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Abstract

One of the most common activities on the web is the search for health information. This activity
has been gaining popularity among users, but the majority of them has no training in health care,
which leads to difficulties in understanding medical terminology present in the documents and in
formulating their queries.

In the field of Health Information Retrieval several works focus on query expansion to solve
one of the biggest difficulties for users in the search of health information: formulating queries
with limited knowledge of medical terminology. This lack of knowledge influence the formulation
of queries and the expectations regarding the retrieved documents. The query expansion process
complements the original query with additional terms.

The most popular way to define the relevance of a document is trough its topicality. However,
if a document is relevant for a topic but the user does not comprehend its contents it ceases to be
useful. The field of medicine is associated with complex and specific terms that lay people have
difficulty in understanding. Considering only topical relevance is therefore insufficient.

The main objective of this thesis is to propose, evaluate and compare methods to improve
health information retrieval by consumers.

We propose several query expansion methods using different sources and methodologies to
identify which terms will be added to the original query. To reduce the problems caused by
medico-scientific terminology, we re-rank the results obtained through the query expansion ap-
proaches based on the documents’ readability. Readability is assessed through a score obtained
with the most used readability metrics: SMOG, FOG and Flesch-Kincaid.

To evaluate these approaches we use a test collections provided by the CLEF initiative from
their lab CLEF eHealth 2015. These approaches will also be evaluated on the CLEF eHealth 2016
collection when the relevance judgements are provided.

To evaluate the relevance of the retrieve documents we use precision at 10 (P@10) and nDCG
at 10 (nDCG@10). For evaluating the readability we use the understandability-based Rank Biased
Precision (uRBP) and its graded version (uRBPgr).

Overall all the approaches improve the relevance score. The MTI approach is the one that
brought the best results, proving that medical concepts related to the query are good terms for
the query expansion. Regarding the readability evaluations, most of the runs have low scores.
The cause of this may be because the readability metrics give a score based on the number of
polysyllabic words and sentence length, and this may not be well suited to evaluate documents of
a specific area.
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Resumo

Uma das atividades mais comuns na web é a pesquisa de informação relativa à saúde. Esta ativi-
dade tem vindo a ganhar popularidade entre os utentes, contudo a maioria destes não possuem
uma formação na área da saúde, o que leva a dificuldades ao nível da terminologia utilizada nos
documentos e na formulação de interrogações.

Na área da recuperação de informação de saúde já foram realizadas diversas investigações
para suprimir uma das maiores dificuldades dos utilizadores na pesquisa de informação de saúde:
a formulação de interrogações com conhecimento reduzido de terminologia médica. Esta falta de
conhecimento influencia a formulação de interrogações e as expectativas dos documentos devolvi-
dos pela pesquisa. A expansão de interrogações complementa a interrogação original com termos
adicionais.

A forma mais popular para definir a relevância de um documento é descobrir se este contém
informações sobre o tópico da pesquisa. Contudo, se um documento for relevante para um tópico
mas o utilizador não compreender o seu conteúdo este deixa de lhe ser útil. A área da medicina
está associada com termos complexos e específicos que os leigos têm dificuldade em compreender.
Considerar apenas o tópico para medir a relevância de um documento é insuficiente.

O objetivo principal desta tese é propor, avaliar e comparar métodos para melhorar a recuper-
ação de informação de saúde por parte dos consumidores.

Iremos propor diversos métodos de expansão de interrogação usando diferentes fontes e metodolo-
gias para identificar quais termos serão adicionados à interrogação original. Para propor uma
solução para a diferença linguística entre terminologia médica e leigos, vamos reordenar os re-
sultados obtidos através das abordagens de expansão de interrogações com base na legibilidade
dos documentos. O calculo da legibilidade será obtido através das métricas de legibilidade mais
utilizadas: SMOG, FOG e Flesch-Kincaid.

Para avaliar estas abordagens vamos utilizar a coleção de teste do CLEF eHealth 2015. Estas
abordagens também serão avaliadas na coleção CLEF eHealth 2016 quando os julgamentos de
relevância desta coleção forem disponibilizados.

Para avaliar a relevância dos documentos recuperados usaremos a precision a 10 (P@10) e
o nDCG a 10 (nDCG@10). Para avaliar a legibilidade, vamos utilizar a understandability-based
Rank Biased Precision (uRBP) e a sua versão graduada (uRBPgr).

No geral todas as abordagens melhoraram os resultados de relevância. A abordagem que
utilizava o MTI foi a que obteve os melhores resultados, provando que conceitos médicos rela-
cionados com a interrogação são bons termos para a expansão de interrogações. Em relação aos
resultados de legibilidade, a maioria das runs obteve valores abaixo da baseline. A causa disto
pode ser porque as métricas de legibilidade fazem a avaliação de um documento tendo em conta o
tamanho das frases e das palavras, podendo este método não ser o melhor para avaliar documentos
de uma área cientifica.
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Chapter 1

Introduction

This first chapter situates the reader with the context of the problem and provides the motivation

behind this project. The following sub-section 1.1 introduces the background and scope of the

project. Afterwards, the sub-section 1.2 describes the main goals to accomplish. In sub-section

1.3 are mentioned the contributions made by this thesis. Finally, the sub-section 1.4 gives an

overview of the organization of the document.

1.1 Context

According to the Pew Research Center report from 2013, of the 85% of U.S. adults that uses the

Internet 72% have looked for health related information within the past year [Zic13, FD13]. In

this way, the Internet has become the dominant source for health information.

Health Information Retrieval (HIR) focus on the application of IR concepts and techniques to

the domain of healthcare. This field has largely evolved in the last few years. Habits of health

professionals and consumers (patients, their family and friends) have been changing as a result of

several factors like the increasing production of information in a digital format [LV01], the greater

availability and the easier access to health information.

Most health related articles employ medical terminology, yet laypeople do not have the neces-

sary knowledge to express their information need using such vocabulary, thus struggling to satisfy

their information needs [ZKP+04]. This represents a language gap which is difficult to overcome

either by laypeople or by experts, requiring different vocabularies for their information needs. One

of the main reasons for failures of retrieval engines is this language gap [CYTDP06].

1.2 Objectives

The main objective of this thesis is to propose, evaluate and compare methods to improve health

information retrieval by consumers.

Query expansion is the main approach used in this thesis. Query expansion (or term expansion)

is the process of supplementing the original query with additional terms, and it can be considered
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as a method for improving retrieval performance [Eft96]. Different sources and methodologies

will be used to identify which terms will be added by the query expansion.

To propose a solution to the language gap between medical terminology and laypeople we will

re-rank the results obtained through the query expansion approaches based on the document read-

ability. The readability score will be obtained through the most widely used readability metrics:

SMOG, FOG and Flesch-Kincaid [SC01, MP82]. These metrics estimate the educational grade

level necessary to understand a document.

1.3 Contributions

Two of our proposed approaches were submitted to the lab “CLEF eHealth 2016 Task 3 Patient-

Centred Information Retrieval”, both approaches were re-ranked using the SMOG readability

scores. This lab aims to evaluate systems that support people in understanding and searching

for their health information [CLE16b]. The task “Patient-Centred Information Retrieval” is split

into three subTasks: ad-hoc search, query variation and multilingual search [CLE16b]. We partic-

ipated in the ad-hoc search and query variation subTasks. At the time of writing this document the

paper submitted to the CLEF eHealth 2016 was already approved.

1.4 Thesis Outline

Besides the Introduction, this thesis contains five more chapters. Chapter 2 describes the state-of-

art and work related to the subject. Chapter 3 explains the methods and describe the test collections

used to evaluate the query expansion approaches. On Chapter 4 are illustrated the experiments and

the results done with each approach. On Chapter 5 a comparison between approaches is made to

evaluate their efficiency. Finally, Chapter 6 presents the concluding remarks, taking into account

the thesis objectives. Also, future expansions for this project are presented in this last chapter.

2



Chapter 2

Literature Review

In this Chapter we provide some background about the concepts, methods and techniques that we

use in the rest of this thesis. The main goal of this chapter is to present a comprehensive analysis

of the work that has been done by other researchers and developers in the fields of Information

Retrieval and Query Expansion.

2.1 Information Retrieval

The term Information Retrieval (IR) was adopted by Calvin Mooers who defined it as:

“The name for the process or method whereby a prospective user of information is

able to convert his need for information into an actual list of citations to documents

in storage containing information useful to him.” [Moo51]

Understand the meaning of this term is not an easy task to accomplish, because even the fact

of searching a dictionary for the meaning of a word is a form of Information Retrieval. A more

recent definition defines IR as:

“...finding material (usually documents) of an unstructured nature (usually text) that

satisfies an information need from within large collections (usually stored on comput-

ers). ” [MRS08]

The concept of unstructured data refers to the types of documents that don’t have a clear

structure, making the processing of these documents, in a computer, an arduous task.

At the other hand structured data, usually associated with relational databases following a rigid

structure which is easily interpreted by a computer [MRS08].

Information Retrieval was an activity in which a few groups, such as librarians and the legal

community were involved, however, with the appearance of the World Wide Web (Web) thousands

of people are involved, daily, in the act of IR when they use a search engine, thus expanding the in-

terest in this area to a wider audience, ceasing to be a practice carried out by specific communities

[MRS08, Lop08].
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Figure 2.1: Example of the stages traversed in IR from the viewpoint of a user

Web pages are considered to be semi-structured, i.e., contains fluid text blocks (unstructured)

in conjunction with certain tags such as <h1> and <cite> which defines titles and quotes, and

links (<a>) which allowed the development of algorithms like PageRank [Fra11]. It is this type

of structure that assisted the growth of the Web Information Retrieval practices, by simplifying the

process of such documents compared to the "unstructured" ones.

The IR process, from the user point of view, follows the steps described in Figure 2.1, as soon

as a user has an information need he provides to an information retrieval system a formulated

question from his necessity, then the system returns to the user the most relevant documents, if

the returned documents do not fully satisfy the need of the user this can rephrase his question and

provide it back to the system. To retrieve the most relevant documents for a user, the IR system

requires various modules to interact with each other. These modules can be divided, in general,

in three operations: indexing, retrieval and ranking. Indexing is responsible for organizing and

storing data to enable quick and easy access for research that, in turn, retrieves indexed information

to satisfy the user’s information needs. Finally we have the ranking which is an optional but very

important task on Web IR, its task is to sort the returned documents, based on heuristics, by their

potential relevance to the user.

2.1.1 Indexing

For a system to be able to perform efficient searches over a collection of documents it needs

a specific structure called index. This index consists of a dictionary of terms (sometimes also

referred to as a vocabulary or lexicon) along with a list that records which documents the term

occurs in. Each item in the list is conventionally called a posting [MRS08].

Statistics are also stored in the dictionary, document frequency (number of documents which

contain each term) which represents the length of each postings list. This information is not vital

but it allows an improvement to the efficiency of the search engine at query time [MRS08]. The

postings are secondarily sorted by the document ID. This provides the basis for efficient query

processing. This index (or inverted index) structure is the most efficient for supporting ad-hoc text

search [MRS08].

During the indexing phase it is possible to perform some pre-processing techniques to reduce

the final size of the index. The techniques most frequently used are the elimination of stop-words

and stemming.
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The stop-words are words that appear frequently in the collection however are not relevant,

such as “a”, “are”, “is” and “the”. The elimination of these words from the index is a good way to

reduce its size.

The collection can have variations of the user query terms such as the plural or one of its con-

jugations. To solve this issue, instead of indexing the word as stated in the document, a stemming

is performed, i.e., the original word affixes are removed [MRS08]. This process will reduce the

number of words in the vocabulary because several words will match a primitive term. We can

consider as an example the word “legal”, which can be obtained through the stemming of words

such as “illegal”, “legally”, “legalization”, among others.

2.1.2 Retrieval

The Boolean model is a classical Information Retrieval model and, at the same time, the first

and most adopted one [MRS08]. This model is based on Boolean logic which considers both the

documents to be searched and the user’s query are as sets of terms. Retrieval is based on whether or

not the documents contain the query terms. This model is one of the most basic, easy to implement

and with an intuitive concept, however, it only records term presence or absence, in most cases

is preferred giving more weight to documents that have a term several times as opposed to ones

that contain it only once. To be able to do this is necessary to use the term frequency information

in the postings lists [MRS08]. The Boolean model retrieves a set of matching documents, but

commonly the user wishes to have the returned results ordered (or “ranked”). This requires having

a mechanism for determining a document score which encapsulates how good a match a document

is for a query, this mechanism is called a weighting model.

TF-IDF (Term Frequency-Inverse Document Frequency) is an common weighting model used

in information retrieval. This model determines the score of a document two key factors: (1) how

frequently a term occurs in a document (TF) and (2) how rarely a term occurs in the document

collection (IDF) [MRS08]. The TF-IDF weighting model assigns to term t a weight in document

d given by:

T F-IDFt,d = T Ft,d× IDFt (2.1)

where T F-IDFt,d assigns to a given t term a weight in document d that is: (1) highest when

t occurs many times within a small number of documents, (2) lower when the term occurs fewer

times in a document, or occurs in many documents and (3) lowest when the term occurs in virtually

all documents [MRS08]. The final score of a document is the sum of all the T F-IDFt,d for every

query term (qti):

Score(d,qt) =
i

∑
qt=0

T F-IDFqti,d (2.2)
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2.1.3 Evaluation

One of the methods to evaluate an IR system is to analyse whether the documents returned for

a particular question are relevant or not. This method compares, for a given question, the set of

documents in the collection with relevant documents returned by the system.

The most basic formulas for assessing the returned documents quality are the precision and

recall. If R is the set of documents that are relevant to a given query q in a collection I and, A is the

set of documents returned by the system, and Ra the returned set of documents that are relevant

to the query q. We can define the precision as the ratio between the relevant returned documents

(Ra) and the set of returned documents (A), and recall as the ratio between the relevant documents

returned (Ra) and the set of documents relevant (R) [MRS08]. (See Equations 2.3 e 2.4)

Precision =
|Ra|
|A|

(2.3)

Recall =
|Ra|
|R|

(2.4)

As these values alone can not be sufficient to evaluate an IR system (a system can have a

recall of 1 if it returns all the documents), is possible to analyse a combination of both through

an precision-recall curve (Figure 2.2). Through these curves it is concluded that the precision

is inverse to the recall, meaning, increasing the a performance of one of them will decrease the

performance of the other.

Figure 2.2: SabIR/Cornell 8A1 11pt precision do TREC 8 (1999) [MRS08]

Another evaluation measurement involves determining the precision of a number of docu-

ments, for example, determine the precision in the first five documents. This method is called

precision at n (P@n) and represents the quality of a reply, since the user typically can only see the

first n documents and not the whole set of returned documents.
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According to Järvelin e Kekäläinen [JK00] one of the most popular measures for evaluat-

ing the IR is the nDCG (Normalized Discounted Cumulative Gain). The nDCG has two advan-

tages over other methods. First, the nDCG is compatible with non-binary relevance assessments.

While the precision only makes the distinction between “relevant” or “not relevant” documents,

the nDCG can consider a document to be partially relevant. Second, the nDCG imposes a discount

function on the rank position of the documents, while the precision uses a uniform value for all

positions. This is a very important feature for the Web, where most attention is given to the top

results on the list of retrieved documents. Like precision, nDCG can be used up to a given number

of documents, nDCG@n.

2.1.4 Test Collection

Test collection are mostly used on IR researches to assess the effectiveness of the system. Because

the use of test collections was greatly accepted by researchers that many conferences and meetings

are devoted purely to their use, including several international conferences which have run since

the early 1990s [San10].

A test collection is usually divided into three components: (1) a collection of documents; each

document is given an unique identifier, a docid; (2) a set of topics (queries); each query is given

an id (qid); and (3) a set of relevance judgements (qrels or query relevance set) composed of a list

of qid/docid pairs, detailing the relevance of documents to a given topic [San10].

