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sive control systems represented by measure driven differential inclusions. Invariance conditions
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1. INTRODUCTION

This article concerns the characterization of weak and strong invariance for impulsive control
systems cast in the differential inclusion paradigm. In other words, given an impulsive dynamic
system (D) and a set S containing its initial state value, we derive conditions ensuring that either
at least one trajectory or all the trajectories remain in the set. The dynamic system (D) is specified
as follows:

(D)

{
dx(t) ∈ F (t, x(t))dt + G(t, x(t))μ(dt), ∀t ∈ [0,∞)
x(0) ∈ C0,

(1.1)

where F : [0,∞)×R
n ↪→ P(Rn), G : [0,∞)×R

n ↪→ P(Rn×q) are given set-valued functions and the
control measure μ ∈ C∗([0,∞);K), the set of measures (dual of the space of continuous functions)
supported on the subsets of [0,∞) and with range in K ⊂ R

q, P(Rn) denotes the collection of
subsets of R

n, the set K is a pointed cone, and C0 ⊂ R
n is a closed set.

Remark that the paradigm considered here is substantially more general than the usual measure
driven differential equation studied in the literature,

dx = f(t, x, u)dt + g(t, x)dμ, u(t) ∈ Ω,

since now, (1.1) may encompass some problems for which the singular dynamics may also depend
on a certain control variable.

The main idea underlying our approach consists in defining a conventional control system equiv-
alent to (1.1) by considering a natural time reparametrization, and, then, expressing the invariance
conditions in terms of the data of the original problem.

A key role is played by the adopted solution concept (see, for example, [1, 2], for finite time
problems) which implies that any jump of a well defined solution to the measure-driven differential
inclusion has to be such that there exists a path joining its endpoints that satisfies the singular
dynamics. In this article, we consider an infinite time horizon version of this solution concept.

Impulsive systems has been regarded as a natural control paradigm in modeling, analysis and
synthesis for a wide range of application areas, such as finance, management of renewable resources,
1 This work has been presented on the Symposium “Generalized Solution in Control Problems.”
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INVARIANCE FOR IMPULSIVE CONTROL SYSTEMS 789

and aerospace navigation, (consider [3–7], to name just a few references). This explains why a
considerable body of theory for this class of systems (see, for example, [1, 2, 8–19], and references
therein) and supporting control strategies computation schemes, [20–23] have been developed so far.

The research reported in this paper is part of a greater effort to understanding the features of
impulsive dynamical systems governed by measure differential inclusions. In this vein, a previous
work, [24], presented an extension of the Lyapunov stability theory to these systems. The basic
condition was that the Lyapunov function composed with any trajectory of system had to be strictly
decreasing to zero as time evolved to infinity. This Lyapunov condition was relaxed to alow for
Lyapunov functions that were decreasing in “average” [25]. Roughly, this means that the value of
the Lyapunov function along the state trajectory might increase in a jump, but this increase has
to be compensated by the absolutely continuous evolution as time goes to infinity. In other words,
there is no need for strict monotony.

Another general motivation for the development of impulsive control theory is due to the per-
ceived relevance of the impulsive control paradigm for hybrid systems, [26,27]. The current dramatic
technological developments in computation and communications have been fueling the engineering
design of advanced controlled systems—say, for example, involving multiple autonomous devices
and vehicles which are able to coordinate their activities to achieve the system’s goals while sat-
isfying given performance requirements—whose state evolution is dictated by the interaction of
conventional time-driven dynamics and event-driven dynamics, and, thus, are naturally modeled in
a hybrid systems context. By considering x = col(y, z), a certain index set A, and Z = {zα : α ∈ A},
we can see that the impulsive system

{
ẏ = f(y, z, u), u ∈ Ω
dz = g(y, z)dμ

models an hybrid system defined by the collection of conventional systems {ẏ = fα(y, u), u ∈ Ω :
α ∈ A}, with fα(y, u) := f(y, zα, u), whose discrete dynamics are specified by the singular compo-
nent of the impulsive control system.

This article is organized as follows: in the next section we introduce the solution concept for
infinite time horizon impulsive dynamic control systems and some associated pertinent results.
Then, together with the presentation of relevant preliminary conventional definitions, we present,
in Section 4, both weak and strong invariance conditions as well as the proofs of the main results.
In section four, we illustrate the usage of the proposed invariance conditions with two simple
examples, before concluding the article with some observations and remarks.

