

Faculdade de Engenharia da Universidade do Porto

Optimization and Simulation of Manufacturing
Systems

Luís Filipe de Jesus Vieira Pereira

FOR JURY EVALUATION

Mestrado Integrado em Engenharia Electrotécnica e de Computadores

Major Automação

Supervisors: Jorge Pinho de Sousa and Samuel Moniz

June 27, 2016

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Aberto da Universidade do Porto

https://core.ac.uk/display/143405989?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ii

Let all things be done decently and in order

I Corinthians

© Luís Filipe de Jesus Vieira Pereira, 2016

iii

Abstract

Production planning and scheduling are critical in matters of cost reduction, resource

sustainability and performance improvement, these being crucial factors due to the highly

competitive nature of today’s industry. The technological development allowed the emergence

of hybrid methods of optimization and simulation to perform the referred actions with better

results.

In this dissertation, a set of methods related with planning and/or scheduling are presented,

many of which are a hybridization of optimization and simulation. From those methods, some

were chosen as inspiration to the work developed in this dissertation, Kim & Kim (2001) being

one of those influences. However, to that work it is intended to add WIP effects, setup times,

and scheduling components, as well as improving the quality of its results. The proposed

methodology consists in the interaction between a Mixed Integer Programming model and a

simulation model, the latter being used as an evaluator of the solution proposed by the first,

while also implementing the developed scheduling technique. In the case of an infeasible

solution, the simulation results will serve as input to the MIP model to adjust some parameters

in an intent to produce more realistic results. The proposed methodology was applied to a case

study concerning a project-oriented company with production driven by customer demand.

Results prove the proposed methodology to be satisfactory and of good quality in handling

the case study’s problems, namely its bottleneck features. Moreover, the results support the

proposed methodology as a viable alternative for production planning and scheduling problems

in similar situations.

v

Acknowledgements

There are people without whom this dissertation would not have been written and to whom

I am greatly thankful.

My parents, whose support and dedication kept me motivated and encouraged me to tackle

the gloomiest problems that surged throughout this dissertation.

My supervisor and co-supervisor for their knowledge, motivation, enthusiasm, and mostly

for their time. Their advices were crucial to the success of this dissertation.

My brothers, for the constant challenges that shaped me to be dedicated and persistent,

traits that were fundamental to embrace this thesis as a challenge and to always try to do my

best.

vii

List of Contents

Abstract .. iii

Acknowledgements .. v

List of Contents ...vii

List of Figures ... ix

List of Tables .. xi

Abbreviations and Symbols ... xiii

Chapter 1 ... 1

Introduction.. 1

1.1 Motivation ... 1

1.2 Concepts and Context ... 2

1.2.1 Operations Management and Dynamics of Production Systems 2

1.2.1.1 Push and Pull ... 3

1.2.2 Planning and Scheduling ... 5

1.2.3 Modelling and Solving .. 5

1.3 Objectives of the Research ... 6

1.4 Methodology .. 6

1.5 Structure of this dissertation ... 7

Chapter 2 ... 9

Literature Review ... 9

2.1 Optimization-Simulation Methods .. 10

2.2 Meta-Heuristics .. 12

2.3 Clearing Functions .. 13

2.4 Conclusion ... 14

Chapter 3 .. 17

Simulation/Optimization Approach.. 17

3.1 Problem Description .. 17

viii

3.2 Case Study ... 18

3.2.1 Production Process .. 19

3.2.2 Planning Process ... 19

3.2.3 Opportunities .. 20

3.2.4 Summarized Description .. 20

3.3 Optimization Model .. 20

3.3.1 Mathematical Formulation ... 21

3.3.2 Model Implementation and Software ... 24

3.3.3 Data Input and Output .. 25

3.3.4 BOM Handling .. 25

3.3.5 Variation of Period Duration ... 26

3.4 Simulation Model ... 27

3.4.1 AnyLogic .. 27

3.4.2 Process Modelling Library .. 32

3.4.3 Flowchart composition of the system .. 35

3.4.4 Data Input and Output .. 39

3.4.5 Function description .. 40

3.4.5.1 produceProduct ... 40

3.4.5.2 reorderProduct ... 43

3.4.5.3 executeOrder and executeReOrder .. 44

3.4.6 Order and reorder control.. 45

3.5 Scheduling/Sequencing .. 45

3.6 Simulation and Optimization Interaction.. 49

3.6.1 Stopping Criteria .. 50

Chapter 4 .. 53

Approach Assessment ... 53

4.1 Impact of different period durations on the approach performance 53

4.2 Proposed Scheduling vs FIFO .. 56

4.3 Result Analysis of the period length ... 59

4.4 High bottleneck utilization vs low bottleneck utilization 60

Chapter 5 .. 63

Conclusion .. 63

5.1 Further research .. 64

Chapter 6 .. 65

Bibliography .. 65

ix

List of Figures

Figure 1.1 - Push vs Pull flows ... 4

Figure 2.1 - General hybrid modelling procedure .. 10

Figure 3.1 - Production and Assembly systems ... 18

Figure 3.2 - Multi-level dependence example .. 23

Figure 3.3 - Number of periods vs period duration... 26

Figure 3.4 - Parameter Block .. 28

Figure 3.5 - Collection Block .. 29

Figure 3.6 - ExcelFile Block ... 30

Figure 3.7 - Variable Block .. 30

Figure 3.8 - Population Block ... 30

Figure 3.9 - Event Block.. 31

Figure 3.10 - Enter Block .. 32

Figure 3.11 - Exit Block .. 32

Figure 3.12 - ResourcePool Block ... 33

Figure 3.13 - Service Block .. 33

Figure 3.14 - Queue Block ... 34

Figure 3.15 - Select Output5 Block ... 34

Figure 3.16 - Hold Block ... 35

Figure 3.17 - Time Measure Start and Time Measure End Blocks 35

Figure 3.18 - Schematic representation of the system .. 36

Figure 3.19 - Production area logical flowchart .. 37

Figure 3.20 - Data Set Block ... 37

Figure 3.21 - First Supermarket logical flowchart.. 38

Figure 3.22 - Pre-assembling logical flowchart ... 38

Figure 3.23 - Second Supermarket logical flowchart .. 39

Figure 3.24 - Assembly area logical flowchart .. 39

x

Figure 3.25 - Function Block .. 40

Figure 3.26 - Production sequence (with scheduling) ... 46

Figure 3.27 - Scheduling algorithm flowchart .. 47

Figure 4.1 - BOM structure example ... 54

Figure 4.2 - Average bottleneck utilization impact on optimization run time 61

xi

List of Tables

Table 2.1 - Literature Search Method Keywords Set .. 9

Table 3.1 - Formulation Elements - Indices ... 21

Table 3.2 - Formulation Elements - Sets .. 21

Table 3.3 - Formulation Elements - Variables .. 22

Table 3.4 - Formulation Elements - Parameters .. 22

Table 3.5 - Gurobi included solvers .. 24

Table 3.6 - Prod class parameters .. 28

Table 3.7 - Order class parameters .. 30

Table 3.8 - Populations and objective in Simulation model 31

Table 3.9 - produceProduct arguments .. 40

Table 3.10 - reorderProduct arguments ... 43

Table 3.11 - Stopping conditions ... 51

Table 4.1 - Lead time conversion comparison .. 54

Table 4.2 - Situation 1 Optimization output .. 55

Table 4.3 - Situation 2 Optimization output .. 55

Table 4.4 - List of products.. 56

Table 4.5 - Immediate product dependency .. 56

Table 4.6 - WorkCentre information ... 56

Table 4.7 - Product related costs ... 56

Table 4.8 - Operation Sequence .. 57

Table 4.9 - WorkCentre setup times ... 57

Table 4.10 - Customer demand ... 57

Table 4.11 - Test information (scheduling comparison) ... 58

Table 4.12 - Instance size on variables .. 58

Table 4.13 - Test results (scheduling comparison) ... 58

Table 4.14 - Period duration test results .. 60

xii

Table 4.15 - Integer and binary variables per period duration 60

Table 4.16 - Utilization vs run time test results ... 61

xiii

Abbreviations and Symbols

AME Analytical Model Enhancement

ATO Assemble-to-Order

BOM Bill of Materials

CF Clearing function

DES Discrete-Event Simulation

DoE Design of Experiment

FFD Fractional factory design

FIFO First In First Out

GA Genetic algorithms

HPP Hierarchical production planning

JIT Just in Time

KPI Key Performance Indicators

LIFO Last In First Out

LP Linear Programming

MILP Mixed-Integer Linear Programming

MIP Mixed Integer Programming

MOO Multi-Objective Optimization

MTO Make-to-Order

MTS Make-to-Stock

MPPFLP Multi-Product, Multi-Period Facility Location Problem

OM Operations Management

PLE Personal Learning Edition

PML Process Modelling Library

ROSA Recursive Optimization-Simulation Approach

SM Scientific Management

SPSA Simultaneous Perturbation Stochastic Approximation

WIP Work in Process

Chapter 1

Introduction

Production planning and scheduling are critical functions in manufacturing systems in

matters of operational costs reduction, resource sustainability, and performance improvement.

Market’s increased accessibility and consequent competitiveness encouraged a generalized

investment in continuous improvement. Improvements in modelling and the verified leap in

technology allow the development of new methods to tackle these problems.

This chapter covers in some detail, the following aspects of the work: the motivation for

this project; theory and concepts context; objectives and questions to answer; brief

methodology explanation; and document structure presentation.

1.1 Motivation

Today’s strong and ever-growing interconnection led to market globalization consequently

increasing its competitiveness. Customer options enlarged significantly and companies had to

intensely compete to conquer each client. This ferocious rivalry stimulated continuous

improvement methodologies inside corporations. Production systems, integrant parts of

companies and industries, felt the need to attain and maintain high levels of quality and

efficiency to be attractive to the market.

Production planning and scheduling are typically critical functions regarding operational

costs reduction and overall system improvement. Nevertheless, operational complexity has

highly increased with time and analytical methods used in the past are no longer viable due to

the unpractical solving times. Hence, alternative approaches are of uttermost necessity to

manage planning and scheduling problems related to high complexity and size production

systems.

Traditionally, simulation was used in cases where the complexity or nonlinear nature of

systems could not be handled by analytical methods. Nonetheless, simulation is a tool for

solution analysis and optimal solutions can neither be obtained through simulation nor proved

to be optimal with resource to it. Therefore, simulation allowed for strong modeling without

guarantee of optimality.

2

Advances in modelling techniques and the simultaneous increase in computational power

and decrease in computational costs allowed both simulation and optimization techniques,

usually considered to be separate or alternative, to be combined in a hybrid manner.

The relatively recent development start of these hybrid methods is an opportunity to

explore due to the high potential this combination represents to solve production planning and

scheduling problems. The methodology will be briefly presented in section 1.4.

1.2 Concepts and Context

1.2.1 Operations Management and Dynamics of Production Systems

This dissertation is comprised in the Operations Management (OM) discipline that came from

Scientific Management (SM), the first management discipline dating back to the late 19th

century. Despite not being the first person to show interest and seek to rationalize the practice

of management, Frederick W. Taylor (1856-1915) was the first to generate “the sustained

interest, active following, and systematic framework necessary to plausibly proclaim

management as a discipline” Hopp and Spearman (2011) [1]. Taylor defended that planning and

doing are distinct activities that should be addressed by different job categories. This principle

is the backbone of modern management. Besides Taylor, many were the contributors to SM and

OM and are detailed in [1].

In [1], many definitions used in production systems are explained. Notwithstanding the

importance of them all, only a few will be detailed in this dissertation due to its pertinence.

Hopp and Spearman (2011) [1] use the term workstation to refer a “collection of one or

more machines or manual stations that perform (essentially) identical functions. (…) In process-

oriented layouts, workstations are physically organized according to the operations they

perform”. In this dissertation the term WorkCentre is used as a synonymous of workstation.

When the term product is used in this dissertation it refers to the synonymous term part

described as “a piece of raw material, a component, a subassembly, or an assembly that is

worked on at the workstations in a plant” [1]. The same way, non-elementary components are

subassemblies, elementary components are components and final products are end items.

The terms routing, order, raw material, and lead time are also explained.

Routing “describes the sequence of workstations passed through by a part.”. Order might

be of two types: external or internal. External orders are customer orders which represent

customer requests “for a particular part number, in a particular quantity, to be delivered on a

particular date”. Raw material “refers to parts purchased from outside the plant”.

The lead time is described, for a determined line or routing, as “the time allocated for

production of a part on that routing or line”, however this is not the definition used in this

dissertation. In this dissertation, lead time is used as the total time it took the part to go from

its production start point to its finish point, being composed by the production time plus the

waiting time.

Hopp and Spearman (2011) [1] describe Work in Process (WIP) as jobs “that have not yet

arrived at an inventory location”. WIP is a critical factor for manufacturing and production

system’s performance as it affects throughput (TH). TH is defined as “average output of a

production process” but it can be further detailed as “the average quantity of good

(nondefective) parts (…) produced per unit time”. This concept is important to understand

3

Little’s Law (12), stating that “at every WIP level, WIP is equal to the product of throughput

and cycle time” (CT).

 𝑊𝐼𝑃 = 𝑇𝐻 ∗ 𝐶𝑇 (1)

The cycle time used in the definition refers to the term lead time in this dissertation. This

law translates that when the systems reaches its maximum throughput capacity an increment

in WIP will lead to an increase in lead time. Little’s law is not actually a law but a tautology

meaning the proposed relation is not accurate in all systems. Nonetheless, it can be used as a

“conjecture about the nature of manufacturing systems” to understand the influence of WIP in

such systems. In the studied case (that will be presented in section 3.2), lead time does not

vary linearly with WIP because the different products have different processing time, being the

wait time dependent not only on the number of products but also on the type of operation

those products will go through. Therefore, the lead time does not change linearly due to

variability.

Hopp and Spearman (2011) [1] formally define variability as “the quality of nonuniformity

of a class of entities. (…) In manufacturing systems, there are many attributes in which

variability is of interest. Physical dimensions, process times, (…), setup times, and so on”.

Variability can either be controllable or random. Controllable variation occurs “as a direct

result of decisions” whereas random variation “is a consequence of events beyond our

immediate control”.

Variation has a nefarious influence on cycle time (in this dissertation referred to as lead

time). For a single station, it is comprised by move time plus queue time plus setup time plus

process time. For assembly operations, waiting all components is added to the equation.

Variation highly influences waiting times and, as generally concluded in many studies, the

waiting times tend to be the highest factors in the described equations. Therefore, control over

variability is of highest importance.

In [1], there are sections entirely dedicated to variability and served as references for this

dissertation. However, due to the extension of the subject, variability and its consequences

will not be further detailed here.

1.2.1.1 Push and Pull

Push and Pull are concepts widely used in manufacturing and production systems

descriptions, sometimes not in a precise and even contradictory manner.

Taiichi Ohno, the father of Just in Time (JIT) used the term pull in a very general sense in

[2]:

“Manufacturers and workplaces can no longer base production on desktop planning alone

and then distribute, or push, them onto the market. It has become a matter of course for

customers, or users, each with a different value system, to stand in the frontline of the

marketplace and, so to speak, pull the goods they need, in the amount and at the time they

need them” [2].

However, the interpretations of this concept are diverse, and this wide range of definitions

is present, for example in [3-8].

Bonney et al. (1999) [9] analysis some of those interpretations and opts for a definition

based on the information flows used for control. When the control information flow is in the

opposite direction to the material flow, the system is of type pull. When the control information

4

flow is in the same direction as the material flow, the system is of type push. This definition is

also used in this dissertation.

Information control information is the production trigger. In a push strategy, when a

WorkCentre finishes its operation on a certain part it triggers the production order for the next

WorkCentre in that part’s routing. In a pull strategy, when a WorkCentre is to execute an order

it triggers the orders related to its dependencies, either material or operational.

Figure 1.1 - Push vs Pull flows

Customer orders serve as control information inputs. Considering Figure 1.1, for the push

system, customer orders would enter in WC1 (first WorkCentre) and the information would

spread from that point onward. For the pull system, customer orders would enter WC3 (third

and last WorkCentre) and would propagate from that point backward.

The benefits of the pull system are presented in [1] and are divided in: reduced

manufacturing costs, reduced variability, improved quality, flexibility maintenance, and

facilitation of work ahead.

