

Assessing Defragmentation Strategies for FPGAs

Manuel G. Gericota, Gustavo R. Alves,

Luís F. Lemos
 José M. Ferreira

DEE/ISEP
Rua Dr. Antº Bernardino de Almeida

4200-072 Porto
PORTUGAL

 DEEC/FEUP
Rua Dr. Roberto Frias,

4200-465 Porto
PORTUGAL

{mgg, gca, lfl}@isep.ipp.pt jmf@fe.up.pt

Abstract•

Fragmentation on dynamically reconfigurable
FPGAs is currently a major obstacle to the efficient
management of its logic space. When resource
allocation decisions have to be made at run-time a
relocation of currently running functions may be
necessary to release enough contiguous resources to
implement incoming functions.

Relocation should take into account any specifics
of function’s functionality and also those of the
FPGA’s architecture as to not affect system’s
performance. A simple and fast method to assess
performance degradation of a function during
relocation is proposed in this paper. This method is
based on previous function labelling and on the
concept of proximity vectors.

1. Introduction
Due to their growing densities and surpassing

flexibility, Field Programmable Gate Arrays
(FPGAs) are rapidly proving to be a cost-effective
alternative to the increasing cost and risk of
designing with ASICs. Moreover, the reductions in
reconfiguration times and the new features
introduced, such as run-time partial reconfiguration
and self-reconfiguration, made possible the
implementation of the concept of virtual hardware
defined in the early 1990s: the hardware resources
are supposed to be unlimited and implementations
that oversize the reconfigurable logic space available
are resolved by temporal partitioning [1].

Generally, an application comprises a set of
functions that are predominantly executed in
sequence, or with a low degree of parallelism, in
which case their simultaneous availability is not
required. Functions may be swapped in real time

• This work is supported by an FCT program under contract

POSC/EEA-ESE/55680/2004

becoming operational only when needed and being
substituted if their availability is no longer required.
In this way, it becomes feasible to use a single
device to run an application that in total requires far
more than 100% of the FPGA available resources,
by swapping functions in and out of the FPGA as
needed. Furthermore, as density increases and bigger
FPGAs become available, several applications may
even share spatial and temporally the same
reconfigurable logic space.

When the logic space of an FPGA is shared
among several functions belonging to a number of
different applications, each with its own
requirements in spatial and temporal terms,
fragmentation of the logic space may occur [2].
Being composed by an array of identical
Configurable Logic Blocks (CLBs) it may seem at
first sight that the problem may be regarded as a
two-dimensional one. However, it will be shown that
several other factors have to be considered when
relocating a function during run-time. Decision time
is also of concern since defragmentation procedures
are usually time costly, which may threaten the
viability of sharing the FPGA’s logic space. New
incoming functions may have to wait a long time
before having enough contiguous logic space
available to be implemented, decreasing the whole
system’s performance below acceptable levels, or
even disrupting its operation.

A new method to quickly evaluate relocation
decisions is proposed in this paper.

2. Formal approaches
When the logic space is shared by multiple

independent functions, each requiring a different
amount of resources to run efficiently, as the
resources are allocated to functions and later
released, many small areas of free resources are
created. These unallocated portions tend to become
so small that they fail to satisfy any request and
therefore remain unused - the FPGA logic space gets
fragmented [3]. Suitable arrangements can be

99

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Aberto da Universidade do Porto

https://core.ac.uk/display/143405745?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

designed if the requirements of functions and their
sequence are known in advance, but not when
placement decisions have to be made at run-time [4].

The solution to the problem is to consolidate
unused areas within the FPGA without halting the
operation of currently running functions. If a new
function cannot be allocated immediately due to lack
of contiguous free resources, a suitable
rearrangement of a subset of the executing functions
must be implemented to overcome the problem.

Some authors treated defragmentation as a
strictly packing problem [4-6]. Despite the
undeniable interest of this approach, the
functionality of the functions that are being relocated
and the resources they require to run efficiently must
be taken into account, otherwise, a degradation of
the system’s performance or even its disruption may
occur. These formal methods also present another
drawback: the long time they usually take to reach a
solution, which makes run-time defragmention
impracticable.

