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Resumo

Esta tese aborda o problema de Moving Path Following (MPF) em que um veículo deverá convergir
e seguir um determinado caminho geométrico desejado que poderá estar a mover-se de acordo uma
especificação em velocidade linear e angular, generalizando desta forma o problema clássico de
seguimento de caminhos estacionários. A dinâmica do erro associado é deduzida para o caso geral
do seguimento de caminhos que se movem num espaço tridimensional, por veículos aéreos não-
tripulados (UAV) de asa fixa. De seguida, diferentes cenários de aplicação para o método MPF
são considerados.

Estuda-se primeiro o problema de seguimento de um e de múltiplos alvos no solo, assumindo
que o UAV voa a altitude constante. Para essa missão, propõe-se um algoritmo de geração de
caminhos juntamente com uma lei de controlo para MPF no espaço bidimensional baseada nos
métodos de Lyapunov. São apresentadas garantias formais de convergência, uma métrica de de-
sempenho e resultados dos ensaios em vôo.

Aborda-se depois o problema da proteção aérea de colunas de veículos terrestres, utilizando
um UAV com uma câmara instalada a bordo cujo campo de visão é inferior ao raio de curvatura
mínimo do UAV. A lei de controlo deduzida para o primeiro cenário é utilizada em conjunto com
uma estratégia de orientação de um caminho geométrico solidário com o centro da coluna de
veículos terrestres, de modo a permitir a um UAV de asa fixa convergir e seguir esse caminho. São
apresentadas as condições sob as quais a estratégia proposta resolve o problema de proteção da
coluna terrestre. A métrica de desempenho proposta, juntamente com os resultados da simulação
numérica, demonstram a eficácia da abordagem adoptada.

Finalmente, é deduzida a nível cinemático uma lei de controlo para o caso geral do problema de
MPF a três dimensões, tendo por base a utilização de quaterniões, incluindo-se garantias formais
de convergência. A solução proposta é validada por resultados numéricos e de ensaios em vôo da
sua aplicação à aterragem autónoma num navio em movimento.

Os ensaios em voo realizados no âmbito desta tese tiveram lugar na base aérea da Ota e no
aeródromo de Santa Cruz, em Portugal, utilizando o UAV ANTEX-X02.
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Abstract

This thesis introduces the Moving Path Following (MPF) problem where a vehicle is required to
converge to and follow a desired geometric path, that moves according to some specified linear
and angular velocity, thus generalizing the classical problem of following stationary paths. In
the proposed approach to solve the problem, a MPF error dynamical system for the general case
of time varying paths in a three-dimensional space is derived for a fixed-wing Unmanned Aerial
Vehicle (UAV). Subsequently, distinct application scenarios for the MPF method are considered.

First, the problem of tracking single and multiple targets on the ground using a UAV flying
at constant altitude is addressed. To this end, a path generation algorithm is proposed together
with a two-dimensional Lyapunov based MPF control law. Formal convergence guarantees, a
performance metric and flight tests results are presented.

A second application studied is the problem of convoy protection missions using a fixed-
wing UAV with a camera onboard whose field of view is smaller than the UAV minimum turning
radius. The previously derived two-dimensional MPF control law is used together with a guidance
algorithmic strategy in order to make a fixed-wing UAV converge to and follow a desired geometric
moving path that is attached to the convoy center. Conditions under which the proposed strategy
solves the convoy protection problem are derived. A performance metric and numerical simulation
results demonstrate the effectiveness of the proposed approach.

Finally, a general three-dimensional MPF quaternion-based control law is derived at kinematic
level. Formal convergence proofs are provided. The proposed method is validated through numer-
ical and flight test results, considering the mission scenario of autonomous landing on a moving
vessel.

The flight tests presented here took place in the Ota air base and the Santa Cruz airfield, in
Portugal, using the ANTEX-X02 UAV.
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Chapter 1

Introduction

The past two decades have witnessed an enormous increase in the utilization of unmanned robotic

vehicles by some of the largest armed forces in the world and governmental organizations [1].

Additionally, fostered by the increasing amount of low-cost sensors, airframes and open soft-

ware/hardware frameworks available for the general public (strongly driven by the mobile phones

industry), the use of robotic vehicles has experienced an exponential growth amongst hobbyists,

academic researchers, and industries in the past recent years [1]. In particular, given their po-

tential to perform dull, dirty and dangerous missions, single and/or multiple unmanned aerial

vehicles (UAV) have been employed in different mission scenarios such as target search [2], area

surveillance [3], mapping [4], perimeter patrol [5], convoy protection [6], target tracking [7] or

environmental monitoring [8], just to name a few. Both from a theoretical and from a practical

standpoints, these scenarios raise interesting and challenging control problems such as the devel-

opment of robust control and navigation systems for (optimal) path-planning [9] obstacle and/or

collision avoidance [10], motion control of single and/or multiple vehicles in presence of uncer-

tainty [11], nonlinear dynamics [12], partial noisy state measurements [13], disturbances [14], and

limited or disrupted communications [15]. Trajectory tracking and path following are among the

basic motion control tasks that autonomous aircraft are required to execute, in order to perform

the above mentioned missions.

In trajectory tracking, the vehicle follows a given trajectory with time constraints, and thus,

trajectory tracking controllers require the vehicle to track a time-parametrized trajectory by com-

manding its forward speed and orientation [11]. In classical path following, the vehicle is required

to converge to and follow a given desired geometric path. To this end, in some approaches, the

path following controller computes the distance between the vehicle and the point on the path

closest to the vehicle, together with the error between the vehicle’s orientation and the desired one

(given by the tangent to the path at that point), and tries to reduce both to zero [16]. If there are no

time constraints, the vehicle can move with constant speed and achieve smoother convergence to

the path [11]. The performance of path-following and trajectory-tracking controllers is analyzed

in [17, 18], demonstrating that the task of following a geometric path is less restrictive than the

task of tracking a reference signal. Moreover, since the linear position errors computed by a path

1



2 Introduction

following controller are always less than or equal to those involved in trajectory tracking control,

the actuation signals are less likely to become saturated [19]. Time constraints for path following

methods are used to set a desired speed for a vehicle, acting as a “virtual target” moving along

the path [20]. This method solves the problem of singularities that can arise when the vehicle’s

desired position is defined as the projection of the real vehicle on the desired path. See also the

recent work in [21, 22] on trajectory optimization.

For wheeled mobile vehicles, the first works on path following have been presented in a series

of groundbreaking papers by Samson et al. (see for example [23] and the references therein). Since

then, several types of control-theoretic techniques have been applied to path following problems

for air vehicles [24, 25, 26], underwater and surface maritime vehicles [16, 27, 28, 29] and land

vehicles [30, 31]. Some of the well documented techniques are sliding mode control [32, 33, 34],

model predictive control [35, 36], back stepping control [37, 38], linear quadratic regulator (LQR)

[39, 40], gain scheduling theory [41], adaptive control [42, 43] and dynamic programming [44].

Both in classical trajectory tracking and path following, the reference trajectory/path is fixed

in space. However, there are applications where it is useful to follow a path that is attached to a

reference frame that moves with respect to an inertial coordinate frame. A typical example, which

will be considered in this thesis, is the case of a UAV following a path attached to a vehicle to be

tracked, moving with time varying linear and angular velocities with respect to an inertial frame.

Note that this problem cannot be directly solved by simply recasting it in a classical path following

framework because the target vehicle imposes time constraints and therefore the expected perfor-

mance (regarding path following objectives) could be affected. Moreover, closed-loop system’s

stability and robustness would not be ensured. Motivated by this observation, this research work

presents a solution to a new motion control problem, the Moving Path Following (MPF) problem,

where the vehicle is required to converge to and follow a desired geometric moving path without

a specific absolute temporal specification. The desired geometric path is written with respect to a

(so called) path frame that, in general, can move with time-varying linear and angular velocities

in relation to an inertial frame. This provides a natural extension of the classical path following

methods for stationary paths [16, 24, 25] retaining by design its desirable characteristics, namely

smooth convergence to the moving path and the possibility of doing so at constant speed with

respect to an inertial coordinate frame.

1.1 Moving Path Following

Aiming at formally defining the Moving Path Following problem, consider a local inertial frame

{I} = {−→x ,−→y ,−→z } with the −→x axis pointing North, −→y East and −→z Down (this definition is typi-

cally referred to as the North-East-Down (NED) with x-North, y-East, and z-Down). Consider also

a path frame {P} = {−→x P,
−→y P,
−→z P} and let the origin of {P} expressed in {I} be denoted by p0.

Let pd(`)
P =

[
pP

dx
(`) pP

dy
(`) pP

dz
(`)

]T
be a desired planar geometric path parametrized by

`, which for convenience will be assumed to be the path length. Note that for a fixed `≥ 0, pd(`)
P

is a point on the path expressed in the path frame. Additionally, let vd = ṗ0 =
[

vdx vdy vdz

]T
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Figure 1.1: Error space frames, illustrating for the case of an UAV.

and ωd =
[

ωdx
ωdy

ωdz

]T
be the corresponding linear and angular velocities of the path

frame {P}, respectively, expressed in {I}. In practice, the path frame specifies the desired motion

of the path with respect to the inertial frame and a desired geometric path is considered to be a

moving path whenever vd or ωd are different from zero. Furthermore, consider the general case

where vd and ωd can be time varying, i.e., they are explicitly functions of time.

The MPF problem can thus be formulated as follows:

Given a robotic vehicle moving at a given speed V and a desired moving path

Pd =
(

pd(`)
P , p0,vd ,ωd

)
, design a control law that steers and keeps the vehicle on

the desired path Pd .

In this thesis, a solution (and conditions under which this is possible) to the two-dimensional

MPF problem applied to tracking single and multiple targets on the ground and to convoy pro-

tection is presented, considering that the UAV flies at constant altitude. Then, the MPF problem

is solved for the general three-dimensional space with an application to the autonomous landing

of a UAV on a simulated moving vessel. Other possible applications of the MPF method include

air vehicles tracking, thermals soaring [45], gas clouds monitoring (where the time-varying ther-

mal/gas cloud center coordinates may specify the motion of the desired path). The MPF control

laws are derived using Lyapunov methods and formal convergence proofs along with numerical

and/or flight test results are presented.

The following paragraphs discuss the different approaches present in the literature to the mis-

sion scenarios discussed in this thesis.

For single ground target tracking, Lee et al. [46] and Spry et al. [47] describe a controller that

switches between two modes according to the relation between the UAV and the target velocities.

Dobrokhodov et al. [7] propose a vision based target tracking system using a guidance based

algorithm. The control objective is to keep the aircraft within a certain range of the target and
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align the aircraft velocity vector with the perpendicular to the direction of the line that connects

the UAV center of mass with the target (perpendicular to the line of sight vector, so that the UAV

performs a loiter centered at the target). A Lyapunov guidance vector field strategy is proposed in

[24]. A vector field with a stable limit cycle centered at the target position is determined. From

it, a scaled Lyapunov guidance vector is computed and added to the target velocity, if known, to

provide a heading command to the UAV. However, this may lead to an oscillating behaviour when

the target speed or wind speed is close to the UAV speed [48, 49]. Chen et al. [49] propose the

use of a tangent-plus-Lyapunov vector field which includes a switching logic between tangent and

Lyapunov vector fields to make convergence to the standoff circle faster than the method presented

in [24]. More recently, Oh et al. [50] propose a differential geometry approach (depending on the

initial positions and velocity magnitude ratio between the UAV and the target) to compute a desired

tangent direction to a standoff orbit circle around the target position.

MPF is applied to single target tracking by attaching to the target a path to be followed. The

proposed method, by design, eliminates the oscillating behaviour observed in other approaches

when the target speed or wind speed are similar to the UAV speed [48, 49] (provided that the

UAV’s ground speed is higher than the target speed). If the target speed is close to the UAV

speed, the MPF control law behaves similarly to a controller that tracks a particular point on a

path that moves jointly with the target (further details can be found in Section 3.3). When the

ground target moves slower than the UAV, the MPF control law makes the UAV to loiter above

the target. Additionally, in contrast with the methods proposed in [49, 50], the same control law

is used in all operating conditions, disregarding the relative initial position between the UAV and

the target, and their relative speeds. Finally, the MPF method presented in this thesis is not limited

to a standoff circle centered at the target position (unlike most of the proposed methods in the

literature - see for example [48, 24]) and allows the use of any geometric path shape (satisfying

UAV’s physical constraints) attached to the desired target, which may be useful for applications

like the ones presented in [6, 51]. In order to illustrate these features, in the single target tracking

scenario presented in Section 3.3, a fixed wing UAV is required to follow a lemniscate path [52]

centered at the actual target position whose angular velocity is the same as the target, keeping the

UAV altitude and airspeed constants.

The multiple target tracking problem is typically decomposed into two phases: the first phase

establishes the order in which the targets should be visited and subsequently, it uses a strategy of

path generation (or target interception), to successively intercept the targets (by the pre determined

order) until all the targets are visited. Solutions for stationary targets [53, 54] and moving targets

[55, 56, 57] can be found in the literature. For most interception tasks, the motion of the target

is usually unknown in advance. Thus, visual feedback [58] and line-of-sight methods [56], [59]

have been proven as effective approaches. The target interception problem is a classic subject in

the area of missile guidance, where three fundamental guidance strategies [28, 60] can be found:

1) Pure Pursuit Guidance (PP), where the interceptor aligns its velocity with the line that connects

its position with that of the target. This strategy often results in a tail chase [28]; 2) Line of Sight

Guidance (LOS), where the interceptor aligns itself with the line that connects a fixed reference
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point and the target. This strategy is borrowed from surface-to-air missiles control algorithms in

which the target is often illuminated by a beam originated in a ground station [28]; 3) Constant

Bearing (CB), where the interceptor aligns its velocity relative to the target with the line that

connects its position to the target. This method seeks to reduce the line of sight rotation rate

to zero, such that the target is perceived by the interceptor at a constant bearing, and thus the

distance to the target is reduced apparently on a direct collision course [28]. A path generation

algorithm to solve the interception of multiple targets that together with the MPF guidance and

control law behaves similarly to the guidance strategies 2) and 3) described above is presented

in this thesis. In practice, the proposed path generation algorithm makes the vehicle to track a

moving Dubins path [61] (with respect to an inertial frame) composed by a fixed circular segment

and a moving straight line with a fixed initial position and a moving end point, solidary to the

current target position (or to its estimated interception position, assuming it will keep its heading

and velocity constant). This thesis formally addresses the necessary conditions for the moving

path’s geometry and linear and angular velocities with respect to the inertial frame that must be

verified in order to ensure that the MPF problem is well posed, explicitly taking into account the

UAV’s kinematic constraints. Additionally, it is demonstrated how the MPF approach (combined

with the path generation algorithm) provides a general tool that encompasses distinct classical

guidance strategies popular in the missile guidance community. A detailed discussion regarding

the MPF performance using the proposed path generation algorithm is also presented.

Convoy protection missions using Unmanned Aerial Vehicles (UAV) are an active area of re-

search for both civilian and military applications [1]. In order to perform such tasks, the UAVs are

typically equipped with electro-optical sensors with a given resolution and thus, the most suitable

trajectory for the UAV depends (among other things) on the required level of image resolution.

When missions are performed during long periods of time or when it is expected that the UAV

travels long distances, fixed-wing UAVs are typically employed [62]. The work described in [6]

addresses the problem of controlling a group of fixed-wing UAVs to provide convoy protection to

a group of ground vehicles, where the radius of the circular region of interested (which is deter-

mined by the optical sensor’s resolution carried by the UAVs) is smaller than the UAVs minimum

turning radius. For the case of a single UAV and when the ground convoy of vehicles is restricted

to be stationary or moving in straight lines at constant speed, the authors analyse what is the best

UAV path in the sense that it maximizes the longest time that the UAV is inside the convoy circu-

lar region of interest, and provide a lower bound on the convoy speed (that depends on the ratio

between the radius of the convoy circular region of interest and the UAV minimum turning radius)

that guarantees continuous convoy protection at all times (i.e., the UAV will always be inside the

convoy circular region of interest, despite the UAV’s kinematic constraints that are modeled as

Dubins vehicles). Notice, however, that these results only apply for a very restricted convoy tra-

jectory case. For a more general target tracking/convoy protection missions, the typical adopted

strategy reported in the literature is to make the fixed-wing UAV to be at a given standoff dis-

tance from the target/convoy center [7, 24, 49]. In alternative, in [46, 63], lateral and longitudinal

orbits (depending on the convoy speed) are proposed in order to perform convoy protection mis-
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sions. The method chooses the most adequate desired path depending on the speed ratio between

the UAV and the convoy. However, none of these strategies encompasses the case presented in

[6] where the radius of the convoy circular region of interest is smaller than the UAV minimum

turning radius, and often do not take into account the UAV’s kinematic constraints [7].

The problem of convoy protection guaranteeing a continuous time coverage and without the

restrictions on the convoy movements considered in [6] is addressed in this thesis. This problem

is solved using the MPF method, where a fixed-wing UAV moving at constant ground speed is

required to converge to and follow a desired geometric path (contained within the circular region

of interest) that is attached to the target/convoy center. Concretely, the proposed strategy is to

command the desired path’s angular velocity such that the UAV’s resulting trajectory complies

with the UAV’s physical constraints.

In recent years, different methods have been used to address the autonomous landing of UAVs

on moving vehicles [64, 65, 66, 67]. In [64], a low-cost real-time kinematic global positioning

system (RTK-GPS) is used together with a decoupled longitudinal and lateral guidance strategy

using conventional Proportional-Integral-Derivative (PID) and nonlinear controllers respectively.

A similar approach is considered in [65] using a differential GPS system. In [66], a fixed-wing

UAV is required to land on top of a moving car using decoupled linear controllers to achieve

cooperation between the moving car and the UAV. Vision-based systems or a combination of

both vision and guidance systems were also proposed to perform an autonomous landing on a

moving vehicle [68, 69, 70]. For the particular case of ship landing missions, the heave, roll

and yaw motions of a ship can be predicted using artificial neural networks for increased system’s

performance (see [71] and the references therein). The strategy proposed in this thesis is to attach a

desired landing pattern to the moving vessel and make the UAV converge to and track the moving

landing pattern. It was assumed that the vessel was equipped with a RTK-GPS and relayed its

position and velocity in real time to the UAV.

A common approach with UAV control is to assume that the vehicle has an off-the-shelf in-

ner loop controller (autopilot) that accepts references at kinematic level (angular rates and linear

velocities) and generates the UAV control signals necessary to follow those references in the pres-

ence of model uncertainty and external disturbances, like wind [7, 72]. Outer loop control laws

are thus derived using a kinematic model of the vehicle that provide the references to the inner

control loop. The same approach is adopted in this research work.

