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Abstract

Customers interact with e-commerce websites in multiple ways and the companies operating them
rely on optimizing success metrics for profit. Changing what, how and when content such as
product recommendations and ads are displayed can influence customers’ actions.

Multiple algorithms and techniques in data mining and machine learning have been applied in
this context. Summarizing and analysing user behaviour can be expensive and tricky since it’s hard
to extrapolate patterns that never occurred before and the causality aspects of the system are not
usually taken into consideration. Commonly used online techniques have the downside of having
a high operational cost. However, there has been studies about characterizing user behaviour and
interactions in e-commerce websites that could be used to improve this process.

The goal of this dissertation is to create a framework capable of running a multi-agent simula-
tion, by regarding users in an e-commerce website that react to stimuli that influence their actions.
By taking input from web mining, which includes both static and dynamic content of websites as
well as user personas, the simulation should collect success metrics so that the experimentation
being run can be evaluated.
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Resumo

Consumidores interagem com websites de comércio eletrónico de várias formas e as empresas que
os operam dependem da otimização de métricas de sucesso tais como CTR (Click through Rate),
CPC (Cost per Conversion), Basket e Lifetime Value e User Engagement para lucro. Alterar
como, onde e quando o conteúdo de páginas web como por exemplo recomendação de produtos e
publicidade é mostrado pode influenciar as ações dos consumidores.

Vários algoritmos e técnicas em data mining e machine learning têm sido aplicados neste
contexto. Sumarizar e analisar comportamento de utilizadores pode ser custoso e complicado
porque é difícil extrapolar padrões que nunca ocorreram antes e os aspetos causais do sistema
geralmente não são tidos em consideração. Técnicas online geralmente usadas têm o problema
de ter um custo operacional elevado. Porém, existem estudos sobre caracterizar comportamento
e interações de utilizadores em sites de comércio eletrónico que podem ser usados para melhorar
este processo.

O objetivo desta dissertação é criar uma framework capaz de correr uma simulação multi-
agente, tendo em conta os utilizadores de um site de comércio eletrónico que reagem a estímulos
que influenciam as suas ações. Extraindo dados de web mining, que inclui tanto conteúdo es-
tático como dinâmico de websites assim como de perfis de utilizadores, a simulação deve reportar
métricas de sucesso para que a experiência possa ser avaliada.
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“In recent years, hundreds of the brightest minds of modern
civilization have been hard at work not curing cancer.

Instead, they have been refining techniques
for getting you and me to click on banner ads.”

Steve Hanov
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Chapter 1

Introduction

In this chapter we intend to introduce the report, starting by describing its context, motivations and

objectives that will drive the dissertation. It ends with a description of the report structure.

1.1 Context

Customers interact with e-commerce websites in multiple ways and the companies operating them

rely on optimizing success metrics such as CTR (Click through Rate), CPC (Cost per Conversion),

Basket and Lifetime Value and User Engagement for profit. Changing what, how and when content

such as product recommendations and ads are displayed can influence customers’ actions.

Multiple algorithms and techniques in data mining and machine learning have been applied in

this context.

1.2 Motivation

Modelling user behaviour on the web is not a new problem. It has been applied with different ob-

jectives, from improving the performance of cache servers, to the improvement of search engine,

influencing purchase patterns or recommending related pages or products [DK01, J S00]. How-

ever, all these approaches were done with a machine learning mindset – predicting which page the

user or customer will browse next. This requires extensive use of existing and historical training

datasets which might not expose all the causality aspects of the system. What if the data (or the

time needed to gather it) is simply not available?

1



Introduction

1.3 Problem and goals

Let’s imagine that we developed a new recommendation engine algorithm. One of the most com-

mon ways to evaluate it is by testing the engine with A/B testing1, which is a randomized experi-

ment where a group of users are presented with one version of the engine (control) and the other

group is shown the improved version of the engine. By analysing how the two groups behave

differently, it’s possible to assess the quality of the two versions, comparatively. However, this

approach may not be feasible in all situations. For the experiment to be statistically significant, the

number of users shown the two versions of the product must be enough. The experiment also takes

time to run and the metrics used to compare both versions might not be easy to choose. [Ama15].

The goal of this dissertation is to create a framework capable of running a multi-agent sim-

ulation (chapter 3), by regarding users in an e-commerce website and react to stimuli that influ-

ence their actions (chapter 2). Furthermore, some statistical constructs such as Baysian networks,

Markov chains or probability distributions (chapter 4) can be used to guide how these agents in-

teract with the system. By taking input from web mining (Web structure mining (WSM), Web

usage mining (WUM) and Web content mining (WCM)), which includes both static and dynamic

content of websites as well as user personas, the simulation should collect success metrics so that

the experimentation being run can be evaluated.

This dissertation is focused on the framework for the simulation and not on the required input

of the simulation, however that is a very important aspect. Luckily, web mining has been well

studied. The works of [Dia16] proposes a methodology to extract and combine the sheer amount of

data related to an e-commerce website, including structure, content and modelling user behaviour.

1.4 Report Structure

Besides this introduction, this report has 5 more chapters.

In chapters 2, 3 and 4, we describe the literature review and state of the art with regard to

e-commerce, simulation systems and probabilistic models, respectively. The chapter 2 focuses on

e-commerce background, what metrics can be used on e-commerce websites and the customer life

cycle, an important part of the simulation. The chapter 3 describes three main topics regarding

simulating systems: agent based, discrete event simulation and hybrid approaches. Finally, the

chapter 4 deals with describing some probabilistic models, with emphasis on graphical models

and Bayesian statistics.

Chapter 5 is concerned with describing the methodology followed during the realization of the

framework, it presents the requirements of the framework, its architecture, a scalability study and

the technology used.

The validation, chapter 6 was done by both fabricating scenarios with clear expected results

and with real data.

1formally, two-sample hypothesis testing

2



Introduction

The final chapter, chapter 7, concludes the work realized, presents the main contributions of

this dissertation and proposes future work.
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Chapter 2

Literature Review: E-commerce
background

In this chapter we discuss some key concepts related to e-commerce, for the purpose of giving

context to the dissertation. We discuss the typical customer life cycle in an e-commerce website,

some metrics that might be used and some ways on how the customer interaction with the website

might be influenced and improved.

2.1 Introduction

E-commerce, or electronic commerce, can be described by the trading of products or services over

the Internet (or other computer networks). The type of e-commerce businesses we are interested

are those who sell their goods directly to the customer, e.g online shopping, using an online store

or catalog of products. Some popular online stores [AI16] are Amazon1, Ebay2 and Alibaba3.

