
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Shellhive: Towards a Collaborative
Visual Programming Language for

UNIX Workflows

Omar Alejandro Castillo de Castro

Mestrado Integrado em Engenharia Informática e Computação

Supervisor: Hugo Sereno Ferreira, Assistant Professor

Second Supervisor: Tiago Boldt Sousa, Assistant Lecturer

August 5, 2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Aberto da Universidade do Porto

https://core.ac.uk/display/143405635?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Shellhive: Towards a Collaborative Visual Programming
Language for UNIX Workflows

Omar Alejandro Castillo de Castro

Mestrado Integrado em Engenharia Informática e Computação

Approved in oral examination by the committee:

Chair: Doctor João Manuel Paiva Cardoso
External Examiner: Doctor Ricardo Jorge Silvério Magalhães Machado

Supervisor: Doctor Hugo José Sereno Lopes Ferreira
August 5, 2014

Abstract

UNIX-based operative systems, provide tools that allows users to create workflows that can be
used to process data. However, not only they are difficult to learn, it is very difficult to maintain
long workflows using such tools. In this thesis, we propose a solution to leverage such UNIX tools,
to empower users with little experience in programming with the ability to create workflows that
are easier to understand and modify. The application itself, allows the user to design workflows
collaboratively in order for people who are comfortable in UNIX environment to help each other
and potentially learn from the more experient users. We also create various concepts that allows the
reusability of multiple workflows, increasing the maintainability of the workflows. The purpose of
the application is to leverage a standardized command-line language provided by UNIX operative
systems, the “UNIX Shell”, using a visual programming language. It uses visual representations
of workflows which are interacted by users, that are then automatically translated to a UNIX Shell
compatible code.

We start with the background related to the work, explaining some of the paradigms, including
basic knowledge about some of the concepts of Unix Shell. We then analyze commercial solutions
already deployed as well as a scientific approach of creating visual dataflows, in order to under-
stand their strengths and weaknesses, so that they could be used in our solution. Next, we describe
the problems that the application ought to solve and the contributions that this thesis expects to cre-
ate. Next, we describe the solutions created, explaining the logic and reasoning behind each of the
features implemented in the application. We also created tests to validade our hypothesis. Testing
a visual programming language is similar as testing an user interface, it’s difficult to test, except
by collecting direct feedback from end-users. Using the results from a set of quasi-experiments, it
will be possible to proceed with incremental improvements in the final solution. Finally we close
the content of this dissertation with a conclusion of this document, the contributions that were
made, including the publication of an article to the CDVE conference, and as well the future of
the created application.

i

ii

Resumo

Os sistemas operacionais baseados em UNIX fornecem ferramentas que permitem os utilizadores
criarem fluxos de trabalho que podem ser usados para processar dados. No entanto, não só são difí-
ceis de aprender,como é muito difícil manter workflows longos usando as ferramentas. Nesta tese,
propomos uma solução para aproveitar tais ferramentas UNIX, para capacitar os usuários com
pouca experiência em programação com a capacidade de criar fluxos de trabalho que são mais fá-
ceis de entender e modificar. A própria aplicação, permite os utilizadores criam fluxos de trabalho
de forma colaborativa, para que as pessoas que se sintam confortáveis no ambiente UNIX ajudem
uns aos outros e, potencialmente, aprendam com utilizadores mais experientes. Também criamos
vários conceitos que permitem a reutilização de múltiplos workflows, facilitando a manutenção
dos fluxos de trabalho. O objetivo da aplicação é aproveitar uma linguagem standard da linha
de comandos fornecido por sistemas operativos UNIX, o “UNIX Shell”, usando linguagens de
programação visual, usando representações visuais de fluxos de trabalho para ser interagido por
utilizadores, os quais são automaticamente traduzidos para código compatível com UNIX Shell.

Começamos com o background relacionado com o trabalho, explicando alguns dos paradig-
mas, incluindo conhecimentos básicos sobre alguns dos conceitos do Unix Shell. Depois anal-
isamos soluções comerciais existentes, bem como uma abordagem científica da criação de fluxos
de dados visuais, a fim de entender seus pontos fortes e fracos, de modo que poderiam ser usados
na solução. Em seguida, descrevem-se os problemas que a aplicação pretende resolver e as con-
tribuições que esta tese espera criar. A seguir, descrevemos as soluções criadas, explicando a lógica
e raciocínio por trás de cada uma das funcionalidades implementadas na aplicação. Foram criados
testes para validar as hipóteses da dissertação. Testar uma linguagem de programação visual é
semelhante a testar uma interface com o utilizador, é difícil de testar, a não ser através da recolha
de feedback direto dos utilizadores finais. Utilizando os resultados de um conjunto de quase-
experiências, será possível prosseguir com melhorias incrementais no solução final. Finalmente,
fechamos o conteúdo desta dissertação com uma conclusão deste documento, as contribuições que
foram feitas, incluindo a publicação de um artigo à conferência CDVE, e assim o futuro do projeto
criado.

iii

iv

Acknowledgements

I would like to express my gratitude to my family, who supported me through the whole course,
without them, I would not be doing a dissertation in the first place.

I have to thank Professor Hugo Sereno Ferreira for accepting the dissertation and for getting
some free time when I really needed, and Tiago Boldt Sousa, that could always have some time
to give me fast feedback and accurate answers to my needs. I would like to thank my friend Luis
Fonseca for sharing ideas about the dissertation, some of his ideas were bizzare, but others allowed
for the enrichment of this dissertation.

At last I express my gratitude to my deceased father who not only supported my family, but
also, he was the one that helped me the most through my academic life.

Omar Castro

v

vi

To my family.

vii

viii

Contents

1 Introduction 1
1.1 Context . 1
1.2 Problem . 2
1.3 Motivation . 3
1.4 Main Goals . 3
1.5 Report Structure . 4

2 Background 7
2.1 Software engineering . 7
2.2 Visual Programming . 7

2.2.1 Concepts . 8
2.2.2 Classification scheme . 8
2.2.3 Visual Dataflow Programming . 10

2.3 Stream processing . 10
2.3.1 Concepts . 10
2.3.2 Pipes and Filters . 11
2.3.3 Stream programming . 12
2.3.4 Functional Reactive Programming . 12

2.4 Unix Shell . 13
2.4.1 Concepts . 13
2.4.2 Tools for parallel and remote execution 15

2.5 Conclusions . 16

3 State of the Art 17
3.1 NoFlo . 17
3.2 Blender Composite Nodes . 19
3.3 IShell . 21
3.4 Yahoo Pipes . 22
3.5 Conclusions . 24

4 Problem Definition 25
4.1 Thesis statement . 25
4.2 Expected Contributions . 27

5 Solution prototype 29
5.1 Overview . 29
5.2 Architecture . 31

5.2.1 Server Architecture . 32

ix

CONTENTS

5.2.2 Client Architecture . 32
5.3 Implementation Details . 33

5.3.1 Script compiler & generator . 33
5.3.2 Graph Layout . 33
5.3.3 Cycle detection . 33
5.3.4 List of commands . 34
5.3.5 Execution isolation . 34
5.3.6 Real-time collaboration . 36
5.3.7 Separate filesystems . 37
5.3.8 Connected user information and chat system 38

5.4 A Tour on the Prototype . 39
5.4.1 The main view . 39
5.4.2 Creating components . 39
5.4.3 Connecting ports . 39
5.4.4 Implemented components . 41
5.4.5 Creating Macros . 43
5.4.6 Terminal panel . 44
5.4.7 Automatic compilation . 44

5.5 Conclusions . 45

6 Quasi Experiment 47
6.1 Issues solved . 47
6.2 Issues to be solved . 48
6.3 Survey . 48
6.4 Conclusions . 51

7 Conclusions 53
7.1 Overview . 53
7.2 Main Contributions . 54
7.3 Future work . 54

A Accepted short-paper 57

B Tutorial 63

References 69

x

List of Figures

1.1 Estimation of the amount of data generated yearly through the years. 2

3.1 Analog clock implemented using NoFlo. 18
3.2 A GUI node interaction in NoFlo . 18
3.3 An image being transformed into inverted grayscale image using Blender Com-

posite Nodes . 19
3.4 Possible colors on the sockets of a node . 20
3.5 A IScript source code graph example. 22
3.6 Getting a data from youtube of tags in Yahoo! Pipes 23
3.7 Terminals inside a module, the terminals are the circles in front of the parameters,

the white colored ones isn’t connected, while the gray are. 23

5.1 Layered architecture of the application. 31
5.2 Sequence diagram of the execution of a graph 36
5.3 Sequence diagram of a simple action . 36
5.4 Sequence diagram of an action that requires the modification of data. 37
5.5 View of the filesystem . 38
5.6 A screenshot of the application . 40
5.7 An example on how to create a component. By dragging a port to an empty space,

a pop-up appears. The order of the image sequence is: top left; top right; bottom
left; bottom right. 40

5.8 Different types of components, the legend is as follows: 1 - filter or command, 2 -
file, 3 - macro, 4 - input, 5 - output. 41

5.9 Macro creation interface with filled data. 43
5.10 Graph view of created macro. 44
5.11 Sequence diagram of the execution of the parsing of a workflow. 45

B.1 Screenshot of the Create components tutorial 63
B.2 Screenshot of the Create and connect components tutorial, top part 64
B.3 Screenshot of the Create and connect components tutorial, bottom part 65
B.4 Screenshot of the Using the file system tutorial 66
B.5 Screenshot of the Compiling and runnig workflows tutorial 67
B.6 Screenshot of the Shortcuts tutorial . 67

xi

LIST OF FIGURES

xii

List of Tables

5.1 Developed list of allowed commands. 35

6.1 Survey results . 49

xiii

LIST OF TABLES

re

xiv

Abbreviations

API Application Programming Interface
JSON JavaScript Object Notation
MVC Model-View-Controller
OS Operating system
SSH Secure Shell
UML Unified Modeling Language
VCS Version control system
VP Visual Programming
VPL Visual Programming Language

xv

Chapter 1

Introduction

This chapter introduces the technical report of this dissertation. It starts by describing the context

related of this dissertation following the motivation behind it. Then, it identifies the problems

addressed in this thesis, and describes its objectives and goals. Lastly, an explanation about the

report structure is written.

1.1 Context

The amount of data is growing exponentially. As time passes, this growth hampers its manage-

ment using traditional tools [datb]. The difficulty can be related to various factors: data capture,

storage, search, sharing, analytics and visualization, etc. [SS12]. According to IBM [IBM14],

when managing the data life-cycle of big data, organizations should consider 3 factors: volume,

velocity and complexity of big data.

• Volume. As of 2012, approximately 2.5× 106 GB of data are generated daily, which can

impact the total cost of ownership for data warehouses and other big data environments if

data growth is not managed appropriately. It is estimated that data will grow exponentially,

as shown in figure 1.1, that in 2020 it will be generated nearly 45×109 GB of data [data].

• Velocity. Big data environments support time-sensitive processes, such as analyzing 500

million daily call detail records in real-time to predict customer churn faster [IBM14].

• Complexity. Organizations capture a variety of data formats and comb through massive

data sources in real-time to analyze and identify patterns within the data. For example, to

identify fraud for credit card customers, to identify financial trends for investment organiza-

tions, predict power consumption for energy companies, etc..

These factors motivated the creation of new programming paradigms and architectures to solve

problems related to big data. One of said paradigms is stream programming, which was initially

designed for media and image processing applications. Then it has successfully grown into a more

general-purpose programming model. [GCTR08, EAG+07]

1

Introduction

2008 2009 2012 2014 2016 2018 201920172015201320112010 2020
Source: Oracle, 2012

0

5

10

15

20

25

30

35

40

45

50

Data in zettabytes (ZB)

Figure 1.1: Estimation of the amount of data generated yearly through the years.

In fact, these models were studied for more that 30 years. There even exists programming

languages that are based on some of those models such as the Unix command language [Bou78],

which is included in the Unix based operative systems (OS) for a long time.

1.2 Problem

Unix Shell is a programming language and a command language [Bou78]. It is the core concept

of some Unix command interpreters, such as csh, bash, ksh and others. Those interpreters have a

common short-coming, it is very difficult to design complex big-data workflows due to two main

reasons:

• Steep learning curve. The user not only has to study about the functionality of each com-

mand, but has to learn the idiosyncrasies of some of its commands, namely, the sed and

awk. There exists other problems that hampers the user to learn about the utility of those

commands, like inconsistencies in the naming of the arguments of some commands, some

sections of the command manuals (“man pages”) can be confusing, the input or output is

often untyped or unchecked, etc..

• Hard to maintain workflows. While it may not apply in small workflows, it becomes evi-

dent that is difficult to maintain large workflows due to the increasing difficulty of creating

readable code. When we include a decent amount of commands, specially when some com-

mands requires the usage of special parameters such as adding scripts as arguments, they

may need to include escape characters for the workflow to function correctly.

2

Introduction

1.3 Motivation

There are reasons to believe that the defined problems can be solved using a programming paradigm

called visual programming (VP). It is known that conventional programming languages are diffi-

cult to learn and use [LO87]. There were studies to create concepts that reduces barriers to learn

about programming. One of the concepts was to use visual expressions to create and maintain

scripts [Mye90a]. This concept originated the VP paradigm.

