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Abstract

Since the last IAEA Conference JET has been in operation for one year with a programmatic focus on the qualification
of ITER operating scenarios, the consolidation of ITER design choices and preparation for plasma operation with
the ITER-like wall presently being installed in JET. Good progress has been achieved, including stationary ELMy
H-mode operation at 4.5 MA. The high confinement hybrid scenario has been extended to high triangularity, lower
p* and to pulse lengths comparable to the resistive time. The steady-state scenario has also been extended to
lower p* and v* and optimized to simultaneously achieve, under stationary conditions, ITER-like values of all
other relevant normalized parameters. A dedicated helium campaign has allowed key aspects of plasma control and
H-mode operation for the ITER non-activated phase to be evaluated. Effective sawtooth control by fast ions has
been demonstrated with *He minority ICRH, a scenario with negligible minority current drive. Edge localized mode
(ELM) control studies using external » = 1 and n = 2 perturbation fields have found a resonance effect in ELM
frequency for specific ggs values. Complete ELM suppression has, however, not been observed, even with an edge
Chirikov parameter larger than 1. Pellet ELM pacing has been demonstrated and the minimum pellet size needed to
trigger an ELM has been estimated. For both natural and mitigated ELMs a broadening of the divertor ELM-wetted
area with increasing ELM size has been found. In disruption studies with massive gas injection up to 50% of the
thermal energy could be radiated before, and 20% during, the thermal quench. Halo currents could be reduced by
60% and, using argon/deuterium and neon/deuterium gas mixtures, runaway electron generation could be avoided.
Most objectives of the ITER-like ICRH antenna have been demonstrated; matching with closely packed straps,
ELM resilience, scattering matrix arc detection and operation at high power density (6.2 MW m~?) and antenna
strap voltages (42kV). Coupling measurements are in very good agreement with TOPICA modelling.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Since the last IAEA Conference [1] JET has been in operation
for one year with a maintained programmatic focus on the
qualification of ITER operating scenarios [2], the consolidation
of ITER design choices and the preparation for future plasma
operation with the JET ITER-like wall (ILW) [3, 4]. Machine
and subsystem reliability has been very good (with neutral
beam power in excess of 22 MW being achieved in several
pulses) and has allowed strong progress in the JET programme,
including stationary type-I ELMy H-mode operation with
plasma currents up to 4.5MA [5] and a dedicated helium
campaign to evaluate key aspects of plasma control and
H-mode operation for the ITER non-activated phase. The latest
experimental campaign ended in October 2009 and JET has
since been in shutdown for the JET Enhancement Programme 2
(EP2) upgrades, chiefly the installation of the ILW and the

4 Also at: Association EURATOM-VR, EES, KTH, SE-10044 Stockholm,

Sweden.
b See the appendix.

0029-5515/11/094008+22$33.00

upgrade to the neutral beam injection (NBI) system [6]. The
ILW project sees the replacement of all carbon fibre composite
(CFC) plasma facing components (PFCs) with beryllium for
the first wall (solid Be and 8 um Be-coated Inconel) and
tungsten in the divertor (10-15 um and 20-25 um W-coated
CFC tiles for the inner and outer divertor, respectively [7, 8],
and bulk W for the horizontal tile for the outer strike point
in high performance scenarios [9, 10]). The neutral beam
upgrade will bring the maximum power from 22 to 34 MW,
with the maximum pulse length extended to 20s. Before the
end of the latest experimental campaign the new enhanced
radial field amplifier (ERFA) [11] (together with a few new
diagnostics) has been installed and fully commissioned [12],
demonstrating its capability of controlling plasma vertical
position with the largest edge localized modes (ELMs) [13].
Installation tasks for the EP2 upgrades are scheduled to be
completed in early 2011, with plasma operation restarting later
in the year.

The rest of this paper is arranged as follows: section 2
provides an overview of recent progress in the qualification

© 2011 IAEA, Vienna Printed in the UK & the USA
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Figure 1. Stationary 4.5 MA type-I ELMy H-mode using deuterium
gas fuelling to moderate the large natural ELMs.

of ITER operating scenarios, the ELMy H-mode, hybrid and
advanced tokamak scenarios, as well as a summary of the
qualification of helium operation for the ITER non-activated
phase. Section 3 highlights some results on plasma transport
and core stability issues, primarily related to momentum
transport and fast particle/burning plasma physics. In section 4
results have been collected from work relating to first wall
power loads, including the preparation for operating with
the ILW, ELM physics and mitigation studies and disruption
studies. Section 5 describes the ITER-relevant ion cyclotron
resonance heating (ICRH) studies carried out in the last few
years. Finally, conclusions and a brief outlook for the next few
years of JET operation are covered in section 6.

2. Progress in the qualification of ITER operating
scenarios

2.1. ELMy H-mode

2.1.1. High current operation. Operation with high plasma
current in JET allows access to the most ITER-relevant plasma
conditions, in terms of dimensionless plasma parameters and
edge pedestal characteristics, of any present day machine.
Stationary ELMy H-mode operation with plasma currents up
to 4.5 MA has been achieved in low triangularity (§ = 0.25)
and low edge safety factor (gos ~ 2.65) configuration with
26.5 MW of input power, resulting in stored energies of up to
11.5M]J, plasma densities of 55% of the Greenwald density
limit (ngw = I,/(a?) in units of 10* m™ with 7, in MA)
and normalized ion Larmor radius (p* = 2m;T;)/?/(e Ba))
and collisionality (v* = n.RqosIn A/((a/R)*? x 5.73 x
103*72)) down to 3 x 107 and 5 x 1072, respectively
(figure 1) [5]. p* and v* are here calculated using the
volume-averaged electron densities and temperatures and
assuming 7; = T.. Discharges with plasma currents
above 3.5MA and low deuterium fuelling displayed a non-
stationary H-mode behaviour, characterized by phases of
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Figure 2. Unfuelled 3.5 MA discharge (red) where the impurity
influx following large type-1 ELMs lead to transition to periods of
type-1II ELMs or even L-mode, and similar fuelled 3.5 MA
discharge (blue) where stationary type-I ELMs are maintained.

