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ABSTRACT
This paper presents a new methodology to evaluatiein

the framework of on-line security assessment, theaihic
behavior of interconnected power systems havinghareased
penetration of wind power production. This approagploits
functional knowledge generated off-line, the Regi@s Tree
(RT) automatic learning method to perform Featurdset
Selection (FSS) and Artificial Neural Networks (ANNo
provide a way for fast evaluation of the securiégte.

INTRODUCTION

It is well know that, nowadays, the number of crbesder
power transactions is increasing due to an elégtrinarket
liberalization trend. At the same time, the needdorease CO2
emissions is leading to an increase of wind povesrefration
and of other renewable dispersed generation (D&int@ogies
in power systems. The conjunction of these twosfactates, in
interconnected systems, an increased use of then mai
transmission lines that may lead to very stressgérating
conditions.

In fact, changes in wind power production may regoim
unexpected wind speed variations or from sudden
disconnection of a large number of wind generatasswell as
other DG units), due to the triggering of their tetion relays
following grid disturbances. Although Automatic &eation
Control (AGC) takes care of interchange power flow
deviations, it will take some time to eliminate $kechanges.
Moreover, AGC will create a new dispatch solutionda
therefore will generate a new power flow solutioside the
control area. Therefore these wind power disturbamsay lead
to quasi-steady-state overloads in transmissiogslithat may

provoke a set of undesired cascading events thatwafrds
may involve load curtailment or even system cokaps

Transmission System Operators (TSO) have beeningfin
the levels of acceptance of wind generation anérofbG on
the basis of deterministic (n-1) steady-state scsatudies for
worst case scenarios. More recently, TSO have estart
conducting also dynamic behavior and stability gsial studies
following grid disturbances and subsequent opamatb DG
protection relays [1]. Again, these studies havenbeonducted
for worst case scenarios, leading to severe lifoitat on
system wind generation integration.

In order to increase these acceptable wind per@irat
limits, interconnected systems with large wind powe
production require on-line system security assessnmols,
able to make prediction of electrical current flliwhavior in
transmission lines following the occurrence of egst
disturbances or changes in wind power productiod, hased
on those predictions, provide preventive controlasueges if
undesired line overload conditions are detected.chSu
prediction, for current or alternative operatingnditions,
requires full dynamic simulations of the intercoatesl system,
including AGC operation, which is incompatible ndyneith
the time frame requirements for the managementoérsdary
reserves or the acceptable time period for overload
transmission lines. In fact, in available power tegss
simulation tools, several minutes are required litaio some
seconds of a large interconnected system dynanhiaviber. On
the other hand, TSO usually accept no more thamigQtes of
20% overload in transmission lines. This means h&O
dispatching centers require new tools able to pevJast and
accurate forecast of interconnected systems sgcurit

For this purpose, an ANN based approach was deasigne
emulate a set of security indices, characterizimg level of
security of a two area control interconnected systiellowing
a disturbance that provokes the disconnection lafge share
of wind power. The main concerns of this approa@resmo
obtain a security structure that can:
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= provide fast and accurate prediction of systemrigcu
= be exploited to provide preventive control measuies
order to reach system security if insecurity isededd.

In order to gather enough information about the gow
system behavior, an algorithm able to automatiagdiyerate all
possible operating conditions for this kind of poveystems
was developed. This includes a full dynamic sinatatstage
where system behavior is computed and the varialflegerest
are kept in a knowledge Data Set (DS). In a nedestthis data
was analyzed in order to understand and charaetdtie
security problem. From this stage, the candidattufes to be
used for ANN inputs and the security indices topiedicted
were selected based on engineering judgments. Ia th
procedure, the ANN preventive control purposesoihiced
some restrictions to the type of input feature ¢ocbnsidered.
Namely, controllable variables (like dispatch cdimis) were
preferred, where non-directly controllable variablgike pre-
fault power solution) were avoided.

An automatic FSS procedure was also conducteddhmase
the RT growing algorithm, in order to eliminateelgvant
features from the ANN input layer.

POWER SYSTEM MODELING

In this research, a test system was created basdtieo
Portuguese — Spanish interconnected system. Tlyedine
diagram of the created system is presented in Eigur

Figure 1 presents the installed capacity, for egple of
generating power, and the minimum and maximum laddes
considered for the studied power system.