Systems often encompass both push and pull features, originating push-pull strategies.

While push and pull systems are generally (but not only) associated with Make-to-Stock (MTS)

and Make-to-Order (MTO) strategies, respectively, push-pull systems are related to Assemble-

to-Order (ATO) strategies.

ATO strategies are developed around a decoupling point (or more) from where the

production strategy changes. This strategy is especially benefic in systems where different

combination of a set of components allows the production of many different products suited to

customer needs. A good example is ice-cream based on flavors. From a relatively small set of

flavors, many different compositions can be made. If there are 5 flavors and customer can

choose up to 3 scoops, there are 155 possibilities (5*5*5 for three scoops plus 5*5 for two scoops

plus 5 for one scoop).

These systems work in MTS strategy up to the decoupling point (being the selling point in

the ice-cream case) and in MTO strategy from that point onward. These systems benefit from

both economies of scale and possibility of customization based on customer demand.

WC1 WC2 WC3

WC1 WC2 WC3

Control Information Flow

Material Flow

Push system

Pull system

5

1.2.2 Planning and Scheduling

Independently of the strategy in use, virtually all manufacturing systems are desired to

provide “on-time delivery, minimal work in process, short customer lead times, and maximum

utilization of resources” [1]. Unluckily, these goals conflict. Production scheduling aims at

striking a profitable balance among these conflicting objectives.

The goals of production scheduling might be meeting due dates, maximizing utilization, or

reducing WIP and Cycle Times (in this dissertation referred to as lead times). Anyhow, this

dissertation’s interest is mainly on the first goal. Due date performance can be evaluate using

service level, fill rate, lateness, and tardiness. These and many other scheduling-related

concepts are described in [1]. In this dissertation tardiness is used together with another

measure to influence optimization parameters (explained in section 3.5). Scheduling defines

the sequence on which production orders and operations will be executed. Besides the already

defined goals of scheduling, its results impact setups, one of the main causes of controllable

variability in a system.

Scheduling is based on a plan, which is produced by production planning tasks.

The basic problem of production planning in manufacturing environments “involves viewing

the production system as a conglomerate of resource groups” (WorkCentres) “and allocating

the capacity of production resources (…) among different products over time, coordinating the

associated inventories and raw material inputs so that known or predicted customer demand is

met in the best possible manner” [10]. The “best possible manner” is not a very scientific

description of the objective and requires a better definition to form the basis of an optimization

model. Generally, this objective is minimizing the total expected costs or maximizing the total

profit of the system over the considered time interval. However, in many systems, the second

option is not easily calculated, thus the first option is the most common and generalized

approach.

System’s increase in complexity led to a two planning level approach where the upper level

generates an aggregate production plan while the lower level produces a detailed scheduling

of the work orders within the production units based on the production plan produced by the

upper level.

In short, a production plan describes what to produce in a specific time interval and the

production schedule determines the moment for each of the productions and operations

comprised in the production plan. Therefore, production planning and scheduling are related

and are crucial tasks of manufacturing systems.

1.2.3 Modelling and Solving

All the presented concepts would be useless if they could not be applied and analyzed.

System modelling is therefore of extreme relevance for the OM discipline. As referred,

manufacturing systems are growing in complexity. Not only that, but they are getting more

integrated and sophisticated. “Production planning models are very often Mixed Integer

Programming (MIP) models, because of problem features such as set-up costs and times, start-

up costs and times, machine assignment decisions, and so on.” [11]. MIP models, in opposite of

Linear Programming (LP) ones, are able to capture the discrete nature of some decisions, due

to integrality constraints. Most modelling decisions and techniques were based on [11] and [10].

The mathematical formulation used in this project is present in section 3.3.1.

6

Mathematical models are used in a generalized manner as they are, in theory, solvable. If

a real system is possible to be mathematically modelled, for instance as a MIP model, then it

is theoretically solvable. In this dissertation, the Branch and Bound algorithm design paradigm

is used. It was first proposed by Land and Doig (1960) [12] and named “Branch and Bound” by

Little et al. (1963) [13]. A Branch and Bound algorithm is based on a systematic enumeration

of candidate solutions through state space search. The set of candidate solutions can be

described as a rooted tree where the root of the tree contains the full set. Each branch of such

tree represents a subset of the solution set. To avoid the search of the entire universe of

candidate solutions, before enumerating the candidate solutions of a branch, the algorithm

checks that branch against upper and lower estimated bounds. If that branch cannot produce

a better solution than the best one found it is discarded.

The used Branch and Bound is incorporated in the MIP solver used that will be presented in

section 3.3.2.

1.3 Objectives of the Research

Increased market competitiveness led industries towards a continuous struggle to overcome

each other and successfully conquer clients. Consequently, the investigation and research in

areas related to this problematic increased significantly. This dissertation also aims at

answering this problematic. Being planning and scheduling operations at the core of the market

competitiveness problematic, this dissertation’s main objective is to tackle both these

problems. Converting this general goal into questions to be answered, this dissertation would

pose the following questions:

 How to use optimization and simulation methods to improve production planning

and scheduling in manufacturing systems?

 How to perform the interaction between optimization and simulation to obtain the

maximum benefits from the hybridization?

Nevertheless, the second question is an extension of the first one, as the interaction is

included in the utilization of the two methods. However, as it will be presented in chapter 2,

the main difference between hybrid optimization-simulation methods lays on the interactions

between both rather than on each method’s formulation. For that reason, the second question

was posed separately.

1.4 Methodology

Optimization, as the name states, consists on the search and prove of the optimal solution

for a certain problem. However, when the problem in analysis is of great size and complexity,

the solve time is unpractical. Moreover, typical mathematical models are not able to

incorporate uncertainty as well as stochastic characteristics of the system in their formulation.

Simulation, on the other hand, is able to analyze extremely complex nonlinear and

stochastic systems in a practical time. Nevertheless, simulation is mostly a tool for scenarios

evaluation and is not fit to find the optimal solution for a certain problem nor prove the

optimality of a certain solution.

7

Optimization and simulation, when analyzing the pros and cons of each method, are almost

symmetrical, i.e., the strengths of a method serve as solutions for the weaknesses of the other.

Henceforth, the hybrid use of both creates a stronger method.

Such hybridization might be performed in different ways, as reviewed by Figueira and

Almada-Lobo (2014) [14]. To tackle production planning and scheduling problems an

optimization-based approach was chosen. Based on [14], the proposed methodology is

categorized as a Recursive Optimization-Simulation Approach (ROSA) from the category of

Analytical Model Enhancement (AME) approaches.

This type of approach “consists on running recursively a relatively east (typically linear)

analytical model and a (more detailed) simulation model. Simulation uses the solution

generated by optimization and computes particular performance measures. (…) The values of

these measures are then introduced again into the analytical model, refining its parameters.

The recursive process ends after a stopping criterion is met.” [14]. Despite being a MIP model

instead of a LP model, the proposed methodology is still encompassed in this category.

As referred by Figueira and Almada-Lobo (2014) [14], each model abstraction level is

different, i.e., the detail level in the optimization model is lower than on the simulation model.

This modelling option is used to avoid the increase in complexity which optimization solve times

suffer from. However, since the simulation model will comprise the features not included in

the optimization model, the parameter adjustment made between iterations will serve a similar

purpose as the inclusion of such features in the optimization model.

The proposed approach is applied to a case study of a manufacturing system working on a

project-based strategy where customer demand drives production. Final products are

assembled from standard components built from processed metal sheets (raw material).

Previous system strategy presents many opportunities that the proposed approach aims to

solve. One of the problems in the system is the bottleneck WorkCentre being so majorly due to

long setup times. Besides the bottleneck WorkCentre there are five other WorkCentres, defined

by the type of operations developed in them (process-oriented layout).

The iterative approach and the case study to which it is applied will be further detailed in

chapter 3.

1.5 Structure of this dissertation

This introductory chapter will be followed by a literature review where techniques used to

tackle planning and or scheduling problems are presented and analyzed. Afterwards, the

proposed methodology is exposed in chapter 3 including the presentation of the case study.

Following this chapter, results of several instances are presented and analyzed. Finally, the

dissertation closes (chapter 5) with the statement of the most important results and

conclusions, as well as future work that could be applied to the proposed approach.

Chapter 2

Literature Review

The combination of increased market competitiveness and technology progress pushed

developers and researchers towards an intensive search and development process for better

tools to handle production planning and scheduling problems. The literature on such methods

and approaches is vast making unviable the inclusion and analysis of its entirety. Hybrid

approaches, referred in the previous chapter as generally better than their isolated parts, were

the main focus of this research appearing, however, some methods that do not fit this category

but were kept due to the value they present.

Information and references were selected and gathered using an iterative approach.

Primarily, the search method was carried out with resource to Google Scholar and a set of

keywords. The search results were then analyzed by the sequence: Abstract and Introduction,

Conclusion, and finally the description of the approach.

If valuable aspects were found during this first analysis process, the reference was kept and

marked for more detailed analysis and its references were used as a second level for the search

cycle.

 The third step was to search for citations of the highest quality articles or books from the

selected ones to find more recent work based on the same foundations.

In some of the iterations of the presented cycle, the found articles would consist in state-

of-the-art texts, taxonomies or reviews of the best methods to solve this type of problems, at

the time of its writing. Those articles also served as reference for the gathering of quality

literature.

After a few iterations of such cycle, the resultant articles and books started to become

repetitive and that was when the gathering moment was considered sufficient, beginning the

second, more detailed and exhaustive, moment of analysis. Afterwards, the references

considered to be of most relevance were grouped according to the nature of the proposed

methods.
Table 2.1 - Literature Search Method Keywords Set

Production planning Production scheduling Simulation Optimization

Modelling Multi Product Multi Period State of the art WIP

10

2.1 Optimization-Simulation Methods

The solutions based on some kind of hybridization of optimization and simulation methods

are of great interest as they are the most similar to this dissertation’s proposed approach.

Understanding that the disadvantages from both optimization (analytical) and simulation

methods could be mitigated by the advantages of the other, Byrne and Bakir (1999) [15] studied

and developed an hybrid model between the two types of solution for the Multi Period Multi

Product Production Planning Problem. The approach is based on an iterative process where the

optimization results are evaluated by the simulation model If the results are not valid, the

simulation model will adjust a specific set of parameters of the optimization model and repeat

the process with more restrict conditions. When the results from the analytical method are

valid, that resulting production plan is “both mathematically optimal and practically feasible”

[15]. This article presents the base concept for several approaches, including the one proposed

in this dissertation. Although the authors used LP as the analytical tool for their case study, the

general concept allows for any type of optimization method to be applied.

Kim and Kim (2001) [16] leveraged on this approach and extends it by changing the LP model

formulation considering factors that directly affect the capacity and workload of the resources

and allowing production orders launched in a determined period to be stretched further into

future periods. The authors state that the extended method proposed converges in few

iterations consistently. In fact, its behavior is explored by Irdem et al. (2010) [17] and the

method does converge consistently in a relatively small number of iterations, apart from a few

cases where cycling between two solutions was observed. The authors compared two methods

using a case study in the semiconductor manufacturing context where the complexity and size

of the problem are immense.

Figure 2.1 - General hybrid modelling procedure

Analytical Model

Simulation Model

Capacity

Feasible?

Optimal production plan

found

Parameter Adjustment

N

Y

11

Consequently, the method proposed in [16] presented a major disadvantage due to the need

for a detailed simulation model of the production facility which must be run multiple times per

iteration.

Bearing the Just-in-Time concept in mind, Byrne and Hossain (2005) [18] propose a new LP

formulation to use in the hybrid approach proposed in [15] and improved in [16]. Such a

formulation allows the partitioning of orders into a set of smaller dimension ones.

Almeder et al. (2009) [19] present a solution approach to support the operational decisions

for supply chain networks. The developed general framework consists in applying a LP or MIP

formulation in the context of a Discrete-Event Simulation (DES). Additionally, the authors

empirically show an iterative combination of simulation and LP to be competitive when

compared to deterministic MIP-models, in the context of stochastic supply chains. In the

proposed approach, the simulation model enrolls as the master process, controlling the data

communication and the LP/MIP-solver. Since the framework can be applied to stochastic

situations, it may contain stochastic and nonlinear elements. Therefore, the simulation must

be run several times and its results must be combined. Depending on the parameters and its

influence on other elements of the optimization model, the combination rules are different.

The approach begins with several simulation runs to generate initial parameter values for

the optimization model and their results are ignored in further iterations. The combined results

are calculated and stored in the database. The optimization model is executed with base on

those values and its solution is stored. Decision rules are computed based on this solution and

new simulation runs are executed.

The authors’ tests prove the combination of simulation and optimization methods to be

“worthwhile” and advantageous when compared to the more traditional alternatives and the

separate utilization of the methods.

Lee and Kim (2002) [20] proposed a solution similar to [19] and previously presented. The

authors aimed to solve the incapacity of analytic models to correctly represent the dynamic

and uncertain behavior of real supply chain systems. The suggested hybrid approach combines

analytic and simulation models considering the operation time parameter in the analytical

model as a dynamic factor adjusted by the results of the simulation model. While Almeder et

al. (2009) [19] focus on obtaining a robust production, supply and transport plan considering

stochastic and nonlinear operations and costs, estimating delays and cost-influential factors

based on simulation experimentation, Lee and Kim (2002) [20] aim to obtain more realistic

capacity estimates for the optimization model.

Bang and Kim (2010) [21] suggest “a two-level hierarchical production planning (HPP)

method in which the higher level (aggregated level) decision is made for production planning

and the lower level (disaggregate level) decision is made for detailed scheduling”. The proposed

method consists on a three-step iterative process. For each iteration, first, a production plan

is produced from the LP model. Then, a priority rule-based scheduling method is used for

operations scheduling in the fab. Finally, the resulting schedule and production plan are

evaluated with resource to a DES.

The method was developed for the semiconductor wafer fabrication context, characterized

by high production rate and variety, and the results proved it to work better than traditional

approaches and other commonly used methods. One of the authors considerations was the

occurrence of unexpected events and its effect on the method since the LP modelling approach

assumes deterministic situations in the facility. Under those circumstances, the plan is

expected to change but doing so in a frequent matter may cause instability and confusion.

12

Therefore, the preferred method was to obtain a new plan in case of a major disturbance occurs

with updated information of the fab. Otherwise, if the disturbance is minor, the current plan

is used if the difference between the plan and actual production information does not exceed

a predetermined level.

While the method was developed for the semiconductor wafer fabrication context, the

methodology is general enough to be applied to situations where the variety and amount of

production are inferior. However, the results and effectiveness might differ.

Such an adaptation can also be made to the solution proposed by Kropp et al. (1978) [22]

due to the value of the general concept. The authors compare their hybrid approach to the

isolated use of simulation and optimization methods recurring to a hypothetical health care

environment.

The concept is iterative consisting in the evaluation of the optimization model results with

simulation. Then, the approach proceeds to find relationships between the nonlinear variables

of simulation and the variables that are common to both models through linear regression

performed on the results of a number of simulation runs. These linear relationships will then

be applied to the optimization model as constraints to reflect a “non-cost objective of the

facility”. The process will iterate until the achievement of the desired result of the evaluation.

The presented technique can be adapted to different contexts with small changes in the

formulation and a quality simulation model of the desired system, as in every hybrid technique.

Acar et al. (2009) [23] propose an approach that also benefits from the referred versatility

of application to different situations with small changes in the formulation and a quality

simulation model. The authors develop a generalized MIP formulation able to interact with a

simulation model. The generalized formulation interaction with simulation is based on the

computation and evaluation of candidate solutions based on the results of previous runs. To

test the suggested solution, a multi-product, multi-period facility location problem (MPP-FLP)

was used as a case study and the results were promising and showed benefits versus the

majority of alternative solutions.

2.2 Meta-Heuristics

From the previous literature analysis there is a common trait most of the authors refer as

a problem or disadvantage of the hybrid optimization simulation approaches. As the size and

complexity of the problem increase, the optimization model run time becomes unaffordable.

To solve this problem, authors tend to increase the level of abstraction of the optimization

model, however, it may not be desirable since it signifies a decrease of information and

reliability. Such high complexity and size problems often do not require an optimal solution due

to the unpracticality of its computation and accept quality sub-optimal solutions as an

alternative.