Having an appropriate test collection, an IR researcher indexes the document collection and

then submits each the topic (query) into the system resulting in a list of docids known as a run.

Then the content of each run the is compared with the qrels to asses which of the retrieved doc-

uments were given a relevance judgement [San10]. Finally, an evaluation measure, like P@n or

nDCG@n, is used to quantify the effectiveness of that run. (See Figure 2.3)

Test collections allow researchers to locate points of failure in their retrieval system, but more

commonly, these collections are used to assess the effectiveness of multiple retrieval systems

[San10]. Using the same test collection it is possible to compare systems developed by differ-

ent researchers or compare different configurations of the same system [San10].

2.2 Query Expansion in Information Retrieval

Query expansion (or term expansion) is the process of supplementing the original query with

additional terms, and can be considered as a method to improve the retrieval performance. This

method can be applied regardless the used retrieval technique. The initial query, provided by the

user, may be an incomplete representation of the information need, by itself or in relation to the

documents in the collection [Eft96].

The query expansion process can be divided in two stages: (1) initial query formulation and

(2) query reformulation [Eft96]. At the initial query formulation stage, the user writes a query

and submits it to the system. At the query reformulation stage, having some results from the first

stage, the user manually or the, the system automatically, or both, adjust the initial query adding
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Figure 2.3: Use of a Test Collection

more terms with the goal of improving the final outcome [Eft96]. The query expansion can be

performed manually, automatically or interactively (semi-automatic). (as depicted in Figure 2.4)

Figure 2.4: Query Expansion

Manual query expansion involves more than just a straightforward combination of terms. It is

increasingly complicated, dynamic and its success varies considerably depending on the abilities

of the individual searcher. The user has to learn how to use the existing systems and their query

languages to develop ways of information seeking which are adjusted to his information needs

[Eft96]. This requires a vast knowledge of the subject, which in most cases this kind of knowledge
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is the type of knowledge the user intends to find.

In automatic query expansion, the system itself is responsible for expanding the initial query

based on some method that retrieves the new terms from a specific source like a thesauri or a

dictionary [Eft96]. This method does not require a prior knowledge from the user to expand the

query thereby facilitating the search process.

In interactive query expansion (or semi-automatic) there are two parties responsible for de-

termining and selecting terms for the expansion [Eft96]. One is the retrieval system, which acts

in the same manner as the system in the automatic query expansion, retrieving new terms from a

specific source. The other is the user, that chooses the terms to be appended to the query from a

ranked list of terms.

There are two key elements that should be considered when applying the query expansion

process, which are the source that will provide the new terms and which method will be used to

select those terms. One type, called relevance feedback, is based on search results. Documents

that are returned in a previous iteration, and that were considered relevant, become the source of

new terms to be added to the original query. The other type involves using knowledge structures

that are independent of the retrieval process like thesauri, dictionaries and lexicons .

The query expansion process can be applied to any topic, this can be shown in articles submit-

ted to the Text Retrieval Conference (TREC) which includes news [LF15], micro-blogs [YHM14],

support to clinical decision [ZHF15] and many other tracks. TREC began in 1992 as part of the

Tipster Text program [NIS16], with the sponsorship of the US Department of Defense and the

NIST (National Institute of Standards and Technology). The purpose of TREC is to support and

promote research in the field of Information Retrieval, providing the necessary infrastructure for

large scale evaluation of text retrieval methodologies [TRE16b].

Lu and Fang [LF15] used Wikipedia pages to build expansion models that were related to

events in the query. Their main objective is proving that the event related entities, which are the

entities mentioned in the queries, are essential when defining the event. For example the query

“Vauxhall helicopter crash”, without “Vauxhall” or “helicopter”, makes the event less defined and

the results become more generic. They propose that both event type and event related entities

should be considered when expanding a query.

You, Huang and Mu [YHM14] propose query expansion methodologies for microblogs be-

cause they have unique features different from traditional web pages or database documents. This

methodology adjusts the ranking score of a document considering how close the document time

stamp is to the event, using Google as an external data corpus.

2.3 Query Expansion in Health Information Retrieval

The Internet has been recognized as an important source of health related information [Ric06].

For this reason thousands of people have adopted the practice of searching the web for informa-

tion related to their health and the health of their family and friends. Due to the vast amount of

information on the Web this practice is not always efficient. One of the reasons is the difference
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in the knowledge that each user has about health topics. On one hand we have specialists such as

doctors, requiring documents with a more scientific language, on the other hand we have lay users

who need content to be less technical and easier to understand.

Big companies like Google and Microsoft have been investing in the area of Health Informa-

tion Retrieval [Mic16, Bro16], however, not all systems that were developed were able to have the

desired adherence as is the case of Google Health. This system intended to offer users information

about their health and well-being, however, over the years they found out that the system did not

achieve the expected impact and that the adherence of this new service was greatly reduced, for

these reasons Google decided to discontinue Google Health [Bro16].

Adam Bosworth [Bos16] refers three main features that a user should expect from a Health

Information Retrieval system for it to be considered a good health system. The first is the discov-

ery, in which a user should be able to find the most relevant information. Then comes the action,

which gives users access to a personalized service for the best possible support. Finally we have

the community, users must learn from those who are in similar situations in order to make correct

decisions.

Knowledge has an impact on the formulation of the queries and the kind of documents that the

user wants. On average, a user writes between two or three terms in a query, regardless of their

information need [SWJS01]. When searching for health-related information, limited knowledge

of medical vocabulary makes users simplify their queries which in turn makes the system return

more generic documents that are not relevant or don’t meet the user needs. The query expansion

process tries to diminish this by expanding the original query with medical related terms from

sources like the UMLS metathesaurus, MedlinePlus pages or Medical Subject Headings (MeSH).

The development of new approaches for query expansion in the field of medicine, has been the

focus of several articles submitted to Information Retrieval workshops belonging to organizations

like SIGIR or CLEF.

One of the workshops of the Special Interest Group on Information Retrieval conference (SI-

GIR) was about Health Information Retrieval called MedIR [Med16c], this workshop aimed to

bring together researchers interested in medical information research in order to identify obstacles

that need to be addressed to achieve advances in the state of the art and to stimulate partnerships

to address these challenges [GJK+14, GKJ+14].

Even being submitted to the same workshop some articles were focused on very different

themes, such as Koopman and the Zuccon [KZ14b] article that focused on the question “Why

Assessing Relevance in Medical IR is Demanding” and concluded that the assessment of relevance

is, in some cases, related to the ambiguity of the queries made. Deng, Stoehr and Denecke did a

study on the attitudes of users in Information Retrieval in order to assess the decisions of users

based on an analysis of feelings [DSD14].

The initiative of the Conference and Labs of the Evaluation Forum (CLEF) has as its main

task to promote research, innovation and the development of access to information systems with

an emphasis on multilingual and multimodal information [CLE16a]. CLEF is divided into sev-

eral laboratories, each is focused on one subproblem of Information Retrieval. Professionals and
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researchers from any sector can access all the information related to these laboratories.

The CLEF has a workshop dedicated to the area of medicine, CLEF eHealth. The purpose

of the CLEF eHealth is to facilitate and support patients and their families in understanding and

access relevant medical information [CLE16b].

Table 2.1 depicts the most relevant information from articles in the CLEF eHealth 2015 such

as the base methodology, techniques for the query expansion like Pseudo Relevance Feedback

(PRF) or Unified Medical Language System (UMLS), if they used machine learning techniques

like Explicit Semantic Analysis (ESA) or, cluster (CBEEM) or concept-based models (CBDC)

, and the choice of search engines. Of the submitted articles to the CLEF eHealth 2015 who

achieved the best results in P@10 and nDCG@10 were the teams ECNU [SHH+15], KISTI

[OJK15] and CUNI [SBP15], who occupied the first 10 places.

Table 2.1: Approaches used in CLEF eHealth 2015

Article Baseline Query Expansion Machine Learning Search Engine
[Lu15] BM25 PRF No Not defined
[OJK15] Dirichlet Smoothing PRF ESA; CBDC; CBEEM Lucene
[GH15] BM25 PRF No Terrier
[HNH15] Dirichlet Smoothing UMLS; Wikipedia No Lucene
[TAM15] BM25 PRF Learning to Rank Terrier
[SHH+15] TF-IDF Google; MeSH Learning to Rank Terrier
[DGZ15] Bag-of-words UMLS; Wikipedia No Lucene
[KTBG15] VSM PRF No Terrier
[LN15] Dirichlet Smoothing UMLS; Wikipedia No Indri
[SBP15] Dirichlet Smoothing UMLS; PRF No Terrier

The ECNU team [SHH+15] explored query expansion and machine learning. For the query

expansion they used the titles of the first ten results of Google to add to the original query. Then

the medical terms were extracted with the aid of MeSH. For machine learning the ECNU team

used the method Learning to Rank combining the results and ranks obtained from BM25, PL2 and

BB2 weighting models.

Team KISTI [OJK15] used Lucene to index the collection and used the Dirichlet Smoothing as

the weighting model. This group focused on the re-ranking of documents exploring three method-

ologies: explicit semantic analysis (ESA), concept-based document centrality (CBDC) and, based

cluster external expansion model (CBEEM).

The team CUNI [SBP15] used Terrier to index the collection and three different weighting

models: Bayesian smoothing with Dirichlet prior, Per-field normalization (PL2F) and Loss Given

Default (LGD). The query expansion used the UMLS thesaurus as a source of terms obtaining

synonyms of the terms used in the original query.
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2.4 Readability in Health Information Retrieval

Although relevance is known to be a multidimensional concept, traditional retrieval measures

only consider one dimension of relevance: topicality [Zuc16]. Topicality is a measure that can

determine if a document is relevant for a given information need. However, if a user has difficulties

reading this document he won’t understand it, causing it to not provide relevant information, thus

becoming irrelevant.

When determining the relevance of health-related documents, readability should be involved

in its definition [ZK14]. The field of medicine is filled with complex and specific terms that lay

people have difficulty in understanding. If only topicality is considered to measure the document

relevance users might not be able to understand a vast number of them.

Low health literacy has consequences on patients taking medicines improperly, missing ap-

pointments, and failing to grasp expectations due to misunderstood or complex instructions [B04].

Health documents present additional difficulties because they usually employ medico-scientific

terminology.

Wiener and Wiener-Pla [WWP14] have investigated the readability (measured by the SMOG

reading index) of Web pages concerning pregnancy and the periodontium as retrieved by Google,

Bing and Yahoo!. The research hypothesis was that web articles written below the 8th grade level

do not provide adequate health information concerning periodontal changes, consequences, and

control during pregnancy as compared with those written at or above the 8th grade level. They

proved that articles written below the 8th grade level were more likely to recommend brushing

twice a day and using a soft-bristled brush and, articles at or above the 8th grade level were more

likely to discuss preterm birth and periodontal disease.

Walsh and Volsko [WV08] have shown that most online information sampled from five US

consumer health organizations and related to the top 5 medical related causes of death in US

are presented at a readability level (measured by the SMOG, FOG and Flesch-Kincaid reading

indexes [MP82]) that exceeds that of the average US citizen (7th grade level). Their findings sup-

port that Web-based medical information intended for consumer use is written above the United

States Department of Health and Human Services (USDHHS) recommended reading levels and

that compliance with these recommendations may increase the likelihood of consumer compre-

hension.

Considering this, Zuccon and Koopman [ZK14] propose two understandability-based variants

of rank biased precision, characterized by an estimation of understandability based on document

readability and by different models of how readability influences user understanding of document

content. Their findings suggest that considering understandability along with topicality in the

evaluation of information retrieval systems leads to different claims about systems effectiveness

than considering topicality alone.
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2.4.1 Readability Metrics

Readability metrics measure the difficulty of understanding a passage of text. Some of these

metrics are based on features such as number of syllables and the number of words in a sentence.

These features ignore concept difficulty and are based on assumptions about writing style that may

not hold in all environments.

There are many readability metrics. SMOG, FOG and Flesch-Kincaid are three of the most

widely used readability metrics [MP82]. They all estimate the educational grade level necessary

to understand a document [SC01].

SMOG Readability Formula estimates the years of education a person needs to understand

a piece of writing. McLaughlin created this formula as an improvement over other readability

formulas [Lau69] and defined it as:

SMOG = 3+
√

Number O f Polysyllable Words In 30 Sentences (2.5)

If the document is longer than 30 sentences, the first 10 sentences, the middle 10 sentences,

and the last 10 sentences are used. If the document has fewer than 30 sentences only the number

of polysyllabic words are counted and conversion table is used to calculate the grade level (See

Table 2.2). The SMOG measure tends to give higher values than other readability metric [Lau69].

Table 2.2: SMOG Conversion Table.

Polysyllabic Word Count Readability Score
1 - 6 5
7 - 12 6
13 - 20 7
21 - 30 8
31 - 42 9
43 - 56 10
57 - 72 11
73 - 90 12
91 - 110 13

111 - 132 14
133 - 156 15
157 - 182 16
183 - 210 17

>210 18

The Gunning Fog Index Readability Formula, or simply called FOG Index, is attributed to

American textbook publisher, Robert Gunning. Gunning observed that most high school graduates

were unable to read. Much of this reading problem was a writing problem. His opinion was that

newspapers and business documents were full of “fog” and unnecessary complexity. In 1952,

Gunning created an easy-to-use Fog Index defined as:

FOG = 0.4 (ASL+PHW ) (2.6)
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where ASL is the Average Sentence Length (number of words divided by the number of sen-

tences) and PHW is the Percentage of Hard Words (words of three or more syllables).

The Flesch-Kincaid readability metric was developed under contract to the U.S. Navy in 1975

by Rudolph Flesch and John Peter Kincaid. This Flesch-Kincaid formula was first used by the

U.S. Army for assessing the difficulty of technical manuals in 1978 and soon after became the

Department of Defense military standard. This formula is used to assess several legal documents

in the U.S. The state of Pennsylvania was the first to use this to assess automobile insurance

policies, that were required to be lower than a ninth-grade level of reading difficulty [Med16a].

The Flesch-Kincaid formula is defined as:

FK = (0.39∗ASL)+(11.8∗ASW )−15.59 (2.7)

where ASL is the Average Sentence Length (the number of words divided by the number of

sentences) and the ASW is the Average number of Syllable per Word (the number of syllables

divided by the number of words).
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Methods

In this chapter we present all the methods that will be used in the different approaches. Starting

with the baseline which indicates the weighting model that will be used to rank the retrieved

documents to a given query. Continuing with the test collections that will be a source of documents

and queries to be used in the indexing and retrieval phase. We also identify the chosen retrieval

system and the reasons for this decision. In the indexing stage one of the collections needed to

be restructured to be processed by the retrieval system. For all the approaches we re-rank the

runs based on the documents readability using three different formulas to combine relevance and

readability. Finally, we indicate which evaluation measures are used to evaluate the efficiency of

the system.

3.1 Baseline

The baseline is an measurement of the process functionality before any change occurs. The base-

line in Information Retrieval is a weighing model that counts as a run and it is applied in every

approach. This allows a comparison between the baseline and one of the approaches to verify if

an improvement was accomplished.

We used BM25 term weighting model to score and rank documents according to their rele-

vance to a given query. It is based on the probabilistic retrieval framework developed in the 1970s

and 1980s by Stephen E. Robertson, Karen Sparck Jones, and others [RJ76].

For a given query Q, the relevance score of a document D based on the BM25 term weighting

model is expressed as:

score(D,Q) =
n

∑
i=1

IDF(qi)
T F(qi,D).(k1+1)

T F(qi,D)+ k1.(1−b+b. |D|avgdl )
(3.1)

where TF is the number of occurrences of a given term qi in the document D. |D| the size of

the document in words, avgdl the average size of a document. k1 an b are free parameters, usually

chosen, in absence of an advanced optimization, as [MRS08]:
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k1 ∈ [1.2;2.0] b = 0.75 (3.2)

3.2 Test Collections

For the purpose of assessing the effectiveness of the approaches we used two distinct collections.

