37,41}; Transfinite Line{83}=NDlsk Using Progression 0.8 ;

323 Line(84)={38,42}; Transfinite Line{84}=NDlsk Using Progression 0.8 ;

324

325 // Lines Skin

326 Line(85)={39,43}; Transfinite Line{85}=NDlsk Using Progression 0.8 ;

327 Line(86)={40,44}; Transfinite Line{86}=NDlsk Using Progression 0.8 ;

328 Line(87)={41,45}; Transfinite Line{87}=NDlsk Using Progression 0.8 ;

329 Line(88)={42,46}; Transfinite Line{88}=NDlsk Using Progression 0.8 ;
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330

331 // ====================================================================//

332 // Close loops of the 1/4 de circumf. //

333 // ====================================================================//

334

335 //Close Loops Heart

336 Line Loop(21)={65,41,-66};

337 Line Loop(22)={66,42,-67};

338 Line Loop(23)={67,43,-68};

339 Line Loop(24)={68,44,-65};

340

341 //Close Loops Lung

342 Line Loop(25)={69,45,-70,-41};

343 Line Loop(26)={70,46,-71,-42};

344 Line Loop(27)={71,47,-72,-43};

345 Line Loop(28)={72,48,-69,-44};

346

347 //Close Loops Bone

348 Line Loop(29)={73,49,-74,-45};

349 Line Loop(30)={74,50,-75,-46};

350 Line Loop(31)={75,51,-76,-47};

351 Line Loop(32)={76,52,-73,-48};

352

353 //Close Loops Muscle

354 Line Loop(33)={77,53,-78,-49};

355 Line Loop(34)={78,54,-79,-50};

356 Line Loop(35)={79,55,-80,-51};

357 Line Loop(36)={80,56,-77,-52};

358

359 //Close Loops Fat

360 Line Loop(37)={81,57,-82,-53};

361 Line Loop(38)={82,58,-83,-54};

362 Line Loop(39)={83,59,-84,-55};

363 Line Loop(40)={84,60,-81,-56};

364

365 //Close Loops Skin

366 Line Loop(41)={85,61,-86,-57};

367 Line Loop(42)={86,62,-87,-58};

368 Line Loop(43)={87,63,-88,-59};

369 Line Loop(44)={88,64,-85,-60};

370

371 // ====================================================================//

372 // 1/4 Circle surfaces construction //

373 // ====================================================================//

374

375 // Surface Construction Heart (1/4 circle)

376 Plane Surface(21)={21}; Transfinite Surface {21}={22,23,24}; Recombine

Surface{21};

377 Plane Surface(22)={22}; Transfinite Surface {22}={22,24,25}; Recombine

Surface{22};

378 Plane Surface(23)={23}; Transfinite Surface {23}={22,25,26}; Recombine

Surface{23};

379 Plane Surface(24)={24}; Transfinite Surface {24}={22,26,23}; Recombine

Surface{24};

380

381 //Surface Construction Lung (pipe sections)

198



Trunk Geometric Code Porto, 2015

382 Plane Surface(25)={25}; Transfinite Surface{25}={23,27,28,24}; Recombine

Surface{25};

383 Plane Surface(26)={26}; Transfinite Surface{26}={24,28,29,25}; Recombine

Surface{26};

384 Plane Surface(27)={27}; Transfinite Surface{27}={25,29,30,26}; Recombine

Surface{27};

385 Plane Surface(28)={28}; Transfinite Surface{28}={26,30,27,23}; Recombine

Surface{28};

386

387 //Surface Construction Bone (pipe sections)

388 Plane Surface(29)={29}; Transfinite Surface{29}={27,31,32,28}; Recombine

Surface{29};

389 Plane Surface(30)={30}; Transfinite Surface{30}={28,32,33,29}; Recombine

Surface{30};

390 Plane Surface(31)={31}; Transfinite Surface{31}={29,33,34,30}; Recombine

Surface{31};

391 Plane Surface(32)={32}; Transfinite Surface{32}={30,34,31,27}; Recombine

Surface{32};

392

393 //Surface Construction Muscle (pipe sections)

394 Plane Surface(33)={33}; Transfinite Surface{33}={31,35,36,32}; Recombine

Surface{33};

395 Plane Surface(34)={34}; Transfinite Surface{34}={32,36,37,33}; Recombine

Surface{34};

396 Plane Surface(35)={35}; Transfinite Surface{35}={33,37,38,34}; Recombine

Surface{35};

397 Plane Surface(36)={36}; Transfinite Surface{36}={34,38,35,31}; Recombine

Surface{36};

398

399 //Surface Construction Fat (pipe sections)

400 Plane Surface(37)={37}; Transfinite Surface{37}={35,39,40,36}; Recombine

Surface{37};

401 Plane Surface(38)={38}; Transfinite Surface{38}={36,40,41,37}; Recombine

Surface{38};

402 Plane Surface(39)={39}; Transfinite Surface{39}={37,41,42,38}; Recombine

Surface{39};

403 Plane Surface(40)={40}; Transfinite Surface{40}={38,42,39,35}; Recombine

Surface{40};

404

405 //Surface Construction Skin (pipe sections)

406 Plane Surface(41)={41}; Transfinite Surface{41}={39,43,44,40}; Recombine

Surface{41};

407 Plane Surface(42)={42}; Transfinite Surface{42}={40,44,45,41}; Recombine

Surface{42};

408 Plane Surface(43)={43}; Transfinite Surface{43}={41,45,46,42}; Recombine

Surface{43};

409 Plane Surface(44)={44}; Transfinite Surface{44}={42,46,43,39}; Recombine

Surface{44};

410

411

412 // ====================================================================//

413

414 Point(47)={0., 0., zh+zh_lun_bn , Size}; // Cylinder Centre

415

416 // ====================================================================//

417 // Points //
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418 // ====================================================================//

419

420 // Circle Points Viscera

421 Point(48)={0. ,rv ,zh+zh_lun_bn ,Size};

422 Point(49)={rv ,0. ,zh+zh_lun_bn ,Size};

423 Point(50)={0. ,-rv ,zh+zh_lun_bn ,Size};

424 Point(51)={-rv ,0. ,zh+zh_lun_bn ,Size};

425

426 // Circle Points Muscle

427 Point(52)={0. ,rmsc ,zh+zh_lun_bn ,Size};

428 Point(53)={rmsc ,0. ,zh+zh_lun_bn ,Size};

429 Point(54)={0. ,-rmsc ,zh+zh_lun_bn ,Size};

430 Point(55)={-rmsc ,0. ,zh+zh_lun_bn ,Size};

431

432 // Circle Points Fat

433 Point(56)={0.,rf ,zh+zh_lun_bn ,Size};

434 Point(57)={rf ,0. ,zh+zh_lun_bn ,Size};

435 Point(58)={0.,-rf,zh+zh_lun_bn ,Size};

436 Point(59)={-rf,0.,zh+zh_lun_bn ,Size};

437

438 // Circle Points Skin

439 Point(60)={0.,rsk ,zh+zh_lun_bn ,Size};

440 Point(61)={rsk ,0. ,zh+zh_lun_bn ,Size};

441 Point(62)={0.,-rsk,zh+zh_lun_bn ,Size};

442 Point(63)={-rsk ,0.,zh+zh_lun_bn ,Size};

443

444 // ====================================================================//

445 // Circumference //

446 // ====================================================================//

447

448 //Draw circle arcs Viscera

449 Circle( 89)={48,47,49}; Transfinite Line{ 89}=NDc;

450 Circle( 90)={49,47,50}; Transfinite Line{ 90}=NDc;

451 Circle( 91)={50,47,51}; Transfinite Line{ 91}=NDc;

452 Circle( 92)={51,47,48}; Transfinite Line{ 92}=NDc;

453

454 //Draw circle arcs Muscle

455 Circle( 93)={52,47,53}; Transfinite Line{ 93}=NDc;

456 Circle( 94)={53,47,54}; Transfinite Line{ 94}=NDc;

457 Circle( 95)={54,47,55}; Transfinite Line{ 95}=NDc;

458 Circle( 96)={55,47,52}; Transfinite Line{ 96}=NDc;

459

460 //Draw circle arcs Fat

461 Circle( 97)={56,47,57}; Transfinite Line{ 97}=NDc;

462 Circle( 98)={57,47,58}; Transfinite Line{ 98}=NDc;

463 Circle( 99)={58,47,59}; Transfinite Line{ 99}=NDc;

464 Circle(100)={59,47,56}; Transfinite Line{100}=NDc;

465

466 //Draw circle arcs Skin

467 Circle(101)={60,47,61}; Transfinite Line{101}=NDc;

468 Circle(102)={61,47,62}; Transfinite Line{102}=NDc;

469 Circle(103)={62,47,63}; Transfinite Line{103}=NDc;

470 Circle(104)={63,47,60}; Transfinite Line{104}=NDc;

471

472 // ====================================================================//

473 // Lines that Divide the Circ. in 1/4 //
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474 // ====================================================================//