The results presented in this thesis were published in a series of papers. The concept of follow-

ing a path that moves with time-varying linear velocity with respect to an inertial frame (attached

to a moving reference target) was presented in a preliminary form in [73, 74]. The MPF problem

was formally introduced in [75] for fixed-wing unmanned aircraft vehicles adding an additional

degree of freedom to the moving path, allowing it to also move with time-varying angular ve-

locity with respect to an inertial frame. This additional degree of freedom has been explored to

perform convoy protection missions in [76] and, combined with a new path-generation algorithm,

to address single and multiple targets tracking problems in [77]. In those publications, the pro-

posed MPF method explicitly takes into account the wind estimate (provided by the inner loop
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controller) and it is assumed that the UAV flies at constant altitude and airspeed. Using the same

ideas presented in [73, 74], a virtual target based path-following guidance system for the execution

of coordinated manoeuvres between two marine vehicles using the concept of moving reference

paths was presented in [78]. The proposed method considered a similar error space derivation and

the same desired geometric paths as the ones considered in [73, 74]. The key difference is that

the approach proposed in [78] specifies the vehicle’s desired position along the reference (mov-

ing) path, which allows to solve the singularity that, depending on the desired path geometry,

may arise if the desired path point always corresponds to the closest to the vehicle. This thesis

presents an alternative solution to solve this singularity (allowing the UAV to fly with constant

airspeed), which is a desirable safety feature for the applications considered in this research work.

In particular, this solution contributes to operational safety by preventing a possible stall condi-

tion and avoiding sudden thrust bursts necessary to keep up with the moving path. Despite [75]

considered a three dimensional error space for the MPF method using Euler angles to parametrize

the rotation matrices between reference frames, the derived MPF control law was only applied to

planar paths moving with time-varying linear and angular velocities at constant altitude. In the

general three dimensional space navigation case, the Euler angles representation of the derived er-

ror space involves singularities which should be avoided. In order to address these open issues, a

Lyapunov-based singularity-free nonlinear MPF controller for a fixed-wing UAV moving in three

dimensions, applying it to the problem of autonomous landing on a moving vessel, was presented

in [79].

The concept of following a three dimensional moving path for a quadcopter vehicle is also

addressed in [80]. However, it only considered the case of desired paths moving with constant

linear and angular velocities with respect to the inertial coordinate frame. To the author’s best

knowledge, the general 3D MPF error space, considering the case of desired geometric paths

moving with time-varying linear and angular velocities, is originally proposed in his research

work.

1.2 Thesis contribution

The main contributions of this thesis are the formulation and the proposed solutions of a new mo-

tion control problem, the moving path following (MPF) problem, in which a vehicle is required

to converge to and follow a desired geometric path in a three dimensional space, that moves ac-

cording to some specified linear and angular velocity, thus generalizing the classical problem of

following stationary paths. The MPF method proposed under this research work provides a gen-

eral guidance and control tool that can be used in different applications in the field of robotics.

In particular, it has been employed in several real-world flight tests to fulfil the requirements of

the PITVANT [81] and SEAGULL [82] research projects considering distinct mission scenarios,

namely target tracking, convoy protection and autonomous landing on moving vehicles.

This thesis presents in an integrated form the main results of publications [77, 75, 76, 79].

Following the results presented in this thesis, other researchers have used MPF control laws for
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thermals soaring applications with multiple UAVs [83, 45] and as benchmark to evaluate an alter-

native solution for the single target tracking problem [84].

In summary, the main contributions of the research presented in this thesis are as follows:

1. The derivation of the general 3D MPF error dynamical system, using quaternions to parametrize

the rotation between reference frames;

2. The design of a Lyapunov-based singularity-free nonlinear MPF controller for a fixed-wing

UAV moving in three dimensions at constant airspeed;

3. A new path-generation algorithm that combines with the two-dimensional MPF approach

for multiple (possible moving) targets, encompassing distinct classical guidance strategies;

4. The derivation of the necessary conditions for the moving path’s geometry and linear and

angular velocities with respect to the inertial frame that ensure that the proposed two-

dimensional MPF method is well posed;

5. Application of the MPF method as a solution to some current problems in UAV control,

namely: single and multiple target tracking, convoy aerial protection, and automatic landing

on a moving vehicle. This includes several numerical simulations and flight tests using the

ANTEX-X02 UAV.

1.3 Thesis organization

The thesis is organized as follows:

Chapter 2 formulates the Moving Path Following problem and derives the general three-dimensional

error space that will be used for control design purposes. The position and orientation error

dynamics are derived using the parallel-transport frame concept associated with the path to

be followed.

Chapter 3 particularizes the MPF error space for the problem of tracking a single target on the

ground by a UAV flying at constant altitude, using Euler angles to parametrize the rotation

matrices between reference frames. Then, it describes how the MPF method previously

presented can also be applied to multiple targets tracking problems by proposing a new path-

generation algorithm that, together with the MPF method, encompasses distinct classical

guidance strategies. Formal convergence proofs and flight tests results for the single and

multiple targets tracking scenarios are presented.

Subsequently, a convoy protection strategy employing the same 2D MPF control law is

proposed, considering the case where the onboard camera’s field of view is smaller than the

UAV minimum turning radius. This particular problem is addressed using the MPF degree

of freedom to set the desired path’s angular velocity. A discussion on the desired path’s best

suited geometric shape for the proposed problem is also included. Illustration and validation
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of the proposed strategy is provided through numerical simulations, convergence guarantees

and performance metrics.

Chapter 4 uses a quaternion formulation to parametrize the rotation matrices between reference

frames to derive a singularity-free MPF kinematic control law that enables a fixed-wing

UAV to converge to and follow a given 3D moving path. Formal convergence guarantees

are provided along with the obtained flight test results considering two different mission

scenarios: an autonomous landing on a moving vessel and tracking of a lemniscate path

moving in three dimensions with respect to an inertial frame.

Chapter 5 discusses the results obtained in this thesis and provides a summary of research prob-

lems that deserve further study.

Appendix A presents the hardware architecture and the UAV used in the flight tests conducted to

show the effectiveness of the control methods proposed in this thesis.

Appendix B provides further details regarding the considered reference path’s parametric equa-

tions, which allows to compute the linear and angular displacements between reference

frames, that correspond to the MPF position and orientation error space variables consid-

ered in the control design.

Appendix C contains a detailed description of the path generation details, convergence condi-

tions, performance metrics and the implemented control system architecture for the multiple

targets tracking implementation, presented in Chapter 3.

Appendix D reviews the quaternion convention and the corresponding fundamentals that are used

in this thesis to derive the general three-dimensional error space and control law presented

respectively in chapters 2 and 4.

Appendix E provides a basic introduction to the Lyapunov stability theory used in this thesis for

the formal stability proofs of the MPF control laws.
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Chapter 2

Error space for Moving Path Following

This chapter presents the general MPF kinematic model, which is written with respect to the

parallel-transport frame1, associated to the given reference path.

2.1 Position error kinematics

Let {F} = {−→t ,−→n 1,
−→n 2} be the parallel-transport frame associated to the reference path with its

orthonormal vectors (see Figure 1.1) satisfying the frame equations [85],

d−→t
d`

d−→n 1

d`
d−→n 2

d`


=

 0 k1(`) k2(`)

−k1(`) 0 0

−k2(`) 0 0



−→t
−→n 1
−→n 2

 ,

where parameters k1(`) and k2(`) are related to the path curvature κ and torsion τ through [85, 86],

κ(`) =
√

k1(`)2 + k2(`)2 (2.1)

τ(`) =− d
d`

(
arctan

k2(`)

k1(`)

)
. (2.2)

The {I}, {F} and {P} frames are depicted in Figure 1.1. Additionally, a wind frame {W} =
{−→x W ,−→y W ,−→z W} is considered, located at the vehicle center of mass and with its −→x W -axis along

the direction of the vehicle velocity vector, the −→y W -axis parallel to the −→x −−→y plane, normal to
−→x W , and pointing to the right of an observer that moves in the same direction of the aircraft, and
−→z W -axis orthogonal to the previous two (see Figure 1.1). From this definition, vW

W , the linear

velocity of {W} relative to {I} and expressed in {W}, is given by vW
W =

[
V 0 0

]T
, where

V denotes the vehicle ground speed.

1The parallel-transport frame is used to specify a moving frame that is well defined even when the associated
reference path has vanishing second derivative. Further details can be found in Appendix B and [25, 85].

11
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The vehicle center of mass coordinates are denoted by p =
[

x y z
]T

when expressed in

the inertial frame {I} and by pF =
[

xF yF zF

]T
when expressed in the parallel-transport

frame. A given path point pd(`)
P , parametrized by `, can be expressed in the {I} frame through

pd(`)
I = p0 + RI P pd(`)

P ,

where RI P is the rotation matrix from {P} to {I}. For convenience, a given path point pd(`)
I that

is the closest to the vehicle is denoted by pd . Setting the origin of {F} at the path point pd , it

follows that pF =
[

0 yF zF

]T
.

From the previous definition, the velocity of a given path point parametrized by ` relative to

{I} and expressed in {I} (that will be needed in the sequel) is given by

ṗd(`)
I = ṗ0 + RI P ṗd(`)

P +S (ωd) RI P pd(`)
P ,

where S (.) is a skew-symmetric matrix that satisfies S (a) b = a×b. Since, by definition,

ṗd(`)
P = 0

RI P pd(`)
P = pd(`)

I − p0,

one obtains

ṗd(`)
I = vd +S (ωd)

(
pd(`)

I − p0
)
. (2.3)

The desired angular velocity of the path ωd with respect to the inertial frame {I}, written in

the {F} frame, can be computed through

ω
F

d = RF
I ωd

=
[

ωF
dx

ωF
dy

ωF
dz

]T

where RF
I is the rotation matrix from {I} to {F}. According to the parallel-transport frame

formulas [25], and admitting that the path is also rotating with an angular velocity given by ωF
d ,

the angular velocity of the {F} frame with respect to the inertial frame, written in the {F} frame,

is given by

ω
F

F =
[

ωF
dx
−k2(`) ˙̀+ ωF

dy
k1(`) ˙̀+ ωF

dz

]T
.

The linear velocity of {W} relative to {I} and expressed in {I} satisfies

vI W =
[

ẋ ẏ ż
]
= RI W vW

W ,

where RI W is the rotation matrix from {W} to {I}.
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The position of the UAV in the {I} frame can be written as (Figure 1.1)

p = pd + RI F pF (2.4)

where RI F is the rotation matrix from {F} to {I}. Differentiating (2.4) with respect to time yields

ṗ = ṗd + RI F ṗF + RI F S
(

ω
F

F
)

pF .

Pre-multiplying by RF
I one obtains

RF
I ṗ = RF

I ṗd + ṗF +S
(

ω
F

F
)

pF . (2.5)

The linear velocity RF
I ṗd of a point on the path relative to {I} and expressed in {F} is the

sum of the linear velocity of the point relative to {F} given by vF
F =

[
˙̀ 0 0

]T
, with the

velocity of the parallel-transport frame relative to {I}, both expressed in {F}, i.e.

RF
I ṗd = vF

F + RF
I

(
vd +S (ωd) (pd− p0)︸ ︷︷ ︸

)
, (2.6)

vP

where (pd− p0) is the vector from the origin of {P} to the origin of the {F} frame on the path.

The path may rotate around p0, and thus, vP is the linear velocity of pd , due to path’s angular

velocity. Note that p0 also moves together with the path (ṗ0 = vd), and thus the relative distance

between the center of rotation of the path (p0) and each path point remains the same. The left side

of (2.5) can be rewritten as

RF
I ṗ = RF

W vW
W . (2.7)

Therefore, combining (2.6) with (2.7), equation (2.5) gives the position error kinematics

ṗF = RF
W vW

W −S
(

ω
F

F
)

pF − vF
F − RF

I (vd +S (ωd) (pd− p0)) . (2.8)

2.2 Orientation error kinematics

In the classical path following algorithms, the goal is to drive the error distance pF to zero and ori-

ent the UAV such that its velocity vector vW
W is aligned with the parallel-transport frame tangent

direction−→t . Notice however that since the desired path is now moving with possibly time-varying

linear and angular velocities with respect to the inertial frame (respectively vd and ωd), one must

take into account the additional velocity component of the {F} frame origin that is now present

in the position error kinematics (given by the vector sum vt = vd + vP in the last term of equation

(2.8)). This result imposes a possible non zero steady state velocity component of the origin of the

{F} frame along the normals −→n1 and −→n2 to the path. Thus, the goal of the moving path following

controller is to drive the error distance pF to zero and orient the UAV such that the projection of
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its velocity vector onto the normal −→n1 and −→n2 to the path equals the normal components of the

velocity of the parallel-transport frame origin. Note that by imposing this goal to the kinematic

path-following, the relative motion between the vehicle and the desired moving path occurs along

the tangent −→t to the path and the classical situation of following paths that are fixed in space

[16, 25] is included.

Given that by definition vF
F is always orthogonal to −→n1 and −→n2 and assuming that

‖vt‖ < ‖ vW
W‖ (i.e., the magnitude of the desired moving path velocity is always smaller than

the magnitude of the vehicle’s velocity), the desired steady state value vF
Wd

for the desired dis-

placement between the wind frame {W} and the parallel-transport frame {F} can be computed

from the second and third equations of the kinematic model (2.8), by setting ṗF = pF = 0, yielding

ΠR vF
Wd

= ΠR RF
I (vd +S (ωd) (pd− p0)) , (2.9)

where

ΠR ,

[
0 1 0

0 0 1

]
.

Let βn1 denote the angle between vt and −→n1 and let βn2 denote the angle between vt and −→n2 . Using

the previous definitions and imposing a positive sign on the tangent component (along the path) of

the desired UAV velocity vector, one finally obtains

vF
Wd

= ‖ vW
W‖


ϒ

‖vt‖cos(βn1)

‖ vW
W‖

‖vt‖cos(βn2)

‖ vW
W‖

 (2.10)

with

ϒ =

√
1−
(
‖vt‖cos(βn1)

‖ vW
W‖

)2

−
(
‖vt‖cos(βn2)

‖ vW
W‖

)2

.

Consider now a desired wind frame {Wd}, defined similarly to {W}, with its −→x Wd -axis along the

direction of vF
Wd

. By definition, it follows that

vF
Wd

= RF
Wd

vW
W (2.11)

where RF
Wd

parametrizes the desired displacement between the {W} and {F} frames. Note that

the case where vd = ωd = 0⇒ vt = 0 corresponds to the classical path following case and from

the above computations one obtains vF
Wd

= ‖ vW
W‖
[

1 0 0
]T

where clearly (in this classical

path following case) RF
Wd

= I3.
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Combining (2.9) with (2.11) and differentiating (2.9) with respect to time one obtains

ΠR

(
ṘF

Wd
vW

W + RF
Wd

v̇W
W

)
=ΠR

(
ṘF

I (vd +S (ωd) (pd− p0))

+ RF
I (v̇d +S (ω̇d) (pd− p0)+S (ωd) (ṗd− ṗ0))

)
,

which, using straightforward algebraic manipulations, can be rewritten as

ΠRS
(

ω
F

Wd

)
vF

Wd
=ΠR

(
− RF

Wd
v̇W

W −S
(

ω
F

F
)

RF
I (vd +S (ωd) (pd− p0))

+ RF
I (v̇d +S (ω̇d) (pd− p0)+S (ωd) (ṗd− ṗ0))

)
.

Note that, by definition, the desired relative roll rate velocity between the {Wd} frame and the {F}
frame is equal to zero (i.e., ωF

Wdx
= 0) and thus, the left-hand side of the above result (that will be

needed in the sequel) can be written as

S
(

ω
F

Wd

)
vF

Wd
= ‖ vW

W‖ϒ

[
0 ωF

Wdz
− ωF

Wdy

]T
,

where ωF
Wd

is the desired relative angular velocity between the wind frame {W} and the {F}
frame, written in the {F} frame. Finally, one can use the above result to obtain

ω
F

Wd
=

 0

1
‖ vW

W‖ϒ

[
0 −1

1 0

]
ΠR S

(
ωF

Wd

)
vF

Wd

 ∈ R3.

The relative angular velocity between the wind frame {W} with respect to the {F} frame, and the

desired one, expressed in {W}, is given by

ω
W r

W,F ;Wd
= ω

W
W − ω

W
F − RW

F ω
F

Wd
(2.12)

and it can be shown that

ṘWd
W = RWd

W S
(

ω
W r

W,F ;Wd

)
. (2.13)

In summary, the complete MPF error kinematics is given by equations (2.8) and (2.13). Note that

for fixed paths, that is with vd = 0, ωd = 0, equations (2.8) and (2.13) resume to the classical

path following expressions, which can be found in the works [11, 23, 16]. The goal of the MPF

kinematic controller is to converge pF to zero and RWd
W to the identity matrix I3.
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Chapter 3

2D Moving Path Following control
design

This chapter starts by particularizing the error space defined in Chapter 2 to the case where Euler

angles are used to parametrize the rotation matrices between reference frames. Then, an appli-

cation is made to ground target tracking by a UAV. The control law is derived using Lyapunov

methods, assuming that the UAV flies at constant altitude and airspeed.