These collections were provided by the CLEF eHealth Lab from 2015 and 2016.

3.2.1 CLEF eHealth 2015

3.2.1.1 Documents

The CLEF eHealth 2015 collection is provided by the Khresmoi project [HM12] which obtained

about one million documents through a web crawler. Web pages certified by the HON Foundation

and adhering to the HONcode principles were the primary source for the crawled domains, as

well as other commonly used health and medicine sites such as Drugbank, Diagnosia and Trip

Answers [PZG+15]. These web pages have a broad range of health topics and are likely to

target both laypeople and professionals. This collection as a size of 6.3GB when compressed and

approximately 50GB when extracted.

The documents in the collection were stored in .dat files with the following format (see Figure

3.1):

• #UID: Unique identifier for a document in the collection;

• #DATE: Date the document was obtained;

• #URL: URL for the source of the document;

• #CONTENT: Document Content.

3.2.1.2 Queries

To build the CLEF eHealth 2015 queries several volunteers were asked to generate queries after

reviewing images and videos related to medical symptoms [PZG+15] (Figure 3.2).

This process tried to simulate a situation of when a health consumer has an information need

regarding symptoms or conditions they may be affected by. This methodology for eliciting self-

diagnosis queries was shown to be effective by Stanton [SIM14]. Each volunteer gave 3 queries

for each condition they saw, generating a total of 266 queries. Then, for each condition, the CLEF

organization randomly selected 3 queries, giving the 67 queries that will be used (Figure 3.3).
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Figure 3.1: Example of a Document from CLEF eHealth 2015

Figure 3.2: Example of an image provided to volunteers for generating potential search queries
[PZG+15].

Figure 3.3: Query Examples from CLEF eHealth 2015.
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3.2.1.3 Relevance and Readability Assessments

Five medical students from Medizinische Universitat Graz (Austria) were employed to perform the

relevance and readability assessments of the documents [PZG+15] using Relevation! [KZ14a].

To give a correct relevance assessment the students had access to the query the document was

retrieved for and the target symptom or condition that generate that query [PZG+15]. Relevance

assessments were provided on a three point scale: 0, “Not Relevant”; 1, “Somewhat Relevant”; 2,

“Highly Relevant” [PZG+15].

To evaluate the documents readability each assessor was asked if he believed a patient would

understand it [PZG+15]. Assessments were provided on a four point scale: 0, “It is very technical

and difficult to read and understand”; 1, “It is somewhat technical and difficult to read and under-

stand”; 2, “It is somewhat easy to read and understand”; 3, “It is very easy to read and understand”

[PZG+15].

3.2.2 CLEF eHealth 2016

3.2.2.1 Documents

The collection for CLEF eHealth 2016 is the ClueWeb12 B13 Dataset [Pro16]. This collection

was generated by taking the 10 million ClueWeb09 URLs that had the highest PageRank scores,

and then removing any page that was not in the top 90% of pages least likely to be spam, according

to the Waterloo spam scores. These URLs were used as a starting point for a crawl which excluded

any page that appeared in the blacklist provided by a URL blacklist service [URL16]. As Table

3.1 shows, the size of the document collection increased tremendously from 2015 to 2016.

Table 3.1: Comparison between datasets from 2015 and 2016.

Size Number of documents
CLEF eHealth 2015 43.6GB 1,583,273
CLEF eHealth 2016 1,950GB 52,343,021

3.2.2.2 Queries

Queries from CLEF eHealth 2016 explore real health consumer posts from health web forums

[CLE16b]. They were extracted from posts on the askDocs forum of Reddit, and presented to

query generators. Query generators had to create queries based on what they read in the initial

user post, making several variations for the same condition. These queries were assigned a unique

six digit id, in which the first three numbers represent the post the original post, and the last three

identify the variation of the query as showed on Figure 3.4. The Linux program aspell was used

to correct some misspellings on the English queries.
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Figure 3.4: Query Examples from CLEF eHealth 2016.

3.2.2.3 Relevance and Readability Assessments

At the time of writing this document the relevance and readability assessments for this test collec-

tion are not available.

3.3 Retrieval System Selection

The choice of the search engine was made taking into account its popularity in research studies

in the IR area and taking into account the assessment made by Christian Middleton and Ricardo

Baeza-Yates [MBY07]. The most popular search engines in Information Retrieval researches are

Lucene [Luc16] and Terrier [Ter16] .

The initial evaluation of Middleton and Baeza-Yates undergoes checking the last time that the

search engines was updated [MBY07]. Lucene and Terrier have both been recently updated so the

choice will depend on their performance.

As a first performance test Middleton and Baeza-Yates used 3 collections with 750MB, 1.6GB

and 2.7GB to determine the indexing time by the search engines [MBY07]. In this test, Terrier

had better results with the three collections, approximately 30% lower than Lucene (See Figure

3.5).

The size of the index created by the search engines was another point of evaluation by Middle-

ton and Baeza-Yates [MBY07]. In this case it was Lucene that got the best results with an average

of 25% of the size of the collection, while the Terrier got an average of 50% (See Table 3.2).

Table 3.2: Comparison of Lucene and Terrier index sizes [MBY07].

700MB 1.6GB 2.7GB
Lucene 25% 23% 26%
Terrier 51% 47% 52%

During the evaluation of the index sizes it was found that several search engines, including

Lucene, had a scaling problem. While Terrier had an expected indexing time when indexing

collections with 10GB, Lucene took more than 7 times its expected indexing time [MBY07] (See

Figure 3.6).
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Figure 3.5: Lucene and Terrier indexing time on three different collections [MBY07].

Figure 3.6: Terrier indexing time on larger collections [MBY07].
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Knowing that the 2015 and 2016 document collections have approximately 50GB and 2000GB,

respectively, Lucene ceases to be a viable candidate leaving Terrier as the best option. Further-

more, for the 2016 collection the organization of the CLEF eHealth Lab chose only to use Terrier

and Indri.

3.4 Indexing Process

After choosing a search engine, it is necessary to index the document collection. Terrier doesn’t

have a parser for the document format in the CLEF collection so we decided to convert the doc-

uments to the TREC format (Figure 3.7) which is the default parser of Terrier. This was only

made in the 2015 document collection because, in the 2016 collection the organization of the

CLEF eHealth Lab provided an index on Terrier and Indri to all the participants through a virtual

machine on the Azure platform.

Figure 3.7: TREC document format.

Knowing that the documents in the collection are web pages, we assumed that extracting

the text from the pages would improve indexing performance, because it would remove a great

quantity of irrelevant content, like, HTML tags and scripts. To do this we used the Jsoup library.

Jsoup is a Java library for working with HTML. It provides a very convenient API for extracting

and manipulating data, using DOM, CSS, and jquery-like methods [Hed16].

After extracting the text from the web pages, the collection went from 50GB to 8GB and had

an indexing time of around 30 minutes.

3.5 Re-Ranking

A re-rank method was developed to combine the readability metrics (SMOG, FOG and Flesch-

Kincaid) with the relevance scores from Terrier. Three different formulas were used to combine

these values. In formula 3.4 MR is the maximum readability to be considered, i.e., any document

that has a readability score higher than MR will be considered as too hard for anyone to understand.

The last formula was proposed by Zuccon and Koopman [ZK14], where a user is characterized by

a readability threshold (th) and every document that has a readability score below th is considered

readable, while documents with readability above th are considered unreadable. Figure 3.8 shows

a graphic representation of the Formulas 3.3, 3.4 and 3.5.

Score = Relevance/Readability (3.3)
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Score = Relevance∗ log(
MR

Readability
) (3.4)

Score = Relevance∗ (1
2
− arctan(Readability− th)

π
) (3.5)

Figure 3.8: Graphic representation of the formulas used to combine relevance and readability.

In this method we re-rank each run with one of the readability metrics and one of the above

combination formulas (3.3, 3.4 and 3.5), which generates a total of 9 different variants for each

run.

3.5.1 Document Analysis

The CLEF eHealth 2015 and 2016 collections were analysed regarding their readability. For the

2015 collection, the analysis was made for all the documents. However, for the 2016 collection,

due to its size and files compression, it was only possible to analyse a fraction of its documents

within an reasonable time, that is, the first ten of each query for every approach.

Table 3.3: Number of documents analysed on the datasets from 2015 and 2016.

Number of documents analysed
CLEF eHealth 2015 1,583,273
CLEF eHealth 2016 10,772

The documents from both collections are web pages, so we used the Jsoup library to extract

the text from those pages to calculate the readability scores.

Because the text is extracted from the page without considering its location, it will, in most

cases, decrease the number of sentences which, consequently, increases the readability score, e.g.

a page with tables. The content within the tables is not punctuated so when it’s extracted by the

Jsoup it will be appended to another sentence increasing its size and number of polysyllabic words.

The used readability metrics consider that a document is easily understood when it has a

grade between 7th and 9th and anything above 12th grade is too hard for most people to read

[Lau69, Med16a].

In the analysis, we considered readability scores between 5 and 20 because, after reviewing the

results, we found that these values allowed a better understanding of the documents distribution.

As shown in the Figures 3.9 and 3.10 most of the documents have a readability score higher

than 12th grade. This demonstrates that a user will have difficulties when searching for health
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related information. The readability analysis of the 2016 collection is a good way to show this

difficulty because it was only done to the first ten documents, i.e. the first documents that a user

will read.

With this analysis we defined MR in formula 3.4 as 20 and the threshold (th) in formula 3.5 as

12.

Figure 3.9: Readability Analysis for the 2015 collection

Figure 3.10: Readability Analysis for the 2016 collection

3.6 Evaluation

System evaluation was conducted using two relevance measures: (1) precision at 10 (P@10) and

(2) normalized discounted cumulative gain at 10 (nDCG@10). Precision was computed using

binary relevance assessments (relevant or not) and nDCG was computed using the graded assess-

ments. These evaluation metrics were computed using trec eval [TRE16a].

Following the methods of Zuccon and Koopman article [ZK14] an evaluation using relevance

and readability assessments was made. This evaluation was made using a readability-biased mod-

ification of the Rank Biased Precision (RBP) formula, uRBP and its graded version uRBPgr.

RBP is designed with the idea that a user will start at the top of the retrieved document list and

he will proceed to the next document with a probability p, or finish the search with probability

1− p [MZ08]. When the user reviews a relevant document the RBP score increases, therefore

RBP is computed as the sum of the probability of examining each relevant document:

RBP(p) = (1− p)
∞

∑
i=1

ri ∗ pi−1 (3.6)
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where ri ∈ [0,1] is the relevance judgement of the ith ranked document, and the (1− p) factor

is used to scale the RBP within the range [0, 1]. The probability of a user examining the next

document reflects the persistence of the user [MZ08].

The RBP parameter p (RBP persistence parameter) was set to 0.8 for all variations of this

measure, following the findings of Park and Zhang [PZ07].

The readability-biased evaluation were performed using the ubire tool [Lab16].
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Approaches

In this section we present several approaches to identify which terms will be added to the query.

Starting with Pseudo Relevance Feedback that uses the documents in the test collection as a

source of terms. Continuing with the Medical Text Indexer (MTI) that identifies medical concepts

on the original query and appends them to it. Wikipedia is used in several approaches using

the articles contents or the titles of similar articles as a source of terms for the query expansion.

Wikipedia articles are also used to find references to medical web pages like MedlinePlus and

ICD-10. Finally the UMLS Metathesaurus definitions of the MTI concepts are used as a source of

terms.

It is important to mention that every approach excludes stop words.

Figure 4.1 shows a graphic representation of all the approaches with each path being a different

approach.

Figure 4.1: Query expansion approaches.
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After an initial evaluation of the results it was discovered that most of the top documents in the

different runs didn’t have a relevance judgement. This means the documents would be considered

non-relevant. This wouldn’t be an issue if the documents were indeed non-relevant but, after

manually opening and reading those documents, we confirmed that they were relevant and, for

this reason, they needed to be considered as such in the relevance judgements. Unfortunately

evaluating each document for all the queries would take too long, not to mention that we didn’t had

the proper knowledge to make a correct evaluation. So it was decided that, in the retrieval phase

that uses the 2015 document collection, only documents with an relevance judgement would be

valid. For the 2016 collection, because the index was provided in a virtual machine, we couldn’t

make any changes to the set of documents used in the retrieval phase.

In this section each approach will be followed by the results obtained in the evaluation phase.

These results will be shown in two tables: one with the results from the query expansion alone

and the other of the query expansion and readability re-rank. Because each query expansion run

has nine different re-rank runs we decided to aggregate all the re-rank results into one table. To

do this we chose only two evaluation measures to evaluate relevance and readablity: P@10 and

uRBP. The complete tables for the re-rank runs are displayed in the Appendix A.

For simplification purposes the Formulas 3.3, 3.4 and 3.5 will be called Basic, Log and Arctan

formulas.

4.1 Pseudo Relevance Feedback

Pseudo relevance feedback is a method of query expansion that uses the document collection in

which it runs as the source for its terms [Eft96]. In this method the top documents returned by

the baseline are used to modify the query by re-weighting the existing query terms and by adding

terms that appear useful and by deleting terms that do not [Eft96].

Terrier provides two different models to apply the pseudo relevance feedback method: the

Bose-Einstein and the Kullback-Leibler Divergence. The Bose-Einstein model calculates the

weight of terms, as following [AVR02]:

w(t) = t fx.log2(
1+Pn(t)

Pn(t)
)+ log2(1+Pn(t)) (4.1)

Pn(t) =
t fc

N
(4.2)

where t fx is the frequency of the query term t in the top-ranked documents, t fc is the fre-

quency of term t in the collection, and N is the number of documents in the collection [Lu15].

The Kullback-Leibler Divergence computes the divergence between the probability distribution of

terms in the whole collection and in the top ranked documents obtained using the original query

[IS10]. The most likely terms to be appended are those in the top ranked documents with a low

document frequency. For the term t this score is:
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KLD(t) = [Pr(t)−Pc(t)].log
f (t)
NR

Pc(t)
(4.3)

where Pr(t) is the probability of t estimated from the top retrieved documents relative to a

query (R). Pc(t) is the probability of t estimated using the whole collection [Lu15].

For this approach two runs were created to identify which one of these models provides better

results. We used the Terrier default values for the top-ranked documents (3) and terms (10) used

for the query expansion.

4.1.1 Results

The Pseudo Relevance Feedback approach shows that even with an automatic query expansion

process it is possible to improve over a simple retrieval. The results of both its runs (Table 4.1)

do not differentiate by a significant amount suggesting that either one can be considered when

applying an automatic query expansion process to a system. None of the re-rank runs (Table 4.2)

outperformed the results of the baseline in both relevance and readability.

Table 4.1: Pseudo Relevance Feedback results for CLEF eHealth 2015 collection.

Run P@10 nDCG@10 uRBP uRBPgr
Baseline 0.3455 0.3027 0.3148 0.3033
Bose-Einstein 0.3545 0.3008 0.3212 0.3110
Kullback-Leibler 0.3576 0.3021 0.3202 0.3100

Table 4.2: Pseudo Relevance Feedback Re-Rank results for CLEF eHealth 2015 collection.

