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Abstract

The advent of next generation sequencing methods has revolutionized the field of molecular
biology in the past few years. Nowadays, we are able to produce enormous amounts of bio-
logical information, both quickly and at low cost. As such, tools have to evolve accordingly,
in order to cope with such large volumes of information. In this report we discuss the usage
of computer tools capable of conducting gene expression profiling based on information ob-
tained through RNA Sequencing techniques, applied to a specific set of biological problems.
In particular, we present the idealization process and implementation details of a web plat-
form capable of addressing these problems, as well as the actual platform prototype. The
prototype’s functionality is showcased with a real case study, produced in collaboration with
biology researchers. This report also includes a literature review, covering both the biological
and technical aspects of the work, with special emphasis in machine learning techniques ap-
plied to data mining tasks. Lastly, we review the work done and results obtained so far and
outline the possible future of the web platform.
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Resumo

O advento das técnicas de sequenciação de nova geração revolucionou o campo da biologia
molecular nos últimos anos. Hoje em dia somos capazes de produzir enormes quantidades
de informação biológica rapidamente e a baixo custo. Assim sendo, as ferramentas devem
também evoluir, a fim de lidarem com estas extensas quantidades de informação. Neste re-
latório discutimos o uso de ferramentas informáticas capazes de analisar perfis de expressão
génica com base em informação obtida através de técnicas de RNA Sequencing, aplicadas a
um conjunto específico de problemas biológicos. Em particular, apresentamos o processo de
idealização e os detalhes de implementação de uma plataforma web capaz de resolver estes
problemas, assim como o protótipo funcional dessa plataforma. As funcionalidades deste pro-
tótipo são demonstradas através de um caso de estudo real, produzido em colaboração com
investigadores da área da biologia. Este relatório inclui também uma revisão da literatura, co-
brindo os aspetos biológicos e técnicos deste trabalho, com um ênfase especial em técnicas de
aprendizagem máquina aplicadas a tarefas de data mining. Por fim, revemos todo o trabalho
efetuado e os resultados obtidos até ao momento e delineamos as possibilidades futuras para
a plataforma web.
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“ Often people, especially computer engineers, focus on the ma-
chines. They think, "By doing this, the machine will run faster. By
doing this, the machine will run more effectively. By doing this, the
machine will something something something." They are focusing
on machines. But in fact we need to focus on humans, on how hu-
mans care about doing programming or operating the application
of the machines. We are the masters. They are the slaves. ”

Yukihiro Matsumoto
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Chapter 1

Introduction

Molecular biology is a branch of biology that studies biological activities of living beings, at

a molecular level. The grounds for this field of study were set in the early 1930s, although

it only emerged in its modern form in the 1960s, with the discovery of the structure of DNA.

Among the processes studied by this branch of biology is gene expression. Gene expression

(further explained in Chapter 2) is the process by which DNA molecules are transformed

into useful genetic products, typically proteins, which are essential for living organisms. This

knowledge is not only important in fields like evolutionary or molecular biology, but has

crucial applications in fields such as medicine. One example of such an application is the

usage of gene expression analysis in the diagnosis and treatment of cancer patients [PASH03].

With the advent of NGS (Next Generation Sequencing) techniques, researchers have at

their disposal huge amounts of sequencing data, that is not only cheap and fast to produce,

but also commonly available. This data can then be used to obtain relevant information

about organisms’ gene expression. But, as the cost of sequencing genomes was reduced, the

cost of processing such information was increased. NGS techniques tend to produce much

smaller reads1 than previously used techniques, presenting a more challenging problem, from

a computational standpoint [Wol13].

1.1 Domain Problem

Despite its great advancements in the past decades, molecular biology is still a relatively

new subject and, as such, there are still a lot of unknowns and partial knowledge in this

area. In respect to gene expression, some mechanisms of this intricate process are yet to

be fully understood. One such mechanism is the one that regulates the transcription speed

of RNA. One of the objectives of this thesis is to understand how the final sequences of a

gene’s exons are responsible for the speed at which the exons themselves are transcribed. The

1A read is a single fragment of a genome/transcriptome, obtained through sequencing techniques.
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other objective is to understand how RNA-Binding Protein (RBP) manipulation can be used to

better understand an organism’s gene expression. These are, however, complex tasks that can

be further decomposed in the three main problems that were addressed in the thesis, namely:

• Sequencing read alignment against a reference genome and differential expression anal-

ysis between samples of different individuals (of the same species). This is effectively

one of the most complex problems addressed in the thesis. We used data obtained

through a sequencing method called RNA Sequencing2. Further insight about this

method will be given in Chapter 2, with particular emphasis on tools used to align

and analyze this data (Section 2.2.2).

• Gene enrichment and RBP analysis. This part of the work aims to collect as much rele-

vant information as possible about the particular genes being studied at the time, to help

biologists better understand their function. RBP knowledge is particularly important for

gene manipulation and a very useful tool for better understanding gene expression, as

further described in Chapter 2.

• Further analysis of the produced data, using machine learning techniques for data min-

ing, specifically for clustering analysis. These techniques were employed in an effort to

give biologists more relevant information about gene expression, uncovering possible

relationships in the retrieved information. This topic will be developed in Section 2.3.

Solving these problems requires the use of computational tools. As such, the development

of a computer system (or multiple systems) to tackle these problems emerges as another

objective of the thesis. The details of the design of this system will be presented in Chapter 3,

while its concrete implementation will be discussed in Chapter 4.

1.2 Motivation and Objectives

Gene expression analysis is essential for modern day molecular biology. Among many of the

possible applications of this information, we can highlight: better classification and diagnosis

of diseases, assessing how cells react to a specific treatment, and others.

While nowadays powerful computational tools exist to target almost any biology problem,

many of those tools require a very specific set of technical skills and have a steep learning

curve. Possibly the most important motivation behind this thesis, and ultimately its main

objective, is to provide researchers with powerful yet simple and user friendly tools. This

means developing a system simple enough that any user can learn to operate in a short period

of time with minimal effort, but sufficiently advanced to suit the user’s research needs.

Another typical problem that biology researchers face nowadays is information dispersion

and the repetitive and lengthy task of compiling that information. Researchers frequently

2RNA Sequencing is also referred to as Whole Transcriptome Shotgun Sequencing, or WTSS.
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have to manually merge information originating from a multitude of platforms, which use

inconsistent formats and notations. Our objective is therefore to provide a system that is able

to take this burden off the user, making the process faster and simpler.

1.3 Project

The project itself revolves around the development of a prototype computer system, capable

of solving the aforementioned problems. Due to the complexity of the complete system, its de-

velopment followed a modular organization (further described in Chapter 3). The envisioned

system architecture is divided into three major components:

Differential expression analysis pipeline is responsible for aligning reads against a refer-

ence genome and compare contrasts between different samples. The pipeline is based

on the preexisting iRAP pipeline3. The pipeline’s capabilities are further enhanced with

both job configuration automation and consolidation of differential expression results

from multiple tools.

RNA-binding protein analysis workflow aggregates information about RBPs from multiple

biologic web databases (Ensembl, NCBI, UniProt, etc.) and organizes it in ways that

are useful to biology researchers. Moreover, this information is clustered using data

mining techniques, in order to reveal groups of genes and RBPs that may hold biologic

relevance.

Web platform is responsible for storing and managing genetic data, coordinating interaction

between the other components of the system and providing a web interface for user

interaction. This component is based mainly on typical web technologies, that is, a

document based database for data storage (MongoDB), a web framework for business

logic implementation (Padrino) and web markup and styling languages for interface

implementation (HTML, CSS).

1.4 Structure of the Report

Besides the introduction chapter, this document is composed by five additional chapters.

Chapter 2 introduces some basic biology and RNA-Seq concepts, that are essential to un-

derstand the problems with which this document deals. Furthermore, we describe the main

techniques used for genome/transcriptome sequencing and assembly, their differences, appli-

cations and the tools and data formats typically used in those areas. Lastly, we give some

insight about data mining algorithms and how they will be applied in the context of the

project. Chapter 3 presents the design of the software solution. The basic system architecture

is outlined in this chapter, as well as relevant design decisions. Chapter 4 establishes relevant

3https://code.google.com/p/irap/

3
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implementation details for the developed solution, giving a more in depth knowledge about

its inner workings. Used technologies are also reviewed, and their selection is justified. In

Chapter 5 we present the case study that was used to assess the quality of the produced so-

lutions. We review the test data set, test conditions and obtained results. Lastly, Chapter 6

sums up what was accomplished during the project. We review our objectives in terms of their

fulfilment and present some possibilities for future work.

4



Chapter 2

Problem Domain and Technological

Base Concepts

In this chapter we begin by making a more in-depth presentation of the process of gene

expression. This will be followed by a literature and state-of-the-art review in the fields of read

alignment, differential expression analysis and data mining. We will present the tools used in

the development of the analysis pipelines and the web platform. Lastly, we review some results

evaluation techniques and relevant data representation formats for genetic information.

2.1 Biological Base Concepts

Before dwelling in the details of the state of the art that constitute the foundations of the

thesis, it is important to explain some concepts of the domain of molecular biology.

2.1.1 Gene Expression

As explained in Chapter 1, gene expression is the mechanism by which an organism’s DNA

can be expressed into functional genetic products, like proteins. This process starts with the

genetic code, or nucleotide sequence, of each gene. Different genes in an organism’s DNA

are responsible for the creation of different genetic products. The process of gene expression

itself is composed by two main stages, transcription and translation [GEN].

Transcription is the stage at which genetic data in the form of DNA is used to synthesize

RNA, being this the process that concerns the thesis’ main question. Several different types

of RNA are produced by this process, including messenger RNA (which specifies the sequences

of amino acids that form a protein), ribossomal RNA and transfer RNA, both later used in the

translation stage. Simplifying a gene’s structure, it can be seen as composed by two types of

sequences, introns and exons, as seen in Figure 2.1.

5



Problem Domain and Technological Base Concepts

Exon 1 Exon 2 Exon 3 Exon 4
Intron 1 Intron 2 Intron 3

Gene

DNA

Figure 2.1: Overall structure of a gene, with its different areas (simplified).

The exons are useful in the gene expression process, being also known as coding regions.

Introns, on the other hand, are not used in the process. They are present in an early stage

mRNA molecule, the precursor mRNA, but are later removed (or spliced) in the final molecule

before the translation stage [GEN]. Figure 2.2 illustrates the removal of introns from the

mRNA molecule, during the splicing process.

Exon 1 Exon 2 Exon 3
Intron 1 Intron 2

5′ 3′

Exon 1 Exon 2 Exon 35′ 3′

Precursor mRNA

Mature mRNA

splicing

Figure 2.2: The removal (splicing) of introns from the precursor mRNA, during the transcrip-
tion process.

After the conclusion of the transcription process comes the translation process. In this

process, the synthesized mRNA is used to specify the sequence of amino acids that constitute

the particular protein being produced. The other types of RNA molecules (rRNA and tRNA)

are also used in this stage of the gene expression process.

2.1.2 RNA-Binding Proteins

RNA-binding proteins, also referred to as RBP, regulate every aspect of the RNA metabolism,

including pre-mRNA splicing, mRNA transport, location, stability and translation control

6
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[CWD09, MMNMMN13, SH07, SH09], as shown in Figure 2.3.

Cell

Nucleus

Gene

1. Splicing

2. Transport

Cytoplasm

Protein

5. Translation Control

3. Localization4. Stability

Figure 2.3: Diagram of a typical cell showing the multiple roles of RBPs in post transcriptional
processes [JM11]. The grey ellipses represent RBPs. The numbered text represents the dif-
ferent processes in which RBPs take part. Multiple RBPs can bind with a single RNA at one
or more locations, creating an abundance of different combinations and possibilities in every
step of the RNA metabolism.

The binding of RBPs to RNA depends on different RNA-sequence specificities and affinities.

This aspect, coupled with the existence of hundreds of RBPs in an organism, gives rise to a

plethora of different combinations and outcomes to the RNA metabolism.

RBPs regulate gene expression in health and disease, and mutations affecting the function

of RBPs may cause several diseases [CWD09]. Therefore, understanding the binding patterns

of RBPs during a particular biological process is crucial to get insight into that process, both

during health and disease conditions.

2.1.3 Sequencing

Obtaining genetic information is done experimentally, by employing a sequencing technique.

For quite some time this process was carried out using Sanger’s and other similar sequencing

methods [RF09]. Though effective, such methods were notably slow and costly, with large

projects like the Human Genome Project (HGP) consuming roughly thirteen years and US$ 3
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billion. These limitations were so severe that, other than the realm of human genetics, this

kind of study was restricted to model organisms, such as the fruit fly and mouse genomes

[Wol13]. The past few years have seen the appearance and rise in popularity of the NGS tech-

niques. These techniques differ from the more classical ones by producing larger amounts of

information, at lower cost. As such, the techniques can be easily employed by single labora-

tories, which has greatly contributed to their popularity.

The rise in popularity and availability of NGS techniques, coupled with the importance

of RNA knowledge in understanding gene expression, led to the appearance of RNA-Seq.

RNA-Seq makes use of these newly available deep-sequencing techniques to profile complete

transcriptomes. This is, however, a difficult task to accomplish. NGS techniques produce

shorter reads than their older counterparts, being that “(...) transcriptome assembly from

billions of RNA-Seq reads (...) poses a significant informatics challenge” [MW11, p. 671].

Although this thesis does not deal with the problems of sequencing techniques, it is im-

portant to indicate that the read data sets that were used resulted from NGS techniques, in

particular RNA-Seq. As such, suitable tools for this particular type of data were used.

2.1.4 Transcriptome Assembly

Transcriptome assembly is the process by which experimentally obtained RNA data reads can

be organized and merged together in a partial or complete transcriptome. As stated above, the

advent of next generation sequencing techniques, with their reduced costs, greatly increased

the availability of transcript sequencing data.

