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Abstract 

Production planning and scheduling are critical in matters of cost reduction, resource 

sustainability and performance improvement, these being crucial factors due to the highly 

competitive nature of today’s industry. The technological development allowed the emergence 

of hybrid methods of optimization and simulation to perform the referred actions with better 

results.  

In this dissertation, a set of methods related with planning and/or scheduling are presented, 

many of which are a hybridization of optimization and simulation. From those methods, some 

were chosen as inspiration to the work developed in this dissertation, Kim & Kim (2001) being 

one of those influences. However, to that work it is intended to add WIP effects, setup times, 

and scheduling components, as well as improving the quality of its results. The proposed 

methodology consists in the interaction between a Mixed Integer Programming model and a 

simulation model, the latter being used as an evaluator of the solution proposed by the first, 

while also implementing the developed scheduling technique. In the case of an infeasible 

solution, the simulation results will serve as input to the MIP model to adjust some parameters 

in an intent to produce more realistic results. The proposed methodology was applied to a case 

study concerning a project-oriented company with production driven by customer demand.  

Results prove the proposed methodology to be satisfactory and of good quality in handling 

the case study’s problems, namely its bottleneck features. Moreover, the results support the 

proposed methodology as a viable alternative for production planning and scheduling problems 

in similar situations. 
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Chapter 1  

Introduction 

Production planning and scheduling are critical functions in manufacturing systems in 

matters of operational costs reduction, resource sustainability, and performance improvement. 

Market’s increased accessibility and consequent competitiveness encouraged a generalized 

investment in continuous improvement. Improvements in modelling and the verified leap in 

technology allow the development of new methods to tackle these problems. 

This chapter covers in some detail, the following aspects of the work: the motivation for 

this project; theory and concepts context; objectives and questions to answer; brief 

methodology explanation; and document structure presentation. 

1.1 Motivation 

Today’s strong and ever-growing interconnection led to market globalization consequently 

increasing its competitiveness. Customer options enlarged significantly and companies had to 

intensely compete to conquer each client. This ferocious rivalry stimulated continuous 

improvement methodologies inside corporations. Production systems, integrant parts of 

companies and industries, felt the need to attain and maintain high levels of quality and 

efficiency to be attractive to the market. 

Production planning and scheduling are typically critical functions regarding operational 

costs reduction and overall system improvement. Nevertheless, operational complexity has 

highly increased with time and analytical methods used in the past are no longer viable due to 

the unpractical solving times. Hence, alternative approaches are of uttermost necessity to 

manage planning and scheduling problems related to high complexity and size production 

systems. 

Traditionally, simulation was used in cases where the complexity or nonlinear nature of 

systems could not be handled by analytical methods. Nonetheless, simulation is a tool for 

solution analysis and optimal solutions can neither be obtained through simulation nor proved 

to be optimal with resource to it. Therefore, simulation allowed for strong modeling without 

guarantee of optimality. 
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Advances in modelling techniques and the simultaneous increase in computational power 

and decrease in computational costs allowed both simulation and optimization techniques, 

usually considered to be separate or alternative, to be combined in a hybrid manner. 

The relatively recent development start of these hybrid methods is an opportunity to 

explore due to the high potential this combination represents to solve production planning and 

scheduling problems. The methodology will be briefly presented in section 1.4. 

1.2 Concepts and Context 

1.2.1 Operations Management and Dynamics of Production Systems 

This dissertation is comprised in the Operations Management (OM) discipline that came from 

Scientific Management (SM), the first management discipline dating back to the late 19th 

century. Despite not being the first person to show interest and seek to rationalize the practice 

of management, Frederick W. Taylor (1856-1915) was the first to generate “the sustained 

interest, active following, and systematic framework necessary to plausibly proclaim 

management as a discipline” Hopp and Spearman (2011) [1]. Taylor defended that planning and 

doing are distinct activities that should be addressed by different job categories. This principle 

is the backbone of modern management. Besides Taylor, many were the contributors to SM and 

OM and are detailed in [1]. 

In [1], many definitions used in production systems are explained. Notwithstanding the 

importance of them all, only a few will be detailed in this dissertation due to its pertinence.  

Hopp and Spearman (2011) [1] use the term workstation to refer a “collection of one or 

more machines or manual stations that perform (essentially) identical functions. (…) In process-

oriented layouts, workstations are physically organized according to the operations they 

perform”. In this dissertation the term WorkCentre is used as a synonymous of workstation. 

When the term product is used in this dissertation it refers to the synonymous term part 

described as “a piece of raw material, a component, a subassembly, or an assembly that is 

worked on at the workstations in a plant” [1]. The same way, non-elementary components are 

subassemblies, elementary components are components and final products are end items. 

The terms routing, order, raw material, and lead time are also explained.  

Routing “describes the sequence of workstations passed through by a part.”. Order might 

be of two types: external or internal. External orders are customer orders which represent 

customer requests “for a particular part number, in a particular quantity, to be delivered on a 

particular date”. Raw material “refers to parts purchased from outside the plant”.  

The lead time is described, for a determined line or routing, as “the time allocated for 

production of a part on that routing or line”, however this is not the definition used in this 

dissertation. In this dissertation, lead time is used as the total time it took the part to go from 

its production start point to its finish point, being composed by the production time plus the 

waiting time. 

Hopp and Spearman (2011) [1] describe Work in Process (WIP) as jobs “that have not yet 

arrived at an inventory location”. WIP is a critical factor for manufacturing and production 

system’s performance as it affects throughput (TH). TH is defined as “average output of a 

production process” but it can be further detailed as “the average quantity of good 

(nondefective) parts (…) produced per unit time”. This concept is important to understand 
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Little’s Law (12), stating that “at every WIP level, WIP is equal to the product of throughput 

and cycle time” (CT). 

 𝑊𝐼𝑃 = 𝑇𝐻 ∗ 𝐶𝑇 (1) 

 

The cycle time used in the definition refers to the term lead time in this dissertation. This 

law translates that when the systems reaches its maximum throughput capacity an increment 

in WIP will lead to an increase in lead time. Little’s law is not actually a law but a tautology 

meaning the proposed relation is not accurate in all systems. Nonetheless, it can be used as a 

“conjecture about the nature of manufacturing systems” to understand the influence of WIP in 

such systems. In the studied case (that will be presented in section 3.2), lead time does not 

vary linearly with WIP because the different products have different processing time, being the 

wait time dependent not only on the number of products but also on the type of operation 

those products will go through. Therefore, the lead time does not change linearly due to 

variability.  

Hopp and Spearman (2011) [1] formally define variability as “the quality of nonuniformity 

of a class of entities. (…) In manufacturing systems, there are many attributes in which 

variability is of interest. Physical dimensions, process times, (…), setup times, and so on”. 

Variability can either be controllable or random. Controllable variation occurs “as a direct 

result of decisions” whereas random variation “is a consequence of events beyond our 

immediate control”.  

Variation has a nefarious influence on cycle time (in this dissertation referred to as lead 

time). For a single station, it is comprised by move time plus queue time plus setup time plus 

process time. For assembly operations, waiting all components is added to the equation. 

Variation highly influences waiting times and, as generally concluded in many studies, the 

waiting times tend to be the highest factors in the described equations. Therefore, control over 

variability is of highest importance. 

In [1], there are sections entirely dedicated to variability and served as references for this 

dissertation. However, due to the extension of the subject, variability and its consequences 

will not be further detailed here. 

1.2.1.1 Push and Pull 

Push and Pull are concepts widely used in manufacturing and production systems 

descriptions, sometimes not in a precise and even contradictory manner. 

Taiichi Ohno, the father of Just in Time (JIT) used the term pull in a very general sense in 

[2]:  

“Manufacturers and workplaces can no longer base production on desktop planning alone 

and then distribute, or push, them onto the market. It has become a matter of course for 

customers, or users, each with a different value system, to stand in the frontline of the 

marketplace and, so to speak, pull the goods they need, in the amount and at the time they 

need them” [2]. 

However, the interpretations of this concept are diverse, and this wide range of definitions 

is present, for example in [3-8]. 

Bonney et al. (1999) [9] analysis some of those interpretations and opts for a definition 

based on the information flows used for control. When the control information flow is in the 

opposite direction to the material flow, the system is of type pull. When the control information 
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flow is in the same direction as the material flow, the system is of type push. This definition is 

also used in this dissertation. 

Information control information is the production trigger. In a push strategy, when a 

WorkCentre finishes its operation on a certain part it triggers the production order for the next 

WorkCentre in that part’s routing. In a pull strategy, when a WorkCentre is to execute an order 

it triggers the orders related to its dependencies, either material or operational. 

Figure 1.1 - Push vs Pull flows 

 

Customer orders serve as control information inputs. Considering Figure 1.1, for the push 

system, customer orders would enter in WC1 (first WorkCentre) and the information would 

spread from that point onward. For the pull system, customer orders would enter WC3 (third 

and last WorkCentre) and would propagate from that point backward.  

The benefits of the pull system are presented in [1] and are divided in: reduced 

manufacturing costs, reduced variability, improved quality, flexibility maintenance, and 

facilitation of work ahead. 

Systems often encompass both push and pull features, originating push-pull strategies. 

While push and pull systems are generally (but not only) associated with Make-to-Stock (MTS) 

and Make-to-Order (MTO) strategies, respectively, push-pull systems are related to Assemble-

to-Order (ATO) strategies.  

ATO strategies are developed around a decoupling point (or more) from where the 

production strategy changes. This strategy is especially benefic in systems where different 

combination of a set of components allows the production of many different products suited to 

customer needs. A good example is ice-cream based on flavors. From a relatively small set of 

flavors, many different compositions can be made. If there are 5 flavors and customer can 

choose up to 3 scoops, there are 155 possibilities (5*5*5 for three scoops plus 5*5 for two scoops 

plus 5 for one scoop). 

These systems work in MTS strategy up to the decoupling point (being the selling point in 

the ice-cream case) and in MTO strategy from that point onward. These systems benefit from 

both economies of scale and possibility of customization based on customer demand. 

WC1 WC2 WC3 

WC1 WC2 WC3 

Control Information Flow 

Material Flow 

Push system 

Pull system 
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1.2.2 Planning and Scheduling 

Independently of the strategy in use, virtually all manufacturing systems are desired to 

provide “on-time delivery, minimal work in process, short customer lead times, and maximum 

utilization of resources” [1]. Unluckily, these goals conflict. Production scheduling aims at 

striking a profitable balance among these conflicting objectives. 

The goals of production scheduling might be meeting due dates, maximizing utilization, or 

reducing WIP and Cycle Times (in this dissertation referred to as lead times). Anyhow, this 

dissertation’s interest is mainly on the first goal. Due date performance can be evaluate using 

service level, fill rate, lateness, and tardiness. These and many other scheduling-related 

concepts are described in [1]. In this dissertation tardiness is used together with another 

measure to influence optimization parameters (explained in section 3.5). Scheduling defines 

the sequence on which production orders and operations will be executed. Besides the already 

defined goals of scheduling, its results impact setups, one of the main causes of controllable 

variability in a system.  

Scheduling is based on a plan, which is produced by production planning tasks. 

The basic problem of production planning in manufacturing environments “involves viewing 

the production system as a conglomerate of resource groups” (WorkCentres) “and allocating 

the capacity of production resources (…) among different products over time, coordinating the 

associated inventories and raw material inputs so that known or predicted customer demand is 

met in the best possible manner” [10]. The “best possible manner” is not a very scientific 

description of the objective and requires a better definition to form the basis of an optimization 

model. Generally, this objective is minimizing the total expected costs or maximizing the total 

profit of the system over the considered time interval. However, in many systems, the second 

option is not easily calculated, thus the first option is the most common and generalized 

approach. 

System’s increase in complexity led to a two planning level approach where the upper level 

generates an aggregate production plan while the lower level produces a detailed scheduling 

of the work orders within the production units based on the production plan produced by the 

upper level. 

In short, a production plan describes what to produce in a specific time interval and the 

production schedule determines the moment for each of the productions and operations 

comprised in the production plan. Therefore, production planning and scheduling are related 

and are crucial tasks of manufacturing systems. 

1.2.3 Modelling and Solving 

All the presented concepts would be useless if they could not be applied and analyzed. 

System modelling is therefore of extreme relevance for the OM discipline. As referred, 

manufacturing systems are growing in complexity. Not only that, but they are getting more 

integrated and sophisticated. “Production planning models are very often Mixed Integer 

Programming (MIP) models, because of problem features such as set-up costs and times, start-

up costs and times, machine assignment decisions, and so on.” [11]. MIP models, in opposite of 

Linear Programming (LP) ones, are able to capture the discrete nature of some decisions, due 

to integrality constraints. Most modelling decisions and techniques were based on [11] and [10].  

The mathematical formulation used in this project is present in section 3.3.1. 
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Mathematical models are used in a generalized manner as they are, in theory, solvable. If 

a real system is possible to be mathematically modelled, for instance as a MIP model, then it 

is theoretically solvable. In this dissertation, the Branch and Bound algorithm design paradigm 

is used. It was first proposed by Land and Doig (1960) [12] and named “Branch and Bound” by 

Little et al. (1963) [13]. A Branch and Bound algorithm is based on a systematic enumeration 

of candidate solutions through state space search. The set of candidate solutions can be 

described as a rooted tree where the root of the tree contains the full set. Each branch of such 

tree represents a subset of the solution set. To avoid the search of the entire universe of 

candidate solutions, before enumerating the candidate solutions of a branch, the algorithm 

checks that branch against upper and lower estimated bounds. If that branch cannot produce 

a better solution than the best one found it is discarded.  

The used Branch and Bound is incorporated in the MIP solver used that will be presented in 

section 3.3.2. 

1.3 Objectives of the Research 

Increased market competitiveness led industries towards a continuous struggle to overcome 

each other and successfully conquer clients. Consequently, the investigation and research in 

areas related to this problematic increased significantly. This dissertation also aims at 

answering this problematic. Being planning and scheduling operations at the core of the market 

competitiveness problematic, this dissertation’s main objective is to tackle both these 

problems. Converting this general goal into questions to be answered, this dissertation would 

pose the following questions:  

 How to use optimization and simulation methods to improve production planning 

and scheduling in manufacturing systems? 

 How to perform the interaction between optimization and simulation to obtain the 

maximum benefits from the hybridization? 

Nevertheless, the second question is an extension of the first one, as the interaction is 

included in the utilization of the two methods. However, as it will be presented in chapter 2, 

the main difference between hybrid optimization-simulation methods lays on the interactions 

between both rather than on each method’s formulation. For that reason, the second question 

was posed separately.  

1.4 Methodology 

Optimization, as the name states, consists on the search and prove of the optimal solution 

for a certain problem. However, when the problem in analysis is of great size and complexity, 

the solve time is unpractical. Moreover, typical mathematical models are not able to 

incorporate uncertainty as well as stochastic characteristics of the system in their formulation. 