SMOG FOG Flesch-Kincaid
Run P@10 uRBP P@10 uRBP P@10 uRBP
Baseline 0.3455 0.3148 0.3455 0.3148 0.3455 0.3148

Basic Formula (3.3)
Bose-Einstein 0.3197 0.2779 0.3167 0.2809 0.3076 0.2704
Kullback-Leibler 0.3167 0.2712 0.3121 0.2800 0.3030 0.2647

Log Formula (3.4)
Bose-Einstein 0.3045 0.2560 0.2970 0.2532 0.2939 0.2638
Kullback-Leibler 0.3000 0.2541 0.2864 0.2527 0.2894 0.2648

Arctan Formula (3.5)
Bose-Einstein 0.3227 0.2817 0.2848 0.2565 0.3455 0.3128
Kullback-Leibler 0.3318 0.2853 0.2773 0.2598 0.3439 0.3134

4.2 Query expansion using the Medical Text Indexer

The National Library of Medicine (NLM) Medical Text Indexer (MTI) combines human expertise

and Natural Language Processing technology to curate the biomedical literature more efficiently

and consistently. Since 2002, MTI has been the main product of the Indexing Initiative project

providing indexing recommendations based on the Medical Subject Headings (MeSH) [JGM13].

Every week MTI recommends approximately 4,000 new citations for indexing and processes a
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file of approximately 7,000 old and new records for both Cataloging and the History of Medicine

Division (HMD) [JGM13]. Between 2002 and 2012, MTI was used to provide fully-automated

indexing for NLM’s Gateway abstract collection, which was not manually indexed [JGM13]. The

designation of First-Line Indexer (MTIFL) was given to MTI in 2011 because of its success with

several publications [JGM13].

Queries were processed by MTI which linked the text from the query to the MeSH vocabulary

resulting in additional related concepts. The identified concepts are likely to be important for the

retrieval process. However the MTI results are machine generated what, depending on the query,

could result in irrelevant concepts.

In this approach, we appended all the concepts identified by the MTI to the original query.

4.2.1 Results

The results for the MTI approach (Table 4.3) achieved a significant improvement in relevance and

readability compared with the baseline. Identifying medical concepts related to the query proved

to be one of the best ways to improve the system performance. On the re-ranks runs (Table 4.4),

few of them improved over the baseline. Even so, none of them got results higher than the ones

using only the query expansion.

Table 4.3: MTI results for CLEF eHealth 2015 collection.

Run P@10 nDCG@10 uRBP uRBPgr
Baseline 0.3455 0.3027 0.3148 0.3033
MTI 0.4061 0.3530 0.3381 0.3276

Table 4.4: MTI Re-Rank results for CLEF eHealth 2015 collection.

SMOG FOG Flesch-Kincaid
Run P@10 uRBP P@10 uRBP P@10 uRBP
Baseline 0.3455 0.3148 0.3455 0.3148 0.3455 0.3148

Basic Formula (3.3) MTI 0.3470 0.3087 0.3227 0.2953 0.3167 0.2768
Log Formula (3.4) MTI 0.3227 0.2889 0.2985 0.2684 0.3136 0.2814
Arctan Formula (3.5) MTI 0.3379 0.3050 0.2909 0.2697 0.3515 0.3288

4.3 Query expansion using the Wikipedia

Wikipedia is a free encyclopedia, written collaboratively by the people who use it. Many people

are constantly improving Wikipedia, making thousands of changes per hour [Wik16b]. This makes

Wikipedia an enormous source of information likely to contain medical terms in lay language. As

shown in the work of Laurent and Vickers [LV09], the English Wikipedia is a prominent source

of online health information when compared to other online health information providers like

MedlinePlus.
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Using the Wikipedia as a base, we defined two methods to get terms for the query expansion

process. One of the methods extracts the most frequent terms from Wikipedia articles. The other

uses Wikipedia as a directed graph to identify similar articles and then extracts terms from the

titles of these articles.

4.3.1 Term Frequency

The MediaWiki action API is a web service that provides a convenient access to wiki features,

data, and meta-data over HTTP, via a URL [Med16b]. This API was used to find the articles that

best match the concepts obtained through the MTI.

An analysis of the obtained Wikipedia pages allowed us to identify some that were not health-

related. To minimize this, we decided to exclude the pages not containing an infobox similar to

the one presented in Figure 4.2 [Wik16a] which contains information about the category of the

page (e.g. anatomy, disease, drug).

Figure 4.2: Wikipedia Asthma Infobox.

This approach had several variants. We chose the 5, 10 and 15 most frequent terms of each

article. In addition we considered (1) all articles found with the MTI concepts and (2) only the

articles considered health-related using the strategy defined above.

4.3.1.1 Results

In the Wikipedia Term Frequency approach (Table 4.5) increasing the number of the most frequent

terms used didn’t improve its efficiency. However, when only using health-related Wikipedia

articles the scores of relevance and readability improved over the runs where all articles were

considered. Most of the re-rank runs (Table 4.6) that improved the relevance scores were the

ones that only used health-related articles. Only the combination of the Arctan formula and the

Flesch-Kincaid metric brought readability improvements over the baseline.
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Table 4.5: Wikipedia Term-Frequency results for CLEF eHealth 2015 collection.

Run P@10 nDCG@10 uRBP uRBPgr
Baseline 0.3455 0.3027 0.3148 0.3033
Wiki TF 5 0.3636 0.3165 0.2761 0.2823
Wiki TF 10 0.3515 0.3142 0.2614 0.2726
Wiki TF 15 0.3545 0.3068 0.2410 0.2606
Wiki TF 5 Health 0.3864 0.3388 0.3189 0.3190
Wiki TF 10 Health 0.3894 0.3455 0.3077 0.3122
Wiki TF 15 Health 0.3848 0.3370 0.2966 0.3061

Table 4.6: Wikipedia Term-Frequency Re-Rank results for CLEF eHealth 2015 collection.

SMOG FOG Flesch-Kincaid
Run P@10 uRBP P@10 uRBP P@10 uRBP
Baseline 0.3455 0.3148 0.3455 0.3148 0.3455 0.3148

Basic Formula (3.3)

Wiki TF 5 0.3379 0.2715 0.3136 0.2709 0.3061 0.2548
Wiki TF 10 0.3242 0.2596 0.3106 0.2583 0.3136 0.2505
Wiki TF 15 0.3364 0.2585 0.3333 0.2551 0.3182 0.2487
Wiki TF 5 Health 0.3591 0.3048 0.3500 0.3055 0.3152 0.2790
Wiki TF 10 Health 0.3652 0.3077 0.3576 0.3019 0.3394 0.2861
Wiki TF 15 Health 0.3667 0.2957 0.3591 0.2942 0.3364 0.2770

Log Formula (3.4)

Wiki TF 5 0.3227 0.2646 0.3106 0.2619 0.3091 0.2660
Wiki TF 10 0.3227 0.2666 0.3182 0.2690 0.3152 0.2650
Wiki TF 15 0.3364 0.2693 0.3318 0.2710 0.3182 0.2599
Wiki TF 5 Health 0.3455 0.2971 0.3152 0.2767 0.3167 0.2849
Wiki TF 10 Health 0.3515 0.3024 0.3197 0.2828 0.3167 0.2866
Wiki TF 15 Health 0.3470 0.2952 0.3227 0.2772 0.3212 0.2805

Arctan Formula (3.5)

Wiki TF 5 0.3455 0.2855 0.2864 0.2630 0.3379 0.3024
Wiki TF 10 0.3455 0.2713 0.3000 0.2572 0.3455 0.2982
Wiki TF 15 0.3530 0.2763 0.3045 0.2657 0.3515 0.2941
Wiki TF 5 Health 0.3530 0.2965 0.2970 0.2724 0.3621 0.3293
Wiki TF 10 Health 0.3515 0.2970 0.2970 0.2715 0.3576 0.3239
Wiki TF 15 Health 0.3485 0.2935 0.3000 0.2692 0.3515 0.3176
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4.3.2 Link Analysis

As shown in the work of Almasari [MA], Wikipedia is a hypertext network in which each article

can refer to other Wikipedia article using hyperlinks. Considering only internal links, which are

links that target an other Wikipedia article it is possible to represent Wikipedia articles as a directed

graph G(A;L) of articles A connected by links L. L is the set of all the Incoming and Outgoing

Links from the article A.

Each concept from MTI was used to search for an Wikipedia article which served as a starting

point. Using the Wikipedia directed graph it is possible to retrieve the articles which referred and

are referred by the first article. This method returns thousands of articles that aren’t relevant to the

expansion process because even if they’re referred by the first article they might not be in the same

category. To solve this issue we used the Jaccard similarity coefficient. This coefficient measures

similarity between finite sample sets, and is defined as the size of the intersection divided by the

size of the union of the sample sets [Ley08]. The Incoming (I) and Outgoing (O) Links from two

articles were used as the sets for the Jaccard coefficient.

J(I,O) =
|I
⋂

O|
|I
⋃

O|
(4.4)

I = Iarticle1
⋃

Iarticle2 (4.5)

O = Oarticle1
⋃

Oarticle2 (4.6)

Iarticle1, Iarticle2, Oarticle1 and Oarticle2 are the Incoming and Outgoing Links from both the

starting article and the article being compared (See Figure 4.3). This allows the Jaccard coefficient

to calculate the similarity between these two articles.

Figure 4.3: Example for the Link Analysis Approach.

We used the Java Wikipedia Library (JWPL) to compute this coefficient. The JWPL is a
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free, Java-based application programming interface that allows access to all the information in

Wikipedia [ZMG08, DKP16]. This library uses a Wikipedia dump from March 2016.

In this approach we added to the original query all the titles of articles that had a Jaccard

similarity coefficient greater than 0.25, 0.50 and 0.75. We considered one alternative using all

articles found with the MTI concepts and another using only the articles that were considered

health-related using the strategy defined above.

4.3.2.1 Results

In the Wikipedia Link Analysis approach (Table 4.7) the higher the Jaccard similarity coefficient

the lower the relevance scores are. This approach is similar to the Term Frequency one, where

using only health-related Wikipedia articles improved the relevance and readability scores. Most

of the re-rank runs (Table 4.8) that improved the relevance scores were the ones that only used

health-related articles. Only the combination of the Arctan formula and the Flesch-Kincaid metric

brought readability improvements over the baseline.

Table 4.7: Wikipedia Link Analysis results for CLEF eHealth 2015 collection.

Run P@10 nDCG@10 uRBP uRBPgr
Baseline 0.3455 0.3027 0.3148 0.3033
Wiki Link 0.25 0.3788 0.3298 0.2743 0.2820
Wiki Link 0.50 0.3621 0.3138 0.2711 0.2761
Wiki Link 0.75 0.3500 0.3049 0.2768 0.2772
Wiki Link 0.25 Health 0.3848 0.3466 0.3061 0.3044
Wiki Link 0.50 Health 0.3788 0.3382 0.3128 0.3093
Wiki Link 0.75 Health 0.3727 0.3196 0.3128 0.3046
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Table 4.8: Wikipedia Link Analysis Re-Rank results for CLEF eHealth 2015 collection.

SMOG FOG Flesch-Kincaid
Run P@10 uRBP P@10 uRBP P@10 uRBP
Baseline 0.3455 0.3148 0.3455 0.3148 0.3455 0.3148

Basic Formula (3.3)

Wiki Link 0.25 0.3348 0.2575 0.3273 0.2594 0.3121 0.2460
Wiki Link 0.50 0.3076 0.2545 0.3030 0.2534 0.2894 0.2417
Wiki Link 0.75 0.3076 0.2500 0.3045 0.2541 0.2939 0.2402
Wiki Link 0.25 Health 0.3652 0.2903 0.3530 0.3041 0.3409 0.2916
Wiki Link 0.50 Health 0.3636 0.2985 0.3621 0.3104 0.3348 0.2923
Wiki Link 0.75 Health 0.3500 0.2915 0.3515 0.3070 0.3227 0.2822

Log Formula (3.4)

Wiki Link 0.25 0.3242 0.2628 0.3061 0.2565 0.3152 0.2584
Wiki Link 0.50 0.3076 0.2560 0.2909 0.2507 0.2909 0.2526
Wiki Link 0.75 0.3076 0.2533 0.3000 0.2518 0.3061 0.2519
Wiki Link 0.25 Health 0.3455 0.2863 0.3227 0.2848 0.3394 0.2943
Wiki Link 0.50 Health 0.3485 0.2961 0.3273 0.2860 0.3364 0.2958
Wiki Link 0.75 Health 0.3364 0.2820 0.3303 0.2833 0.3242 0.2885

Arctan Formula (3.5)

Wiki Link 0.25 0.3333 0.2820 0.2939 0.2632 0.3621 0.3116
Wiki Link 0.50 0.3182 0.2773 0.2818 0.2532 0.3333 0.3048
Wiki Link 0.75 0.3136 0.2675 0.2864 0.2442 0.3288 0.2967
Wiki Link 0.25 Health 0.3333 0.2811 0.3015 0.2771 0.3591 0.3314
Wiki Link 0.50 Health 0.3455 0.2984 0.3091 0.2800 0.3576 0.3289
Wiki Link 0.75 Health 0.3409 0.2904 0.3091 0.2690 0.3545 0.3261

4.4 Query expansion using MedlinePlus

MedlinePlus is the National Institutes of Health Web site for patients, their families and friends.

Produced by the National Library of Medicine, the world’s largest medical library, it brings infor-

mation about diseases, conditions, and wellness issues in lay language [Med16d].

Using the information on the infobox (Figure 4.2), obtained through the search of the MTI

concepts on the Wikipedia, it is possible to access the corresponding MedlinePlus page. Medline-

Plus pages are generally splitted in different sections with relevant information about the searched

concept. The sections that were considered most relevant for the query expansion process were

the Causes, Symptoms, Treatment, Possible Complications and Alternative Names sections.

We tested several variants of this method. We chose the top 5, 10 and 15 most frequent terms

on each of the above mentioned sections including all the terms in the Alternative Names section.

We also made a run with only the terms from the Alternative Names section.

4.4.1 Results

Using the different sections in a MedlinePlus page as a source of terms proved to be effective in

improving the relevance scores (Table 4.9). However, using only the terms from the Alternative

Names section didn’t improve relevance as much, but it had the best readability score. Most of the

re-rank runs (Table 4.10) didn’t improve over the baseline. The best relevance score was obtained
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through the Basic formula using the SMOG metric, and the best readability score was obtained

through the Arctan formula using the Flesch-Kincaid metric.

Table 4.9: MedlinePlus results for CLEF eHealth 2015 collection.

Run P@10 nDCG@10 uRBP uRBPgr
Baseline 0.3455 0.3027 0.3148 0.3033
Medline AltNames 0.3621 0.3138 0.3180 0.3124
Medline TF 5 0.3879 0.3450 0.3172 0.3169
Medline TF 10 0.3894 0.3420 0.3125 0.3147
Medline TF 15 0.3879 0.3437 0.3099 0.3143

Table 4.10: MedlinePlus Re-Rank results for CLEF eHealth 2015 collection.

SMOG FOG Flesch-Kincaid
Run P@10 uRBP P@10 uRBP P@10 uRBP
Baseline 0.3455 0.3148 0.3455 0.3148 0.3455 0.3148

Basic Formula (3.3)

Medline AltNames 0.3364 0.2912 0.3288 0.2891 0.3045 0.2663
Medline TF 5 0.3500 0.3014 0.3439 0.3019 0.3091 0.2709
Medline TF 10 0.3621 0.3051 0.3455 0.2944 0.3121 0.2662
Medline TF 15 0.3515 0.2950 0.3379 0.2902 0.3106 0.2629

Log Formula (3.4)

Medline AltNames 0.3242 0.2785 0.3030 0.2692 0.3106 0.2744
Medline TF 5 0.3318 0.2851 0.3182 0.2772 0.3076 0.2801
Medline TF 10 0.3364 0.2908 0.3197 0.2803 0.3091 0.2755
Medline TF 15 0.3318 0.2886 0.3091 0.2693 0.3076 0.2719

Arctan Formula (3.5)

Medline AltNames 0.3379 0.2931 0.2985 0.2739 0.3455 0.3165
Medline TF 5 0.3409 0.2941 0.3030 0.2769 0.3545 0.3253
Medline TF 10 0.3439 0.2999 0.3106 0.2833 0.3591 0.3257
Medline TF 15 0.3364 0.2940 0.3015 0.2725 0.3530 0.3209

4.5 Query expansion using the ICD-10

ICD-10 is the 10th revision of the International Statistical Classification of Diseases and Related

Health Problems (ICD), a medical classification list produced by the World Health Organization

(WHO). This classification has information on several diseases, signs and symptoms, abnormal

findings and external causes of injury [ICD16].

