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Abstract

Properties of control systems described by differential inclusions are well established in the literature. Of
special relevance to optimal control problems are properties concerning measurability, convexity, compactness
of trajectories and Lipschitz continuity of the multifunctions mapping defining the differential inclusion of
interest. In this work we concentrate on dynamic control systems coupled with mixed state-control constraints.
We characterize a class of such systems that can be described by an appropriate differential inclusion so as
exhibit “good” properties of the multifunction. We also illustrate the importance of our findings by treating
some applications scenarios.



1 Introduction
Control systems described in terms by differential inclusions have been extensively studied in the literature
(see, e.g., [1, 2, 5, 7, 12, 13, 16, 17] to name but a few). Differential inclusions appear in control theory when
dynamical systems are expressed as

ẋ(t) ∈ F (t, x(t)), (1)

where t ∈ I ⊂ R, x ∈ Rn and F is a multifunction (or set-valued mapping) with closed values in Rn. Such
systems make it possible to study in a uniform way a large number of control problems (in this respect see for
example [5]). Indeed, differential inclusions have proved to be a useful framework for optimal control problems.
They are convenient to state conditions under which existence of solution is ensured and an useful tool to derive
optimality conditions.

It is commonly accepted that differential inclusions are a ÂťÂťnatural framework” to study dynamical sys-
tems with mixed state- control constraints (see [17], pp. 38). Such approach has been used for example in [7],
[10] and, recently, in [8] and [9]. The usefulness of differential inclusions for optimal control problems requires
that differential inclusion have certain properties. In particular, it is essential to establish under which condi-
tions the trajectories of control systems described in terms of ordinary differential equations are the functions
satisfying (1). In this respect many questions arise as those on the measurability of the multifunction defining
the differential inclusion (so existence of measurable selections is guaranteed), compactness of trajectories, con-
vexity properties (two subjects relevant for the existence of solution to optimal control problems), etc. Although
such aspects are clearly and concisely treated in the literature for control systems of the form{

ẋ(t) = f(t, x(t), u(t)) a.e. t ∈ [a, b],
u(t) ∈ U(t) a.e. t ∈ [a, b],

(see for example Chapter 2 in [17]), the same cannot be said when control systems are coupled with mixed
constraints. The system of interest, herein denoted as (Σ), comprises a differential equation

ẋ(t) = f(t, x(t), u(t)) a.e. t ∈ [a, b],

and mixed constraints

(x(t), u(t)) ∈ S(t) a.e. t ∈ [a, b], (2)

together with boundary conditions

(x(a), x(b)) ∈ E. (3)

The data comprises a fixed interval [a, b], a function f : [a, b]×Rn×Rk → Rn, a multifunction S : [a, b]→ Rn×Rk
and a set E ⊂ Rn × Rn. For such system, a pair (x, u) comprising an absolutely continuous function x (the
state trajectory) and a measurable function u (the control), will be called throughout an feasible process if it
satisfies all the constraints of the above system.

Our aim is to gather together properties of multifunctions relevant to optimal control problems involving
control systems of the form (Σ). To highlight the required properties, while keeping exposition as simple as
possible, we work under somewhat strong assumptions.

Conditions under which the state trajectories for (Σ) coincide with the trajectories of a certain differential
inclusion

ẋ(t) ∈ Fm(t, x(t)) a.e. t ∈ [a, b],

(where Fm is a multifunction to be defined shortly) satisfying the boundaries constraints (3) will be central in
our analysis.

We shall pay particular attention to the case where

S(t) := {(x, u) ∈ Rn × U : g(t, x(t), u(t)) 6 0} , (4)

where U ⊂ Rk and g : [a, b]× Rn × Rk → Rm. However, we do not limit our discussion to this case.
We emphasize that the contribution of this paper does not reside on the novelties of the results (since most of

them appear to be known) but rather on gathering them together. A remarkable fact is that our work highlights
the importance of a bounded slope condition imposed on the mixed constraints in the vein [7].

This paper is organized in the following way. In section II we introduce a definition and an important result
due to Clarke (in [7]) that will be essential in our setting. Before engaging in our main theme we briefly report
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on two optimal control problems where inequality mixed constraint appear naturally. Next, in section IV, we
present the main assumptions. Our main results appear in Section V. In the last section we present a sketch of
proof of our last (and probably the most important) theorem.