high and low confinement and transitions back to L-mode
(figure 2). This plasma behaviour is consistent with an earlier
observation that when the ELM size exceeds a threshold
of AWgtm ~ 0.6MJ, similar to the natural ELM size at
3.5 MA, ablation of co-deposited carbon layers in the divertor
lead to impurity influx, cooling of the divertor plasma and a
transition to type-1II ELMs or even L-mode [14]. Reliable
stationary type-I1 H-modes could be achieved by adding strong
deuterium gas fuelling (figure 2). However, the resulting
performance at the highest plasma currents falls short of the
IPB98(y, 2) scaling [15] (figure 3). Analysis is still ongoing
to confirm the origin of the degraded confinement, but a strong
candidate is the pedestal cooling that was caused by the gas
fuelling. Figure 4 shows the electron density (measured by
the high resolution Thompson scattering (HRTS) diagnostic)
and temperature (calculated from the average of HRTS and
electron cyclotron emission measurements) profiles for a pair
of 3.5 MA discharges with and without gas fuelling. While the
fuelling does not significantly affect the average plasma density
(constant Greenwald fraction), it does lead to higher pedestal
Greenwald fractions and lower pedestal and (consistent with
profile stiffness) core temperatures. Although these results
refer to the specific JET divertor configuration, they indicate
that ELM control may be necessary in ITER not only to limit
transient heat loads but also to achieve high confinement.

2.1.2. Joint JET and DIII-D p* pedestal scaling experiments.
The dependence of the edge pedestal width on the normalized
ion gyroradius p* = pj/a has been explored in joint JET
and DIII-D experiments. Theoretical models, based on the
assumption that the pedestal width is set by the condition
that the linear turbulence growth rate is equal to the £ x B
velocity shearing rate, lead to pedestal width (A) scalings with
p* dependences ranging from A /a o p*'/2to A /a o p* [16].
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Figure 3. (a) Measured versus predicted thermal stored energy. (b) Confinement enhancement factor Hog(y ») as a function of plasma current.
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Figure 4. Electron density and temperature profiles for two 3.5 MA
discharges with (blue) and without (red) gas fuelling.

For large, high-field, tokamaks like ITER this would imply
narrower pedestals than in current tokamaks with implications
for the achievable H-mode confinement. Taking advantage
of the difference in machine size between JET and DIII-D a
factor 4 variation in p* at the top of the pedestal (2.2 x 1073—
9.3 x 1073) could be achieved around a dimensionless identity
point at I,/Br = 1.0MA/1.1T for JET and 1.1MA/2.1T
for DIII-D. Other dimensionless parameters (v*, Bpo and
qos) were kept constant at the top of the pedestal as the
magnetic fields were varied in steps as Br(JET) = 1.1, 1.8
and 2.7T and By(DIII-D) = 1, 1.4 and 2.1 T [16,17]. The
resulting electron temperature and density pedestal widths
are plotted in figure 5. The temperature pedestal width is
invariant with p* and only a weak p* dependence is found for
the density pedestal width, ruling out the strong dependence
of the pedestal width on p* predicted by the theoretical

models referred to above and clearly an encouraging result for
ITER.

2.1.3. RF-dominated H-modes. Extrapolations from present
day devices to the ITER Qpr = 10 baseline scenario are
based predominantly on ELMy H-modes heated by positive
NBI with dominant ion heating and significant toroidal
momentum input. In contrast, plasma heating in ITER will
be by «-particles, negative NBI, ICRH and electron cyclotron
resonance heating (ECRH) with dominant electron heating and
insignificant levels of momentum input. Exploiting the recent
improvements in ELM resilience of the JET ICRH systems (see
section 5) the effect of the heating mix and rotation on the core
and pedestal confinement has been investigated in matched
pairs of NBI-only and ICRH+NBI-heated low triangularity
(6 = 0.25) 2.5MA/2.7T (q9s ~ 3.6) H-mode plasmas with
Greenwald density fractions around 60-70% [18]. The ICRH
scenario used was 42 MHz dipole phasing H-minority heating
with ny/(np + ng) = 4 £ 0.5%. Z. was typically 1.7-2.
Within the limitations of available ICRH power comparisons
between 100% ICRH and 100% NBI-heated plasmas could
only be performed at relatively low power, Py ~ 9 MW,
Pioss/ P ~ 1.2. Comparisons between mixed ICRH+NBI
and NBI-only heated plasmas were performed at progressively
higher powers as the NBI fraction increased, up to Py ~
16 MW, Pioss/PLu ~ 2 for comparisons between 50:50
ICRH : NBI and 100% NBI-heated plasmas. Pos is here the
lost power including radiation and Pp_g is calculated using the
Martin08 scaling [19]. No significant systematic differences
were found between the ICRH-dominated plasmas and the
matched NBI-only plasmas. The plasma confinement is found
to be independent of the heating mix (figure 6) density and
temperature profiles in the core are similar and 7; ~ T, despite
the different heat, particle and torque deposition profiles
(figure 7). The toroidal rotation in the ICRH-dominated
plasmas was approximately ten times lower at the edge and
five times lower in the core. The pedestal characteristics
(pressure and width) are also independent of the heating mix
and no obvious correlation is found between the ELM size
and frequency and the heating mix. These results indicate
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Figure 6. Confinement enhancement factor Hog(y ») versus
normalized density for plasmas dominated by, respectively, NBI and
ICRH heating.

that H-mode confinement scalings, despite being derived from
plasmas dominated by ion heating and strong momentum input,
are robust enough to describe also the behaviour of plasmas
dominated by electron heating and low momentum input as
will be the case in ITER.

2.2. Hybrid scenario

The hybrid scenario is a promising route for ITER as it
might allow the achievement of Q9 = 10 at lower plasma
current and thereby longer pulse lengths. At the 2008 IAEA
FEC it was reported that confinement enhancement up to

40% above the IPB98(y, 2) scaling was transiently achieved
on JET [20]. Since 2008 the hybrid scenario has been
further progressed and now routinely achieves confinement
improvements over the standard H-mode. The scenario has
been extended to high triangularity (§ ~ 0.4) and lower p*
(~3.5 x 107%) at 2.3 T and plasma currents up to 2MA with
Hog(y 2y typically 1.3-1.4 [21]. Pulse lengths in excess of
6s (~1gr, the resistive diffusion time) have been achieved
at ne/ngw ~ 0.75 and Bn ~ 3 (B = PraB/I,[%])
(figure 8). The extension of the high performance hybrid
scenario to low p* breaks the negative trend in confinement
with decreasing p* which was suggested in the multi-machine
hybrid scenario existence diagram reported in [22] (figure 9).
Recent joint DIII-D and JET dimensionless experiments show
only a very weak dependence on Hog(y o) with p* [23].
Current evolution reconstructions using TRANSP [24] and
CRONOS [25] show the non-inductive current fraction to be
around 50% (15% beam-driven and 35% bootstrap current),
which would allow ITER to reach discharge durations of
around 1000 s.

