
Ricardo Alexandre Peixoto de Queirós

A framework for practice-based learning
applied to computer programming

Departamento de Ciência de Computadores

Faculdade de Ciências da Universidade do Porto

2012

Ricardo Alexandre Peixoto de Queirós

A framework for practice-based learning
applied to computer programming

Tese submetida à Faculdade de Ciências da Universidade do Porto

para obtenção do grau de Doutor em Ciência de Computadores

Departamento de Ciência de Computadores

Faculdade de Ciências da Universidade do Porto

2012

Resumo

Aprender através da prática é fundamental para alcançar um melhor desempenho em domı́nios

complexos. No entanto, a aprendizagem só é eficaz se os estudantes tiverem à sua disposição

uma grande variedade de exerćıcios que cubram todo o programa do curso e se as suas

soluções são prontamente avaliadas e se é dado o feedback apropriado.

Atualmente, o processo de ensino-aprendizagem em domı́nios complexos, tais como a pro-

gramação de computadores, é caracterizado por turmas grandes e curŕıculos extensos. Esta

situação representa uma carga de trabalho grande para os professores responsáveis pela

criação, entrega e avaliação dos exerćıcios.

O objetivo principal deste trabalho é promover a aprendizagem baseada na prática em

domı́nios complexos. Este objectivo é conseguido através do desenho de uma framework

de e-learning - chamada de Ensemble - caracterizada como uma ferramenta concetual para

facilitar a interoperabilidade técnica entre os sistemas e serviços em domı́nios com avaliação

complexa. Estes domı́nios precisam de uma diversidade de ferramentas, desde os ambientes

onde os exerćıcios são resolvidos, até aos avaliadores automáticos fornecendo feedback sobre

as tentativas dos alunos, não esquecendo a criação, gestão e sequenciação de exerćıcios.

A framework Ensemble é usada num domı́nio espećıfico - programação de computadores.

Uma instância dessa framework aborda as questões relacionadas com a interoperabilidade

do conteúdo e da comunicação. As questões de conteúdo são resolvidas com um formato

padrão para descrever exerćıcios de programação como objetos de aprendizagem. A co-

municação é alcançada com a extensão das especificações existentes para a interação dos

sistemas tipicamente encontrados num ambiente de e-learning como os sistemas de gestão de

aprendizagem, repositórios de objetos aprendizagem e sistemas de avaliação. Alguns desses

sistemas e serviços foram criados de raiz e outros foram adaptados para suportar as novas

especificações de conteúdo e comunicação.

A fim de avaliar a aceitação da solução proposta uma instância da framework Ensemble

foi validada numa experiência em sala de aula com resultados animadores. Os resultados

permitem concluir que o uso desta framework tem um impacto positivo sobre a aquisição de

habilidades complexas, tais como a programação de computadores.

i

ii

Abstract

Learning through practice is crucial to acquire a complex skill. Nevertheless, learning is only

effective if students have at their disposal a wide range of exercises that cover all the course

syllabus and if their solutions are promptly evaluated and given the appropriate feedback.

Currently the teaching-learning process in complex domains, such as computer programming,

is characterized by an extensive curricula and a high enrolment of students. This poses a

great workload for faculty and teaching assistants responsible for the creation, delivering and

assessment of student exercises.

The main goal of this work is to foster practice-based learning in complex domains. This

objective is attained with an e-learning framework - called Ensemble - as a conceptual tool

to organize and facilitate technical interoperability among systems and services in domains

that use complex evaluation. These domains need a diversity of tools, from the environments

where exercises are solved, to automatic evaluators providing feedback on the attempts of

students, not forgetting the authoring, management and sequencing of exercises.

The Ensemble framework is used on a specific domain - computer programming. A framework

instance addresses the content and communication interoperability issues typically found in

this domain. Content issues are tacked with a standard format to describe programming

exercises as learning objects. Communication is achieved with the extension of existing

specifications for the interoperation with several systems typically found in an e-learning

environment such as learning management systems, learning objects repositories and assess-

ment systems. Some of these systems were created from scratch and others were adapted to

support the new content and communication specifications.

In order to evaluate the acceptability of the proposed solution an Ensemble instance was

validated on a classroom experiment with encouraging results. They support the conclusion

that the use of this e-learning framework for the practice-based learning has a positive impact

on the acquisition of complex skills, such as computer programming.

iii

iv

Résumé

L’apprentissage par la pratique est essentielle pour réaliser de meilleures performances dans

des domaines complexes. Néanmoins, l’apprentissage n’est efficace que si les élèves ont à leur

disposition un large éventail d’exercices qui couvrent tous les syllabus de cours et si leurs

résolutions sont rapidement évalués et être un feedback approprié.

Actuellement, le processus d’enseignement-apprentissage dans des domaines complexes, comme

la programmation informatique, est caractérisé par le programme d’enseignement exhaustif

et par le taux élevé d’inscriptions des étudiants. Cela pose une charge de travail idéal pour

les enseignants et des assistants responsables de la création, la prestation et l’évaluation des

exercices des élèves.

L’objectif principal de ce travail est de favoriser l’apprentissage basé sur la pratique dans

des domaines complexes. Cet objectif est atteint par la conception d’un cadre d’e-Learning -

appelé Ensemble - comme un outil conceptuel pour faciliter l’interopérabilité technique entre

les systèmes et services dans les domaines qui utilisent l’évaluation complexe. Ces domaines

ont besoin d’une diversité d’outils, des environnements où les exercices sont résolus, les

évaluateurs automatiques fournissent une rétroaction sur les tentatives d’étudiants, sans

oublier la création, la gestion et le séquençage d’exercices.

Le cadre Ensemble est utilisé sur un domaine spécifique - la programmation informatique.

Une instance de cadre porte sur le contenu et les questions d’interopérabilité de commu-

nication on trouve habituellement dans ce domaine. Questions de contenu sont cloués

avec un format standard pour décrire les exercices de programmation comme des objets

d’apprentissage. L’interopérabilité est réalisée avec le développement ou l’adaptation des

systèmes et services pour la gestion du cycle de vie des exercices, à savoir leur création, de

stockage, de conversion et d’évaluation.

Afin d’évaluer l’utilité et la convivialité de la solution proposée une instance Ensemble a été

validé sur une expérience en classe avec des résultats prometteurs. Ces résultats appuient la

conclusion que l’utilisation de ce cadre met en place les fondations de l’apprentissage fondée

sur la pratique avec un impact positif sur l’acquisition de compétences complexes.

v

vi

to Márcia and Gabriela

vii

viii

Acknowledgments

First of all, I would like to thanks my supervisor Prof. José Paulo Leal for his support over

time. Throughout this thesis he helps me by sharing his knowledge, his competence, his

availability and, most important, his friendship. I hope he maintains his confidence in me

and we can embrace new projects soon.

I would like to add further thanks to Prof. Cristina Ribeiro for the suggestions and feedback

provided in the annual meetings.

My acknowledgements to my friend Alberto Simões for helping me mostly in the LaTeX

issues.

A word of appreciation goes also to my friend Mário Pinto for aiding me in the experiment

conducted at ESEIG.

I would like to express my deep gratitude to my family for their love and support over time.

Last but not least, I want to thank my lovely wife Márcia for all the support that she gave

me during the years I have been working on this thesis. These years were special with the

birth of our beautiful daughter Gabriela. To both my endless love!

ix

x

Contents

1 Introduction 1

1.1 Motivation . 2

1.2 Challenge . 4

1.3 Approach . 5

1.4 Contributions . 6

1.5 Thesis structure . 7

I State of Art 9

2 E-Learning systems 11

2.1 E-Learning evolution . 12

2.1.1 Early systems . 12

2.1.2 Component based systems . 12

2.1.3 E-Learning services . 13

2.1.4 Specialised E-Learning Services . 16

2.2 Learning Management Systems . 17

2.2.1 Categories . 17

2.2.2 LMS Interoperability . 19

2.2.2.1 LMS selection . 20

2.2.2.2 Interoperability Facets . 21

xi

xii CONTENTS

2.2.3 Conclusions . 25

2.3 Repository Systems . 26

2.3.1 Categories . 27

2.3.2 Repository Interoperability . 27

2.3.2.1 Software for Digital Libraries 28

2.3.2.2 Software for Learning Objects Repositories 29

2.4 Assessment Systems . 31

2.4.1 Evolution of Assessment Systems . 32

2.4.2 Recent Surveys . 33

2.4.3 Assessment System Interoperability 35

2.4.3.1 Programming Exercises . 36

2.4.3.2 Users . 38

2.4.3.3 Assessment results . 40

2.4.4 Conclusions . 41

2.5 Summary . 42

3 E-Learning standards 45

3.1 Frameworks . 47

3.1.1 Abstract Frameworks . 49

3.1.1.1 IEEE Learning Technology Systems Architecture 50

3.1.1.2 Open Knowledge Initiative 51

3.1.1.3 IMS Abstract Framework . 51

3.1.2 Concrete Frameworks . 52

3.1.2.1 Open University Support System 53

3.1.2.2 Schools Interoperability Framework 53

3.1.2.3 E-Framework . 54

3.1.3 Comparison of E-Learning Frameworks 55

CONTENTS xiii

3.2 Content . 57

3.2.1 Metadata . 58

3.2.1.1 Dublin Core . 58

3.2.1.2 IEEE LOM . 60

3.2.1.3 ISO/IEC MLR . 63

3.2.1.4 Other Metadata Specifications 64

3.2.2 Packaging . 65

3.2.2.1 IMS Content Packaging . 65

3.2.2.2 ADL SCORM . 67

3.2.2.3 IMS Common Cartridge . 67

3.2.2.4 Other specifications . 70

3.2.3 Assessment . 71

3.2.3.1 Quiz based assessments . 71

3.2.3.2 Text file based assessments 72

3.3 Communication . 77

3.3.1 Learning Management Systems . 77

3.3.1.1 Data Integration . 78

3.3.1.2 API Integration . 78

3.3.1.3 Tool Integration . 79

3.3.1.4 Comparison of the integration strategies 81

3.3.2 Repositories . 82

3.3.2.1 Data push . 83

3.3.2.2 Data pull . 84

3.4 Summary . 85

xiv CONTENTS

II Architecture 87

4 The Ensemble E-Learning Framework 89

4.1 Architectural model . 90

4.1.1 Axial systems . 91

4.1.2 Core and Secondary services . 92

4.2 Data Model . 93

4.3 Integration Model . 94

4.3.1 Text File Evaluation Service Genre . 95

4.3.1.1 The ListCapabilities function 96

4.3.1.2 The EvaluateSubmission function 97

4.3.1.3 The GetReport function . 98

4.3.2 Digital Repositories Interoperability 98

4.3.3 Learning Tools Interoperability . 99

4.4 Summary . 101

5 Specializing Ensemble to computer programming 103

5.1 Architecture . 103

5.2 Data model . 104

5.2.1 The life-cycle of a programming exercise 106

5.2.2 PExIL . 106

5.2.2.1 Textual Elements . 108

5.2.2.2 Specification Elements . 109

5.2.2.3 Program Elements . 113

5.2.3 Evaluating PExIL . 115

5.3 Integration model . 116

5.3.1 Digital Repositories Interoperability 116

CONTENTS xv

5.3.1.1 Interface definition . 117

5.3.1.2 XML binding . 120

5.3.2 Learning Tools Interoperability . 120

5.3.3 Evaluation service . 122

5.3.3.1 Interface definition . 123

5.3.3.2 XML binding . 125

5.3.4 Workflow . 127

5.4 Tools selection . 129

5.5 Summary . 130

III Implementation 131

6 Learning objects repository 133

6.1 Architecture . 133

6.2 Implementation details . 135

6.2.1 Storage . 136

6.2.2 Validation . 136

6.2.3 Security . 139

6.2.4 User Interface . 139

6.2.5 Tests . 142

6.3 Case Study: using crimsonHex as a LMS plug-in 143

6.4 Summary . 145

7 Programming exercises converter 147

7.1 Exercise format conversion . 147

7.1.1 Approach . 148

7.1.2 Pivot format . 149

xvi CONTENTS

7.1.3 Abstract functions . 149

7.2 The BabeLO service . 150

7.3 Evaluation results . 152

7.3.1 Case study 1: repositories exchange 153

7.3.2 Case study 2: automatic assessment 154

7.4 Summary . 155

8 Programming Teaching Assistant 157

8.1 Use Cases . 158

8.1.1 Teacher . 159

8.1.2 Student . 160

8.2 Design . 161

8.2.1 Class TeachingAssistantLauncher 162

8.2.2 Class TeachingAssistant . 163

8.2.2.1 Class ExerciseManager . 163

8.2.2.2 Interface ProjectCreator 164

8.2.2.3 Interface ExerciseUtils . 164

8.3 Summary . 171

IV Validation 173

9 Ensemble evaluation 175

9.1 Evaluation Model . 175

9.2 Experiment Design . 176

9.2.1 Methodology . 176

9.2.2 Infrastructure . 177

9.2.3 Instruments and Data collection . 179

CONTENTS xvii

9.3 Results and discussion . 179

9.3.1 Usefulness . 180

9.3.2 Reliability . 183

9.3.3 Interoperability . 184

9.4 Summary . 185

10 Thesis validation 187

10.1 Hypothesis . 187

10.2 Data collection and validation . 188

10.3 Results and discussion . 189

10.3.1 Exercises solving . 189

10.3.2 Feedback . 193

10.3.3 Attendance . 195

10.3.4 Grades . 197

10.4 Summary . 198

11 Conclusions 199

11.1 Contributions . 200

11.2 Opportunities for future work . 201

11.2.1 Framework validation . 201

11.2.2 Framework extension . 202

11.2.3 Ensemble instance improvements . 202

A Nielsen’s heuristics 205

B Session survey 207

C Petcha’s user manual 223

C.1 Teacher’s user manual . 223

xviii CONTENTS

C.1.1 Launching Petcha . 223

C.1.2 Creating a project . 223

C.1.3 Writing a program solution . 224

C.1.4 Defining the exercise statement . 225

C.1.5 Defining and generating the test cases 228

C.1.6 Defining the feedback types . 234

C.1.7 Packaging and deploying the exercise 236

C.2 Student manual (distributed to the students - PT) 237

C.2.1 Execução do Petcha . 237

C.2.2 Criação de um projeto . 238

C.2.3 Resolvendo um exerćıcio . 240

C.2.4 Testando . 241

C.2.5 Submetendo uma solução . 243

D crimsonHex Core Functions 247

D.1 Register function . 247

D.2 Submit function . 248

D.3 Request and RequestAsset functions . 248

D.4 Search function . 248

D.5 Report function . 250

D.6 Alert function . 250

D.7 Create function . 251

D.8 Remove function . 251

D.9 Status function . 252

References 256

List of Tables

2.1 Features of CMS, LMS and LCMS. 18

2.2 LMS support of content standards. 23

2.3 Integration API in reference LMS. 24

2.4 Digital library software. 29

2.5 Learning Objects Repositories software. 29

2.6 Learning Objects Repositories. 31

2.7 Programming exercise facet (P-partial and F-full) 37

2.8 Users facet (P-partial and F-full) . 39

2.9 Assessment results facet (P-partial and F-full) 41

3.1 E-Learning frameworks survey. 56

3.2 Profiling Types of existing LOM APs. 62

3.3 QTI compliance. 72

3.4 Textual information facet. 75

3.5 Data files facet. 75

3.6 Configuration and recommendation parameters facet. 76

3.7 Tools facet. 76

3.8 Metadata facet. 77

3.9 Comparison of e-Portfolio integration strategies 81

5.1 Textual elements. 108

xix

xx LIST OF TABLES

5.2 Specification elements. 109

5.3 Program elements. 113

5.4 Core and extension functions of DRI. 117

5.5 Student’s attempt general data. 119

5.6 Student’s characteristics particular data. 119

5.7 LTI functions. 121

5.8 LTI launch parameters . 121

5.9 Core functions of the Evaluation Engine. 123

5.10 REST request and response for the ListCapabilities function. 124

5.11 REST request and response for the Evaluate function. 124

5.12 REST request and response for the GetReport function. 125

6.1 Average function execution times per interface (in seconds). 142

7.1 PExIL coverage based on the Verhoeff model. 149

7.2 BabeLO REST API. 151

7.3 Download time (ms) and overhead of BabeLO 153

8.1 ProjectCreator interface methods. 164

8.2 ExerciseUtils interface methods. 165

8.3 Generation of input data of test cases (R=random). 168

8.4 Binding PExIL to IEEE LOM. 171

9.1 The ESEIG experiment schedule . 177

9.2 Network selected systems . 178

9.3 Statistical data on interoperability of the network components 184

10.1 Hypothesis on Ensemble usage. 188

10.2 Survey results averages. 189

LIST OF TABLES xxi

10.3 Statistics on student participation. 190

10.4 Statistics on student participation. 194

10.5 Statistics on student attendance. 196

10.6 Statistics on student participation. 198

D.1 Core functions of the repository. 247

xxii LIST OF TABLES

List of Figures

1.1 Noteflight application. 2

1.2 Thesis structure. 7

2.1 The evolution of e-learning systems. 12

2.2 Integration classic models. 13

2.3 SOA components. 15

2.4 E-Learning system types. 18

2.5 Timeline of development of major LMSs. 20

2.6 LMS usage in Portuguese higher education institutions. 21

2.7 LMS interoperability facets. 22

2.8 AMS usage. 25

2.9 Evolution of software and specifications for repositories. 28

2.10 Usage of digital library software worldwide. 30

2.11 Generations of the Assessment Systems. 34

2.12 Interoperability facets of Assessment Systems. 36

2.13 Interoperability maturity percentage level of Assessment Systems. 42

2.14 Coverage of Assessment Systems interoperability features. 43

3.1 Steps for establishing e-learning standards [VA06]. 46

3.2 E-learning specifications and standards publications (1980-2010). 47

3.3 Simple Framework model [WBR04]. 49

xxiii

xxiv LIST OF FIGURES

3.4 Learning Technology System Architecture [FT99]. 50

3.5 OKI architecture. 51

3.6 IAF layered model. 52

3.7 SIF architecture. 54

3.8 E-Framework. 55

3.9 Evolution of e-learning Frameworks. 55

3.10 The hierarchy of elements in the LOM data model. 60

3.11 IMS CP package structure. 66

3.12 Common Cartridge Content Hierarchy. 67

3.13 IMS Common Cartridge package. 69

3.14 Data Integration. 78

3.15 API Integration. 79

3.16 IMS Full LTI. 80

4.1 EeF architectural model. 91

4.2 Structure of an IMS CC package. 94

4.3 Trends on the use of SOAP and REST web services. 95

4.4 The ListCapabilities function. 96

4.5 The EvaluateSubmission function. 97

4.6 The GetReport function. 98

4.7 The IMS DRI Specification. 99

4.8 The IMS Basic LTI Specification. 100

4.9 The IMS LTI Specification v.1.1 - integration with LIS services. 100

5.1 Overall architecture of the Ensemble instance. 104

5.2 Ensemble instance data model. 105

5.3 PExIL data model. 107

LIST OF FIGURES xxv

5.4 The specification element. 110

5.5 The program element. 113

5.6 Evaluation of PExIL expressiveness. 115

5.7 Network component diagram. 116

5.8 Response specification schema. 120

5.9 The reply type on the ERL specification. 126

5.10 The report type on the ERL specification. 127

5.11 Sequence diagram of the Ensemble instance. 128

5.12 The deployment architecture of the EeF. 129

6.1 UML components diagram of the crimsonHex repository. 134

6.2 Validation of XML files by a W3C XML Schema with Schematron rules [Rob02].138

6.3 Schematron processing [Rob02]. 138

6.4 crimsonHex WebManager. 140

6.5 crimsonHex plugin interface. 144

7.1 Exercise formats conversion using both approaches. 148

7.2 BabeLO architecture. 151

7.3 The Convert function. 152

7.4 Case study 1 - exchanging exercises between repositories 153

7.5 Case study 2 - automatic assessment. 154

8.1 Petcha use cases. 158

8.2 The GUI of Petcha with teacher and student modes. 159

8.3 The UML class diagram of Petcha. 161

8.4 Generation of the exercise descriptions. 166

8.5 An example of an exercise description. 167

8.6 PExIL files. 169

xxvi LIST OF FIGURES

8.7 Structure of the IMS CC manifest file. 170

9.1 System acceptability. Adapted from Nielsen [Nie94]. 176

9.2 UML deployment diagram for the Ensemble instance. 178

9.3 Results of each heuristic in the student’s profile. 180

9.4 Evaluation of Petcha’s flexibility. 181

9.5 Evaluation of Petcha’s freedom. 181

9.6 Results of each heuristic in the student profile. 181

9.7 Classification of Pectha by students. 182

9.8 Results of each heuristic in the teacher profile. 182

9.9 Results of the Ease of Use heuristic in the teacher profile. 183

9.10 Reliability of Petcha. 183

10.1 Average and standard deviation of exercises solving by student participation. 190

10.2 Evolution in started exercises. 191

10.3 Evolution of completed/solved exercises. 193

10.4 Average of feedback received by exercise and its helpfulness. 194

10.5 Evolution of feedback and its helpfulness. 195

10.6 Overall attendance of students of both groups. 196

10.7 Evolution of attendance. 197

10.8 Average grades from both groups of students. 197

C.1 New project. 224

C.2 Confirmation of the creation of the project. 224

C.3 Coding the program solution in VSE. 225

C.4 Matrix transposition code. 226

C.5 User interface areas of Petcha. 226

C.6 The Description tab. 227

LIST OF FIGURES xxvii

C.7 Exercise statement. 227

C.8 Data about the program solution. 228

C.9 Test cases management. 229

C.10 Description of the input data. 230

C.11 Definition of a test case (input part). 231

C.12 Definition of a test case (input part). 232

C.13 Automatic generation of test cases. 233

C.14 Test case update. 233

C.15 Invalid test case. 234

C.16 Public test case with feedback. 234

C.17 Feedback levels definition. 235

C.18 Exercise packaging. 236

C.19 Exercise deploy in crimsonHex repository. 237

C.20 crimsonHex repository. 237

C.21 Ecrã inicial do Petcha (modo aluno). 238

C.22 Criação de projeto. 239

C.23 Gestão da resolução de exerćıcios. 240

C.24 Enunciado do exerćıcio. 240

C.25 Codificação da solução por parte do Aluno. 241

C.26 Gestão de testes. 241

C.27 Novo teste. 242

C.28 Execução local de testes. 243

C.29 Feedback automático providenciado pelo Avaliador. 243

C.30 Feedback automático providenciado pelo Avaliador. 244

C.31 Solução correta. 244

C.32 Feedback automático providenciado pelo Avaliador. 245

xxviii LIST OF FIGURES

C.33 Estat́ısticas do exerćıcio. 245

C.34 Resolução dos restantes exerćıcios. 245

List of Acronyms

ACM Association for Computing Machinery.

ADL Advanced Distributed Learning.

AMS Academic Management Systems.

API Application Programming Interface.

AS Assessment Systems.

CEN European Committee for Standardization.

CMS Content Management Systems.

DC Dublin Core.

DL Digital Libraries.

E-F E-Framework.

EE Evaluation Engine.

EeF Ensemble E-Learning Framework.

GLC Global Learning Consortium.

HTTP Hypertext Transfer Protocol.

IAF IMS Abstract Framework.

ICPC International Collegiate Programming Contests.

ICT Information Communication Technology.

