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Abstract

The development of new protocols for communication systems usually starts in a network simula-
tor, such as ns-3, where the variables that influence the network scenario can be easily controlled to
create specific and reproducible test conditions. The results of such simulations are then analyzed
and used to tweak and improve the protocol. After this phase, the protocol must also be tested in a
real environment to obtain more accurate and credible results. To do this, the simulation code must
be ported to a real system. This process of porting code from the simulation to the implementation
of the protocol leads to an increase in development time and in the chance of introducing errors.

Fast prototyping is a protocol development process that attempts to solve this problem by
reusing ns-3 simulation code for the implementation. This is possible because ns-3 provides emu-
lation capabilities that allow nodes inside the simulator to communicate with those outside through
an emulated network device. The problem with this approach is that emulation introduces over-
head to packet processing which degrades the node’s performance limiting the amount of network
traffic that can be processed.

We propose an approach to reduce the performance problem associated with fast prototyping
that consists in migrating the data plane operations processing to outside of ns-3. In a network
node, there are two planes of operation: control and data. The control plane is responsible for
discovering and maintaining network routes and ensuring connectivity. The data plane uses the
routing information generated by the control plane to forward network packets. In a well designed
network, most of the traffic corresponds to data. By moving the data plane operations outside of
ns-3 the overhead associated with this kind of traffic is greatly reduced.

To validate our proposed solution, we extended the Wireless Metropolitan Routing Protocol
(WMRP) and Optimized Link State Routing (OLSR) protocols to use the developed architecture,
tested their performance in real environments and verified the amount of code reuse between the
simulator and the real system.
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Resumo

O desenvolvimento de novos protocolos de comunicação começa tipicamente com recurso a um
simulador de redes, como o ns-3, onde as variáveis que influenciam o cenário da rede são fa-
cilmente controladas para criar condições de teste específicas e reproduzíveis. Os resultados da
simulação são então analisados e usados para ajustar e melhorar o protocolo. Posteriormente a
esta fase, o protocolo deve também ser testado em ambiente real de forma a serem obtidos resul-
tados mais precisos e credíveis. Para isso, o código anteriormente desenvolvido para simulação
tem que ser reimplementado num sistema real. Este processo conduz a um aumento do tempo de
desenvolvimento e da hipótese de introdução de erros na implementação.

A prototipagem rápida é um processo de desenvolvimento de protocolos que tenta resolver
este problema através da reutilização do código de simulação ns-3 em sistemas reais. Esta reuti-
lização é possível porque o ns-3 disponibilizada funcionalidades de emulação que permitem que
os nós simulados comuniquem com o exterior da simulação. No entanto, a emulação degrada o
desempenho dos nós o que limita a quantidade de tráfego de rede que pode ser processada.

Neste trabalho, propomos uma abordagem para reduzir os problemas de desempenho associ-
ados à prototipagem rápida que consiste em migrar as operações do plano de dados para fora do
ns-3. Há dois planos de operações num nó de rede: controlo e dados. O plano de controlo é res-
ponsável por descobrir e manter as rotas de rede e assegurar a conetividade. O plano de dados usa
a informação das rotas gerada pelo plano de controlo para encaminhar os pacotes de rede. Numa
rede típica, a maioria do tráfego corresponde a dados. Mover o plano de dados para fora do ns-3
pode, então, reduzir o custo associado ao processamento deste tipo de tráfego.

De forma a validar a solução proposta, estendemos os protocolos Wireless Metropolitan Rou-
ting Protocol (WMRP) e Optimized Link State Routing (OLSR) para usarem a arquitetura desen-
volvida, testámos o seu desempenho em ambientes reais e verificámos a quantidade de código que
foi reutilizada entre a simulação e o sistema real.
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Chapter 1

Introduction

The development of new protocols for communication systems generally involves four phases:

design, evaluation in a network simulator, evaluation in a real testbed, and deployment.

The first phase consists in the design of a protocol concept that is intended to solve a given

problem. From this concept, the researchers can implement a protocol model to be used in simu-

lation. Network simulation is a tool of great value in the evaluation of communication protocols

because the variables that influence the network scenario can be easily controlled to create spe-

cific and reproducible test conditions. It is also an environment that is easily observable and much

cheaper to deploy than a testbed with real hardware. However, evaluation on a testbed must still

be done eventually, to test how the protocol behaves in real-world conditions which gives more

accurate and credible results. Finally, the protocol can be deployed in the desired systems to solve

the problem for which it was initially designed.

DeploymentDesign Simulation Testbed

Figure 1.1: Development process of protocols for communication systems

This development process is usually iterative (Figure 1.1). For example, findings in one of the

evaluation phases may force the researchers to go back to the design phase and reevaluate some

aspects of the protocol. This iteration is necessary to improve the protocol but it is a drawback re-

lated to how the simulation model and the protocol testbed implementation are usually developed.

Traditionally, a simulation model of the protocol is created from the concept designed in the

first phase. Multiple simulations are run and the results are analyzed and used to tweak and im-

prove the protocol. When the simulation results are acceptable, development can continue to the

next phase. A prototype of the protocol is thus implemented in a real system and run in a testbed

to be validated. If the results do not meet the expectations then the protocol needs to be changed
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(first phase) and new simulations made (second phase). At this point, two implementations of the

protocol are being maintained: the simulation model and the implementation prototype. This sit-

uation leads to duplication of effort when a change needs to be made in the protocol which in turn

increases both the development time and the chance of introducing errors in the implementations

of the protocol.

Researchers have been trying to find ways to alleviate the problem of having to create and

maintain two implementations of protocols that need to be evaluated both in simulation and in

testbeds [KLW10]. The solution is shared protocol implementation, which consists in develop-

ing a single implementation of a protocol that can run both in a simulator and in a real system.

1.1 Motivation

Researchers at the Centre for Telecommunications and Multimedia (CTM) at INESC TEC often

need to develop new protocols for communication systems. When doing so, they must go through

the development process presented above.

For the simulation phase, researchers at CTM usually use the ns-3 simulator, which is a widely-

used open source discrete event networking simulator [ns-a]. Some of its main advantages are the

good performance in simulation mode [WvLW09, KBO12] and the fact that it is open source,

which allows researchers to share the models they develop and benefit from each others work.

The ns-3 simulator also has features that help users easily extract information from the simu-

lation. The first of these is tracing [ns-d]. Tracing allows model developers to define trace sources

in their code that signal events that are happening in simulation and provide the underlying data.

Users can then define trace sinks that are connected to sources in order to consume the given data

in the way that best serves the necessities of the user. Predefined helpers that can output the trac-

ing data as ASCII or .pcap files are provided. Another of these features is the Data Collection

Framework (DCF) which provides capabilities to perform on-line processing of data generated by

the simulation [ns-b].

When moving from simulation to testbed, the researchers at CTM also have to deal with the

process of porting the simulation code to a real system. A proposed solution to this problem

was fast prototyping, a protocol development process in which the simulation code is reused in

the testbed with the help of a feature of ns-3 that enables emulation. Emulation allows nodes

in a simulation to communicate with the outside world and thus enables them to participate in

testbeds. However, it was found that this approach is not scalable to nodes that need to process a

large amount of real traffic [CFR11].

The motivation for this dissertation is thus the need for a shared protocol implementation

that allows researchers to reuse the same code in ns-3 simulations and in testbeds while at the

same time enabling the use of the full functionality provided by the simulator and providing good

performance in both the simulation and the real environment.
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1.2 Goals

The main goal of this thesis is to propose an architecture for shared protocol implementation that

meets the following requirements:

Compatibility with ns-3 The developers must be able to use all the functionality provided by ns-

3 (e.g. tracing and DCF) when running the code in simulation. It is acceptable, however, that

some ns-3 functionality is unavailable or limited when the code is used in a real environment.

Scalability The implementations of protocols developed with the proposed architecture must per-

form well in both the simulation and the real system. This means that the performance of

the protocol in real systems should not be degraded because of the fact that it must also

support being run in a simulator. Conversely, the performance of the simulation should not

be degraded because of the fact that the protocol being run is encumbered by details of a

real system.

Reusability It should be possible to reuse most of the protocol code between the simulation and

the testbed. However, to meet the requirement of scalability, it is acceptable that small parts

of the protocol may need to be rewritten.

The proposed architecture should also be validated by implementing already existing protocols

and evaluating their performance and the amount of code that was reused.

1.3 Results

In this dissertation we determine that fast prototyping is a good shared protocol implementation

solution but it has performance problems in real scenarios because of the overhead introduced by

ns-3 emulation.

We therefore propose a solution to the performance problems of ns-3 that consist in migrat-

ing the data plane operations of routing protocols to outside of the simulator. Since most of the

traffic of typical networks is related to data, this solution improves the emulated nodes efficiency.

We present two alternative options to implement this solution: (1) executing the data plane in a

userspace process that communicates through interprocess communication (IPC) with the control

plane that runs in simulator; (2) executing it in kernelspace by updating the kernel routing tables

with the information gathered by the control plane.

In addition to the previous solutions we also propose an architecture that allows applying

such solutions to scenarios where multiple nodes need to be emulated in the same machine. This

architecture uses Linux network namespaces as lightweight environments where the data plane of

each emulated node can run independently of each other.

A new ns-3 module, real routing, was also created to implement the data plane in kernelspace

architecture. The module allows users to easily use the architecture with their ns-3 protocols.

3
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The proposed architectures were validated by comparing their performance in real environ-

ments against traditional emulation as well as the amount of new code that needs to be written to

implement them. Results show that significant performance increases can be obtained using the

new architectures with only relatively small amounts of new code needing to be developed.

1.4 Document Structure

The remainder of this document is structured as follows. Chapter 2 presents the most relevant state

of the art approaches that enable shared protocol implementation with ns-3. Chapter 3 describes

the architecture of ns-3 emulation and addresses the performance problems that affect it. Chapter 4

presents the proposed solutions to the performance problems of ns-3 emulation. Chapter 5 contains

the methods used to evaluate the proposed solutions and their results. Chapter 6 presents the main

conclusions and future work. Finally, appendix A provides the detailed results obtained in the

several empirical studies that are presented in this dissertation.