Notations: If g ∈ Rm, the inequality g 6 0 is interpreted component-wise. Define Rm− = {ξ ∈ Rm : ξ 6 0} and
likewise for Rm+ . The closed ball centred at x with radius δ is denoted B̄(x, δ) and likewise for the open ball
regardless of the dimension of the underlying space. On the other hand, B̄ and B denote the closed and open
unit ball centred at the origin. Also | · | is the Euclidean norm or the induced matrix norm on Rp×q.

If Ω ⊂ Rp and F : Ω→ Rq is a multifunction (or set-valued mapping), then the graph of F is defined as

Gr F := {(x, y) ∈ Ω× Rq : y ∈ F (x)} .

We say that a set S ⊂ R×Rn×Rm is L×B -measurable when we refer to measurability relative to the σ-field
generated by the products of Lebesgue measurable subsets in R and Borel measurable subsets in Rn × Rm.

Consider now a function h : [a, b] → Rp. We say that h ∈ W 1,1([a, b];Rp) if and only if it is absolutely
continuous; h ∈ L1([a, b];Rp) iff h is integrable; and h ∈ L∞([a, b];Rp) iff h is essentially bounded. The norm of
L1([a, b];Rp) is denoted by ‖ · ‖1 and the norm of L∞([a, b];Rp) is ‖ · ‖∞.

Take A ⊂ Rn to be a closed set with and consider x∗ ∈ A. Also let f : Rk → R ∪ {+∞} be a a lower
semicontinuous function. With respect to f , x∗ ∈ Rk will be such that f(x∗) < +∞. Concerning nonsmooth
analysis we use the following notation: NP

A (x∗) is the proximal normal cone to A at x∗, NL
A(x∗) is the limiting

normal cone to A at x∗, NC
A (x∗) is the Clarke normal cone to A at x∗, ∂Lf(x∗) is limiting subdifferential of f

at x∗ and ∂Cf(x∗) is (Clarke) subdifferential of f at x∗. If f is Lipschitz continuous near x∗, the convex hull
of the limiting subdifferential, co ∂Lf(x∗) = ∂Cf(x).

2 Auxiliary Result
Before proceeding we state an adaptation of Theorem 3.5.2 in [7] that will be important in the forthcoming
analysis.

Consider a multifunction Γ : [a, b]×Rn → Rk. For each t ∈ [a, b], consider the multifunction x→ Γ(t, x) and
suppose that the graph G(t) of this multifunction is closed. Suppose that u∗ ∈ Γ(t, x∗) and that the following
condition holds:

[BS’] There exist ε > 0, R > 0 and K > 0 such that, for almost all t,

x ∈ B(x∗, ε), u ∈ B(u∗, R), (α, β) ∈ NP
G(t)(x, u) =⇒ |α| 6 K|β|.

The following theorem asserts that a multifunction satisfying [BS’] is pseudo-Lipschitz.

Theorem 2.1 ( adaptation of Theorem 3.5.2 in [7]) Let x → Γ(t, x) satisfy [BS’] near (x∗, u∗) ∈ G(t). Then
for any ξ ∈]0, 1[ and any x1, x2 ∈ B(x∗, ε̄) the following holds

Γ(t, x1) ∩ B̄(u∗, (1− ξ)R) ⊂ Γ(t, x2) +K|x1 − x2|B̄,

where ε̄ = min{ε, ξR/3K}.

3 Main Assumptions
Mixed constraints, also known as state dependent control constraints, can be written in the general form (see
[8]) as (2). We associate with S the multifunction Sm : [0, 1]× Rn → Rk defined as

Sm(t, x) =
{
u ∈ Rk : (x, u) ∈ S(t)

}
.