Simulation, on the other hand, is able to analyze extremely complex nonlinear and 

stochastic systems in a practical time. Nevertheless, simulation is mostly a tool for scenarios 

evaluation and is not fit to find the optimal solution for a certain problem nor prove the 

optimality of a certain solution. 



7 

 

Optimization and simulation, when analyzing the pros and cons of each method, are almost 

symmetrical, i.e., the strengths of a method serve as solutions for the weaknesses of the other. 

Henceforth, the hybrid use of both creates a stronger method. 

Such hybridization might be performed in different ways, as reviewed by Figueira and 

Almada-Lobo (2014) [14]. To tackle production planning and scheduling problems an 

optimization-based approach was chosen. Based on [14], the proposed methodology is 

categorized as a Recursive Optimization-Simulation Approach (ROSA) from the category of 

Analytical Model Enhancement (AME) approaches. 

This type of approach “consists on running recursively a relatively east (typically linear) 

analytical model and a (more detailed) simulation model. Simulation uses the solution 

generated by optimization and computes particular performance measures. (…) The values of 

these measures are then introduced again into the analytical model, refining its parameters. 

The recursive process ends after a stopping criterion is met.” [14]. Despite being a MIP model 

instead of a LP model, the proposed methodology is still encompassed in this category. 

As referred by Figueira and Almada-Lobo (2014) [14], each model abstraction level is 

different, i.e., the detail level in the optimization model is lower than on the simulation model. 

This modelling option is used to avoid the increase in complexity which optimization solve times 

suffer from. However, since the simulation model will comprise the features not included in 

the optimization model, the parameter adjustment made between iterations will serve a similar 

purpose as the inclusion of such features in the optimization model. 

The proposed approach is applied to a case study of a manufacturing system working on a 

project-based strategy where customer demand drives production. Final products are 

assembled from standard components built from processed metal sheets (raw material). 

Previous system strategy presents many opportunities that the proposed approach aims to 

solve. One of the problems in the system is the bottleneck WorkCentre being so majorly due to 

long setup times. Besides the bottleneck WorkCentre there are five other WorkCentres, defined 

by the type of operations developed in them (process-oriented layout). 

The iterative approach and the case study to which it is applied will be further detailed in 

chapter 3. 

1.5 Structure of this dissertation 

This introductory chapter will be followed by a literature review where techniques used to 

tackle planning and or scheduling problems are presented and analyzed. Afterwards, the 

proposed methodology is exposed in chapter 3 including the presentation of the case study. 

Following this chapter, results of several instances are presented and analyzed. Finally, the 

dissertation closes (chapter 5) with the statement of the most important results and 

conclusions, as well as future work that could be applied to the proposed approach. 

 





 

 

 

Chapter 2  

Literature Review 

The combination of increased market competitiveness and technology progress pushed 

developers and researchers towards an intensive search and development process for better 

tools to handle production planning and scheduling problems. The literature on such methods 

and approaches is vast making unviable the inclusion and analysis of its entirety. Hybrid 

approaches, referred in the previous chapter as generally better than their isolated parts, were 

the main focus of this research appearing, however, some methods that do not fit this category 

but were kept due to the value they present. 

Information and references were selected and gathered using an iterative approach. 

Primarily, the search method was carried out with resource to Google Scholar and a set of 

keywords. The search results were then analyzed by the sequence: Abstract and Introduction, 

Conclusion, and finally the description of the approach. 

If valuable aspects were found during this first analysis process, the reference was kept and 

marked for more detailed analysis and its references were used as a second level for the search 

cycle. 

 The third step was to search for citations of the highest quality articles or books from the 

selected ones to find more recent work based on the same foundations. 

In some of the iterations of the presented cycle, the found articles would consist in state-

of-the-art texts, taxonomies or reviews of the best methods to solve this type of problems, at 

the time of its writing. Those articles also served as reference for the gathering of quality 

literature. 

After a few iterations of such cycle, the resultant articles and books started to become 

repetitive and that was when the gathering moment was considered sufficient, beginning the 

second, more detailed and exhaustive, moment of analysis. Afterwards, the references 

considered to be of most relevance were grouped according to the nature of the proposed 

methods. 
Table 2.1 - Literature Search Method Keywords Set 

Production planning Production scheduling Simulation Optimization 

Modelling Multi Product Multi Period State of the art WIP  
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2.1  Optimization-Simulation Methods 

The solutions based on some kind of hybridization of optimization and simulation methods 

are of great interest as they are the most similar to this dissertation’s proposed approach. 

Understanding that the disadvantages from both optimization (analytical) and simulation 

methods could be mitigated by the advantages of the other, Byrne and Bakir (1999) [15] studied 

and developed an hybrid model between the two types of solution for the Multi Period Multi 

Product Production Planning Problem. The approach is based on an iterative process where the 

optimization results are evaluated by the simulation model If the results are not valid, the 

simulation model will adjust a specific set of parameters of the optimization model and repeat 

the process with more restrict conditions. When the results from the analytical method are 

valid, that resulting production plan is “both mathematically optimal and practically feasible” 

[15]. This article presents the base concept for several approaches, including the one proposed 

in this dissertation. Although the authors used LP as the analytical tool for their case study, the 

general concept allows for any type of optimization method to be applied. 

Kim and Kim (2001) [16] leveraged on this approach and extends it by changing the LP model 

formulation considering factors that directly affect the capacity and workload of the resources 

and allowing production orders launched in a determined period to be stretched further into 

future periods. The authors state that the extended method proposed converges in few 

iterations consistently. In fact, its behavior is explored by Irdem et al. (2010) [17] and the 

method does converge consistently in a relatively small number of iterations, apart from a few 

cases where cycling between two solutions was observed. The authors compared two methods 

using a case study in the semiconductor manufacturing context where the complexity and size 

of the problem are immense.  

Figure 2.1 - General hybrid modelling procedure 
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Consequently, the method proposed in [16] presented a major disadvantage due to the need 

for a detailed simulation model of the production facility which must be run multiple times per 

iteration.  

Bearing the Just-in-Time concept in mind, Byrne and Hossain (2005) [18] propose a new LP 

formulation to use in the hybrid approach proposed in [15] and improved in [16]. Such a 

formulation allows the partitioning of orders into a set of smaller dimension ones.  

Almeder et al. (2009) [19] present a solution approach to support the operational decisions 

for supply chain networks. The developed general framework consists in applying a LP or MIP 

formulation in the context of a Discrete-Event Simulation (DES). Additionally, the authors 

empirically show an iterative combination of simulation and LP to be competitive when 

compared to deterministic MIP-models, in the context of stochastic supply chains. In the 

proposed approach, the simulation model enrolls as the master process, controlling the data 

communication and the LP/MIP-solver. Since the framework can be applied to stochastic 

situations, it may contain stochastic and nonlinear elements. Therefore, the simulation must 

be run several times and its results must be combined. Depending on the parameters and its 

influence on other elements of the optimization model, the combination rules are different.  

The approach begins with several simulation runs to generate initial parameter values for 

the optimization model and their results are ignored in further iterations. The combined results 

are calculated and stored in the database. The optimization model is executed with base on 

those values and its solution is stored. Decision rules are computed based on this solution and 

new simulation runs are executed. 

The authors’ tests prove the combination of simulation and optimization methods to be 

“worthwhile” and advantageous when compared to the more traditional alternatives and the 

separate utilization of the methods.  

Lee and Kim (2002) [20] proposed a solution similar to [19] and previously presented. The 

authors aimed to solve the incapacity of analytic models to correctly represent the dynamic 

and uncertain behavior of real supply chain systems. The suggested hybrid approach combines 

analytic and simulation models considering the operation time parameter in the analytical 

model as a dynamic factor adjusted by the results of the simulation model. While Almeder et 

al. (2009) [19] focus on obtaining a robust production, supply and transport plan considering 

stochastic and nonlinear operations and costs, estimating delays and cost-influential factors 

based on simulation experimentation, Lee and Kim (2002) [20] aim to obtain more realistic 

capacity estimates for the optimization model. 

Bang and Kim (2010) [21] suggest “a two-level hierarchical production planning (HPP) 

method in which the higher level (aggregated level) decision is made for production planning 

and the lower level (disaggregate level) decision is made for detailed scheduling”. The proposed 

method consists on a three-step iterative process. For each iteration, first, a production plan 

is produced from the LP model. Then, a priority rule-based scheduling method is used for 

operations scheduling in the fab. Finally, the resulting schedule and production plan are 

evaluated with resource to a DES.  

The method was developed for the semiconductor wafer fabrication context, characterized 

by high production rate and variety, and the results proved it to work better than traditional 

approaches and other commonly used methods. One of the authors considerations was the 

occurrence of unexpected events and its effect on the method since the LP modelling approach 

assumes deterministic situations in the facility. Under those circumstances, the plan is 

expected to change but doing so in a frequent matter may cause instability and confusion. 
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Therefore, the preferred method was to obtain a new plan in case of a major disturbance occurs 

with updated information of the fab. Otherwise, if the disturbance is minor, the current plan 

is used if the difference between the plan and actual production information does not exceed 

a predetermined level.  

While the method was developed for the semiconductor wafer fabrication context, the 

methodology is general enough to be applied to situations where the variety and amount of 

production are inferior. However, the results and effectiveness might differ. 

Such an adaptation can also be made to the solution proposed by Kropp et al. (1978) [22] 

due to the value of the general concept. The authors compare their hybrid approach to the 

isolated use of simulation and optimization methods recurring to a hypothetical health care 

environment.  

The concept is iterative consisting in the evaluation of the optimization model results with 

simulation. Then, the approach proceeds to find relationships between the nonlinear variables 

of simulation and the variables that are common to both models through linear regression 

performed on the results of a number of simulation runs. These linear relationships will then 

be applied to the optimization model as constraints to reflect a “non-cost objective of the 

facility”. The process will iterate until the achievement of the desired result of the evaluation. 

The presented technique can be adapted to different contexts with small changes in the 

formulation and a quality simulation model of the desired system, as in every hybrid technique. 

Acar et al. (2009) [23] propose an approach that also benefits from the referred versatility 

of application to different situations with small changes in the formulation and a quality 

simulation model. The authors develop a generalized MIP formulation able to interact with a 

simulation model. The generalized formulation interaction with simulation is based on the 

computation and evaluation of candidate solutions based on the results of previous runs. To 

test the suggested solution, a multi-product, multi-period facility location problem (MPP-FLP) 

was used as a case study and the results were promising and showed benefits versus the 

majority of alternative solutions. 

2.2 Meta-Heuristics 

From the previous literature analysis there is a common trait most of the authors refer as 

a problem or disadvantage of the hybrid optimization simulation approaches. As the size and 

complexity of the problem increase, the optimization model run time becomes unaffordable. 

To solve this problem, authors tend to increase the level of abstraction of the optimization 

model, however, it may not be desirable since it signifies a decrease of information and 

reliability. Such high complexity and size problems often do not require an optimal solution due 

to the unpracticality of its computation and accept quality sub-optimal solutions as an 

alternative. 

To approach these and other combinatorial optimization problems, since the early 80’s a 

lot of interest has be placed in the development and application of meta-heuristics, from which, 

as an example, will be highlighted the genetic algorithms (GA), considered good solution search 

strategies. Nonetheless, in order to model a real production planning problem stochastic and 

nonlinear parameters must be included. Most of those real problems are not simple enough for 

GA to be applied. Thus, to solve this situation, the hybridization concept is applied, combining 

meta-heuristics, GA in this case, with simulation methods. 
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The hybridization concept with resource to meta-heuristics is similar to the one with 

optimization methods, as the simulation is used as evaluation tool and considers the stochastic 

and nonlinear parameters of the system, and the meta-heuristic is used to search for optimal 

(or sub-optimal) solutions for the problem and its model is affected by the simulation results. 

Jeong et al. (2006) [24] developed a hybrid solution where the GA is used to optimize 

schedules and the simulation is used to minimize the maximum completion time of the last job 

while reflecting stochastic characteristics with the fixed input from the GA. The authors 

considered the completion time to be the simulation runtime, which is the overall time spent 

to execute all operations based on the production schedules generated by the GA. 

The operation time in the GA model is adjusted according to the simulation results. With 

this new values, the GA regenerates new operation schedules. This process is executed until 

the difference between the preceding simulation runtime and the current runtime is 

acceptable. 

Li et al. (2009) [25] propose an approach using GA and Design of Experiment (DoE) in an 

iterative manner. Their proposal is presented in the remanufacturing context, which differs 

from the general production systems. However, the concept can be adapted to fit such systems. 

Understanding that the major disadvantage of GA is the probability of skipping the optimal 

solutions around a certain individual solution when the optimal does not strictly fit the selected 

criteria for the next generation. The authors use fractional factory design (FFD) to find the 

extrema of each cell and develop a method to overcome this drawback. The solution candidates 

for the GA are provided by the FDD and the GA will continue the search process until the stop 

condition is met, considering the corresponding extrema of each cell. The authors state that 

the use of FFD improve the traditional use of GA in two ways. First, it ensures the local optima 

is found for each cell, improving the searching accuracy. Second, due to its fractional nature, 

improves the searching efficiency. 

Liu et al. (2011) [26] adapted the Multi-Objective Optimization (MOO) MatLab function and 

used it in cooperation with a simulation model to solve production planning problems. The MOO 

function is based on an elitist GA and is adapted to the problem and interaction with the 

simulation model to “search for a set of release plans that are near-Pareto optimal” [26]. The 

multiple objective are the mean and variance of total cost. The simulation model is also used 

as the objectives evaluator, similarly to previously referred proposals. The proposed method is 

mainly directed to help decision making in circumstances where there is the necessity to “weigh 

the trade-off between average cost and the risk associated with that cost”[26], as it provides 

more detailed information than the obtained from single-objective optimization. However, the 

authors understand their results to be possible starting points for other algorithms or to require 

further investigation through ranking and selection procedures. 

2.3 Clearing Functions 

The willingness to find faster and higher quality solutions to production planning and 

scheduling problems of stochastic/nonlinear nature led researchers towards different 

approaches. Additionally, traditional models as LP, MIP and other analytical methods tend to 

assume fixed lead times, which has been indicated by queueing-theoretical results and practical 

experience to be incorrect. In fact, lead times are considered to be “load-dependent, which 

leads to the well-known trade-off between short lead times and high capacity utilization”[27]. 

This feature modelling requires the representation of the “relationship between output and 
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WIP or lead time in the model”[27], which can be accomplished using nonlinear, saturating 

clearing functions (CFs). Considering a facility divided in sections, a clearing function (CF) is 

the “functional relationship between some measure of WIP in a period t and the expected or 

maximum output of the [section] in period t” [27].  

Pürgstaller and Missbauer (2012) [27] analyze the use of CF and compare their inclusion in 

optimization order release with traditional rule-based methods in workload control. Their 

conclusions prove the optimization-based methodology to largely outperform the rule-based 

ones. 

Kacar and Uzsoy (2010) [28] work on the major problem concerning CF, its estimating. The 

authors compare different regression approaches based on simulation results and compare the 

computational results. From the results obtained from the different experiments and 

approaches, they conclude on the difficulty of estimating CF and the lack of a strong foundation 

and/or mathematical models to support such procedure.  