3.1 2D error space using Euler angles

For the 2D MPF problem, it follows by definition that xF = zF = ωdx = ωdy = 0, and the goal of

the path following controller is to drive the lateral distance yF to zero and orient the UAV such that

the projection of its velocity vector onto the normal −→n1 to the path equals the normal component

of the velocity of the parallel-transport frame origin given by the vector sum vd + vp (see Figure

1.1 and equation (2.6)). Thus, the relative motion between the vehicle and the desired moving

path occurs along the tangent −→t to the path. Let ψ be the yaw angle, that is, the angle between

the vehicle velocity vector and the North direction. Since the UAV will be flying at constant

altitude, the angular rate ψ̇ is related to the angular velocity of the wind frame with respect to the

inertial frame, expressed in the inertial frame through ω = ψ̇ . Additionally, let ψp be the angle

that parametrizes the rotation matrix from {I} to {P} (thus, by definition ωdz = ψ̇p) and let ψ f be

the yaw angle that parametrizes the rotation matrix from {I} to {F}. The angular displacement

between the wind frame and the parallel-transport frame is ψ̄ =ψ−ψ f . Figure 3.1 shows the error

space for the 2D moving path following. Taking into account the last notation, the UAV kinematic

equations expressed in {I} are given by

ẋ =V cosψ,

ẏ =V sinψ, (3.1)

ψ̇ = ω, with ω ∈ [−ωmax,ωmax]

17
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Figure 3.1: Moving Path Following: Error space frames and relevant variables, illustrating the
case of a UAV.

where ωmax represents the bound on the yaw rate, and rmin =
V

ωmax
is the minimum turning radius of

the vehicle. Similarly, the movement of the origin of the {P} frame that is attached to the desired

path is described by the following kinematic equations in terms of the total speed ||vd || and the

yaw angle ψd

vdx = ||vd || cosψd

vdy = ||vd || sinψd . (3.2)

Therefore, equation (2.8) can be rewritten as[
0

ẏF

]
=

[
V cos ψ̄

V sin ψ̄

]
−

[
˙̀

0

]
− RF

I (ψ f )

([
vdx

vdy

]
+

[
0 −ωdz

ωdz 0

] [
∆x

∆y

])

−

[
− ˙̀(κ(`)yF)−ωdz

yF

0

]
, (3.3)
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where ∆x and ∆y denote the vector coordinates of (pd− p0). For planar moving paths, it is straight-

forward to verify that the relative angular velocity between {W} and {F} is related to the relative

yaw angle rate ˙̄ψ , and therefore one can conclude that (see also equation (2.12))

˙̄ψ = ψ̇−κ(`) ˙̀−ωdz
. (3.4)

The previous result together with (3.3) gives the 2D MPF error kinematic model

˙̀=
V cos ψ̄−

(
vdx−ωdz ∆y

)
cosψ f −

(
vdy +ωdz ∆x

)
sinψ f +ωdz yF

1−κ(`)yF
(3.5)

ẏF =V sin ψ̄ +
(
vdx−ωdz ∆y

)
sinψ f −

(
vdy +ωdz ∆x

)
cosψ f

˙̄ψ = ψ̇−κ(`) ˙̀−ωdz
,

where ψ̇ is the control variable for the kinematic controller. It is assumed that 1−κ(`)yF 6= 0,

which corresponds to the vehicle not being exactly at the distance from the path point pd (the

closest path point to the vehicle - parametrized by `) that corresponds to the inverse of the path’s

curvature at that point. This singularity could be avoided using a “virtual target” to specify the

desired position of the UAV on the path, not necessarily coincident with the projection of the

vehicle on the path (and thus xF would not necessarily be zero). By choosing the speed of the

virtual target along the path ( ˙̀) it is possible to remove the singularity. Further details of this

method can be found in [20, 21]. Section B.3 in Appendix B presents an alternative solution to

compute ˙̀ that can be used to ensure that, at the implementation level, ˙̀ is always finite. The

advantage of using the approach proposed in section B.3 with respect to [20, 21] is that the UAV

can fly at constant airspeed, thus contributing to operational safety by preventing a possible stall

condition and avoiding sudden thrust bursts necessary to keep up with the moving path.

The error space for MPF given by equation (3.5) will be used in the sequel to derive the 2D

MPF control law for planar paths.

3.2 2D Moving Path Following control law

In this section, a Lyapunov based MPF controller is derived and its stability is proven. A simulation

example is then presented to illustrate the MPF method.

Figure 3.1 illustrates a MPF application example where a UAV should follow a planar (hor-

izontal) path moving with linear velocity vd and angular velocity ωd with respect to an inertial

frame, keeping its altitude constant. Considering the kinematic model (3.5), the desired steady

state value ψ̄d for ψ can be computed by setting ẏF = 0 (see also equation (2.9) for the general

three dimensional case), which yields

ψ̄d = arcsin

(
−
(
vdx−ωdz ∆y

)
sinψ f +

(
vdy +ωdz ∆x

)
cosψ f

V

)
(3.6)
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Note that the numerator of the arcsin argument is the sum of the path frame speed ‖vd‖ with

the linear speed ‖vP‖ of the origin of {F} along the normal to the path. In order to ensure that

equation (3.6) is always well defined, one may have to introduce some restrictions on the chosen

path’s geometry or dynamics since it depends on the relation between the path’s linear and angular

velocities and also on the distance between the origin of the path frame and the parallel-transport

frame, given by
√

∆x2 +∆y2. More specifically, from (3.6), it must be ensured that

|ωdz |
√

∆x2 +∆y2 <
V −‖vd‖ sin(ψd−ψ f )

|sin
(

ψ f + arctan
(

∆y
∆x

))
|

and

‖vd‖<V. (3.7)

Notice, for instance, that in the particular case where the path’s angular velocity is equal to zero

(ωdz = 0 and vd 6= 0) it is enough to ensure that V > ‖vd‖. Conversely, for the case when the

path only rotates around the origin of the path frame (ωdz 6= 0 and vd = 0), one must ensure that

the distance between any path point Pd and its center of rotation, i.e.
√

∆x2 +∆y2, will always

be smaller than V
|ωdz |

. These particular cases provide an intuitive interpretation for the conditions

in (3.7). Additionally, a MPF control law should drive the lateral distance yF and heading error

ψ̃ = ψ̄ − ψ̄d to zero (this goal corresponds to drive RWd
W (ψ̃) to I3 as presented in Section 2.2).

Thus, considering equation (3.4), the steady state value for the commanded yaw rate ψ̇ (obtained

by setting ˙̃ψ = 0) is given by

ψ̇ = ˙̄ψd +κ(`) ˙̀+ωdz
. (3.8)

In order to take into account the vehicle kinematic constraints |ω| < ωmax (see equation (3.1)), it

is now straightforward to conclude that condition

| ˙̄ψd +κ(`) ˙̀+ωdz
| ≤ ωmax (3.9)

must also be ensured for the MPF problem to be always well posed. This encompasses the classical

path following constraint where condition

|κ (`)| ≤ ωmax

V

must be verified for the path following problem to be well posed. An illustration example is

presented and discussed at the end of this section (see Figure 3.3) in order to provide a physical

intuition for these results.

In order to avoid situations in which the UAV is required to fly near its stall speed, it is desirable

to keep the vehicle airspeed (denoted by ‖v0‖) constant1. Denoting the velocity of the wind relative

to {I} and expressed in {I} by vI wind , the wind total speed by Wt = ‖ vI wind‖ and the wind direction

1Commercial autopilots usually accept airspeed references, expressed in the vehicle body frame, assuming small
angles of attack and small sideslip angles with respect to the relative wind.
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Figure 3.2: Relationship between the groundspeed vector, the airspeed vector and the wind vector.
Adapted from [87].

by χw (both assumed to be constant throughout the flight), one can relate the airspeed vector v0

and the wind velocity vector vI wind with the UAV’s ground velocity (see Figure 3.2) through [87]

v0 = RI W (ψ) vW
W − vI wind . (3.10)

Taking the squared norm of both sides of (3.10) and solving the resulting quadratic equation for

the total ground speed V one obtains

V =
√
‖v0‖2 +W 2

t (cos2 (ψ−χw)−1)+Wt cos(ψ−χw) .

Considering the previous computations, the derivative of ψ̄d with respect to time, that will be
necessary in the sequel, assuming that the autopilot is able to keep ‖v0‖ constant, is

˙̄ψd =
ρ

V

√√√√1−

(
−(vdx−ωdz ∆y) sinψ f +

(
vdy+ωdz ∆x

)
cosψ f

V

)2

−ψ̇
λ

V 2

√√√√1−

(
−(vdx−ωdz ∆y) sinψ f +

(
vdy+ωdz ∆x

)
cosψ f

V

)2
(3.11)
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where

ρ =
(
−ψ̇ f

(
vdx −ωdz ∆y

)
+ ω̇dz ∆x+ωdz ∆̂x

)
cosψ f +

(
−ψ̇ f

(
vdy +ωdz ∆x

)
+ ω̇dz ∆y+ωdz ∆̂y

)
sinψ f

+ ||vd ||ψ̇d cos
(
ψd−ψ f

)
+‖v̇d‖sin

(
ψd−ψ f

)
λ = V̂

(
−
(
vdx −ωdz ∆y

)
sinψ f +

(
vdy +ωdz ∆x

)
cosψ f )

)
with

∆̂x = ˙̀ cosψ f −ωdz ∆y

∆̂y = ˙̀ sinψ f +ωdz ∆x

V̂ =−Wt sin(ψ−χw)

(
Wt cos(ψ−χw)√

‖v0‖2 +W 2
t (cos2 (ψ−χw)−1)

+1

)
.

Equation (3.11) can be cast in the compact form

˙̄ψd = P− ψ̇ Λ,

with

P =
ρ

V

√
1−
(
−(vdx−ωdz ∆y) sinψ f +(vdy+ωdz ∆x) cosψ f

V

)2

and

Λ =
λ

V 2

√
1−
(
−(vdx−ωdz ∆y) sinψ f +(vdy+ωdz ∆x) cosψ f

V

)2
,

where it can be shown that Λ 6=−1 under the conditions given by equation (3.7).

It is now possible to derive a control law to drive the linear distance yF and heading error

ψ̃ = ψ̄− ψ̄d to zero. To that end, consider the control law

ψ̇ =

(
−g1 ψ̃ +κ (`) ˙̀+ωdz +P−g2 yF

((
(vdx−ωdz ∆y) sinψ f

− (vdy +ωdz ∆x) cosψ f
) 1− cos ψ̃

ψ̃
+V cos ψ̄d

sin ψ̃

ψ̃

))
/(1+Λ) (3.12)

and the Lyapunov function

V1 =
1
2

(
y2

F +
1
g2

ψ̃
2
)
, (3.13)

where g1 and g2 are positive scalars assigning relative weights between position and orientation

errors. The following theorem holds.
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Theorem 1

Consider the MPF problem described by the UAV model (3.1) in closed-loop with the control law

(3.12), subject to (3.7) and (3.9). Then, the closed-loop error signals ψ̃ and yF converge to zero as

t→ ∞. Moreover, for constant ground speed, the origin of the closed-loop error kinematic model

is an exponentially stable equilibrium point.

Proof

Convergence of the closed-loop errors to zero

Convergence of the errors to zero can be proved from standard Lyapunov arguments using the

Lyapunov function (3.13) and the Barbalat lemma [88].

Differentiating V1 with respect to time yields

V̇1 = yF ẏF +
1
g2

ψ̃ ˙̃ψ

= V yF sin ψ̃ cos ψ̄d +V yF cos ψ̃ sin ψ̄d + yF

((
vdx −ωdz ∆y

)
sinψ f −

(
vdy +ωdz ∆x

)
cosψ f

)
+

1
g2

ψ̃
(

˙̄ψ− ˙̄ψd
)
. (3.14)

Since, by definition (cf. equation (3.6)),

V sin ψ̄d +
(
vdx−ωdz ∆y

)
sinψ f −

(
vdy +ωdz ∆x

)
cosψ f = 0

the previous expression is equivalent to

V̇1 =V yF sin ψ̃ cos ψ̄d +
1
g2

ψ̃
(
ψ̇ (1+Λ)−κ (`) ˙̀−ωdz−P

)
+ yF

((
vdx−ωdz ∆y

)
sinψ f −

(
vdy +ωdz ∆x

)
cosψ f

)
(1− cos ψ̃) .

The control law (3.12) with g1, g2 > 0 makes

V̇1 = −g1

g2
ψ̃

2 6 0. (3.15)

Given the definition of V1 and the fact that V̇1 6 0, the errors ψ̃ and yF are bounded. Computing

the second derivative of V1 one can easily verify that the boundedness of the state variables implies

that V̇1 is uniformly continuous. Hence, Barbalat’s lemma [88] allows for the conclusion that V̇1

and consequently ψ̃ tend to zero as t→ ∞. Rewritting (3.12) as

˙̃ψ =−g1 ψ̃−g2 yF

((
vdx−ωdz ∆y

)
sinψ f −

(
vdy +ωdz ∆x

)
cosψ f

) 1− cos ψ̃

ψ̃

−g2V yF cos ψ̄d
sin ψ̃

ψ̃
, (3.16)
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differentiating ˙̃ψ with respect to time, and invoking the boundedness of the variables involved, one

can conclude that ˙̃ψ is uniformly continuous. Applying once more Barbalat’s lemma to conclude

that ˙̃ψ tends to zero, leads to the conclusion that also yF tends to zero as t→ ∞.

Local asymptotic stability

Under the proposed control law, the closed-loop error kinematic model is given by

ẏF =V sin(ψ̄d + ψ̃)+
(
vdx−ωdz ∆y

)
sinψ f −

(
vdy +ωdz ∆x

)
cosψ f

˙̃ψ =−g1 ψ̃−g2 yF

((
vdx−ωdz ∆y

)
sinψ f

−
(
vdy +ωdz ∆x

)
cosψ f

) 1− cos ψ̃

ψ̃
−g2V yF cos ψ̄d

sin ψ̃

ψ̃
, (3.17)

which is a nonautonomous2 nonlinear system of the form ė = f (t,e), where e =
[

yF ψ̃

]T
. The

Jacobian matrix A(t) = d f
de (t,e) |e=0 is given by

A(t) =

[
0 V cos ψ̄d

−g2V cos ψ̄d −g1

]
.

One can now propose a positive definite bounded matrix P(t) = PT (t) that satisfies the Lyapunov

equation

P(t)A(t)+AT (t)P(t)+ Ṗ(t) =−Q(t),

where Q(t) = QT (t) > 0 is a bounded matrix. In particular, by setting

P(t) =


g2V 2 cos2 ψ̄d (g2 +1)+g2

1
2g1 g2V 2 cos2 ψ̄d

1
2g2V cos ψ̄d

1
2g2V cos ψ̄d

g2+1
2g1 g2


which is bounded below and above by positive definite bounded matrices for every positive con-

stants g1 and g2 > 0, and considering the following Lyapunov function:

V2 = eT P(t)e,

whose derivative is given by

V̇2 =−eT (Q(t)+ Ṗ(t))e6−K ‖ e ‖2,

with K > 0, it is straightforward to conclude that under the proposed control law, the origin of the

closed-loop error kinematic model (3.17) is an exponentially stable equilibrium point [88]. �

2Note that f (t,e) depends on the possibly time-varying variables vd and ωd .
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Figure 3.3: 2D MPF numerical simulation example: UAV following a moving straight line that is
rotating around a fixed point p0 =

[
0 0

]
with an angular velocity ωdz = 0.025rad/s.

Figure 3.3 illustrates an example where a UAV flying at V = 15m/s follows a moving straight

line path rotating around a fixed point p0 =
[
0 0

]
with an angular velocity ωdz = 0.025rad/s. The

controller gains were set to g1 = 1 and g2 = 0.002. By assigning a larger weight to orientation er-

rors when compared to position errors, a smoother convergence to the reference paths is achieved.

The angle ψp between North and the straight line that connects the origin of {I} with pd(`)
I at

time instant t = 0s is zero and increases as t increases, due to path’s angular velocity ωdz . For

an observer fixed with the path-frame and standing at the origin p0 looking towards the positive

direction of −→x P, the UAV will be moving in a straight line with a decreasing forward speed as

the distance between the origin of the path frame and the parallel-transport frame increases. From

equation (3.6) one can verify that this is due to the fact that as
√

∆x2 +∆y2 increases, the desired

heading deviation between the wind frame and the parallel-transport frame ψ̄d also increases as the

UAV needs to compensate for an increasing normal component of vP with respect to the normal to

the path −→n . Thus, in this particular example, the straight line path length is limited to be smaller

than V
|ωdz |

= 600m (c.f. equations (3.7)) in order to ensure that the MPF is well posed.
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3.3 Application to single and multiple target tracking problems

This section describes how the MPF formulation previously presented can be applied to single and

multiple targets tracking problems.

3.3.1 Single target tracking problem formulation as MPF

Application of the MPF control law to a single ground target tracking scenario is straightforward.

A given path with a pre-defined geometry can be attached to the desired target (moving together

with it - with possibly time varying linear and angular velocities) and the control law given by

equation (3.12) can be used to make the UAV converge to and follow the moving path. To illustrate

this application, Figure 3.4 shows a numerical simulation where a UAV flying at 20m/s airspeed

is required to track a target by following a 300m width lemniscate path3 that is moving together

with the target, keeping the line that connects the two foci always perpendicular to ψd (thus ψ̇p =

ψ̇d). The wind velocity Wt is set to 10m/s (blowing from South) between 80 and 150 seconds

(simulation time) and is set to zero otherwise. The target was moving with time-varying linear and

angular velocities according to

(ptx , pty , ψt , ‖vt‖)|t=0 =(0m, 0m, 0, 4m/s)

‖v̇t‖=0.2sin(0.07 t)m/s2

ψ̇t =0.02cos(0.03 t) rad/s (3.18)

where vt corresponds to the target velocity, ψt is the target heading, and t is the simulation time. In

order to attach the desired path to the target, the path frame is set with p0|t=0 =
[

ptx pty

]
|t=0,

vd = vt and ψd = ψt .

The controller parameters used are listed in Table 3.1.

Table 3.1: Single target tracking numerical simulation: Controller parameters.

g1 = 0.22 ωdz = ψ̇t

g2 = 0.0002 ω̇dz = ψ̈t =−0.0006sin(0.03 t)

Figure 3.5 demonstrates the performance of the overall control system. At time instants t = 80s

and t = 150s a perturbation on the distance and heading errors due to the imposed sudden change

on the wind velocity is observed. In Section 3.3.2 flight test results for a single target tracking sce-

nario are presented, thus allowing for a comparison between simulation and experimental results.

3For a discussion on the use of a lemniscate instead of another path, please refer to Section 3.4.2
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Figure 3.4: Single target tracking numerical simulation: Aircraft’s trajectory following a target
between t=0s and t=200s.

Figure 3.5: Single target tracking numerical simulation: Position and heading errors.
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3.3.2 Flight test results: Single target tracking

In this experiment, the goal was to make the UAV track a ground vehicle by following a 300m

width lemniscate centered at the target position, keeping the line that connects the two foci always

perpendicular to ψt . The UAV was flying at constant altitude - 200m above the ground - with 20m/s

commanded airspeed. The wind was blowing from south-east with 3m/s average speed and the

controller parameters were set to g1 = 0.22 and g2 = 0.00012. The target trajectory was emulated

using the same parameters as in the numerical simulation previously presented (cf. equations

(3.18)).

Figure 3.6: Single target tracking flight test: Aircraft’s trajectory following a target on the ground
(from t = 0s to t = 250s).

Figure 3.7: Single target tracking flight test: Commanded and actual bank.

The obtained qualitative behaviour of the UAV is similar to the results presented for the nu-

merical simulation. Figure 3.6 shows the overall UAV and target trajectories. The UAV, target and

path positions at sample time instants are also presented. Figure 3.7 shows that the bank command
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Figure 3.8: Single target tracking flight test: Distance and heading errors.

and the bank value are kept within the linear region. There is a non negligible delay between the

commanded bank and its actual value thus decreasing system performance. However, distance and

angular errors plots in Figure 3.8 demonstrate the good performance of the implemented control

system.