4



Chapter 2

Approaches to Shared Protocol
Implementation

In this chapter we present and analyze the state-of-the-art solutions to shared protocol implemen-

tation. The presented solutions employ different approaches in order to allow the same code to be

used in both simulation and real systems, but they can be organized in three main categories: ab-

straction layers, direct code execution, and fast prototyping. For each of these categories, we will

describe how it enables shared protocol implementation and present the tools that are currently

available.

We conclude this chapter with a comparison between all the presented solutions and with the

selection of the approach that will be further developed in order to meet the goals of the project,

as stated in Section 1.2.

2.1 Abstraction Layers

An abstraction layer provides a development environment that hides from users the details of the

underlying systems on which it is implemented, and can switch between those implementations.

If an abstraction layer can be run on top of a simulator and a real system then it can be used for

shared protocol implementation (Figure 2.1). Abstraction layers may also support more than one

simulator and more than one real system, thus providing even more portability.

Protocol

Abstraction Layer

Simulator
Real

System

Figure 2.1: Abstraction layer for network protocol development
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Developers only have to implement their protocol once using the API provided by the abstrac-

tion layer. By switching the implementation used by the layer, the protocol can be run on the

simulator or on the real system as needed. Usually, the only thing needed to make the switch is to

recompile the code.

The main problem of abstraction layers is that, since they have to support multiple imple-

mentations, they cannot provide a very rich API to their users. This happens because different

systems offer different features and so the abstraction layer can only provide the features com-

mon between all of its implementations. Another possibility is disabling certain features in some

implementations or emulating those features at the cost of performance.

In the remainder of this section we will present and analyze some tools that use the abstraction

layer approach to provide shared protocol implementation.

2.1.1 RapidNet

RapidNet is a toolkit that enables the development of network protocols for simulation and im-

plementation [MLL+09]. The protocols are specified in a declarative paradigm using Network

Datalog (NDlog), a recursive query language. RapidNet can compile the protocol specification

into ns-3 code which can then be used for simulation. The same specification can also be used in

a real environment by running the ns-3 code in emulation mode (Figure 2.2).

Figure 2.2: The RapidNet development cycle [MLL+09]

One of the problems of RapidNet is that it uses a declarative programming paradigm which is

unusual in protocol development and results in a steep learning curve. Another problem is that the

generated ns-3 code depends on the RapidNet library an it cannot be submitted for inclusion into

ns-3 as a new module.

2.1.2 Protolib

The Protean Protocol Prototyping Library (Protolib) is a toolkit that provides a cross-platform

C++ API for the development of network protocols. The developed protocol can run on various

6
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systems (including Linux, MacOS, Windows, and FreeBSD among others) and on the ns-2 and

OPNET simulators [U.S].

Some interesting classes provided by Protolib are the ProtoSocket, which abstracts the under-

lying systems TCP and UDP sockets; ProtoTimer, a generic timer class; ProtoRouteMgr, which

provides a common interface to the systems routing tables; and ProtoCap, used for raw MAC-layer

packet capture.

The main disadvantage of Protolib is that it currently only supports ns-2, not ns-3. However,

even if it did, it is unclear if it could provide all the features of ns-3 since some of those features

are not available on all systems that Protolib also supports.

2.1.3 Click Modular Router

The Click Modular Router (or just Click) is a flexible software architecture for developing config-

urable routers [KMC+00]. A router can be created by combining small elements in a graph-like

architecture. Each element has a defined number of input and output ports and implements some

simple functionality such as decrementing a packet TTL or looking up an IP route. The combina-

tion of these elements can create routers with complex functionality providing a flexible platform

for researchers to experiment with new protocols (Figure 2.3).

Click can run in several systems such as Linux and FreeBSD and there are also tools that

integrate it with ns-2 (nsclick [NJG02]) and ns-3 (ns-3-click [SM11]). The ns-3 simulation can

even become more efficient in some cases by using Click to perform the layer 3 functionality,

although at the cost of increased memory consumption.

Click also has steep a learning curve since it uses a flow-based programming paradigm [Mor10]

which is different from the more usual discrete event simulation used in ns-3. In addition, re-

searchers also have to learn the configuration syntax that is used to describe the connections be-

tween the elements of a router.
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Figure 2.3: Example of a Click IP router configuration [KMC+00]
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2.2 Direct Code Execution

Direct code execution (DCE) provides an environment that allows code developed for real sys-

tems to run in simulations [Lac10]. This is usually achieved by virtualizing the access to global

and static variables and by redirecting the system calls to an implementation for the simulator

(Figure 2.4).

Protocol

Virtualization
Environment

Simulator

Protocol

Real System

Figure 2.4: Running a real protocol in a simulator using a virtualization layer

The main goal of DCE is to provide a way to run real code in simulations in order to obtain

more accurate and realistic results. However, it can also be used as a means to achieve a shared

protocol implementation. To do this, the researchers must first develop the code in a real system.

They must then use the facilities provided by DCE to run that code in simulation. Afterwards,

when they need to run the code in the real system they can just directly use the code they developed

without the need of DCE.

Real systems are much more complex and provide many more features than simulators so it

may be impossible to provide every functionality of the real system in the simulator. Researchers

must be aware of what features are actually implemented by their DCE implementation and may

not use any other functions provided by the real systems or else the protocol will not run in the

simulator. The converse can also happen, that is, the simulator may provide functionality to the

developers that is not available in the real system. In this case the developers also have no way of

using those features.

Another problem is that it is usually harder and more time consuming to develop protocols

in a real system than in a simulator because the latter offers useful abstractions that facilitate

development.

2.2.1 ns-3 DCE

The ns-3 simulator provides a direct code execution framework that is able to execute Linux pro-

tocols in simulation without source code changes [TUM+13]. Both userspace and kernelspace

protocols or applications can be used, so it is possible, for instance, to use the real ping program

or the real Linux networking stack in simulation (Figure 2.5).

Before the development of ns-3 DCE, the Network Simulation Cradle (NSC) [Jan08] was

another framework that could execute a kernel stack in ns-3, however it was hard to maintain
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Figure 2.5: Ns-3 DCE architecture [TUM+13]

because it relied on source code transformations. The ns-3 DCE module can however replace

most of the functionality provided by NSC [TUT13].

There are a number of problems when using the DCE module as a way to achieve a shared

protocol implementation. First, there is a loss of performance in the simulation resulting from

having to virtualize the protocol [TUM+13]. It is also more time consuming to develop protocols

in Linux than in ns-3 [CFR11], resulting in a longer development time. Finally, not all of the

functionality provided by ns-3 can be used since there is no equivalent in Linux. In some cases

an alternative is available, for example, it is possible to add tracing support to a real protocol by

using aspect based programming [Lac10], but this is not as straightforward as simply using the

ns-3 tracing facilities.
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2.3 Fast Prototyping

Fast prototyping [CFR11] is a development model in which researchers implement the protocol

directly in the simulator. Emulation is then used to allow the simulation code to be reused in

testbeds (Figure 2.6).

Protocol

Emulation

Real System

Protocol

Simulator

Figure 2.6: Running a simulation protocol in a real system through emulation

The main advantage of fast prototyping is that it allows researchers to use all of the function-

ality provided by the simulator. It is also generally easier and faster to develop protocols in the

simulator since it provides abstractions that facilitate the development.

2.3.1 Simulator-Agnostic ns–3 Applications

Simulator-agnostic ns–3 applications are applications that can run both in simulation and in real

systems [AR12]. They are developed as traditional ns-3 applications, but when needed they can

communicate with the real environment via real sockets from the underlying system instead of

simulated sockets. The actual socket that is used is transparent to the application so its code does

not need to be rewritten. This can be done by implementing the real socket functionality as classes

derived from the base Socket class of ns-3 and using the factory pattern to create the actual socket

as needed (real or simulated). Figure 2.7 shows an example of this for the case of an UDP socket.

Figure 2.7: Real UDP socket architecture for ns-3 [CFR11]
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This approach is very efficient [CFR11] and works well for applications, however it is not

enough for the needs of a routing protocol. These protocols need more than simple UDP or TCP

sockets, they also need to access and alter routing tables. Many protocols also do not use TCP or

UDP, but instead use IP datagrams directly (e.g. OSPF [Moy98]). Others may even work on top

of layer 2 protocols (e.g. WMRP [RCF+10]).

Simulator-agnostic ns–3 applications are thus a good complement to other approaches of fast

prototyping but on their own they can not offer a complete shared protocol implementation solu-

tion.

2.3.2 Ns-3 Emulation

Ns-3 has an emulation module that can be used to integrate simulated nodes into testbeds [ns-c].

In ns-3, the simulated nodes communicate with simulated channels through NetDevices, which

are analogous to Network Interface Controllers (NIC) in real systems (Figure 2.8).

Figure 2.8: Example of a simulation in ns-3 (adapted from [ns-c])

To allow nodes to communicate with the real environment, emulation instantiates the nodes

NetDevices as FdNetDevices, which direct their read and write operation to a file descriptor in

the real system. A raw socket is then opened in the desired interface of the real system and its

file descriptor is assigned to the FdNetDevice. From this point onward, the node is transparently

communicating with the real environment (Figure 2.9).

Figures 2.8 and 2.9 show analogous scenarios. The former represents a simulation where three

nodes are connected through a simulated channel. The latter shows a testbed scenario where the

three nodes now communicate through a real channel. The protocol implementation code for the

nodes can be exactly the same in both situations.
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ns-3 Simulation

Host

Node

FdNetDevice

Raw
Socket

ns-3 Simulation

Host

ns-3 Simulation

Host

Testbed

Real
Device

Node

FdNetDevice

Raw
Socket

Real
Device

Node

FdNetDevice

Raw
Socket

Real
Device

Figure 2.9: Example of emulation in ns-3 [ns-c]

The main disadvantage of ns-3 emulation is that it has poor scalability. The performance of an

emulated node quickly degrades as the number of packets it has to process increases [CFR11].
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2.4 Comparison and Conclusions

In this chapter we presented three categories of solutions for shared protocol implementation:

abstraction layers, which provide a development environment abstracted from both the simulator

and the real system; direct code execution, which allows code implemented for real systems to be

executed in simulation; and fast prototyping, where code is developed in the simulator and may be

reused in a real environment with emulation. Examples of tools that use each of these approaches

were also provided.