The approach using ICD-10 is similar to the one used in MedlinePlus taking advantage on the

contents of the infobox from Wikipedia. The ICD-10 page contains not only information about the

search concept but also about other diseases or symptoms related to the initial concept displayed

in a hierarchy (See Figure 4.4). This related information is used as a source of terms to use on the

query expansion process.

We chose the top 5, 10 and 15 most frequent terms of an ICD-10 page to append to the original

query.
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Figure 4.4: ICD-10 hierarchy example when searching for Asthma.

4.5.1 Results

The ICD-10 approach (Table 4.11) shows that using related diseases or symptoms can improve the

relevance of the retrieved documents. The change in the number of the most frequent terms used

didn’t show a significant difference in the results, but the more terms used the lower the relevance

score. Only the run which used fewer terms obtained an improvement in readability. On the re-

rank runs (Table 4.12) the best relevance score was obtained through the Basic formula using the

SMOG metric, and the best readability score was obtained through the Arctan formula using the

Flesch-Kincaid metric.

Table 4.11: ICD-10 results for CLEF eHealth 2015 collection.

Run P@10 nDCG@10 uRBP uRBPgr
Baseline 0.3455 0.3027 0.3148 0.3033
ICD-10 TF 5 0.3970 0.3419 0.3242 0.3223
ICD-10 TF 10 0.3939 0.3380 0.3125 0.3133
ICD-10 TF 15 0.3848 0.3355 0.3046 0.3070
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Table 4.12: ICD-10 Re-Rank results for CLEF eHealth 2015 collection.

SMOG FOG Flesch-Kincaid
Run P@10 uRBP P@10 uRBP P@10 uRBP
Baseline 0.3455 0.3148 0.3455 0.3148 0.3455 0.3148

Basic Formula (3.3)
ICD-10 TF 5 0.3561 0.3065 0.3606 0.3176 0.3333 0.2962
ICD-10 TF 10 0.3591 0.2964 0.3576 0.3063 0.3394 0.2877
ICD-10 TF 15 0.3697 0.2989 0.3591 0.2989 0.3394 0.2842

Log Formula (3.4)
ICD-10 TF 5 0.3364 0.2933 0.3152 0.2810 0.3242 0.2925
ICD-10 TF 10 0.3470 0.2960 0.3167 0.2763 0.3258 0.2897
ICD-10 TF 15 0.3455 0.2960 0.3136 0.2726 0.3242 0.2851

Arctan Formula (3.5)
ICD-10 TF 5 0.3364 0.3012 0.2955 0.2698 0.3682 0.3419
ICD-10 TF 10 0.3424 0.3023 0.2924 0.2627 0.3621 0.3346
ICD-10 TF 15 0.3424 0.2922 0.2939 0.2619 0.3652 0.3300

4.6 Query expansion using Latent Dirichlet Allocation over Wikipedia

Latent Dirichlet Allocation (LDA) is a generative probabilistic model of a corpus. The idea behind

LDA is that every document can be deconstructed into sets of topics. These topics, in turn, are

characterized by a distribution of words [BNJ03].

The modelling process of LDA can be described as finding a mixture of topics for each doc-

ument, i.e., P(z|d), with each topic described by terms following another probability distribution,

i.e., P(t|z) [BNJ03]. This can be formalized as:

P(ti|d) =
Z

∑
j=1

P(ti|zi = j)P(zi = j|d) (4.7)

where P(ti|d) is the probability of the ith term for a given document d and zi is the latent topic.

P(ti|zi = j) is the probability of ti within topic j. P(zi = j|d) is the probability of picking a term

from topic j in the document [BNJ03]. It is possible to adjust the degree of specialization of the

topics by specifying in advance the number of latent topics Z. Using a fixed number of topics

and Dirichlet priors for the distributions LDA can estimate the topic-term distribution P(t|z) and

the document-topic distribution P(z|d) from a document [BNJ03]. Gibbs Sampling [GS04] is

one possible approach to this end. For each term ti in a document di the Gibbs Sampling iterates

several times, generating a new topic j for the term based on the probability P(zi = j|ti,di,zi) seen

in Equation 4.8, until the LDA parameters converge.

P(zi = j|ti,di,zi) ∝
CT Z

ti j +β

∑t CT Z
t j +T β

CDZ
di j +α

∑zCDZ
diz +Zα

(4.8)

CT Z maintains a count of all topic-term assignments, CDZ counts the document-topic assign-

ments, all topic-term and document-topic assignments are represented by zi and, α and β are

the parameters for the Dirichlet priors, serving as smoothing parameters [GS04]. With this the

probabilities in Equation 4.7 can be reformulated as [GS04]:
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P(ti|zi = j) =
CT Z

ti j +β

∑t CT Z
t j +T β

(4.9)

P(zi = j|di) =
CDZ

di j +α

∑zCDZ
diz +Zα

(4.10)

Figure 4.5 shows an example of LDA applied to a text, generating four topics and a set of

words representing each topic. These distributions seem to capture some of the underlying topics

in the corpus. Each word on the text tends to peak towards one of the possible topic values, the

words are color coded according to the topics they represent.

Figure 4.5: An example article from the TREC AP corpus. Each color codes a different factor
from which the word is putatively generated [BNJ03].

One of LDA applications is the recommendation of tags for web documents. This can be

shown in the works of Krestel, Fankhauser and Nejdl [KFN09] and, Choubey [Cho11].

Krestel, Fankhauser and Nejdl [KFN09] proved that using LDA to recommend topics achieved

significantly better precision and recall than the use of association rules and also recommends more

specific tags. Furthermore, extending documents with these tags significantly improves the search

for new documents.

Choubey [Cho11] proposed two different approaches using LDA to address the tagging prob-

lem. The first approach was called topic words based approach, and it recommended the top words

in the topics representing a document as tags for that particular document. The second approach,
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called topic distance based approach, used the tags of the most similar training documents to rec-

ommend tags for a test untagged document. Two different datasets were used to test these two

approaches. One with only the descriptions corresponding to an URL, and another with crawled

URL content. Choubey concluded that the topic distance based approach is better than the topic

words based approach, when only the descriptions are used to construct documents, while the

topic words based approach works better when the contents are used to construct documents.

For this approach JGibbLDA [PN16] was used to generate topics from texts related to each

query. JGibbLDA [PN16] is a Java implementation of Latent Dirichlet Allocation (LDA) us-

ing Gibbs Sampling technique for parameter estimation and inference. The texts used were the

Wikipedia articles obtained through the MediaWiki API using the MTI concepts as search terms.

In this approach we tried different combinations of number of topics and number of words to

to identify which one contributes the most. We chose a combination of 3 topics with 1, 5 and 10

words, and 1, 5 and 10 topics with 5 words.

4.6.1 Results

The results for the LDA approach (Table 4.13) were the ones that differentiate the most between

them regarding relevance, going from results worse than the baseline to one of significant im-

provement. The readability scores were always worse than the baseline. The best relevance scores

on the re-rank runs (Table 4.14) were always the ones using 10 topics with 5 words each. The best

readability scores were also brought these runs in the majority of cases.

Table 4.13: Latent Dirichlet Allocation results for CLEF eHealth 2015 collection.

Run P@10 nDCG@10 uRBP uRBPgr
Baseline 0.3455 0.3027 0.3148 0.3033
LDA 3T 1W 0.3591 0.3050 0.2786 0.2744
LDA 3T 5W 0.3333 0.2839 0.2480 0.2553
LDA 3T 10W 0.3545 0.3072 0.2345 0.2583
LDA 1T 5W 0.3455 0.3039 0.2717 0.2754
LDA 5T 5W 0.3394 0.3060 0.2352 0.2566
LDA 10T 5W 0.3894 0.3353 0.2453 0.2742
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Table 4.14: Latent Dirichlet Allocation Re-Rank results for CLEF eHealth 2015 collection.

SMOG FOG Flesch-Kincaid
Run P@10 uRBP P@10 uRBP P@10 uRBP
Baseline 0.3455 0.3148 0.3455 0.3148 0.3455 0.3148

Basic Formula (3.3)

LDA 3T 1W 0.3015 0.2640 0.3152 0.2641 0.2864 0.2410
LDA 3T 5W 0.3015 0.2455 0.2955 0.2359 0.2742 0.2200
LDA 3T 10W 0.3227 0.2434 0.3030 0.2343 0.2924 0.2200
LDA 1T 5W 0.3242 0.2765 0.3136 0.2637 0.3015 0.2391
LDA 5T 5W 0.3076 0.2289 0.3076 0.2350 0.2970 0.2224
LDA 10T 5W 0.3864 0.2702 0.3606 0.2720 0.3379 0.2574

Log Formula (3.4)

LDA 3T 1W 0.2970 0.2492 0.2985 0.2391 0.2864 0.2426
LDA 3T 5W 0.2712 0.2389 0.2667 0.2232 0.2727 0.2258
LDA 3T 10W 0.2909 0.2389 0.2697 0.2228 0.2818 0.2231
LDA 1T 5W 0.3121 0.2635 0.2985 0.2416 0.2985 0.2440
LDA 5T 5W 0.2848 0.2378 0.2712 0.2235 0.2894 0.2235
LDA 10T 5W 0.3485 0.2704 0.3152 0.2647 0.3136 0.2497

Arctan Formula (3.5)

LDA 3T 1W 0.3197 0.2733 0.2833 0.2459 0.3439 0.3091
LDA 3T 5W 0.3091 0.2667 0.2485 0.2377 0.3515 0.2814
LDA 3T 10W 0.3273 0.2720 0.2455 0.2382 0.3364 0.2695
LDA 1T 5W 0.3379 0.2872 0.2833 0.2537 0.3621 0.3171
LDA 5T 5W 0.3227 0.2622 0.2500 0.2343 0.3348 0.2710
LDA 10T 5W 0.3530 0.2895 0.2833 0.2617 0.3712 0.3067

4.7 Query expansion using the Unified Medical Language System

The Unified Medical Language System (UMLS) [Bod04] is a repository of biomedical vocabular-

ies developed by the US National Library of Medicine. UMLS more than 60 families of biomedi-

cal vocabularies with over 2 million names for 900,000 concepts that have relations between them.

The UMLS Metathesaurus has a REST API that provides access to its information. Using this

API it is possible to extract terms using the definitions in UMLS related to the MTI concepts.

We chose the top 5, 10 and 15 most frequent terms on the UMLS definitions to be added to

the original query.

4.7.1 Results

The use of definitions of medical concepts from the UMLS as a source of terms proved to be

an effective way of improving the retrieval performance (Table 4.15). Changing the number of

terms used didn’t significantly affect the relevance scores. However, the best results in relevance

and readability were brought using fewer terms. Few of the re-rank runs (Table 4.16) brought

improvements in relevance, and only one brought improvements in readability when compared

with the baseline.
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Table 4.15: UMLS results for CLEF eHealth 2015 collection.

Run P@10 nDCG@10 uRBP uRBPgr
Baseline 0.3455 0.3027 0.3148 0.3033
UMLS TF 5 0.4045 0.3716 0.3371 0.3383
UMLS TF 10 0.3909 0.3397 0.2926 0.3062
UMLS TF 15 0.3985 0.3376 0.2872 0.3020

Table 4.16: UMLS Re-Rank results for CLEF eHealth 2015 collection.

SMOG FOG Flesch-Kincaid
Run P@10 uRBP P@10 uRBP P@10 uRBP
Baseline 0.3455 0.3148 0.3455 0.3148 0.3455 0.3148

Basic Formula (3.3)
UMLS TF 5 0.3636 0.2947 0.3152 0.2812 0.3015 0.2586
UMLS TF 10 0.3424 0.2763 0.3242 0.2684 0.3136 0.2582
UMLS TF 15 0.3545 0.2818 0.3258 0.2708 0.3061 0.2553

Log Formula (3.4)
UMLS TF 5 0.3242 0.2775 0.3030 0.2611 0.3076 0.2725
UMLS TF 10 0.3167 0.2648 0.3061 0.2605 0.3152 0.2660
UMLS TF 15 0.3258 0.2673 0.2985 0.2580 0.3061 0.2677

Arctan Formula (3.5)
UMLS TF 5 0.3652 0.3115 0.3106 0.2878 0.3667 0.3428
UMLS TF 10 0.3561 0.2884 0.2970 0.2717 0.3652 0.3185
UMLS TF 15 0.3500 0.2827 0.3045 0.2725 0.3561 0.3071
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Results Discussion

In this chapter we will make several comparisons between the different approaches to evaluate

their efficiency. We will separate these comparisons into three sections: (1) one comparing only

the results form the query expansion runs; (2) one comparing the results of the re-rank runs; (3)

and another comparing the best results of the query expansion runs and the re-rank runs.

5.1 Query Expansion Runs

In this section we will compare all the query expansion approaches based on their relevance and

readability.

5.1.1 Relevance

Reviewing the query expansion runs is possible to conclude that every approach shows a relevance

improvement when compared with the baseline. Table 5.1 shows the best run for each approach

based on the P@10 score. Even though P@10 and nDCG@10 are both used to evaluate relevance,

is possible to verify that the higher the score on P@10 it doesn’t imply a high score on nDCG@10.

Analysing the top runs of Table 5.1 we can conclude that the more scientific and heath-related

sources brought better relevance scores.

Table 5.2 shows the best run for each approach, but now based on the nDCG@10 score. Com-

paring these two tables it is possible to verify the runs rearrangement, proving that even if a run

has a high score on a binary evaluation that doesn’t mean it will have a high score on a graded

one. Furthermore, when evaluating with nDCG@10 the order of the documents has an impact on

the score, this doesn’t apply when evaluating with P@10.
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Table 5.1: Best results for CLEF eHealth 2015 collection based on the P@10 score.

Run P@10 nDCG@10
MTI 0.4061 0.3530
UMLS TF 5 0.4045 0.3716
ICD-10 TF 5 0.3970 0.3419
Wiki TF 10 Health 0.3894 0.3455
Medline TF 10 0.3894 0.3420
LDA 10T 5W 0.3894 0.3353
Wiki Link 0.25 Health 0.3848 0.3466
Kullback-Liebler 0.3576 0.3021
Baseline 0.3455 0.3027

Table 5.2: Best results for CLEF eHealth 2015 collection based on the nDCG@10 score.

Run P@10 nDCG@10
UMLS TF 5 0.4045 0.3716
MTI 0.4061 0.3530
Wiki Link 0.25 Health 0.3848 0.3466
Wiki TF 10 Health 0.3894 0.3455
Medline TF 5 0.3879 0.3450
ICD-10 TF 5 0.3970 0.3419
LDA 10T 5W 0.3894 0.3353
Baseline 0.3455 0.3027
Kullback-Liebler 0.3576 0.3021

5.1.2 Readability

Based on the readability evaluations we can prove that even using only query expansion it is

possible to improve its score. Analysing the top runs of Table 5.3 we can conclude that the more

scientific and heath-related sources brought better readability scores. Comparing the Tables 5.3

and 5.4 we can conclude that even if a run has a high score on a binary evaluation that doesn’t

mean it will have a high score on a graded one.

Table 5.3: Best results for CLEF eHealth 2015 collection based on the uRBP score.