50000 1 VW m Areal 10350
40000 Area 2
30000 1 4428 5991 4950
20000 { BN pmm 3750 35650 W
17050
10008 19710 17088 10670 80-00
Hydro Thermal Nuclear Wind Max Min
Load Load

Figure 1 — Considered values for installed capaaity
minimum and maximum load

Control area 1 corresponds to an approximationhef t
Portuguese transmission system, and control anegpr2sents
an equivalent of the Spanish/European UCTE syshkerorder
to reduce the power system dimension, without psaievant
information, all the generating units of controlearl are
equivalent machines modeling similar generatorsaipg in
parallel in the same power plant. Regarding thet tesearch
was focused on the security of control area 1,nttighboring
system was modeled by one busbar with equivalemérgéion
units. In each control area, thermal, hydro anddvgenerating
units were considered. In control area 2, nucledtsuwere
considered as must run units and not participatirggcondary
frequency control. All the hydro and thermal unitgere
considered to participate in primary and secondeeguency
control.

Control Area 1 “. Control Area 2
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.

—
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Thermal Power Station
Hydro Power Station
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Figure 2 — Single-line diagram of the interconnddtansmission system
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In order to obtain the dynamic behavior of thernhgiiro
and nuclear units, the usual corresponding locefjuency
regulator models as described in [2] were usedudicg also
the voltage regulator behavior adopting an IEEEdehadype.
Wind generators were modeled by a classical thirdero
asynchronous machine model.

The AGC system response is also modeled, adoptiag t
traditional integral control approach and usingc¢hefiguration
described in [3]. According to this configuratiobgesides
keeping the system frequency and interchange pbe®veen
control areas in the specified value, changes iwepo
production are distributed among generators through
participation factors in order to maintain genergtunits at the
most economic operating conditions. For all theapaaters of
the power system model, typical values were constieand
extracted from the full Portuguese - Spanish imenected
system.

DATA SET GENERATION
A special care was devoted to the DS generatiqn #te
order to cover all possible operating conditionstiad power
system. In addition, several operating restrictiongre
mandatory to be included in order to filter out esdistic
scenarios, and therefore decrease computational without
compromising the knowledge data quality. Besidbss &lso
avoids load flow convergence problems, in face mieasible
conditions sampling. The developed algorithm inekidhe
following main steps:
= Sampling:
Based on typical operating conditions, a structured
Monte Carlo sampling method [4] is applied in order
produce all possible operating scenarios of thdegys
characterized by different settings of: system |bakl,
wind power production levels, and import levels.e$é
conditions were defined regarding their potentidluence
on the transmission lines power flow values durprg-
fault and post-fault periods.
Based on available statistical data about wind grow
production of the Portuguese power system, thevatig
dependencies were considered among wind parkeaflar

CF(Wind Park) =b + CF(Wind Productiorin areal)xm (1)

where CF is the capacity factor, being defined has the
power production divided by the installed capacifythe
units in operation;m and b are the slope and the y-
intercept of the best linear regression relating
CF(WindPark) to CF(WindProductionnareal). In
order to introduce diversity in the DS, in each pku
scenario, m is randomly sampled between
+3x standard deviation(n) and b between

+3x standard deviation).

= Scheduling of conventional units:

For each sampled scenario, the identification of
several unit commitment solutions is performed,eldasn
specified scheduling settings. To obtain a solytinreach
control area the units are sequentially conneatatl| the
load supply is satisfied, constrained by:

a pre-defined connecting order among power plafts o

each control area;

- the minimum and maximum number of available units
in each power plant, being the availability of some
specified units sampled in order to provide divgrsi
among scheduling solutions;

- the minimum and maximum technical limits of each
unit;

- a primary control reserveRR) criteria for each control

area, namely:

PR > capacity of the largest unit in operation (2)

- a secondary control reserveSR) criteria for each
control area, namely the one presented in [5]:

SR>+ ax Lmaxb? -b 3)

being L max = maximum estimated load in that period;
a =10 MW andb = 150 MW.
Dispatch of conventional units

For each created scheduling scheme, a dispatch
module randomly distributes the insufficiency ofwmw
production by the conventional units that were ki to
be in operation, considering again their producliinits.
Power Flow:

For each dispatch solution, a load flow is solved i
order to identify all the system pre-fault opergtin
conditions.

Feasible Steady-State Solution

Before starting the dynamic simulation, the fediibi
of the power flow solution is checked regarding the
minimum and maximum allowed voltage values in the
transmission system, and if those limits are vealathe
voltage of PV synchronous generators is changed.
Dynamic Simulation:

For each feasible steady-state operating pointtinne
simulation of system dynamic behavior is computed i
order to characterize the system security following
specified disturbances that affect wind power getien.