2. SOLUTION CONCEPT AND BASIC RESULTS

We adopt the concept of solution introduced in [2,24] modified in order to accommodate the un-
bounded time interval [0,∞). Robustness is one of the key features of this concept. One advantage
of this property concerns the fact that it enables the construction of a sequence of conventional
control processes approximating, in a certain sense, the given reference impulsive process, and,
therefore, it is a powerful instrument to extend results from control theory for conventional sys-
tems.

In order to present the solution concept, we need to introduce a change of time variable technique.
Moreover, this reparametrization procedure is also of independent interest as it plays a critical role
in our methods of proof. In order to define it, let, for i = 1, . . . , q, Mi ∈ BV +([0,∞); R), be given
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by Mi(t) =
∫

[0,t]

μi(ds), for t > 0 with Mi(0) = 0, and consider:

η(t) := t +
m∑

i=1

Mi(t),

η(t) :=

{
{η(t)} if μ̄({t}) = 0
[η(t−), η(t)] if μ̄({t}) > 0.

Here and in what follows, the space of absolutely continuous functions and the space of func-
tions of bounded variation from [0,∞) to R

n are, respectively, denoted by AC([0,∞); Rn) and

BV +([0,∞); Rn), μ̄ denotes the total variation of the measure μ, i.e., μ̄(dt) :=
q∑

i=1

μi(dt), L × B
is the product σ-field, where L denotes the Lebesgue subsets of [0,∞) and B denotes the Borel
subsets of R

q, B is the open unit ball in the Euclidean space.
The above defined function η is a reparametrization of the time variable t. Now, we introduce

the notion of graph completion for the vector-valued measure μ.

Definition 2.1. A family of graph completions associated to the vector-valued measure μ is the set
of the pairs (θ, γμ) : [0,∞) → [0,∞) × K, where θ : [0,∞) → [0,∞) is the “inverse” of η : [0,∞) ↪→
P([0,∞)) in the sense that

θ(s) = t, ∀s ∈ η(t)

and γμ : [0,∞) → R
q is defined ∀s ∈ η(t), ∀t ∈ [0,∞), by

γ(s) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

M(θ(s)) if μ̄({t}) = 0

M(t−) +
s∫

η(t−)

v(σ)dσ if μ̄({t}) > 0,

for some v(·) ∈ V t, where t = θ(s). Here, M(·) := col(M1(·), . . . ,Mq(·)) and

V t :=

⎧⎪⎨
⎪⎩v : η(t) → K | θ̇(s) +

m∑
i=1

vi(s) = 1, ∀s ∈ η(t),
∫

η(t)

v(s)ds = μ({t})
⎫⎪⎬
⎪⎭ .

Finally, we introduce the concept of robust solution.

Definition 2.2. The trajectory x, with x(0) = x0, is admissible for (1.1) if x(t) = xac(t) + xs(t)
∀t ∈ [0,∞), where ⎧⎪⎨

⎪⎩
ẋac(t) ∈ F (t, x(t)) + G(t, x(t))wac(t) a.e.

xs(t) =
∫

[0,t]

gc(τ)wc(τ)dμ̄sc(τ) +
∫

[0,t]

ga(τ)dμ̄sa(τ).

Here, μ̄ is the total variation measure associated with μ, μsc, μsa and μac are, respectively, the
singular continuous, the singular atomic, and the absolutely continuous components of μ, wac is
the time derivative of μac, wsc is the Radon-Nicodym derivative of μsc with respect to its total
variation, gc(·) is a μ̄sc measurable selection of G(·, x(·)) and ga(·) is a μ̄sa measurable selection of
the multifunction

G̃(t, x(t−);μ({t})) : [0,∞) × R
n × K ↪→ P(Rn).

The value of this multifunction is the set of all

ζ =
ξ(η(t)) − x(t−)

μ̄sa({t})
AUTOMATION AND REMOTE CONTROL Vol. 69 No. 5 2008
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for which the process (ξ(·), γμ(·), v(·)) satisfies:{
ξ̇(s) = G(t, ξ(s))v(s)
γ̇μ(s) = v(s),

v(s) ∈ V t, a.a. s ∈ η(t), (2.1)
{

ξ(η(t−)) = x(t−)
γμ(η(t−)) = μ([0, t))

(2.2)

for some measurable selection G ∈ G continuous in t and Lipschitz in x. Here, (ξ, γμ) ∈ AC([0,∞);
R

n × R
q), and the pair (θ, γμ) is a graph completion of μ.