3.3.3 Multiple targets tracking problem formulation as MPF

Consider now the problem of assigning a desired path to a vehicle that should visit a set of fixed

targets whose positions and visiting sequence are known. Assuming that the vehicle and the target

are initially at least 2rmin apart, one strategy is to use a Dubins path4 computed without specifying

the course angle at the end point [53]. Figure 3.9 illustrates this strategy for path generation,

given the start position ps = (xs,ys), the initial course angle ψs, the minimum radius rmin and

the end position pe. For simplicity of notation, a curved segment of radius rmin along which the

vehicle executes a clockwise maximum curvature rotational motion is denoted by R. L denotes

a maximum curvature rotation counterclockwise and the segment along which the vehicle travels

straight is denoted by S. To choose from the RS and LS options, it is necessary to compute the

path length for these two cases depicted in Figure 3.9. In particular,

dPi = dSi +dCi rmin (3.19)

4The shortest path that connects two points in the two-dimensional Euclidean plane x− y, considering a constraint
on the curvature of the path and that the vehicle moves at constant speed.
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Figure 3.9: Dubins path: RS or LS.

where index i equals l or r for L or R curved segments respectively, dCi is the corresponding arc

length and dSi is the distance along the straight line S.

As soon as the vehicle arrives at one of the targets, another Dubins path towards the next target

is computed using the current course ψs and again without specifying the course angle at the new

target. This strategy can also be used with moving targets, but in this case the Dubins path that

connects the last visited target and the next one will be changing over time by taking into account

the current target position, heading and speed. More precisely, the idea is as follows:

• Compute the right and left Dubins path turning circles given the vehicle’s current position

ps and course angle ψs (see Figure 3.9);

• From (3.19) select the curved segment with the minimum path length and set it as the refer-

ence path until a criterion (discussed in the sequel) to decide when to abandon the right or

left turn at the maximum turning rate and start following a moving straight line that connects

the current vehicle position and the target’s position is met; and

• Switch from the current target to the next target when a proximity condition (to be defined)

is satisfied.

As in the fixed targets case, the circular section of the generated path does not move. Consequently,

the chosen circle center ci and the angle ηs (between the line that connects ci to the vehicle’s initial

position, ps, and the −→x axis - see Figure 3.10) do not change over time (ċr = 0 and η̇s = 0). The

proposed criterion is to switch to a straight line when

ηvi ≥

〈2π−ηe +ηs〉 if i = l,

〈2π +ηe−ηs〉 if i = r
(3.20)

where ηe corresponds to the angle between the line that connects ci to the boundary position pb (at

which the straight line should start to be followed) and the −→x axis and ηv is the angular distance
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(a) (b)

Figure 3.10: Dubin’s path relevant parameters for moving targets, illustrating for the right circular
segment case (a), followed by a straight line section (b).

between ηs and the vehicle’s current position, p (see Figure 3.10(a)). In (3.20), 〈η〉, η mod 2π

and mod is the modulus operator that makes η ∈ [0 2π]. In this case, the arc length of the chosen

circular segment dCi will be a function of time because pe, ηe and pb can be time varying. Note that

the straight line segment will have a fixed initial position pb and a moving end point pe solidary

with the current target’s position, which is similar to the MPF example discussed at the end of

Section 3.2.

The angle ψp between this moving straight line and the −→x axis can be computed through

ψp = arctan
(

∆yt
∆xt

)
, where (∆xt ,∆yt) are the coordinates of the vector connecting pb to pe in the

inertial frame {I} (see Figure 3.10 (b)). Its derivative is given by

ψ̇p =
1

1+
(

∆yt
∆xt

)2
∆ẏt ∆xt −∆yt ∆ẋt

∆x2
t

. (3.21)

Recalling the MPF problem formulation and the illustration example discussed in Section 3.2

(see also Figure 3.3), it is now possible to define the moving path Pd to be followed for the

case of the multiple target tracking. For the circular segment, pd(`)
P components correspond to

the circle parametric equations, p0 contains the circle center coordinates and vd = ωd = 0 (thus

corresponding to the classical path following case). For the straight line segment, pd(`)
P is formed

by the straight line parametric equations, p0 = pb, vd = 0 and ωd = ψ̇p. From equation (3.21),

under the assumption that the UAV and the target are initially at least 2rmin apart, it can easily be

shown that if the target’s speed is always smaller than the UAV’s speed (‖vt‖<V ), the conditions

imposed by equations (3.7) and (3.9) always hold (independently from the distance between the

UAV and the target for t > 0) and thus de MPF problem is always well posed.

A rule must also be defined to switch from the current target to the next target. To this end,
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ALGORITHM 1: Returns the path parameters for a single vehicle to visit a group of moving
targets in a given order.

Input: Vehicle start pose (p,ψ), sequenced target’s position st = (t1, t2, . . . , tm) with t j =
(
xt j ,yt j

)
,

and path constraints rmin.
Output: Minimal feasible path parameters (RS or LS).

Initialization: Set j = 1⇒ select first target;

while j 6 m⇒ vehicle hasn’t visited all the targets do
1. (ps,ψs)← (p,ψ);
2. pe← t j;
3. Compute the length of two possible paths (RS and LS) between the vehicle’s current position
ps and pe: {LRS,LLS};
4. Choose the path that has the minimum length:
L← arg min{LRS,LLS};

5. Compute and output chosen path parameters: ci, ηs, ηe, ηv and dCi .

if 〈ηv〉i > dCi ⇒ vehicle has reached end of circular section
6. Set pb = p⇒ Set straight line start position;
while p 6∈Ha⇒vehicle hasn’t reached the end of straight line do
7. Compute and output straight line segment path parameters: pb, ψp, ψ̇p;
end
8. Set desired target as the next target⇒ j← j+1;
9. Return to 1;

else
10. Return to 5;

end
end

consider the line perpendicular to the vector that connects pb to the current target position pe, that

passes through the target position. This line divides the plane in two half-planes, the half-plane

Hb of the points “behind the target” and the half-plane Ha of the points “after the target” (see

Figure 3.10). One approach is to make the vehicle to switch to the next target when it enters the

half-plane Ha. This can be formalized as follows. Let −→n t be the unitary vector

−→n t = (cos ψp, sin ψp)

connecting pb to pe. The vehicle enters Ha when

(p− pe)
T −→n t > 0. (3.22)

Algorithm 1 summarizes the above described strategy for a single vehicle to visit a group of

moving targets in a given order st . Further implementation details are presented in Appendix C.

Figure 3.11 shows a numerical simulation result where a UAV moving at V = 30m/s with mini-

mum turning radius rmin = 200m tracks three targets heading North at constant speed ‖vt‖= 15m/s

in a pre-determined order (from target #1 to target #3) using Algorithm 1 to generate path param-

eters and the MPF control law given by equation (3.12) to generate its turn rate commands. Addi-

tionally, Figure 3.11 presents the optimal trajectory (the one that minimizes the interception time)
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that the autonomous vehicle should have adopted, if it had a priori knowledge of the targets trajec-

tories. Note that, in the proposed algorithm, each subsequent optimal interception point presented

in Figure 3.11 is computed considering that the starting position corresponds to the previous au-

tonomous vehicle true interception coordinates as detailed in Figure 3.12. From this observation,

it can be inferred that performance may be improved if the target’s heading and velocity can be

estimated to then obtain the expected interception position. Algorithm 2 implements this idea. It

uses the same strategy as Algorithm 1 but now the estimated target interception position is used

as a “virtual target” instead of the current target’s actual position (see Figure 3.13). A detailed

description of Algorithm 2 and formal convergence conditions under which the vehicle reaches its

moving target are presented along with a perfomance metric (with respect to the interception time)

in Appendix C.

Figure 3.11: Multiple targets tracking numerical simulation: An autonomous vehicle tracks three
targets heading North at constant speed using Algorithm 1 and the MPF control law given by
equation (3.12).
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Figure 3.12: Multiple targets tracking numerical simulation: Optimal trajectory generation detail.

Figure 3.13: Illustration of a UAV intercepting a moving target, heading towards its current esti-
mated interception position.

3.3.4 Flight test results: Multiple targets tracking

In this case, the UAV flying 400m above the ground was required to track four ground vehicles.

During the flight test, the wind was blowing from south-east with 7m/s average speed and wind
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gusts of about 13m/s. The UAV airspeed reference was set to 23m/s. The controller parameters

for this flight test were set to g1 = 0.15 and g2 = 0.00009.

Figure 3.14 shows the overall vehicle and targets trajectories. Targets #1 and #2 started moving

North (ψt |t=0 = 0rad) while targets #3 and #4 started moving South (ψt |t=0 = πrad). Targets

sequenced order to be visited was predefined as st = [1,2,3,4]. All targets started moving at 3m/s

(‖vt‖|t=0 = 3m/s). Both ‖v̇t‖ and ψ̇t were defined as stochastic signals with a normal distribution,

namely

‖v̇t‖ ∼N (0,0.05)

ψ̇t ∼N (0,0.03).

Distance and angular errors are depicted in Figure 3.15 showing the good performance of the

control strategy in the presence of relatively high communication latency (see Figure 3.18). The

vertical lines indicate the time instants at which each target interception has occurred.

The distances between the UAV and the current target at each time of interception (where

condition (3.22) was met) are presented in Figure 3.17. The interception distances are always

below the UAV’s minimum turning radius, and thus it is assumed that the current targets at the

interception times were always inside the onboard camera’s footprint (typically onboard vision

sensors have footprints wider than 2rmin). The magnitude of the actual interception distance is

mainly due to the delay introduced by the pre-filter used to compute the current target’s expected

position (see Figure C.4 - further details can be found in Appendix C). Figure 3.16 shows that the

Figure 3.14: Multiple targets tracking flight test: Aircraft’s trajectory following multiple targets
on the ground.
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Figure 3.15: Multiple targets tracking flight test: Distance and heading errors. The vertical lines
indicate the time instants at which each target interception has occurred.

Figure 3.16: Multiple targets tracking flight test: Commanded and actual bank.

bank reference sent to the aircraft was saturated for relatively long periods of time, thus decreasing

the system’s performance. This is particularly noticeable at time instant t = 250s. However,

the control system proved to be sufficiently robust, tackling all these situations that were not

completely taken into account during the control design.
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Figure 3.17: Multiple targets tracking flight test: Actual distance between UAV and current target
at time of interception.

Figure 3.18: Multiple targets tracking flight test: Communications latency.
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3.4 Application to convoy protection problems

This section describes how the MPF formulation presented in Section 3.2 can be applied to convoy

protection problems, using the MPF degree of freedom to set the desired path’s angular velocity.

3.4.1 Convoy protection problem formulation

Consider a fixed-wing UAV equipped with an onboard camera that can monitor a disk of radius rc

on the ground irrespectively of the UAV attitude, i.e., assume that the onboard camera is attached

to a gimballed structure and is always looking down, independently of the attitude of the UAV. For

convenience, ground convoys are considered to be a point located at the centroid of the convoys

in the −→x −−→y plane. Similar to [6], it is considered that a successful convoy protection is being

achieved when the centroid of the convoy is visible to the UAV at any time, i.e., if the distance

between the projection of the UAV onto the −→x −−→y plane and the centroid of the convoy is less

than or equal to rc (see Figure 3.19).

Typically, in order to ensure a high level of image resolution, the onboard sensors may have

a narrow field of view which, depending on the flight altitude, may impose an observation disk

radius rc smaller than the minimum turning radius of the UAV rmin. In this case, where rmin > rc,

depending on the convoy trajectory and speed relative to the UAV, it might be possible to fly out

of this circle, and therefore not be able to guarantee continuous convoy protection.

The problem addressed in this section can be formalized as follows:

Consider a convoy that is arbitrarily moving with possibly time-varying linear and

angular velocities and a single fixed-wing UAV with a kinematic constrained model

given by equations (3.1). Derive a guidance algorithm that sets the UAV speed V

and angular velocity ω such that the time that the convoy center remains within the

UAV sensor footprint (that is assumed to be smaller than the UAV minimum turning

radius) is maximized. Furthermore, provide conditions under which the proposed

scheme guarantees continuous convoy protection (i.e., the UAV will always be inside

the convoy circular region of interest).
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Figure 3.19: Convoy protection problem formulation illustration. The convoy center is represented
by the red triangle. Adapted from [6]. The case where the minimum turning radius of the UAV
(rmin) is greater than rc is considered.

3.4.2 Convoy protection using MPF

Notice from the MPF control law (see equation (3.12)) that ˙̄ψd and ˙̀ also depend on the variables

vd and ωd . Thus, intuitively, it is possible to command the desired path linear and angular veloci-

ties (vd and ωd) to ensure that the condition (3.9) always holds and thus the MPF problem is well

posed, for any given path’s curvature κ(`). In other words, it is in principle possible to make the

UAV follow a given desired path geometry (with a given path curvature κ(`)) that would not be

possible using the classical path following methods (where vd = ωd = 0). This degree of freedom

will be explored such that the path movement is chosen to ensure that a UAV running the MPF

control law given by equation (3.12) converges to that path, thus providing convoy protection.

Consider a lemniscate path that is contained within a circle of radius rc as shown in Figure

3.20. The proposed strategy is to make the UAV follow a moving lemniscate path centered at the

target/centroid of convoy position pt (thus, by definition p0 = pt , vd = vt and ψt = ψd), where vt

and ψt are the target/centroid of convoy velocity and heading respectively. Notice however that by

imposing this condition on vd , the path’s angular velocity ωd is still “free” to be chosen and may

be used as a control input.

Under the same assumptions considered in [6], first consider that the convoy moves at a given

constant velocity vd (thus v̇d = 0) and constant heading (thus ψ̇d = 0). Moreover, in order to

provide further insight to the proposed method (that is to command the desired path’s angular

velocity) first consider the case in which the path’s angular velocity is set to zero (ψ̇p = ωd = 0).
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Figure 3.20: Convoy protection using the MPF method: Relevant variables.

Intuitively, as in the case considered in [6], the UAV, due to its kinematic constraints, will not

be able to follow the desired lemniscate path unless a given lower bound on the target speed is

observed, which can be computed as follows.

Considering the above assumptions, condition (3.9) can be rewritten as

∣∣∣∣∣∣∣∣∣∣
κ(u) ˙̀

1−
‖vd‖cos(ψd−ψ f )

V

√
1−
(
‖vd‖sin(ψd−ψ f )

V

)

∣∣∣∣∣∣∣∣∣∣
≤ ωmax

⇔
∣∣∣rc

V

∣∣∣
∣∣∣∣∣∣∣∣∣∣
κ(u) ˙̀

1−
‖vd‖cos(ψd−ψ f )

V

√
1−
(
‖vd‖sin(ψd−ψ f )

V

)

∣∣∣∣∣∣∣∣∣∣
≤ rc

rmin
(3.23)

where (see equation (3.5))

˙̀=V


√√√√1−

((
‖vd‖

V

)2

sin2 (
ψd−ψ f

))
−
‖vd‖cos

(
ψd−ψ f

)
V

 ,
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and the desired lemniscate path curvature κ and tangential angle ψ f are (see Appendix B)

κ (u) =
−3
√

2 cos(〈u〉)
rc
√

3−2cos(2〈u〉)
, (3.24)

ψ f (ψp,u) = 3 arctan(sin(〈u〉))+ψp, (3.25)

with 〈u〉 , u mod 2π and mod is the modulus operator that makes u ∈ [0 2π]. The parameter

u is related to the path length ` through `(u) =
√

2rc
∫ u

0 [3− cos(2u)]−
1
2 du [52]. Note that from

the above definition, a given fixed u parametrizes a point on the desired path expressed in the path

frame.

(a) (b)

Figure 3.21: Minimum feasible turning radius rc/rmin for a UAV to follow a lemniscate path con-
tained within a circle of radius rc, considering: a) vd

V = 0.5 and b) vd
V = 1.

Let the left-hand side of equation (3.23) be designated by f
( vd

V ,u,ψp
)
. From the considered

convoy protection problem formulation, one must ensure that f
( vd

V ,u,ψp
)
6 1. A first observation

is that the maximum of f
( vd

V ,u,ψp
)

is independent of ψd , which means that the target can move

in a straight line in any direction ψd without introducing any additional constraint to the problem.

An analytic solution of equation (3.23) with respect to vd
V (in order to compute the lower bound

on the target speed) can not be derived. Figure 3.21 illustrates f (0.5,u,ψp) and f (1,u,ψp) for

u ∈
[

0, 2π

]
, ψp ∈

[
−π

2 ,
π

2

]
and vd

V equal to 0.5 and 1, respectively. It is assumed, without

loss of generality (for the case of a convoy moving in straight line), that ψd = 0. This leads to the

following conclusions:

1. For a constant ψp (which follows from the fact that ωd is set to zero), the UAV will increase

u at all the times (because from the path following definition one has u̇ > 0) and thus one

obtains f
( vd

V ,u,ψp
)
> 1 for every constant ψp ∈

[
−π

2 ,
π

2

]
, as it can be seen from Figure

3.21. Therefore, it is not possible for the UAV to follow the desired lemniscate path con-

tained within the circle rc keeping the desired path’s angular velocity ψ̇p = ωd always equal
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to zero, even for the case where vd
V ≈ 1 5;

2. There exists a lower bound on vd
V from which there exists a u ∈

[
0, 2π

]
and a ψp ∈[

−π

2 ,
π

2

]
such that f

( vd
V ,u,ψp

)
6 1. Thus, for every path point parametrized by u, it is

possible to compute a desired path orientation ψp as a function of u, such that from a given

lower bound on the vd
V ratio, ψp (u)→ f

( vd
V ,u,ψp (u)

)
6 1. In practice, one should use the

degree of freedom of the path’s orientation ψp by controlling the angular velocity ψ̇p = ωd

(subject to the condition (3.9)) in order to make the UAV to be able to follow the moving

geometric path.

Figure 3.22: UAV trajectory following a moving lemniscate path with vd
V = 0.9, ψd = 0 and ψp = 0

without imposing any kinematic constraint on the UAV.

Figure 3.22 provides further intuition to the above conclusions. It presents a simulation exam-

ple where a UAV follows a moving lemniscate path centered at the convoy center that is initially

located at the inertial frame origin and starts moving with constant heading and velocity (ψd = 0

and vd
V = 0.9 respectively) towards North. The desired geometric path orientation is kept constant

(ψ̇p = ψp = 0) and no kinematic constraints for the UAV were imposed. For a long period of time

(due to the high ratio vd
V ) the UAV flies almost parallel to the target. However, at a given path

point, the corresponding path curvature makes the UAV to change its bank angle at a very high

rate, making it impossible to comply with its actual kinematic constraints. If one could control

the path’s angular velocity ωd , it would be possible to smooth the obtained trajectory (considering

the same geometric path and vd
V ratio) in order to comply with condition (3.9) for all path points

5Note that for the case where vd
V = 1, one obtains ˙̀= 0 and thus the UAV would follow a given fixed path point and

move in a straight line parallel to the target (see also Figure 3.22 and its description).
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Figure 3.23: UAV trajectory following a moving lemniscate path with vd
V = 0.9, ψd = 0 using

Algorithm 3 to control the desired geometric path angular velocity ψ̇p = ωd and orientation angle
ψp. The obtained trajectory complies with the UAV kinematic constraints.

parametrized by `. This is exactly the idea proposed to solve the considered convoy protection

problem. Algorithm 3 describes how it can be implemented.