IDE Integrated Development Environments.

IEC International Electrotechnical Commission.

xxix

xxx Glossary

IEEE Institute of Electrical and Electronics Engineers.

ILOX Information for Learning Object eXchange.

IMS CC IMS Common Cartridge.

IMS CP IMS Content Packaging.

IMS LD IMS Learning Design.

IMS LODE IMS Learning Object Discovery & Exchange.

IMS SS IMS Simple Sequencing.

IOI International Olympiad in Informatics.

ISO International Organization for Standardization.

JAR Java ARchive.

JAWS Java Web Start.

JAXB Java Architecture for XML Binding.

LAO Learning Application Objects.

LCMS Learning Content Management Systems.

LDAP Lightweight Directory Access Protocol.

LIP Learner Information Package.

LIS Learner Information Services.

LMS Learning Management Systems.

LO Learning Object.

LOM Learning Object Metadata.

LOR Learning Objects Repository.

LTI Learning Tools Interoperability.

LTSA Learning Technology Systems Architecture.

LTSC Learning Technology Standards Committee.

MLE Managed Learning Environment.

Glossary xxxi

OAI-PMH Open Archives Initiative Protocol for Metadata Harvesting.

OJ Online Judge.

OKI Open Knowledge Initiative.

OpenUSS Open Source University Support System.

OSID Open Service Interface Definition.

PCMS Programming Contests Management Systems.

QTI Question and Test Interoperability.

SCORM Sharable Content Object Reference Model.

SIF Schools Interoperability Framework.

SMTP Simple Mail Transfer Protocol.

SOA Service-Oriented Architecture.

SOAP Simple Object Access Protocol.

SWT Standard Widget Toolkit.

TA Teaching Assistant.

URI Uniform Resource Identifier.

VLE Virtual Learning Environment.

WCR Web Content Resources.

WS-BPEL Web Services Business Process Execution Language.

WSDL Web Service Description Language.

xxxii Glossary

Chapter 1

Introduction

”I practice until I have my life in my fingers”

Pianists’ expression

For someone to acquire, improve or even maintain a complex skill it is necessary to practice

it on a regular basis [GP05, Eck09]. The amount of practice required depends on the nature

of the activity and on each individual. How well an individual improves with practice is

directly related with its inherent capabilities, its previous know-how about the domain and

the type of feedback that is available for improvement. If feedback is either non-existent or

inappropriate, then the practice tends to be ineffective or even detrimental to learning.

An apt example of a complex skill is music. Learning music requires discipline and perse-

verance while acquiring the concept of reading scores, practising an instrument or playing

with a group. In order to enhance these skills and motivate young students, instructors use

e-learning, mainly in introductory courses, to make the learning of music more appealing.

One good example is the NoteFlight1 web application (Figure 1.1), a tool designed to teach

music by creating, viewing, printing and hearing music notation. The tool was recently

integrated2 with Moodle, a popular Learning Management Systems (LMS). This integration

enables instructors to create assignments (e.g. giving students a partial composition to be

completed), to manually grade the student submissions and to give them feedback promptly.

Besides music, there are other areas where evaluation is a key component in practice such as

management, health sciences, electronics. Playing business games in management courses,

or simulating a human patient in life sciences courses, or simulating an electronic circuit

in electronics courses are examples of learning processes that require the use of special

1NoteFlight web site: http://www.noteflight.com
2NoteFlight demo with Moodle integration: http://videos.noteflight.com/MoodleBasicLTI.mov

1

2 CHAPTER 1. INTRODUCTION

Figure 1.1: Noteflight application.

authoring, rendering and assessment tools. These tools should be integrated in instructional

environments in order to provide a better learning experience. However, these tools would

be too specific to incorporate in an e-learning platform. Even if they could be provided as

pluggable components, the burden of maintaining them would be prohibitive to institutions

with few courses in those domains.

1.1 Motivation

The motivation for this thesis comes from yet another domain with complex evaluation:

computer programming. Introductory programming courses are generally regarded as dif-

ficult and often have high failure and dropout rates [AM05, OG06, RRR03]. Researchers

pointed out several causes for these rates [EFMM10]. The most consensual are:

Teaching methods - lectures and programming language syntaxes [LAMJ05, SB06];

Subject complexity - learning how to program means to integrate knowledge of a wide

variety of conceptual domains such as computer science and mathematics while devel-

oping expertise in problem understanding, problem-solving, unit testing and others.

Additionally, students petered out when they need to understand and apply abstract

programming concepts like control structures or to create algorithms that solve concrete

problems [EFMM10].

Student motivation - the public image of a ”programmer” as a socially inadequate ”nerd”

[Jen02] and the reputation of programming courses as being extremely difficult affects

negatively the motivation of the students [GM07].

1.1. MOTIVATION 3

Many educators claim that ”learning through practice” is by far the best way to learn

computer programming and to engage novice students [GP05, Eck09]. Practice in this area

boils down to solving programming exercises. Nevertheless, solving exercises is only effective

if students receive an assessment on their work. An exercise solved wrong will consolidate a

false belief, and without feedback many students will not be able to overcome their difficulties.

Assessment plays a vital role in learning [AM05]. However, automatic assessment of ex-

ercises other than multiple choice can be a rather complex task. This kind of evaluation

differs significantly from evaluations supported by most LMSs, encoded in the IMS Question

and Test Interoperability (QTI) specification3. The data model of QTI was designed for

questions with a set of pre-defined answers and cannot handle evaluation domains with

specialized requirements such as the computer programming. For instance, the assessment

of programming exercises requires tests cases, program solutions, compilation lines and other

data that cannot be encoded in QTI. Besides the lack of a formal description for programming

exercises, the interaction of assessment tools with other systems is not mature enough since

there is no communication specifications as stated in several surveys [LQ10a, QL11c].

Automatic assessment in computer programming domains can be applied in two distinct

learning contexts: curricular and competitive learning.

Introductory programming courses are part of the curricula of many engineering and sciences

programs. These courses rely on programming exercises, assignments and practical exam-

inations to consolidate knowledge and evaluate students. The enrolment in these courses

is usually very high, resulting in a great workload for the faculty and teaching assistants

responsible for assessing student programs.

While the concept of ”winners and losers” can hinder the motivation of students [VD03],

competitive learning is a learning paradigm that relies on the competitiveness of students

to increase their programming skills [Bur10, SKA08]. This is the common goal of several

programming contests where students at different levels compete such as: the International

Olympiad in Informatics (IOI)4, for secondary school students; the ACM International

Collegiate Programming Contests (ICPC)5, for university students; and the IEEExtreme6,

for IEEE student members. In this context, several tools are used to allows students to

train or participate in programming contests. These tools such as Programming Contests

Management Systems (PCMS) and Online Judges (OJ) rely also on the assessment of

programming exercises.

In both scenarios the manual assessment of programming assignments poses significant

demands on the time of teachers [DLO05]. Apart from being time-consuming, manual

3IMS QTI Web site: http://www.imsglobal.org/question/
4IOI Web site: http://ioinformatics.org
5ICPC Web site: http://icpc.baylor.edu/
6IEEExtreme Web site: http://www.ieee.org/membership services/membership/students/competitions/xtreme

4 CHAPTER 1. INTRODUCTION

assessment hinders the consistency and accuracy of assessment results as well as it allows un-

intended biases and a diverse standard of marking schemes [RSZ10]. This demand stimulated

the development of automated learning and assessment systems in many universities [AM05]

as a means for grading the programming exercises of students as well as giving feedback on

the quality of their solutions [TGPS08, SHP+06]. This feedback support is crucial for the

computer programming learning [WW08, Mor07], especially for first year students that need

to be adequately engaged in order to learn programming [Jen02]. Furthermore, immediate

feedback motivates students to continue practising [Dal99, Tru07].

Beyond the automatic assessment other relevant topic in this domain is the availability of

programming exercises. It is important that an e-learning system provides a collection of

exercises covering a course syllabus and with different levels of difficulty. It has been shown

that this can improve the performance of students and their satisfaction levels [WW08].

Students with lower computer skills can begin by solving easier problems in order to learn

progressively and to stay motivated to solve the harder problems later [lLH00]. At the same

time this gives them experience that is one of the factors that has a greater influence on

the student success in learning programming [WLK04]. In recent years, a large number of

programming exercises have been developed and published mostly for use in programming

contests. These exercises are generally stored in proprietary systems (e.g. Online Judges)

for their own use. Despite some efforts [QL12b] to define a common format to describe

programming exercises, each of these systems has its own exercise format, making it difficult

to share among instructors and students. This poses several issues on the interoperability of

the assessment systems with other e-learning systems.

A number of learning tools and environments have been built to assist both teachers and

students in introductory programming courses. Rongas, Kaarna, and Kalviainen [RKK04]

established a classification for these tools dividing them into four categories: 1) integrated

development interfaces, 2) visualization tools, 3) virtual learning environments, and 4) sys-

tems for submitting, managing, and testing exercises. To the best of the author’s knowledge,

no e-learning environment described in the literature integrates all these facets [VRV+11,

GM07, EFMM10]. Several systems [Jen08, VRV+11, XC11, GG08] try to address this issue

allowing the integration of automatic assessment tools with course management systems but

these approaches rely on ad hoc solutions or proprietary plug-ins rather on widely accepted

international specifications for content description and communication among systems.

1.2 Challenge

Assessing the work of students and providing individualised feedback to all students is time-

consuming for teachers and frequently involves a time delay. The existent tools prove to be

insufficient in complex evaluation domains where there is a greater need to practice [RKK04].

1.3. APPROACH 5

This dissertation addresses the following problem:

Student practice in domains with complex evaluation using e-learning

is currently unsatisfactory.

The main goal of this research is to foster the practice-based learning in domains with

complex evaluation. The essential tasks required by a practice-based learning environment

are already available in a profusion of e-learning systems. There are already systems to

manage instructions [LQ11a], to author and archive content [QL12a] and even to evaluate

exercises [QL12c]. The challenge is to bind them together in a network that enhances their

individual strengths and creates an environment for practising a complex skill. This insight

led to the following research question:

In domains with complex evaluation

is there an increase of effectiveness in practice-based learning

through the use of a network of best-of-bread e-learning systems?

1.3 Approach

The novel approach of this research is to network the best-of-breed tools for a specific domain,

rather than use the traditional approach of integrating components into a single system.

The cornerstone of this approach is an e-learning framework - called Ensemble - that acts as

a conceptual tool in the definition and deployment of such kind of e-learning network. This

framework relies on interoperability standards and specifications, thus several studies and

surveys were conducted to select the most relevant.

Based on this framework a network of systems and services was created and deployed for a

specific domain - the computer programming domain. This framework instance comprises

several systems and services and their integration poses interoperability issues on two levels:

content and communication. Content issues are tacked with a standard format to describe

programming exercises as learning objects. Communication is achieved with the extension

of existing specifications for the interoperation with several systems typically found in an

e-learning environment such as learning management systems, learning objects repositories

and assessment systems. Some of these systems were created from scratch and others were

adapted to support the new content and communication specifications.

Having in mind this approach the research question stated in the previous section leads to

the following hypotheses:

6 CHAPTER 1. INTRODUCTION

H1. Exercises solving - In a practical class students that use Ensemble start, complete

and effectively solve more exercises and this advantage is maintained or improved over

time;

H2. Feedback - In a practical class students that use Ensemble receive more feedback and

this feedback is effective in overcoming their difficulties;

H3. Attendance - Practical classes have more attendance when students use Ensemble

and this attendance is maintained or improved over time;

H4. Grades - Students that use Ensemble get better grades in the subject taught within

the network and in the programming course.

In chapter 10 this set of observable assertions is tested to validate the dissertation objectives.

1.4 Contributions

This dissertation includes several contributions that can be divided in two facets: conceptual

and concrete. Conceptual contributions are related with abstract concepts such as ideas,

algorithms, studies, surveys and theoretical frameworks. The conceptual contributions are:

Studies and surveys - e-learning frameworks [LQ10a]; LMS interoperability [LQ11a]; Pro-

gramming Exercises Assessment Systems [QL12c] and e-learning standardization [QL11c,

LQ10b, QL09].

Theoretical frameworks - a conceptual framework for the development of networks in

complex evaluation domains [QL11a, LQ11c];

Concrete contributions are related with the implementation of tools and specifications. The

concrete contributions are:

Frameworks - An Ensemble framework instance applied to computer programming7 [LQ11e,

LQ11b, LQ10f, LQF10];

Specifications, systems and services : PExIL8 - a standard format for the description

of programming exercises [QL11e, QL11d, QL11b, LQ09e, LQ09c]; CrimsonHex9 -

a programming exercises repository [LQ10c, LQ10e, LQ09a, LQ09d, LQ09b, LQ10e];

7http://ensemble.dcc.fc.up.pt
8http://ensemble.dcc.fc.up.pt/Pexil
9http://ensemble.dcc.fc.up.pt/CrimsonHex

1.5. THESIS STRUCTURE 7

Moodle plug-in for crimsonHex10 [LQ10d]; BabeLO11 - a programming exercises format

conversion service; Evaluate12 - a programming exercises evaluation service [LQ11d,

LQ10h, LQ10g]; Petcha13 - a teaching assistant system [QL12b].

1.5 Thesis structure

The organization of this dissertation is depicted in Figure 1.2.

E-Learning
Systems

STATE OF ART

2

E-Learning
Standards

ARCHITECTURE

Ensemble
Ensemble
Instance

based on

Data
Model

Integration
Model

Architectural
Model

extend s

IMPLEMENTATION
imp lements

BabeLO

EVALUATION

crimsonHex

Petcha

Data
Model

Integration
Model

imp lements

valid ates

Ensemble

Thesis

3

4 5 6

7

8

9

10

Figure 1.2: Thesis structure.

This dissertation is composed by nine chapters (gray rectangles) plus the introduction and

conclusions. These chapters are organized in logical parts (black rectangles). Each part is

described as follows.

Part 1 (State of Art) - gathers information on e-learning systems and standards. It

is composed by two chapters: e-learning systems and e-learning standards. The

former starts by tracing the evolution of e-learning systems from monolithic systems

to specialized services and stresses the interoperability features of three systems typi-

cally founded in introductory programming learning environments [RKK04]: Learning

Management Systems, Repositories and Assessment Systems. The latter gathers in-

formation on e-learning standards in order to choose the most suitable for the domain

of automatic evaluation of exercises. The organization of this chapter is based on

several studies found in the literature [JBK05, VA06]. In these studies the outcomes

of the standardization efforts on e-learning interoperability are divided in two levels

(content and communication). The chapter adds a new level (Frameworks) due to its

10http://ensemble.dcc.fc.up.pt/ChMoodlePlugin
11http://ensemble.dcc.fc.up.pt/BabeLO
12http://ensemble.dcc.fc.up.pt/Evaluate
13http://ensemble.dcc.fc.up.pt/Petcha

8 CHAPTER 1. INTRODUCTION

relevance in the last years on the development of new e-learning systems based on

Service-Oriented Architecture (SOA).

Part 2 (Architecture) - comprises two chapters. The first one presents the design of the

Ensemble e-learning framework as a conceptual tool to organize a network of e-learning

systems and services that use complex evaluation. The chapter details the three

framework models (architectural, data and integration). The second chapter presents

the use of the Ensemble framework in a specific domain: the computer programming

domain. The presentation comprises the following topics: 1) the architecture of

an Ensemble instance for the computer programming domain; 2) the data model

based on an interoperability language for programming exercises; 3) the integration

model of the systems and services involved through the creation and extension of

existent communication specifications; 4) selection of tools that comprises a deployable

Ensemble instance.

Part 3 (Implementation) - details the implementation from the scratch of three systems

and services. The crimsonHex repository is a specialized and extensible repository

of programming exercises described as learning objects. The BabeLO service handles

the conversion between different programming exercises formats. The Petcha system

acts as an automated teaching assistant in computer programming courses helping

both teachers to author programming exercises and students to solve them. It also

coordinates a network of heterogeneous systems, integrating assessment systems, learn-

ing management systems, learning object repositories and integrated programming

environments.

Part 4 (Evaluation) - includes two chapters. Firstly, an Ensemble acceptability evaluation

is performed focusing on the usefulness, reliability and interoperability of a network

of systems and services for the computer programming domain. Then, the thesis is

validated by proving the Ensemble effectiveness to achieve the thesis goals. These

evaluations rely on a classroom experiment made in a Polytechnic Superior school in

Porto. Although both chapters share the experiment conditions, the characterization

of the experiment is made on the first chapter. It includes the design of the controlled

experiment, the instruments used in this study and how the data was collected.

The last chapter resumes this dissertation pointing out the major contributions and future

work perspectives. Finally, four appendices are included at the end of the document. The

first two appendices include a list of heuristics and the usability survey (based on these

heuristics) answered by the students at the final of the experiment, respectively. The third

appendix is the user manual of Petcha for both teachers and students. The last appendix is

dedicated to the crimsonHex Application Programming Interface (API).

Part I

State of Art

9

Chapter 2

E-Learning systems

”There are two fundamental equalizers in life -

the Internet and education.”

John Chambers, CEO, Cisco Systems Inc. 1999

Nowadays, the learning experience is no longer confined within the four walls of a classroom.

Computers and the Internet have broadened this horizon by creating a way of delivering

education known as e-learning. E-learning or Electronic Learning can be defined as the

delivery of educational content via any electronic media, including the Internet, satellite

broadcast, audio/video tape, interactive TV, CD-Rom and others [TS05]. However there

are other activities such as practising, evaluating, assessing and giving feedback, that are

undertaken by teachers and students and goes beyond content delivery even though they

may operate on content that has been delivered. In this context e-learning systems play a

relevant role in the teaching-learning process facilitating the dissemination of knowledge by

teachers and its absorption by students.

This chapter starts by tracing the evolution of e-learning systems from monolithic systems to

specialized services. These services can be easily recombined in different learning processes.

This chapter focuses on learning processes within domains with complex evaluation. In

this domain there are several candidates to offer services such as those referred by Rongas,

Kaarna, and Kalviainen [RKK04], namely: Learning Management Systems, Learning Ob-

jects Repositories and Assessment Systems. These three types of system are detailed in the

remainder sections.

11

12 CHAPTER 2. E-LEARNING SYSTEMS

2.1 E-Learning evolution

The evolution of e-learning in the last decades has been astonishing. In fact, e-learning

seems to be constantly reinventing itself, finding new uses for technology, creating new tools,

discovering new concepts. Platforms for supporting e-learning have been evolving for some

years, exploring many approaches and producing a great variety of solutions. In spite of

their number, these platforms can be grouped according to their characteristics and their

ability to interact with each other. Thus, a good a way to understand them is by studying

both their architectural features and the standards they support.

2.1.1 Early systems

The genesis of e-learning, despite some efforts to foster remote education [Har06], coincides

with the development of network communication in the late 1960s, more precisely, with

the invention of e-mail and computer conferencing (1971). These innovations contribute

to the collaboration between teachers and students and initiate a new education paradigm

shift [Wil05]. During the 1980s and 1990s, there was a significant growth in the number

of part-time students and also in non-traditional learners, such as women’s returning to

the workforce after child rearing [Wil05]. The growth in lifelong learning market made the

educational institutions eager to accommodate the needs of these non-traditional students

and to offer them e-learning courses based on the Internet.

2.1.2 Component based systems

In their first generation e-learning systems (Figure 2.1) were developed for a specific learning

domain and had a monolithic architecture [DOL+07].

Monolithic

Single Domain

No Interoperability

No Standards

Component Based

Multiple Domains

Content Sharing

Learner Management

Emerging Standards (LO)

Basic Interoperability

Service Based

Specialized Domains

Service Sharing

Semantic Aware

LO Sequencing/Adapatability

Standards Based

Total Interoperability

Cloud E-Learning Services

1st Generation 2nd Generation Future

Figure 2.1: The evolution of e-learning systems.

2.1. E-LEARNING EVOLUTION 13

Gradually, these systems evolved and became domain-independent, featuring reusable tools

that can be used virtually in any e-learning course. The systems that reach this level of

maturity usually follow a component oriented architecture in order to facilitate tool inte-

gration. Different kinds of component based e-learning systems target specific aspects of e-

learning such as student or course management. This architectural model structures software

around pluggable and interchangeable components, thus enabling the development of larger

systems, resulting from the collaboration of different teams. In some cases component

oriented architectures led to oversized systems that are difficult to reconvert to changing

roles and new demands. This is particularly true in e-learning. A criticism to this approach

is that it reduced e-learning to the use of one-size-fits-all systems, i.e., systems that 1) can

be used on any learning subject but fails to address specific needs of each of them, and 2)

can be used by any student but is not able to adapt to unique characteristics of individuals

[DOL+07].

2.1.3 E-Learning services

Component based integrated environments became the corner stone of e-learning. Although

they tend to incorporate a growing number of tools, they cannot afford to be isolated from

other software systems operating in academic institutions. There are several strategies

routinely used to achieve this integration. The most common are depicted in Figure 2.2.

Integration usually includes at least one Web application, and this is typically designed

based on the well known three-tier architectural pattern [Eck95]. There is a potential for

integration in any the three classical tiers: presentation, logic and data.

Portals Features Share Database Replication

Figure 2.2: Integration classic models.

The portal strategy aggregates content from multiple sources with a common presentation

layer. It integrates at the presentation tier, providing an unified web interface to a number of

independent subsystems, including e-learning systems. The major advantage of this strategy

is the fact that it gives users a sense of unity, sometimes at the cost of compromising

consistency.

14 CHAPTER 2. E-LEARNING SYSTEMS

In the feature sharing approach the presentation is independent while sharing some fea-

tures. The integration is at the logic tier and is becoming increasingly popular as more

systems expose their functionality using web services. User authentication based in directory

services, such as Lightweight Directory Access Protocol (LDAP), is an apt example of this

type of integration. It should be noted that the use of web services for feature sharing is

not a remedy for this problem. Although service oriented architectures typical (but not

necessarily) use web services, using web services does not automatically qualify a system as

SOA.

Finally, integration may occur at the data tier where different applications share the same

content. In this context the partial database replication is arguably the most common

example. For instance a LMS may import data on students, courses and student enrolments

in courses from administrative systems to avoid the burden of entering this data manually.

These integration models are usually combined. For instance, a portal that provides an

unified presentation may also adhere to a single sign-on mechanism shared with other

services.

These approaches to system integration are a collection of pragmatic solutions that raises

their own problems. In fact, integration on specific points creates the same kind of entangle-

ment found in monolithic systems. Since integration is not driven by architecture, there is

no coherence among a disparate set of connections that ties up the system and compromises

future changes. This problem is not specific of e-learning systems and is generally approached

using SOA.

SOA [Erl05] is already a mature architectural pattern with established principles and tech-

nologies and can be defined as a systematic approach to system development and integration.

Instead of point-to-point integration, SOA proposes the development of systems around the

concept of interoperable services. These services must be loosely coupled, allowing them to

be easily recombined in different processes (typically business processes).

Figure 2.3 shows the SOA components and their relations, namely: contract - collection

of all the messages supported by the service; service - implementation of the functionality

promised by the contracts it exposes; message - unit of communication; service consumer

- software that interacts with a service through the exchange of messages; and end point

- an Uniform Resource Identifier (URI) that specifies where the service can be found and

consumed.