475

476 // Lines Viscera

477 Line(105)={47,48}; Transfinite Line{105}=NDlv Using Progression 0.5 ;

478 Line(106)={47,49}; Transfinite Line{106}=NDlv Using Progression 0.5 ;

479 Line(107)={47,50}; Transfinite Line{107}=NDlv Using Progression 0.5 ;

480 Line(108)={47,51}; Transfinite Line{108}=NDlv Using Progression 0.5 ;

481

482 //Lines Muscle

483 Line(109)={48,52}; Transfinite Line{109}= NDlmsc Using Progression 0.8 ;

484 Line(110)={49,53}; Transfinite Line{110}= NDlmsc Using Progression 0.8 ;

485 Line(111)={50,54}; Transfinite Line{111}= NDlmsc Using Progression 0.8 ;

486 Line(112)={51,55}; Transfinite Line{112}= NDlmsc Using Progression 0.8 ;

487

488 // Lines Fat

489 Line(113)={52,56}; Transfinite Line{113}=NDlf Using Progression 0.8 ;

490 Line(114)={53,57}; Transfinite Line{114}=NDlf Using Progression 0.8 ;

491 Line(115)={54,58}; Transfinite Line{115}=NDlf Using Progression 0.8 ;

492 Line(116)={55,59}; Transfinite Line{116}=NDlf Using Progression 0.8 ;

493

494 //Lines Skin

495 Line(117)={56,60}; Transfinite Line{117}=NDlsk;

496 Line(118)={57,61}; Transfinite Line{118}=NDlsk;

497 Line(119)={58,62}; Transfinite Line{119}=NDlsk;

498 Line(120)={59,63}; Transfinite Line{120}=NDlsk;

499

500 // ====================================================================//

501 // Construction of the 1/4 Circumf. //

502 // ====================================================================//

503

504 //Close Loops Viscera

505 Line Loop(45)={105,89,-106};

506 Line Loop(46)={106,90,-107};

507 Line Loop(47)={107,91,-108};

508 Line Loop(48)={108,92,-105};

509

510 //Close Loops Muscle

511 Line Loop(49)={109,93,-110,-89};

512 Line Loop(50)={110,94,-111,-90};

513 Line Loop(51)={111,95,-112,-91};

514 Line Loop(52)={112,96,-109,-92};

515

516 //Close Loops Fat

517 Line Loop(53)={113, 97,-114,-93};

518 Line Loop(54)={114, 98,-115,-94};

519 Line Loop(55)={115, 99,-116,-95};

520 Line Loop(56)={116,100,-113,-96};

521

522 //Close Loops Skin

523 Line Loop(57)={117,101,-118,-97};

524 Line Loop(58)={118,102,-119,-98};

525 Line Loop(59)={119,103,-120,-99};

526 Line Loop(60)={120,104,-117,-100};

527

528 // ====================================================================//

529 // 1/4 Circle surfaces construction //
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530 // ====================================================================//

531

532 // Surface Construction Viscera (1/4 circle)

533 Plane Surface(45)={45}; Transfinite Surface {45}={47,48,49}; Recombine

Surface{45};

534 Plane Surface(46)={46}; Transfinite Surface {46}={47,49,50}; Recombine

Surface{46};

535 Plane Surface(47)={47}; Transfinite Surface {47}={47,50,51}; Recombine

Surface{47};

536 Plane Surface(48)={48}; Transfinite Surface {48}={47,51,48}; Recombine

Surface{48};

537

538 //Surface Construction Muscle (pipe sections)

539 Plane Surface(49)={49}; Transfinite Surface {49}={48,52,53,49}; Recombine

Surface{49};

540 Plane Surface(50)={50}; Transfinite Surface {50}={49,53,54,50}; Recombine

Surface{50};

541 Plane Surface(51)={51}; Transfinite Surface {51}={50,54,55,51}; Recombine

Surface{51};

542 Plane Surface(52)={52}; Transfinite Surface {52}={51,55,52,48}; Recombine

Surface{52};

543

544 //Surface Construction Fat (pipe sections)

545 Plane Surface(53)={53}; Transfinite Surface {53}={52,56,57,53}; Recombine

Surface{53};

546 Plane Surface(54)={54}; Transfinite Surface {54}={53,57,58,54}; Recombine

Surface{54};

547 Plane Surface(55)={55}; Transfinite Surface {55}={54,58,59,55}; Recombine

Surface{55};

548 Plane Surface(56)={56}; Transfinite Surface {56}={55,59,56,52}; Recombine

Surface{56};

549

550 //Surface Construction Skin (pipe sections)

551 Plane Surface(57)={57}; Transfinite Surface {57}={56,60,61,57}; Recombine

Surface{57};

552 Plane Surface(58)={58}; Transfinite Surface {58}={57,61,62,58}; Recombine

Surface{58};

553 Plane Surface(59)={59}; Transfinite Surface {59}={58,62,63,59}; Recombine

Surface{59};

554 Plane Surface(60)={60}; Transfinite Surface {60}={59,63,60,56}; Recombine

Surface{60};

555

556

557 // ====================================================================//

558 // 1st Extrusion //

559 // ====================================================================//

560

561 //Volume Construction (until the begining of the heart - 5 layers)

562 Extrude{0.0,0.0,zh} {Surface

{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20}; Layers{NL};

Recombine;}

563

564 // ====================================================================//

565 // 2nd Extrusion //

566 // ====================================================================//

567
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568 //Volume Construction (until last layer of the heart - 6 layers)

569 Extrude{0.0,0.0,zh_lun_bn} {Surface

{21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44};

Layers{NL}; Recombine;}

570

571 // =====================================================================//

572 // 3rd Extrusion //

573 // =====================================================================//

574

575 //Volume Construction (after the heart - 7 layers)

576 Extrude{0.0,0.0,z} {Surface

{45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60}; Layers{NL}; Recombine

;}

577

578 // ======================================================================//

579 // Defining Physical Volumes //

580 // ======================================================================//

581

582 Physical Volume("Lung") = {1,2,3,4,25,26,27,28};

583 Physical Volume("Bone") = {5,6,7,8,29,30,31,32};

584 Physical Volume("Muscle") = {9,10,11,12,33,34,35,36,49,50,51,52};

585 Physical Volume("Fat") = {13,14,15,16,37,38,39,40,53,54,55,56};

586 Physical Volume("Skin") = {17,18, 19, 20,41,42,43,44,57,58,59,60};

587

588 Physical Volume("Heart") = {21,22,23,24};

589 Physical Volume("Viscera") = {45,46,47,48};

590

591 Show "*";

A.5 Thigh Geometric Code

1 // Thigh Geometry - 4 layers

2

3 // ====================================================================//

4 // Mesh Data //

5 // ====================================================================//

6

7 Size = .01; // cell size

8

9 rbn = 0.0268; // Bone (m)

10 rmsc = 0.0533; // Muscle (m)

11 rf = 0.0590; // Fat (m)

12 rsk = 0.0615; // Skin (m)

13

14 z = 0.440; // Thigh length (m)