2.2 Customer life cycle

An important concept to understand the customer is by describing its life cycle, as presented

by [SC00, Section 6] in figure 2.1.

It starts by reaching the target audience or market up to an established customer base, not

forgetting about those that drop mid way, due to abandonment or attrition.

• Reach happens outside of the website and refers to the number of potential customers. For

example, if the online store is advertised on a social network, the reach is the number of

users who were served the ad in that other website, they may or may not ignore it.

1http://www.amazon.com/
2http://www.ebay.com/
3http://www.alibaba.com/
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Acquisition

Conversion

Retention

Abandonment

Reach

Loyalty

Attrition

Reactivation

Churn

Figure 2.1: Customer lifecycle [SC00]

• Acquisition is the next stage, where the user decides to act on and visits the website (or

some other action like subscribing to a newsletter).

• Conversion is the stage where a visitor stops being a user and starts being a customer. It

usually means that the user made a purchase but some companies might consider a sign up

or registration in the website as a conversion.

• Retention focuses on making existing customers, that made at least one purchase before,

repeat purchases.

• Loyalty is a stronger form of retention, which represents a greater trust level of the customer

in the store.

• Abandonment is defined by the customers that started the buying process but do not finish

it. For example, a customer may add items to the online shopping cart but instead of moving

to the next step, e.g. enter credit card details, they exit the website or go elsewhere. This

may happen in any store with a multi-step buying process, which is very common.

• Attrition happens when a retained customer ceases buying from the store and starts using a

competitor store.

• Churn is defined by the number of customers that attrited during a certain period divided

by the total number of customers at the end of that period. It measures how much of the

customer base "rolls over" in a certain time period.

6
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2.3 Customer Behaviour Model Graph (CBMG)

A state transition graph named Customer Behaviour Model Graph (CBMG) can be used to describe

the behaviour of customers browsing a website. The nodes represent the possible states or pages,

e.g home page, product page, search, and a probability is associated with each transition. An

example of such a CBMG is shown in figure 2.2.

Figure 2.2: Example of a customer behaviour model graph [MAFM99]

[MAFM99] describes how CBMGs can be used to analyse the workload of an e-commerce

store server and how metrics can be derived directly from the CBMG alone.

2.4 E-commerce metrics

Metrics are a common way to quantify, measure, benchmark or evaluate some process. In an e-

commerce setting, businesses are interested in optimizing, mostly, for profit. Different businesses

prioritize metrics in different ways, adapted to each use case. Here we present some commonly

used metrics, but this list is by no means exhaustive. [SC00, MAFM99]

• Conversion Rate (CR) is the percentage of visitors that buy a product or a service;

• Shopping Cart Abandonment is the percentage of visitors that added a product to the online

cart but did not complete the process;

7
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• Average Order Value (AOV) is the average cost of all orders;

• Customer Lifetime Value (LTV) is the projected value that a customer will spend on the

store;

• Clicks to Buy (CTB) is the average number of clicks a visitor has to do to complete a buy

order;

• Churn Rate the percentage of customers that do not make a repeated purchase;

• Bounce Rate is the percentage of visitors that arrive at the homepage of the online store but

leave immediately, without clicking anything or visiting a different page.

There are other common metrics such as Acquisition Cost, Cost Per Conversion, Net Yield or

Connection Rate however they are associated with promotion campaigns that happen outside of

the store website, therefore they are not interesting in the context of our work.

2.5 Influencing user behaviour

[Con04] describes functionality, psychological and content factors that can influence the visitor

experience, represented in the table 2.1.

Table 2.1: Main building blocks of Web experience and their sub-categories [Con04]

Functionality factors

Usability Interactivity

Convenience Customer
Site navigation Interaction with company personnel
Information architecture Customization
Ordering/payment process Network effects
Search facilities and process
Site speed
Findability/accessibility

Psychological factors Content factors

Trust Aesthetics Marketing mix

Transaction security Design Communication
Customer data misuse Presentation quality Product
Customer data safety Design elements Fulfillment
Uncertainty reducing elements Style/atmosphere Price
Guarantees/return policies Promotion

Characteristics

Regarding usability of the online store, providing a personalized experience to each customer

can be very beneficial for both the customer and the business. A common way to do this is by

8
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recommending products that the customer might be interested in [AT05]. For example, if we

know that a customer buys mostly football related products, recommending her more products in

the same category might increase sales.

2.6 Summary

In this chapter we covered a brief overview of e-commerce, starting with the customer lifecycle,

how to measure it using metrics and presenting a common way to model the users’ behaviour, the

CBMG.

9
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Chapter 3

Literature Review: System Simulation

This chapter intends to introduce some approaches to computational simulation systems and en-

gines, namely agent based and discrete event simulation. To finish the chapter, we show some

novel approaches to simulation.

3.1 Introduction

Simulations are used to reproduce the behaviour of a system. They have been applied to different

areas like physics, weather, biology, economics and many others. There are many types of sim-

ulations: stochastic or deterministic, steady-state or dynamic, continuous or discrete and local or

distributed [Wik15]. These categories are not exhaustive nor exclusive.

In this literature review, we are particularly interested in studying simulations which can model

stochastic processes and not dynamic (dynamic systems are usually described by differential equa-

tions and are continuous by definition).

3.2 Agent Based Simulation (ABS)

In agent based simulation (ABS), sometimes described as agent based computing [Woo98, Jen99],

the individual entities in the model are represented discretely and maintain a set of behaviours,

beliefs or rules that determine how their state is updated. [Nia11] lists three different approaches

to agent based modelling and simulation:

• Agent-oriented programming which puts emphasis on developing complex individual agents

rather than a large set of agents;

• Multi-agent oriented programming focus on adding some intelligence to agents and observe

their interactions;

11
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• Agent-based or massively multi-agent modelling where the main idea is to build simple

models for the agents which interact with a large population of other agents to observe the

global behaviour.

[SA10] describes ABS as “well suited to modelling systems with heterogeneous, autonomous

and pro-active actors, such as human-centred systems.”, which make them a good candidate to

be used in the development of this dissertation. However, existing literature is quite confusing

and broad, using different terms to refer to the same concepts, without clear distinctions between

different agent based approaches and without consensus [Nia11, Bra14].

Many platforms and frameworks were developed to support agent-based modelling and sim-

ulation. Some notable examples include Repast [Col03], NetLogo [WE99], StarLogo [Res96] or

MASON [PL05]. An updated list is maintained at OpenABM [Ope16].