The communication between these components is generally based on Web services. The Web

Service Description Language (WSDL) provides a description of how to use a service. The

definition of how several Web services cooperate to achieve a given goal cannot be handled by

the WSDL specification and, in this case, the use of coordination models (e.g. orchestration,

choreography) is needed to define an interoperable integration model. This model facilitates

2.1. E-LEARNING EVOLUTION 15

End-Point

Contracts

Messages

Service
Consumer

Service

binds to

sends/receives

understands

exposes

sends/receives

implements

serves

describes

Figure 2.3: SOA components.

the expansion of automated process integration and the management of the workflow within

services.

This architectural pattern is appropriate in contexts where components (services) participate

in several processes, and process configuration needs to be flexible. This concept of process

is applicable to e-learning: flexible learning processes can be used to congregate the best e-

learning services available for each particular domain and create an instructional environment

more adapted to the student needs and requirements. As this type of architectures became

mainstream, a few initiatives to adapt SOA to e-learning emerged [LQ10a]. These new

frameworks and APIs contributed with the identification of service usage models and are

generally grouped into logical clusters according to their functionality [ASQ+06].

Service oriented architectures cannot be seen as a silver bullet for all e-learning system

integration problems. The adoption of SOA creates new challenges such as 1) the integration

of heterogeneous services based on semantic information, 2) the automatic adaptation of

services to users (both learners and teachers), and 3) the lack of a critical mass of services

to supply the demand of e-learning projects.

1) Web services do standardize communication but they do not ensure that every service

assigns the same meaning to what is being communicated. This is a general problem with

heterogeneous services and affects particularly e-learning since what is being communicated

involves complex data (e.g. learning objects) and complex functions (e.g. automatic assess-

ment).

2) Other criticism to integrated e-learning systems is the lack of focus on the student and

on the learning domain. Tools tend to be too common to all learning domains and the same

contents are presented to all students enrolled in a same course. On its own, the adoption of

SOA will not address this problem and there is a risk that it may actually increase it, if it

is not driven by pedagogical concerns. For instance, if the same course content is offered to

16 CHAPTER 2. E-LEARNING SYSTEMS

a wider range of students with different backgrounds then it will be actually be less focused

on students. However, the use of services creates a possibility for a systematic approach to

use adaptability in e-learning. On one hand, a service contract is a good place to ensure

that the data on which to base adaptability can be effectively gathered. On the other hand,

adaptability in itself may be provided as a service that can be configured in a learning

process.

3) Last but not least, the number of e-learning services is still very small. Before reaching

a critical mass of e-learning services, available to participate in reconfigurable pedagogical

processes, it will be difficult to support the claims of SOA in the e-learning context. Surely,

many infrastructural services are common to any SOA service, but there are few truly

pedagogical services available.

2.1.4 Specialised E-Learning Services

The pressure to adopt SOA in e-learning is mostly fuelled by managerial needs of academic

institutions, rather than pedagogical concerns of teachers. In some cases is an internal need,

of combining infrastructures of autonomous departments with different responsibilities within

an academic institution. In other cases results from external pressure, of linking with other

institutions in order to offer join e-learning programs. In these cases the resulting platform

typically relies on an LMS, thus having the same problems of component based systems,

especially from an educational viewpoint.

Traditionally, features are added to LMS by integration of new components. These compo-

nents are specific to an LMS and tend to be very general, in order to be reusable in as many

courses as possible. By contrast, a service may be reused on different systems, thus making

more sense to specialize it to a specific purpose. Moreover, a service can make use of certain

hardware or software; for instance a specific program available only on a particular platform.

Last but not least, specialized e-learning services are able to participate in multiple and easily

reconfigurable learning processes. A learning process is a collection of related and structured

activities. In this context, each activity is implemented by a specialized e-learning service.

Services may participate in several learning processes and new processes can be created or

reconfigured.

This dissertation emphasis the learning processes in domains with complex evaluation. These

learning processes involve several learning systems such as those referred by Rongas, Kaarna,

and Kalviainen [RKK04], namely:

Learning Management System - to manage and retrieve the exercises to the learners;

Learning Objects Repository - to persist exercises and related meta-information;

2.2. LEARNING MANAGEMENT SYSTEMS 17

Assessment System - to evaluate and produce feedback on learners’ attempts.

These types of services are very different in nature. The LMS is not in strict sense a

specialized service. It is a system designed to be a complete and generic e-learning solution

rather than a service. Nevertheless, since a typical LMS is a component based system, it

may be extended to incorporate the features it lacks to communicate with other services,

and provide a front-end both for learners and teachers. The LMS possess a user interface

and learners can interact directly with it. The other two, the repository and the assessment

systems, provide truly specialized services.

In the following sections each of these systems are detailed with emphasis on their interop-

erability support.

2.2 Learning Management Systems

Nowadays, an LMS plays a central role in any e-learning architecture and can be defined

as a software application for the administration, documentation, tracking, and reporting of

training programs, classroom and on-line events [Ell09].

2.2.1 Categories

Several designations and respective acronyms are used to typify LMSs (Figure 2.4). The

following list includes the most common: Content Management Systems (CMS) , Learning

Management Systems (LMS), Learning Content Management Systems (LCMS) , Managed

Learning Environment (MLE) and Virtual Learning Environment (VLE). These five types

of e-learning systems have a considerable overlap and they are difficult to differentiate. For

the sake of simplicity only the first three will be considered as representative of the main

categories of e-learning systems.

While these three categories still share common characteristics, they also have some distinc-

tive features that justify distinguishes among them. The CMS was introduced in the mid-

1990s mostly in the on-line publishing industry. This type of system can be defined as a data

repository that also includes tools for authoring, aggregating and sequencing content. The

main goal of these tools is to ”simplify the creation and administration of on-line content”

[Nic01]. CMSs are focused on content with the main purpose to store information and

provide access to it. CMS content is organized in small self-contained pieces of information

to improve reusability at the content component level. These content components when used

in the learning domain are called Learning Objects (LOs).

The LMS goal is to simplify the administration of learning/training programs within an or-

18 CHAPTER 2. E-LEARNING SYSTEMS

MLE

VLE

CMSLMS LCMS

Figure 2.4: E-Learning system types.

ganization [HK06]. Two usage scenarios are relevant: learners can use the LMS to plan their

learning experience and to collaborate with their colleagues; teachers can deliver educational

content and track, analyse and report the learner evolution within an organization. Most

LMSs are structured around courses rather than content, thus they are only reusable at the

course level. LMS also do not support the creation of instructional content and teachers

must resort to third party content creation tools. A LCMS combines the administrative and

management features of a LMS with the content creation of a CMS. In a LCMS, you would

have libraries of LOs that can be used either independently, or as a part of larger instruction

sets. For instance, one LO can be used in several courses with several learners.

Table 2.1 relates the three categories of applications based on several main features [HK06,

Don02]. Each feature may have a robust (R) or limited (L) support in these categories or,

simply, no support.

Table 2.1: Features of CMS, LMS and LCMS.

Features CMS LMS LCMS

Manage learners - R L

Manage content R L R

Create content R - R

Launch and track e-learning - R L

Assessment and feedback - R R

Nevertheless, the trend in e-learning systems is integration, therefore most of them evolved

to the same set of standard features and many of these acronyms are recurrently used as

synonyms. In the course of this section the LMS is taken as the representative of e-learning

systems since the term LMS is often used to refer to both LMS and LCMS, although the

LCMS is a further development of the LMS.

2.2. LEARNING MANAGEMENT SYSTEMS 19

As every kind of software, LMSs continue to evolve to meet market demands, namely:

SOA - in these architectures LMSs expose their functions as services and consume services

from their operational environments, improving their interoperability with other e-

learning systems [DOL+07];

Web 2.0 - with the recent appearance of Web 2.0 tools and the popularity of social net-

working tools like Facebook and Twitter, there has been a great demand to use similar

tools in the LMS to enhance the communication among teachers and students;

Talent Management - Talent Management software systems are an extension of tradi-

tional human resource management systems. Some researches [Ber09] shows that in

2009 more than 70% of large companies have an LMS already and almost 1/3 of these

companies are considering replacing or upgrading these systems with integrated talent

management systems [LL10];

Mobile Learning - with more students working at distance, there has been also a strong

demand to make e-learning applications accessible through mobile devices (e.g. Smart-

phones, Tablets) know as Mobile Learning or m-learning;

”Software as a Service” - with Software as a Service (SaaS) schools can relieve the fi-

nancial burden of maintaining their LMSs by outsourcing the hosting service;

Open Source Software - commercial LMS (e.g. Blackboard, WebCT) have dominated

the education market in previous years, but as costs increase, schools and companies

are now looking for other options such as open-source solutions (e.g. Moodle, Sakai)

that are financially more attractive.

2.2.2 LMS Interoperability

Interoperability is the ability of different computer systems, applications or services to

communicate, share and exchange data, information and knowledge in a precise, effective

and consistent way. In the e-learning field this topic is extremely important since there is

the need for all systems that typically compose an e-learning environment to communicate

and share data consistently. In this context, several organizations have been developing

specifications and standards in the last years focusing on the content and communication

interoperability [Reh03, DOL+07].

In the following sub-subsections an LMS interoperability comparative study is conducted.

Several studies have been conducted to analyse and evaluate LMSs from pedagogical and

institutional perspectives [Bri98]. However, the author is not aware of any study to evaluate

the interoperability of LMSs with other systems typically found in an educational institution.

20 CHAPTER 2. E-LEARNING SYSTEMS

This study is part of an effort to select an LMS on which to base the development of e-

learning systems integrating heterogeneous components. Given the number of LMS vendors

it would be impracticable to study them all. Therefore, two LMS vendors are chosen and

their interoperability features are analysed.

2.2.2.1 LMS selection

A good number of LMSs that were developed in the past fifteen years are still in use and

under active development. For the purpose of this study the focus is on a few systems that

are representative of the LMS universe in terms of their characteristics and market share.

A simple categorization of this type of systems is according to their development models.

There are fundamentally two: open source systems, such as Moodle, Sakai, .LRN or Dokeos;

and commercial systems such as WebCT/Blackboard or Desire2Learn. Figure 2.5 presents a

timeline of several initiatives grouped by their development model. In these two categories

the most popular systems were selected taking as reference the available data on global LMS

usage [DW09].

Moodle v.1.9

Sakai

Dokeos

aTutor

.LRN

v.2.7

v.1.8

v.1.6

v.2.5

WebCT

Blackboard

Desire2Learn

Informetica

eCollege

v.9.1

v.3.0

v.3.5

v.2.1

Open Source
Systems

Commercial
Systems

2000 2005 20101995

Figure 2.5: Timeline of development of major LMSs.

The Figure 2.5 shows that the first major LMSs adopted a commercial development model

but since the beginning of this century there has been a shift towards open source systems. In

fact, this shift was already recognized as a trend in LMS development [DW09]. In spite of the

2.2. LEARNING MANAGEMENT SYSTEMS 21

growing popularity of open source, commercial systems are still relevant and they must be

included in any representative sample of LMSs. As part of this study a survey was conducted

in 2011 on e-learning systems usage in Portuguese higher education institutions. About 20

different institutions responded and the results for LMS usage are shown in Figure 2.6.

10%

5%

(Sakai)

10%

(Others)

5%

(Not Exist)

70%

(Moodle)

10%

(Blackboard)

Figure 2.6: LMS usage in Portuguese higher education institutions.

The selection of the LMSs for this interoperability study was based on the two most popular

LMS - Moodle and Blackboard. They represent the two main development models used by

LMS vendors (open source and commercial); and combined they have a significant share

on the LMS market (33.2% on the international market [DW09] in 2009 and 80% on this

recent survey in Portuguese institutions). The following paragraphs provide an overview of

the selected systems.

Moodle (version 1.9.9 - 8th June 2010) is a free and open-source LMS written in PHP

and created by Martin Dougiamas. Its name is an acronym for Modular Object-Oriented

Dynamic Learning Environment. In early January of 2010, Moodle had a user-base of 46,624

registered sites with 32,464,992 users in 3,161,291 courses in 209 countries and in more than

75 languages [CF07].

Blackboard (version 9.1 - 1th April 2010) was developed by Blackboard Inc. in 1997 and is

an on-line proprietary LMS that is used by over 3700 educational institutions in more than

60 countries. In February 2006, the virtual learning environment called WebCT (Course

Tools) was acquired by Blackboard Inc. (Blackboard, 2005) and, as part of the acquisition

terms, the Blackboard brand was assumed until now.

2.2.2.2 Interoperability Facets

The interoperability features of a system reflect the operational environment where it is

expected to be deployed. The operational environment of an LMS includes different systems

22 CHAPTER 2. E-LEARNING SYSTEMS

and services with which it may have to communicate and exchange data. As depicted in Fig-

ure 2.7 two broad classes of systems were identified that usually integrates in the operational

environment of an LMS, each corresponding to a different facet in LMS interoperability. A

layer of infrastructural systems and services was also identified that is domain independent

but that plays an important role in LMS interoperability. For the purpose of this study, the

Learning Content
Management Systems

Academic
Management Systems

Infrastructure
Services

L M
S

Figure 2.7: LMS interoperability facets.

identified broad classes of systems are the following:

LCMS are used for the development, management and publishing of digital learning con-

tent (e.g. Learning Objects) that the LMS delivers. Examples of these systems are

the Learning Object Repositories, e-Portfolio Systems, Authoring Tools, Specialized

Evaluators and others.

AMS are used for managing academic data information of an educational institution. Typ-

ical features of these systems are the management of courses, classes and students, the

enrolment of students in courses, the submission of summaries and grades by teachers,

payment of fees, among others.

Apart from these facets the LMS is supported by infrastructure services providing basic

functions that are not specific to e-learning, such as directory services for authentication and

authorization or printing services. This infrastructure also includes the web or application

server, the database engine and the operating system. In many cases this infrastructural

layer is used for implementing ad hoc interoperability solutions.

2.2. LEARNING MANAGEMENT SYSTEMS 23

In the following paragraphs the selected systems - Moodle and Blackboard - are analysed

and compared regarding these two facets. In each facet the remote systems, the existent

standards and the interoperability issues are identified and categorized.

The Learning Content Management facet focuses on the interoperation with systems

that provide pedagogical content and services delivered by the LMS. The content delivered

by an LMS can be created, obtained, gathered or evaluated in several types of systems

such as Learning Objects Repositories, E-Portfolio systems, Authoring Tools, Specialized

Evaluators or Quizzes.

The integration with e-learning content management systems can be implemented on the

LMS data or business layer. In the former the integration uses the import/export features

of both system and relies on the support of common formats. In the latter the integration

relies on the existence of compatible web services in both systems.

Data integration is the simplest and most popular form of integration in content management

and assumes an important role in the LMS interoperation with system types that do not

require a tight integration, as is the case with authoring tools (e.g. Reload, Hot Patatoes).

For instance, the Reload1 authoring tool can be used to create learning objects in Sharable

Content Object Reference Model (SCORM) format and Blackboard supports and imports

SCORM packages. Another example is the the Hot Potatoes2 system that enables the

creation of quizzes - interactive multiple-choice, short-answer, jumbled-sentence, crossword,

matching/ordering and gap-fill exercises - in HTML format. Moodle includes an activity

that imports the quiz (HTML file) previously generated in the Hot Potatoes system.

Table 2.2 lists some of the most important e-learning content standards and specifications

defined in the last years by educational organizations. For each standard the LMS support

status is presented.

Table 2.2: LMS support of content standards.

Specifications Moodle 1.9 Blackboard 9.1

IMS CP yes yes

SCORM yes yes

IMS CC partial partial

IMS QTI yes yes

IMS LD no no

IMS SS no no

1Official Web site: http://www.reload.ac.uk/
2Official Web site: http://hotpot.uvic.ca/

24 CHAPTER 2. E-LEARNING SYSTEMS

The studied LMS support almost all the LO package standards with exception of the recent

IMS CC that is only partially supported3. In relation to the design and sequencing of learning

activities standards are not yet supported by these LMS, probably due to their complexity.

It is possible also to integrate an e-learning tool with an LMS on the business layer. For

instance, the IMS Learning Tools Interoperability (LTI)4 provides a uniform standards-based

extension point in LMSs allowing remote tools to be integrated. Although this specification

is still not explored by the major LMS vendors, obtaining the certified support for IMS

LTI is already a major milestone in their development plan. Another integration approach is

through the use of a common API. The LMSs provide APIs to allow developers to extend their

predefined features through the creation of plug-ins. Table 2.3 enumerates the approaches

used by the selected LMSs to address the interoperability issues regarding the integration

with other system types.

Table 2.3: Integration API in reference LMS.

System types Moodle 1.9 Blackboard 9.1

Repositories Repository API Building Blocks API

E-Portfolios Portfolio API Building Blocks API

Assessment systems OPAQUE ws no

Moodle version 2.0 includes several APIs to enable the development of plug-ins by third

parties to access repositories and portfolios. Blackboard uses the Building Blocks technology

to cover the integration issues with other systems. A Building Block is simply a web

application that runs on the Blackboard application server. This technology allows third

parties to develop modules using the Building Blocks API. For instance, the company

Verbena Consulting LLC created a building block that provides a search user interface

that allows searching in the Merlot5 referatory and returns matching results along with

the metadata for each LO.

The Academic Management facet aggregates all the information regarding administra-

tive, financial, technical or scientific processes usual in educational institutions. Unlike in

content management, there is a sole type of system in this facet - the Academic Management

Systems (AMS). The AMS typically manages processes such as the enrolment of students

in courses, the management of grades or the payment of fees. This interoperability facet

is not as mature as the LCMS facet and there are still few standards available. This fact

burdens the integration of academic management systems with LMSs that must resort to

ad hoc solutions based on the infrastructural layer. Figure 2.8 synthesizes the 20 responses

3Moodle 2.2 supports IMS CC package import and version 2.3 (release date: 18th June 2012) will export

CC packages.
4Official Web site: http://www.imsglobal.org/lti/
5Official Web site: http://www.merlot.org

2.2. LEARNING MANAGEMENT SYSTEMS 25

received from different institutions regarding the AMS usage. This data shows that no

30%

(SIGA)

Home made

10%

Unknown

20%

SIGARRA

5%

SOPHIA

15%
10%

(Web On Campus)

5%

(SIGAcad)

FENIX

5%

Figure 2.8: AMS usage.

system is clearly preferred by Portuguese educational institutions. The choices are divided

by the systems SIGA, SIGARRA, SOPHIA and Web on Campus. It should be noted that

most of these evolved from home grown systems and are in use in different schools from the

same university or polytechnic institute. In some cases spin-offs were created to develop and

commercialize these systems but the size of these companies cannot be compared with those

developing other types of systems related to e-learning, such as LMSs.

There is an obvious gain in integrating AMSs and LMSs: avoiding the duplication of

processes. For instance, course management is required in both systems and with a tight

integration it can be performed in just one of them. Other processes can be performed in

only one side and reflected in the other such as: enrolment of students, exams schedule,

summaries, absences and grades management. Currently, educational institutions use ad

hoc solutions to implement this type of integration. For instance a LMS may import data on

students, courses and student enrolment in courses from administrative systems to avoid the

burden of entering this data manually. These integration models are usually combined. For

instance, a portal that provides and unified presentation may also adhere to a single sign-on

mechanism shared with other services.

2.2.3 Conclusions

The main conclusion of this study is that there is still a long road ahead in LMS interoper-

ability. In general it is not straightforward to connect an LMS to another system. A lot of

work has already been done in defining standards but many of them are supported neither

26 CHAPTER 2. E-LEARNING SYSTEMS

by the LMS nor by the system that surround them.

LMS interoperability was analysed based on two facets: Learning Content Management and

Academic Management. There is a huge asymmetry among these facets: the first has a larger

number of systems and mature standards; the systems in the second facet are mostly home-

grown with few and immature standards to regulate both content (e.g. academic records,

course forms, grades, summaries) and communication.

The content management facet is much more developed then the academic management

facet. Content formats, especially those of learning objects, are already mature and widely

supported by the analysed systems. The notable exception is the recent Content Cartridge

of IMS that is not yet supported, as is not its companion specification - the Learning

Tools Interoperability - that is still being implemented in Moodle and Blackboard. This

specification promises to be a major step towards content interoperability among e-learning

systems. Meanwhile, to integrate LMS with content management systems one must resort

to system specific APIs.

On the academic management facet there are no AMS standing out from the crowd and most

of those in use, at least in Portuguese higher education institutions, are home grown systems.

Standards in this facet are few and immature and not widely supported by existing AMS.

As a consequence, the integration of LMS and AMS relies on infrastructure services. A set

of integration strategies were presented that are commonly used for implementing these ad

hoc integrations.

2.3 Repository Systems

A repository can be thought of as a storage area from which users can publish/retrieve

resources. Most of these resources are described by metadata for discoverable purposes. The

need for repositories has been growing in the last decade, since more educators are eager to

create and use digital content and more of it is available. This growth led many to neglect

interoperability issues that are fundamental to share educational resources and to (re)use

them on different contexts. In this section an interoperability study is conducted on the

existing repository software distinguishing two types of repositories - digital libraries and

learning objects repositories - two concepts that overlap to a certain extent. It also focuses

on the distinction between the actual repositories and the software used to implement them,

highlighting the differences in software features for both categories.

2.3. REPOSITORY SYSTEMS 27

2.3.1 Categories

There are several typologies to classify the repositories available in the literature. McGreal

[McG08] categorises repositories in three types based on resource location: 1) those that

house content primarily on site (e.g. MIT Open Courseware); 2) those that provide metadata

with links to resources housed at other sites (e.g. Merlot) – also called referatories [Rog03];

3) those that provide both content and links to external content (e.g. Ariadne). Ochoa

[OD09] conducted a detailed quantitative study of the process of publication of learning

objects in repositories and grouped repositories in five types: Learning Object Repositories,

Learning Object Referatories, Open Courseware Initiatives, Learning Management Systems

and Institutional Repositories. Other relevant studies [Ter08, RSS10, Fay10] categorize

repositories mainly by general characteristics as language used, subject area, end users,

fee type, quality control, etc.

In this dissertation, repositories are divided in two groups: digital libraries (DLs) and

learning objects repositories (LORs). The evolution of the software and specifications for

repositories can be seen in Figure 2.9. In the next subsection both are detailed.

Digital libraries store documents in digital formats and metadata on those documents.

Learning objects repositories store learning objects, which are objects containing educational

content and metadata on those contents. At first sight a LOR seems to be basically a

DL storing educational content but there are also differences related with metadata and

packaging. The metadata schemata used by DLs is generic (e.g. Dublin Core - DC, Metadata

Encoding & Transmission Standard - METS) while those used by LORs are specific to e-

learning (e.g. LOM). Also, LORs package content and metadata in a single unit using e-

learning standards (e.g. SCORM) while DLs usually keep content and metadata separated.

In spite of these differences and similarities there are several references in the literature on

attempts to implement LORs using DLs software [Les06, RWS06]. A reasonable explanation

for this is the lack of software specifically for implementing LORs. In fact, unlike what

happens with DLs, most implementations of LORs use home-grown software.

2.3.2 Repository Interoperability

This subsection presents an interoperability study on the existing repositories. Two types of

repositories software are analysed - digital libraries and learning objects repositories. This

analysis distinguish between the actual repositories and the software used to implement

them, highlighting the content and communication specifications supported by the both.