Table 2.1 shows a comparison between the different tools presented. We are interested in

whether the tools achieve the goals stated in Section 1.2, namely the goal of compatibility with

ns-3 (allowing to use all of its features) and scalability in simulation and in testbeds.

Table 2.1: Comparison of different approaches to shared protocol implementation

Approach Compatibility with ns-3 Scalability in simulation Scalability in testbed
RapidNet High Medium Medium
Protolib None N/A High
Click Medium Medium High
ns-3 DCE High Low High
Agnostic Apps Full High High
ns-3 emulation Full High Low

First, RapidNet has a good compatibility with ns-3 since its integration with the simulator was

part of its initial design. However, it cannot achieve the same level of scalability as other solutions

mostly because of the mismatch between its declarative development environment and the systems

on which it must run.

Protolib has no support for ns-3 yet, so it cannot be used directly. It might be possible, however,

to run Protolib protocols in ns-3 by compiling them to Linux and then running the executable with

DCE. This solution would suffer from the same problems that DCE has however. The upside is

that is easier to develop protocols with Protolib than in a real system because Protolib provides

higher level abstractions.

The Click Modular Router can be integrated with ns-3 through ns-3-click but this approach

only supports the development of layer 3 protocols. Using Click can also reduce the scalability of

the simulation due to increased memory usage.

The ns-3 DCE framework allows the execution of real code in the simulator. Because this

framework is part of ns-3 it tries to provide a high level of compatibility with it, however, it cannot

provide access to the full features of ns-3. Since the protocol code is created for a real system it

has high scalability in testbeds, however the performance suffers when used in simulation because

of the need for the virtualization layer.

Agnostic applications are developed directly in ns-3 so they can leverage the full functionality

of ns-3 while providing high scalability in simulation. In a testbed, this approach provides high

scalability if the application only uses UDP or TCP sockets. The problem is that network protocols
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also need to ensure other traffic is forwarded to the correct destination, so it is not possible to use

this approach.

Finally, using emulation it is also possible to use all the features provided by ns-3 and have

high scalability in simulation because the protocols are developed directitly in ns-3. However, this

approach has low scalability in a real environment because emulation introduces overhead in the

processing of each packet.

We have analyzed different tools in the three main categories of shared protocol implemen-

tation: abstraction layers, direct code execution, and fast prototyping. In the first category de-

velopment is done in an environment that abstracts the underlying systems while in the second

development is done in a real system. Since in both of these approaches the protocols are not

developed directly in the simulator, they cannot provide the full functionality of ns-3. Because

of this, both abstraction layers and direct code execution do not achieve the goal stated for this

project of full compatibility with ns-3 when the protocol is used in simulation. Only with fast

prototyping, in which the code is developed directly in ns-3, can this goal be achieved.

In the fast prototyping category we have agnostic applications, which are a good solution,

but we can not use them because they are only directed towards the implementation of simple

applications and not for routing protocols. We are left with ns-3 emulation which achieves most

of the stated goals, including reusability, full compatibility with ns-3 and scalability in simulation.

The only goal missing is scalability in a real environment.

Therefore, we have to improve the performance of ns-3 emulation in order to have a fully

functional fast prototyping solution for shared protocol implementation that meets the goals stated

for this project.
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Chapter 3

Performance Problems of ns-3
Emulation

In this chapter we present the performance problems that prevent ns-3 emulation to be used in

real environments with a large amount of traffic. We first describe the mechanisms used by ns-

3 that allow simulated nodes to communicate with real networks and explain why they introduce

overhead in the processing of real packets. We then present an empirical study that shows how this

overhead affects the performance of ns-3 when it is used to forward a large quantity of packets.

3.1 ns-3 Emulation Architecture

One of the many classes present in ns-3 is the NetDevice, which provides simulated nodes with

an interface to the MAC layer and is mainly used by layer 3 protocols to send and receive pack-

ets. Some of its subclasses are the CsmaNetDevice and WifiNetDevice, for example. To provide

emulation functionality, ns-3 defines the FdNetDevice, another subclass that implements the Net-

Device interface by reading and writing packets to a file descriptor in the real system.

In Linux, emulation can be achieved by opening a raw packet socket (a type of socket that can

send and receive L2 frames) on the desired real network interface and instantiating an FdNetDevice

object with the file descriptor of the created socket. The simulated node that uses this NetDevice

will then transparently communicate with the real network.

With this architecture, the process of sending packets to the network is straightforward. When

a node requests a packet to be sent (using the Send or SendFrom functions of the NetDevice

interface) the FdNetDevice implementation simply has to issue a write system call on the socket

file descriptor with a buffer containing the contents of the packet. Converting an ns3::Packet to a

memory buffer is trivial because ns-3 already stores packets in the network format. This design

decision was made specifically to facilitate emulation [Lac10]. However, a buffer still needs to be
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Figure 3.1: Reading network packets with FdNetDevice

dynamically allocated and the packet data copied to it in order to perform the write. This process

introduces some overhead that may affect performance if many packets need to be sent.

The process to receive network packets is more complex (Figure 3.1 shows an overview).

Since the simulation event loop cannot be blocked while waiting for packets to arrive, the reading

is, instead, done in a dedicated thread. Each FdNetDevice creates an FdNetDeviceFdReader which

starts a new thread and then initiates a reading loop where it issues a blocking read system call on

the socket file descriptor. When the read call returns, the FdNetDeviceFdReader passes the buffer

containing the received packet to the FdNetDevice. The FdNetDevice cannot deliver the packet to

the node yet because a simulation event must first be generated. To do that, the event is scheduled

with the simulator. The simulator must then synchronize with the main thread (resulting in some

overhead) in order to process the event. It then calls FdNetDevice::ForwardUp with the packet

buffer. The FdNetDevice can now create an ns3::Packet from the buffer. As described above, this

is a simple process but it does require some space to be dynamically allocated and the buffer to

be copied there. Again, this process adds to overhead of packet reception. The newly created

ns3::Packet is then finally delivered to the simulated node.

The approach taken by ns-3 to emulation allows for any network operation that works above

the MAC layer to transparently communicate with the real environment. As we showed, however,

the implementation introduces some overhead to the processing of network packets.

3.2 Performance Evaluation of ns-3 Emulation

We performed an empirical study to demonstrate the overhead introduced by ns-3 emulation in

the processing of real network traffic. In this experiment we compare the performance of a Linux

bridge when packet forwarding is done in kernelspace, userspace, or using ns-3 emulation.

The three scenarios have the same network topology (Figure 3.2), which is composed of three

nodes connected by 100 Mbit/s Ethernet links:
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• The source S. It uses the iperf tool to generate UDP traffic destined to D. At the same

time it also pings D to measure the round-trip time (RTT);

• The destination D. It runs an iperf server to receive the UDP traffic from S and calculate

the throughput and packet loss;

• The bridge B. It forwards the frames between S and D.

Figure 3.2: Network topology of the test scenarios

The machine used to act as the bridge runs on an Intel Atom N270, which is a single core

processor but that uses the Hyper-Threading technology so it behaves as having two logical cores.

The operating system used was Ubuntu 14.04 LTS.

There were three scenarios tested. In the first scenario B is configured to forward packets using

a kernelspace Linux bridge connecting eth0 and eth1. In the second scenario forwarding is done

by an userspace process that reads the frames from eth0 and writes them to eth1 and vice versa.

Lastly, in the third scenario B runs an ns-3 simulation that uses emulation to connect to eth0 and

eth1 and bridge the traffic between them.

For each scenario, two series of tests were executed, each starting with S generating 1 Mbit/s

of UDP traffic to D and then increasing that value to 2, 4, 8, 16, 32, 64, and 90 Mbit/s. Each test

was repeated 5 times and had a duration of 30 seconds. The first series of tests had a UDP payload

of 1470 bytes, which is representative of typical application traffic. In the second series of tests,

the payload of the UDP packets was 160 bytes. This small size, which is usual in VoIP traffic, was

used to generate a large number of packets in order to show the performance decline in ns-3 when

it has to process an increasing number of packets. For these tests, the last offered data rate was of

70.8 Mbit/s instead of 90 Mbit/s because that is the maximum throughput that can be achieved in

100 Mbit/s Ethernet links for UDP packets with 160 bytes of data.

For each of these tests, four performance metrics were measured:

• The received data rate in D, which was given by the iperf tool;

• The packet loss ratio, which was also measured by iperf;
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• The average round round-trip time, measured using the ping utility;

• The average CPU load in B. This was measured using the time utility for the userspace and

ns-3 scenarios. For the kernelspace scenario the utility top was used instead because there

is no single process that time can measure.
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Figure 3.3: Forwarding test results for UDP packets with payload of 1470 bytes

The results for packets with a payload of 1470 bytes are presented in Figure 3.3. For packets

of this size, all implementations are able to forward the generated traffic at any data rate with

minimal packet loss. A small difference can be found in the RTT measures due to the userspace

processing of packets and the other operations described above that ns-3 performs for each packet.

The larger difference is found on the CPU load on the bridge. While the load imposed by the

kernel implementation is negligible, the load in the userspace scenario increases proportionally

to the offered data rate until it reaches approximately 40% for 90 Mbit/s. The CPU load in the

ns-3 scenario increases at a faster rate reaching 120% when the offered rate is 90 Mbit/s. The

reason why ns-3 goes above 100% load is that the CPU of the bridge has two logical cores (due to

Hyper-Threading) and ns-3 uses a dedicated thread for reading operations.

The results for packets with a payload of 160 bytes are shown in Figure 3.4. The kernelspace

implementation is able to forward packets at the offered rate while incurring negligible packet
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Figure 3.4: Forwarding test results for UDP packets with payload of 160 bytes

loss and CPU load. Additionally, the RTT is always very low (less than 0.5 ms) except when the

offered data rate reaches 90 Mbit/s where it increases to around 23 ms.