Agents have been applied to e-commerce context mostly in two distinct areas: recommen-

dation systems [XB07, WBS08] and negotiation [RKP02, MGM99]. No relevant literature was

found regarding simulating user behaviour in websites with agents.

3.3 Discrete Event Simulation (DES)

A discrete event simulation (DES) models a process as a series of discrete events, where the state

of the system changes only at well defined points in time [SA10]. It was originally proposed

by Kiviat in 1969 [Kiv69] and there is extensive research in this simulation technique. Banks et

al. [BCNN04] provides a comprehensive description and analysis of DES. The algorithm 1 is a

possible implementation of a very simple and single-threaded DES.

Algorithm 1 Basic DES algorithm

EndCondition← f alse
Clock← 0
EventList← initialEvent
while EndCondition = f alse do

CurrentEvent← POP(EventList)
Clock← TIME(CurrentEvent)
EXECUTE(CurrentEvent) . might put new events in EventList
UPDATESTATISTICS()

end while
GENERATEREPORT()

The major concepts in DES are [BCNN04]:

• Entity, objects explicitly represented in the model (e.g a customer);

• Event, an occurrence that changes the state of the system (e.g a customer enters the website);

• Event list (or future event list or pending event set), a list of future events, ordered by time

of occurrence;

12
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• Clock, used to keep track of the current simulation time.

Event list is one of the fundamental parts of the system and it has been widely researched

[HOP+86, Jon86, TT00, DGW13].

Pidd [Pid98] proposes a three-phased approach that consists of: jump to the next chronolog-

ical event, executing all the unconditional events (or type B) that happen that moment and then

executing all the conditional events (or type C). This approach has advantages in terms of less

usage of resources compared to other simplistic approaches. Also, there has been studies on how

to scale DES to distributed and parallel (PDES) executions [Mis86, Fuj90].

[SMG+10] states that “DES is useful for problems (...) in which the processes can be well

defined and their emphasis is on representing uncertainty through stochastic distributions”, which

makes DES a good candidate to model the problem at hand.

3.4 Hybrid and novel approaches

In recent years, there has been research which proposes a marriage between agent based model

and simulation with discrete event simulation, however, this concept is not widely recognized

[Bra14]. Brailsford states that the line that divides agent based models (and simulation) and DES

is spurious and that common distinctions between the two approaches are artificial. Casas et al.

[FRJ11] describe a method where multi agent system components have been added to an existing

discrete event simulation implemented in OMNeT++1[Var01]. Onggo [Ong07] shows how agent

based models can be ran on top of a DES engine. Kurve et al. [KKK13] describes an agent

based performance model of a PDES kernel. Regarding existing software, AnyLogic claims to

be “the only simulation tool that supports Discrete Event, Agent Based, and System Dynamics

Simulation” [Any00]. AnyLogic was first shown in 2000 at the Winter Simulation Conference.

3.5 Summary

This literature reviews shows that there is vast research regarding simulation, either agent based

or DES, however not everyone is speaking the same language. The extensions to DES seen above

are particularly interesting since they can be used to scale the simulation to a greater number of

entities as well as modelling real world processes with more fidelity.

1C++ based discrete event simulation toolkit
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Chapter 4

Literature Review: Probabilistic Models

4.1 Introduction

Probabilistic or statistical models represent explicit assumptions about a problem domain, in the

form of a model. This model usually encompasses random variables1, in the form of probability

distributions, and the relation and dependence between the variables. [WB13]

In the following sections we describe a common way to represent probabilistic models, prob-

abilistic graphical models (PGM) or, simply, graphical models.

4.2 Probabilistic Graphical Models

A PGM is a graph based model where the nodes represent random variables and the (directed or

undirected) edges represent a conditional dependence between variables. An example is shown in

figure 4.1.

PGMs and their extensions, where we show some examples of them in the following sections,

are exceptionally well suited for reasoning and to reach conclusions based on available information

(both domain expert and data), even in the presence of uncertainty. PGMs provide a general

framework that allows representation, inference and learning on these models. [KF09]

There is extensive research and available literature in this area. Some notable examples in-

clude, but are not limited to, the books "Probabilistic Graphical Models: Principles and Tech-

niques" by Daphne Koller and Nir Friedman [KF09] and "Pattern Recognition and Machine

Learning" (Chapter 8: Graphical Models) by Christopher Bishop [Bis06]. It is also worth men-

tioning that there is a MOOC 2 named "Probabilistic Graphical Models", also by Daphne Koller

(Stanford), freely available on Coursera 3.

1Variable whose value is given by a probability distribution, commonly represented by Θ.
2Massive Open Online Course
3https://www.coursera.org/course/pgm
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A

B C

Figure 4.1: Example of a PGM: B and C depend on A, B depends on C and C depends on B.

In the following sections, we describe three important categories of graphical models: Bayesian

networks, Markov random fields and its extension to hidden Markov models. There are plenty of

other graphical models however they were deemed not relevant enough to be included in this

literature review.

4.3 Bayesian Networks

Bayesian networks, also named directed graphical models, is a type of PGM where the edges

in the graph representation are directed and represent causal relationships between random vari-

ables or group of random variables (see figure 4.1). This concept was first introduced by Pearl in

1985 [Pea85], which uses Bayes’ conditioning [Bay63] as the basis for updating information.

Bayesian networks follow the Bayesian approach to statistics and probabilities. In contrast to

classical or physical probability, Bayesian probability (of an event) is a person’s degree of belief

in that event [Hec96]. While it may seen that a degree of belief is somewhat arbitrary or may lack

precision and accuracy, multiple authors [Ram31, TK74, Sha88] argue that small variations in

probability do not have a big influence in the decision making process and that measuring beliefs

lead to the same rules of probability (which can be summarized with the product rule 4.1 and the

sum rule 4.2 [Mac05]).

P(x,y |H ) = P(y | x,H )P(x |H )4 (4.1)

P(x,H ) = ∑
y

P(x | y,H )P(y |H ) (4.2)

Formally [Pea88], a Bayesian network B represents a joint probability distribution (JPD) over

a set of variables U and can be defined by a pair B = 〈G,Θ〉. B is a DAG (directed acyclic graph)

where the vertices represent the random variables X1, ...,Xn. Θ represents the set of parameters

4H : hypotesis or assumptions the probabilities are based
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that quantify the network. For each possible value xi of Xi, and ∏xi of ∏Xi (set of parents of Xi in

G), it contains a parameter θxi|∏xi
= PB(xi |∏xi). Therefore, the JPD can be defined as

PB(X1, ...,Xn) =
n

∏
i=1

PB(Xi |∏Xi
) =

n

∏
i=1

θXi|∏Xi
(4.3)

which expresses the factorization properties of the JPD. [Bis06, section 8.1.] goes in detail on

how to apply the equation 4.3.