For each t ∈ [a, b] the set S(t) is the graph of x→ Sm(t, x), that is,

(x, u) ∈ S(t) ⇐⇒ u ∈ Sm(t, x).
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Let us also introduce two more multifunctions F : [0, 1] × Rn → Rn × R × Rm and Fm : [0, 1] × Rn → Rn × R
defined as

F (t, x) : = {(f(t, x, u), g(t, x, u)) : u ∈ U} , (5)

Fm(t, x) : = {f(t, x, u) : u ∈ Sm(t, x)} (6)

The multifunction (5) will be of importance when we concentrate on S as in (4). Consider now an absolutely
continuous function x∗ : [a, b]→ Rn such that

ẋ∗(t) ∈ Fm(t, x∗(t)) a.e.. (7)

Take ε > 0 and define

X(t) := x∗(t) + εB̄ and S∗ε (t) := S(t) ∩
(
(x∗(t) + εB)× Rk

)
. (8)

We now state several assumptions that will be use in the forthcoming analysis. Let φ : [a, b]×Rn×Rk → Rp
be a general function (φ may then replaced by f or g).

(B1) The function t→ φ(t, x, u) is L-measurable for all (x, u) ∈ Rn × Rk.

(B2) The multifunction S is L-measurable and, for each t ∈ [a, b], S(t) is closed.

(B3) The set E is closed.

(B4) For each t ∈ [a, b] and x ∈ X(t), there exists u ∈ Rk such that (x, u) ∈ S(t). Furthermore, each t ∈ [a, b]
there exists a constant σ such that

(x, u) ∈ S(t) =⇒ |u| < σ.

(BS) There exists a constant K > 0 such that, for almost all t ∈ [a, b] and all (x, u) ∈ S∗ε (t),

(α, β) ∈ NP
S(t)(x, u) =⇒ |α| 6 K|β|.

(CA) For all t ∈ [a, b] and x ∈ X(t), Fm(t, x) is convex.

(LC) There exist constants kφx and kφu such that, for almost all t ∈ [a, b] and all (xi, ui) ∈ S∗ε (t) (i = 1, 2), we
have

|φ(t, x1, u1)− φ(t, x2, u2)| 6 kφx |x1 − x2|+ kφu |u1 − u2|.

Some of the above assumptions could (in some situations) be stated in weaker forms. Such strengthening
of the assumptions include the second part of (B4) and also the second part of nature of the constant in (BS)
and (LC). Indeed, the parameters K in (BS) and kφx and kφu in (B1) are constants while in [8] such parameters
are considered to be merely measurable functions. These strengthening of the hypotheses however allow us to
avoid some technical details in the forthcoming analysis.

4 On S(t) defined by (4)
Let us analyse the case where the set S(t) has a specific structure given by (4). First we introduce additional
assumptions on U and F .

(ICU) The set U is compact and for each x ∈ Rn there exists a u ∈ U such that g(t, x, u) 6 0.

(IMC) There exists a constant M such that, for almost every t, all (x, u) ∈ S∗ε (t), η ∈ NL
U (u), γ ∈ Rm+ with

〈γ, g(t, x, u)〉 = 0, we have

(α, β − η) ∈ ∂Lx,u〈γ, g(t, x, u)〉 =⇒ |γ| 6M |β|.

(ICC) For all t ∈ [a, b] and x ∈ X(t), F (t, x) is convex.

Next we shall relate these assumptions with previous ones imposed on S(t) and Fm.

Lemma 4.1 Consider S(t) as defined by (4). Assume that g satisfies (B1) and (LC) and that (ICU) holds.
Then S is a Lebesgue measurable multifunction and for each t, S(t) is closed.
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Remark: For S as defined by (4) Lemma 4.1 states conditions on g and U implying that (B2) and (B4) hold.
Proof. For each t ∈ [a, b], S(t) is nonempty by (ICU). By (LC) we know that g is a Carathéodory function.

Then Proposition 14.33 in [15] asserts that S(t) is a closed set for each t and t→ S(t) is Lebesgue measurable.

Now we investigate the relation between (IMC) and (BS). We fist characterize (α, β) ∈ NL
S(t)(x, u).

Lemma 4.2 Consider S(t) as defined by (4) and assume that g satisfies (B1) and (LC) and that (ICU) and
(IMC) hold. Then for almost every t ∈ [a, b], for all (x, u) ∈ S∗ε (t) and all (α, β) ∈ NL

S∗
ε (t)

(x, u), there exists an
γ > 0 with 〈γ, g(t, x, u)〉 = 0 such that

(α, β) ∈ ∂L(x,u)〈γ, g(t, x, u)〉+ {0} ×NL
U (u). (9)

Proof. (Proof of Lemma 4.2) Let t ∈ [a, b] be such that (IMC) and (LC) hold. Let ϕ(x, u) = g(t, x, u)
and set

C1(t) = ϕ−1(Rm− ) and C2(t) = X(t)× U.
Now take any

(x, u) ∈ S(t), x ∈ x∗(t) + εB and (α, β) ∈ NL
S(t)(x, u).