Figure 3.23 shows a numerical simulation result considering the same example scenario il-

lustrated in Figure 3.22 (where a UAV follows a moving lemniscate path centered at the target

position with vd
V = 0.9 and ψd = 0) using Algorithm 3 to control the desired geometric path an-

gular velocity ψ̇p = ωd and orientation angle ψp. The convoy circle is depicted in red (with a

radius rc that is equal to the UAV minimum turning radius rmin) and the desired geometric path (at

given sample time instants) is depicted in blue. The resulting UAV’s trajectory (depicted in green)

complies with its kinematic constraints and the UAV always remains inside the convoy circle6.

Under the same assumptions considered above (i.e., target moving with constant heading and

speed) consider now the use of a circular path (where by definition κ(u) = 1
rc

and ψ f (ψp,u) =

u+ψp +
π

2 ) for the proposed strategy. Figure 3.24 shows the minimum feasible turning radius

rc/rmin = f
( vd

V ,u,ψp
)

for a UAV to follow a circular path centered at the target position, where
vd
V = 0.5 and vd

V = 1. Notice that, starting at a given path point (parametrized by u ∈
[

0, 2π

]
),

one will always obtain f
( vd

V ,u,ψp
)
> 1 at a given path point, for every constant ψp ∈

[
−π

2 ,
π

2

]
.

However, unlike the lemniscate path case, it is not possible to control the desired path’s orienta-

tion7 ψp (u) as a function of u in order to ensure that f
( vd

V ,u,ψp (u)
)
6 1. Thus, one can conclude

6An illustration video for this simulation can be found in https://www.youtube.com/watch?v=K7dkK6MwmAY
7Note that the path orientation for the case of a circular path is, in practice, independent of ψp.
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ALGORITHM 3: Returns the desired geometric path’s kinematics.
Input: Vehicle start pose (p,ψ) and velocity V ; target’s position p0, velocity vd and heading ψd ;

desired geometric path parameters κ (`) and ψ f (ψp, `); vehicle and convoy circle constraints
rmin and rc respectively.

Output: Desired path orientation ψp, angular velocity ωd and angular acceleration ω̇d .

Initialization:
1. Set path’s initial orientation: ψp← ψd ⇒ the line that connects the two foci of the desired

lemniscate path is initially set perpendicular to the target’s heading.

while target tracking mission is engaged do
2. Compute the path parameter ` corresponding to the closest to the UAV point of the path (see
equation (B.5));
3. ωlimit ← argmax{ ˙̀(ωd)} subject to conditions (3.7) and (3.9) and ˙̀(ωd)> 0⇒ Compute
path’s desired angular velocity bound that complies with the UAV kinematic constraints;
4. if isempty(ωlimit )⇒ if there is no solution for the desired path’s angular velocity that
complies with the UAV’s kinematic constraints, consider only the geometric constraints given
by equation (3.7)

ωlimit ←
V − vd sin

(
ψd−ψ f

)√
∆x2 +∆y2 |sin

(
ψ f + arctan

(
∆y
∆x

))
|

end
5. Compute ωd using a proportional control law

if u ∈
[

π 2π
]

ωd ← kp
(
ψd−ψp +

π

6

)
subject to |ωd |6 |ωlimit |;

else
ωd ← kp

(
ψd−ψp− π

6

)
subject to |ωd |6 |ωlimit |;

end
6. ω̇d ← dωd

dt ⇒ Compute path’s angular acceleration;
7. ψp←

∫
ωddt⇒ Compute path’s orientation ψp;

8. Update p⇒ Update UAV’s current position using the MPF control law given by equation
(3.12) and the UAV kinematic equations (3.1);
9. Return to 2;

end

that, given the considered kinematic constraints, the circular path is not suitable to be used as a

solution to the here proposed problem.

The use of a lemniscate path has the following desirable features. First, it allows the UAV to

fly over the target/convoy center position periodically, depending on the target’s dynamics and the

desired path commanded velocity ωd . Additionally, a lemniscate has been shown to be an effective

way for an autonomous aircraft to provide surveillance of a slower target [46, 63]. Despite some

of the previously mentioned methods propose a change on the desired path width depending on

the target and UAV speed ratio [46] or the UAV’s kinematic constraints [63], by controlling the

lemniscate orientation angle ψp (see Figure 3.20) the solution presented here allows the UAV to

stay closer to the target/convoy center, considering the same UAV turn rate constraints (see Figures

3.22 and 3.23). Controlling the desired path’s orientation instead of its width also ensures smoother

trajectories of the UAV when a change on the target’s velocity and/or heading occurs. Additionally

the presented solution is, to the author’s best knowledge, the only that encompasses the problem

where the UAV minimum turning radius is larger than the radius of the convoy circular region of
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(a) (b)

Figure 3.24: Minimum feasible turning radius rc/rmin for a UAV to follow a circular path consid-
ering: a) vd

V = 0.5 and b) vd
V = 1.

interest and explicitly takes into account the UAV kinematic constraints. Furthermore, notice that

the desired path’s angular velocity ωd is computed in order to maximize the relative velocity of the

UAV with respect to the desired path (given by ˙̀ - see Step 3 of Algorithm 3), which in practice

minimizes the time between each pass above the convoy center position. Finally, note that in the

case of a circular path centered at the target position (which is the most common approach in the

literature [89]) the UAV’s velocity vector (at a given path point) will be pointing exactly in the

opposite direction of the target/convoy center velocity vector. The use of a lemniscate path and

Step 5 in Algorithm 3 ensures that this situation never occurs8 which, in practice, translates into

less kinematic constraints due to the desired path’s geometry.

The best suited path for the proposed problem is still an open issue. Nonetheless, the presented

problem formulation simplifies this task, since a given path geometry to be studied (with a given

curvature κ (u) and tangential angle ψ f (ψp,u)) can immediately be used by replacing equations

(3.24) and (3.25) by those corresponding to the desired path geometry.

3.4.3 Numerical simulation results

Three main results for the proposed convoy protection algorithm are presented in this section.

First, a lower bound on the convoy/target velocity ratio with respect to the UAV ground speed vd
V

as a function of the ratio between the convoy circle radius and the UAV minimum turning radius
rc

rmin
is compared with the one presented in [6] under the same assumption that the target moves with

constant heading and velocity. Then, it is shown how these restrictions on the convoy movements

can be relaxed using the proposed method through a simulation example that includes time varying

linear and angular convoy velocities. Finally, a performance metric is proposed, considering the

case where no lower bound on the convoy speed is imposed.

8Note that the angular displacement |ψd−ψp| between the target’s heading and the desired geometric path is limited
to π

6 .
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Consider a convoy moving with constant heading and velocity. As in the case considered in [6],

due to the UAV kinematic constraints, the UAV will not be able to follow the desired lemniscate

path within the convoy circle (given that rc < rmin) unless a given lower bound on the target/convoy

speed relative to the UAV (expressed by the vd
V ratio) is achieved.

Figure 3.25: Lower bound for vd
V as a function of rc

rmin
for the proposed method and the considered

benchmark [6].

Due to the complexity of the above derived equations, an analytic solution for equation (3.23)

providing the lower bound for vd
V as a function of rc

rmin
could not be found. In this section, numer-

ical simulations for specific cases are provided. Figure 3.25 illustrates the lower bound results

(depicted in blue) using the following approach:

• For a predefined rc
rmin

, start with an initial guess for vd
V and run Algorithm 3 until the UAV

has flown over the target position n times (in this case n = 4 was used). Stop if at any given

path point, there is no solution for the desired path’s angular velocity that complies with the

UAV’s kinematic constraints⇒ |ωlimit |= empty solution (cf. Step 4 of Algorithm 3);

• Decrease the value of vd
V and repeat the previous step until the stop condition is achieved.

For the case where rc
rmin
> 0.8, these results are similar to the ones presented in [6] (used as a

benchmark - depicted in red). For rc
rmin

< 0.8 it can be seen that the obtained lower bound gradually

increases (with respect to the benchmark) as rc
rmin

decreases. This is mainly related to the chosen

desired path geometry and one can arguably infer that a better performance could be achieved

if a more suited path was used. Moreover, note that the considered benchmark only applies to

convoys moving with a specific constant heading and speed configuration (hence it corresponds to
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the optimal solution) while the computed lower bound for the proposed method always holds for

the case of a convoy moving with constant heading and time-varying speed.

Through a simulation, it is now illustrated how the proposed method can be used to relax the

convoy movements restrictions described in the literature, allowing it to have time-varying linear

and angular velocities. In this simulation, the goal is to make the UAV to track a ground convoy

moving with time-varying linear and angular velocities by following a lemniscate path centered at

the convoy center position while computing the desired path’s angular velocity ωd using Algorithm

3 and the UAV yaw rate ψ̇ using the MPF control law given by equation (3.12), to make the UAV

converge to and track the desired moving path. The UAV speed is set to V = 20m/s, its minimum

turning radius is set to rmin = 200m, and thus ωmax = 0.1rad/s.

Figure 3.26: Convoy protection numerical simulation: UAV trajectory following a convoy center
(the target in the figure) moving with time-varying linear and angular velocities.

The convoy center was moving according to

(ptx , pty , ψt , ‖vt‖)|t=0 =(0m, 0m, 0, 17m/s)

‖v̇t‖=0.01sin(−0.07 t)m/s2

ψ̇t =0.02cos(0.03 t) rad/s (3.26)

where vt corresponds to the target velocity and ψt is the target heading. In order to attach the

desired path to the convoy center the path frame is set with p0|t=0 =
[

ptx pty

]
|t=0, vd = vt and

ψd = ψt . The MPF controller gains were set to g1 = 0.22 and g2 = 0.0002.



48 2D Moving Path Following control design

Figure 3.27: Convoy protection numerical simulation: UAV’s angular velocity.

Figure 3.28: Convoy protection numerical simulation: Desired path angular velocity ωd and ori-
entation angle ψp obtained using Algorithm 3.

Figure 3.26 presents the obtained UAV’s trajectory. The UAV, convoy center, convoy circle

and desired moving path (depicted in blue) positions at sample time instants are also presented.

The UAV always remains inside the convoy circle of interest (depicted in red) and its resulting

trajectory (depicted in green) complies with its kinematic constraints (i.e., |ψ̇|< ωmax - see Figure

3.27).

The desired path angular velocity ωd and orientation angle ψp obtained using Algorithm 3 are

presented in Figure 3.28. The distance and angular errors (respectively yF and ψ̃) of the UAV with

respect to the desired moving path are depicted in Figure 3.29 showing the good performance of

the control strategy.

The lower bound presented in Figure 3.25 was obtained by considering the case of a convoy

moving with constant heading and speed. Despite it has been demonstrated through a simulation
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Figure 3.29: Convoy protection numerical simulation: Position and heading errors.

example that the proposed method allows to relax the constraint on the convoy movements, a

solution to obtain ωlimit that complies with the UAV kinematic restrictions (given by conditions

(3.7) and (3.9)) for the general case of time-varying heading and speed of the convoy is not so

straightforward to compute because it depends on the geometry of the problem and might not

always exist. In that case, ωlimit is computed directly from condition (3.7) considering only the

geometric constraints of the problem (see Step 4 of Algorithm 3). In order to ensure a favourable

relative geometry (i.e., the relative orientation angle between the desired path and the convoy

heading that allows the existence of solution for ωlimit) for the problem, it is desirable to have a

small amplitude of the path orientation ψp with respect to the convoy velocity vector orientation

ψd . Figure 3.21 provides a graphical illustration of this idea. This is implemented by Step 5 of

Algorithm 3 where the path orientation angle ψp relative to the target heading ψd is contained

within the interval [−π

6 ,
π

6 ], using a proportional control law with kp = 0.3.

Additionally, consider a scenario where the target/convoy kinematics does not always comply

with the lower bound for the vd
V ratio presented in Figure 3.25, and thus, continuous convoy pro-

tection cannot be provided using a single UAV even in the case of a convoy moving with constant

heading. Similarly to the strategy proposed in [6] one can consider a multi-UAV coordination

approach together with a timing strategy to schedule the UAVs such that, at any time instant, one

of the UAVs is inside the convoy circle. This, however, is out of the scope of this thesis. Never-

theless, an interesting performance result in a realistic scenario where no bounds on the convoy

movements are considered (except that ‖vd‖ < V ) is to compute the average time that a single

fixed-wing UAV remains inside the convoy circle relative to the total simulation time, denoted by
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Avt .

In order to compute the proposed performance metric 500 Monte Carlo simulations were used,

and each simulation lasted 300 seconds. The target/convoy started moving with random heading

(ψt |t=0) according to a uniform distribution in the interval ]−π,π[. The UAV’s ground speed was

chosen to be V = 20m/s and the UAV’s minimum turning radius was set to rmin = 200m. In each

simulation, the convoy center initial position pt |t=0s was set at the origin of the inertial frame and

the UAV initial position was set at a distance d = rmin from the convoy center with the line of sight

angle between the line that connects the convoy center of mass pt |t=0s to the UAV center of mass

pt=0s and North αLOS = ψt |t=0−π . The UAV initial heading ψ|t=0s was set equal to the convoy

initial heading ψ|t=0s = ψt |t=0. Both v̇t and ψ̇t were defined as stochastic signals with a normal

distribution with a predefined mean and standard deviation, namely

‖v̇t‖ ∼N (0,0.05)

ψ̇t ∼N (0,0.03)

with an output sample time set to 10s (simulation time). Two scenarios were considered for the

proposed performance metrics. On the first one, convoy centre’s initial speed was set to ‖vt‖t=0s =

10m/s and ‖vt‖was limited to the interval [0, 19] [m/s]. For the second scenario, the convoy center

initial speed was set to ‖vt‖t=0s = 16m/s and ‖vt‖ was limited to the interval [15, 19] [m/s]. The

speed bounds imposed on the second scenario took into account the lower bound for the vd/V ratio

presented in Figure 3.25, thus providing a more adequate performance metric for the proposed

strategy. On both scenarios, the rc
rmin

value was set equal to 1.

Figure 3.30: Convoy protection performance metric simulation: UAV and convoy center trajecto-
ries.

The performance metric was computed through

Avt =
1

500

500

∑
i=1

tinsidei(rci)

300
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Figure 3.31: Convoy protection performance metric simulation: Convoy heading and speed.

where rci is the convoy circle radius at simulation i and tinsidei is total time the UAV remains inside

rci during simulation i.

Figure 3.30 shows the obtained results for the convoy and UAV trajectories (for a particular

simulation) using the above defined variables for the first scenario. The corresponding convoy

heading and speed are presented in Figure 3.31 illustrating the realistic scenario considered for the

performance metric.

Table 3.2: Proposed method performance metrics.

Scenario 1 Scenario 2
Avt 0.66 0.88

From the obtained results presented in Table 3.2 for the two considered scenarios, one can

conclude that the proposed strategy provides a versatile solution for the convoy protection problem

with unconstrained movements.
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Chapter 4

3D Moving Path Following control
design

This chapter formally extends the previously presented MPF methods to the case of desired geo-

metric paths that can be moving in a three dimensional space with time-varying linear and angular

velocities with respect to an inertial frame. A quaternion-based MPF control law is derived at

kinematic level for a fixed-wing unmanned aircraft vehicle. Formal convergence guarantees and

validation using numerical and flight test results are presented, demonstrating the effectiveness of

the proposed method.

4.1 3D Moving Path Following control law using quaternions

In this section the MPF control law for the general case of desired geometric paths moving with

time varying linear and angular velocities in a three dimensional space, using quaternions (see

[90, 91]) to parametrize the rotation matrices between reference frames is derived. The use of

quaternions allows for removing the singularities associated to the Euler angles parametrization

used in the implementations presented in Chapter 3. The adopted quaternion convention and

corresponding fundamentals used in this thesis can be found in Appendix D.

Recall from Chapter 2 that vF
Wd and vF

W correspond respectively to the UAV’s desired ve-

locity vector and the actual one, written with respect to the {F} frame. Additionally, recall that

a wind frame {W} = {−→x W ,−→y W ,−→z W} is located at the vehicle center of mass and with its −→x W -

axis along the direction of the vehicle velocity vector, the −→y W -axis parallel to the −→x −−→y plane,

normal to −→x W , and pointing to the right of an observer that moves in the same direction of the

aircraft, and −→z W -axis orthogonal to the previous two (see Figure 1.1). The desired wind frame

{Wd}, was defined similarly to {W}, with its −→x Wd -axis along the direction of vF
Wd

.

Let the unit quaternion representation [90] that corresponds to the rotation matrix RWd
W be

53
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given by q(t),
[

q0 qT
v

]T
, where

q0(t), cos
(

Φ(t)
2

)
qv(t), ev(t)sin

(
Φ(t)

2

)
, (4.1)

and Φ(t) ∈ R and ev(t) =
[

e1(t) e2(t) e3(t)
]T
∈ R3 denote the angle-axis parameters, that

are computed as follows

Φ = arccos
(

vF
W · vF

Wd

‖ vF
W · vF

Wd‖

)
, ev =

vF
W × vF

Wd

‖ vF
W × vF

Wd‖
.

Note from (4.1) that the unit quaternion is subject to the constraint qT q = 1 and that if the angular

displacement (Φ) between {W} and {Wd} (i.e. the attitude error) goes to zero, then so will qv(t).

From the above definitions, one can verify that the angular velocity ωW r
W,F ;Wd

is related to

q̇(t) via the differential equation [90]

q̇ =
1
2

B(q) ω
W r

W,F ;Wd

where

B(q),

[
−qT

v

q0 I3−S(qv)

]
∈ R4×3.

Returning to the MPF problem described in Section 1.1, consider now the following Lyapunov

function

V3 = g1 pT
F pF +(1−q0)

2 +qT
v qv,

where g1 is a positive scalar. Recall that the kinematic controller’s goal is to drive pF to zero, q0

to 1 and qv to zero. Differentiating V3 with respect to time yields

V̇3 = 2g1 pT
F ṗF +qT

v ω
W r

W,F ;Wd

= 2g1 pT
F ṗF +qT

v

(
ω

W
W − ω

W
F − RW

Wd
ω

Wd
Wd

)
,

where ωW
W will be used as the control input for the UAV. Since by definition (see equation (2.8))

pT
F
(
−S
(

ω
F

F
)

pF − vF
F
)
= 0,
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and using the results given by equation (2.9), one can rewrite pT
F ṗF as

pT
F ṗF = pT

F
(

RF
W vW

W − RF
I (vd +S (ωd) (pd− p0))

)
.

= pT
F
(

vF
W − vF

Wd

)
.

From the law of cosines [92] it can be shown that

‖ vF
W − vF

Wd
‖2 = 2V 2 (1− cos(Φ)),

and thus

ẏF =
√

2V 2 (1− cos(Φ))cosσ1

żF =
√

2V 2 (1− cos(Φ))cosσ2,

where σ1 and σ2 are the angles between the vector sum vF
Wd
− vF

W and −→n 1 and −→n 2 respectively.