Other authors presented some strategies to avoid
these pitfalls considering that functions have
fixed-shapes, which removes flexibility to the
solutions [7], or imposing initial fixed logic space
areas, like pagination in computer design, which,
despite solving possible external fragmentation
problems, tends to create internal fragmentation
[8, 9]. Moreover, imposing fixed shapes or areas
implies a set of floorplanning constraints that may
severely limit function’s performance.

In general, there is a tendency to model the
FPGA as a regular array structure. While this
assertion may be true regarding the CLBs position
inside the array, it is inaccurate when the routing
infrastructure is considered. This irregularity is
mainly due to the presence of dedicated routing
resources available to enhance specific applications,
like counters and adders, which have a tremendous
impact on function’s performance.

Notice that accessing the reconfiguration
mechanism is independent from the operation of the
functions being executed in the FPGA. Therefore,
defragmentation may be implemented as a
background process, running concurrently with the
operation of currently implemented functions,
without disturbing or impaired them, and not only
when a new incoming function is claiming area to be
implemented. As a result, waiting times will be
reduced and the overall system’s performance
improved, as defragmentation can be a highly time-
consuming task. A metric to determine when to
perform defragmentation is proposed in [10].

From the analysis of previous proposals it is
possible to identify some key problems:

1. The lack of shape flexibility, which restricts
defragmentation performance;

2. The defragmentation algorithms are too
complex to be performed in real-time, making
run-time defragmentation impracticable;

3. The specific architecture of the FPGA is not
taken into account; hence changes on function’s
performance as a result of relocation are not
evaluated or even considered.

The proposed methodology, described in the next
sections, contemplates all these problems.

3. Function tags
To enhance the performance of specific types of

functions, FPGA’s architectures present some
special features, like dedicated carry lines to
increase speed on arithmetic functions (e.g. counters
or adders). In the architecture of Virtex FPGAs from
Xilinx, which are being used in this research work,
these lines span the FPGA vertically, enabling only
the interconnection of vertically adjacent CLBs. The
use of dedicated carry lines, with very low
propagation delays (in the order of a few
picoseconds), enabled during our experiments with a
24-bit binary counter to reach frequencies of
operation of around 145 MHz using a XCV200.
However, the maximum frequency of operation of
this counter decreases dramatically if one or more of
this dedicated carry lines are substituted by generic
interconnection resources. Figure 1 presents a
comparison between the number of dedicated carry
lines broken when the CLBs are reallocated
horizontally and the decrease on the maximum
frequency of operation in percentage terms. From
this example it becomes obvious that it is mandatory
for any defragmentation procedure to take both the
FPGA’s architecture and the functionality of the
function to be relocated into consideration.
Moreover, if the function is active, i. e. if the
function is currently being used by an application,
dynamic relocation techniques, as those described in
[2], must be applied during the defragmentation
procedure, otherwise its operation will be brought to
a temporary halt, which may disrupt the operation of
the whole system. The relocation of the function
must be performed keeping as much as possible the
vertical orientation of the function’s placement.
Besides, no more than one of the dedicated carry
lines linking vertically adjacent CLBs should be
broken during it. This means that only one adjacent
CLB may be relocated at a time and that vertical
adjacency must not be lost. Otherwise, the decrease
on the maximum frequency of operation will be
significant, as shown in figure 1, and may even
compromise the correct operation of the system.

These two pieces of information, verticality and
adjacency, are essential for the system to efficiently
conduct defragmentation and may be attached as a
tag to the function’s configuration file, stored
therein. When the file is retrieved and transferred
into the FPGA, the processor responsible for the
management of the logic space simply reads and
stores this information and uses it if the need to
relocate the function arises.

100

D
ec

re
as

e
on

 th
e

m
ax

im
um

fr

eq
ue

nc
y

of
 o

pe
ra

tio
n

(%
)

Fig. 1. Performance degradation

To evaluate the impact that changes in the shape
and in the relative position of CLBs have in different
functions, the same type of experiments were
performed over a subset of the ITC’99 benchmark
circuits – B01 to B14 [11]. The objective was to
determine which parameters are involved in the
performance degradation of particular functions to
be able to formulate a simple set of rules to be used
by the processor responsible for the logic space
management to assess and guide the
defragmentation procedure.