The forwarding performance of the ns-3 implementation starts degrading just after the traffic

generated by S hits 16 Mbit/s. When the offered data rate reaches 64 Mbit/s, ns-3 can only forward

at a rate of around 8 Mbit/s, less than a third of what the userspace implementation achieves. At

this rate there is a packet loss of almost 90% for the ns-3 scenario and half of that for the userspace

scenario. As for the RTT, the userspace implementation never goes over 50 ms in the worst case

whereas ns-3 reaches 150 ms. Finally, both the ns-3 and the userspace implementation increase

their CPU load linearly with the offered data rate, however the load imposed by ns-3 increases at

a faster rate.

3.3 Conclusions

Ns-3 provides an emulation mechanism that allows simulated nodes to transparently communicate

in real networks. However, the approach used by ns-3 introduces overhead in the processing of

each packet. The main causes of this overhead are the context switch between the kernel and user

space, the dynamic allocations and copies needed to create ns3::Packets from the data buffers, and
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the synchronization needed between the read and main threads in order to schedule the reception

of received packets.

Despite this overhead, ns-3 emulation manages to perform well in networks where the traffic

does not consist of a large number of packets, even if those packets are big in size. The problem

manifests itself when ns-3 needs to process a large amount of packets, even if they are small.

A more scalable solution is thus needed to enable researchers to reuse their ns-3 protocol code

in real environments where nodes have to process a large quantity of packets at a high bitrate.
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Data Plane Outside of Simulation

This chapter presents an architecture for shared protocol implementation that improves the scal-

ability of ns-3 emulation allowing researchers to reuse most of their simulation code in testbeds

with large amounts of traffic.

In a network node, there are two planes of operation: the control plane and the data plane.

The control plane is responsible for discovering and maintaining network routes and ensuring

connectivity. The data plane uses the routing information generated by the control plane to forward

network packets. In a well designed network, most of the traffic corresponds to data and, as was

shown in Section 3.2, processing large amounts of packets in ns-3 is less efficient than doing it

in userspace or kernelspace. Thus, by moving the data plane operations outside of simulation the

overhead associated with this kind of traffic can be greatly reduced.

We propose two alternatives to doing this: executing the data plane in userspace and executing

it in kernelspace. These approaches are described in the next sections.

4.1 Data Plane in Userspace

The first approach consists in running the data plane outside of ns-3 in userspace. The control

plane is still executed in ns-3 and communicates with the real environment through emulation, but

the data plane is executed in a userspace process to avoid the overhead of processing the large

amount of data traffic in the simulator (Figure 4.1).

The two planes are executing in different processes so interprocess communication (IPC) is

needed to allow them to exchange information. For example, the control plane needs to update the

routing table information in the data plane so that data packets can be forwarded correctly. The

data plane may also need to send feedback to the control plane or request a route in the case of

reactive protocols.

The classification of the packets that should be delivered to the control and data planes is done

through filters applied to the raw sockets using the Linux Socket Filter (LSF) facility [Ins01].
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Figure 4.1: Data plane in userspace

Listing 4.1 shows an example filter that accepts only IPv4 packets. At line 0 we load the half word

at position 12 in the frame (the EtherType field). Line 1 compares the previously loaded half word

to 0x800 (the IPv4 EtherType). If both are equal we jump to line 2 which returns 65535. This will

result in the first 65535 bytes of the frame being accepted and delivered to the userspace process.

If the comparison of line 2 fails, we jump to line 3 which returns 0. This means that no bytes of

the frame are accepted and so it is dropped.

A simple way to obtain the code of socket filters is to run tcpdump with the -d option. For

example, running tcpdump -i eth0 -d ip will return the code in Listing 4.1.

0 ldh [12]

1 jeq #0x800 jt 2 jf 3

2 ret #65535

3 ret #0

Listing 4.1: Linux Socket Filter code that only accepts IP packets

Socket filters are configured in userspace but they are executed by the kernel on received

frames so they are very efficient because packets not accepted by the filter are not delivered to

userspace. This way, the control and data planes only receive their respective traffic, avoiding the

overhead caused by the processing of unneeded packets.

Using this architecture, the control plane code can be reused between simulation and testbed

but the data plane code needs to be rewritten for the real system. However, because the data plane

is usually much simpler than the control plane, only a relatively small amount of code needs to be

ported.
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4.2 Data Plane in Kernelspace

It is possible to specialize the previous architecture for the case of L3 routing protocols. For proto-

cols of this type, whose objective is to forward IP packets, we can update the kernel routing tables

with the information gathered by the control plane. This way the kernel will be forwarding the

traffic it receives (Figure 4.2) which is more efficient than doing it in userspace (see Section 3.2).
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Real Stack
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FdNetDevice

Real Device
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Raw Socket

IPC

DataControl

Userspace

Kernelspace

Figure 4.2: Data plane in kernelspace

In this architecture, a route updater process receives the routing information from the control

plane and updates the kernel routing tables with that information. To do this, the route updater pro-

cess uses a netlink socket [SKKK03]. Netlink is a communication channel between kernelspace

and userspace and, among other functionalities, allows user processes to update and retrieve rout-

ing information. Root access is needed to use this functionality so, in order to avoid having to

run the whole simulation as root, the route updater is executed in its own process as root and

communicates with ns-3 trough IPC to receive the routes generated by the control plane.

As in the previous architecture, the raw socket used by the control plane needs to be filtered to

avoid the overhead of processing unnecessary network traffic.

This approach is more efficient than the previous one since the forwarding is done in the

kernel instead of userspace. In addition, there is even less code that needs to be rewritten because

the route updater code can be reused by all the protocols that use this architecture. The downside

is that this approach is only applicable to proactive L3 protocols, where the control plane is more

independent from the data plane, as the kernel may not provide the feedback needed. For example,

reactive protocols such as AODV need to know if a route was not found for a given packet in order

to initiate the route request procedure [PBRD03]. To support this type of protocols the proposed

architecture could be extended with a kernel module that listens on the desired events and reports

them back to the control plane.
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4.3 Emulating Multiple Nodes

The two architectures previously proposed (data plane in usersapce and data plane in kernelspace)

assume that only a single node is being emulated by each machine of the testbed. However, it is

many times desirable to emulate multiple nodes (arranged in a given topology) in a single machine.

Figure 4.3 shows an example of a single host emulating three ns-3 nodes.
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Figure 4.3: Emulation of multiple ns-3 nodes in a single host

To apply the previous architectures to emulations of multiple nodes, we need to have execution

environments in the host system where the data plane of each node will run. These environments

must have the following properties:

1. Be independent of each other. For example, adding routes to the routing table of an envi-

ronment must not affect the routing tables of the other environments;

2. Be able to forward the data traffic between each other and with the nodes outside the system;

3. Be efficient. They must not introduce more overhead than what is saved by moving the data

plane to outside of ns-3.

The Linux operating system provides environments with these capabilities called network

namespaces [Edg14]. These namespaces allow the network resources of the system to be isolated

into different independent environments. Each network namespace has its own set of devices,

addresses, ports, routing tables, firewall rules, etc.

For an efficient emulation architecture, network namespaces are more appropriate than virtual

machines or Linux containers because they only isolate what is needed (the network resources),

and so are more lightweight than the other virtualization solutions.

The topology of the simulated nodes in ns-3 must be replicated outside by the network names-

paces. This is done by creating a network namespace for each node and connecting them in the

same way they are connected in the simulator. The network namespaces also need to be connected

to each other in a way that replicates the connections between the simulation nodes. To do that,

virtual network devices (veth) are used. These virtual devices are created in pairs and assigned
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to two namespaces that need to be connected. What is written in one veth can be read in the

other and vice-versa. This way, the network namespaces can forward the data traffic between each

other.

The virtual devices can also be configured to match the characteristics of the simulated node

(e.g. delay, bitrate, packet loss). This is possible by using the netem kernel module [The09]. For

example, to set the delay of virtual device veth1 to 100 ms, we can use the command tc qdisc

add dev veth1 root netem delay 100ms.

Figure 4.4 shows how the data plane in kernelspace architecture can be applied to the example

in Figure 4.3 by using network namespaces and virtual devices.
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Figure 4.4: Data plane in kernelspace for emulation with multiple nodes

For each ns-3 node in the emulation, a network namespace is created and a route updater for

that node is executed in that namespace. This way each node has its own set of routing tables in

the kernel that is independent of the other nodes. To connect the nodes, virtual network device

pairs are created and each veth is assigned to a network namespace and configured to match the

corresponding net device of the simulation (e.g. IP address, subnet mask, or emulation character-

istics that can be set with netem such as delay and packet loss ). The real devices of the host are

also moved to the network namespace of the nodes that should be connected to the real network.

The filters of the raw sockets are applied in the same way as in the case of emulations of only one

node.

The control traffic is thus processed completely within ns-3 while the data traffic never leaves

kernelspace. Data packets arrive in a real device, are processed by the real stack of a network
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namespace, and are forwarded to the next namespace through a virtual device. This process con-

tinues until the data packets leave the host through a real device.
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Chapter 5

Architecture Validation

In this chapter we evaluate the proposed solutions to make sure that they achieve the goals stated

in Section 1.2, namely: compatibility with ns-3, scalability in simulation and real systems, and

code reuse.

There is no need to validate the compatibility with ns-3 and scalability in simulation because

the protocols are developed directly in ns-3 and so are as compatible and scalable as any other

ns-3 protocol as long as they are correctly implemented. Since the proposed changes to network

protocols are only needed in testbeds, our validation focus on scalability in real environments and

in the amount of new code that needs to be developed to use the proposed architectures.

The scalability in real environments requirement was validated by selecting routing protocols

already implemented in ns-3 and extending them to use the new architectures. The performance

of both implementations was then compared in a real scenario.

The requirement of code reuse was validated by analyzing the number of lines of code that

were added to the implementations of the protocols in ns-3 in order to make them use the proposed

architectures.