28 CHAPTER 2. E-LEARNING SYSTEMS

96 97 98 99 00 01 02 03 04 05 06 07 08 09 10 11 12

LOM

Dublin Core

IMS metadata

CP
SCORM

CC
ILOX

SPI

OAI-PMH

SRU
DRI

SQI

CORDRA

PENS

SWORD

Fedora

intraLibrary

Greenstone

EPrints

CONTENTdm

DSpace

Harvest Hive

DOOR

Flori

LOR
software

Digital
Libraries
Software

Content
Standards

Communication
Standards

Figure 2.9: Evolution of software and specifications for repositories.

2.3.2.1 Software for Digital Libraries

A non-exhaustive list of software to create DLs is presented in Table 2.4 [RSS10].

According to the Directory of Open Access Repository (OpenDOAR) - a directory of aca-

demic open access repositories - and the Registry of Open Access Repositories (ROAR) data,

at December 2011, the majority of repositories (in a sample of 2164 repositories) are built

using the DSpace software, as shown in Figure 2.10.

Software for Digital Libraries (DL) was designed for repositories of digital content in general

not specifically for LOs. Thus, this type of software in general lacks some of the features

required by Learning Objects Repository (LOR) such as the support for: 1) e-learning

2.3. REPOSITORY SYSTEMS 29

Table 2.4: Digital library software.

Repository Commercial Metadata Communication

CONTENTdm Commercial DC, METS OAI, Z39.50

DigiTool Commercial DC, MODS,METS OAI, Z39.50

DSpace Free DC, MODS,METS OAI, SWORD, OpenSearch, SR*

EPrints Free DC, MODS,METS OAI, SWORD

Equella Commercial LOM OAI, SWORD

Fedora Free LOM OAI, SWORD

Greenstone Free METS OAI, Z39.50

Zentity Free DC, METS OAI, SWORD, RDFS

metadata (e.g. LOM) and content packaging (e.g. SCORM); 2) federated searching; 3)

classification using folksonomies; 4) versioning, reviewing and evaluation; 5) interoperability

with e-learning systems. However, the newest versions of some of the systems listed in

Table 2.4 recently added support for metadata export using learning standards such as

LOM. These efforts justify that in a near future this type of repositories could converge.

2.3.2.2 Software for Learning Objects Repositories

A LOR is a repository that manages learning objects and their respective metadata. Al-

though much useful work has been done and considerable progress made, the existing software

for creating LORs is still to a great extent confined to home-grown software.

Table 2.5: Learning Objects Repositories software.

Repository License Metadata Communication

ARIADNE Free DC,LOM,MLR SPI,SWORD,PENS,SQI,OKI

Flori Free - -

HarvestRoad Hive Commercial LOM/SCORM OAI, OKI

IntraLibrary Commercial DC, LOM/SCORM SWORD,SR*

Table 2.5 presents a list of software for creating LOR with the licensing and supported

standards. The majority of the LORs available nowadays are Web applications developed

using non-repository software due to the lack of support of these tools for the e-learning

requirements as stated above. A non-exhaustive list of LOR is presented in Table 2.6. All

these LORs are free of charge provided that they are not used for commercial purposes.

Most LORs store multidisciplinary content rather than specialized domain content. Exam-

ples of specialized domain content are the programming exercises that are mostly enclosed

30 CHAPTER 2. E-LEARNING SYSTEMS

OPUS

3%

dLibra

3%

Digital Commons

4%

Eprints

15%

Dspace

39%

Other

18%

Unknown

18%

Figure 2.10: Usage of digital library software worldwide.

in Online Judges such as the UVA (University of Valladolid) Online Judge - an automated

judge for programming exercises created in 1995 with the aim of training users who par-

ticipate in worldwide programming competitions. The judge is hosted by the University of

Valladolid and its archive contains over 2700 exercises. The set of exercises is continuously

being extended but it lacks interoperability features such as standardization of the exercises

content as learning objects and implementation of communication specifications to improve

accessibility for the educational community of teachers and students [VRV+11].

In fact repository interoperability is one of the main concerns stated by users of a compre-

hensive survey [Tea06] made by the Jorum team. Existing repositories usually store learning

objects from several domains (referatories). They provide on-line catalogues through specific

and tightly coupled web-based interfaces. These interfaces provide tools for the manage-

ment throughout the life cycle of learning objects, namely, submission, comment/review,

browse/search and download. It has also been noticed that most of the existing repositories

do not store actual learning objects. They just store meta-data describing Learning Object

(LO), including pointers to their locations on the Web, and sometimes these are dangling

pointers. Although some repositories list a large number of pointers to LO, they have few

instances in any category, such as programming problems. Last but not least, the LO

listed in these repositories must be manually imported into a LMS. A specialized system

such as an Assessment System to perform specific evaluations or an intelligent tutor system

cannot query the repository and automatically import the LO it needs. In summary, current

repositories provide specialized search engines for LO and are not adequate for feeding

specialized services.

2.4. ASSESSMENT SYSTEMS 31

Table 2.6: Learning Objects Repositories.

Repository #LO Type

Bepress 52768 Legal

BerkleeShares 123 Music

Connexions 19783 General

GEM 47321 General

LeMill 43734 General

LO.NET 302 General

LRE (European Schoolnet) >200K General

Maricopa 1818 General

Merlot 30398 General

Scriptorium 512 Humanities

Wisc-Online 2133 General

2.4 Assessment Systems

The most effective type of exercises in any learning domain, both for knowledge acquisi-

tion and for student grading, are seldom quizzes. Text file automatic evaluation differs

significantly from quiz evaluation. One good example is programming exercises. Automatic

assessment of programming exercises has become an important method for grading students’

exercises as well as giving feedback on the quality of their solutions [AM05, SHP+06,

TGPS08].

This section surveys Assessment Systems (AS) for programming exercises focusing on their

interoperability features. Nowadays there are a large number of AS referenced in several

surveys found in literature [RSZ10]. The majority of these surveys enumerates and compares

the same set of features such as how the analysis of the code is made, how the tests are defined

or how grades are calculated. These surveys seldom address the AS interoperability features,

although they generally agree on the importance of the subject, due to the comparatively

small number of systems that implement them. This lack of interoperability is felt at content

and communication levels. Both levels rely on the existence of specifications that uniformly

describes the content of programming exercises and the way they should be shared among the

systems that are typically coupled with AS. Examples of these systems are LMSs, PCMSs,

OJs, LORs and IDEs.

The main goal of this section is to gather information on the interoperability features of

the existent ASs and to compare them regarding a set of predefined criteria such as content

specification and standard interaction with other tools. The intended benefit of this survey

is twofold: 1) to fill the gap on ASs interoperability features found in most surveys; 2) to

32 CHAPTER 2. E-LEARNING SYSTEMS

help instructors, educational practitioners and developers when they have to choose an AS

to integrate in their e-learning environments.

2.4.1 Evolution of Assessment Systems

In recent years, programming courses in secondary schools and universities are characterized

by extensive curricula and large classes. In this context, the assessment of programming

assignments poses significant demands on the instructor’s time and other resources [DLO05].

This demand stimulated the development of automated learning and assessment systems in

many universities [AM05]. These systems assess programming exercises and assignments

submitted by students, and provide evaluation data and feedback. They present a wide

variety of features related with programming language support, evaluation type, feedback,

interoperability, learning context, security and plagiarism.

Early systems [Ree89, JU97, MGH98, SMK01] assess exercises and assignments in a single

programming language respectively, Pascal, ADA, Prolog and Scheme. With the advent of

the Internet and the increase of platforms heterogeneity, web interfaces began to play an

important role in the dissemination of several systems [PRS+03, Jue03, LS03, BGNM04].

The last two were among the first AS to support multiple programming languages, such as

Java, C++ and the C.

The standard way of evaluating a program is to compile it and then execute it with a

set of test cases comprising input and output files. The submitted program is accepted if

compiles without errors and the output of each execution is what is expected. This evaluation

strategy has been shown to bring undesirable pedagogical issues such as student frustration

and confusion [Tan09b, TC10]. Several systems [JU97, SMK01, PRS+03, Jue03, BGNM04,

MMR06] test not only the behaviour of single programs but also analyse the structure of

source code. This approach guarantees that the program was written in a particular way,

following a particular algorithm or used certain data structures. To assess the correctness of

student submissions Edwards [EP06] used unit tests defined by teachers. Another important

issue is the non-determinism of the program outputs where different correct (or acceptable)

solutions to the same programming exercise may not always produce exactly the same output

[Tan09a]. Mooshak [LS03] deals with non-determinism using dynamic correctors invoked

after each test case execution. For instance, if the solution is a set of values that can be

presented in any order then a dynamic corrector can be used to reduce the output to a

normal form.

Depending of the learning context (competitive or curricular) the systems may provide

feedback to help students to solve a particular exercise. The feedback generation relies on

static and dynamic program analyses [AM05]. The development of AS with high quality

feedback (e.g. compilation errors, execution errors, execution tests) show good results

2.4. ASSESSMENT SYSTEMS 33

[MKKN05, HGST05] and along with visual, incremental and personalized feedback should

shape the future regarding this topic [SG10].

The AS interoperability is also an important issue to address. An evaluator should be

able to participate in learning scenarios where teachers can create exercises, store them in a

repository and reference them in a LMS and where students can solve exercises and submit to

AS who delivers an evaluation report back to students. [LJ99, BBF+11] were early systems

that try to address this issue allowing the integration with course management systems.

Nowadays with the advent of SOA the trend is service orientation rather than component-

based systems. An evaluator system as a service will automate the existent business logic

in distributed e-learning scenarios allowing more flexibility in the comprised workflows and

keeping the systems simple and easy maintainable. Leal and Queirós [LQ10h] specified a

service for programming exercises evaluation in a well-known e-learning framework called the

E-Framework. This work was used in the Edujudge project with positive results [VRV+11].

Luck and Joy [LJ99] analysed security issues on AS covering robust environments, privacy,

plagiarism and data integrity. Security can be handled from ad hoc solutions to solutions

based on virtual machines in order to execute the programs on a safe and controlled envi-

ronment. Other concerning is the increase of plagiarism [ELC07, CKLO03].

Regarding the learning context, AS can be used in two contexts: curricular and competitive

learning. In the former, teachers use practical classes, assignments and examinations to

evaluate students’ evolution. The latter relies on the competitiveness of students to increase

their programming skills mostly in computer programming contests. In this last context,

automated judge systems (or Online Judges) are used to run programming contests and to

practice for such contests. These systems include automatic evaluators and many of these

systems organize their own contests, such as, Mooshak [LS03], University of Valladolid Online

Judge (UVA-OJ), SPOJ (Sphere Online Judge), DOMJudge and others.

2.4.2 Recent Surveys

In the last decade several surveys appeared reporting AS features and trends. The history

of the field from 1960s is characterized by a number of projects that automatically assess

student programming exercises using a test-based approach [DLO05]. Three generations of

AS (Figure 2.11) were identified.

The first-generation was represented by several initiatives to automate testing, however their

usability was confined to their particular computing laboratories. The second generation

was characterized by command-line-based AS. The third generation made use of web-based

technologies to leverage the use of AS worldwide and provide additional support for educators

in the form of assessment management and reporting facilities. The paper also mentions four

34 CHAPTER 2. E-LEARNING SYSTEMS

Punched cards

Support for one language (e.g. Algol)

No feedback

No administration facilities

Command-line interfaces (manual operation of
scripts)

Support for few languages (e.g. C, JAVA)

Limited feedback

Content management

Static analysis

Student automated testing

Grading-support system

Competitive learning (e.g. contests)

Web based interfaces

Multi-languages (Prolog, SQL, FORTRAN)

Richer and incremental feedback

Course/student administration facilities

Sophisticated testing approaches

Automatic test generation

Plagiarism detection

Service-oriented

Integration with LMS

Early Assessment Syst ems (1960 - 1985) Tool Oriented Systems (1985 - 2000) Web-Oriented Syst ems (2000 - ...)

Figure 2.11: Generations of the Assessment Systems.

development directions in this field: evaluation of GUI programs, meta-testing (evaluation

of the students’ tests), service orientation adoption and use of interoperability standards.

Ala-Mutka [AM05] organizes AS features according to whether they need execution of the

program (dynamic analysis) and/or can be evaluated from the program code (static analysis).

In one hand, dynamic analysis is often used to assess functionality, efficiency, and testing

skills. In other hand, static analysis is used to provide feedback from style, programming

errors and software metrics. The authors conclude that automated systems approach should

always be pedagogically justified and state that systems are in-house built and no common

standards or interfaces exist.

Liang [LLXW09] details dynamic and static analysis methods of existing AS. The paper also

enumerates several unsolved issues in this area such as security, algorithms for automatic

generation of test data in dynamic analysis and low accuracy and precision of correctness

in static analysis. Finally the authors claim as new directions in the AS development the

content standardization.

Ihantola [IAKS10] gathers information on AS from 2006 to 2010 and discuss their major

features such as tests definition, resubmission policies and security features. The author

expects new research to emerge from the following fields: integration of automatic assessment

on LMS and automatic assessment of web applications.

Romli [RSZ10] enumerates approaches for automatic programming assessment, test data

generation and integration of both. The authors conclude that there is a lack of use of

existing test data generation techniques (commonly used to test software) in the scope of

automatic programming assessment. The same survey made an exhaustive study on 41

assessment tools that appeared in the last 50 years focusing on the evaluation methods and

test data generation techniques used. Dynamic analysis is the most used method to assess

programs with 74% of the tools studied using it. This is explained since program correctness

is the most important quality factor while evaluating a program. In dynamic analysis the

2.4. ASSESSMENT SYSTEMS 35

test data assumes a relevant role. The process of creating tests can be labour demanding.

Manual generation is time-consuming and error-prone and seldom covers the potential range

of a program. In spite of these issues, the study shows that the most used method for feed

the assessment systems with test data is through manual data entry. This is due to the

complexity inherent to the automatic generation of test data.

Beyond these facets, all above surveys stated the need for interoperability and security on

AS. The former can be achieved by the creation and adoption of content and communication

standards. The latter is a well-know issue that should not be overlooked and can be addressed

by the use of secure environments (sandbox) to execute untested code and algorithms to filter

out malicious code.

2.4.3 Assessment System Interoperability

The previous surveys show that interoperability is the main trend on AS. Moreover, this

topic was never analysed in the above surveys. Thus, this subsection analyses existing AS

regarding their interoperability features. Given the multiplicity of systems found a multi-

criteria approach was applied for the selection of tools based on its effective use. The tools

should be flexible enough to allow the configuration of exercises and the management of

users. The former covers not only the selection of existing exercises on the evaluation tool

but also the support for adding new exercises. The latter refers to the support of the tool

to select users that will solve the exercises.

Based on this multi-criteria approach 15 tools were selected. After the selection of the tools,

an iterative process was applied to identify which facets (current sub-subsections) will be used

to verify the interoperability maturity level of the selected tools. A set of facets was initially

identified based on the issues and trends raised on the previous surveys in conjunction with

the author’s background in working with interoperability on automated assessment. After

reading the published papers of the tools and consulting their official websites, a revised set

of facets was obtained. Figure 2.12 shows the selected facets.

These facets are also synchronized with the main objective of a typical automatic evaluation

system - to evaluate a user’s attempt to solve a programming exercise and produce an

assessment result. Each facet includes three interoperability maturity levels:

Level 0 - manual configuration of data;

Level 1 - data import/export;

Level 2 - services invocation.

In order to belong to Level 0, the evaluation tool must support the configuration of data

36 CHAPTER 2. E-LEARNING SYSTEMS

Programming

Exercises
Users

Assessment

Results

Assessment System

Figure 2.12: Interoperability facets of Assessment Systems.

by allowing either the selection of existing data or the addition of new data. In the Level

1, the evaluation tool must also support the import/export of data from/to other sources.

In the last level, the evaluation tool should also support the communication with other

tools through the invocation of web services.In the next sub-subsections the three facets are

detailed and for each facet the respective interoperability maturity levels of the selected AS

are presented.

2.4.3.1 Programming Exercises

Nowadays one can find a large number of programming exercises. Despite their number, these

exercises exist only in AS silos and seldom include mechanisms to share the exercises among

researchers and instructors in an effective manner. Moreover, each of these systems dictates

the persistent format of an exercise that may not be interoperable with other automatic

evaluation systems. This is a significant barrier in the creation and sharing of programming

exercises and can only be addressed through the standardization of exercise content and its

storage on public repositories. Based on these facts, the abstract maturity levels are the

following:

Level 0 - manual configuration of exercises;

Level 1 - import/export of exercises;

Level 2 - integration with repository services.

In the Level 0, the evaluation tool should support the selection of exercises and the addition

of new exercises. In this level, the tool relies on ad-hoc or internal formats to describe

2.4. ASSESSMENT SYSTEMS 37

exercises data.

In the Level 1, the evaluation tool should also provide mechanisms to import/export exercises

from/to other sources. In this level, the tool must explicitly support an exercise format.

There are few exercise formats. Typically an exercise format can be obtained by modelling

a programming exercise into a LO definition. This definition describes an exercise as a

learning package composed by a set of resources (e.g. exercise descriptions, test cases,

solution files) and a manifest that describes the package and its resources in terms of its

contents, classifications, life-cycle and several other relevant properties.

In the Level 2, the evaluation tool should also support the communication with other tools,

typically LOR, through web services. A LOR is a system used to store and share learning

objects. The repository should support simple and advanced queries to retrieve LO and

export them to other systems through a set of web services. In this communication, a

service broker (e.g. exercise format conversion service) can be used when the evaluator does

not support the format of the exercises stored in the repository. Based on these levels, the

following table enumerates for each tool the maturity level regarding the management of

programming exercises. According to the Table 2.7, all systems support the configuration

Table 2.7: Programming exercise facet (P-partial and F-full)

Systems Level 0 Level 1 Level 2

AutoGrader F - -

BOSS2 F - -

CourseMaker F - -

CTPracticals F - -

DOMJudge F - -

EduComponents F - -

GAME F - -

HUSTOJ F P -

Moe F P -

Mooshak F F F

Peach3 F P -

Submit! F - -

USACO F - -

Verkkoke F F -

Web-CAT F F P

of exercises. However, only six tools provide a way to export exercises and only three

support bidirectional transfers with other sources. These systems often use exercises formats.

HUST Online Judge uses FPS (FreeProblemSet) as an XML format for transporting exercises

38 CHAPTER 2. E-LEARNING SYSTEMS

information between Online Judges. Peach3 system uses PEF (Peach Exchange Format) as

a programming task package containing all task-related information and serving as a unit

for storage and communication. Verkkoke system relies on SCORM packages to wrap all

the exercise data. The second level of interoperability is only achieved by Mooshak and

partially by Web-CAT. Mooshak is a system for managing programming contests on the

Web. Its version 1.6a2 supports the communication with repositories complying with the

IMS DRI specification using a broker service responsible for the conversion between formats.

Web-CAT is an automatic grading system using student-written tests. This system can

communicate with other repositories, such as CollabX, through specific plug-ins. Unlike

Mooshak, the interaction with repositories is not standard-based.

Based on these facts one can conclude that most systems use internal and proprietary

formats. Those who adhere to explicitly formats do not reach a consensus to use a single

format. This non-compliance to a single format leads to the standard fragmentation for

describing exercise content. One solution to address this issue is instead of creating new

formats one should start looking for broker services responsible for the conversion between

formats. Other issue is the relation with repositories of learning objects. The majority of AS

store the exercises inside their systems hindering the proliferation and sharing of exercises. In

order to communicate with repositories the evaluation systems must follow communication

standards rather than ad hoc implementations.

2.4.3.2 Users

In order to select and solve exercises users must be authenticated in the evaluation system

and have authorization to submit their solutions. The users’ facet also specialises the abstract

maturity levels with the following:

Level 0 - manual configuration of users;

Level 1 - import/export of users;

Level 2 - integration with user directories services to provide authentication/authorization.

Table 2.8 shows the maturity level of automatic evaluation tools regarding the users’ facet.

In the Level 0, the evaluation tool should support the configuration of user’s data.

In the Level 1, the evaluation tool should also provide mechanisms to import/export users

from/to other sources. In this level, the tool can export a list of users based on standard

formats. There are few standards that formalize users’ data and how data is sent. Two

know-standards are the IMS Learner Information Services (LIS) and the IMS Learner Infor-

mation Package (LIP). The former is the definition of how systems manage the exchange of

2.4. ASSESSMENT SYSTEMS 39

Table 2.8: Users facet (P-partial and F-full)

Systems Level 0 Level 1 Level 2

AutoGrader F F P

BOSS2 F - -

CourseMaker F - -

CTPracticals F F P

DOMJudge F F P

EduComponents F F P

GAME F - -

HUSTOJ F - -

Moe F - -

Mooshak F F P

Peach3 F - -

Submit! F - -

USACO F F -

Verkkoke F F -

Web-CAT F F -

information that describes people, groups, memberships, courses and outcomes within the

context of learning. The IMS LIS is focused on the connection between an LMS and an AMS.

The latter addresses the interoperability of internet-based learner information systems with

LMS. It describes mainly the characteristics of a learner.

In the Level 2, the evaluation tool should also support the communication with other tools to

provide authentication and authorization facilities. User authentication is based on directory

services such as LDAP or Active Directory. User authorization relies on AMS that manages

academic processes such as the enrolment of students in courses, the management of grades

or the payment of fees. They are the best candidates to offer authorization services since

they store information about courses and students enrolled in them. The communication

with AMS is not standardized. This fact burdens the integration of AMS with evaluation

systems that must resort to ad hoc solutions.

According to the Table 2.8, all systems support the manual configuration of users for a specific

assignment or course. More than a half of the systems studied allow the import/export

of users in non-standard formats. However only five partially support the communication

with authentication services (mostly with LDAP). One can conclude that AMS are still

immature in terms of standard communication with other systems since any system was

found interacting with it. AutoGrader, CTPraticals, EduComponents and Verkokke benefit

from the fact that they are integrated with LMS thus taking advantage of its authorization

40 CHAPTER 2. E-LEARNING SYSTEMS

facilities.

2.4.3.3 Assessment results

After the submission of the student the assessment system evaluates the program and returns

an evaluation result.

The assessment results facet also specialises the abstract maturity levels with the following:

Level 0 - visualization of evaluation results;

Level 1 - export of assessment results;

Level 2 - integration with LMS.

In the Level 0, the evaluation tool should support the visualization of the assessment results.

The result data is essential for the success of an assignment and can include feedback and

grades. This information should be present to the user on the evaluation tool graphical

interface.

In the Level 1, the evaluation tool should also export evaluation reports to other sources.

There are few standards that formalize evaluation results. A formalization of an evaluation

report can be found in the Evaluation service [LQ10h] - a contribution for the E-Framework.

An implementation of this service evaluates an attempt to solve a programming exercise and

produces a detailed report. This evaluation report includes information to support exercise

assessment, grading and/or ranking by client systems. The report itself is not an assessment,

does not include a grade and does not compare students.

In the Level 2, the evaluation tool should also communicate with other tools.