The experiments were conducted displacing
vertically and horizontally each one of the functions
and changing its relative shape, from a square-like
shape to a rectangular one and rotating it 90º. These
stressing conditions helped to put into evidence
which parameters most affect performance
degradation when functions are moved around. The
results of the experiments are summarised in table 1.

Circuits B04, B05, B07, B11, B13 and B14
experienced considerable performance degradation
when the shift of the whole function was carried out
horizontally. Faster performance degradation arose
when their spatial orientation tended to pass from
the original vertical to a horizontal one. This occurs
because all these functions make use of dedicated
carry lines on their implementation. This conclusion
confirmed the high importance of keeping unbroken
the dedicated carry lines used by some functions.

Some functions, like the B11, comprise hundreds
of gates but have a reduced number of carry lines. In
this case, it is necessary to have a simple method to
quickly identify the columns where these lines stand.
Otherwise, the ability to reshape the function during
a defragmentation procedure will be heavily
constrained. In this case, the tag attached to the
function configuration file must indicate the relative
position inside the function of the column that must
be kept unshaped.

On circuits B04, B05, B07, B11, B13 and B14 it
was rather easy to identify the cause of the
performance degradation when circuits were
reshaped from its vertical orientation to a horizontal
one. For the remaining circuits a deeper analysis of
its implementation and functionality was needed to
understand the origins of performance degradation.

Variation in the maximum
frequency of operation (%) Circuit

reference

Number of
occupied

CLBs Vertical shift Horizontal shift
B01 6 -5,5 0,0
B02 1 0,0 0,0
B03 11 -1,9 -4,9
B04 54 -6,1 -29,3
B05 103 -17,3 -36,9
B06 5 -2,7 0,0
B07 31 -23,6 -37,8
B08 17 -5,8 -5,8
B09 12 -1,8 -4,9
B10 20 -7,5 -7,6
B11 39 -10,5 -36,0
B12 119 0,0 -1,2
B13 37 -4,3 -42,8
B14 333 -13,5 -47,8

Table 1. Evaluation of function’s performance
degradation with reshaping

4. Assessing relocation impact
The circuit B01 exhibits a different behaviour.
Horizontal shifts do not degrade its performance,
probably because it uses no carry lines. However,
vertical shifts most decrease its maximum frequency
of operation. In figure 2 it is shown how this circuit
was placed inside a XCV200 FPGA by the design
tools. The most noticeable aspect is the great number
of lines that leave the CLBs located in the central
column. In fact, two output signals in the upper CLB
and one output signal in the lower CLB, whose nets
are highlighted in the figure, drive a great number of
inputs. To reduce propagation delays these CLBs
were positioned by the design tools in the centre of
the function’s floorplan. If the central location of
these two CLBs is changed, propagation delays will
increase and the maximum frequency of operation of
this function will decrease. This hypothesis was
verified rotating the function 90º and relocating it in
only one CLB column.

Outputs

Fig. 2. Placement of circuit B01 inside a XCV200

The systematisation of the analysis led to the
development of a new approach able to assess the
impact relocation of CLBs with output signals
driving a great number of inputs have over
functions’ performance: the application of the

101

concept of “proximity vectors”, a vector associated
to each interconnection and linking the CLB source
to the CLB destination. The length of each vector,
called proximity factor, is expressed in CLB units
and calculated as the modulus of the distance
between the CLB source and the CLB destination.
This vector is expressed by:
 ()crf px ,=

r
 (eq. 1)

where:
rowsourceCLBrowndestinatioCLBr −=

columnsourceCLBcolumnndestinatioCLBc −=
and the length of the vector is given by:

 22 crf px += (eq. 2)

A CLB with an output driving four different
inputs will have associated to each one of the
interconnections a vector, as exemplified in figure 3.
Notice that if a CLB output is fed back to one of its
inputs, the vector length will be zero. Minimising
the sum of all proximity vectors of one CLB output
results in the minimisation of the proximity factor
associated to that output. This corresponds, for a
given output and in terms of propagation delay, to
the best position of that CLB inside the function.