The authors wrote a more recent article [29] on the same subject with a more detailed 

analysis of the problem, solution proposals and results, while presenting different and newer 

alternatives. On the same article, the authors propose the use of Simultaneous Perturbation 

Stochastic Approximation (SPSA) algorithm to estimate CFs. In the used case study, SPSA is 

shown to significantly improve the production plan by either estimating “better CF parameters 

or by directly optimizing releases”[29]. 

Comparisons between production planning models using CF and alternatives are present in 

the literature, as in [30-31]. The results tend to show the use of CF to be superior to the 

alternatives however, its estimating is not general and the results cannot be considered 

replicable in different situations. 

2.4 Conclusion 

The presented methods are plausible solutions, each of them having advantages and 

associated difficulties/problems. 

CF offer high quality model-reality relationship with a strong ability to incorporate 

stochastic features into the production planning approaches, but are not trivial to estimate and 

the results from its application in a case study cannot be generalized as there is no 

mathematical formulation or a strong foundation for estimating methods. Missbauer and Uzsoy 

(2011) [10] dedicate a subsection of their article to the analysis of the limitations of CF models. 

GA, and Meta-Heuristics in general, tend to find solutions faster than the common analytical 

methods. Nonetheless, such methods do not guarantee the optimal solution to be found.  

Approaches based on the hybridization of analytical optimization and simulation methods 

have strong mathematical foundations to support the analytical modelling and are guaranteed 

to find the optimal solution for the optimization part of the approach. Nevertheless, the 

runtime might become impracticable with the increase of optimization model size and 

complexity. The usual solution is to increase the level of abstraction and use the simulation 

model to include the important details and the hard-to-model parameters.  

The strong foundation supporting the development of approaches belonging to the last 

mentioned group associated with the ease of manipulation and variation of the mathematical 

formulation, and the optimal solution finding guarantee, led to the choice of the hybrid 

optimization-simulation approach as this dissertation solution proposal for production planning 

and scheduling problems.  
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The method extended in [16] and [18] from [15] serve as the basis to the development of 

the method proposed in this work. It is easily adapted to different situations and the MIP 

formulation is flexible enough to be manipulated towards improvement.  

Furthermore, the method proposed in [16] is showed in [17]. to rapidly converge towards a 

final feasible solution This conclusion has both advantages and aspects to be carefully 

considered. The convergence proves little necessary iterations of the method to obtain a 

feasible solution, which is positive as it is translated in practicable run times. However, such 

trait is also a problem, since the simulation affects the optimization parameters too intensely 

and the solution results are often non-optimal in the real situations. Therefore, the interaction 

between simulation results and optimization parameters must be reviewed and adapted to 

allow for a higher quality convergence of the proposed method. 

In [23], the authors prove the superiority of the iterative hybrid method in comparison with 

the simple MIP approach. Additionally, forms of interaction between simulation and 

optimization are proposed and uncertainty factors are introduced in optimal decision making. 

The authors also state that the modelling of uncertainty factors improve the results for 

production planning problems. This article, in conjunction with [21], serve as inspiration for 

the inclusion of dynamic factors (stochastic/nonlinear) as each of them present suggestions for 

the modelling of different parameters: setup times and costs, defect production, and WIP effect 

on lead-times.  

In the following chapter, the approach developed in this work is explained in detail along 

with the adaptations made to the proposals of the above referred articles. 

 





 

 

 

Chapter 3  

Simulation/Optimization Approach 

The approach proposed in this thesis is categorized as hybrid, since the general idea consists 

in the iterative use of simulation and optimization methods. Each of the methods present 

different advantages and limitations specific to their nature. Hybridizing the methods aims to 

attenuate/eliminate the limitations and disadvantages of each method while taking full 

advantage of their positive features, obtaining a superior method than each of the individual 

parts. 

Optimization methods are well-known for the guarantee of obtaining the optimal solution 

for the modeled problems. Additionally, the mathematical foundation is well developed and its 

formulation can be adapted at will with relative ease. However, nonlinear and stochastic 

factors, common in real situations and sometimes impactful on the behavior of the whole 

system, cannot be directly modeled by optimization methods. Furthermore, with the increase 

of model’s size and complexity, these methods run time might exponentially increase and 

become unpractical.  

Simulation methods, in contrast, can comprise a high level of detail, including nonlinear 

and stochastic factors, without compromising their execution time. Moreover, in situations 

where the richness of detail is crucial, simulation models are of uttermost utility. Despite the 

high modelling capacities such methods are used to evaluate deterministic situations. The 

search for optimal solutions cannot be purely done with resource to simulation. 

In a summarized manner, the interaction between this duality of methods has the objective 

of overcoming each method’s limitations with the other method’s advantages. 

This chapter will proceed with a thorough description of the intended problem to solve, 

followed by a detailed explanation of the optimization and simulation models construction 

process. Later it will conclude on the comprehensive explanation of the interaction between 

both models. 

3.1 Problem Description 

Production planning and scheduling are critical in matters of cost reduction and 

performance improvement, crucial factors in today’s highly competitive industry. These 

problems can be decomposed in several key tasks.  
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Production planning decisions are often related to medium-term time horizons. These 

decisions address the determination of optimized production mixes, lot sizes, order assignment 

to resources and release plans. In contrast, production scheduling key tasks are related to 

operational aspects with short time horizons for instance, order and operation sequencing. 

The problem at stake can be divided in two phases: solve the planning decisions and 

subsequently the scheduling ones accordingly. For instance, considering a manufacturing 

scenario, decide on the production mix to release on production for each period. Based on this 

decision, decide on the sequence of releasing from which the system benefits the most, for 

each period. 

The interdependency between the two sorts of decisions is noticeable, being its 

simultaneous resolution advantageous. 

Capacity restrictions tend to be linear, thus not posing as a relevant problem during system 

modelling. However, aside from these and other common restrictions, there are some 

influencing factors that are critical. The lead time of the production line, which might differ 

with the product type, is one of such factors. The amount of WIP in the system influences the 

lead time in a nonlinear manner that cannot be modelled using linear constraints. Similarly, it 

is known that when a resource is being used at a near-limit capacity, the lead time increases 

significantly. Hopp and Spearman (2011) [1] go into further detail on the referred dynamics. 

The proposed methodology aims to solve production planning and scheduling problems that 

must attend the referred considerations.  

These problems can be briefly defined as determining, for each product, the amount and 

moment to release it to the shop floor. 

3.2 Case Study 

In this dissertation we address the referred problems in a real case concerning a job-shop 

manufacturing system that produces industrial equipment. The production is project-oriented, 

meaning the end product is only manufactured once the customer places the order, which also 

defines the quantities and release date. The company produces each customer order according 

to the required features, being each order a new project. The company performs installation, 

maintenance and repair services at customer’s site. However, in this dissertation, only the 

manufacturing process of the end products issue will be addressed. 

The production facility is organized in four main areas (production, assembly, maintenance, 

and special projects) from which only the first two are concerned to the normal manufacturing 

process. Production and Assembly are divided in six WorkCentres (Figure 3.1). These physical 

areas are related with different tasks and composed by machines, and input and output buffers. 

The inclusion of buffers between each WorkCentre aims at ensuring the material flow between 

Figure 3.1 - Production and Assembly systems 
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them. The Cutting WorkCentre (WC01) comprises two machines, the Bending WorkCentre 

(WC02) four, the Welding WorkCentre (WC03) one, the Tooling WorkCentre (WC04) one, the 

Pre-assembling WorkCentre (WC05) three, and the Assembling WorkCentre (WC06) two.  

At the facility, storage space does not represent a limiting factor, however excessive WIP 

may cause internal logistic problems, namely the significant increase of material transportation 

and handling times. 

Material requisites, operation times as well as resource allocation considerably change from 

end product to end product. Hence, the facility’s process flow can be categorized as a job-

shop. 

3.2.1 Production Process 

Despite the uniqueness of each project and the consequent difference in requirements and 

features, the production of industrial equipment starts invariably by cutting pieces of metal in 

desired shapes. The cut pieces are then forwarded to the next WorkCentre, which might be the 

Bending, the Tooling or the Welding WorkCentres. After being welded, the pieces are sent to 

the Pre-assembling WorkCentre where they are combined into standard components. Finally, 

these standard components are assembled into final products in the Assembling WorkCentre. 

The production system capacity is defined by processing units’ availability.  

Although having the higher number of production units, the Bending WorkCentre represents 

the system’s bottleneck due to the long tooling set changeover times. These setup times are 

sequence dependent. 

3.2.2 Planning Process 

Long and short term planning are performed by the planning department responsible. Long 

term planning is considered one month in advance while short term planning comprises a one-

week time horizon. The plan’s update occurs at least three times per week and re-planning is 

performed regularly. The customer’s agreement is required for any change in the plan. 

While planning also involves equipment installation and maintenance planning, 

development of weekly production plans is the most important planning function to consider 

since the focus of this dissertation is in the production activities of the company. Commonly, 

the production plan encompasses the quantity and timing of products to be produced. The 

planner, resorting to his experience, computes the resources requirements to execute the 

production mix, estimating its overall impact on system capacity. Nevertheless, at this stage, 

no resource allocations are performed. 

Scheduling implicates resource allocation (raw materials, components, processing units and 

workers) to production orders that are then released to the shop floor and is performed on a 

daily basis. This resource allocation to orders occurs one week in advance. Order release and 

sequencing, and resource allocation are done according to due dates, taking in account the 

current state of the shop-floor. 

The occurrence of unexpected events, common in highly complex production systems, leads 

to rescheduling. 
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3.2.3 Opportunities 

The described production planning presents improvement opportunities.  

The plan is re-calculated and corrected on a regular basis. Additionally, it is mostly done 

based on experience, which might produce acceptable results but cannot guarantee the 

decisions optimality. 

Resource allocation to orders is not an automated process and is not directly considered 

while developing the production plan. This allocation is performed and considered solely during 

the scheduling task, hindering the optimality of the order release plan and delaying the 

information flow. 

Unexpected events, such as machine failure, defects production or worker related 

problems, are not considered in the production planning and scheduling tasks, forcing the re-

execution of such tasks and incurring unnecessary work.  

The production system has a bottleneck, the Bending WorkCentre. The time associated with 

the changeovers of the tooling set is the main reason for it and it is highly sequence dependent. 

The lack of search for production plan optimality incurs in performance reductions in this 

WorkCentre, compromising the entire system performance. 

The development of tools that would consider not only the dependencies between resource 

allocation, sequencing and release of orders, but also the occurrence of unexpected situations 

would highly benefit the production system performance. 

3.2.4 Summarized Description 

Before continuing this chapter with the optimization model, it is important to conclude the 

present sub-section with a detailed yet summarized description of the case study. 

The company at study works on a MTO production strategy, working with large projects. 

Each of these projects aims at manufacturing final products, which are composed by standard 

components originated by the Pre-assembling WorkCentre. These standard components are 

assembled from worked metal pieces that are produced by a defined sequence of operations 

taking place at a specific WorkCentre.  

There are six WorkCentres, each composed by one or many machines assumed to be equal 

inside each WorkCentre. The system’s bottleneck is at the Bending WorkCentre, mainly due to 

highly sequence dependent setup times. 

Despite excessive WIP reducing system’s productivity/performance, storage space is not a 

limiting factor. 

The proposed approach intends to present solutions that help the decision-making process 

at the management levels of the company. These solutions consist in deciding on which piece 

to be produced, in what quantity and when. 

3.3 Optimization Model 

Prior to the mathematical formulation of the optimization model it is necessary to state 

the main relaxations and abstractions made from the real problem. As previously referred, it is 

not computationally affordable to solve a MIP problem containing all the information from a 
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complex real system. Hence, some considerations were made while modelling the problem at 

study as a MIP formulation. 

Tooling set changeovers are critical in the Bending WorkCentre, thus its inclusion in the 

model. All machines in a specific WorkCentre are considered equal.  

The travel time between WorkCentres is not considered as it is rather insignificant.  

Raw material (metal pieces) is considered available on demand, therefore not being 

modeled as a constraint to the system. 

In production systems, profit is related to costs and in our case, being a project-oriented 

system, this dependency is even further noticeable. Therefore, the objective function of our 

formulation will be the minimization of costs. Costs are divided into three categories: 

production, inventory and backlogging, related to the costs of producing a certain product, 

storing a product, and not fulfilling a release order in the correct period of time, respectively.  

3.3.1 Mathematical Formulation 

The format for the mathematical formulation is as follows. Lowercase italics are used for 

indices, uppercase bold letters for sets, uppercase italics for variables, and lowercase Greek 

letters for parameters. 

 
Table 3.1 - Formulation Elements - Indices 

Indices 

t ∈ T Periods: discrete intervals of time of a certain duration 

i, j ∈ P Products: types of products 

k ∈ K WorkCentre: resources that process products through certain operations 

l, m ∈ O Operation: specific task to be executed on a product 

 
Table 3.2 - Formulation Elements - Sets 

Sets 

T Periods in the modelling horizon 

P Product types 

PB Basic products (worked metal pieces) 

PF Final products 

Pk Products that are operated in WorkCentre k 

K WorkCentres 

O Operations 

Oi Operations that can be performed on product i 

Di Direct successors of i in the Bill of Materials (BOM) 

BOMi Direct dependencies of I in the BOM 

 



22 

 

Table 3.3 - Formulation Elements - Variables 

Variables 

Xit Amount of product i to produce in period t 

Iit Inventory of product i at the end of period t 

Bit Backlog of product i at the end of period t 

Ekt Elasticity of WorkCentre k in period t 

Ait Represents whether or not product i was produced in period t 

 
Table 3.4 - Formulation Elements - Parameters 

Parameters 

αit Production cost of product i in period t 

σit Inventory cost of product i in period t 

πit Backlog cost of product i in period t 

ηk Maximum duration of an operation in WorkCentre k 

λk(i,j) Tooling set changeover from operation of product i to operation of product j 

time at WorkCentre k 

μit Demand of product i in period t 

τilk Processing time of product i under operation l at WorkCentre k 

φkt WorkCentre k total capacity in period i 

εij Amount of product i required to produce one unit of product j 

γi Lead time of product i 

β Large positive number 

 

The structure of the model is defined in terms of the previous elements. 

As referred, the minimization of costs will be the objective function, comprising the 

production, inventory and backlog costs for each product across all periods(2). 

 

 min ∑ ∑(𝑋𝑖𝑡𝛼𝑖𝑡 + 𝐼𝑖𝑡𝜎𝑖𝑡 + 𝐵𝑖𝑡𝜋𝑖𝑡)

𝑡∈𝐓𝑖∈𝐏

 (2) 

 

As in any system, the overall resource utilization cannot exceed its maximum capacity. This 

utilization is measured in time and has two components: time spent executing operations on a 

product, and time spent in tooling set changeovers whenever the type of product to operate 

changes. This constraint is defined in (3).  