A typical scenario would be when the evaluation tool sends the grades to the LMS grade

book. A common interoperability standard that is increasingly supported by major LMS

vendors is the LTI specification. It provides a uniform standards-based extension point

in LMS allowing remote tools and content to be integrated into LMS. Currently, only a

subset (IMS Basic LTI) of this specification is implements by the major LMS. This subset

exposes a unidirectional link between the LMS and the application. For instance, there

is no provision for accessing run-time services in the LMS and only one security policy is

supported. Table 2.9 shows the maturity level of AS regarding the assessment results facet. It

shows that all systems present the evaluation results to users and the majority allows their

exportation in non-standard formats. Regarding the communication with other systems,

four systems support the communication with LMS by providing the evaluation results on

the LMS grade book. AutoGrader, CTPraticals and EduComponents are integrated with

2.4. ASSESSMENT SYSTEMS 41

Table 2.9: Assessment results facet (P-partial and F-full)

Systems Level 0 Level 1 Level 2

AutoGrader F F P

BOSS2 F - -

CourseMaker F - -

CTPracticals F F P

DOMJudge F F -

EduComponents F F P

GAME F - -

HUSTOJ F - -

Moe F - -

Mooshak F F -

Peach3 F F -

Submit! F - -

USACO F - -

Verkkoke F F P

Web-CAT F F -

specific LMS, respectively, CascadeLMS, Moodle and Plone. Verkkoke is the only that do

not depends on a specific LMS and can be integrated on any LMS that supports the SCORM

specification.

2.4.4 Conclusions

This section starts by synthesising the interoperability facets of the AS included on the above

survey. Figure 2.13 depicts the percentage of interoperability maturity of each AS.

One can conclude that half of the studied systems did not reach 50% of the maturity rate.

This illustrates that there are a lot to do in this field regarding the integration of AS with

other systems. Figure 2.14 depicts the coverage of interoperability features of the AS studied

organized by facet.

The major conclusion to take is that there is no specific trend on interoperability facets

since the distribution of interoperability coverage is equitably distributed among the three

facets. Based on this study, two issues were detected that can hinder the proliferation of

AS: the lack of content standards for describing programming exercises and to communicate

with other e-learning systems. This section fills the gap existent in most surveys since all of

them point to interoperability as an issue for AS use and a trend for AS development but

never explained in detail what are the paths to follow in order to achieve interoperability

42 CHAPTER 2. E-LEARNING SYSTEMS

39%

44%

50%

61%

67%

67%

67%

72%

72%

83%

Moe

USACO

Peach3

DOMJudge

AutoGrader

CTPracticals

EduComponents

Verkkoke

Web-CAT

Mooshak
S

y
st

e
m

s

33%

33%

33%

33%

39%

39%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

BOSS2

CourseMaker

GAME

Submit!

HUSTOJ

Moe

% of maturity

Figure 2.13: Interoperability maturity percentage level of Assessment Systems.

on this domain. The results achieved on this survey may also prove useful to instructors

and computer science educators when they have to choose an AS to be integrated in their

e-learning environment.

2.5 Summary

This chapter traces the evolution of e-learning systems from monolithic systems to specialized

services. These services can be easily recombined in different learning processes to assist on

the teaching-learning process. This chapter focused on learning processes within domains

with complex evaluation such as computer programming learning. In this domain there are

several candidates to offer services such as those referred by Rongas, Kaarna, and Kalviainen

[RKK04], namely: LMSs, LORs and ASs.

In the LMS side, an interoperability comparative study was conducted to select an LMS on

which to base the development of e-learning systems integrating heterogeneous components.

Two LMSs vendors were chosen (Moodle and Blackboard) and their interoperability features

were analysed by splitting in two facets (learning content management and academic man-

agement) reflecting the broad classes of systems of a typical LMS operational environment.

In the LOR side, an interoperability study was conducted on the existing repository software

distinguishing two categories of repositories - digital libraries and learning objects reposito-

ries. It also focused on the distinction between the actual repositories and the software used

2.5. SUMMARY 43

53%
43% 44%

30%

40%

50%

60%

70%

80%

90%

100%

%
 o

f
co

v
e

ra
g

e

not covered

covered

46%
56% 55%

0%

10%

20%

30%

programming exercises user assessment results

Interoperability facets

Figure 2.14: Coverage of Assessment Systems interoperability features.

to implement them, highlighting the differences in their interoperability features.

Finally, a survey was made on ASs for programming exercises focusing on their interoperabil-

ity features. The survey gathered information on the interoperability features of the existent

ASs and compared them regarding a set of predefined criteria such as content specification

and interoperation standards with other tools.

44 CHAPTER 2. E-LEARNING SYSTEMS

Chapter 3

E-Learning standards

”The nice thing about standards

is that there are so many to choose from”

Tanenbaum, 1981, p. 221

The evolution of e-learning systems in the last two decades was impressive. In their first

generation, e-learning systems were developed for a specific learning domain and had a

monolithic architecture [DOL+07]. These systems were often developed as in-house solutions

making it difficult, if not impossible, to foster their interoperation with other systems

and to share the content they manage. In order to address these shortcomings, several

organizations have created standards and specifications to be used in the systems design

and implementation ensuring the following benefits [VA06]: 1) interoperability - content can

be easily disseminated within heterogeneous systems solving problems such as translation,

communication and information exchange; 2) re-usability - content can be assembled, disas-

sembled, and re-used quickly and easily; 3) manageability - systems can track information

about learners and content; 4) accessibility - learners can access the appropriate content at

the appropriate time on the appropriate device; 5) durability - content is produced once

and transplanted many times in different platforms and systems with minimum effort; 6)

scalability - learning technologies can be expanded in functionality in order to serve broader

populations and organizational purposes.

A standard can be defined as ”documented agreements containing technical specifications or

other precise criteria to be used consistently as rules, guidelines, or definitions of characteris-

tics, to ensure that materials, products, processes and services are fit for their purpose”1. The

process of creating standards (depicted in Figure 3.1) is achieved through the co-operation

1Standards definition - ISO/IEC (ISO/IEC JTC1 Directives) - http:www.iso.ch/infoe/intro.html

45

46 CHAPTER 3. E-LEARNING STANDARDS

of several types of participants of the e-learning community such as developers, vendors and

users [VA06]. This process comprises four steps.

Specification
Consortia

Vendors

Users

Producers

Specification

Test-beds
Market

Validat ion

Recommendations Standards'
Committees

Standardization

Specifications National
Institutes

Disseminat ion

Standards

Figure 3.1: Steps for establishing e-learning standards [VA06].

In a first step a consortia, for instance the IMS Global Learning Consortium (GLC) or Eu-

ropean Committee for Standardization (CEN), makes a needs analysis and a specification of

requirements for a specific learning domain or workflow. Then, educational vendors integrate

and validate their e-learning systems’ conformance regarding the previous requirements. In

a third step, accredited standards bodies such as IEEE International Organization for Stan-

dardization (ISO)/International Electrotechnical Commission (IEC) refine and consolidate

the specifications and recognises them as standards. Finally, the accepted standards are

disseminated to all the participants of the e-learning community.

This process clearly distinguishes between a specification and a standard. The former is

an experimental and evolving work in progress where many individuals and organizations

contribute with recommendations. The latter is an accredited standard, which is based on

actual implementations and experience, and provides very clear and unambiguous guidelines

for implementation and conformance. Despite their differences, both are composed by a set

of documents which are published on the Web. Typically they provide [Fri04b]:

• a data/conceptual model specifying the standard’s ”normative” content in abstraction;

• ”bindings” specifying how the data model is expressed in a formal idiom (e.g. XML);

• an API or ”service definition” defining points of contact between cooperating systems.

The aim of this study is to gather information on e-learning standards in order to choose

the most suitable for the domain of automatic evaluation of exercises. The organization of

this chapter is influenced by several studies found in the literature [JBK05] [VA06]. In these

studies the outcomes of the standardization efforts on e-learning interoperability are divided

in two levels (content and communication). In this chapter a new level (Frameworks) was

added because of its relevance in the last years on the development of new e-learning systems

based on SOA. Thus, the three levels are:

3.1. FRAMEWORKS 47

Frameworks - development of infrastructures and services to support learning;

Content - specification of the information models (e.g. format, syntax and semantics of

data) to be exchange;

Communication - specification of the protocols and interfaces to guarantee a standard

communication among heterogeneous systems.

The following sections detail these levels. For each level, the most prominent standards

and specifications and their main contributions in the e-learning field are enumerated. The

selection of the standards and specifications was based on surveys [QL11c, FCN+11]. One

such survey [FCN+11] shows the number of publications related to a variety of e-learning

standardization fields from the IEEE Digital Library and ACM Digital Library in the last

30 years (1980-2010). Figure 3.2 shows the results of this survey.

16 13 15
3

49

368

597

7 7

170 166

76

22 28 17 6

96

1
0

100

200

300

400

500

600

#
 s

ci
e

n
ti

fi
c

p
u

b
li

ca
ti

o
n

s

IM
S

 A
b

st
ra

ct

IE
E

E
 L

T
S

A

O
K

I
O

S
ID S
IF

IM
S

 M
e

ta
d

a
ta

IE
E

E
 L

O
M

D
u

b
li

n
 C

o
re

M
LR

M
LO

A
D

L
 S

C
O

R
M

IM
S

 C
P

IM
S

 S
S

IM
S

 C
C

IM
S

 D
R

I

C
O

R
D

R
A

C
E

N
 S

P
I

C
E

N
 S

Q
I

IM
S

 L
T

I

ARCHITECTURES METADATA AGREGATION LOR/LMS

FRAMEWORKS CONTENT CONTENT COMMUNICATION

Standards and Specifications

Figure 3.2: E-learning specifications and standards publications (1980-2010).

For a more descriptive and detailed information about organizations, projects, activities and

standards one can consult the CEN WS-LT Learning Technology Standards Observatory2 -

an accessible web based repository for e-learning technology standards.

3.1 Frameworks

The architectures of e-learning platforms had a considerable evolution in the last two decades.

Starting with the early monolithic systems developed for specific learning domain to domain-

independent systems featuring reusable tools that can be used virtually in any e-learning

2Official Web site: http://www.cen-ltso.net/

48 CHAPTER 3. E-LEARNING STANDARDS

course [DOL+07]. These last systems follow a component oriented architecture in order to

facilitate tool integration. Integrated environments have been successfully used to leverage

the advantages of Information Communication Technology (ICT), but have also been target

of criticism. These systems based around pluggable and interchangeable components, led

to oversized systems that are difficult to reconvert to changing roles and new demands such

as the integration of heterogeneous services based on semantic information, the automatic

adaptation of services to users (both learners and teachers), and the lack of a critical mass of

services to supply the demand of e-learning projects. These issues triggered a new generation

of e-learning platforms based on services that can be integrated in different scenarios. This

new approach provides the basis for SOA. In the last few years there have been initiatives to

adapt SOA to e-learning [LQ10a]. These initiatives, commonly named e-learning frameworks,

had the same goal: to provide flexible learning environments for learners worldwide. Usually

they are characterized by providing a set of open interfaces to numerous reusable services

organized in genres or layers and combined in service usage models. These initiatives use

intensively the standards for e-learning content sharing and interoperability developed in

the last years by several organizations such as Advanced Distributed Learning (ADL), IMS

GLC, Institute of Electrical and Electronics Engineers (IEEE).

Over the years the word framework has been used to define a work environment specially

designed to solve common and complex problems in different domains. Due to its broad

definition it is often used as a buzzword, especially when applied to software. A software

framework may include support programs, runtime environments, code libraries and other

tools, in order to assist the developer in a software project. Usually the functions of a

framework are exposed through an API. The code provided by the framework is usually

divided in frozen-spots (services already developed in the framework) and hotspots (set of

common code that must be overridden or specialized by user code) [MdL01]. Hence, this

twofold code feature amongst with the inversion of control is one of distinguishing keys that

separate the current frameworks from generic code libraries. An e-learning framework can

be defined as a specialized software framework. In the e-learning field, this term has been

associated with several initiatives to adapt SOA to e-learning.

Based on service oriented approaches the process of moving from a framework to a working

implementation can be defined by four key concepts [WBR04]:

Broad Vocabulary - describes all possible ”services” for a domain such as e-learning;

Reference Model - combines these services for specific learning-teaching requirement;

Design - specifies the use of standards and specifications for these combinations;

Artifact - implements (software, process, workflow) a design.

The relationship of the key concepts of e-learning frameworks is shown in Figure 3.3.

3.1. FRAMEWORKS 49

Vocabulary

Reference
Model

Design

Artifact

Abstract
Framework

Concrete
Framework

Figure 3.3: Simple Framework model [WBR04].

A Framework provides a vocabulary of Services (e.g. digital repositories services), from

which a Reference Model (e.g. describing content management) is derived. A particular

Design (e.g. repository management application) is modelled based on the Reference Model

which is then implemented as an Artifact.

While abstract frameworks provide a broad vocabulary and a reference model for the de-

velopment of e-learning systems, concrete frameworks provide also designs and/or artifacts.

The remainder of this section categorizes the e-learning frameworks based on these groups.

3.1.1 Abstract Frameworks

Abstract frameworks aim only at the creation of specifications, recommendations and best

practices for the development of e-learning systems. In this subsection three initiatives

belonging to this category are detailed, more precisely, the IEEE Learning Technology

Systems Architecture3, the Open Knowledge Initiative4 and the IMS Abstract Framework5,

and , in the chronological order of their first definition.

3Architecture & Reference Model - Working Group 1 Web Site - http://ltsc.ieee.org/wg1/
4Open Knowledge Initiative (OKI) Web Site - http://sourceforge.net/projects/okiproject/
5IMS Abstract Framework Web Site - http://www.imsglobal.org/af/

50 CHAPTER 3. E-LEARNING STANDARDS

3.1.1.1 IEEE Learning Technology Systems Architecture

The IEEE Learning Technology Standards Committee (LTSC) is chartered by the IEEE

Computer Society Standards Activity Board to develop internationally accredited technical

standards, recommended practices, and guides for learning technology. The IEEE LTSC has

developed a number of internationally accredited standards. The IEEE Learning Technology

Systems Architecture (LTSA) is one of the standards that define a pedagogical and imple-

mentation neutral high-level architecture for information technology-supported e-learning

systems. This standard, whose first draft was presented in 1996, covers a wide range of

systems and promotes interoperability and portability by identifying abstract, high-level

system interfaces. The LTSA system components, depicted in the Figure 3.4, identify the

abstract and high-level interfaces for e-learning systems.

Learner

Delivery Evaluation

Learning
Resources

Records
Dat abase

System
Coach

Multimed ia Behavio ur
Learning

preferences

Learning
co ntent

Locator
ind ex

Assessment
Learning
co ntent

Perfo rmance
(current)

Query/Content ind ex Perfo rmance

Figure 3.4: Learning Technology System Architecture [FT99].

The LTSA system components are based on: 1) processes (depicted as gray rectangles):

are described in terms of boundaries, inputs, process (functionality), and outputs; 2) stores

(depicted as black rectangles): are described by the type of information stored, and by

search, retrieval, and updating methods and 3) flows (arrows): are described in terms of

connectivity (one/two-way, static/dynamic connections, etc.) and the type of information

across the flow. Currently the LTSA working group status is defined as inactive at the

web site of this project. Despite the inactivity, several works can be found in the literature

focusing on the extension of this architecture [KSSM10].

3.1. FRAMEWORKS 51

3.1.1.2 Open Knowledge Initiative

The Open Knowledge Initiative (OKI) is a project created in 2001 and is currently leaded

by the Massachusetts Institute of Technology. The main goal of this project is to provide

a framework for higher education learning systems. The result of this initiative is an open

and extensible architecture that specifies, based in the concept of Open Service Interface

Definition (OSID), how the components of an educational software environment communicate

with each other. The OKI OSID define standard interfaces that allow one application (an

OSID consumer) to access specific data and functionality from another application (an OSID

provider). For example, a digital repository can make its collections of learning objects

accessible to a LMS by exposing an implementation of the Repository OSID. The LMS then

needs only to call functions of the digital repository as defined by the OSID. An architectural

view of the framework can be seen in Figure 3.5.

Educational
Software LMS

...
Content
API

Course
API

Assessment
API

...

...
Auth
API

File
API

Rules
API

...DB
File

Services Security

Educational
Applications

Educational
Services

Common
Services

Institutional
Infrastructure

shared
objects

Figure 3.5: OKI architecture.

Recently, OKI has produced a Java OSID binding. There are also bindings for other

programming languages such as PHP, MS .NET and C. In 2005, OKI announced the creation

of XOSID (XML OSID) providing a language neutral XML representation of the OSID, which

until the date were only available as Java API.

3.1.1.3 IMS Abstract Framework

The IMS GLC is a global coalition of academic, commercial and government organizations,

working together to foster learning. The IMS Abstract Framework (IAF) is an abstract

representation of the services and interfaces providing a context for IMS to develop its

specifications. The IAF is represented as a layered model, as shown in the Figure 3.6.

52 CHAPTER 3. E-LEARNING STANDARDS

Application Layer

Application Services Layer

Common Services Layer

Infrastructure Layer

Service
Access
Points

Figure 3.6: IAF layered model.

The model comprises four layers:

Application - set of systems, tools, agents, etc. providing a set of e-learning functionality;

Application services - set of services providing a specific e-learning functionality to the

applications (e.g., course management);

Common services - set of services providing the generic services to be used by the appli-

cation services (e.g., authentication);

Infrastructure – set of services enabling the exchange of the data structures in terms of

physical communications.

The access to a service is made through its service access points. Each service has a single

access point but, being an abstract framework, IAF does not address the implementation of

the access points. It should be mentioned that this specification has not been updated since

2003.

3.1.2 Concrete Frameworks

Concrete frameworks extend the goals of abstract frameworks by providing also complete

service designs and/or components that can be integrated in actual implementations of

artifacts. In this subsection three initiatives are detailed, more precisely, the Open University

Support System 6 , the Schools Interoperability Framework 7 and the E-Framework 8.

6Official website of OpenUSS - http://openuss.sourceforge.net
7Schools Interoperabiliy Framework (SIF) Web Site - http://www.sifinfo.org/
8Official website of e-Framework for Education and Research - http://www.e-framework.org

3.1. FRAMEWORKS 53

3.1.2.1 Open University Support System

The Open Source University Support System (OpenUSS) is a project to make a virtual uni-

versity platform under an open-source license. The OpenUSS is a part of the CampusSource

initiative, set up by the state of North Rhine-Westphalia, Germany. The OpenUSS is based

on a component-oriented architecture divided into two types of components: foundation and

extension. The former represents the main and domain-oriented components (e.g. Assistant,

Student, Enrolment). The latter represents all the domain neutral functions of OpenUSS

(e.g. Discussion, Chat, Lecture). Whilst the primary user groups are universities, the

community of developers can contribute with API and reference implementations for the

OpenUSS. OpenUSS is currently implemented in several universities in Germany and Mexico

and over 10000 users rely on it worldwide. Nevertheless, OpenUSS has not been updated

since 2001.

3.1.2.2 Schools Interoperability Framework

The Schools Interoperability Framework (SIF) is an industry initiative, supported by the SIF

association. The objective of this association is to develop an open specification to enable

educational applications, such as K-12 instructional and administrative software applications,

to interact and share data. The framework is composed by two specifications: an XML

specification for modelling educational data and a SOA specification for sharing that data

within a SIF Zone. A SIF Zone is a logical group of applications, in which software application

agents communicate with each other through a central communication point – the Zone

Integration Server. A SIF Zone consists of a server and one or more software applications

with a SIF Agent (a SIF-enabled application) distributing one or more SIF data objects over

a network. Figure 3.7 shows an example of a SIF Zone.

Users are able to develop their own SIF Implementations. A SIF Implementation consists of

one or more SIF Zones deployed to meet customer needs. The implementation must comply

with the SIF Implementation Specification. This specification defines the architectural

requirements and communication protocols for the software components and the interfaces

between them. The specification makes no assumption of specific hardware/software needed

to develop SIF applications.

Currently, the SIF specification is being used by numerous vendors in all USA states as well

in the UK and Australia. The future plans for the framework are the development of a K-12

Data Model and an inclusion of a Web Services infrastructure. The new version (2.4) of the

Specification is in the final stage of a release cycle.

54 CHAPTER 3. E-LEARNING STANDARDS

Zone
Integration
Server

Library
Automation

Food
Services

SIF
Zone

Grade
Book

Reporting

HR & Finantial
Management

Voice
Telephony

Instructional
Services

Student
Services

SIF
Agent

Figure 3.7: SIF architecture.

3.1.2.3 E-Framework

The E-Framework (E-F) is an initiative that seeks to promote the use of the SOA in the

analysis and design of software for education and research. The E-F has four funding

partners (JISC9, DEEWR10, SURF11 and MoE12). The framework relies on a service-oriented

approach that promotes the creation and reuse of software services that can be used by

different applications in different contexts. As shown in Figure 3.8 the E-F is composed by

the following components:

Service genre - a generic or abstract service expressed in terms of behaviours (e.g. au-

thenticate, harvest, search). A Service Genre does not specify how a service works;

rather it only specifies what a service should do;

Service expression - a realisation of a single service genre by specification of exact inter-

faces and standards used. Specifications and Standards used by Service Expressions

are not defined by the e-Framework;

Service Usage Model - a model of the needs, requirements, workflows, management poli-

cies and processes within a domain.

9JISC Web site: http://www.jisc.ac.uk/
10Department of Education, Employment and Workplace (DEEWR) Web site: http://www.deewr.gov.au
11SURF Web site: http://www.surf.nl/
12Ministry of Education (MoE) Web site: http://www.minedu.govt.nz/

3.1. FRAMEWORKS 55

Business
Pro cesses,
Functions,

Applications

Community A

Business
Pro cesses,
Functions,

Applications

Community B

Current Components
(Service genres and

expressio ns)

New Components
(Service genres and

expressio ns)
SUMs

Communities

E-Framework
Technical

Components

Use/Refine

Create/Document

Reuse

Create/Document

Figure 3.8: E-Framework.

All of the E-F components are described in template documents, which can be found on the

E-F website. The E-F is currently the target of several updates through the large community

of programmers who use the project wiki to submit new contributions.

3.1.3 Comparison of E-Learning Frameworks

The previous section details the frameworks overall architecture and main characteristics

and divided them in two groups: abstract and concrete frameworks. The Figure 3.9 traces

the evolution of these initiatives based on the previous grouping.

19 9 5 2000 20 05 20 10

Concrete
Frameworks

Abstract
Frameworks

IEEE LTSA (Draft 9)

OKI (v.3.0)

IAF (v1.0)

OUSS (v.2.0)

SIF (v.2.3)

ELF E-F

Figure 3.9: Evolution of e-learning Frameworks.

Figure 3.9 suggests that, in the last decade, the trend is the appearance of concrete frame-

works rather than abstract frameworks. It is worth noting that none of the concrete

frameworks mentioned actually implement artifacts. At most, these projects include user

56 CHAPTER 3. E-LEARNING STANDARDS

contributed components, which can be integrated in artifacts for systems using the frame-

work, but are not part of the framework itself.

Table 3.1: E-Learning frameworks survey.

Facets Features LTSA OKI IAF SIF E-F

Impact

and

Maturity

Creation

date

1996 2001 2003 2003 2007

1st vs. date 1996 2003 2003 2003 -

Last vs. date 2001 2006 2003 2009 -

Cited proj. - 3 - 37 4

Contributions inactive yes yes yes yes

Architec.

Models

Main Model layered layered layered flat layered

SOA yes yes yes yes yes

Adopted

Standards

Content - - - SCORM SCORM,CP

Metadata LOM LOM LOM LOM LOM,DC

Web Service SOAP SOAP SOAP,REST SOAP,REST SOAP,REST

Bindings - JAVA,PHP JAVA JAVA JAVA

User

Groups

Framework ESV ESV IMS ESV ESV

End Users HE HE HE K-12 HE

Also five of these frameworks were compared regarding: impact and maturity, architectural

models, adopted standards and user groups. From Table 3.1 one can conclude that some

frameworks have a very low update frequency (IAF) for several initiatives and one of them

is already inactive (LTSA). The frameworks with the most recent updates are the E-F and

SIF. In the case of the E-F, it has been receiving great amount of input from the e-learning

community. On the other hand, SIF is the most widely used framework with 37 cited projects

in the project web site.