Also, the Unix environment contains a great set of utilities called “UNIX tools". Most of those

utilities are included on Unix-based operating systems. Unix dates back to 1969 [Sys], because

of that, most of the tools had many years of improvement, creating new tools and improving the

old ones. Due to those improvements, the Unix tools have little to no dependencies since most of

the commands are included in Unix-based OS. They are also lightweight and have a respectable

performance because many of the commands were created in a time where computers were not

as powerful as they are today. Also, most of the commands are developed using programming

languages that focus on execution efficiency such as C and Assembly.

As time passes, new tools were created that allows the execution of workflows in more con-

ventional ways:

• Commands can be executed remotely. With the inclusion of the Secure Shell (SSH) [YL06],

we can execute commands in a remote computer.

• Commands can be executed in parallel. The parallel command allows an efficient exe-

cution of multiple tasks in parallel by distributing the workload between various processors

inside a machine. A basic example is the processing of large amounts of files, a computer

with multiple processors can utilize each processor to process a subset of files, instead of

using one processor to process all the files.

• Commands can be executed in multiple computers. The same parallel tool can distribute

the workload with multiple machines, using the SSH tool for remote execution.

1.4 Main Goals

The main goals of this dissertation are to explore the capabilities of those tools to process large

quantities of data, and to explore the advantages of applying VP to create and maintain Unix

command-line scripts.

These goals are to be achieved by creating a web platform that will be used as an alternative

to the Unix terminal for big-data related purposes, which:

• Allows the synthesization of text code though a visual model. The application should be

able to generate code through a model and vice-versa , this method is designed as round-trip

engineering [Aß03, HLR08]. This way it allows the execution of Unix commands trough

the designed model.

3

Introduction

• Have a better maintainability than writing commands with text. With the application,

it should be as easy or easier to create, modify and interpret workflows compared to the

conventional usage of textual Unix commands, so that it can be used by less experienced

programmers.

• Can be designed by multiple users collaboratively. In other words, the application should

allow multiple user to design in the application, remotely or not, which every change to the

model is notified by other users using the same model.

The described application is directed to a public that is interested in processing large amounts

of textual data, and wants to leverage standard Unix tools for that purpose. It is also directed to

users that are being used to process data using Unix tools (e.g. system administrators, that uses

UNIX Shell in a daily basis).

It aims to allow users to design data processing tasks in a way that should be easy to understand

even to the public that has little to no experience with programming. It was implemented by

following an iterative development methodology, with emphasis on good software engineering

practices such as coding standards, continuous testing and refactoring.

One innovative aspect is that we are leveraging several characteristics, namely “zero-dependencies”

and “lightweightness". It also becomes a powerful educational tool since the end-result should be

the synthesization of what the user would write in the command prompt.

1.5 Report Structure

The remaining content of this dissertation is organized into three parts, with the following overall

structure:

1. Background & State of the Art. The first part reviews the most important concepts and

issues relevant to the thesis.

The next chapter 2 (p. 7) provides a literature review on software engineering paradigms,

techniques and tools related to the dissertation.

Chapter 3 (p. 17) provides an overview of the current state-of-the-art, and ideas that could

be used in the development of the application.

2. Problem & Solution. The second part states the problems researched and the proposed

solutions.

The 4th chapter (p. 25) describes the problem to be addressed by this project.

Chapter 5 (p. 29) contains an overview of the the solution implemented, including its

architecture, as well as the reasoning behind the design and technological decisions taken.

3. Validation and Conclusions . The third part describes the experiments made for the vali-

dation of the solution, and presents the conclusions of the dissertation:

4

Introduction

Chapter 6 (p. 47) provides information about the quasi-experiments to test our application.

The last chapter 7 (p. 53) provides the conclusion of this technical report with the work

plan of the project.

5

Introduction

6

Chapter 2

Background

This chapter describes the research relevant to the context to this dissertation. We start by describ-

ing the area in concepts, starting with a background information about the current area and then

giving a basic information about the relevant concepts and tools of the Unix Shell.

2.1 Software engineering

Laplante [Lap07] defines software engineering as:

“A systematic approach to the analysis, design, assessment, implementation, test,

maintenance and re-engineering of software, that is, the application of engineering to

software. In the software engineering approach, several models for the software life

cycle are defined, and many methodologies for the definition and assessment of the

different phases of a life-cycle model”

It encompasses all aspects of conceiving, communicating, specifying, designing and maintain-

ing software systems. It includes activities related with production of artifacts related to software

engineering such as documentation and tools [Lap07], which allows the creation of reliable and

efficient software applications.

The importance of this area is the impact it gives on large, expensive software systems and the

role of software in safety-critical applications, by integrating significant mathematics, computer

science and practises whose origins are in engineering. [sof].

There are two areas of software engineering that are relevant to the context of this dissertation:

Visual Programming and Stream Processing.

2.2 Visual Programming

Myers defined Visual programming (VP) as “any system that allows the user to specify a pro-

gram in a two (or more) dimensional fashion”, stating that “textual language is one dimensional

7

Background

because the compiler or interpreter processes it as a long, one-dimensional stream” [Mye86]. Vi-

sual Programming Language (VPL) is a programming language that includes visual expressions.

Visual expressions can be described as conventional flow-charts and graphical programming lan-

guages [Mye86]. In short,VPL tries to combine the communication power of a Visual Language

with the possibilities of a programming language.

The author believes that the idea of creating a paradigm such as VP isn’t new, because images

were used as a mean of communication many times throughout history. Even today, in software

engineering, we still use it. An example of a visual description of a problem instead of a textual

one is the Unified Modelling Language (UML). UML provides a set of visual tools to represent

solutions, and it is used world-wide by expert programmers. One of the earliest examples of visual

programming may be the GRaIL system [NoF14, hol] in 1968.

2.2.1 Concepts

In 1994 Burnett suggested a classification for this kind of languages [BB94]. However, this clas-

sification was too specific. Boshernitsan et al. launched in 2004, made a summary of the vi-

sual programming types, classifying them in: Purely Visual Languages, Hybrid Text and Visual

Systems, Programming-by-example systems, Constrained- oriented systems and Form-based sys-

tem [BD04].

Characteristics of a Visual Language

VPLs have a set of common approaches [Bur01]. Those approaches, or strategies, create a set of

characteristics that are important in this kind of languages:

• Concreteness. Some languages are powerful because of abstraction. However, concreteness

goes in the opposite direction. Visual programming languages tend to be concrete, using real

values, contrasting with types of values.

• Directness. Instead of working with possible values or objects the user works directly with

a concrete value or object.

• Explicitness. In textual languages, the relation between objects is implicit in VPLs. The

more explicit those relations are, the better. A user of a VPL should have the most explicit

information possible.

• Immediate Visual Feedback. Changes in the visual programming language should be seen

and felt immediately, without any type of compilation.

2.2.2 Classification scheme

Although Boshernitsan’s summary [BD97] is useful to characterise several systems, the name

given at programming-by-example can be misleading. According to Brad A. and Myers, example-

based programming has two forms: programming by example and programming with example [Mye90b].

8

Background

Therefore, the term example-based systems may be more general than the proposed term by

Boshernitsan.

• Purely Visual Languages. This VPL is compiled directly from the visual form. Most, if

not all, interactions are done in a visual environment.

• Hybrid Text and Visual Systems. The visual form of this system is a layer that is translated

to a text form. In this kind of systems, it is possible to program in a text or a visual form

and alternate between visualization modes.

• Example-based systems. Example-based-systems can be divided in: Programming by

example and programming with example. Those systems are based in examples of in-

put and output. Programming by example systems, or “automatic programming”, “tries

to guess or infer the program from examples of input or output or sample traces of execu-

tion” [Mye90b]. Programming with example systems, “require the programmer to specify

everything about the program (there is no inference involved), but the programmer can work

out the program on a specification example. The system executes the programmer’s com-

mands normally but remembers them for later reuse” [Mye90b]. This kind of systems can

be seen as a macro-building systems.

• Constrain oriented systems In this kind of systems, there is a set of constrains that are built

to create rules at a certain environment. This technique is useful to construct simulations,

dynamic documents, and manipulable geometric objects. [BD97]

• Form-based systems. The most known example of this system is spreadsheets. This sys-

tem is characterized by the presence of cells that have some sort of connection between

them. [BD97]

Example-based systems are out of the dissertation scope because the purpose of this disser-

tation is to leverage a command language, not create a machine learning language. Constrained-

oriented systems may be useful to construct simulations, dynamic documents, and manipulable

geometric objects. It doesn’t focus on data flows, which is one of the concepts of the architecture

of the Unix shell. Form-based systems may provide a metaphor of cells and connections, but lack

context of data flows.

Hybrid system is the system that it’s going to be developed in this dissertation since one of its

goals is to synthesize the Unix commands.

Purely Visual Languages are a great approach since we deal with the visual layer only, how-

ever, the purpose of this thesis is to have a layer on top of the Unix code. One type of these

systems describes the best way to represent a stream programming language, which will be used

as the visual layer: visual dataflow programming.

9

Background

2.2.3 Visual Dataflow Programming

A dataflow language is an applicative language that bases upon the notion of data flowing from

one function entity to another or any language that directly supports such flows [DK82], the graph

structure of the dataflow allows a simpler evaluation of the program. The function composition

should also be easier to understand [AA92].

Dataflow programming appeared as a method to do parallel computing. It appeared as a theo-

retical concept and then researches tried to implement it in hardware. From those projects, several

diagrams appeared to illustrate the solutions developed and those diagrams were used to represent

information on visual dataflow programming languages. However, data-flow programming faced

problems representing conditional execution and iteration. That representation was possible but

added comprehension issues essentially when the complexity of solutions started to increase (e.g.

representing loops with conditions to finish it, also representing the same with inner loops (a loop

inside a loop)). Therefore, dataflow programming languages sacrificed parallelism for compre-

hensibility, creating a class of those languages called “Controlled Dataflow Languages” [CG11].

Visual Programming does allow to interpret the information on how we intend to create a

dataflow visually, however, this area doesn’t focus on how the data will be flowing in the model,

so we will introduce another area of software engineering that is related to this dissertation: stream

processing

2.3 Stream processing

A stream processing application, organizes software into basic units of first-in-first-out (FIFO)

data streams flowing through stream filters. [BL13]

A data stream is a list of data records. Each record in a stream is a collection of related data

words. A stream filter, or a computation kernel, is a small program which consumes data from a

single input data stream, and produces data on a single output data stream.

This model can be analogized as a factory, where raw materials are transformed into a final

product by passing through machines. The raw material is considered as a record before being

processed in the first filter the final product being the data record coming from the output stream

of the last filter, and each machine is considered a stream filter that processes records of data.

By exploiting data parallelism in the records of a stream using tream processing, it allows the

process of large amounts of data, which is commonly required in media applications and large

databases.

2.3.1 Concepts

The applications that make use of a stream abstraction are diverse, with targets ranging from

embedded devices, to consumer desktops, to high-performance servers [TKA02], these kind of

applications can be referred to as streaming application

10

Background

Characteristics of a stream based application

There exists a set of common properties that allows the characterization of streaming applica-

tions [TKA02]. These properties are:

• Large streams of data. Stream programs can operate on a large sequence of data items.

Data streams generally enter the program from some external source, and each data item is

processed for a limited time before being discarded. A normal application has a large degree

of data reused from the input set. Normally, the processing of the input stream on a filter

starts as soon as the first records of stream data arrive and as soon as possible, evicts the first

records of the output stream.

• Independent stream filters. Each filter reads one or more items from an input, performs

some computation and writes one or more items to an output stream, it doesn’t care about

the state of another filter, it only cares about the data that he receives to read.

• A stable computation pattern. A certain set of filters are arranged in a regular, predictable

order to produce an output stream that is a given function of the input stream. The arrange-

ment generally remains stable during the execution of the streaming application.

• Occasional modification of stream structure. Even though each arrangement of filters

is executed for a long time, there are still dynamic modifications to the stream graph that

occur on occasion. One occasion can be when a wireless network interface experiences a

high noise on an input channel, it might react by adding some filters to clean up the signal.

This model relates with a concept that has been a part of UNIX and other operating system for

quite some time, which is called “Pipes and Filters” [SLR10].

2.3.2 Pipes and Filters

The Pipes and Filters (PaF) architecture simply contains pipes and filters. [SLR10]

A filter, is a component that processes data from its input, and produces data from its output

like explained above. A pipe is a connection that moves the data emitted by one filter to another

for consumption.

The Unix-based OS contains a command line interface that can be used to create workflows

that bases on this architecture. [Bou78].

A filter is a component with the same concept. It reads from an input interface, computes it,

then writes to the input interface.

Pipes are typically provided as separate components such as data repositories or queues, whose

sole purpose is to provide interfaces that allow putting data into and getting it out. A pipe is only

responsible for transmitting data between filters; it does not carry out any processing of data.

The main characteristic of the PaF architecture is total isolation of each component. Each

component, let it be pipe or filter, works independent of any other component. Since filters are

isolated, they do not know their predecessors or successors.

11

Background

2.3.3 Stream programming

Stream processing advocates a gather, operate, and scatter style of programming. [GR04] First, the

data is gathered into a stream from sequential, strided, or random memory locations. The data is

then operated upon by one or more computation kernels, where each kernel comprises of several

operations. Finally, the live data is scattered back to memory.