Finally, setting the UAV angular velocity to

ω
W

W = ω
W

F + RW
Wd

ω
Wd

Wd
−g2 qv−g1


0

1
qv2

zF żF

1
qv3

yF ẏF

 (4.2)

with g2 a positive scalar, one obtains

V̇3 =−g2 qT
v qv.

Positive scalars g1 and g2 assign relative weights between position and orientation errors.

Given the definition of V3 and the fact that V̇36 0, the errors pF and qv are bounded. Computing

the second derivative of V3 one can easily verify that the boundedness of the state variables implies

that V̇3 is uniformly continuous. Hence, Barbalat’s lemma [88] allows for the conclusion that V̇3

and consequently qv tend to zero as t→ ∞.

From the above definitions, rewriting

q̇v =
1
2

[
q0 I3−S(qv)

]−g2 qv−g1


0

1
qv2

zF żF

1
qv3

yF ẏF




=−1
2

 q0 qv3 −qv2

−qv3 q0 qv1

qv2 −qv1 q0





g2 qv1

g2 qv2 +g1
1

qv2
zF żF

g2 qv3 +g1
1

qv3
yF ẏF


 ,

differentiating q̇v with respect to time, and invoking the boundedness of the variables involved,

one can apply once more Barbalat’s lemma to conclude that q̇v tends to zero, which leads to the
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conclusion that also yF and zF tends to zero as t→ ∞.

4.2 Application to following a lemniscate moving in three dimensions

This section presents numerical simulation and flight test results obtained for a UAV following a

desired lemniscate path moving with time varying linear and angular velocities with respect to the

inertial frame.

Let qP be the unit quaternion representation of the path frame orientation {P} with respect

to the inertial frame {I} and let qW be the unit quaternion representation of the wind frame {W}
orientation with respect to the inertial frame. Using the above definitions, one can relate the

quaternion rates with their corresponding angular velocities [90] as

q̇P =
1
2

[
0 ωT

d

]T
⊗qP

q̇W =
1
2

qW ⊗
[

0 ωW
W

T
]T

where ⊗ represents the quaternion product (please refer to Appendix D). For the numerical sim-

ulation, the path frame origin and orientation with respect to the inertial frame were initially set

to

p0|t=0s =
[

0m 0m 0m
]T

qP|t=0s =
[

cos
(

π

8

)
0 sin

(
π

8

)
0
]T

,

the wind frame start position and orientation with respect to the inertial frame were set to

p|t=0s =
[

0m −150m 50m
]T

qW |t=0s =
[

cos
(

π

4

)
0 0 sin

(
π

4

) ]T
,

and the desired path linear and angular velocities were set to

v̇d = 0.1sin(0.05 t)
[

1m/s2 1m/s2 0m/s2
]

vd |t=0s =
[

1m/s 2m/s −0.2m/s
]T

ω̇d =−6×10−6 sin(0.03 t)
[

0rad/s2 10−3 rad/s2 1rad/s2
]T

ωd |t=0s =
[

0rad/s 0rad/s 0rad/s
]T

,

where t corresponds to the simulation time.

Figure 4.1 presents the generated path frame origin trajectory with respect to the inertial frame

(depicted in red), the desired lemniscate path position at sample time instants (depicted in blue)

and the corresponding UAV position at some sample time instants (depicted in yellow). Figures
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Figure 4.1: Lemniscate tracking numerical simulation: Path frame origin trajectory (red), desired
lemniscate path (blue) and UAV position at sample time instants.

Figure 4.2: Lemniscate tracking numerical simulation: UAV trajectory.

Figure 4.3: Lemniscate tracking numerical simulation: UAV trajectory as seen by an observer
rigidly attached to the path frame origin.

4.2 and 4.3 present the obtained UAV trajectory with respect to the inertial frame and as seen by

an observer rigidly attached to the path frame origin, respectively1.

1An illustration video for this simulation can be found in https://youtu.be/WzeQ0ONhoYA
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Figure 4.4: Lemniscate tracking numerical simulation: Position and orientation errors.

Position and orientation errors are presented in Figure 4.4 showing the good performance of

the proposed controller.

Flight tests were conducted where a UAV was required to track a lemniscate path defined on a

plane with five degrees angular displacement with respect to the inertial frame’s horizontal plane,

rotating around the −→z axis with constant angular velocity and no forward speed, i.e.,

p0 =
[

0m 0m 0m
]T

qP|t=0s =
[

0.9990 0.0436 0 0
]T

vd =
[

0m/s 0m/s 0m/s
]T

ωd =
[

0rad/s 0rad/s 0.01rad/s
]T

.

This path kinematics clearly imposes a high control effort for the implemented control system,

with relatively aggressive manoeuvres.

To compute the bank angle command φc from the control signal ωW
W =

[
φ̇ θ̇ ψ̇

]
given

by equation (4.2), the following coordinate turn equation [87] was used

φc = arctan
(

ψ̇ ‖v0‖
9.81

)
. (4.3)

The vertical velocity command vzc was computed from the desired pitch rate θ̇ and current airspeed

‖v0‖, through

vzc = ‖v0‖ sin
(
θ̇ dt
)
, (4.4)

where dt is the actual time delay between consecutive telemetry messages received from the UAV.

In order to ensure flight safety, the UAV airspeed was commanded to be kept constant at
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20m/s, and the UAV bank and vertical velocity reference commands were limited to |φc| < 25o

and |vzc | < 2m/s respectively. At the time of these tests, wind was blowing at about 6m/s South-

west.

Figure 4.5: Lemniscate tracking flight test: UAV’s trajectory folowing a moving lemniscate path,
as seen by an observer attached to the inertial frame origin.

(a) Generic view (b) Top view

Figure 4.6: Lemniscate tracking flight test: UAV’s trajectory following a moving lemniscate path,
as seen by an observer rigidly attached to the path frame origin.

Figure 4.5 presents the UAV’s trajectory following a moving lemniscate path2. The UAV

trajectory as seen by an observer rigidly attached to the path frame origin is presented in Figure

4.6. In this flight test, the reference commands (in particular the vertical velocity command - see

Figure 4.7) became saturated for some periods of time, as a consequence of the desired path’s

aggressive kinematics and the flight safety conditions introduced into the controller’s output. This

issue together with the control architecture used further affected system’s performance as it can be

observed in Figure 4.8. However, one can still observe a very satisfactory mission execution using

the implemented controller as evidenced in Figure 4.6.

2An illustration video for this simulation can be found in https://youtu.be/BqCDPmy1JJQ
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Figure 4.7: Lemniscate tracking flight test: UAV’s reference commands.

Figure 4.8: Lemniscate tracking flight test: UAV’s position and orientation errors.

4.3 Application to autonomous landing on a moving vessel

Flight test results were conducted to illustrate the autonomous landing on a simulated moving

vessel considered to be equipped with a recovery net, by following a landing pattern attached

to the vessel. The same flight safety limits to compute the bank and vertical velocity commands

considered in the previous application were used (see also equations (4.3) and (4.4)) and the vessel

trajectory was set at 500m above ground level moving along the Ota’s air base runway heading.
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The path frame origin is located at the simulated vessel position and its orientation (that spec-

ifies the desired landing pattern) where set respectively to

p0|t=0s =
[

0m 0m 0m
]T

qP =
[

0.1088 −0.0244 0.0027 0.9938
]T

,

which corresponds to a (typical) slope of about 3 degrees with respect to the simulated vessel

position. To emulate the effect of the ocean waves, the simulated movement of the vessel along

the Ota runway with a ground speed of ‖vd‖= 6m/s was perturbed both horizontally and vertically

by considering

vd = 6
[

cosψvd cosθvd m/s sinψvd cosθvd m/s −sinθvd m/s
]T

with [
θvd ψvd

]T
|t=0s =

[
0rad/s −0.2182rad/s

]T
and[

θ̇vd ψ̇vd

]T
=
[
−0.0125 cos(1

3 t)rad/s 0.02 cos(1
4 t)rad/s

]T
,

where t corresponds to the actual flight time.

Figure 4.9: Autonomous landing flight test: UAV and vessel trajectories.

Figure 4.10: Autonomous landing flight test: Simulated vessel trajectory detail.
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Figure 4.11: Autonomous landing flight test: Position errors.

A total of five flight tests were conducted. Figures 4.9 to 4.14 present the main results obtained

for a given flight test, illustrating the good performance of the proposed controller3. The results

show that the UAV converges and tracks the desired landing pattern attached to the moving vessel

(Figures 4.9 and 4.10) with good convergence of position and orientation errors to a small interval

around zero (Figures 4.11 and 4.12). On figures 4.11 to 4.13 one can notice a sudden change at the

flight test time instant t = 47s . This was motivated by a change in the wind conditions as can be

seen in Figure 4.14 which shows the autopilot wind estimator slowly converging to the new value

of the wind after its change. The flight test was performed under temperatures of around 40oC,

which made it very difficult to fine tune the UAV’s engine. Despite the UAV’s air speed command

was kept constant throughout the flight, the warm temperatures affected the available thrust and

consequently the air speed reference command tracking (see Figure 4.15). The effect of the change

of the wind conditions during the flight on the UAV’s ground speed can also be observed in Figure

4.15.

In addition to the fact that the command references were being sent from the ground station at

a relatively small telemetry rate (5Hz), there is also a non-negligible delay between the reference

commands acquired by the autopilot and the UAV’s actual attitude that also affects the control

system’s performance (see Figure 4.13). In order to demonstrate the robustness of the implemented

control system (tackling all these situations that were not completely taken into account during

control design), Figure 4.16 shows the obtained lateral and vertical position errors for the five

flight tests performed. Additionally, for the realistic case of a recovery net with 5×5m length, and

considering a landing to be successful if both |yF | and |zF | are below 2.5m at the end of the desired

landing pattern, one would have obtained four successful landings out of the five performed trials

(in the unsuccessful trial, zF =−3.06m at the end of the landing pattern).

3An illustration video for this simulation can be found in https://youtu.be/50mSVR5n4tQ
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Figure 4.12: Autonomous landing flight test: Orientation errors.

Figure 4.13: Autonomous landing flight test: UAV bank and vertical rate reference commands
sent to the UAV from the ground control station.

Figure 4.14: Autonomous landing flight test: Wind velocity estimate, provided by the autopilot.
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Figure 4.15: Autonomous landing flight test: UAV’s air and ground speed.

Figure 4.16: Autonomous landing flight test: Position errors for the five flight tests performed.



Chapter 5

Conclusions and future work

In this thesis the classical path following problem was extended to the case where the reference

path is moving in the three-dimensional space. The so-called Moving Path Following problem

was formally defined, error spaces were derived, and Moving Path Following kinematic control

laws were proposed allowing an Unmanned Aerial Vehicle equipped with an autopilot to converge

to and follow a path that moves either in the two-dimensional or in the three-dimensional space.

Formal convergence proofs and performance metrics were provided. Several application scenarios,

namely single and multiple ground target tracking, convoy protection, and autonomous landing

on a moving vessel, were implemented and tested using the UAV ANTEX-X02 developed by

the Portuguese Airforce Academy. The results of these tests have shown that the Moving Path

Following method developed constitutes a general guidance and control tool that can successfully

be applied to several problems under research within the robotics community, outperforming the

solutions obtained by other methods. However, many open issues remain. Convergence proofs

assumed that the control system was implemented in continuous time, that no uncertainties were

present, and that the autopilot would be able to control the UAV dynamics such that the vehicle

would follow the kinematic commands provided by the MPF control laws.

For all the performed flight tests, the MPF control law and related path generation methods

were implemented on a laptop at the ground control station. Therefore, system performance can

be further improved when the control law is implemented onboard the aircraft. This allows for

direct access to the sensors data, and thus for higher control rates, which otherwise are limited

by bandwidth constraints. Additionally, all the considered targets’ trajectories on the performed

flight tests were emulated. Despite typical kinematics for the considered targets were implemented

(according to the considered scenario), the problem of acquiring target’s information using passive

sensors needs also to be addressed.

The performance of the MPF method for the presented convoy protection application (refer to

Section 3.4) depends, among other things, on the geometry of the reference path and further work

is necessary to study which is the best reference geometric path shape to choose.

For the case where the UAV flies at constant altitude, the necessary conditions for the moving

path’s geometry and linear and angular velocities with respect to the inertial frame that guarantee

65
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that the MPF problem is always well posed were formally addressed. Similarly to the 2D MPF

case, an important issue to consider in the future is the derivation of the necessary conditions for

the moving path’s geometry and linear and angular velocities with respect to the inertial frame that

must be verified in order to ensure that the general 3D MPF problem is well posed (by taking into

account UAV’s physical constraints).

Another interesting open issue to be explored is the ability to specify the UAV’s desired po-

sition along the reference (moving) path, as considered in [20]. This would allow to expand the

MPF method for the case where multiple vehicles follows the same desired reference moving path

in a three dimensional space. The UAV’s relative position along the path could then be chosen to

maximize the control objective (e.g., ensure that a given target is always on the camera’s field of

view of at least one UAV) and simultaneously guarantee the necessary separation distance (due to

flight safety issues - see for example [93, 67]).

In fact, an attractive and challenging scenario is the deployment of groups of networked UAVs

that can interact autonomously with the environment and other vehicles to perform, in the pres-

ence of uncertainty and adversity, tasks beyond the ability of individual vehicles. This entails the

development of advanced decentralized robust control and navigation systems for (optimal) path-

planning, obstacle avoidance, and motion control of single and multiple vehicles that take into

account the presence of uncertainty, nonlinear dynamics, partial noisy state measurements and

disturbances, faults, and limited and disrupted communications. This thesis shows how single ge-

ometric paths, e.g. circles or straight lines, can be combined to form a more complex time-varying

path shape. The Moving Path Following method can thus be used as the basic control task that

each single autonomous vehicle is required to execute. Envisioned mission scenarios using multi-

ple vehicles are for example perimeter protection/surveillance with respect to a moving reference

area (which for example can be set around a large fleet of ground moving vehicles and may also

depend on their speed or expected threats along their trajectory).



Appendix A

Flight tests architecture

This appendix presents the flight test architecture used to demonstrate the effectiveness of the MPF

method on the different scenarios that were considered during this research work. All the MPF

(a)

(b) (c)

Figure A.1: Flight tests framework: a) Portuguese Air Force research facility at the Ota air base;
b) ANTEX-X02 UAV; c) Ground control station at the Santa Cruz airfield

control laws presented in this thesis were implemented and tested on the ANTEX-X02 platform

(see Figure A.1 (b)). This is one of the platforms built from scratch at the Portuguese Air Force

Academy Research Center (AFA) and available for tests within the PITVANT1 [81] (aiming to

1http://www.emfa.pt/www/po/unidades/subPagina-10D00-019.005.003.004-pitvant
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develop UAV systems and concepts of operation) and SEAGULL2 [82] (aiming to develop effi-

cient solutions to address the challenges of maritime situational knowledge management) research

projects. The main characteristics of ANTEX-X02 are listed in Table A.1.

Table A.1: ANTEX-X02 main features.

Maximum takeoff weight 10kg
Wingspan 2.415m
Payload 4kg

Maximum Speed 100km/h
Autonomy 3h

Figure A.2: Fligth test operation diagram.

The platform is equipped with a Piccolo II3 autopilot that plays the role of an inner-loop

controller that provides the required actuation signals for the UAV’s control surface’s deflections

and the engine power according to the UAV current state that is inferred from the measurements

of the onboard sensors, and the reference signal that is transmitted by the MPF algorithm. The

autopilot relies on a mathematical model parametrized by the aircraft geometric data and has a

built-in wind estimator. Several model and controller parameters can be set by the user [94]. In

this work, the parameters collected from more than 500 hours of flight with the ANTEX-X02 were

used.

The proposed control algorithms for the UAV were implemented on a laptop (Computer 2)

connected to the Piccolo Command Center (running on another computer - Computer 1) via an

ethernet port to receive the sensor data from the Piccolo autopilot and provide the references

2http://www.criticalsoftware.com/pt/seagull
3www.cloudcaptech.com
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to the aircraft as it is illustrated in Figure A.2. Robot Operating System (ROS) software [95]

was used to establish a convenient communication interface between these two computers. The

reference target’s coordinates were generated according to the corresponding expected kinematics

for the considered mission scenario. Computer 2, after receiving the sensors data from the Piccolo,

computes and provides the Piccolo Command Center (Computer 1) the control references that

are then sent to the Piccolo autopilot at a relatively slow telemetry rate (between 2Hz and 5Hz,

depending on the considered application). All flight data was monitored at the base station using

the Piccolo Command Center. High gain directional antennas were used at the ground station (see

Figure A.1 (c)) in order to reduce communications losses.

The field tests reported in this thesis were conducted at the Portuguese Air Force’s UAV test

facility (see Figure A.1 (a)), located in the Ota air base4 and the Santa Cruz airfield, in Portugal.

For the field tests, a few safety measures were introduced. The bank reference sent to the aircraft

was limited to 25◦ and the magnitude of the vertical velocity command was limited to 2m/s. The

telemetry signals from the aircraft were synchronized with the targets data and then fed to the

controller to compute the bank reference to the aircraft. In the event of communications loss, the

Piccolo assumed the last bank and vertical velocity references for a maximum period of 5 seconds.

After that period, the mission would be aborted and the aircraft would be sent to a predefined lost-

communication waypoint.

4http://www.emfa.pt/www/po/unidades/subPagina-10D00-019.001.003.010.003-infraestrutura-de-testes-de-uav
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Appendix B

Controller implementation details

The considered reference paths used in this thesis were straight lines, circumferences, lemniscates

(or a combination of both straight lines and circumferences as described in Appendix C). This

appendix provides further details regarding the considered reference path’s parametric equations,

which allows to compute the parallel-transport frame (at the path point that is closest to the UAV)

and then determine the linear and angular displacements between the parallel-transport frame and

the UAV’s wind frame, that correspond to the MPF position and orientation error space variables

considered in the control design.

B.1 Path reference frames

In order to compute the MPF error space variables considered for the control design, the first goal

is to define a moving coordinate frame (designated in this thesis by the {F} frame) located at the

path point that is closest to the UAV.

Classical textbooks on geometry typically deal with moving frames using the Serret-Frenet

frame concept because of its close association with the path’s curvature and torsion, which are

coordinate-system independent [86]. Unfortunately, the Serret-Frenet frame is undefined when

the desired path is even momentarily straight (has vanishing curvature), and exhibits wild swings

in orientation around points where the osculating plane’s normal has major changes in direction.

An alternative approach (the one that was implemented in this research work), is to use the parallel-

transport frame method [85], which allows to overcome the above mentioned issues. The following

sections borrows heavily from [86] and provides further details regarding the above ideas.