15

16 // Mesh Divisions

17

18 NDc = 5; // Div. circ.

19

20 NDlbn = 4; // Div. Lines Bone

21 NDlmsc = 5; // Div. Lines Muscle

22 NDlf = 3; // Div. Lines Fat
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23 NDlsk = 3; // Div. Lines Skin

24

25 NL = 44; // Number of Layers

26

27 Point(1)={0., 0., 0., Size}; // Centre Cylinder

28

29 // ====================================================================//

30 // Points //

31 // ====================================================================//

32

33 // Points Circumference Bone rbn

34 Point(2)={0.,rbn ,0.,Size};

35 Point(3)={rbn ,0.,0.,Size};

36 Point(4)={0.,-rbn ,0.,Size};

37 Point(5)={-rbn ,0.,0.,Size};

38

39 // Points Circumference Fat rmsc

40 Point(6)={0.,rmsc ,0.,Size};

41 Point(7)={rmsc ,0.,0.,Size};

42 Point(8)={0.,-rmsc ,0.,Size};

43 Point(9)={-rmsc ,0.,0.,Size};

44

45 // Points Circumference Muscle rf

46 Point(10)={0.,rf,0.,Size};

47 Point(11)={rf,0.,0.,Size};

48 Point(12)={0.,-rf,0.,Size};

49 Point(13)={-rf,0.,0.,Size};

50

51 // Points Circumference Skin rsk

52 Point(14)={0.,rsk ,0.,Size};

53 Point(15)={rsk ,0.,0.,Size};

54 Point(16)={0.,-rsk ,0.,Size};

55 Point(17)={-rsk ,0.,0.,Size};

56

57

58 // ====================================================================//

59 // Circumferences //

60 // ====================================================================//

61

62 //Circumference Arcs Bone

63 Circle( 1)={2,1,3}; Transfinite Line{ 1}=NDc;

64 Circle( 2)={3,1,4}; Transfinite Line{ 2}=NDc;

65 Circle( 3)={4,1,5}; Transfinite Line{ 3}=NDc;

66 Circle( 4)={5,1,2}; Transfinite Line{ 4}=NDc;

67

68 //Circumference Arcs Muscle

69 Circle( 5)={6,1,7}; Transfinite Line{ 5}=NDc;

70 Circle( 6)={7,1,8}; Transfinite Line{ 6}=NDc;

71 Circle( 7)={8,1,9}; Transfinite Line{ 7}=NDc;

72 Circle( 8)={9,1,6}; Transfinite Line{ 8}=NDc;

73

74 //Circumference Arcs Fat

75 Circle( 9)={10,1,11}; Transfinite Line{ 9}=NDc;

76 Circle(10)={11,1,12}; Transfinite Line{10}=NDc;

77 Circle(11)={12,1,13}; Transfinite Line{11}=NDc;

78 Circle(12)={13,1,10}; Transfinite Line{12}=NDc;
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79

80 //Circumference Arcs Skin

81 Circle(13)={14,1,15}; Transfinite Line{13}=NDc;

82 Circle(14)={15,1,16}; Transfinite Line{14}=NDc;

83 Circle(15)={16,1,17}; Transfinite Line{15}=NDc;

84 Circle(16)={17,1,14}; Transfinite Line{16}=NDc;

85

86 // ====================================================================//

87 // Dividing Cirfumference in 4 //

88 // ====================================================================//

89

90 // Lines Bone

91 Line(21)={1,2}; Transfinite Line{21}=NDlbn Using Progression 0.5 ;

92 Line(22)={1,3}; Transfinite Line{22}=NDlbn Using Progression 0.5 ;

93 Line(23)={1,4}; Transfinite Line{23}=NDlbn Using Progression 0.5 ;

94 Line(24)={1,5}; Transfinite Line{24}=NDlbn Using Progression 0.5 ;

95

96 //Lines Muscle

97 Line(25)={2,6}; Transfinite Line{25}=NDlmsc;

98 Line(26)={3,7}; Transfinite Line{26}=NDlmsc;

99 Line(27)={4,8}; Transfinite Line{27}=NDlmsc;

100 Line(28)={5,9}; Transfinite Line{28}=NDlmsc;

101

102 // Lines Fat

103 Line(29)={6,10}; Transfinite Line{29}=NDlf Using Progression 0.8 ;

104 Line(30)={7,11}; Transfinite Line{30}=NDlf Using Progression 0.8 ;

105 Line(31)={8,12}; Transfinite Line{31}=NDlf Using Progression 0.8 ;

106 Line(32)={9,13}; Transfinite Line{32}=NDlf Using Progression 0.8 ;

107

108 //Lines Skin

109 Line(33)={10,14}; Transfinite Line{33}=NDlsk;

110 Line(34)={11,15}; Transfinite Line{34}=NDlsk;

111 Line(35)={12,16}; Transfinite Line{35}=NDlsk;

112 Line(36)={13,17}; Transfinite Line{36}=NDlsk;

113

114 // ====================================================================//

115 // 1/4 Circumf. Construction //

116 // ====================================================================//

117

118 //Close the Loops Bone

119 Line Loop(1)={21,1,-22};

120 Line Loop(2)={22,2,-23};

121 Line Loop(3)={23,3,-24};

122 Line Loop(4)={24,4,-21};

123

124 //Close the Loops Muscle

125 Line Loop(5)={25,5,-26,-1};

126 Line Loop(6)={26,6,-27,-2};

127 Line Loop(7)={27,7,-28,-3};

128 Line Loop(8)={28,8,-25,-4};

129

130 //Close the Loops Fat

131 Line Loop( 9)={29, 9,-30,-5};

132 Line Loop(10)={30,10,-31,-6};

133 Line Loop(11)={31,11,-32,-7};

134 Line Loop(12)={32,12,-29,-8};
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135

136 //Close the Loops Skin

137 Line Loop(13)={33,13,-34, -9};

138 Line Loop(14)={34,14,-35,-10};

139 Line Loop(15)={35,15,-36,-11};

140 Line Loop(16)={36,16,-33,-12};

141

142 // ====================================================================//

143 // 1/4 Circle Surfaces Construction //

144 // ====================================================================//

145

146 // Defining Surfaces Bone (1/4 circle)

147 Plane Surface( 1)={ 1}; Transfinite Surface{ 1}={ 1, 2, 3}; Recombine

Surface{1};

148 Plane Surface( 2)={ 2}; Transfinite Surface{ 2}={ 1, 3, 4}; Recombine

Surface{2};

149 Plane Surface( 3)={ 3}; Transfinite Surface{ 3}={ 1, 4, 5}; Recombine

Surface{3};

150 Plane Surface( 4)={ 4}; Transfinite Surface{ 4}={ 1, 5, 2}; Recombine

Surface{4};

151

152 //Defining Surfaces Muscle (Pipe sections)

153 Plane Surface( 5)={ 5}; Transfinite Surface{ 5}={ 2, 6, 7, 3}; Recombine

Surface{5};

154 Plane Surface( 6)={ 6}; Transfinite Surface{ 6}={ 3, 7, 8, 4}; Recombine

Surface{6};

155 Plane Surface( 7)={ 7}; Transfinite Surface{ 7}={ 4, 8, 9, 5}; Recombine

Surface{7};

156 Plane Surface( 8)={ 8}; Transfinite Surface{ 8}={ 5, 9, 6, 2}; Recombine

Surface{8};

157

158 //Defining Surfaces Fat (Pipe sections)

159 Plane Surface( 9)={ 9}; Transfinite Surface{ 9}={ 6,10,11, 7}; Recombine

Surface{ 9};

160 Plane Surface(10)={10}; Transfinite Surface {10}={ 7,11,12, 8}; Recombine

Surface{10};

161 Plane Surface(11)={11}; Transfinite Surface {11}={ 8,12,13, 9}; Recombine

Surface{11};

162 Plane Surface(12)={12}; Transfinite Surface {12}={ 9,13,10, 6}; Recombine

Surface{12};

163

164 //Defining Surfaces Skin (Pipe sections)

165 Plane Surface(13)={13}; Transfinite Surface {13}={10,14,15,11}; Recombine

Surface{13};

166 Plane Surface(14)={14}; Transfinite Surface {14}={11,15,16,12}; Recombine

Surface{14};

167 Plane Surface(15)={15}; Transfinite Surface {15}={12,16,17,13}; Recombine

Surface{15};

168 Plane Surface(16)={16}; Transfinite Surface {16}={13,17,14,10}; Recombine

Surface{16};

169

170 // ====================================================================//

171 // Volume Construction //

172 // ====================================================================//

173
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174 Extrude{0.0,0.0,z} {Surface{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}; Layers{

NL}; Recombine;}

175

176 // ====================================================================//

177 // Physical Volume Construction //

178 // ====================================================================//

179

180 Physical Volume("Bone") = {1,2,3,4};

181 Physical Volume("Muscle") = {5,6,7,8};

182 Physical Volume("Fat") = {9,10,11,12};

183 Physical Volume("Skin") = {13,14,15,16};

184

185 Show "*";

A.6 Head Geometric Code

1 // Head Geometry

2

3 // Mesh Data

4

5 Size = .01;

6

7

8 rlu = 0.0517; // Brain (m)

9 rbn = 0.0615; // Bone (m)

10 rmsc = 0.0664; // Muscle (m)

11 rf = 0.0724; // Fat (m)

12 rsk = 0.0751; // Skin (m)

13

14 zh = 0.1604; // init brain layer (m)

15 z = 0.0098; // head lenght (m)

16 zmsc = 0.0020;

17

18 // Mesh Division

19

20 NDc = 5; // Div. circ.

21

22 //NDlh = 4;

23 NDllu = 7; // Div. Linhas Brain

24 NDlv = 8; // Div.

25 NDlbn = 3; // Div. Linhas Osso

26 NDlmsc = 4; // Div. Linhas Musculo

27 NDlf = 2; // Div. Linhas Gordura

28 NDlsk = 2; // Div. Linhas Pele

29

30 NL = 5; // Number of layers

31

32 Point(1)={0., 0., 0., Size}; // Centro do Cilindro

33

34 //

=================================================================================
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35 // Pontos

//

36 //

=================================================================================

37

38 // Pontos da Circunferencia Brain rlu

39 Point(2)={0.,rlu ,0.,Size};

40 Point(3)={rlu ,0.,0.,Size};

41 Point(4)={0.,-rlu ,0.,Size};

42 Point(5)={-rlu ,0.,0.,Size};

43

44 // Pontos da Circunferencia Osso rbn

45 Point(6)={0.,rbn ,0.,Size};

46 Point(7)={rbn ,0.,0.,Size};

47 Point(8)={0.,-rbn ,0.,Size};

48 Point(9)={-rbn ,0.,0.,Size};

49

50 // Pontos da Circunferencia Musculo rmsc

51 Point(10)={0.,rmsc ,0.,Size};

52 Point(11)={rmsc ,0.,0.,Size};

53 Point(12)={0.,-rmsc ,0.,Size};

54 Point(13)={-rmsc ,0.,0.,Size};

55

56 // Pontos da Circunferencia Gordura rf

57 Point(14)={0.,rf,0.,Size};

58 Point(15)={rf,0.,0.,Size};

59 Point(16)={0.,-rf,0.,Size};

60 Point(17)={-rf,0.,0.,Size};

61

62 // Pontos da Circunferencia Pele rsk

63 Point(18)={0.,rsk ,0.,Size};

64 Point(19)={rsk ,0.,0.,Size};

65 Point(20)={0.,-rsk ,0.,Size};

66 Point(21)={-rsk ,0.,0.,Size};

67

68 //

===============================================================================//

69 // Circunferencias

//

70 //

===============================================================================//

71

72 //Desenho dos Arcos de circunferencia Pulmao

73 Circle( 1)={2, 1,3}; Transfinite Line{ 1}=NDc;

74 Circle( 2)={3, 1,4}; Transfinite Line{ 2}=NDc;

75 Circle( 3)={4, 1,5}; Transfinite Line{ 3}=NDc;

76 Circle( 4)={5, 1,2}; Transfinite Line{ 4}=NDc;

77

78 //Desenho dos Arcos de Circunferencia Osso

79 Circle( 5)={6, 1,7}; Transfinite Line{ 5}=NDc;

80 Circle( 6)={7, 1,8}; Transfinite Line{ 6}=NDc;

81 Circle( 7)={8, 1,9}; Transfinite Line{ 7}=NDc;

82 Circle( 8)={9, 1,6}; Transfinite Line{ 8}=NDc;
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83

84 //Desenho dos Arcos de circunferencia Musculo

85 Circle( 9)={10, 1,11}; Transfinite Line{ 9}=NDc;

86 Circle(10)={11, 1,12}; Transfinite Line{10}=NDc;

87 Circle(11)={12, 1,13}; Transfinite Line{11}=NDc;

88 Circle(12)={13, 1,10}; Transfinite Line{12}=NDc;

89

90 //Desenho dos Arcos de Circunferencia Gordura

91 Circle(13)={14, 1,15}; Transfinite Line{13}=NDc;

92 Circle(14)={15, 1,16}; Transfinite Line{14}=NDc;

93 Circle(15)={16, 1,17}; Transfinite Line{15}=NDc;

94 Circle(16)={17, 1,14}; Transfinite Line{16}=NDc;

95

96 //Desenho dos Arcos de Circunferencia Pele

97 Circle(17)={18, 1,19}; Transfinite Line{17}=NDc;

98 Circle(18)={19, 1,20}; Transfinite Line{18}=NDc;

99 Circle(19)={20, 1,21}; Transfinite Line{19}=NDc;

100 Circle(20)={21, 1,18}; Transfinite Line{20}=NDc;

101

102 //

===============================================================================//

103 // Linhas de divisao da Circ. em 1/4

//

104 //

===============================================================================//

105

106 // Linhas Brain (dividir o tronco em quatro)

107 Line(21)={1,2}; Transfinite Line{21}=NDllu Using Progression 0.5 ;

108 Line(22)={1,3}; Transfinite Line{22}=NDllu Using Progression 0.5 ;

109 Line(23)={1,4}; Transfinite Line{23}=NDllu Using Progression 0.5 ;

110 Line(24)={1,5}; Transfinite Line{24}=NDllu Using Progression 0.5 ;

111

112 //Linhas Osso (dividir o tronco em quatro)

113 Line(25)={2,6}; Transfinite Line{25}=NDlbn;

114 Line(26)={3,7}; Transfinite Line{26}=NDlbn;

115 Line(27)={4,8}; Transfinite Line{27}=NDlbn;

116 Line(28)={5,9}; Transfinite Line{28}=NDlbn;

117

118 // Linhas Musculo (dividir o tronco em quatro)

119 Line(29)={6,10}; Transfinite Line{29}=NDlmsc Using Progression 0.8 ;

120 Line(30)={7,11}; Transfinite Line{30}=NDlmsc Using Progression 0.8 ;

121 Line(31)={8,12}; Transfinite Line{31}=NDlmsc Using Progression 0.8 ;

122 Line(32)={9,13}; Transfinite Line{32}=NDlmsc Using Progression 0.8 ;

123

124 //Linhas Gordura (dividir o tronco em quatro)

125 Line(33)={10,14}; Transfinite Line{33}=NDlf;

126 Line(34)={11,15}; Transfinite Line{34}=NDlf;

127 Line(35)={12,16}; Transfinite Line{35}=NDlf;

128 Line(36)={13,17}; Transfinite Line{36}=NDlf;

129

130 // Linhas Pele (dividir o tronco em quatro)

131 Line(37)={14,18}; Transfinite Line{37}=NDlsk Using Progression 0.8 ;

132 Line(38)={15,19}; Transfinite Line{38}=NDlsk Using Progression 0.8 ;

133 Line(39)={16,20}; Transfinite Line{39}=NDlsk Using Progression 0.8 ;
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134 Line(40)={17,21}; Transfinite Line{40}=NDlsk Using Progression 0.8 ;

135

136

137 //

===============================================================================//

138 // Construcao dos 1/4 de circunf.