This style of programming makes explicit the parallelism and is locality present in applica-

tions. This parallelism is encoded within computation kernels. If kernels are data-parallel, they can

be broken down into mutually independent chunks which can be executed in parallel. [GCTR08]

Although many applications can potentially be expressed using the stream programming style,

some of the desirable program characteristics include: large amounts of data to operate on, high

arithmetic intensity, memory accesses that can be determined well in advance of their use and

producer-consumer locality between computation kernels. Stream programming, initially targeted

only for media applications, has evolved into a more general programming paradigm. [RDK+98]

There is another programming paradigm related to this one: Functional Reactive Programming.

2.3.4 Functional Reactive Programming

Functional reactive programming (FRP) is a paradigm for programming hybrid systems, that

is, systems containing a combination of both continuous and discrete components, in a high-

level, declarative way [HCNP03]. One of the main abstractions of RFP is the notion of time

flow [NCP02].

Concepts

The key ideas in FRP are its notions of two concepts: signals and events

• Signals, previously called behaviors [NCP02] are values that varie over time.

• Events. An event can be understood as an action that occurs in a single, discrete point in

time, having little or no duration [NCP02]; one example of an event is a mouse click. Events

can be understood as time-ordered sequences of discrete-time event occurrences. [WH00].

We can relate this with stream programming, where a signal is a data record that goes from the

output of a component to an input of the next component. An entry of a data record to a stream

filter is an event, which the filter reacts to, and immediately processes the data record, creating

another signal to the next component, which is a data record sent from its output.

The next topic is about Unix Shell, a command language and a programming language that

uses some of the principles of stream programming. The topics contain basic knowledge about

some of the concepts and tools, which are going to be referred in the next chapters.

12

Background

2.4 Unix Shell

The Unix shell is both a command language and a programming language that provides an inter-

face to the UNIX operating system [Bou78].

As a programming language it contains control-flow primitives and text-valued variables. As

a command language it provides a user interface to the process-related facilities of the Unix OS.

As explained in section 2.3.3 the Unix command language can advocate the stream program-

ming model, a Unix concept called pipes.

2.4.1 Concepts

Here we will explain about four concepts of the Unix commands that will be used in the disserta-

tion: redirection, pipes, command substitution and process substitution.

Redirection

Most commands produce output on the standard output that is initially connected to the terminal.

This output may be sent to a file by writing it. The example code 2.1 saves the output of the

command to a file.

1 ls -l > result.txt #saves result of ls -l into file result.txt

2 ls -l >> log.txt #appends result of ls -l into file log.txt

3 wc < data.txt #counts characters, words, and lines of file data.txt

Listing 2.1: Three redirection examples, with their current explanation in the comment.

The notation > file is interpreted by the shell and is not passed as an argument to ls. If the file

does not exist, the shell creates it; otherwise, the contents of the file are replaced with the output

from the command. To append to a file, the notation >> is provided. Similarly, the standard input

may be taken from a file by writing for example the third command on the listing 2.1.

Pipes

The standard output of one command may be connected to the standard input of another by writ-

ing the “pipe” operator, indicated by |, as in the code 2.2 which shows two ways to connect 2

processes.

1 ls -l | wc

2 ls -l > file; wc < file

Listing 2.2: Two examples of counting the characters, words, and lines of the result of ls

The difference is that that no file is used in the first command. Instead, the two processes

are connected by a pipe that is created by an operating system call. Pipes are unidirectional;

13

Background

synchronization is achieved by halting wc when there is nothing to read and halting ls when the

pipe is full. This matter is dealt with by the Unix OS instead of the shell.

Command substitution

The standard output from a command can be substituted in a similar way to parameters. The

command pwd prints on its standard output the name of the current directory. For example, if the

current directory is /usr/home then the two commands in 2.3 are equivalent because the output of

the command pwd is the current directory (/usr/home).

1 d= $(pwd)

2 d=‘pwd‘

3 d=/usr/home

Listing 2.3: Equivalent Unix commands if the current directory is "/usr/home"

The entire text between grave accents ‘...‘ is taken as the command to be executed and is

replaced with the output from the command. The command is written using the usual quoting

conventions, except that the grave accents must be escaped using a backlash \ . Another way

is to use the dollar sign which is commonly used for variable substitution, advanced interpreters

added a feature on the interpretation that the dollar sign followed with text between parentheses

$(...) would be interpreted as a command line. This would remove the need of escape the right

parenthesis in the text in case its followed by a left parenthesis.

Process substitution

Process substitution is an unique feature not included in the basic Unix shell [bas]. It allows

to redirect the output of a process to the input of multiple processes, and redirect the output of

multiple processes to the input of a single process.

To exemplify, let’s say that you had two versions of a program that produced large quantities

of data. You want to see the differences between the output from each version. You could run the

two programs, redirecting their output to files, and then comparing the files with the diff utility.

Another way would be to use process substitution. There are two forms of this substitution.

One is for input to a process: >(command); the other is for output from a process: <(command).

command is a process that has its input or output connected to a named pipe. A named pipe is

a temporary file that acts like a pipe with a name. In our case, we could connect the outputs of the

two programs to the input of the application via named pipes:

1 diff <(prog1) <(prog2)

Listing 2.4: Prints the difference between the output of two commands

14

Background

prog1 and prog2 are run concurrently and connect their outputs to named pipes. The diff utility

reads from each of the pipes and compares the information, printing any differences as it does so.

2.4.2 Tools for parallel and remote execution

As shown in section 1.3, there exists tools that allow the parallel and remote execution of the

application, even to distribute the workload with multiple machines.

The next code shows an example of running a command-line code remotely using the ssh

command:

1 ssh user@remote-host "gzcat eventlist-21-30.txt.gz | sort -uk1,2 --buffer-size=7G |

gzip > sorted-21-30.txt.gz"

Listing 2.5: sort the contents of a compressed file in a host computer

We can see that the command line code is inside the quotation marks. The remote computer is

identified by a hostname, in this code the hostname is “user@remote-host”

The next code shows an example of running a command-line code in parallel using the parallel

command:

1 find eventLists2013/ -name ’eventlist.*.gz’ | parallel "gzcat {} | sort -uk1,2 --

buffer-size=7G | gzip > {.}.sorted.txt.gz"

Listing 2.6: Sort the contents of compressed files inside the direcotry “eventLists2013” filtered by

file name ’eventlist.*.gz’ in parallel

Again, the command line is inside the quotation marks. The parallel command will execute

the command for each line written in the find command, replacing “” inside the code with the

line received from the input of the parallel command, and replacing “.” with the same line but

without the text that comes after the dot. In this case it is replaced by the name of the file without

the extension part.

The next code shows an example of running a command-line code, to distribute the workload

with multiple machines using the parallel command

1 find eventLists2013/ -name ’eventlist.*.gz’ | parallel --sshlogin server.example.

com,server2.example.com --sshlogin server3.example.com --sshlogin : --trc {.}.

sorted.gz "gzcat {} | sort -uk1,2 --buffer-size=7G | gzip > {.}.sorted.gz"

Listing 2.7: Prints the difference between the output of two commands

The explanation is the same as before, however, the parallel command contains sshlogin pa-

rameters which defines a host computer to distribute the workload, if we use the parameter, the

parallel command distributes the workload in remote computers. To include the client in the list

15

Background

of machines to run the application, we add a colon in the sshlogin parameter list. The usage –trc

parameter means that the files will first be transferred to the remote computers, then it retrieves the

results of the commands which resulted in the creation of a file. After retrieving the file, it cleans

the remote computer, removing the files generated during the execution of the command.

2.5 Conclusions

This chapter focused on theoretical concepts of the related work of this dissertation and a basic

knowledge about concepts of Unix shell. Visual Dataflow programming is a great approach be-

cause it has a great potential at providing a simple and intuitive syntax. It also has a relatively

straight-forward representation.

We are leveraging the usage of Unix commands with paradigm and concepts defined in this

chapter, such as the stream programming paradigm

16

Chapter 3

State of the Art

This chapter describes the existing state-of-the-art relevant to the context of the problem. While

many solutions exists, it was decided to find a considerable number of solutions. While they are

relevant to the context of the problem, we can take ideas to implement into our solution.

3.1 NoFlo

NoFlo is a Flow-Based Programming environment for JavaScript [nofb]. In flow-based programs,

the logic of your software is defined as a graph. The nodes of the graph are instances of NoFlo

components, and the edges define the connections between them. The figure 3.1 shows an example

of an application along with its result at the bottom right. [nofa]

Concept

There are two main concepts defined in NoFlo:

• Components: a component is a block that defines a function that can take inputs and pro-

duces an output, the components contains another output for error handling.

• Packets: packets or messages are blocks of data that come from an output of a component,

to an input of a connected element.

Functionalities description

Some nodes require some sort of giving input for cases there are no edges to connect to an input

port just like in figure 3.2, if there were no text in the “selector” text field it would show an error

for not having mandatory arguments.

17

State of the Art

Figure 3.1: Analog clock implemented using NoFlo.

Figure 3.2: A GUI node interaction in NoFlo

18

State of the Art

Lessons learned

Simplifying the input/output types seems a good approach. It is important that the end-user can

see the types just by looking on a node. Combinations between different types can be useful but

can also be dangerous. Without information, an end-user can fall in a coordination barrier or

understanding barrier. Another important thing is the ability to group nodes, this feature can be a

good approach to solve the scale-up problem associated with visual programming languages.

3.2 Blender Composite Nodes

Blender Composite Nodes, while not being a full application but a feature of Blender application,

empowers end-users with a tool that allows them to build some sort of a visual script that can be

applied in their scenes. The application wiki [Ble14] gives an insight into the features provided by

Composite Nodes.

Compositing Nodes allow you to assemble and enhance an image (or movie) at the

same time. Using composition nodes, you can glue two pieces of footage together and

colorize the whole sequence all at once. You can enhance the colors of a single image

or an entire movie clip in a static manner or in a dynamic way that changes over time

(as the clip progresses). In this way, you use composition nodes to both assemble

video clips together, and enhance them.

An example of the representation used can be seen in figure 3.3. The viewer node is a node

used to print the output on the screen in a panel, that is not shown on the figure.

Figure 3.3: An image being transformed into inverted grayscale image using Blender Composite
Nodes

19

State of the Art

Concepts

There are three main concepts defined in Composite Nodes: Nodes, Noodles and Node Groups.

• Nodes. A node is a block that can be seen as a function that can take inputs and can produce

a set of outputs. There are three types of nodes: Input Nodes, Processing Nodes and Output

Nodes [Ble14]. Input Nodes exist to produce information. An integer value is an example

of a Input Node. Processing Nodes can apply filters or transformations on their inputs to

produce a set of outputs. Filters like blur or contrast are examples of a processing node.

Output Nodes are useful to finalize a composition and specify were the result will be saved.

A viewer node to display the output or a file output node are examples of those kinds of

nodes.

• Noodles. A node has configurable parameters, and its outputs can be connected with the

inputs of other nodes creating a network called Noodle.

• Node Groups. Nodes can be grouped into a single node creating a Node Group that can be

connected with other nodes.

Functionalities description

Figure 3.4: Possible colors on the sockets of a node

Output sockets should connect with input nodes of the same type, therefore, to identify sockets

types Blender Node Composition defined a color for each type (fig 3.4). There are three types

available: RGBA - yellow; three-dimensional vector - blue; value - grey. When different socket

types are connected a default conversion will occur as follows:

• Vector to Value - Average (X+Y+Z)/3.0;

• Color to Value - Grayscale conversion (0.35*R + 0.45*G + 0.2*B);

• Value to Vector or Color - Copies value to each channel;

20

State of the Art

• Color to Vector - Copies RGB to XYZ;

• Vector to Color - Copies XYZ to RGB and sets A to 1.0.

Lessons learned

The usage of a graphical interface inside a node for each different type of node is a good approach,

it is also important that the user has the possibility to hide the interface so that it doesn’t block

the view to other nodes. In any case it becomes difficult to manage the interface with the nodes,

the interface can be used as a separate component outside the model, just like figure 3.2 in the

previous state-of-the-art application.

3.3 IShell

IShell is a visual command line interface where files, commands and applications as well as user-

specified commands are represented by icons. The abstract of the research paper created by Kjell

Borg [Bor90] gives a better definition of the application:

IShell is a visual user interface for interaction using gestures under the UNIX oper-

ating system. It uses a visual script language for building commands called IScript

and it is an integral part of the IShell environment The user can directly describe and

execute pipelined command sequences using gestures. The user is constantly guided

by visual cues. [Bor90]

Concept

There are three main concepts defined in IShell, machines, detectors and edges.

• IShell machines An IShell machine in a graph is a single node that each “machine” is

differentiated by its icon.

• Detectors or views are instruments that can be connected to an edge. They allows the user

monitor the flow of information in the edge. The content of a stream is not affected by the

detectors although the pace of the execution might change.

• Edges. They bind the filters together into pipelines.

Lessons learned

While the usage of icons is a good approach to identify the icons at first sight, it becomes difficult

to understand the functionality of the node due to the lack of text. The monitoring of the data

inside a stream is a great approach to see the result of each node in case the user makes an error

in the design, it becomes easier to find and correct mistakes and errors in the design of the task,

21

State of the Art

Figure 3.5: A IScript source code graph example.

however, monitoring large is tedious, but it still is a great approach when testing a workflow with

small amount of data before testing with large amounts of data.