Data Set Recording:

After each dynamic simulation analysis, a patteyn i
added to the DS, being characterized by all théufea
needed to describe the system pre-fault operating
conditions and the dynamic behavior of power flaw i
transmission lines after the disturbance. From gkis the
most relevant pre-fault features will be used as AINN
input set and the violated post-fault operating dithons
will be selected for the ANN output set.

In order to characterize the system security prable
the following condition was analyzed: quasi-steathte
post-fault load in transmission lineffjm (120 s after the

disturbance, involving therefore AGC operation).

Besides being used for ANN training, recorded
features must also enable the analysis of the gtater
patterns quality regarding the feasibility of thengrated
operating conditions, namely the following must be
observed:
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- the steady-state pre-fault and post-fault trassion
voltages are withint 10% the nominal value;
- in  pre-fault scenarios, conventional
transmission lines are not overloaded.

Moreover, the feature set must also include the
necessary input data in order to perform the dypami
simulation analysis of the generated scenarios.

= Learning and Testing set:

Finally, the DS gathered in this way is afterwards
randomly divided in two sets, creating a learnieg (£S),
with 3/5 of the patterns used for training, aneésting set
(TS), with the remaining patterns used for ovenfit
control during training and performance evaluation.

units and

FEATURE SUBSET SELECTION WITH RT

Previous to ANN training, the growing algorithm af
Regression Tree structure, as described in [@erformed in
order to identify the most relevant features far thariation of
the electrical current post-fault value in each tical
transmission line.

The design of a RT is made by applying a recursive
partitioning algorithm, which successively dividi® learning
knowledge data into mutually exclusive subsets,irainto
minimize knowledge dispersion. Each tree node v&ddd by
the application of a splitting test of the followgiform:

{ featurg (OP)>u,}? (4)

where featurg (OP) is the value of featurek in

operating pointOP, and uy is the optimal threshold value for
the chosen feature. By applying this test to a#t #et of
operating points in node, two successor nodes are creatgd,

and tg, which correspond to the two possible instancethef
test. This must be performed according to an “oakiraplitting
test, which corresponds to the one that most rediube
security index variation in node§ and tg. By considering
the mean value as the predicting function in tee tmodes, the
goal becomes into reducing knowledge variance. éfbeg, the
quality of each splitting test in nodet is measured by the
obtained variance reduction, given by:

N(tr)

Avar(s,t) = var(t) - Nm(t%-y)var(tL ) —anr(tR) (5)

where N(t) is the number of operating points stored in
node t, and var(t) is the variance of the security index in

nodet .

In this research, each feature relevance was neshdiyr
the maximum variance reductiodlvar, obtained for the root
node division. The obtainedivar values are then divided by
the variance in the root node, giving therefore escentage
variance reduction. From this ranking, only thetdeas that
provided more than 2% of variance reduction wetecsed for
the ANN input set.

This approach was inspired by the procedure predeint
[7], where Decision Trees (DT) were suggested wvigde a
feature ranking regarding its contribution to thaal tree
information. The main differences of the appliepra@ach to
this previous work are the following:

- Regression trees (RT) are used instead of decise@s
(DT). In fact, RT provide numerical forecasting,eve DT
only provide classification forecasting which degerfirom
the considered security boundary. Therefore, RTnawee
suitable for the security problem under analyzé;esthe
acceptable over current limits in transmissiondicbange
with weather conditions. This way, the numericaleli
current forecast can be compared with these limits.

- Only the gain provided for dividing the root nodeasw
considered, based on the knowledge that only teedplit
of a tree structure is optimal. In fact, all thbext splits are
conditioned by the first split.

The applied FSS method with RT does not identify
associations among the tested features. TherefteeR?earson
correlation among each pair of features was caiedlan order
to identify strong linear relationship among theffor a
correlation higher than 0.99, one of the featuras wemoved
from the ANN input set in order to remove irrelevan
information from the DS.

DESIGN OF THE ANN STRUCTURE

In this research, an ANN based tool was chosermgsin
performs generally better than concurrent toolsthia fast
dynamic security evaluation of power systems [&r ANN
training, the MATLAB Neural Network Toolbox tool waused
[9]. ANN parameters (i.e. the network weights arasbs) were
found through the Levenberg-Marquardt backpropagati
algorithm. Before starting the training stage, rig and
testing patterns are normalized to have zero meah a
standard deviation of one. To perform overfittingntol,
besides considering a maximum epochs number, when t
testing error increases for a specified numbeteshiions, the
training is stopped. The used ANN was a two-layer
feedforward network, with a tan-sigmoid transfendtion in
the hidden layer and a linear transfer functionthie output
layer. To choose the number of hidden units, adekribed in
[10] was used. According to this rule, the numbghidden
units of a single hidden layer network is given by:

Ns, 1
A n+r+1

(6)

where N, g is the number of learning patterng is a

constant factof1[5:10]; n is the number of input features; and
r is the number of output variables.