B.1.1 Serret-Frenet frame

Consider a desired path pd(u)P =
[

pP
dx
(u) pP

dy
(u) pP

dz
(u)

]T
, parametrized by u, written in

the path frame {P}. If pd(u)P is a thrice-differentiable path with non-vanishing second derivative,

its tangent −→t , normal −→n and binormal
−→
b vectors at a given point u on the path (that specify the

71
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corresponding Serret-Frenet frame at that path point) are given by

−→t (u) = p′d(u)
P

‖ p′d(u)P ‖

−→n (u) =
−→t ′(u)
‖−→t ′(u)‖

−→
b (u) =−→t (u)×−→n (u).

The Serret-Frenet differential formulas are

d
du


−→t (u)
−→n (u)
−→
b (u)

= ‖ p′d(u)
P ‖

 0 k(u) 0

−k(u) 0 τ(u)

0 −τ(u) 0



−→t (u)
−→n (u)
−→
b (u)

 , (B.1)

where the path curvature κ(u) and torsion τ(u) are given by

κ(u) =
‖ p′d(u)

P × p′′d(u)
P ‖

‖ p′d(u)P ‖3

τ(u) =
‖ p′d(u)

P × p′′d(u)
P · p′′′d(u)

P ‖
‖ p′d(u)P × p′′d(u)P ‖2 .

(· denotes the dot product of two vectors). Since, by definition, the arc length ` of a given desired

path pd(u)P is

`(u) =
∫ u

0
‖ p′d(ζ )

P ‖dζ ,

the desired path is often re-parametrized to obtain a natural parametrization with respect to the path

length ( pd(`)
P = pd(`(u))P ), such that parameter u in equation (B.1) becomes the path length `

and ‖ p′d(u)
P ‖= 1.

Notice that the above formulation of the Serret-Frenet frame becomes ill-defined if the second

derivative of the path becomes zero. Moreover, since the Serret-Frenet frame’s normal vector −→n
always points toward the concave side of the desired path, should the reference path be a sinusoid,

the direction of the normal would be discontinuous, jumping 180o at the path inflection points.

Thus, the principal normal −→n is not suitable to define a reference frame for path following control

purposes.

B.1.2 Parallel-transport frame

The parallel transport frame is based on the observation that, while −→t (u) for a given desired path

parametrization is uniquely defined, it is possible to arbitrarily choose a complementary basis

(−→n 1(u),−→n 2(u)) for the remainder of the frame, as long as it defines a plane whose normal is

parallel to −→t (u) at each path point. One hypothesis is to choose the derivatives (−→n ′1(u),
−→n ′2(u))
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depending only on −→t (u),

d
du


−→t (u)
−→n 1(u)
−→n 2(u)

= ‖ p′d(u)
P ‖

 0 k1(u) k2(u)

−k1(u) 0 0

−k2(u) 0 0



−→t (u)
−→n 1(u)
−→n 2(u)

 , (B.2)

solving this way the problems associated to the Serret-Frenet frame. It can be shown that param-

eters k1(u) and k2(u) in equation (B.2) are related to the path curvature κ(u) and torsion τ(u)

through [85, 86],

κ(u) =
√

k1(u)2 + k2(u)2 (B.3)

τ(u) =− d
du

(
arctan

k2(u)
k1(u)

)
. (B.4)

Similarly to the results in equation (B.1) the desired path can be re-parametrized with respect to

the path length ( pd(`)
P = pd(`(u))P ), such that parameter u in equations (B.2) to (B.4) becomes

the path length ` and ‖ p′d(u)
P ‖= 1.

B.2 Reference path’s parametric equations

Recall from the MPF formulation presented in Section 1.1 that

pd(u)P =
[

pP
dx
(u) pP

dy
(u) pP

dz
(u)

]T
is a desired geometric path parametrized by u and

that pd(u)P is a point on the path expressed in the path frame {P}.
The parametric equations for each of the reference paths considered in this thesis and their

corresponding arc lengths, curvatures and tangent vectors are given in Table B.1 [52, 96],

Table B.1: Reference path’s parametric equations.

Straight line Circle Lemniscate
pP

dx
(u) u r cos(u) wcos(u)

1+sin2(u)

pP
dy
(u) 0 r sin(u) wsin(u)cos(u)

1+sin2(u)
pP

dz
(u) 0 0 0

−→t (u)P
[

1 0 0
] [

−sin(u) cos(u) 0
] [

1−3sin2(u)

(sin2(u)+1)
3/2

3sin(u)−sin3(u)
(sin2(u)+1)3/2 0

]
`(u) u ur

√
2w
∫ u

0 [3− cos(2u)]−
1
2 du

κ(u) 0 1
r

−3
√

2 cos(u)
w
√

3−2cos(2u)

where r is the circle radius, w is the lemniscate width, −→t (u)P is the unitary tangent vector to

the path at the path point parametrized by u, written in the {P} frame. Note from Table B.1 that

the desired reference path is fixed with respect to the path frame {P} and thus its time-varying

position and attitude relative to the inertial frame is specified (respectively) by the linear and

angular velocities of the path frame {P} expressed in {I}.
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B.3 Position errors

According to the notation introduced in this thesis, one can write the relative distance d between

the UAV position p and any path point pd(u)I parametrized by u, written in the inertial frame {I}
as

‖d(u)‖= ‖ pd(u)I − p‖

= ‖p0 + RI P pd(u)P − p‖,

where p0 denotes the origin of the path-frame {P}written in {I} and RI P is the rotation matrix that

allows to change the reference frame of a given vector from {P} to {I}. In practice, the relative

distance d is a function of u. A minimization function can be used1 to find

umin = argmin{‖d (u)‖} (B.5)

and the corresponding path point pd(umin)
P that is closest to the UAV, given an initial guess so-

lution u0. When the MPF controller is firstly engaged (at time instant t = 0s), the initial guess

solution for (B.5) is set to zero (u0 = 0). Then, for each subsequent control loop i (at time instant

ti > 0s), u0 is set to the previous computed solution (u0|ti = umin|ti−1). This allows to obtain a faster

convergence of the minimization algorithm and, more importantly, to obtain continuous solutions

for the umin even when the minimization problem has more than one solution, as it is the case

when the path intersects itself, like the lemniscate path considered in this thesis. Furthermore,

since umin(t) is (under conditions (3.7)) an increasing continuous function of time, the derivative

of ` with respect to time can be computed as (see also Table B.1)

˙̀=
d`
dt

=
d`
du

u̇min. (B.6)

Note that equation (B.6) can be used as an alternative to equation (3.5), ensuring in practice at the

implementation level that ˙̀ is always finite.

Once the parallel-transport frame origin is determined (and therefore −→t (umin)
P is known - see

Table B.1) the remainder of the {F} frame, written in the {P} frame, is computed through

−→nP
2(u) =

−→z P

−→nP
1(u) =

−→nP
2(u)×

−→t (u)P ,

where −→z P is the z axis of the {P} reference frame. From the above results it is straightforward to

1In this thesis, the fminsearch function from the MATLAB optimization toolbox, that is based on the simplex search
method [97], was used.
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write the {F} frame basis in the inertial frame {I} as
−→t
−→n 1
−→n 2

= RI P


−→tP

−→nP
1

−→nP
2

, RF
I, (B.7)

where RI P is the rotation matrix from {P} to {I}.
Finally, the position errors between the UAV’s wind frame {W} and the corresponding parallel-

transport frame {F} are given by

yF =
[
p− pd(u)I ]

·−→n 1

zF =
[
p− pd(u)I ]

·−→n 2.

B.4 Orientation errors

Consider the UAV velocity vector vI W written in the inertial frame {I}= {−→x ,−→y ,−→z } as presented

in Chapter 3. The corresponding wind frame {W}= {−→x W ,−→y W ,−→z W} can be computed as follows.

First, the −→x W vector is aligned with the direction of the UAV’s velocity vector vI W , written in the

{I} frame

−→x W =
vI W

‖ vI W‖
. (B.8)

Then, the−→y W -axis is computed by projecting the−→x W vector onto the−→x −−→y plane and computing

its cross product with the −→z -axis, such that −→y W always points to the right of an observer that

moves in the same direction of the aircraft, i.e.,

−→y W =
−→z × (A−→x W )

‖−→z × (A−→x W )‖
, (B.9)

where

A =

 1 0 0

0 1 0

0 0 0

 .
Finally, the −→z W -axis is orthogonal to the previous two:

−→z W =−→x W ×−→y W . (B.10)

Considering the desired orientation of the UAV’s velocity vector vF
Wd

written in the {F} frame

as given by equation (2.10), one can also obtain the desired wind frame {Wd}= {−→x Wd ,
−→y Wd ,

−→z Wd}
basis vectors by computing first vI Wd

= RF T
I vF

Wd
and then proceed as shown for equations (B.8)

to (B.10).
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Since by definition,
−→x W
−→y W
−→z W

, RW
I and


−→x Wd
−→y Wd
−→z Wd

, RWd
I, (B.11)

equations (B.7) and (B.11) can be combined to obtain the orientation errors considered in Chapter

3 for the 2D MPF controller, given by the Euler angles

[0,0, ψ̄]T = arg
(

RF
W
)

[0,0, ψ̄d ]
T = arg

(
RF

Wd

)
ψ̃ = ψ̄− ψ̄d .

Note from the above equations that a more general parametrization of the orientation error between

{W} and {Wd} (given by ψ̃) would be obtained from arg
(

RWd
W

)
, which is precisely the consid-

ered approach for the 3D MPF controller presented in Chapter 4 using quaternions to parametrize

the rotation matrices between reference frames. Further details regarding the use of quaternions

can be found in Appendix D.



Appendix C

Multiple targets tracking
implementation details

This appendix provides a detailed description of the path generation details, convergence con-

ditions, performance metrics and the control system architecture for the multiple targets tracking

implementation. Formal convergence conditions under which the vehicle reaches its moving target

using Algorithm 2 are presented in the sequel, along with a performance metric result.

C.1 Path generation details

This section presents path generation details for the multiple targets tracking scenario.

Given the start position ps = (xs,ys), the initial course angle ψs, and the minimum radius rmin,

the centres of the right and left turning circles (see Figure 3.9) are given by

cr = ps + rmin

(
cos
(

ψs +
π

2

)
,sin

(
ψs +

π

2

))
cl = ps + rmin

(
cos
(

ψs−
π

2

)
,sin

(
ψs−

π

2

))
.

Let pe = (xe,ye) be the desired final position, and di = (pe− ci) be the vector that connects the

desired end position pe to the turning circle center coordinates ci, where index i equals l or r for L

or R circle’s centres, respectively.

Figure C.1 presents the geometry for both clockwise (R) (solid lines) and counterclockwise

(L) circles (dashed lines), where χi is the angle between by the line connecting pe to ci and the −→x
axis. From Figure C.1, it is easy to verify that

ϑi = arcsin
(

rmin

‖di‖

)
.

The angle δi (where index i equals l or r) that corresponds to the tangent line to the circle

centred at ci, with radius rmin, and passing through pe is given by

77
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Figure C.1: RS (solid line) and LS (dashed line) Dubins path parameters.

δi =

χi−ϑi if i = l,

χi +ϑi if i = r.

From straightforward trigonometric relations one can conclude that the angle ηe, as shown in

Figure C.1, corresponding to the angle between the line that connects the circle centre ci to the
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Figure C.2: Angular distance between angles ηs and ηe for clockwise (cr) and counter clockwise
(cl) circles.

boundary position pb, and the −→x axis, is given by

〈ηe〉i =

δi− π

2 if i = l,

δi +
π

2 if i = r,

where 〈η〉 , η mod 2π and mod is the modulus operator that makes η ∈ [0 2π]. Similarly,

ηs, that corresponds to the angle between the line that connects the circle center ci to the initial

position ps, and the −→x axis can be computed through

〈ηs〉i =

ψs +
π

2 if i = l,

ψs− π

2 if i = r.

Thus, the arc length of the R or L turns is given by

dCi =

〈2π−ηe +ηs〉 if i = l,

〈2π +ηe−ηs〉 if i = r.

The distance dSi along the straight line that connects pb to pe can be computed through (see Figure

C.2)

dSi = di cosϑi.

Finally, the total Dubins path length is

LLS = dl cosϑl +dCl rmin

LRS = dr cosϑr +dCr rmin,
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which can be cast in the compact form:

dPi = dSi +dCi rmin.

C.2 Algorithm 2 detailed implementation and corresponding “vir-
tual target” position estimation

The strategy for a single vehicle to visit a group of moving targets in a given order st as proposed

in Section 3.3.3 is summarized in Algorithm 1. Algorithm 2 implements the idea of using the esti-

mated target interception position as a “virtual target” instead of the current target’s actual position

as in Algorithm 1 (see Figure 3.13). The estimated target interception position for Algorithm 2 is

computed as follows.

ALGORITHM 2: Returns the path parameters for a single vehicle to visit a group of moving
targets in a given order.

Input: Vehicle start pose (p,ψ), sequenced virtual target’s position s∗t = (t∗1 , t
∗
2 , . . . , t

∗
m) with

t∗j =
(

x∗t j
,y∗t j

)
, and path constraints rmin.

Output: Minimal feasible path parameters (RS or LS).

Initialization: Set j = 1⇒ select first target.

while j 6 m⇒ vehicle hasn’t visited all the targets do
1. (ps,ψs)← (p,ψ);
2. pe← t∗j ;
3. Compute the length of two possible paths (RS and LS) between the vehicle’s current position
ps and pe: {LRS,LLS};
4. Choose the path that has the minimum length:
L← arg min{LRS,LLS};

5. Compute and output chosen path parameters: ci, ηs, ηe, ηv and dCi .

if 〈ηv〉i > dCi ⇒ vehicle has reached end of circular section.
6. Set pb = p⇒ Set straight line start position;
while p 6∈Ha⇒vehicle hasn’t reached the end of straight line do
7. Compute and output straight line segment path parameters: pb, ψp, ψ̇p;
end
8. Set desired virtual target as the next target⇒ j← j+1;
9. Return to 1;

else
10. Return to 5;

end
end

Let ‖vt‖ and ψt be the current target speed and course angle respectively. Additionally, let pt0

be its current center of mass coordinates. Thus, assuming that the target will keep moving in a

straight line at constant speed, its position after time ∆tt will be

pt (∆tt) = pt0 +‖vt‖ (cosψt , sinψt) ∆tt . (C.1)
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Consequently, under the same assumption that the target will keep moving in a straight line at

constant speed, one can write the autonomous vehicle’s total path length dPi (see equation (3.19))

as a function of ∆tt as

dPi (∆tt) = dSi (∆tt)+dCi (∆tt) rmin.

Hence, assuming that the vehicle moves with constant speed V , the elapsed time between vehicle’s

initial and final positions, ∆tv, can be obtained through

∆tv =
dPi (∆tt)

V
. (C.2)

Note that if ∆tv = ∆tt = ∆t, it physically means that both vehicle and target take the same time

∆t to reach their final destinations, and thus, they arrive simultaneously to a given “rendezvous”

point at coordinates pe = pt (∆t). Variable ∆t can be computed making ∆tv = ∆tt = ∆t and solving

equation (C.2) for ∆t. If the target moves at constant speed ‖vt‖ and heading ψt , the “virtual

target” coordinates will be kept constant and therefore the actual path travelled by the vehicle will

correspond to the optimal path.

For the general case of targets moving with time varying velocity and/or heading (v̇t 6= 0,

ψ̇t 6= 0) it is proposed to filter first the “instantaneous” virtual target coordinates given by pt (∆t)

- see equation (C.1) - in order to obtain a filtered output of pt (t) that will be sufficiently smooth,

with bounded derivatives, such that it can play the role of a reference target complying with the

MPF requirements. The filter was adopted from [98] and consists of a cascade of two second-order

non-linear filters. The input of the first pre-filter is the output position estimate of the target vehicle

from pt (∆t), and the output of the second pre-filter corresponds to the filtered target interception

position, p∗t (the input of the path generation algorithm). The state space representation of each

filter can be written as

ẋ1 = a1 tanh(x2)

ẋ2 = a2 tanh(k1 u− k1 x1− k2 x2)
(C.3)

where it is assumed that k1, k2, a1,and a2 are scalar positive constants such that k2 a2 > k1 a1. By

linearization, it is straightforward to show that the pre-filter is locally input to state stable. Invoking

LaSalle’s Principle and using the Lyapunov function given by

V4 =
1
2

e′
[

k2
1

k2 a2

k1
2a2

k1
2a2

k2
a2

]
e+

k1 a1

k2 a2
2

∫ e2

0
tanh(y) dy

where e = (e1,e2) , (x1− u, x2), it can be proven that for constant input commands (u̇ = 0), the

equilibrium point x1 = u, x2 = 0 is globally asymptotically stable [98]. Thus, the filtered target

interception position p∗t (t) will converge to the “instantaneous” target interception position pt(t)

if pt is constant, otherwise it will stay close (depending on the rate of pt).

The proposed strategy to intercept multiple targets behaves similarly to the guidance strategies
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LOS and CB described in Chapter 1, depending on the commanded “look ahead distance” for the

virtual target position ‖vt‖∆t (cf. equation (C.2)). In the case that ∆t is set to zero (and thus Algo-

rithm 1 is used) the proposed strategy is identical to the missile line of sight guidance. Otherwise

(when Algorithm 2 is used), the system behaves similarly to the constant bearing guidance law

described in Chapter 1.

C.3 Convergence conditions

The next result concerns the conditions under which the UAV reaches its moving target when nav-

igating using Algorithm 2 together with the MPF control law. Figure 3.13 presents the considered

problem kinematics. It is assumed that the target has limited speed 06 ‖vt‖6Vtmax (where Vtmax

is the assumed target’s maximum speed) and angular velocity |ψ̇t |6 ψ̇tmax (where ψ̇tmax is the as-

sumed target’s maximum angular speed). Considering the general case were the target moves with

bounded time varying linear and angular velocity, the virtual target position p∗t (t) output from the

implemented pre-filter (equation (C.3)) will also move with bounded time varying linear and angu-

lar velocities. These bounds are the same considered for the actual target, namely 06 ‖v∗t ‖6Vtmax

and |ψ̇∗t |6 ψ̇tmax . Thus, the path’s straight line segment that connects the fixed position pb to the

virtual target position p∗t may be moving with a given angular velocity ψ̇p (see equation (3.21)).

From Figure 3.13 it is straightforward to verify that the desired heading deviation ψ̄d , (cf. Section

3.2) is

ψ̄d = arcsin
(

v∗t ⊥
V

)
,

where v∗t ⊥ is the normal component of v∗t with respect to the straight line segment that connects

pb to p∗t , and thus one can conclude that

|ψ̄d |6 arcsin
(

Vtmax

V

)
. (C.4)

Additionally, from Figure 3.13 one can also verify that

V sin(ψp−ψ0) = vt sin(ψt −ψ0)

and thus, for any target’s orientation ψt ,

|ψp−ψ0|6 arcsin
(

Vtmax

V

)
. (C.5)

The upper bounds in (C.4) and (C.5) will be used in the sequel. Consider the proposed control

system architecture and let ψ0 be the angle between the line of sight vector that connects the UAV

to the current target and the −→x axis, ψp be the angle between the path’s straight line segment

that connects the fixed position pb to the virtual target position p∗t , and the −→x axis (thus, in this
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particular case, ψ f = ψp), V be the UAV’s ground speed, vt and ψt be the current target’s linear ve-

locity and heading, respectively, and finally let ψ̄d be the desired heading deviation. The following

theorem holds.