All the frameworks adhere to a service-oriented approach. Most of them use the layered

architectural model. In this model components communicate only with components in the

neighbouring layers. In particular, the LTSA has five layers in its architecture, but only

one layer (system components) is normative. In the flat model there is no restriction to the

communication among components. The SIF framework is a special case in applying this

model since it uses a central component that orchestrates all the communication between

applications. These frameworks use different main concepts to present their inner structure.

OKI and IAF are an exception since they share their main concepts, which is probably due

to the fact that these projects are cooperating [CDK+02].

In regard to standards some of them are common to almost all frameworks. For instance,

3.2. CONTENT 57

LOM for metadata content, WSDL for service description, Simple Object Access Protocol

(SOAP) for web service and Java for language binding are common to all frameworks.

Finally, the Educational Software Vendors are the most common framework users, with the

exception of IAF. IMS uses the framework to develop internal specifications (e.g. IMS

Enterprise Services Specification). Regarding e-learning systems end users, the Higher

Education sector is the most targeted.

Based on this survey, one can conclude that E-F and SIF to be the most promising e-

learning frameworks since they are the most active projects, both with a large number

of implementations worldwide. In the E-F, the contribution can be done by proposing new

service genres, service expressions and service usage models. On SIF this type of contribution

cannot be done to the concrete framework. However, new agents can be developed, such as

those related with learning objects repositories.

3.2 Content

The concept of educational resource, course, student, summary or grade must be formally

described in order to be shared among all the systems in an educational institution. For

instance, the difficulty to reuse a course in schools with LMS coming from different vendors

(or even from the same vendor) is an apt example of the problems found currently in the

majority of the LMSs. These interoperability issues affect the flexibility of the teaching-

learning process and lead to a decrease of end user satisfaction and learning success.

In order to overcome these shortcomings, practitioners of e-learning started valuing more

the interchange of course content and learners’ information, which led to the definition

of standards for e-learning content sharing and interoperability. In this context, several

organizations have developed specifications and standards in the last years. These spec-

ifications define, among many others, standards related to learning resources (commonly

named learning objects) such as packaging them, describing their content, organizing them

in modules and courses and communicating them among e-learning systems.

LO are context independent, transportable and reusable pieces of instruction that are dig-

itally managed and delivered [MR03]. They are units of instructional content that can be

used, and most of all reused, on web based e-learning systems. The LO definition was

targeted for LMS and thus they are specialized on content presentation. They encapsulate

a collection of interdependent files (HTML files, images, web scripts, style sheets) with a

manifest containing metadata. This metadata is important for classifying and searching LO

in digital repositories and for making effective use of their content in LMS. Standardized

metadata plays an important role in keeping LO neutral to different vendors, both of LMS

and of repositories.

58 CHAPTER 3. E-LEARNING STANDARDS

In this study dozens of standards and specifications were found. For the sake of readability

only the most prominent [LQ10b] are detailed organized in three facets: metadata, content

aggregation and assessment.

3.2.1 Metadata

Metadata is data that is used to describe other data. IEEE defines metadata as information

about an object, be it physical or digital. It is typically used to facilitate the management,

discovery and retrieval of resources on the Web.

Metadata standards formalize the metadata structure promoting interoperability at two

levels: support information exchange between machines and facilitate resource discovery by

human users on the Web. Different communities have defined metadata standards that fit

their needs. From a simple standard such as Dublin Core that is widely used in the digital

library community to domain specific initiatives such as LOM (educational) or MPEG-7

(multimedia) that cover more elements within a domain.

In the remainder of this dissertation, the term metadata is used to represent Educational

metadata since all research that is presented has been applied in the field of technology en-

hanced learning. Educational metadata standards extend the scope of the generic metadata

with information that has particular educational relevance.

The following sections focus on the three established metadata standards most relevant to

learning materials, the ISO 15836 Dublin Core (DC), the IEEE 1484.12.1-2002 Learning

Object Metadata (LOM) and the ISO/IEC MLR.

3.2.1.1 Dublin Core

One of the earliest international metadata standards is the DC. DC metadata is a set of

vocabulary terms (based on property-value pairs) which can be used to describe generic

resources for the purpose of discovery. It was developed in 1995 by a group of librarians and

content experts. It was called ”Dublin Core” since it was created on a workshop in the city of

Dublin (Ohio, United States). The Dublin Core Metadata Initiative (DCMI) is responsible

for the development, standardization and promotion of the Dublin Core Metadata Elements

Set (DCMES) that includes two levels: Simple and Qualified.

The Dublin Core Simple, which has been standardized as ISO Standard 15836-2003,

includes fifteen elements (Title, Creator, Subject, Description, Publisher, Contributor, Date,

Type, Format, Identifier, Source, Language, Relation, Coverage and Rights) that covers a

broad range of resource types over the Web. A study [War04] reveals that over almost 1

million metadata instances from the Open Archives Initiative (OAI) that uses DC metadata

3.2. CONTENT 59

schema, found that of 15 DC data elements, five (creator, identifier, title, date, and type) are

used 71% of the time and the five least used elements (language, format, relation, contributor

and source) are used less than 6% of the time.

All these elements are optional and may be repeated if required. Despite the DC acceptance

several issues raised related with the semantic of the element set and their coverage. The

former is related to the need of define more specific semantics for some elements (e.g.

distinguish between different dates such as date of submission and date of publication

associated with the life-cycle of a resource). The latter reflects the absence of several

characteristics of resources that are not covered, some of which are important in specialized

domains (e.g. description of the intended audience of a resource) These issues led to the

refinement and extension of the DC Simple element set resulting on the ”qualified” Dublin

Core metadata. The Dublin Core Qualified includes three additional elements (Audience,

Provenance and Rights Holder), and a group of element qualifiers that refine the semantics

of the elements.

In the last years, the DCMI needed to update DC metadata to facilitate extensibility

and harmonize it with the principles of the semantic web with a set of specifications that

comprises:

DCMI Abstract Model13 - specifies an abstract model for DC metadata. It defines the

components used in DC metadata and describes how those components are combined

to create information structures [BC10];

DCMI Metadata Terms - defines all the metadata terms maintained by the DCMI;

Guidelines for Dublin Core Application Profiles - provides guidelines for the creation

of Dublin Core Application Profiles (DCAP). A DCAP is a set of documents that

describes the metadata used in a particular application. The Singapore Framework14

for DCAP is the framework used for designing such metadata applications;

Guidelines for encoding DC metadata - defines several bindings of the DC metadata

in RDF, XML and HTML/XHTML meta and link elements.

Currently, the DC metadata is widely used to describe resources mostly in the digital library

domain. Several specifications use (or are based on) this standard: the Open Archives

Initiative Protocol for Metadata Harvesting (OAI-PMH) uses it as an integral part of the

specification defining the minimum metadata requirement for harvesting resources; the

Open Source Metadata Framework (OMF) specification uses it to describe open source

documentation; the Public Broadcasting Metadata Dictionary (PBCore) metadata standard

extends the DC metadata for the public broadcasting community and the Search and Retrieve

14http://dublincore.org/documents/singapore-framework/

60 CHAPTER 3. E-LEARNING STANDARDS

by URL (SRU) standard - a search protocol for repositories - uses it to formalize the search

results. The CEN has recently standardized Metadata for Learning Opportunities based on

the Dublin Core Abstract Model (RDF).

The DCMI is also actively engaged in covering the broad field of education with a new

profile. These efforts are in sync with the new boost of technology in education and the

increase number of educational resources stored in repositories spread over the Web. The DC-

Education Application Profile Task Group is working on a Education Application Profile15

using the aforementioned Singapore Framework. Despite this promising initiative, there

still not exist public implementations making the framework barely used. Also the required

expertise and extra efforts in several areas inhibits potential clients.

3.2.1.2 IEEE LOM

The IEEE Standards Association published the IEEE 1484.12.1 – 2002 a standard for learning

object metadata (LOM). The IEEE LOM is an international two-part standard for the

description of ”learning objects” and is composed of a conceptual data schema16 and an

XML binding17 of that schema.

Figure 3.10: The hierarchy of elements in the LOM data model.

The LOM data schema specifies a set of characteristics for LO description, the vocabularies

that may be used for these descriptions and defines how this data model can be refined by

additions or constraints. The main purpose of LOM is to support the LO reusability, to

aid discoverability, and to facilitate their interoperability, usually in the context of on-line

15http://dublincore.org/educationwiki/DC 2dEducation 20Application 20Profile
161484.12.1—2002, Standard for Learning Object Metadata.
171484.12.3—2005, Standard for XML Binding for Learning Object Metadata data model.

3.2. CONTENT 61

learning management systems. The LOM conceptual data schema consists of a hierarchy

of elements as shown in Figure 3.10. The first level is composed of the following nine

categories18.

General - describes the learning object as a whole. This category includes elements such

as identifier, title, language, keywords;

Lifecycle - describes features related to the history and current state of the LO such as

version, status, and contributors;

Metametadata - groups information about the metadata such as identifier, contributors

and language used in the metadata;

Technical - describes the technical requirements and characteristics of the LO such as

MIME type, size, required software/hardware;

Educational - describes educational and pedagogic characteristics of the LO such as inter-

activity type, learning resource type, interactivity level, semantic density, educational

context, typical age range;

Rights - describes the intellectual property rights and conditions of use for the LO (whether

or not any cost is involved, and whether copyright and other restrictions apply);

Relation - describes features that define the relationship between this LO and others

(”based on”, ”part of”, etc.);

Annotation - provides comments on the use of the LO and information on when and by

whom the comments were created;

Classification - describes where the LO can be classified within a particular classification

system.

Each category contains simple sub-elements with data or complex sub-elements aggregating

other elements. The data schema also specifies the value space and data-type for each of the

simple data elements. The value space defines the restrictions, if any, on the data that can be

entered for that element (e.g. any string of Unicode characters, a declared list of a controlled

vocabulary or a specified format such as date and language codes). The semantics of LOM

elements are determined by their context: they are affected by the parent or container

element in the hierarchy. For instance, the various description elements in the LOM data

model derive their meaning from their parent elements.

These categories cover many facets of a LO. However, it is not possible for a generic

standard such as IEEE LOM to fully meet the specific requirements and accommodate

18http://www.ieeeltsc.org

62 CHAPTER 3. E-LEARNING STANDARDS

the particular needs of different educational communities. Fortunately, it was designed to

be straightforward to extend. According to Al-Khalifa and Davis [AKD06], an important

feature of LOM is that it is simple to use and has an inherent extension capability. Therefore,

the practice of generating Application Profiles (AP) of the IEEE LOM has emerged19 and

a number of different AP have been developed worldwide [CZS10]. The following list

enumerates four profiling types that have been used to refine the LOM data model [Fri04a]:

Extension - defines extensions to LOM elements while preserving its set of categories;

Reduction - simplifies LOM, reducing the number of LOM elements and its choices;

Hybrid - extends and simultaneously reduces the number of LOM elements;

Combination - combines the LOM elements with elements from other specifications.

Table 3.2 presents a set of LOM profiles [SZC12] and the respective profiling types. It

shows that all examined LOM profiles select a subset of data elements from the IEEE LOM

Standard. None of them extend LOM elements while preserving its set of categories. On the

other hand, none of the examined LOM APs define data elements from multiple namespaces.

Additionally, only two of them (CELEBRATE and LRE) define new local data elements

which are not included at the IEEE LOM Standard. The analysis of the profiling types

of existing LOM profiles and their comparison demonstrates that the LOM element set is

sufficient since it covers the most of the needs of the communities but larger enough that

must be reduced. Another good example of a LOM-based metadata is the Canadian Core

(CanCore) Metadata Application Profile. The CanCore standard is a LOM streamlined

version that reduces the complexity and ambiguity of this specification.

Table 3.2: Profiling Types of existing LOM APs.

Types ANZ-LOM CELEBRATE DET LRM LRE UK-LOM VET

Extension - - - - - -

Reduction X X X X X X

Hybrid - X - X - -

Combination - - - - - -

The LOM has been widely implemented by repositories and other learning resource service

brokers and providers (e.g. JORUM, ARIADNE, European SchoolNet, GLOBE), partly as a

result of its status as an international standard, and partly through its association with other

influential specifications, such as those produced by the IMS GLC (e.g. Content Packaging,

19The IEEE LOM Application Profiling Tool is a web-based tool for the creation of LOM application

profiles (http://asklomap.sourceforge.net/).

3.2. CONTENT 63

Question and Test Interoperability and Vocabulary Definition and Exchange) and by ADL

(e.g. SCORM).

A recent study [OKVD11] analysed the LOM use and quality of 630.317 metadata instances

harvested from Global Learning Objects Brokered Exchange (GLOBE) repositories that

provide a metadata harvesting service based on the OAI-PMH protocol. This study con-

cludes interesting points regarding the frequency of LOM data elements and, more precisely,

educational data elements. The study concludes that only a small fraction of the LOM

standard is frequently used to describe the learning objects. Only 20 of the 50 data elements

are used more than 60% of the time. Also, 16 data elements are used less than 10% of

the time corroborating the Friesen study [Fri04b] conclusion that the added complexity of

LOM is not used in the real world. The study also concludes that 4 out of 11 educational

data elements (Learning Resource Type, Intended End User Role, Typical Age Range and

Context) are used more than 40% of the time, 3 elements (Language, Interactivity Level and

Interactivity Type) are used more than 10% but less than 20%, and the 4 remaining elements

(Description, Difficulty, Semantic Density and Typical Learning Time) are used less than

10% of the time. While these values are lower than desirable, they provide proof that LOM

is used in the real-world to capture educational information about digital objects.

Despite the generalized use of LOM and its intrinsic benefits, some issues exist. One such

issue is that the LOM conceptual data schema is not based on an abstract model shared

with other metadata schemata. This makes semantic interoperability with other metadata

standards problematic [BC10]. Essentially it is impossible to import elements from other

metadata schema (e.g. Dublin Core) hindering metadata modularization. Based on these

limitations it is necessary for the IEEE LOM standard to accommodate general and non-

educational characteristics (e.g. technical, rights, accessibility) within the standard data

schema rather than importing solutions from other domains.

3.2.1.3 ISO/IEC MLR

Despite the wide use of both DC and LOM to describe learning resources, several semantic

and interoperability issues are still not addressed as stated in the previous sub-subsections.

These standards had similarities but they were not interoperable, and implementers of

systems were left to solve the interoperability issues with workarounds. It was in this

context, following the formation within ISO/IEC of SC36 (subcommittee 36, IT for Learning,

Education and Training – ITLET), that a project20 on Metadata for Learning Resources

(MLR) was initiated.

The ISO MLR will be a ”a harmonized standard” with LOM and DC due to the adoption

20ISO (2011). ISO/IEC 19788-1:2011 Information technology – Learning, education and training –

Metadata for learning resources – Part 1: Framework. International Organization for Standardization

64 CHAPTER 3. E-LEARNING STANDARDS

of LOM as a result of the market success of SCORM [HM11]. This initiative proposes the

adoption of a semantic model that will maximize ISO MLR’s compatibility with current

efforts in DC and LOM.

The ISO MLR will be a multi-part standard composed of six parts: 1) the framework; 2)

data elements; 3) the core application profile; 4) technical elements; 5) education elements;

6) availability and rights management. However, other parts may be defined in the future.

Part 3 promotes interoperability among repositories. It is expected that user communities

will enhance this application profile by adding data elements from others standards (LOM

and DC) and by adding vocabulary constraints.

3.2.1.4 Other Metadata Specifications

The Attention Profiling Mark-up Language (APML) enables the description of topics and

sources that a person is interested in to be shared in the form of an XML file. The attention

profile may be generated explicitly by the person concerned or may be derived from attention

data, i.e. information about what a person has been looking at derived from a record of their

activities. This specification is being developed by a community with no direct affiliation

to any formal specification or standards body. Notwithstanding the specification’s draft

status several prototype services have implemented it including digg.com and the BBC’s

radiopop.co.uk.

CEN has endorsed a workshop agreement and a commitment to develop a European Norm

for Metadata for Learning Opportunities. This work has its origins in course description

metadata initiatives from several European countries, and describes a common model for

learning opportunities so that they may be aggregated by other services. The initial focus

is on course advertising; however there is scope for wider application to course description

for other purposes.

There is a long history of work on standardizing competency definitions and the like, in-

cluding the IEEE Reusable Competency Definition (IEEE, 2007) and HR-XML (HR-XML

consortium, no date). Currently working group 3 of ISO subcommittee 36 (ISO/IEC JTC1

SC36 WG3) is developing a conceptual reference model for competences and related objects.

Again, there is potential scope to apply this model to the educational outcomes object in

the DC-Education domain model.

Other standards for metadata such as METS, MODS, PREMIS and MIX are mostly related

to digital libraries. The most prominent are the first two. The Metadata Encoding and

Transmission Standard (METS) is a XML standard for describing metadata regarding ob-

jects within a digital library [Dig07]. The standard is supported by the Network Development

and MARC Standards Office of the Library of Congress. The Metadata Object Descrip-

3.2. CONTENT 65

tion Schema (MODS) is an XML-based bibliographic description schema developed by the

United States Library of Congress’ Network Development and Standards Office. MODS was

designed as a compromise between the complexity of the MARC format used by libraries

and the simplicity of DC metadata.

3.2.2 Packaging

The need for educational resources sharing among learning systems and authoring tools

motivated the development of common formats to encapsulate learning resources into units

of instruction. These formats apply structure and learning taxonomies so that the structure

of the units of instruction and their behaviour (sequencing of activities) can be uniformly

represented, interchanged and reproduced across heterogeneous environments.

Content packaging formats should be neutral and allow the encapsulation of separate re-

sources ranging from a single educational resource to entire courses. At the same time can be

complemented with definitions of how content is presented to the learner and the conditions

under which a piece of content is selected, delivered, or skipped during presentation. This

subsection details the most important specifications used to package content such as IMS

CP, SCORM and IMS CC.

3.2.2.1 IMS Content Packaging

Packaging the learning resources complements content description and is crucial to facilitate

the deployment, storage and reuse of learning resources. One of the earliest efforts was from

the Aviation Industry Computer-Based Training Committee (AICC). The AICC association

developed in 1998 a content package format called AICC HACP consisting of four comma

separated ASCII files that define details about the learning content including a URL. In 2000

the IMS Global launched the IMS Content Packaging (IMS CP). An IMS CP learning object

(Figure 3.11) assembles resources and meta-data into a distribution medium, typically an

archive in ZIP format, with its content described in a manifest file at the root level. The

manifest file - named imsmanifest.xml - adheres to the IMS CP schema and contains the

following sections:

Metadata - describes the package as a whole;

Organizations - describes the organization of the content within a manifest;

Resources - contains references to resources (files) needed for the manifest and metadata

describing these resources;

Sub-manifests - defines sub packages.

66 CHAPTER 3. E-LEARNING STANDARDS

Manifest.xml

Package

Metadata

Organization

TOC
Item

Item

Item

Item

Resource

Content

Content

Metadata

Content

File

PackageRef

Package

Figure 3.11: IMS CP package structure.

Meta-data information in the manifest file usually follows the IEEE LOM schema, although

other schemata can be used. These meta-data elements can be inserted in the metadata

section of the manifest to describe the learning object as a whole or can be included in the

resources section to describe each resource of the package. The IMS CP specification includes

a manifest section called Organizations to design pedagogical activities and articulate the

sequencing of instructions. By default, it uses a tree-based organization of learning items

pointing to the resources (assets) included in the package. However, other standards could

be accommodated in this section, such as IMS Learning Design (IMS LD) and IMS Simple

Sequencing (IMS SS). The IMS LD specification is a meta-language for describing peda-

gogical models and educational goals. Several IMS LD-aware tools are available as players

(e.g. CopperCore, .LRN) and authoring/export tools (e.g. Reload, LAMS). The IMS SS

is a specification used to describe paths through a collection of learning activities. The

specification declares the order in which learning activities are to be presented to the learner

and the conditions under which a resource is delivered during an e-learning instruction.

Despite all these specifications, the design of more complex adaptive behaviour is still hard

to achieve [ADjH+06].

3.2. CONTENT 67

3.2.2.2 ADL SCORM

Other well-known package format is the Sharable Content Object Reference Model (SCORM).

SCORM was created by the Advanced Distributed Learning initiative (ADL) with the first

production version launched in 2001. It is an application profile for content packaging that

extends the IMS CP specification with more sophisticated sequencing and Contents-to-LMS

communication. It defines communications between client side content and a host system

called the run-time environment, which is commonly supported by learning management

systems. The most recent version of SCORM specification is SCORM 2004 (4th edition)

from 2009.

3.2.2.3 IMS Common Cartridge

In 2008, IMS GLC proposed the IMS Common Cartridge (IMS CC) . Common Cartridge was

developed primarily to support the use of digital course materials and digital books in the

instructional context. It was not designed as a replacement for SCORM. The specification

defines an open format for the distribution of rich web-based content. Its main goal is

to organize and distribute digital learning content and to ensure the interchange of content

across any Common Cartridge conformant tools. The latest revised version (1.2) was released

in October 201121. The IMS CC package organizes and describes a learning object based on

two levels of interoperability: content and communication as depicted Figure 3.12.

Web Content Resources
(HTML,JPG,PDF)

Learning Application Objects
(assessments, web links,

discussion topics)

Tools
communication

(LTI)

A

U

T

H

O

R

I

Z

A

T

I

O

N

CONTENT

COMMUNICATION

Figure 3.12: Common Cartridge Content Hierarchy.

21IMS CC v. 1.2 Specification: http : //www.imsglobal.org/cc/ccv1p2/imsccprofilev1p2−Overview.html

68 CHAPTER 3. E-LEARNING STANDARDS

In the content level, the IMS CC includes two types of resources:

Web Content Resources (WCR) - static web resources that are supported on the Web

such as HTML files, GIF/JPEG images, PDF documents, etc.

Learning Application Objects (LAO) - special resource types that require additional

processing before they can be imported and represented within the target system.

Physically, a LAO consists of a directory in the content package containing a descriptor

file and optionally additional files used exclusively by that LAO. Examples of Learning

Application Objects include QTI assessments, Discussion Forums, Web links, Basic

LTI descriptors, etc.

In the communication level the cartridge describes how the target tool of the cartridge

(usually a LMS) should communicate with other remote web applications using the IMS Basic

LTI specification. Both levels enhance the interoperability of the cartridge among a network

of e-learning systems. In this scope a new IMS CC specification feature is introduced to

support authorization at two levels: either the whole cartridge can be protected or individual

resources can be protected. The following subsections detail the most important elements of

the CC content hierarchy.

The Common Cartridge builds upon a profile of the CP package. Figure 3.13 provides a view

of the CC manifest. The manifest is composed by four sections: metadata, organizations,

resources and authorizations. The Metadata section is used to store the cartridge metadata

restricted to a loose binding of LOM elements based on the DC specification. The Organiza-

tion section is used to represent the Common Cartridge Folder content type as a structural

approach to organize content. The Resources section is used to refer assets included in the

cartridge.