NUMERICAL RESULTS

Data Set Results

For the DS generation, the load was consideredhamge
from light load scenarios to peak load scenariakwimd parks
from disconnected to connected with a maximum dépac
factor of 0.9. The import level from control area w2as
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considered to change from 0 to 1700 MW. For thesdaling flows and from wind generation level. Also, the AGferation
and dispatch of the conventional units, 2 differsittiations avoids system insecurity for much of the generaigttierns. In
were taken into account — a thermal based and eoHyalsed fact, after approximatel20 s the beginning of the disturbance,
dispatch scenario — which defined two different remeting i.e., when the primary control as already actuated the AGC
order solutions among conventional units insidestigeduling is just starting to be activated, 1339 of the gateat patterns
procedure. Also special care was taken in ordegeoerate have transmission lines with more than 20% overload
scenarios with higher spinning reserve mainly ped by From this analysis, 82 features were selected adidate
hydro power plants. Such approach was adopted tavin features for ANN inputs, describing:
mind the results presented in [11], where it wasctuded that - Total active load;
in systems with very high wind power production whe - Dispatch conditions in each conventional power tlain
secondary control is mainly provided by thermal powplants, the system;
the operation of additional or faster secondarytrbn(like - Dispatch conditions in each wind park of contr@aad;
pumped hydro production) is required in order not t - Initial pre-fault value of the electrical current the 7
compromise the quality of generation control. critical transmission lines.

System security was evaluated relatively to a stioctit In order to analyze the influence of removing nanectly

that takes place in a sensitive line of the trassian system controllable variables from the ANN input set, aaller set
(one of the two parallel lines installed betweesdsul5 and 16 with 63 features was selected from the previous byge

of Figure 2). A duration of 300 ms was consideretbte the removing the following variables:

disconnection of the faulty line, leading to thestlof the - Dispatch conditions in each conventional power fplain
nearest wind generating units due to the triggeoifiine under- control area 2;

voltage protection relays (which operate if thetagé drops - Initial pre-fault value of the electrical currenn ithe
bellow 0.9 p.u.). The system was considered tabedure if, 2 transmission lines.

minutes after the disturbance, any transmissioa &arrent is In the hypothesis of designing a different ANN t@dgtict
20% above the electrical current technical limit.nAnimum security for each critical line, the feature subsetection
value was considered for the electrical currentitlirof procedure earlier described may be applied. In pliser, the
transmission lines in thermal dispatch scenariosl an results for the prediction offim for line 15-16 are presented.
maximum value was considered for the hydro dispatch

By applying the FSS procedure to this security fmoh
another 8 features were eliminated from the ingatveth 63
variables, remaining, therefore, a set of 55 inputs

scenarios.
After applying the data set generation procedundieza
described, 4596 patterns were generated where the 7

transmission lines mentioned in Figure 3 were ifiedt has ANN results
losing security for some of the generated pattefstotal The next figures and tables present the obtairsihteset
number of 983 patterns were classified as inse@isiously, prediction errors, from designing a ANN to predieturity for
the connection between bus 15 and 16 is the orrethét major the critical line 15-16. The following four diffene ANN
number of insecure scenarios, since it loses ontheftwo structures were designed:
parallel installed lines. - ANNp: to predict Ifim for line 15-16 with all the 82
5000 4285 4588 4504 4586 4537 4565 candidate features;

NP of i . . . . .
ao00 | 3636 ¥ cconarion - ANNG: to predict Ifim for line 15-16 with the 63 directly
3000 NP of secure controllable features;
2000 1 o scenarios - ANNg fss: to predict Ifim for line 15-16 with the 55
1000 311 g 92 10 59 31 features selected from the FSS applied procedure;

0

- ANNdGlobal): to predictIfim for all the 7 critical lines,

15-16 15-17 16-4 166 14-18 16-18 20-21 Iransmission Line . .
with the 63 directly controllable features.

