
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Web Service for Automatic Generation
of 3D Models through Video

Pedro Costa

Mestrado Integrado em Engenharia Informática e Computação

Supervisor: Luís Teixeira

July 20, 2015

Web Service for Automatic Generation of 3D Models
through Video

Pedro Costa

Mestrado Integrado em Engenharia Informática e Computação

July 20, 2015

Abstract

This thesis addresses the problem of obtaining the structure of a scene and the motion of a camera,
also known as Structure from Motion, taking a video as input. Structure from Motion has a wide
range of applications and, although it is a well studied area, there is still not a lot of commercial
Business to Consumer applications. This work tries to shift the focus towards increasing the
dissemination and usability of this type of applications, while taking into account the time and
cost constraints.

To tackle the existing problems, the video is acquired by a monocular acquisition system. This
allows for any regular video camera, such as the camera of a smartphone, to be used to perform
the reconstruction. Nonetheless, the greatest contribution of this work, is the creation of a scalable
distributed system that performs the reconstruction and can be exposed as a web service. This
service allows other developers to create their own applications, even for lesser powerful devices,
provided that they have an Internet connection.

This project had to solve two separate problems: a Computer Vision problem, where an exist-
ing Structure from Motion method had to be improved in order to be parallelized, and a Distributed
Systems problem, where a scalable system had to be implemented tackling the problem of sharing
large amounts of data between nodes.

The Computer Vision problem was solved by dividing the input video, into several smaller
videos, and performing the Structure from Motion individually. Then, all the reconstructions are
aligned and merged. Some properties of the reconstruction are used in order to reduce the effects
of noise on the video. The method is evaluated using a synthetic dataset and videos acquired from
a smartphone. The method was proven to be robust to noise over long video sequences.

The Distributed Systems problem was solved by using the BitTorrent protocol to transfer
frames between nodes and a message broker to communicate between them. Medium sized files,
such as matrices, are simply transferred over TCP.

i

ii

Resumo

Esta dissertação aborda o problema de obter a estrutura da cena e movimento da câmara, também
conhecido como Structure from Motion, tendo um vídeo como entrada. A área de Structure from
Motion tem um grande número de aplicações e, apesar de ser uma área bastante estudada, ainda
não existem muitas aplicações comerciais Business to Consumer. Este trabalho tenta mudar o foco
para aumentar a disseminação e usabilidade deste tipo de aplicações, ao mesmo tempo que tem
em consideração restrições de tempo e custo.

Para resolver os problemas existentes, o vídeo é obtido por um sistema de aquisição monocular.
Desta forma, qualquer câmara de filmar, como por exemplo a câmara de um smartphone, pode ser
usada para efetuar a reconstrução. No entanto, a maior contribuição deste trabalho é a criação de
um sistema distribuído escalável que efetua a reconstrução e pode ser exposto como um serviço
web. Este serviço permite que outros programadores criem as suas próprias aplicações, mesmo
para dispositivos menos poderosos, desde que tenham ligação à Internet.

Este projeto necessitou de resolver dois problemas distintos: um problema de Visão por Com-
putador, onde um método existente de Structure from Motion teve que ser melhorado de forma a
ser paralelizado, e um problema de Sistemas Distribuídos, onde um sistema escalável teve que ser
implementado resolvendo o problema de partilhar grandes quantidades de dados entre nós.

O problema de Visão por Computador foi resolvido dividindo o vídeo de entrada em vídeos
mais pequenos, e aplicando o método de Structure from Motion individualmente. Depois, todas
as reconstruções são alinhadas e fundidas. Algumas propriedades da reconstrução são usadas de
forma a reduzir os efeitos do ruído no vídeo. O método foi avaliado usando um dataset sintético e
vídeos obtidos por um smartphone. Provou-se que o método é robusto ao ruído em vídeos longos.

O problema de Sistemas Distribuídos foi resolvido utilizando o protocolo do BitTorrent para
transferir frames entre nós e um message broker para comunicar entre eles. Ficheiros de tamanho
intermédio, tais como matrizes, são transferidos utilizando TCP.

iii

iv

Acknowledgements

First of all, I want to thank my supervisor, professor Luís Teixeira, for his readiness to answer all
my questions and for his advices. Without his valuable input this thesis would not be possible.

I wish to express my sincere thanks to Sebastian Bukowiec, from CERN, for the important
suggestions regarding the distributed system.

I take this opportunity to express gratitude for professor Rui Rodrigues for providing me with
access to the Computer Graphics laboratory and to the 3D Scanner. I also want to thank Hugo
Machado and Francisco Martins for helping me handling the 3D Scanner.

I am grateful to professor Rui Nóbrega for his encouragement and suggestions.
Finally, I thank my parents for supporting me and for giving me the opportunity of enrolling

on a Master of Science degree. I am also grateful to my girlfriend for all the love and patience
along this venture.

Pedro Costa

v

vi

“Only the wisest and stupidest
of men never change.”

Confucius

vii

viii

Contents

Abstract i

Acknowledgements v

Abbreviations xv

1 Introduction 1
1.1 Motivation . 1
1.2 Scope . 3
1.3 Contributions . 3
1.4 Document Structure . 3

2 Literature Review 5
2.1 Structure From Motion . 5

2.1.1 Factorization . 6
2.1.2 Bundle Adjustment . 7
2.1.3 Scale Drift Correction . 7

2.2 Feature Matching . 8
2.3 Point Cloud Reconstruction . 11
2.4 Distributed Algorithms . 12

3 Robust Parallel Factorization 15
3.1 Factorization . 15

3.1.1 Formalization . 15
3.1.2 Approximate Rank . 17
3.1.3 Metric Constraints . 17
3.1.4 Occlusions . 18

3.2 Method . 20
3.2.1 Technologies . 20
3.2.2 Video Division . 21
3.2.3 Registration . 21
3.2.4 Noise Reduction . 23
3.2.5 Structure and Motion . 24

3.3 Evaluation . 24
3.3.1 Qualitative Evaluation . 25
3.3.2 Structure Evaluation . 25
3.3.3 Motion Evaluation . 27
3.3.4 Video Division Evaluation . 29
3.3.5 Noise Reduction Evaluation . 30

ix

CONTENTS

3.3.6 Comparison with 123D Catch . 33
3.3.7 Complexity Evaluation . 39

4 Distributed Architecture 45
4.1 Communication Technologies . 46
4.2 Architecture . 47
4.3 Scale . 48
4.4 Evaluation . 49

5 Conclusions and Future Work 51
5.1 Discussion . 51
5.2 Future Work . 52

References 55

x

List of Figures

2.1 Results before and after the loop closure [SMD10]. (a) The map calculated with-
out loop closure. (b) An optimization of the graph using 6 DoF but without being
able to solve the drift in the scale. (c) Results obtained by the optimization pro-
posed by Strasdat et al. using 7 DoF. (d) An aerial image of the trajectory. 8

2.2 Comparison of feature detectors [FS12]. 9

3.1 Video divided in two videos v(i) with one overlapping frame. 21
3.2 Qualitative evaluation of resulting structure, by adding gaussian noise N (0,1) to

a video sequence with 1275 frames. (a) RPFM structure. (b) Tomasi and Kanade’s
method structure. 25

3.3 Structure error with respect to the length of a video. (a) Added gaussian noise
N (0,2) to the measures. (b) Added gaussian noise N (0,4) to 50% of the points. 26

3.4 Absolute Trajectory Error. The estimated trajectory, computed by adding Gaussian
noise N (0,1) to the measures, is compared with the ground truth. (a) RPMF. (b)
Classical algorithm. 28

3.5 Variation of the average error and ratio between the fourth and third singular values
with respect to the number of frames per video. 29

3.6 Reconstruction of synthetic cube with different noise reduction iterations. (a) 2000
iterations. (b) 17000 iterations. (c) 33000 iterations. (d) 49000 iterations. 32

3.7 Results of varying the number of iterations of noise reduction. (a) 0 iterations. (b)
10 iterations. (c) 20 iterations. (d) 100 iterations. 32

3.8 Reconstructed models of the "medusa" video using the Poisson Surface Recon-
struction method. (a) Point cloud after convergence in 13 iterations with threshold
equal to 0.1. (b) Point cloud from Figure 3.7(d). 33

3.9 Textured model built by the 123D Catch application. 34
3.10 One frame of the video used to compare the RPFM with 123D Catch and a QRcode

to the video that is located on http://tinyurl.com/q32497b. 35
3.11 Qualitative comparison of the point clouds reconstructed by the 123D Catch ap-

plication and RPFM. (a) RPFM. (b) 123D Catch. 35
3.12 The aligned point clouds viewed from the same perspective. (a) RPFM. (b) 123D

Catch. (c) RPFM. (d) 123D catch. 36
3.13 Explanation for scale difference by assuming an orthographic projection. 37
3.14 Two attempts to reconstruct a rubik’s cube using 123D Catch. 37
3.15 One frame of the video used to reconstruct the rubik’s cube and a QRcode to the

video that is located on http://tinyurl.com/nc2vmjh. 38
3.16 Rubik’s cube reconstruction using the RPFM. 38

xi

http://tinyurl.com/q32497b
http://tinyurl.com/nc2vmjh

LIST OF FIGURES

3.17 Analysis of the complexity of the method when P ≥ F ≥ f . (a) k = 1, n = 5
and max_iter = 1. (b) k = 15, n = 5 and max_iter = 1. (c) k = 1, n = 5 and
max_iter = 120. (d) k = 15, n = 30 and max_iter = 1. 41

3.18 Analysis of the complexity of the method when F ≥ P ≥ f . (a) k = 1, n = 5
and max_iter = 1. (b) k = 15, n = 5 and max_iter = 1. (c) k = 1, n = 5 and
max_iter = 120. (d) k = 15, n = 30 and max_iter = 1. 42

3.19 Analysis of the complexity of the method when F ≥ f ≥ P. (a) k = 1, n = 5
and max_iter = 1. (b) k = 15, n = 5 and max_iter = 1. (c) k = 1, n = 5 and
max_iter = 120. (d) k = 15, n = 30 and max_iter = 1. 43

4.1 Architecture of the Distributed System . 47
4.2 Cells and load balancers to scale with the number of users 49

xii

List of Tables

3.1 Structure error σ ′ of RPFM and the Tomasi and Kanade’s classical method, under
different noise conditions. 27

3.2 Comparison of the Absolute Translation Error of the RPFM and Tomasi and Kanade’s
method using a video with 900 frames. The best results are shown in bold. 28

3.3 Comparison of the Rotational error, in degrees, of the RPFM and the Tomasi and
Kanade’s method using a video with 900 frames. The best results are shown in bold. 28

3.4 The absolute number of matches and the relative increase of matches, on the
"medusa" video, with different number of frames and overlapping frames. 30

3.5 σ ′ error of the reconstruction, by varying the number of noise reduction iterations,
on synthetic data with N (0,1) Gaussian noise added to the measures. 31

3.6 Ratios r of the first five videos v(i) obtained from a synthetic and the "medusa"
videos. 31

xiii

LIST OF TABLES

xiv

Abbreviations

ADCC Algorithm to Detect Critical Configurations
API Application Programming Interface
ATE Absolute Translation Error
BRIEF Binary Robust Independent Elementary Features
BRISK Binary Robust Invariant Scalable Keypoints
CAD Computer Aided Design
CPU Central Processing Unit
CENSURE Center Surround Extremas
DoF Degrees of Freedom
DoG Difference of Gaussian
DoH Determinant of Hessian
FAST Features from Accelerated Segment Test
FIFO First In First Out
FIRST Fast Invariant to Rotation and Scale Transform
GPCA Generalized Principal Component Analysis
GPS Global Positioning System
ICP Iterative Closest Point
IMU Inertial Measurement Unit
ISVD Iterative Singular Value Decomposition
IVT Incremental Visual Tracker
KLT KanadeLucasTomasi
LIDAR Light Detection And Ranging
NRSfM Non-rigid Structure from Motion
ORB Oriented BRIEF
PCA Principal Component Analysis
PCL Point Cloud Library
RANSAC Random Sample Consensus
RMSE Root Mean Squared Error
RPE Relative Pose Error
RPFM Robust Parallel Factorization Method
SfM Structure from Motion
SIFT Scale Invariant Feature Detector
SLAM Simultaneous Localization and Mapping
SLAT Simultaneous Localization and Tracking
SURF Speeded Up Robust Features
SVD Singular Value Decomposition
TCP Transmission Control Protocol
UDP User Datagram Protocol
URL Uniform Resource Locator

xv

Chapter 1

Introduction

The generation of a 3D model of a scene through 2D images is a fundamental task in Computer Vi-

sion. This type of software has applications in several areas, such as: image-based 3D modelling,

hand-eye calibration, augmented reality, autonomous navigation, motion capture, image and video

processing, remote sensing, photo organization and browsing, segmentation and recognition and

military applications [WKYW13].

Image-based 3D modelling is of particular interest for researchers due to its wide applicability

and low cost. While creating simple 3D models using CAD tools is relatively easy, obtaining an

accurate model of a complex real scene or object remains difficult. By using videos or images to

generate 3D models of real scenes or objects, the time and costs of manual modelling are reduced.

Structure from Motion (SfM) is the most known technique for performing image-based 3D

modelling. While this has been an active area of research for decades, it remains active due to

a few breakthroughs and more practical applications. New algorithms and applications of SfM

continue being developed every year [Sze10].

1.1 Motivation

The main reasons behind the increase in interest for image-based techniques are both economical

and technical. For instance, Google’s autonomous vehicles have about $150,000 in equipment that

includes a $70,000 LIDAR (laser radar) system1. Such high-priced equipments would increase the

final price of the car, making this technology available only for the most luxurious cars.

On the other hand, costs of cameras have steadily decreased over the past years, even for the

industrial cameras that produce high quality, high frame rate and are robust to extreme conditions.

Cameras are ideal for SfM tasks, not only due to their reduced price, but also because they can

capture textures, that enrich the final model and can be used to improve the reconstruction.

1http://tinyurl.com/n9rwuqb

1

http://tinyurl.com/n9rwuqb

Introduction

In fact, most people living in developed countries have easy access to a monocular camera.

According to a study from eMarketer2, by 2016 there will be more than 2 billion smartphone

users. This year (2015), and for the first time, one quarter of the global population will have a

smartphone.

Most SfM applications are used for urban reconstruction but can also be used to create models

for video-games, movies, and even 3D printers. These applications typically use additional sensors

or stereoscopic cameras however, algorithms directed to monocular cameras already achieve good

results.

Commercial applications that resort to 3D reconstruction began being developed in the past

years, for example Microsoft’s Photosynth3 that reconstructs a scene using a set of photos given

by the user, or Autodesk’s 123D Catch4 that uses a set of photos to create a 3D model of an object,

that can be 3D printed. Other applications use a video captured from a stereoscopic or structured

light sensor in order to perform the reconstruction of an object or scene. An example of these

applications is the ReconstructMe5 that uses, among other sensors, Microsoft’s Kinect to perform

the reconstruction in real time.