To approach these and other combinatorial optimization problems, since the early 80’s a

lot of interest has be placed in the development and application of meta-heuristics, from which,

as an example, will be highlighted the genetic algorithms (GA), considered good solution search

strategies. Nonetheless, in order to model a real production planning problem stochastic and

nonlinear parameters must be included. Most of those real problems are not simple enough for

GA to be applied. Thus, to solve this situation, the hybridization concept is applied, combining

meta-heuristics, GA in this case, with simulation methods.

13

The hybridization concept with resource to meta-heuristics is similar to the one with

optimization methods, as the simulation is used as evaluation tool and considers the stochastic

and nonlinear parameters of the system, and the meta-heuristic is used to search for optimal

(or sub-optimal) solutions for the problem and its model is affected by the simulation results.

Jeong et al. (2006) [24] developed a hybrid solution where the GA is used to optimize

schedules and the simulation is used to minimize the maximum completion time of the last job

while reflecting stochastic characteristics with the fixed input from the GA. The authors

considered the completion time to be the simulation runtime, which is the overall time spent

to execute all operations based on the production schedules generated by the GA.

The operation time in the GA model is adjusted according to the simulation results. With

this new values, the GA regenerates new operation schedules. This process is executed until

the difference between the preceding simulation runtime and the current runtime is

acceptable.

Li et al. (2009) [25] propose an approach using GA and Design of Experiment (DoE) in an

iterative manner. Their proposal is presented in the remanufacturing context, which differs

from the general production systems. However, the concept can be adapted to fit such systems.

Understanding that the major disadvantage of GA is the probability of skipping the optimal

solutions around a certain individual solution when the optimal does not strictly fit the selected

criteria for the next generation. The authors use fractional factory design (FFD) to find the

extrema of each cell and develop a method to overcome this drawback. The solution candidates

for the GA are provided by the FDD and the GA will continue the search process until the stop

condition is met, considering the corresponding extrema of each cell. The authors state that

the use of FFD improve the traditional use of GA in two ways. First, it ensures the local optima

is found for each cell, improving the searching accuracy. Second, due to its fractional nature,

improves the searching efficiency.

Liu et al. (2011) [26] adapted the Multi-Objective Optimization (MOO) MatLab function and

used it in cooperation with a simulation model to solve production planning problems. The MOO

function is based on an elitist GA and is adapted to the problem and interaction with the

simulation model to “search for a set of release plans that are near-Pareto optimal” [26]. The

multiple objective are the mean and variance of total cost. The simulation model is also used

as the objectives evaluator, similarly to previously referred proposals. The proposed method is

mainly directed to help decision making in circumstances where there is the necessity to “weigh

the trade-off between average cost and the risk associated with that cost”[26], as it provides

more detailed information than the obtained from single-objective optimization. However, the

authors understand their results to be possible starting points for other algorithms or to require

further investigation through ranking and selection procedures.

2.3 Clearing Functions

The willingness to find faster and higher quality solutions to production planning and

scheduling problems of stochastic/nonlinear nature led researchers towards different

approaches. Additionally, traditional models as LP, MIP and other analytical methods tend to

assume fixed lead times, which has been indicated by queueing-theoretical results and practical

experience to be incorrect. In fact, lead times are considered to be “load-dependent, which

leads to the well-known trade-off between short lead times and high capacity utilization”[27].

This feature modelling requires the representation of the “relationship between output and

14

WIP or lead time in the model”[27], which can be accomplished using nonlinear, saturating

clearing functions (CFs). Considering a facility divided in sections, a clearing function (CF) is

the “functional relationship between some measure of WIP in a period t and the expected or

maximum output of the [section] in period t” [27].

Pürgstaller and Missbauer (2012) [27] analyze the use of CF and compare their inclusion in

optimization order release with traditional rule-based methods in workload control. Their

conclusions prove the optimization-based methodology to largely outperform the rule-based

ones.

Kacar and Uzsoy (2010) [28] work on the major problem concerning CF, its estimating. The

authors compare different regression approaches based on simulation results and compare the

computational results. From the results obtained from the different experiments and

approaches, they conclude on the difficulty of estimating CF and the lack of a strong foundation

and/or mathematical models to support such procedure.

The authors wrote a more recent article [29] on the same subject with a more detailed

analysis of the problem, solution proposals and results, while presenting different and newer

alternatives. On the same article, the authors propose the use of Simultaneous Perturbation

Stochastic Approximation (SPSA) algorithm to estimate CFs. In the used case study, SPSA is

shown to significantly improve the production plan by either estimating “better CF parameters

or by directly optimizing releases”[29].

Comparisons between production planning models using CF and alternatives are present in

the literature, as in [30-31]. The results tend to show the use of CF to be superior to the

alternatives however, its estimating is not general and the results cannot be considered

replicable in different situations.

2.4 Conclusion

The presented methods are plausible solutions, each of them having advantages and

associated difficulties/problems.

CF offer high quality model-reality relationship with a strong ability to incorporate

stochastic features into the production planning approaches, but are not trivial to estimate and

the results from its application in a case study cannot be generalized as there is no

mathematical formulation or a strong foundation for estimating methods. Missbauer and Uzsoy

(2011) [10] dedicate a subsection of their article to the analysis of the limitations of CF models.

GA, and Meta-Heuristics in general, tend to find solutions faster than the common analytical

methods. Nonetheless, such methods do not guarantee the optimal solution to be found.

Approaches based on the hybridization of analytical optimization and simulation methods

have strong mathematical foundations to support the analytical modelling and are guaranteed

to find the optimal solution for the optimization part of the approach. Nevertheless, the

runtime might become impracticable with the increase of optimization model size and

complexity. The usual solution is to increase the level of abstraction and use the simulation

model to include the important details and the hard-to-model parameters.

The strong foundation supporting the development of approaches belonging to the last

mentioned group associated with the ease of manipulation and variation of the mathematical

formulation, and the optimal solution finding guarantee, led to the choice of the hybrid

optimization-simulation approach as this dissertation solution proposal for production planning

and scheduling problems.

15

The method extended in [16] and [18] from [15] serve as the basis to the development of

the method proposed in this work. It is easily adapted to different situations and the MIP

formulation is flexible enough to be manipulated towards improvement.

Furthermore, the method proposed in [16] is showed in [17]. to rapidly converge towards a

final feasible solution This conclusion has both advantages and aspects to be carefully

considered. The convergence proves little necessary iterations of the method to obtain a

feasible solution, which is positive as it is translated in practicable run times. However, such

trait is also a problem, since the simulation affects the optimization parameters too intensely

and the solution results are often non-optimal in the real situations. Therefore, the interaction

between simulation results and optimization parameters must be reviewed and adapted to

allow for a higher quality convergence of the proposed method.

In [23], the authors prove the superiority of the iterative hybrid method in comparison with

the simple MIP approach. Additionally, forms of interaction between simulation and

optimization are proposed and uncertainty factors are introduced in optimal decision making.

The authors also state that the modelling of uncertainty factors improve the results for

production planning problems. This article, in conjunction with [21], serve as inspiration for

the inclusion of dynamic factors (stochastic/nonlinear) as each of them present suggestions for

the modelling of different parameters: setup times and costs, defect production, and WIP effect

on lead-times.

In the following chapter, the approach developed in this work is explained in detail along

with the adaptations made to the proposals of the above referred articles.

Chapter 3

Simulation/Optimization Approach

The approach proposed in this thesis is categorized as hybrid, since the general idea consists

in the iterative use of simulation and optimization methods. Each of the methods present

different advantages and limitations specific to their nature. Hybridizing the methods aims to

attenuate/eliminate the limitations and disadvantages of each method while taking full

advantage of their positive features, obtaining a superior method than each of the individual

parts.

Optimization methods are well-known for the guarantee of obtaining the optimal solution

for the modeled problems. Additionally, the mathematical foundation is well developed and its

formulation can be adapted at will with relative ease. However, nonlinear and stochastic

factors, common in real situations and sometimes impactful on the behavior of the whole

system, cannot be directly modeled by optimization methods. Furthermore, with the increase

of model’s size and complexity, these methods run time might exponentially increase and

become unpractical.

Simulation methods, in contrast, can comprise a high level of detail, including nonlinear

and stochastic factors, without compromising their execution time. Moreover, in situations

where the richness of detail is crucial, simulation models are of uttermost utility. Despite the

high modelling capacities such methods are used to evaluate deterministic situations. The

search for optimal solutions cannot be purely done with resource to simulation.

In a summarized manner, the interaction between this duality of methods has the objective

of overcoming each method’s limitations with the other method’s advantages.

This chapter will proceed with a thorough description of the intended problem to solve,

followed by a detailed explanation of the optimization and simulation models construction

process. Later it will conclude on the comprehensive explanation of the interaction between

both models.

3.1 Problem Description

Production planning and scheduling are critical in matters of cost reduction and

performance improvement, crucial factors in today’s highly competitive industry. These

problems can be decomposed in several key tasks.

18

Production planning decisions are often related to medium-term time horizons. These

decisions address the determination of optimized production mixes, lot sizes, order assignment

to resources and release plans. In contrast, production scheduling key tasks are related to

operational aspects with short time horizons for instance, order and operation sequencing.

The problem at stake can be divided in two phases: solve the planning decisions and

subsequently the scheduling ones accordingly. For instance, considering a manufacturing

scenario, decide on the production mix to release on production for each period. Based on this

decision, decide on the sequence of releasing from which the system benefits the most, for

each period.

The interdependency between the two sorts of decisions is noticeable, being its

simultaneous resolution advantageous.

Capacity restrictions tend to be linear, thus not posing as a relevant problem during system

modelling. However, aside from these and other common restrictions, there are some

influencing factors that are critical. The lead time of the production line, which might differ

with the product type, is one of such factors. The amount of WIP in the system influences the

lead time in a nonlinear manner that cannot be modelled using linear constraints. Similarly, it

is known that when a resource is being used at a near-limit capacity, the lead time increases

significantly. Hopp and Spearman (2011) [1] go into further detail on the referred dynamics.

The proposed methodology aims to solve production planning and scheduling problems that

must attend the referred considerations.

These problems can be briefly defined as determining, for each product, the amount and

moment to release it to the shop floor.

3.2 Case Study

In this dissertation we address the referred problems in a real case concerning a job-shop

manufacturing system that produces industrial equipment. The production is project-oriented,

meaning the end product is only manufactured once the customer places the order, which also

defines the quantities and release date. The company produces each customer order according

to the required features, being each order a new project. The company performs installation,

maintenance and repair services at customer’s site. However, in this dissertation, only the

manufacturing process of the end products issue will be addressed.

The production facility is organized in four main areas (production, assembly, maintenance,

and special projects) from which only the first two are concerned to the normal manufacturing

process. Production and Assembly are divided in six WorkCentres (Figure 3.1). These physical

areas are related with different tasks and composed by machines, and input and output buffers.

The inclusion of buffers between each WorkCentre aims at ensuring the material flow between

Figure 3.1 - Production and Assembly systems

Cutting

Bending

Tooling

Welding Pre-assembling Assembling

19

them. The Cutting WorkCentre (WC01) comprises two machines, the Bending WorkCentre

(WC02) four, the Welding WorkCentre (WC03) one, the Tooling WorkCentre (WC04) one, the

Pre-assembling WorkCentre (WC05) three, and the Assembling WorkCentre (WC06) two.

At the facility, storage space does not represent a limiting factor, however excessive WIP

may cause internal logistic problems, namely the significant increase of material transportation

and handling times.

Material requisites, operation times as well as resource allocation considerably change from

end product to end product. Hence, the facility’s process flow can be categorized as a job-

shop.

3.2.1 Production Process

Despite the uniqueness of each project and the consequent difference in requirements and

features, the production of industrial equipment starts invariably by cutting pieces of metal in

desired shapes. The cut pieces are then forwarded to the next WorkCentre, which might be the

Bending, the Tooling or the Welding WorkCentres. After being welded, the pieces are sent to

the Pre-assembling WorkCentre where they are combined into standard components. Finally,

these standard components are assembled into final products in the Assembling WorkCentre.

The production system capacity is defined by processing units’ availability.

Although having the higher number of production units, the Bending WorkCentre represents

the system’s bottleneck due to the long tooling set changeover times. These setup times are

sequence dependent.

3.2.2 Planning Process

Long and short term planning are performed by the planning department responsible. Long

term planning is considered one month in advance while short term planning comprises a one-

week time horizon. The plan’s update occurs at least three times per week and re-planning is

performed regularly. The customer’s agreement is required for any change in the plan.

While planning also involves equipment installation and maintenance planning,

development of weekly production plans is the most important planning function to consider

since the focus of this dissertation is in the production activities of the company. Commonly,

the production plan encompasses the quantity and timing of products to be produced. The

planner, resorting to his experience, computes the resources requirements to execute the

production mix, estimating its overall impact on system capacity. Nevertheless, at this stage,

no resource allocations are performed.

Scheduling implicates resource allocation (raw materials, components, processing units and

workers) to production orders that are then released to the shop floor and is performed on a

daily basis. This resource allocation to orders occurs one week in advance. Order release and

sequencing, and resource allocation are done according to due dates, taking in account the

current state of the shop-floor.

The occurrence of unexpected events, common in highly complex production systems, leads

to rescheduling.

20

3.2.3 Opportunities

The described production planning presents improvement opportunities.

The plan is re-calculated and corrected on a regular basis. Additionally, it is mostly done

based on experience, which might produce acceptable results but cannot guarantee the

decisions optimality.

Resource allocation to orders is not an automated process and is not directly considered

while developing the production plan. This allocation is performed and considered solely during

the scheduling task, hindering the optimality of the order release plan and delaying the

information flow.

Unexpected events, such as machine failure, defects production or worker related

problems, are not considered in the production planning and scheduling tasks, forcing the re-

execution of such tasks and incurring unnecessary work.

The production system has a bottleneck, the Bending WorkCentre. The time associated with

the changeovers of the tooling set is the main reason for it and it is highly sequence dependent.

The lack of search for production plan optimality incurs in performance reductions in this

WorkCentre, compromising the entire system performance.

The development of tools that would consider not only the dependencies between resource

allocation, sequencing and release of orders, but also the occurrence of unexpected situations

would highly benefit the production system performance.

3.2.4 Summarized Description

Before continuing this chapter with the optimization model, it is important to conclude the

present sub-section with a detailed yet summarized description of the case study.

The company at study works on a MTO production strategy, working with large projects.

Each of these projects aims at manufacturing final products, which are composed by standard

components originated by the Pre-assembling WorkCentre. These standard components are

assembled from worked metal pieces that are produced by a defined sequence of operations

taking place at a specific WorkCentre.

There are six WorkCentres, each composed by one or many machines assumed to be equal

inside each WorkCentre. The system’s bottleneck is at the Bending WorkCentre, mainly due to

highly sequence dependent setup times.

Despite excessive WIP reducing system’s productivity/performance, storage space is not a

limiting factor.

The proposed approach intends to present solutions that help the decision-making process

at the management levels of the company. These solutions consist in deciding on which piece

to be produced, in what quantity and when.

3.3 Optimization Model

Prior to the mathematical formulation of the optimization model it is necessary to state

the main relaxations and abstractions made from the real problem. As previously referred, it is

not computationally affordable to solve a MIP problem containing all the information from a

21

complex real system. Hence, some considerations were made while modelling the problem at

study as a MIP formulation.

Tooling set changeovers are critical in the Bending WorkCentre, thus its inclusion in the

model. All machines in a specific WorkCentre are considered equal.

The travel time between WorkCentres is not considered as it is rather insignificant.

Raw material (metal pieces) is considered available on demand, therefore not being

modeled as a constraint to the system.

In production systems, profit is related to costs and in our case, being a project-oriented

system, this dependency is even further noticeable. Therefore, the objective function of our

formulation will be the minimization of costs. Costs are divided into three categories:

production, inventory and backlogging, related to the costs of producing a certain product,

storing a product, and not fulfilling a release order in the correct period of time, respectively.

3.3.1 Mathematical Formulation

The format for the mathematical formulation is as follows. Lowercase italics are used for

indices, uppercase bold letters for sets, uppercase italics for variables, and lowercase Greek

letters for parameters.