Figure 3 — Number of insecure/secure scenaridsaiS
Figure 4 presents the obtained regression erroy {&tEhe

ANN output set trained ANN, namely, the mean squared error dividgdhe
For the ANN output set, two hypotheses were conesitle output variance. This figure includes the numbecafsidered

- to use only one ANN to predict security for all ttrtical input, hidden and output units. The obtained cfsgion
lines: errors are presented in Figure 5, namely the foligw

- to use a different ANN to predict security for eanfiical o .
line. - Global Classification Error, given by:

ANN input set N _ N°{OP of theTS incorretly class <100 0
Before ANN training, the generated data was andlyne Ne{OP of theTS

order to understand the security problem underyaigalFrom

this analysis the authors of this paper concludeat the - False Alarm Error, given by:

security of transmission lines strongly dependsmfrohe
generation scheduling solution, the interconnectiomport
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Nof' secure” OP of TS class as "insecure”}

x 100% 8
N°f' secure” OP ofthe T$ ’
- Missed Alarm Error, given by:
N°f'in secure” OP of TS class.as "secure"} <1004 )

N°f'in secure” OP ofthe T$
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Figure 4 — ANN TS regression errors — predictiorifoh for

line 15-16

4.00% -

3.00%

2.00% 4

0.00% | B B
ANNp ANNc ANNc,fss | ANNc(Global)

[82-7-1] [63-9-1] [55-10-1] [63-8-7]
W Global (%) 1.36% 0.76% 0.82% 1.90%
m False Alarm (%) 0.93% 0.68% 0.76% 1.01%
Mssed Alarm (%) 2.14% 0.92% 0.92% 3.51%

Figure 5 — ANN TS classification errors — prediotiaf Ifim
for line 15-16

From these results, we may conclude that removing n
directly controllable variables from the input sdiesides
simplifying the preventive control algorithm thas wunder
development, it provides more accurate predict@ngfim for

line 15-16. In addition, the implemented FSS methoaks
capable of increase ANN accuracy, even furtherséhesults
also showed that the hypothesis of consideringiquenANN
to predict Ifim for all the seven critical lines is not the best

solution, because an evident increase in predi@roor can be
observed.

From Figure 6 and Figure 7 we may get a better \oéw
the predicting errors provided by th&NNg, fss structure.

Namely, from Figure 7 we may see that, in the weitsiation,
the prediction oflfim for line 15-16 may reach 15% below or

20% above the real value. However, Figure 7 alsmwshthat
these are outlier results, and therefore these rmani errors
may be reduced by re-training the ANN with addidbn
reproduction of these outliers in the Data Set. BlgFigure 8
and Table 1 present the obtained error results edtéraining
the ANN with 20 replicas, in the LS, of each pattef Figure 7
with more that 0.05 p.u. of prediction error. Weynsze that,
by doing so, the maximum ANN error is reducedt#t% the

nominal current value in summer limit. The only Iplem is
that a slight increase is observed in the totaleggjon error.

In order to choose the best ANN structure for the
remaining critical lines, the same type of analysigs

implemented.
0 [A] = Predicted value
1200 - -----~-~- = e
1000 Va=! 1.0005u-03734 ‘ ‘,0!, _J
R =0.9985 }
800 - - -
|
600+ -------- S i
400+ —————— AP - - - — - R
|
200+ - - - L ——— - - — - e
0 1 ‘
0 200 400 600 800 1000 1200

u [A] = Observed value
Figure 6 — Linear regression between the predieadakes with
ANNCc,fss and the observed values — predictiotfiofi for line
15-16

error [p.u.] = (0-u) / In(Summer) In(Summer)=524.86 A
0.2

015 f - - -—-——1

u [A] = Observed value

0 200 400 600 800 1000 1200
Figure 7 — Error values of Figure 6, in p.u. regagdhe
nominal current value in summer time

error [p.u.] = (0-u) / In(Summer) In(Summer)=524.86 A
0.2

015 f -

u [A] = Observed value

0 200 400 600 800 1000 1200

Figure 8 — Error values after re-training the ANMNhA20

replicas of each pattern with more that 0.05 pfprediction
error

ANNCc,fss, with 20*outliers
[65-10-1]
0.0018
1.09%

RE (adim)
Global (%)
False Alarm (%) 0.85%
Missed Alarm (%) 1.53%
Table 1 - ANN TS classification errors — for thegigons
presented in Figure 8
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CONCLUSIONS

the Ph.D. and Aggregation degrees also from FEUBdtober
1988 and November 1996 respectively. Dr. Pecas d.0pe

The approach described in this paper develops a newpresently Associate Professor with Aggregation &UP

dynamic security assessment concept and providesvatool

able to deal with the impact of the presence, irtinzontrol

area systems, of large shares of wind and otheg&t&ration
following system disturbances. The reduced testangprs

obtained confirm the feasibility and quality of thpproach and
of the derived security assessment tool. Furtheeareh is
being developed in order to exploit the ANN struetéor the
derivation of preventive control measures.
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