Observe that x ∈ X(t) but it is not on the boundary of X. This will be of importance in what follow since
(IMC) will be invoked.

Our next task is to characterize NL
C1(t)

(ϕ(x, u)) in terms of ∂L(x,u)〈γ, ϕ(x, u)〉. Corollary 10.50 in [15] is
essential here. To do so, we first claim that if γ ∈ NL

Rm
−

(ϕ(x, u)) such that (0, 0) ∈ ∂L(x,u)〈γ, ϕ(x, u)〉, then γ = 0.
Take any such γ. Since γ ∈ NL

Rm
−

(ϕ(x, u)), we have

〈γ, ϕ(x, u)〉 = 0, γ > 0.

Since (IMC) holds, we deduce from (0, 0) ∈ ∂L(x,u)〈γ, ϕ(x, u)〉 and the fact that 0 ∈ NL
U (u), that |γ| 6 0. It

follows that γ = 0.
Then Corollary 10.50 in [15] holds yielding

NL
C1(t)

(x, u) ⊂
⋃{

∂L(x,u)〈γ, ϕ(x, u)〉 : γ ∈ NL
D(ϕ(x, u))

}
. (10)

This means that there exists a γ > 0, 〈γ, ϕ(x, u)〉 = 0 such that if (v1, v2) ∈ NL
C1(t)

(x, u), then (v1, v2) ∈
∂L〈γ, ϕ(x, u)〉.

Our next step is to prove that NL
C1(t)

(x, u) and NL
C2(t)

(x, u) are transversal in (x, u), i.e.,

(ξ, ζ) ∈ −NL
C1(t)

(x, u) ∩NL
C2(t)

(x, u) =⇒ (ξ, ζ) = (0, 0). (11)

Since NL
C2(t)

(x, u) = NL
X(t)(x, u) × NL

U (x, u), x ∈ intX(t), we have ζ ∈ NL
U (x, u) and ξ = 0. By (10) we have,

for some γ with the required properties,

(0,−ζ) ∈ ∂L〈γ, ϕ(x, u)〉.

Invoking (IMC) with α = 0, β = 0 and η = ζ, we deduce that γ = 0. But then (0, ζ) = (0, 0), proving (11).
Then we can apply Theorem 6.42 in [15] to conclude that

NS∗
ε (t)

(x, u) ⊂ NL
C1(t)

(x, u) +NL
C2(t)

(x, u).

It follows from the above that (9) holds, proving the Lemma. �

As a consequence of Lemma 4.2 we relate (IMC) and (BS).

Corollary 4.3 Under the assumptions of Lemma 4.2, (BS) holds.

Proof. Take any (α, β) ∈ NP
S(t)(x, u). Since S∗ε (t) ⊂ S(t) we have NP

S(t)(x, u) ⊂ NP
S∗
ε (t)

(x, u) . On the other
hand, we also have NP

S∗
ε (t)

(x, u) ⊂ NL
S∗
ε (t)

(x, u). Thus (α, β) ∈ NL
S∗
ε (t)

(x, u) and it follows from Lemma 4.2 and
(IMC) that for γ > 0 with 〈γ, g(t, x, u)〉 = 0,

η ∈ NL
U (u), (α, β − η) ∈ ∂L(x,u)〈γ, g(t, x, u)〉 =⇒ |γ| 6M‖β|.

By (LC) we also conclude that (x, u)→ 〈γ, g(t, x, u)〉 is Lipschitz continuous with constant |γ|max{kgx, kgu}. We
then conclude that

|α| 6 |(α, β − η)| 6 max{kgx, kgu}|γ| 6 max{kgx, kgu}M |β|.
But then (BS) holds with K = max{kgx, kgu}M . �
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5 Convexity of Fm(t, x)
Let us now concentrate on (CA) and (ICC). Although for a general S(t), (CA) may be difficult to check, the
same is not true when S(t) is as defined by (4). In this case, (ICC) is a condition easier to verify and, as we
will show soon, implies (CA). However, the opposite implication does not hold in general. Given the structure
of S(t) one may be tempted to think that other easier verifiable condition would involve the multifunctions

F f (t, y) = {f(t, y, u) : u ∈ U} ,

Gg(t, y) = {g(t, y, u) : u ∈ U} .