3.4 Yahoo Pipes

The Yahoo documentation [pipb] introduces the application as

A free online service that lets you remix popular feed types and create data mashups

using a visual editor. You can use Pipes to run your own web projects, or publish and

share your own web services without ever having to write a line of code”.

Concept

There are two main concepts defined in Pipes, modules, pipes and sub pipes.

• Module A module can be considered a node in a dataflow graph, a block that can be seen

as a function that can take inputs and can produce an output, the modules are grouped by

their functionality: Sources are data sources (such as Yahoo Search) that returns a RSS feed,

User Inputs are input fields that your Pipe’s users can fill at run-time, Operators have basic

features to modify the values of an output of a module pipe, Url, String, Date contains

modules for building and manipulating URLs text and date respectively. [pipa]

22

State of the Art

Figure 3.6: Getting a data from youtube of tags in Yahoo! Pipes

• Pipe can be viewed as a graph, it contains modules, sub-pipes, and the connectors

• SubPipe A subPipe behaves just like a regular module, with the addition of a button link.

Clicking it opens a new tab in the editor where you can edit the subPipe on the fly. It can be

viewed as an encapsulated Pipe in a module.

• Terminal terminal can be viewed as a port which connects two modules.

Functionalities description

Figure 3.7: Terminals inside a module, the terminals are the circles in front of the parameters, the
white colored ones isn’t connected, while the gray are.

23

State of the Art

Input terminals can only be connected with output terminals that uses the same type of data.

Each module have attributes that can have a terminal (fig 3.7). It can be connected with an output

terminal of another module.

Lessons learned

Some of the Unix commands have a considerable amount of parameters, using a way to connect

a output to a parameter is a good approach to use the command substitution feature of the Unix

shell.

3.5 Conclusions

In this chapter we discussed the state of the existent concepts. NoFlo is the closest concept to

what we want to explore. It allows collaboration between multiple users, integrates well with the

JavaScript platform. We also intend to implement an interface for specific commands like the

way Blender Composite Nodes and Yahoo! Pipes implements it, that way we can solve problems

related with the idiosyncrasies of different Unix commands. The way IShell uses to identify the

nodes in a relatively fast way may be good approach, however, use of different user interface

makes this approach rather redundant, also the way NoFlo uses colors to identify an edge path is

another great approach when the model becomes so big it becomes difficult to manage it.

24

Chapter 4

Problem Definition

As described in the main goals (section 1.4), the goal of this dissertation is to explore the capabil-

ities of Unix tools to process data. It is done by leveraging the the Unix Shell using VP.

As seen in the previous chapter, none of the current state of the art focuses on data processing

in a visual form. The proposed solution should focus in the simple creation and modification of

tasks to process large quantities of data. The solution can be improved if it allows multiple users to

use the application collaboratively, allowing multiple user to design a workflow, remotely or not,

where every change made in the model is notified immediately by other users currently working

with the same model.

4.1 Thesis statement

It is the author belief, that most of the problems users and developers face when creating tasks

with the Unix Shell, could be bypassed by using a visual layer that helps users to interpret the

purpose of the workflow.

As such the author claims the following hypothesis:

When end-users are provided with a real-time visual collaborative workflow editor to

process large amounts of data using Unix command-line tools, they will significantly

increase their efficiency to design and modify workflows. Such application would

make a powerful educational tool since it allows the synthesization of what the end-

user would write in the Unix terminal.

This statement uses terms whose meaning may not be consensual, and therefore leads to ques-

tions that deserve further discussion:

25

Problem Definition

1. What should be understood by real-time visual collaborative workflow editor?

We can divide this expression in 3 parts: collaborative workflow editor, Real-time collaborative

workflow editor, and visual workflow editor.

Collaborative workflow editor, is a tool that allows multiple users to create and edit workflows

collaboratively, where multiple users can edit the same workflow at the same time.

The real-time part means that changes in the model a user is working will be noticed by

connected user working on the same model. There exists other types of collaborative tools, such

as a version control system (VCS). In a VCS, changes made by a user will be sent to a server when

he explicitly sends them. As long as he does not send the changes, connected users cannot see

them.

By visual workflow editor, we mean that workflows are not created nor edited using text, but

using visual representations of a workflow, such as a graph.

2. What should be understood by Unix command-line tools?

Unix operative systems contains a set of tools that allows the user to interact with the machine. The

most common tools are the console, a UNIX Shell interface that execute commands, a command

language, and a set of small programs that will be executed by the language.

3. How is efficiency measured?

Efficiency is to be measured by the quantity of work required to create and modify models that

executes a desired task, achieving a desired effect. For measuring efficiency, it will be considered

both the velocity, that is, the amount of work per person per unit of time, and the amount of

changes needed to achieve the necessary effect.

4. How would the application make an educational tool?

Allowing the translation of visual expressions to Unix Shell code and vice-versa can reduce bar-

riers of end-users to learn about the language. Being a collaborative application, inexperienced

users can learn from other experienced users about the language when working with the same

workflow, as well as learning the advantages of the usage of stream processing concepts to process

data. Making the prototype suitable for educational purposes.

5. Who are the end-users?

In the context of a visual programming tool, both computer scientists from beginners to experts

and users with little background on the usage of Unix commands are to be considered end-users.

Therefore, end-users are defined as the group of persons who will ultimately use the application.

26

Problem Definition

4.2 Expected Contributions

The primary outcome of this thesis encompasses the following aimed contributions to the body of

knowledge in software engineering:

• The formalization of a visual language for systems whose domain is the usage of com-
mand languages. The main goal of this thesis is to explore the capabilities of a command

language by leveraging it using a VP paradigm.

• Exploration of a way to use the standard Unix mechanism. Provides a collaborative

UNIX Shell programming platform, which generates and executes command.

• The collaborative aspect of editing and sharing such designs with other peers. The

solution allows mutilple users to create and modify scripts collaboratively, allowing each

peer, to know the changes made by other peers immediately.

27

Problem Definition

28

Chapter 5

Solution prototype

As seen in the background chapter (ch. 2), we were dealing with Visual programming and Stream

programming paradigms. In this case, the use of a Visual Dataflow Programming model was

proposed as it is one of the most fitting models to represent a stream based application.

The proposed solution was a web based framework for creating dataflow-based processing

using common UNIX Shell commands, abstracted as connected block components. A user creates

components with a set of inputs that transforms incoming data, making the result available in the

outputs. These outputs can be connected with inputs of other components, creating a model that is

similar to a data-flow diagram. This approach was implemented as a collaborative web application

as a drag-and-drop editor to create and connect components. A parsing engine then converts the

diagram into a UNIX Shell script that can be executed in a UNIX-based OS. The project is open

source1, codenamed ShellHive.

5.1 Overview

A set of concepts were defined to transmit ideas for the end-users.

Component

A component is an abstraction of a block that is commonly used in the software engineering. One

example of that usage is black box testing. The idea behind black box testing is: We want to test

a functionality, but we don’t want to understand what the program is doing. We only know that

giving a specific set of inputs should create a correspondent collection of outputs.

Ports

A port can be considered as a connector inside a component where the end of a connection is

located. There are 2 types of ports: input and output. A component will transform the information

received from their input ports, and send the results to their output ports. An output port can

1The code is available at https://github.com/OmarCastro/ShellHive

29

https://github.com/OmarCastro/ShellHive

Solution prototype

connect to several inputs, also each input can be connected to several outputs. The ports are

located on different sides of the components. The inputs are located on left side, and the outputs

on the right side.

Connection

A connection represents a pipe in the context of the UNIX Shell language. Visually, they represent

a line that connects two components. There are times that using pipes does not suffice, like joining

the result of 2 commands. In this case, the connection would represent a redirection to a named

pipe, where it would be used as an input to a component.

The connections are mostly typed, in other words, a connection should be created if it passes

the following requirements:

• The ends of the connection does not belong to the same component. A component should

not connect to itself. Not only they are difficult to parse, they can be dangerous, as they can

create infinite cycles.

• The connection should connect different type of ports. An output port can only connect

to an input port and vice-versa. A command can only read the output of another command,

or the contents of a file, it should not read the input of another command, if the objective

is to send the output of a component to multiple components, just connect the output of a

command to their respective components.

• The connection does not create a cycle in the workflow graph. Having cycles in the

graph can create infinite cycles. The commands would run continuously without stopping,

wasting available resources.

Macros

The larger and complex is a workflow, the less maintainable it becomes. One of the ideas to

increase the maintainability of the workflow was to group multiple components and connections

to a single component, thus the macro concept was created to test in the prototype. A macro is

a composition of interconnected components. It can be represented as a sub-graph with various

points of entry and exit. It allows the user to reuse groups of tasks, improving the maintainability

of the workflow.

The entry points and exit points are located in 2 special components: one component represents

the inputs and the other the outputs of the macro. The number of entry and exit points are variable

and can be customized for the user needs.

30

Solution prototype

5.2 Architecture

The prototype architecture contains various interconnected modules that identifiy the application.

The figure 5.1 presents a layered architecture of the application. Most of the logic of the ap-

plication is on the server. The client mostly provides an interface to interact with the workflow,

communicating with the server with the help of Web Sockets technologies and frameworks. Being

a web application, the global architecture can be divided in two architectures: the server and the

client.

Server Architecture

Front endData

Isolated
Container

Engine
(Docker)

Parser

Command
parser

Graph
parser

Models Views

Controllers

Database

Filesystem

Services

User
Management

project
Management

Web socket
rooms

workflow
Management

project
execution

project code
compilation

macro
management

Client Architecture

Angular.Js

Models Views Controllers

filesystem
management

Web socket
library

Figure 5.1: Layered architecture of the application.

31

Solution prototype

5.2.1 Server Architecture

The server was developed with Sails.js, a Node.js framework, adopting the Model–view–controller

(MVC) pattern, it contains multiple sub-modules that come from various external libraries inte-

grated in each other, allowing for a faster development of the application. The server architecture

can be divided in 5 modules:

Service. This is the main component, it manages the prototype business. This component con-

nects to the other 4 components. It manages the users in a project, manages the creation, modifi-

cation and deletion of projects, as well as its files and workflows.

Data. The Data layer is responsible to manage the data in the server. The sails framework

includes API’s to connect to various database management systems. The prototype data is saved

in a MySQL database. The database contains information about users, workflow, macros and

projects, however, it does not contain project files. The files are saved in an internal filesystem in

the application. This allows the isolation of the filesystem when executing a workflow.

Front end. The application was made using an MVC pattern, the front end is mostly responsible

for the communication with clients.

Parser. The parser module provides a framework responsible for the translation of the UNIX

Shell code to its graphical representation. This framework was developed separated from the

other modules, so it can be used as a standalone application. This module was developed using a

parser generator called Jison [Jis].

Container Engine. The container engine is responsible for the isolation of the execution of the

commands. Before executing a command, the engine initializes a container with the project folder.

The folder content is updated after it’s execution.

5.2.2 Client Architecture

The client module provides the front-end application that is interacted by end-users, using a web

browser. The module was developed using frameworks and libraries that use web standards. That

way, the prototype is supported in the most known web browsers.

The client side was developed using Angular.js, a JavaScript framework maintained by Google

that assists with running single-page applications [Anga], and a set of libraries and utilities that

depend of it, such as AngularUI [Angb].

The client communicates with the server using Socket.io, a web socket framework that focuses

on bidirectional event-based communication.

32

Solution prototype

5.3 Implementation Details

This section shows details of the implemented features.

5.3.1 Script compiler & generator

Some of the end-users are used to writing scripts and commands in a command-line interface.

Generating graphs using a command line improves the speed of designing workflows because the

user will have two ways to generate graphs: creating components and connecting them manually,

or generating a graph automatically with a command line. The latter one can benefit end-users

that are used to write commands with a keyboard.

The script compiler translates the Shell code into a data format that can be represented visually

in the web browser interface. The script generator does the inverse, it parses visual information

and compiles it to a UNIX Shell script that can be executed in the server. The generated code

contains single quotes in the arguments of the commands when needed.

Since the UNIX shell does not interpret text inside single quotes, it ensures that unsafe scripts

are not running when injecting code in command arguments when using command substitution

techniques, improving the security of the application.

5.3.2 Graph Layout

One of the features that improves the usability of the application is the automatic creation of

components and connections by using a single command line. However, when creating a graph

from a command line, specially those with multiple commands, one of the problems we had to

tackle is how to position the nodes. A quick study to find an adequate layout style to position the

components was done.

There were various layout styles found [Lay14]. After studying them, we decided to imple-

ment an algorithm to position the nodes based on the hierarchical layout style [Hie]. One of the

primary purposes of the hierarchical layout style is to highlight a flow within a directed graph. It is

the layout that fitted us the most because the workflow is visually represented as a directed graph,

highlighting the flow of data from a component to another during its execution.

5.3.3 Cycle detection

Having cycles in a graph creates a loop with no end, called “infinite cycles”. When this happens,

the commands will continuously run without reaching an end, and the execution process would

need to be forced to stop to free the resources used in the execution. By removing cycles, it

removes the possibility of existing infinite cycles, thus ensuring that the execution of the generated

scripts reaches to an end.