Despite the great effort that has been done in making these applications more usable, there

is still room for improvements. ReconstructMe uses a sensor that is wired to the computer along

the whole reconstruction process and that require previous calibration. Also, most users do not

possess such a sensor and are required to buy one. As the reconstruction is performed on the user’s

computer, it might not comply with the hardware requirements.

The other applications require a set of photographs of the object to perform the reconstruction.

These approaches struggle with textureless objects and may require a considerable amount of

photographs to perform satisfactorily.

This thesis ultimately aims to turn SfM applications more usable to the end user. The user is

allowed to film the object with a monocular camera, such as the camera of a smartphone, instead

of taking photos. This approach is more usable, since it is faster and more convenient for the user.

By taking a video, instead of photographs, there is also more information to use.

Similarly to the 123D Catch, a web service is created, making the reconstruction available

from every device, provided that they have an internet connection. As the web service can be

exposed, other developers can use the service to build new applications, abstracting all the process

of 3D reconstruction.

Such applications would allow the creation of avatars by simply using the web-cam. It would

also allow the user to customize its games or augmented reality applications with real world ob-

jects. Also, with the rise of home 3D printers, a user would be able to replicate one of its objects

without knowing how to use CAD tools.

One of the challenges of the monocular systems is that it is not possible to extract depth from

a single frame, unlike stereoscopic systems. Nonetheless, stereoscopic systems need previous

2http://tinyurl.com/kkpxevo
3https://photosynth.net/
4http://www.123dapp.com/catch
5http://reconstructme.net/

2

http://tinyurl.com/kkpxevo
https://photosynth.net/
http://www.123dapp.com/catch
http://reconstructme.net/

Introduction

calibration, while it is possible to perform auto-calibration on the monocular ones [PSC+04]. This

is a desirable characteristic as it makes the system simpler and more flexible.

1.2 Scope

This work has two problems to solve:

1. Computer Vision: The creation of a parallel method to perform Structure from Motion

using video.

2. Distributed System: The creation of a system that distributes the aforementioned method.

The Computer Vision problem was solved first, followed by the Distributed System problem

as it was dependent of the former. More specifically, as Computer Vision is a broad area, this

thesis is inserted in the rigid-body Structure from Motion area.

1.3 Contributions

Most Computer Vision algorithms are not distributed. The biggest contribution of this thesis is the

construction of a system that is inherently distributed. A parallelizable method for Structure from

Motion that is robust to noise over long sequences was developed. Then, a scalable distributed

system, that is able to scale with respect to the number of users and to the number of frames is

presented.

During the thesis, a paper was written, titled "Robust Parallel Factorization Method for Struc-

ture and Motion". This work was submitted to the 26th British Machine Vision Conference

(BMVC) and, to the date of the writing, the authors were still waiting for the decision.

1.4 Document Structure

The structure of this thesis is as follows:

• Chapter 1. Introduction: The scope of the work, motivations as well as the proposed

solution and main contributions.

• Chapter 2. Literature Review: A review of the work developed in the areas of Structure

from Motion, Feature Matching, Point Cloud Reconstruction and Distributed Algorithms.

• Chapter 3. Robust Parallel Factorization: Review of the Factorization method and pre-

sentation of the developed method. An evaluation of the method was also performed in this

chapter.

• Chapter 4. Distributed Architecture: The architecture of the distributed system that im-

plements the Robust Parallel Factorization Method.

3

Introduction

• Chapter 5. Conclusions and Future Work: Final conclusions and future directions.

4

Chapter 2

Literature Review

This thesis builds upon several other projects and research proposals that made this work possible

and, therefore, some relevant areas are reviewed in this Chapter. Some of the reviewed methods

are used, others are left out as future work and others are simply different approaches that are

presented as comparison.

This Chapter is divided in 4 Sections, each one addressing a different area. Section 2.1 reviews

the area of SfM, presents the work done with Factorization methods, how to refine the final re-

construction with Bundle Adjustment and the Scale Drift problem that affects monocular systems.

Section 2.2 addresses the problem of matching points across different images. Section 2.3 presents

the approaches that are used to create a 3D model from a point-cloud. Finally, Section 2.4 was

dedicated to distributed algorithms, mainly in the context of computer vision.

Some sections of this chapter are based on some review works [COC+13, Rad10, THZ13,

TMHF00, TM08, FS12] and Szeliski’s book [Sze10].

2.1 Structure From Motion

Structure from Motion is the technique of simultaneously estimating the structure of the scene and

pose of the camera. There are three main approaches to perform SfM for rigid objects: to measure

3D coordinates for surface points using equipments such as laser or structured light, stereo vision

and factorization algorithms.

Wei et al. [WKYW13] states that the typical pipeline for SfM has several steps: detecting

image features, matching features across images, estimating structure of the scene and the poses

of the cameras and, finally, an optional bundle adjustment.

Pollefeys [PSC+04] described a complete system to perform SfM that was able to deal with un-

calibrated image sequences with an hand-held camera. By performing a multi-view stereo match-

ing, the author was able to obtain a dense estimation of the surface geometry. The author was able

to introduce virtual objects into the video sequence after performing the reconstruction.

5

Literature Review

More recently, Agarwal et al. [AFS+09] were able to perform a reconstruction of city-scale

image collections, with more than a thousand images, in less than a day. In order to be able

to do that, the system uses distributed computer vision algorithms for image matching and 3D

reconstruction, that maximize the parallelism at each stage of the pipeline, and scale with the

number of images and with the amount of available computation.

One popular scenario in which SfM is commonly used is reconstruction in urban environ-

ments. Pylvänäinen et al. [PBK+12] used LIDAR scans, an IMU and a GPS, in conjunction with

panorama images, to automatically create compact and accurate 3D city models for Augmented

Reality applications. Sinha et al. [SSS+08] used a collection of unordered images to perform a

realistic reconstruction of architectural structures and urban scenes. The system requires the user

to outline the object to be reconstructed in order to obtain better performance.

These approaches use the stereo vision approach, some combined with additional equipments

for better accuracy. The factorization approach is going to be reviewed more thoroughly in the

next subsection.

2.1.1 Factorization

The factorization algorithm was first proposed by Tomasi and Kanade [TK92] assuming an ortho-

graphic camera model. The main idea of the method is to factorize the tracking matrix into motion

and structure matrices using Singular Value Decomposition (SVD). This method is reviewed in

more detail in section 3.1.

The limitation of assuming an orthographic camera model was later overcome by Poelman and

Kanade [PK94] that developed an extension of the original method to assume a paraperspective

model by imposing additional constraints to the system. Later, Triggs [Tri96] extended the method

for the projective model, by recovering a set of projective depths using fundamental matrices and

epipoles estimated from the measures. Han and Kanade [HK02] were able to perform Euclidean

reconstruction, under the assumption of a perspective model, with uncalibrated cameras. A pro-

jective reconstruction is performed and, then, the reconstruction is converted to an Euclidean one

by enforcing metric constraints.

One of the problems of the classical factorization method is that all points are required to

be present on every frame. Tomasi and Kanade [TK92] overcame that problem by performing

the reconstruction over a submatrix of the full measurement matrix and then, as they called it,

hallucinate the position of the remaining points and pose of the camera on the remaining frames.

Li et al. [LGD10] developed an algorithm to detect critical configurations (ADCC) in the video in

order to optimize the division of a long sequence for the factorization method.

Hajder [Haj05] proposed an improvement to the original factorization method, using an it-

erative algorithm to refine the structure and motion data independently by minimizing an error

function. Tests on synthetic data showed that the method performed significantly better for ob-

jects that consist of few points.

6

Literature Review

Other approaches use the Iterative Singular Value Decomposition (ISVD) [BN78] to perform

online SfM [KBWT14], by updating the Structure and Motion matrices as soon as a frame ar-

rives for processing. Masiero et al. [MGVP14] performed Euclidean reconstruction on low cost

Android smartphones by combining ISVD with its sensors.

Buchanan and Fitzgibbon [BF05] developed a method that is able to factorize a matrix even

in the presence of missing values. With such method there is no need for the hallucination step.

More recently, Meng and De la Torre [MdlT13] were able to create a factorization method that

makes no assumption on the model of the noise, by modeling it as a Mixture of Gaussians.

The factorization approach is the most common framework for Non-rigid Structure from Mo-

tion (NRSfM) [ZSXW15, DM15, XCK04, TYAB01]. The measurement matrix is assumed to have

a greater rank and the object can be approximated using a linear combination of 3D basis shapes.

2.1.2 Bundle Adjustment

Bundle adjustment is the problem of refining a visual reconstruction in order to produce optimal

estimates of the extrinsic and intrinsic parameters of the camera, as well as the 3D structure of

the scene. In order to find the optimal parameters, a robust non linear cost function is minimized

where the reprojection errors are estimated. The name refers to the "bundles" of light that come

out of the 3D point and converge at the centre of each camera and, later, are "adjusted" in an

optimal way with respect to its 3D position and position of the camera. This process is almost

always used as the last step on all 3D reconstruction algorithms.

Triggs et al. [TMHF00] states that the bundle adjustment is formulated as a non linear least

squares problem where the cost function is quadratic with the features’ reprojection error, and the

robustness is provided by an outlier detection. Pollefeys et al. [PSC+04] noted that, if the errors

on the points can be modelled as a Gaussian distribution with zero mean, the bundle adjustment

corresponds to a maximum likelihood estimator.

As a simplification, it is assumed that the scene is modelled by p 3D points Xp, seen in i images

with camera pose and calibration Pi, and that features xip were obtained from each image i and

point p. Beyond that, for each observation xip it is assumed that a predictive model xip = x(Pi,Xp)

is known. In the case of observing images or videos, this predictive model consists on reprojection,

however, in other cases, measures obtained by sensors can be added. The cost function can be

represented in the following manner:

∆xip(Pi,Xp) = xip− x(Pi,Xp) (2.1)

The problem of minimizing the function of Equation 2.1 is typically solved using the algorithm

of Levenberg Marquardt [NW99].

2.1.3 Scale Drift Correction

Scale drift is a crucial challenge that prevents monocular systems from having the same perfor-

mance as stereo systems.

7

Literature Review

Figure 2.1: Results before and after the loop closure [SMD10]. (a) The map calculated without
loop closure. (b) An optimization of the graph using 6 DoF but without being able to solve the
drift in the scale. (c) Results obtained by the optimization proposed by Strasdat et al. using 7 DoF.
(d) An aerial image of the trajectory.

A possible approach to solve this problem is using loop closure [BDw06]. Events such as

observing a point that was not visible for several frames or go back to an area previously mapped

are called loop closure. These events can be detected by evaluating visual similarities between the

current and past frames.

Angeli et al. [AFDM08] proposed a method based in visual words to detect loop closure. The

authors showed that it is extremely fast to evaluate visual similarities by using an inverted index.

After the detection of the loop, it is possible to create a pose graph, where the nodes are the

poses of the camera and the transformations between them are the edges. The transformations es-

timated by the loop can be added to the graph as constraints in order to update the map [GKS+10].

It is possible, then, to correct the drift in the translation and rotation, but this does not solve the

drift in the scale. Stasdat et al. [SMD10] proposed an optimisation based in seven degrees of

freedom (DoF) constraints, unlike the traditional six DoF, to solve this problem. Results from this

method can be seen on Figure 2.1.

2.2 Feature Matching

In order to detect the same point in different images it is necessary to match features among them.

There are mainly two approaches to solve this problem [FS12]. One approach starts by detecting

points of interest in the images and, posteriorly, describing those points in order to compare them

8

Literature Review

Figure 2.2: Comparison of feature detectors [FS12].

with points in other images. The other approach detects points of interest in one frame of a video

and tracks them in the remaining frames.

Tuytelaars and Mikolajczyk [TM08] define a local feature (or interest point) as a pattern in the

image which differs from its immediate neighbourhood. Points of interest should be:

1. Repeatable: A high percentage of the features detected on the scene that is visible in both

images should be found in both images.

2. Distinctive: Features should contain enough information in order to be able to distinguish

and match features on different images.

3. Local: The features should be local, so as to reduce the probability of occlusion.

4. Numerous: The number of feature points detected should be sufficient so it is possible to

match features even on small objects.

5. Accurate: The detected features should be accurately localized, both in image location, as

with respect to scale and shape.

6. Efficient: Preferably, the detection of features should be efficient enough to allow for time-

critical applications.

Feature detectors try to find corners or blobs on images. A corner is defined as a point at

an intersection of two or more edges, while a blob is a pattern on the image that differs from its

neighbours in terms of intensity, texture and color. Several corner (such as Harris[HP87], Shi-

Tomasi[ST94] and FAST[RD06]) and blob detectors (such as SIFT[Low04], SURF[BTG06] and

CENSURE[AKB08]) were created over the years. Corner detectors are faster but less distinctive

and repeatable, while blob detectors are more distinctive but slower to detect. A comparison of

these detectors is presented on Figure 2.2.

Feature detectors can be divided in two steps. On the first step, a function is applied to the

whole image. For example, Harris detector applies a corner response function while SIFT applies

9

Literature Review

the Difference of Gaussian (DoG). On the second step, all local minimums (or maximums) of the

applied function are identified. To make the detector scale invariant, the function is applied to the

image with different scales.

After the detection of features, it is necessary to describe them. One widely used descriptor

is SIFT. This descriptor consists on a local histogram of the gradient orientations. The fragment

around the feature is divided into a 4×4 grid and, for each quadrant, the histogram with the eight

orientations of the gradient is computed. The 16 histograms of dimension 8 are concatenated

resulting in a 128 dimension vector. In order to reduce the effects of illumination differences, this

vector is normalized.

Recently, three new binary descriptors were developed that proved to be faster than SIFT and

SURF. One descriptor called BRIEF [CLSF10] that, despite being extremely fast, is also distinc-

tive in the absence of rotation and scale. Inspired by BRIEF, ORB [RRKB11] was developed that,

beyond some optimizations in the point description, is invariant to rotation. At last, following the

same lines, BRISK [LCS11] is based on FAST and is invariant to rotation and scale.

Bastos proposed the Fast Invariant to Rotation and Scale Transform (FIRST) [Bas09] algo-

rithm in the context of Augmented Reality and Computer Vision. FIRST uses the Shi and Tomasi’s

method to detect corners and define features. The scale factor is determined by selecting the mul-

tiplication factor that maximizes the average of the luminance around the point. Similarly to

SIFT, FIRST uses an histogram of the gradient in order to make the descriptor invariant to scale.

Nonetheless, instead of saving the histogram, the image fragment is rotated by the maximum gra-

dient and used as the descriptor.

Finally, it is necessary to match features detected on different images. The simplest way

to do that is by comparing each feature descriptor of one image with all descriptors from the

other image. Descriptors are compared using a similarity function. SIFT, for example, uses the

Euclidean distance between the histograms that describe the points to perform the comparison.