Table 3.1 - Formulation Elements - Indices

Indices

t ∈ T Periods: discrete intervals of time of a certain duration

i, j ∈ P Products: types of products

k ∈ K WorkCentre: resources that process products through certain operations

l, m ∈ O Operation: specific task to be executed on a product

Table 3.2 - Formulation Elements - Sets

Sets

T Periods in the modelling horizon

P Product types

PB Basic products (worked metal pieces)

PF Final products

Pk Products that are operated in WorkCentre k

K WorkCentres

O Operations

Oi Operations that can be performed on product i

Di Direct successors of i in the Bill of Materials (BOM)

BOMi Direct dependencies of I in the BOM

22

Table 3.3 - Formulation Elements - Variables

Variables

Xit Amount of product i to produce in period t

Iit Inventory of product i at the end of period t

Bit Backlog of product i at the end of period t

Ekt Elasticity of WorkCentre k in period t

Ait Represents whether or not product i was produced in period t

Table 3.4 - Formulation Elements - Parameters

Parameters

αit Production cost of product i in period t

σit Inventory cost of product i in period t

πit Backlog cost of product i in period t

ηk Maximum duration of an operation in WorkCentre k

λk(i,j) Tooling set changeover from operation of product i to operation of product j

time at WorkCentre k

μit Demand of product i in period t

τilk Processing time of product i under operation l at WorkCentre k

φkt WorkCentre k total capacity in period i

εij Amount of product i required to produce one unit of product j

γi Lead time of product i

β Large positive number

The structure of the model is defined in terms of the previous elements.

As referred, the minimization of costs will be the objective function, comprising the

production, inventory and backlog costs for each product across all periods(2).

 min ∑ ∑(𝑋𝑖𝑡𝛼𝑖𝑡 + 𝐼𝑖𝑡𝜎𝑖𝑡 + 𝐵𝑖𝑡𝜋𝑖𝑡)

𝑡∈𝐓𝑖∈𝐏

 (2)

As in any system, the overall resource utilization cannot exceed its maximum capacity. This

utilization is measured in time and has two components: time spent executing operations on a

product, and time spent in tooling set changeovers whenever the type of product to operate

changes. This constraint is defined in (3).

 ∑ ∑ 𝑋𝑖𝑡𝜏𝑖𝑙𝑘

𝑙∈𝐎𝑖𝑖∈𝐏𝑘

+ (∑ 𝐴𝑖𝑡

𝑖∈𝐏𝑘

− 1) 𝜆𝑘 ≤ 𝐸𝑘𝑡 + 𝜑𝑘𝑡 − 𝐸𝑘𝑡−1, ∀𝑘, 𝑡 (3)

Since the products in operation sequence is not known, ∑ 𝐴𝑖𝑡𝜆𝑘𝑖∈𝐏𝑘 could lead to an

overestimation of the changeovers times when the WorkCentre ends a period operating the

same type of product it will begin to operate in the next period. Therefore, the subtraction of

one unit is added to translate that changeovers are equal to the number of products minus one.

The right-hand side of capacity constraints includes the Elasticity factor of WorkCentres

and was one of the contributions of this dissertation. To ensure that if the capacity of a

WorkCentre in a period t is approximately enough to produce a certain product i, that product

will be launched in production in period t and finished in the following period. This factor was

23

restrained by two conditions: it cannot exceed the time of a period (4); and it cannot exceed

the time of the longest production operation in that WorkCentre (5).

 𝐸𝑘𝑡 ≤ 𝜑𝑘𝑡 (4)

 𝐸𝑘𝑡 ≤ 𝜂𝑘𝑡 (5)

To ensure the correct material balance and flow, it is necessary to create constraints

relating quantities between any pair of adjacent periods.

 𝐼𝑖𝑡 − 𝐵𝑖𝑡 = 𝑋𝑖𝑡 − 𝜇𝑖𝑡 + 𝐼𝑖𝑡−1 − 𝐵𝑖𝑡−1, ∀𝑖 ∈ 𝐏𝐹 , 𝑡 (6)

 𝐼𝑖𝑡 = 𝑋𝑖𝑡 − (∑ 𝜀𝑖𝑗𝑋𝑗𝑡+𝛾𝑖

𝑗∈𝐃𝑖

) + 𝐼𝑖𝑡−1, ∀𝑖 ∉ 𝐏𝐹 , 𝑡 (7)

Constraints (6) and (7) serve to carry quantity information from a period to the next one.

Final and non-final products are associated with different material balance constraints. These

sets of constraints differ in two aspects.

First, the demand for final products originates from customer orders (independent demand)

while the demand for non-final products is created by the production orders of higher level

products. Multi-level dependency between products is modeled in the proposed approach,

originating the already referred BOM. Hence, the existence of dependent demand. As an

example, refer to Figure 3.2. The production order of one unit of product MT will create

dependent demand of product MS and MA in the 𝜀𝑖𝑗 proportion. Similarly, MS has dependencies

of products MA and ME, generating dependent demand of each in the proportion 𝜀𝑖𝑗 per unit of

MS. In the example scenario, the production of one unit of product MT would create a total

dependent demand of three MA products, six ME products and two MS products.

Demand is associated with a period. Independent demand occurs in the same period the

customer order is placed. However, for dependent demand, the period is influenced by the

product lead time γi. The dependent demand of product i occurs γi periods prior to the period

when the production of the product that originated the demand is produced. In other words, if

product MT was to be produced in period t, product MS dependent demand would be related

to period t- γi.

∑ 𝜀𝑖𝑗𝑋𝑗𝑡+𝛾𝑖𝑗∈𝐃𝑖
. translates the dependent demand of product i in period t. Di set represents

the direct bottom-up successors of product i. Referring again to the Figure 3.2, Di of MA is (MS,

MT) Concluding, the dependent demand of product i in period t is obtained by the production

orders of each of its direct successors j in period t+ γi with a multiplicative factor 𝜀𝑖𝑗.

Constraints (6) and (7) differ yet in another way. There is no backlog of components as

Figure 3.2 - Multi-level dependence example

MS MA

MA ME

MT

𝜀𝑖𝑗 = 2 𝜀𝑖𝑗 = 1

𝜀𝑖𝑗 = 3 𝜀𝑖𝑗 = 1

24

there is only dependent demand of such products. However, in case of unmet demand of a final

product, the demand must be fulfilled later in the time horizon. The backlog from period t-1

carries that period unmet demand to period t.

The already referred binary variable 𝐴𝑖𝑡 represents the occurrence of production of product

i in period t. This logical condition is modeled with resource to (8).

 𝛽𝐴𝑖𝑡 ≥ 𝑋𝑖𝑡 , ∀𝑖, 𝑡 (8)

Finally, there are constraints related to the non-negativity of the integer variables and the

binary nature of 𝐴𝑖𝑡.

 𝑋𝑖𝑡 , 𝐼𝑖𝑡 , 𝐵𝑖𝑡 , 𝐸𝑘𝑡 ≥ 0, ∀𝑖, 𝑡, 𝑘 (9)

 𝐴𝑖𝑡 ∈ {0; 1}, ∀𝑖, 𝑡 (10)

3.3.2 Model Implementation and Software

There are many solvers on which we could implement our model: CPLEX, XPRESS, GUROBI,

among others. The choice criteria were availability and performance. Fortunately, the overall

best performer solver in industry standard public benchmark tests (check [32]), Gurobi

Optimizer [33], also provided an academic license.

Gurobi Optimizer is a solver for mathematical programming designed to exploit modern

architectures and multi-core processors and incorporates six solvers (Table 3.5). From those

the particular interest for this dissertations lays on the Linear Programming Solver and the

Mixed-Integer Linear Programming solver, considering the problem at stake nature.

Gurobi support a variety of programming and modelling languages, providing high flexibility

to the user. To implement the optimization model of the proposed approach the chosen

programming language was Python. Python is an interpreted language, meaning it is highly

flexible and can be implemented in any number of ways. Python is efficient, easy and fast.

Table 3.5 - Gurobi included solvers

Linear Programming Solver (LP) Quadratic Programming Solver (QP)

Mixed-Integer Linear Programming solver

(MILP)

Quadratically Constrained Programming

solver (QCP)

Mixed-Integer Quadratic Programming solver

(MIQP)

Mixed-Integer Quadratically Constrained

Programming solver (MIQCP)

Python’s syntax is designed to be readable, which means its writing does not require most

of the structures and details other languages need. Python is able to perform in little lines of

code what would require complex programming in most other languages. The language is

dynamically built, allowing for better memory management: names are linked to objects

instead of declared. When the object is no longer needed, the name can be linked to a different

object. Data manipulation and handling is more efficient in Python (reason why it is widely

becoming popular due to Big Data issues). For those and other reasons, the Python version of

Gurobi Optimizer was chosen.

25

3.3.3 Data Input and Output

The optimization model required system’s data input and it was accomplished with resource

to excel files and using xlrd Python library to read from such files [34]. Similarly, to output the

model results excel files were also the chosen resources and the openpyxl Python library was

used to write such files [35].

The input data was related to the information on the sets and indices previously presented.

Output data comprised release orders, inventory levels and backlog for each product on each

period. WorkCentre utilization was also outputted for each period as well as the total lead time

of each product in periods.

To save the input data on the model, the preferred data structures were dictionaries and

lists. Whenever an index was related to a product, operation or WorkCentre, it was of type

string. When it was related to a period, it was an integer. This indexation allowed for easier

modelling, debugging and understanding than if all indexes were integer. Furthermore,

whenever an index combination was inexistent, instead of attributing a null or zero value to it,

it was simply ignored and not created on the respective data structure, increasing model

performance.

3.3.4 BOM Handling

One of the major concerns while building the model was with BOM use and representation.

First, due to the nature of the mathematical formulation, it was necessary to build two distinct

structures based on the material dependence: the direct successors of a product (products that

depend on it to be produced) and the dependencies of a product (products necessary to produce

it). These different structures can be comprehended as the reverse of each other and,

therefore, appear to be redundant. However, they are used in different situations and are in

fact both necessary. Referring to the mathematical formulation, these structures match Di and

BOMi sets, respectively.

Di is used in constraints (12) while BOMi is used to calculate the lead time of product i

(ignoring its production time, as it is marginal compared to its dependencies lead times). BOMi

Pseudo-Code 1 Longest Path Procedure

function calc_max_path(BOM, i, PB, leadTime, dependencies_leadTime):

Max_value = 0

for all product s in BOMi do

if s ∈ PB then

If Max_value < leadTime[s]

Max_value = leadTime[s]

else

Max_pathvalue_s = calc_max_path(BOM, s, PB, leadTime, dependencies_leadTime)

if Max_pathvalue_s+leadTime[s] > Max_value then

Max_value = Max_pathvalue_s+leadTime[s]

dependencies_leadTime[i] = Max_Value

return Max_value

end function

26

contains the information of product i direct dependencies. Referring to Figure 3.2, BOMMT is

composed by MS and MA.

If the material dependency structure of a certain product i is seen as a graph, to calculate

a product lead time, considering no initial inventory of its dependencies both direct and

indirect, it is necessary to calculate the longest path of the graph, considering each product

lead time as the path value.

The algorithm developed to obtain this longest path is recursive and is described in Pseudo-

Code 1.

The procedure is performed for all final products PF, populating the related data structures.

3.3.5 Variation of Period Duration

The developed optimization model allows for the variation of period duration, i.e., the

amount of periods in a determined amount of time can change based on user input. Considering

a fixed window of a week with five working days each with eight working hours, if the number

of periods per week is one, each period corresponds to a week. However, in the same scenario,

if the number of periods per week is five, each period corresponds to one working day. The

same applies to forty periods per week where each period has a duration of one hour (Figure

3.3).

There are two main consequences to this variation in duration. First, as variables and

parameters are related to periods, increasing the number of periods implies an increase of

variables and parameters which translates in a higher size model. Optimization models runtime,

as referred, significantly increase with model size and complexity. Therefore, increasing the

number of periods severely impact the time spent solving the model which is even more critical

in an iterative approach with multiple optimization model runs.

Nonetheless, the increase in number of periods has benefits. The conversion of lead times

into periods implies smaller errors with the decrease of period duration. With very small period

durations, the model output conveys in itself a pseudo-scheduling The benefits in decreasing

period duration can be resumed as an overall increase in precision.

A more precise model better translates the system’s dynamics and features on the other

hand it reduces its practicality. Hence, it is necessary to find a balance point.

Varying the duration of the period implies a higher number of periods per time interval.

With the intent of explaining the data manipulation related to this changes, a time interval of

three weeks will be considered from now on.

Inventory and backlog costs must be adapted to this period alterations, as well as

WorkCentre capacities and lead time conversion to periods.

Figure 3.3 - Number of periods vs period duration

27

The affection of WorkCentre capacities and the lead time conversion to periods are the

simplest to explain. WorkCentre capacity is defined in minutes per period. If period duration is

smaller, the WorkCentre capacity will change accordingly. Lead time conversion is calculated

as the result of the round up to the higher closest integer of the division between lead time

and period duration.

Inventory costs can be defined as the holding cost per unit of time. If the inventory cost is

𝑥 per week, it will be 𝑥/5 per working day and 𝑥/40 per working hour.

In the case study scenario, customer demand is always considered at the end of a week,

thus being associated with the last period of such week. Backlog consists in the undelivered

quantity of products matching a specific demand. Being so, backlog costs are only associated

to the last period of any week, independently of the amount of periods comprised in one

week. In other words, the backlog cost related to the last period of a week is unchangeable

and zero to all other periods.

3.4 Simulation Model

The proposed method is composed by two main parts, being simulation one of them. While

it is unpractical and unviable to model the optimization model with full detail and comprising

every dynamic of the real system, the simulation model can include such features without

significant decrease in performance. Therefore, the simulation model can be used as an

evaluator to the output of the optimization model. Those features that are present in

simulation but lacking in optimization are generally limitations. The influence of WIP in the

lead time is certainly the most important limitation faced in simulation, as well as in real

systems.

Simulation is the last step of the proposed iterative approach and is used to evaluate the

feasability of the optimization results. According to the evaluation, the approach may iterate

again or terminate. Additionally, the proposed approach uses simulation to implement the

developed scheduling technique, explained in section 3.5.

3.4.1 AnyLogic

Simulation has provided a constantly evolving tool to work in proximity with the real world

for more than half a century. The available software is vast and equipped with different tools.

The decision on which software to choose was majorly aided by Swain (2015) [36] where fifty

five products from thirty one vendors are listed and compared. AnyLogic was chosen as the

software to model the case study system. Besides providing a student free license called

Personal Learning Edition (PLE), it is one of the most complete software in the survey and

allows for full customization through Java programming.

AnyLogic is unique in its capacity to support all the most common simulation methodologies:

System Dynamics, Agent Based, and Process-centric (Discrete Event) modelling. For the purpose

of this dissertation, only the latter is used. The generality of manufacturing systems can be

modelled using Discrete Event modelling techniques since the system can be represented as a

sequence of operations being performed on entities of certain types, from products to

packages, workers to machines. The term Process-centric is self-descriptive. Such modelling

28

focus on the process and ignores some physical level details, such as geometry, accelerations,

etc. Therefore, DES or Process-centric are medium-low abstraction level modelling approaches.

Anylogic supports object-oriented model design, providing modular, hierarchical, and

incremental construction of large models while allowing reusability. The native Java

environment supports limitless extensibility ranging from custom Java code to external libraries

and data sources. Additionaly, both the Anylogic IDE and the models have multi-platform

support, working on Windows, Mac and Linux.

The Process Modelling Library (PML) is the primary Anylogic toolkit for Discrete Event

modelling. The library is a collection of highly customizable objects used to define process

workflows and their associated resources. Their parameters can be changed dynamically and

their actions may be dependent on entity’s attributes. Workflow objects have extension points

that permit custom definition of actions to be performed on entities throughout the process.

Most objects have “onEnter/onExit” extension points. Nevertheless, specific objects have

specific extension points related to their function and allowing for further control and

customization.

Complex systems benefit from the modularity capabilities of AnyLogic as they can be break

down into components and modelled separately. AnyLogic allows sub-process definition,

reducing the logical and visual complexity of top-level model and providing a good basis for

reusability within a model or across models.

AnyLogic’s main building blocks are Agents. Agent is a unit of model design that can have

behavior, memory(history), timing, contacts, etc. and may represent diverse things, from

people to equipment, from non-material things to organizations. Within agents, a multitude of

definitions can be performed: variable, events, custom code, and the list goes on. Agents can

also communicate with the external world, for instance using calling functions.

To build the case study model, some blocks inside PML were used and will be introduced in

the next subsection. However, blocks related with Agent definition and Connectivity will be

briefly presented first.