Theorem 2

The autonomous vehicle navigating under the MPF control law reaches the moving target in finite

time for any target velocity and orientation when V > 2Vtmax .

Proof

From Figure 3.13 one can conclude that the relative closing velocity between the robot and the

target satisfies

ḋ =−V cos(ψp−ψ0 + ψ̄d)+‖vt‖cos(ψt −ψ0) .

Note that, by definition, angle (ψp−ψ0 + ψ̄d) lies always in the interval
]
−π

2 ,
π

2

[
. Since the target

has limited speed 06 ‖vt‖6Vtmax , for any target’s orientation ψt , one can write

‖vt‖cos(ψt −ψ0)

V
<

Vtmax

V
.

Additionally, if the following condition is met

cos(ψp−ψ0 + ψ̄d)>
Vtmax

V
, (C.6)

using the transitive property one obtains

cos(ψp−ψ0 + ψ̄d)>
‖vt‖cos(ψt −ψ0)

V
,

which makes

ḋ =−V cos(ψp−ψ0 + ψ̄d)+‖vt‖cos(ψt −ψ0)< 0.

Rewriting (C.6) yields the following convergence condition

|ψp−ψ0 + ψ̄d |< arccos
(

Vtmax

V

)
,

which can be combined with (C.4) and (C.5) to obtain

2 arcsin
(

Vtmax

V

)
< arccos

(
Vtmax

V

)
.

Thus, one can conclude that if V > 2Vtmax this inequality is always satisfied and the autonomous

vehicle will converge to the target in finite time for any target’s speed or orientation. �
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C.4 Performance metric

The optimal path (from current target to the next target) can be computed by an exhaustive a pos-

teriori search. For each interception it is thus possible to compare the actual time for interception

(tact) using the method proposed here with the optimal time of interception (topt), thus assessing

the performance of the method. The increase in the actual time for interception with respect to the

optimal time, as a percentage of the optimal time for each interception, can be computed through

tincreased [%] =
tact − topt

topt
×100.

Figure C.3 shows the increase in the actual time for interception (tincreased) for each interception

shown in the multiple targets tracking numerical simulation considered in Section 3.3.3, using

Algorithm 1.

Figure C.3: Multiple targets tracking numerical simulation: Increase in the actual time for in-
terception with respect to the optimal time of interception, as a percentage of the optimal time.

Table C.1 presents the performance (in terms of average time for interception) of each of the

proposed methods (Algorithm 1 and Algorithm 2) with respect to the optimal case. The parameters

in Table C.1 were obtained from 500 Monte Carlo simulations. In each simulation, the number of

targets was randomly generated according to a uniform distribution in the interval [3,10]. Target’s

initial positions were also randomly generated according to a uniform distribution over a squared

area of 5000 × 5000m centred at the origin of the inertial frame. Target’s sequence to be visited

was taken to be the same as the target’s generation order. All targets started moving at 3m/s

(‖vt‖|t=0 = 3m/s) with random heading (ψt |t=0) according to a uniform distribution in the interval

]−π,π[. Both v̇t and ψ̇t were defined as stochastic signals with a normal distribution with a

predefined mean and standard deviation, namely

‖v̇t‖ ∼N (0,0.05)

ψ̇t ∼N (0,0.03)

and the target’s speed ‖vt‖ was limited to the interval [0,8] [m/s]. Each simulation lasted 500
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seconds and the UAV constant airspeed was chosen to be ‖v0‖= 25m/s. The performance metrics

values presented in Table C.1 for the proposed method were computed through

1
500

500

∑
i=1

ni

∑
j=1

1
ni

t j|i

topt j|i

where ni is the total number of target interceptions at simulation i, t j|i is the jth interception time at

simulation i and topt j|i is the corresponding optimal time for interception obtained from a posteriori

computations.

Table C.1: Proposed methods performance metrics.

Algorithm 1 Algorithm 2
(%)topt 99.49 99.80

From Table C.1 one can verify that, as previously argued, Algorithm 2 improves Algorithm’s

1 performance. Finally, since the proposed MPF algorithm behaves similarly to a missile guidance

algorithm (considering multiple targets tracking applications), it is possible to arguably infer that

the vehicle using the proposed method for multiple targets tracking applications will intercept the

current target with a performance similar to the classical missile guidance algorithms described in

[56].

C.5 Overall control architecture

The implemented control system architecture for the flight test is presented in Figure C.4 encom-

passing three stages:

1. From target and UAV pose updates, filter the estimated interception position to ensure suf-

ficiently smooth position estimates and boundedness of their derivatives.

Inputs:

(a) UAV center of mass coordinates p =
[

x y
]T

and ground speed V ;

(b) target’s current position pt0 , heading ψt , and speed ‖vt‖;

(c) pre-filter parameters a1, a2, k1 and k2.

Output:

(a) filtered target interception position estimate p∗t , heading ψ∗t , and speed ‖v∗t ‖.
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Figure C.4: Control system architecture.

2. Use the path generation algorithm to generate the time varying (moving) path that connects

the UAV’s current position to the filtered target interception estimate;

Inputs:

(a) UAV center of mass coordinates p =
[

x y
]T

, course angle ψ , ground speed V and

vehicle constraint rmin;

(b) virtual target variables p∗t , ψ∗t , and ‖v∗t ‖ from previous stage.

Output:

(a) path parameters ci, ηs, ηe, pb, ψp and ψ̇p.

3. Use the MPF algorithm to allow the UAV to converge to the current target.

Inputs:

(a) UAV center of mass coordinates p =
[

x y
]T

, course angle ψ , and ground speed V ;

(b) path parameters ci, ψp, ψ̇p, ηs and ηe from previous stage.

Output:

(a) turn rate command ψ̇ to the UAV.



Appendix D

Quaternion fundamentals

In this thesis, the quaternion attitude representation is used to derive the 3D MPF control law.

Following [90, 99], the quaternion convention and the corresponding fundamentals that are used

in this thesis are summarized in this appendix.

The following theorem has been fundamental in the development of several types of attitude

coordinates and is generally referenced to Euler [100, 101].

Euler’s Principal Rotation

A rigid body or coordinate reference frame can be brought from an arbitrary

initial orientation to an arbitrary final orientation by a single rigid rotation through a

principal angle Φ about the principal axis ê, the principal axis being a judicious axis

fixed in both the initial and final orientation.

Thus, one can represent an arbitrary orientation with just a unit vector ê and an angle Φ, as illus-

trated in Figure D.1. The unit vector ê defines the direction of rotation, and the angle Φ is the

amount to rotate about this axis to go from the initial to the final reference frame attitude (respec-

tively the {N} and {B} frames depicted in Figure D.1). Vector ê will have the same components in

both the initial and final orientation of the reference frame. The quaternion attitude representation

is based upon this principal.

There are several ways to determine the quaternion corresponding to a given rotation. His-

torical developments have favoured some conventions over others and a thorough overview of the

possible convention choices can be found in [99]. In this thesis, the Hamilton convention was

adopted as it is common in the field of robotics (see for example [103, 104], thus taking advantage

of the primitives already implemented in many robotics software libraries, such as the Robot Oper-

ating System [95] that was used in the flight test architecture in this research work - see Appendix

A. The remaining of this appendix borrows in part from [99] and provides an overview of the most

significant properties of the adopted quaternion convention.
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Figure D.1: Illustration of Euler’s principal theorem. Adopted from [102].
.

Let the unit quaternion corresponding to a rotation in R3 be defined as q,
[

q0 qv1 qv2 qv3

]T
,

where

q0 , cos
(

Φ

2

)
qv1 , e1 sin

(
Φ

2

)
qv2 , e2 sin

(
Φ

2

)
qv3 , e3 sin

(
Φ

2

)

and Φ ∈ R and ê =
[

e1 e2 e3

]T
∈ R3 denote the angle-axis parameters of the right-hand

conventioned rotation. Usually q0 is termed the scalar part and
[

qv1 qv2 qv3

]T
the vector part

of the quaternion. Since e2
1+e2

2+e2
3 = 1, the holonomic constraint qT q= 1 is satisfied. Conversely,

using the 4-quadrant version of arctan(y,x) one has

Φ = 2arctan(‖qv‖,q0)

ê =
qv

‖qv‖
.

By definition, the complex conjugate of q is given by q∗ =
[

q0 −qv1 −qv2 −qv3

]T
and the

inverse quaternion is given by q−1 = q∗. Moreover, the product ⊗ between two quaternions can

be computed in terms of the quaternion’s scalar and vector parts as [91]

qA⊗qB ,

[
q0A q0B− êT

A êB

q0B êA +q0A êB + êA× êB

]
. (D.1)
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Consider now a local frame {L} and a global frame {G}, let xL be the image of vector x written

with respect to {L} frame and xG be that image written in frame {G}. Moreover, let qGL and RG
L

be respectively the quaternion and rotation matrix transforming vector x from frame {L} to frame

{G}. Using the adopted Hamilton convention, one can use unit quaternions to act as rotation

operators in a way somewhat similar to rotation matrices, namely writing

x̄G = qGL⊗ x̄L⊗q∗GL to be compare with xG = RG
L xL.

Here, the bar notation x̄ was used to indicate that the vector x in the left expression is expressed

in (pure) quaternion form x̄ =
[

0 xT
]T
∈ R4, thus differentiating it from that on the right.

However, this circumstance is most of the times unambiguous and can be derived from the context,

especially by the presence of the quaternion product ⊗. In what follows, this bar will be omitted,

writing simply xG = qGL⊗ xL⊗q∗GL, thus allowing for an additional abuse of notation by writing

xG = qGL⊗ xL⊗q∗GL = RG
L xL.

Since both sides of this identity are linear in x, an expression of the rotation matrix equivalent to

the quaternion is found by expanding the left hand side and equating to the corresponding terms

on the right, yielding

RG
L(qGL) =

 q2
0 +q2

v1
−q2

v2
−q2

v3
2(qv1qv2−q0 qv3) 2(qv1qv3 +q0 qv2)

2(qv1qv2 +q0 qv3) q2
0−q2

v1
+q2

v2
−q2

v3
2(qv2qv3−q0 qv1)

2(qv1qv3−q0 qv2) 2(qv2qv3 +q0 qv1) q2
0−q2

v1
−q2

v2
+q2

v3

 . (D.2)

The opposite conversion, from {G} to {L}, is done with

xL = qLG⊗ xG⊗q∗LG or xL = RL
G xG,

where

qLG = q∗GL and RL
G = RG

L
T .

The rotation matrix R(q) given by equation (D.2) has the following properties with respect to the

quaternion:

R
([

1 0 0 0
])

= I (D.3)

R(−q) = R(q) (D.4)

R(q∗) = RT (q) (D.5)

R(qA⊗qB) = R(qA)R(qB) (D.6)

from which one can conclude that [99]: 1) the identity quaternion corresponds to the null ro-

tation (D.3); 2) a quaternion and its negative corresponds to the exact same rotation (D.4); 3)
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the conjugate quaternion corresponds to the inverse rotation (D.5); and 4) the quaternion product

corresponds to consecutive rotations in the same order as rotation matrices do (D.6).

Let ωL be the angular velocity of {L} with respect to {G} written in {L}, and let ωG be that

same angular velocity vector written in {G}. The time derivative of the unit quaternion q is the

vector of quaternion rates, which is related to the angular velocity ωL through

q̇GL =
1
2

qGL⊗ ω̄L

ṘG
L = RG

L S(ωL),

and to the angular velocity ωG through

q̇GL =
1
2

ω̄G⊗qGL

ṘG
L = S(ωG) RG

L,

where S(.) is a skew-symmetric matrix that satisfies S(a)b = a×b.



Appendix E

Lyapunov stability fundamentals

This appendix provides a review of the Lyapunov stability theory used in this thesis. Further

details can be found in [88].

E.1 Stability definitions

Suppose one would like to analyse the stability of the dynamical system

ẋ = f (x, t) x(t0) = x0 x ∈ Rn (E.1)

where f is locally Lipschitz in x and piecewise continuous in t. The equilibrium point x∗ = 0 of

the nonautonomous system (E.1) is

• Stable (in the sense of Lyapunov) at t = t0 if for any ε > 0 there exists δ (t0,ε)> 0 such that

‖x(t0)‖< δ =⇒‖x(t)‖< ε, ∀t > t0 > 0 (E.2)

• Asymptotically Stable at t = t0 if x∗ = 0 is stable and locally attractive, i.e.,

∃c = c(t0) : x(t0)→ 0 as t→ ∞ ∀‖x(t0)‖< c. (E.3)

• Unstable if is not stable.

Note that, in the above definitions, stability of a given equilibrium point depends on the initial

time instant t0. To remove this dependency, the concept of Uniform Stability is introduced: the

equilibrium point x∗ = 0 of the nonautonomous system (E.1) is

• Uniformly Stable if δ is independent of t0, such that equation E.2 holds ∀t0. Uniform sta-

bility of a system guarantees that the equilibrium point is not loosing stability.

91
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• Uniformly Asymptotically Stable if c is independent of t0 and the convergence is uniformly

in t0, that is

∀η > 0 ∃T = T (η)> 0 : ‖x(t)‖< η , ∀t > t0 + τ(η), ∀‖x(t0)‖< c (E.4)

• Globally Uniformly Asymptotically Stable if the inequality in (E.4) holds for all initial

conditions x(t0), that is c = ∞.

Note that the above definitions for asymptotic stability do not quantify the rate of conver-

gence for the system. A stronger form of stability is the exponential stability which imposes an

exponential convergence rate to the equilibrium point. Formally, the equilibrium point x∗ = 0 is

• Exponentially Stable if there exists positive constants c, k and λ such that

‖x(t)‖6 k‖x(t0)‖e−λ (t−t0), ∀‖x(t0)‖< c (E.5)

• Globally Exponentially Stable if inequality (E.5) is satisfied ∀x(t0).

E.2 Lyapunov’s direct method

Lyapunov’s direct method allows to determine the stability of a system without explicitly integrat-

ing the differential equation (E.1). Intuitively, the idea is to define the “energy” of the system and

infer the stability properties of the system by studying the rate of change of its “energy”. If the

system loses energy over time and the energy is never restored, then, eventually, the system will

reach some final resting state at a stable equilibrium point. The following paragraphs formalize

this idea.

A continuous function V : [0,∞)×D→ R, with D ⊂ Rn is Locally Positive Definite if, for

some continuous, strictly increasing function α : R+→ R

V (t,0) = 0 and V (t,0)> α(‖x‖) ∀x ∈ D, ∀t > 0. (E.6)

Considering a positive definite function V (t,x) as defined in equation (E.6), the equilibrium

point x∗ = 0 of the nonautonomous system (E.1) is

• Uniformly stable if

W1(x)6V (t,x)6W2(x) and (E.7)
dV
dt

+
dV
dx

f (t,x)6 0, ∀t > 0 ∀x ∈ D, (E.8)

where W1(x) and W2(x) are continuous positive functions on D.
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• Uniformly Asymptotically Stable if, in addition to inequalities (E.7) and (E.8),

dV
dt

+
dV
dx

f (t,x)6−W3(x), ∀t > 0 ∀x ∈ D, (E.9)

where W3(x) is a continuous positive function on D.

• Globally Uniformly Asymptotically Stable if, in addition to conditions (E.7) to (E.9),

D = Rn and W1(x) is radially unbounded.

The above conditions are sufficient to assess the stability of an equilibrium point of a nonau-

tonomous system. However, a method for determining an adequate Lyapunov function V (t,x) is

not provided and therefore, the search for a Lyapunov function establishing stability of an equilib-

rium point can be very difficult. Nonetheless, it is worth noticing that, if an equilibrium point is

stable, then there exists a function V (t,x) satisfying one of the above conditions.

Lyapunov’s direct method can also be used to verify exponential stability of a nonautonomous

system. Considering a positive definite function V (t,x) as defined in equation (E.6), the equilib-

rium point x∗ = 0 of the nonautonomous system (E.1) is

• Exponentially Stable if there exist positive constants k1, k2, k3 and a such that

k1‖x‖a 6V (t,x)6 k2‖x‖a and (E.10)
dV
dt

+
dV
dx

f (t,x)6−k3‖x‖a (E.11)

• Globally Exponentially Stable if inequalities (E.10) and (E.11) hold globally.

E.3 Linear time-varying systems

Consider the following linear time-varying system

ẋ(t) = A(t)x(t). (E.12)

where A(t) is continuous and bounded. Let x∗ = 0 be an exponential stable equilibrium point of

the linear system (E.12) and let Q(t) = QT (t)> 0 be continuous and bounded matrix. Then, there

is a P(t) = PT (t) ∈C2 bounded matrix that satisfies

−Ṗ(t) = P(t)A(t)+AT (t)P(t)+Q(t). (E.13)

Moreover, V (t,x) = xT P(t)x is a Lyapunov function that satisfies (E.10) and (E.11), with a = 2

and f (t,x) = A(t)x(t).
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E.4 Linearization

One can also use the linearization of a system to determine the local stability of the original

system using Lyapunov methods. Consider the nonautonomous system (E.1) with the origin as an

equilibrium point, where f : [0,∞]×D→Rn, D= {x∈R2 : ‖x‖< r} is continuously differentiable,

and the Jacobian matrix
[

d f
dx

]
is bounded and Lipschitz on D, uniformly in t. Let

A(t) =
d f
dx

(t,x)|x=0, (E.14)

Then, the origin is an exponentially stable equilibrium point of (E.1) if and only if it is an expo-

nentially stable equilibrium point for the linear system (E.12).

E.5 Barbalat’s Lemma

Given a function that tends towards a finite limit as t → ∞, Barbalat’s lemma indicates that the

derivative itself should have some smoothness. More precisely [105]

Barbalat Lemma: If the differentiable function f (t) has a finite limit as t → ∞ and if ḟ (t) is

uniformly continuous, then ḟ (t)→ 0 as t→ ∞.

Usually, the asymptotic stability of time-varying systems is difficult to analyse because Lya-

punov functions with negative definite derivatives are very arduous to find. Barbalat’s lemma can

be applied to the analysis of dynamic systems using the following immediate corollary [105]

Lyapunov-Like Lemma: If a scalar function V (t,x) satisfies the following conditions

• V (t,x) is lower bounded

• V̇ (t,x) is negative semi-definite

• V̇ (t,x) is uniformly continuous in time

then V̇ (t,x)→ 0 as t→ ∞.
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