For years, microarrays were the standard tool available for examining features of the

transcriptome and global patterns of gene expression [Wol13]. However, microarrays are

typically more oriented towards assembly against existing reference data, hence limiting their

application to species with well known reference genomes. This is a severe constraint, as NGS

techniques allow to cheaply obtain genetic information of previously non-studied species. This

is one of the reasons that led to the inception of RNA-Seq. Contrary to microarrays, RNA-Seq

techniques are able to wield results that are suitable for both reference guided assembly and

de novo assembly approaches [WL09]. De novo or exploratory assembly has captured the

interest of researchers in the past few years, leading to the appearance of multiple RNA-Seq

tools that are capable of making this type of assembly without a reference genome [FEB+11].

Transcriptome assembly was not performed during this thesis, as its main focus in terms of

the RNA-Seq process is read alignment and differential expression analysis.

2.1.5 Relevant Standard File Formats

As expected, the great diversity of RNA-Seq tools brings with it a wealth of file formats. Some

of these formats are developed from the ground up to satisfy a specific need, while others are

mere contextual adaptations or specializations of already established formats. Below we will

present a few of the most popular and widely spread file formats, talking about their basic

8
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structure, the types of data they represent and their applications. Some examples of these file

formats can be consulted in Appendix B.

FASTA

FASTA is the standard line and character sequence format used by NCBI [NCB], using this

organization’s character code conventions (see Appendix B.4). It is a simple format, that can

be used to easily store data represented by character sequences, like nucleotide (DNA, RNA)

or amino acid (protein) sequences. This file format is widely use to store sequencing reads,

DNA/RNA sequences and other character sequences in database systems. Its simplicity makes

it extremely easy to manipulate and parse, presenting itself as an attractive solution for data

transfer between different tools.

FASTQ

FASTQ is used to store character sequences, typically nucleotide sequences [CFG+10] (see

Appendix B.3). It is quite similar to the standard FASTA format, in respect to the manner in

which character sequences are represented. However, for every sequence, there is a second

sequence of equal length, representing the quality scores of the original sequence. These

quality scores are also represented as single characters, taking values between ASCII-33 and

ASCII-126. It is typically used in the same situations as the FASTA format, when quality scores

are available/relevant.

SAM and BAM

The SAM format is a text format for storing sequence alignment data [Lab] (see Appendix

B.1). It is widely used to store mapping information between sequencing reads and a given

reference genome. This sort of information is typically the product of sequencing alignment

tools, that consume sequencing reads from FASTQ files and align them with a reference

genome.

The BAM format contains exactly the same information as the SAM format and the same

rules apply for both formats. The difference between both formats lies in their encoding.

While SAM is a text based format, BAM is a binary format. This means that BAM sacrifices

human readability for increased machine processing performance, as it is more efficient to

work with compressed and indexed binary data.

VCF

VCF is a text file format used to store gene sequence variants [Smi13] (see Appendix B.2). In

the past few years, as larger and larger genome sequencing projects became more common
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(like the 1000 Genomes Project1), storing such large amounts of information became a serious

concern. Instead of storing the complete genome, VCF stores only the variations (and their

respective positions) of newly sequenced genomes relatively to a known reference genome,

typically in a compressed text file. As such, it is a format often used when building genome

databases.

GFF and GTF

GFF is a text based file format to store gene features [San11] (see Appendix B.5). Many

genome assembly tools execute this process in two separate steps: feature detection for iden-

tification of specific regions (exons, introns, etc.) and genome assembly, using those features

as reference. However, it is beneficial to decouple these two steps, using different and more

efficient tools for each. As such, the GFF format emerged as a protocol for feature information

transfer between tools.

The GTF format is similar to the GFF format, in which it is based. It is also used in similar

situations. However, GTF builds on top of GFF, defining additional conventions, specific to

the domain of genetic information. Despite their initial relation, both formats continue to be

developed individually.

2.2 RNA-Seq Analysis

2.2.1 RNA-Seq Pipeline

The analysis of RNA-Seq data is a complex process, with multiple stages, organized as a

pipeline. An analysis pipeline uses a set of tools, chained together in such a way that the

output of one tool becomes the input to the succeeding tool.

A typical RNA-Seq analysis pipeline is composed by six essential stages [Fas12] (see Figure

2.4):

Read quality control and improvement is a pre-processing stage. It comprises the usage of

quality control tools, whose function is to trim bad quality data, in order to improve the

overall quality of the data set. Other than direct data manipulation, this stage might

produce some statistical data about the reads, that can later be used to better drive the

succeeding stages.

Sample contamination checking is also a pre-processing stage. As read data is obtained

experimentally, it is not uncommon for contamination of the samples to occur. Bacterial

contaminations, such as E. coli, are fairly common and can sometimes skew the analysis

results. In some cases it is possible to detect these contaminations and remove the

affected data, hopefully improving the final results.

1The 1000 Genomes Project, started back in 2008, is an international effort to establish the most comprehensive
catalogue to date of human genetic variations.

10



Problem Domain and Technological Base Concepts

Read alignment is the stage in which reads are positioned against a reference sequence. This

sequence can be either a known and annotated reference genome (typically a combi-

nation of a FASTA file and a GTF file) or an assembled transcriptome, either assembled

de novo or against a reference genome (see Section 2.1.4). This alignment will allow

assessing gene abundance in later stages of the pipeline.

Quantification is the stage where transcript abundance is determined/estimated (gene ex-

pression). This involves counting the number of occurrences of certain transcripts in the

read data. Typically this stage produces transcript count tables, that can later be used

for differential expression analysis.

Differential expression is the stage where transcript abundances between different samples

are compared. As such, the produced count data is used to predict differences between

transcript abundances in two or more samples, effectively demonstrating differences in

gene expression. A common task for differential expression analysis is the comparison

between a control and a mutated sample.

Result reporting is the final stage in most pipelines. In this stage the resulting data is or-

ganized and represented in a manner that is useful to the user. This usually involves

producing plots, tables and reports. Some pipelines may perform additional task before

or after this stage, like gene set enrichment.

Note that this is only a generic architecture of a RNA-Seq analysis pipeline. In practice

new stages can be added and other can be removed, to better suit the experiment at hand and

the available data. In the given example (Figure 2.4) there is an additional stage, gene model

parsing, that is only applied when the read are aligned against an annotated genome.

iRAP

iRAP2 is a RNA-Seq analysis pipeline [FPMB14]. It implements a workflow similar to the one

described above, albeit with some differences (see Figure 2.5). iRAP also allows some stages

of the analysis to be skipped. Differential expression analysis is one such stage. This particular

analysis will only be performed at user request. The gene set enrichment stage (Figure 2.5, in

dashed line) is also optional. This stage uses Piano [VNN13], an R package capable of con-

ducting gene set analysis using various statistical methods, from different gene level statistics

and a wide range of gene-set collections. However, this stage will not be analysed in-depth,

as gene set enrichment was not performed in this thesis.

One of the major strengths of iRAP is the ability to choose the tools that are used in each

stage [FPMB14]. This allows for a vast array of pipeline customization possibilities, making

it easy to adapt to a particular experiment. Below we will present a set of tools, integrated in

iRAP, that were used during this thesis.

2https://code.google.com/p/irap/
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Quality Control
and Improvement

Contamination

Read Data (obtained through RNA-Seq)

ID List

Check

Available Reference?

Read Alignment Read Alignment

Predicted or Assembled
TranscriptomeGenome

Annotated

QuantificationParse Gene
Models

Differential
Expression

Report Results / Further Analysis

Figure 2.4: Representation of a standard RNA-Seq analysis pipeline [Fas12]. The analysis
workflow has a slight variation depending on whether an annotated genome or an assembled
transcriptome are used as reference for read alignment. Although this is a standard represen-
tation of the stages of RNA-Seq analysis, stages can be added or removed as needed to suit a
particular assay.

iRAP requires is a minimum set of user provided information to perform RNA-Seq analysis:

the annotated reference genome and the raw reads, as previously mentioned. Note that the

reads are organized in libraries. A library, in this case a complementary DNA library, is a

collection of cDNA fragments that together constitute a portion of the transcriptome.
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Differential
Expression

Figure 2.5: iRAP RNA-Seq data analysis pipeline. Note that the gene enrichment step (in
dashed line) is optional and was not used.

2.2.2 RNA Sequencing, Read Alignment and Analysis Tools

We now present some bioinformatic tools, used to support the multiple steps of the RNA

Sequencing, read alignment and data analysis process. It is important to note that none of

these tools were used separately, but rather as parts of an analysis pipeline (also described

below).

Tuxedo Suite

The Tuxedo suite is a free, open-source collection of applications that has been widely adopted

as analysis toolset for fast alignment of short reads. It is composed by four separate tools

(Bowtie, TopHat, Cufflinks and CummRbund) briefly reviewed below. These tools are exten-

sively used for RNA Sequencing analysis. Although the applications are made for command

line execution, there are several workflow managers, like Galaxy3, that easily integrates with

the suite, providing a web interface for its use. Note that not all components of the Tuxedo

Suite were used.

Bowtie. Bowtie is an ultrafast, memory-efficient short read aligner [LTP+09]. Bowtie is

typically used to build a reference index for the genome of the organism being studied, for

posterior use by other tools, like TopHat. It can also output alignments in the standard SAM

format, allowing Bowtie to interoperate with tools like SAM Tools4. However, it should not

be used as a general purpose alignment tool, as it was created and is more effective when

aligning short read sequences against large reference genomes.

3http://galaxyproject.org/
4http://samtools.sourceforge.net
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TopHat. TopHat is a fast splice junction mapper for RNA Sequencing reads [TPS09]. It uses

Bowtie as the underlying alignment tool, using its results and a FASTA formated reference

genome to identify splice junctions between exons.

Cufflinks. Cufflinks assembles transcripts, estimates their abundances, and tests for differ-

ential expression and regulation in RNA Sequencing samples [TWP+10]. It uses the SAM or

BAM formatted files as input, typically the ones produced by TopHat, outputting GTF files as

a result.

CummeRbund. Lastly, CummeRbund5 is an R package (see Section 2.3.5) designed to help

the visualization and analysis of Cufflinks’ RNA Sequencing output. As such, it is not directly

involved in the trascriptome alignment process. It takes the various output files from Cufflinks

and uses them to build a SQLite database describing appropriate relationships between genes,

transcripts, and other relevant data points. This database is later used to convert that data to

R objects which allows them to be used by plotting functions, as well as by other commonly

used data visualization tools.

HTSeq

HTSeq is a programming framework used for processing data resulting from next generation

sequencing methods [APH14], developed in Python. While many tools can efficiently align

reads, sometimes data needs to be manipulated before being passed to those tools. These data

can either be badly formated (or “dirty”), or simply in a format different from the one that is

needed. The latter is a particularly common problem when trying to pass the results of one

tool to the one that succeeds it in the pipeline. HTSeq is useful for easily creating scripts that

accomplish this task, acting as a “glue” between tools.

HTSeq provides parsers for many popular formats for representing genetic information

(see Section 2.1.5). In addition, it ships with two standalone scripts, HTSeq-QA and HTSeq-

Count. HTSeq-QA is used to provide an initial assessment of the quality of sequencing runs,

producing plots with that information. HTSeq-Count takes a SAM/BAM file and GTF/GFF file

containing gene models. It then counts, for each gene, how many aligned reads overlap that

gene’s exons.

2.2.3 Differential Expression Analysis Tools

Below we describe the tools that were used for differential expression analysis. These tools

are integrated in the iRAP pipeline, as part of its fourth analysis stage.

5http://compbio.mit.edu/cummeRbund/
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DESeq

DESeq [AH10] is available as an R package (see Section 2.3.5), included in the Bioconductor

super package. DESeq takes count data generated from RNA-Seq analysis assays. As count

data is discrete and skewed, it is not well approximated by a normal distribution. DESeq solves

this problem by applying a test based on the negative binomial distribution, which can reflect

these properties. This method has a much higher power to detect differential expression.

edgeR

edgeR [RMS10] as available in an R package (see Section 2.3.5), included in the Bioconductor

super package. It provides methods for the statistical analysis of count data from comparative

experiments on next generation sequencing platforms, among which is RNA-Seq, the most

common source of data used with edgeR. It has many characteristics in common with the

previously mentioned DESeq, as it also uses negative binomial models (among others) to

distinguish biological from technical variation. Later we describe how both tools can be used

together to produce better results.

2.2.4 File Manipulation and Pre-processing Tools

Sometimes data is badly formated or otherwise in a format that is not compatible with a

specific tool. This is particularly frequent when passing data between two different tools in

a pipeline. As such, we need some intermediate tools that are able to easily manipulate and

transform data, making it useful again. Below we present some tools that can be used to

accomplish this task.

SAM Tools

SAM Tools6 is a library package designed for parsing and manipulating alignment files in the

SAM/BAM format [LHW+09] (see Section 2.1.5). SAM Tools has two separate implementa-

tions, one in C and the other in Java, with slightly different functionality. Beyond manipu-

lation of SAM and BAM files, this package is able to convert between other read alignment

formats, sort and merge alignments and show them in a text-based viewer.

FASTX

FASTX7 (FASTX-Toolkit) is a collection of command line tools for pre-processing short read

files. These short read files can be either in FASTA or FASTQ format. FASTX is used to

manipulate these files before the aligning stage, in order to produce better results. It includes

tools to convert files from FASTQ to FASTA format, assess statistics about the reads, filter and

remove sequences based on their quality, among others. Although the toolkit contains only

6http://samtools.sourceforge.net/
7http://hannonlab.cshl.edu/fastx_toolkit/

15

http://samtools.sourceforge.net/
http://hannonlab.cshl.edu/fastx_toolkit/


Problem Domain and Technological Base Concepts

command line tools, some of them are already integrated in the Galaxy web based workflow

manager.

FastQC

FastQC8 is a tool for quality control for NGS data, implemented in Java. Its main objective

is to find errors and problematic areas in NGS read data. FastQC accepts FASTQ, SAM and

BAM files, and is able to report results both inside the tool itself and by exporting HTML files.