 

 ∑ ∑ 𝑋𝑖𝑡𝜏𝑖𝑙𝑘

𝑙∈𝐎𝑖𝑖∈𝐏𝑘

+ ( ∑ 𝐴𝑖𝑡

𝑖∈𝐏𝑘

− 1) 𝜆𝑘 ≤ 𝐸𝑘𝑡 + 𝜑𝑘𝑡 − 𝐸𝑘𝑡−1, ∀𝑘, 𝑡 (3) 

 

Since the products in operation sequence is not known, ∑ 𝐴𝑖𝑡𝜆𝑘𝑖∈𝐏𝑘  could lead to an 

overestimation of the changeovers times when the WorkCentre ends a period operating the 

same type of product it will begin to operate in the next period. Therefore, the subtraction of 

one unit is added to translate that changeovers are equal to the number of products minus one.  

The right-hand side of capacity constraints includes the Elasticity factor of WorkCentres 

and was one of the contributions of this dissertation. To ensure that if the capacity of a 

WorkCentre in a period t is approximately enough to produce a certain product i, that product 

will be launched in production in period t and finished in the following period. This factor was 
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restrained by two conditions: it cannot exceed the time of a period (4); and it cannot exceed 

the time of the longest production operation in that WorkCentre (5). 

 

 𝐸𝑘𝑡 ≤ 𝜑𝑘𝑡 (4) 

 𝐸𝑘𝑡 ≤ 𝜂𝑘𝑡 (5) 

 

To ensure the correct material balance and flow, it is necessary to create constraints 

relating quantities between any pair of adjacent periods. 

 

 𝐼𝑖𝑡 − 𝐵𝑖𝑡 = 𝑋𝑖𝑡 − 𝜇𝑖𝑡 + 𝐼𝑖𝑡−1 − 𝐵𝑖𝑡−1, ∀𝑖 ∈ 𝐏𝐹 , 𝑡 (6) 

 𝐼𝑖𝑡 = 𝑋𝑖𝑡 − ( ∑ 𝜀𝑖𝑗𝑋𝑗𝑡+𝛾𝑖

𝑗∈𝐃𝑖

) + 𝐼𝑖𝑡−1, ∀𝑖 ∉ 𝐏𝐹 , 𝑡 (7) 

 

Constraints (6) and (7) serve to carry quantity information from a period to the next one. 

Final and non-final products are associated with different material balance constraints. These 

sets of constraints differ in two aspects. 

First, the demand for final products originates from customer orders (independent demand) 

while the demand for non-final products is created by the production orders of higher level 

products. Multi-level dependency between products is modeled in the proposed approach, 

originating the already referred BOM. Hence, the existence of dependent demand. As an 

example, refer to Figure 3.2. The production order of one unit of product MT will create 

dependent demand of product MS and MA in the 𝜀𝑖𝑗 proportion. Similarly, MS has dependencies 

of products MA and ME, generating dependent demand of each in the proportion 𝜀𝑖𝑗 per unit of 

MS. In the example scenario, the production of one unit of product MT would create a total 

dependent demand of three MA products, six ME products and two MS products.  

Demand is associated with a period. Independent demand occurs in the same period the 

customer order is placed. However, for dependent demand, the period is influenced by the 

product lead time γi. The dependent demand of product i occurs γi periods prior to the period 

when the production of the product that originated the demand is produced. In other words, if 

product MT was to be produced in period t, product MS dependent demand would be related 

to period t- γi. 

∑ 𝜀𝑖𝑗𝑋𝑗𝑡+𝛾𝑖𝑗∈𝐃𝑖
. translates the dependent demand of product i in period t. Di set represents 

the direct bottom-up successors of product i. Referring again to the Figure 3.2, Di of MA is (MS, 

MT) Concluding, the dependent demand of product i in period t is obtained by the production 

orders of each of its direct successors j in period t+ γi with a multiplicative factor 𝜀𝑖𝑗. 

Constraints (6) and (7) differ yet in another way. There is no backlog of components as  

Figure 3.2 - Multi-level dependence example 

MS MA 

MA ME 

MT 

𝜀𝑖𝑗 = 2 𝜀𝑖𝑗 = 1 

𝜀𝑖𝑗 = 3 𝜀𝑖𝑗 = 1 
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there is only dependent demand of such products. However, in case of unmet demand of a final 

product, the demand must be fulfilled later in the time horizon. The backlog from period t-1 

carries that period unmet demand to period t. 

The already referred binary variable 𝐴𝑖𝑡 represents the occurrence of production of product 

i in period t. This logical condition is modeled with resource to (8). 

 

 𝛽𝐴𝑖𝑡 ≥ 𝑋𝑖𝑡 , ∀𝑖, 𝑡 (8) 

Finally, there are constraints related to the non-negativity of the integer variables and the 

binary nature of 𝐴𝑖𝑡. 

 

 𝑋𝑖𝑡 , 𝐼𝑖𝑡 , 𝐵𝑖𝑡 , 𝐸𝑘𝑡 ≥ 0, ∀𝑖, 𝑡, 𝑘 (9) 

 𝐴𝑖𝑡 ∈ {0; 1}, ∀𝑖, 𝑡 (10) 

3.3.2  Model Implementation and Software 

There are many solvers on which we could implement our model: CPLEX, XPRESS, GUROBI, 

among others. The choice criteria were availability and performance. Fortunately, the overall 

best performer solver in industry standard public benchmark tests (check [32]), Gurobi 

Optimizer [33], also provided an academic license.  

Gurobi Optimizer is a solver for mathematical programming designed to exploit modern 

architectures and multi-core processors and incorporates six solvers (Table 3.5). From those 

the particular interest for this dissertations lays on the Linear Programming Solver and the 

Mixed-Integer Linear Programming solver, considering the problem at stake nature. 

Gurobi support a variety of programming and modelling languages, providing high flexibility 

to the user. To implement the optimization model of the proposed approach the chosen 

programming language was Python. Python is an interpreted language, meaning it is highly 

flexible and can be implemented in any number of ways. Python is efficient, easy and fast. 

 
Table 3.5 - Gurobi included solvers 

Linear Programming Solver (LP) Quadratic Programming Solver (QP) 

Mixed-Integer Linear Programming solver 

(MILP) 

Quadratically Constrained Programming 

solver (QCP) 

Mixed-Integer Quadratic Programming solver 

(MIQP) 

Mixed-Integer Quadratically Constrained 

Programming solver (MIQCP) 

 

Python’s syntax is designed to be readable, which means its writing does not require most 

of the structures and details other languages need. Python is able to perform in little lines of 

code what would require complex programming in most other languages. The language is 

dynamically built, allowing for better memory management: names are linked to objects 

instead of declared. When the object is no longer needed, the name can be linked to a different 

object. Data manipulation and handling is more efficient in Python (reason why it is widely 

becoming popular due to Big Data issues). For those and other reasons, the Python version of 

Gurobi Optimizer was chosen. 
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3.3.3 Data Input and Output 

The optimization model required system’s data input and it was accomplished with resource 

to excel files and using xlrd Python library to read from such files [34]. Similarly, to output the 

model results excel files were also the chosen resources and the openpyxl Python library was 

used to write such files [35]. 

The input data was related to the information on the sets and indices previously presented. 

Output data comprised release orders, inventory levels and backlog for each product on each 

period. WorkCentre utilization was also outputted for each period as well as the total lead time 

of each product in periods. 

To save the input data on the model, the preferred data structures were dictionaries and 

lists. Whenever an index was related to a product, operation or WorkCentre, it was of type 

string. When it was related to a period, it was an integer. This indexation allowed for easier 

modelling, debugging and understanding than if all indexes were integer. Furthermore, 

whenever an index combination was inexistent, instead of attributing a null or zero value to it, 

it was simply ignored and not created on the respective data structure, increasing model 

performance. 

3.3.4 BOM Handling 

One of the major concerns while building the model was with BOM use and representation. 

First, due to the nature of the mathematical formulation, it was necessary to build two distinct 

structures based on the material dependence: the direct successors of a product (products that 

depend on it to be produced) and the dependencies of a product (products necessary to produce 

it). These different structures can be comprehended as the reverse of each other and, 

therefore, appear to be redundant. However, they are used in different situations and are in 

fact both necessary. Referring to the mathematical formulation, these structures match Di and 

BOMi sets, respectively. 

Di is used in constraints (12) while BOMi is used to calculate the lead time of product i 

(ignoring its production time, as it is marginal compared to its dependencies lead times). BOMi 

Pseudo-Code 1 Longest Path Procedure 

 

function calc_max_path(BOM, i, PB, leadTime, dependencies_leadTime): 

Max_value = 0 

for all product s in BOMi do 

if s ∈ PB then 

If Max_value < leadTime[s] 

Max_value = leadTime[s] 

else 

Max_pathvalue_s = calc_max_path(BOM, s, PB, leadTime, dependencies_leadTime) 

if Max_pathvalue_s+leadTime[s] > Max_value then 

Max_value = Max_pathvalue_s+leadTime[s] 

dependencies_leadTime[i] = Max_Value 

return Max_value 

end function 
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contains the information of product i direct dependencies. Referring to Figure 3.2, BOMMT is 

composed by MS and MA.  

If the material dependency structure of a certain product i is seen as a graph, to calculate 

a product lead time, considering no initial inventory of its dependencies both direct and 

indirect, it is necessary to calculate the longest path of the graph, considering each product 

lead time as the path value. 

The algorithm developed to obtain this longest path is recursive and is described in Pseudo-

Code 1. 

The procedure is performed for all final products PF, populating the related data structures. 

3.3.5 Variation of Period Duration 

The developed optimization model allows for the variation of period duration, i.e., the 

amount of periods in a determined amount of time can change based on user input. Considering 

a fixed window of a week with five working days each with eight working hours, if the number 

of periods per week is one, each period corresponds to a week. However, in the same scenario, 

if the number of periods per week is five, each period corresponds to one working day. The 

same applies to forty periods per week where each period has a duration of one hour (Figure 

3.3). 

There are two main consequences to this variation in duration. First, as variables and 

parameters are related to periods, increasing the number of periods implies an increase of 

variables and parameters which translates in a higher size model. Optimization models runtime, 

as referred, significantly increase with model size and complexity. Therefore, increasing the 

number of periods severely impact the time spent solving the model which is even more critical 

in an iterative approach with multiple optimization model runs. 

Nonetheless, the increase in number of periods has benefits. The conversion of lead times 

into periods implies smaller errors with the decrease of period duration. With very small period 

durations, the model output conveys in itself a pseudo-scheduling The benefits in decreasing 

period duration can be resumed as an overall increase in precision.  

A more precise model better translates the system’s dynamics and features on the other 

hand it reduces its practicality. Hence, it is necessary to find a balance point. 

Varying the duration of the period implies a higher number of periods per time interval. 

With the intent of explaining the data manipulation related to this changes, a time interval of 

three weeks will be considered from now on. 

Inventory and backlog costs must be adapted to this period alterations, as well as 

WorkCentre capacities and lead time conversion to periods. 

Figure 3.3 - Number of periods vs period duration 
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The affection of WorkCentre capacities and the lead time conversion to periods are the 

simplest to explain. WorkCentre capacity is defined in minutes per period. If period duration is 

smaller, the WorkCentre capacity will change accordingly. Lead time conversion is calculated 

as the result of the round up to the higher closest integer of the division between lead time 

and period duration. 

Inventory costs can be defined as the holding cost per unit of time. If the inventory cost is 

𝑥 per week, it will be 𝑥/5 per working day and 𝑥/40 per working hour. 

In the case study scenario, customer demand is always considered at the end of a week, 

thus being associated with the last period of such week. Backlog consists in the undelivered 

quantity of products matching a specific demand. Being so, backlog costs are only associated  

to the last period of any week, independently of the amount of periods comprised in one 

week. In other words, the backlog cost related to the last period of a week is unchangeable 

and zero to all other periods. 

3.4 Simulation Model 

The proposed method is composed by two main parts, being simulation one of them. While 

it is unpractical and unviable to model the optimization model with full detail and comprising 

every dynamic of the real system, the simulation model can include such features without 

significant decrease in performance. Therefore, the simulation model can be used as an 

evaluator to the output of the optimization model. Those features that are present in 

simulation but lacking in optimization are generally limitations. The influence of WIP in the 

lead time is certainly the most important limitation faced in simulation, as well as in real 

systems.  

Simulation is the last step of the proposed iterative approach and is used to evaluate the 

feasability of the optimization results. According to the evaluation, the approach may iterate 

again or terminate. Additionally, the proposed approach uses simulation to implement the 

developed scheduling technique, explained in section 3.5. 

3.4.1 AnyLogic 

Simulation has provided a constantly evolving tool to work in proximity with the real world 

for more than half a century. The available software is vast and equipped with different tools. 

The decision on which software to choose was majorly aided by Swain (2015) [36] where fifty 

five products from thirty one vendors are listed and compared. AnyLogic was chosen as the 

software to model the case study system. Besides providing a student free license called 

Personal Learning Edition (PLE), it is one of the most complete software in the survey and 

allows for full customization through Java programming.  

AnyLogic is unique in its capacity to support all the most common simulation methodologies: 

System Dynamics, Agent Based, and Process-centric (Discrete Event) modelling. For the purpose 

of this dissertation, only the latter is used. The generality of manufacturing systems can be 

modelled using Discrete Event modelling techniques since the system can be represented as a 

sequence of operations being performed on entities of certain types, from products to 

packages, workers to machines. The term Process-centric is self-descriptive. Such modelling 
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focus on the process and ignores some physical level details, such as geometry, accelerations, 

etc. Therefore, DES or Process-centric are medium-low abstraction level modelling approaches. 

Anylogic supports object-oriented model design, providing modular, hierarchical, and 

incremental construction of large models while allowing reusability. The native Java 

environment supports limitless extensibility ranging from custom Java code to external libraries 

and data sources. Additionaly, both the Anylogic IDE and the models have multi-platform 

support, working on Windows, Mac and Linux. 

The Process Modelling Library (PML) is the primary Anylogic toolkit for Discrete Event 

modelling. The library is a collection of highly customizable objects used to define process 

workflows and their associated resources. Their parameters can be changed dynamically and 

their actions may be dependent on entity’s attributes. Workflow objects have extension points 

that permit custom definition of actions to be performed on entities throughout the process. 

Most objects have “onEnter/onExit” extension points. Nevertheless, specific objects have 

specific extension points related to their function and allowing for further control and 

customization. 

Complex systems benefit from the modularity capabilities of AnyLogic as they can be break 

down into components and modelled separately. AnyLogic allows sub-process definition, 

reducing the logical and visual complexity of top-level model and providing a good basis for 

reusability within a model or across models. 

AnyLogic’s main building blocks are Agents. Agent is a unit of model design that can have 

behavior, memory(history), timing, contacts, etc. and may represent diverse things, from 

people to equipment, from non-material things to organizations. Within agents, a multitude of 

definitions can be performed: variable, events, custom code, and the list goes on. Agents can 

also communicate with the external world, for instance using calling functions. 