//

139 //

===============================================================================//

140

141

142 //Fecho dos Modules Cerebro

143 Line Loop(1)={21,1,-22};

144 Line Loop(2)={22,2,-23};

145 Line Loop(3)={23,3,-24};

146 Line Loop(4)={24,4,-21};

147

148 //Fecho dos Modules Osso

149 Line Loop(5)={25,5,-26,-1};

150 Line Loop(6)={26,6,-27,-2};

151 Line Loop(7)={27,7,-28,-3};

152 Line Loop(8)={28,8,-25,-4};

153

154 //Fecho dos Modules Musculo

155 Line Loop( 9)={29, 9,-30,-5};

156 Line Loop(10)={30,10,-31,-6};

157 Line Loop(11)={31,11,-32,-7};

158 Line Loop(12)={32,12,-29,-8};

159

160 //Fecho dos Modules Gordura

161 Line Loop(13)={33,13,-34, -9};

162 Line Loop(14)={34,14,-35,-10};

163 Line Loop(15)={35,15,-36,-11};

164 Line Loop(16)={36,16,-33,-12};

165

166 //Fecho dos Modules Pele

167 Line Loop(17)={37,17,-38,-13};

168 Line Loop(18)={38,18,-39,-14};

169 Line Loop(19)={39,19,-40,-15};

170 Line Loop(20)={40,20,-37,-16};

171

172 //

===============================================================================//

173 // Construcao das sup. dos 1/4 de circunf.

//

174 //

===============================================================================//

175

176 // Definition das Superficies Pulmao
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177 Plane Surface( 1)={ 1}; Transfinite Surface{ 1}={ 1, 2, 3}; Recombine

Surface{1};

178 Plane Surface( 2)={ 2}; Transfinite Surface{ 2}={ 1, 3, 4}; Recombine

Surface{2};

179 Plane Surface( 3)={ 3}; Transfinite Surface{ 3}={ 1, 4, 5}; Recombine

Surface{3};

180 Plane Surface( 4)={ 4}; Transfinite Surface{ 4}={ 1, 5, 2}; Recombine

Surface{4};

181

182 //Definition das Superficies Osso

183 Plane Surface( 5)={ 5}; Transfinite Surface{ 5}={ 2, 6, 7, 3}; Recombine

Surface{5};

184 Plane Surface( 6)={ 6}; Transfinite Surface{ 6}={ 3, 7, 8, 4}; Recombine

Surface{6};

185 Plane Surface( 7)={ 7}; Transfinite Surface{ 7}={ 4, 8, 9, 5}; Recombine

Surface{7};

186 Plane Surface( 8)={ 8}; Transfinite Surface{ 8}={ 5, 9, 6, 2}; Recombine

Surface{8};

187

188 //Definition das Superficies Musculo

189 Plane Surface( 9)={ 9}; Transfinite Surface{ 9}={ 6,10,11, 7}; Recombine

Surface{ 9};

190 Plane Surface(10)={10}; Transfinite Surface {10}={ 7,11,12, 8}; Recombine

Surface{10};

191 Plane Surface(11)={11}; Transfinite Surface {11}={ 8,12,13, 9}; Recombine

Surface{11};

192 Plane Surface(12)={12}; Transfinite Surface {12}={ 9,13,10, 6}; Recombine

Surface{12};

193

194 //Definition das Superficies Gordura

195 Plane Surface(13)={13}; Transfinite Surface{13}={10,14,15,11}; Recombine

Surface{13};

196 Plane Surface(14)={14}; Transfinite Surface{14}={11,15,16,12}; Recombine

Surface{14};

197 Plane Surface(15)={15}; Transfinite Surface{15}={12,16,17,13}; Recombine

Surface{15};

198 Plane Surface(16)={16}; Transfinite Surface{16}={13,17,14,10}; Recombine

Surface{16};

199

200 //Definition das Superficies Pele

201 Plane Surface(17)={17}; Transfinite Surface{17}={14,18,19,15}; Recombine

Surface{17};

202 Plane Surface(18)={18}; Transfinite Surface{18}={15,19,20,16}; Recombine

Surface{18};

203 Plane Surface(19)={19}; Transfinite Surface{19}={16,20,21,17}; Recombine

Surface{19};

204 Plane Surface(20)={20}; Transfinite Surface{20}={17,21,18,14}; Recombine

Surface{20};

205

206 //===================================================================================

207

208 Point(47)={0., 0., zh, Size}; // Centro do Cilindro

209

210 //

==================================================================================
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211 // Pontos

//

212 //

=================================================================================

213

214

215 // Pontos da Circunferencia Visceras

216 Point(48)={0. ,rbn ,zh ,Size};

217 Point(49)={rbn ,0. ,zh ,Size};

218 Point(50)={0. ,-rbn ,zh ,Size};

219 Point(51)={-rbn ,0. ,zh ,Size};

220

221 // Pontos da Circunferencia Musulo

222 Point(52)={0. ,rmsc ,zh ,Size};

223 Point(53)={rmsc ,0. ,zh ,Size};

224 Point(54)={0. ,-rmsc ,zh ,Size};

225 Point(55)={-rmsc ,0. ,zh ,Size};

226

227 // Pontos da Circunferencia Gordura

228 Point(56)={0.,rf ,zh ,Size};

229 Point(57)={rf ,0. ,zh ,Size};

230 Point(58)={0.,-rf,zh ,Size};

231 Point(59)={-rf,0.,zh ,Size};

232

233 // Pontos da Circunferencia Pele

234 Point(60)={0.,rsk ,zh ,Size};

235 Point(61)={rsk ,0. ,zh ,Size};

236 Point(62)={0.,-rsk,zh ,Size};

237 Point(63)={-rsk ,0.,zh ,Size};

238

239 //

===============================================================================//

240 // Circunferencias

//

241 //

===============================================================================//

242

243 //Desenho dos Arcos de circunferencia Visceras

244 Circle( 89)={48,47,49}; Transfinite Line{ 89}=NDc;

245 Circle( 90)={49,47,50}; Transfinite Line{ 90}=NDc;

246 Circle( 91)={50,47,51}; Transfinite Line{ 91}=NDc;

247 Circle( 92)={51,47,48}; Transfinite Line{ 92}=NDc;

248

249 //Desenho dos Arcos de Circunferencia Musculo

250 Circle( 93)={52,47,53}; Transfinite Line{ 93}=NDc;

251 Circle( 94)={53,47,54}; Transfinite Line{ 94}=NDc;

252 Circle( 95)={54,47,55}; Transfinite Line{ 95}=NDc;

253 Circle( 96)={55,47,52}; Transfinite Line{ 96}=NDc;

254

255 //Desenho dos Arcos de circunferencia Gordura

256 Circle( 97)={56,47,57}; Transfinite Line{ 97}=NDc;
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257 Circle( 98)={57,47,58}; Transfinite Line{ 98}=NDc;

258 Circle( 99)={58,47,59}; Transfinite Line{ 99}=NDc;

259 Circle(100)={59,47,56}; Transfinite Line{100}=NDc;

260

261 //Desenho dos Arcos de Circunferencia Pele

262 Circle(101)={60,47,61}; Transfinite Line{101}=NDc;

263 Circle(102)={61,47,62}; Transfinite Line{102}=NDc;

264 Circle(103)={62,47,63}; Transfinite Line{103}=NDc;

265 Circle(104)={63,47,60}; Transfinite Line{104}=NDc;

266

267 //

===============================================================================//

268 // Linhas de divisao da Circ. em 1/4

//

269 //

===============================================================================//

270

271 // Linhas bone (dividir em quatro)

272 Line(105)={47,48}; Transfinite Line{105}=NDlv ;

273 Line(106)={47,49}; Transfinite Line{106}=NDlv ;

274 Line(107)={47,50}; Transfinite Line{107}=NDlv ;

275 Line(108)={47,51}; Transfinite Line{108}=NDlv ;

276

277 //Linhas Musculo (dividir em quatro)

278 Line(109)={48,52}; Transfinite Line{109}= NDlmsc ;

279 Line(110)={49,53}; Transfinite Line{110}= NDlmsc ;

280 Line(111)={50,54}; Transfinite Line{111}= NDlmsc ;

281 Line(112)={51,55}; Transfinite Line{112}= NDlmsc ;

282

283 // Linhas Gordura (dividir em quatro)

284 Line(113)={52,56}; Transfinite Line{113}=NDlf ;

285 Line(114)={53,57}; Transfinite Line{114}=NDlf ;

286 Line(115)={54,58}; Transfinite Line{115}=NDlf ;

287 Line(116)={55,59}; Transfinite Line{116}=NDlf ;

288

289 //Linhas Pele (dividir em quatro)

290 Line(117)={56,60}; Transfinite Line{117}=NDlsk;

291 Line(118)={57,61}; Transfinite Line{118}=NDlsk;

292 Line(119)={58,62}; Transfinite Line{119}=NDlsk;

293 Line(120)={59,63}; Transfinite Line{120}=NDlsk;

294

295 //

===============================================================================//

296 // Build dos 1/4 de circunf.