These properties of Bayesian networks make it an excellent tool for expressing causal relation-

ships. Heckerman [Hec96] lists multiple advantages of Bayesian networks on modelling and data

analysis: “readily handles situations where some data entries are missing”, “gain understanding

about a problem domain and to predict the consequences of intervention”, “ideal representation

for combining prior knowledge and data” and “efficient and principled approach for avoiding the

overfitting of data”.

Regarding the area of e-commerce specifically, some research has been done where Bayesian

networks are applied. [NMK14] is an attempt at predicting sales in e-commerce using social media

data. [MCGM02] also proposes a Bayesian based model to predict online purchasing behaviour

using navigational clickstream data.

4.4 Markov Random Fields

Markov random fields (MRF) or Markov networks are undirected graphical models [Kin80] (in

contrast to Bayesian networks which are directed and acyclic). The nodes still represent variables

or group of variables however the links do not carry arrows. The concept was originally proposed

as the general setting for the Ising model5 [Kin80]. Again, Bishop [Bis06] provides a very good

overview of this topic.

MRFs factorize as

p(x1, ...,xn) =
1
Z ∏

C⊂C
ψC(xC) (4.4)

where C is a clique6 of the graph and xC is the set of variables in that clique, Z is a constant

used to normalize the distribution (might be defined for each x), ψC is a compatibility or potential

function [WJ08, section 2.1.2] [Bis06, section 8.3]. The equation 4.4 highlights an important prop-

erty of MRFs: the Markov property or memoryless property. That is, the conditional probability

distribution of future states depends only on the present state.

Markov models were shown to be well suited for modelling and predicting e-commerce pur-

chasing and user’s browsing behaviour [DK01].

5Ising model: mathematical model of ferromagnetism in statistical mechanics
6clique: fully connected subset of vertices
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4.5 Hidden Markov Models

Hidden Markov models (HMMs) are a PGM with unobserved or hidden states. They are consid-

ered a dynamic Bayesian network7. They have been originally defined in the 60s by Baum and

colleagues [BP66]. [Rab89] defines HMMs as “the resulting model (...) is a doubly embeded

stochastic process that is not observable, but can only be observed though another set of stochastic

processes that produce the sequence of observations.”.

A common example found in literature is the Coin Toss Model [Rab89]: imagine someone on

one side of a curtain performing a coin (or multiple coin) tossing experiment. The other person

will not tell us about what she is doing, only the outcome of each coin flip (heads or tails). Multiple

HMMs can be built to explain the coin toss outcomes, i.e, assuming that one, two or more biased

coins are being used in the experiment. The figure 4.2 is a possible model that can account to 3

coins being tossed.

Figure 4.2: Example of a 3-coin model [Rab89]

A HMM is characterized by the following:

• N which is the number of states in the model where individual states are represented by

S = {S1, ...,SN} and the state at time t is qt ;

7dynamic Bayesian network: Bayesian networks adapted with time steps
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• M which is the number of distinct observation symbols per state (individual symbols are

represented by V = {V1, ...,VM});

• A = {ai, j}, the state transition probability distribution where

ai j = p(qt+1 = S j | qt = Si),1≤ i, j ≤ N (4.5)

• B = {b j(k)}, the observation symbol probability distribution in state j:

b j(k) = p(vk at | qt = S j),1≤ j ≤ N,1≤ k ≤M (4.6)

• Finally, π = {πi}, the initial state distribution:

πi = p(q1 = Si),1≤ i≤ N (4.7)

The formal model can be summarized as λ = (A,B,π) [Rab89].

Multiple algorithms have been studied and applied to HMMs: for inference, the forward al-

gorithm, forward-backward algorithm [BE+67] or the Viterbi algorithm [FJ05, MJ00]. Regarding

learning, the algorithm Baum-Welch [BP66, BE+67] can be used.

Regarding e-commerce and web user behaviour there is some research done. [XY09] ex-

plains how to use a hidden semi-Markov model to detect anomalies on user browsing behaviour.

[ADW02] describes very briefly a relational hidden Markov model for the behaviour of web site

users, in order to improve predictions and personalization of websites.

4.6 Summary

In this section we reviewed the literature for graphical models. They provide a tool of excellence to

model real world phenomena, enabling decision making under uncertainty and noisy observations.

There are multiple categories of graphical models however we focused on Bayesian and Markov

networks and hidden Markov models, due to their applicability in the work at hand (in chapter 5

we will define how PGMs can be applied).
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Chapter 5

Implementation

This chapter presents the implementation of the framework. It starts by describing the method-

ology followed in the realization of the dissertation. It is followed by the identification of re-

quirements, the architecture of the framework, a study on the scalability of the solution and it is

finalized by the description of the technology used in the implementation.

5.1 Methodology

Like any software development project, a simulation project also has a life cycle. In this section

we describe the steps to apply in the simulation methodology, based on Ulgen et al. [UBJK94] and

Banks et al. [BCNN04, section 1.11], which can be summarized as follows:

1. Problem formulation: Clear statement of the problem by the analyst and stakeholders;

2. Setting of objectives and overall project plan: Questions to be answered by the simulation,

plans for the study, cost and number of days for each phase, with the results expected at

each stage;

3. Model conceptualization: Select, modify and iterate over the assumptions that characterize

the system;

4. Data collection: Collect the necessary data to run and validate the model, assuming that

required data will change with the increasing complexity of the system;

5. Model translation: Materialization of the system in a program;

6. Verification: Making sure that the program behaves correctly accordingly to its inputs;

7. Validation: Calibration of the model, comparing the model against an actual system;

8. Experimental design: Tweak the experiments, comparing alternative designs;
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9. Production runs and analysis: Estimate measures of performance for the systems that are

being simulated;

10. Documentation and reporting: Document both the program and the progress of the study;

11. Implementation: End result of the study, including the entire simulation process.

This process can be visualized in figure 5.1.

5.2 Requirements

We have looked at several e-commerce websites, both national and worldwide, like Amazon1,

eBay2, PCDIGA3, Clickfiel4, KuantoKusta5, and analysed features and characteristics common to

all of them, in order to better assess what the framework should be able to represent and model.