Run uRBP uRBPgr
MTI 0.3381 0.3276
UMLS TF 5 0.3371 0.3383
ICD-10 TF 5 0.3242 0.3223
Bose-Einstein 0.3212 0.3110
Wiki TF 5 Health 0.3189 0.3190
Medline AltNames 0.3180 0.3124
Baseline 0.3148 0.3033
Wiki Link 0.50 Health 0.3128 0.3093
LDA 3T 1W 0.2786 0.2744
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Table 5.4: Best results for CLEF eHealth 2015 collection based on the uRBPgr score.

Run uRBP uRBPgr
UMLS TF 5 0.3371 0.3383
MTI 0.3381 0.3276
ICD-10 TF 5 0.3242 0.3223
Wiki TF 5 Health 0.3189 0.3190
Medline TF 5 0.3172 0.3169
Bose-Einstein 0.3212 0.3110
Wiki Link 0.50 Health 0.3128 0.3093
Baseline 0.3148 0.3033
LDA 1T 5W 0.2717 0.2754

5.2 Re-Rank Runs

In this section we will compare all the query expansion approaches after the readability re-rank,

based on their relevance and readability. In addition we will make comparisons of the readability

metrics and formulas.

For a better understanding of the different combinations of readability metrics and formulas,

we will compare for each metric which formula is better and for each formula which metric brings

better results.

5.2.1 Relevance

5.2.1.1 Metrics

Table 5.5, 5.6 and 5.7 shows the best relevance results using the SMOG, FOG and Flesch-Kincaid

metrics for each approach, respectively. From all the runs shown in these tables only the one using

PRF has a lower or equal score compared with the baseline in all the readability metrics. We

can conclude that for the SMOG and FOG metric the Basic formula is the best one and, for the

Flesch-Kincaid metric the Arctan formula is the one that gives better results.

Table 5.5: Best SMOG re-rank results for CLEF eHealth 2015 collection based on the P@10
score.

Run Formula P@10
LDA 10T 5W Basic 0.3864
ICD-10 TF 15 Basic 0.3697
Wiki TF 15 Health Basic 0.3667
UMLS TF 5 Arctan 0.3652
Wiki Link 0.25 Health Basic 0.3652
Medline TF 10 Basic 0.3621
MTI Basic 0.3470
Baseline - 0.3455
Kullback-Liebler Arctan 0.3318

43



Results Discussion

Table 5.6: Best FOG re-rank results for CLEF eHealth 2015 collection based on the P@10 score.

Run Formula P@10
Wiki Link 0.50 Health Basic 0.3621
LDA 10T 5W Basic 0.3606
ICD-10 TF 5 Basic 0.3606
Wiki TF 15 Health Basic 0.3591
Baseline - 0.3455
Medline TF 10 Basic 0.3455
UMLS TF 15 Basic 0.3258
MTI Basic 0.3227
Bose-Einstein Basic 0.3167

Table 5.7: Best Flesch-Kincaid re-rank results for CLEF eHealth 2015 collection based on the
P@10 score.

Run Formula P@10
LDA 10T 5W Arctan 0.3712
ICD-10 TF 5 Arctan 0.3682
UMLS TF 5 Arctan 0.3667
Wiki Link 0.25 Arctan 0.3621
Wiki TF 5 Health Arctan 0.3621
Medline TF 10 Arctan 0.3591
MTI Arctan 0.3515
Baseline - 0.3455
Bose-Einstein Arctan 0.3455

5.2.1.2 Formulas

Table 5.8, 5.9 and 5.10 shows the best relevance results using the Basic, Log and Arctan formulas

for each approach, respectively. From all the runs shown in these tables only the one using PRF has

a lower or equal score compared with the baseline in all the readability metrics. We can conclude

that for the Basic and Log formula the SMOG metric is the best one and, for the Arctan formula

the Flesch-Kincaid metric is the one that gives better results.
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Table 5.8: Best results for CLEF eHealth 2015 collection using the Basic formula based on the
P@10 score.

Run Metric P@10
LDA 10T 5W SMOG 0.3864
ICD-10 TF 15 SMOG 0.3697
Wiki TF 15 Health SMOG 0.3667
Wiki Link 0.25 Health SMOG 0.3652
UMLS TF 5 SMOG 0.3636
Medline TF 10 SMOG 0.3621
MTI SMOG 0.3470
Baseline - 0.3455
Bose-Einstein SMOG 0.3197

Table 5.9: Best results for CLEF eHealth 2015 collection using the Log formula based on the
P@10 score.

Run Metric P@10
Wiki TF 10 Health SMOG 0.3515
LDA 10T 5W SMOG 0.3485
Wiki Link 0.50 Health SMOG 0.3485
ICD-10 TF 10 SMOG 0.3470
Baseline - 0.3455
Medline TF 10 SMOG 0.3364
UMLS TF 15 SMOG 0.3258
MTI SMOG 0.3227
Bose-Einstein SMOG 0.3045

Table 5.10: Best results for CLEF eHealth 2015 collection using the Arctan formula based on the
P@10 score.

Run Metric P@10
LDA 10T 5W Flesch-Kincaid 0.3712
ICD-10 TF 5 Flesch-Kincaid 0.3682
UMLS TF 5 Flesch-Kincaid 0.3667
Wiki TF 5 Health Flesch-Kincaid 0.3621
Wiki Link 0.25 Flesch-Kincaid 0.3621
Medline TF 10 Flesch-Kincaid 0.3621
MTI Flesch-Kincaid 0.3515
Baseline - 0.3455
Bose-Einstein Flesch-Kincaid 0.3455
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5.2.2 Readability

5.2.2.1 Metrics

Table 5.11, 5.12 and 5.13 shows the best readability results using the SMOG, FOG and Flesch-

Kincaid metrics for each approach, respectively. Only the Flesch-Kincaid metric brought results

that had a significant improvement over the baseline. We can conclude that for the FOG metric

the Basic formula is the best one and, for the Flesch-Kincaid metric the Arctan formula is the one

that gives better results. The SMOG metric even if the Arctan formula had the best result the most

common formula in Table 5.11 is the Basic.

Table 5.11: Best SMOG re-rank results for CLEF eHealth 2015 collection based on the uRBP
score.

Run Formula uRBP
Baseline - 0.3148
UMLS TF 5 Arctan 0.3115
MTI Basic 0.3087
Wiki TF 10 Health Basic 0.3077
ICD-10 TF 5 Basic 0.3065
Medline TF 10 Basic 0.3051
Wiki Link 0.50 Health Basic 0.2985
LDA 10T 5W Arctan 0.2895
Kullback-Liebler Arctan 0.2853

Table 5.12: Best FOG re-rank results for CLEF eHealth 2015 collection based on the uRBP score.

Run Formula uRBP
ICD-10 TF 5 Basic 0.3176
Baseline - 0.3148
Wiki Link 0.50 Health Basic 0.3104
Wiki TF 5 Health Basic 0.3055
Medline TF 5 Basic 0.3019
MTI Basic 0.2953
UMLS TF 5 Arctan 0.2878
Bose-Einstein Basic 0.2809
LDA 10T 5W Basic 0.2720
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Table 5.13: Best Flesch-Kincaid re-rank results for CLEF eHealth 2015 collection based on the
uRBP score.

Run Formula uRBP
UMLS TF 5 Arctan 0.3428
ICD-10 TF 5 Arctan 0.3419
Wiki Link 0.25 Health Arctan 0.3314
Wiki TF 5 Health Arctan 0.3293
MTI Arctan 0.3288
Medline TF 10 Arctan 0.3257
LDA 1T 5W Arctan 0.3171
Baseline - 0.3148
Kullback-Liebler Arctan 0.3134

5.2.2.2 Formulas

Table 5.14, 5.15 and 5.16 shows the best readability results using the Basic, Log and Arctan for-

mulas for each approach, respectively. Only the Arctan formula using the Flesch-Kincaid metric

brought results that had a significant improvement over the baseline. We can conclude that for the

Basic formula the best metric is SMOG, for the Log formula is FOG and, for the Arctan formula

is the Flesch-Kincaid metric.

Table 5.14: Best results for CLEF eHealth 2015 collection using the Basic formula based on the
uRBP score.

Run Metric uRBP
ICD-10 TF 5 FOG 0.3176
Baseline - 0.3148
Wiki Link 0.50 Health FOG 0.3104
MTI SMOG 0.3087
Wiki TF 10 Health SMOG 0.3077
Medline TF 10 SMOG 0.3051
UMLS TF 5 SMOG 0.2947
Bose-Einstein FOG 0.2809
LDA 1T 5W SMOG 0.2765
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Table 5.15: Best results for CLEF eHealth 2015 collection using the Log formula based on the
uRBP score.

Run Metric uRBP
Baseline - 0.3148
Wiki TF 10 Health SMOG 0.3024
Wiki Link 0.50 Health SMOG 0.2961
ICD-10 TF 10 SMOG 0.2960
Medline TF 10 SMOG 0.2908
MTI SMOG 0.2889
UMLS TF 5 SMOG 0.2775
LDA 10T 5W SMOG 0.2704
Kullback-Liebler Flesch-Kincaid 0.2648

Table 5.16: Best results for CLEF eHealth 2015 collection using the Arctan formula based on the
uRBP score.

Run Metric uRBP
UMLS TF 5 Flesch-Kincaid 0.3428
ICD-10 TF 5 Flesch-Kincaid 0.3419
Wiki Link 0.25 Health Flesch-Kincaid 0.3314
Wiki TF 5 Health Flesch-Kincaid 0.3293
MTI Flesch-Kincaid 0.3288
Medline TF 10 Flesch-Kincaid 0.3257
LDA 1T 5W Flesch-Kincaid 0.3171
Baseline - 0.3148
Kullback-Liebler Flesch-Kincaid 0.3134
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5.3 Query Expansion and Re-Rank Runs

In this section we will compare the best results of the query expansion runs with the best of the

re-rank runs for each approach. This will determine the effectiveness of the re-rank methods.

5.3.1 Relevance

Table 5.17 shows the best relevance scores of both the query expansion runs (QE Runs) and the

re-rank runs (RR Runs). Analyzing these results we can see that for every approach the relevance

scores on the re-rank runs are lower. Even the best score of the re-rank runs would be one of the

worst on the query expansion runs. The combination of the SMOG metric and the Basic formula

was the one that gave the best relevance scores on the re-rank runs.

Table 5.17: Comparison of the best relevance results of the Query Expansion runs and the Re-Rank
runs for CLEF eHealth 2015 collection based on the P@10 score.

QE Runs RR Runs
Run P@10 Run P@10 Metric Formula
MTI 0.4061 LDA 10T 5W 0.3864 SMOG Basic
UMLS TF 5 0.4045 ICD-10 TF 15 0.3697 SMOG Basic
ICD-10 TF 5 0.3970 UMLS TF 5 0.3667 Flesch-Kincaid Arctan
LDA 10T 5W 0.3894 Wiki TF 15 Health 0.3667 SMOG Basic
Wiki TF 10 Health 0.3894 Wiki Link 0.25 Health 0.3652 SMOG Basic
Medline TF 10 0.3894 Medline TF 10 0.3621 SMOG Basic
Wiki Link 0.25 Health 0.3848 MTI 0.3515 Flesch-Kincaid Arctan
Kullback-Liebler 0.3576 Bose-Einstein 0.3455 Flesch-Kincaid Arctan

5.3.2 Readability

Table 5.18 shows the best readability scores of both the query expansion runs (QE Runs) and the

re-rank runs (RR Runs). Some of the re-rank runs improved the readability scores compared with

the query expansion runs, even the higher and lower scores are better. The combination of the

Flesch-Kincaid metric and the Arctan formula was the one that gave the best readability scores on

the re-rank runs.
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Table 5.18: Comparison of the best readability results of the Query Expansion runs and the Re-
Rank runs for CLEF eHealth 2015 collection based on the uRBP score.

QE Runs RR Runs
Run uRBP Run uRBP Metric Formula
MTI 0.3381 UMLS TF 5 0.3428 Flesch-Kincaid Arctan
UMLS TF 5 0.3371 ICD-10 TF 5 0.3419 Flesch-Kincaid Arctan
ICD-10 TF 5 0.3242 Wiki Link 0.25 Health 0.3314 Flesch-Kincaid Arctan
Bose-Einstein 0.3212 Wiki TF 5 Health 0.3293 Flesch-Kincaid Arctan
Wiki TF 5 Health 0.3189 MTI 0.3288 Flesch-Kincaid Arctan
Medline AltNames 0.3180 Medline TF 10 0.3257 Flesch-Kincaid Arctan
Wiki Link 0.50 Health 0.3128 LDA 1T 5W 0.3171 Flesch-Kincaid Arctan
LDA 3T 1W 0.2786 Kullback-Liebler 0.3134 Flesch-Kincaid Arctan
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

On the query expansion runs we can verify that every approach improves the relevance score and

that almost all of them improves the readability. The results of the different approaches allow to

determine that the more scientific and health-related the terms for the query expansion are, the best

are the results. With this we can conclude that the main objective of this thesis was accomplished.

As for the re-rank runs some of them did improved over the baseline, in both relevance and

readability. However, when compared with the query expansion runs of the same approach the

relevance scores are always lower, and only a few increase the readability scores. For example

the approach using MTI. This approach has the best scores on P@10 and uRBP of all the query

expansion runs, yet in the re-rank runs these scores are significantly lower. These scores can be

justified by two reasons: (1) the readability measure (uRBP) evaluates both the relevance and read-

ability, so if the re-rank method improves the score of irrelevant documents the value of uRBP will

decrease, this proves that relevant medical documents won’t always be understood by an user; (2)

the readability metrics (SMOG, FOG, Flesch-Kincaid) used are not well suited to evaluate docu-

ments of a specific area, these metrics give a readability score based on the number of polysyllabic

words, but some words are complex not by its size but by its meaning, e.g., the word “shock” is

a common word frequently used in everyday life, however, in medical and health materials, the

meaning of “shock” could be when “not enough blood and oxygen can get to your organs and

tissues causing low blood pressure”.

Although the results for the re-rank methods did not improved significantly over the query

expansion, the combinations of the SMOG metric and the Basic formula and, the Flesch-Kincaid

metric and the Arctan formula, were the ones that brought the better results for relevance and

readability, respectively.

51



Conclusion and Future Work

6.2 Future Work

In future work, we will continue to explore new query expansion models to find an effective way

of supporting patients to find useful medical information. Continuing to improve the current ones

like the Latent Dirichlet Allocation that could be applied to other sources of texts such as the ones

found through the Wikipedia Link Analysis or the MedlinePlus pages.

Machine learning was not an approach addressed in this thesis. However, it could be one that

complements this work with an unique approach that uses new methods.

In addition, we would like to incorporate readability metrics that weren’t based on sentence

lengths or polysyllabic words but were based in concepts.
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Appendix A

Readability Re-Rank Results

A.1 Pseudo Relevance Feedback

Table A.1: Pseudo Relevance Feedback SMOG Re-Rank results for CLEF eHealth 2015 collec-
tion.

SMOG
Run P@10 nDCG@10 RBP uRBP uRBPgr
Baseline 0.3455 0.3027 0.3569 0.3148 0.3033

Basic Formula (3.3)
Bose-Einstein 0.3197 0.2530 0.3201 0.2779 0.2671
Kullback-Liebler 0.3167 0.2458 0.3144 0.2712 0.2607

Log Formula (3.4)
Bose-Einstein 0.3045 0.2308 0.3003 0.2560 0.2487
Kullback-Liebler 0.3000 0.2247 0.2994 0.2541 0.2468

Arctan Formula (3.5)
Bose-Einstein 0.3227 0.2537 0.3272 0.2817 0.2724
Kullback-Liebler 0.3318 0.2565 0.3312 0.2853 0.2754

Table A.2: Pseudo Relevance Feedback FOG Re-Rank results for CLEF eHealth 2015 collection.