//

297 //

===============================================================================//

298

299 //Fecho dos Modules bone

300 Line Loop(45)={105,89,-106};

301 Line Loop(46)={106,90,-107};

302 Line Loop(47)={107,91,-108};
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303 Line Loop(48)={108,92,-105};

304

305 //Fecho dos Modules Musculo

306 Line Loop(49)={109,93,-110,-89};

307 Line Loop(50)={110,94,-111,-90};

308 Line Loop(51)={111,95,-112,-91};

309 Line Loop(52)={112,96,-109,-92};

310

311 //Fecho dos Modules Gordura

312 Line Loop(53)={113, 97,-114,-93};

313 Line Loop(54)={114, 98,-115,-94};

314 Line Loop(55)={115, 99,-116,-95};

315 Line Loop(56)={116,100,-113,-96};

316

317 //Fecho dos Modules Pele

318 Line Loop(57)={117,101,-118,-97};

319 Line Loop(58)={118,102,-119,-98};

320 Line Loop(59)={119,103,-120,-99};

321 Line Loop(60)={120,104,-117,-100};

322

323 //

===============================================================================//

324 // Build das sup. dos 1/4 de circunf.

//

325 //

===============================================================================//

326

327 // Definition das Superfcies Bone

328 Plane Surface(45)={45}; Transfinite Surface {45}={47,48,49}; Recombine

Surface{45};

329 Plane Surface(46)={46}; Transfinite Surface {46}={47,49,50}; Recombine

Surface{46};

330 Plane Surface(47)={47}; Transfinite Surface {47}={47,50,51}; Recombine

Surface{47};

331 Plane Surface(48)={48}; Transfinite Surface {48}={47,51,48}; Recombine

Surface{48};

332

333 //Definition das Superficies Musculo

334 Plane Surface(49)={49}; Transfinite Surface {49}={48,52,53,49}; Recombine

Surface{49};

335 Plane Surface(50)={50}; Transfinite Surface {50}={49,53,54,50}; Recombine

Surface{50};

336 Plane Surface(51)={51}; Transfinite Surface {51}={50,54,55,51}; Recombine

Surface{51};

337 Plane Surface(52)={52}; Transfinite Surface {52}={51,55,52,48}; Recombine

Surface{52};

338

339 //Definition das Superficies Gordura

340 Plane Surface(53)={53}; Transfinite Surface {53}={52,56,57,53}; Recombine

Surface{53};

341 Plane Surface(54)={54}; Transfinite Surface {54}={53,57,58,54}; Recombine

Surface{54};

342 Plane Surface(55)={55}; Transfinite Surface {55}={54,58,59,55}; Recombine

Surface{55};
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343 Plane Surface(56)={56}; Transfinite Surface{56}={55,59,56,52}; Recombine

Surface{56};

344

345 //Definition das Superficies Pele

346 Plane Surface(57)={57}; Transfinite Surface{57}={56,60,61,57}; Recombine

Surface{57};

347 Plane Surface(58)={58}; Transfinite Surface{58}={57,61,62,58}; Recombine

Surface{58};

348 Plane Surface(59)={59}; Transfinite Surface{59}={58,62,63,59}; Recombine

Surface{59};

349 Plane Surface(60)={60}; Transfinite Surface{60}={59,63,60,56}; Recombine

Surface{60};

350

351 //================================================================================//

352

353 Point(64)={0., 0., zh+z, Size}; // Cylinder centre

354

355 //

===============================================================================//

356 // Points

//

357 //

===============================================================================//

358

359

360 // Pontos da Circunferencia Musulo

361 Point(65)={0. ,rmsc ,zh+z,Size};

362 Point(66)={rmsc ,0. ,zh+z,Size};

363 Point(67)={0. ,-rmsc ,zh+z,Size};

364 Point(68)={-rmsc ,0. ,zh+z,Size};

365

366 // Pontos da Circunferencia Gordura

367 Point(69)={0.,rf ,zh+z,Size};

368 Point(70)={rf ,0. ,zh+z,Size};

369 Point(71)={0.,-rf,zh+z,Size};

370 Point(72)={-rf,0.,zh+z,Size};

371

372 // Pontos da Circunferencia Pele

373 Point(73)={0.,rsk ,zh+z,Size};

374 Point(74)={rsk ,0. ,zh+z,Size};

375 Point(75)={0.,-rsk,zh+z,Size};

376 Point(76)={-rsk ,0.,zh+z,Size};

377

378 //

===============================================================================//

379 // Circumferences

//

380 //

===============================================================================//

381

382 //Desenho dos Arcos de Circunferencia Musculo
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383 Circle(121)={65,64,66}; Transfinite Line{121}=NDc;

384 Circle(122)={66,64,67}; Transfinite Line{122}=NDc;

385 Circle(123)={67,64,68}; Transfinite Line{123}=NDc;

386 Circle(124)={68,64,65}; Transfinite Line{124}=NDc;

387

388 //Desenho dos Arcos de circunferencia Gordura

389 Circle(125)={69,64,70}; Transfinite Line{125}=NDc;

390 Circle(126)={70,64,71}; Transfinite Line{126}=NDc;

391 Circle(127)={71,64,72}; Transfinite Line{127}=NDc;

392 Circle(128)={72,64,69}; Transfinite Line{128}=NDc;

393

394 //Desenho dos Arcos de Circunferencia Pele

395 Circle(129)={73,64,74}; Transfinite Line{129}=NDc;

396 Circle(130)={74,64,75}; Transfinite Line{130}=NDc;

397 Circle(131)={75,64,76}; Transfinite Line{131}=NDc;

398 Circle(132)={76,64,73}; Transfinite Line{132}=NDc;

399

400 //

===============================================================================//

401 // Linhas de divisao da Circ. em 1/4

//

402 //

===============================================================================//

403

404 //Linhas Musculo (dividir em quatro)

405 Line(133)={64,65}; Transfinite Line{133}= NDlmsc ;

406 Line(134)={64,66}; Transfinite Line{134}= NDlmsc ;

407 Line(135)={64,67}; Transfinite Line{135}= NDlmsc ;

408 Line(136)={64,68}; Transfinite Line{136}= NDlmsc ;

409

410 // Linhas Gordura (dividir em quatro)

411 Line(137)={65,69}; Transfinite Line{137}=NDlf ;

412 Line(138)={66,70}; Transfinite Line{138}=NDlf ;

413 Line(139)={67,71}; Transfinite Line{139}=NDlf ;

414 Line(140)={68,72}; Transfinite Line{140}=NDlf ;

415

416 //Linhas Pele (dividir em quatro)

417 Line(141)={69,73}; Transfinite Line{141}=NDlsk;

418 Line(142)={70,74}; Transfinite Line{142}=NDlsk;

419 Line(143)={71,75}; Transfinite Line{143}=NDlsk;

420 Line(144)={72,76}; Transfinite Line{144}=NDlsk;

421

422 //

===============================================================================//

423 // Build dos 1/4 de circunf.

//

424 //

===============================================================================//

425

426 //Fecho dos Modules Musculo

427 Line Loop(61)={133,121,-134};

428 Line Loop(62)={134,122,-135};
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429 Line Loop(63)={135,123,-136};

430 Line Loop(64)={136,124,-133};

431

432 //Fecho dos Modules Gordura

433 Line Loop(65)={137,125,-138,-121};

434 Line Loop(66)={138,126,-139,-122};

435 Line Loop(67)={139,127,-140,-123};

436 Line Loop(68)={140,128,-137,-124};

437

438 //Fecho dos Modules Pele

439 Line Loop(69)={141,129,-142,-125};

440 Line Loop(70)={142,130,-143,-126};

441 Line Loop(71)={143,131,-144,-127};

442 Line Loop(72)={144,132,-141,-128};

443

444 //

===============================================================================//

445 // Build das sup. dos 1/4 de circunf.

//

446 //

===============================================================================//

447

448 //Definition das Superficies Musculo

449 Plane Surface(61)={61}; Transfinite Surface {61}={64,65,66}; Recombine

Surface{61};

450 Plane Surface(62)={62}; Transfinite Surface {62}={64,66,67}; Recombine

Surface{62};

451 Plane Surface(63)={63}; Transfinite Surface {63}={64,67,68}; Recombine

Surface{63};

452 Plane Surface(64)={64}; Transfinite Surface {64}={64,68,65}; Recombine

Surface{64};

453

454 //Definition das Superficies Gordura

455 Plane Surface(65)={65}; Transfinite Surface{65}={65,69,70,66}; Recombine

Surface{65};

456 Plane Surface(66)={66}; Transfinite Surface{66}={66,70,71,67}; Recombine

Surface{66};

457 Plane Surface(67)={67}; Transfinite Surface{67}={67,71,72,68}; Recombine

Surface{67};

458 Plane Surface(68)={68}; Transfinite Surface{68}={68,72,69,65}; Recombine

Surface{68};

459

460 //Definition das Superficies Pele

461 Plane Surface(69)={69}; Transfinite Surface{69}={69,73,74,70}; Recombine

Surface{69};

462 Plane Surface(70)={70}; Transfinite Surface{70}={70,74,75,71}; Recombine

Surface{70};

463 Plane Surface(71)={71}; Transfinite Surface{71}={71,75,76,72}; Recombine

Surface{71};

464 Plane Surface(72)={72}; Transfinite Surface{72}={72,76,73,69}; Recombine

Surface{72};

465

466 //======================================================================================================
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467

468 //

===============================================================================//

469 // Volumes Construction

//

470 //

===============================================================================//

471

472 //Volumes Construction (5 Layers)

473 Extrude{0.0,0.0,zh} {Surface

{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20}; Layers{NL};

Recombine;}

474

475 //

===============================================================================//

476

477 //Volumes Construction (4 Layers)

478 Extrude{0.0,0.0,z} {Surface

{45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60}; Layers{1}; Recombine

;}

479

480 //

===============================================================================//

481

482 //Volumes Construction (3 Layers)

483 Extrude{0.0,0.0,zmsc} {Surface{61,62,63,64,65,66,67,68,69,70,71,72}; Layers

{1}; Recombine;}

484

485 //

===============================================================================//

486 // Defining Physical Volumes

//

487 //

===============================================================================//