To keep things simple and realistically implementable in the given time frame, some limitations

had to be done. This section lists the requirements and assumptions of the framework.

5.2.1 Website Representation

• A website is a collection of web pages;

• The common entry point is named homepage but it is possible to enter the website directly

from a different page;

• Structure and navigation between pages is done with links;

• Pages have a purpose like displaying information about a product, listing multiple products,

informing about warranty and payment of products and services, etc.. We categorize the

pages by using tags;

• Product pages have, at least, the product name, its description and price;

• A virtual shopping cart is used as a staging area for the products that are going to be bought;

• Checkout is the act of taking all the products in the shopping cart and effectively buying and

paying them;

• Usually, a customer has to create an account and login in the website in order to buy some-

thing or access restricted pages.

1https://www.amazon.com/
2http://www.ebay.com/
3https://www.pcdiga.com
4http://clickfiel.pt/
5http://www.kuantokusta.pt/
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Figure 5.1: Steps in a simulation study [BCNN04]
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5.2.2 Navigation Agents

• Navigation agents represent users or customers interacting with a website;

• Some common interactions are:

– jumping from page to page (or browsing);

– exiting the website;

– adding a product to the shopping cart;

– checking out;

– rating a product;

– writing a review or comment;

– bidding on a product;

– filling out forms (login, addresses, bank information, etc.);

– comparing two products side by side.

5.2.3 Website Agents

• Website agents can modify any page before it is served to a user/customer;

• Example use cases:

– Recommend products to the user based on its preferences or browsing behaviour;

– Targeted flash sales or promotions;

– A/B testing analysis.

5.2.4 Simulation Engine

• Given a website, the type of navigation and website agents and pretended simulation time,

the simulation can be started, stopped and store its state and calculated metrics in a database.

• A simulation run can have thousands of navigation agents entering the simulation at each

step;

• A simulation run can have one or more website agents.

5.2.5 Reporting

• Once a simulation run ends, it can be analysed by taking a look at its results, metrics and

other previously stored characteristics;

• At least two simulation runs can be put side and by side so they can be quickly compared;

• The calculated metrics should be relevant to the business, some examples are [Wat15]:
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– Bounce rate

– Conversion rate

– Total/average order value

– Average order value

– Items per order

– New visitor conversion rate

– Shopping cart sessions

– Shopping cart conversion rate

– Shopping cart abandonment rate

– Average session length

– Number of browsing sessions

– Page views per session

– Product views per session

5.2.6 Limitations

Some requirements did not make it to the actual implementation:

• Adding a product to the cart and the checkout are a single step;

• There are no customer accounts, logins, registration, sign ups or sign ins;

• Visual information about the pages and products is not represented, e.g., a customer cannot

pick a product to buy because its associated picture is appealing;

• It is not possible to remove an item from the cart;

• Interactions with the website are limited and "hard coded" (listed in sub-section 5.3.1), not

extensible;

• The metrics gathered during the simulation are limited, we have implemented some of the

metrics listed above, non exhaustively.

5.3 Architecture

5.3.1 Multi-agent Architecture

The simulation framework encompasses two different kinds of agents, navigation agents and web-

site agents, as shown in figure 5.2.

Navigation agents represent users interacting with the website. They have a limited view of

the system: they have access to the website (pages and links between them) and they know the
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Website

actions (browse, buy,   

modifications

navigation activity

Figure 5.2: Agent interaction with the environment

current page they are visiting. Each simulation step, the framework asks each navigation agent

which action will they pick. The action may be to visit another page (BrowseToAction), exit

the website (ExitAction), add a product to the cart (AddToCartAction), finish the purchase

(CheckoutAction) or simply do nothing (IdleAction). Also related to the navigation agents

subsystem, an implementation of NavigationAgentFactory is used to decide how many nav-

igation agents are added to the system in each step. For example, a simplistic implementation

might create a fixed number of navigation agents or a different one closer to reality could follow a

Poisson distribution model [GÖ03].

Website agents are able to modify the pages before they are served to the users. They have

a broader view of the system than navigation agents. They are notified of all the actions that

navigation agents do. The most common use case of the website agents is to recommend products

to the users: before the page is served to a user, a website agent can modify a section of the page

to display a custom list of products, based on the previous activity of the other users or preferences

of the current user. However they are not limited to only recommendations, a website agent might

replace a page’s content entirely, increase or decrease the price of products (e.g promotions, sales),

do nothing, etc.

The framework does not assume how these agents behave however the interactions between

them are limited. The agents do not send messages between each other and may only interact

indirectly, through the framework (e.g a website agent modifies a page before it is "seen" by a

navigation agent). While a simulation run might have hundreds or thousands of navigation agents,

to simplify, each run only has one website agent instance (this does not impose a limit on the

solution, the agent can still be modelled after a composite agent6).

It is out of the scope of the framework to provide concrete implementations of the agents but

we provide 2 implementations of navigation agents and 3 implementations of website agents, as a

way to validate and verify the simulation runs. This will be further discussed in chapter 6.

6An agent that represents multiple composite or virtual agents (our name)
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5.3.2 Simulation Engine

The simulation engine follows a fairly standard and simple discrete event simulation architecture,

as described in 3.3. The domain model we are dealing with allows certain simplifications of the

simulation:

• the event list only contains events scheduled for the next step;

• there are no conditional events (type C [Pid98]);

• all the events happen instantaneously;

• the events do not depend on other events, they do not require synchronization and may be

implemented in a single-threaded engine.

The process that the simulation engine follows is described next. In each simulation loop, the

engine starts by calling NEWNAVIGATIONAGENTS() which adds new navigation agents to the sim-

ulation. The number and type of these agents are decided by the NavigationAgentFactory.

After that, each navigation agent currently active (i.e did not leave the website) chooses an ac-

tion to do (buy, browse, etc.). Depending on the action that was picked, the engine updates its

internal state. The simulation state is represented by WebsiteState and contains statistics and

other performance metrics. Whenever the picked action implies presenting the navigation agent a

page from the website, the website agent can modify that page before it is presented, by calling

MODIFYPAGE(NAVAGENT, PAGE). The website agent is also notified about all actions that the

navigation agents do (NOTIFY(NAVAGENT, ACTION)). The simulation is configured to end after a

fixed number of steps, otherwise it could run forever.

This process is illustrated in figure 5.3.

5.3.3 Class Model

In this sub-section we describe all the classes used to represent all the entities in the simulation

engine (figure 5.4).