The manifest includes the LOM metadata standard to describe the cartridge and the learning

resources could be included in the cartridge package. The metadata could be include at two

levels: cartridge and resources. At the cartridge level one must use metadata according to

the Common Cartridge profile of the IEEE LOM (loose binding) which describes the range

of a mapping from the core elements of the Dublin Core specification v1.1 to IEEE LOM.

At the resources level one could use the original IEEE LOM namespace. There will be

scenarios where resources may need to be specified within the organization, but should not

be made visible in player mode upon default import of the cartridge. One such situation is

the inclusion of a solution program within the cartridge. To meet these needs, the common

cartridge supports the optional “roles” meta-data associated with the resource in the manifest

file. The supported roles in the IMS CC version 1.1 are: Learner, Instructor and Mentor. If

case of absence of the role the resource would be viewable by all users.

An IMS CC learning object supports authorization at three levels: on cartridge import,

3.2. CONTENT 69

HTML, images

Manifest
(imsmanifest.xml)

Authorizations

Cartridge Metadata
DC based LOM profile

Resources

Web Content Resource

Resource Metadata (LOM)

File 1

File 2 … N

Organizations

HTML, PDF, images

Learning Object Application

Resource Metadata (LOM)

File 1

File 2 … N

Tools Interoperability (bLTI)

File 1

XML descriptor

Associated content (QTI,
discussion topics, Web

links, etc.) XML descriptor

Figure 3.13: IMS Common Cartridge package.

on cartridge usage and on usage of specific resources in the cartridge. The mechanism by

which the authorized access to particular resources is enforced by the tool is not defined by

the profile.

The Common Cartridge uses the IMS QTI specification as a data model for questions and

tests. This specification is represented on the manifest through two LAO resource types:

assessments and question banks. An assessment represents an ordered question set (e.g.

Multiple Choice, True/False, Fill in the Blanks, Pattern Match, and Essay) and may include

optional attributes (e.g. number of attempts, time limit and whether late submission is

allowed) that apply to the set as a whole. A question bank can embed any of the question

types supported by the CC v1.1 profile of QTI. Only one question bank can optionally be

included in a cartridge.

A Web Link is a LAO resource that extends a standard HTTP link. The extension

comprises a title and a URL describing a set of window open features such as the dimensions

of the window. This approach allows the cartridge to minimize its storage space and to have

content updates after distribution.

70 CHAPTER 3. E-LEARNING STANDARDS

A Discussion Topic is a LAO resource used to initiate a discussion activity. Upon import,

the discussion topic content is stored by the tool using its own internal representation. As

the cartridge content is added to an actual course, an associated discussion topic is created in

the default tool discussion forum. The Discussion topic schema supports the use of plain text

or HTML for the discussion content and allows the attachment of other resources through

the use of the attachment element.

A Basic LTI resource refers to an XML file that contains the information needed to create

a link in a Tool Consumer (TC) (e.g. LMS). Upon the user’s click, the execution flow passes

to a Tool Provider (TP) along with contextual information about the user and Consumer.

The Basic LTI link is defined in the resource section of an IMS Common Cartridge. The

href attribute in the resource entry refers to a file path in the cartridge that contains an

XML description of the Basic LTI link. A BLTI link contains several elements. The most

important are: the title and description elements contain generic information about

the link; the custom and extensions elements allow the Tool Consumer to extend the basic

communication data; the launch url element contains the URL to which the LTI invocation

is sent; the secure launch url element is the URL to use if secure HTTP is required. The

LTI message signing is performed by a security mechanism designed to protect POST and

GET requests called OAuth. OAuth 1.0 specifies how to construct a base message string

and then sign that string using a secret. The signature is then sent as part of the POST

request and is validated by the Tool Provider using OAuth. Upon receipt of the POST, the

TP will perform the OAuth validation using the shared secret.

In a recent study [KC] the CC and SCORM specifications were compared regarding interop-

erability from the point of view of key users: the teachers. Teachers showed special interest

towards CC packages and in particular their use in Moodle system. In detail, teachers

enjoyed the possibility of editing a package, taking some elements and mixing them with

their own teaching resources very much in the same way as they do in with the non-digital

resources in their classrooms.

3.2.2.4 Other specifications

The large number of package and metadata standards means that there may be several

versions of a learning object (e.g. an English version and a French version) and available

in different formats (e.g. IMS Common Cartridge or as an SCORM 2004 package) from

several heterogeneous repositories. In order to overcome the potential data exchange issues,

Massart created the Information for Learning Object eXchange (ILOX) framework [Mas10].

This framework organizes multiple metadata specifications in a container that can be handled

as a whole. It was developed as part of the IMS Learning Object Discovery & Exchange (IMS

LODE) specification that aims to facilitate the discovery and retrieval of learning objects

3.2. CONTENT 71

stored across more than one collection and over a federation of repositories.

3.2.3 Assessment

Assessment specifications address the need of defining common formats and procedures for

the exchange of evaluation material among different e-learning tools. Two types of assessment

specifications are used: quiz based assessments and text file based assessments.

3.2.3.1 Quiz based assessments

The majority of e-learning systems include the automatic evaluation of quizzes as a feature.

Quizzes have the advantage of being generic and usable in any learning domain. The most

prominent initiative on the quiz-based evaluation domain is the QTI. The QTI specification

defines a standard format for the representation of assessment content and results and their

exchange between authoring and delivery systems (e.g. LMS). The specification consists of

a data model that defines the structure of the questions (with a set of pre-defined answers,

such as multiple choice, multiple response, fill-in-the-blanks and short text questions), the

tests, feedback and results; and an XML data binding that defines a language to facilitate

the exchange of the materials.

Despite the completeness of the specification and its acceptance by the industry as the

de facto standard, the QTI interoperability is still not sufficient [GRACG+09]. The most

relevant reasons are presented as follows:

Complexity of the specification - if a tool or platform uses a data model with a sig-

nificant differences from the one proposed in the specification, its capability to inter-

operate with other platforms is hindered. The QTI Lite specification appeared as an

attempt to bridge this complexity gap;

Version instability - the current versions (2.1) is incomplete. The IMS QTI project

group is in the process of evolving this specification based on input from market

participants. In the meantime, most LMSs and other assessment tools have solved

the interoperability problem with ad-hoc solutions that will have a large inertia to

adopt future versions of the specification;

LMS support - heterogeneous support from LMS.

The last issue can be further explored. Table 3.3 summarizes the compliance of different

e-learning systems with the different versions of QTI. Support for version 1.2 is considerably

higher than for the most recent version 2.1.

72 CHAPTER 3. E-LEARNING STANDARDS

Table 3.3: QTI compliance.

E-Learning Tools Import Export

Angel - 2.1

ATutor 1.2 1.2, 2.1 (*)

Clix 1.2 1.2

DB Primary - 2.0

Diploma 1.2, Lite 1.2, 2.1, Lite

Dokeos 1.2 1.2, 2.0

.LRN 1.2 1.2

Moodle 1.2 2.0

OLAT 1.2 1.2

QTITools 2.1 2.1

QuestionMark 1.2 1.2

Respondus - 1.2

Sakai 1.2 1.2

This heterogeneous support comes from the lack of tools supporting the last version. The

lack of use reduces the interest of the format. In addition, version instability is an aggravating

factor. An important percentage of the tools supporting QTI 1.2 do not risk to step forward

to the following version, as it is not clear if it is going to be endorsed by the IMS GLC

consortium in a near future.

There are other formats to describe questions ans tests but with less importance. This is

the case of GIFT 22 a internet format used by Moodle, HotPatatoes, Aiken, Learnwise and

others.

3.2.3.2 Text file based assessments

The most effective types of exercises in any learning domain, both for knowledge acqui-

sition and for student grading, are seldom quizzes. Text file automatic evaluation differs

significantly from quiz evaluation based on QTI. In fact, the evaluation of text files requires

extra resources and specialized metadata. For this reason QTI [LQ09e] is not adequate

for text file automatic evaluation, as would be expected since it was not designed for this

purpose. Extensions to learning object specification have to be developed to support text

file evaluation. On one hand text file evaluation is too specialized to justify its integration

in a general LMS. On the other hand, provided as a service it can used by many kinds of

systems.

22http://microformats.org/wiki/gift

3.2. CONTENT 73

One good example is computer programming assessment. It is hard to imagine learning

computer programming without actually programming. An attempt to solve a programming

exercise is written in a specific language (a programming language) that cannot be evaluated

simply by comparing it with predefined answers, as in quiz evaluation. The data model

of QTI was designed for questions with a set of pre-defined answers and cannot handle

evaluation domains with specialized requirements, such as programming exercise evaluation.

For instance, programming exercises evaluations requires tests cases, program solutions,

compilation lines and other specific type of meta-data that cannot be encoded in QTI. QTI

supports also long text answers but the specification of their evaluation is outside of its scope.

Although long text answers could be used to write the program’s source code, there is no

way to specify how it should be compiled and executed, which test data should be used and

how it should be graded. For these reasons QTI is not adequate for automatic evaluation of

programming exercises, although it may be supported for sake of compatibility with some

LMS.

The increasing popularity of programming contests worldwide resulted in the creation of

several contest management systems. At the same time Computer Science courses use

programming exercises to encourage the practice on programming. The interoperability

between these type of systems is becoming a topic of interest in the scientific community. In

order to address these interoperability issues several problem formats were developed. The

following paragraphs detail four formats: CATS, FreeProblemSet (FPS), Mooshak Exchange

Format (MEF) and Peach Exchange Format (PEF). Then, their features are synthesized

based on a specific exercises format expressiveness model.

CATS23 is a format for programming assignments [Kle11]. The format encoded in XML

describes the conditions of the problem and a set of files with additional tests, test programs,

etc. All these files are wrapped up in a ZIP file to facilitate deployment. A typical XML file

contains the description of 1) the problem statement codified in the Simple Text Markup

Language (STML) format - a simplified subset of HTML; 2) the format of input and output

files and samples; 3) the restrictions on the input format; 4) references for external resources

such as tests generators, special checkers, plug-ins and solution programs.

Freeproblemset (FPS)24 is a transport file format for the storage of all information about

problems. It aims to provide free problems sets for managers of ACM/ICPC Online Jugdes

by transporting data from one judge to another. The format uses XML to formalize the

description of a programming problem. It includes information regarding the problem, the

test data, the special judger(optional) and the answer(optional). Currently, the FPS format

is supported by several online judge systems including HUSTOJ25, ACM-Server26 and Woj-

23http://imcs.dvgu.ru/cats/docs/format.html
24http://code.google.com/p/freeproblemset/
25http://code.google.com/p/hustoj/
26http://code.google.com/p/acm-server/

74 CHAPTER 3. E-LEARNING STANDARDS

land (OJ from Wuhan University)27.

Mooshak28 is a web based competitive learning system originally developed for managing

programming contests over the Internet [LS03]. Recently, it was upgraded to expose the

evaluation functions as services. These services are expected to integrate in heteroge-

neous networks of e-Learning types of systems, including the Learning Management Systems

(LMS), Integrated Development Environments (IDE) and Learning Objects Repositories

(LOR) [LQ09a]. Despite the context where it is used, Mooshak has its own internal format

to describe problems called Mooshak Exchange Format (MEF). MEF includes an XML

manifest file referring several type of resources such as 1) problem statements (e.g. PDF,

HTML); 2) image files; 3) input/output test files; 4) correctors (static and dynamic); and 5)

solution programs. The manifest also allows the inclusion of feedback and points associated

to each test.

Currently, Mooshak is being used in several Universities worldwide to support learning

activity. In the competitive context, it is one of the most used evaluation systems for the

IEEE programming contests.

Peach29 is a system for the presentation of assignments, the collection, storage, and auto-

mated and/or manual evaluation of work submitted for assignments, and the administration

of results. The Peach Exchange Format (PEF) [Ver08] is a specific format for programming

task packages used in Peach. Peach task packages are stored in a directory tree with a

predefined structure. There are separate subdirectories for: 1) texts subdivided by natural

language (task, background information, hints, grading information); 2) metadata (task,

author, event, solver, grading and management, etc.); 3) solutions subdivided by program-

ming languages; 4) evaluation data subdivided in cases; and 5) tools (input generator,

input validator, output format checker). Currently, Peach is being used by the Eindhoven

University of Technology 30.

Several approaches can be found in literature [Ver08], [Kle11], [EBC+08] to evaluate the

expressiveness of programming assignments formats. This sub-section synthesizes the for-

mats described previously according to the model proposed by Verhoeff. The choice of the

Verhoeff model over the alternatives is due to its more comprehensive coverage of the required

features. This model organizes the programming exercise data in five facets:

Textual information - programming task human-readable texts;

Data files - source files and test data;

Configuration and recommendation parameters - resource limits;

27http://code.google.com/p/woj-land/
28http://mooshak.dcc.fc.up.pt/
29http://peach3.nl
30http://peach.win.tue.nl/

3.2. CONTENT 75

Tools - generic and task-specific tools

Metadata - data to foster the exercises discovery among systems.

The textual information facet (Table 3.4) accommodates all the information (or pointers

to such information) that the exercise author wants to offer to students or contestants

about the exercise. It includes, for instance, the exercise challenge, background information,

grading information and input/output samples. These texts may be available in several

languages and formatted in plain text or other open format standards such as HTML or

LATEX. Since this data is encode in flexible text data formats in can be transformed into

various (open) presentation formats such as PDF. Other texts (e.g. grading information and

samples) should ideally be generated from the evaluation data.

Table 3.4: Textual information facet.

Feature CATS FPS MEF PEF

Multilingual - - X X

HTML format X X X X

LATEXformat - - X -

Image X X X X

Attach files X - - X

Description X X X X

Grading - - - -

Samples - - - -

Besides human-readable texts, a programming exercise can also include several other files,

in both text or binary format.

Table 3.5: Data files facet.

Feature CATS FPS MEF PEF

Solution X X X X

Skeleton - - - -

Multi-language X X - X

Tests X X X X

Test groups X - - X

Sample tests - X - -

Grading X - X X

Feedback - - X -

The data files facet (Table 3.5) covers the following files: program and skeleton source files

(ideally with support for multiple programming languages), input/output test data (ideally

76 CHAPTER 3. E-LEARNING STANDARDS

with support for grouping and multiple visibility mode), feedback files associated with a

specific test case and others files.

The description of a programming exercise can also include parameters related with the

submission, compilation and execution of the students’ attempts to solve the exercise. These

parameters can be organized in terms of configuration and recommendation (Table 3.6).

The former deals with the configuration of compiler and linkers such as the compilation line

of source files and associated parameters. The latter includes recommendations usually

expressed in terms of resource limits such as the size and number of lines of a submission,

compilation and execution time and memory limits. These recommendations depend on the

actual platform used for evaluation runs. Thus, platform information should be associated

for a more accuracy control.

Table 3.6: Configuration and recommendation parameters facet.

Feature CATS FPS MEF PEF

Compiler - - - -

Executer - - - -

Memory limit X X - X

Size limit - - - -

Time limit X X - -

Code lines - - - -

When creating, solving or evaluating an exercise several software tools are needed such

as editors, compilers, libraries, linkers, test and feedback generators, input/output format

checkers, evaluators, etc. The tools facet (Table 3.7) covers the support of the exercise

formats either by referencing these tools or by formalizing data that can be used as input

for these tools.

Table 3.7: Tools facet.

Feature CATS FPS MEF PEF

Compiler - - - X

Test gen. X - - -

Feedback gen. - - X -

Skeleton gen. - - - -

Checker X - - X

Corrector - - X -

Library X - X X

The metadata facet (Table 3.8) comprises all the data that provide useful information on

the exercise for classification and discovery purposes. There are several types of metadata

3.3. COMMUNICATION 77

that can be included in a programming exercise such as: exercise metadata (exercise type,

keywords, difficulty level), authors metadata (name, contact), event metadata (name, type,

local, date, number of participants, etc.), solver metadata (platform, operating system, etc.)

and management metadata (status of development, version information, etc.).

Table 3.8: Metadata facet.

Feature CATS FPS MEF PEF

exercise X X X X

author X - - X

event - X - X

keywords - - X X

license - - - -

platform - - - X

management - - - X

This study confirms the disparity of programming exercise formats highlighting both their

differences and their similar features. This heterogeneity hinders the interoperability among

the typical systems found on the automatic evaluation of exercises. Rather than attempting

to harmonize the various specifications, a pragmatic solution is to provide a service for

exercises formats conversion.

3.3 Communication

The share and reuse of learning objects depends not only of the adoption of common formats

to describe the content but also of standard mechanisms to share it to different vendors, both

of LMS and of repositories. In this section the standards and specifications regarding these

two types of e-learning systems are detailed.

3.3.1 Learning Management Systems

An LMS plays an important role in any e-learning environment. Still, the LMS cannot afford

to be isolated from other systems in an educational institution. Thus, the potential for

interoperability is an important, although frequently overlooked, aspect of an LMS system.

The following sub-subsections present the most common strategies for integrating an LMS

with other systems usually found in educational institutions namely the Data, the API and

the Tool integration strategies. An integration example between a LMS and one of these

systems is also presented. Although the focus is the LMS other types of systems can achieve

these types of integration.

78 CHAPTER 3. E-LEARNING STANDARDS

3.3.1.1 Data Integration

Data integration is the simplest and most popular form of integration in content management.

This type of integration uses the import/export features of both systems and relies on the

support of common formats as shown in Figure 3.14. For instance, an e-Portfolio system may

import data (blog and forum contributions by students, course materials and assignments

uploaded by teachers) from LMS to avoid the burden of entering this data manually.

LMS ePortfolio

Data
(common format)

impo rt/exp ort

Figure 3.14: Data Integration.

These systems support two types of common formats: generic (e.g. HTML files) and e-

Portfolio specific (e.g. Leap2A files). The former are useful since they are widely available,

but they lack domain specific semantic data provided by the latter. For instance, if someone

adds a post in a Moodle forum it should be included in the Mahara e-Portfolio as a blog post

and not as a non-editable HTML artifact. This requires the use of a common e-Portfolio

standard so that Mahara (or any other e-Portfolio system) can understand the meaning of

the content and decides its final format.

3.3.1.2 API Integration

An API allows client applications to use directly the functions of an e-learning system.

These API foster client application development through data encapsulation and behavioural

reuse. This clear separation of interfaces specification from their implementation and data

formats allows tool vendors to develop new versions without affecting current clients. The

major LMS vendors include API to allow developers to extend their predefined features

through the creation of plug-ins. Blackboard uses the Building Blocks technology to cover

the integration issues with other systems allowing third parties to develop modules using the

Building Blocks API. The new Moodle version (v.2.0 released in November 2010) includes

several API (Figure 3.15) to enable the development of plug-ins by third parties to access

repositories and portfolios such as the Repository API for browsing and retrieving files

from external repositories; and the Portfolio API for exporting Moodle content to external

3.3. COMMUNICATION 79

repositories. These two API are based on the File API - a set of core interfaces to allow

Moodle to manage access control, store and retrieve files. The new File API aims to enhance

file handling by avoiding redundant storage. This feature is achieved since every file in

Moodle 2.0 is saved into a file pool (a directory in moodledata) with a file name that is

calculated as a SHA1 hash of the file content. If a file is copied (e.g. course cloning) no file

duplication happens, just a new record in a special table of files is created.

Moodle LMS

Plug-in Plug-inPlug-in

Repository API Portfo lio API

File API

Figure 3.15: API Integration.

In order to ensure a bidirectional communication between a LMS and an e-Portfolio system

it is required to use both API to create plug-ins. For instance, in the Moodle LMS, the

Mahara support is guaranteed only in one way by the implementation of the Portfolio

API. The Portfolio API is a core set of interfaces to publish files from Moodle to external

repository systems, mainly e-Portfolio systems. In this approach, the e-Portfolio system

appears seamlessly as a folder when students want to save content such as a file, snapshots of

forums or blogs and assignments. At time of writing this paper, Moodle 2.0.1 (January 2011)

includes in its release package several plug-ins for e-Portfolios such as Mahara, Flickr, Google

Docs, Boxnet and supporting different formats such as Leap2A and HTML. Regarding the

Repository API the same release package includes support for the repositories Alfresco,

Boxnet, Dropbox, Flickr, Google Docs, Merlot and Picasa.

3.3.1.3 Tool Integration

While e-learning frameworks are general approaches for e-learning system integration, several

authors proposed service oriented approaches specifically targeted to the LMS. In fact, there

are several references in the literature to middleware components for LMSs integration in

SOA based e-learning systems. Apostolopoulos [AK03] proposes a middleware component

to address the lack of integration of e-learning services. In this approach the e-learning

80 CHAPTER 3. E-LEARNING STANDARDS

components are implemented as agents maintained in a local management information base,

and can communicate with the agent manager through the SNMP protocol. Costagliola

[CCF+07] develop an architecture based on a middleware component and use Web Services

to integrate different software components and improve interoperability among different

systems. The middleware component enables the student learning process traceability since

it has been developed to be compliant with SCORM. Al-Smadi [AS10] presents a service-

oriented architecture for a generic and flexible assessment system with cross-domain use

cases. All these approaches have in common the need of a modification of LMS for each

specific vendor, with the implementation of a new module or building block. To the best

of the authors’ knowledge there are no references in the literature to the use of a common

standards supported by the major LMS vendors as a means to integrate the LMS in a service

oriented network of learning environments.

A common interoperability standard that is increasingly supported by major LMS vendors

is the IMS LTI specification. The IMS LTI provides a uniform standards-based extension

point in LMS allowing remote tools and content to be integrated into LMSs. The main goal

of the LTI is to standardize the process for building links between learning tools and the

LMS. There are several benefits from using this approach: educational institutions, LMS

vendors and tool providers by adhering to a clearly defined interface between the LMS and

the tool, will decrease costs, increase options for students and instructors when selecting

learning applications and also potentiate the use of software as a service (SaaS). The LTI

has 3 key concepts as shown in Figure 3.16 [Gil10]: the Tool Provider, the Tool Consumer

and the Tool Profile.

Tool

Profile

Tool Provider

Profile

Web Services

Tool Proxy Runtime

Tool ConsumerSession
Resource Link
Management
Too l Settings

Outcomes

Event Notification
Launch

LTI Services

Figure 3.16: IMS Full LTI.

The tool provider is a learning application that runs in a container separate from the LMS.

It publishes one or more tools through tool profiles. A tool profile is an XML document

describing how a tool integrates with a tool consumer. It contains tool metadata, vendor

information, resource and event handlers and menu links. The tool consumer publishes a

Tool Consumer Profile (XML descriptor of the Tool Consumer’s supported LTI functionality

that is read by the Tool Provider during deployment), provides a Tool Proxy Runtime and

3.3. COMMUNICATION 81

exposes the LTI services.

A subset of the full LTI v1.0 specification called IMS Basic LTI exposes a single (but limited)

connection between the LMS and the tool provider. For instance, there is no provision for

accessing run-time services in the LMS and only one security policy (OAuth protocol31) is

supported. For instance, to export content from Moodle to Mahara using the Basic LTI the

teacher (or LMS administrator) must first configure the tool (Mahara) as a Basic LTI tool

in the course structure. When a student selects this tool, Moodle launches a Mahara session

for the student. The web interface for this session can either be embed in Moodle’s web

interface as an iframe or launched in a new browser window.

Recently, IMS launch the Learning Tools Interoperability v1.1 Public Draft that combines

Basic LTI and LTI into just Learning Tools Interoperability. Version 1.1 of LTI includes

updates and clarifications as well as support for an outcomes service.