These reports contain, among other information, summary graphs and tables that allow quick

access to the data. FastQC can either be used as a standalone tool with its graphical interface,

or as part of an analysis pipeline.

2.3 Data Mining

Data mining is the process of “extracting or “mining” knowledge from large amounts of data”

[HKP06, p. 5]. As such, it consists of a set of techniques that can be used to find interesting

patterns in large data sets, that translate in newfound knowledge. Data mining borrows

techniques from multiple fields, such as artificial intelligence, machine learning, statistics, and

database systems [CEF+12]. Its ultimate goal is to combine all those techniques and transform

large and (apparently) meaningless sets of data into understandable and useful information.

Thus, data mining was motivated by the perspective of harnessing the abundance of data, that

characterizes today’s information systems, to produce meaningful knowledge.

Because of their large quantities of input data, data mining tasks are usually totally, or at

least partially, automated. As such, there are several algorithms for these tasks and tools that

implement such algorithms, as presented in Section 2.3.2 and Section 2.3.5, respectively.

We can divide data mining in descriptive data mining and predictive data mining [FPSS96].

Descriptive data mining is focused on finding the underlying structure of a given set of data.

Instead of predicting future values, it concerns the intrinsic structure, relations and inter-

connectedness of the data being analyzed, presenting its interesting characteristics without

having any predefined target. On the other hand, predictive data mining is used to predict

explicit values, based on patterns determined from the data set. With predictive data mining

we try to build models using known data and use those models as a base to predict future

behavior.

As we can see, data mining does not represent a single type problem. In fact there are

several different types of problems that can be addressed by data mining techniques. Each

of these problems may require a different data mining method. A brief review of the most

common type of problems is given below.

8http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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Classification is a type of problem that tries to generalize the already known structure of a

data set, so that it applies to new data sets. In other words, with classification we try to

learn a function that is capable of mapping our data into predefined classes.

Regression tries to learn a function that models relationships between variables in the data

set. That function can latter be used to find real value predictions of future behavior of

data sets originated from the same population.

Clustering consists in identifying a finite set of categories or clusters of similar values, to de-

scribe the data set. As such, it is used without prior knowledge about the data structure.

Summarization provides a more compact representation of a subset of data, in a way that

the summarized data retains the central points of the original data. This can be accom-

plished in several different ways, like using report generation or multivariate visualiza-

tion techniques.

Dependency modeling finds a model which describes relationships between variables, re-

vealing their dependencies.

Change and deviation detection tries to discover the most significant changes in the data,

when compared with previously measured data. This method is useful for finding inter-

esting data variations or data errors.

Note that due to the nature of the work of this thesis we will focus on clustering analysis

techniques and, as such, the following sections will contain a more in-depth review of these

methods, along with descriptions of the used algorithms and tools.

2.3.1 Clustering Techniques

As explained above, clustering is the process of grouping data into clusters, in such a way

that objects inside a cluster are very similar to each other, while being as different as possible

from objects in other clusters [HKP06]. These similarities (and dissimilarities) are assessed

based on the attributes of each object using a comparison method, often a distance function.

Clustering is used in situations where the classes contained in the data set are unknown, either

because they are difficult to determine or because such an assessment would be too costly or

we known little about the domain and want to do a prospective study.

However, data clustering as a process is highly dependent on the data being analysed. For

example, while some data sets can be easily clustered using “spherical” clusters, other can

only be represented by “concave” clusters. In other words, there is no global technique to

group similar objects, it needs to adapt to the problem at hand. This multitude of different

interpretations of the cluster notion led to the appearance of many different clustering meth-

ods and algorithms. Clustering methods can be classified in different categories: partitioning

methods; hierarchical methods; density-based methods; grid-based methods; and model-based

methods [HKP06].
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Generally, there are two types of clustering methods, divisive methods and agglomerative

methods. In divisive methods all the objects in the data set start in the same cluster. At

each iteration all clusters are divided into two smaller clusters, that better satisfy the fitness

condition of that particular algorithm. This process stops when all clusters are composed by

only one element. Inversely, agglomerative methods start with n clusters with one elements,

joining them iteratively until only one cluster remains.

Partitioning Methods

Partitioning methods are based around the construction of partitions of the whole data set.

Each one of the constructed partitions represents a data cluster. Given a dataset with n ele-

ments, and a number k of clusters, the correct application of these methods must verify two

conditions [HKP06]:

(1) each cluster must contain at least one object (k≤ n);

(2) a single object of the data set must only belong to one cluster.

These methods try to maximize cohesion between objects in the same partition, while

assuring that clusters are as distant as possible between themselves. In other words, the

elements within a partition should be as similar or “close” as possible between them, while

being as different as possible from elements in other groups.

Achieving the optimal partitioning would require the exhaustive enumeration and com-

bination of all possible clusters. This is, of course, impractical and even unfeasible in some

situations. As such, most partitioning methods adopt some sort of heuristic evaluation of their

clusters’ quality. For example, the k-means algorithm uses the mean value of the objects in a

cluster to represent the same cluster; the k-medoids algorithm, which is centroid based, uses

an object that is roughly at the center of the cluster to represent it. Typically these methods

work well with “spherical” clusters, but may falter with clusters having more complex shapes

(“concave” shaped clusters, for example).

Hierarchical Methods

These methods create an hierarchical division among objects in the data set. This hierarchy is

represented as a tree structure. There are two strategies for hierarchical analysis, the divisive

strategy and the agglomerative strategy [HKP06]. The divisive strategy consists of putting all

objects in the same cluster and then divide them in multiple clusters, based on their distance.

Inversely, the agglomerative strategy starts by putting each object in its own clustering, and

then iteratively merges clusters.

One notable weak point of hierarchical methods is that calculated results are irreversible;

that is, once an objects is attributed to a cluster, that result will not be evaluated again.

This may lead to incorrect labeling of some objects. These problems can be minimized by

pre-processing the data set. A possible example of data set pre-processing is performing a
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dimension reduction, decreasing the number of random variables under consideration. Note

that this single pass evaluation gives hierarchical methods good computational performance.

Density-based Methods

Unlike the previous methods that rely on the notion of distance between objects, density-based

methods are based on the notion of cluster density [HKP06]. The basic idea of these methods

is to keep growing a given cluster while the number of objects in its vicinity (or density)

exceeds a certain user defined threshold. Density-based methods are particularly useful to

discover clusters with irregular shapes. An example of an algorithm that implements this kind

of analysis is DBSCAN [EpKSX96].

Grid-based Methods

Grid-based methods transform the data set object space into a finite number of cells, forming

a grid structure [HKP06, Mad12]. All clustering operations are then conducted using the

grid representation of the data set. Algorithms that implement this strategy are usually high-

performance, as execution times are dependent on the number of cells in each dimension of

the grid, rather than on the number of objects in the data set.

Model-based Methods

Model-based methods work by hypothesizing a mathematical model for each cluster and then

finding the objects that best fit those models [Mad12]. These methods typically follow the

assumption that objects are distributed by clusters according to an underlying statistical prob-

ability. This also makes it possible for the number of clusters to be automatically determined,

based on such statistics [HKP06].

2.3.2 Clustering Algorithms

Below we present the clustering algorithms that were used during the progress of this the-

sis. These methods were chosen based on their suitability for the tasks at hand, as will be

described in Chapter 4.

k-Medoids

The k-medoids specification appeared as an evolution of the k-means algorithm. As k-means

uses the mean value of the objects of a cluster to determine its center, it is sensitive to outliers

(objects that deviate considerably from the data set average): an object with a large, dispro-

portional value might skew the results. k-medoids mitigates this problem by using medoids,

picking a specific object of the cluster as its “center” [HKP06]. Medoids are chosen randomly

at the beginning. This means that the algorithm may produce different results depending on
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the starting objects (it does not reach an optimal solution). The remaining objects are then

clustered with the medoid to which they are most similar.

The most common implementation of k-medoids is the Partitioning Around Medoids (PAM)

algorithm (see Algorithm 2.1).

Input: k, the number of clusters; D, a data set containing n objects.
Result: A set of k clusters.

choose k objects at random as representatives of each cluster;
repeat

assign each remaining object to the cluster with the nearest representative object;
randomly select a non-representative object, orandom;
compute the total cost, S, of swapping representative object, o j , with orandom;
if S< 0 then swap o j with orandom to form the new set of k representative objects;

until no change;

Algorithm 2.1: Partitioning Around Medoids (PAM) algorithm, a k-medoids implementa-
tion for partitioning based on medoid or central objects.

Average Linkage Hierarchical Clustering

Average linkage is a method for calculating distance between clusters in the standard hierar-

chical clustering analysis. In order to decide which clusters should be combined or divided,

in agglomerative and divisive clustering respectively, we need a measure of dissimilarity be-

tween those clusters. In the average linkage method this dissimilarity is computed based on

the average distance between all elements in both clusters. The average is calculated over all

pairs of objects composed by one object from the first cluster and one object from the second.

The linkage function is therefore defined as

D(X ,Y ) =
1

NX ×NY

NX
∑

i=1

NY
∑

j=1

d(x i , yi), x i ∈ X , y j ∈ Y (2.1)

where X and Y are two clusters; NX and NY and the number of elements in clusters X and Y ,

respectively; and d(x i , y j) is the distance between objects x ∈ X and y ∈ Y .

Inductive Logic Programming

ILP is a subfield of machine learning that uses first order logic to represent both data and mod-

els [Mug91, LD98]. ILP infers hypotheses (models) from examples and background knowl-

edge. The examples may be of two types: instances of the concept to be “learned” (positive

examples), and non-instances of the concept (negative examples). Background knowledge

is a set of predicates encoding all information that the experts find useful to construct the

models. ILP might be used to tackle several machine learning and data mining problems, like

classification, regression, clustering and association rules discovery.
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The first and most important motivation for ILP systems is that they overcome the repre-

sentation limitations of attribute-value learning systems. Attribute-value systems base their

representations of data in tables. Although effective in many situations, this representation is

not very expressive and might not even be feasible for certain problems [BM95]. The second

motivation for ILP is that by using a logical representation, the hypotheses are understand-

able and interpretable by humans, being therefore useful to explain the phenomenons that

produce the data. This representation also means that background knowledge can be repre-

sented and employed in the induction process, in contrast to attribute-value models, where

this information is difficult to represent. The expressive power of first-order logic enable an

easy representation of data with complex structure, and the encoding of complex models that

may combine numerical computation and relational information.

Despite these advantages, ILP cannot be applied indiscriminately to any clustering or clas-

sification problems. ILP systems are typically very heavy when it comes to computational

resource consumption and run for long periods of time [FCSC03]. To ameliorate this situa-

tion there has been significant progress in parallel execution of ILP systems.

2.3.3 Clustering Evaluation and Assessment

The goal of most clustering methods is to achieve high similarity between objects in the same

cluster, while maintaining the dissimilarity between other clusters [MRS08]. This is called an

internal evaluation criterion, as it is only dependent on the clustered data itself. However, high

internal evaluation scores do not necessarily translate to good results in a real application.

To provide a better judgement of clustering results we may use external criteria [MRS08].

Such criteria act as a surrogate for the judgement of a human field expert. As such, they must

use a set of data outside the clustering data set, that was pre-classified by an expert. This set

of data is considered a golden standard, that is, the best possible outcome for the clustering

analysis, under reasonable conditions.

Note that in the specific case of this thesis no pre-classified data set was available. As

such, we focused our assessments purely on internal evaluation methods. Despite this lack of

automated external evaluation, our results were evaluated by experts in this field, as explained

in Chapter 5.

Silhouette Coefficient

The silhouette coefficient is a direct representation of the intra-cluster similarity and inter-

cluster dissimilarity concept. In other words, the silhouette coefficient improves as the cohe-

sion between elements in the same group and the farthest the distance from that particular
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group to all the other groups [Rou87]. The silhouette coefficient is computed using the for-

mula

s(i) =







1− a(i)
b(i) if a(i)< b(i),

0 if a(i) = b(i),
b(i)
a(i) −1 if a(i)> b(i),

(2.2)

where a(i) is the average dissimilarity between i and all other objects in the same cluster;

and b(i) is the lowest average dissimilarity between i and any other cluster to which i does

not belong. The higher the value of s(i), the more appropriately clustered the data point is.

Inversely, low silhouette values are the result of unfitting clustering. The average s(i) of a

single cluster can be used to measure how tightly all its data points are grouped. The average

s(i) over the entire data set can be used to measure how appropriately the data has been

clustered.

The silhouette coefficient can also be used to provide a visual representation of the clus-

tering results, as dendograms do for hierarchical clustering analysis (Figure 2.6). This plot

combines silhouettes widths for all objects in the data set, the average silhouette width for

each cluster, and the silhouette of the complete data set.

Other than that, the average silhouette of the clustering results may be used to determine

the best number of clusters. This is done by repeatedly executing the analysis with different

k values, between a specified range. The chosen k value is the one that produces the best

average silhouette.

2.3.4 Common Distance Measures

Many clustering algorithms rely on the notion of distance between objects in the data set.

These distances are used as a measure of similarity/dissimilarity between those objects. Typ-

ically, objects that are close to each other are considered similar, as opposed to objects that

are far away from each other and therefore considered different. Below we will present some

common types of distance measures that are used in clustering methods.