5.1 Data Plane in Userspace

5.1.1 Performance Validation

To validate the data plane in userspace architecture we used the Wireless Metropolitan Routing

Protocol (WMRP), an ad hoc, proactive routing protocol that operates over layer 2 [RCF+10].

The scalability in real environments will be validated by comparing the performance of WMRP

running completely in ns-3 emulation with the performance of WMRP when the data plane is

executing in userspace. We then analyze the performance gains that were obtained with the new

architecture.

The two scenarios have the same network topology (Figure 5.1), which is composed of four

nodes connected by 100 Mbit/s Ethernet links:
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• The source S. It uses the iperf tool to generate UDP traffic destined to D. At the same

time it also pings D to measure the round-trip time (RTT);

• The destination D. It runs an iperf server to receive the UDP traffic from S and calculate

the throughput and packet loss;

• The routing bridges RB1 and RB2. They forward the frames between S and D.

Figure 5.1: Network topology of the test scenarios

There were two scenarios tested. In the first scenario (ns-3 emulation), the two RBridges are

implemented using tradtional ns-3 emulation. In the second scenario (userspace forwarding), the

proposed architecture for executing the data plane in userspace is implemented in both RBridges.

For each scenario a series of tests was executed, starting with S generating 1 Mbit/s of UDP

traffic to D and then increasing that value to 2, 4, 8, 16, 32, 64, and 70.8 Mbit/s. Each test had a

duration of 30 seconds and was repeated 5 times. The payload of the UDP packets was 160 bytes.

The maximum offered data rate was of 70.8 Mbit/s because that is the maximum throughput that

can be achieved in 100 Mbit/s Ethernet links for UDP packets with 160 bytes of data.

For each of these tests, four performance metrics were measured:

• The received data rate in D, which was given by the iperf tool;

• The packet loss ratio, which was also measured by iperf;

• The average round round-trip time, measured using the ping utility;

• The average CPU load in RB2, measured using the top utility.

The machine running RB2 has an Intel Atom N270, which is a single core processor but that

uses the Hyper-Threading technology so it behaves as having two logical cores. The operating

system used was Ubuntu 14.04 LTS.

The results are shown in Figure 5.2. The traditional ns-3 emulation implementation is able to

forward packets at the offered rate until 8 Mbit/s. After that, performance starts degrading and

when the offered rate hits 70.8 Mbit/s, ns-3 emulation has 87% packet loss, can only forward at
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Figure 5.2: Data plane in userspace performance validation results for UDP traffic with payload
of 160 bytes

9 Mbit/s, and the round trip time (RTT) also increases to 85 ms. The reason why ns-3 emulation

goes above 100% load is that the CPU of the bridge has two logical cores (due to Hyper-Threading)

and ns-3 uses a dedicated thread for reading operations.

The data plane in userspace implementation is able to forward packets at the offered rate until

32 Mbit/s while keeping RTT low (1 ms until 16 Mbit/s and 2 ms at 32 Mbit/s). For higher data

rates performance starts degrading but at 70.8 Mbit/s, it can forward at around 44 Mbit/s (4.9 times

more than traditional emulation) while keeping RTT at 16 ms (5.3 times lower than traditional

emulation). Additionally, while the offered data rate is lower than 64 Mbit/s the CPU load of the

data plane in userspace implementation is lower than that of ns-3 emulation. For higher data rates

both implementations present similar loads, but the userspace implementation is processing more

traffic for that same load.

5.1.2 Code Reuse Validation

To validate that using the data plane in userspace architecture does not require writing a large

amount of new code we counted the lines of code that were developed to implement the proposed

architecture on top of the existing ns-3 implementation of WMRP.
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The results are presented in Figure 5.3, where ns-3 emulation indicates the number of lines of

code of the existing ns-3 implementation of WMRP, and userspace forwarding indicates the sum

of those lines with the new lines that were developed to implement the data plane in userspace.

The blank and comment lines are not counted.
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Figure 5.3: Code reuse validation results for data plane in userspace

It can be seen that only around 11% more lines of code were written to implement the data

plane of WMRP in userspace. This is in part because the implemented data plane was simplified

and assumes that the topology of the network does not change. Implementing the full operations

of the data plane would increase the number of lines of code but in general, the data plane is much

simpler than the control plane so only a relatively small amount of code needs to be ported.

Ultimately, it is the researchers developing the protocol who need to decide if the extra amount

of code that needs to be written is worth the performance gains that will be obtained.
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5.2 Data Plane in Kernelspace

5.2.1 Real Routing Module

Most of the data plane in kernelspace architecture can stay the same across different protocols,

namely the route updater and the interprocess communication. The only part that is specific to

each protocol is the socket filter used. This is unlike the data plane in userspace architecture,

which requires the data plane (which can be very different between protocols) to be ported to the

real system. To enable researchers to quickly use the data plane in kernelspace architecture, an

implementation was developed for ns-3, the real routing module.

The real routing module implements a route updater (RtNetlinkRouteUpdater) that uses Netlink

sockets to update the kernel routing tables and that runs in a privileged userspace process to avoid

having to execute the whole simulation with root privileges. Inside ns-3, the class RealRouteUp-

dater was created to spawn and configure the RtNetlinkRouteUpdater process, receive the routes

from the routing protocols and send them to the created process, which in turn updates the kernel.

The interprocess communication, used to send the routes from the simulator to the route updater,

is implemented with Unix domain sockets.

In order for ns-3 routing protocols be able to update the routes of the system without hav-

ing to be coupled to the new real routing module, three new optional callbacks were added to

Ipv4RoutingProtocol, the base class of all IPv4 protocols (support for IPv6 was not created but it

can be easily added when needed). The new callbacks are: RouteAddedCallback (called when a

the protocol creates a new route), RouteRemovedCallback (called when a protocol deletes a route),

and RoutingTableUpdatedCallback (called when the protocol updates the whole routing table at

once). Protocols that use these callbacks will work with the real routing module. The RealRou-

teUpdater will register its route updating functions with each of the protocol’s callbacks. Thus,

every time one of the callbacks is called, the corresponding function in the RealRouteUpdater is

also called and the received information is sent to the RtNetlinkRouteUpdater process which, in

turn, updates the kernel routing tables.

The module also supports updating routes in a given network namespace, so it can also be used

in the multiple nodes emulation architecture.

Finally, two other new features were added to the EmuFdNetDeviceHelper in the fd-net-device

module to support the data plane in kernelspace architecture and multiple nodes emulation: setting

a socket filter in the raw socket and selecting a network namespace for the socket.

With the real routing module implemented, a researcher must take the following steps to use

the kernelspace architecture in a new protocol. When implementing the routing protocol in ns-3,

the new callbacks must be called as appropriate. Then, when using the protocol in real environ-

ments, the simulation script needs the following changes: (1) set the socket filters in the EmuFd-

NetDeviceHelper and, if emulating multiple nodes, set the network namespace as well; (2) for

each emulated routing node create an instance of the RealRouteUpdater and configure it with the

routing protocol being used, the network namespace of the node, and the mapping between the ns-

3 interfaces and the real interfaces of the host. With this configuration done, the created scenario
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will then be executed using the data plane in kernelspace architecture.

5.2.2 Performance Validation

The data plane in kernelspace architecture was validated using the Optimized Link State Routing

Protocol (OLSR), a link state, proactive, L3 protocol [JC03].

The scalability in real environments was validated by comparing the performance of three

different implementations: OLSR using traditional ns-3 emulation; OLSR using the real routing

module; and olsrd, an implementation of OLSR for real systems [OLS].

The three scenarios have the same network topology (Figure 5.4), which is composed of three

nodes connected by 100 Mbit/s Ethernet links:

• The source S. It runs OLSR and uses the iperf tool to generate UDP traffic destined to D.

At the same time it also pings D to measure the round-trip time (RTT);

• The destination D. It runs OLSR and an iperf server to receive the UDP traffic from S and

calculate the throughput and packet loss;

• An OLSR router R. It forwards the packets between S and D.

Figure 5.4: Network topology of the test scenarios

There were three scenarios tested. In the first (ns-3 emulation), R runs a traditional ns-3

emulation of OLSR. In the second scenario, (ns-3 real routing) R runs a ns-3 emulation of OLSR

using the real routing module that was developed. In the last scenario (olsrd), R runs olsrd. In all

scenarios, S and D run olsrd.

For each scenario a series of tests was executed, starting with S generating 1 Mbit/s of UDP

traffic to D and then increasing that value to 2, 4, 8, 16, 32, 64, and 70.8 Mbit/s. Each test had a

duration of 30 seconds and was repeated 5 times. The payload of the UDP packets was 160 bytes.

The maximum offered data rate was of 70.8 Mbit/s because that is the maximum throughput that

can be achieved in 100 Mbit/s Ethernet links for UDP packets with 160 bytes of data.

For each of these tests, four performance metrics were measured:
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• The received data rate in D, which was given by the iperf tool;

• The packet loss ratio, which was also measured by iperf;

• The average round round-trip time, measured using the ping utility;

• The average CPU load in R, measured using the top utility.

The router R runs on an Intel Atom N270, which is a single core processor but that uses the

Hyper-Threading technology so it behaves as having two logical cores. The operating system used

was Ubuntu 14.04 LTS.
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Figure 5.5: Data plane in kernelspace performance validation results for UDP traffic with payload
of 160 bytes

The results are shown in Figure 5.5. The traditional ns-3 emulation implementation is able

to forward packets at the offered rate until 8 Mbit/s. After that, performance starts degrading and

when the offered rate hits 70.8 Mbit/s, ns-3 emulation has 95% packet loss and can only forward at

3.5Mbit/s. The round trip time (RTT) also increases to 342 ms, while until 8 Mbit/s it was around

1 ms. The reason why ns-3 emulation goes above 100% load is that the CPU of the router has two

logical cores (due to Hyper-Threading) and ns-3 uses a dedicated thread for reading operations.