Notice that we treat the trajectories of (1.1) as path-valued functions. This means that their
images are curves in R

n, for each time t. We denote such a trajectory by xt(·). When t is a
continuity point of the control measure μ, xt(·) is a singleton (x(t−) = x(t+) = x(t)), while if t is
in Ma, the support of the atomic component of the control measure, μ (i.e., μ({t}) �= 0 ∀t ∈ Ma

and μ({t}) = 0, ∀t ∈ [0,∞) \ Ma), xt(·) is regarded as a set of curves:

xt(·) := {ξ : η(t) → R
n | ξ satisfies (2.1), (2.2)}.

In the light of the adopted solution concept, we will need the following definition.

Definition 2.3. Given a control process (x, μ), we say that x, a robust solution to (1.1) (in the
sense of Definition 2.2), takes all its values in set S if and only if:

• x(t) ∈ S for all t ∈ [0,∞), and
• for each t ∈ Ma, we have that ξt(s) ⊂ S, for all s ∈ η̄(t).

For a given control measure μ and selections f and G of, respectively, F and G, the nonunique-
ness of the trajectory as specified by Definition 2.2 results from the nonuniqueness of the graph
completions of the vector-valued control measure μ defined above and from the fact that the vector
fields associated with the singular dynamics (given by the columns of the selections of G) are not
assumed to be commutative (see [9]).

By using the time reparametrization technique, we can define conventional differential inclusions
associated with the given impulsive differential inclusion. In a first instance, Theorem 2.1 below,
the control measure is fixed and a family of particular conventional differential inclusion, indexed
by the graph completions of the measure, is defined. A more elaborated result that allows for the
measure being a choice variable (a desired feature) is stated afterwards in Theorem 2.2.

Theorem 2.1. Suppose that the multi-functions F and G satisfy:
• F takes closed sets as values and is L × B-measurable,
• G takes closed sets as values and is Borel-measurable.

Fix a measure μ ∈ C∗([0,∞);K) and a initial value x0. Let (θ, γμ) be the graph completion of μ
and η the reparameterization function.

(i) Suppose that x(·) ∈ BV + ([0,∞); Rn) is a robust solution to (1.1) (with respect to μ and x0).
Then, there is a solution, y(·) ∈ AC([0,∞); Rn), to{

ẏ(s) ∈ F (θ(s), y(s))θ̇(s) + G(θ(s), y(s))γ̇μ(s)
y(0) = x0

(2.3)

for which
x(t) = y(η(t)) for all t ∈ (0,∞). (2.4)

Conversely,
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(ii) Suppose that y(·) ∈ AC([0,∞); Rn) is a solution to (2.3). Then, there exists a solution
x(·) ∈ BV +([0,∞); Rn) to (1.1) for which (2.4) is satisfied.

(iii) Take a solution x to (1.1). Let y be a solution to (2.3) such that (2.4) is satisfied. Then,

‖x‖BV ≤ ‖y‖BV .

Proof. The proof is similar to that of a similar result (see Theorem 4.1 of [1]) in which the
control measure is scalar-valued and, therefore, we omit it.

In the sequel, we will denote functions and variables of the extended reparametrized system by ,̃
i.e., we have ˙̃x ∈ F̃ (x̃) where x̃ = col(x0, y) and

F̃ :=
{
col(v0, Fv0 + Gv) : col(v0, v) ∈ V̄

}
,

where V̄ =

{
w ∈ R

q+1 :
q+1∑
k=1

wk = 1

}
. In this context S̃ = [0,∞) × S.

Theorem 2.2. Assume that F and G are Borel measurable.
If (x, μ) is a feasible control process for (1.1), then there exists a trajectory x̃ to⎧⎪⎨

⎪⎩
˙̃x(s) ∈ F̃ (x̃(s))
x0(0) = 0, with x0(s) → ∞ as s → ∞
y(0) = x0.

(2.5)

Conversely, for each trajectory x̃ of (2.5), there exists an admissible control process (x, μ) to (1.1)
for which x(t) = y(η(t)).

Proof. The proof of this result is found in [25].

3. INVARIANCE RESULTS

In this section, we state the invariance results for the class of impulsive control systems considered
in the previous sections.

A setup usually considered for invariance results in the context of conventional dynamic control
systems, involves a closed set S ⊂ R

n and a set-valued map F on the (t, x) space specifying the
dynamics in a differential inclusion form. The system (F, S) is said invariant when at least one
trajectory (weak) or all trajectories (strong) of F initiated in S will remain in this set for all future
times.