Euclidean Distance

Euclidean distance is one the most common distance measures. It represents the geometric

distance between two points, in a n-dimensional space [Mad12]. Euclidean distance can be

defined as shown in Equation 2.3 (for n-dimensions).

d(x , y) =

s

n
∑

i=1

�

�x i− yi

�

�

2
(2.3)

Squared Euclidean Distance. The squared Euclidean distance is a simple variation of the

standard distance, obtained by squaring it (Equation 2.4). It is used when there is the need
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Silhouette width si

0.0 0.2 0.4 0.6 0.8 1.0

Silhouette plot of pam(x = dataset, k = 4)

Average silhouette width :  0.74

n = 75 4  clusters  Cj

j :  nj | avei∈Cj  si

1 :   20  |  0.73

2 :   23  |  0.75

3 :   17  |  0.67

4 :   15  |  0.80

Figure 2.6: Example of a silhouette plot, using the PAM algorithm. It represents the silhouettes
of every objects in the data set, as well as the average silhouette for each cluster (k= 4) and
the average silhouette for the complete data set.

to attribute progressively greater weight to objects that are far apart from each other.

d(x , y) =
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∑
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(2.4)

Manhattan Distance

The Manhattan distance between two objects is the sum of the differences between each of

their components. In other words, it is equivalent to the distance between the two objects, if

a n-dimensional grid-like path was followed [Mad12]. It is defined as shown in Equation 2.5.
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d(x , y) =
n
∑

i=1

�

�x i− yi

�

� (2.5)

Chebychev Distance

The Chebychev distance is less common than the previously mentioned distances. The Cheby-

chev distance between two objects is defined as the maximum distance between components

of the objects (Equation 2.6). Is is useful in situations where two object must necessarily be

considered different if one of their components is different, as the use of the maximum value

removes the dampening factors of other (closer) components.

d(x , y) =max
¦�

�x i− yi

�

�

©

(2.6)

Jaccard Distance

The Jaccard distance is a measure of dissimilarity between two objects. It is related to the

Jaccard coefficient, a similarity measure. In some cases a simple geometric distance, like the

Euclidean distance, might not accurately represent the distance (or dissimilarity) between the

two objects.

For binary attributes, the Jaccard coefficient (similarity) is computed as

sim(x , y) =
q

q+ r+ s
(2.7)

where q is the number of attributes that are true for both objects; r is the number of attributes

that are true for object x and false for object y; and s is the number of attributes that are

false for object x and true for object y . Note that by definition the similarity coefficient is a

value between 0 and 1, where 0 indicates that the objects are completely different, while 1

indicates that the objects are exactly equal. A distance measure can be obtained directly from

this coefficient, as shown in Equation 2.8.

dist(x , y) = 1− sim(x , y) (2.8)

In this representation a value of 0 is given to two objects that are close, while the value 1 is

attributed to distant objects.

Similarly, the Jaccard coefficient and distance can be computed for sets. This can be

useful to determine distance between to objects whose attributes contain nominal values. The

Jaccard coefficient for sets is calculated as shown in Equation 2.9, while the distance between

sets is calculated in the same way than between binary attributes.

sim(x , y) =

�

�x ∩ y
�

�

�

�x ∪ y
�

�

(2.9)
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2.3.5 Clustering Tools

Except in rare cases of very specific problems, it typically makes no sense for someone to

implement any data mining algorithm that they might need. In fact, today we have lots of

data mining tools (many of which are free), that already implement many of those algorithms.

These tools are usually customizable, making it easy to adapt them to most problems. Below

we’ll briefly review some of the most popular data mining tools, applicable to the specific

needs of this thesis. Note that some of these tools, namely RapidMiner and Weka, were only

used for testing purposes during the development of the project. As such, they are not part of

the final prototype.

RapidMiner

RapidMiner [rap12] is a complete solution for data mining problems. it is available as a stan-

dalone GUI based application, as seen in Figure 2.7. It is a commercial application, although

its core and earlier versions are distributed under an open source license and it offers a free

version, beyond its multiple paid versions. Being one of the most popular data mining tools

used today, its applications span several domains, including education, training, industrial and

personal applications, among others. Its functionality can also be easily extended through the

use of plugins9, reflecting an increased value for this tool. One of such example in the area of

bioinformatics is the integration plugin between RapidMiner and the Taverna10 open source

workflow management system [JEF11].

Weka

Weka [HNF+09] is an open source tool that implements several machine learning algorithms

and allows its user to easily apply those algorithms to data mining tasks. Created at the

University of Waikato, New Zeland in 199711, it is still in active development to date. Weka

supports several common data mining tasks, like data preprocessing, classification, cluster-

ing, regression and data visualization. Its core libraries are written in Java and allow for an

easy integration of its data mining algorithms in pre existing code and applications. Other

than that, Weka can be used directly through a command line/terminal or through one of its

multiple GUIs (Figure 2.8). Its simple API and well structure architecture allow it to be easily

extended by users, should they need new functionalities.

9Plugin is a software module that adds new functionality to an existing software application. Plugins are
typically dependent on the platform they extend and can’t be used as standalone tools.

10http://www.taverna.org.uk/
11The current version was completely rewritten in 1997, despite the first iteration of the tool being developed

as early as 1993.
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Figure 2.7: RapidMiner user interface.

Figure 2.8: Weka interface selection.

R Language

R [Iha98] is a free programming language and software environment for statistical comput-

ing and graphics generation. Originally developed by Ross Ihaka and Robert Gentleman at

the University of Auckland, New Zealand in 1993, it is still under active development. R is

typically used by statisticians and data miners, either for direct data analysis or for developing

new statistical software [FA05].
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R is an implementation of the S programming language12, borrowing some characteristics

from the Scheme programming language. Its core is written in a combination of C, Fortran

and R itself. It is possible to directly manipulate R objects in languages like C, C++, Java

and Prolog. R can be used directly through the command line or through several third party

graphical user interfaces like Deducer13. There are also R wrappers for several scripting lan-

guages.

R provides several different statistical and graphical techniques, including linear and non-

linear modeling, classical statistical tests, time-series analysis, classification, clustering, among

others. It can also be used to produce publication-quality static graphics. Tools like Sweave

[Lei02] allow users to embed R code in LATEX documents, for complete data analysis.

Bioconductor Package. Bioconductor is a free and open source set of tools for genomic

data analysis, in the context of molecular biology [Lei02]. It is primarily based on R. It is

under active development, with two stable releases each year. Counting with more than seven

hundred different packages, it is the most comprehensive set of genomic data analysis tools

available for the R programming language. It contains many of the tools that are part of most

open source biological analysis pipelines. It also provides a set of tools to read and manipulate

several of the most common file formats used in molecular biology oriented applications,

including FASTA, FASTQ, BAM and GFF.

2.4 Chapter Conclusions

In this chapter we gave a brief introduction of the molecular biology concepts that serve as

base of the thesis. We have reviewed the concepts on RNA-Seq and data mining and presented

short analyses of concrete tools and algorithms that were used during this thesis.

12S is an object oriented statistical programming language, appearing in 1976 at Bell Laboratories.
13http://www.deducer.org/pmwiki/index.php
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Chapter 3

Solution Description

In this chapter we present the designed solution. The main objectives of the solution’s design

are reviewed, along with the most important choices made. Both major components of the

developed solution and their envisioned integration process are described in detail.

3.1 Overview

As discussed, from a purely biological standpoint, this thesis has two objectives: to perform

differential expression analysis of RNA-Seq data and to discover and characterize RBPs related

to groups of genes. While both objectives are important for our particular domain problem,

they present different problems and require different approaches. Furthermore, both parts of

the problem are relevant by themselves.

Splitting the domain problem into two objectives led to the first important design decision.

It was decided that the software solutions to both problems would be implemented indepen-

dently and, at a later stage, integrated with each other, to form the complete system. This

would also allow both tools to be used separately, leading to a wider array of possibilities in

terms of future uses.

Designing software solutions with high performance, scalability and extensibility is also a

major concern. A software solution should be able to quickly and efficiently fulfil a user’s re-

quests, while dealing with a large number of simultaneous users. It should allow new features

to be easily added, in order to better respond to the users’ needs. If these requirements are

not met, the solution is at risk of being abandoned by its users, becoming therefore useless.

The software solutions presented in this thesis were designed with these goals in mind, as is

further discussed in Chapter 4.
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3.2 Gene Expression Analysis Pipeline

The gene expression analysis pipeline uses iRAP [FPMB14] as its foundation. As discussed

before, iRAP provides begin-to-end gene RNA-Seq data analysis. However, while iRAP is a tool

aimed at a broad group of users, both beginners and advanced users, it is still a command line

tool, with many configuration settings. This technological barrier may drive away some more

inexperienced users. One of the objectives of this part of the work was to make it a simpler

and more straightforward process, accessible to any user with basic computer literacy; another

was to combine results of several different tools, with the aim of improving those results. Note

that some of the features described below were not implemented, due to time constraints. As

such, those features are presented as future work.

3.2.1 Analysis Configuration

iRAP is configured with an experiment configuration file (see Appendix A). This file must

define the name of the species being analysed, the reference and read data files, the tools to

use for the analysis, read libraries, contrast groups, among other variables. Although many

of these configurations are difficult to infer and define automatically, it is possible to create

a more user friendly way to configure the experiments. This is accomplished through a web

form. This web form has two different views: the normal view allows users to configure only

the essential settings of the experiment, those that cannot be inferred; the advanced view

allows more experienced users to tweak every configuration.

3.2.2 Experimental Data Management

Gene expression analysis with iRAP requires two sets of files, reference files and read data files.

Reference files are both the reference genome (in FASTA format) and its annotations (in

GTF or GFF formats). These files are automatically obtained from Ensembl’s FTP endpoint.

The current release contains information of a total of sixty six species. The tool automatically

checks if a new release is available, and in that case downloads and substitutes the files. In

the experiment configuration users need only to indicate which species they are analysing,

and the correct files will be automatically passed to iRAP.

Read data files contain the reads obtained through sequencing, in FASTQ formats. The

user needs to upload these files. One file must be provided for each library the user wants to

analyse, and should be compressed. As some of these files can be quite large, users also have

the possibility to provide a link to those files. If a link is provided, the files will be downloaded

before the analysis starts.

3.2.3 Analysis Workflow

Once both the configuration file and the required data files are ready, the analysis process can

begin. The analysis process starts by passing those files to iRAP (Figure 3.1). In this initial
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stage of the workflow the analysis will stop immediately after the quantification step (see

Section 2.2.1).

ID List

Differential Expression Results

Read Data Reference Data

Base Analysis

Differential Expression
(edgeR)

Differential Expression
(DESeq)

Combine Results

Figure 3.1: Gene expression analysis pipeline workflow.

The next step is to sequentially execute differential expression analysis with the chosen

tools, in this case DESeq [AH10] and edgeR [RMS10]. The resulting files are kept until

all tools are executed. Note that there is no need for the analysis process to start from the

beginning every time a new tool is used, as iRAP can (in most cases) reuse the results produced

up until the point where a new tool is introduced.

After all tools are executed their results must be combined into a final list of gene identi-

fiers. This is done in an attempt to give researchers an higher level of confidence in differential

expression results. Note that this process is not part of the iRAP analysis pipeline, and there-

fore a new tool must be developed. Algorithm 3.1 shows the basic process of combining the

obtained differential expression results. First, entries in every file must be filtered by their

p-value1, that must be inferior to a maximum threshold (0.05 by default). Then all entries

1A p-value is used to assert the statistical significance of results. It represents the probability of obtaining the
same results as before in a new sample, given that the null hypothesis is true [Goo].
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in all files are compared with each other. This produces an intersection of all files, in other

words, a list of entries that are present in all files.

genes = empty map;
files = load all result files;
max_pvalue = 0.05;
foreach file in files do

foreach entry in file do
if entry.pvalue ≤ max_pvalue then

increase gene count in genes[entry.gene];
end

end
end
foreach gene, count in genes do

if count < number of files then
remove gene from genes

end
end
write genes to a file;

Algorithm 3.1: Combination of differential expression results.

3.3 RNA Binding Protein Analysis Web Platform

The main objective of this system is to transform a complex, manually performed analysis,

into an automated workflow. The platform should require as little information as possible

from the user, inferring analysis parameters whenever possible. It should also be able to

automatically group genes (and proteins), to reveal implied relationships between them that

might be useful to experts. This platform was named Protein Binding Site Finder (PBS Finder)

and shall henceforth be referred to by that name.

3.3.1 Experimental Data

The only data PBS Finder collects from the user is a list of gene (or transcript) identifiers that

should be analysed. These identifiers can be in one of five different formats: Ensembl Gene,

Ensembl Transcript, Entrez, RefSeq or GenBank (see Table 3.1). Users can submit jobs with any

combination of the previous types and use identifiers from multiple species.

Table 3.1: Two sets of examples of identifiers accepted by PBS Finder.

Ensembl Gene ENSG00000224274 ENSRNOG00000013536
Ensembl Transcript ENST00000003156 ENSRNOT00000117589
Entrez 11245 66850
RefSeq NM_001107622.1 NM_031098.1
GenBank U49845 C35522
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While PBS Finder can accept all these kinds of identifiers, internally the analysis can only

be started with Ensembl Gene or Entrez identifiers, that map to Ensembl’s and NCBI’s pages, re-

spectively. As such, the identifiers must be first separated into different groups and converted.

This conversion is reviewed with more detail in Section 3.3.3.

3.3.2 User Information Management

In order to use PBS Finder a new user must create an account, providing their name and

email, and choosing their authentication password. The account system was implemented so

that jobs could be associated with their creator in a cross browser/system manner, in contrast

with a typical cookie-based2 data persistence. This allows each user to list their own jobs.

Despite jobs being only directly accessible by their owner (creator), no effort was made to

deny users access to each other’s jobs through the job’s URL. We believe that sharing results is

an essential part of the investigation process.

To create a new job the user provides a job description and an identifier list. The identifier

list is a newline-separated list (a single entry per line) of unique identifiers for genetic infor-

mation databases. In the current version acceptable types of identifiers include Ensembl (both

Gene and Transcript), Entrez, RefSeq and GenBank. Users can submit jobs with any combina-

tion of the previous types and use identifiers from multiple species. Upon job creation, users

can choose to be notified by email when the job finishes.

3.3.3 Analysis Workflow

PBS Finder is based on a three stage analysis model (Figure 3.2): base analysis, data set

enrichment and clustering analysis.