Cycle detection was implemented to ensure that no cycles appears in the workflow. The algo-

rithm to detect cycles is done by sorting topologically the nodes of a directed graph. The algorithm

normally stops and fails when a cycle exists.

33

Solution prototype

When searching for a library to check for cycles in a graph, we found only one and it used this

algorithm. When sorting the nodes of a graph, the library throws an error pointing that the graph

contains cycles. All we had to do is to check for that error, saving development time for other

important tasks.

5.3.4 List of commands

There was the need to study each command because many commands treat their inputs and options

in a unique way. For that reason, it was necessary to limit the number of commands to be available

in the prototype. Also the priority of adding new commands was always low.

The choice of the available commands was based on the simplicity to represent them visually.

Some commands, like perl, are not available because they are general programming languages,

and they are difficult to abstract visually.

Another metric used to choose the commands was based on parse simplicity. To know how

to parse a code of general programming, it is required to study the grammar of each language.

Studying a programming language takes a lot of time, so it was not feasible due to the limited time

required to develop the prototype.

The table 5.1 shows the developed list of available commands2 in the prototype. There are less

commands than planned. However, the number of available commands was sufficiently large to

be tested by users.

5.3.5 Execution isolation

Every command is executed in an isolated environment. They will only modify the content of the

project directory they are being executed to, leaving anything outside the directory unmodified.

Isolating the environment increases the security of the application, because a user will have access

to a virtual operative system which looks like as if he would have access to a real OS. After a

workflow is executed, everything except the project directory will be reverted to the initial state of

the execution. Meaning created files will be removed, deleted files will be recovered, etc..

The isolation environment is done using Docker, a container engine. In contrary to a Virtual

Machine (VM), it does not initialize an entire OS just to execute a workflow. Instead, the Docker

Engine container comprises just the application and its dependencies. It runs as an isolated pro-

cess in a user-space on the OS, making the initialization of a container very fast, without losing

noticeable performance.

The figure 5.2 shows a sequence diagram of the execution of a workflow. When the user

requests an action to compile the workflow, the request does not contain the command to be exe-

cuted. Instead, it contains an identification of the workflow to compile. The server then queries its

data based on the identification to translate it into a Shell script. When the translation is success-

ful, the server gets the location of the project directory and sends to the Docker, along with the

compiled script, to create an isolated container and execute such script in the project directory.

2With the description taken from their current manuals

34

Solution prototype

Table 5.1: Developed list of allowed commands.

Command Description
awk pattern scanning and processing language.
bunzip2 decompress bzip2 files.
bzcat decompresses bzip2 files to stdout.
bzip2 a block-sorting file compressor.
cat concatenate files and print on the standard output.
curl a tool to transfer data from or to a server. The command is

designed to work without user interaction.
date print or set the system date and time.
diff compare files line by line.
grep searches the named input files (or standard input if no files

are named, or if a single hyphen-minus (-) is given as file
name) for lines containing a match to the given pattern.

gunzip decompress gzip files.
gzip reduces the size of the named files using Lempel-Ziv cod-

ing (LZ77).
head output the first part of files.
ls list directory contents.
pv monitor the progress of data through a pipe.
sed stream editor for filtering and transforming text.
sort sort lines of text files.
tee read from standard input and write to standard output and

files.
tail output the last part of file.
tr translate or delete characters.
uniq report or omit repeated lines
unzip list, test and extract compressed files in a ZIP archive
wc print newline, word, and byte counts for each file.
wget utility for non-interactive download of files from the Web
zcat zcat uncompresses either a list of files on the command line

or its standard input and writes the uncompressed data on
standard output (On some systems, zcat may be installed
as gzcat to preserve the original link to compress).

zip package and compress (archive) files.

The output and the exit code of the executed script will be redirected to the client code. This

way, the user would see the contents of the output of the commands like he would see it in a UNIX

terminal.

During the execution phase, the server notifies users that are connected to the workflow that it

is running, ignoring further requests to run of the same workflow. Imagine if multiple users would

request to execute the same graph. The server would execute the same workflow multiple times,

wasting available resources. If the workflow is large and complex enough that can take hours to

process, it can slow down the processing machines if requested multiple times.

35

Solution prototype

Client Other client

Server Infrastructure

Server Database Parser Docker

Hit request action

process request

Server gets info

send data

command

Parse command

lock execution command and project information

initializes container

isolated container

execute commands

stdout & stderr

exit code

redirect redirect

unlock execution

Execute command

Figure 5.2: Sequence diagram of the execution of a graph

5.3.6 Real-time collaboration

One of the requirements of the application is that users create an modify workflows collabora-

tively where changes made by a user are immediately noticed by other users working on the same

workflow. In short, the prototype should be a real-time collaborative editing tool.

Modern browsers have a standard technology used for those types application called Web Sock-

ets [web], a technology that uses a protocol for two-way communication with a remote host, in

this case, the server.

Figure 5.3 shows a sequence diagram that shows what happens when a user makes an action

in a graph. When an action is made, it notifies the connected peers that he made a specific action

(e.g. joining a graph, sending a chat message, etc...) by using the server as a medium.

Client Other client

Server Infrastructure

Server

Action request action

process request

respond suceesfully

notify action

Figure 5.3: Sequence diagram of a simple action

However, many of the actions require modifications of the underlying data (e.g. connecting

components, updating components, etc...) which requires the use of more modules in the appli-

cation. Figure 5.4 shows a sequence of the action done when an action that modifies a graph has

been made.

36

Solution prototype

Client Other client

Server Infrastructure

Server Database

Action request action

process request

Query

Response

Server gets info

validate
modification

Query

Response

Server updates database

respond suceesfully

notify action

respond with error

valid modification

invalid modification

Figure 5.4: Sequence diagram of an action that requires the modification of data.

When the server receives the request, it will first check if the action requires modification of

the underlying data. If it does not require modifications, the server just redirects the notification

to other users just like the path shown in the figure 5.3. Otherwise, it will query the necessary

information to validate the modification. For example, when connecting components, it would

validate the connection by checking if it passes it requirements. If the modifications are valid, the

server updates the database with the necessary modifications and notifies connected peers about

the action made by the client.

5.3.7 Separate filesystems

Each project has a file system were their members have access. This approach is proposed for

safety reasons. There is a use-case where multiple projects would need to create files with the

same name. Each project will have his own workspace and commands executed in a project would

have access to his own workspace.

To exemplify, it is possible that a project that uses a file named vehicle.txt, processes it, and

saves the result to another file, named cars.txt regularly where another project may use a file that

uses a file with the same name (cars.txt) as a test file to compare the output of a process using the

diff command.

Figure 5.5 shows a view of the file system, it contains files that are in the project directory.

Every time a workflow has been executed, the contents of the filesystem are updated.

The files can be downloaded from or uploaded to the server to be used as input of a workflow,

or to download the results of a task. The files can transferred in two ways: by using the download

37

Solution prototype

Figure 5.5: View of the filesystem

and upload buttons on the bottom right corner of the view, and by dragging the files from and to

the filesystem tab like how a user moves a file from a directory to another with a file manager.

5.3.8 Connected user information and chat system

Although the priority of adding a modal where users could send messages to connected users was

low, we believe that identifying the users that are working on the same workflow would allow the

user to expect that the graph would be changed without the user interacting with the application if

there exist connected users.

There are two ways to differentiate two users: having different usernames or different colors.

When a user enters, it is applied a random color of a defined list of defined colors, this way it

makes easier to identify 2 users with the same username. The list is sufficiently large so there is a

considerably small chance that the applied color would be the same.

Since the implementation of the feature required that a user would be notified immediately

when a user enters or leaves into the workflow, a simple chat system was created using a similar

logic: notify other users that he made an action. This way, it was fairly easy to add a simple chat

system.

38

Solution prototype

5.4 A Tour on the Prototype

We already described most of the concepts defined for the prototype and how they are connected.

However, we didn’t show how those concepts pass to the user and how they are represented. In

this section, we show how we represent the defined concepts.

5.4.1 The main view

Figure 5.6 shows a screen shot of the application where most of the interaction is done. This figure

can be spliced in 4 frames:

• Top bar. The top bar is located at the top of the screenshot. It contains a menu, buttons to

compile and run the workflow, an Help button, an icon with the number of connected users

(excluding the user itself), and the user information.

• Main view (or graph view). The main view contains the workflow to be interacted by the

user. It is the gray region in the center of the picture

• User chat system. The user chat system, located at the right side of the screenshot, con-

tains the information on the connected users, as well as a basic chat system to send quick

messages.

• Console view. The terminal view, the dark area located at the bottom of the picture dis-

plays information about the compiled UNIX Shell code, and displays information about the

execution of a workflow.

5.4.2 Creating components

There are two ways to create components. The first way is by clicking on the “Add command”

button on the top bar of the application, however these components are restricted to filter compo-

nents. The other way is trying to connect a component to an empty area. When trying to connect

a component, a connection is automatically created where one end will follow the mouse pointer

position when the mouse button is pressed. When the mouse button is released on an empty space,

a pop-up interface will appear in the position of the mouse. The pop-up contains a list of im-

plemented components, like the “Add command” button, and a text field to write the component

that the user wishes to create. The user can create all kind of components using the text field:

commands, files and macro components. Rules were created to choose the type of the component

to create.

5.4.3 Connecting ports

A connection between an output and an input is displayed using a color for a different type of

output connector, their color is similar of the color of the port of a component.

39

Solution prototype

 overwrite
 append

content

file.txt

file  

 stdin stdout
stderr
return

files :

 ignore case
 ignore leading blanks
 ignore non­printing chars
 reverse
 unique

sort  

+







 stdin stdout
stderr
return

files :

 force
 keep files
 quiet
 recursive
 small
 stdout
 test
 verbose

gzip  

+

ratio 9 ­ best










 overwrite
 append

content

file2.txt

file  

pv ­f file.txt | sort | gzip ­9 > file2.txt

KK
Joao
v
Ricardo
John
OmarCastro

×

send chat message

Macro Add Command View Action Filesystem Compile Run SEND FEEDBACK Help 5 Visitor 

Figure 5.6: A screenshot of the application

Figure 5.7: An example on how to create a component. By dragging a port to an empty space, a
pop-up appears. The order of the image sequence is: top left; top right; bottom left; bottom right.

40

Solution prototype

Initially all connections contained the same colors, but sometimes it was difficult to find a

connection when there are many components in a graph when zoomed out. A way to differentiate

some connections was developed by using different colors. The colors defined for the connection

were based from the output port of a type of a command: blue for the output of a file component,

green, red and dark gray for the standard output, standard error and the exit code of a filter compo-

nent respectively, brown for an output of a macro, and light gray for other outputs, like the output

of an input component.

5.4.4 Implemented components

A set of components were implemented for testing purposes. They were used a fair amount of

times to explore and find ways to improve them. Five different types of components were created,

each of them with different purposes that will be described within this section. Figure 5.8 shows

the visual representation of each type of component.

1. 2. 3.

4. 5.

Figure 5.8: Different types of components, the legend is as follows: 1 - filter or command, 2 - file,
3 - macro, 4 - input, 5 - output.

Filter

A filter component, or command component, represents a command in the UNIX Shell. Each

kind of command is represented as a filter component with a different interface. The interface can

contain 4 types of fields:

• Flag. They represent command options that have two states, most commonly the enabled

or disabled state. They are normally located at the bottom of the component, represented as

a checkbox.

• Parameters. They visually represent text fields. When converting the component to text

code, the parameter is not compiled if the parameter is empty. In figure 5.8, the parameter

is represented as a text field with a label. In this case, the content of the label is “pattern”.

41

Solution prototype

• Selectors. They are represented visually as a select box. They represent options that have

two or more states. Some of the options require a parameter. In figure 5.8, the file component

contains 2 selectors, the “match” and the “pattern type”.

• File inputs. A file input represents an input that a command should read as a file. It is

present on filters that represent commands that read multiple files. Each entry contains

an input port that can also be connected to an output of another filter component. When

compiling a workflow, the inputs connected to a component will represent a named pipe

that will be used as a file to be read by the command. In figure 5.8, the plus button next

to the “files” label is the representation the file input list. In this case, the command is not

supposed to read any files.

They also have an additional 4 ports, one input port and 3 output ports. The input port

represents the standard input of the command. The outputs ports of the components are:

output, error, and exit code. The output port represents the stdout (standard output) of the

command. The error port represents the stderr (standard error). And the exit code port

represents the return code of the command that is sent after the end of its execution.

File

A file component represents a file in the file system. Each project contains a file system, containing

files and data that will be accessed by the isolated container to execute the workflow.

All file components have two inputs and one output. The inputs of a file components are:

“overwrite”, which the result of connected components completely overwrites the contents of the

file; and “append” where the result is appended to the file. The output of the file component is

the content of the file. When a file component is compiled to a UNIX Shell script, the file is read

using the pv command. The pv command sends information about the reading progress of the file

through the stderr of the command, allowing the user to have an idea about the progress of the

script execution, and the time remaining for the content of the file to be completely read.

Macro

A macro component represents a macro in the form of a component. The number of inputs and

outputs is variable since the user can add or remove inputs or outputs of a macro. The addition or

removal of components can be done when the user is editing a macro. For that reason, a shortcut

to view the contents of the macro is included in the component itself.