Bastos [Bas09] compared FIRST with SURF and SIFT. The author concluded that SIFT is

typically superior to FIRST and SURF in terms of repeatability and distinctiveness. Nonetheless,

in the presence of noise and luminance variations, SURF obtained better results which suggests

that the Determinant of Hessian (DoH) used by SURF is less sensitive to these perturbations than

the DoG used by SIFT. The repeatability of FIRST is inferior to SIFT, however, it is similar to

SURF. In terms of efficiency on the feature extraction and matching, SURF obtained better results

than SIFT, wherein FIRST had the best efficiency. Finally, SIFT is the most exact and SURF the

most prone to errors.

As stated previously, it is also possible to detect features in the first image and, posteriorly,

track those points on the following images. This approach, known as the optical flow, performs

well in video where the movement and deformation between adjacent frames is small. The optical

flow is the apparent movement of brightness patterns on an image. Given the intensity values It(p)

e It+1(p) at point p = (x,y), where p is the central point of a region S, in two consecutive frames,

10

Literature Review

the movement of a region can be described by the following equation:

It(x,y) = It+1(x+dx,y+dy), (2.2)

Where d represents the movement between two frames. This method works under some as-

sumptions: the brightness is constant across all frames, the movement between frames is small,

and the points move similarly to their neighbours.

One optical flow method that is widely used is the KanadeLucasTomasi (KLT) [LK81] where,

instead of tracking all points, tracks only the corners.

A more recent tracking method, proposed by Li et al. [LWW12], uses SURF to extract features

to be tracked. In order to perform the tracking over long sequences, the authors combine SURF

with Incremental Visual Tracker (IVT). The method is capable of solving the drift problem when

the object suffers a partial occlusion.

2.3 Point Cloud Reconstruction

Azernikov et al. [AMF03] defines the problem of surface reconstruction as a mesh M that approx-

imates the surface of an unknown object O, given a dense point cloud P of object O, preserving its

characteristics and topology. The authors classify the reconstruction methods in three categories:

image processing, computational geometry and computer graphics approaches.

On the image processing approaches, the surface reconstruction problem can be seen as a

special case of 3D space segmentation. These algorithms are based on active contours or "snakes"

approaches [KWT88] wherein a contour of the surface is initialized and its position changes based

on a predefined energy function.

Computational geometry approaches use hybrid functions in order to perform linear interpola-

tion of unorganized points. This approach is based on combinatorial structures such as Delaunay

triangulations [Boi84, KSO04], alpha shapes [EM94, BBX95, BMR+99] or Voronoi diagrams

[ACK01, ABK98]. Mencl and Müller [MM98] proposed an algorithm based on graphs that ap-

proximates a wireframe to an unknown surface, in order to be filled with triangles.

Finally, computer graphics approaches have higher concerns with the visual quality of the

resulting model. A widely known algorithm that fits in this category was proposed by Hoppe

et al. [HDD+92]. A tangent plane is associated with all sub sets of points using Least Squares

Fitting. After this step, the normals are extracted in order to construct a triangular iso-surface using

the Marching Cubes [LC87] algorithm. Another method that fits in this category is the Poisson

Surface Reconstruction and was proposed by Kazhdan, Bolitho and Hoppe [KBH06]. This method

formulates the reconstruction of a surface as a Poisson problem. By doing that, the method uses

global information creating smooth and robust to noise surfaces.

11

Literature Review

2.4 Distributed Algorithms

With the price reduction of image acquisition systems, the dimension of visual sensor networks

has been increasing. For example, more than half a million cameras observe the streets of London.

It is impossible to process this large amount of data in real time and, for that reason, there is the

need to create distributed computer vision algorithms. Some work has been developed, mainly in

the areas of distributed calibration of a camera network and in distributed tracking of one or more

objects through the network.

Lee and Aghajan [LA06] used observations of a moving target obtaining its position using a

distributed version of the Gauss-Newton method. Other similar method called Simultaneous Lo-

calization and Tracking (SLAT) [FGPS06], uses Gaussian densities and a process of linearization

to cope with the uncertainty on the angles of the camera, in order to use the Kalman filter for the

tracking.

Other algorithms need to know the intrinsic parameters of the cameras à priori, and use this in-

formation to estimate the rotation and translation between each pair of cameras. Barton-Sweeney

et al. [BSLS06] used an extended framework of the Kalman filter on the estimated epipolar geom-

etry, in order to determine the relative position between each pair of cameras.

There are methods that resort to the vision graph to share information. The method proposed

by Devarajan et al. [DR04, DRC06] shares the projection points they have in common with their

neighbours in the vision graph after some local processing, where the bundle adjustment is per-

formed. Each camera estimates its own position and orientation as their neighbours’.

Roberto Tron et al. [TV11] presented how to implement distributed linear algebra algorithms,

such as SVD and Least Squares, reducing them as distributed averages. With this knowledge it

is possible to implement distributed versions of Machine Learning algorithms (PCA e GPCA) as

well as Computer Vision algorithms (triangulation, pose estimation and affine SfM). However,

these algorithms are far from being optimal and are used as an initialization for other non linear

procedures, such as the bundle adjustment. Furthermore, on the communication point of view,

these algorithms do not always bring big advantages. For example, the proposed distributed ver-

sion of the SVD is not efficient when the rank of the data is of the same order as the number of

samples.

Dopico et al. [DCSN04] proposed a parallel algorithm to compute the optical flow of a video

sequence. The authors chose KLT as the optical flow algorithm, and they divided it in 5 tasks:

temporal smoothing, spacial smoothing in x, spacial smoothing in y, computation of the partial

derivatives and computation of the velocity of each pixel. The first four tasks are connected to

a pipeline since they need data from several images to work correctly. The fourth task sends the

partial derivatives of the complete images to different nodes on a rotative way. The authors used

eight nodes: one for the first two tasks, other for the third and fourth tasks and the remaining six

nodes for the last task, and also the most computationally expensive, in parallel. It is possible to

use four, eight or sixteen nodes, as there are not sufficient tasks to distribute using more nodes.

One way to overcome this limitation, increasing the level of parallelism, would be dividing the

12

Literature Review

image into several sub-images as proposed by Kohlberger et al. [KSBW03]. These sub-images

would be independent provided that neighbouring sub-images had overlapping borders.

Dean and Ghemawat [DG08] from Google showed that it is possible to distribute a large num-

ber of real problems by using the map and reduce functions, present in most functional languages.

The user needs to build a map function, that receives a key/value pair as input and produces a set of

pairs intermediate_key/value (k1,v1)→{(k2,v2)}. The MapReduce library aggregates all values

associated with the same intermediate key and delivers them to the reduce function. The reduce

function, also created by the user, receives an intermediate key and a set of values. This function

aggregates all the values in order to create a smaller set of values than the input set. The authors

state that, typically, each invocation of the reduce function returns zero or one value.

Mirashe and Kalyankar [MK10] define cloud as a large group of interconnected computers,

publicly accessed via Internet. These computers can be personal, servers, public or private. The

architecture and technologies used are transparent to the user.

The cloud architecture typically involves multiple components communicating through an Ap-

plication Programming Interface (API) that, usually, correspond to web services. This architec-

ture is extended to the client through a browser or a software application that access the cloud

application. Data is distributed across several nodes, wherein each one delivers data to the client

autonomously, avoiding central servers of metadata that can become bottlenecks.

The cloud has as advantages, among others, a greater compatibility among operating systems,

automatic software updates, reductions in the costs of the infrastructure and on its maintenance,

and increase of the computational power. However, there are some disadvantages such as the need

for a constant Internet connection, the service may be slow and the data may not be secure.

13

Literature Review

14

Chapter 3

Robust Parallel Factorization

A method to perform Structure from Motion is required. As stated in Chapter 2, there are three

main approaches to perform SfM. One of the approaches uses additional equipments and does not

fit in the context of this thesis, since the reconstruction must be performed by using a monocular

video. The factorization approach was chosen since it works directly with video, uses information

from all frames, and it is usually faster than stereo vision approaches as it tracks points instead of

matching them.

This Chapter is divided in 3 Sections. Section 3.1 reviews in depth the factorization method,

Section 3.2 presents the method that was developed in the context of this thesis and Section 3.3

provides an extensive evaluation of the method.

3.1 Factorization

The factorization method was first presented by Tomasi and Kanade [TK92] in their breakthrough

paper. Their method was briefly presented on Subsection 2.1.1 and is going to be detailed in this

Section.

To the knowledge of the author, the factorization method and its subsequent extensions are

not implemented in any library. Therefore, the original method, proposed by Tomasi and Kanade

[TK92] was implemented. The perspective factorization [HK02] method, as it is more complex

and would require more time, was not implemented and remains as future work. Nonetheless, the

method presented in Section 3.2 is able to generalize for any existing offline factorization method.

3.1.1 Formalization

In video processing it is possible to obtain feature tracks, in other words, to detect a set of features

in a video frame and, posteriorly, search their position in subsequent frames. This process was

reviewed on Section 2.2. The process of factorization consists on using these tracks to obtain the

15

Robust Parallel Factorization

structure of an object that is present in the image sequence and movement of the camera. By using

information from all frames, the method becomes more robust to noise.

Assuming that the position x f p = [u f p,v f p]
T of point p in frame f is known, and that the model

of the camera is orthographic, implying that the last row of the projection matrix is always equal

to [0,0,0,1], it is possible to write the following relation:

x f p = R f sp + t f , (3.1)

Where R f = [i f , j f]
T is a 2× 3 orthonormal rotation matrix, sp is the 3D position of point p

and t f = [a f ,b f]
T is the 2×1 translation vector for frame f . By writing all the horizontal feature

coordinates u f p into an F×P matrix U , where F is the number of frames and P is the number of

points, and all the vertical feature coordinates v f p into an F×P matrix V , the measurement matrix

W ∈ R2F×P can created:

W =

[
U
V

]
(3.2)

The rows of W are registered or, in other words, translated to their centroid, by subtracting the

mean of the entries in the same row:

ũ f p = u f p−a f

ṽ f p = v f p−b f ,
(3.3)

Where

a f =
1
P

P
∑

p=1
u f p

b f =
1
P

P
∑

p=1
v f p

(3.4)

The registered measurement matrix W̃ is created and is used as input for the factorization

method. By registering the measures it is possible to write the following equations:

ũ f p = iTf sp

ṽ f p = jT
f sp

(3.5)

Considering an orthographic projection, the camera orientation at frame f can be represented

by orthonormal vectors i f , j f and k f , where i f corresponds to the x axis of the image plane, j f

to the y axis and k f = i f × j f . Therefore, the registered measurement matrix can be expressed in

matrix form:

W̃ = MS (3.6)

It was proven by the authors that, in the absence of noise, the rank of matrix W̃ is at most 3,

since it is the result of the product of the 2F×3 matrix M and the 3×P matrix S.

16

Robust Parallel Factorization

3.1.2 Approximate Rank

By using SVD, W̃ can be factorized into two orthonormal matrices U ∈ R2F×r and V T ∈ Rr×P and

a diagonal matrix Σ ∈ Rr×r with the non-zero singular values of W̃ , in decreasing order, where r is

the rank of matrix W̃ :

W̃ =UΣV T (3.7)

In the presence of noise r > 3. To approximate the registered measurement matrix to rank

3, matrices U ′ ∈ R2F×3, Σ′ ∈ R3×3 and V ′T ∈ R3×P must be computed. The upper left 3× 3 sub

matrix of Σ yields Σ′, U ′ is composed from the first three columns of U and V ′T from the first three

rows of V T . It is now possible to get the best rank 3 estimate of W̃ and of the structure and motion

matrices by:

M̂ =U ′(Σ′)
1
2 (3.8)

Ŝ = (Σ′)
1
2 V ′T (3.9)

Ŵ = M̂Ŝ (3.10)

Nonetheless, the decomposition 3.10 is not unique, since any invertible 3×3 matrix Q can be

used to produce matrices M̂Q and Q−1Ŝ, which are, also, valid decompositions of Ŵ .

3.1.3 Metric Constraints

In fact, M̂ is a linear transformation of the true motion matrix M and Ŝ a linear transformation of

the true structure matrix S, such that:

M = M̂Q (3.11)

S = Q−1Ŝ (3.12)

It is known that the rows of the true motion matrix M are unit vectors, and that the first F rows

are orthogonal to the corresponding F rows in the second half of M:

iTf i f = jT
f j f = 1 and iTf j f = 0 (3.13)

Therefore, it is possible to apply these metric constraints, composing an overdetermined sys-

tem of 3F equations such that:

îTf Lî f = 1

ĵT
f L ĵ f = 1

îTf L ĵ f = 0,

(3.14)

17

Robust Parallel Factorization

Where L ∈ R3×3 is a symmetric matrix:

L = QT Q (3.15)

Matrix Q can be retrieved by performing an eigendecomposition on L = EΛE−1. In practice,

matrix L can be a non positive definite matrix, resulting on at least one eigenvalue being less or

equal to zero. To find a positive definite approximation of L, all eigenvalues λi ≤ 0 are set to a

value ε > 0 and saved on matrix Λ′, allowing the computation of Q:

Q = EΛ
′ 12 (3.16)

Finally, the true motion and structure matrices can be obtained. The reconstruction will be

made up to an arbitrary scale and on an arbitrary pose. If desired, it is possible to align the first

camera reference with the world reference system by applying a rotation R0 = [i, j,k] that rotates

the first frame to the identity matrix. The motion and structure matrices can be updated by the

products MR0 and RT
0 S.

3.1.4 Occlusions

As the camera moves, feature points can appear and disappear from the image. As the video

progresses, a point can be occluded or, if the video incurs in abrupt movement, the tracking can

fail. In practice this results in a matrix W with some missing values. Tomasi and Kanade [TK92],

in one of their experiments, obtained a matrix W with only 16% of known entries.

Nonetheless, since the method uses SVD, it can only perform the factorization when all the

entries of W̃ are known. The authors overcame this problem by applying the factorization on a

sub matrix of W , where all entries are known, and then, as they called it, hallucinate the unknown

entries of W . The problem of finding the optimal sub matrix might not be a trivial one.

For an unknown image measurement (u f p,v f p) to be reconstructed, point p must be visible in

at least three more frames f1, f2, f3, and there must be at least three more points visible in all the

four frames f1, f2, f3, f .

Suppose that W is a 8× 4 matrix with only one unknown image measurement u44 and v44.

Notice that the columns and rows of W can be permuted.

W =

u11 u12 u13 u14

u21 u22 u23 u24

u31 u32 u33 u34

u41 u42 u43 ?

v11 v12 v13 v14

v21 v22 v23 v24

v31 v32 v33 v34

v41 v42 v43 ?