The real routing implementation and olsrd are able to forward packets at the offered rate at all

rates except at 70.8 Mbit/s. At this highest rate there is packet loss of 4% and 2% for real routing
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and olsrd, respectively, and they forward traffic at 67.5 Mbit/s and 69 Mbit/s, respectively. Both

of these implementations also provide very low round trip times, less than 0.5 ms until 32 Mbit/s,

around 1 ms at 64 Mbit/s and around 23 ms at 70.8 Mbit/s. This means that, at the highest rate,

real routing provides and increase in throughput of around 19 times when compared to traditional

emulation as well as a decrease in RTT of around 14 times.

The reason that real routing performs slightly worse than olsrd is because it incurs a higher

CPU load (around 3 times more at 70.8 Mbit/s). This can be attributed mainly to the socket filters,

which must be executed for every packet that is received in the system. One way to reduce the

overhead incurred by the filters is to enable them to be JIT (just-in-time) compiled, which means

that instead of the kernel interpreting them for each packet, it will compile them to the under-

lying processor architecture just once and them run the compiled code for the received packets.

However, we could not enable this optimization in the system we were using because it is a x86

machine and Ubuntu 14.04 only configures the kernel to allow JIT compilation of filters in x64

systems.

5.2.3 Code Reuse Validation

To validate that using the data plane in kernelspace architecture only requires writing a small

amount of new code we counted the lines of code that were developed to use the real routing

module with the existing ns-3 implementation of OLSR.

The results are presented in Figure 5.6, where ns-3 emulation indicates the number of lines

of code of the existing ns-3 implementation of OLSR, and ns-3 real routing indicates the sum

of those lines with the new lines that were developed to extend the implementation to work with

the real routing module. The lines of code of the real routing module itself are not counted be-

cause it is a generic module that can be used with any proactive L3 protocol without having to be

reimplemented. The blank and comment lines are not counted.
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Figure 5.6: Code reuse validation results for data plane in kernelspace
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It can be seen that only around 1.4% more lines of code were written to use the real routing

module. Most of the new lines implement the code that calls the real routing module callbacks to

update the routing table and the rest of the lines correspond to code that sets the socket filters and

initializes the real routing module. We can thus conclude that the increase in code is marginal,

especially when compared to the performance gains that are obtained when using the data plane

in kernelspace architecture.
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5.3 Multiple Nodes Emulation

5.3.1 Performance Validation

The data plane in kernelspace architecture for multiple nodes emulation was validated using the

Optimized Link State Routing Protocol (OLSR).

The scalability in real environments was validated by comparing the performance of OLSR

running on traditional ns-3 emulation of multiple nodes and OLSR using the real routing module

and network namespaces.

The two scenarios have the same network topology (Figure 5.7), which is composed of three

physical nodes connected by 100 Mbit/s Ethernet links:

• The source S. It runs OLSR and uses the iperf tool to generate UDP traffic destined to D.

At the same time it also pings D to measure the round-trip time (RTT);

• The destination D. It runs OLSR and an iperf server to receive the UDP traffic from S and

calculate the throughput and packet loss;

• A machine R which sits between S and D. It emulates a network of nodes that are connected

in a line topology.
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Figure 5.7: Network topology of the test scenarios

The line topology is used to determine how performance varies with the number of hops in a

real scenario. There were two scenarios tested. In the first (ns-3 emulation), R runs a traditional

ns-3 emulation of multiple OLSR routers. In the second scenario (ns-3 real routing), R runs a ns-3

emulation of multiple OLSR routers using the real routing module and the network namespaces

architecture. In both scenarios, the links between the emulated nodes (simulated channels in ns-3

and virtual devices in network namespaces) were configured to have zero latency and 1 Gbit/s of

maximum throughput.
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For each scenario, two series of tests were executed to assess the UDP (first) and TCP (second)

throughput. Both series started with R emulating a single node, and then increasing the number

of emulated nodes in R to 2, 4, 8, 16, 24, and 32. Each test had a duration of 30 seconds and was

repeated 5 times.

In the first series of tests S generates 16 Mbit/s of UDP traffic to D. This value was chosen

because it is the maximum value that allows for some traffic to be received when using traditional

emulation of 32 nodes. The payload of the UDP packets was 160 bytes.

For each of the tests in the first series, four performance metrics were measured:

• The received data rate in D, which was given by the iperf tool;

• The packet loss ratio, which was also measured by iperf;

• The average round round-trip time, measured using the ping utility;

• The average CPU load in R, measured using the top utility.

In the second series of tests, S generates TCP traffic to D. For each of the tests in this series,

three performance metrics were measured:

• The received data rate in D, which was given by the iperf tool;

• The average round round-trip time, measured using the ping utility;

• The average CPU load in R, measured using the top utility.

The machine R runs on has an Intel Atom N270, which is a single core processor but that uses

the Hyper-Threading technology so it behaves as having two logical cores. The operating system

used was Ubuntu 14.04 LTS.

The results for UDP traffic are shown in Figure 5.8. Even with only one node, the traditional

ns-3 emulation can only forward packets at 9.5 Mbit/s. With 8 emulated nodes there is already

an 89% packet loss, a forwarding rate of less than 2 Mbit/s, and a RTT of more than 1.5 seconds.

When the number of emulated nodes reach 32, the packet loss is 97% and the throughput is only

0.38 Mbit/s. RTT also peaks at 7.4 seconds.

The real routing implementation with network namespaces is able to achieve better perfor-

mance. Until 8 emulated nodes it forwards traffic at the full 16 Mbit/s (8 times more than tra-

ditional emulation). The RTT is low as well, around 0.5 ms until 4 nodes and 2 ms for 8 nodes

(750 times less than traditional emulation). With more than 8 nodes the performance starts de-

creasing and with 32 nodes, real routing only forwards at 1.5 Mbit/s (4 times more than traditional

emulation) with a packet loss of 88%. RTT also increases to around 312 ms (24 times less than

traditional emulation). The CPU load for real routing is lower up to 8 nodes. After that, both

implementations are equivalent, but the real routing implementation is processing more traffic for

the same load.
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Figure 5.8: Multiple nodes emulation results for UDP traffic with payload of 160 bytes

The results for TCP traffic are shown in Figure 5.9. With only one node, traditional emulation

can forward 55 Mbit/s of traffic. At 8 nodes, throughput decreases to 10 Mbit/s and RTT is 389 ms.

With 32 nodes, traditional emulation can only achieve 2.6 Mbit/s and an RTT of 1.9 seconds.

Real routing can achieve throughputs of 94 Mbit/s with up to 8 nodes (9.4 times higher than

traditional emulation) and 93 Mbit/s with 16 nodes. The RTT at 8 nodes is 38 ms (10 times lower

than traditional emulation). When the number of nodes reaches 32, real routing can forward at a

rate of 60 Mbit/s (23 times more than traditional emulation) and has a RTT of 124 ms (15 times

less than traditional emulation). The CPU load of real routing is also lower until 8 nodes but is

slightly higher with 16 or more nodes.

We can conclude that applying the data plane in kernelspace architecture with network names-

paces to support multiple emulated nodes can provide increased performance for the same number

of nodes of traditional emulation. Alternatively, the proposed architecture can also be used to allow

increasing the number of nodes in an emulation while maintaining the same or better performance

of traditional emulation.
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Figure 5.9: Multiple nodes emulation results for TCP traffic
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Chapter 6

Conclusions and Future Work

The main goal of this dissertation is to propose an approach to shared protocol implementation

that allows users of ns-3 to use their simulation code in real environments. We started by showing

the problem that developers of new communication protocols face of having to port their protocol

code between the simulator and a real system and then maintain both of those implementations

during the protocol development process. To solve this problem we set the task of developing

an architecture for shared protocol implementation that achieves the following goals: (1) full

compatibility with ns-3, (2) scalability in simulation and in real environments, (3) large amount of

code reuse between the simulator and the real system.

We then presented the current techniques and tools that provide a shared protocol implemen-

tation. These tools follow three main approaches: abstraction layers, direct code execution, and

fast prototyping. Abstractions layers provide a development environment that hides from users

the details of the underlying systems and can then run the developed code in each of those sys-

tems. Direct code execution provides an environment that allows code developed for real systems

to be executed in simulations. This is done through the use of a virtualization layer. Finally, fast

prototyping is a development model in which researchers implement the protocol directly in the

simulator and then use emulation to allow the simulation code to be reused in testbeds. With this

study we reached the conclusion that the best approach for our purposes is the use of fast proto-

typing with ns-3 emulation because it is the only solution that allows to use the full functionality

of ns-3. It also has the advantage of providing high scalability in simulation since the protocols

are developed directly in ns-3.

Despite ns-3 emulation being chosen as the best candidate to achieve the goals defined in this

dissertation, it does not satisfy them all. In particular, it fails to achieve the goal of scalability in

real environments. To better understand the limitations of ns-3 emulation performance we did an

experiment that compares the forwarding performance between kernelspace, userspace, and ns-3

emulation. We showed that emulation in ns-3 introduces overhead in the processing of each packet

and so its performance degrades quickly with the increase of the number of packets in the network.
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The experiment also showed that userspace and kernelspace implementations suffer less from this

problem.

Our proposed solution is thus to use fast prototyping with ns-3 emulation but move the data

plane outside of the simulator. Since most of the traffic of typical networks is related to data,

this solution improves the network nodes efficiency at the cost of having to port the data plane

code. This is not a big problem, however, because the data plane is much simpler than the control

plane resulting in a relatively small amount of code that needs to be ported. We proposed two

architectures to implement this solution: executing the data plane in userspace and executing it

in kernelspace. The former is more generic and works for any protocol while the latter is more

efficient and allows more code reuse but is only applicable to proactive L3 protocols.

We also presented an architecture that enables the proposed optimizations to be used even

when emulating multiple nodes in the same machine. This is done by using network namespaces,

which are environments with the network resources isolated from each other.

In the case of the data plane in kernelspace architecture, since most of it can be reused be-

tween different protocols, we created a new ns-3 module called real routing which implements the

generic parts of the architecture. This allows researchers to easily extend their ns-3 protocols to

execute the data plane in kernelspace.