Input and Output

These components have a set of ports of one type. Output ports on an input component and

input for an output. They represent the entry and exit points of a macro. The macro inputs and

outputs are included on the output and input components respectively. These components contain

interfaces to add and remove input or outputs of a macro.

42

Solution prototype

5.4.5 Creating Macros

As explained before, a macro is a composition of interconnected components. They can be created

selecting the “New macro” option on the “Macro” tab at the top bar. When a user clicks it, a modal

appears with a form to describe the macro to create.

The modal contains 3 fields:

• Name. The name of a macro should contain only alphanumeric characters that is different

from the command. This way, it becomes easier to create components using a text field on

the component creation pop-up text because it removes ambiguity when creating macros

with the same name as the command.

• Description. The purpose of the description of the macro is to provide detailed information

about the macro, such as its purposes. This is an optional field because the modal can be

edited later.

• Command. This field allows the user to create the graph automatically by writing a single

command line. This field allows the users that are used to write command lines with the

keyboard to generate macros quickly. If the field is empty, only the input and output nodes

are created, and the workflow would need to be designed manually.

Figure 5.9 shows an example of creating a macro. We start by giving a name, description, and

a simple command line.

 overwrite
 append

content

json.txt

file  
 input output

error

view macro

gsortEvents
 overwrite
 append

content

file2.txt.gz

file  

Macro Add Command View Action Filesystem Compile Run SEND FEEDBACK Help  Visitor 

Macro Creation

Create Macro Cancel

Name gzort

Description sort lines removing duplicates of a compressed file returning the
results compressed using gzip

Command zcat | sort ­u | gzip

Figure 5.9: Macro creation interface with filled data.

After clicking the “Create Macro” button with the desired command in the “Command” text

field, the user would view a new graph with the generated components. The graph contains 2

additional components: the input component, and the output component. They are included in all

macros. Figure 5.10 shows the resulting graph of the macro creation.

43

Solution prototype

 stdin stdout
stderr
return

files :

 force
 keep files
 quiet
 recursive
 small
 stdout
 test
 verbose

gzip  

+

ratio 6










 input

INPUT



+

 output

 error

OUTPUT





+

 stdin stdout
stderr
return

files :

 force
 keep files
 quiet
 recursive
 verbose

zcat  

+







 stdin stdout
stderr
return

files :

 ignore case
 ignore leading blanks
 ignore non­printing chars
 reverse
 unique

sort  

+







Macro Add Command View Action Filesystem Compile Run SEND FEEDBACK Help  Visitor 

Figure 5.10: Graph view of created macro.

5.4.6 Terminal panel

The terminal panel displays the UNIX Shell script that is the direct translation of the graph. When

executing a workflow, the terminal displays the results of the execution: its stdout, stderr and exit

code.

The terminal can be hidden or have its dimensions changed to save space for the user to interact

in the main view. To change the height of the panel view, the user would need to drag the thick

white line that separates the terminal panel and the main view.

The panel was designed to look similar to a common UNIX Shell terminal since many users

that use the UNIX terminal are familiar with the design of a terminal view. However, the panel

does have some slight changes, the stdout and stderr are written with 2 different colors. The stdout

is printed with a white color and the stderr with a red one. The compiled script and the result code

of the script are printed with a bolder text to differentiate with the stdout and stderr of the resulting

execution.

5.4.7 Automatic compilation

Having to always compile when changing the model, or knowing what changes were made might

give difficulties when debugging a workflow.

Allowing the textual code representation of the graph to be automatically updated can help the

user to debug the changes made on the code when changing the graph. This feature can be used as

a teaching tool, since a person can learn or remember the purpose of an option.

Figure 5.11 shows a sequence diagram of how the automatic compilation is done. When a

change in the graph is made, the client automatically makes a request to the server to get the

44

Solution prototype

resulting command of the workflow. The server would get the identification of the workflow

inside the request, query it in the database, compile it, and send the resulting command to the

client.

Client

Sever Infrastructure

Server Database Parser

change
made

request
command

process request

Server gets info

Parse command

command

Figure 5.11: Sequence diagram of the execution of the parsing of a workflow.

5.5 Conclusions

In this chapter we explained the architecture of the application, including the implemented features

and the reasoning behind it.

A lot of time was invested thinking on how we could represent the information of the compo-

nents. If we create a script in NoFlo.js that has 40 components, the connections start to overlap.

Some blocks get out of the screen and the script becomes difficult and tedious to maintain. The

developers of NoFlo created a new concept of compressing the nodes to a single icon [Flo], but

they have removed so much information, making it difficult to tell the difference between two

components without having to open each component. Our solution was to save space by making

the components collapsible hiding any non-relevant information about the component.

There were deviations in the plans, such as adding new concepts (e.g. macro) during the

development phase, but we were able to make the application stable enough to be testable by

users. We tried to clarify some concepts with a tutorial (Appendix B, page 63). This tutorial can

answer to most of the questions that were made by some end-users. A tour of the application was

made in order to understand the features of the application.

45

Solution prototype

46

Chapter 6

Quasi Experiment

While we were developing our prototype, we tried to collect some feedback from end-users.

We decided to host a demonstration of the application in a server 1, and announce our appli-

cation at discussion forums about Unix Shell to test the application 2. The public target to test

the prototype were people with experience with the language itself, such as system administrators

who use UNIX Shell to process data, and people that are interested in learning how to use UNIX

Shell to create data processing tasks.

There were two ways to give feedback: by discussing about the application, or by filling a

survey. The latter option allowed us a more easily organization of the feedback.

The result was that most of the feedback was received with discussions. A very small amount

of users decided to fill the survey as an option to send feedback, there were even more users that

used the built-in chat to send feedback.

That feedback changed some attributes in the application, and others were saved in a backlog.

The end-users feedback will be grouped in two lists: a list with items that were solved and other

that were not.

6.1 Issues solved

Some issues noticed by end-users were solved, and resulted in following modifications that are

part of our prototype:

• Creating a Graph. Some of the end-users on the first usage, did not know how to

create components nor connect them, because it was not explicit enough on how to use the

application. A tutorial (Appendix B, page 63) was created so that users could have basic

knowledge on how to use the application.

1the link of the demo is paginas.fe.up.pt/~ei08158/thesis/public_demo.php
2 the application was announced on http://www.reddit.com/r/bash/comments/27e2pg/a_visual_

collaborative_unix_shell_interface/ , http://www.reddit.com/r/sysadmin/comments/
27gpcd/a_visual_collaborative_unix_shell_interface/ and https://groups.google.com/
forum/#!topic/comp.unix.shell/6i3vI9FQcf8

47

paginas.fe.up.pt/~ei08158/thesis/public_demo.php
http://www.reddit.com/r/bash/comments/27e2pg/a_visual_collaborative_unix_shell_interface/
http://www.reddit.com/r/bash/comments/27e2pg/a_visual_collaborative_unix_shell_interface/
http://www.reddit.com/r/sysadmin/comments/27gpcd/a_visual_collaborative_unix_shell_interface/
http://www.reddit.com/r/sysadmin/comments/27gpcd/a_visual_collaborative_unix_shell_interface/
https://groups.google.com/forum/#!topic/comp.unix.shell/6i3vI9FQcf8
https://groups.google.com/forum/#!topic/comp.unix.shell/6i3vI9FQcf8

Quasi Experiment

• Graph compilation generating named pipes. Even tough the result did not change, end-

users thought that adding many named pipes would make the generated code unreadable.

The generator was rewritten so that it would add named pipes when necessary.

• Code execution using arguments. The code generation was initially made using double

quotes. Initially the arguments were sanitized so that it could not execute a unwanted code,

however, there were more ways to inject code into the arguments. An end user notified the

author about the bug found. After a quick study, the author found that single-quotes weren’t

interpreted by UNIX Shell interpreters, so a quick patch has been done.

• Interface layout problems. The application was developed for any screen resolution,

however, it was tested mostly on screens with high resolution. Some end users notified that

the application looked weird on low resolution screens, the layout had to be arranged and

tested on low resolution screens.

6.2 Issues to be solved

The following issues were noted by end-users but they are still open:

• Lack of documentation. Somewhat related to the solved issue of creating graphs, Some

of the end-users explained that they had difficulties interacting with the prototype because

they were accustomed to use a UNIX terminal for a long time, which turns to be a barrier to

use the application. As noted before, a manual has been made, though it only contains basic

knowledge on how to interact with the application.

• Limiting the time of some commands. One user found out that using the command curl

to download large files, made the client side less responsive. While he was interacting with

the application, the client received the output of the command, and the application started

to become slow, due to the large amount of data that the client received.

• Creating components through the use of right-click. Some users found that using the

context menu to create components would improve the usability of the application.

• Not enough number of commands. This issue was to be expected due to the low priority

of adding available commands.

6.3 Survey

The users that opted to use the survey were very small compared to the feedback received in the

discussions; 6 responses were made in total. Though it doesn’t give any definitive conclusion, we

believe that the results are enough to validate our hypothesis.

Most questions given out to users were designed using a Likert Scale [Lik32]. This scaling

method consists in a measurement of a positive or negative response to a statement. The questions

48

Quasi Experiment

in the survey used five-point Likert items, with the following format: 1 - strongly disagree; 2 -

somewhat disagree; 3 - neither agree nor disagree; 4 - somewhat agree; 5 - strongly agree.

The questionnaire was divided in three groups:

• Usability (US). The usability questions serve to check if the application was easy to under-

stand.

• Usability Comparison (CP). The Usability Comparison contains questions to compare the

usability of the application with the UNIX terminal.

• Choice of tools (CH). This part of the survey contains questions to see which tools the users

would choose in different situations. This questionnaire did not have the same format of the

five-point Likert items. Instead, it had the same items where the lower values leads to a

preference in the UNIX terminal, and the higher values in the developed prototype.

Table 6.1 shows the results of the survey, following the descriptions of each test.

Table 6.1: Survey results

1 2 3 4 5 x σ

US1 4,33 1,03
US2 3,67 1,21
US3 3,83 1,17
US4 3,50 1,22
US5 4,50 1,22

CP1 4,50 1,22
CP2 4,00 1,26
CP3 4,33 1,21
CP4 4,50 0,84

CH1 2,40 1,95
CH2 4,60 0,55
CH3 4,40 0,89
CH4 3,40 1,82

US1. I found the instructions easy to understand.

The experimental group gave a score of x = 4,33,σ = 1,03. The responses gathered were positive

and very favourable.

US2. I found the application easy to use.

The users gave a score of x= 3,67,σ = 1,21. The responses gathered were positive and favourable.

US3. I had no trouble creating and executing a graph.

The users gave a score of x= 3,83,σ = 1,17. The responses gathered were positive and favourable.

49

Quasi Experiment

US4. I had no trouble creating and connecting a macro.

The users gave a score of x= 3,50,σ = 1,22. The responses gathered were positive and favourable.

US5. I had no trouble downloading or uploading files.

The users gave a score of x= 4,50,σ = 1,22. The responses gathered were positive and favourable.

CP1. It is easier to maintain a workflow using the visual graph than a UNIX terminal.

The users gave a score of x= 4,50,σ = 1,22. The responses gathered were positive and favourable.

CP2. It is simpler to create commands with the tool than with a UNIX terminal.

The users gave a score of x= 4,00,σ = 1,26. The responses gathered were positive and favourable.

CP3. It is easier to understand the objective of the tasks with the tool than with a UNIX
terminal.

The users gave a score of x= 4,33,σ = 1,21. The responses gathered were positive and favourable.

CP4. It is easier to share a workflow than with a UNIX terminal.

The users gave a score of x= 4,50,σ = 0,84. The responses gathered were positive and favourable.

CH1. When I’m going to work in a group project with experts on UNIX Shell scripting, I
would rather use. . .

The users gave a score of x = 2,40,σ = 1,95, which mean they favoured the UNIX terminal.

CH2. When I’m going to work in a group project with people with no experience on UNIX
Shell scripting, I would rather use. . .

The users gave a score of x = 4,60,σ = 0,55, which mean they favoured greatly the visual

application.

CH3. When I’m going to work in a group project with people that I don’t know their skills
on UNIX Shell scripting, I would rather use. . .

The users gave a score of x = 4,40,σ = 0,89, which mean they favoured the visual application.

CH4. When teaching someone about processing data using Shell Script, I prefer to use. . .

The users gave a score of x = 3,40,σ = 1,82, which mean they favoured the visual application.

50

Quasi Experiment

6.4 Conclusions

This chapter describes the quasi-experiment made to assess the usability of the developed web

application. The first phase shows the issues received from the users feedback. Divided in two

groups of issues, the one that are solved and the ones that are open. The survey results shows that

the application supports the hypothesis that using the application would improve the simplicity

and maintainability of the application. The application is far from complete, as it would need to

add more tests with end-users, also to solve the issues found by the end-users.

51

Quasi Experiment

52

Chapter 7

Conclusions

This dissertation touched several areas that deal with high levels of abstraction, and at the same

time it had to be concrete because it deals with end-users. The end-users that used our prototype

asked for higher levels of abstraction, so we made a detour that led to some experiences with Unix

Shell programming. Despite we didn’t use the work we did in that detour, we believe that this was

important. In this chapter, we are going to summarize our experience, our contributions, and our

thoughts for the future work.