Job Data

ID List

Base Analysis ClusteringEnrichment

Transcript Data Protein Data Cluster Info

Figure 3.2: Simplified PBS Finder workflow.

2Modern websites sometimes need to save information about the user, for example credentials. This data can
be saved in the client machine, through the use of a web browser cookie.
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Base analysis comprises data set filtering, retrieval of basic gene and transcript information

and finding RBPs. The first released version of the platform implemented only this stage of

the analysis. It contains all the information that is necessary to answer one of the base thesis

problems. However, further stages build on top of this information, bringing a more valuable

set of results to biologists.

In the enrichment stage additional information about every protein is retrieved. This

information is obtained from UniProt3, a web platform for curated protein information. This

stage was implemented in the second release of the platform.

The clustering stage takes all the information collected in the previous stages and uses it to

perform clustering analysis. There are two types of clustering analysis performed: clustering

using RBP presence and clustering using RBP attributes. The objective of this analysis is to

uncover implicit relationships in the collected data, that may be of use to biologists.

These stages are described in more detail in Chapter 4.

3.4 Tool Integration

In the designed solution both tools should be integrated, so that a user could perform the

complete analysis creating a unique analysis job. This would be accomplished by using the

interface of the RNA-Seq analysis pipeline as the master (or main) interface for job creation.

When the analysis completes, the pipeline presents the preliminary results to the user and

automatically launches a PBS Finder analysis for the resulting gene identifier list. At this

point the RNA-Seq pipeline’s interface should include a direct link to the created job in PBS

Finder. That link can then be used by the user to view the results of the RBP localization

analysis. Note that, while both tools are now integrated, the results of both analyses are

independent. As such, they can be consulted/reviewed independently from each other, as if

both had run separately.

3.5 Chapter Conclusions

In this chapter we reviewed the most important details about the design of the proposed

software solution (implementation details are described in Chapter 4). We presented the

modular, two subsystem model, that allows both tools to be used as standalone products,

increasing the number of their possible uses. Lastly, we talked about the general details of the

workflows of both tools, as well as the integration of those workflows.

3http://www.uniprot.org
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Implementation

In this chapter we present and discuss some specific details of the implementation of the

designed solution. We will also review some of the used technologies, and provide the rational

behind their choice, whenever relevant.

4.1 Gene Expression Analysis Pipeline

Due to time constraints the gene expression analysis pipeline could not be fully finished.

Integration with PBS Finder’s analysis pipeline was not accomplished. Similarly, it was also not

possible to provide the RNA-Seq analysis pipeline’s functionality through the web interface.

However, both the iRAP pipeline and the results combining program were completed and

functional.

4.1.1 Combining Differential Expression Results

The results combining tool was implemented in the form of a Ruby script. As a command

line script this tool can be easily integrated with the existing iRAP workflow, as iRAP is also

completely executed in the command line.

The results of differential expression produced by iRAP are exported as tab-separated val-

ues (TSV) files. Each differential expression analysis tool produces a TSV file for each contrast

that is analysed. These files contain gene identifiers and a variety of statistical values for each

identifier, including the p-value.

The tool takes all files from a single contrast, filters entries by p-value and counts the num-

ber of times each gene identifier is found. Note that each file has at most one occurrence of

a gene identifier. Every identifier that appears in all files is exported to the text file that con-

tains the combined results. This file can then be used as input for the RBP analysis platform,

obtaining further information about those genes.

An example of the use of this module is provided in Section 5.1.2 of Chapter 5
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4.2 RNA Binding Protein Analysis Web Platform

PBS Finder is implemented in two parts, following a client-server architecture: the web inter-

face and the analysis server. In this case the web interface is the client and the analysis server

is the server. This means that, whenever a user submits an analysis job, the web interface

sends an analysis request to the server, including the data set given by the user. The server

then processes the request and reports the results back to the web interface, that presents

them to the user.

4.2.1 Web Interface

PBS Finder’s web application interface is written in Ruby, using the Padrino1 framework.

Padrino is a web framework built on top of the Sinatra2 web library. Padrino allows the

creation of web applications that use Ruby to define their back-office logic.

4.2.2 Data Persistance

User and job data is persisted in a database; in this case the MongoDB3 database system

was chosen. MongoDB is a document based, NoSQL database. While widely adopted rela-

tional database management systems rely on large data banks and relational calculus, NoSQL

databases store information in the form of documents [SSK11], instead of relational table

records. NoSQL databases sacrifice the possibility to use some complex mechanisms of classi-

cal relational databases (for example structured queries and enforced information integrity),

in order to achieve higher performance and scalability. NoSQL databases are most effective

when the saved records are large but are seen as loosely structured collections of information.

4.2.3 Analysis Server

The analysis server is responsible for managing analysis requests sent by the web interface.

The server is implemented on top of Distributed Ruby (dRuby), a distributed object system

for Ruby. dRuby allows methods and behaviours to be invoked on an object that exists in

a different process or even in a different computer, using a network connection. From the

client’s point of view it seems like the object is local, as it can be used as any other object. The

server uses a master distributed object to receive analysis requests from the web interface.

The server launches each job concurrently. This behaviour allows the server to run multi-

ple analyses at the same time. Note that the server is not bound to a single type of analysis,

it can perform any type of analysis, as long as a valid implementation is available. The only

two constraints to create a new type of analysis are that the analysis workflow must be encap-

sulated inside an instantiable class. That class must implement a defined interface, in other

1http://www.padrinorb.com
2http://www.sinatrarb.com
3http://www.mongodb.org
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words, it must implement a simple set of methods that allows the server to control it. As

such, new analysis methods can be easily added in the future as their core functionality can

be opaque to the server as long as they implement the server’s interface.

Algorithm 4.1 represents the behaviour of the server when a new request arrives. The first

step is to determine if the requested analysis method is available. If it is, the corresponding

class is instantiated, and the analysis data set (and other relevant information) is passed to it.

Note that at the same time the server creates a file with a copy of all the parameters of that

particular request. If for some reason the server stops working, analyses that were running at

that time will be automatically restarted once the server is available again. After the object

that will be responsible for the analysis is created, the server creates and starts a new thread

for it. The server also saves an indication that that particular analysis is being executed.

receive request;
if request.analysis_method is available then

instantiate request.analysis_method with request.parameters;
save request.parameters to disk;
run the analysis in a new thread;
if success then

report results;
else

report error;
end
delete request.parameters from disk;

else
report error;

end

Algorithm 4.1: Processing a new analysis request from the web interface.

Once the analysis is complete the server is notified through its distributed instance, and

the results are communicated to the web interface. This also prompts the server to eliminate

both the indication of the running analysis from its internal list and the file with the analysis’

parameters from the file system.

4.2.4 Analysis Workflow

A detailed overview of the RBP analysis workflow can be seen in Figure 4.1. This workflow is

composed by three main stages: base analysis, data set enrichment and clustering analysis, all

of which will be described in detail below.

4.2.5 Base Analysis

The first step in the pipeline is to prepare the gene identifiers for the following analysis steps.

These identifiers can be written in five different notations, as described in Section 3.2.3. As

such, identifiers are separated according to their automatically detected notation in those five
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Ensembl Gene ID

Ensembl Transcript ID

Ensembl Gene ID List

Entrez ID

RefSeq ID

GenBank ID

Preliminary ID Matching

Entrez ID List

Convert to Ensembl Gene ID
Convert to

Entrez ID

Convert toConvert to

Ensembl Gene ID

Gene Enrichment

Group Genes
by Species

Find RBPs
Query RBPDB

UniProt
Enrichment

KEGG
Enrichment

Collect
KEGG IDs

RBP
Clustering

RBP Cluster
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Cluster
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Gene Cluster
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Gene
Clustering

Cluster
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ID List

ID List

Base Data Set
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Figure 4.1: PBS Finder workflow. Note that error paths were not represented for simplicity.
However, every component implements health checks, that may stop the entire analysis if the
minimum requirements for success are not met.
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groups. However, some of those identifiers may be invalid, despite appearing to fit in one of

the possible notations. It is assumed that if an identifier is valid, it can at least be converted

to either Ensembl Gene or Entrez notation. These notations were chosen because they are

the native notations for genes in the used platforms (Ensembl and NCBI). This conversion is

done using bioDBnet’s [MCYS09] identifier conversion service. The service was chosen for

its simplicity and its large conversion database, that draws from multiple conversion services

like NCBI or Ensembl. Entrez conversion is only attempted if Ensembl Gene conversion is not

available. While none of those platforms are preferred, converting as many identifiers as

possible to one convention helps to maintain data set coherence.

Since only two lists remain, one with Ensembl Gene identifiers and the other with Entrez

identifiers, information about those genes’ transcripts must be collected. This information in-

cludes the transcript’s name, its identifier, and its relevant genetic sequences. This information

is collected using their corresponding platform (Ensembl or NCBI).

The transcript sequences are then used to retrieve the related RBPs using RBPDB, an online

RNA binding protein database [CKZ+11]. For each sequence RBPDB finds every possible

RBP, along with its name, location and binding sequence. A complete list of all information

retrieved for both genes and transcripts can be found in Table 4.1. For a specific transcript,

if the retrieved 3’ UTR sequence is at least three hundred base pairs long it will be used with

RBPDB. If the 3’ UTR is too short, the 3’ UTR downstream sequence (genomic sequence) will

be used, with a fixed length of one thousand base pairs. If none of the above situations is

possible, the 3’ UTR will be used as is (if it is at least one base pair long). Note that while

the 5’ UTR sequence is also collected (when available), the consulted experts were interested

in analysing only the 3’ region. This information is sufficient to answer one of this thesis’

problems. However, it will be enriched and further analysed, bringing greater benefits to

researchers.

Table 4.1: Information retrieved for genes and transcripts in the base analysis stage. Informa-
tion marked with “*” represent optional information; it might be relevant to the researcher
and is therefore shown if available, but it is not crucial to the analysis. On the other hand,
the unmarked fields represent required information, without which analysis on that particular
gene/transcript cannot continue.

Gene
Transcript identifiers
Gene name*
Species*

Transcript
Protein identifiers
Transcript name*
Genetic sequences (3’ UTR, 3’ UTR downstream, 5’ UTR)
Names, locations and bind sequences of RBPs
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4.2.6 Data Set Enrichment

Given the RBP names obtained in the base analysis stage, a query is made to UniProt in order

to obtain their respective accession identifiers. These are used internally by UniProt to refer to

specific proteins. With the accession identifiers, the pages for each RBPs can be retrieved and

analyzed individually. These pages contain information about their respective RBPs, including

keywords, related tissues and information about the RBPs’ ontologies (cellular components,

molecular functions and biological processes).

The information collected from UniProt may also contains links to the KEGG web plat-

form. Among other useful information, KEGG contains information about protein pathways.

A pathway is a sequence of actions, related to specific molecules, that produce certain changes

within a cell, when performed. This information is crucial to understand the function of RBPs.

As such, it is collected for further analysis (see Table 4.2 for a complete list of all information

retrieved).

The first step for this phase is to use the protein names to retrieve a list of matching

UniProt Accession identifiers. By default PBS Finder will try to find a reviewed accession whose

species matches the species in question. If this is not possible it will fallback to an unreviewed

accession, from the same species. In case this is also not possible, it will try to find a reviewed

human analogue accession or, as a last case, an unreviewed one. After finding the identifiers,

the batch retrieval service is used to enrich the protein information. This information includes

ontologies, related tissues, and references to external databases. From these references, KEGG

identifiers in particular are used to retrieve information about pathways in which the RBPs

are expressed. For each pathway, both its name and link to the KEGG pathway viewer are

provided.

Table 4.2: Information retrieved for proteins in the data set enrichment stage. Information
marked with “*” represent optional information; it might be relevant to the researcher and
is therefore shown if available, but it is not crucial to the analysis. On the other hand, the
unmarked fields represent required information, without which analysis on that particular
protein cannot continue.

Protein

Protein name
UniProt identifier
Accession species
Related tissues*
Keywords*
Pathways*
Ontologies*
URLs to external platforms*
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4.2.7 Clustering Analysis

The last stage of the workflow is clustering analysis. Two different types of clustering ap-

proaches were conceived: clustering by RBP presence and clustering by RBP information. Note

that this analysis will not be performed if the quantity of available data is below certain

thresholds (typically the tool will not analyse data sets that have less than ten genes and/or

ten RBPs).

Clustering by RBP Presence

In the first case, the clustering analysis is only conducted at the gene level. Two genes are

similar if they are associated with the same RBPs. Inversely, two genes that do not have any

(or few) RBPs in common are considered “distant”. The tool makes an additional step in order

to determine which RBPs are common in one particular group, while being absent in all the

other groups. This information allows researchers to easily determine which RBPs can be used

to interact with a particular group of genes, while not affecting the others.

Clustering by RBP Information

In the second case the clustering process has two phases. In the first phase RBPs are grouped

based on their similarity. Similarity is computed using a set of attributes that include (de-

pending on availability): pathways; tissues where the RBP is expressed; keywords describing

their main functions; and other relevant information such as ontologies (biological processes,

molecular function and cellular components). The tool compiles a list of defining features for

each group (to later present to the user). However, in this case the RBP groups will be used to

group similar genes. Unlike the previous method, similarity between genes is not only mea-

sured in how many RBPs they have in common. In this case any two genes may be considered

similar if both are related to RBPs that were grouped together in the previous step, even if

they do not share exactly the same RBPs between them.

Setup Variation

To produce the final results multiple clustering experiments are attempted. Due to the small

amount of time that the chosen clustering algorithms need to run it is possible to execute

a large number of attempts and then choose only the best results. Each attempt is a varia-

tion of the analysis parameters, being that each possible value for a parameter is combined

with every value for the remaining parameters, giving rise to a large number of experiments.