(3.17)

18

Robust Parallel Factorization

One can perform the factorization on the first three frames, that is, to the 6×4 sub matrix, or

on the 8×3 sub matrix containing the first three points. Assuming the case where all frames are

kept:

W =

u11 u12 u13

u21 u22 u23

u31 u32 u33

u41 u42 u43

v11 v12 v13

v21 v22 v23

v31 v32 v33

v41 v42 v43

(3.18)

By applying the method to the 8×3 matrix W , the full translation t ′ and rotation M matrices

and the partial structure matrix S′ are produced:

W8×3 = MS′3×3 + t ′eT , (3.19)

where e= [1,1,1]. Matrices with primes are represented relative to the centroid of only the first

three points. By solving the following overconstrained system of six equations in three unknowns,

point s′4 can be computed:

iT1
iT2
iT3
jT
1

jT
2

jT
3

s′4 +

a′1
a′2
a′3
b′1
b′2
b′3

=

u′14

u′24

u′34

v′14

v′24

v′34

, (3.20)

where

u′f 4 = u f 4−a′4
v′f 4 = v f 4−b′4

f or f = 1,2,3 (3.21)

The shape coordinates can, then, be registered with respect to their centroid:

sp = s′p−
1
4

S′e4 f or p = 1,2,3,4 (3.22)

The translation can be found by equation 3.4. For the case where all points are kept and W is

a 6×4 matrix, the centroid of the first three points is found so the motion of the remaining frame

is found. Then, the translation vector is updated and the unknown entries are computed.

By combining this two hallucination approaches, it is possible to start with a small sub matrix

and obtain the motion of the remaining frames and the position of new points.

19

Robust Parallel Factorization

In this thesis, the claim is made that over long video sequences, and in the presence of noisy

measures, the hallucination method is bound to propagate the error. One of the reasons is that,

since the system of Equation 3.20 is solved by least squares, one noisy measure will introduce

an error that can propagate on further hallucinations. One way of alleviating this problem is by

adding more equations to the system. If one point to be hallucinated is seen in more than three

frames, it is possible to include that information in Equation 3.20. A better, but more expensive

approach, would be to detect outliers and not using those to hallucinate new points.

As reviewed in Section 2.1.1, it is possible to use a matrix factorization algorithm that deals

with missing values. These approaches can implicitly deal with noisy measures, and are preferred

to the hallucination method, nonetheless none of these methods were implemented due to time

constraints, and remains as future work.

3.2 Method

The previously described method runs sequentially. Nonetheless, in the context of this thesis, a

distributable method is required in order to build a scalable web service. A method that is able

to robustly perform SfM, even on long video sequences, is presented in this Section. The method

deals with the problem of the propagation of the error, induced by the hallucination process, and

is also able to detect outliers.

3.2.1 Technologies

Several libraries were used to ease the implementation of the method that was described on Section

3.1 and in this Section. Other computer programs were used in order to evaluate the method and

to test different approaches and parameters, that were crucial for the success of the development

and implementation of the method. The technologies that had the most impact are presented in

this Subsection.

The most useful library was OpenCV1, which is an open source computer vision library, with

C, C++, Java and Python interfaces. It is written in optimized C/C++, and is able to take advantage

of multi-core processing. Some features, such as the Mat class for matricial computations, SURF,

KLT tracker, SVD and k-d tree were extremely helpful. In this project, the C++ interface was used.

Point Cloud Library (PCL2) is an open source library for 2D and 3D image and point cloud

processing. It was used to display the generated point clouds and, since it implements point cloud

reconstruction method such as the Marching Cubes [HDD+92] and Poisson Surface Reconstruc-

tion [KBH06], it was used for some experiments. The implementation of the Iterative Closest

Point (ICP) was also helpful in the evaluation phase.

Eigen3 is a C++ template library for linear algebra and was used since it implements the

Umeyama’s method [Ume91]. Also, it was used while interacting with PCL.

1http://opencv.org/
2http://pointclouds.org/
3http://eigen.tuxfamily.org/

20

http://opencv.org/
http://pointclouds.org/
http://eigen.tuxfamily.org/

Robust Parallel Factorization

Figure 3.1: Video divided in two videos v(i) with one overlapping frame.

Blender4 is another open source project. It is a free professional computer graphics software

that is able to create animated films, visual effects, 3D models and video games. As such, it was

used to create synthetic videos and obtain the ground truth position of the 3D points.

Finally, Meshlab5 is a free open source mesh processing software. It was used for visual

inspection of the point clouds, perform data cleaning and manual alignment of point clouds and,

also, to test several parameters of the Poisson Surface Reconstruction and Marching Cubes.

3.2.2 Video Division

In order to distribute the method, a video can be divided into n videos v(i). Each video shares its

last k frames with the next video such that the sequence of the frames is preserved. Then, each v(i)

can apply the factorization method independently and, therefore, in parallel. A simple example is

presented on Figure 3.1, where the video is divided in two videos v(i) of ten frames each, with one

overlapping frame.

SURF features are extracted from the first frame of each video and, then, are tracked across

the remaining frames using KLT. SURF was chosen since it has high repeatability and is scale

invariant, which can be useful to match points on overlapping frames. KLT was chosen for its

simplicity and since there is no need for more complex tracking methods, as the length of each v(i)

will be relatively small.

The measures are saved on a 2F ×P matrix W (i), as described on subsection 2.1.1, and then

passed as input for the factorization method, that outputs the structure of the scene and motion of

the camera.

3.2.3 Registration

After the factorization step, there is a registration problem that needs to be solved. There are

n point clouds, with overlapping points, and n rotation matrices and translation vectors with k

overlapping frames.

In the absence of noise, one frame shared by two different videos must have the same pose.

As the factorization method sets the centroid of the measures as the origin and with an arbitrary

pose and scale, each video will be reconstructed under different coordinate systems. Nevertheless,

all videos must share the same origin.

4https://www.blender.org/
5http://meshlab.sourceforge.net/

21

https://www.blender.org/
http://meshlab.sourceforge.net/

Robust Parallel Factorization

Another requirement is that the same point, reconstructed by different videos, must have the

same 3D position. It is possible to perform point-matches by using the nearest neighbour approach

between each pair (v(i),v(i+1)). In order to do that, a k-d tree was built with the 2D points seen on

the first frame that v(i) shares with v(i+1) and, for each 2D point seen on the first frame of v(i+1),

the nearest point in the tree is found. All matches (p(i), p(i+1)) with Euclidean distance less than ε

are saved.

Having a set of matches, it is possible to compute a similarity transformation A = [sR t]

that aligns S(i+1) with S(i), where S(i) is the structure of v(i). This problem can be solved using

Umeyama’s method [Ume91], which has a closed-form solution, and minimizes the mean squared

error 1
m

m
∑

p=0
||S(i)p − (sRS(i+1)+ t)||2 between the set of m 3D matches (S(i)p ,S(i+1)

p). The two point

clouds can, then, be aligned by:

S′(i+1) = sRS(i+1)+ t (3.23)

t ′(i+1) = st(i+1)−M(i+1)RT t (3.24)

M′(i+1) = M(i+1)RT (3.25)

W ′(i+1) = sW (i+1), (3.26)

where S′(i+1), t ′(i+1), M′(i+1) and W ′(i+1) are the matrices of video i+ 1 aligned with video

i. These equations guarantee the equality W ′(i+1) = M′(i+1)S′(i+1)+ t ′(i+1). Nonetheless, the min-

imization of the mean squared error might not be desirable in the presence of outliers. These

outliers can appear due to errors in the tracking process or due to errors in the reconstruction pro-

cess. To improve the robustness of the method, Random Sample Consensus (RANSAC) was used.

Four points are randomly sampled and matrix A is computed. The RANSAC model is comprised

of A and the mean squared error e between the four sample points, after the transformation A, and

the corresponding matches in the other point cloud. All points that, by applying the transformation

A, have a similar mean squared error to e are considered inliers.

As the computation of the similarity transformation degenerates when the 3D point sets form

a plane, line or point [ELF97], it is important to guarantee that the four points used to obtain A

are not coplanar. If you imagine that all four points have the same 3D position then, a simple

translation could perfectly align the matches. However, there would be an infinite number of

rotation matrices that would also perfectly align them. The same happens with points forming a

line or plane as some information is lost.

Having four points A, B, C and D, it is possible to compute the vectors ~AB and ~AC. By taking

the cross product ~N = ~AB× ~AC, the normal vector to the plane that contains points A, B, and C is

obtained. If the dot product between vector ~AD and ~N is 0, then all points are coplanar since the

angle between ~AD and ~N is 90 degrees. In conclusion, four points are considered coplanar if the

22

Robust Parallel Factorization

result of the following equation is close enough to 0:

~AD · (~AB× ~AC) (3.27)

The four points are discarded if considered coplanar and another four are randomly selected

until a set is found to be non coplanar.

3.2.4 Noise Reduction

The point match relation is transitive, meaning that if (p1, p2) and (p2, p3) are matches, then

(p1, p3) are also matches. By using this property, it is possible to perform matches across multiple

videos. In the presence of noise, the 3D positions of p1, p2 and p3 might not be the same. To

reduce the effects of the noise, an ideal point is computed for each point match by computing a

weighted average of the points:

S(ideal) =

m
∑

p=0
r2

pS′p

m
∑

p=0
r2

p

(3.28)

Where rp is the confidence in the reconstruction of the given point, and is computed by:

rp = 1− σ4

σ3
(3.29)

Where σi is the ith largest singular value of the SVD factorization of the registered measure-

ment matrix W̃ . It was stated by Tomasi and Kanade [TK92] that, in the absence of noise, W̃ is at

most of rank 3 and, since the number of non-zero singular values equals to the rank of a matrix,

σ4 should be equal to zero. By looking at equation 3.29, it is possible to conclude that the largest

the value of r, the closer W is of rank 3.

Finally, it is possible to compute the 3×4 affine transformation A(i) that minimizes:

m

∑
p=0
||S(ideal)

p −A(i)S̃′(i)p ||2, (3.30)

Where S̃′(i)p is the 3D point S′(i)p in homogeneous coordinates. The final structure S′′(i) of each

video can then be computed by:

S′′(i) = A(i)S̃′(i) (3.31)

By using S̃′(i)p , matrix A is able to translate S′(i). This allows the correction of potential errors

on the registration process without the necessity to deform the point cloud. The noise reduction

step can be done iteratively since there can be conflicting matches across several videos. The

23

Robust Parallel Factorization

criteria used to check for convergence is the variation of the error between point matches after

applying the affine transformation.

∆(i) =

∣∣∣∣∣ m
∑

p=0
||S(ideal)

p −S′(i)||2−
m
∑

p=0
||S(ideal)

p −S′′(i)||2
∣∣∣∣∣

ε =
n
∑

i=0
∆(i)

(3.32)

The system converges when ε is close enough to zero. Nonetheless, it is not guaranteed that

the system will converge and there is the need for setting a maximum number of iterations.

The pose of the camera is not updated since the resulting matrix of M(i)A−1(i) would not

guarantee a valid rotation matrix.

3.2.5 Structure and Motion

The results of all videos have to be concatenated into one unique solution. For that, the pose of

the camera is vertically concatenated and the average is computed on overlapping frames. The

average of the translation vector is straightforward, nonetheless, a simple average is not applicable

to the rotation matrix. This problem can be solved, as reviewed by Claus Gramkow [Gra01], by

finding the rotation matrix R̄ that best rotates the identity matrix into the sum of the two rotations

to be averaged. The solution can be obtained by SVD, ∑i Ri =UΣV T , where Ri are the overlapping

rotation matrices. Introducing the matrix D = diag(1,1,det(U)det(V T)), the mean rotation is:

R̄ =UDV T (3.33)

Regarding the final structure, points fit into three categories: Inliers, Outliers and Remaining

points, with the Inliers and Outliers being the result of the RANSAC step. For all matches in the

inlier set, the ideal point is computed, as in equation 3.28, and added to the final structure. All

points considered to be outliers are not added, since they can be caused by two situations: bad

reconstruction or bad matching. The bad matching can, also, be caused by two situations: drift on

the tracking process or the propagation of the error in the hallucination process. Both situations

can indicate a bad reconstruction and, therefore, all outliers are ignored. Other points that were

not matched between videos are also added to the final structure, since there is no indication of

them being erroneous.

3.3 Evaluation

This Section presents an evaluation of the Robust Parallel Factorization Method (RPFM) proposed

on Section 3.2. The method is evaluated qualitatively on Subsection 3.3.1, Subsection 3.3.2 eval-

uates the resulting structure and Subsection 3.3.3 the resulting motion. Subsection 3.3.4 provides

an evaluation on the division of the video. Subsection 3.3.5 evaluates the noise reduction step and

effects of varying the number of iterations. Subsection 3.3.6 compares the RPFM with 123D Catch

24

Robust Parallel Factorization

(a) (b)

Figure 3.2: Qualitative evaluation of resulting structure, by adding gaussian noise N (0,1) to a
video sequence with 1275 frames. (a) RPFM structure. (b) Tomasi and Kanade’s method structure.

on real videos and, finally, Subsection 3.3.7 evaluates the complexity of RPFM and compares it

with the complexity of the classical method.

3.3.1 Qualitative Evaluation

A synthetic cube with 98 points was created and a perspective camera was rotated around it, in a

closed circle. To evaluate qualitatively the performance of both methods, Gaussian noise N (0,1)

was added to a video sequence with 1275 frames, and the resulting point clouds are shown on

figure 3.2. As can be seen, the point cloud generated by RPFM has less outliers and maintains

the aspect of the cube, as the point cloud generated by Tomasi and Kanade’s method created an

inclined face.

Experiments showed that this is only true for long sequences, since smaller videos tend to be

reconstructed with fewer points by RPFM, due to the outlier removal step, making it harder to

understand the shape of the object the point cloud is representing.

3.3.2 Structure Evaluation

The method reconstructs the scene in an arbitrary scale, origin and rotation and, therefore, the

evaluation of the structure is not a direct one. One possible approach would be to apply the

Umeyama’s method [Ume91] to align the reconstructed point cloud with the ground truth point

cloud, and then obtain the RMSE between the two. There are some problems with this approach:

the results would be influenced by the quality of the registration process, which might contain

outliers, and the results would have to be normalized for proper comparison.

The chosen approach for the evaluation was to verify the consistency of the distances between

points. The distance between points pi and p j of the ground truth structure S, and the distance

between p̂i and p̂ j of the structure to be evaluated Ŝ are computed and, then, the ratio ri j =
dist(p̂i,p̂ j)
dist(pi,p j)

25

Robust Parallel Factorization

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

150 300 450 600 750

σ
'

Frames

(2) Gaussian Noise

RPFM σ=1

Classical σ=1

RPFM σ=2

Classical σ=2

RPFM σ=3

Classical σ=3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

150 300 450 600 750

σ
'

Frames

(3) Sparse Noise

RPFM σ=2

Classical σ=2

RPFM σ=3

Classical σ=3

RPFM σ=4

Classical σ=4

(a) (b)

Figure 3.3: Structure error with respect to the length of a video. (a) Added gaussian noise N (0,2)
to the measures. (b) Added gaussian noise N (0,4) to 50% of the points.

is obtained, where dist(p, p′) computes the Euclidean distance between p and p′. This is done for

all possible point pairs on the point cloud to be evaluated, obtaining the average ratio:

r̄ =

P̂−1
∑

i=1

P̂
∑

j=i+1
ri j

P̂−1
∑

s=1
s

, (3.34)

with P̂ being the number of points in structure Ŝ. Intuitively, this is the average scale between

the two point clouds. With this approach, the matches between points in S and Ŝ are needed and,

therefore, a synthetic dataset is required.