Next we investigate the existence of any relations between convexity properties of F , Fm, F f and Gg when S(t)
is defined by inequalities mixed constraints (4).

Lemma 5.1 Consider any t ∈ [a, b] and x ∈ X(t) such that Sm(t, x) 6= ∅ where S(t) is defined as

S(t) := {(x, u) ∈ Rn × U : g(t, x(t), u(t)) 6 0} .

The following relations hold:

1. F (t, x) convex =⇒ Fm(t, x) convex, but the opposite implication does not hold.

2. F (t, x) convex =⇒ F f (t, x) and Gg(t, x) are convex, but the opposite implication does not hold.

3. The convexity of Fm(t, x) does not imply the convexity of F f (t, x) and Gg(t, x) and the opposite implication
does not hold.

Proof.

1. F (t, x) convex =⇒ Fm(t, x) convex.

Take any v1, v2 ∈ Fm(t, x). Then there exist u1, u2 ∈ U such that v1 = f(t, x, u1), v2 = f(t, x, u2),
g(t, x, u1) 6 0 and g(t, x, u2) 6 0. Set zi = g(t, x, ui), i = 1, 2. We have (vi, zi) ∈ F (t, x), i = 1, 2. Since
F (t, x) is convex, for any β ∈ [0, 1], there exists u ∈ U such that (v, z) = β(v1, z1) + (1 − β)(v2, z2) =
(f(t, x, u), g(t, x, u)). But z = βz1 + (1 − β)z2 = g(t, x, u) 6 0. Thus v ∈ Fm(t, x) proving convexity of
Fm(t, x).

If Fm(t, x) convex 6=⇒ F (t, x) convex.

Take U = [−1, 1], f(t, x, u) = u and g(t, x, u) = −(u + 1)2. Then for any x, the set Fm(t, x) = [−1, 1] is
convex. However

F (t, x) =
{

(u,−(u+ 1)2) : u ∈ U
}

is not.

2. F (t, y) convex =⇒ F f (t, y) and Gg(t, y) are convex.

Fix y and take any v1, v2 ∈ F (t, x). Then there exist u1, u2 ∈ U such that v1 = f(t, x, u1) and
v2 = f(t, x, u2). Set z1 = g((t, x, u1) and z2 = g(t, x, u2). Then, for any β ∈ [0, 1] (v, z) = β(v1, z1) + (1−
β)(v2, z2) is such that (v, z) ∈ F (t, x), i.e, there exists u ∈ U such that (v, z) = (f(t, x, u), g(t, x, u)). It
follows that v ∈ F f (t, x) and z ∈ Gg(t, x) proving convexity of F f (t, x) and Gg(t, x).

If F f (t, x) and Gg(t, x) convex 6=⇒ F (t, x) convex.

To see this it is enough to define U = [−1, 1], f(t, x, u) = u2, and g(t, x, u) = u. Then F f (t, x) = [0, 1],
Gg(t, x)[−1, 1] and F (t, x) = {(u2, u) : u ∈ [−1, 1]}.

3. If Fm(t, x) convex 6=⇒ F f (t, x) and Gg(t, x) convex.

Take U = [−1, 1], f(t, x, u) = u and g(t, x, u) = (−u, u3 − u). Then Sm(t, x) = [0, 1] and consequently
Fm(t, x) = [0, 1] is convex. On the other hand, although F f (t, x) = [0, 1] is convex, we do not have
convexity of Gg(t, x) = {(−u, u3 − u) : u ∈ [−1, 1]}.

If F f (t, x) and Gg(t, x) are convex 6=⇒ Fm(t, x) convex.

Take U = [−1, 1], f(t, x, u) = u and g(t, x, u) = −u2 + 1/4. Then F f (t, x) = [−1, 1] and Gg(t, x) =
[−3/4, 1/4] are both convex. However, Fm(t, x) = [−1,−1/2] ∪ [1/2, 1] is not convex.
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We summarize our findings:

F f,g(t, y) convex =⇒
6⇐= F (t, y), G(t, y) convexw� ~w− ~w− w�−

Fm(t, y) convex ⇐⇒ Fm(t, y) convex

6 Properties of the Multifunctions
Here we establish important properties of the multifunctions S and Fm. We We first focus on a general S and
later on we turn to (4).