No single origin of the improved confinement has been
identified, with a current ramp-down prior to the main heating
phase to tailor the target g-profile, careful shape control
to avoid deleterious wall interactions and careful avoidance
of core MHD such as neoclassical tearing modes (NTMs)
all seemingly playing a role. The low magnetic shear in
the plasma core together with a high toroidal rotation shear
may also lead to reduced ion stiffness and contribute to the
overall confinement [26]. For the same total energy content
the pedestal contribution to the confinement is found to be
in line with the baseline scenario, around 30-40% at high
triangularity and 20-30% at low triangularity (as determined
by HRTS), demonstrating that the pedestal confinement does
not depend crucially on the magnetic shear. There are,
however, indications that the pedestal confinement improves
progressively with increasing fn and the pedestal energy in
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11 MW for both plasmas.
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Figure 8. High triangularity hybrid discharge (6 ~ 0.4) at 75% of
the Greenwald density with Hog(y ») maintained at 1.3 for one
resistive time. That the high confinement is maintained as the
current profile evolves, as evidenced by the varying internal
inductance /;, indicates that the magnetic shear is not the sole source
of the improved confinement of the hybrid.

hybrid discharges with By ~ 3is higher than in similar baseline
with By ~ 2 for the same energy content as calculated by
the IPB98(y, 2) scaling [27]. It should be noted that the
IPB98(y, 2) scaling was derived from an H-mode database
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Figure 9. Confinement of recent JET low (pink) and high (dark
blue) triangularity hybrid discharges compared with AUG, DIII-D
and JET hybrid discharges in the ITPA database.

with By < 2.2 and therefore not necessarily applicable to
hybrid discharges with Sx > 2.2.

2.3. Advanced tokamak/steady-state scenario

The performance and stability of the advanced tokamak
scenario with an internal transport barrier (ITB) have
been extended to 1.8 MA/2.7T (q9s ~ 4.7), achieving
dimensionless parameters approaching the ITER steady-state
targets for high triangularity (6 ~ 0.4) plasmas with global
0/ pirer ~ 2 and v*/vigr ~ 4 [28] (figure 10). In addition
to around 22 MW of NBI, up to 8 MW of ICRH and typically
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Figure 11. Evolution of JET pulse 77895 with Pyp; = 22.5 MW,
PICRH = 6.6 MW and PLHCD =2.3MW.

2.5 MW of lower hybrid current drive (LHCD) was applied
to a go ~ 2 target chosen to optimize the bootstrap current.
Relatively weak ITBs are formed (typically correlated with the
g = 2 surface rather than with negative shear) providing good
plasma stability properties and allowing to simultaneously
achieve BN > 2.7, Hogy2) = 1.2, T. ~ T;, ne/ngw ~
0.65 and a large thermal energy fraction, fry ~ 0.8, under
stationary conditions (~107g). Gasinjection added to improve
the ICRH and LHCD coupling lead to type-I ELMs about
40% smaller than natural ELMs and plasma conditions are
clean, Z.s < 2. Figure 11 shows the time traces for one
such discharge with Pyg; = 22.5MW, Picrg = 6.6 MW
and Prgcp = 2.3MW. In all discharges there is, however,
evidence that the g-profile is evolving, signifying a shortage

of non-inductive current. TRANSP interpretive modelling
indicates a bootstrap fraction in the range 36-45% and NBI
current drive of 20% of the plasma current. CRONOS
modelling predicts an additional 10% of LH-driven current
around r/a ~ 0.6 [29]; however, experimental observations
indicate that the accessibility is marginal in these plasmas and
that little LH power penetrates beyond r/a ~ 0.8. The LH-
driven current is therefore expected to be small. An additional
35% of non-inductive current drive would thus be needed to
make these scenarios fully steady state. Predictive CRONOS
modelling indicates that the addition of 5SMW of ECRH in
the current ramp-up phase and a total of 10 MW of off-axis
ECRH/ECCD at r/a ~ 0.6 during the current flat-top phase
would add 0.25MA from ECCD and about 0.2 MA more
bootstrap current due to a resulting higher plasma temperature
[29,30]. This would bring the scenario sufficiently close to
being fully non-inductive to maintain the g-profile needed
to sustain the ITB, and hence maintain the performance,
throughout the discharge duration. An ECRH/ECCD system
that would be capable of delivering the required 10 MW to the
plasma has recently been proposed for JET [31].

2.4. Qualification of helium operation for the ITER
non-activated phase

During the initial non-activated phase, ITER must operate
either hydrogen (H) or helium (*He) plasmas to commission
systems, develop operating scenarios for future DT operation
and evaluate ELM-mitigation techniques. The high L-H
threshold power of hydrogen plasmas (around twice that of
deuterium [32,33]) appears to preclude hydrogen H-mode
operation in ITER with the planned auxiliary heating power,
leaving helium as the likely option. In order to qualify helium
operation as a viable candidate for the ITER non-activated
phase a dedicated helium campaign, with the NBI system
fully converted to helium, has been carried out at JET, using
the technique of argon frosting for both divertor and NBI
cryopumps to ensure the best possible helium pumping.