488

489 Physical Volume("Brain") = {1,2,3,4};

490 Physical Volume("Bone") = {5,6,7,8,45,46,47,48};

491 Physical Volume("Muscle") = {9,10,11,12,49,50,51,52,61,62,63,64};

492 Physical Volume("Fat") = {13,14,15,16,53,54,55,56,65,66,67,68};

493 Physical Volume("Skin") = {17,18,19,20,57,58,59,60,69,70,71,72};

A.7 Leg Geometric Code

1 // Geometria do Perna - 4 camadas

2

3 // ====================================================================//

4 // Mesh Data //
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5 // ====================================================================//

6

7 Size = .01;

8

9 rbn1 = 0.0143; // Bone (m)

10 rbn2 = 0.0343; // Bone (m)

11 rmsc = 0.0372; // Musculo (m)

12 rf = 0.0412; // Fat (m)

13 rsk = 0.0429; // Skin (m)

14

15 z = 0.40; // comprimento da perna (m)

16

17 // Divisions da Rede

18

19 NDc = 5; // Div. circ.

20

21 NDlbn1 = 2; // Div. Lines Bone

22 NDlbn2 = 2; // Div. Lines Bone

23 NDlmsc = 2; // Div. Lines Muscle

24 NDlf = 2; // Div. Lines Fat

25 NDlsk = 2; // Div. Lines Skin

26

27 NL = 8; // Number of Layers

28

29 Point(1)={0., 0., 0., Size}; // Centro do Cilindro

30

31

32 // ====================================================================//

33 // Points //

34 // ====================================================================//

35

36 // Circumference Points Bone init rbn1 rbn1

37 Point(2)={0.,rbn1 ,0.,Size};

38 Point(3)={rbn1 ,0.,0.,Size};

39 Point(4)={0.,-rbn1 ,0.,Size};

40 Point(5)={-rbn1 ,0.,0.,Size};

41

42 // Circumference Points Bone final rbn2

43 Point(6)={0.,rbn2 ,0.,Size};

44 Point(7)={rbn2 ,0.,0.,Size};

45 Point(8)={0.,-rbn2 ,0.,Size};

46 Point(9)={-rbn2 ,0.,0.,Size};

47

48 / Circumference Points Muscle rmsc

49 Point(10)={0.,rmsc ,0.,Size};

50 Point(11)={rmsc ,0.,0.,Size};

51 Point(12)={0.,-rmsc ,0.,Size};

52 Point(13)={-rmsc ,0.,0.,Size};

53

54 / Circumference Points Fat rf

55 Point(14)={0.,rf,0.,Size};

56 Point(15)={rf,0.,0.,Size};

57 Point(16)={0.,-rf,0.,Size};

58 Point(17)={-rf,0.,0.,Size};

59

60 / Circumference Points Skin rsk
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61 Point(18)={0.,rsk ,0.,Size};

62 Point(19)={rsk ,0.,0.,Size};

63 Point(20)={0.,-rsk ,0.,Size};

64 Point(21)={-rsk ,0.,0.,Size};

65

66 //

===============================================================================//

67 // Circumf.

//

68 //

===============================================================================//

69

70 //Circumf. Arcs Bone1

71 Circle( 1)={2,1,3}; Transfinite Line{ 1}=NDc;

72 Circle( 2)={3,1,4}; Transfinite Line{ 2}=NDc;

73 Circle( 3)={4,1,5}; Transfinite Line{ 3}=NDc;

74 Circle( 4)={5,1,2}; Transfinite Line{ 4}=NDc;

75

76 //Circumf. Arcs Bone2

77 Circle( 5)={6,1,7}; Transfinite Line{ 5}=NDc;

78 Circle( 6)={7,1,8}; Transfinite Line{ 6}=NDc;

79 Circle( 7)={8,1,9}; Transfinite Line{ 7}=NDc;

80 Circle( 8)={9,1,6}; Transfinite Line{ 8}=NDc;

81

82 //Circumf. Arcs Muscle

83 Circle( 9)={10,1,11}; Transfinite Line{ 9}=NDc;

84 Circle(10)={11,1,12}; Transfinite Line{10}=NDc;

85 Circle(11)={12,1,13}; Transfinite Line{11}=NDc;

86 Circle(12)={13,1,10}; Transfinite Line{12}=NDc;

87

88 //Circumf. Arcs Fat

89 Circle(13)={14,1,15}; Transfinite Line{13}=NDc;

90 Circle(14)={15,1,16}; Transfinite Line{14}=NDc;

91 Circle(15)={16,1,17}; Transfinite Line{15}=NDc;

92 Circle(16)={17,1,14}; Transfinite Line{16}=NDc;

93

94 //Circumf. Arcs Skin

95 Circle(17)={18,1,19}; Transfinite Line{17}=NDc;

96 Circle(18)={19,1,20}; Transfinite Line{18}=NDc;

97 Circle(19)={20,1,21}; Transfinite Line{19}=NDc;

98 Circle(20)={21,1,18}; Transfinite Line{20}=NDc;

99

100

101 // ====================================================================//

102 // 1/4 Circle division lines //

103 // ====================================================================//

104

105 // Lines Bone1

106 Line(21)={1,2}; Transfinite Line{21}=NDlbn1 Using Progression 0.5 ;

107 Line(22)={1,3}; Transfinite Line{22}=NDlbn1 Using Progression 0.5 ;

108 Line(23)={1,4}; Transfinite Line{23}=NDlbn1 Using Progression 0.5 ;

109 Line(24)={1,5}; Transfinite Line{24}=NDlbn1 Using Progression 0.5 ;

110

111 //Lines Bone2
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112 Line(25)={2,6}; Transfinite Line{25}=NDlbn2;

113 Line(26)={3,7}; Transfinite Line{26}=NDlbn2;

114 Line(27)={4,8}; Transfinite Line{27}=NDlbn2;

115 Line(28)={5,9}; Transfinite Line{28}=NDlbn2;

116

117 // Lines Muscle

118 Line(29)={6,10}; Transfinite Line{29}=NDlmsc Using Progression 0.8 ;

119 Line(30)={7,11}; Transfinite Line{30}=NDlmsc Using Progression 0.8 ;

120 Line(31)={8,12}; Transfinite Line{31}=NDlmsc Using Progression 0.8 ;

121 Line(32)={9,13}; Transfinite Line{32}=NDlmsc Using Progression 0.8 ;

122

123 //Lines Fat

124 Line(33)={10,14}; Transfinite Line{33}=NDlf;

125 Line(34)={11,15}; Transfinite Line{34}=NDlf;

126 Line(35)={12,16}; Transfinite Line{35}=NDlf;

127 Line(36)={13,17}; Transfinite Line{36}=NDlf;

128

129 // Lines Skin

130 Line(37)={14,18}; Transfinite Line{37}=NDlsk Using Progression 0.8 ;

131 Line(38)={15,19}; Transfinite Line{38}=NDlsk Using Progression 0.8 ;

132 Line(39)={16,20}; Transfinite Line{39}=NDlsk Using Progression 0.8 ;

133 Line(40)={17,21}; Transfinite Line{40}=NDlsk Using Progression 0.8 ;

134

135 // ====================================================================//

136 // 1/4 circle Sections //

137 // ====================================================================//

138

139

140 //Close Loops Bone

141 Line Loop(1)={21,1,-22};

142 Line Loop(2)={22,2,-23};

143 Line Loop(3)={23,3,-24};

144 Line Loop(4)={24,4,-21};

145

146 //Close Loops Bone

147 Line Loop(5)={25,5,-26,-1};

148 Line Loop(6)={26,6,-27,-2};

149 Line Loop(7)={27,7,-28,-3};

150 Line Loop(8)={28,8,-25,-4};

151

152 //Close Loops Muscle

153 Line Loop( 9)={29, 9,-30,-5};

154 Line Loop(10)={30,10,-31,-6};

155 Line Loop(11)={31,11,-32,-7};

156 Line Loop(12)={32,12,-29,-8};

157

158 //Close Loops Fat

159 Line Loop(13)={33,13,-34, -9};

160 Line Loop(14)={34,14,-35,-10};

161 Line Loop(15)={35,15,-36,-11};

162 Line Loop(16)={36,16,-33,-12};

163

164 ////Close Loops Skin

165 Line Loop(17)={37,17,-38,-13};

166 Line Loop(18)={38,18,-39,-14};

167 Line Loop(19)={39,19,-40,-15};
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168 Line Loop(20)={40,20,-37,-16};

169

170 // ====================================================================//

171 // 1/4 Circumf. Surface Construction //

172 // ====================================================================//

173

174 // Defining Surfaces Bone (1/4 circle)

175 Plane Surface( 1)={ 1}; Transfinite Surface{ 1}={ 1, 2, 3}; Recombine

Surface{1};

176 Plane Surface( 2)={ 2}; Transfinite Surface{ 2}={ 1, 3, 4}; Recombine

Surface{2};

177 Plane Surface( 3)={ 3}; Transfinite Surface{ 3}={ 1, 4, 5}; Recombine

Surface{3};

178 Plane Surface( 4)={ 4}; Transfinite Surface{ 4}={ 1, 5, 2}; Recombine

Surface{4};

179

180 //Defining Surfaces Bone (pipe sections)

181 Plane Surface( 5)={ 5}; Transfinite Surface{ 5}={ 2, 6, 7, 3}; Recombine

Surface{5};

182 Plane Surface( 6)={ 6}; Transfinite Surface{ 6}={ 3, 7, 8, 4}; Recombine

Surface{6};

183 Plane Surface( 7)={ 7}; Transfinite Surface{ 7}={ 4, 8, 9, 5}; Recombine

Surface{7};

184 Plane Surface( 8)={ 8}; Transfinite Surface{ 8}={ 5, 9, 6, 2}; Recombine

Surface{8};

185

186 //Defining Surfaces Muscle (pipe sections)

187 Plane Surface( 9)={ 9}; Transfinite Surface{ 9}={ 6,10,11, 7}; Recombine

Surface{ 9};

188 Plane Surface(10)={10}; Transfinite Surface {10}={ 7,11,12, 8}; Recombine

Surface{10};

189 Plane Surface(11)={11}; Transfinite Surface {11}={ 8,12,13, 9}; Recombine

Surface{11};

190 Plane Surface(12)={12}; Transfinite Surface {12}={ 9,13,10, 6}; Recombine

Surface{12};