System’s inputs are agents and, in this dissertation’s particular scenario, those agents

represent products. Each of these products have multiple parameters.

Figure 3.4 - Parameter Block

Parameters are agent’s attributes and can be of many types, both Java primitive types and

AnyLogic special types. The agent class used to define products is named Prod. Prod’s

parameters are represented in the following table.

Table 3.6 - Prod class parameters

materialCode id route_center

operationProcessingTime Stock next_WC

nextProcessingTime reorderPoint reordered

operation_route nextOperation order

materialID codeComponent amountComponent

priority WIPonEnter

29

Parameter materialCode is used to define the type of product. Parameter id is the product

unique identifier. Parameter route_center holds the information of the WorkCentre route the

product needs to go through. Parameter next_WC has the information of the WorkCentre to

where the product needs to go next. Parameter operation_route holds the information of the

operation sequence the product needs to pass through. Parameter nextOperation represents

the next operation that has to be performed on the product. Parameter

operationProcessingTime is related to parameter operation_route and holds the information of

the duration of each operation the product needs to go through. Parameter nextProcessingTime

represents the processing time of the next operation to be performed on the product. When

the system is working on an ATO strategy, the parameter reorderPoint represents the level of

inventory below which a reorder will be triggered and the parameter reordered represents

whether or not that specific product has an active reorder. When working on a MTO strategy

with no stock, the parameters are ignored. The parameter order holds the identification of the

Order that triggered the production of that specific product. Parameter WIPonEnter represents

the amount of WIP on the system when that specific product entered production. This

parameter is used to relate WIP with lead time which will be later explained.

Some products have other products dependencies, thus the need to implement a BOM. That

structure was implemented using the collection block to store the immediate dependencies of

the product.

Figure 3.5 - Collection Block

Collections are Java classes developed to efficiently store multiple elements of a certain

type. One of the advantages over Java arrays is the ability to store any number of elements.

There are many types of collections: ArrayList, LinkedList, HashSet, TreeSet, etc. The simplest

one is ArrayList which is a sort of resizable array. Each collection type has a different purpose

and its choice must be based on the predominant operations that will be performed on it. Since

the BOM collection will serve essentially for information storage and its size will be relatively

small, the chosen type of collection was ArrayList due to the small operation time related with

search operations for relatively small ArrayLists.

The parameters whose cells have a blue fill are related with BOM construction. The BOM

structure of a level one product with dependencies will be constructed using Prod agents that

are direct components. However, the only information required is the codeComponent which

is equivalent to materialCode, the amount per unit of level one product (amountComponent)

and the level one product id (materialID).

The parameter whose cell have a yellow fill will be explained in section 3.5.

All the information regarding parameters, BOM, orders and all external-dependent features

of the system are obtained via Excel File.

30

Figure 3.6 - ExcelFile Block

This particular block serves as the import of Excel files to the model from which AnyLogic

can read information and for which it can output data. The model comprises four of these

blocks named Info, infoOrders, LTs, and setupTs, referring to the information on system and

products, orders, lead times, and setup times, respectively. AnyLogic recurs to the Java API

Apache POI to operate Excel files (more information on [37]).

Some information must be kept under the form of global variables that are accessible for

every object and instance on the simulation model.

Figure 3.7 - Variable Block

One example of such information is the orders identifier that needs to be incremented every

time a new order or reorder is created and the identifier needs to be unique. Orders were

already referred to as the triggers for products production. In fact, orders translate the

optimization solution release orders information. Orders and reorders are modeled using the

same class Order whose parameters are presented in the following table.

Table 3.7 - Order class parameters

id productCode Amount

releaseDate reorderCalls reordersGen

parent

Parameter id is the unique serial identifier of an Order object. Parameter productCode

holds the information related to the product type to produce, matching Prod’s parameter

materialCode. Amount is the integer quantity of products of type productCode to produce.

Parameter releaseDate holds the information of the period when the order is to be executed.

The parameters whose cells are filled with blue are related with the reorder function and will

be explained at the same time of the referred function.

In order to track products, orders and reorders, and machines, populations were used.

Figure 3.8 - Population Block

Populations are a special type of collection within AnyLogic aimed at storing individual

agents. A population can be an ArrayList or a LinkedHashSet, being the former optimized for

accesses by index and the former optimized for add/remove operations. In the case study

system model, twelve populations were used for ease of information access and manipulation.

Each of these populations and respective storage objective is listed in the Table 3.8.

31

Orders need to be executed when the simulation reaches the release date. An event is used

to achieve such triggering.

Figure 3.9 - Event Block

The event block is the simplest way to schedule some action in the model and meets all the

requirements to trigger orders. Events can be of three types, according to its trigger condition.

Table 3.8 - Populations and objective in Simulation model

Population name Objective

machinesWC
Store the WorkCentre machines entities for simpler access to

get information of setup times.

productsInProduction

Store the products in production where only products in

WorkCentres 1 to 4 are considered to be in production

(Cutting, Bending, Tooling and Welding WorkCentres)

productsInElementarStock
Store the products considered to be elementary (do not have

product dependencies) that are in inventory

productsInCompositeStock

Store the non-elementary products that are in inventory.

These products are the standard components mentioned

earlier in this chapter

productsInPreAssembly
Store the products that are being operated in WorkCentre 5

(Pre-assembling WorkCentre)

productsInAssembly
Store the products that are being operated in WorkCentre 6

(Assembling WorkCentre)

deliveredProducts
Store the final products that have already been fully

produced and are considered delivered

ordersOnHold

Store the orders whose release date has already occurred but

could not yet be executed due to lack of inventory of its

product’s dependencies, stopping it from being executed

ordersOnExecution Store the orders that are currently being executed

reordersOnExecution Store the reorders that are currently being executed

reordersOnHold
Store the reorders that could not yet be executed due to lack

of inventory of its product’s dependencies

finishedOrders Store the fulfilled orders

Timeout triggered events occur exactly in timeout time after it is started and it can expire

once or occur cyclically or even be fully controlled by the user. Rate triggered events intent to

32

model a stream of independent events (Poisson stream) and are often used to model arrivals.

Such an event is executed periodically with time intervals distributed exponentially with the

parameter rate. If the rate is x, the event will occur on average x times per time unit. Condition

triggered events are triggered when a certain condition becomes true. The first type of event,

timeout triggered event, was used to model the orders trigger. Its first occurrence is the initial

instant of the simulation run and the recurrence time is based on the period duration, recurring

every period. Whenever the current period equals any order releaseDate, the event places that

order in the ordersOnHold population and attempt to execute it. The order execution mechanic

will be explained in detail later in this chapter.

3.4.2 Process Modelling Library

The PML agglomerates many blocks from which only a few were useful and required to

model the case study system. First, it was necessary to input entities into the system. These

entities represent products and are modeled using agents, as explained previously. To do so

the Enter block was used.

Figure 3.10 - Enter Block

This block was used as the system’s inputs. It is used five times: input to the first four

WorkCentres (production area); input to the stock of elementary products; input to the Pre-

assembling WorkCentre; input to the stock of standard components; and input to the Assembling

WorkCentre. The Block in itself was left unchanged aside from the Agent type that was changed

to be Prod. The agent’s insertion was made from other blocks or functions and will be explained

further ahead.

Agent removal from the previously indicated areas of the simulation model two techniques

were applied: direct remove using Exit blocks, and removal through code.

Figure 3.11 - Exit Block

Exit blocks allow programming decision on what to do with the exiting agents. In the

simulation model in analysis, the agents are removed from their previous population, added to

a different one and moved to the new section of the system’s logical flow.

33

In order to operate products, machines are necessary. Each WorkCentre is composed by one

or more machines of a different type. These groups of machines are modeled using the

ResourcePool Block in PML.

Figure 3.12 - ResourcePool Block

The ResourcePool block is an agglomerate of resource type agents. The number of resources

comprised in such block is defined by the field Capacity. In this dissertation context, resources

are machines and they differ between WorkCentres. Nonetheless, there is only one critical

parameter for the simulation model, the setup time. Due to lack of time and to invest in a

simplistic but functional model, setup times are machine dependent but not dependent on the

operation sequence. The setup time and capacity values are both extracted from excel files,

namely Info and setupTs.

This block has several capabilities, being the most important ones related to tasks. Besides

the normal operating task, AnyLogic provides tasks that translate natural occurrences on the

resources: maintenance, shifts and breaks/failures. Additionally, the user is capable of defining

a custom task either by code or flowchart. These tasks are time triggered, either deterministic

or probabilistically.

Having the resources modeled it is necessary to use them. The operations to perform are

relatively simple and can be defined with resource to a processing time, requiring no other

actions than a delay. For such operations, PML has a block name Service that seizes a resource,

simulates the operation with resource to a user-defined delay and later on releases the resource

seized to operate that agent.

Figure 3.13 - Service Block

Moreover, this block also comprises an entrance buffer to store on wait entities and its

capacity is also user-defined. The ResourcePool to use is also defined within this block as well

as the number of such resources to be used per agent. The utilization of different resource

types is possible consisting on a network of resources working in cooperation. Service block’s

most important features are actions executed when a certain agent seizes a resource unit and

when a certain agent leaves the block. The former allows for the consideration of setup times

when the product to operate changes while the latter is used to update agent Prod’s

information related to the next WorkCentre, operation and respective processing time on its

production route.

34

Between each WorkCentre there is a decoupling point in the form of a buffer. In AnyLogic

buffers are represented with Queue blocks.

Figure 3.14 - Queue Block

Queues can be dimensioned as limitless or with a user-defined capacity. When the size of

buffers is not a primary issue, limitless capacity might be used for error prevention. The

queueing can be one of four types: First In First Out (FIFO), priority-based, agent comparison,

or Last In First Out (LIFO). Besides decoupling points, inventory storage was implemented using

Queue blocks. The chosen type was FIFO as it is the better fit considering the nature of the

problem.

Processing paths vary based on product type. To implement the path decision moment, the

Select Output5 block was used. This block consists on one in port and five out ports chosen

based on four conditions upmost plus an else condition.

Figure 3.15 - Select Output5 Block

This specific block is not ideal. AnyLogic only provides two base decision-based flow blocks,

this one and a two out ports one. There is no customizable option besides combining both to

obtain the desired number of possible different paths. Such option is neither visual nor

comprehension friendly. However, for advanced users, it is possible to fully define a new

custom block with the desired amount of out ports. The use of this block in this model was not

fully efficient since there where unused out ports. When the agent enters this block, the out

port used for its exit is decided based on its parameter next_WC, referring to the next

WorkCentre on its route.

35

In situations like the storage of inventory, it is necessary to keep products in the Queue

block for an indefinite amount of time. To accomplish so, Hold block was used.

Figure 3.16 - Hold Block

Hold block might begin blocked or unblocked, which translates in whether the first agent

to reach the exit moment of the previous block will be prevented from leaving that block or

not. AnyLogic provides three Hold modes: Manual, Block automatically after N agents, and

Conditional. The first mode is used with resource to the functions block() and unblock(). The

second mode is self-descriptive and the unblock() function is used to unblock the Hold block.

The third mode evaluates a condition for each agent on the enter moment and either blocks or

allows its passage depending on the result of such evaluation.

In the storage of inventory, the Hold block is placed after the Queue block and was used in

Manual mode and set to initially blocked. Furthermore, its out port is not connected to anything

and when a product in stock is consumed it is removed from the Queue block using code. Thus,

the Hold blocks used on the model are blocked throughout the entire simulation.

Intending on measuring product’s lead time, another pair of blocks was used.

Figure 3.17 - Time Measure Start and Time Measure End Blocks

This pair of blocks is used for precise time measurement of travel time. Placing the Time

Measure Start block at the beginning of the production area and the Time Measure End block

at the end of such area, the measured time will be the agent’s lead time.

3.4.3 Flowchart composition of the system

Model implementation started with the connection of PML blocks in a logic flowchart to

represent the system’s basic dynamics. The system was interpreted has having two strong

decoupling points and working on a double push-pull mode. Consider Figure 3.18. When a client

order arrives, the system checks if there is enough inventory of its dependencies. If so, it

consumes the dependencies and send them directly to the Assembling Area. If the amount of

elementary dependencies in inventory is not sufficient, the system will initiate their production

in the Production Area. If the existent inventory of non-elementary dependencies is not enough,

the system will attempt to produce those dependencies. To do so, it checks if there are

sufficient inventory of its dependencies. If not, it repeats the already described behavior until

it is able to produce every ordered product. This procedure explanation will be completed in

more detail including the presentation of the used functions.

36

From the analysis of the Figure below, five key areas can be identified: Production, first

decoupling point, Pre-assembling, second decoupling point, and Assembling. These decoupling

points will be, from now on, named supermarkets as a reference to its storage purpose. Our

model is also divided in five logical flowcharts.

Figure 3.18 - Schematic representation of the system

The first logical flowchart models the Production area basic dynamics (Figure 3.19). Every

elementary product starts its production cycle in WC01 where the raw material (metal sheet)

is cut. Then, it can proceed to any of the three following WorkCentres. Similarly, from each of

those three WorkCentres it can finish it production cycle or head towards the other two

WorkCentres.

Each WorkCentre is represented by a Service block. Since the problem is not dimensioning

the buffers between WorkCentres, the Service block incorporated queue capacity is considered

limitless. The out port of each Service is connected to a Select Output5 block that decides on

the path to follow based on the parameter Next_WC.

Whenever an agent leaves a Service block, three parameters are updated: Next_WC,

nextOperation, and nextProcessingTime. Those parameters influence the behavior of the

following Service block and the Select Output5 block path decision. When the agent arrives the

Exit block it is removed from the population productsInProduction, added to

productsInElementarStock and placed on the next area logical flowchart (first decoupling point)

using the function take(agent) on the Enter block of the next area.

WC01

WC02

WC03

WC04 WC05 WC06

Production Area
Pre-assembling

Area
Assembling Area

First decoupling point – Storage

of elementary products (base

products).

Second decoupling point – Storage

of non-elementary products

(neither base nor final products).

37

Figure 3.19 - Production area logical flowchart

There is a pair of Time Measure blocks (Start and End) that are used to retrieve the value

of each elementary product lead time. When the agent enters the Time Measure End block

ltpartE its lead time is stored in association with its id parameter in a Data Set.

Figure 3.20 - Data Set Block

A Data Set is an AnyLogic data structure capable of storing 2D (X,Y) data of type double

while maintaining the minimum and maximum of the stored data for each dimension up-to-

date. When the X-values record a dependency of Y the Data Set is designated phased, which is

the case in this situation.

38

The next logical flowchart area represents the first supermarket and is very simple

comprising solely three blocks: Enter, Queue, and Hold.

Figure 3.21 - First Supermarket logical flowchart

Produced elementary products are sent from exit (Figure 3.19) to enterStock (Figure 3.21)

from where they enter elementarStock buffer (Queue Block). These products, also named basic

components, are kept in elementarStock using the permanently blocked Hold block

WaitInStock.

When a basic component enters elementarStock, two actions are performed. First, the

stock of products of that type (materialCode) is incremented. It would be worthless to just

update that agent’s parameter stock as it would not be reflected on all other agents of the

same type.

To overcome this problem and to store the base information for each product type obtained

from the excel file Info, a collection of Prod agents named products was created. For each

product type an agent is added to that collection. The stock information is always read from

and updated on that reference agent. Whenever a product is placed on production, its

parameter information is filled using the reference agent of the same type from the products

collection.

The same concept is also used for orders and a collection named orders was used to store

all the release orders to be produced. Then, using the already mentioned order triggering event

calendar_orders, a search through collection is executed and if the release date of an order

matches the current period, that order is placed on hold and the function used to execute

orders is performed with that order as argument. The function will be explained later.

The other action performed when a basic component enters elementarStock consists on

checking which reorder generated that component’s production and the produced quantity of

that reorder is updated. This behavior will be completed during function explanation.

Whenever a higher-level product that as a dependency present in the first supermarket in

the necessary amount is placed on execution, such amount of dependencies is removed from

elementarStock and form the population productsInElementarStock using code.

Next on the system’s skeleton is the Pre-assembling area, composed of a set of five blocks:

Enter, Time Measure Start, Service, Time Measure End, and Exit.