When clustering by RBP presence the variable parameters are: clustering algorithm (either

hierarchical clustering or partitioning around medoids); and the number of clusters (between

two and ten). While clustering by RBP information the same variable attributes apply. How-

ever, the decision about what RBP information is used for their comparison is also variable,

from a minimum of two information fields. For example, in a particular clustering attempt
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only information about the RBPs’ pathways and related tissues may be used, while another

attempt may use all available information. Furthermore, for this particular type of analysis

the representation of the data set can also vary. The data set can be represented either as a

binary matrix (as is the case in clustering by RBP presence) or by a Jaccard distance matrix,

calculated from the sets of possible values for each of the protein’s attributes.

Result Selection

With the large number of results obtained from all the clustering attempts, it is not reasonable

to expect a user to manually choose the ones that are most interesting. As such, internal evalu-

ation techniques for clustering are coupled with rules that define minimum acceptance criteria

for results, narrowing the result space to only one for each type of clustering. Algorithm 4.2

represents the method used for result selection.

sort clustering results by average silhouette (descending);
filter clustering results with clusters with less than 8% of data set objects;
abundance_frequency = 0.90;
while abundance_frequency ≥ 0.50 do

foreach clustering result do
classify as abundant any attribute with frequency ≥ abundance_frequency;
remove abundant attributes that appear in multiple clusters;
if at least one unique abundant attribute exists for each cluster then

select cluster;
break loop;

else
abundance_frequency = abundance_frequency − 0.05;

end
end

end
if a cluster was selected then

return selected cluster;
else

return cluster with highest average silhouette;
end

Algorithm 4.2: Selection of best clustering results.

ILP Clustering

Clustering using ILP techniques was also attempted. The main objective of this approach was

to uncover more information about the implicit relationships present in the data sets. While

conventional clustering methods present only the data set objects grouped in clusters, with

ILP it is possible to understand exactly what rules were used to form those clusters.

The devised approach had two steps. First, the results for each new job would be repre-

sented in the form of Prolog clauses. Second, those clauses would be used as data set for the
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ERDA [FCC12] clustering system, running on top of YAP Prolog [CDR11]. However, due to

problems with the available tools, this approach could not be included in the current version

of PBS Finder.

4.2.8 Web Interface

Job View

Job view, also known as main view, is the default projection of a job’s results (Figure 4.2).

It gives the user a matrix that matches every gene (and transcript) in the data set with their

corresponding binding proteins, as well as an histogram of the genes (a bar chart of the

number of genes with which each RBP binds). This matrix also contains two columns that

provide information about how the genes were grouped, based on the two distinct clustering

techniques. In addition to this information, clicking any group of genes will give the user a

list of all the characteristics that differentiate that particular group from all the others.

This view also contains a mechanism that allows users to provide feedback and report

problems. Clicking the “Report a problem” button the user is presented with a form that

allows them to provide a brief description of the problem. If the user chooses to send that

report, the web platform will send an email to its administrator, containing the submitting

user’s information, the problem description and a direct link to the offending page.

Transcript View

The transcript view (Figure 4.3) offers more detailed information about the transcript’s bind-

ing proteins, giving for each protein the base pairs that compose the binding site (and its

start and stop positions) and a percentage score of the match’s quality. A maximum of three

different genetic sequences (5’ UTR, 3’ UTR and 3’ UTR downstream4) are also displayed,

depending on their availability. Whenever possible, related links to other platforms are pre-

sented (Ensembl, NCBI and UniProt). Like the job view, it also contains clustering information,

but in this case only one column, that shows how the RBPs related to that specific transcript

were grouped. Also similarly to the job view, users can click any group to obtain relevant

information about the defining characteristics of that particular group.

Protein View

The protein view (Figure 4.4) displays relevant classification information for every RBP (when

available). This information includes the protein’s name, links to other platforms (UniProt,

KEGG, Gene3D, etc.), tissues in which the protein might be expressed, the protein’s ontologies

and the pathways in which the protein participates. Each pathway is coupled with a link to

the corresponding KEGG pathway browser page.

45’ UTR and 3’ UTR are non-coding regions located before the initiation codon and after the termination
codon, respectively. While these regions are not translated to useful genetic products, their presence is important
to regulate cellular processes.
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Figure 4.2: Job view example, also known as main view. It is comprised by three main
components: general information (which includes data download); RBP frequency histogram;
and RNA binding protein matching table.

Exporting the Results

Besides browsing, users can download their results as text files. Three different types of data

projections of the results are provided: RBP data, protein data and the complete data set. RBP

data can be downloaded in either comma-separated values (CSV) or tab-separated values

(TSV) format. This file gives the user a match matrix of binding proteins, similar to the one in

the job results view, as well as species, gene and transcript information. Protein data can also

be downloaded in both CSV and TSV formats. It gives a more complete view of the results,

including species, gene, transcript and protein identifiers and additional protein information
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Figure 4.3: Transcript view example. It contains four main areas: general information about
the transcript; RNA sequences (5’UTR, 3’UTR and 3’UTR downstream are shown depending
on availability); RBP locations histogram; and RBP location table (including clustering results
and match sequences).

(keywords, related tissues, ontologies, etc.). Finally, the data set may be downloaded as a

complete Prolog predicate representation of the job results. This is the same representation

of the results that was created with the usage of ILP clustering techniques in mind. While it

was not possible to use those techniques, the produced data set representation might still be

of use to researchers.

While in most cases these data representation conversions are apparently instantaneous,

for large data sets they may take an additional amount of time. This would cause the web

application to seemingly block if the user tried to download one of those files. To solve this

problem all files are generated during the analysis process, then stored in the web application’s
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Figure 4.4: Protein view example, containing four relevant areas: general information about
the protein; links to other web platforms with relevant information about the protein (note
that some of those platforms might not contain information about a particular protein, and
therefore no links can be shown); additional info, including keywords, related tissues and
pathways in which the protein is expressed; and lastly, information about the protein’s on-
tologies, including cellular components, molecular functions and biological processes.

MongoDB instance through GridFS5. This allows those files to be downloaded instantly, as

they need only to be generated once.

4.3 Chapter Conclusions

In this chapter we presented a concrete approach to the development of the proposed so-

lutions. We reviewed their most important features and implementation choices. Further

examples of their usage is available through a case study in Chapter 5.

5GridFS is a functionality integrated in MongoDB that allows a simple file system to be simulated inside a
database. Files are divided into small chunks and those chunks are stored as regular MongoDB documents.
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Case Studies

In this chapter we present two case studies that were used as a proof of concept for the

developed system. We characterize the experimental environment, the used data sets and the

obtained results for both cases. We then compare the developed solutions with the previously

available methods.

5.1 Gene Expression Analysis Pipeline

This case study illustrates the developed gene expression pipeline, composed by iRAP and the

differential expression results combination tool. Gene expression analysis is a complex task

and, because of that, no definitive tool exists that can produce good results for every possible

case. Some tools are better when analysing certain types of data/organisms, while other tools

might have other strengths and weaknesses. It is difficult for an inexperienced user, as it is to

an automated tool, to determine the best tool to use in each case. The objective of this case

study is to ascertain if the developed pipeline enhancement can help overcome this difficult,

by combining the best results from multiple tools.

5.1.1 Case Study Setup

The data used in this case study was obtained from Ensembl Genomes (annotated reference

genome) and ENA Sequence Read Archive (sequencing reads). The experiment itself is based

on RNA-Seq experiment E-GEOD-48829, available at ArrayExpress1.

1ArrayExpress in an online database where researchers can submit and search functional genomics experi-
ments. This particular experience can be found at http://www.ebi.ac.uk/arrayexpress/experiments/
E-GEOD-48829/.
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Analysis Data Set

The used data set was the same as in ArrayExpress experiment E-GEOD-48829. This exper-

iment studies the Escherichia coli bacteria, commonly known as E. coli. E. coli is a model

organism: a “simple”, non-human organism that is extensively studied, with the expecta-

tion that the discoveries made for that particular organism are useful to understand different

organisms [FJ05]. Other examples of model organisms are Rattus norvegicus (norway rat),

Drosophila melanogaster (fruit fly) and Mus musculus (common mouse).

Being extensively studied was just one of the reasons that led to this choice of data set. As

a single cellular organism, E. coli is a simple organism, whose genome is fairly short (when

compared with vertebrates, for example). This allows for much faster analysis times of a few

hours, as opposed to the longer run times of larger genomes.

The experiment was composed by a total of six libraries, divided into two groups. These

groups were used to define a contrast2 in the differential expression analysis.

Experimental Environment

For this data set all tests were performed in the same machine. The machine’s specifications

can be consulted in Table 5.1. Performance was not a big concern in this case study, as it is

expected that iRAP may takes between hours and days to complete an experiment. In these

experiments the biggest constraint is the machine’s memory: older machines might not have

enough memory to execute a complex iRAP analysis.

Table 5.1: Specifications of the test environment used for the case study experiments.

Machine
Operative system Debian GNU/Linux Jessie/Sid
CPU Intel Core 2 Quad Q9400 (4 cores)
CPU speed 2.66 GHz
Memory 16 GiB DDR2 (800 MHz)

Methodology

Firstly, all information related to the experiment was downloaded to the test machine (an-

notated reference genome and reads). A configuration file for the experiment was written,

defining settings, libraries, groups, contrasts and any other information relevant to the exper-

iment.

The experiment was then executed until the quantification step; no differential expres-

sion analysis was performed at this point. This preliminary experiment used TopHat as a

mapping/alignment tool and HTSeq as a quantification tool (see Section 2.2.2).

2In the context of differential expression a contrast is composed by two groups of libraries; these groups are
compared between them, in order to uncover differences in their expression levels.
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Differential expression analysis was then performed using the previously produced quan-

tification data. This analysis was conducted with both edgeR and DESeq (see Section 2.2.3).

The total number of distinct lines in each result file was counted (for both tools). The next

step was to remove any entries with high p-values from those files, leaving only lines with a

p-value less or equal to 0.05. New line counts were produced for each of the filtered files.

Finally, both files were combined in a single using the produced tool, and a last line count was

made.

5.1.2 Comparison with Previous Results

The developed tool’s results were compared with both the normal “raw” results directly pro-

duced by the differential expression tools and with those same results, filtered by p-value.

Table 5.2 shows these results, in terms of distinct lines per results file. Note that every line

corresponds to a unique differentially expressed gene.

Table 5.2: Number of distinct lines resulting from differential expression analysis. These
results are relative to the raw results produced by the differential expression tools, those
same results filtered by p-value and combined with the produced tool.

Raw results Filtered results Combined results
edgeR 4494 386

191
DESeq 4494 204

This experiment demonstrates that the developed tool can in fact filter the results of dif-

ferential expression into a smaller data set. This filtered data set will hopefully reveal itself

more useful to researchers, eliminating unnecessary information and giving higher levels of

confidence in the results. However, we have no way of comparing these results with the pre-

vious ones from a biological standpoint. Such assessment must be performed by experts in

this field, which was not possible at this time.

5.2 RNA Binding Protein Analysis Web Platform

This case study is aimed at the RBP analysis tool (PBS Finder). RhoGTPases comprise a family

of molecular switches that control signal transduction pathways that link cell surface receptors

to a variety of intracellular responses. In this particular case the genes are related to the

well known model organism Rattus norvegicus, commonly known as norway rat. This data

set was produced by IBMC experts. The same experts then validated the obtained results

experimentally.

This experiment has three distinct goals. The first goal is to assess the general usefulness of

PBS Finder. It is important to determine if the developed tool can at least reproduce the results

obtained with previous methods. It is also relevant to assess if PBS Finder is able to provide

even more relevant information to researchers, facilitating their work. The second goal is
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to compare PBS Finder with the existing techniques of manual analysis. One of the major

constraints of manual analysis is the time it takes to complete; PBS Finder should be able to

reduce the duration of the analysis. Lastly, the third goal is to assess the impact of differences

in hardware performance in the overall performance of the platform. PBS Finder should

be sufficiently optimized to be able to run in personal computers with decreased hardware

performance, instead of only in servers or computer clusters.

5.2.1 Case Study Setup

The available case study data set was produced by IBMC experts. The same experts then

validated the obtained results experimentally.

Analysis Data Set

The analysis data set is comprised by twenty three gene identifiers, from the RhoGTPase family.

The actual genes used for our tests can be found in Table 5.3. Note that the tool only needs

to receive gene identifiers; gene names are not currently accepted as input data.

Table 5.3: RhoGTPase family genes used as data set in the case study.

Gene name Gene ID Transcript ID
Rhoj ENSRNOG00000021919 ENSRNOT00000031979
Rhog ENSRNOG00000020393 ENSRNOT00000027641
Rac3 ENSRNOG00000048172 ENSRNOT00000073886
Rac2 ENSRNOG00000007350 ENSRNOT00000009994
Rhod ENSRNOG00000019220 ENSRNOT00000026092
Rhof ENSRNOG00000042607 ENSRNOT00000064390
Rhoh ENSRNOG00000002540 ENSRNOT00000003425
Rnd ENSRNOG00000020698 ENSRNOT00000028089
Rhoc ENSRNOG00000012630 ENSRNOT00000017254
Cdc42 ENSRNOG00000013536 ENSRNOT00000029025
Cdc42 ENSRNOG00000013536 ENSRNOT00000018118
Rhoq ENSRNOG00000015415 ENSRNOT00000020822
Rac1 ENSRNOG00000001068 ENSRNOT00000001417
Rhou ENSMUSG00000039960 ENSMUST00000136615
Rhou ENSMUSG00000039960 ENSMUST00000045487
Rhoa ENSRNOG00000050519 ENSRNOT00000071664
Rnd1 ENSRNOG00000013621 ENSRNOT00000018276
Rnd3 ENSRNOG00000004624 ENSRNOT00000006111
Rhob ENSRNOG00000021403 ENSRNOT00000008008
Rhobtb1 ENSRNOG00000000633 ENSRNOT00000000784
Rhobtb2 ENSRNOG00000017373 ENSRNOT00000023876
Rhobtb3 ENSRNOG00000012414 ENSRNOT00000016838
Rhov ENSRNOG00000013380 ENSRNOT00000018277
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Experimental Environment

The testing environment was reproduced in two different machines. These machines differ in

their hardware and operative system, but every other variable in the environment (internet

connection speeds, machine usage, etc.) holds for both machines. Performance results for the

case study experiment for both machines are given in Section 5.2.4. Henceforth the machines

will be referenced as Machine1 and Machine2, as shown in Table 5.4.