By using Definition 2.3, the extension of the concepts of invariance to impulsive control systems
is straightforward and are presented next. In these, we will denote by ((F,G), S), the system
composed by a set S ⊂ R

n and the measure driven differential inclusion specified by the set valued
maps F and G.

Definition 3.1. We say that the system ((F,G), S) is weakly invariant if, ∀x0 ∈ S, there exists
a feasible control process (x(·), μ(·)) to (1.1), with x(0) = x0, such that x(·) takes all its values in
the set S.

Definition 3.2. The system ((F,G), S) is strongly invariant if, ∀x0 ∈ S, all the feasible control
process (x(·), μ(·)) to (1.1) with x(0) = x0 are such that x(·) takes all its values in the set S.

Definition 3.3. The attainable set A(x0;T ) at the time T starting from x0 at time 0 is given by

A(x0;T ) := {x(T ) : (x, μ) is a feasible process of (1.1) with x(0) = x0} .

AUTOMATION AND REMOTE CONTROL Vol. 69 No. 5 2008
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In order to simplify the presentation, we will consider that set-valued maps F and G depend
only on the state variable. The results presented in this section require a set of hypotheses on these
maps, designated by Standing Hypotheses, which we will assume to hold hereafter. In this context,
they are stated as follows:

(H1) For every x ∈ R
n, F (x) and G(x) are convex, compact and non-empty sets.

(H2) The set-valued maps F and G are upper semicontinuous.
(H3) There are constants a and b such that, for every x ∈ R

n,
if v ∈ F (x) then ‖v‖ ≤ a‖x‖ + b, and
if V ∈ G(x), then ‖V ‖ ≤ a‖x‖ + b.

The hypothesis (H3) is known as linear growth condition.
We recall that F is upper semicontinuous at x if, given any ε > 0, there exists δ > 0 such that

‖y − x‖ < δ =⇒ F (y) ⊂ F (x) + εB.

Before stating some equivalent forms to the weak invariance of the system ((F,G), S), a result that
generalizes the one for conventional control problems to the impulsive context, we will introduce the
following technical assumption on the first component of the extended trajectory x̃ of the extended
system,

x0(0) = 0 and lim
s→∞x0(s) = ∞. (3.1)

Notice that this condition just means that the total variation of the control measure does not
become unbounded in any time subinterval. Remark also that this condition is naturally satisfied
if the following property of total variation measure μ̄ of the control measure μ holds:

∀T > 0, ∀t ≥ 0, μ̄([t, t + T ]) < ∞ and lim
t→∞ μ̄([t, t + T ]) = 0.

Proposition 3.1. The system (F̃ , S̃) is weakly invariant if and only if the system ((F,G), S) is
also weakly invariant.

Proof. [⇒] Suppose that the system (F̃ , S̃) is weakly invariant. Let x0 ∈ S. Then, there exists
a trajectory x̃ = col(x0, y) of F̃ such that x0(0) = 0, y(0) = x0 ∈ S and x̃(s) ∈ S̃, ∀s ≥ 0.
By Theorem 2.2, there exists a process (x, μ) of (F,G) such that x(t) = y(η(t)), ∀t ≥ 0. That
implies that x(t) ∈ S, ∀t ≥ 0. Let {ti} be a sequence of the times supporting the atoms of μ. By
construction of x (see [25]), we have that y(s) ∈ xti(s), for all s ∈ η(ti). Thus, we may conclude
that ((F,G), S) is weakly invariant.
[⇐] Let x0 ∈ S. If ((F,G), S) is weakly invariant, then there exists a feasible process (x, μ) of (1.1)
with x(0) = x0, x(t) ∈ S, ∀t ≥ 0, and, by denoting by Ma the support of the atomic component of
the control measure μ, ∀t ∈ Ma, ∃ξt(·) ∈ xt(·) such that ξt(s) ∈ S, for all s ∈ η̄(t). By Theorem 2.1,
there exists col(x0, y), a solution of (2.5), satisfying

y(s) =

⎧⎪⎨
⎪⎩

x(θ(s)), if s ∈ [0,∞) \ ⋃
t∈Ma

η̄(t)

ξt(s), if s ∈ ⋃
t∈Ma

η̄(t).

Hence, we have x̃(s) ∈ S̃, ∀s ≥ 0 and, therefore, (F̃ , S̃) is weakly invariant.

In order to present the next result, we need the definition of proximal normal cone (see [28] for
more details and properties). Let S ⊂ R

n be a closed set and denote by dS(y) the distance function
from y to S defined by dS(y) := inf

s∈S
{‖y − s‖}.
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Definition 3.4. Let x0 ∈ S. ζ ∈ R
n is a proximal normal vector to S at x0 if and only if ∃α > 0

such that
dS(x0 + αζ) = α‖ζ‖.