Figure 3.22 - Pre-assembling logical flowchart

Again, as in Production’s logical flowchart, the Time Measure pair (Start and End) is used

to measure the lead time, in this case of non-elementary products. Likewise, the Service block

included queue has limitless capacity. When a product is injected on the Enter block

enterPreAssembly, it was previously added to the population productsInPreAssembly. When a

product enters the Exit block exitPreAssembly it is removed from the population

39

productsInPreAssembly, added to the population productsInCompositeStock and placed on the

second supermarket logical flowchart using the function take(agent) in its Enter block.

The second supermarket is modelled as the first supermarket.

Figure 3.23 - Second Supermarket logical flowchart

Not only are the used blocks the same but the actions performed inside each of them is also

the similar.

The final area of the case study system is the Assembling area.

Figure 3.24 - Assembly area logical flowchart

Exit block output is the end of the system. On the entrance of a final product the output

block removes it from the population productsInAssembly, adds it to the population

deliveredProducts and updates the parameter Amount from the order that triggered its

production by reducing one unit. If the order Amount becomes zero, the order is removed from

population ordersOnExecution and added to population finishedOrders.

Services operate using resources, thus there are six ResourcePool blocks in the model, one

for each WorkCentre.

3.4.4 Data Input and Output

Data communication was made using excel files. In AnyLogic a model might have multiple

Experiments being the default Simulation. Simulation runs on a special agent called Main. To

perform any action when the simulation begins, the Main action On startup is used.

The data input starts by reading the number of periods per week and calculating the time

per period in minutes dividing the number of working minutes in a week by the number of

periods per week. Afterwards, the setup times for each WorkCentre machine is placed on a

HashMap collection from where it can be easily get using the WorkCentre name. The number

of machines is obtained for each WorkCentre and the capacity of the respective ResourcePool

is set to that value.

The next data input stage is the information gathering for agent Prod, including parameter

values for each product type, BOM construction and stock creation (if the system is operating

in an ATO strategy) and populating the products collection. The startup code continues by

getting orders information and populating the orders collection.

Data output is performed through the AnyLogic default log and using the Main action On

destroy. The former type of data output is used for optimization model parameter adjustment

through changes on the Info and setupTs excel files.

40

3.4.5 Function description

Four global functions were developed for the simulation model. These functions serve

different purposes: execute an order (executeOrder), execute a reorder (executeReOrder),

produce a product (produceProduct), and reorder a product (reorderProduct). AnyLogic

provides a special block for global function implementation.

Figure 3.25 - Function Block

Functions can be a simple action, returning nothing, or return a value based on the action

result. A function may receive none or any number of arguments of any type.

3.4.5.1 produceProduct

The produceProduct function is the system’s base function, being executed in all other

three functions. The function takes four arguments and returns an integer value.

Table 3.9 - produceProduct arguments

Name Type Meaning

prdct Prod
The Prod object from products collection whose

materialCode matches the order productCode parameter

valueToProduce int Amount of product prdct to produce

level int
Used to distinguish between non-elementary components

and final products

order Order The order that originated this production

In the manufacturing system in study there are three type of products: elementary products

that do not depend on any product other than raw materials to be produced; non-elementary

components that depend on other products to be produced but are not final products; final

products which depend on other products to be produced. The produceProduct function needs

to be able to distinguish between those types as the production process differs. Elementary

41

products enter their production in the Production area; non-elementary components enter their

production in the Pre-assembling area; final products enter their production in the Assembling

area.

The first distinction moment is on whether the product to produce has dependencies or not,

which is done by measuring its BOM size. Zero means it is an elementary product, otherwise it

Pseudo-code 2 – produceProduct Procedure ATO strategy (with initial stock)

function produceProduct(prdct, valueToProduce, level, order):

if prdct.BOM.size()==0 then

for i=1:valueToProduce do

Insert a new Prod object equal to prdct in population productsInProduction

Place that Prod object in Production area

else

flag=0

for all Prod objects p in prdct.BOM do

if p.stock >= valueToProduce * p.amountComponent then

flag++

else

reorderProduct(p, level+1, order, valueToProduce*p.amountComponent)

if flag==prdct.BOM.size() then

for all Prod objects p in prdct.BOM do

if p.BOM.size()==0 then

for j=1:valueToProduce*p.amountComponent do

Remove a Prod object with the same materialCode as p from elementary

supermarket

Remove that Prod object from population productsInElementarStock

Reduce the stock of products with the same materialCode as p

if p.stock < p.reorderPoint then

reorderProduct(p, level+1, order, valueToProduce*p.amountComponent)

else

for j=1:valueToProduce*p.amountComponent do

Remove a product with the same materialCode as p from non-elementary

supermarket

Remove that Prod object from populatoin productsInCompositeStock

Reduce the stock of products with the same materialCode as p

if p.stock < p.reorderPoint then

reorderProduct(p, level+1, order, valueToProduce*p.amountComponent)

If level==1 then

Insert a new Prod object equal to prdct in population productsInAssembly

Place that Prod object in Assembling area

else

Insert a new Prod object equal to prdct in population productsInPreAssemby

Place that Prod object in Pre-assembling area

return 1

return 0

end function

42

has dependencies. To distinguish between final products and non-elementary components, the

level argument is used: if level value is one, the product is final, else it is not.

The production of an elementary product is simple and consists on the addiction of products

from prdct materialCode to population productsInProduction and their placement in the

Production area, in the amount valueToProduce.

However, due to their dependencies, final products and non-elementary components have

a more complex production process. First, it is necessary to verify if there is sufficient inventory

amount for each of their dependencies. If such verification is positive, the dependencies are

consumed in the correct amount and the product is sent to its area (depending on their type)

and added to the respective population. If not, those dependencies are reordered and the

current order is placed on hold.

Pseudo-code 3 – produceProduct Procedure MTO strategy (without stock)

function produceProduct(prdct, valueToProduce, level, order):

if prdct.BOM.size()==0 then

for i=1:valueToProduce do

Insert a new Prod object equal to prdct in population productsInProduction

Place that Prod object in Production area

else

flag=0

for all Prod objects p in prdct.BOM do

if p.stock >= valueToProduce * p.amountComponent then

flag++

else

return 0

if flag==prdct.BOM.size() then

for all Prod objects p in prdct.BOM do

if p.BOM.size()==0 then

for j=1:valueToProduce*p.amountComponent do

Remove a Prod object with the same materialCode as p from elementary

supermarket

Remove that Prod object from population productsInElementarStock

Reduce the stock of products with the same materialCode as p

else

for j=1:valueToProduce*p.amountComponent do

Remove a product with the same materialCode as p from non-elementary

supermarket

Remove that Prod object from populatoin productsInCompositeStock

Reduce the stock of products with the same materialCode as p

If level==1 then

Insert a new Prod object equal to prdct in population productsInAssembly

Place that Prod object in Assembling area

else

Insert a new Prod object equal to prdct in population productsInPreAssemby

Place that Prod object in Pre-assembling area

return 1

return 0

end function

43

produceProduct returns zero if the production was unsuccessful and one if it was.

When working in a MTO strategy, there is no safety nor initial inventory. Therefore, the

algorithm suffers some changes. Despite checking if the dependencies are all available in the

desired quantity, it does not reorder them in the negative case. The order is placed on hold

until those quantities have already been produced. Dependency orders are obtained through

optimization output. Whenever a non-final order is completed, the final orders on hold are

once again attempted to execute and, this time, if there is already sufficient inventory of all

their dependencies the productions are executed, otherwise the orders are maintained on hold.

3.4.5.2 reorderProduct

reorderProduct takes four arguments and returns nothing.

Table 3.10 - reorderProduct arguments

Name Type Meaning

product Prod
The Prod object from products collection whose

materialCode matches the reorder needs

level int
Used to pass it as argument for the function

produceProduct call inside reorderProduct

parent Order
The Order during which execution the reorder was

triggered

amountToProduce int Amount of product to produce

In section 3.4.5.1, two different behaviors were described for produceProduct function

based on system’s strategy, MTO or ATO. Similarly, reorderProduct also behaves differently

whether the system’s strategy is MTO or ATO. If the system is working based on a ATO strategy,

reorders are triggered when the stock of a product reduces bellow a predetermined value and

the value to produce is calculated to be high enough so that when the reorder is fulfilled, the

inventory level of such product is, on average, in the desired level. Therefore, simultaneous

reorders of the same product type are not allowed.

The reorderProduct function, for the ATO situation, checks if there is a reorder of that

product already being executed (Prod’s Boolean parameter reordered). On a positive situation,

current reorder is ignored. Otherwise the reorder is created, added to population

reordersOnExecution and attempted to execute using function produceProduct where the

valueToProduce argument is defined according to the product to produce (ignoring the input

argument amountToProduce. If, for some reason, function produceProduct return is zero, the

reorder is removed from population reordersOnExecution and added to population

reordersOnHold. The argument parent refers to the order during which execution the current

reorder was triggered. If the reorder is created, parent’s parameter reordersGen is

incremented to hold the amount of reorders that order generated.

44

For the MTO situation, reorderProduct is ignored as dependencies production orders are

obtained from optimization and the function is not used in the simulation.

3.4.5.3 executeOrder and executeReOrder

executeOrder takes one argument and returns an integer value. The argument, named

order, is of type Order and represents the order to execute.

This function is used to execute an Order, either because the current period equals such

order releaseDate or because the Order was previously unsuccessfully executed and placed on

hold and the conditions for its execution are now met.

executeReOrder is based on executeOrder with some minor differences. Instead of placing

the order in populations related with order tracking, places it in populations related with

reorder tracking. The other difference is on the value of the third argument used on function

produceProduct. Since reorders are always of non-final products and orders are always of final

products, the produceProduct level argument takes the value two inside executeReOrder and

value one inside executeOrder. As referred in 3.4.5.1, this argument represents whether the

product to be produced is a non-elementary component or a final product, changing the

behavior of produceProduct.

Pseudo-Code 4 – reorderProduct procedure ATO strategy

function reorderProduct(product, level, parent, amountToProduce):

if product.reordered == false then

amountToProduce = value defined for products of type product.materialCode

Insert a new Order object in population reordersOnExecution

parent.reordersGen++

production = produceProduct(product, amountToProduce, level, created Order object)

if production == 0 then

Remove the Order object previously inserted in population reordersOnExecution

Insert that Order object in population reordersOnHold

end function

Pseudo-Code 5 – executeOrder procedure

function executeOrder(order):

Remove order from population ordersOnHold

p = element from products collection whose materialCode matches order.productCode

result = produceProduct(p, order.Amount, 1, order)

if result == 0 then

Insert order in population ordersOnHold

return 0

else

Insert order in population ordersOnExecution

return 1

end function

45

3.4.6 Order and reorder control

This subsection aims to explain the implemented dynamics that did not fit the previous

subsections, namely the order and reorder control.

In 3.4.5, it was explained that whenever the result from produceProduct was zero the order

(or reorder) that triggered such function was placed on hold. However, it is necessary to explain

how and when would those orders (or reorders) be triggered again. Again, the method changes

according to system’s strategy.

In the MTO situation, whenever a product reaches one of the supermarkets, the parameter

Amount from the reorder that originated that product is decremented. If Amount equals zero

the reorder is complete. Once a reorder is complete, its parent parameter reorderCalls is

incremented. Whenever reorderCalls form an order (or reorder) reaches the value reordersGen,

it means that the amount of reorders triggered by that order (or reorder) is complete. Hence,

the function executeOrder (or executeReOrder) is performed.

In the ATO situation, reorders are triggered from inventory level instead of being triggered

directly by orders. Therefore, the triggering of on hold orders and reorders is different. Again,

whenever a product reaches one of the supermarkets, the parameter Amount from the reorder

that originated that product is decremented. If Amount equals zero, the reorder is complete.

Nevertheless, triggering occurs every time a product enters the supermarkets. If there is an

order (or reorder) on hold that requires that type of product to be executed, executeOrder (or

executeReOrder) is performed. If the inventory level of all components is sufficient, the order

is placed on execution, else it is kept on hold.

3.5 Scheduling/Sequencing

Previously, the input mechanism was explained, including the order reading. Orders are

read from an excel file (optimization results) and attempted to execute when its release date

occurs. Orders from the same period are executed on the same sequence they are presented

on the excel file. If the product the order is attempting to produce has dependencies and the

Pseudo-Code 6 – executeReOrder procedure

function executeReOrder(order):

Remove order from population reordersOnHold

p = element from products collection whose materialCode matches order.productCode

result = produceProduct(p, order.Amount, 2, order)

if result == 0 then

Insert order in population reordersOnHold

return 0

else

Insert order in population reordersOnExecution

return 1

end function

46

system is working under a MTO strategy, the dependencies will be attempted to produce

following the sequence they were read from the excel file.

In simulation, setups are implemented and occur whenever the materialCode parameter of

the product to produce in a WorkCentre changes. Bending WorkCentre is the system’s

bottleneck essentially due to its long toolkit set changeover times, i.e., its setup times.

Therefore, reducing the number of setups is highly benefic to improve system’s efficiency.

Scheduling allows for an optimized sequencing of production orders, optimizing each

WorkCentre utilization. Scheduling rules and techniques are vast, nonetheless, most do not

consider the system’s status and are more of general use. A new technique was developed to

address the case study type of problems.

Figure 3.26 helps illustrate how products are placed in production.

ME ME ME ME ME MC MC MA MA MA MA

Figure 3.26 - Production sequence (with scheduling)

Figure 3.26 represents the queue at the entry of a determined WorkCentre and the first

element in the queue is at the rightmost one, MA in this case. Within the same period,

production orders are read alphabetically, meaning that the sequence will be sorted that way,

without a scheduling technique. Setup times are considered sequence independent in our

methodology. Thereby, the specific sequence inside a period is irrelevant. However, the first

element in the queue for each period plays a major role in reducing setups. If the last product

in queue referring to period t equals the first product to be produced in period t+1, one setup

has been avoided. Moreover, if the queue is empty but the sequence can start with a product

of the same type as the last produced product in the subsequent WorkCentre (or the type of

the current product in production in that WorkCentre), a setup has also been avoided.

The scheduling algorithm structure is described next in Figure 3.28 and Pseudo-Code 7.

47

Figure 3.27 - Scheduling algorithm flowchart

48

There are seven moments of decision, represented by the yellow decision blocks in the

flowchart.

The first one is whether or not the queue is empty. The scheduling algorithm aims at

grouping similar products within periods.

If the queue is empty, the first product position can only depend on the WorkCentre. If

there is a product being produced and the types differ, the priority of the entering product is

not maximum following a rule of maximum-variable where this variable is named subtractor.

Whenever a new priority is defined, subtractor is incremented and that priority is placed on a

structure named priorities with the key (id, period). The product id represents the type of

product (parameter id of Prod object) and period represents the period when it was inserted

in queue.

Otherwise, if the type of product in production is the same of the product to be placed in

Pseudo-Code 7 – Scheduling Algorithm

function schedule(enteringProduct, WC, priorities,subtractor, period)

if WC.queuesize() == 0 then

if WC.delaysize() > 0 then

if first product to enter production is of the same type as enteringProduct then

enteringProduct.priority=100

subtractor=0

else

enteringProduct.priority=100-subtractor

subtractor++

else

enteringProduct.priority=100

subtractor=0

else

if priorities.contains((enteringProduct.id, period)) then

enteringProduct.priority=priorities.get((enteringProduct.id, period))

else

if there are products of earlier periods in queue then

get information on the lower priority product of an earlier period

if enteringProduct type equals the obtained product type then

enteringProduct.priority = obtained_priority

else

enteringProduct.priority=100-subtractor

subtractor++

else

if first product to enter production is of the same type as enteringProduct then

enteringProduct.priority=100

else

enteringProduct.priority=100-subtractor

subtractor++

priorities.put((enteringProduct.id, period), enteringProduct.priority)

end function

49

queue, this product’s priority will be maximum so that it goes to production right after the

current product operation is finished, avoiding a setup. Subtractor is reset to zero.

If the WorkCentre is also empty, the first product to enter the queue has maximum priority

and the subtractor is reset to zero.

On the contrary, if the queue is not empty, product’s priority is defined by the elements in

queue. If the key (id, period) is already in the priorities data structure, the product receives

that priority. If not, the algorithm verifies if there are products in queue that entered in lower

periods.

If there are no products in queue that were released in a previous period, the algorithm

verifies if the product in production is of the same type as the one entering the queue. If so,

gives maximum priority to that product and stores that priority in priorities. Else, product’s

priority is set to maximum – subtractor, subtractor is incremented and the priority is stored in

priorities.