FOG
Run P@10 nDCG@10 RBP uRBP uRBPgr
Baseline 0.3455 0.3027 0.3569 0.3148 0.3033

Basic Formula (3.3)
Bose-Einstein 0.3167 0.2413 0.3162 0.2809 0.2699
Kullback-Liebler 0.3121 0.2360 0.3157 0.2800 0.2684

Log Formula (3.4)
Bose-Einstein 0.2970 0.2200 0.2837 0.2532 0.2447
Kullback-Liebler 0.2864 0.2117 0.2828 0.2527 0.2430

Arctan Formula (3.5)
Bose-Einstein 0.2848 0.2221 0.2844 0.2565 0.2472
Kullback-Liebler 0.2773 0.2203 0.2880 0.2598 0.2498
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Table A.3: Pseudo Relevance Feedback Flesch-Kincaid Re-Rank results for CLEF eHealth 2015
collection.

Flesch-Kincaid
Run P@10 nDCG@10 RBP uRBP uRBPgr
Baseline 0.3455 0.3027 0.3569 0.3148 0.3033

Basic Formula (3.3)
Bose-Einstein 0.3076 0.2313 0.3025 0.2704 0.2595
Kullback-Liebler 0.3030 0.2247 0.2973 0.2647 0.2530

Log Formula (3.4)
Bose-Einstein 0.2939 0.2284 0.2974 0.2638 0.2547
Kullback-Liebler 0.2894 0.2215 0.2981 0.2648 0.2546

Arctan Formula (3.5)
Bose-Einstein 0.3455 0.2842 0.3502 0.3128 0.3008
Kullback-Liebler 0.3439 0.2811 0.3516 0.3134 0.3012

A.2 Medical Text Indexer

Table A.4: MTI SMOG Re-Rank results for CLEF eHealth 2015 collection.

SMOG
Run P@10 nDCG@10 RBP uRBP uRBPgr
Baseline 0.3455 0.3027 0.3569 0.3148 0.3033

Basic Formula (3.3) MTI 0.3470 0.2864 0.3474 0.3087 0.2951
Log Formula (3.4) MTI 0.3227 0.2619 0.3264 0.2889 0.2773
Arctan Formula (3.5) MTI 0.3379 0.2725 0.3502 0.3050 0.2934

Table A.5: MTI FOG Re-Rank results for CLEF eHealth 2015 collection.

FOG
Run P@10 nDCG@10 RBP uRBP uRBPgr
Baseline 0.3455 0.3027 0.3569 0.3148 0.3033

Basic Formula (3.3) MTI 0.3227 0.2610 0.3230 0.2953 0.2844
Log Formula (3.4) MTI 0.2985 0.2276 0.2915 0.2684 0.2567
Arctan Formula (3.5) MTI 0.2909 0.2278 0.2908 0.2697 0.2585

Table A.6: MTI Flesch-Kincaid Re-Rank results for CLEF eHealth 2015 collection.

Flesch-Kincaid
Run P@10 nDCG@10 RBP uRBP uRBPgr
Baseline 0.3455 0.3027 0.3569 0.3148 0.3033

Basic Formula (3.3) MTI 0.3167 0.2394 0.3032 0.2768 0.2664
Log Formula (3.4) MTI 0.3136 0.2390 0.3067 0.2814 0.2703
Arctan Formula (3.5) MTI 0.3515 0.3053 0.3668 0.3288 0.3178

A.3 Wikipedia Term-Frequency
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Table A.7: Wikipedia Term-Frequency SMOG Re-Rank results for CLEF eHealth 2015 collection.

SMOG
Run P@10 nDCG@10 RBP uRBP uRBPgr
Baseline 0.3455 0.3027 0.3569 0.3148 0.3033

Basic Formula (3.3)

Wiki TF 5 0.3379 0.2684 0.3240 0.2715 0.2658
Wiki TF 10 0.3242 0.2707 0.3202 0.2596 0.2563
Wiki TF 15 0.3364 0.2756 0.3398 0.2585 0.2625
Wiki TF 5 Health 0.3591 0.2985 0.3585 0.3048 0.2981
Wiki TF 10 Health 0.3652 0.3095 0.3653 0.3077 0.3026
Wiki TF 15 Health 0.3667 0.3020 0.3619 0.2957 0.2951

Log Formula (3.4)

Wiki TF 5 0.3227 0.2577 0.3106 0.2646 0.2584
Wiki TF 10 0.3227 0.2637 0.3188 0.2666 0.2611
Wiki TF 15 0.3364 0.2719 0.3315 0.2693 0.2670
Wiki TF 5 Health 0.3455 0.2870 0.3453 0.2971 0.2902
Wiki TF 10 Health 0.3515 0.2948 0.3524 0.3024 0.2949
Wiki TF 15 Health 0.3470 0.2871 0.3494 0.2952 0.2901

Arctan Formula (3.5)

Wiki TF 5 0.3455 0.2786 0.3413 0.2855 0.2788
Wiki TF 10 0.3455 0.2713 0.3300 0.2713 0.2637
Wiki TF 15 0.3530 0.2835 0.3446 0.2763 0.2734
Wiki TF 5 Health 0.3530 0.2841 0.3503 0.2965 0.2913
Wiki TF 10 Health 0.3515 0.2840 0.3495 0.2970 0.2894
Wiki TF 15 Health 0.3485 0.2825 0.3486 0.2935 0.2878

Table A.8: Wikipedia Term-Frequency FOG Re-Rank results for CLEF eHealth 2015 collection.

FOG
Run P@10 nDCG@10 RBP uRBP uRBPgr
Baseline 0.3455 0.3027 0.3569 0.3148 0.3033

Basic Formula (3.3)

Wiki TF 5 0.3136 0.2574 0.3092 0.2709 0.2636
Wiki TF 10 0.3106 0.2689 0.3089 0.2583 0.2573
Wiki TF 15 0.3333 0.2845 0.3223 0.2551 0.2619
Wiki TF 5 Health 0.3500 0.2964 0.3458 0.3055 0.2973
Wiki TF 10 Health 0.3576 0.3097 0.3546 0.3019 0.2989
Wiki TF 15 Health 0.3591 0.3109 0.3588 0.2942 0.2976

Log Formula (3.4)

Wiki TF 5 0.3106 0.2330 0.2898 0.2619 0.2512
Wiki TF 10 0.3182 0.2554 0.3010 0.2690 0.2614
Wiki TF 15 0.3318 0.2586 0.3071 0.2710 0.2653
Wiki TF 5 Health 0.3152 0.2513 0.3098 0.2767 0.2672
Wiki TF 10 Health 0.3197 0.2729 0.3178 0.2828 0.2749
Wiki TF 15 Health 0.3227 0.2620 0.3149 0.2772 0.2715

Arctan Formula (3.5)

Wiki TF 5 0.2864 0.2207 0.2821 0.2630 0.2508
Wiki TF 10 0.3000 0.2273 0.2781 0.2572 0.2462
Wiki TF 15 0.3045 0.2371 0.2882 0.2657 0.2552
Wiki TF 5 Health 0.2970 0.2399 0.2986 0.2724 0.2619
Wiki TF 10 Health 0.2970 0.2438 0.2971 0.2715 0.2604
Wiki TF 15 Health 0.3000 0.2419 0.2956 0.2692 0.2591
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Table A.9: Wikipedia Term-Frequency Flesch-Kincaid Re-Rank results for CLEF eHealth 2015
collection.

Flesch-Kincaid
Run P@10 nDCG@10 RBP uRBP uRBPgr
Baseline 0.3455 0.3027 0.3569 0.3148 0.3033

Basic Formula (3.3)

Wiki TF 5 0.3061 0.2381 0.2915 0.2548 0.2475
Wiki TF 10 0.3136 0.2528 0.2966 0.2505 0.2476
Wiki TF 15 0.3182 0.2553 0.3093 0.2487 0.2528
Wiki TF 5 Health 0.3152 0.2564 0.3166 0.2790 0.2705
Wiki TF 10 Health 0.3394 0.2873 0.3356 0.2861 0.2816
Wiki TF 15 Health 0.3364 0.2783 0.3396 0.2770 0.2796

Log Formula (3.4)

Wiki TF 5 0.3091 0.2421 0.2974 0.2660 0.2552
Wiki TF 10 0.3152 0.2605 0.3041 0.2650 0.2584
Wiki TF 15 0.3182 0.2533 0.3082 0.2599 0.2590
Wiki TF 5 Health 0.3167 0.2611 0.3227 0.2849 0.2758
Wiki TF 10 Health 0.3167 0.2738 0.3275 0.2866 0.2794
Wiki TF 15 Health 0.3212 0.2653 0.3302 0.2805 0.2779

Arctan Formula (3.5)

Wiki TF 5 0.3379 0.2923 0.3515 0.3024 0.2939
Wiki TF 10 0.3455 0.2943 0.3483 0.2982 0.2911
Wiki TF 15 0.3515 0.2988 0.3528 0.2941 0.2908
Wiki TF 5 Health 0.3621 0.3177 0.3734 0.3293 0.3189
Wiki TF 10 Health 0.3576 0.3162 0.3706 0.3239 0.3149
Wiki TF 15 Health 0.3515 0.3103 0.3672 0.3176 0.3105

A.4 Wikipedia Link Analysis
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Table A.10: Wikipedia Link Analysis SMOG Re-Rank results for CLEF eHealth 2015 collection.

SMOG
Run P@10 nDCG@10 RBP uRBP uRBPgr
Baseline 0.3455 0.3027 0.3569 0.3148 0.3033

Basic Formula (3.3)

Wiki Link 0.25 0.3348 0.2839 0.3298 0.2575 0.2544
Wiki Link 0.50 0.3076 0.2696 0.3087 0.2545 0.2468
Wiki Link 0.75 0.3076 0.2572 0.2910 0.2500 0.2416
Wiki Link 0.25 Health 0.3652 0.3112 0.3538 0.2903 0.2840
Wiki Link 0.50 Health 0.3636 0.3040 0.3495 0.2985 0.2893
Wiki Link 0.75 Health 0.3500 0.2843 0.3386 0.2915 0.2832

Log Formula (3.4)

Wiki Link 0.25 0.3242 0.2738 0.3213 0.2628 0.2555
Wiki Link 0.50 0.3076 0.2647 0.3048 0.2560 0.2469
Wiki Link 0.75 0.3076 0.2556 0.2943 0.2533 0.2453
Wiki Link 0.25 Health 0.3455 0.2944 0.3442 0.2863 0.2795
Wiki Link 0.50 Health 0.3485 0.2900 0.3441 0.2961 0.2869
Wiki Link 0.75 Health 0.3364 0.2709 0.3300 0.2820 0.2759

Arctan Formula (3.5)

Wiki Link 0.25 0.3333 0.2780 0.3376 0.2820 0.2728
Wiki Link 0.50 0.3182 0.2748 0.3286 0.2773 0.2679
Wiki Link 0.75 0.3136 0.2593 0.3156 0.2675 0.2611
Wiki Link 0.25 Health 0.3333 0.2807 0.3412 0.2811 0.2747
Wiki Link 0.50 Health 0.3455 0.2913 0.3486 0.2984 0.2886
Wiki Link 0.75 Health 0.3409 0.2747 0.3409 0.2904 0.2843

Table A.11: Wikipedia Link Analysis FOG Re-Rank results for CLEF eHealth 2015 collection.

FOG
Run P@10 nDCG@10 RBP uRBP uRBPgr
Baseline 0.3455 0.3027 0.3569 0.3148 0.3033

Basic Formula (3.3)

Wiki Link 0.25 0.3273 0.2852 0.3214 0.2594 0.2574
Wiki Link 0.50 0.3030 0.2619 0.3001 0.2534 0.2463
Wiki Link 0.75 0.3045 0.2571 0.2895 0.2541 0.2462
Wiki Link 0.25 Health 0.3530 0.3089 0.3530 0.3041 0.2940
Wiki Link 0.50 Health 0.3621 0.3086 0.3495 0.3104 0.2990
Wiki Link 0.75 Health 0.3515 0.2913 0.3419 0.3070 0.2949

Log Formula (3.4)

Wiki Link 0.25 0.3061 0.2649 0.2961 0.2565 0.2484
Wiki Link 0.50 0.2909 0.2511 0.2851 0.2507 0.2408
Wiki Link 0.75 0.3000 0.2421 0.2829 0.2518 0.2428
Wiki Link 0.25 Health 0.3227 0.2798 0.3226 0.2848 0.2752
Wiki Link 0.50 Health 0.3273 0.2795 0.3216 0.2860 0.2762
Wiki Link 0.75 Health 0.3303 0.2742 0.3193 0.2833 0.2742

Arctan Formula (3.5)

Wiki Link 0.25 0.2939 0.2493 0.2890 0.2632 0.2521
Wiki Link 0.50 0.2818 0.2361 0.2762 0.2532 0.2419
Wiki Link 0.75 0.2864 0.2331 0.2661 0.2442 0.2346
Wiki Link 0.25 Health 0.3015 0.2638 0.3018 0.2771 0.2659
Wiki Link 0.50 Health 0.3091 0.2627 0.3054 0.2800 0.2683
Wiki Link 0.75 Health 0.3091 0.2502 0.2958 0.2690 0.2586

63



Readability Re-Rank Results

Table A.12: Wikipedia Link Analysis Flesch-Kincaid Re-Rank results for CLEF eHealth 2015
collection.

Flesch-Kincaid
Run P@10 nDCG@10 RBP uRBP uRBPgr
Baseline 0.3455 0.3027 0.3569 0.3148 0.3033

Basic Formula (3.3)

Wiki Link 0.25 0.3121 0.2653 0.3029 0.2460 0.2432
Wiki Link 0.50 0.2894 0.2486 0.2850 0.2417 0.2348
Wiki Link 0.75 0.2939 0.2420 0.2756 0.2402 0.2331
Wiki Link 0.25 Health 0.3409 0.2928 0.3408 0.2916 0.2828
Wiki Link 0.50 Health 0.3348 0.2877 0.3320 0.2923 0.2820
Wiki Link 0.75 Health 0.3227 0.2641 0.3202 0.2822 0.2728

Log Formula (3.4)

Wiki Link 0.25 0.3152 0.2707 0.3081 0.2584 0.2533
Wiki Link 0.50 0.2909 0.2503 0.2942 0.2526 0.2450
Wiki Link 0.75 0.3061 0.2459 0.2857 0.2519 0.2439
Wiki Link 0.25 Health 0.3394 0.2923 0.3379 0.2943 0.2854
Wiki Link 0.50 Health 0.3364 0.2874 0.3344 0.2958 0.2858
Wiki Link 0.75 Health 0.3242 0.2675 0.3260 0.2885 0.2792

Arctan Formula (3.5)

Wiki Link 0.25 0.3621 0.3209 0.3640 0.3116 0.3030
Wiki Link 0.50 0.3333 0.3039 0.3507 0.3048 0.2953
Wiki Link 0.75 0.3288 0.2898 0.3356 0.2967 0.2879
Wiki Link 0.25 Health 0.3591 0.3223 0.3785 0.3314 0.3179
Wiki Link 0.50 Health 0.3576 0.3160 0.3684 0.3289 0.3152
Wiki Link 0.75 Health 0.3545 0.3015 0.3646 0.3261 0.3138

A.5 MedlinePlus

Table A.13: MedlinePlus SMOG Re-Rank results for CLEF eHealth 2015 collection.