The proximal normal cone to S at x0, Np
S(x0), is the set of all proximal normals of S at x0.

Theorem 3.1. Suppose that the condition (3.1) holds. Then,⎧⎨
⎩

∀ x̃ ∈ S̃,∃ (v0, v) ∈ V̄ , ∃ (f,G) ∈ (F (x),G(x)) such that〈(
v0, v0f +

q∑
i=1

vigi

)
, ζ̃

〉
≤ 0, ∀ ζ̃ ∈ Np

S̃
(x̃) (3.2)

if and only if

the system ((F,G), S) is weakly invariant. (3.3)

Proof. The proof of this result follows the structure of the corresponding result for conventional
systems in [28].

From this reference, it can be shown that the following sufficient condition for (3.2) in terms of
the Bouligand tangent cone TB

S̃
(x̃)2 holds

F̃ (x) ∩ coTB
S̃

(x̃) �= ∅, ∀ x̃ ∈ S̃ (3.4)

which, in turn, is implied by

F̃ (x) ∩ TB
S̃

(x̃) �= ∅, ∀ x̃ ∈ S̃. (3.5)

Observe that, since TB
S̃

(x̃) = R × TB
S (x), (3.5) is equivalent to

F̄ (x) ∩ TB
S (x) �= ∅, ∀x ∈ S, (3.6)

where
F̄ :=

{
Fv0 + Gv : col(v0, v) ∈ V̄

}
. (3.7)

It can also be easy concluded that Np

S̃
(x̃) = {0} × Np

S(x) and, therefore, (3.2) is equivalent to

∃ (v0, v) ∈ V̄ , ∃ (f(x), G(x)) ∈ (F (x),G(x)) such that〈
v0f +

q∑
i=1

vigi, ζ

〉
≤ 0, ∀ ζ ∈ Np

S(x), ∀x ∈ S. (3.8)

Clearly, from the definition of weak invariance, it can be easily concluded that (3.3) is equivalent
to

∀x0 ∈ S, ∀ ε > 0, ∃ δ ∈ (0, ε) such that A(x0; δ) ∩ S �= ∅. (3.9)

Therefore, in order to complete the proof, we only need to show that (3.2) implies (3.3) and that
(3.9) implies (3.5).

Now let us start with the first implication. Consider the system (F̄ (x), S), and let x0 ∈ S. From
(3.2), and, obviously (3.8), it follows that

h(x, ζ) ≤ 0, ∀ ζ ∈ Np
S(x),

2 The Bouligand tangent cone to S at x defined as

T B
S (x) :=

{
lim

i→∞
xi − x

λi
: xi

S→ x, λi ↓ 0
}

,

where xi
S→ x means xi ∈ S and xi → x.

AUTOMATION AND REMOTE CONTROL Vol. 69 No. 5 2008
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where h(x, ζ) := min{〈w, ζ〉 : w ∈ F̄}. This allows us to use Theorem 4.2.4 of [28] to find a
trajectory y(·) of F̄ in [0,∞) such that y(0) = x0 and y(s) ∈ S for all s ≥ 0. Now, we only have to
construct a process (x, μ) of (1.1) with x(t) = y(η(t)) for a suitable function η such that x(0) = x0,
x(t) ∈ S, ∀ t ≥ 0, and ξt(s) ∈ S, ∀s ∈ η(t), for any t ∈ Ma, the support of the atomic component
of μ, and for some function ξt(·) ∈ xt(·). This can be done as in Proposition 3.1 and, therefore the
system ((F,G), S) is weakly invariant.

Next, we show that (3.5) follows from (3.9) or, after the remark earlier in this proof, its lower
dimensional equivalent (3.6). First, notice that (3.3) is equivalent to (3.9). So, by Proposition 3.1,
we can conclude that the claim (3.9) holds also to the attainable set for the reparameterized system

ẏ(s) ∈ F (y(s))θ̇(s) + G(y(s))γ̇μ(s).

This allows us to adapt the proof of the similar result for the conventional control problem in [28].
Suppose that (3.9) holds for the reparameterized system and denote its attainable set by Ay(x0, t).
Then, ∀n ∈ N, ∃ δn ∈ (0, 1/n) with Ay(x0, δn) ∩ S �= ∅. Therefore, for every n,

ẏn(s) ∈ F (yn(s))θ̇n(s) + G(yn(s))γ̇n(s) ⊂ {F (yn(s))v0 + G(yn(s))v : (v0, v) ∈ V̄ } = F̄ (yn(s)).