To build the case study model, some blocks inside PML were used and will be introduced in 

the next subsection. However, blocks related with Agent definition and Connectivity will be 

briefly presented first. 

System’s inputs are agents and, in this dissertation’s particular scenario, those agents 

represent products. Each of these products have multiple parameters. 

Figure 3.4 - Parameter Block 
 

Parameters are agent’s attributes and can be of many types, both Java primitive types and 

AnyLogic special types. The agent class used to define products is named Prod. Prod’s 

parameters are represented in the following table. 
 

Table 3.6 - Prod class parameters 

materialCode id route_center 

operationProcessingTime Stock next_WC 

nextProcessingTime reorderPoint reordered 

operation_route nextOperation order 

materialID codeComponent amountComponent 

priority WIPonEnter  
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Parameter materialCode is used to define the type of product. Parameter id is the product 

unique identifier. Parameter route_center holds the information of the WorkCentre route the 

product needs to go through. Parameter next_WC has the information of the WorkCentre to 

where the product needs to go next. Parameter operation_route holds the information of the 

operation sequence the product needs to pass through. Parameter nextOperation represents 

the next operation that has to be performed on the product. Parameter 

operationProcessingTime is related to parameter operation_route and holds the information of 

the duration of each operation the product needs to go through. Parameter nextProcessingTime 

represents the processing time of the next operation to be performed on the product. When 

the system is working on an ATO strategy, the parameter reorderPoint represents the level of 

inventory below which a reorder will be triggered and the parameter reordered represents 

whether or not that specific product has an active reorder. When working on a MTO strategy 

with no stock, the parameters are ignored. The parameter order holds the identification of the 

Order that triggered the production of that specific product. Parameter WIPonEnter represents 

the amount of WIP on the system when that specific product entered production. This 

parameter is used to relate WIP with lead time which will be later explained. 

Some products have other products dependencies, thus the need to implement a BOM. That 

structure was implemented using the collection block to store the immediate dependencies of 

the product. 

 

Figure 3.5 - Collection Block 

 

Collections are Java classes developed to efficiently store multiple elements of a certain 

type. One of the advantages over Java arrays is the ability to store any number of elements. 

There are many types of collections: ArrayList, LinkedList, HashSet, TreeSet, etc. The simplest 

one is ArrayList which is a sort of resizable array. Each collection type has a different purpose 

and its choice must be based on the predominant operations that will be performed on it. Since 

the BOM collection will serve essentially for information storage and its size will be relatively 

small, the chosen type of collection was ArrayList due to the small operation time related with 

search operations for relatively small ArrayLists. 

The parameters whose cells have a blue fill are related with BOM construction. The BOM 

structure of a level one product with dependencies will be constructed using Prod agents that 

are direct components. However, the only information required is the codeComponent which 

is equivalent to materialCode, the amount per unit of level one product (amountComponent) 

and the level one product id (materialID).  

The parameter whose cell have a yellow fill will be explained in section 3.5. 

All the information regarding parameters, BOM, orders and all external-dependent features 

of the system are obtained via Excel File. 
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Figure 3.6 - ExcelFile Block 

 

This particular block serves as the import of Excel files to the model from which AnyLogic 

can read information and for which it can output data. The model comprises four of these 

blocks named Info, infoOrders, LTs, and setupTs, referring to the information on system and 

products, orders, lead times, and setup times, respectively. AnyLogic recurs to the Java API 

Apache POI to operate Excel files (more information on [37]).  

Some information must be kept under the form of global variables that are accessible for 

every object and instance on the simulation model. 

 

Figure 3.7 - Variable Block 

 

One example of such information is the orders identifier that needs to be incremented every 

time a new order or reorder is created and the identifier needs to be unique. Orders were 

already referred to as the triggers for products production. In fact, orders translate the 

optimization solution release orders information. Orders and reorders are modeled using the 

same class Order whose parameters are presented in the following table. 

 
Table 3.7 - Order class parameters 

id productCode Amount 

releaseDate reorderCalls reordersGen 

parent   

 

Parameter id is the unique serial identifier of an Order object. Parameter productCode 

holds the information related to the product type to produce, matching Prod’s parameter 

materialCode. Amount is the integer quantity of products of type productCode to produce. 

Parameter releaseDate holds the information of the period when the order is to be executed. 

The parameters whose cells are filled with blue are related with the reorder function and will 

be explained at the same time of the referred function. 

In order to track products, orders and reorders, and machines, populations were used. 

Figure 3.8 - Population Block 

 

Populations are a special type of collection within AnyLogic aimed at storing individual 

agents. A population can be an ArrayList or a LinkedHashSet, being the former optimized for 

accesses by index and the former optimized for add/remove operations. In the case study 

system model, twelve populations were used for ease of information access and manipulation. 

Each of these populations and respective storage objective is listed in the Table 3.8. 
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Orders need to be executed when the simulation reaches the release date. An event is used 

to achieve such triggering. 

Figure 3.9 - Event Block 

 

The event block is the simplest way to schedule some action in the model and meets all the 

requirements to trigger orders. Events can be of three types, according to its trigger condition. 

 
Table 3.8 - Populations and objective in Simulation model 

Population name Objective 

machinesWC 
Store the WorkCentre machines entities for simpler access to 

get information of setup times. 

productsInProduction 

Store the products in production where only products in 

WorkCentres 1 to 4 are considered to be in production 

(Cutting, Bending, Tooling and Welding WorkCentres) 

productsInElementarStock 
Store the products considered to be elementary (do not have 

product dependencies) that are in inventory 

productsInCompositeStock 

Store the non-elementary products that are in inventory. 

These products are the standard components mentioned 

earlier in this chapter 

productsInPreAssembly 
Store the products that are being operated in WorkCentre 5 

(Pre-assembling WorkCentre) 

productsInAssembly 
Store the products that are being operated in WorkCentre 6 

(Assembling WorkCentre) 

deliveredProducts 
Store the final products that have already been fully 

produced and are considered delivered  

ordersOnHold 

Store the orders whose release date has already occurred but 

could not yet be executed due to lack of inventory of its 

product’s dependencies, stopping it from being executed 

ordersOnExecution Store the orders that are currently being executed 

reordersOnExecution Store the reorders that are currently being executed 

reordersOnHold 
Store the reorders that could not yet be executed due to lack 

of inventory of its product’s dependencies 

finishedOrders Store the fulfilled orders 

 

Timeout triggered events occur exactly in timeout time after it is started and it can expire 

once or occur cyclically or even be fully controlled by the user. Rate triggered events intent to 



32 

 

model a stream of independent events (Poisson stream) and are often used to model arrivals. 

Such an event is executed periodically with time intervals distributed exponentially with the 

parameter rate. If the rate is x, the event will occur on average x times per time unit. Condition 

triggered events are triggered when a certain condition becomes true. The first type of event, 

timeout triggered event, was used to model the orders trigger. Its first occurrence is the initial 

instant of the simulation run and the recurrence time is based on the period duration, recurring 

every period. Whenever the current period equals any order releaseDate, the event places that 

order in the ordersOnHold population and attempt to execute it. The order execution mechanic 

will be explained in detail later in this chapter. 

 

3.4.2 Process Modelling Library 

The PML agglomerates many blocks from which only a few were useful and required to 

model the case study system. First, it was necessary to input entities into the system. These 

entities represent products and are modeled using agents, as explained previously. To do so 

the Enter block was used. 

Figure 3.10 - Enter Block 

 

This block was used as the system’s inputs. It is used five times: input to the first four 

WorkCentres (production area); input to the stock of elementary products; input to the Pre-

assembling WorkCentre; input to the stock of standard components; and input to the Assembling 

WorkCentre. The Block in itself was left unchanged aside from the Agent type that was changed 

to be Prod. The agent’s insertion was made from other blocks or functions and will be explained 

further ahead.  

Agent removal from the previously indicated areas of the simulation model two techniques 

were applied: direct remove using Exit blocks, and removal through code. 

Figure 3.11 - Exit Block 

 

Exit blocks allow programming decision on what to do with the exiting agents. In the 

simulation model in analysis, the agents are removed from their previous population, added to 

a different one and moved to the new section of the system’s logical flow. 
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In order to operate products, machines are necessary. Each WorkCentre is composed by one 

or more machines of a different type. These groups of machines are modeled using the 

ResourcePool Block in PML. 

Figure 3.12 - ResourcePool Block 

 

The ResourcePool block is an agglomerate of resource type agents. The number of resources 

comprised in such block is defined by the field Capacity. In this dissertation context, resources 

are machines and they differ between WorkCentres. Nonetheless, there is only one critical 

parameter for the simulation model, the setup time. Due to lack of time and to invest in a 

simplistic but functional model, setup times are machine dependent but not dependent on the 

operation sequence. The setup time and capacity values are both extracted from excel files, 

namely Info and setupTs.  

This block has several capabilities, being the most important ones related to tasks. Besides 

the normal operating task, AnyLogic provides tasks that translate natural occurrences on the 

resources: maintenance, shifts and breaks/failures. Additionally, the user is capable of defining 

a custom task either by code or flowchart. These tasks are time triggered, either deterministic 

or probabilistically. 

Having the resources modeled it is necessary to use them. The operations to perform are 

relatively simple and can be defined with resource to a processing time, requiring no other 

actions than a delay. For such operations, PML has a block name Service that seizes a resource, 

simulates the operation with resource to a user-defined delay and later on releases the resource 

seized to operate that agent. 

Figure 3.13 - Service Block 

 

Moreover, this block also comprises an entrance buffer to store on wait entities and its 

capacity is also user-defined. The ResourcePool to use is also defined within this block as well 

as the number of such resources to be used per agent. The utilization of different resource 

types is possible consisting on a network of resources working in cooperation. Service block’s 

most important features are actions executed when a certain agent seizes a resource unit and 

when a certain agent leaves the block. The former allows for the consideration of setup times 

when the product to operate changes while the latter is used to update agent Prod’s 

information related to the next WorkCentre, operation and respective processing time on its 

production route. 
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Between each WorkCentre there is a decoupling point in the form of a buffer. In AnyLogic 

buffers are represented with Queue blocks. 

Figure 3.14 - Queue Block 

 

Queues can be dimensioned as limitless or with a user-defined capacity. When the size of 

buffers is not a primary issue, limitless capacity might be used for error prevention. The 

queueing can be one of four types: First In First Out (FIFO), priority-based, agent comparison, 

or Last In First Out (LIFO). Besides decoupling points, inventory storage was implemented using 

Queue blocks. The chosen type was FIFO as it is the better fit considering the nature of the 

problem.  

Processing paths vary based on product type. To implement the path decision moment, the 

Select Output5 block was used. This block consists on one in port and five out ports chosen 

based on four conditions upmost plus an else condition. 

Figure 3.15 - Select Output5 Block 

 

This specific block is not ideal. AnyLogic only provides two base decision-based flow blocks, 

this one and a two out ports one. There is no customizable option besides combining both to 

obtain the desired number of possible different paths. Such option is neither visual nor 

comprehension friendly. However, for advanced users, it is possible to fully define a new 

custom block with the desired amount of out ports. The use of this block in this model was not 

fully efficient since there where unused out ports. When the agent enters this block, the out 

port used for its exit is decided based on its parameter next_WC, referring to the next 

WorkCentre on its route. 
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In situations like the storage of inventory, it is necessary to keep products in the Queue 

block for an indefinite amount of time. To accomplish so, Hold block was used. 

Figure 3.16 - Hold Block 

 

Hold block might begin blocked or unblocked, which translates in whether the first agent 

to reach the exit moment of the previous block will be prevented from leaving that block or 

not. AnyLogic provides three Hold modes: Manual, Block automatically after N agents, and 

Conditional. The first mode is used with resource to the functions block() and unblock(). The 

second mode is self-descriptive and the unblock() function is used to unblock the Hold block. 

The third mode evaluates a condition for each agent on the enter moment and either blocks or 

allows its passage depending on the result of such evaluation. 

In the storage of inventory, the Hold block is placed after the Queue block and was used in 

Manual mode and set to initially blocked. Furthermore, its out port is not connected to anything 

and when a product in stock is consumed it is removed from the Queue block using code. Thus, 

the Hold blocks used on the model are blocked throughout the entire simulation. 

Intending on measuring product’s lead time, another pair of blocks was used. 

  

Figure 3.17 - Time Measure Start and Time Measure End Blocks 

 

This pair of blocks is used for precise time measurement of travel time. Placing the Time 

Measure Start block at the beginning of the production area and the Time Measure End block 

at the end of such area, the measured time will be the agent’s lead time. 

3.4.3 Flowchart composition of the system 

Model implementation started with the connection of PML blocks in a logic flowchart to 

represent the system’s basic dynamics. The system was interpreted has having two strong 

decoupling points and working on a double push-pull mode. Consider Figure 3.18. When a client 

order arrives, the system checks if there is enough inventory of its dependencies. If so, it 

consumes the dependencies and send them directly to the Assembling Area. If the amount of 

elementary dependencies in inventory is not sufficient, the system will initiate their production 

in the Production Area. If the existent inventory of non-elementary dependencies is not enough, 

the system will attempt to produce those dependencies. To do so, it checks if there are 

sufficient inventory of its dependencies. If not, it repeats the already described behavior until 

it is able to produce every ordered product. This procedure explanation will be completed in 

more detail including the presentation of the used functions. 
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From the analysis of the Figure below, five key areas can be identified: Production, first 

decoupling point, Pre-assembling, second decoupling point, and Assembling. These decoupling  

points will be, from now on, named supermarkets as a reference to its storage purpose. Our 

model is also divided in five logical flowcharts.  

Figure 3.18 - Schematic representation of the system 

 

The first logical flowchart models the Production area basic dynamics (Figure 3.19). Every 

elementary product starts its production cycle in WC01 where the raw material (metal sheet) 

is cut. Then, it can proceed to any of the three following WorkCentres. Similarly, from each of 

those three WorkCentres it can finish it production cycle or head towards the other two 

WorkCentres. 

Each WorkCentre is represented by a Service block. Since the problem is not dimensioning 

the buffers between WorkCentres, the Service block incorporated queue capacity is considered 

limitless. The out port of each Service is connected to a Select Output5 block that decides on 

the path to follow based on the parameter Next_WC.  

Whenever an agent leaves a Service block, three parameters are updated: Next_WC, 

nextOperation, and nextProcessingTime. Those parameters influence the behavior of the 

following Service block and the Select Output5 block path decision. When the agent arrives the 

Exit block it is removed from the population productsInProduction, added to 

productsInElementarStock and placed on the next area logical flowchart (first decoupling point) 

using the function take(agent) on the Enter block of the next area. 

 

 

 

 

 

 

 

  

WC01 

WC02 

WC03 

WC04 WC05 WC06 

Production Area 
Pre-assembling 

Area 
Assembling Area 

First decoupling point – Storage 

of elementary products (base 

products). 