2.4.1. ITER current ramp-up and ramp-down studies in
helium. One of the first and most fundamental tasks during
the ITER non-activated phase will be the commissioning
of critical tokamak subsystems for plasma vertical control.
JET performed ITER scenario demonstration discharges in
deuterium in 2008 [34] that contributed to the modification
of the ITER coil design. These discharges have now also
been used as references for a new set of discharges in helium
to qualify the flux consumption and heating requirements for
current profile control during the current-rise, gos = 3 flat
top and current ramp-down during the ITER non-activated
phase [35]. Good control of the internal inductance is achieved
with both ion species during the current ramp-up using a full
bore plasma shape with early X-point formation at 0.8 MA,
equivalent to forming a diverted plasma at 4.5 MA in ITER.
Early heating is required to keep /; below 0.85 when using
the fastest current ramp rate available (0.36 MAs™!), still
maintaining an MHD stable plasma up to gos = 3 with
a transition to H-mode which in JET deuterium discharges
occurs at 7-9MW and in helium at 8—11 MW. During the
current ramp-down the plasma inductance can be maintained
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heating phase after current ramp down to half the flat-top current,
plotted against applied heating power.

within the ITER limits by remaining in H-mode (figure 12).
Some discharges using a fast ramp down rate of 0.5 MA s~!
do not remain in H-mode despite heating powers well above
the normal L—H threshold powers as indicated in figure 12. If
heating is not available, simultaneous control of the internal
inductance and avoidance of flux consumption can, however,
be achieved by combining an appropriate ramp-down rate with
a strong reduction in plasma elongation to reduce the vertical
instability growth rate. Apart from a higher flux consumption
for helium discharges during plasma initiation deuterium and
helium discharges are found to be very similar with respect to
key requirements for ITER plasma control.

2.4.2. L-H threshold power of helium plasmas. The L-H
threshold power of helium plasmas has been investigated
and compared with that of matched deuterium plasmas by
scanning the helium concentration from 1% to 87% in a set
of low triangularity (6 ~ 0.25) 1.7 MA/1.8 T discharges [36].
In these plasmas, which had average densities in the range
ne = (2.5-2.9) x 10" m~3, the L-H threshold power was
found to be around 4 MW, or 1.2—1.4 times that predicted by
the MartinO8 scaling [19], with little dependence on the helium
concentration (figure 13). This result is in line with recent
ASDEX Upgrade findings [37] but different from what has
been found at DITI-D [38] and also in previous JET studies [39]
where the threshold power was found to be about 40% higher
in helium. The earlier JET studies were, however, performed
at lower plasma densities (7. = (1-1.5) x 10 m™3) and a
significantly higher threshold (>60%) was also found at lower
density (n. = 2.1 x 10" m~3) in these latest studies. The
threshold power for transition from type-III to type-I ELMs
was investigated separately in matched high triangularity
(6 ~ 0.4) 1.7MA/1.8T discharges. This threshold was also
found to be similar for both ion species, 6.7-9.3 MW for
deuterium (P].]]]/PMamn()g = 12—18) and 7.5-9.3 MW for
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Figure 13. L-H threshold power versus helium concentration for
plasmas heated by helium (blue) and deuterium (red) NBI in the
density range n, = (2.5-2.9) x 10" m~3. The dashed line indicates
the threshold power according to the Martin08 scaling.

helium (Pry/ Pumartinos = 1.4-1.6). Scaled to the ITER half-
field baseline scenario (7.5 MA/2.65 T, ne/ngw = 85%) using
the Martin0O8 scaling the L—H threshold power in helium should
be in the range 30-42 MW (or 20-65 MW for an appropriately
chosen 95% confidence interval). The threshold power for
type-I to type-III ELMs would correspondingly be 42-48 MW
(23-86 MW). These ranges are largely consistent with the
design levels of ITER auxiliary heating powers.

2.4.3. Helium plasma H-mode and power exhaust physics.
In the high triangularity type-I ELMy H-mode the energy
confinement in helium (65-80% purity) normalized to the
IPB98(y, 2) scaling law was found to be around 60-80% of
the confinement in the equivalent deuterium plasmas. Edge
pedestal measurements revealed that the pedestal pressure in
helium was around 70% of that in deuterium, although the
pedestal widths were found to be similar, 2.1£0.5 cmin helium
and 2.5 £ 0.5cm in deuterium (figure 14). Increased edge
recycling, due to the lower efficiency of helium pumping, and
impurity accumulation was observed in the helium plasmas and
could be part of the explanation for the lower confinement.
Power exhaust studies of type-I ELMy H-modes also
showed differences between deuterium and helium operation
that need to be taken into account when drawing conclusions
from the ITER non-activated operation in helium for future
DT operation. Figure 15 shows the temporal and radial heat
load profiles during a typical, medium size (AW/W ~ 4-5%)
type-I ELM on the outer divertor target (which receives most
of the average power) measured using infrared thermography
in comparable deuterium and helium plasmas [40]. Compared
with deuterium the inter-ELM heat load profile is significantly
broader in helium, integral width A, = 5.4 cm compared with
Ag = 3.7cm in deuterium. Since most of the energy reaches
the target in the inter-ELM phase the average profile is also



Nucl. Fusion 51 (2011) 094008

F. Romanelli ef al

— Pulse No: 79193: 4He Hgg(y ) = 0.79
~==Pulse No: 79745: D Hggy ) = 1.14

15
~
N
~
N
|
>
~
A
N
~
N
N
~
N
~
~
4 Y
10
\‘\\ \\\
b ]
© e T
o b It
~ b TN
= N~ P
™~
) =1 b
o )
\
\
— \
5 4
\ ‘\
v\‘ ;
oy
K
by o
it <
I\ k:
\\ =]
S 2
0 | M N S 5
3.6 3.7 3.8 3.9

Rmid-plane (m)

Figure 14. Plasma electron pressure profiles measured by HRTS for
a pair of 1.7 MA/1.8 T high triangularity helium (blue) and
deuterium (red) discharges with similar heating powers of 9.0 MW
(helium) and 10.4 MW (deuterium). Solid lines represent the fitted
profiles.

broader in helium, leading to lower peak heat loads. While
the time-integrated ELM heat load profiles are similar for the
two species the power arrival time scale for ELMs in helium
plasmas is significantly longer than in deuterium.

3. Plasma transport and core stability

3.1. Momentum transport and intrinsic rotation

Plasma rotation is well known to have beneficial effects on
MHD modes, such as resistive wall modes (RWMs) and
NTMs, and sheared plasma rotation is an important factor in
plasma turbulence stabilization. The combination of sheared
rotation and low magnetic shear for example appears to play
a role in the improved core ion confinement observed in
hybrid and advanced tokamak scenarios, with normalized ion
temperature gradient lengths up to eight observed in the fastest
rotating hybrid discharges on JET [26]. In light of the low
external momentum input of the ITER 1 MV NBI system,
a robust understanding of momentum transport and intrinsic
momentum sources and sinks is crucial.