7.1 Overview

In Chapter 1 we introduced our thesis, and presented some important concepts that are related with

our thesis. We also explained why we think this thesis is important, an abstract about the problems

of the UNIX shell language.

Chapter 2 gives an overview about the background of some important concepts related to the

thesis in question. Starting with the general area of this dissertation that is software engineering,

to a more specific, such as Visual Dataflow Programming and stream programming.

In Chapter 3, we saw examples of existing applications, that do what we are looking for, such

as NoFlo and Blender Composite Nodes, though the purpose of some of the applications is similar,

making the application easier to interact by end users; they don’t solve the specific use cases of

this thesis.

Chapter 4 gives an overview of the problem definition of the thesis, and explains why the

current solution doesn’t solve the specific use cases of the application.

Chapter 5 shows a documentation of the experimental application to solve the existing problem

in the current thesis.

And lastly, chapter 6 describes the quasi-experiments made to validate the hypothesis of the

prototype, as well as their results.

53

Conclusions

7.2 Main Contributions

We believe we have three major contributions: A short-paper, a framework that is independent

from Android and a prototype developed for Android that can be used to collect more feedback

from end-users.

Prototype

We believe that a typical visual dataflow solution is not enough due to the fact that a great part of

the public target is used to write commands using text. We decreased the barrier to those users by

initially creating graphs automatically by using paradigms and features used by UNIX terminal.

During the development, we found out that having long workflow would reduce its maintain-

ability, so we tough of a way to reuse tasks: macro. This form of task reuse is achieved through

the reuse of the macro as a component.

There was also the idea of sharing macros through multiple projects, however, it was not

implemented because the implementation was the task with the lowest priority, so it did stay in the

backlog during the development phase.

Our prototype is far from finished, but it is useful to do more tests. It can be used to check

what kind of features the end-users need or benefit, if there are other ways to create and connect

components, and how easy it is for end-users to create abstract tasks. These are only examples of

tests that can be done using our prototype.

Short-paper

Our short-paper was submitted for the 9th international conference on Cooperative Design Visu-

alization and Engineering (CDVE) on 25th April. The paper was accepted on 21st May, and the

final version was submitted on 15th June. the short-paper is entitled: Collaborative Web Platform

for UNIX-based Big Data Processing.

This short-paper focus on the collaborative part of our framework, where the expert program-

mers create the parts that can be connected by end-users. At the time we first submitted this

short-paper we simply had a work in progress, so that is why we didn’t do a full paper.

7.3 Future work

Completing What is Done

We did not complete some of the features that we started. This happened because the priorities

have been changing frequently, and some features had to stop to give place to others. We grouped

what it needs to be completed in this section.

54

Conclusions

Updating macro connections

The removal of macro entries and exits doesn’t delete and update the connections already made

on their respective macro components, there should be rule that was that to remove an input or

an output, the related ports of the macro components should not be connected, if that happens, a

warning should appear indicating that a connection already exists, this allows to avoid accidentally

changes in the graph by removing critical connections, or connections that would change the entire

workflow.

Exploring new Solutions

There are features that were never started because we knew that we needed some time We have

chosen some of them that we thought that are interesting for future work.

SSH configuration interface. It allows the user to generate keys to execute commands in exter-

nal computers. This would allow the execution of commands in multiple machines independently

of the location, as long as each machine can connect each other.

A special interface to execute external commands in parallel using the parallel command tool,

because the parallel tool treats the arguments in a special manner.

A docker image which allows to ease the installation of the application to integrate with the

solution.

Improve the connection typing, in other words, add rules that would not allow the connection

between two components, for example, trying to modify compressed data without decompressing

it first, and trying to decompress the data which was compressed using a different algorithm (e.g.

using bunzip2 on compressed data using gzip).

Study the addition of touchscreen support, this allows to make graphs using devices that can be

interacted with touch, such as smartphones, tablets or touch-enabled laptops, though there might

exist problems related to screen size.

55

Conclusions

56

Appendix A

Accepted short-paper

The following paper was submitted for the 11th conference on Cooperative Design Visualization

and Engineering (CDVE) on 20th April, 2014. This paper was accepted in 21th May and the final

version was submitted at 15th June.

57

Collaborative Web Platform for UNIX-based
Big Data Processing

Omar Castro1 and Hugo Sereno Ferreira1,2 Tiago Boldt Sousa1,2

{omar.castro, hugo.sereno, tiago.boldt}@fe.up.pt
1 Department of Informatics Engineering, Faculty of Engineering, University of Porto

2 INESC Technology and Science (formerly INESC Porto)

Abstract. UNIX-based operative systems were always empowered by
scriptable shell interfaces, with a core set of powerful tools to perform
manipulation over files and data streams. However those tools can be
difficult to manage at the hands of a non-expert programmer.

This paper proposes the creation of a Collaborative Web Platform to
easily create workflows using common UNIX command line tools for
processing Big Data through a collaborative web GUI.

Keywords: Big Data, UNIX Shell, End-User Programming, Cooperative Pro-
gramming

1 The Expansion of Data

The volume of data being generated globally has been growing exponentially [1]
which is increasing the complexity of managing it using traditional tools. Five
dimensions can be identified while evaluating how data is growing [2]: Volume,
managing terabytes to petabytes and up; Variety of different types of data (mu-
sics, videos, images, text); Velocity of flowing data in all directions, Variability
inconsistent data flow speeds with periodic peaks; and Complexity , correlating
and sharing data across entities. Considering the specific needs while dealing
with Big Data, new paradigms are being adopted to simplify how information
can be processed optimally, both for achieving results faster, as well as to simplify
the process of creating new computing pipelines

2 UNIX Shell: A Studied Solution

The UNIX shell adopted concurrency paradigms that are being applied today
by modern programming languages [3] since they were introduced [4], e.g. the
stream processing [5], which is a similar paradigm to the Pipes and Filters archi-
tecture applied in the UNIX Shell [6].

New tools were created in the UNIX environment that allow the execution
of workflows in more conventional ways, like executing commands in a remote

computer using the Secure Shell (SSH) tool, parallel execution of UNIX shell
code in one or multiple computer by using the parallel command.

However the UNIX shell also has shortcomings, it is difficult to design com-
plex big-data workflows, because not only the user have to study the functionality
of each command, which can differ greatly, Furthermore, commands documen-
tation (“man pages”) might be complex to read by non expert users.

Due to their native concurrency and distribution and large amount of stream
processing commands, UNIX Shells are a relevant platform to consider for Big
Data processing.

3 A Block-based Collaborative Solution

The authors propose a collaborative web based framework for creating dataflow-
based processing using common UNIX shell commands3, abstracted as connected
block components. The metaphor of a component with inputs and outputs is a
common representation in software engineering. Black box testing, per example,
uses this metaphor. A user creates components with a set of inputs that trans-
form incoming data, making the result available in an output. These outputs can
be connected with inputs of other components, creating a model that is similar
to a data-flow diagram. Our approach was implemented as a collaborative web
application, with a drag and drop editor to create and connect components. A
parsing engine then converts this representation into its textual version, com-
patible with common UNIX Shells. Figure 1 shows an example of the execution
of a workflow and its resulting command line at the bottom.

Being a realtime collaborative framework, the system allows for users to
cooperate while building their dataflows. The processing workflow is formed by
making typed connections, avoiding possible errors such as infinite loops by
creating cycles in the dataflow. The workflow can be created or managed using
the dataflow GUI, or using text code that should be compatible with UNIX Shell.
All block management, connection, abstraction and information propagation on
blocks would be controlled by our framework using a data-flow [7] approach.

3.1 Prototype Implementation

The authors identified a potential in the usage of UNIX tools to execute big
data related tasks, while it provides command line interpreters for the users to
interact those tools, adding a collaborative aspect of managing it. It was decided
to develop a framework for the browser, starting by using technologies that would
help developing the application efficiently.

The implementation started in the creation of a parser, to translate text
commands to a data representation of a data-flow graph that will be used to
generate a graph visually. Since most commands in the UNIX shell code are
executables, and many of them are not related to data processing of files, we

3 the source code is in the link https://github.com/OmarCastro/ShellHive

 overwrite
 append

content

events.txt

file  

 stdin stdout
stderr
return

files :

 ignore case
 ignore leading blanks
 ignore non­printing chars
 reverse
 unique

sort  

+







 stdin stdout
gzip  

ratio 6 overwrite
 append

content

sorted.txt.gz

file  

pv ­f events.txt | sort ­u | gzip ­6 > sorted.txt.gz

Fig. 1. An example of a command line and it’s visual representation

would need to restrict the number of allowed commands. The transformation
of text code to visual information has been done for a number of commands
the authors believed it was sufficient to advance to the implementation of the
GUI, the authors also explored the automatic generation of graphs from a text
command, which an expert user can create a workflow by using text commands,
since creating workflows with a keyboard can be faster than creating manually
with a GUI.

The parse and execution of the workflow in the server has been done initially
in a local machine to find security problems. The dataflow would be executed
in an isolated container in the server, allowing a safe execution of the workflow.
The isolation environment of the commands will be done using the LXC tool
[8] to execute the commands without compromising performance and security
for those who do the execution. When a user runs a dataflow, every connected
peer receives a notification about the execution, and also information about the
execution of the application, such as percentage done and time remaining to
finish the execution with the help of the pv(pipe viewer) command line utility.
Every workspace allows uploads and downloads of files, and any generated files
after executing the workflow will be added in the workspace so that the user can
download them later.

4 Future Work

While the presented prototype can already be used to experiment with the con-
cept, a final product would require further development to increase the products
maturity. Another plan is the usage of Docker [9] as the container engine to
execute the commands in a sandboxed container. The engine uses the LXC tool
to create said containers. Then we are going to begin to implement the user
management in the server and as well as the technologies required to make the
application a collaborative realtime web application. We also plan to include an
interface to manage external servers, which allow the execution of commands in
multiple machines, or in a remote server.

After all phases are completed, we plan to test both our end-user as well as
expert programmers frameworks. Both expert programmers and end-users will
test the application. There are two ways to do this test, one way is to host the
application in a server and ask interested people in the web community to use the
application and ask for feedback, Other way is to collect data with interviews,
locally or hosted in a server, we will ask for expert programmers to develop a
workflow and see the difficulties they will find. With this test, we intend to get
answers for: Do we provide sufficient debug options? Is our application intuitive?
Then we will ask them to compare their experiences with the usage only text
commands. After those tests, we will analyze the data, fix some bugs and test
again. Final goal will be to open-source our work and freely distribute it within
the community, allowing private deployments of the system.

References

1. Big data and the creative destruction of todays business models, strategic it article,
a.t. Kearney.

2. Big Data Meets Big Data Analytics, SAS White Paper, 2011
3. Kay A. Robbins and Steven Robbins. 1995. Practical UNIX Programming: A Guide

to Concurrency, Communication, and Multithreading. Prentice-Hall, Inc., Upper
Saddle River, NJ, USA.

4. Stephen R Bourne. An introduction to the UNIX shell. Bell Laboratories, 1978.
5. T.W. Bartenstein and Y.D. Liu. Green streams for data-intensive software. In Soft-

ware Engineering (ICSE), 2013 35th International Conference on, pages 532541.
IEEE Press, 2013.

6. T. Scheibler, F. Leymann, and D. Roller. Executing pipes-and-filters with workflows.
In Internet and Web Applications and Services (ICIW), 2010 Fifth International
Conference on, pages 143148, May 2010.

7. Johnston, W.M., Hanna, J.R.P., Millar, R.J.: Advances in dataflow programming
languages. ACM Comput. Surv. 36 (March 2004) 134

8. LXC - Linux Containers
https://linuxcontainers.org [Online; acessed 18-April-2014].

9. Homepage - Docker: the Linux container engine
https://www.docker.io [Online; acessed 19-April-2014].

Accepted short-paper

62

Appendix B

Tutorial

The following image are screenshots captured directly from the Firefox web browser, when start-

ing the demo of the prototype.

Figure B.1: Screenshot of the Create components tutorial

63

Tutorial

Figure B.2: Screenshot of the Create and connect components tutorial, top part

64

Tutorial

Figure B.3: Screenshot of the Create and connect components tutorial, bottom part

65

Tutorial

Figure B.4: Screenshot of the Using the file system tutorial

66

Tutorial

Figure B.5: Screenshot of the Compiling and runnig workflows tutorial

Figure B.6: Screenshot of the Shortcuts tutorial

67

Tutorial

68

References

[AA92] K. S. R. Anjaneyulu and John R. Anderson. The advantages of data flow diagrams
for beginning programming. In Proceedings of the Second International Conference
on Intelligent Tutoring Systems, ITS ’92, pages 585–592, London, UK, UK, 1992.
Springer-Verlag.

[Anga] Angularjs — superheroic javascript mvw framework. http://angularjs.org/.
[Online; accessed 23-June-2014].

[Angb] Angularui for angularjs. http://angular-ui.github.io/. [Online; accessed
26-June-2014].

[Aß03] Uwe Aßmann. Automatic roundtrip engineering. Electronic Notes in Theoretical
Computer Science, 82(5):33 – 41, 2003. {SC} 2003, Workshop on Software Compo-
sition (Satellite Event for {ETAPS} 2003).