Second decoupling point – Storage 

of non-elementary products 

(neither base nor final products). 
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Figure 3.19 - Production area logical flowchart 

 

There is a pair of Time Measure blocks (Start and End) that are used to retrieve the value 

of each elementary product lead time. When the agent enters the Time Measure End block 

ltpartE its lead time is stored in association with its id parameter in a Data Set. 

Figure 3.20 - Data Set Block 

 

A Data Set is an AnyLogic data structure capable of storing 2D (X,Y) data of type double 

while maintaining the minimum and maximum of the stored data for each dimension up-to-

date. When the X-values record a dependency of Y the Data Set is designated phased, which is 

the case in this situation.  
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The next logical flowchart area represents the first supermarket and is very simple 

comprising solely three blocks: Enter, Queue, and Hold. 

Figure 3.21 - First Supermarket logical flowchart 

 

Produced elementary products are sent from exit (Figure 3.19) to enterStock (Figure 3.21) 

from where they enter elementarStock buffer (Queue Block). These products, also named basic 

components, are kept in elementarStock using the permanently blocked Hold block 

WaitInStock. 

When a basic component enters elementarStock, two actions are performed. First, the 

stock of products of that type (materialCode) is incremented. It would be worthless to just 

update that agent’s parameter stock as it would not be reflected on all other agents of the 

same type.  

To overcome this problem and to store the base information for each product type obtained 

from the excel file Info, a collection of Prod agents named products was created. For each 

product type an agent is added to that collection. The stock information is always read from 

and updated on that reference agent. Whenever a product is placed on production, its 

parameter information is filled using the reference agent of the same type from the products 

collection.  

The same concept is also used for orders and a collection named orders was used to store 

all the release orders to be produced. Then, using the already mentioned order triggering event 

calendar_orders, a search through collection is executed and if the release date of an order 

matches the current period, that order is placed on hold and the function used to execute 

orders is performed with that order as argument. The function will be explained later. 

The other action performed when a basic component enters elementarStock consists on 

checking which reorder generated that component’s production and the produced quantity of 

that reorder is updated. This behavior will be completed during function explanation. 

Whenever a higher-level product that as a dependency present in the first supermarket in 

the necessary amount is placed on execution, such amount of dependencies is removed from 

elementarStock and form the population productsInElementarStock using code. 

Next on the system’s skeleton is the Pre-assembling area, composed of a set of five blocks: 

Enter, Time Measure Start, Service, Time Measure End, and Exit. 

Figure 3.22 - Pre-assembling logical flowchart 

 

Again, as in Production’s logical flowchart, the Time Measure pair (Start and End) is used 

to measure the lead time, in this case of non-elementary products. Likewise, the Service block 

included queue has limitless capacity. When a product is injected on the Enter block 

enterPreAssembly, it was previously added to the population productsInPreAssembly. When a 

product enters the Exit block exitPreAssembly it is removed from the population 
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productsInPreAssembly, added to the population productsInCompositeStock and placed on the 

second supermarket logical flowchart using the function take(agent) in its Enter block. 

The second supermarket is modelled as the first supermarket. 

Figure 3.23 - Second Supermarket logical flowchart 

 

Not only are the used blocks the same but the actions performed inside each of them is also 

the similar. 

The final area of the case study system is the Assembling area. 

Figure 3.24 - Assembly area logical flowchart 

 

Exit block output is the end of the system. On the entrance of a final product the output 

block removes it from the population productsInAssembly, adds it to the population 

deliveredProducts and updates the parameter Amount from the order that triggered its 

production by reducing one unit. If the order Amount becomes zero, the order is removed from 

population ordersOnExecution and added to population finishedOrders. 

Services operate using resources, thus there are six ResourcePool blocks in the model, one 

for each WorkCentre. 

3.4.4 Data Input and Output 

Data communication was made using excel files. In AnyLogic a model might have multiple 

Experiments being the default Simulation. Simulation runs on a special agent called Main. To 

perform any action when the simulation begins, the Main action On startup is used. 

The data input starts by reading the number of periods per week and calculating the time 

per period in minutes dividing the number of working minutes in a week by the number of 

periods per week. Afterwards, the setup times for each WorkCentre machine is placed on a 

HashMap collection from where it can be easily get using the WorkCentre name. The number 

of machines is obtained for each WorkCentre and the capacity of the respective ResourcePool 

is set to that value. 

The next data input stage is the information gathering for agent Prod, including parameter 

values for each product type, BOM construction and stock creation (if the system is operating 

in an ATO strategy) and populating the products collection. The startup code continues by 

getting orders information and populating the orders collection. 

Data output is performed through the AnyLogic default log and using the Main action On 

destroy. The former type of data output is used for optimization model parameter adjustment 

through changes on the Info and setupTs excel files. 
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3.4.5 Function description 

Four global functions were developed for the simulation model. These functions serve 

different purposes: execute an order (executeOrder), execute a reorder (executeReOrder), 

produce a product (produceProduct), and reorder a product (reorderProduct). AnyLogic 

provides a special block for global function implementation. 

Figure 3.25 - Function Block 

 

Functions can be a simple action, returning nothing, or return a value based on the action 

result. A function may receive none or any number of arguments of any type. 

3.4.5.1 produceProduct 

The produceProduct function is the system’s base function, being executed in all other 

three functions. The function takes four arguments and returns an integer value. 

 
Table 3.9 - produceProduct arguments 

Name Type Meaning 

prdct Prod 
The Prod object from products collection whose 

materialCode matches the order productCode parameter 

valueToProduce int Amount of product prdct to produce 

level int 
Used to distinguish between non-elementary components 

and final products 

order Order The order that originated this production 

 

In the manufacturing system in study there are three type of products: elementary products 

that do not depend on any product other than raw materials to be produced; non-elementary 

components that depend on other products to be produced but are not final products; final 

products which depend on other products to be produced. The produceProduct function needs 

to be able to distinguish between those types as the production process differs. Elementary 



41 

 

products enter their production in the Production area; non-elementary components enter their 

production in the Pre-assembling area; final products enter their production in the Assembling 

area. 

The first distinction moment is on whether the product to produce has dependencies or not, 

which is done by measuring its BOM size. Zero means it is an elementary product, otherwise it 

Pseudo-code 2 – produceProduct Procedure ATO strategy (with initial stock) 

 

function produceProduct(prdct, valueToProduce, level, order): 

if prdct.BOM.size()==0 then 

for i=1:valueToProduce do 

Insert a new Prod object equal to prdct in population productsInProduction 

Place that Prod object in Production area 

else 

flag=0 

for all Prod objects p in prdct.BOM do 

if p.stock >= valueToProduce * p.amountComponent then 

flag++ 

else 

reorderProduct(p, level+1, order, valueToProduce*p.amountComponent) 

if flag==prdct.BOM.size() then 

for all Prod objects p in prdct.BOM do 

if p.BOM.size()==0 then 

for j=1:valueToProduce*p.amountComponent do 

Remove a Prod object with the same materialCode as p from elementary 

supermarket 

Remove that Prod object from population productsInElementarStock 

Reduce the stock of products with the same materialCode as p 

if p.stock < p.reorderPoint then 

reorderProduct(p, level+1, order, valueToProduce*p.amountComponent) 

else 

for j=1:valueToProduce*p.amountComponent do 

Remove a product with the same materialCode as p from non-elementary 

supermarket 

Remove that Prod object from populatoin productsInCompositeStock 

Reduce the stock of products with the same materialCode as p 

if p.stock < p.reorderPoint then 

reorderProduct(p, level+1, order, valueToProduce*p.amountComponent) 

If level==1 then 

Insert a new Prod object equal to prdct in population productsInAssembly 

Place that Prod object in Assembling area 

else 

Insert a new Prod object equal to prdct in population productsInPreAssemby 

Place that Prod object in Pre-assembling area 

return 1 

return 0 

end function 
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has dependencies. To distinguish between final products and non-elementary components, the 

level argument is used: if level value is one, the product is final, else it is not. 

The production of an elementary product is simple and consists on the addiction of products 

from prdct materialCode to population productsInProduction and their placement in the 

Production area, in the amount valueToProduce. 

However, due to their dependencies, final products and non-elementary components have 

a more complex production process. First, it is necessary to verify if there is sufficient inventory 

amount for each of their dependencies. If such verification is positive, the dependencies are 

consumed in the correct amount and the product is sent to its area (depending on their type) 

and added to the respective population. If not, those dependencies are reordered and the 

current order is placed on hold.  

Pseudo-code 3 – produceProduct Procedure MTO strategy (without stock) 

 

function produceProduct(prdct, valueToProduce, level, order): 

if prdct.BOM.size()==0 then 

for i=1:valueToProduce do 

Insert a new Prod object equal to prdct in population productsInProduction 

Place that Prod object in Production area 

else 

flag=0 

for all Prod objects p in prdct.BOM do 

if p.stock >= valueToProduce * p.amountComponent then 

flag++ 

else 

return 0 

if flag==prdct.BOM.size() then  

for all Prod objects p in prdct.BOM do 

if p.BOM.size()==0 then 

for j=1:valueToProduce*p.amountComponent do 

Remove a Prod object with the same materialCode as p from elementary 

supermarket 

Remove that Prod object from population productsInElementarStock 

Reduce the stock of products with the same materialCode as p 

else 

for j=1:valueToProduce*p.amountComponent do 

Remove a product with the same materialCode as p from non-elementary 

supermarket 

Remove that Prod object from populatoin productsInCompositeStock 

Reduce the stock of products with the same materialCode as p 

If level==1 then 

Insert a new Prod object equal to prdct in population productsInAssembly 

Place that Prod object in Assembling area 

else 

Insert a new Prod object equal to prdct in population productsInPreAssemby 

Place that Prod object in Pre-assembling area 

return 1 

return 0 

end function 
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produceProduct returns zero if the production was unsuccessful and one if it was.  

When working in a MTO strategy, there is no safety nor initial inventory. Therefore, the 

algorithm suffers some changes. Despite checking if the dependencies are all available in the 

desired quantity, it does not reorder them in the negative case. The order is placed on hold 

until those quantities have already been produced. Dependency orders are obtained through 

optimization output. Whenever a non-final order is completed, the final orders on hold are 

once again attempted to execute and, this time, if there is already sufficient inventory of all 

their dependencies the productions are executed, otherwise the orders are maintained on hold. 

3.4.5.2 reorderProduct 

reorderProduct takes four arguments and returns nothing. 

 
Table 3.10 - reorderProduct arguments 

Name Type Meaning 

product Prod 
The Prod object from products collection whose 

materialCode matches the reorder needs 

level int 
Used to pass it as argument for the function 

produceProduct call inside reorderProduct 

parent Order 
The Order during which execution the reorder was 

triggered 

amountToProduce int Amount of product to produce 

 

In section 3.4.5.1, two different behaviors were described for produceProduct function 

based on system’s strategy, MTO or ATO. Similarly, reorderProduct also behaves differently 

whether the system’s strategy is MTO or ATO. If the system is working based on a ATO strategy, 

reorders are triggered when the stock of a product reduces bellow a predetermined value and 

the value to produce is calculated to be high enough so that when the reorder is fulfilled, the 

inventory level of such product is, on average, in the desired level. Therefore, simultaneous 

reorders of the same product type are not allowed. 

The reorderProduct function, for the ATO situation, checks if there is a reorder of that 

product already being executed (Prod’s Boolean parameter reordered). On a positive situation, 

current reorder is ignored. Otherwise the reorder is created, added to population 

reordersOnExecution and attempted to execute using function produceProduct where the 

valueToProduce argument is defined according to the product to produce (ignoring the input 

argument amountToProduce. If, for some reason, function produceProduct return is zero, the 

reorder is removed from population reordersOnExecution and added to population 

reordersOnHold. The argument parent refers to the order during which execution the current 

reorder was triggered. If the reorder is created, parent’s parameter reordersGen is 

incremented to hold the amount of reorders that order generated. 
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For the MTO situation, reorderProduct is ignored as dependencies production orders are 

obtained from optimization and the function is not used in the simulation. 

3.4.5.3 executeOrder and executeReOrder 

executeOrder takes one argument and returns an integer value. The argument, named 

order, is of type Order and represents the order to execute. 

This function is used to execute an Order, either because the current period equals such 

order releaseDate or because the Order was previously unsuccessfully executed and placed on 

hold and the conditions for its execution are now met. 

executeReOrder is based on executeOrder with some minor differences. Instead of placing 

the order in populations related with order tracking, places it in populations related with 

reorder tracking. The other difference is on the value of the third argument used on function 

produceProduct. Since reorders are always of non-final products and orders are always of final 

products, the produceProduct level argument takes the value two inside executeReOrder and 

value one inside executeOrder. As referred in 3.4.5.1, this argument represents whether the 

product to be produced is a non-elementary component or a final product, changing the 

behavior of produceProduct. 

 

Pseudo-Code 4 – reorderProduct procedure ATO strategy 

 

function reorderProduct(product, level, parent, amountToProduce): 

if product.reordered == false then 

amountToProduce = value defined for products of type product.materialCode 

Insert a new Order object in population reordersOnExecution 

parent.reordersGen++ 

production = produceProduct(product, amountToProduce, level, created Order object) 

if production == 0 then 

Remove the Order object previously inserted in population reordersOnExecution 

Insert that Order object in population reordersOnHold 

end function 

Pseudo-Code 5 – executeOrder procedure 

 

function executeOrder(order): 

Remove order from population ordersOnHold 

p = element from products collection whose materialCode matches order.productCode 

result = produceProduct(p, order.Amount, 1, order) 

if result == 0 then 

Insert order in population ordersOnHold 

return 0 

else 

Insert order in population ordersOnExecution 

return 1 

end function 
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3.4.6 Order and reorder control 

This subsection aims to explain the implemented dynamics that did not fit the previous 

subsections, namely the order and reorder control. 

In 3.4.5, it was explained that whenever the result from produceProduct was zero the order 

(or reorder) that triggered such function was placed on hold. However, it is necessary to explain 

how and when would those orders (or reorders) be triggered again. Again, the method changes 

according to system’s strategy. 

In the MTO situation, whenever a product reaches one of the supermarkets, the parameter 

Amount from the reorder that originated that product is decremented. If Amount equals zero 

the reorder is complete. Once a reorder is complete, its parent parameter reorderCalls is 

incremented. Whenever reorderCalls form an order (or reorder) reaches the value reordersGen, 

it means that the amount of reorders triggered by that order (or reorder) is complete. Hence, 

the function executeOrder (or executeReOrder) is performed. 

In the ATO situation, reorders are triggered from inventory level instead of being triggered 

directly by orders. Therefore, the triggering of on hold orders and reorders is different. Again, 

whenever a product reaches one of the supermarkets, the parameter Amount from the reorder 

that originated that product is decremented. If Amount equals zero, the reorder is complete. 

Nevertheless, triggering occurs every time a product enters the supermarkets. If there is an 

order (or reorder) on hold that requires that type of product to be executed, executeOrder (or 

executeReOrder) is performed. If the inventory level of all components is sufficient, the order 

is placed on execution, else it is kept on hold. 