Having r̄ it is possible to compute the standard deviation σ . If the reconstruction has no error

σ = 0. A low σ means that the majority of point pairs agree on the scale and, therefore, the error

is low. For this approach to work with different scales, a normalization step is required. To do that,

the quotient between the standard deviation and the average is used to evaluate the performance of

the system:

σ
′ =

σ

r̄
(3.35)

Noise was added to the measures and these were used as input for RPFM and for Tomasi and

Kanade’s method. Three types of noise were added: (1) No noise, (2) Gaussian noise, (3) Sparse

Noise: 50% of the points were corrupted with Gaussian noise. The performance was evaluated

by varying the amount of noise and the length of the video sequence. The results are presented in

Table 3.1.

With the factorization method, it is very important to find a good sub matrix W to apply the

SVD and obtain good structure and motion matrices. If W is too noisy, the error is going to

propagate in the hallucination step, since new points are going to be computed from previously

hallucinated points. That can be seen on Figure 3.3, where the error grows with the length of the

video.

With RPFM, the negative effects of bad reconstructions are attenuated by the good reconstruc-

tions, reducing the error with respect to the length of the video. Where this method performs best

26

Robust Parallel Factorization

Frames 150 300 450 600 750
(1) No Noise

RPFM 0,0252 0,0255 0,0385 0,0460 0,0435
Classical 0,0214 0,0289 0,0322 0,0355 0,0565

(2) Gaussian Noise
RPFM N (0,1) 0,0426 0,0308 0,0651 0,0740 0,0755
Classical N (0,1) 0,0395 0,0506 0,0622 0,0873 0,233
RPFM N (0,2) 0,0637 0,0646 0,105 0,157 0,119
Classical N (0,2) 0,0517 0,0695 0,102 0,125 0,301
RPFM N (0,3) 0,125 0,100 0,144 0,180 0,202
Classical N (0,3) 0,0810 0,101 0,157 0,199 0,384

(3) Sparse Noise
RPFM N (0,2) 0,0439 0,0496 0,0717 0,0817 0,0655
Classical N (0,2) 0,0422 0,0555 0,0704 0,0908 0,316
RPFM N (0,3) 0,0802 0,0732 0,0998 0,0789 0,0945
Classical N (0,3) 0,0616 0,0717 0,112 0,137 0,222
RPFM N (0,4) 0,0972 0,151 0,144 0,173 0,123
Classical N (0,4) 0,0862 0,105 0,145 0,209 0,933

Table 3.1: Structure error σ ′ of RPFM and the Tomasi and Kanade’s classical method, under
different noise conditions.

is in the case of Sparse Noise since it is able to detect the outliers and remove them from the final

structure. This characteristic might be desirable, for example, on cases of apparent motion due to

illumination changes. From Figure 3.3 it is possible to conclude that, in the case of Sparse Noise,

the error of the RPFM maintains almost constant and, on the other hand, the error of the classical

method starts to increase after 600 frames.

3.3.3 Motion Evaluation

To evaluate the motion, code provided by Sturm et al. [SEE+12] was used to compute the Absolute

Translation Error (ATE) and Relative Pose Error (RPE). ATE directly measures the difference

between points of the true and estimated trajectory. The two poses are aligned using SVD and the

difference between each pair of poses is computed. RPE is used to measure the drift of the system.

The error in relative motion between all pairs of timestamps is computed.

The ATE was computed over the 3 types of noise mentioned previously and are presented

in Table 3.2. Tomasi and Kanade’s algorithm outperformed the RPFM on the No Noise case,

probably due to errors in the registration process. Nonetheless, RPFM deals with the increase

of noise better than Tomasi and Kanade’s method. A comparison of the estimated trajectories is

presented in Figure 3.4.

The same strategy was used to compute the RPE and the results are presented in Table 3.3.

Once again, RPFM only outperformed Tomasi and Kanade’s algorithm when noise was added to

the measures. The median error is similar on both methods since Tomasi and Kanade’s method

27

Robust Parallel Factorization

(1) No Noise (2) Gaussian Noise N (0,1) (3) Sparse Noise N (0,2)
RPFM Classical RPFM Classical RPFM Classical

median 1,52 0,455 1,84 2.02 2,33 3,19
max 3,59 1,45 5,21 9,92 6,89 17,1
RMSE 1,89 0,551 2,04 3.34 2,83 5,60

Table 3.2: Comparison of the Absolute Translation Error of the RPFM and Tomasi and Kanade’s
method using a video with 900 frames. The best results are shown in bold.

40 30 20 10 0 10 20 30 40
x

40

30

20

10

0

10

20

30

40

y

ground truth
estimated

40 30 20 10 0 10 20 30 40
x

40

30

20

10

0

10

20

30

40

y

ground truth
estimated

(a) (b)

Figure 3.4: Absolute Trajectory Error. The estimated trajectory, computed by adding Gaussian
noise N (0,1) to the measures, is compared with the ground truth. (a) RPMF. (b) Classical algo-
rithm.

(1) No Noise (2) Gaussian Noise N (0,1) (3) Sparse Noise N (0,2)
RPFM Classical RPFM Classical RPFM Classical

median 0,0720 0,0813 0,0857 0,136 0,0971 0,101
max 13,5 11,7 15,7 44,9 14,6 28,8
RMSE 5,10 5,06 5,61 13,3 5,99 9,05

Table 3.3: Comparison of the Rotational error, in degrees, of the RPFM and the Tomasi and
Kanade’s method using a video with 900 frames. The best results are shown in bold.

28

Robust Parallel Factorization

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

30 60 90 120

Number of Frames per Video

Variation of the Ratio and Error

Average Ratio

Average Error

Figure 3.5: Variation of the average error and ratio between the fourth and third singular values
with respect to the number of frames per video.

only starts getting worse estimates as the length of the video increases, due to the propagation of

the error. That can be seen by the increasing RMSE and maximum error.

3.3.4 Video Division Evaluation

Up until now, the video was divided by defining an equal number of frames for each v(i). This

was not a problem since the video was synthetic with a constant velocity and movement. The

optimal number of frames depends mainly on the movement of the camera and, therefore, it might

be different for each sequence and even for each video v(i).

In this subsection the effects of varying the number of frames for each video and the number

of overlapping frames are evaluated. The same synthetic video is used and the reconstruction was

performed with 5 videos v(i). For that, the videos were set to 30, 60, 90 and 120 frames. Also, for

each number of frames, the number of overlapping frames was set to 1, 50
3 %, 25% and 50% of the

number of frames.

The ratios between the fourth and third singular values vary mostly with the number of frames

per video and not with the number of overlapping frames. The average of the errors and ratios was

computed for each maximum number of frames and the results are presented on Figure 3.5.

It is possible to conclude that the confidence increases with the number of frames up to a point,

where the confidence decreases and the error increases. This happens since the number of points

that are successfully tracked across all frames start to decrease, and most of the reconstructed

points are hallucinated. Also, since less points are factorized, the factorization is more sensitive

to noise.

The number of overlapping frames impacts the number of matches between points. With more

overlapping frames, there is less error on the tracking process and more points are visible. This

assumption is best tested on a real sequence, where the points are tracked using the KLT tracker.

29

Robust Parallel Factorization

30 60 90 120
1 2400 1322 1009 769
50
3 % 2566 (6.9%) 1584 (19.8%) 1075 (6.5%) 938 (22.0%)

25% 2866 (19.4%) 1901 (43.8%) 1298 (28.6%) 991 (28.9%)
50% 3160 (31.7%) 2099 (58.8%) 1668 (65.3%) 1296 (68.5%)

Table 3.4: The absolute number of matches and the relative increase of matches, on the "medusa"
video, with different number of frames and overlapping frames.

The "medusa"6 video sequence was used and the number of matches was found with different

number of frames and overlapping frames. The results can be seen on Table 3.4.

It is possible to conclude that the number of matches increases with the number of overlapping

frames and decreases with the number of frames. As the number of frames increases more points

are lost on the tracking process and, also, the existing points are more prone to drift.

The absolute number of matches is important but it does not make clear the relative gain, with

respect to the number of matches, of adding more overlapping frames. In order to overcome that

problem, the percentual increase of matches, relative to the number obtained by simply overlap-

ping one frame, was computed and is also presented on Table 3.4.

It is possible to conclude that the gain is not deterministic and will depend on the video se-

quences. For example, videos with 30 or 90 frames have a gain of approximately 7% of matches

by overlapping 50
3 % of frames and, on the other hand, videos with 60 or 120 frames gain ap-

proximately 20%. In most cases, the relative increase of matches is greater than the increase of

overlapping frames. More matches may imply a better alignment and outlier detection, but the

increase of overlapping frames increases the complexity of the method.

3.3.5 Noise Reduction Evaluation

The claim is made that, by performing the noise reduction step described on Subsection 3.2.4, good

reconstructions improve the results of bad reconstructions. The noise reduction step is evaluated

in this Subsection, on synthetic data and on the widely known "medusa" video.

Each video v(i) was limited to 50 frames, each one with 15 overlapping frames and the recon-

struction was performed using the first five videos. The impact of varying the number of noise

reduction iterations was evaluated.

The reconstruction was first performed on synthetic data with Gaussian noise N (0,1) added

to the measures, by varying the number of noise reduction iterations and comparing the results

with the ground truth. The results are presented on Table 3.5. The errors of the reconstruction are

all similar, up to a hundred iterations and, for a thousand iterations the error increases.

By looking to the ratios between the fourth and third singular values of the synthetic video,

it is possible to conclude that they are all similar. All reconstructions have similar quality and,

therefore, the overall structure can not be improved. Nonetheless, for larger number of iterations,

6http://www.cs.unc.edu/~marc/

30

http://www.cs.unc.edu/~marc/

Robust Parallel Factorization

Iterations 0 5 10 20 100 1000
Error (σ ′) 0.113 0.109 0.112 0.113 0.112 0.147

Table 3.5: σ ′ error of the reconstruction, by varying the number of noise reduction iterations, on
synthetic data with N (0,1) Gaussian noise added to the measures.

the results seem to become worse. As stated on Subsection 3.2.4, the system is not guaranteed to

converge. In practice, what might happen is that most points start to converge to the solution and,

when they converge, the fewer noisier points, as they are more distant to their ideal point, get more

weight on the solution and start to introduce error.

If there is an imbalance on the system, where one point or group of points starts to pull the

other, the system will eventually converge. By defining the threshold on the ε of Equation 3.32

to be 0.0001, the system converged after around 17500 iterations into a form closer to a plane.

For a threshold of 0.00001 the system converged in around 33000 iterations into a line and, for

0.000001 the system took around 49000 iterations to converge into a smaller line, closer to a point

(Figure 3.6).

Nonetheless, Table 3.6 shows that the ratios of the videos taken from the "medusa" video

sequence are more diverse and, therefore, more suitable to test the assumption of good reconstruc-

tions improving the results of bad reconstructions. As can be seen on Figure 3.7(a), one of the

reconstructions is noisy. The points located on the lower left corner of the image should be closer

to the big "mass" of points on the center. Nonetheless, by applying ten iterations of noise reduc-

tion (Figure 3.7(b)), the points are closer to their "real" position and after twenty iterations (Figure

3.7(c)) the reconstruction becomes perfectly aligned. The weight of the four well reconstructed

point clouds was enough to reduce the noise of one badly reconstructed point cloud.

However, if the number of iterations is too high, the reconstruction starts loosing detail. It is

not very visible on Figure 3.7(d), but after 100 iterations the resulting point cloud is almost flat.

This can be seen on Figure 3.8(b), where almost all details of the image have disappeared. The

face of the medusa, which is located on the center of the figure, is almost unrecognisable. On the

other hand, by letting the system converge with a threshold of 0.1, in 13 iterations, the resulting

model preserves some details. The face of the medusa is visible and even some texture of the wall

and of the hair is visible.

It is advisable to limit the number of iterations and, also, set a higher threshold for the conver-

gence test of Equation 3.32. Empirical tests showed that typically setting the maximum number

of iterations to 20 and the threshold to 0.01% of the dimensions of the point cloud offers good

Video 1 2 3 4 5
Synthetic Ratios 0.910 0.857 0.871 0.916 0.901
Medusa Ratios 0.628 0.609 0.528 0.663 0.879

Table 3.6: Ratios r of the first five videos v(i) obtained from a synthetic and the "medusa" videos.

31

Robust Parallel Factorization

(a) (b)

(c) (d)

Figure 3.6: Reconstruction of synthetic cube with different noise reduction iterations. (a) 2000
iterations. (b) 17000 iterations. (c) 33000 iterations. (d) 49000 iterations.

(a) (b)

(c) (d)

Figure 3.7: Results of varying the number of iterations of noise reduction. (a) 0 iterations. (b) 10
iterations. (c) 20 iterations. (d) 100 iterations.

32

Robust Parallel Factorization

(a) (b)

Figure 3.8: Reconstructed models of the "medusa" video using the Poisson Surface Reconstruction
method. (a) Point cloud after convergence in 13 iterations with threshold equal to 0.1. (b) Point
cloud from Figure 3.7(d).

results. Nonetheless, the function used to check for convergence is not the best and should take

into account the structure of the point cloud.

3.3.6 Comparison with 123D Catch

Autodesk 123D Catch is a mobile application that allows the user to take a series of photographs

of a scene and reconstructs it using a web service. The application uses the smartphone’s sensors,

such as the accelerometer and gyroscope, in order to obtain the relative pose between photos.

Chandler and Fryer [CF13] conducted an experiment to assess the accuracy of the application.

They used a reflectorless total station to derive some control points and compare those with the

points obtained by the application. For that, they applied a similarity transformation between the

two point clouds and the residuals were computed. The overall standard deviations of the distance

between the points are 12, 11 and 4 mm in XYZ respectively. The authors state that the accuracy

is comparatively low to normal stereo close-range photogrammetry, but the task is fully automated

and, therefore, simpler.

It is likely that, since the experiment of Chandler and Fryer, the accuracy of the application

has increased. Also, the information from the smartphone’s sensors was not used by the authors.

It makes sense to compare the results of 123D Catch with those of the RPFM, since both do not

require previous camera calibration and are aimed for the web.