3.1.1. Momentum pinch and Prandtl number. ~The radial
profiles of the inward momentum pinch and Prandtl number
have been determined on JET [41] using modulated NBI
powers and torques and compared with linear gyro-kinetic
code predictions using GKW [42] and GS2 [43]. Quantitative
agreement is found in the dependence of the pinch number,
Rupinen/ x¢ (with R the torus major radius, vpinen the pinch
velocity and x4 the toroidal momentum diffusivity), and the
diffusive Prandtl number, P, = x4/ xi, on the inverse density
gradient length, R/L, = R|Vn|/n. The dependence on
other parameters is weak, and neither Rupincn/x¢ nor P,
depends on collisionality. Ruvpinch/ ¢ is found to be between
3 and 5 around the plasma mid-radius (r/a = 0.4-0.8), only

increasing above 5 for R/L, > 3. P,, which does not depend
significantly on any of the parameters scanned, is typically
1.5-2 at the plasma mid-radius and increases with plasma
minor radius.

3.1.2. Intrinsic rotation studies. InJET plasmas with normal
toroidal magnetic field ripple, ép, = 0.08%, the intrinsic
toroidal rotation in the absence of significant momentum
injection by NBI is always small, w, < *10krads™!, also
in ICRH-dominated H-mode plasmas with By up to 1.3 [44].
This is in conflict with the Rice multi-machine scaling law for
the intrinsic rotation, which predicts an Alfvén—Mach number
an order of magnitude larger [45]. At the ITER ripple level,
8p;, = 0.5%, the JET intrinsic rotation is near zero. At higher
toroidal field ripple the edge rotation is near-zero and the core is
rotating in the counter-current direction, faster in plasmas with
type-III than with type-1 ELMs (figure 16). A separate study
has analysed the relative loss of toroidal momentum to plasma
energy associated with ELMs, showing that the momentum
losses are consistently larger than the energy losses (figure 17).
The losses of momentum are observed to penetrate deeper into
the plasma during large type-I ELMs than the losses of energy,
r/a = 0.65 as compared with r/a = 0.8. As aresult, the time-
averaged toroidal rotation at the top of the pedestal decreases
with increasing ELM frequency.

3.2. Fast particle/burning plasma physics

A comprehensive set of fast ion diagnostics (neutron and y -ray
cameras and spectrometers, neutral particle analyser (NPA))
and lost ion diagnostics (gyroradius and pitch-angle resolved
scintillator probe, thin-foil Faraday cups and an activation
probe) coupled with a flexible heating system capable of
producing fast ions in the MeV energy range and the large
machine size and high plasma current that allow them to remain
confined make JET particularly well suited for fast particle and
burning plasma studies [46].

In the advanced tokamak discharges with high By and
qo > 1.5 described above [28], plasma disruptions preceded by
strongm/n = 2/1 MHD modes were found to be accompanied
by large fastion bursting losses during the thermal quench (TQ)
(figure 18) [47]. Scintillator probe measurements indicate that
these losses are consistent with trapped ions accelerated by
ICRH. Bursts of metallic impurity influx were also observed in
connection with the losses. These observations are consistent
with a theory [48] for the redistribution of energetic trapped
ions by interaction with a pressure driven m/n = 2/1 kink
mode which also leads to internal magnetic reconnection,
visible in figure 18 as an abrupt change in plasma internal
inductance.

Losses of high-energy (0.5-4 MeV) protons accelerated
by ICRH were also observed with the 2D scintillator probe
in recent JET experiments with low-frequency (9-14 kHz)
fishbones driven unstable by NBI ions (80-130keV) [49, 50].
The losses were enhanced a factor of 10-20 with respect
to MHD-quiescent levels and were found to increase
quadratically with the mode amplitude. Due to the difference
in frequencies between the fishbone modes and the orbit
periodic motions of the lost ions these losses could not
have been caused by resonant interactions [51]. Theory,
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however, suggests [52] that the loss of toroidal symmetry
caused by the fishbone can also cause non-resonant losses
of high-energy ions and «-particles. Detailed integrated
MISHKA [53], HAGIS [54] and SELFO [55] modelling with
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Figure 17. Normalized thermal energy drop versus normalized
momentum drop per ELM.

a detailed synthetic scintillator probe model [50] confirm
that the observed losses result from non-resonant interactions.
Very good agreement is found between the measured and
simulated energy and pitch-angle distributions as well as the
temporal evolution of the losses during a fishbone cycle.
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Figure 19. Energy distribution of proton losses arriving at the
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instrumental function of the diagnostic, and energy distribution of
losses measured by the scintillator probe.

The measured and simulated lost ion energy distributions are
shown in figure 19. The losses are found to originate from
orbit stochastic diffusion of trapped protons near the plasma
boundary or from counter-passing protons deep in the plasma
core which transform into unconfined trapped orbits under the
influence of the fishbone. Nearly all of the fast ion losses take
place in the early growth phase of the fishbone cycle, reaching
their maximum well ahead of the magnetic perturbation peak.

3.3. Sawtooth stability control

Effective sawtooth control has been demonstrated with *He
minority ICRH with toroidally directed antenna spectra and
the resonance tangential to the ¢ = 1 surface [56]. Since
the minority ion current drive for this scenario is expected
to be negligible in JET (and in ITER) due to the electron

10

drag current, this demonstrates the direct kinetic response of
highly energetic ions on the internal kink mode. The effect
is explained by fast ions with wide drift orbits intersecting
the ¢ = 1 surface predominantly on the high-field side (good
magnetic curvature) or low-field side (bad magnetic curvature)
due to asymmetric parallel velocity distributions [57]. Using
4 MW of ICRH the sawtooth period could be decreased (—90°
antenna phasing) or increased (+90° antenna phasing) by more
than a factor of 2 (figure 20). This direct effect of fast ions
on the sawtooth stability is encouraging for ITER, where the
ability of the ICRH system to control the magnetic shear by ion
cyclotron current drive (ICCD) is expected to be weak [58].