To validate the proposed solutions, we extended the WMRP and OLSR protocols to work with

the developed architectures. Then, we compared the performance of the new architectures against

traditional ns-3 emulation, both for single and multiple emulated nodes in the same physical node,

running multiple tests with different configurations. The summarized interpretation of the obtained

results is the following: emulating a single ns-3 node, the maximum throughput can be improved

by as much as 4.9 times in userspace and 19 times in kernelspace, while having the RTT lowered

by 5.3 and 14 times, respectively; when emulating multiple ns-3 nodes, the maximum throughput

can be improved, in kernelspace, by as much as 23 times while having 15 times lower RTT.

With this results in consideration, we can conclude that the proposed architectures (userspace and

kernelspace) allow much better data plane performance, when compared against traditional ns-3

emulation. The kernelspace architecture has the best performance, obtaining results very close

to a real protocol implementation. Thus, when possible, the kernelspace architecture should be

used to obtain the best emulation performance results. This enables the use of fast prototyping for

network protocols in more traffic demanding scenarios or in real nodes with limited processing

power.

The amount of code reuse obtained was also verified by counting the lines of code needed for

each implementation. We found that implementing the data plane in userspace only required the

development of around 11% additional lines of code on top of traditional emulation implementa-

tions. In the case of executing the data plane in kernelspace, that value can be reduce to 1.4% by

using the real routing module.

In conclusion, the objectives of this work were fully achieved, complemented by validation

results that demonstrated both the relevance of the problem addressed by the work and the quality

of the proposed solution. As a result of this work, ns-3 users will be able to reuse their simulation
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code in real networks, now with contained packet processing overhead, enabling them to reap the

benefits of the fast prototyping process without the previously associated negative performance

impact.

6.1 Main Contributions

The main contributions of our work are the following:

1. The proposal of two architectures that execute the data plane of routing protocols outside

of the simulator in order to improve the performance of emulated nodes. One architecture

executes the data plane in a userspace process while the other executes the data plane in

kernelspace by updating the routing tables of the kernel;

2. An architecture that uses network namespaces to enable the use of the previous two archi-

tectures in scenarios where multiple nodes need to be emulated in a single machine;

3. A new ns-3 module, real routing, which allows researchers to easily extend their routing

protocols to use the data plane in kernelspace architecture;

4. Empirical studies that validate the proposed architectures’ scalability in real environments

and the amount of code reuse that can be obtained.

6.2 Future Work

The main objectives of this dissertation were achieved, but this work revealed some topics that are

relevant and should be addressed as future work, answering some questions raised in this thesis

and improving the obtained results.

First, the real routing module can be proposed for integration in the main ns-3 distribution in

order to reach more protocol developers and researchers. It can also be made more easy to use,

for example, it could allow socket filters to be specified as a string with the tcpdump filter syntax

instead of an array of machine code that must be manually generated by users. Another helpful

feature would be to automatically generate the network namespaces and their connections based

on the topology of the nodes created in the simulator. At the moment, users have to manually

create the namespaces and configure the emulated nodes with their corresponding namespace.

To increase the usefulness of the real routing module, it can also be extended to support reac-

tive protocols. To do this, a kernel module or other facility would have to be created that would

listen to the events generated in the kernel during packet processing (e.g. failure to find a route)

and send the relevant information back to the simulator so the appropriate control plane operations

can be executed.

It would be also interesting to test the performance gains that can be obtained with the data

plane in kernelspace architecture on machines that support JIT compilation of socket filters.
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Finally, regarding the architecture for multiple nodes emulation, the performance and reliabil-

ity of the netem kernel module should be validated to determine if it can be used to emulate in

the virtual devices the network conditions that are defined in ns-3. Additionally, other types of

virtualization environments (e.g. OpenVZ or LXC) could be tested to see whether they can obtain

better performance than network namespaces combined with veth virtual network devices.
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Appendix A

Detailed Results of Performance
Evaluations

This chapter provides the detailed results in table form of all the evaluations that were presented.

All confidence intervals shown have a 95% confidence level.

A.1 Results of Evaluation of ns-3 Emulation Perfomance

Table A.1: Performance results of ns-3 emulation forwarding of UDP packets with payload of
1470 bytes

Offered Rate (Mbit/s) Received Rate (Mbit/s) Packet Loss (%) RTT (ms) CPU Load (%)
1 1.00 ± 0.00 0.00 ± 0.00 3.00 ± 0.00 3.00 ± 0.00
2 2.00 ± 0.00 0.00 ± 0.00 5.00 ± 0.00 5.00 ± 0.00
4 4.00 ± 0.00 0.00 ± 0.00 9.60 ± 0.68 9.60 ± 0.68
8 8.00 ± 0.00 0.00 ± 0.00 18.60 ± 0.68 18.60 ± 0.68
16 16.00 ± 0.00 0.00 ± 0.00 35.00 ± 0.88 35.00 ± 0.88
32 32.04 ± 0.00 0.00 ± 0.00 62.40 ± 0.68 62.40 ± 0.68
64 64.26 ± 0.01 0.00 ± 0.01 97.40 ± 2.08 97.40 ± 2.08
90 90.34 ± 0.05 0.13 ± 0.06 122.20 ± 4.06 122.20 ± 4.06
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Table A.2: Performance results of userspace forwarding of UDP packets with payload of
1470 bytes

Offered Rate (Mbit/s) Received Rate (Mbit/s) Packet Loss (%) RTT (ms) CPU Load (%)
1 1.00 ± 0.00 0.00 ± 0.00 0.53 ± 0.02 0.00 ± 0.00
2 2.00 ± 0.00 0.00 ± 0.00 0.53 ± 0.02 1.00 ± 0.00
4 4.00 ± 0.00 0.00 ± 0.00 0.55 ± 0.05 3.00 ± 0.00
8 8.00 ± 0.00 0.00 ± 0.00 0.56 ± 0.01 5.40 ± 0.68

16 16.00 ± 0.00 0.00 ± 0.00 0.60 ± 0.02 11.00 ± 0.00
32 32.04 ± 0.00 0.00 ± 0.00 0.67 ± 0.02 22.00 ± 0.00
64 64.26 ± 0.00 0.00 ± 0.00 0.78 ± 0.06 39.00 ± 1.24
90 90.48 ± 0.03 0.00 ± 0.00 1.05 ± 0.24 45.00 ± 1.52

Table A.3: Performance results of kernelspace forwarding of UDP packets with payload of
1470 bytes

Offered Rate (Mbit/s) Received Rate (Mbit/s) Packet Loss (%) RTT (ms) CPU Load (%)
1 1.00 ± 0.00 0.00 ± 0.00 0.29 ± 0.01 0.00 ± 0.00
2 2.00 ± 0.00 0.00 ± 0.00 0.29 ± 0.01 0.00 ± 0.00
4 4.00 ± 0.00 0.00 ± 0.00 0.30 ± 0.00 0.00 ± 0.00
8 8.00 ± 0.00 0.00 ± 0.00 0.32 ± 0.02 0.00 ± 0.00

16 16.00 ± 0.00 0.00 ± 0.00 0.36 ± 0.01 0.00 ± 0.00
32 32.04 ± 0.00 0.00 ± 0.00 0.43 ± 0.01 0.00 ± 0.00
64 64.26 ± 0.00 0.00 ± 0.00 0.52 ± 0.01 0.00 ± 0.00
90 90.46 ± 0.00 0.00 ± 0.00 0.55 ± 0.03 0.00 ± 0.00

Table A.4: Performance results of ns-3 emulation forwarding of UDP packets with payload of
160 bytes

Offered Rate (Mbit/s) Received Rate (Mbit/s) Packet Loss (%) RTT (ms) CPU Load (%)
1 1.00 ± 0.00 0.00 ± 0.00 18.60 ± 0.68 18.60 ± 0.68
2 2.00 ± 0.00 0.00 ± 0.00 36.20 ± 1.04 36.20 ± 1.04
4 4.00 ± 0.00 0.00 ± 0.00 61.60 ± 1.67 61.60 ± 1.67
8 8.00 ± 0.00 0.00 ± 0.00 97.00 ± 4.39 97.00 ± 4.39

16 14.38 ± 0.93 10.09 ± 5.77 138.20 ± 7.42 138.20 ± 7.42
32 12.74 ± 1.10 59.95 ± 3.58 125.40 ± 12.44 125.40 ± 12.44
64 7.99 ± 0.19 87.39 ± 0.30 112.80 ± 6.36 112.80 ± 6.36
71 6.79 ± 0.16 90.37 ± 0.28 109.60 ± 4.35 109.60 ± 4.35
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Table A.5: Performance results of userspace forwarding of UDP packets with payload of 160 bytes

Offered Rate (Mbit/s) Received Rate (Mbit/s) Packet Loss (%) RTT (ms) CPU Load (%)
1 1.00 ± 0.00 0.00 ± 0.00 0.45 ± 0.03 5.80 ± 0.56
2 2.00 ± 0.00 0.00 ± 0.00 0.45 ± 0.04 11.00 ± 0.00
4 4.00 ± 0.00 0.00 ± 0.00 0.53 ± 0.10 22.00 ± 0.00
8 8.00 ± 0.00 0.00 ± 0.00 0.46 ± 0.04 33.20 ± 0.56
16 15.99 ± 0.02 0.06 ± 0.12 0.61 ± 0.20 53.40 ± 0.68
32 25.46 ± 0.24 20.15 ± 0.61 31.34 ± 24.88 93.20 ± 3.33
64 31.67 ± 3.38 50.15 ± 5.28 16.69 ± 0.75 91.00 ± 2.32
71 27.76 ± 5.61 60.56 ± 8.12 36.63 ± 51.16 88.20 ± 10.80

Table A.6: Performance results of kernelspace forwarding of UDP packets with payload of
160 bytes