Table 5.4: Specifications of the test environments used for the case study experiments.

Machine1 Machine2
Operative system OS X 10.9.3 Debian GNU/Linux Jessie/Sid
CPU Intel Core i7 4850HQ (4 cores) Intel Core 2 Quad Q9400 (4 cores)
CPU speed 2.30 GHz 2.66 GHz
Memory 16 GiB DDR3 (1600 MHz) 16 GiB DDR2 (800 MHz)
Internet connection 100 Mbps 100 Mbps

Methodology

In order for the experiments’ execution time to depend only on the hardware of the machines

several environment restrictions were enforced. Firstly, it was ensured that both machines

were running their operative systems with the minimum required applications, without any

parallel usage. The network connections were also checked to assert if they were working at

equal speeds. Lastly, both machines were verified in order to ascertain if all needed software

had equal or equivalent versions.

Ten experiments ran on each machine. These experiments were executed sequentially

rather than concurrently, to ensure more consistent results. Note that access to the tool was

barred to other users during these experiments for the same reason. It was also ensured that

the support structures of the platform, including databases, were only used for this set of

experiments and reset after each one.

5.2.2 Results

Table 5.5 includes the relevant results for this case study. As expected, some RBPs are able

to bind to almost all members of the RhoGTPase family (for example Muscleblind-Like Splicing

Regulator 1 (MBNL1)), where others were more specific (for example Y Box Binding Protein

1 (YBX1)). The latter kind is more interesting to analyse, as it might be used to manipulate

a very specific set of genes, while leaving all others unaltered. In this case we chose the

RBP YBX1 as the base of our validation, both because it only interacts with five genes and

because the genes it interacts with are representative of the data set, in terms of biological

classification.

Table 5.5 shows that the tool found two clusters of genes within the data set. In this case

the best results were obtained using average linkage hierarchical clustering, coupled with a
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Table 5.5: Case study results generated by PBS Finder (table divided intro three sections for
legibility). Each row represents a single gene from the data set and each column represents
an RBP with which the genes potentially bind. Note that for this particular analysis the tool
divided the genes into two clusters, joining together genes that bind with similar proteins.

SNRPA ELAVL2 HNRNPA1 NONO PABPC1 ZRANB2 RBMY1A1 FUS PUM2 SFRS9 MBNL1 EIF4B

Cl
us

te
r

1

Rhoj × × × × × × × ×
Rhog × × × × × ×
Rac3 × × × × × × × × ×
Rac2 × × × × × ×
Rhod × × × × × × ×
Rhof × × × × × × ×
Rhoh × × × × ×
Rnd2 × × × × × ×
Rhoc × × × × × × × ×

Cl
us

te
r

2

Cdc42 × × × × × × × × × × × ×
Cdc42 × × × × × × × ×
Rhoq × × × × × × × × ×
Rac1 × × × × × × ×
Rhou
Rhou × × × × × × × × × × ×
Rhoa × × × × × × ×
Rnd1 × × × × × ×
Rnd3 × × × × × × × × ×
Rhob × × × × × × × × × ×
Rhobtb1 × × × × × × × × × × × ×
Rhobtb2 × × × × × ×
Rhobtb3 × × × × × × × × × × × ×
Rhov × × × × × × × ×

EIF4B KHSRP YTHDC1 VTS1 RBMX KHDRBS3 SFRS1 ELAVL1 SFRS13A SFRS7 A2BP1 QKI

Cl
us

te
r

1

Rhoj × × × × × × × × × × ×
Rhog × × × × × × × × ×
Rac3 × × × × × × × × × × ×
Rac2 × × × × × × × ×
Rhod × × × × × × × × × × ×
Rhof × × × × × × × × × ×
Rhoh × × × × × × ×
Rnd2 × × × × × × × × × ×
Rhoc × × × × × × × × × ×

Cl
us

te
r

2

Cdc42 × × × × × × × × × × × ×
Cdc42 × × × × × × × × × ×
Rhoq × × × × × × × × × × ×
Rac1 × × × × × × × × × ×
Rhou
Rhou × × × × × × × × × ×
Rhoa × × × × × × × × × ×
Rnd1 × × × × × × × × ×
Rnd3 × × × × × × × × × ×
Rhob × × × × × × × × × × ×
Rhobtb1 × × × × × × × × × ×
Rhobtb2 × × × × × × ×
Rhobtb3 × × × × × × × × × × ×
Rhov × × × × × × × × ×

QKI SUS YBX2-A PSI SAP-49 ACO1 YBX1 SFRS2 ZFP36 RBM4 PTBP1

Cl
us

te
r

1

Rhoj × × × × ×
Rhog × ×
Rac3 ×
Rac2 ×
Rhod ×
Rhof × × × ×
Rhoh
Rnd2 × ×
Rhoc

Cl
us

te
r

2

Cdc42 ×
Cdc42 × × × × × × ×
Rhoq × × × × × ×
Rac1 × × × × ×
Rhou
Rhou × × × ×
Rhoa × × × × ×
Rnd1 × ×
Rnd3 × × × × ×
Rhob × × ×
Rhobtb1 × × ×
Rhobtb2 × ×
Rhobtb3 × × × × × ×
Rhov × ×
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binary representation of the distance matrix. This particular solution was chosen for having

a higher average silhouette than other produced solutions. Table 5.6 contains a list of all the

proteins that were considered as defining for their clusters. Note that Cluster 1 contained

proteins that were frequent across the data set; on the other hand, Cluster 2 contained seven

RBPs that were identified as features of that cluster.

Table 5.6: RBPs found to characterize each cluster. Note that Cluster 1 does not contain any
RBP that can be considered as a defining feature of that cluster. This is due to the fact that
proteins in Cluster 1 are generally abundant through the data set.

Cluster 1 Cluster 2

-

ZFP36
ELAVL2
ZRANB2
PSI
PTBP1
SFRS7
SUS

5.2.3 Correctness and Completeness of the Results

Result checking was conducted in two different fronts: collected data completeness and correc-

tion; and biological results evaluation.

Completeness and correction analysis were conducted both manually and automatically

during the development of the tool. In some cases it was possible to automate these valida-

tions using unit testing3 and mocks4. However, creating this test infrastructure is a lengthy

process. As such, some results, as is the case with this case study, were manually validated.

This validation involves manually visiting every website used to collect information and cross

reference that information with the one collected by the tool.

The validation of biological results is more complex. It involves experimentally obtaining

the same information that the tool produces, from biological samples. This validation was

conducted at IBMC. However, it is a lengthy process, as obtaining this information may take

several weeks. It has two main objectives: validating the number and type of RBPs that bind

to each gene; and validate the adequacy of the gene clustering results.

Both checking processes were conducted successfully, thus improving the confidence that

the developed platform produces adequate results.

3Unit testing is a software testing method that focus on testing individual units of a developed software; these
tests are used to assess which of those units are fit, and which do not work correctly.

4A mock, or mock object, is a simulated object that mimics the behavior of a complex component of a software
system. Mock objects are particularly useful when the behavior of its real counterpart is hard/costly to predict
and control
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5.2.4 Comparison with Previous Method

As with any newly developed automation tool, it is essential to assess if the developed tool is

in fact an improvement over previously available methods. The results produced by the tool

were already determined correct in Section 5.2.3. As such, the tool should now be evaluated

from the user experience standpoint, namely, in terms of task simplification and efficiency.

Task Simplification

Figure 5.1 depicts how PBS Finder simplified the analysis process, from the user point of view.

When conducting a manual analysis, the user must individually analyse every gene in the data

set.

The first step is to select a gene for analysis. The gene identifier is then searched in either

Ensembl or NCBI web platforms, depending on the type of the identifier. If the gene is found

in those platforms, the next step involves finding the 3’UTR sequence in the results page and

copying it. That sequence is then passed to an online RBP analysis platform, that should

retrieve a list of RBPs that may bind to that particular sequence. Lastly, the RBP information

must be manually combined in the results table. When this information is collected for every

gene it is finally possible to conduct a useful analysis.

On the other hand, with PBS Finder the user needs only to provide the complete list of

all gene identifiers in the data set. The tool will them automatically process those identifiers,

find all relevant information and present it to the user, ready for further analysis. Note that

these results contain additional information that is not available in the manual analysis: gene,

transcript and protein information (names, additional sequences, pathways, etc.); links to

external platforms; useful histograms; and gene and protein clustering results.

Efficiency

It is essential for the developed platform to be able to conduct the analysis in a timely fashion,

making tool performance a major concern. As such, we compared the average time that an

expert would take to analyse the data set to the average time that the tool takes to analyse

the same data set.

The consulted molecular biology expert estimated that, on average, it would take thirty

minutes to analyse a single gene. This means that an expert would need an average of eleven

and a half hours (30 minutes×23 genes) to process the entire case study data set.

On the other hand, the automated tool takes a shorter amount of time to conduct the

analysis of the same data set. In order to assess the actual amount of time the tool took to

analyse the entire data set we ran twenty sequential experiences, ten for each of the exper-

imental environments. Table 5.7 depicts the duration of each one of those experiments, as

well as their average duration. As expected, an automated tool widely outperforms a human

expert in information collection and analysis.
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(a) Manual Analysis (b) Automatic Analysis (PBS Finder)

Microarray or RNA-Seq gene list Microarray or RNA-Seq gene list

Select a gene

Search for the mRNA sequence
(NCBI or Ensembl web platforms)

Select the 3’UTR sequence

Search for the 3’UTR sequence

in a RBP Database

Fill in the gene/RBP table

Analyse the results

Copy IDs into PBS Finder

Analyse the results

Candidate selection Candidate selection

Repeat for

each gene

Figure 5.1: Comparison between manual RBP analysis and automatic RBP analysis (conducted
with PBS Finder).

Table 5.8 contains the stress test results of both machines, compared to the estimated

work time needed by an expert. In this case stress tests were executed with one hundred,

five hundred and nine hundred gene identifiers. Even the slowest test can be completed by

the machine with less performance (Machine2) in under three hours. That same effort would

take an expert approximately four hundred and fifty hours, which amounts to two and a half

weeks on a twenty four hour working day, and to just under two months in normal working

conditions (eight hours per day).
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Table 5.7: Execution times of the case study data set in two different environments (sequential
experiments). Note that while Machine2 has a significant loss in performance (due to its
outdated hardware) it still achieves satisfactory execution times. This test also shows that it
is possible to efficiently run PBS Finder in a home computer.

Machine1 Machine2
Experience 1 1m 47s 6m 34s
Experience 2 1m 58s 6m 25s
Experience 3 1m 46s 6m 30s
Experience 4 1m 45s 6m 15s
Experience 5 2m 23s 6m 42s
Experience 6 1m 35s 6m 30s
Experience 7 1m 40s 6m 31s
Experience 8 1m 39s 6m 11s
Experience 9 1m 42s 6m 42s
Experience 10 1m 42s 6m 52s
Average time 1m 42s 6m 31s

Table 5.8: Results comparison between manual analysis and both test machines.

Number of IDs Machine1 Machine2 Manual method
100 9m 56s 11m 1s ≈ 50h
500 41m 47s 55m 51s ≈ 250h
900 1h 33m 32s 2h 7m 4s ≈ 450h

5.3 Chapter Conclusions

The first case study has shown that the developed tool for result combination can in fact

produce more refined data sets. These filtered and combined data sets eliminate unnecessary

data, and give biologists an higher level of confidence in the differential expression results.

Through the second case study we have shown that PBS Finder produces relevant and

correct results for large-scale analysis of RBPs using data from NGS techniques. We have also

shown that our tool significantly facilitates the work of the biologist, by making analysis of

this data easier and quicker. As such, we consider PBS Finder a tool of great value for studying

RNA biology.
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Conclusions

In this thesis we developed a prototype of an integrated platform for RNA-Seq data analysis.

This platform is able to perform the entire analysis process, from the sequencing reads, to

grouping genes by their RBPs. This means that is able to perform read alignment, quantifica-

tion and differential expression analysis tasks, as well as data set enrichment, RBP identifica-

tion and clustering analysis of genes and proteins. Through two case studies we showed the

developed prototype in use, and assessed its correctness and efficiency. Below we will share

our thoughts on the fulfilment of the objectives of this thesis, and present some possibilities

for any future development in our solution.

During this thesis we were advised by molecular biology experts from IBMC. The data set

used in the second case study was provided by IBMC experts and the results obtained are

currently being experimentally verified in their laboratory.

6.1 Objective Fulfilment

Our objectives, in terms of studying the problem at hand and developing a solution to it,

were completely fulfilled. The proposed solution corresponds to all of our expectations. Both

analysis pipelines were completely prototyped and tested, being that PBS Finder was tested in

both development and production environments. However, it was not possible to integrate the

RNA-seq data analysis pipeline with PBS Finder’s analysis pipeline, due to time constraints.

Similarly, it was also not possible to provide the RNA-Seq analysis pipeline’s functionality

through the web interface. As such, our objective of prototyping and testing the complete

integrated system could not be completely achieved.
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6.2 Future Work

A natural continuation of the proposed work would be to finish the implementation and in-

tegration of the RNA-Seq data analysis pipeline. This would allow our solution to work as

designed, integrating the complete analysis pipeline, from sequencing data to gene cluster-

ing and result visualization. Furthermore, it would be useful to study the developed tools in

terms of performance, under large volumes of information and requests. Whilst the tools were

developed taking in consideration their performance, making them available in a large scale

would require another kind of infrastructure.
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Alternative splicing

Alternative splicing that causes a specific gene to be transcribed to several different RNA

sequences, by means of different combinations of exons. This process is a major source

of protein diversity in an organism [Bla03].

cDNA

DNA which has been reverse transcribed using RNA as a template [Lyo98].