Lemma 6.1 Assume that (B2) and (B4) hold and that f satisfies (B1) and (LC). Then

1. For each t ∈ [a, b] and each x ∈ X(t), Sm(t, x) and Fm(t, x) are nonempty and compact.

2. The multifunction Fm is L × B-measurable.

3. The graph of (t, x)→ Sm(t, x) is a L × B-measurable set.

4. For almost all t ∈ [a, b] and all x(t) ∈ X(t) there exists an integrable function c such that for all γ(t) ∈
Fm(t, x(t)) we have |γ(t)| 6 c(t).

Proof. The first part of the Lemma follows from (B4) and (LC). For each t ∈ [a, b] and each x ∈ X(t),
(B4) guarantees that the sets Sm(t, x) and Fm(t, x) are nonempty. The set Sm(t, x) is compact since it is closed
by (B2) and bounded by (B4). Taking into account that u → f(t, x, u) is continuous by (LC), we get the
compactness of the set Fm(t, x).

We now turn to 2. of the Lemma. Take any open set A ⊂ Rn. We want to prove that

{(t, x) ∈ [a, b]× Rn : Fm(t, x) ∩A 6= ∅}

is L×B-measurable. Since, by (B1) and (LC), t→ f(t, x, u) is measurable for each (x, u) and (x, u)→ f(t, x, u)
is continuous for each t, Proposition 2.3.6 in [17] asserts that f is an L×B-measurable function. It follows that
the set

f−1(A) =
{

(t, x, u) ∈ [a, b]× Rn × Rk : f(t, x, u) ∈ A
}

is L×B measurable. On the other hand, the multifunction t→ S(t) is L-measurable and closed valued by (B4).
It follows from, for example, Theorem 2.3.7 in [17], that its graph

Υ := {(t, x, u) ∈ [a, b]× Rn × Rk : (x, u) ∈ S(t)}, (12)

is a L×B measurable set. Consequently, f−1(A)∩Υ is a L×B-measurable set. Taking into account that (B4)
guarantees that for any

(t, x) ∈ {(t, x) ∈ [a, b]× Rn : Fm(t, x) ∩A 6= ∅}

there exists a u ∈ Rk such that
(t, x, u) ∈ f−1(A) ∩Υ

we conclude the L × B measurability of Fm.
Statement 3. of the Lemma follows from the L×B measurability of the set (12) and the fact that (x, u) ∈ S(t)

is equivalent to u ∈ Sm(t, x).
It remains to prove 4. Take t ∈ [a, b] such that ẋ∗(t) ∈ Fm(t, x∗(t)) (see (7)). Let u∗ be such that

u∗ ∈ Sm(t, x∗(t)) and ẋ∗(t) = f(t, x∗(t), u∗(t)). Take x such that x ∈ X(t). Since by (B4) we have Fm(t, x) 6= ∅,
take any γ ∈ Fm(t, x). By definition of Fm there there exists a u ∈ Sm(t, x) such that γ = f(t, x, u). Appealing
to (LC) we now have

|γ| 6 |f(t, x∗(t), u∗(t))|+ 2kfxε+ 2kfuσ = |ẋ∗(t)|2kfxε+ 2kfuσ.

Set c(t) = |ẋ∗(t)| + 2kfxε + 2kfuσ. Observe that upper bound does not depend on the choice of x or u and it
holds for almost every t. Since ẋ∗ is an integrable function we conclude that c ∈ L1 proving our claim. �
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Remark: It is important to emphasize that to prove 4. of Lemma 6.1 the fact that our choice of x∗ satisfying
(7) is essential to assert the integrability of c. A choice of any absolutely continuous function as x∗, not
necessarily satisfying (7), would not have been enough to guarantee 4. However, if had we assumed the function
f to be uniformly bounded, then we would get 4. with c a constant. �

We now investigate Lipschitz properties of x→ Sm(t, x) and x→ Fm(t, x) for each t. In this respect, (BS)
is essential as we shall see. Indeed, conditions (B1), (B2), (B4) and (LC) by themselves, are not enough to
guarantee lower semi-continuity of x→ Sm(t, x) or x→ Fm(t, x), let alone Lipschitz continuity, as the following
example shows.