Here, (θn, γn) is a graph completion of the measure μn ∈ C∗([0,∞);K).
The functions yn, n = 1, . . ., have the same Lipschitz constant K, so that

‖yn(δn) − x0‖
δn

≤ K, ∀n.

Thus, subsequence (no relabeling) can be chosen to assert the existence of v ∈ R
n such that

v := lim
n→∞

yn(δn)−x0

δn
. That is, v ∈ TB

S (x0). Then, we need only to show that v ∈ F̄ (x0) in order to
deduce (3.5). We can write

yn(δn) − x0 =
δn∫
0

ẏn(s)ds.

We have that F̄ is upper semi-continuous. Let ε ≥ 0. Then, for n sufficiently large, we have that

yn(δn) − x0 ∈
δn∫
0

{
F̃ (x0) + εB

}
ds.

By dividing by δn and passing to the limit when n → ∞ we obtain

v ∈ F̄ (x0) + εB.

The result follows from the arbitrariness of ε.

Proposition 3.2. The system (F̃ , S̃) is strongly invariant if and only if the system ((F,G), S) is
also strongly invariant.

Proof. [⇒] Let (x, μ) a feasible process for (1.1) such that x(0) ∈ S. Then, by Theorem 2.1,
there exists a trajectory y for F (y)θ̇(s)+G(y)γ̇(s) ⊂ F̄ (y) (the multifunction defined in (3.7)) such
that y(0) = x(0) ∈ S, y(s) = x(θ(s)) for all s ∈ [0,∞) \ ⋃

t∈Ma

η̄(t), and y(s) ∈ xt(s) for all t ∈ Ma,

being Ma the support of the atomic component of μ.
Let x0(s) = θ(s) and notice that x̃ = col(x0, y) is a trajectory for F̃ satisfying ỹ(0) ∈ S̃. Since

(F̃ , S̃) is strongly invariant, we have that y(s) ∈ S for all s ≥ 0. Since, for any t ∈ Ma, y(s) can, at
the interval η̄(t), be taken to be any curve in xt that satisfies (2.1), (2.2), we reach the conclusion
that xt(·) ⊂ S for all t ∈ Ma. Therefore, it follows from x(t) = y(η(t)) that xt(·) ⊂ S for all t ≥ 0,
i.e., ((F,G), S) is strongly invariant.

AUTOMATION AND REMOTE CONTROL Vol. 69 No. 5 2008



796 LOBO PEREIRA et al.

[⇐] Let x̃ be an arbitrary trajectory of F̃ with x̃(0) ∈ S̃. We will show that, for any arbitrary
T > 0, x̃(T ) ∈ S̃.

By Theorem 2.2, an admissible process (x, μ) of (F,G) on [0, T ], with x(0) = y(0) ∈ S can be
constructed.

Let T ∗ := η(T ). By assumption, ((F,G), S) is strongly invariant, and, therefore, xt(·) ⊂ S
for all t ∈ [0, T ]. By construction, we have that y(s) = x(θ(s)) for all s ∈ [0, T ∗] \ ⋃

t∈Ma

η̄(t) and

y(s) ∈ xt(s) for all s ∈ η(t). Then, y(s) ∈ S for all s ∈ [0, T ∗]. But T ∗ ≥ T and this implies that
y(T ) ∈ S. Thus (F̃ , S̃) is strongly invariant, since x̃ is an arbitrary solution of (2.5).

In the next result, that is a generalization of the similar result for conventional dynamic control
systems (see, e.g., [28]), we need the Lipschitz condition for set-valued functions. We say that a
set-valued function Γ : R

n ↪→ R
m is locally Lipschitz if for each x0 ∈ R

n, there exist δ, K > 0 such
that

Γ(x) ⊂ Γ(y) + K‖x − y‖B ∀x, y ∈ x0 + δB.