If there are products from previous periods in queue, the algorithm obtains the information

of the lowest priority product in queue that was released on a previous period and compares

the types. If they match, attributes that product’s priority to the entering product and saves

it in priorities. Otherwise product’s priority is set to maximum – subtractor, subtractor is

incremented and the priority is stored in priorities.

Value 100 is used for maximum priority as an example, being the algorithm completely

independent of the used value since the parameter priority can be either positive, zero or

negative and the priority comparison is made between products and not related to an external

factor. If all priorities are defined based on the same referential, that referential value is

irrelevant.

3.6 Simulation and Optimization Interaction

Simulation and optimization models interact in various ways. Optimization results are

simulation orders input. Considering system status and the production plan, simulation

performs the developed scheduling technique, improving WorkCentre utilization. Simulation,

whenever the optimization results were too optimistic and order due dates were not fully

satisfied, influence optimization WorkCentre capacity parameters to tighten its constraints and

attempt to produce a less optimistic production plan. After the first run, simulation provides

the lead time inputs for optimization. Finally, when a production plan is validated by

simulation, the plan is altered to comprise the scheduling made during the simulation

execution.

Order reading is direct: the period in which optimization plan releases an order is the same

period when the simulation process will release that same order. However, for the products

with dependencies, if there is not sufficient dependencies inventory to fulfil the order, the

order is placed on hold until it can be performed.

The lead times provided from simulation are the average of the measured lead times for

each product. The average was chosen instead of, for instance, maximum to diminish the

oscillation effect between iteration solutions. The tightening is, therefore, controlled and

smoother than with the maximum option.

WorkCentre capacity-related parameters are changed whenever the optimization

production plan was not validated by simulation and for WorkCentres that verified an average

utilization above 80%. WorkCentres in high average utilization were chosen as those are the

50

more likely to have had the most diverging behavior from what was expected in optimization.

This parameter adjustment was made multiplying the initial capacity by the proportion

obtained from the following formulae (11).

 𝑎𝑑𝑗𝑢𝑠𝑡 =
𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛

𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 +
∑ 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦 𝑝𝑒𝑟𝑖𝑜𝑑 − 𝑑𝑢𝑒 𝑑𝑎𝑡𝑒𝑢𝑛𝑚𝑒𝑡 𝑑𝑢𝑒 𝑑𝑎𝑡𝑒𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑢𝑛𝑚𝑒𝑡 𝑑𝑢𝑒 𝑑𝑎𝑡𝑒𝑠

 (11)

This adaptation incorporates the average delay for the unmet due dates (tardiness).

When decreasing capacity from an iteration to the next, the adjustment is made as

described. However, when increasing capacity, the adjustment is smoothed, as in (12).

𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑎𝑑𝑗𝑢𝑠𝑡 − 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑎𝑑𝑗𝑢𝑠𝑡

2
 (12)

Both capacity parameters and lead time estimates are adjusted by simulation. When

simulation tries to increase capacity, it means the previous optimization solution had

excessively conservative constraints, i.e., either the WorkCentre capacities were

underestimated or the lead times were overestimated (or both). Therefore, the total number

of orders and per period was below the capacity of the system, resulting in a smaller amount

of WIP, leading to shorter average lead times. Harsh adjustments in WorkCentre capacity,

associated with lead time measurements, could lead the approach towards an oscillatory

behavior between excessively conservative and excessively optimistic solutions. (12) is used to

smooth adjustment and avoid/reduce such oscillatory behavior.

3.6.1 Stopping Criteria

The iterative nature of the proposed approach requires the approach to finish under some

condition. However, one single condition was considered not to be sufficient to tackle every

possible end scenario. Therefore, a set of conditions was developed for the approach to address

the verified situations during development and test phases.

Table 3.11 instantiates all implemented conditions that lead to the completion of the

proposed approach.

The three conditions do not have the same priority. The main objective of the proposed

approach is to aid decision making by proposing feasible production plans and schedules.

Therefore, the highest priority condition is demand being met (“Demand was met” in Table

3.11). The other two conditions are mutually exclusive as if the approach is cycling between

two solutions where one is optimistic and the other rather conservative, the approach is not

outputting the same solution consecutively.

51

Table 3.11 - Stopping conditions

Condition Scenario where it is applicable

Solution is cycling

Methodology is iterating between two

results. Might happen when the ideal results

are very close to both solutions and

consecutive increases and decreases in

constraints lead to more or less optimistic

results from optimization.

Sequence of iterations without significant

changes

Three iterations were executed without

significant changes in output (lead times,

production plan, and simulation evaluation

changed less than 3%). Might happen when

demand is impossible to fulfill or period

duration does not allow for better results

due to lack of precision.

Demand was met

If all demand is met under the obtained and

validated plan, methodology might

terminate as its objective is attained.

No time related condition was implemented as run time is related with period duration and

average bottleneck utilization, as seen in chapter 4, and a generalized time related condition

was not possible develop.

The proposed approach is analyzed in the following chapter.

Chapter 4

Approach Assessment

With the dynamics of the case study system presented and the methodology described, the

approach has been evaluated in terms of computational performance and quality of the

proposed solutions, considering the impact of different scheduling rules and by changing the

time discretization of the MILP model.

4.1 Impact of different period durations on the approach performance

Period duration variation has been introduced and briefly explained in section 3.3.5. In this

section, a detailed analysis of this solution strategy is presented.

The period duration is associated with the number of periods per time interval. A larger

amount of periods per time interval translates in smaller periods and increases the model

precision. Nevertheless, the amount of periods also decreases the performance of the MILP

model by increasing the number of integer variables. Therefore, a balance between model

precision and performance must be attained.

Time discretization requires the conversion of lead times from time units to time periods.

If a certain lead time is an exact multiple of period duration, there is no problem as the

conversion is accurate. However, it is highly unlikely to verify such coincidence and the more

natural occurrence is to have a lead time that is not an exact multiple of the period duration.

In those cases, the conversion to periods is made such that the lead time in periods is equal or

greater than the real value of the lead time.

For instance, if a determined product lead time is 500 minutes and the period duration is

240 minutes, lead time in periods is 3, corresponding to 720 minutes. In this situation the

converted lead time is excessive by 220 minutes. For the same lead time, if the period duration

is 120 minutes, lead time in periods is 5, corresponding to 600 minutes. In this situation the

converted lead time is excessive only by 100 minutes. The increase in precision is notorious.

For this example, one could argue that a period duration of 250 minutes would be more

adequate as it would allow for an exact representation (2 periods would match exactly 500

minutes). This affirmation is fairly correct however, considering this as one isolated example,

one cannot make the conjecture that higher period durations are benefic. The next example

will support this statement.

54

In systems having product interdependency, lead times are used to calculate when to trigger

the production orders for such dependencies. Considering the BOM structure presented in the

next figure, product MA would have to be launched in production 500 minutes prior to product

MB, which, in its turn, would have to be launched in production 300 minutes prior to product

MC. Therefore, product MA would have to be launched in production 800 minutes prior to

product MC.

Figure 4.1 - BOM structure example

The following table represents the period conversion and total time equivalence for the

three referred period durations.

Table 4.1 - Lead time conversion comparison

 MA Lead time MB Lead Time Total Lead time Excess

Period

Duration
Periods Minutes Periods Minutes Periods Minutes Minutes

120 min. 5 600 3 360 8 960 160

240 min. 3 720 2 480 5 1200 400

250 min. 2 500 2 500 4 1000 200

As expected, if lead times are not exact multiples of period duration on its majority, smaller

period durations provide higher precision. When the number of possible combinations is very

high, the likelihood of lead time match with a multiple of period duration is extremely low.

Additionally, lead time conversion has another impact on optimization behavior, besides

the calculation of the triggering moment for the production order of dependencies. If the period

duration is very high, even if the dependency lead time is very low it will be converted to at

least 1 period. Products can only be produced when their dependencies are fully produced

(which happens in moment of production plus lead time). If the converted lead time is very

excessive, backlog might occur. In more detail, consider the following two situations:

 Product MB has product MA as its dependency; lead time of product MA is 100

minutes; period duration is 2400 minutes; demand for 1 unit of product MB exists

at the end of the week (consider a week to have 2400 working minutes)

MC

MB

MA

Lead time: 300 minutes

Lead time: 500 minutes

55

 Product MB has product MA as its dependency; lead time of product MA is 100

minutes; period duration is 240 minutes; demand for 1 unit of product MB exists at

the end of the week (consider a week to 2400 working minutes)

Both situations differ only on period duration and consequent number of periods per week.

In the first situation the number of periods per week is 1 whereas in the second situation the

number of periods per week is 10. The following tables represents the orders, inventory,

backlog and demand for that week considering only the referred products for each of the

situations.

Table 4.2 - Situation 1 Optimization output

MA MB

1 1

Production

orders
0 0

Inventory 0 0

Backlog 0 1

Demand 0 1

Table 4.3 - Situation 2 Optimization output

MA MB

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

Production

orders
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1

Inventory 0

Backlog 0

Demand 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

In situation 1, lead time is converted to 1 period. The excess time is 2300 minutes. Since

the week only has 1 period and product MB can only be produced in the period after product

MA is produced (which takes lead time, in this case 1 period), product MB cannot be produced

and will be placed in backlog. Since there is no production order for MB, product MA production

order will not be triggered.

In situation 2, lead time is converted to 1 period. The excess time is 140 minutes. Since the

week has 10 periods, product MA can be produced 1 period prior to product MB, originating the

result exposed in Table 4.3.

Product MB is considered to take less than one period to be produced and demand must be

fulfilled at the end of the period.

The given example serves to illustrate the second problematic originated by low precision

lead time conversion. In addition, the given example serves to exclude cases where there is a

small number of periods per week from future tests, as the testing instance includes products

with multi-level dependencies.

Variation of period duration also impact costs. For instance, inventory costs for a 120

minutes’ period cannot be the same as inventory costs for a 240 minutes’ period. Inventory cost

is related to period duration. There is a base value of inventory costs per week. Depending on

period duration, such value is divided by the number of periods per week. Production costs do

not change with period duration as the cost is not related with a time interval but with the

56

actions inherent to production. Backlog costs are related to unmet due dates and are constant

for every period duration to represent the necessity to fulfill the highest number of customer

requests possible.

4.2 Proposed Scheduling vs FIFO

From the explanation given in section 3.5, the proposed scheduling technique presents

advantages facing the FIFO strategy, implemented by default in AnyLogic. This subsection is

dedicated to testing and analyzing the same instances in each of the strategies.

The following tables present the common data and test information. Note that customer

demand exists only for final products and at the end of each week. Costs are considered equal

for every period for the tests.

Table 4.4 - List of products

MA MC ME

MS MR MT

Table 4.5 - Immediate product dependency

Product Code (parent) Product Code (dependency) Quantity

MS MA 2

MS ME 3

MR MA 1

MR MC 2

MT MA 1

MT ME 2

MT MS 1

Table 4.6 - WorkCentre information

WorkCentre Number of machines
Working minutes per week

per machine

C01 2 2400

C02 4 2400

C03 1 2400

C04 1 2400

C05 3 2400

C06 2 2400

Table 4.7 - Product related costs

Product Code Production cost Inventory cost Backlog cost

MA 100 50 -

MC 145 73 -

ME 90 45 -

MS 200 100 -

MR 115 58 6900

MT 150 150 11000

57

Table 4.8 - Operation Sequence

Product Code Operation Next Operation WorkCentre Processing Time

MA P01 P02 C01 5

MA P02 P03 C02 20

MA P03 P04 C04 3

MA P04 - C03 4

MC P01 P02 C01 2

MC P02 P03 C04 5

MC P03 P04 C02 30

MC P04 - C03 5

ME P01 P02 C01 5

ME P02 - C02 10

MS P01 - C05 5

MR P01 - C06 3

MT P01 - C06 2

Table 4.9 - WorkCentre setup times

WorkCentre Setup time

C01 1

C02 6

C03 2

C04 1

C05 1

C06 3

Table 4.10 - Customer demand

Product Code Week 1 Week 2 Week 3

MR 40 45 45

MT 55 50 50

Four metrics were used to compare the two scheduling rules:

 Number of setups performed in the bottleneck WorkCentre

 Total time necessary to execute all orders

 Percentage of orders that did not met their due date

 Tardiness

Each test is made twice, once for the first iteration of the proposed methodology were lead

time estimates are direct input from the user; and a second time for the last iteration of the

proposed methodology, happening after a stopping criteria is met.

Whenever the proposed approach initiates its execution, lead time estimates are required

to be inputted by the user. Those lead times can be classified as average, pessimistic or

optimistic, according to the difference from the empirically known lead times.

Average estimates on lead times are those that are not far from the values empirically

obtained. The same way, pessimistic estimates are those that are much higher than the values

empirically obtained. Finally, optimistic estimates are those that are significantly lower than

the values empirically obtained.

58

A total of three tests were performed on the same instance (considering costs, capacity,

demand and BOM structures) but with different period duration and initial lead time estimates,

as explained above.

Table 4.11 - Test information (scheduling comparison)

Test number Iteration Period duration
Initial lead time

estimates

1
First

120
Average

Final -

2
First

240
Pessimistic

Final -

3
First

240
Optimistic

Final -

The size of the instance, considering the number of variables in the optimization model is

defined in Table 4.12.

Table 4.12 - Instance size on variables

Test Period duration Integer variables Binary variables

1 120 1074 320

2 and 3 240 493 147

Numerical results are listed in Table 4.13.

Table 4.13 - Test results (scheduling comparison)

Test - iteration
Scheduling

Rule

Number of

bottleneck

setups

Total execution

time (min.)

Percent

of delays

Tardiness

(periods)

1 - First
Proposed 338 7349 45,1% 1,43

FIFO 442 7503 54,9% 1,92

1 - Final
Proposed 192 7105 0 0

FIFO 212 7105 0 0

2 - First
Proposed 190 6989 0 0

FIFO 274 6989 0 0

2 - Final
Proposed 165 7097 0 0

FIFO 238 7207 3,33% 1

3- First
Proposed 191 7141 6,67% 1

FIFO 273 7265 13,33% 1

3 - Final
Proposed 165 7097 0 0

FIFO 238 7207 3,33% 1

Results show that the proposed strategy reduced the number of setups in the bottleneck.

The setup count is performed only for the bottleneck WorkCentre because it is the WorkCentre

59

with the longer setup times. Plus, the queue preceding that WorkCentre is the most likely to

fill and where sequencing would have higher impact.

The proposed scheduling rule also seems to generally outperform the FIFO strategy in terms

of total execution time, except in test 3. This test started with pessimistic lead time estimates,

thereby the optimization results were very conservative. Backlog was verified at the end of

each week (the backlog at the end of week 3 was final as there is no more periods where those

orders could be produced). This result was also conservative in the moment when dependencies

were placed on production. Since lead times were considered very long, dependencies were

placed on production in very early periods. When optimization results were inputted in the

simulation model, the real lead times were shorter. Hence, dependencies would wait longer in

the supermarkets. Execution time was, therefore, not defined by the variations in waiting time

in production but in waiting time in supermarket and by the production calendar.

The second and third tests was based on the same instance and period duration but with

different initial lead time estimates. For both tests, the proposed methodology finished with

the same solution, thus results for test 2 and 3 on the final iteration are the same. However,

the second test took more iterations to attain the same results.

Comparing delay information, both percentage of delays and delay duration, the proposed

strategy presents an overall superior behavior.

The first test, for the first iteration, presents high levels of delays. The smaller period

duration increases the precision of the optimization model, as previously stated. Smaller period

duration results in higher number of periods per week increasing the solver flexibility.

Therefore, despite starting with average lead time estimates, first iteration results were too

optimistic as a small difference in lead time could change its value in the conversion to periods.

Plus, an order is considered delayed when it is delivered one period later. If the order was

released in t, it is expected to be delivered in t+1. A delay is considered when an order is

released in t and the delivery date of the final product from that order is delivered on a period

superior to t+1. Since periods are smaller, deviations are more noticeable and due dates are

stricter.