SMOG
Run P@10 nDCG@10 RBP uRBP uRBPgr
Baseline 0.3455 0.3027 0.3569 0.3148 0.3033

Basic Formula (3.3)

Medline AltNames 0.3364 0.2614 0.3355 0.2912 0.2808
Medline TF 5 0.3500 0.2856 0.3495 0.3014 0.2914
Medline TF 10 0.3621 0.2937 0.3566 0.3051 0.2961
Medline TF 15 0.3515 0.2906 0.3540 0.2950 0.2888

Log Formula (3.4)

Medline AltNames 0.3242 0.2527 0.3248 0.2785 0.2703
Medline TF 5 0.3318 0.2675 0.3342 0.2851 0.2770
Medline TF 10 0.3364 0.2740 0.3392 0.2908 0.2829
Medline TF 15 0.3318 0.2763 0.3381 0.2886 0.2815

Arctan Formula (3.5)

Medline AltNames 0.3379 0.2649 0.3417 0.2931 0.2841
Medline TF 5 0.3409 0.2734 0.3467 0.2941 0.2854
Medline TF 10 0.3439 0.2779 0.3528 0.2999 0.2920
Medline TF 15 0.3364 0.2761 0.3469 0.2940 0.2863
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Table A.14: MedlinePlus FOG Re-Rank results for CLEF eHealth 2015 collection.

FOG
Run P@10 nDCG@10 RBP uRBP uRBPgr
Baseline 0.3455 0.3027 0.3569 0.3148 0.3033

Basic Formula (3.3)

Medline AltNames 0.3288 0.2569 0.3216 0.2891 0.2783
Medline TF 5 0.3439 0.2850 0.3371 0.3019 0.2923
Medline TF 10 0.3455 0.2845 0.3376 0.2944 0.2880
Medline TF 15 0.3379 0.2822 0.3401 0.2902 0.2860

Log Formula (3.4)

Medline AltNames 0.3030 0.2350 0.2984 0.2692 0.2590
Medline TF 5 0.3182 0.2574 0.3075 0.2772 0.2676
Medline TF 10 0.3197 0.2565 0.3115 0.2803 0.2715
Medline TF 15 0.3091 0.2506 0.3060 0.2693 0.2626

Arctan Formula (3.5)

Medline AltNames 0.2985 0.2358 0.2975 0.2739 0.2617
Medline TF 5 0.3030 0.2460 0.3009 0.2769 0.2648
Medline TF 10 0.3106 0.2492 0.3077 0.2833 0.2720
Medline TF 15 0.3015 0.2441 0.2968 0.2725 0.2613

Table A.15: MedlinePlus Flesch-Kincaid Re-Rank results for CLEF eHealth 2015 collection.

Flesch-Kincaid
Run P@10 nDCG@10 RBP uRBP uRBPgr
Baseline 0.3455 0.3027 0.3569 0.3148 0.3033

Basic Formula (3.3)

Medline AltNames 0.3045 0.2354 0.2981 0.2663 0.2562
Medline TF 5 0.3091 0.2477 0.3040 0.2709 0.2605
Medline TF 10 0.3121 0.2472 0.3064 0.2662 0.2592
Medline TF 15 0.3106 0.2487 0.3104 0.2629 0.2588

Log Formula (3.4)

Medline AltNames 0.3106 0.2414 0.3046 0.2744 0.2634
Medline TF 5 0.3076 0.2501 0.3119 0.2801 0.2689
Medline TF 10 0.3091 0.2468 0.3102 0.2755 0.2663
Medline TF 15 0.3076 0.2471 0.3134 0.2719 0.2649

Arctan Formula (3.5)

Medline AltNames 0.3455 0.2883 0.3533 0.3165 0.3032
Medline TF 5 0.3545 0.3098 0.3674 0.3253 0.3128
Medline TF 10 0.3591 0.3143 0.3687 0.3257 0.3132
Medline TF 15 0.3530 0.3101 0.3685 0.3209 0.3095
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A.6 ICD-10

Table A.16: ICD-10 SMOG Re-Rank results for CLEF eHealth 2015 collection.

SMOG
Run P@10 nDCG@10 RBP uRBP uRBPgr
Baseline 0.3455 0.3027 0.3569 0.3148 0.3033

Basic Formula (3.3)
ICD-10 TF 5 0.3561 0.2967 0.3581 0.3065 0.2980
ICD-10 TF 10 0.3591 0.2956 0.3548 0.2964 0.2921
ICD-10 TF 15 0.3697 0.3082 0.3606 0.2989 0.2969

Log Formula (3.4)
ICD-10 TF 5 0.3364 0.2827 0.3416 0.2933 0.2853
ICD-10 TF 10 0.3470 0.2923 0.3463 0.2960 0.2892
ICD-10 TF 15 0.3455 0.2926 0.3476 0.2960 0.2903

Arctan Formula (3.5)
ICD-10 TF 5 0.3364 0.2821 0.3501 0.3012 0.2920
ICD-10 TF 10 0.3424 0.2811 0.3503 0.3023 0.2934
ICD-10 TF 15 0.3424 0.2798 0.3454 0.2922 0.2860

Table A.17: ICD-10 FOG Re-Rank results for CLEF eHealth 2015 collection.

FOG
Run P@10 nDCG@10 RBP uRBP uRBPgr
Baseline 0.3455 0.3027 0.3569 0.3148 0.3033

Basic Formula (3.3)
ICD-10 TF 5 0.3606 0.3013 0.3555 0.3176 0.3067
ICD-10 TF 10 0.3576 0.3005 0.3516 0.3063 0.2996
ICD-10 TF 15 0.3591 0.2980 0.3476 0.2989 0.2942

Log Formula (3.4)
ICD-10 TF 5 0.3152 0.2572 0.3099 0.2810 0.2703
ICD-10 TF 10 0.3167 0.2532 0.3056 0.2763 0.2666
ICD-10 TF 15 0.3136 0.2505 0.3024 0.2726 0.2631

Arctan Formula (3.5)
ICD-10 TF 5 0.2955 0.2398 0.2955 0.2698 0.2591
ICD-10 TF 10 0.2924 0.2367 0.2891 0.2627 0.2529
ICD-10 TF 15 0.2939 0.2370 0.2880 0.2619 0.2517

Table A.18: ICD-10 Flesch-Kincaid Re-Rank results for CLEF eHealth 2015 collection.

Flesch-Kincaid
Run P@10 nDCG@10 RBP uRBP uRBPgr
Baseline 0.3455 0.3027 0.3569 0.3148 0.3033

Basic Formula (3.3)
ICD-10 TF 5 0.3333 0.2797 0.3325 0.2962 0.2862
ICD-10 TF 10 0.3394 0.2821 0.3304 0.2877 0.2819
ICD-10 TF 15 0.3394 0.2808 0.3271 0.2842 0.2784

Log Formula (3.4)
ICD-10 TF 5 0.3242 0.2657 0.3261 0.2925 0.2826
ICD-10 TF 10 0.3258 0.2702 0.3268 0.2897 0.2820
ICD-10 TF 15 0.3242 0.2624 0.3221 0.2851 0.2777

Arctan Formula (3.5)
ICD-10 TF 5 0.3682 0.3205 0.3818 0.3419 0.3285
ICD-10 TF 10 0.3621 0.3128 0.3785 0.3346 0.3244
ICD-10 TF 15 0.3652 0.3157 0.3759 0.3300 0.3210
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A.7 Latent Dirichlet Allocation

Table A.19: Latent Dirichlet Allocation SMOG Re-Rank results for CLEF eHealth 2015 collec-
tion.

SMOG
Run P@10 nDCG@10 RBP uRBP uRBPgr
Baseline 0.3455 0.3027 0.3569 0.3148 0.3033

Basic Formula (3.3)

LDA 3T 1W 0.3015 0.2336 0.3020 0.2640 0.2499
LDA 3T 5W 0.3015 0.2423 0.2978 0.2455 0.2392
LDA 3T 10W 0.3227 0.2631 0.3147 0.2434 0.2469
LDA 1T 5W 0.3242 0.2616 0.3259 0.2765 0.2688
LDA 5T 5W 0.3076 0.2541 0.3027 0.2289 0.2346
LDA 10T 5W 0.3864 0.3256 0.3810 0.2702 0.2834

Log Formula (3.4)

LDA 3T 1W 0.2970 0.2245 0.2915 0.2492 0.2399
LDA 3T 5W 0.2712 0.2168 0.2823 0.2389 0.2325
LDA 3T 10W 0.2909 0.2321 0.2932 0.2389 0.2385
LDA 1T 5W 0.3121 0.2411 0.3088 0.2635 0.2554
LDA 5T 5W 0.2848 0.2334 0.2960 0.2378 0.2382
LDA 10T 5W 0.3485 0.2789 0.3440 0.2704 0.2715

Arctan Formula (3.5)

LDA 3T 1W 0.3197 0.2407 0.3149 0.2733 0.2607
LDA 3T 5W 0.3091 0.2440 0.3109 0.2667 0.2569
LDA 3T 10W 0.3273 0.2626 0.3271 0.2720 0.2678
LDA 1T 5W 0.3379 0.2596 0.3296 0.2872 0.2752
LDA 5T 5W 0.3227 0.2603 0.3213 0.2622 0.2580
LDA 10T 5W 0.3530 0.2897 0.3667 0.2895 0.2876
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Table A.20: Latent Dirichlet Allocation FOG Re-Rank results for CLEF eHealth 2015 collection.

FOG
Run P@10 nDCG@10 RBP uRBP uRBPgr
Baseline 0.3455 0.3027 0.3569 0.3148 0.3033

Basic Formula (3.3)

LDA 3T 1W 0.3152 0.2406 0.2944 0.2641 0.2525
LDA 3T 5W 0.2955 0.2373 0.2813 0.2359 0.2315
LDA 3T 10W 0.3030 0.2513 0.3043 0.2343 0.2417
LDA 1T 5W 0.3136 0.2489 0.3038 0.2637 0.2573
LDA 5T 5W 0.3076 0.2523 0.3039 0.2350 0.2412
LDA 10T 5W 0.3606 0.3033 0.3515 0.2720 0.2784

Log Formula (3.4)

LDA 3T 1W 0.2985 0.2108 0.2651 0.2391 0.2302
LDA 3T 5W 0.2667 0.2040 0.2502 0.2232 0.2168
LDA 3T 10W 0.2697 0.2047 0.2608 0.2228 0.2214
LDA 1T 5W 0.2985 0.2151 0.2704 0.2416 0.2331
LDA 5T 5W 0.2712 0.2019 0.2641 0.2235 0.2218
LDA 10T 5W 0.3152 0.2520 0.3065 0.2647 0.2628

Arctan Formula (3.5)

LDA 3T 1W 0.2833 0.2108 0.2692 0.2459 0.2371
LDA 3T 5W 0.2485 0.1960 0.2555 0.2377 0.2280
LDA 3T 10W 0.2455 0.1932 0.2625 0.2382 0.2318
LDA 1T 5W 0.2833 0.2177 0.2762 0.2537 0.2435
LDA 5T 5W 0.2500 0.1935 0.2625 0.2343 0.2282
LDA 10T 5W 0.2833 0.2250 0.2880 0.2617 0.2550

Table A.21: Latent Dirichlet Allocation Flesch-Kincaid Re-Rank results for CLEF eHealth 2015
collection.

Flesch-Kincaid
Run P@10 nDCG@10 RBP uRBP uRBPgr
Baseline 0.3455 0.3027 0.3569 0.3148 0.3033

Basic Formula (3.3)

LDA 3T 1W 0.2864 0.2091 0.2726 0.2410 0.2323
LDA 3T 5W 0.2742 0.2022 0.2587 0.2200 0.2146
LDA 3T 10W 0.2924 0.2258 0.2790 0.2200 0.2246
LDA 1T 5W 0.3015 0.2249 0.2785 0.2391 0.2337
LDA 5T 5W 0.2970 0.2314 0.2840 0.2224 0.2280
LDA 10T 5W 0.3379 0.2791 0.3280 0.2574 0.2624

Log Formula (3.4)

LDA 3T 1W 0.2864 0.2093 0.2731 0.2426 0.2341
LDA 3T 5W 0.2727 0.2023 0.2592 0.2258 0.2201
LDA 3T 10W 0.2818 0.2117 0.2706 0.2231 0.2244
LDA 1T 5W 0.2985 0.2200 0.2812 0.2440 0.2380
LDA 5T 5W 0.2894 0.2138 0.2711 0.2235 0.2241
LDA 10T 5W 0.3136 0.2453 0.3059 0.2497 0.2528

Arctan Formula (3.5)

LDA 3T 1W 0.3439 0.2849 0.3471 0.3091 0.2936
LDA 3T 5W 0.3515 0.2810 0.3371 0.2814 0.2755
LDA 3T 10W 0.3364 0.2690 0.3319 0.2695 0.2683
LDA 1T 5W 0.3621 0.3034 0.3675 0.3171 0.3064
LDA 5T 5W 0.3348 0.2750 0.3337 0.2710 0.2696
LDA 10T 5W 0.3712 0.3016 0.3693 0.3067 0.3060
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Table A.22: UMLS SMOG Re-Rank results for CLEF eHealth 2015 collection.

SMOG
Run P@10 nDCG@10 RBP uRBP uRBPgr
Baseline 0.3455 0.3027 0.3569 0.3148 0.3033

Basic Formula (3.3)
UMLS TF 5 0.3636 0.2895 0.3594 0.2947 0.2911
UMLS TF 10 0.3424 0.2807 0.3524 0.2763 0.2756
UMLS TF 15 0.3545 0.2945 0.3562 0.2818 0.2801

Log Formula (3.4)
UMLS TF 5 0.3242 0.2571 0.3372 0.2775 0.2733
UMLS TF 10 0.3167 0.2595 0.3295 0.2648 0.2613
UMLS TF 15 0.3258 0.2706 0.3314 0.2673 0.2653

Arctan Formula (3.5)
UMLS TF 5 0.3652 0.2940 0.3775 0.3115 0.3057
UMLS TF 10 0.3561 0.2858 0.3602 0.2884 0.2845
UMLS TF 15 0.3500 0.2811 0.3563 0.2827 0.2821

Table A.23: UMLS FOG Re-Rank results for CLEF eHealth 2015 collection.

FOG
Run P@10 nDCG@10 RBP uRBP uRBPgr
Baseline 0.3455 0.3027 0.3569 0.3148 0.3033

Basic Formula (3.3)
UMLS TF 5 0.3152 0.2676 0.3284 0.2812 0.2774
UMLS TF 10 0.3242 0.2622 0.3315 0.2684 0.2712
UMLS TF 15 0.3258 0.2696 0.3356 0.2708 0.2764

Log Formula (3.4)
UMLS TF 5 0.3030 0.2421 0.3002 0.2611 0.2588
UMLS TF 10 0.3061 0.2487 0.3025 0.2605 0.2581
UMLS TF 15 0.2985 0.2435 0.3006 0.2580 0.2570

Arctan Formula (3.5)
UMLS TF 5 0.3106 0.2544 0.3217 0.2878 0.2816
UMLS TF 10 0.2970 0.2467 0.3063 0.2717 0.2668
UMLS TF 15 0.3045 0.2468 0.3049 0.2725 0.2677

Table A.24: UMLS Flesch-Kincaid Re-Rank results for CLEF eHealth 2015 collection.

Flesch-Kincaid
Run P@10 nDCG@10 RBP uRBP uRBPgr
Baseline 0.3455 0.3027 0.3569 0.3148 0.3033

Basic Formula (3.3)
UMLS TF 5 0.3015 0.2402 0.3071 0.2586 0.2569
UMLS TF 10 0.3136 0.2464 0.3150 0.2582 0.2605
UMLS TF 15 0.3061 0.2447 0.3126 0.2553 0.2596

Log Formula (3.4)
UMLS TF 5 0.3076 0.2500 0.3186 0.2725 0.2708
UMLS TF 10 0.3152 0.2522 0.3171 0.2660 0.2665
UMLS TF 15 0.3061 0.2487 0.3171 0.2677 0.2689

Arctan Formula (3.5)
UMLS TF 5 0.3667 0.3222 0.3962 0.3428 0.3340
UMLS TF 10 0.3652 0.3126 0.3829 0.3185 0.3173
UMLS TF 15 0.3561 0.2960 0.3657 0.3071 0.3058
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