3.5 Scheduling/Sequencing 

Previously, the input mechanism was explained, including the order reading. Orders are 

read from an excel file (optimization results) and attempted to execute when its release date 

occurs. Orders from the same period are executed on the same sequence they are presented 

on the excel file. If the product the order is attempting to produce has dependencies and the 

Pseudo-Code 6 – executeReOrder procedure 

 

function executeReOrder(order): 

Remove order from population reordersOnHold 

p = element from products collection whose materialCode matches order.productCode 

result = produceProduct(p, order.Amount, 2, order) 

if result == 0 then 

Insert order in population reordersOnHold 

return 0 

else 

Insert order in population reordersOnExecution 

return 1 

end function 
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system is working under a MTO strategy, the dependencies will be attempted to produce 

following the sequence they were read from the excel file.  

In simulation, setups are implemented and occur whenever the materialCode parameter of 

the product to produce in a WorkCentre changes. Bending WorkCentre is the system’s 

bottleneck essentially due to its long toolkit set changeover times, i.e., its setup times. 

Therefore, reducing the number of setups is highly benefic to improve system’s efficiency. 

Scheduling allows for an optimized sequencing of production orders, optimizing each 

WorkCentre utilization. Scheduling rules and techniques are vast, nonetheless, most do not 

consider the system’s status and are more of general use. A new technique was developed to 

address the case study type of problems.  

Figure 3.26 helps illustrate how products are placed in production. 

 

ME ME ME ME ME MC MC MA MA MA MA 

Figure 3.26 - Production sequence (with scheduling) 

 

Figure 3.26 represents the queue at the entry of a determined WorkCentre and the first 

element in the queue is at the rightmost one, MA in this case. Within the same period, 

production orders are read alphabetically, meaning that the sequence will be sorted that way, 

without a scheduling technique. Setup times are considered sequence independent in our 

methodology. Thereby, the specific sequence inside a period is irrelevant. However, the first 

element in the queue for each period plays a major role in reducing setups. If the last product 

in queue referring to period t equals the first product to be produced in period t+1, one setup 

has been avoided. Moreover, if the queue is empty but the sequence can start with a product 

of the same type as the last produced product in the subsequent WorkCentre (or the type of 

the current product in production in that WorkCentre), a setup has also been avoided. 

The scheduling algorithm structure is described next in Figure 3.28 and Pseudo-Code 7. 
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Figure 3.27 - Scheduling algorithm flowchart 
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There are seven moments of decision, represented by the yellow decision blocks in the 

flowchart.  

The first one is whether or not the queue is empty. The scheduling algorithm aims at 

grouping similar products within periods.  

If the queue is empty, the first product position can only depend on the WorkCentre. If 

there is a product being produced and the types differ, the priority of the entering product is 

not maximum following a rule of maximum-variable where this variable is named subtractor. 

Whenever a new priority is defined, subtractor is incremented and that priority is placed on a 

structure named priorities with the key (id, period). The product id represents the type of 

product (parameter id of Prod object) and period represents the period when it was inserted 

in queue.  

Otherwise, if the type of product in production is the same of the product to be placed in 

Pseudo-Code 7 – Scheduling Algorithm 

 

function schedule(enteringProduct, WC, priorities,subtractor, period) 

if WC.queuesize() == 0 then 

if WC.delaysize() > 0 then 

if first product to enter production is of the same type as enteringProduct then 

enteringProduct.priority=100 

subtractor=0 

else 

enteringProduct.priority=100-subtractor 

subtractor++ 

else 

enteringProduct.priority=100 

subtractor=0 

else 

if priorities.contains((enteringProduct.id, period)) then 

enteringProduct.priority=priorities.get((enteringProduct.id, period)) 

else 

if there are products of earlier periods in queue then 

get information on the lower priority product of an earlier period 

if enteringProduct type equals the obtained product type then 

enteringProduct.priority = obtained_priority 

else 

enteringProduct.priority=100-subtractor 

subtractor++ 

else 

if first product to enter production is of the same type as enteringProduct then 

enteringProduct.priority=100 

else 

enteringProduct.priority=100-subtractor 

subtractor++ 

priorities.put((enteringProduct.id, period), enteringProduct.priority) 

end function 
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queue, this product’s priority will be maximum so that it goes to production right after the 

current product operation is finished, avoiding a setup. Subtractor is reset to zero. 

If the WorkCentre is also empty, the first product to enter the queue has maximum priority 

and the subtractor is reset to zero. 

On the contrary, if the queue is not empty, product’s priority is defined by the elements in 

queue. If the key (id, period) is already in the priorities data structure, the product receives 

that priority. If not, the algorithm verifies if there are products in queue that entered in lower 

periods.  

If there are no products in queue that were released in a previous period, the algorithm 

verifies if the product in production is of the same type as the one entering the queue. If so, 

gives maximum priority to that product and stores that priority in priorities. Else, product’s 

priority is set to maximum – subtractor, subtractor is incremented and the priority is stored in 

priorities.  

If there are products from previous periods in queue, the algorithm obtains the information 

of the lowest priority product in queue that was released on a previous period and compares 

the types. If they match, attributes that product’s priority to the entering product and saves 

it in priorities. Otherwise product’s priority is set to maximum – subtractor, subtractor is 

incremented and the priority is stored in priorities. 

Value 100 is used for maximum priority as an example, being the algorithm completely 

independent of the used value since the parameter priority can be either positive, zero or 

negative and the priority comparison is made between products and not related to an external 

factor. If all priorities are defined based on the same referential, that referential value is 

irrelevant. 

3.6 Simulation and Optimization Interaction 

Simulation and optimization models interact in various ways. Optimization results are 

simulation orders input. Considering system status and the production plan, simulation 

performs the developed scheduling technique, improving WorkCentre utilization. Simulation, 

whenever the optimization results were too optimistic and order due dates were not fully 

satisfied, influence optimization WorkCentre capacity parameters to tighten its constraints and 

attempt to produce a less optimistic production plan. After the first run, simulation provides 

the lead time inputs for optimization. Finally, when a production plan is validated by 

simulation, the plan is altered to comprise the scheduling made during the simulation 

execution. 

Order reading is direct: the period in which optimization plan releases an order is the same 

period when the simulation process will release that same order. However, for the products 

with dependencies, if there is not sufficient dependencies inventory to fulfil the order, the 

order is placed on hold until it can be performed. 

The lead times provided from simulation are the average of the measured lead times for 

each product. The average was chosen instead of, for instance, maximum to diminish the 

oscillation effect between iteration solutions. The tightening is, therefore, controlled and 

smoother than with the maximum option. 

WorkCentre capacity-related parameters are changed whenever the optimization 

production plan was not validated by simulation and for WorkCentres that verified an average 

utilization above 80%. WorkCentres in high average utilization were chosen as those are the 
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more likely to have had the most diverging behavior from what was expected in optimization. 

This parameter adjustment was made multiplying the initial capacity by the proportion 

obtained from the following formulae (11). 

 

 𝑎𝑑𝑗𝑢𝑠𝑡 =
𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛

𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 +
∑ 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦 𝑝𝑒𝑟𝑖𝑜𝑑 − 𝑑𝑢𝑒 𝑑𝑎𝑡𝑒𝑢𝑛𝑚𝑒𝑡 𝑑𝑢𝑒 𝑑𝑎𝑡𝑒𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑢𝑛𝑚𝑒𝑡 𝑑𝑢𝑒 𝑑𝑎𝑡𝑒𝑠

 (11) 

 

This adaptation incorporates the average delay for the unmet due dates (tardiness). 

When decreasing capacity from an iteration to the next, the adjustment is made as 

described. However, when increasing capacity, the adjustment is smoothed, as in (12). 

 

 
𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑎𝑑𝑗𝑢𝑠𝑡 −  𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑎𝑑𝑗𝑢𝑠𝑡

2
 (12) 

 

Both capacity parameters and lead time estimates are adjusted by simulation. When 

simulation tries to increase capacity, it means the previous optimization solution had 

excessively conservative constraints, i.e., either the WorkCentre capacities were 

underestimated or the lead times were overestimated (or both). Therefore, the total number 

of orders and per period was below the capacity of the system, resulting in a smaller amount 

of WIP, leading to shorter average lead times. Harsh adjustments in WorkCentre capacity, 

associated with lead time measurements, could lead the approach towards an oscillatory 

behavior between excessively conservative and excessively optimistic solutions. (12) is used to 

smooth adjustment and avoid/reduce such oscillatory behavior. 

3.6.1 Stopping Criteria 

The iterative nature of the proposed approach requires the approach to finish under some 

condition. However, one single condition was considered not to be sufficient to tackle every 

possible end scenario. Therefore, a set of conditions was developed for the approach to address 

the verified situations during development and test phases. 

Table 3.11 instantiates all implemented conditions that lead to the completion of the 

proposed approach. 

The three conditions do not have the same priority. The main objective of the proposed 

approach is to aid decision making by proposing feasible production plans and schedules. 

Therefore, the highest priority condition is demand being met (“Demand was met” in Table 

3.11). The other two conditions are mutually exclusive as if the approach is cycling between 

two solutions where one is optimistic and the other rather conservative, the approach is not 

outputting the same solution consecutively.  
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Table 3.11 - Stopping conditions 

Condition Scenario where it is applicable 

Solution is cycling 

Methodology is iterating between two 

results. Might happen when the ideal results 

are very close to both solutions and 

consecutive increases and decreases in 

constraints lead to more or less optimistic 

results from optimization. 

Sequence of iterations without significant 

changes 

Three iterations were executed without 

significant changes in output (lead times, 

production plan, and simulation evaluation 

changed less than 3%). Might happen when 

demand is impossible to fulfill or period 

duration does not allow for better results 

due to lack of precision. 

Demand was met 

If all demand is met under the obtained and 

validated plan, methodology might 

terminate as its objective is attained. 

 

No time related condition was implemented as run time is related with period duration and 

average bottleneck utilization, as seen in chapter 4, and a generalized time related condition 

was not possible develop. 

The proposed approach is analyzed in the following chapter. 

 





 

 

 

Chapter 4  

Approach Assessment 

With the dynamics of the case study system presented and the methodology described, the 

approach has been evaluated in terms of computational performance and quality of the 

proposed solutions, considering the impact of different scheduling rules and by changing the 

time discretization of the MILP model. 

4.1 Impact of different period durations on the approach performance 

Period duration variation has been introduced and briefly explained in section 3.3.5. In this 

section, a detailed analysis of this solution strategy is presented. 

The period duration is associated with the number of periods per time interval. A larger 

amount of periods per time interval translates in smaller periods and increases the model 

precision. Nevertheless, the amount of periods also decreases the performance of the MILP 

model by increasing the number of integer variables. Therefore, a balance between model 

precision and performance must be attained. 

Time discretization requires the conversion of lead times from time units to time periods. 

If a certain lead time is an exact multiple of period duration, there is no problem as the 

conversion is accurate. However, it is highly unlikely to verify such coincidence and the more 

natural occurrence is to have a lead time that is not an exact multiple of the period duration. 

In those cases, the conversion to periods is made such that the lead time in periods is equal or 

greater than the real value of the lead time. 

For instance, if a determined product lead time is 500 minutes and the period duration is 

240 minutes, lead time in periods is 3, corresponding to 720 minutes. In this situation the 

converted lead time is excessive by 220 minutes. For the same lead time, if the period duration 

is 120 minutes, lead time in periods is 5, corresponding to 600 minutes. In this situation the 

converted lead time is excessive only by 100 minutes. The increase in precision is notorious. 

For this example, one could argue that a period duration of 250 minutes would be more 

adequate as it would allow for an exact representation (2 periods would match exactly 500 

minutes). This affirmation is fairly correct however, considering this as one isolated example, 

one cannot make the conjecture that higher period durations are benefic. The next example 

will support this statement. 
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In systems having product interdependency, lead times are used to calculate when to trigger 

the production orders for such dependencies. Considering the BOM structure presented in the 

next figure, product MA would have to be launched in production 500 minutes prior to product 

MB, which, in its turn, would have to be launched in production 300 minutes prior to product 

MC. Therefore, product MA would have to be launched in production 800 minutes prior to 

product MC. 

Figure 4.1 - BOM structure example 

 

The following table represents the period conversion and total time equivalence for the 

three referred period durations. 

 
Table 4.1 - Lead time conversion comparison 

 MA Lead time MB Lead Time Total Lead time Excess 

Period 

Duration 
Periods Minutes Periods Minutes Periods Minutes Minutes 

120 min. 5 600 3 360 8 960 160 

240 min. 3 720 2 480 5 1200 400 

250 min. 2 500 2 500 4 1000 200 

 

As expected, if lead times are not exact multiples of period duration on its majority, smaller 

period durations provide higher precision. When the number of possible combinations is very 

high, the likelihood of lead time match with a multiple of period duration is extremely low. 

Additionally, lead time conversion has another impact on optimization behavior, besides 

the calculation of the triggering moment for the production order of dependencies. If the period 

duration is very high, even if the dependency lead time is very low it will be converted to at 

least 1 period. Products can only be produced when their dependencies are fully produced 

(which happens in moment of production plus lead time). If the converted lead time is very 

excessive, backlog might occur. In more detail, consider the following two situations:  

 Product MB has product MA as its dependency; lead time of product MA is 100 

minutes; period duration is 2400 minutes; demand for 1 unit of product MB exists 

at the end of the week (consider a week to have 2400 working minutes) 

MC 

MB 

MA 

Lead time: 300 minutes 

Lead time: 500 minutes 
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 Product MB has product MA as its dependency; lead time of product MA is 100 

minutes; period duration is 240 minutes; demand for 1 unit of product MB exists at 

the end of the week (consider a week to 2400 working minutes) 

Both situations differ only on period duration and consequent number of periods per week. 

In the first situation the number of periods per week is 1 whereas in the second situation the 

number of periods per week is 10. The following tables represents the orders, inventory, 

backlog and demand for that week considering only the referred products for each of the 

situations. 

 
Table 4.2 - Situation 1 Optimization output 

 
MA MB 

1 1 

Production 

orders 
0 0 

Inventory 0 0 

Backlog 0 1 

Demand 0 1 

 
Table 4.3 - Situation 2 Optimization output 

 
MA MB 

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 

Production 

orders 
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 

Inventory 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Backlog 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Demand 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

 

In situation 1, lead time is converted to 1 period. The excess time is 2300 minutes. Since 

the week only has 1 period and product MB can only be produced in the period after product 

MA is produced (which takes lead time, in this case 1 period), product MB cannot be produced 

and will be placed in backlog. Since there is no production order for MB, product MA production 

order will not be triggered. 

In situation 2, lead time is converted to 1 period. The excess time is 140 minutes. Since the 

week has 10 periods, product MA can be produced 1 period prior to product MB, originating the 

result exposed in Table 4.3.  

Product MB is considered to take less than one period to be produced and demand must be 

fulfilled at the end of the period. 