Offered Rate (Mbit/s) Received Rate (Mbit/s) Packet Loss (%) RTT (ms) CPU Load (%)
1 1.00 ± 0.00 0.00 ± 0.00 0.29 ± 0.01 0.00 ± 0.00
2 2.00 ± 0.00 0.00 ± 0.00 0.29 ± 0.01 0.00 ± 0.00
4 4.00 ± 0.00 0.00 ± 0.00 0.29 ± 0.01 0.00 ± 0.00
8 8.00 ± 0.00 0.00 ± 0.00 0.29 ± 0.01 0.00 ± 0.00
16 16.00 ± 0.00 0.00 ± 0.00 0.30 ± 0.01 0.00 ± 0.00
32 31.99 ± 0.01 0.03 ± 0.03 0.32 ± 0.02 0.00 ± 0.00
64 63.09 ± 0.27 1.15 ± 0.14 0.51 ± 0.04 5.00 ± 3.66
71 68.45 ± 0.50 3.18 ± 0.64 23.03 ± 0.52 7.96 ± 1.31
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A.2 Results of Evaluation of Data Plane in Userspace Architecture

Table A.7: Performance results of traditional emulation of WMRP

Offered Rate (Mbit/s) Received Rate (Mbit/s) Packet Loss (%) RTT (ms) CPU Load (%)
1 1.00 ± 0.00 0.00 ± 0.00 1.41 ± 0.03 0.09 ± 0.23
2 2.00 ± 0.00 0.00 ± 0.00 1.41 ± 0.06 11.10 ± 6.70
4 4.00 ± 0.00 0.00 ± 0.00 1.50 ± 0.06 41.60 ± 9.57
8 8.00 ± 0.00 0.00 ± 0.00 2.02 ± 0.63 84.21 ± 7.03
16 14.43 ± 0.64 9.77 ± 4.09 65.35 ± 18.87 125.63 ± 10.80
32 11.80 ± 0.11 62.88 ± 0.42 110.08 ± 8.70 104.22 ± 4.13
64 10.49 ± 1.12 83.45 ± 1.77 101.28 ± 37.76 112.14 ± 26.06
71 9.27 ± 0.09 86.83 ± 0.08 84.60 ± 22.36 104.60 ± 5.17

Table A.8: Performance results of data plane in userspace with WMRP

Offered Rate (Mbit/s) Received Rate (Mbit/s) Packet Loss (%) RTT (ms) CPU Load (%)
1 1.00 ± 0.00 0.00 ± 0.00 0.91 ± 0.02 0.00 ± 0.00
2 2.00 ± 0.00 0.00 ± 0.00 0.89 ± 0.02 0.00 ± 0.00
4 4.00 ± 0.00 0.00 ± 0.00 0.90 ± 0.06 3.73 ± 5.80
8 8.00 ± 0.00 0.00 ± 0.00 0.96 ± 0.11 22.44 ± 17.46
16 15.99 ± 0.01 0.04 ± 0.04 1.06 ± 0.13 13.43 ± 13.55
32 31.62 ± 0.02 1.19 ± 0.06 2.07 ± 0.21 71.01 ± 5.51
64 43.44 ± 1.90 31.84 ± 3.08 7.90 ± 0.47 98.00 ± 15.91
71 43.84 ± 4.79 37.77 ± 6.74 16.25 ± 1.02 99.30 ± 7.81
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A.3 Results of Evaluation of Data Plane in Kernelspace Architecture

Table A.9: Performance results of traditional emulation of OLSR

Offered Rate (Mbit/s) Received Rate (Mbit/s) Packet Loss (%) RTT (ms) CPU Load (%)
1 1.00 ± 0.00 0.00 ± 0.00 1.06 ± 0.07 13.09 ± 0.97
2 2.00 ± 0.00 0.00 ± 0.00 1.20 ± 0.10 35.26 ± 2.21
4 4.00 ± 0.00 0.00 ± 0.00 1.38 ± 0.16 63.68 ± 3.37
8 7.92 ± 0.07 0.89 ± 0.84 94.97 ± 50.26 118.23 ± 2.47
16 9.06 ± 0.28 43.19 ± 1.60 190.75 ± 18.03 115.39 ± 3.89
32 8.14 ± 0.62 74.34 ± 1.95 241.43 ± 33.00 105.01 ± 13.47
64 4.34 ± 0.39 93.16 ± 0.63 374.54 ± 135.71 119.38 ± 15.74
71 3.55 ± 0.24 94.94 ± 0.35 342.29 ± 198.42 114.52 ± 12.67

Table A.10: Performance results of data plane in kernelspace with OLSR

Offered Rate (Mbit/s) Received Rate (Mbit/s) Packet Loss (%) RTT (ms) CPU Load (%)
1 1.00 ± 0.00 0.00 ± 0.00 0.37 ± 0.02 0.00 ± 0.00
2 2.00 ± 0.00 0.00 ± 0.00 0.37 ± 0.01 0.00 ± 0.00
4 4.00 ± 0.00 0.00 ± 0.00 0.37 ± 0.00 0.00 ± 0.00
8 8.00 ± 0.00 0.00 ± 0.00 0.37 ± 0.01 0.00 ± 0.00
16 16.00 ± 0.00 0.00 ± 0.00 0.39 ± 0.01 0.00 ± 0.00
32 31.99 ± 0.01 0.00 ± 0.01 0.45 ± 0.04 3.17 ± 2.50
64 63.53 ± 0.20 0.71 ± 0.31 1.82 ± 0.26 67.93 ± 5.17
71 67.56 ± 0.19 4.46 ± 0.26 23.80 ± 0.10 81.18 ± 9.08

Table A.11: Performance results of olsrd

Offered Rate (Mbit/s) Received Rate (Mbit/s) Packet Loss (%) RTT (ms) CPU Load (%)
1 1.00 ± 0.00 0.00 ± 0.00 0.36 ± 0.01 0.00 ± 0.00
2 2.00 ± 0.00 0.00 ± 0.00 0.38 ± 0.01 0.00 ± 0.00
4 4.00 ± 0.00 0.00 ± 0.00 0.37 ± 0.01 0.00 ± 0.00
8 8.00 ± 0.00 0.00 ± 0.00 0.37 ± 0.01 0.00 ± 0.00
16 16.00 ± 0.00 0.00 ± 0.00 0.37 ± 0.01 0.00 ± 0.00
32 32.00 ± 0.00 0.00 ± 0.01 0.40 ± 0.01 1.35 ± 0.80
64 63.82 ± 0.02 0.18 ± 0.03 0.68 ± 0.06 26.96 ± 5.14
71 69.39 ± 0.02 1.84 ± 0.07 23.16 ± 0.29 23.67 ± 1.32
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A.4 Results of Evaluation of Multiple Nodes Emulation

Table A.12: Performance results of multiple nodes traditional emulation for UDP traffic at
16 Mbit/s

Number of Nodes Received Rate (Mbit/s) Packet Loss (%) RTT (ms) CPU Load (%)
1 9.50 ± 0.65 40.49 ± 4.07 175.04 ± 19.85 121.14 ± 14.36
2 5.47 ± 0.29 65.61 ± 1.79 399.11 ± 27.60 111.77 ± 12.30
4 3.05 ± 0.10 80.70 ± 0.65 817.62 ± 19.83 100.44 ± 8.03
8 1.69 ± 0.10 89.21 ± 0.66 1576.68 ± 72.79 101.22 ± 10.87

16 0.86 ± 0.02 94.36 ± 0.13 3136.98 ± 295.01 96.35 ± 5.22
24 0.55 ± 0.01 96.28 ± 0.10 4974.37 ± 296.08 92.89 ± 4.24
32 0.38 ± 0.02 97.38 ± 0.13 7428.99 ± 490.58 74.80 ± 9.51

Table A.13: Performance results of multiple nodes with data plane in kernelspace for UDP traffic
at 16 Mbit/s

Number of Nodes Received Rate (Mbit/s) Packet Loss (%) RTT (ms) CPU Load (%)
1 16.00 ± 0.00 0.00 ± 0.00 0.38 ± 0.03 0.03 ± 0.09
2 16.00 ± 0.00 0.00 ± 0.00 0.42 ± 0.01 0.00 ± 0.00
4 16.00 ± 0.00 0.00 ± 0.00 0.54 ± 0.04 0.15 ± 0.27
8 16.00 ± 0.00 0.00 ± 0.00 2.29 ± 0.54 14.97 ± 3.49

16 10.48 ± 0.05 34.40 ± 0.33 207.89 ± 1.58 88.32 ± 1.35
24 4.10 ± 0.04 74.30 ± 0.28 250.02 ± 48.44 90.00 ± 0.69
32 1.51 ± 0.14 90.49 ± 0.83 312.41 ± 173.29 88.10 ± 5.48
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Table A.14: Performance results of multiple nodes traditional emulation for TCP traffic

Number of Nodes Received Rate (Mbit/s) RTT (ms) CPU Load (%)
1 55.02 ± 1.47 27.58 ± 17.31 140.20 ± 3.78
2 30.31 ± 0.37 108.49 ± 58.50 123.91 ± 2.33
4 18.49 ± 0.69 329.44 ± 30.26 103.76 ± 4.59
8 10.39 ± 0.14 388.97 ± 131.37 97.30 ± 1.77
16 5.52 ± 0.08 834.28 ± 424.88 84.96 ± 1.81
24 3.69 ± 0.10 1485.97 ± 309.77 81.64 ± 1.96
32 2.64 ± 0.06 1953.64 ± 556.10 75.14 ± 1.55

Table A.15: Performance results of multiple nodes with data plane in kernelspace for TCP traffic

Number of Nodes Received Rate (Mbit/s) RTT (ms) CPU Load (%)
1 94.20 ± 0.02 37.16 ± 5.80 0.00 ± 0.00
2 94.19 ± 0.04 35.69 ± 8.37 0.00 ± 0.00
4 94.20 ± 0.01 36.36 ± 6.51 5.43 ± 2.95
8 94.12 ± 0.04 38.12 ± 5.50 18.72 ± 3.01
16 93.09 ± 0.06 55.40 ± 1.20 91.52 ± 0.92
24 77.05 ± 0.99 98.78 ± 1.54 91.73 ± 0.49
32 60.07 ± 0.22 123.84 ± 0.97 93.28 ± 1.28
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