In order to compare both applications, a reconstruction of the same scene is obtained using the

two approaches. The object that was chosen to be reconstructed was a Lego R©’s Big Ben. Twenty

four photos were taken around the object and sent for the 123D catch to reconstruct. It took around

1h02m30s for the application to finish the reconstruction with 206.345 vertices. As can be seen

on Figure 3.9, the final reconstruction is not perfect, mainly on untextured areas.

As a preprocessing step, for better evaluation, the 123D Catch’s model was scaled to real

world measures. The distance d between two points in the real object was measured in cm and,

33

Robust Parallel Factorization

Figure 3.9: Textured model built by the 123D Catch application.

the distance d̂ between the same points in the model was also measured. Then, the scale between

the model and the real world can be obtained by:

scale =
d
d̂

(3.36)

By multiplying all points of the model by scale the distance between all points is measured in

cm.

To perform the reconstruction with the RPFM, a video of the same scene as the one recon-

structed by 123D Catch was taken using the camera of an iPhone 4. The video can be accessed on

http://tinyurl.com/q32497b and one frame of the video can be seen on Figure 3.10. The

whole video has 1012 frames and was filmed outdoors without any special care with respect to

the light conditions and the movement of the camera. It is possible to see that the camera shakes

as the user walks around the object. The camera moves in a circle around the object so it can be

seen from all sides. Also, the object has some untextured areas which hampers the extraction and

tracking of features. This is, therefore, a realistic and challenging test.

The video was reconstructed by using 7 videos v(i) with 150 frames and 25 overlapping frames.

The resulting point cloud has 4549 vertices and converged in 5 iterations. The reconstruction took

50 seconds to finish on a computer with an Intel R© CoreTMi7-2670QM with 2.20GHz and 4 cores.

It could take less time if it used the GPU.

A comparison of the two point clouds is presented on Figure 3.11. It is possible to see that

the cloud reconstructed by the 123D catch contains more points and, therefore, has more detail.

Nonetheless, the RPFM cloud was able to extract points even on areas with no texture, such as the

top of the object.

In order to compare quantitatively the two reconstructions, a variation of the ICP was im-

plemented. A similarity transformation was computed, using the Umeyama’s method [Ume91],

instead of a simple rigid body transformation. This was needed since the two clouds are recon-

structed with different scales.

34

http://tinyurl.com/q32497b

Robust Parallel Factorization

Figure 3.10: One frame of the video used to compare the RPFM with 123D Catch and a QRcode
to the video that is located on http://tinyurl.com/q32497b.

(a) (b)

Figure 3.11: Qualitative comparison of the point clouds reconstructed by the 123D Catch applica-
tion and RPFM. (a) RPFM. (b) 123D Catch.

35

http://tinyurl.com/q32497b

Robust Parallel Factorization

(a) (b) (c) (d)

Figure 3.12: The aligned point clouds viewed from the same perspective. (a) RPFM. (b) 123D
Catch. (c) RPFM. (d) 123D catch.

The point clouds built by RPFM and 123D Catch were manually cleaned and aligned to im-

prove the results of the registration process. Since the two clouds are created with a large scale

difference (RPFM cloud was 50 times bigger than the 123D catch’s), the manual alignment is

important in order to obtain good results.

Finally, the automatic alignment is performed. The sum of the squared distances between

the computed point correspondences was 0.424cm. The two aligned point clouds can be viewed

in the same perspective in Figure 3.12. It is possible to confirm that the two point clouds have

approximately the same height.

However, the houses of the parliament near the clock tower are relatively smaller in the

RPFM’s cloud than in the 123D Catch’s one. This might happen since the factorization method

that is being used assumes an orthographic projection and it does not preserve the scale between

the different elements in the video. As the tower is closer to the camera than the houses, it is

reconstructed as being relatively bigger. This effect can be seen in Figure 3.13. The distance be-

tween the real 3D points S1 and S2 is the same as the distance between S3 and S4. As these points

are projected on the image plane, the assumption of an orthographic projection reconstructs the

points as S′1, S′2, S′3 and S′4. As S1 and S2 are more distant to the camera than S3 and S4, they are

projected closer in image coordinates. Therefore, the distance between S′1 and S′2 is smaller than

the distance between S′3 and S′4. The aforementioned problem can be solved by implementing the

perspective factorization created by Han and Kanade [HK02].

Taking into account that the system assumes an orthographic projection and that the video was

a challenging one, the results were very good. By looking at the point cloud, there are no discon-

tinuities or noise that could arise on the registration of the several independent reconstructions.

Another object was used for comparing the two approaches. This time, a rubik’s cube was

used. The 123D Catch application struggled with the reconstruction of the cube. Since the object

lacks of distinctive features it is hard to match points between images due to the correspondence

problem. Two attempts were made to reconstruct the cube with the 123D Catch application that

36

Robust Parallel Factorization

Figure 3.13: Explanation for scale difference by assuming an orthographic projection.

are presented in Figure 3.14. The first attempt was only able to reconstruct one face and the second

three faces.

The video that was used for the reconstruction of the cube using the RPFM is available at

http://tinyurl.com/nc2vmjh and one frame of the video can be seen on Figure 3.15. The

video was also taken with the camera of an iPhone 4, with no special care with the movement of

the camera nor with the light conditions. In fact, some reflections are seen on the top face of the

cube throughout the video.

Since RPFM tracks points instead of matching points across frames, it was able to perform the

reconstruction of the cube, and the results are presented on Figure 3.16. The lack of distinctive

feature points also affects the quality of the tracking process and, therefore, the results have some

noise. Nonetheless, RPFM was able to reconstruct all the faces of the cube and, in this case,

performed better than the 123D Catch.

Figure 3.14: Two attempts to reconstruct a rubik’s cube using 123D Catch.

37

http://tinyurl.com/nc2vmjh

Robust Parallel Factorization

Figure 3.15: One frame of the video used to reconstruct the rubik’s cube and a QRcode to the
video that is located on http://tinyurl.com/nc2vmjh.

Figure 3.16: Rubik’s cube reconstruction using the RPFM.

38

http://tinyurl.com/nc2vmjh

Robust Parallel Factorization

3.3.7 Complexity Evaluation

The factorization method uses SVD, which has a cubic complexity O(n3) for square matrices,

with n being the number of columns/rows. For matrices that are not square, the complexity be-

comes O(mn2) with n=min(rows,columns) and m=max(rows,columns). The complexity of the

classical algorithm is, excluding the tracking process and assuming that all points are visible on

all frames, the same as the complexity of the SVD applied to the measurement matrix. Defining F

as the number of frames and P as the number of points and, if F ≥ P then, the complexity equals

to O(FP2) otherwise, and in the more common case of P≥ F , the complexity of the factorization

equals to O(PF2).

By dividing the video in n videos v(i) with k overlapping frames, the number of frames for each

v(i) becomes f = F+k(n−1)
n . In the worst case, where P stays constant, the complexity of each fac-

torization becomes O(P f 2), assuming that there are n cores or nodes to perform the computation

in parallel. In the cases that P < f , and note that f is going to be a small number, the complexity

becomes O(f P2).

Nonetheless, RPFM has more steps to perform than the classical method. The noise reduction

step starts by pairing all consecutive videos (v(i),v(i+1)) in order to find point matches between

them. As a simplification, it is assumed that all videos have the same number of points P. The

complexity of building a k-d tree is O(P logP) and the search for the nearest neighbour of P points

is O(P logP). As such, for each pair of videos, the matching takes O(P2 log2 P).

In order to align the two videos the RANSAC method is applied. At each iteration, RANSAC

computes the transformation between the matches of the two videos. In the worst case, the number

of matches is the same as the number of points and the RANSAC performs the maximum number

of iterations max_iter. In such scenario, the complexity is O(max_iter(P− 4)). Finally, the

transitive relations are found that, in the worst case take O(nP) time, and the affine transformations

are computed in O(max_iter) time. In practice, the number of iterations for the noise reduction

process can be different from the number of RANSAC iterations however, they are represented by

the same variable for simplicity.

Finally, we need to concatenate all the reconstructions. For k overlapping frames, the com-

plexity of merging all poses is O(k(n− 1)). Since it is necessary to compute the ideal point for

each inlier, the complexity of merging the point clouds is O(P).

The final complexity of the method becomes:

O(P f 2 +P2 log2 P+max_iter(P−4)+nP+max_iter+ k(n−1)+P)

= O(P[f 2 +P log2 P+max_iter+n+1]−3max_iter+ k(n−1)), (3.37)

When P≥ f . Otherwise, when f ≥ P, the complexity becomes:

39

Robust Parallel Factorization

O(f P2 +P2 log2 P+max_iter(P−4)+nP+max_iter+ k(n−1)+P)

= O(P[f P+P log2 P+max_iter+n+1]−3max_iter+ k(n−1)) (3.38)

One can conclude that this method is computationally expensive even when performed in

parallel. There are three possible variable combinations that need to be evaluated in order to make

a proper comparison with the original method:

P≥ F ≥ f

F ≥ P≥ f

F ≥ f ≥ P

(3.39)

A comparison of the complexities is going to be conducted. For that, there are some constraints

that need to be enforced in the system:

max_iter ≥ 1

n≥ 2

P≥ 4

f ≥ 4

f > k ≥ 1

(3.40)

The formulas for the complexity only apply for n ≥ 2, otherwise it would work just as the

classical method. Also, the number of iterations has to be greater than one in order to align the

point clouds. In order to perform the reconstruction, there must be at least four points seen in four

frames. Finally, it does not make sense for the number of overlapping frames to be equal or greater

than the number of frames of each v(i).

The impact of changing n, k and max_iter was evaluated, when P≥ F ≥ f . By setting k = 1,

n = 5 and max_iter = 1, it was possible to confirm that RPFM was able to performed better than

the classical method on some situations, as it is presented on Figure 3.17(a). For the valid region of

this case, after imposing all the constraints, the classical method performs better only on the space

below the blue curve and above the purple one. It is possible to conclude that in this situation,

RPFM performs better when the number of frames is larger.

By increasing the number of overlapping frames, there is the need for more frames for the

RPFM to perform better (Figure 3.17(b)). The system is more sensible to the variation of overlap-

ping frames than the number of iterations. Even after setting the maximum number of iterations

to 120, the area where RPFM performs better is almost unchanged (Figure 3.17(c)). With the in-

crease in the number of videos, there is the need for more frames, as each video requires at least 4

frames to perform the reconstruction. By analysing Figure 3.17(d), it is possible to conclude that

the system does not improve by adding more videos in this situation.

The same analysis was performed for the case where F ≥ P ≥ f , with the same variation

on n, k and max_iter, and presented in Figure 3.18. In this situation, by setting k = 1, n = 5 and

40

Robust Parallel Factorization

(a) (b)

(c) (d)

Figure 3.17: Analysis of the complexity of the method when P ≥ F ≥ f . (a) k = 1, n = 5 and
max_iter = 1. (b) k = 15, n = 5 and max_iter = 1. (c) k = 1, n = 5 and max_iter = 120. (d)
k = 15, n = 30 and max_iter = 1.

41

Robust Parallel Factorization

(a) (b)

(c) (d)

Figure 3.18: Analysis of the complexity of the method when F ≥ P ≥ f . (a) k = 1, n = 5 and
max_iter = 1. (b) k = 15, n = 5 and max_iter = 1. (c) k = 1, n = 5 and max_iter = 120. (d)
k = 15, n = 30 and max_iter = 1.

max_iter = 1, RPFM performs better than the classical method for all valid points. The complexity

(blue line) is not responsible for reducing the green area. Nonetheless, by increasing the number of

overlapping frames, a region where the classical method performs better appears. In this situation,

the system is also more sensible to the number of overlapping frames than the number of iterations.

By setting max_iter to 120, RPFM still performs better than the classical method in almost every

valid point. Finally, the effect of increasing the number of videos simply increases the valid region,

as can be seen by the green line being almost vertical. This happens since f is smaller, for the

same F .

Finally, the case where F ≥ f ≥ P was also evaluated. The results are presented on Figure

3.19. When k = 1, n = 5 and max_iter = 1, RPFM performs better for all valid points. The valid

region happens to be small, but if one compares Figure 3.18(a) with Figure 3.19(a), it is possible to

conclude that one complements the other. The behaviour that was observed on the previous cases

are also observed in this one. The system is more sensible to the addition of overlapping frames

than to the increase of the number of iterations.

42

Robust Parallel Factorization

(a) (b)

(c) (d)

Figure 3.19: Analysis of the complexity of the method when F ≥ f ≥ P. (a) k = 1, n = 5 and
max_iter = 1. (b) k = 15, n = 5 and max_iter = 1. (c) k = 1, n = 5 and max_iter = 120. (d)
k = 15, n = 30 and max_iter = 1.

43

Robust Parallel Factorization

However, if one combines all the three cases into one, the region where RPFM performs better

than the classical method is considerable. Again, this complexities are only realistic in the cases

where it is possible to perform the method completely in parallel or, in other words, when the

number of cores or nodes is greater or equal than n. Also, it is important to note that, if the method

is to be implemented in a distributed system, the costs of communication should be taken into

account.

44

Chapter 4

Distributed Architecture

Having a parallelizable SfM method is not enough, a scalable web service is required. The system

must be able to adapt to a rapid increase in the number of users and, also, to longer videos. Finally,

the system must be fault-tolerant. There are two approaches to scale a system:

1. Vertical Scaling: Also known as scaling up, consists of adding more resources to an existing

node in the system, by adding CPUs or memory to a single machine.

2. Horizontal Scaling: Also known as scaling out, means adding more machines to a dis-

tributed system. It is possible to configure hundreds of small computers in a cluster to

obtain aggregate computing power that can perform tasks that once would have required a

supercomputer.

The approach chosen was the horizontal scaling since it is more fault-tolerant and makes it

possible to share resources. If one machine fails before ending a computation, the task is resched-

uled to another node. Also, as some nodes will be used for different requests, the system is more

resource efficient.

When there is a need for more computational power, a new machine is added to the system

accordingly. It is important to note that a physical machine can accommodate several nodes:

a machine can host several virtual machines that, in turn, represent a node. With this idea in

mind, it is possible to combine the two scale approaches since it might be desirable to improve the

resources of the machines that are more compute-intensive and can become bottlenecks, therefore,

improving response times.

In this Chapter, a description of a possible architecture to distribute the computation using the

method of Chapter 3 is presented. Section 4.1 presents the technologies used for the implemen-

tation of the distributed system, Section 4.2 presents the architecture of the system, System 4.3

explains how to scale the system for more users and Section 4.4 states how to evaluate the system.

45

Distributed Architecture

4.1 Communication Technologies

In order to distribute the computation, nodes need to communicate. Some need to schedule a task

to be performed by another node, others need to signal they have concluded a task and others need

to share information.

RabbitMQ is a lightweight message broker that is able to transmit messages between nodes

in a fault-tolerant manner. In order to better understand RabbitMQ, it is best to start by defining

some terms. A producer is a program that sends a message; a queue stores and sends messages,

being essentially an infinite buffer; and a consumer is a program that waits to receive messages.