The given example serves to illustrate the second problematic originated by low precision 

lead time conversion. In addition, the given example serves to exclude cases where there is a 

small number of periods per week from future tests, as the testing instance includes products 

with multi-level dependencies. 

Variation of period duration also impact costs. For instance, inventory costs for a 120 

minutes’ period cannot be the same as inventory costs for a 240 minutes’ period. Inventory cost 

is related to period duration. There is a base value of inventory costs per week. Depending on 

period duration, such value is divided by the number of periods per week. Production costs do 

not change with period duration as the cost is not related with a time interval but with the 
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actions inherent to production. Backlog costs are related to unmet due dates and are constant 

for every period duration to represent the necessity to fulfill the highest number of customer 

requests possible. 

4.2 Proposed Scheduling vs FIFO 

From the explanation given in section 3.5, the proposed scheduling technique presents 

advantages facing the FIFO strategy, implemented by default in AnyLogic. This subsection is 

dedicated to testing and analyzing the same instances in each of the strategies. 

The following tables present the common data and test information. Note that customer 

demand exists only for final products and at the end of each week. Costs are considered equal 

for every period for the tests. 

 
Table 4.4 - List of products 

MA MC ME 

MS MR MT 

 
Table 4.5 - Immediate product dependency 

Product Code (parent) Product Code (dependency) Quantity 

MS MA 2 

MS ME 3 

MR MA 1 

MR MC 2 

MT MA 1 

MT ME 2 

MT MS 1 

 
Table 4.6 - WorkCentre information 

WorkCentre Number of machines 
Working minutes per week 

per machine 

C01 2 2400 

C02 4 2400 

C03 1 2400 

C04 1 2400 

C05 3 2400 

C06 2 2400 

 
Table 4.7 - Product related costs 

Product Code Production cost Inventory cost Backlog cost 

MA 100 50 - 

MC 145 73 - 

ME 90 45 - 

MS 200 100 - 

MR 115 58 6900 

MT 150 150 11000 
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Table 4.8 - Operation Sequence 

Product Code Operation Next Operation WorkCentre Processing Time 

MA P01 P02 C01 5 

MA P02 P03 C02 20 

MA P03 P04 C04 3 

MA P04 - C03 4 

MC P01 P02 C01 2 

MC P02 P03 C04 5 

MC P03 P04 C02 30 

MC P04 - C03 5 

ME P01 P02 C01 5 

ME P02 - C02 10 

MS P01 - C05 5 

MR P01 - C06 3 

MT P01 - C06 2 

 
Table 4.9 - WorkCentre setup times 

WorkCentre Setup time 

C01 1 

C02 6 

C03 2 

C04 1 

C05 1 

C06 3 

 
Table 4.10 - Customer demand 

Product Code Week 1 Week 2 Week 3 

MR 40 45 45 

MT 55 50 50 

 

Four metrics were used to compare the two scheduling rules: 

 Number of setups performed in the bottleneck WorkCentre 

 Total time necessary to execute all orders 

 Percentage of orders that did not met their due date 

 Tardiness 

Each test is made twice, once for the first iteration of the proposed methodology were lead 

time estimates are direct input from the user; and a second time for the last iteration of the 

proposed methodology, happening after a stopping criteria is met.  

Whenever the proposed approach initiates its execution, lead time estimates are required 

to be inputted by the user. Those lead times can be classified as average, pessimistic or 

optimistic, according to the difference from the empirically known lead times. 

Average estimates on lead times are those that are not far from the values empirically 

obtained. The same way, pessimistic estimates are those that are much higher than the values 

empirically obtained. Finally, optimistic estimates are those that are significantly lower than 

the values empirically obtained. 
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A total of three tests were performed on the same instance (considering costs, capacity, 

demand and BOM structures) but with different period duration and initial lead time estimates, 

as explained above. 

 
Table 4.11 - Test information (scheduling comparison) 

Test number Iteration Period duration 
Initial lead time 

estimates 

1 
First 

120 
Average 

Final - 

2 
First 

240 
Pessimistic 

Final - 

3 
First 

240 
Optimistic 

Final - 

 

The size of the instance, considering the number of variables in the optimization model is 

defined in Table 4.12. 

 
Table 4.12 - Instance size on variables 

Test Period duration Integer variables Binary variables 

1 120 1074 320 

2 and 3 240 493 147 

 

Numerical results are listed in Table 4.13. 

 
Table 4.13 - Test results (scheduling comparison) 

Test - iteration 
Scheduling 

Rule 

Number of 

bottleneck 

setups 

Total execution 

time (min.) 

Percent 

of delays 

Tardiness 

(periods) 

1 - First 
Proposed 338 7349 45,1% 1,43 

FIFO 442 7503 54,9% 1,92 

1 - Final 
Proposed 192 7105 0 0 

FIFO 212 7105 0 0 

2 - First 
Proposed 190 6989 0 0 

FIFO 274 6989 0 0 

2 - Final 
Proposed 165 7097 0 0 

FIFO 238 7207 3,33% 1 

3- First 
Proposed 191 7141 6,67% 1 

FIFO 273 7265 13,33% 1 

3 - Final 
Proposed 165 7097 0 0 

FIFO 238 7207 3,33% 1 

 

Results show that the proposed strategy reduced the number of setups in the bottleneck. 

The setup count is performed only for the bottleneck WorkCentre because it is the WorkCentre 
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with the longer setup times. Plus, the queue preceding that WorkCentre is the most likely to 

fill and where sequencing would have higher impact. 

The proposed scheduling rule also seems to generally outperform the FIFO strategy in terms 

of total execution time, except in test 3. This test started with pessimistic lead time estimates, 

thereby the optimization results were very conservative. Backlog was verified at the end of 

each week (the backlog at the end of week 3 was final as there is no more periods where those 

orders could be produced). This result was also conservative in the moment when dependencies 

were placed on production. Since lead times were considered very long, dependencies were 

placed on production in very early periods. When optimization results were inputted in the 

simulation model, the real lead times were shorter. Hence, dependencies would wait longer in 

the supermarkets. Execution time was, therefore, not defined by the variations in waiting time 

in production but in waiting time in supermarket and by the production calendar. 

The second and third tests was based on the same instance and period duration but with 

different initial lead time estimates. For both tests, the proposed methodology finished with 

the same solution, thus results for test 2 and 3 on the final iteration are the same. However, 

the second test took more iterations to attain the same results.  

Comparing delay information, both percentage of delays and delay duration, the proposed 

strategy presents an overall superior behavior. 

The first test, for the first iteration, presents high levels of delays. The smaller period 

duration increases the precision of the optimization model, as previously stated. Smaller period 

duration results in higher number of periods per week increasing the solver flexibility. 

Therefore, despite starting with average lead time estimates, first iteration results were too 

optimistic as a small difference in lead time could change its value in the conversion to periods. 

Plus, an order is considered delayed when it is delivered one period later. If the order was 

released in t, it is expected to be delivered in t+1. A delay is considered when an order is 

released in t and the delivery date of the final product from that order is delivered on a period 

superior to t+1. Since periods are smaller, deviations are more noticeable and due dates are 

stricter. 

4.3 Result Analysis of the period length 

Besides affecting costs and working minutes per period, period duration affects the 

performance of the proposed methodology. The decrease in period duration will, in theory, 

increase the model precision, therefore improving its performance. This assumption was putted 

to test using data presented in Tables 4.4 to 4.10. Demand values were designed to provoke a 

high bottleneck utilization situation, forcing the system to work close to its limit. In this type 

of high utilization scenarios, the optimization model takes longer to solve. In section 4.4, this 

effect will be tested and analyzed. The initial lead time estimates were 500 minutes for 

products MA, MC and ME, and 50 minutes for products MS.  

Three cases were considered, where period duration is 480 minutes, 240 minutes, and 120 

minutes. To compare the three scenarios (that only differ on period duration) five Key 

Performance Indicators (KPI) were used: total cost of final plan; percentage of delivered 

products; total run time of the methodology from start to finish; number of iterations the 

proposed approach had to execute to reach the final result; criteria that triggered methodology 

termination (presented in section 3.6.1). 
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Table 4.14 - Period duration test results 

Period duration 

(min) 
Cost 

Fulfilled 

orders 

Run time 

(seconds) 
Iterations Stop criteria 

480 525955,6 85,96% 369,43 4 

Sequence of iterations 

without significant 

changes 

240 325345,0 96,84% 573,09 6 Solution is cycling  

120 325333,9 100% 45552,64 6 Demand was met 

 

As expected, solution quality increases with the decrease in period duration (and 

consequent increase in number of periods). Total solution cost reduces and the percentage of 

fulfilled orders increases. 

However, run time increases with the decrease in period duration as there are more periods 

per time interval. Decision variables (production, inventory and backlog) are dependent on both 

product type and period, therefore, a rise in number of periods increases the number of 

decision variable and the model to solve grows in size and complexity. Optimization models are 

known to be harder to solve as size and complexity grows. 

For the 480 minutes’ period duration scenario, the final solution was found on iteration 

number two. This can be explained as the lower precision translates in more conservative 

results. The lead time conversion prevents a higher percentage of customer orders to be 

fulfilled and the following iterations did not influence the optimization results as lead time 

conversion must be always done to an integer number of periods. 

The best scenario, percentage of fulfilled orders wise, is the 120 minutes’ period duration 

one. However, the run time is considerably higher and might not be practical in real situations 

of higher system complexity. It is important to note that the high bottleneck utilization imposed 

by the high customer demand influences run time (96,56% average utilization). Section 4.4 

explores this influence. 

The number of integer and binary variables increases with the number of periods per week 

(decreasing with period duration), influencing run times. Table 4.15 matches each tested 

period duration to the resulting integer and binary variables. 

 
Table 4.15 - Integer and binary variables per period duration 

Period duration (min) Integer variables Binary variables 

480 220 52 

240 497 147 

120 1074 320 

4.4 High bottleneck utilization vs low bottleneck utilization 

Preliminary tests pointed towards a relation between WorkCentre average utilization and 

optimization model run time. Eight instances were putted to test. Data was constant and 

identical to that of section 4.2, apart from customer demand, which directly influences 

bottleneck utilization. Period duration was 240 minutes. Lead time estimates were 250 minutes 

for products MA, MC and ME, and 50 minutes for products MS. 
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Table 4.16 contains the run time and average bottleneck utilization results for those tests 

ordered by average bottleneck utilization. 

 
Table 4.16 - Utilization vs run time test results 

Test number Average bottleneck utilization 
Optimization run time 

(seconds) 

1 35,96% 0,055 

2 56,91% 0,105 

3 76,08% 0,180 

4 81,07% 1,115 

5 86,31% 1,180 

6 95,92% 7,673 

7 96,56% 29,76 

8 96,15% 1,385 

 

The highlighted results correspond to an excessive instance, i.e., customer demand was 

impossible to be met by the system at study. Considering the first seven instances, run time 

grows with average bottleneck utilization, being the increase in run time more impactful when 

the average bottleneck utilization is close to limit.  

In the excessive situation, many orders are unable to be fulfilled by the manufacturing 

system, increasing the number of backlogs. As backlogs are unavoidable in the highlighted 

situation as the system is physically unable to handle the tested customer demand, the solver 

does not struggle to find an optimal solution considering no backlog.  

Ignoring the eighth test, bottleneck utilization impact on run times could be described as 

presented in Figure 4.2. 

Whenever WorkCentre capacity is attempted to be used close to its limit, optimization run 

time is expected to increase. Since the proposed approach follows an iterative scheme, the 

increase in optimization run time significantly impacts its total run time. 

Figure 4.2 - Average bottleneck utilization impact on optimization run time 
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Chapter 5  

Conclusion 

Operational efficiency is overall seen as a competitive advantage and companies invest 

searching and developing methods to increase this efficiency. The growing demand for quality 

and customization by costumers increased the importance of production planning and 

scheduling. 

This dissertation focused on developing a methodology to aid managers and top level 

employees in decision making tasks and dealing with both planning and scheduling problems 

related with manufacturing systems. The objective was accomplished by proposing and 

developing an iterative hybrid method between optimization and simulation techniques. 

Answering the first research question, the proposed approach is based on a simple MIP 

model and a detailed simulation model of the manufacturing system. The former is used to 

obtain the production plans while the latter applies the developed scheduling technique to the 

production plan and evaluates whether or not it is feasible. If not, WorkCentre capacity is 

adjusted for bottleneck WorkCentres, lead time estimates are updated, and the optimization 

model is solved again considering the adjusted parameters. 

The second research question is related to the interaction between optimization and 

simulation. In the proposed approach, optimization and simulation interact through parameter 

and lead time estimates adjustments. Furthermore, simulation performs a scheduling technique 

during its run using the production plan coming from optimization and the verified conditions 

of the system. 

The proposed methodology proved to be flexible in precision selection through period 

duration variation, being fit for both high precision and relaxed systems. Furthermore, the 

proposed methodology, given a sufficient level of precision, was able to provide detailed 

production plans even under high WorkCentre capacity utilization (96,56% utilization of 

bottleneck WorkCentre). 

The methodology benefits from using a set of stopping conditions instead of a single 

condition as it contributes to its flexibility and better handling of different situations. 

Unlike other hybrid optimization-simulation approaches, the proposed methodology does 

not force convergence by reducing solution quality as for example [16]. The impact from 

simulation on optimization only affects lead times, and WorkCentre capacity when that 

WorkCentre is at high utilization rate. 
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The proposed methodology studies and develops a method for the incorporation of BOM in 

recursive approaches while using backlog decision variables. 

Most manufacturing systems can be modelled and described using the proposed approach. 

The mathematical model is easily generalized and adapted to most situations and simulation 

models can be built considering virtually any dynamics due to technological advancements in 

the area. The approach is, therefore, applicable to the majority of situations and is expected 

to provide satisfactory results on tackling production planning problems. 

5.1 Further research 

Despite the satisfactory results produced by the methodology, it has only been tested on 

the case study and further testing on different scenarios must be performed to validate and 

support the approach. 

The proposed approach works with unique and defined processing routes for each product. 

However, in real scenarios, products might follow alternative routes. The implementation of 

this feature in the methodology would allow for better WorkCentre utilization, deviating 

products towards WorkCentres with smaller waiting queues/times. 

As referred, a balance between period duration and the total run time of the proposed 

approach must be made. Creating a systematic tool that could analyze the optimization model 

of the system and suggest a fitting period duration for the run time to be practical based on 

complexity analysis and average bottleneck utilization would be of great interest. This feature 

would release users from tuning tasks, increasing the independency of the approach. 

Convergence was not proved nor guaranteed and a set of conditions were necessary to 

prevent an infinite number of iterations when the approach is being applied to certain scenarios 

under specific conditions. A thorough study on convergence and possible improvements to the 

methodology would be important to ensure the efficiency of the approach. 

The proposed scheduling technique is not generalized and might not be applicable to 

different scenarios. An intense study on generalized scheduling techniques would have to be 

performed to allow the proposed methodology to be applied to the most manufacturing 

systems. 
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