[bas] Bash reference manual: Major differences from the bourne shell.
http://www.gnu.org/software/bash/manual/html_node/
Major-Differences-From-The-Bourne-Shell.html. [Online; accessed
2-February-2014].

[BB94] Margaret M Burnett and Marla J Baker. A classification system for visual program-
ming languages. Journal of Visual Languages & Computing, 5(3):287–300, 1994.

[BD97] Marat Boshernitsan and Michael Downes. Visual programming languages: A survey,
1997.

[BD04] Marat Boshernitsan and Michael Sean Downes. Visual programming languages: A
survey. Citeseer, 2004.

[BL13] T.W. Bartenstein and Y.D. Liu. Green streams for data-intensive software. In Software
Engineering (ICSE), 2013 35th International Conference on, pages 532–541. IEEE
Press, 2013.

[Ble14] Blender node compositor wiki. http://wiki.blender.org/index.php/
Doc:2.6/Manual/Composite_Nodes, 2014. [Online; accessed 26-January-
2014].

[Bor90] Kjell Borg. Ishell: A visual unix shell. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, CHI ’90, pages 201–207, New York, NY,
USA, 1990. ACM.

[Bou78] Stephen R Bourne. An introduction to the UNIX shell. Bell Laboratories, 1978.

69

http://angularjs.org/
http://angular-ui.github.io/
http://www.gnu.org/software/bash/manual/html_node/Major-Differences-From-The-Bourne-Shell.html
http://www.gnu.org/software/bash/manual/html_node/Major-Differences-From-The-Bourne-Shell.html
http://wiki.blender.org/index.php/Doc:2.6/Manual/Composite_Nodes
http://wiki.blender.org/index.php/Doc:2.6/Manual/Composite_Nodes

REFERENCES

[Bur01] Margaret M. Burnett. Visual Programming. John Wiley & Sons, Inc., 2001.

[CG11] Philip T. Cox and Simon Gauvin. Controlled dataflow visual programming languages.
In Proceedings of the 2011 Visual Information Communication - International Sym-
posium, VINCI ’11, pages 9:1–9:10, New York, NY, USA, 2011. ACM.

[data] Big data and the creative destruction of today’s busi-
ness models - strategic it article - a.t. kearney. http:
//www.atkearney.com/strategic-it/ideas-insights/
article/-/asset_publisher/LCcgOeS4t85g/content/
big-data-and-the-creative-destruction-of-today-s-business-models/
10192. [Online; accessed 10-February-2014].

[datb] Big data definition - mike2.0, the open source methodology for information
development. http://mike2.openmethodology.org/wiki/Big_Data_
Definition. [Online; accessed 10-February-2014].

[DK82] Alan L Davis and Robert M Keller. Data flow program graphs. 1982.

[EAG+07] Mattan Erez, Jung Ho Ahn, Jayanth Gummaraju, Mendel Rosenblum, and William J
Dally. Executing irregular scientific applications on stream architectures. In Proceed-
ings of the 21st annual international conference on Supercomputing, pages 93–104.
ACM, 2007.

[Flo] Flowhub v0.1.8. http://app.flowhub.io/#example/7804187. [Online; ac-
cessed 23-June-2014].

[GCTR08] Jayanth Gummaraju, Joel Coburn, Yoshio Turner, and Mendel Rosenblum.
Streamware: Programming general-purpose multicore processors using streams.
SIGARCH Comput. Archit. News, 36(1):297–307, 2008.

[GR04] Jayanth Gummaraju and Mendel Rosenblum. Stream processing in general-purpose
processors. In Proceeding of the 11th International Conference on Architectural Sup-
port for Programming Languages and Operating Systems (ASPLOS-XI), 2004.

[HCNP03] Paul Hudak, Antony Courtney, Henrik Nilsson, and John Peterson. Arrows, robots,
and functional reactive programming. In Advanced Functional Programming, pages
159–187. Springer, 2003.

[Hie] Hierarchical layout style. http://docs.yworks.com/yfiles/doc/
developers-guide/incremental_hierarchical_layouter.html.
[Online; accessed 23-June-2014].

[HLR08] Thomas Hettel, Michael Lawley, and Kerry Raymond. Model synchronisation: Def-
initions for round-trip engineering. In Antonio Vallecillo, Jeff Gray, and Alfonso
Pierantonio, editors, Theory and Practice of Model Transformations, volume 5063 of
Lecture Notes in Computer Science, pages 31–45. Springer Berlin Heidelberg, 2008.

[hol] Alan kay demos grail - youtube. http://www.youtube.com/watch?v=
QQhVQ1UG6aM. [Online; accessed 28-January-2014].

[IBM14] Ibm data lifecycle of big data environments. http://www-01.ibm.com/
software/data/optim/data-lifecycle-big-data/, 2014. [Online; ac-
cessed 27-January-2014].

70

http://www.atkearney.com/strategic-it/ideas-insights/article/-/asset_publisher/LCcgOeS4t85g/content/big-data-and-the-creative-destruction-of-today-s-business-models/10192
http://www.atkearney.com/strategic-it/ideas-insights/article/-/asset_publisher/LCcgOeS4t85g/content/big-data-and-the-creative-destruction-of-today-s-business-models/10192
http://www.atkearney.com/strategic-it/ideas-insights/article/-/asset_publisher/LCcgOeS4t85g/content/big-data-and-the-creative-destruction-of-today-s-business-models/10192
http://www.atkearney.com/strategic-it/ideas-insights/article/-/asset_publisher/LCcgOeS4t85g/content/big-data-and-the-creative-destruction-of-today-s-business-models/10192
http://www.atkearney.com/strategic-it/ideas-insights/article/-/asset_publisher/LCcgOeS4t85g/content/big-data-and-the-creative-destruction-of-today-s-business-models/10192
http://mike2.openmethodology.org/wiki/Big_Data_Definition
http://mike2.openmethodology.org/wiki/Big_Data_Definition
http://app.flowhub.io/#example/7804187
http://docs.yworks.com/yfiles/doc/developers-guide/incremental_hierarchical_layouter.html
http://docs.yworks.com/yfiles/doc/developers-guide/incremental_hierarchical_layouter.html
http://www.youtube.com/watch?v=QQhVQ1UG6aM
http://www.youtube.com/watch?v=QQhVQ1UG6aM
http://www-01.ibm.com/software/data/optim/data-lifecycle-big-data/
http://www-01.ibm.com/software/data/optim/data-lifecycle-big-data/

REFERENCES

[Jis] Jison. http://zaach.github.io/jison/. [Online; accessed 23-June-2014].

[Lap07] Philip A Laplante. What every engineer should know about software engineering.
CRC Press, 2007.

[Lay14] Chapter 5. automatic graph layout. http://docs.yworks.com/yfiles/doc/
developers-guide/layout.html, 2014. [Online; accessed 23-June-2014].

[Lik32] Rensis Likert. A technique for the measurement of attitudes. Archives of psychology,
1932.

[LO87] Clayton Lewis and Garay Olson. Can principles of cognition lower the barriers to
programming? In Empirical Studies of Programmers:Ssecond Workshop, volume 17,
pages 248–263. Ablex Publishing Corp., 1987.

[Mye86] B. A. Myers. Visual programming, programming by example, and program visualiza-
tion: A taxonomy. SIGCHI Bull., 17(4):59–66, April 1986.

[Mye90a] Brad A Myers. Taxonomies of visual programming and program visualization. In
Journal of Visual Languages & Computing, volume 1, pages 97–123. Elsevier, 1990.

[Mye90b] Brad A Myers. Taxonomies of visual programming and program visualization. Jour-
nal of Visual Languages & Computing, 1(1):97–123, 1990.

[NCP02] Henrik Nilsson, Antony Courtney, and John Peterson. Functional reactive program-
ming, continued. In Proceedings of the 2002 ACM SIGPLAN Workshop on Haskell,
Haskell ’02, pages 51–64, New York, NY, USA, 2002. ACM.

[nofa] clock demo - dataflow-noflo. http://noflojs.org/dataflow-noflo/demo/
clock.html. [Online; accessed 10-February-2014].

[nofb] Noflo | flow-based programming for javascript. http://noflojs.org/. [Online;
accessed 15-February-2014].

[NoF14] Noflo kickstarter: The hacker’s perspective | javalobby. http://java.dzone.
com/articles/noflo-kickstarter-hackers, 2014. [Online; accessed 26-
January-2014].

[pipa] Pipes - about the editor. http://pipes.yahoo.com/pipes/docs?doc=
editor. [Online; accessed 23-June-2014].

[pipb] Pipes - documentation. http://pipes.yahoo.com/pipes/docs. [Online; ac-
cessed 23-June-2014].

[RDK+98] Scott Rixner, William J. Dally, Ujval J. Kapasi, Brucek Khailany, Abelardo López-
Lagunas, Peter R. Mattson, and John D. Owens. A bandwidth-efficient architecture
for media processing. In Proceedings of the 31st Annual ACM/IEEE International
Symposium on Microarchitecture, MICRO 31, pages 3–13, Los Alamitos, CA, USA,
1998. IEEE Computer Society Press.

[SLR10] T. Scheibler, F. Leymann, and D. Roller. Executing pipes-and-filters with workflows.
In Internet and Web Applications and Services (ICIW), 2010 Fifth International Con-
ference on, pages 143–148, May 2010.

71

http://zaach.github.io/jison/
http://docs.yworks.com/yfiles/doc/developers-guide/layout.html
http://docs.yworks.com/yfiles/doc/developers-guide/layout.html
http://noflojs.org/dataflow-noflo/demo/clock.html
http://noflojs.org/dataflow-noflo/demo/clock.html
http://noflojs.org/
http://java.dzone.com/articles/noflo-kickstarter-hackers
http://java.dzone.com/articles/noflo-kickstarter-hackers
http://pipes.yahoo.com/pipes/docs?doc=editor
http://pipes.yahoo.com/pipes/docs?doc=editor
http://pipes.yahoo.com/pipes/docs

REFERENCES

[sof] Computing degrees & careers » software engineering. http://
computingcareers.acm.org/?page_id=12. [Online; accessed 23-June-
2014].

[SS12] Sachchidanand Singh and Nirmala Singh. Big Data analytics. In 2012 International
Conference on Communication, Information & Computing Technology (ICCICT),
pages 1–4. IEEE, October 2012.

[Sys] The Unix System. The unix system – history and timeline – unix history. http:
//www.unix.org/what_is_unix/history_timeline.html. [Online; ac-
cessed 1-February-2014].

[TKA02] William Thies, Michal Karczmarek, and Saman Amarasinghe. Streamit: A language
for streaming applications. In R.Nigel Horspool, editor, Compiler Construction, vol-
ume 2304 of Lecture Notes in Computer Science, pages 179–196. Springer Berlin
Heidelberg, 2002.

[web] Websocket.org | about websocket. http://www.websocket.org/
aboutwebsocket.html. [Online; accessed 23-June-2014].

[WH00] Zhanyong Wan and Paul Hudak. Functional reactive programming from first princi-
ples. SIGPLAN Not., 35(5):242–252, May 2000.

[YL06] Tatu Ylonen and Chris Lonvick. The secure shell (ssh) protocol architecture. 2006.

72

http://computingcareers.acm.org/?page_id=12
http://computingcareers.acm.org/?page_id=12
http://www.unix.org/what_is_unix/history_timeline.html
http://www.unix.org/what_is_unix/history_timeline.html
http://www.websocket.org/aboutwebsocket.html
http://www.websocket.org/aboutwebsocket.html

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Context
	1.2 Problem
	1.3 Motivation
	1.4 Main Goals
	1.5 Report Structure

	2 Background
	2.1 Software engineering
	2.2 Visual Programming
	2.2.1 Concepts
	2.2.2 Classification scheme
	2.2.3 Visual Dataflow Programming

	2.3 Stream processing
	2.3.1 Concepts
	2.3.2 Pipes and Filters
	2.3.3 Stream programming
	2.3.4 Functional Reactive Programming

	2.4 Unix Shell
	2.4.1 Concepts
	2.4.2 Tools for parallel and remote execution

	2.5 Conclusions

	3 State of the Art
	3.1 NoFlo
	3.2 Blender Composite Nodes
	3.3 IShell
	3.4 Yahoo Pipes
	3.5 Conclusions

	4 Problem Definition
	4.1 Thesis statement
	4.2 Expected Contributions

	5 Solution prototype
	5.1 Overview
	5.2 Architecture
	5.2.1 Server Architecture
	5.2.2 Client Architecture

	5.3 Implementation Details
	5.3.1 Script compiler & generator
	5.3.2 Graph Layout
	5.3.3 Cycle detection
	5.3.4 List of commands
	5.3.5 Execution isolation
	5.3.6 Real-time collaboration
	5.3.7 Separate filesystems
	5.3.8 Connected user information and chat system

	5.4 A Tour on the Prototype
	5.4.1 The main view
	5.4.2 Creating components
	5.4.3 Connecting ports
	5.4.4 Implemented components
	5.4.5 Creating Macros
	5.4.6 Terminal panel
	5.4.7 Automatic compilation

	5.5 Conclusions

	6 Quasi Experiment
	6.1 Issues solved
	6.2 Issues to be solved
	6.3 Survey
	6.4 Conclusions

	7 Conclusions
	7.1 Overview
	7.2 Main Contributions
	7.3 Future work

	A Accepted short-paper
	B Tutorial
	References