Theorem 3.2. Suppose that F and G are locally Lipschitz. Then,⎧⎪⎨
⎪⎩

∀ x̃ ∈ S̃, ∀ (v0, v) ∈ V̄ , we have, ∀ ζ̃ ∈ NP
S̃

(x̃)

max
(f,G)∈(F (x),G(x))

〈
ζ̃, v0f +

q∑
i=1

vigi

〉
≤ 0

(3.10)

if and only if

the system ((F,G), S) is strongly invariant. (3.11)

Remark. Following the arguments in [28] it is straightforward to show that alternative equivalent
characterizations of strong invariance are:

(a) F̃ (x) ⊂ TC
S̃

(x̃) ∀x̃ ∈ S̃;3

(b) F̃ (x̃) ⊂ TB
S̃

(x̃) ∀x̃ ∈ S̃;

(c) F̃ (x̃) ⊂ coTB
S̃

(x̃) ∀x̃ ∈ S̃;
(d) ∀x0 ∈ S, ∃ε > 0, such that A(x0; t) ⊂ S ∀t ∈ [0, ε].

Proof. It follows from Theorem 4.3.8 of [28] that (3.10) is a necessary and sufficient condition
for the strong invariance of the system (F̃ , S̃) (as well as conditions (a)–(d) in the above remark).
Then, the conclusion follows immediately from Proposition 3.2.

4. EXAMPLES

In this section we present two examples which illustrate the main features of our invariance
conditions for impulsive control systems.

3 T C
S (x), denotes the Clarke tangent cone to S at x, which is given by:

T C
S (x) := {v ∈ R

n : d◦
S(x; v) ≤ 0},

where d◦
S(x; v) is the generalized directional derivative of dS(·) at x, in the direction v. This is defined by

d◦(x; v) := lim sup
y→x; t↓0

dS(y + tv) − dS(y)

t
.
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4.1. Example 1

Let x = col(x1, x2) ∈ R
2 and consider the system ((F,G), S) defined by

• F (x) = {(|x2| − u − 1
2 , u) : − 1 ≤ u ≤ 1};

• G(x) =
{(

− x1
|x1| , k

)
: k ≥ 0

}
; and

• S = {(x1, x2) : − 2 ≤ x1 ≤ 2}.
In order to write down the invariance conditions for this system, we start by computing the proximal
normal cone of S.

Np
S(x1, x2) =

{ {(
λ x1
|x1| , 0

)
: λ ≥ 0

}
, if x1 = ±2

{(0, 0)}, otherwise.

In order to conclude that inequality (3.8) holds, and, thus, by Theorem 3.1, the weak invariance of
the system, take (v0, v1) = (0, 1) ∈ V̄ . It follows that, for all values of u,

〈
v0

(
|x1| − u − 1

2
, u

)
+ v1

(
− x1

|x1| , k
)

,

(
λ

x1

|x1| , 0
)〉

=
〈(

− x1

|x1| , k
)

,

(
λ

x1

|x1| , 0
)〉

= −λ.

Now, let us examine in detail the case with u = k = 1. In this case, the trajectories are given by
{

x1(t) =
∫ |x2(t)|dt − 3

2 t + A
x2(t) = t + B,

where A, B are arbitrary constants that can be found by initial conditions. Take μ(dt) := δti(t)dt
as the control measure, where δti is the Dirac impulse at t = ti, being {ti : i ∈ N}, the sequence
of times in Ma, the support of the atomic component of the control measure such that either
(i) x1(ti) = −2 and −3

2 ≤ x2(ti) ≤ 3
2 , or (ii) x1(ti) = 2.

Conditions (i) and (ii) above are such that the state trajectory hits the boundary of S in a region
where the non-singular field “points outwards” the set S. At these times, the singular field forces
the trajectory to jump into the interior of S. The paths specifying the jumps at ti are given by

(ξ1(s), ξ2(s)) =

⎧⎨
⎩

(
s − 2 − η(t−i ), s + x2(t−i ) − η(t−i )

)
if x1(t−i ) = −2(

− s + 2 + η(t−i ), s + x2(t−i ) − η(t−i )
)

if x(t−i ) = 2,

where η is the time reparametrization function defined in Section 2. Since η(ti) − η(t−i ) = 1, we
have that ξ1(η(ti)) = sgn(x1(t−i )), for x1(t−i )) = ±2. Figure 1 below shows the non-singular field
in S and a typical trajectory starting at col(−2,−3).
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Fig. 1. The non-singular field in (a) S and (b) a trajectory: the dotted segments represent the “jump paths.”
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4.2. Example 2

Now we consider the invariance characterization of the system ((F,G), S) defined by
• x = col(x1, x2) and S = {x : x2