Example 6.2 Let us fix t ∈ [a, b] (the interval [a, b] here has no relevance) and set S(t) = {(x, u) ∈ Rn × R : u ∈ [−1, 1], u|x| 6 0}.
Since, for each t,

Sm(t, x) =

{
[−1, 1] if x = 0,

[−1, 0] if x 6= 0,

we have Fm(t, x) = {x+ u : u ∈ Sm(t, x)}. It is a simple matter to see that (B1), (B2), (B4) hold and that
f(x, u) = x+u satisfies (LC). However, both Fm and Sm fail to be lower semi-continuous. To see that consider
any sequence {xi} such that xi 6= 0 and xi → 0. Then 1/2 ∈ Sm(t, 0) and 1/2 ∈ Fm(t, 0). But there is no
convergent sequence {ui} with limit equal to 1/2, since ui 6 0. Consequently, there is no sequence γi ∈ Fm(t, xi)
converging 1/2.

Assumption (BS) excludes this example from our context. Indeed, for any t, we have (1, 0) ∈ NP
S(t)(0, 1/2)

and for any constant K we have 1 > 0 · K. So (BS) is not satisfied. �.

Remark: It is worth mentioning, for future reference, that the set S(t) in the above example can be defined
as in (4) where U = [−1, 1] and g(x, u) = u|x|.

Under our conditions an appeal to Theorem 2.1 guarantees that x→ Sm(t, x) is not merely pseudo-Lipschitz,
it is in fact Lipschitz continuous as we show next.

Lemma 6.3 Assume that (B2), (B4) and (BS) hold. Then there exist constants kS and ε such that, for almost
every t,

x, x′ ∈ x∗(t) + εB =⇒ Sm(t, x) ⊂ Sm(t, x′) + kS |x− x′|B̄.

Proof. Recall that S(t) is the graph of x→ Sm(t, x) and, by (B2), it is a closed set. Now take t such that
(BS) holds. Consider any measurable function u∗ such that u∗(t) ∈ Sm(t, x∗(t)) for almost every t. By (B3) we
know that for any u ∈ Sm(t, x) we have |u| 6 σ. So, for almost every t, any x and u such that x ∈ B(x∗(t), ε)
(the same ε defining the closed set X(t)) and (x, u) ∈ S(t) we have u ∈ B(u∗(t), R) with R = 2σ. Taking
into account (BS) we deduce that (BS’) holds. We can then apply Theorem 2.1, where Γ(t, x) = Sm(t, x) and
G(t) = S(t), with ξ = 1/2. Observing that, by (B4), for ε = min{ε, σ

3K} and any x ∈ B(x∗(t), ε) we have

Sm(t, x) ∩ B̄(u∗(t), (1− ξ)R) = Sm(t, x) ∩ B̄(u∗(t), σ) = Sm(t, x)

we get our result. �

As an immediate conclusion from the above Lemma we get the following Corollary.

Corollary 6.4 Assume that (B2), (B4) and (BS) hold and that f satisfies (B1) and (LC). Then there exist
constant kFm

such that, for almost every t,

x, x′ ∈ x∗(t) +B(0, ε) =⇒ Fm(t, x) ⊂ Fm(t, x′) + kFm |x− x′|B̄.

Proof. Take any x, x′ ∈ x∗(t) + B(0, ε). Take any γ ∈ Fm(t, x) and γ′ ∈ Fm(t, x′). Let u and u′ be such that
(x, u) ∈ Sm(t, x), (x′, u′) ∈ Sm(t, x′), γ = f(t, x, u) and γ′ = f(t, x′, u′). By (LC) and Lemma 6.3 we have

|f(t, x, u)− f(t, x′, u′)| 6 kfx |x− x′|+ kfu|u− u′|

6 kfx |x− x′|+ kfuK|x− x′|

= (kfx + kfuK)|x− x′|

and our result follows with kFm = kfx + kfuK. �
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7 Differential Inclusion with Mixed Constraints
We are now in position to invoke Chapter 2 in [17] to obtain several relevant properties for our multifunction
Fm and its trajectories.