4. First wall power load studies

4.1. Preparations for operation with the ILW

The ILW project sees the replacement of all CFC PFCs with
beryllium for the first wall (solid Be and 8 um Be-coated
inconel) and tungsten in the divertor (figure 21). Most of
the divertor is covered by 10-15 um W-coated CFC tiles with
20-25 um W-coated CFC used for tiles 6 and 7 due to the
higher erosion from physical sputtering expected in the inner
divertor [7,8] (figure 22). Based on extrapolations of the
erosion of similar, but thinner, W coatings installed during
recent campaigns the lifetime of the coated divertor tiles is
expected to be in the order of 100000 plasma seconds [59].
Bulk tungsten is used for the horizontal tile for the outer strike
point in high triangularity high performance scenarios [9, 10].
The characterization and exploitation of the wall will form the
basis for the JET programme in the coming years and, since the
beryllium and tungsten material combination has never before
been tested in a fusion device, the scientific exploitation of the
new wall will start from day one. A significant part of the
recent JET programme has therefore been devoted to (i) the
development of techniques to ensure the safe operation with
the new wall and (ii) provision for reference plasmas to allow
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Figure 21. Previous JET CFC/Be wall (photograph, left) and the
new ITER-like Be wall and W divertor (3D render, right).

exhaustive comparisons between the performance of carbon
and metallic walls [60]. It is expected that compared with
carbon the new wall materials will demonstrate a significant
beneficial impact on key ITER issues such as fuel retention
and the lifetime of PFCs.

Key for the successful operation with the tungsten divertor
will be to replace the missing intrinsic carbon radiation with
extrinsic impurity seeding to reduce the peak power loads
in the divertor and to keep the divertor temperature below
10eV, necessary to minimize tungsten physical sputtering by
impurities in order to both ensure the integrity of the tungsten
coatings and minimize the influx and potential accumulation of
tungsten in the plasma core. As a precaution against possible
recrystallization of tungsten and carbidization of the tungsten—
CFC interface a tungsten temperature limit of 1200 °C will be

11

with 4 segments

Figure 22. The new all-tungsten divertor. Tile 5, for the outer strike
point, is made up of four segments of stacked bulk tungsten
lamellae, other tiles are 10-25 um tungsten-coated CFC.
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various deuterium fuelling rates (®p),. Deuterium was injected
from the private flux region and nitrogen from the outer divertor.

imposed for the early exploitation of the wall, corresponding to
power loads around 6 MW m~2 for 10's. The temperature limit
will be raised to 1600 and 2200 °C as operational experience
is gained. Systematic fuelling and impurity seeding scans,
using nitrogen and neon due to their favourable radiation
characteristics comparable to carbon, have been performed in a
2.5MA/2.7T (q9s = 3.5) type-I ELMy H-mode scenario with
16 MW of auxiliary heating. Figure 23 shows the peak power
load at the outer strike point in between ELMs for various
combinations of deuterium fuelling from the private flux region
and nitrogen seeding from the outer divertor. Already pure
fuelling, with the aid of intrinsic carbon radiation which,
however, is expected to be largely absent with the new wall,
lead to a significant reduction in the peak power load from
~13 to ~4 MW m~2. Moderate fuelling (1.85 x 10??els™")
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and seeding (1.5 x 10??els™!) lead to tungsten divertor
compatible peak power loads below 2 MW m~2 and acceptable
type-I ELMs for a moderate reduction in confinement of
10% compared with the unfuelled scenario. Increasing the
nitrogen seeding to 3.55 x 10%2els™! leads to complete
detachment of the inner divertor leg, as diagnosed by Langmuir
probes and divertor spectroscopy, and partial detachment
of the outer leg for a negligible reduction in confinement,
Hog(y,2) = 0.95 compared with Hogy, 2 = 0.96 for the fuelled
H-mode. Figure 24 shows the bolometric reconstruction of
the divertor radiation between two ELMs with and without
nitrogen seeding and the corresponding electron densities and
temperatures mapped to the outer mid-plane. Nitrogen seeding
reduces both the temperatures and densities by almost a factor
of 10, demonstrating a loss of pressure and partial detachment
of the outer strike point. The resulting low divertor electron
temperature, 7. < 6eV, with nitrogen seeding would with
the ILW ensure low levels of tungsten erosion by physical
sputtering for long lifetimes of the tungsten coatings and low
levels of tungsten impurity influx into the plasma core.

4.2. ELMs and their amelioration

The understanding and mitigation of ELMs are one of the
main issues for reliable ITER operation. ITER will require
reliable ELM control over a wide range of operating conditions
and it is therefore essential to develop a suite of different
ELM-mitigation techniques. On JET, ELM control studies
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Figure 25. Normalized ELM energy loss (to the pedestal energy)
versus ELM frequency (high 6, gos = 3.6-3.9, Pygr = 10-12MW).

using resonant magnetic perturbations (RMP) produced by the
external error field correction coils (EFCCs), rapid radial field
changes (‘vertical kicks’), gas injection and pellet pacing have
progressed towards establishing the necessary conditions for
mitigation, the impact on the plasma confinement and the effect
on the divertor heat loads [61-63].

4.2.1. ELM-mitigation studies with RMPs and vertical kicks.
The application of EFCCs and kicks in high triangularity
(6 = 0.43) H-mode plasmas (2 MA/2.2-2.4T, g95 = 3.6-3.9,
Pxpr = 7-12MW, Picrg = 1-2 MW) with low natural ELM
frequencies, fgrm ~ 7-15Hz, allows an increase in ELM
frequency by a factor of 5 with vertical kicks and a factor
of 3.5 with EFCCs [61]. The increase in ELM frequency
is associated with a decrease in the normalized energy loss
per ELM (figure 25). Notably, all ELM control methods
(EFCCs, vertical kicks and gas) follow the same general trend
in AWgLm/ Weep with fgrv and the mitigated ELMs can be
sustained also at low pedestal collisionality. Both EFCCs and
kicks are associated with a density pump-out which reduces
the core density by ~30%. This can be compensated for by
gas puffing, but at a cost in confinement. Toroidal rotation
braking (up to 50%) is observed and extends over the whole
plasma column with EFCCs, whereas with kicks a ~10%
reduction in the edge rotation is found due to the increased
losses of toroidal momentum at the higher ELM frequency, see
section 3.1.2.