CLB CLB

CLB CLB CLB

CLB CLB

CLB CLB CLB

o1

fp1 fp2

fp3

fp4

Fig. 3. Application example

When relocating the CLB, if the proximity factor
increases performance degradation will occur.
Generically, we can say that minimising each one of
the output proximity factors of a function results in
the minimisation of its global proximity factor,
which corresponds to the best performance
achievement, in terms of maximum frequency of
operation.

The application of this concept to the remaining
circuits has shown a consistent reproduction of
results, confirming the initial hypothesis.

5. Conclusions
This approach has some advantages like:

1. It can be easily automated and integrated in
current design tools;

2. The necessary computation time will be low
compared with the temporal reanalysis of the
whole function, even if a sole output drives one
hundred inputs, as happens with circuit B12;

3. There is no need to perform a complete analysis
of the function’s performance after each CLB
relocation, because, if the minimisation of the
global proximity factor of the CLB is assured,
the minimisation of the global proximity factor
of the function will be assured, and therefore no
performance degradation will occur.

All these factors enable its use at run-time to quickly
and reliably assess and guide the strategy used to
manage the defragmentation procedure.

Further work is being done to fine-tune the
approach and to identify other possible specific
sources of performance degradation, without
increasing the complexity of the analysis. Otherwise,
run-time defragmentation will be compromised.

References
[1] X.-P. Ling, H. Amano, “WASMII: a Data Driven

Computer on a Virtual Hardware”, Proc. 1st IEEE
Workshop on FPGAs for Custom Computing
Machines, 1993, pp. 33-42.

[2] M. G. Gericota, G. R. Alves, M. L. Silva, J. M.
Ferreira, “Run-Time Defragmentation for
Dynamically Reconfigurable Hardware”, in: New
Algorithms, Architectures and Applications for
Reconfigurable Computing. Springer, April 2005. pp.
117-129.

[3] M. Vasilko, “DYNASTY: A Temporal Floorplanning
Based CAD Framework for Dynamically
Reconfigurable Logic Systems”, Proc. 9th Intl.
Workshop on Field-Programmable Logic and
Applications, 1999, pp.124-133.

[4] J. Teich, S. Fekete, J. Schepers, “Compile-time
optimization of dynamic hardware reconfigurations”,
Proc. Intl. Conf. on Parallel and Distributed
Processing Tech. and Appl., 1999. pp. 1097-1103.

[5] M. Handa, R. Vemuri, “An efficient algorithm for
finding empty space for online FPGA placement”,
Proc. Design, Automation Conf., 2004. pp. 960-965.

[6] P. C. Vinh, J. P. Bowen, “Continuity Aspects of
Embedded Reconfigurable Computing”, Innovations
in Systems and Software Eng.: A NASA Journal,
Springer-Verlag, Vol. 1, No. 1, April 2005, pp. 41-53.

[7] A. Ahmadinia, C. Bobda, D. Koch, M. Majer, J.
Teich, “Task Scheduling for Heterogeneous
Reconfigurable Computers”, Proc. 17th Symp. on
Integrated Circuits and Systems Design, 2004, pp. 22-
27.

[8] K. Baskaran, W. Jigang, T. Srikanthan, “Hardware
Partitioning Algorithm for Reconfigurable Operating
System in Embedded Systems”, Proc. 6th Real-Time
Linux Workshop, 2004, pp. 117-123.

[9] O. Diessel, H. ElGindy, “Run-time Compaction of
FPGA Designs”, Proc. 7th Intl. Workshop on Field-
-Programmable Logic and Appl., 1997, pp. 131-140.

[10] A. Ejnioui, R. F. DeMara, “Area Reclamation
Strategies and Metrics for SRAM-Based
Reconfigurable Devices”, Proc. Intl. Conf. on Eng. of
Reconf. Systems and Algorithms, 2005.

[11] Politécnico di Torino ITC’99 benchmarks. Available
at: http://www.cad.polito.it/tools/itc99.html

102