These entities do not need to reside on the same machine.

A producer sends messages, limited to 255 bytes, to one or more queues and can continue

doing other work. The queue, which is a FIFO buffer, eventually dispatches a message to the next

consumer in sequence (round-robin) that subscribed to that queue. Round-robin is used since the

nodes that subscribe to the same queue are supposed to run the same code and, therefore, take

approximately the same time to finish. RabbitMQ is able to work with more complex models,

such as the Publish/Subscribe model, however they are not needed nor desirable for this particular

system.

If one consumer fails before finishing the task, the queue re-sends the message to another

consumer. That way, it is easy to make the system fault-tolerant.

The system also needs to transfer videos between nodes. Since the videos can contain a con-

siderable amount of data, it is not recommended for them to be transferred directly over TCP.

These videos have an interesting property that can be exploited: they have overlapping frames

among them.

Having that in mind, the BitTorrent protocol was used. BitTorrent is a peer-to-peer file-sharing

protocol that is inherently distributed and fault-tolerant. Again, it is advisable to start by defining

some terms related to the protocol. A peer is one instance of a BitTorrent client that wants to

download a file but has only parts of it; a seed is a machine that possesses a part of the data and

uploads it for other peers; and a tracker is a server that keeps track of which peers and seeds are

in the swarm.

A peer that wants to share a file or group of files starts by creating a "torrent" file, which

contains metadata about the tracker and the data to be shared. Peers that want to download a

file must first obtain the torrent file, so they can connect to the tracker which, in turn, returns

information about peers and seeds that possess the pieces of the file.

The main reason for choosing this protocol is that it can download files from its peers, not only

from one computer, which reduces the load on the first seeder.

Although the BitTorrent protocol works well with large amounts of data, it is not ideal for

small files. In order to transfer small files between nodes, such as torrent files and matrices, the

TCP protocol is used. The reason to choose TCP over UDP is that TCP is reliable and guarantees

the packets to be delivered in order.

46

Distributed Architecture

Figure 4.1: Architecture of the Distributed System

4.2 Architecture

The code was divided into seven modules:

1. Seeder

2. TCP Server

3. Divide Video

4. Factorization

5. Matching Buffer

6. Matcher

7. Merger

The whole system can be seen on Figure 4.1. As a simplification, the directed arrows between

nodes represent RabbitMQ messages and the labelled bi-directional arrows represent TCP con-

nections. The model abstracts the fact that a RabbitMQ message is sent to a queue before being

delivered to the node. Nodes that are inside the same box are required to reside inside the same

virtual machine.

The first two modules are auxiliary. The Seeder, as the name implies, is used to seed files

using the BitTorrent protocol. The TCP Server is used to transfer small files between nodes.

When the distributed system receives a request for reconstructing a video, that request is han-

dled by a Divide Video node that starts dividing the video as explained in Chapter 3. The video

47

Distributed Architecture

must be decomposed on the form of frames and, as soon as a video v(i) is created, a torrent file

with the metadata of the corresponding frames is also created, and its URL is sent to a queue q0 to

which the Factorization nodes subscribed. As soon as the torrent file is created, an HTTP request

is sent to the tracker announcing what frames it is seeding.

When a Factorization node receives a message, it starts by downloading the torrent file. To do

that, it reads the URL that was sent in the message and starts a TCP connection with a TCP server,

residing in the same machine as the Divide Video, asking for the file. The TCP server receives a

request for a file, divides the file in chunks and sends them to the Factorization node. Then, the

Factorization node connects to the tracker and starts downloading the video.

When the first frame is completely downloaded, SURF features are extracted and, as soon as

the next frame is available, the points are tracked. After the tracking process, the factorization

method is applied and the matrices W (i), S(i), M(i) and t(i) are saved in one file. A message is then

sent to queue q1, to which the Matching Buffer node subscribed, with the URL of the file.

The Matching Buffer pairs the factorizations. As soon as two consecutive factorizations have

finished, it starts a Matcher task. In order to do that, a message is sent to queue q2 with the URLs

of the files containing the matrices of two consecutive factorizations. A Matcher node, listening to

queue q2, is responsible for downloading the two files and then obtaining point matches between

the two factorizations. The transformation between the two reconstructions is computed, using

RANSAC, and a message is sent to queue q3 with the URLs of the files with the matrices of the

two factorizations and to the computed transformation and matches.

Finally, the Merger node is listening to the queue q3 and, as soon as a message arrives,

downloads the matrices from the two factorizations, the transformation between the two and the

matches. All videos v(i), except for the first and the last one (i ∈ [2,n− 1]), will arrive to the

Merger twice. That happens because a video is sent to the Matcher twice, to be aligned with the

previous video and with the next. As such, the Merger checks if it already saved the factorization

before downloading.

As soon as the Merger receives all the transformations and factorizations it starts to reduce the

noise. Then, all the factorizations are merged, and the result is sent to the client.

4.3 Scale

The first requirement was that the system should be capable of scaling with the number of frames.

That requirement is partially achieved by adding more Factorization and Matcher nodes. The

biggest problems are the Divide Video and specially the Merger node, which have a linear com-

plexity with respect to the length of the video. In that sense, the requirement is not fully met and

further optimizations should be pursued.

In order to scale with the number of users, the system of Figure 4.1 should be horizontally

replicated. This means that more nodes of each type should be added proportionally to the number

of users. Then, a load balancer is added to distribute the requests by the different Divide Video

nodes.

48

Distributed Architecture

Figure 4.2: Cells and load balancers to scale with the number of users

A load balancer is a device that acts as a reverse proxy. In practice, it distributes the requests

across different servers. It does that by listening on a port where external clients connect and

forwards the request to one of the available servers, in this case, to a Divide Video node. It is

important that the load balancers do not become a single point of failure. In order to achieve that,

they are implemented in high-availability pairs and, if one fails, the other continues to do the work.

The system can be divided in different "cells". Let us define a cell, in the context of this thesis,

as a cluster of nodes that implement the system of Figure 4.1. Each cell must be able to work

independently, meaning that it must have its own RabbitMQ server and tracker. It is desirable

that the communication between all entities inside each cell to be as fast as possible and, as such,

they should reside inside the same local network. Since cells can be physically located in different

places, the service can be improved for users with different geographic locations. A model of the

web service can be seen on Figure 4.2.

4.4 Evaluation

The system from Figure 4.1 was implemented and a sample video was used to validate the system.

As expected, it achieved the same results as the method described in Chapter 3. A more thorough

evaluation was not possible due to resource limitations.

In order to properly evaluate the method, a vast number of computers is required. It would

be interesting to evaluate the behaviour of the system by varying the load (number of users), the

49

Distributed Architecture

length of the video and the number of nodes in the system, so an optimal ratio between the three

variables would be found. This experiment would also prove the assumption of the system scaling

with the number of users and length of the video.

50

Chapter 5

Conclusions and Future Work

In this thesis, a distributable method for performing Structure from Motion was presented and im-

plemented. With the increase in the computational power and developments in distributed systems

and cloud computing, it is natural that more complex methods will be available on the web. The

increasing interest in distributed computer vision algorithms is an indication of this trend.

Machines still struggle in making sense of images. Still, the problem of reconstructing a rigid

scene through images is almost solved. The next step is to reconstruct effectively a dynamic scene.

Humans can easily create a mental model of the dynamic scene they are seeing, despite being hard

to accurately state the measures of an object, and yet we can not really describe the process of how

we do it. That is one of the reasons why the problem is yet to be solved.

However, it is still amazing how much information it is possible to extract from images that

are nothing more than matrices of 0 to 255 integers. One step further would be to use context and

previous knowledge in order to aid the reconstruction. By looking at only one image of a known

object, we can easily extrapolate its full shape. Even more complex Computer Vision systems

can still be fooled by light and reflections. To the knowledge of the author, it is still impossible

to perform the reconstruction of reflective or transparent objects, and yet humans do that daily

without effort. Current computers and algorithms are still far from being able to achieve such

tasks, but are getting closer.

5.1 Discussion

The proposed method was able to perform reconstructions of real world objects, in challenging

scenarios, even with the assumption of an orthographic projection. There are, still, a lot of limi-

tations to the proposed system that are going to be covered in this section. Some limitations are

common to image based methods and others to the method itself.

The greatest limitations of the method are derived by the assumption of orthographic pro-

jection, as it is not a good approximation of the perspective projection which is the one regular

51

Conclusions and Future Work

cameras use. The orthographic projection does not account for the change in the size of an object

as the camera moves towards or away from it. As it was noted on Subsection 3.3.6, some com-

ponents of the object might be reconstructed with different scales. Also, the variation of the focal

distance is not accounted for, meaning that the user can not zoom in or out while performing the

video.

The SVD can deal with Gaussian noise in the measures. The method can, up to some extent,

perform the reconstruction with noisy measures. Nonetheless, the tracking of the features is still

a crucial stage of the whole process. The tracking method was never the focus of this thesis,

there is a lot of work developed in that area, but the limitations must be accounted as they directly

affect the results of the system. Highly reflective, transparent and textureless objects will not have

satisfactory results, since the tracker will not be able to track effectively features at the surface of

the object.

A small number of points, as accurate as they might have been reconstructed, do not convey

enough visual information about the object. The method presented in this thesis does not provide

a dense point cloud. However, the number of points is usually enough to recognise visually the

object that was reconstructed. Also, at least four matches are required between consecutive videos

in order to align the two.

It is still not possible to perform the reconstruction of the scene in real world measures. The

reconstructions are, however, performed up to an arbitrary scale.

By using several reconstructions of the scene, in different poses, the errors of the reconstruc-

tions are more contained. This means that some reconstructions will be better than others. It was

possible to use this information to improve the bad reconstructions and, therefore, the final results.

It was shown that this approach is more robust to noise than the classical approach.

Also, this parallel approach allows the construction of a distributed system that is able to

horizontally scale with the number of users and with the length of the video. This approach is

more fault tolerant and suitable to implement as a web service than the classical method.

As the method is capable of tracking features instead of matching them, it overcomes the

correspondence problem. Objects with a repeatable texture might prove hard, or even impossible

to match points between two images. The rubik’s cube was one such example, where the 123D

Catch was not able to obtain satisfactory results. The tracking approach performs better in such

cases.

Nonetheless, the system proved to be more usable than existing approaches, as it is easier

and faster to film an object than to take dozens of photographs, or use a sensor that is wired to a

computer.

5.2 Future Work

The system that was presented in this document is still a work in progress as there are a lot of

improvements that need to be addressed. These improvements are crucial in order for the system

to be viable for commercial or scientific usage.

52

Conclusions and Future Work

Probably the most important improvement would be the implementation of the Han and Kanade’s

[HK02] perspective factorization method. With this method, the user would be able to zoom the

camera during the video and the proportions of the resulting point cloud would be more realistic.

The ability to zoom the camera might not be crucial, but the quality of the resulting point cloud is

the most important aspect of this type of applications.

Another important aspect is the texture on the final model. The texture of the scene should be

extracted and superimposed on the final model in order to be more attractive to the end user.

Following the topic of improving the quality of the final model, the resulting point cloud needs

to be more dense. One way to do that is by performing stereo rectification and matching to extract

more points. The motion matrices M are not enough for this process, since it relies on the epipolar

constraint. The projection matrices are required and so the perspective factorization is required to

be implemented. This process is well documented on the work of Pollefeys et al. [PSC+04].

The fundamental matrix is computed for each pair of frames by using the corresponding pro-

jection matrices and then, the frames are warped so that the epipolar lines coincide with the image

scan lines. As the two frames are rectified, the search of matches becomes one dimensional and

can be solved as a path search problem. Pollefeys et al. stated that "the goal of a dense stereo

algorithm is to compute corresponding pixel for every pixel of an image pair". Having a denser

point cloud, the final model is better reconstructed and with a lot more detail.

The developed system is still not fully automatic. The number of frames per v(i) is still be-

ing tuned manually for each reconstruction. The best approach to overcome this problem would

be to use the accelerometer and gyroscope of the smartphone to divide the video based on the

motion of the camera. This would limit the application to smartphone users. A more general

approach was developed by Li et al. [LGD10], that optimizes the division of the video based on

the reconstructions.

In the context of this application, it is expected that the user walks in a closed circle around the

object he wants to reconstruct. This information should be used to improve the system’s results.

As the user closes the circle, the points might not be reconstructed exactly on the same place.

This problem is known as Scale Drift and was presented on Subsection 2.1.3. It is possible to

look into the motion matrix M for frames that "close" the circle around the object, in order to

obtain matches. With these matches, the method proposed by Strasdat et al. [SMD10] could be

implemented.

In order to improve the results obtained from the hallucination step, a more robust matrix

factorization algorithm should be implemented. As an example, the method developed by Meng

and De la Torre [MdlT13] is able to deal with missing values and, as there is no need to choose

a sub matrix to factorize, it uses more information and, therefore, achieves better results. Also,

their matrix factorization method does not assume a distribution for the error, as the SVD assumes

a Gaussian distribution. In realistic scenarios, the tracking process is not guaranteed to obtain

measures with a Gaussian noise distribution. In fact, it is likely that the measures have a Mixture

of Gaussian noise distribution that the method of Meng and De la Torre is able to model.

53

Conclusions and Future Work

Finally, and as it was stated on Subsection 2.1.2, the Bundle Adjustment should be applied as

the last step of the system. This process refines the structure and motion improving the quality of

the final model.

54

References

[ABK98] Nina Amenta, Marshall Bern, and Manolis Kamvysselis. A new Voronoi-based
surface reconstruction algorithm. In Proceedings of the 25th annual conference on
Computer graphics and interactive techniques - SIGGRAPH ’98, volume 32, pages
415–421, 1998.

[ACK01] Nina Amenta, Sunghee Choi, and Ravi Krishna Kolluri. The power crust, unions of
balls, and the medial axis transform. Computational Geometry: Theory and Appli-
cations, 19:127–153, 2001.

[AFDM08] a. Angeli, D. Filliat, S. Doncieux, and J.-a. Meyer. Fast and Incremental Method
for Loop-Closure Detection Using Bags of Visual Words. IEEE Transactions on
Robotics, 24(5):1027–1037, October 2008.

[AFS+09] Sameer Agarwal, Yasutaka Furukawa, Noah Snavely, Brian Curless, Ian Simon,
Steven M. Seitz, and Richard Szeliski. Building Rome in a Day. pages 105–112,
2009.

[AKB08] Motilal Agrawal, Kurt Konolige, and MR Blas. Censure: Center surround extremas
for realtime feature detection and matching. Computer Vision–ECCV 2008, pages
102–115, 2008.

[AMF03] Sergei Azernikov, Alex Miropolsky, and Anath Fischer. Surface Reconstruction of
Freeform Objects Based on Multiresolution Volumetric Method. Journal of Com-
puting and Information Science in Engineering, 3(4):334, 2003.