191

192 //Defining Surfaces Fat (pipe sections)

193 Plane Surface(13)={13}; Transfinite Surface {13}={10,14,15,11}; Recombine

Surface{13};

194 Plane Surface(14)={14}; Transfinite Surface {14}={11,15,16,12}; Recombine

Surface{14};

195 Plane Surface(15)={15}; Transfinite Surface {15}={12,16,17,13}; Recombine

Surface{15};

196 Plane Surface(16)={16}; Transfinite Surface {16}={13,17,14,10}; Recombine

Surface{16};

197

198 //Defining Surfaces Skin (pipe sections)

199 Plane Surface(17)={17}; Transfinite Surface {17}={14,18,19,15}; Recombine

Surface{17};

200 Plane Surface(18)={18}; Transfinite Surface {18}={15,19,20,16}; Recombine

Surface{18};

201 Plane Surface(19)={19}; Transfinite Surface {19}={16,20,21,17}; Recombine

Surface{19};

202 Plane Surface(20)={20}; Transfinite Surface {20}={17,21,18,14}; Recombine

Surface{20};

203
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204 // ====================================================================//

205 // Volume Construction //

206 // ====================================================================//

207

208 Extrude{0.0,0.0,z} {Surface

{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20}; Layers{NL};

Recombine;}

209

210 // ====================================================================//

211 // Defining Physical Volumes //

212 // ====================================================================//

213

214 Physical Volume("Bone") = {6,8};

215 Physical Volume("Muscle") = {1,2,3,4,5,7,9,10,11,12};

216 Physical Volume("Fat") = {13,14,15,16};

217 Physical Volume("Skin") = {17,18,19,20};

A.8 Foot Geometric Code

1 // Geometria do foot - 4 layers

2

3 // Mesh Data

4

5

6 Size = .01;

7

8 xsk1 = 0.0; // Bone (m)

9 xsk2 = 0.1021; // Muscle (m)

10 ysk1 = 0.0; // Fat (m)

11 ysk2 = 0.0370; // Skin (m)

12 xft1 = 0.0021;

13 xft2 = 0.1000;

14 yft1 = 0.00076;

15 yft2 = 0.0362;

16 xmsc1 = 0.0068;

17 xmsc2 = 0.0953;

18 ymsc1 = 0.00246;

19 ymsc2 = 0.0345;

20 xbn1 = 0.0288;

21 xbn2 = 0.0733;

22 ybn1 = 0.0104;

23 ybn2 = 0.0265;

24

25

26

27 z = 0.19; // lenght (m)

28

29 // Mesh Divisions

30

31 NDlx = 10; // Div. Lines Bone

32 NDly = 5; // Div. Lines Muscle

33 NDlz = 19; // Div. Lines Gord

34
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35 //

=================================================================================

36 // Pontos

//

37 //

=================================================================================

38

39 // Prisma Corners Skin

40 Point(1)={0., 0., 0., Size};

41 Point(2)={0., ysk2 , 0., Size};

42 Point(3)={xsk2 , ysk2 , 0., Size};

43 Point(4)={xsk2 , 0., 0., Size};

44

45 // Prisma Corners Fat

46 Point(5)={xft1 , yft1 , 0., Size};

47 Point(6)={xft1 , yft2 , 0., Size};

48 Point(7)={xft2 , yft2 , 0., Size};

49 Point(8)={xft2 , yft1 , 0., Size};

50

51 // Prisma Corners Muscle

52 Point(9) ={xmsc1 , ymsc1 , 0., Size};

53 Point(10)={xmsc1 , ymsc2 , 0., Size};

54 Point(11)={xmsc2 , ymsc2 , 0., Size};

55 Point(12)={xmsc2 , ymsc1 , 0., Size};

56

57 // Prisma Corners Bone

58 Point(13)={xbn1 , ybn1 , 0., Size};

59 Point(14)={xbn1 , ybn2 , 0., Size};

60 Point(15)={xbn2 , ybn2 , 0., Size};

61 Point(16)={xbn2 , ybn1 , 0., Size};

62

63

64 //Lines SK

65 Line(1)={1,2}; Transfinite Line{1}=4;

66 Line(2)={2,3}; Transfinite Line{2}=10;

67 Line(3)={3,4}; Transfinite Line{3}=4;

68 Line(4)={4,1}; Transfinite Line{4}=10;

69

70 //Lines Ft

71 Line(5)={5,6}; Transfinite Line{5}=4;

72 Line(6)={6,7}; Transfinite Line{6}=10;

73 Line(7)={7,8}; Transfinite Line{7}=4;

74 Line(8)={8,5}; Transfinite Line{8}=10;

75

76 //Lines Msc

77 Line(9) ={9, 10}; Transfinite Line{9}=4;

78 Line(10)={10,11}; Transfinite Line{10}=10;

79 Line(11)={11,12}; Transfinite Line{11}=4;

80 Line(12)={12, 9}; Transfinite Line{12}=10;

81

82 //Lines Bone2

83 Line(13)={13, 14}; Transfinite Line{13}=4;

84 Line(14)={14, 15}; Transfinite Line{14}=10;

85 Line(15)={15, 16}; Transfinite Line{15}=4;
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86 Line(16)={16, 13}; Transfinite Line{16}=10;

87

88 //Lines

89 Line(17)={1,5}; Transfinite Line{17}=2;

90 Line(18)={2,6}; Transfinite Line{18}=2;

91 Line(19)={3,7}; Transfinite Line{19}=2;

92 Line(20)={4,8}; Transfinite Line{20}=2;

93

94 Line(21)={5, 9}; Transfinite Line{21}=2;

95 Line(22)={6,10}; Transfinite Line{22}=2;

96 Line(23)={7,11}; Transfinite Line{23}=2;

97 Line(24)={8,12}; Transfinite Line{24}=2;

98

99 Line(25)={ 9,13}; Transfinite Line{25}=4;

100 Line(26)={10,14}; Transfinite Line{26}=4;

101 Line(27)={11,15}; Transfinite Line{27}=4;

102 Line(28)={12,16}; Transfinite Line{28}=4;

103

104 //Close Modules Sk, Ft, Msc, Bn

105 Line Loop(1)={ 1, 18, -5, -17};

106 Line Loop(2)={ 2, 19, -6, -18};

107 Line Loop(3)={ 3, 20, -7, -19};

108 Line Loop(4)={ 4, 17, -8, -20};

109

110 Line Loop(5)={ 5, 22, -9, -21};

111 Line Loop(6)={ 6, 23,-10, -22};

112 Line Loop(7)={ 7, 24,-11, -23};

113 Line Loop(8)={ 8, 21,-12, -24};

114

115 Line Loop( 9)={ 9, 26,-13, -25};

116 Line Loop(10)={ 10, 27,-14, -26};

117 Line Loop(11)={ 11, 28,-15, -27};

118 Line Loop(12)={ 12, 25,-16, -28};

119

120 Line Loop(13)={13,14,15,16};

121

122

123 //Defining Surfaces

124 Plane Surface( 1)={ 1}; Transfinite Surface{ 1}={ 1, 2, 6, 5}; Recombine

Surface{1};

125 Plane Surface( 2)={ 2}; Transfinite Surface{ 2}={ 2, 3, 7, 6}; Recombine

Surface{2};

126 Plane Surface( 3)={ 3}; Transfinite Surface{ 3}={ 3, 4, 8, 7}; Recombine

Surface{3};

127 Plane Surface( 4)={ 4}; Transfinite Surface{ 4}={ 4, 1, 5, 8}; Recombine

Surface{4};

128 Plane Surface( 5)={ 5}; Transfinite Surface{ 5}={ 5, 6,10, 9}; Recombine

Surface{5};

129 Plane Surface( 6)={ 6}; Transfinite Surface{ 6}={ 6, 7,11,10}; Recombine

Surface{6};

130 Plane Surface( 7)={ 7}; Transfinite Surface{ 7}={ 7, 8,12,11}; Recombine

Surface{7};

131 Plane Surface( 8)={ 8}; Transfinite Surface{ 8}={ 8, 5, 9,12}; Recombine

Surface{8};

132 Plane Surface( 9)={ 9}; Transfinite Surface{ 9}={ 9,10,14,13}; Recombine

Surface{9};
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133 Plane Surface(10)={10}; Transfinite Surface {10}={10,11,15,14}; Recombine

Surface{10};

134 Plane Surface(11)={11}; Transfinite Surface {11}={11,12,16,15}; Recombine

Surface{11};

135 Plane Surface(12)={12}; Transfinite Surface{12}={12, 9,13,16}; Recombine

Surface{12};

136

137 Plane Surface(13)={13}; Transfinite Surface {13}={13,14,15,16}; Recombine

Surface{13};

138

139

140 //Volume Construction

141 Extrude{0.0,0.0,z} {Surface{1,2,3,4,5,6,7,8,9,10,11,12,13}; Layers{NDlz};

Recombine;}

142

143 //Physical Volumes Definition

144 Physical Volume("Bone") = {13};

145 Physical Volume("Muscle") = { 9,10,11,12};

146 Physical Volume("Fat") = { 5, 6, 7, 8};

147 Physical Volume("Skin") = { 1, 2, 3, 4};
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Program Development Modules

B.1 Developments modules

1 # -*- coding: utf -8 -*-

2

3 """

4 Created on Mon Jan 14 15:03:12 2013

5

6 @author: jccg

7 """

8

9

10 from fipy import *

11 from numpy import array

12

13 nx = 4 #number of cells of the mesh - correspond to the tissue layers

14 dx = array([2.68, 2.72, 0.31, 0.11]) # 2.68, 5.40, 5.71, 5.82 end of each

layer in (cm)

15 dx = dx*10**-2

16

17 #Adaptation to neck cylindrical mesh# http://www.ctcms.nist.gov/fipy/fipy/

generated/meshes.numMesh.html

18

19 fipy.meshes.numMesh.cylindricalGrid1D

20 mesh = CylindricalGrid1D(nx=nx, dx=dx)

21

22 print mesh.getCellCenters()

23

24 if __name__ == ’__main__’:

25 raw_input("Cell Centers matrix. Press <return > to proceed...")

26

27 T_t = CellVariable(name="Neck Temperatures Distribution",

28 mesh=mesh ,

29 value=(36.5,36.,34.,33.))