Cytoplasm

The protoplasm of a cell contained within the cell membrane, but excluding the nucleus.

It helps to move materials around the cell and is also responsible for dissolving cellular

waste [Lyo98].

Exon

The portions of a genomic DNA sequence which will be represented in the final, ma-

ture mRNA. Exons may include coding sequences, the 5’ untranslated region or the 3’

untranslated region [Lyo98].

Expression

To “express” a gene is to cause it to function. A gene which encodes a protein will, when

expressed, be transcribed and translated to produce that protein. A gene which encodes

an RNA rather than a protein (for example, a rRNA gene) will produce that RNA when

expressed [Lyo98].

Gene

A unit of DNA which performs one function. Usually, this is equated with the produc-

tion of one RNA or one protein. A gene contains coding regions, introns, untranslated

regions and control regions [Lyo98].

Genome

The total DNA contained in each cell of an organism. There are somewhere in the order

of a hundred thousand genes, including coding regions, 5’ and 3’ untranslated regions,

introns, 5’ and 3’ flanking DNA [Lyo98].
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Intron

Introns are portions of genomic DNA which are transcribed (and thus present in the

primary transcript) but which are later spliced out. Thus, they are not present in the

mature mRNA [Lyo98].

mRNA

“Messenger RNA” contains sequences coding for a protein. The term mRNA is used only

for a mature transcript (with all introns removed), rather than the primary transcript in

the nucleus [Lyo98].

Nucleus

The nucleus is a part of the cell, that is enclosed by a membrane [Lyo98]. It contains

the cell’s genetic information, in the form of DNA and RNA molecules [Lyo98].

rRNA

“Ribosomal RNA” describes any of several RNAs which become part of the ribosome,

and thus are involved in translating mRNA and synthesizing proteins [Lyo98].

Shotgun cloning

The process of randomly shearing an organism’s genomic DNA and cloning it into a

suitable vector, resulting in a genomic library [Lyo98].

Shotgun sequencing

Sequencing the DNA library created by shotgun cloning [Lyo98].

Signal transduction

Process in which an extracellular signaling molecule activates a specific receptor located

in the border (or inside) a cell; in turn this receptor triggers a chain of events inside the

cell that leads to its response [LBZ00].

Transcription

The process of copying DNA to produce an RNA transcript. This is the first step in the

expression of any gene. The resulting RNA will produce the desired protein molecule

by the process of translation [Lyo98].

Translation

The process of decoding a strand of mRNA, thereby producing a protein based on the

code [Lyo98].
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tRNA

“Transfer RNA” represents one of a class of rather small RNAs used by the cell to carry

amino acids to the enzyme complex (the ribosome) which builds proteins, using an

mRNA as a guide [Lyo98].
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iRAP Example Configuration

# =============================================================================

# Name of the experiment. (no spaces)

# All files produced by irap will be placed in a folder with the given name.

name=myexp

# =============================================================================

# Name of the species.

species=homo_sapiens

# =============================================================================

# FASTA file with the reference genome.

reference=Homo_sapiens.GRCh37.66.dna.fa

# =============================================================================

# GTF file with the annotations.

gtf_file=Homo_sapiens.GRCh37.66.gtf

# =============================================================================

# iRAP options (may be provided in the command line).

# Mapper

# mapper=<pick one supported by iRAP>

# Quantification method

# quant_method=<pick one supported by iRAP>

# Differential expression method

# de_method=<pick one supported by iRAP>

# Gene set enrichment (GSE) analysis

# gse_tool=piano

# Check data (reads) quality (on|off)
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# qual_filtering=on

# Trim all reads to the minimum read size after quality trimming (y|n)

# (only applicable if qual_filtering is on)

# trim_reads=y

# Minimum base quality accepted (default is 10)

# min_read_quality=10

# Contamination check (cont_index parameter). Reads that likely originate from

# organisms other than the one under study can be discarded during

# pre-processment of the reads. This is done by aligning the reads to the

# genomes of organisms that might be a source of contamination and discard

# those that map with a high degree of fidelity. By default iRAP will check if

# the data is contaminated by e-coli. An example to create a contamination

# "database" is provided in the examples/ex_add2contaminationDB.sh script. The

# value of the parameter should be the file name prefix of the bowtie index

# files.

# Disable contamination check

# cont_index=no

# Default value

# cont_index=$(data_dir)/contamination/e_coli

###########################################

# Miscellanious options

# Number of threads that may be used by iRAP

# max_threads=1

# Exon level quantification (y|n)

# exon_quant=y

# Transcript level quantification (y|n)

# transcript_quant=y

# =============================================================================

# Full or relative path to the directory where all the data can be found.

data_dir=data

# =============================================================================

# Only necessary if you intend to perform Differential Expression analysis.

# Contrasts

contrasts=purpleVsPink purpleVsGrey

# Definition of each constrast

purlpleVsPink=Purple Pink
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purlpleVsGrey=Purple Grey

# Groups definition

Purlple=myLib1 myLib2

Pink=myLib3

Grey=myLib4

# Technical replicates

technical.replicates="myLib1,myLib2;myLib3;mylib4"

# =============================================================================

# Data

# *_rs => read size

# *_qual => quality encoding (33|64)

# *_sd => standard deviation

# *_ins => insert size

myLib1=f1.fastq

myLib1_rs=75

myLib1_qual=33

myLib2=f2.fastq

myLib2_rs=75

myLib2_qual=33

myLib3=f3_1.fastq f3_2.fastq

myLib3_rs=50

myLib3_qual=33

myLib3_ins=350

myLib3_sd=60

myLib4=f4_1.fastq f4_2.fastq

myLib4_rs=50

myLib4_qual=33

myLib4_ins=350

myLib4_sd=60

# List the names of your single-end (se) and paired (pe) libraries

se=myLib1 myLib2

pe=myLib3 myLib4
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Appendix B

Examples of Biological Information

Files

B.1 SAM Example

HD VN:1.0 SO:coordinate

@SQ SN:seq1 LN:5000

@SQ SN:seq2 LN:5000

@CO Example of SAM/BAM file format.

B7_591:4:96:693:509 73 seq1 1 99 36M * 0 0

CACTAGTGGCTCATTGTAAATGTGTGGTTTAACTCG <<<<<<<<<<<<<<<;<<<<<<<<<5<<<<<;:<;7

MF:i:18 Aq:i:73 NM:i:0 UQ:i:0 H0:i:1 H1:i:0

EAS54_65:7:152:368:113 73 seq1 3 99 35M * 0 0

CTAGTGGCTCATTGTAAATGTGTGGTTTAACTCGT <<<<<<<<<<0<<<<655<<7<<<:9<<3/:<6): MF:i

:18 Aq:i:66 NM:i:0 UQ:i:0 H0:i:1 H1:i:0

EAS51_64:8:5:734:57 137 seq1 5 99 35M * 0 0 AGTGGCTCATTGTAAATGTGTGGTTTAACTCGTCC

<<<<<<<<<<<7;71<<;<;;<7;<<3;);3*8/5 MF:i:18 Aq:i:66 NM:i:0 UQ:i:0 H0:i:1

H1:i:0

B7_591:1:289:587:906 137 seq1 6 63 36M * 0 0

GTGGCTCATTGTAATTTTTTGTTTTAACTCTTCTCT (-&----,----)-)-),’--)---’,+-,),’’*,

MF:i:130 Aq:i:63 NM:i:5 UQ:i:38 H0:i:0 H1:i:0

EAS56_59:8:38:671:758 137 seq1 9 99 35M * 0 0

GCTCATTGTAAATGTGTGGTTTAACTCGTCCATGG <<<<<<<<<<<<<<<;<;7<<<<<<<<7<<;:<5% MF:i

:18 Aq:i:72 NM:i:0 UQ:i:0 H0:i:1 H1:i:0

EAS56_61:6:18:467:281 73 seq1 13 99 35M * 0 0

ATTGTAAATGTGTGGTTTAACTCGTCCCTGGCCCA <<<<<<<<;<<<8<<<<<;8:;6/686&;(16666 MF:i

:18 Aq:i:39 NM:i:1 UQ:i:5 H0:i:0 H1:i:1

EAS114_28:5:296:340:699 137 seq1 13 99 36M * 0 0

ATTGTAAATGTGTGGTTTAACTCGTCCATGGCCCAG <<<<<;<<<;<;<<<<<<<<<<<8<8<3<8;<;<0;

MF:i:18 Aq:i:73 NM:i:0 UQ:i:0 H0:i:1 H1:i:0
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B.2 VCF Example

##fileformat=VCFv4.0

##fileDate=20090805

##source=myImputationProgramV3.1

##reference=1000GenomesPilot-NCBI36

##phasing=partial

##INFO=<ID=NS,Number=1,Type=Integer,Description="Number of Samples With Data">

##INFO=<ID=DP,Number=1,Type=Integer,Description="Total Depth">

##INFO=<ID=AF,Number=.,Type=Float,Description="Allele Frequency">

##INFO=<ID=AA,Number=1,Type=String,Description="Ancestral Allele">

##INFO=<ID=DB,Number=0,Type=Flag,Description="dbSNP membership, build 129">

##INFO=<ID=H2,Number=0,Type=Flag,Description="HapMap2 membership">

##FILTER=<ID=q10,Description="Quality below 10">

##FILTER=<ID=s50,Description="Less than 50% of samples have data">

##FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype">

##FORMAT=<ID=GQ,Number=1,Type=Integer,Description="Genotype Quality">

##FORMAT=<ID=DP,Number=1,Type=Integer,Description="Read Depth">

##FORMAT=<ID=HQ,Number=2,Type=Integer,Description="Haplotype Quality">

#CHROM POS ID REF ALT QUAL FILTER INFO

FORMAT NA00001 NA00002

NA00003

20 14370 rs6054257 G A 29 PASS NS=3;DP=14;AF=0.5;DB;H2

GT:GQ:DP:HQ 0|0:48:1:51,51 1|0:48:8:51,51 1/1:43:5:.,.

20 17330 . T A 3 q10 NS=3;DP=11;AF=0.017

GT:GQ:DP:HQ 0|0:49:3:58,50 0|1:3:5:65,3 0/0:41:3

20 1110696 rs6040355 A G,T 67 PASS NS=2;DP=10;AF=0.333,0.667;AA=

T;DB GT:GQ:DP:HQ 1|2:21:6:23,27 2|1:2:0:18,2 2/2:35:4

20 1230237 . T . 47 PASS NS=3;DP=13;AA=T

GT:GQ:DP:HQ 0|0:54:7:56,60 0|0:48:4:51,51 0/0:61:2

20 1234567 microsat1 GTCT G,GTACT 50 PASS NS=3;DP=9;AA=G

GT:GQ:DP 0/1:35:4

B.3 FASTQ Example

@SRR014849.1 EIXKN4201CFU84 length=93

GGGGGGGGGGGGGGGGCTTTTTTTGTTTGGAACCGAAAGG

GTTTTGAATTTCAAACCCTTTTCGGTTTCCAACCTTCCAA

AGCAATGCCAATA

+SRR014849.1 EIXKN4201CFU84 length=93

3+&$#"""""""""""7F@71,’";C?,B;?6B;:EA1EA

1EA5’9B:?:#9EA0D@2EA5’:>5?:%A;A8A;?9B;D@

/=<?7=9<2A8==
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B.4 FASTA Example

>gi|5524211|gb|AAD44166.1| cytochrome b [Elephas maximus maximus]

LCLYTHIGRNIYYGSYLYSETWNTGIMLLLITMATAFMGYVLPWGQMSFWGATVITNLFSAIPYIGTNLV

EWIWGGFSVDKATLNRFFAFHFILPFTMVALAGVHLTFLHETGSNNPLGLTSDSDKIPFHPYYTIKDFLG

LLILILLLLLLALLSPDMLGDPDNHMPADPLNTPLHIKPEWYFLFAYAILRSVPNKLGGVLALFLSIVIL

GLMPFLHTSKHRSMMLRPLSQALFWTLTMDLLTLTWIGSQPVEYPYTIIGQMASILYFSIILAFLPIAGX

IENY

B.5 GTF/GFF Example

## GFF

##gff-version 3

##sequence-region ctg123 1 1497228

ctg123 . gene 1000 9000 . + . ID=gene00001;Name=EDEN

ctg123 . TF_binding_site 1000 1012 . + . ID=tfbs00001;Parent=gene00001

ctg123 . mRNA 1050 9000 . + . ID=mRNA00001;Parent=gene00001;Name=

EDEN.1

ctg123 . mRNA 1050 9000 . + . ID=mRNA00002;Parent=gene00001;Name=

EDEN.2

ctg123 . mRNA 1300 9000 . + . ID=mRNA00003;Parent=gene00001;Name=

EDEN.3

ctg123 . exon 1300 1500 . + . ID=exon00001;Parent=mRNA00003

ctg123 . exon 1050 1500 . + . ID=exon00002;Parent=mRNA00001,

mRNA00002

ctg123 . exon 3000 3902 . + . ID=exon00003;Parent=mRNA00001,

mRNA00003

---------------------------------------------------

## GTF

140 Twinscan inter 5141 8522 . - . gene_id "";

transcript_id "";

140 Twinscan inter_CNS 8523 9711 . - . gene_id "";

transcript_id "";

140 Twinscan inter 9712 13182 . - . gene_id "";

transcript_id "";

140 Twinscan 3UTR 65149 65487 . - . gene_id "

140.000"; transcript_id "140.000.1";

140 Twinscan 3UTR 66823 66992 . - . gene_id "

140.000"; transcript_id "140.000.1";

140 Twinscan stop_codon 66993 66995 . - 0 gene_id "

140.000"; transcript_id "140.000.1";
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