[Bas09] Rafael Bastos. FIRST–Fast Invariant toRotation and Scale Transform: Invariant
Image Features for Augmented Reality and Computer Vision. VDM Verlag, 2009.

[BBX95] C L Bajaj, F Bernardini, and G Xu. Automatic reconstruction of surfaces and scalar
fields from 3D scans. In Comp. Graph. Proc., Annual Conf. Series (SIGGRAPH 95),
ACM Press, pages 109–118, 1995.

[BDw06] B Y T I M Bailey and Hugh Durrant-whyte. Simultaneous Localization and Mapping
(SLAM):. (September), 2006.

[BF05] A. Buchanan and A. Fitzgibbon. Damped newton algorithms for matrix factoriza-
tion with missing data. Proceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, 2(3):316–322, 2005.

[BMR+99] Fausto Bernardini, Joshua Mittleman, Holly Rushmeier, Claudio Silva, and Gabriel
Taubin. The ball-pivoting algorithm for surface reconstruction. IEEE Transactions
on Visualization and Computer Graphics, 5:349–359, 1999.

55

REFERENCES

[BN78] James R. Bunch and Christopher P. Nielsen. Updating the singular value decompo-
sition. Numerische Mathematik, 31(2):111–129, 1978.

[Boi84] Jean-Daniel Boissonnat. Geometric structures for three-dimensional shape represen-
tation, 1984.

[BSLS06] Andrew Barton-Sweeney, Dimitrios Lymberopoulos, and Andreas Savvides. Sen-
sor localization and camera calibration in distributed camera sensor networks. In
2006 3rd International Conference on Broadband Communications, Networks and
Systems, BROADNETS 2006, 2006.

[BTG06] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. Surf: Speeded up robust features.
Computer Vision–ECCV 2006, 2006.

[CF13] Jim; Chandler and John Fryer. AutoDesk 123D Catch : How accurate is it? Geo-
matics world, (February):28–30, 2013.

[CLSF10] Michael Calonder, Vincent Lepetit, Christoph Strecha, and Pascal Fua. Brief: Binary
robust independent elementary features. Computer Vision–ECCV 2010, 2010.

[COC+13] Pedro Carvalho, Telmo Oliveira, Lucian Ciobanu, Filipe Gaspar, Luís F. Teixeira,
Rafael Bastos, Jaime S. Cardoso, Miguel S. Dias, and Luís Côrte-Real. Analysis of
object description methods in a video object tracking environment. Machine Vision
and Applications, 24:1149–1165, 2013.

[DCSN04] Antonio G. Dopico, Miguel V. Correia, Jorge a. Santos, and Luis M. Nunes.
Distributed Computation of Optical Flow. Computational Science - ICCS 2004,
3037:380–387, 2004.

[DG08] Jeffrey Dean and Sanjay Ghemawat. MapReduce : Simplified Data Processing on
Large Clusters. Communications of the ACM, 51(1):1–13, 2008.

[DM15] Salam Dhou and Yuichi Motai. Dynamic 3D surface reconstruction and motion
modeling from a pan-tilt-zoom camera. Computers in Industry, 70:183–193, 2015.

[DR04] D. Devarajan and R. J. Radke. Distributed Metric Calibration of Large Camera
Networks. In In Proc 1st Workshop on Broadband Advanced Sensor Networks, vol-
ume 2, pages 380–403, 2004.

[DRC06] Dhanya Devarajan, Richard J. Radke, and Haeyong Chung. Distributed metric cali-
bration of ad hoc camera networks, 2006.

[ELF97] D.W. Eggert, a. Lorusso, and R.B. Fisher. Estimating 3-D rigid body transforma-
tions: a comparison of four major algorithms. Machine Vision and Applications,
9(5-6):272–290, 1997.

[EM94] H Edelsbrunner and E P Mucke. 3-dimensional alpha-shapes. ACM Transactions on
Graphics, 13:43–72, 1994.

[FGPS06] S. Funiak, C. Guestrin, M. Paskin, and R. Sukthankar. Distributed localization of
networked cameras. 2006 5th International Conference on Information Processing
in Sensor Networks, 2006.

[FS12] By Friedrich Fraundorfer and Davide Scaramuzza. Visual Odometry. (June), 2012.

56

REFERENCES

[GKS+10] Giorgio Grisetti, Rainer Kümmerle, Cyrill Stachniss, Udo Frese, and Christoph
Hertzberg. Hierarchical optimization on manifolds for online 2D and 3D mapping.
In Proceedings - IEEE International Conference on Robotics and Automation, pages
273–278, 2010.

[Gra01] Claus Gramkow. On averaging rotations. Journal of Mathematical Imaging and
Vision, 15(1-2):7–16, 2001.

[Haj05] Levente Hajder. An iterative improvement of the Tomasi-Kanade factorization.
Third Hungarian Conference on Computer Graphics and Geometry, November,
pages 37–42, 2005.

[HDD+92] Hugues Hoppe, Tony DeRose, Tom Duchamp, John McDonald, and Werner Stuet-
zle. Surface reconstruction from unorganized points, 1992.

[HK02] Mei Han and Takeo Kanade. A perspective factorization method for euclidean re-
construction with uncalibrated cameras. The Journal of Visualization and Computer
Animation, 13(4):211–223, 2002.

[HP87] C. G. Harris and J. M. Pike. 3D Positional Integration from Image Sequences. Pro-
cedings of the Alvey Vision Conference 1987, pages 32.1–32.4, 1987.

[KBH06] Michael Kazhdan, Matthew Bolitho, and Hugues Hoppe. Poisson Surface Recon-
struction. 2006.

[KBWT14] Ryan Kennedy, Laura Balzano, Stephen J. Wright, and Camillo J. Taylor. Online
algorithms for factorization-based structure from motion. 2014 IEEE Winter Con-
ference on Applications of Computer Vision, WACV 2014, (September):37–44, 2014.

[KSBW03] Timo Kohlberger, Christoph Schnörr, Andrés Bruhn, and Joachim Weickert. Do-
main Decomposition for Parallel Variational Optical Flow Computation. DAGM-
Symposium, 2781:196–203, 2003.

[KSO04] R Kolluri, J R Shewchuk, and J F O’Brien. Spectral Surface Reconstruction from
Noisy Point Clouds. Proceedings of the 2004 Eurographics/ACM SIGGRAPH Sym-
posium on Geometry Processing, 71:11–21, 2004.

[KWT88] M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active contour models. Interna-
tional Journal of Computer Vision, 1:321–331, 1988.

[LA06] H Lee and H Aghajan. Collaborative node localization in surveillance networks
using opportunistic target observations. In Proceedings of the 4th ACM international
workshop on Video surveillance and sensor networks, page 18, 2006.

[LC87] William E. Lorensen and Harvey E. Cline. Marching cubes: A high resolution 3D
surface construction algorithm, 1987.

[LCS11] Stefan Leutenegger, Margarita Chli, and Roland Y. Siegwart. BRISK: Binary Robust
invariant scalable keypoints. 2011 International Conference on Computer Vision,
pages 2548–2555, November 2011.

[LGD10] Ping Li, Rene Klein Gunnewiek, and Peter De With. Detecting critical configura-
tions for dividing long image sequences for factorization-based 3-D scene recon-
struction. Lecture Notes in Computer Science (including subseries Lecture Notes in

57

REFERENCES

Artificial Intelligence and Lecture Notes in Bioinformatics), 5995 LNCS:381–394,
2010.

[LK81] BD Lucas and Takeo Kanade. An iterative image registration technique with an
application to stereo vision. IJCAI, 1981.

[Low04] David G. Lowe. Distinctive image features from scale-invariant keypoints. Interna-
tional Journal of Computer Vision, 60(2):91–110, 2004.

[LWW12] Jingyu Li, Yulei Wang, and Yanjie Wang. Visual tracking and learning using speeded
up robust features. Pattern Recognition Letters, 33(16):2094–2101, 2012.

[MdlT13] Deyu Meng and Fernando de la Torre. Robust Matrix Factorization with Unknown
Noise. Computer Vision (ICCV), 2013 IEEE International Conference on, pages
1337–1344, 2013.

[MGVP14] A. Masiero, A. Guarnieri, A. Vettore, and F. Pirotti. An ISVD-based Euclidian
structure from motion for smartphones. ISPRS - International Archives of the Pho-
togrammetry, Remote Sensing and Spatial Information Sciences, XL-5(June):401–
406, 2014.

[MK10] Shivaji P Mirashe and N V Kalyankar. Cloud Computing. Communications of the
ACM, 51(7):9, 2010.

[MM98] R. Mencl and H. Muller. Graph-based surface reconstruction using structures in scat-
tered point sets. Proceedings. Computer Graphics International (Cat. No.98EX149),
1998.

[NW99] J Nocedal and S J Wright. Numerical Optimization, volume 43. 1999.

[PBK+12] Timo Pylvänäinen, Jérôme Berclaz, Thommen Korah, Varsha Hedau, Mridul Aan-
janeya, and Radek Grzeszczuk. 3D city modeling from street-level data for aug-
mented reality applications. Proceedings - 2nd Joint 3DIM/3DPVT Conference: 3D
Imaging, Modeling, Processing, Visualization and Transmission, 3DIMPVT 2012,
pages 238–245, 2012.

[PK94] Conrad J. Poelman and Takeo Kanade. A paraperspective factorization method for
shape and motion recovery. In Proceedings of the 3rd European Conference on
Computer Vision, Stockholm, Sweden, pages 97–108. Springer, 1994.

[PSC+04] Marc Pollefeys, Computer Science, North Carolina, Chapel Hill, L U C V A N Gool,
Maarten Vergauwen, Frank Verbiest, Kurt Cornelis, J A N Tops, and Reinhard Koch.
Visual Modeling with a Hand-Held Camera. 59(3):207–232, 2004.

[Rad10] Richard J. Radke. A Survey of Distributed Computer Vision Algorithms. In Hand-
book of Ambient Intelligence and Smart Environments, pages 35–55. 2010.

[RD06] Edward Rosten and Tom Drummond. Machine learning for high-speed corner de-
tection. Computer Vision–ECCV 2006, pages 1–14, 2006.

[RRKB11] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary Bradski. ORB: An efficient
alternative to SIFT or SURF. 2011 International Conference on Computer Vision,
pages 2564–2571, November 2011.

58

REFERENCES

[SEE+12] Jürgen Sturm, Nikolas Engelhard, Felix Endres, Wolfram Burgard, and Daniel Cre-
mers. A benchmark for the evaluation of RGB-D SLAM systems. In IEEE Interna-
tional Conference on Intelligent Robots and Systems, pages 573–580, 2012.

[SMD10] Hauke Strasdat, J. M. M. Montiel, and Andrew J. Davison. Scale Drift-Aware Large
Scale Monocular SLAM. Robotics: Science and . . . , 2010.

[SSS+08] Sudipta N. Sinha, Drew Steedly, Richard Szeliski, Maneesh Agrawala, and Marc
Pollefeys. Interactive 3D architectural modeling from unordered photo collections.
ACM Transactions on Graphics, 27(5):1, 2008.

[ST94] J Shi and C Tomasi. Good features to track. . . . , 1994. Proceedings CVPR’94., 1994
IEEE . . . , 1994.

[Sze10] Richard Szeliski. Computer Vision : Algorithms and Applications. Computer,
5:832, 2010.

[THZ13] Renoald Tang, Setan Halim, and Majid Zulkepli. Surface Reconstruction Algo-
rithms: Review and Comparison, 2013.

[TK92] Carlo Tomasi and Takeo Kanade. Shape and motion from image streams under
orthography: a factorization method. International Journal of Computer Vision,
9(2):137–154, November 1992.

[TM08] Tinne Tuytelaars and Krystian Mikolajczyk. Local Invariant Feature Detectors : A
Survey. 3(3):177–280, 2008.

[TMHF00] Bill Triggs, Philip F Mclauchlan, Richard I Hartley, and Andrew W Fitzgibbon.
Bundle Adjustment — A Modern Synthesis. Vision algorithms: theory and practice.
S, 34099:298–372, 2000.

[Tri96] Bill Triggs. Factorization methods for projective structure and motion. Proceedings
CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recog-
nition, pages845(June):845–851, 1996.

[TV11] Roberto Tron and Reńe Vidal. Distributed computer vision algorithms through dis-
tributed averaging. In Proceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, pages 57–63, 2011.

[TYAB01] Lorenzo Torresani, Danny B. Yang, Eugene J. Alexander, and Christoph Bregler.
Tracking and modeling non-rigid objects with rank constraints. Proceedings of the
2001 IEEE Computer Society Conference on Computer Vision and Pattern Recogni-
tion. CVPR 2001, 1, 2001.

[Ume91] Shinji Umeyama. Least-squares estimation of transformation parameters between
two point patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence,
13(4):376–380, 1991.

[WKYW13] Ying-mei Wei, Lai Kang, Bing Yang, and Ling-da Wu. Applications of structure
from motion: a survey. Journal of Zhejiang University SCIENCE C, 14(7):486–494,
July 2013.

59

REFERENCES

[XCK04] Jing Xiao, Jinxiang Chai, and Takeo Kanade. A Closed-Form Solution to Non-Rigid
Shape and Motion Recovery. In European Conference on Computer Vision, pages
573–587, 2004.

[ZSXW15] Zhong Zhou, Feng Shi, Jiangjian Xiao, and Wei Wu. Non-Rigid Structure-From-
Motion on Degenerate Deformations With Low-Rank Shape. IEEE Transactions on
Multimedia, 17(2):171–185, 2015.

60

	Front Page
	Abstract
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Motivation
	1.2 Scope
	1.3 Contributions
	1.4 Document Structure

	2 Literature Review
	2.1 Structure From Motion
	2.1.1 Factorization
	2.1.2 Bundle Adjustment
	2.1.3 Scale Drift Correction

	2.2 Feature Matching
	2.3 Point Cloud Reconstruction
	2.4 Distributed Algorithms

	3 Robust Parallel Factorization
	3.1 Factorization
	3.1.1 Formalization
	3.1.2 Approximate Rank
	3.1.3 Metric Constraints
	3.1.4 Occlusions

	3.2 Method
	3.2.1 Technologies
	3.2.2 Video Division
	3.2.3 Registration
	3.2.4 Noise Reduction
	3.2.5 Structure and Motion

	3.3 Evaluation
	3.3.1 Qualitative Evaluation
	3.3.2 Structure Evaluation
	3.3.3 Motion Evaluation
	3.3.4 Video Division Evaluation
	3.3.5 Noise Reduction Evaluation
	3.3.6 Comparison with 123D Catch
	3.3.7 Complexity Evaluation

	4 Distributed Architecture
	4.1 Communication Technologies
	4.2 Architecture
	4.3 Scale
	4.4 Evaluation

	5 Conclusions and Future Work
	5.1 Discussion
	5.2 Future Work

	References