Website represents a website, it contains a set of pages and a reference to its homepage,

the entry point of the website. A Page has a set of links, which are all the outbound hyperlinks

that a page contains, it has a set of tags, which is used to categorize a page (e.g electronics

category, clothing category, cart page, product search page, etc.) and the page may also contain a

Product, if the page is a product page. A Product has a name, a description and a price.

The Simulation is an abstract class that contains an agenda which stores all the Actions

(an arbitrary function) to be executed in the next steps. It provides a way to enqueue work in the

simulation using SCHEDULE(DELAY, ACTION) and a RUN() method that consumes the agenda

until there’s no more work to do. A subclass of Simulation, WebsiteSimulation repre-

sents a simulation happening over websites. It contains the Website itself, a WebsiteState, a

NavigationUserFactory and a WebsiteAgent. The WebsiteState is used to keep track
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Figure 5.3: Sequence diagram for the simulation engine

of all the statistics and metrics that the simulation produces. This state can be stored in a database

to analyse the results once the simulation is finished.

NavigationAgent is an interface that represents users interacting with the website. Imple-

mentations of it have to implement EMITACTION, which returns the Action the agents wants to

do based on their internal state and their current page. These agents are added to the simulation by

an implementation of NavigationAgentFactory. WebsiteAgent is an interface that repre-

sents the agents that may modify the website and that are notified about all the navigation agent

activity. The code for these three interfaces is displayed in listing 5.1.

The mutability of the system is contained to the Simulation (due to its agenda) and

WebsiteState which is updated every simulation step.

The points of extensibility of the framework are the agents interfaces (NavigationAgent,

NavigationAgentFactory and WebsiteAgent) and WebsiteState (e.g provide addi-

tional tracking metrics or visualizations).
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1 trait NavigationAgentFactory[+T] {
2 def users: Iterator[List[T]]
3 }
4

5 trait NavigationAgent {
6 def emitAction(currentPage: Page, website: Website): Action
7 }
8

9 trait WebsiteAgent {
10 def modifyPage(page: Page, user: NavigationAgent): Page
11 def notifyUserAction(user: NavigationAgent, currentPage: Option[Page],
12 action: Action)
13 }

Listing 5.1: Definition of the agents interfaces

5.3.4 Graphical User Interface

A frontend website has been developed to aid in displaying and visualizing the results of each

simulation run. The data is loaded asynchronously from a database which stores WebsiteState

snapshots. All the data is rendered to the user server-site except the data required to display charts

(e.g Visits per Category chart).

The interface has three distinct views: a simulation list, details about a simulation run and

comparison between two simulation runs:

• The simulation list view (GET /simulations) (figure A.1) displays a table with all the

simulation runs stored in the database. It shows the identifier, name, agent types and times-

tamp of each run.

• The detail view (GET /simulations/<id>) (figure A.2) display information regarding

a single simulation run. This info describes the simulation and it contains data regarding

the types of the agents used, start and finish time of the simulation, collected metrics (e.g

bounce rate, conversion rate, total order value, etc.), visits per page, visits per page category,

purchases per product and others. This information is displayed using mostly tables and

charts.

• The last view, the comparison page (GET /simulations/compare/<idA>/<idB>)

(figure A.3) displays information regarding two simulation runs (A and B) side by side,

so they can be compared and analysed. The planned use case of this view is to quickly spot

differences between two runs and see how different agent configurations affect the results.

5.4 Scalability

To assess the scalability and performance of the simulation engine, some benchmarks were made

and they are described next. The tests were ran in a Windows 10 laptop with a Intel R© CoreTM i7-
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Figure 5.4: Class diagram

4710HQ CPU @ 2.50GHz (8 CPUs) processor. A modified7 version of the library Benchmark.scala8

was used, which is based on Ruby’s Benchmark module9. The focus is not necessarily in the raw

speed of the engine but rather in the variation of the simulation time when the number of agents in

the system or the number of steps of the simulation are increased.

The test performed consists of running the same simulation with an increasing number of

navigation agents and number of simulation steps, set up in the following way:

7Changed each measurement to run the same block of code 10 times, drop the first 2 runs and take the average of
the 8 runs instead of running it only once.

8https://github.com/balagez/Benchmark.scala
9http://ruby-doc.org/stdlib-1.9.2/libdoc/benchmark/rdoc/Benchmark.html
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• Website: Toy sample website with 9 pages and 32 total links between pages (1 homepage,

1 cart page, 3 product list pages and 4 product pages);

• Website agent: Dummy agent, does not modify any page;

• Navigation agent: Sample agent implementation which picks the next action randomly.

Configured with a chance of exiting the website of 1
3 and a change of adding a product to

the cart of 1
20 ;

• Number of navigation agents: From 1000 to 10000 with increments of 1000;

• Number of simulation steps: From 100 to 1000 with increments of 100.

The result of the 100 simulation runs is shown in figure 5.5 (whose data is in table 5.1). A

quick analysis shows that the simulation time scales linearly (R̄2 = 0.99149,σ = 0.00648) with

both the number of agents and the number of simulation steps. For instance, a simulation with

1000 steps and 10000 navigation agents (entering the system each step) took 41.95 seconds. These

initial results are very satisfactory however they should be improved, especially when the number

of steps is increased, so that simulations that span a longer period of time can be evaluated (e.g

simulate the effect of seasonal customers over an entire year).
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Figure 5.5: Simulation running time for different number of navigation agents and simulation
steps

5.5 Technology

Scala10 was the language of choice to implement the framework and accompanying projects. Scala

is a statically typed, general purpose programming language that leverages both object oriented

10http://www.scala-lang.org/
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Table 5.1: Simulation running time (in seconds) for different number of navigation agents and
simulation steps

b
b
b
b
bb

Steps

Agents
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

100 0.62 0.69 1.45 1.72 1.81 2.34 2.76 3.23 3.42 4.16
200 0.67 1.43 2.20 3.17 3.84 4.49 5.22 6.30 6.93 7.89
300 0.95 2.07 3.90 4.44 5.72 7.01 8.05 11.62 11.89 12.53
400 1.32 2.91 4.42 5.88 7.69 9.39 12.01 12.93 14.15 16.18
500 1.58 3.48 5.34 7.49 11.03 11.44 13.65 15.77 18.20 20.00
600 2.10 4.31 6.59 9.26 11.52 14.71 19.44 21.47 22.83 24.29
700 2.55 5.24 7.97 11.14 13.89 18.91 18.89 22.04 26.33 33.35
800 2.56 6.10 10.46 14.48 16.31 18.56 24.49 27.52 31.19 36.26
900 2.77 6.94 11.37 15.97 18.77 22.11 25.36 33.56 36.57 39.21
1000 3.07 8.47 12.64 17.40 21.59 25.62 28.94 36.46 39.40 41.95

and functional programming paradigms, while being fully interoperable with the JVM (and Java).