1 + x2
2 ≤ 9 and x2 ≤ 2},

• F (x) = {Ax}, G(x) = {Bx}, with A =

[
α −2
1 0

]
and B =

[
−β 0

0 −β

]
, where α, β are in R,

with β �= 0.
We will show that (3.8) is satisfied for all x ∈ S and, thus, by Theorem 3.1, the given system is

weakly invariant.
Let us choose α = 2 and β = 1. The computation of the proximal normal cone is straightforward

and yields

Np
S(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

{(0, 0)}, if x ∈ intS{
λζ : ζ1 ≤ −√

5
2 ζ2, ζ2, λ ≥ 0

}
, if x = (−√

5, 2){
λζ : ζ1 ≤

√
5

2 ζ2, ζ1, λ ≥ 0
}

, if x = (
√

5, 2)
{(0, λ) : λ ≥ 0}, if x ∈ {(x1, 2) :

√
5 < x1 <

√
5}

{2λx : λ ≥ 0}, otherwise.

Now we just have to assert that, for each x ∈ S and ζ ∈ NP
S (x), the existence of a feasible

pair (v0, v1), for which h̄(v0, v1; ζ, x) := 〈v0f(x) + v1g(x), ζ〉 ≤ 0. Clearly

h̄(v0, v1; ζ, x)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

= 0, if x ∈ intS, ∀ (v0, v1)
≤ −9

2λζ2, if x = (−√
5, 2), (v0, v1) = (0, 1)

≤ 1−2
√

5
4 λζ2, if x = (

√
5, 2), (v0, v1) = 1

2(1, 1)
= −2λ, if x ∈ {(x1, 2) :

√
5 < x1 <

√
5}, (v0, v1) = (0, 1)

= −2λ‖x‖2
2, if x ∈ ∂S ∩ {(x1, x2) : x2 < 2}, (v0, v1) = (0, 1),

where ∂S is the boundary of S. Thus we have that (3.8) is satisfied for all points in S. Therefore,
by Theorem 3.1 the system ((F,G), S) is weakly invariant so that, for all x0 = col(x01, x02) ∈ S,
we are able to construct a process (x, μ) such that x(0) = x0, x(t) ∈ S, ∀ t ≥ 0 and ∃ ξ ∈ xτ with
ξ(s) ∈ S if μ({τ}) > 0.

In this case, α = 2 and β = 1, the matrix A has complex eigenvalues with positive real part,
and so we have an unstable equilibrium point. Hence the trajectories converge far away from the
origin when t → ∞. Therefore, we need to use the singular vector field to prevent the trajectories
leaving S. This is achieved by taking μ(dt) :=

∑
i∈N

liδt−ti(t) as the control measure, where {ti : i ∈ N}
is a sequence of times supporting the atoms of μ and li is the area of the impulse at time ti. Each ti
is such that x(t−i ) ∈ ∂S. The size of the jump must be chosen adequately for each ti. We will do
this in a way that the trajectory will jump to points in the set {x : x2

1 + x2
2 ≤ 1} ⊂ S. If x(t−i ) is

the initial state, then, for each i, the trajectories of the singular field are given by{
ξ1(t) = x1(t−i ) exp(η(t−i ) − t)
ξ2(t) = x2(t−i ) exp(η(t−i ) − t).

In order to obtain ξ2
1(η(ti)) + ξ2

2(η(ti)) = 1, we need to choose (recall that li = η(ti) − η(t−i ))

li =
ln(x1(t−i )2 + x2(t−i )2)

2
.

Figure 2 shows a trajectory starting in x0 = col(0,−2).
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Fig. 2. The non-singular field in (a) S and (b) a trajectory: the dashed parts represent the “jump paths.”

We can also conclude that the system ((F,G), S) is weakly invariant for other values of α and β.
Actually, if β > 0, we can, for any value of α, construct, in a similar way, a process (x, μ) such that
((F,G), S) is invariant. In particular, in some cases we do not need to activate the singular vector
field. For example, if α = −√

8, the matrix A has a double real negative eigenvalue and, therefore,
the system is clearly invariant. But, if β < 0, we cannot say the same for all α: if α = 2 both the
conventional and the singular systems are unstable and we cannot construct a process (x, μ) such
that the system ((F,G), S) is invariant, for any selection (v0, v1) ∈ V̄ .

5. CONCLUDING REMARKS

In this work, we provided invariance conditions for impulsive control systems governed by mea-
sure driven differential inclusions. The invariance conditions presented here are a natural extension
of ones for control systems with absolutely continuous dynamics which can be found, for example,
in [28]. We also illustrated the application of these conditions with two examples revealing their
essential features for impulsive control systems.

This is a first step in providing invariance for impulsive systems. A direct method that deals
only with the impulsive system, without re-parametrization, is desired. This remains an open area
of research.
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