The observation that the multifunction X : [a, b]→ Rn is closed and bounded together with Lemma 6.1 and
Theorem 2.5.3 in [17] allow us to deduce the following:

Theorem 7.1 Assume that (CA) and the conditions under which Lemma 6.1 hold. Take any sequence {xi},
xi ∈W 1,1([a, b];Rn) such that

Gr xi ⊂ Gr X, ẋi(t) ∈ Fm(t, xi(t)) a.a. t ∈ [a, b], xi(0) ∈ X(0).

Then there exists a subsequence (we do not relabel) such that

xi → x uniformly and ẋi → ẋ weakly in L1

for some x ∈W 1,1([a, b];Rn) such that ẋ(t) ∈ Fm(t, x(t)) a.a. t ∈ [a, b].

We say that an absolutely continuous function x is a feasible trajectory of F− if x(t) ∈ X(t) for all t ∈ [a, b]
and ẋ(t) ∈ Fm(t, x(t)) for almost all t ∈ [a, b]. We denote the set of all Fm-feasible trajectories associated with
E to be

R∗[a,b](E) := {x ∈ C([a, b];Rn) : x is an Fm trajectory and (x(a), x(b)) ∈ E} .

Recall that X(t) is closed.

Lemma 7.2 Assume that (B2) - (B4) as well as (BS) and (CA) hold. Assume also that f satisfies (B1) and
(LC). Then R∗[a,b](E) is compact with respect to the suprenum norm topology.

Proof. Taking into account Lemma 6.1 and Corollary 6.4, it is a simple matter to see that Theorem 2.6.1
in [17] holds. Our result follows. �

Now define S∗[a,b](E) to be the set of all absolutely continuous functions x associated with a control u :

[a, b]→ U such that x(t) ∈ X(t) for all t ∈ [a, b] and
ẋ(t) = f(t, x(t), u(t)) a.e.,

0 > g(t, x(t), u(t)) a.e.,
u(t) ∈ U a.e.,

(x(a), x(b)) ∈ E.

Consider the Sm, Fm and the corresponding R∗[a,b](E) when S(t) satisfies (4), i.e., when

S(t) := {(x, u) ∈ Rn × U : g(t, x(t), u(t)) 6 0} .

Theorem 7.3 Consider S(t) as (4) and assume that f and g satisfy (B1) and (LC) and that (ICU), (IMC)
and (CA) hold. Then x ∈ S∗[a,b](E) if and only if x ∈ R∗[a,b](E).

Proof. The implication
x ∈ S∗[a,b](E) =⇒ x ∈ R∗[a,b](E)

is trivial. To see that the opposite implication holds take x ∈ R∗[a,b](E). Set w(t) = ẋ(t) and m(t, u) =

f(t, x(t), u). Consider now the multifunction

Λ(t) = S(t, x(t)) = {u ∈ U : g(t, x(t), u) 6 0} .

Let γ(t, u) = g(t, x(t), u). By Proposition 2.3.4 in [17] (t, u)→ γ(t, u) and (t, u)→ m(t, u) are L×B measurable.
By Proposition 14.33 in [15] Λ is measurable. Then by Theorem 2.3.7 in [17] the graph of Λ is a L×B measurable
set. By definition w(t) ∈ {m(t, u) : u ∈ Λ(t)} for almost every t ∈ [a, b]. Theorem 2.3.13 in [17] asserts that
there exists a measurable function u : [a, b]→ Rk such that

u(t) ∈ Λ(t) a.e. and w(t) = m(t, u(t)) a.e.

It follows that x ∈ S∗[a,b](E), completing our proof.
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This Lemma has particularly nice properties when we consider optimal control problems of the form

(Q)



Minimize l(x(b))
subject to

ẋ(t) = f(t, x(t), u(t)) a.a. t ∈ [a, b]
u(t) ∈ U a.a. t ∈ [a, b]

g(t, x(t), u(t)) 6 0 a.a. t ∈ [a, b]
(x(a), x(b)) ∈ {xa} × Eb

where l : Rn → R is a locally Lipschitz function and Eb a closed set (it may be Rn in particular). Under
our assumptions, Proposition 2.6.2 in [17] asserts that if there exists an feasible pair (x∗, u∗) then (Q) has a
minimizer. It is also of interest to apply relaxation results on (Q) when the assumption [C] is removed.
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