The version of Scala used was 2.11.8 with sbt 0.13.1111, the de facto build tool for Scala

projects.

The library Breeze (version 0.12)12 of the ScalaNPL13 package was used for numerical pro-

cessing and statistics.

Apache SparkTM1.514 was used to train recommendation models in one of the implementations

of website agents.

GraphStream 1.315 was used to visualize websites as a dynamic graph.

To store simulation run results, the database MongoDB 3.2.316 was used due to its practicality

and rapid development.

The frontend was built with the Play Framework 2.517.

11http://www.scala-sbt.org/
12https://github.com/scalanlp/breeze
13http://www.scalanlp.org/
14http://spark.apache.org/
15http://graphstream-project.org/
16https://www.mongodb.com/
17https://www.playframework.com/
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Chapter 6

Validation

To validate the framework 2 testbeds were prepared. The first is a collection of small fabricated

test cases where we compare the output of multiple simulation runs to the expected results. The

second case deals with a real use of the framework, applied to an online store.

6.1 Sanity checks

6.1.1 Expected number of agents in the simulation

This test compares the number of navigation agents expected to be alive at each simulation step

with the actual number of them.

At each simulation step, k navigation agents enter the system and pexit of them leaves, which

leads to the recurrence equation 6.1.a1 = (1− pexit)k

an = (1− pexit)(k+an−1)
⇔ an =

k(pexit −1)((1− pexit)
n−1)

pexit
(6.1)

The simulation run was configured in the following way:

• Website: Sample website with 9 pages and 32 total links between pages

• Website agent: Dummy agent, does not modify any page;

• Navigation agent: Sample agent implementation with a chance of exiting the website of 1
3

(pexit);

• Number of new navigation agents each step: 100 (k)

• Number of simulation steps: 1000
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Replacing the values in equation 6.1: an = −200
(

2
3

n−1
)

. After a few simulation runs, the

expected number of agents in the system stabilizes: limn→∞−200
(

2
3

n−1
)
= 200.

The results of a simulation run were gathered and plotted in figure 6.1. Triangles (4) represent

the actual value (At) and circles (•) represent the expected value (Et) according to the equations

above. SMAPE (symmetric mean absolute percentage error)[Mak93] is used to measure the accu-

racy of the results: SMAPE = 1
n ∑

n
t=1

|Et−At |
|At |+|Et | = 3.07%, which is a reasonable low error rate given

the randomness of the system.
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Figure 6.1: Expected number of agents in the simulation

6.1.2 Expected number of visits

This test compares the number of visits (page hits) for a given website and agents setup. The

simulation run was configured in the following way:

• Website: Website configured as displayed in figure 6.2. The homepage links to 5 product

pages and the product page link to the cart page.

• Website agent: Dummy agent, does not modify any page;

• Navigation agent: The agent picks one linked page randomly, however, if current page is

for a product, it always buys it. If the current page is the cart page, it leaves the website;

• Number of new navigation agents each step: 100

• Number of simulation steps: 1000

The table 6.1 displays the expected and observed number of visits for a simulation run as

described above. The percent error is calculated and the obtained results are very close to the

predicted values.
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page3page2page1 page4 page5

homepage

cart

Figure 6.2: Website graph for the expected visits test

Table 6.1: Expected and observed number of visits

Page Observed Expected Error

homepage 100000 100×1000 = 100000 0.00%
page1 19864 1

5 ×100×1000 = 20000 0.68%
page2 20100 1

5 ×100×1000 = 20000 0.50%
page3 19696 1

5 ×100×1000 = 20000 1.52%
page4 20096 1

5 ×100×1000 = 20000 0.48%
page5 20244 1

5 ×100×1000 = 20000 1.22%
cart 99900 20000×5 = 100000 0.10%
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6.1.3 Expected bounce rate

This case compares the bounce rate for a website that only has one page. We define the bounce

rate as the percentage of navigation agent sessions that only view a single page before existing the

website.

The simulation run was configured in the following way:

• Website: One page only, the homepage;

• Website agent: Dummy agent, does not modify any page;

• Navigation agent: Agent that picks its actions randomly;

• Number of new navigation agents each step: 100

• Number of simulation steps: 1000

As expected, the simulation results yield 100% bounce rate, all of the visits were to the home-

page, 10000 unique users (100×1000) and no purchases, as it can be seen on figure 6.3.

Figure 6.3: Screenshot of the frontend results for this test run

6.2 Online store

This test case uses data from a real online store that sells electronics and computers products. This

website presents a fairly standard online store, mostly consisting of product listing and product

pages. There are 3 places where it is possible to recommend products: the homepage has two

sections, one with product highlights and another with product promotions and each product page

has a tab to show related products.
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6.2.1 Input data and configuration

The website consists of 2540 pages with 343201 links between pages, spanning 25 base product

categories and 103 sub-categories. There are 750 product list pages, 1748 product pages, 1 cart

page and 41 uncategorised/generic pages, visualised in figure 6.4.
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cooling
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printers

13

power supplies

71

Figure 6.4: Distribution of the type of pages in the website (left) and distribution of the categories
of the products (right)

To simulate users and customers (the NavigationAgents) interacting with this particular

website, a model based on affinities was built. This model is composed by the affinities themselves

(a mapping between product categories and the likelihood of the user liking or having interest

on products of that category), the probability of buying a product, the probability of exiting the

website and the arrival rate.

Because real usage website data is not available for this website, a sample profile was created

with the following properties: the affinities were set up as displayed in table 6.2, probability of

buying set to 5%, probability of leaving the website of 15% and a rate of arrival to the website

following a Poisson distribution with λ = 500.

Table 6.2: Affinities for a sample user

Category Weight

Computadores 14.29%
MSI 14.29%
Pen Drives 7.14%
Portáteis 14.29%
Intel 2011 14.29%
Cartões de Memória 7.14%
Brand 14.29%
Processadores 14.29%
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6.2.2 Simulation

The simulation was configured as described in the subsection above. All the navigation agents use

the same profile. The "thought" process for each agent is fairly simple: at each step, they try to

buy a product and exit the website in accordance to the probabilities defined a priori or navigate

to a different page based on their categories, with preference as stated by the affinity table. The

simulation was run for 30 steps.