30

31 # Boundary Condition Values
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32 valueRight = array([35., 36., 37., 37., 37., 37., 37., 37., 37., 37., 37.,

37.,

33 37., 37., 37., 37., 38., 38., 38., 38., 38., 38., 38.,

38., 38., 38., 38., 38., 37., 37., 37., 37.,

34 38., 38., 38., 38., 38., 38., 38., 38., 38., 38., 38.,

38., 37., 37., 37., 37., 37., 37., 37., 37.,

35 38., 38., 38., 38., 38., 38., 38., 38., 38., 38., 38.,

38., 37., 37., 37., 37., 37., 37., 37., 37.,

36 38., 38., 38., 38., 38., 38., 38., 38., 38., 38., 38.,

38., 37., 37., 37., 37., 37., 37., 37., 37.,

37 38., 38., 38., 38., 38., 38., 38., 38., 38., 38., 38.,

38., 37., 37., 37., 37., 37., 37., 37., 37.,

38 38., 38., 38., 38., 38., 38., 38., 38., 38., 38., 38.,

38., 37., 37., 37., 37., 37., 37., 37., 37.,

39 38., 38., 38., 38., 38., 38., 38., 38., 38., 38., 38.,

38., 37., 37., 37., 37., 37., 37., 37., 37.,

40 38., 38., 38., 38., 38., 38., 38., 38., 38., 38., 38.,

38., 37., 37., 37., 37., 37., 37., 37., 37.,

41 37., 37., 37., 37., 39., 39., 40., 40.])# this

represents skin temperature changing over the time - 5s

42

43 #T_t.constrain(valueRight[step], (mesh.exteriorFaces & mesh.facesRight))

44 #T_t.constrain(valueLeft , mesh.facesLeft)

45

46 #Defining the coefficient of the transient term - specific weight and

specific heat of the tissues

47 rho_t = array( [1357.,1086., 920., 1085.] ) # 1357 1085 920 1085 (Kg/m3)

48 c_t = array([1700., 3800., 2300., 3680.]) # 1700 3800 2300 3680 (J/(Kg.C))

49

50 transcoeff = CellVariable(name="Transient Term Coefficient",

51 mesh=mesh ,

52 value=rho_t*c_t)

53 print transcoeff

54

55 #Definition of the diffusion term coefficient - thermal conductivity of the

tissues

56 k_t = CellVariable(name="Difusion Term Coefficient",

57 mesh=mesh ,

58 value=(0.75, 0.51, 0.21, 0.47)) # 0.75 0.51 0.21 0.47 (W

/(m.C))

59

60 #Defining Source Term - Tissue Blood Flow , specific weight and specific heat

of the blood

61 V_sv = array([0., 483., 398.7, 362.]) # 0. 483. 398.7 362. (cm3/(m3.s))

62 rho_bl = 1059. # 1059 de Ferreira e Yanihara , original from Werner and Buse(

Kg/m3)

63 c_bl = 3850. # 3850 the same source of rho_bl variable (J/(Kg.C))

64 T_ar = 37. # Arterial blood temperature (C)

65 q_t = array([0., 501., 4., 368.]) # 0. 501. 4. 368 (W/m3) - Endogenous heat

production of each tissue layer

66

67 sorcoeff=CellVariable(name="Source Term Coefficient",

68 mesh=mesh ,

69 value=V_sv*rho_bl*c_bl*10**-6)

70 print sorcoeff

71
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72 indsourceterm=CellVariable(name="Internal Heat Production",

73 mesh=mesh ,

74 value=V_sv*rho_bl*c_bl*T_ar*10**-6 + q_t)

75 print indsourceterm

76

77 eqX = TransientTerm(coeff=transcoeff) == DiffusionTerm(coeff=k_t)

78 - ImplicitSourceTerm(coeff=sorcoeff) + indsourceterm

79

80 #timeStepDuration = 0.9 * 5.82**2 / (2 * (k_t)) - 5.82 is the ray of the

cylinder

81 timeStepDuration=5. #s

82 steps=180 #3600s/20s

83

84 T_tss = CellVariable(name="SS Neck Temperatures Distribution",

85 mesh=mesh ,

86 value=(36.5,36.,34.,33.))

87

88 T_tss.constrain(valueRight[0], (mesh.exteriorFaces & mesh.facesRight))

89 #T_tss.constrain(valueLeft , mesh.facesLeft)

90

91

92 if __name__ == ’__main__’:

93 viewer = Viewer(vars=(T_t,T_tss),

94 datamin=32., datamax=40.)

95 viewer.axes.set_xlabel(’r (m)’)

96 viewer.axes.set_ylabel(’Temp. ($\circ$C)’)

97

98 viewer.plot()

99

100 if __name__ == ’__main__’:

101 raw_input("Viewer created. Press <enter > to proceed...")

102

103 for step in range(steps):

104

105 T_t.constrain(valueRight[step], (mesh.exteriorFaces & mesh.facesRight))

106

107 eqX.solve(var=T_t,

108 dt=timeStepDuration)

109

110 if __name__ == ’__main__’:

111 viewer.plot()

112 print T_t

113

114 if __name__ == ’__main__’:

115 raw_input("Transient Diffusion. Press <enter > to proceed...")

116

117 eqxss= 0 == DiffusionTerm(coeff=k_t) - ImplicitSourceTerm(coeff=sorcoeff) +

indsourceterm

118 eqxss.solve(var=T_tss)

119

120 figname = raw_input("Insert Figure’s name...")

121

122 viewer.plot(filename = figname)

123

124 print T_tss

125
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126 if __name__ == ’__main__’:

127 raw_input("Steady -state Diffusion. Press <enter > to proceed...")

128

129 TSVViewer(vars=(T_t,T_tss)).plot(filename=figname)

130

131 if __name__ == ’__main__’:

132

133 raw_input("Press <return > to end. Consult present directory...")

Listing B.1: Sorce Code of the first development module, unidimensional heat
diffusion for 4 layers.

1 # -*- coding: utf -8 -*-

2 """

3 Created on Fri Feb 22 06:31:42 2013

4

5 @author: jc

6 """

7

8 from fipy import *

9 from numpy import array

10 from viewers.update import update3D

11 from viewers.viewer3D import my_grid , view

12

13 # Import Mesh

14 mesh = Gmsh3D(’geometries/neck.geo’)

15

16 # Define Tissue variable

17 T_t = CellVariable(name="Neck Temperatures Distribution",

18 mesh=mesh ,

19 value=0.)

20

21 # Set initial Condition for each layer

22 T_t.setValue(36.5, where=mesh.physicalCells[’Bone’])

23 T_t.setValue(36., where=mesh.physicalCells[’Muscle’])

24 T_t.setValue(34., where=mesh.physicalCells[’Fat’])

25 T_t.setValue(33., where=mesh.physicalCells[’Skin’])

26

27 # Set boundary conditions

28

29 sidecells = ~(mesh.facesBack | mesh.facesFront) & mesh.exteriorFaces

30

31 T_t.constrain(40., where=sidecells)

32

33 # Define terms for the equation and set the coefficients to each layer

34

35 #Set the values for specific heat and mass of each tissue layer to define

transient term coefficient

36

37 rho_t=array([1357., 1085., 920., 1085.])# 1357 1085 920 1085 (Kg/m3)

38 c_t=array([1700., 3800., 2300., 3680.]) # 1700 3800 2300 3680 (J/(Kg.oC))

39

40 transcoeff=CellVariable(mesh=mesh , value=0.)

41

42 # Set values for thermal conductivity of tissues to define diffusion

coefficient term
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43

44 k_t =array([0.75, 0.51, 0.21, 0.47]) # 0.75 0.51 0.21 0.47 (W/(m.oC))

45

46 diffcoeff=CellVariable(mesh=mesh , value=0.)

47

48 #Set values of tissue blood flow , specific mass and heat of the blood

49 V_sv=array([0., 483., 398.7, 362.]) # 0. 483. 398.7 362. (cm3/(m3.s))

50

51 rho_bl = 1059. # 1059 (Kg/m3)

52 c_bl = 3850. # 3850 (J/(Kg.oC))

53

54 T_ar= 37. # Arterial blood temperature values (oC)

55

56 q_t = array([0., 501., 4., 368.]) # 0. 501. 4. 368 (W/m3)/ basal heat

production for tissue layers

57

58 sourcecoeff=CellVariable(mesh=mesh , value=0.)

59

60 indsourceterm = CellVariable(mesh=mesh , value=0.)

61

62 for i in range(4):

63 if i==0 : string=’Bone’

64 elif i==1 : string=’Muscle’

65 elif i==2 : string=’Fat’

66 elif i==3 : string=’Skin’

67

68 transcoeff.setValue(rho_t[i]*c_t[i], where=mesh.physicalCells[string])

69

70 diffcoeff.setValue(k_t[i] , where=mesh.physicalCells[string])

71

72 sourcecoeff.setValue(V_sv[i]*rho_bl*c_bl*10**-6, where=mesh.

physicalCells[string])

73

74 indsourceterm.setValue(V_sv[i]*rho_bl*c_bl*T_ar*10**-6 + q_t[i], where=

mesh.physicalCells[string])

75

76 # Bioheat transfer equation

77 eqX = TransientTerm(coeff=transcoeff) == DiffusionTerm(coeff=diffcoeff) -

ImplicitSourceTerm(coeff=sourcecoeff) + indsourceterm

78

79 #Solution obtained for step by step

80 timeStepDuration =20.

81 steps=180

82

83 dataset=my_grid(T_t)

84 viewer=view(dataset)

85

86 for step in range(steps):

87

88 eqX.solve(var=T_t,

89 dt=timeStepDuration)

90

91 t = timeStepDuration*step + 10

92 update3D(dataset , T_t)

93 print T_t, ’t=’, t,’s’

94
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95

96 # Save Results

97 #figname = raw_input("Insert Figure’s name...")

98 #

99 #viewer.plot(filename = figname)

100 #

101 #TSVViewer(vars=(T_t,t).plot(filename=figname)

102 #

103 if __name__ == ’__main__’:

104

105 raw_input("Press <any key> to end. Consult present directory...")

Listing B.2: Sorce Code of second development module, three-dimensional heat
diffusion.
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