On DII-D, in-vessel RMP coils producing an n
3 perturbation field allows type-I ELMs to be completely
suppressed in narrow windows of the edge safety factor (qgs =
3.5-3.9 and g9s5 ~ 7.2) [64, 65]. On JET, ELM control studies
with n 1 or n = 2 perturbation fields induced by the
EFCCs have not yet shown complete ELM suppression, even in
plasmas with edge vacuum Chirikov parameters greater than
1 (0.85 at W'/2 = 0.95) [66]. In low triangularity plasmas
(6 ~ 0.2) a gos scan at fixed toroidal field (1.84 T) and low
pedestal collisionality (v* ~ 0.1), however, shows a resonance
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effect, where the ELM frequency increases a factor of 4-5
at specific values of g9s with n = 1 fields applied. For
non-resonant values of ggs the ELM frequency only increases
a factor of about 2 with the n = 1 field applied [62,67]
(figure 26). A similar effect is also found when an n = 2 field
is applied. This multiple resonance effect can be qualitatively
predicted by a model in which the ELM width is determined
by a localized relaxation to a profile which is stable to ideal
external peeling modes [68].

4.2.2. ELM pellet pacing studies. Pellet pacing up to
10 Hz has been demonstrated in 2.0 MA/2.3T (gos = 3.8)
plasmas with 11 MW of NBI heating using the fuelling
section (nominally 2.2 x 10! D/pellet, 200 m s~!) of the high-
frequency pellet injector (HFPI) for low-field side injection.
While the natural ELM frequency in these plasmas was also
around 10Hz, the ELMs could be synchronized with the
pellets—confirming the ELM pellet pacing technique on JET
[63]. The minimum pellet size (and thereby the minimum
unavoidable fuelling) required to trigger ELMs has been
estimated from the D, signal from pellets with a large size
scatter injected with the pacing section of the HFPI from the
vertical high-field side (figure 27). If the D, pulse height is
proportional to the pellet mass entering the plasma the trigger
threshold is found to be ~10'° D or, using instead the total
integral D, emission, ~1.6 x 10! D. According to modelling,
pellets of this size should penetrate to at least half the pedestal
width [69]. Upgrades and improvements to the HFPI are being
implemented and should allow further studies on pellet ELM
pacing at frequencies significantly above the natural ELM
frequency when JET restarts operation.

4.2.3. ELM-wetted area. Using anewly installed fast (86 us)
high-resolution (1.7 mm) infrared camera viewing tile 5 of
the JET divertor (see figure 28) has allowed detailed studies
on the ELM dynamics and in particular the inter-ELM and
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the ELM heat load profile wetted areas in high triangularity
configurations [40,70,71]. Figure 29 shows the temporal
evolution of the power arriving at the divertor target during
an ELM crash and the ELM and inter-ELM radial heat load
profiles. During the rapid rise in the ELM power load, which
typically takes place on the ion-transit time scale, broadening
of the ELM-wetted area is found which is characterized by
distinct striations interpreted as footprints of plasma filaments
ejected during the ELM crash. The number of striations appear
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temporal evolution of the power arriving at the target during the ELM crash, middle frames show a series of snapshots of the target heat load
profiles for the time points indicated in the top frames and the bottom frames show the time-averaged radial heat load profiles.

to be independent of the input power, but increases from around
3-5 to 10-20 during the ELM rise phase [72]. From figure 29
it is evident that the ELM broadening increases with ELM size
and this is also confirmed in a wider database of the ELM-
wetted area (Aye defined as ratio between target-integrated
power P (W) and the peak heat flux Qpeak (W m~2)) (figure 30)
and a similar ELM broadening is found in both natural as
well as mitigated ELMs regardless of the mitigation method
used [61,71].

4.3. Disruption studies for ITER

The experimental disruption studies on JET have focussed
on the understanding of asymmetric vertical displacement
event (VDE) disruptions and on disruption amelioration by
massive gas injection (MGI) as a means to reduce the impact of
disruptions on the tokamak structure (electromagnetic forces
from halo and eddy currents and localized heat loads from
convection and runaway electrons) [73,74]. In addition, an
extensive survey of all JET disruptions over the last decade
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Figure 30. ELM-wetted area as a function of relative ELM
size A Wgry/ Wavnp Different colours denote different plasma
current intervals with solid lines the linear fits in respective intervals.
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Figure 31. Typical sequence for a disruption initiated by the DMV using an argon/deuterium gas mixture.

has allowed the sequences of events and root causes of the
dominant classes of disruptions to be identified [75].

4.3.1. Sideways forces during asymmetric VDEs. During
asymmetric VDE disruptions the plasma current and vertical
current moment are n = 1 toroidally asymmetric, leading to
sideways forces that in JET can be as high as 4 MN [76]. In
most JET disruptions the plasma current asymmetry rotates in
the counter-current direction at ~100 Hz, although with large
scatter. For ITER, the dynamic amplification of structural
forces that would occur if the rotating modes resonated with the
vessel at the 8 Hz fundamental mechanical vessel frequency is
a concern. Large plasma current asymmetries (~10%) in JET
disruptions are, however, observed only for short to moderate
current quench (CQ) times (up to 40-60 ms, corresponding to
200-300 ms in ITER if scaled with the plasma cross-section
area [77]) and the asymmetries are significantly smaller for
longer quench times [78]. This implies that, at the ITER
vessel resonance frequency, large asymmetries will only be
able to complete a very small number of rotations, limiting the
dynamic force amplification.