6.2.3 Results

The results of a sample simulation run are summarized in the tables 6.3 and 6.4. They are expected:

the number of unique users is 14894 and the expected value is 15000 (500×25); the bounce rate

is 14.58% and the prior leaving rate is 15%; and the conversion rate is 4.77% and the prior buy

rate is 5%.

Table 6.3: Visits per category for a sample simulation run

Category Sub-category Count

Cartões de Memória

Pen Drives 6492
SD/MiniSD/MicroSD 1203
Leitor de Cartões 1199
Compact Flash 1158
- 37

Portáteis

MSI 14326
HP 2623
Asus 2584
- 263

Processadores

Intel 2011 7097
Intel 1151 2752
Intel 1150 2379
AMD 2234
- 240

Computadores
Brand 19802
- 188

Motherboards Intel 2011 4917
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Table 6.4: Metrics/info regarding a sample simulation run

Field Value

Unique users 14894
Bounce rate 14.58%
Conversion rate 4.77%
Purchases 676
NavAgentFactory AffinityFactory
NavAgent AffinityUser
WebsiteAgent DummyWebsiteAgent
Start time Thu Jul 07 14:14:36 BST 2016
End time Thu Jul 07 14:14:39 BST 2016
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Chapter 7

Conclusion and Future Work

This chapter concludes the work realized for the dissertation, it presents the main contributions

and proposes future work on the framework.

7.1 Overview & Main Contributions

The main results obtained in the realization of this dissertation are summarized as follows:

• Implementation of a framework capable of running a multi-agent simulation applied to the

problem of modelling users interacting with an e-commerce website;

• A novel way to exploit multi-agent interaction, in this context, by using two representation

of agents, the navigation agents (i.e users) and website agents (i.e recommendation engines),

which interact with each other indirectly and form a feedback loop;

• A tool which appeals to both the academic community and the industry. The framework

can be used, for example, to validate and test recommendation engines and algorithms or be

used by an e-commerce company to optimize their own platform (e.g A/B testing);

• Implementation available to the community, licensed under MIT and hosted on GitHub1.

7.2 Future Work

The implementation of the framework should be seen as a foundation for further development.

There are certain limitations and assumptions in the developed model that should be resolved in

order for the tool be even more useful and usable than it currently is. In no particular order, we list

some ideas for the future:

1https://github.com/DDuarte/Manchester
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• Parallel simulator. The implemented discrete event simulator is single threaded and it

consumes the events sequentially, which limits the size of the simulation as seen in section

5.4. The implementation could change to a parallel simulator which hopefully processes

more events in the same time frame, taking advantage of multi-core setups.

• More metrics. We have implemented only a handful of metrics to be calculated after each

simulation run, however, there is a myriad of other metrics and statistics that we have not

looked at. Further development could increase the pool of available metrics.

• Metrics extensibility. Related to the point above, current implementation hardcodes the

calculation of certain metrics in the framework itself and it is not very practical to extend

and add new metrics to the system. The framework could be modified to ease the process

of adding new metrics, the visitor design pattern [Gam95] seems particularly well suited for

this task.

• Metrics for website agents. While there are plenty of metrics for the navigation agents (i.e

users/consumers), metrics for website agents (i.e recommendation engines) were overlooked

and are not present in the current implementation. It might be useful to gather metrics and

statistics regarding the behaviour of website agents.

• Hypothesis testing. Especially relevant when comparing two simulation runs, simply com-

paring single numeric metrics side by side might not be the best approach. In the field of

statistical hypothesis testing (e.g A/B testing) there has been plenty of research in which

standard tests to use for each case. For example, to compare conversion rates Fisher’s exact

test could be used however to compare the number of products bought a χ2 test would be

more appropriate [Wik16].

• Limited number of actions. The actions emitted by the navigation agents are finite and not

exhaustive. The framework does not currently support extending the number of actions.

• Visual aspects. Pages are currently represented by their name/URL, tags and links, leaving

no space to represent visual information and other meta-data. A navigation agent cannot

use visual properties of the pages or products (usability, aesthetics) to decide on which

action to do. If the intention is to model human behaviour with fidelity, this might be a

major hindrance. A future version of the framework should take into account these aspects

however it requires further research, since it is not obvious how to model and represent these

concepts.
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Appendix A

Graphical User Interface

The following images are screenshots of the interface developed to visualize simulation runs.

49



Graphical User Interface

Figure
A

.1:Screenshotofthe
sim

ulations
listpage

50



Graphical User Interface

Fi
gu

re
A

.2
:S

cr
ee

ns
ho

to
ft

he
si

m
ul

at
io

n
de

ta
il

pa
ge

51



Graphical User Interface

Figure
A

.3:Screenshotofthe
sim

ulation
com

parison
page

52


	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Context
	1.2 Motivation
	1.3 Problem and goals
	1.4 Report Structure

	2 Literature Review: E-commerce background
	2.1 Introduction
	2.2 Customer life cycle
	2.3 Customer Behaviour Model Graph (CBMG)
	2.4 E-commerce metrics
	2.5 Influencing user behaviour
	2.6 Summary

	3 Literature Review: System Simulation
	3.1 Introduction
	3.2 Agent Based Simulation (ABS)
	3.3 Discrete Event Simulation (DES)
	3.4 Hybrid and novel approaches
	3.5 Summary

	4 Literature Review: Probabilistic Models
	4.1 Introduction
	4.2 Probabilistic Graphical Models
	4.3 Bayesian Networks
	4.4 Markov Random Fields
	4.5 Hidden Markov Models
	4.6 Summary

	5 Implementation
	5.1 Methodology
	5.2 Requirements
	5.2.1 Website Representation
	5.2.2 Navigation Agents
	5.2.3 Website Agents
	5.2.4 Simulation Engine
	5.2.5 Reporting
	5.2.6 Limitations

	5.3 Architecture
	5.3.1 Multi-agent Architecture
	5.3.2 Simulation Engine
	5.3.3 Class Model
	5.3.4 Graphical User Interface

	5.4 Scalability
	5.5 Technology

	6 Validation
	6.1 Sanity checks
	6.1.1 Expected number of agents in the simulation
	6.1.2 Expected number of visits
	6.1.3 Expected bounce rate

	6.2 Online store
	6.2.1 Input data and configuration
	6.2.2 Simulation
	6.2.3 Results


	7 Conclusion and Future Work
	7.1 Overview & Main Contributions
	7.2 Future Work

	References
	A Graphical User Interface