4.3 Result Analysis of the period length

Besides affecting costs and working minutes per period, period duration affects the

performance of the proposed methodology. The decrease in period duration will, in theory,

increase the model precision, therefore improving its performance. This assumption was putted

to test using data presented in Tables 4.4 to 4.10. Demand values were designed to provoke a

high bottleneck utilization situation, forcing the system to work close to its limit. In this type

of high utilization scenarios, the optimization model takes longer to solve. In section 4.4, this

effect will be tested and analyzed. The initial lead time estimates were 500 minutes for

products MA, MC and ME, and 50 minutes for products MS.

Three cases were considered, where period duration is 480 minutes, 240 minutes, and 120

minutes. To compare the three scenarios (that only differ on period duration) five Key

Performance Indicators (KPI) were used: total cost of final plan; percentage of delivered

products; total run time of the methodology from start to finish; number of iterations the

proposed approach had to execute to reach the final result; criteria that triggered methodology

termination (presented in section 3.6.1).

60

Table 4.14 - Period duration test results

Period duration

(min)
Cost

Fulfilled

orders

Run time

(seconds)
Iterations Stop criteria

480 525955,6 85,96% 369,43 4

Sequence of iterations

without significant

changes

240 325345,0 96,84% 573,09 6 Solution is cycling

120 325333,9 100% 45552,64 6 Demand was met

As expected, solution quality increases with the decrease in period duration (and

consequent increase in number of periods). Total solution cost reduces and the percentage of

fulfilled orders increases.

However, run time increases with the decrease in period duration as there are more periods

per time interval. Decision variables (production, inventory and backlog) are dependent on both

product type and period, therefore, a rise in number of periods increases the number of

decision variable and the model to solve grows in size and complexity. Optimization models are

known to be harder to solve as size and complexity grows.

For the 480 minutes’ period duration scenario, the final solution was found on iteration

number two. This can be explained as the lower precision translates in more conservative

results. The lead time conversion prevents a higher percentage of customer orders to be

fulfilled and the following iterations did not influence the optimization results as lead time

conversion must be always done to an integer number of periods.

The best scenario, percentage of fulfilled orders wise, is the 120 minutes’ period duration

one. However, the run time is considerably higher and might not be practical in real situations

of higher system complexity. It is important to note that the high bottleneck utilization imposed

by the high customer demand influences run time (96,56% average utilization). Section 4.4

explores this influence.

The number of integer and binary variables increases with the number of periods per week

(decreasing with period duration), influencing run times. Table 4.15 matches each tested

period duration to the resulting integer and binary variables.

Table 4.15 - Integer and binary variables per period duration

Period duration (min) Integer variables Binary variables

480 220 52

240 497 147

120 1074 320

4.4 High bottleneck utilization vs low bottleneck utilization

Preliminary tests pointed towards a relation between WorkCentre average utilization and

optimization model run time. Eight instances were putted to test. Data was constant and

identical to that of section 4.2, apart from customer demand, which directly influences

bottleneck utilization. Period duration was 240 minutes. Lead time estimates were 250 minutes

for products MA, MC and ME, and 50 minutes for products MS.

61

Table 4.16 contains the run time and average bottleneck utilization results for those tests

ordered by average bottleneck utilization.

Table 4.16 - Utilization vs run time test results

Test number Average bottleneck utilization
Optimization run time

(seconds)

1 35,96% 0,055

2 56,91% 0,105

3 76,08% 0,180

4 81,07% 1,115

5 86,31% 1,180

6 95,92% 7,673

7 96,56% 29,76

8 96,15% 1,385

The highlighted results correspond to an excessive instance, i.e., customer demand was

impossible to be met by the system at study. Considering the first seven instances, run time

grows with average bottleneck utilization, being the increase in run time more impactful when

the average bottleneck utilization is close to limit.

In the excessive situation, many orders are unable to be fulfilled by the manufacturing

system, increasing the number of backlogs. As backlogs are unavoidable in the highlighted

situation as the system is physically unable to handle the tested customer demand, the solver

does not struggle to find an optimal solution considering no backlog.

Ignoring the eighth test, bottleneck utilization impact on run times could be described as

presented in Figure 4.2.

Whenever WorkCentre capacity is attempted to be used close to its limit, optimization run

time is expected to increase. Since the proposed approach follows an iterative scheme, the

increase in optimization run time significantly impacts its total run time.

Figure 4.2 - Average bottleneck utilization impact on optimization run time

0

5

10

15

20

25

30

35

0 10 20 30 40 50 60 70 80 90 100

R
u

n
 t

im
e

(s
ec

o
n

d
s)

Average bottleneck utilization

Chapter 5

Conclusion

Operational efficiency is overall seen as a competitive advantage and companies invest

searching and developing methods to increase this efficiency. The growing demand for quality

and customization by costumers increased the importance of production planning and

scheduling.

This dissertation focused on developing a methodology to aid managers and top level

employees in decision making tasks and dealing with both planning and scheduling problems

related with manufacturing systems. The objective was accomplished by proposing and

developing an iterative hybrid method between optimization and simulation techniques.

Answering the first research question, the proposed approach is based on a simple MIP

model and a detailed simulation model of the manufacturing system. The former is used to

obtain the production plans while the latter applies the developed scheduling technique to the

production plan and evaluates whether or not it is feasible. If not, WorkCentre capacity is

adjusted for bottleneck WorkCentres, lead time estimates are updated, and the optimization

model is solved again considering the adjusted parameters.

The second research question is related to the interaction between optimization and

simulation. In the proposed approach, optimization and simulation interact through parameter

and lead time estimates adjustments. Furthermore, simulation performs a scheduling technique

during its run using the production plan coming from optimization and the verified conditions

of the system.

The proposed methodology proved to be flexible in precision selection through period

duration variation, being fit for both high precision and relaxed systems. Furthermore, the

proposed methodology, given a sufficient level of precision, was able to provide detailed

production plans even under high WorkCentre capacity utilization (96,56% utilization of

bottleneck WorkCentre).

The methodology benefits from using a set of stopping conditions instead of a single

condition as it contributes to its flexibility and better handling of different situations.

Unlike other hybrid optimization-simulation approaches, the proposed methodology does

not force convergence by reducing solution quality as for example [16]. The impact from

simulation on optimization only affects lead times, and WorkCentre capacity when that

WorkCentre is at high utilization rate.

64

The proposed methodology studies and develops a method for the incorporation of BOM in

recursive approaches while using backlog decision variables.

Most manufacturing systems can be modelled and described using the proposed approach.

The mathematical model is easily generalized and adapted to most situations and simulation

models can be built considering virtually any dynamics due to technological advancements in

the area. The approach is, therefore, applicable to the majority of situations and is expected

to provide satisfactory results on tackling production planning problems.

5.1 Further research

Despite the satisfactory results produced by the methodology, it has only been tested on

the case study and further testing on different scenarios must be performed to validate and

support the approach.

The proposed approach works with unique and defined processing routes for each product.

However, in real scenarios, products might follow alternative routes. The implementation of

this feature in the methodology would allow for better WorkCentre utilization, deviating

products towards WorkCentres with smaller waiting queues/times.

As referred, a balance between period duration and the total run time of the proposed

approach must be made. Creating a systematic tool that could analyze the optimization model

of the system and suggest a fitting period duration for the run time to be practical based on

complexity analysis and average bottleneck utilization would be of great interest. This feature

would release users from tuning tasks, increasing the independency of the approach.

Convergence was not proved nor guaranteed and a set of conditions were necessary to

prevent an infinite number of iterations when the approach is being applied to certain scenarios

under specific conditions. A thorough study on convergence and possible improvements to the

methodology would be important to ensure the efficiency of the approach.

The proposed scheduling technique is not generalized and might not be applicable to

different scenarios. An intense study on generalized scheduling techniques would have to be

performed to allow the proposed methodology to be applied to the most manufacturing

systems.

Chapter 6

Bibliography

[1] Hopp, W.J. and M.L. Spearman, Factory physics. 2011: Waveland Press.

[2] Ohno, T., Toyota production system: beyond large-scale production. 1988: crc Press.

[3] Ashayeri, J. and R. Kampstra, Demand driven distribution: The logistical challenges

and opportunities. Proceedings of International Trade & Logistics, Corporate Strategies and the

Global Economy. Le Havre: University of Le Havre, 2005.

[4] De Toni, A., M. Caputo, and A. Vinelli, Production management techniques: push-pull

classification and application conditions. International Journal of Operations & Production

Management, 1988. 8(2): p. 35-51.

[5] Goddard, W. and R. Brooks, Just-in-Time: A Goal for MRP II. Readings in Zero Inventory,

1984.

[6] Lee, L., A comparative study of the push and pull production systems. International

Journal of Operations & Production Management, 1989. 9(4): p. 5-18.

[7] Venkatesh, K., et al., A Petri net approach to investigating push and pull paradigms in

flexible factory automated systems. International Journal of Production Research, 1996. 34(3):

p. 595-620.

[8] Villa, A. and T. Watanabe, Production management: beyond the dichotomy between

‘push’and ‘pull’. Computer Integrated Manufacturing Systems, 1993. 6(1): p. 53-63.

[9] Bonney, M., et al., Are push and pull systems really so different? International Journal

of Production Economics, 1999. 59(1): p. 53-64.

[10] Missbauer, H. and R. Uzsoy, Optimization models of production planning problems, in

Planning Production and Inventories in the Extended Enterprise. 2011, Springer. p. 437-507.

[11] Pochet, Y. and L.A. Wolsey, Production planning by mixed integer programming. 2006:

Springer Science & Business Media.

[12] Land, A.H. and A.G. Doig, An automatic method of solving discrete programming

problems. Econometrica: Journal of the Econometric Society, 1960: p. 497-520.

[13] Little, J.D., et al., An algorithm for the traveling salesman problem. Operations

research, 1963. 11(6): p. 972-989.

[14] Figueira, G. and B. Almada-Lobo, Hybrid simulation–optimization methods: A taxonomy

and discussion. Simulation Modelling Practice and Theory, 2014. 46: p. 118-134.

[15] Byrne, M. and M. Bakir, Production planning using a hybrid simulation–analytical

approach. International Journal of Production Economics, 1999. 59(1): p. 305-311.

[16] Kim, B. and S. Kim, Extended model for a hybrid production planning approach.

International Journal of Production Economics, 2001. 73(2): p. 165-173.

[17] Irdem, D.F., N.B. Kacar, and R. Uzsoy, An exploratory analysis of two iterative linear

programming—simulation approaches for production planning. Semiconductor Manufacturing,

IEEE Transactions on, 2010. 23(3): p. 442-455.

[18] Byrne, M. and M. Hossain, Production planning: An improved hybrid approach.

International Journal of Production Economics, 2005. 93: p. 225-229.

66

[19] Almeder, C., M. Preusser, and R.F. Hartl, Simulation and optimization of supply chains:

alternative or complementary approaches? OR spectrum, 2009. 31(1): p. 95-119.

[20] Lee, Y.H. and S.H. Kim, Production–distribution planning in supply chain considering

capacity constraints. Computers & industrial engineering, 2002. 43(1): p. 169-190.

[21] Bang, J.-Y. and Y.-D. Kim, Hierarchical production planning for semiconductor wafer

fabrication based on linear programming and discrete-event simulation. Automation Science

and Engineering, IEEE Transactions on, 2010. 7(2): p. 326-336.

[22] Kropp, D.H., R.C. Carlson, and J.V. Jucker. Use of both optimization and simulation

models to analyze complex systems. in Proceedings of the 10th conference on Winter

simulation-Volume 1. 1978. IEEE Press.

[23] Acar, Y., S.N. Kadipasaoglu, and J.M. Day, Incorporating uncertainty in optimal

decision making: Integrating mixed integer programming and simulation to solve combinatorial

problems. Computers & Industrial Engineering, 2009. 56(1): p. 106-112.

[24] Jeong, S.J., S.J. Lim, and K.S. Kim, Hybrid approach to production scheduling using

genetic algorithm and simulation. The International Journal of Advanced Manufacturing

Technology, 2006. 28(1-2): p. 129-136.

[25] Li, J., M. González, and Y. Zhu, A hybrid simulation optimization method for

production planning of dedicated remanufacturing. International Journal of Production

Economics, 2009. 117(2): p. 286-301.

[26] Liu, J., et al. Production planning for semiconductor manufacturing via simulation

optimization. in Proceedings of the Winter Simulation Conference. 2011. Winter Simulation

Conference.

[27] Pürgstaller, P. and H. Missbauer, Rule-based vs. optimisation-based order release in

workload control: A simulation study of a MTO manufacturer. International Journal of

Production Economics, 2012. 140(2): p. 670-680.

[28] Kacar, N.B. and R. Uzsoy. Estimating clearing functions from simulation data. in

Proceedings of the Winter Simulation Conference. 2010. Winter Simulation Conference.

[29] Kacar, N.B. and R. Uzsoy, Estimating Clearing Functions for Production Resources Using

Simulation Optimization. Automation Science and Engineering, IEEE Transactions on, 2015.

12(2): p. 539-552.

[30] Armbruster, D. and R. Uzsoy, Continuous dynamic models, clearing functions, and

discrete-event simulation in aggregate production planning. Tutorials in Operations Research,

INFORMS, 2012.

[31] Kacar, N.B., D.F. Irdem, and R. Uzsoy, An experimental comparison of production

planning using clearing functions and iterative linear programming-simulation algorithms.

Semiconductor Manufacturing, IEEE Transactions on, 2012. 25(1): p. 104-117.

[32] Mittelmann, H. Mixed Integer Linear Programming Benchmark (MIPLIB2010). 2016

[cited 2016 26 February]; Available from: http://plato.asu.edu/ftp/milpc.html.

[33] Gurobi. [cited 2016 March]; Available from: http://www.gurobi.com/.

[34] Machin, J. xlrd. [cited 2016 April]; Available from: https://pypi.python.org/pypi/xlrd.

[35] openpyxl. [cited 2016 April]; Available from: https://pypi.python.org/pypi/openpyxl.

[36] Swain, J.J. Simulation Software Survey. 2015 [cited 2016 15 March]; Available from:

http://www.orms-today.org/surveys/Simulation/Simulation.html.

[37] Foundation, T.A.S. Apache POI - the Java API for Microsoft Documents. 2016 [cited

2016 April]; Available from: https://poi.apache.org/.

http://plato.asu.edu/ftp/milpc.html
http://www.gurobi.com/
https://pypi.python.org/pypi/xlrd
https://pypi.python.org/pypi/openpyxl
http://www.orms-today.org/surveys/Simulation/Simulation.html
https://poi.apache.org/

	Abstract
	Acknowledgements
	List of Contents
	List of Figures
	List of Tables
	Abbreviations and Symbols
	Chapter 1
	Introduction
	1.1 Motivation
	1.2 Concepts and Context
	1.2.1 Operations Management and Dynamics of Production Systems
	1.2.1.1 Push and Pull

	1.2.2 Planning and Scheduling
	1.2.3 Modelling and Solving

	1.3 Objectives of the Research
	1.4 Methodology
	1.5 Structure of this dissertation

	Chapter 2
	Literature Review
	2.1 Optimization-Simulation Methods
	2.2 Meta-Heuristics
	2.3 Clearing Functions
	2.4 Conclusion

	Chapter 3
	Simulation/Optimization Approach
	3.1 Problem Description
	3.2 Case Study
	3.2.1 Production Process
	3.2.2 Planning Process
	3.2.3 Opportunities
	3.2.4 Summarized Description

	3.3 Optimization Model
	3.3.1 Mathematical Formulation
	3.3.2 Model Implementation and Software
	3.3.3 Data Input and Output
	3.3.4 BOM Handling
	3.3.5 Variation of Period Duration

	3.4 Simulation Model
	3.4.1 AnyLogic
	3.4.2 Process Modelling Library
	3.4.3 Flowchart composition of the system
	3.4.4 Data Input and Output
	3.4.5 Function description
	3.4.5.1 produceProduct
	3.4.5.2 reorderProduct
	3.4.5.3 executeOrder and executeReOrder

	3.4.6 Order and reorder control

	3.5 Scheduling/Sequencing
	3.6 Simulation and Optimization Interaction
	3.6.1 Stopping Criteria

	Chapter 4
	Approach Assessment
	4.1 Impact of different period durations on the approach performance
	4.2 Proposed Scheduling vs FIFO
	4.3 Result Analysis of the period length
	4.4 High bottleneck utilization vs low bottleneck utilization

	Chapter 5
	Conclusion
	5.1 Further research

	Chapter 6
	Bibliography