4.3.2. Disruption mitigation by MGI.  Figure 31 shows a
typical sequence of events for a disruption initiated by injection
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of around 2 x 10?* particles of an argon/deuterium mixture into
a NBI heated plasma using the recently installed disruption
mitigation valve (DMV) [74]. After the activation of the
DMV, located 4m from the plasma, the gas arrives after a
flight time of around 2 ms which initiates the cooling of the
plasma edge. When the cold front eventually arrives at a
critical flux surface (presumable ¢ = 2) the TQ is triggered,
which releases the remaining plasma energy within less than
1 ms, followed by a slower CQ. Using argon/deuterium and
neon/deuterium gas mixtures the DMV has proven effective at
reducing disruption halo currents, sideways forces, convective
heat loads and runaway electron generation. The peak heat
loads during the TQ are reduced by the enhanced radiation
with MGI. In the cooling phase up to 50% of the thermal
energy stored in the plasma before the DMV is activated is lost,
predominantly by radiation, before the TQ. About 40% of the
remaining energy is radiated during the TQ. Thus, only 30%
of the initial energy is lost by convection to PFCs during the
TQ, only a small fraction of which is found in the divertor [79].
For VDEs, which have the most peaked heat loads, the peak
heat load on the upper dump plate can be reduced from 3.3 to
1.8 MW m~2 when MGI is employed [76]. Halo currents in
VDEs can also be reduced by up to 60% provided the TQ is
initiated before a significant vertical movement has taken place.
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Figure 32. Root causes of JET disruptions. Physics and technical
root causes are shown by grey and white coloured boxes,
respectively. The dominant cause is found to be NTMs leading to
locked modes, followed by human factors (HUM) and density
control problems (NC). For a complete list of root causes see [75].

In order to keep forces on PFCs from eddy currents tolerable in
ITER, the current decay time must stay above the lower bound
of 7cg/S ~ 1.7ms m~2 (with S the pre-disruption plasma
cross-section area). This limit can be reached with pure argon
MGI in JET, whereas the deuterium mixtures show a slower
current decay. Runaway electron generation is successfully
avoided by the injection of argon/deuterium or neon/deuterium
mixtures, due to the suppression of the Dreicer mechanism
[80]. In contrast, injection of pure argon leads to runaway
generation even at low toroidal magnetic fields down to 1.2 T.
Although runaway electrons can be safely avoided by MGI in
JET disruptions the density reached is still a factor of 50 below
the critical density for avalanche suppression [74] which is
essential in ITER where runaway currents of up to 10 MA are
expected due to the strong avalanche amplification [77, 81].

4.3.3.  Root causes of unintentional disruptions.  An
extensive survey of all 2309 JET disruptions with I, > 1 MA
that occurred from 2000 to 2010 has allowed the sequences
of events and root causes of the dominant classes of JET
disruptions to be identified [75]. The dominant root cause of
disruptions was found to be NTMs that lead to locked modes,
followed by human factors and density control problems
(figure 32). An important finding is that more than half of all
disruptions were caused by reasons other than pure physics
instabilities, e.g. subsystem failures (22%), control errors
(15.8%), human errors (8.3%) or plasma—wall interactions
(7.8%). Thanks to increased operational experience and
improved technical capabilities the global disruptivity has
decreased from ~20% to 3.4% since the start of JET operations
in 1983. However, about 5% of all JET disruptions in the
last decade were caused by very fast and unpredictable events
which may set a lower limit for the JET disruption rate around
0.4%. While it is difficult to extrapolate these results directly

to ITER, which will operate in a different operational range
and with different technical subsystems, key lessons can still
be drawn from the JET experience. Although the initial ITER
disruptivity cannot be predicted there will be a learning period
before the minimum disruption rate can be achieved, a non-
trivial fraction of all disruptions will be caused by technical
or human factors and there will likely be a small number of
disruptions that can never be predicted.

5. ITER-relevant ICRH studies

Three ITER-relevant ICRH systems have been successfully
tested on JET [82]; the ITER-like antenna (ILA) [83-86] based
on a similar design concept as the ITER ICRH antenna [87]
with a closely packed array of short low inductance straps, two
of the conventional ‘A2’ antennas now equipped with external
conjugate-T (ECT) matching and two A2 antennas with 3 dB
hybrid couplers. All systems have demonstrated enhanced
ELM resilience and have allowed up to 8.6 MW to be coupled
on H-mode plasmas with type-I ELMs [18].

Most objectives of the ILA have been demonstrated;
matching of an array of closely packed straps, ELM resilience
using internal conjugate-T matching, arc detection using
Scattering Matrix and Sub-Harmonic Arc Detection (SMAD
& SHAD) systems [88,89] and operation at ITER-relevant
power densities (up to 6.2 MW m~2 on L-mode, 4.1 MW m—2
on H-mode) and RF voltages (42kV, also on ELMy H-mode
plasmas). No evidence of increased impurity production has
been found at these power densities which are up to 6 times
higher than hitherto achieved on JET [85]. The main issue of
concern for ITER was the low coupling (0.8 2 m~') measured
for the ILA on H-mode plasma with 5 cm strap to separatrix
distance, lower than the originally anticipated 1.5Qm™!. To
assess the implications of the measured coupling for the
coupling predictions made for ITER using RF codes such
as TOPICA [90] a strap-separatrix distance scan with well-
diagnosed L-mode edge density profiles was carried out and the
coupling compared with TOPICA modelling. Good agreement
for the effective strap resistance per unit length, R;, and
the effective conductance at the RF probe, G, within the
error bars was found (figure 33) [86]. This is in agreement
with earlier TOPICA validation on Tore Supra [91], DIII-
D [92] and Alcator C-Mod [90] and, provided the edge density
profiles used are realistic, gives confidence in the predictive
capability of the code for ITER. A water leak in one of
the matching capacitor unfortunately cut the ILA programme
short. Whether repairs will be undertaken is still to be decided.

6. Conclusions and outlook

Since the last IAEA Conference JET has made significant
progress towards the qualification of ITER operating scenarios
and the validation of ITER design choices and technologies.
The exploitation of the ILW in the coming years will make
JET the principal experiment for the development of plasma
scenarios compatible with the material combination foreseen
for the active phase of ITER. The neutral beam power upgrade
will allow stable H-mode operation at higher plasma currents
and magnetic fields, allowing access to lower p* and v* and
higher B for reduced uncertainties in extrapolations to ITER.
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The increased pulse length will also be essential to progress
the hybrid and steady-state scenarios for ITER. This work is
planned to lead up to a full deuterium—tritium campaign in the
2015 time frame for fully integrated tests of the Q = 10 ITER
baseline scenario, including the required active techniques
for plasma—wall compatibility (impurity seeding, active ELM
mitigation) in a metallic machine.
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