3.3.1.4 Comparison of the integration strategies

This subsection presents a comparative study on the e-Portfolio integration strategies in

LMS. This study is summarized in Table 3.9 and can be used as a guide in the selection of

an integration strategy.

Table 3.9: Comparison of e-Portfolio integration strategies

Data API Tool Integration

Integration Integration bLTI fLTI

Technical skills No Yes Yes Yes

Degree of coupling No bounding Tightly Loosely Tightly

Security To implement To implement OAuth OAuth

Batch integration No Yes No No

Development effort - Some Little Great

Communication type Bidirectional Bidirectional Uni Bi

Status (# implementations) - Many Many Few

Data integration is the best option when the development effort must be kept to a minimum

or no one with technical skills (specially programming skills) is available, since the other

two strategies require them. This strategy has also the advantage of not coupling the two

systems and enabling a bi-directional communication.

API integration is best suited when batch integration is required since the other two strategies

involve the use of the GUI of both systems. For instance, if the work of the students of a

31OAuth security protocol: http://oauth.net/

82 CHAPTER 3. E-LEARNING STANDARDS

given set of courses must be copied on a regular basis from the LMS to their portfolios

then the API strategies are recommended. The major drawbacks of this approach are the

amount of development required and the tight coupling between the LMS and the e-Portfolio

system, since special plug-ins must be implemented and API are vendor specific. Finally, this

strategy enables bidirectional communication, although the current version of Moodle (2.0.1)

does not implement yet the API repository, thus rendering in practice the communication

between LMS and Mahara unidirectional.

Tool integration is arguably the best choice in general since it provides a good balance

between implementation effort and coupling and security. This is especially true if only

unidirectional communication is required and Basic LTI is used. This tool integration flavour

is simple to implement and is already supported by most LMS vendors. If bidirectional

communication is required then full LTI is needed but in this case the implementation is

harder and few LMS vendors support this flavor of the specification. In both cases, tool

integration has the added value of providing some basic security features based on the OAuth

protocol aiming to secure the message interactions between the Tool Consumer and the Tool

Provider.

This comparative study was based both on the available documentation and on the authors

experience in using the different strategies to integrate Moodle with other systems, in

particular the development of a Moodle plugin using the Repository API [LQ10c] and the

basic LTI runtime to link Moodle with other e-learning systems [LQ11e].

3.3.2 Repositories

Repositories are crucial in the e-learning domain and are increasing in number [RSS10].

This growth led many to neglect interoperability issues that are fundamental to share

educational resources and to (re)use them on different contexts. Beyond the standardization

of content, repositories need to interact with other systems that typically cohabit in the

e-learning realm. Examples of these systems are authoring tools, learning management

systems, harvesting systems, intelligent tutors, and evaluation engines. In fact, some surveys

[RSS10, Fay10, Tea06, Tzi09] concluded that user expectations regarding standardization,

content management and interoperability are not completely met by existing repositories.

One of the main issues was that current repositories are specialized search engines of LO and

not adequate for feeding specialized services. The share and reuse of learning objects depends

not only of the adoption of common formats to describe the content but also of standard

mechanisms to publish data to repositories but also to search and retrieve data from reposi-

tories. The basic functionalities provided by a repository boil down to data push (publication

of data from a source into the repository) and data pull (searching/harvesting/gathering of

data from the repository). In recent years, several organizations (e.g. IEEE/LTSC, IMS

3.3. COMMUNICATION 83

Global, OKI, LETSI, ADL, CEN) have develop specifications and standards to address

these interoperability issues [Fri05]. For the sake of readability only the most prominent

specifications [LQ11a] are detailed organized in two facets: data push and data pull.

3.3.2.1 Data push

There are several protocols for publishing learning objects and/or their metadata to digital

repositories. A learning object can be sent to a repository by value or by reference. In the

former the publishing method embeds the learning object, after encoding, into the message

that is sent to the repository. In the latter, the repository embeds a reference (e.g. URL) to

the learning object that is being published.

The IMS DRI specification was created by the IMS GLC and provides a functional architec-

ture and reference model for repository interoperability. The IMS DRI recommends common

repository functions (e.g. submit, search, download). One of these functions is the submit

function for submitting LO to a DRI compliant repository through the transmission of an

IMS-compliant Content Package using SOAP Messages with attachments.

The Package Exchange Notification Services (PENS) protocol, developed by the AICC in

2005, supports a notification service for content packages. Using this service a source can

announce the location of a package that is available for transport. When an application

(e.g. LMS) receives a PENS notification, it can retrieve the package from the URL that is

provided. The PENS specification contains an abstract data model and provides a binding

to the HTTP protocol.

The Open Knowledge Initiative (O.K.I) created Open Service Interface Definitions (OSID)

to enable the submission of assets (learning object and metadata) to a digital repository. The

repository OSID includes a JAVA Asset interface that offer methods for adding and deleting

records. The SRU Record Update service supports the creation, replacement and deletion

of metadata records [McC06]. This specification can be implemented only on metadata

resources.

The SWORD (Simple Web-service Offering Repository Deposit) standard allows digital

repositories to accept the deposit of any content from multiple sources. SWORD is a profile

of the Atom Publishing Protocol (AtomPub - a simple HTTP-based protocol for creating and

updating web resources) restricting the scope of depositing resources into scholarly systems.

The Simple Publishing Interface (SPI) specification partly sponsored by the European Com-

mittee for Standardization (CEN) Workshop on Learning Technologies, defines a protocol

that aims to facilitate the communication between content producing tools and repositories

that persistently manage learning resources and metadata [TMT+10]. The SPI is an abstract

model for publishing metadata and resources. A binding to a technology makes these

84 CHAPTER 3. E-LEARNING STANDARDS

methods more concrete and defines how applications can interoperate. SPI has been bound

to the Atom Publishing Protocol (APP or AtomPub), compatible with the SWORD profile

which is widely used by institutional repositories.

3.3.2.2 Data pull

Learning objects are described by metadata stored in repositories. The latter should support

different search/harvesting protocols to expose metadata to users and/or services.

One of the earliest search protocols was the Z39.50. It is a client–server protocol for searching

and retrieving information from remote libraries. Z39.50 is a pre-Web technology (work on

the Z39.50 protocol began in the 1970s). Since then there have been several efforts to evolve

the protocol under the designation ZING (Z39.50 International: Next Generation).

One of the most important is the twin protocols SRU/SRW, which introduces a new com-

munication protocol (HTTP) making the specification more lightweight. Search/Retrieve

via URL (SRU) is REST based and enables queries to be expressed in URL query strings;

Search/Retrieve Web service (SRW) uses SOAP. Both expect search results to be returned as

XML. Queries in SRU and SRW are expressed using the Contextual Query Language (CQL)

as a new query language that was based on the semantics of Z39.50. All these standards

(SRW, SRU and CQL) are promulgated by the United States Library of Congress.

The IMS DRI also provides a recommendation for a search function. The Search reference

model defines the searching of the meta-data associated with content exposed by repositories.

It suggests two query languages: XQuery for searching IMS (XML) meta-data format and

Z39.50 for searching library information.

The IMS Learning Object Discovery & Exchange (LODE) specification aims to facilitate the

discovery and retrieval of learning objects stored across more than one collection. LODE is

based on the following assumptions: 1) LO are described by metadata such as LOM or DC; 2)

multiple metadata instances might be necessary in order to adequately describe all the aspect

of a LO and to create searchable catalogues of LO using the Information for Learning Object

eXchange (ILOX) framework; 3) repositories can be searched programmatically using SQI

or SRU; 4) large catalogues can be created by harvesting (i.e., mirroring) metadata stored

in repositories using protocols such as OAI-PMH.

The Simple Query Interface (SQI) specification, supported by CEN, presents an Application

Programming Interface (API) for querying learning object repositories. SQI is neutral in

terms of results format and query languages, thus it makes no assumptions about the query

language or results format [SMvA+05]. OpenSearch - created by A9.com (an Amazon.com

company) - is a collection of simple formats for the sharing of search results. The OpenSearch

description document format can be used to describe a search engine so that it can be used

3.4. SUMMARY 85

by search client applications. The OpenSearch response elements can be used to extend

existing syndication formats, such as RSS and Atom, with the extra metadata needed to

return search results.

The ProLearn Query Language (PLQL), developed by the PROLEARN ”Network of Excel-

lence”, is a query language for repositories of learning objects. PLQL is primarily a query

interchange format, used by source applications (or PLQL clients) for querying repositories

(or PLQL servers). PLQL has been designed with the goal of effectively supporting search

over LOM, DC and MPEG-7 metadata. However, PLQL does not assume or require these

metadata standards.

Harvesting protocols enable pulling learning objects and metadata from a repository. An

example of a metadata harvesting protocol is the Open Archives Initiative Protocol for

Metadata Harvesting (OAI-PMH). Large catalogues can be created by harvesting (i.e.,

mirroring) metadata stored in repositories using OAI-PMH. To obtain content, the OAI-

PMH can be used in combination with a protocol for obtaining content, such as the NISO’s

OpenURL.

3.4 Summary

This chapter gathers information on e-learning standards organized in two levels: content and

communication [JBK05, VA06]. At the content level the focus is on three facets: metadata,

content aggregation and assessment. At the communication level the focus is on the study

of several ways to communicate with LMSs and LORs. A new level (Frameworks) is added

due to its relevance in the last years on the development of new e-learning systems based

on SOA. This study groups the existent frameworks in abstract and concrete frameworks

and compared them according to their architectural model, impact and maturity, adopted

standards and user groups.

For each level, the most prominent standards and specifications and their main contributions

in the e-learning field are enumerated based on surveys [QL11c, FCN+11]. This information

is used in the Part II of this dissertation to choose the most suitable specifications and

standards for the domain of automatic evaluation of programming exercises.

86 CHAPTER 3. E-LEARNING STANDARDS

Part II

Architecture

87

Chapter 4

The Ensemble E-Learning

Framework

”The hardest part of design . . . is keeping features out.”

Donald Norman

This chapter presents a proposal for an e-learning framework called the Ensemble E-Learning

Framework (EeF). The EeF is a conceptual tool to organize a network of e-learning systems

and services based on content and communications specifications. The name ”Ensemble”1

suggests the collaborative work of all the parties in a network to achieve a common goal.

The EeF differs from the frameworks presented in section 3.1 in its focus and architectural

model.

The EeF is exclusively focused on the teaching-learning process. The frameworks presented

in section 3.1 cover areas that go beyond the scope of e-learning, from course to financial

management. In this framework the focus is on the coordination of pedagogical services

that are typical in everyday life of teachers and students at schools such as the creation,

delivery, resolution and evaluation of assignments. This framework emphasizes the use of

assessment services to automatically evaluate the attempts of students to solve exercises and

to produce relevant feedback on their quality. The need for automatic assessment exists in

different domains, for instance 1) an electronic circuit evaluator receive a description of a

circuit, injects input signals, simulates the circuit and compares output signals; 2) a diagram

evaluator receives a description of a diagram (e.g. UML) - a typed graph - and tries to

create a graph homomorphism with a solution; 3) a programming exercise evaluator receives

an attempt of a student to solve an exercise and the program is executed against test data,

1In the music domain, a musical ensemble is a group of people who perform instrumental or vocal music.

89

90 CHAPTER 4. THE ENSEMBLE E-LEARNING FRAMEWORK

and then the output of the program (or return value) is compared with a solution model.

Another distinctive feature of EeF is its architectural model. The EeF uses a model that

can be described as a ”decentralized orchestration”. An implementation of the EeF uses a

pivot component that orchestrates the communication with other services but is replicated

and deployed for each end user. This novel approach avoids any single-point-of-failure issues

that occur in central orchestrations.

In the following sections the framework is described based on three models. Firstly, the

architectural model and its components are presented. Then, the interoperable facet of the

framework is addressed by presenting its data and integration model.

4.1 Architectural model

The EeF is the basis for the design and implementation of Ensemble instances as re-

alizations of the framework for specific domains (e.g. computer programming learning).

Each instance can be deployed in several locations denominated as Ensemble networks.

Several users can interoperate within a network using Web Services. The definition of how

these Web services cooperate is typically based on coordination models (e.g. orchestration,

choreography). In the EeF architectural model the services coordination is based on a

”decentralized orchestration” where central components are replicated for each end user.

This is a distinctive feature of this framework. Most e-learning frameworks fall in one of two

architectural models: either based on layers of services, or on central communication nodes.

Both architectural models present communication issues: layered models present unintended

noise between the communication of non-contiguous layers and central communication nodes

include a single-point-of-failure since all the communication relies in a central node. With

this novel approach it may appear that the replication of components in the execution path

would adversely affect performance, however decentralized execution brings performance

benefits [CCMN04]:

• there is no centralized coordinator which can be a potential bottleneck;

• distributing the data reduces network traffic and improves transfer time.

Figure 4.1 shows the architectural model of the EeF. On the central axis that is perpendicular

to the plan holding the network services resides the central components called axial systems.

These central components communicate with services organized at two levels: core services

that are crucial for the learning process or secondary services that are used to complement

core services in a specialised task.

4.1. ARCHITECTURAL MODEL 91

core services

secondary services

axial systems

Figure 4.1: EeF architectural model.

The remainder of this section defines in detail the concepts of axial systems, core services

and secondary services.

4.1.1 Axial systems

Axial systems are central components in the EeF architectural model. The main features of

these systems are:

Centrality - they are able to communicate with all core services;

Locality - they are replicated on the computer of each end user of a specific network;

Interactivity - they mediate the interaction between the users (teachers and students) and

the network by means of a user interface.

One of such systems assume a pivot role. The role of the pivot component is twofold:

orchestration and interface.

The pivot component orchestrates the communication among services and is replicated for

each end user. Since it is distributed over each network user this approach prevents the

occurrence of any single-point-of-failure issues that might occur.

The pivot component also acts as the graphical interface between users and the network. In

the EeF jargon a pivot component is called a Teaching Assistant (TA). A Human TA is a

92 CHAPTER 4. THE ENSEMBLE E-LEARNING FRAMEWORK

person who assists a teacher in practical classes. The task of a automated TA is to act as

an interface to users (both with teachers and students) and, unlike its human counterpart,

to delegate most of its work to others, as it is fundamentally a coordinator of e-learning

systems. For instance, in a programming course, an automated TA is used to help students

with programming tools (integrated programming environments, compilers, and debuggers),

check if they have solved the exercises and provide feedback to help them to overcome their

difficulties. This type of tool can also be described as a scaffolding tool since it complements

existing tools and was designed to be easily removed once it is no longer needed.

Apart from the TA, other systems reside in this axial area. Using again the programming

domain as example, an experimentation system (e.g. IDE) can be used by students for

solving programming exercises and may be extended to communicate with other services in

the network. In the medical training domain, teachers use simulation models to improve

students skills in several medical processes (e.g. birth) and to use medical tools properly, as

they would in real world hospitals and clinics.

All these systems need to communicate with other services. The TA may need to interact

with an assessment system to submit a student attempt to solve an exercise. A business

simulation game may require a repository containing specialized LO describing simulations.

Due to size, complexity and security issues, these services should be accessed remotely rather

than being installed locally. The next subsection describes them.

4.1.2 Core and Secondary services

An Ensemble instance handles multiple pedagogical learning process. A learning process

is a collection of related and structured activities implemented by e-learning services. A

typical example of a pedagogical learning process is a classroom assignment. The teacher

starts by setting a number of activities in the LMS, including the resolution of a number

of relevant exercises in a specific domain obtained from a repository. The learner tries to

solve the exercises set by the teacher using an experimentation system that recovers exercise

descriptions from the repository. After solving the exercise the learner sends an attempt to

an assessment system. The learner may submit repeatedly, integrating the feedback received

from the assessment system. In the end the assessment system sends a grade to the LMS

gradebook. Most of these services are commonly provided by e-learning systems such as:

Learning Management Systems - to manage and retrieve the exercises to the learners;

Learning Objects Repositories - to persist LO and related meta-information;

Assessment Systems - to evaluate and produce feedback on attempts to solve exercises;

E-Portfolio systems - to organize students achievements.

4.2. DATA MODEL 93

These types of services are very different in nature. Repositories and Assessment Systems

provide truly specialized services. An LMS is not in strict sense a service. It is a system

designed to be a complete and generic e-learning environment rather than a service. Never-

theless, since a typical LMS is a component based system, it may be extended to incorporate

the features it lacks to communicate with other services.

Secondary services are complementary services that complement the core services in a specific

task, although its absence does not alter the execution flow of a learning process. Usually

these services do not have graphical interfaces and are more specialized than the core services.

An example of this kind of services is an adaptation service. Taking the previous example,

an adaptation service could adjust the presentation order in accordance with the effective

difficulty of the exercises (not the difficulty stated on the LO) and the needs of a particular

student. Other example is a service for handling the conversion between different exercises

formats.

4.2 Data Model

The concept of Learning Object (LO) is the cornerstone for producing, sharing and reusing

content in e-learning. The most widely used standard for LO is the IMS CP that uses

the LOM standard to describe the learning resources included in the package. The QTI

specification endows this data model with the capacity for describing questions and test

data. Despite its widespread use, this specification is not adequate to specific domains

[LQ09c, QL11e]. Recently, IMS GLC proposed the IMS CC that bundles the previous

specifications and its main goal is to organize and distribute digital learning content.

The Ensemble data model specification is based on the Common Cartridge specification.

This choice is sustained by the experiments of Kurilovas [Kur12] in the deployment of CC

packages in an educational context and is also justified by the following features:

Packaging - flexible packaging via URL references to web content;

Communication - collaboration and web 2.0 mash-ups (provisioning of IMS LTI);

Security - content authorization via protected resources;

Content sharing - migration from other data sources (e.g. SCORM 2004);

Extension - augment of data by using new Learning Application Resources (LAO);

Integration - access to learner data using privileges and outcomes (e.g. IMS LIS).

Of all these reasons, the extension facet is the most relevant. The extension can be achieved

by adding new LAO resources in the CC package. Each LAO must have a corresponding

94 CHAPTER 4. THE ENSEMBLE E-LEARNING FRAMEWORK

resource element in the manifest. Physically, a LAO is a directory in the content package

containing a descriptor file, its schema and additional files and subdirectories used exclusively

by that LAO. These files held within a LAO directory structure are described as associated

content resources. LAO resources differ from web content resources (e.g. HTML and image

files) since they require additional processing and interpretation before they can be imported

and subsequently used within the target system. Examples of LAO resources predefined in

the CC specification are the QTI assessments and discussion forums. Figure 4.2 shows the

structure of a CC package with the inclusion of a LAO resource.

Associated
Content

IMS CC MANIFEST

Cartridge metadata

Organizations

Resources

Authorizations

Web Content

Learning Application Object

Web Content

Learning Application Object Language
descriptor

IMS CC
Schema

IEEE LOM
binding

(DC based)

Language
Schema

references

comp lies

comp lies

comp lies

Associated
Content

references

LAO DIRECTORY

references HTML files, images,
audio, video, PDF, Flash, etc.

Figure 4.2: Structure of an IMS CC package.

An Ensemble instance must follow this data model. However, it is not mandatory to use the

LAO extension mechanism. This should only be used in cases where the specification is not

sufficient for a specialized domain. This is the case of the computer programming domain

where programming exercises should be described. Current specifications (e.g. LOM, QTI)

are insufficient and cannot describe how an exercise should be compiled and executed, which

test data should be used or how it should be graded.

4.3 Integration Model

The Ensemble specification also comprises an integration model. This model recommends

specifications for the communication between the axial systems and the core services. This

section analyses the communication specifications for the interaction of axial systems with

three core services typically found in e-learning environments: repositories, assessment

systems and learning management systems. The recommendation of the EeF for the as-

sessment is the Text file evaluation specification [LQ10g]. The selected specification

for the communication with repositories is the IMS DRI specification. Finally, for

4.3. INTEGRATION MODEL 95

interacting with the LMS the Ensemble specification recommends the use of the IMS LTI

specification. Other specifications may exist in an Ensemble instance even if not addressed

by this model.

This integration model relies on web services for communication among systems. Web

services can be used mostly in two flavours: SOAP and REST. SOAP web services are usually

action oriented, mainly when used in Remote Procedure Call (RPC) mode and implemented

by an off-the-shelf SOAP engine such as Axis. Web services based on the REST style are

object (resource) oriented and implemented directly over the HTTP protocol mostly to put

and get resources.

Both specifications have matured in distinct periods and they coexist nowadays. This

explains why older specifications such as DRI recommends SOAP, while newest such as

LTI are based on REST: SOAP started earlier and now the trend is REST. Figure 4.3 shows

the web service types from a directory of 3200 web APIs listed at ProgrammableWeb2 (May

2011).

1000

1500

2000

2500

REST

SOAP

Others

0

500

1000

2008 2009 2010 2011

Others

Figure 4.3: Trends on the use of SOAP and REST web services.

Regardless of these trends, the EeF specification does not encourage the use of any flavour

in the communication specifications detailed in the following subsections. As far as possible

the EeF tries to keep an equidistant position from both flavours.

4.3.1 Text File Evaluation Service Genre

Text file evaluation responds to the shortcomings of the assessment based on questions with

predefined answers. Questions with predefined answers are formalized in languages such as

2Official web site: http://www.programmableweb.com/

96 CHAPTER 4. THE ENSEMBLE E-LEARNING FRAMEWORK

IMS QTI and supported by many e-learning systems. Complex evaluation domains justify

the development of specialized evaluators that participate in several business processes as

autonomous services. The definition of this specification was inspired by the service definition

model of the E-Framework3. The specification consists of an abstract service type (service

genre) that describes a text file evaluation service. A service of this genre is responsible for

the assessment of a text file with an attempt to solve an exercise described by a LO. The

service modelled by the proposed definition receives a text file with an attempt to solve an

exercise and produces an evaluation report. The exercise is referenced as a LO available on

an interoperable repository. The abstract service supports three functions:

• The ListCapabilities function lists all the capabilities supported by a specific eval-

uator;

• The EvaluateSubmission function evaluates a submission to a given exercise, using

an available capability;

• The GetReport function provides a detailed report of a previous evaluation.

4.3.1.1 The ListCapabilities function

The ListCapabilities function informs the client systems of the capabilities of a particular

evaluator. Capabilities depend strongly on the evaluation domain. For instance, in a

computer programming evaluator the capabilities are related with the features of compilers or

interpreters. Each capability has a number of features to describe it and for a programming

language they may be the name of the language (e.g. Java), its version (e.g. 1.7) and vendor

(e.g. JDK). On an electronic circuit simulator a capability may be a collection of gates that

are allowed on a circuit and features may be the names of individual gates. A schematic

view of this function is shown in Figure 4.4.

Service
Implementation

Agent Service
End Point

Evaluation Engine
(e.g. language name,

version, vendor)
Capabilities

ListCapabilities()

capabil ities

Figure 4.4: The ListCapabilities function.

3Official web site of E-Framework for Education and Research - http://www.e-framework.org

4.3. INTEGRATION MODEL 97

In this function, the request does not accept any parameter and the response returns a list

of all capabilities of the evaluator. Each capability is described by a list of features, with a

name and a value. The format of this listing is outside of the scope of this specification and

must be defined by the concrete service definition.

4.3.1.2 The EvaluateSubmission function

The EvaluateSubmission function requests the evaluation of an attempt to solve a specific

exercise. The request includes an exercise or a reference to an exercise represented as a

learning object held in a repository and a text file with a single attempt to solve that

particular exercise. The request may include a specific evaluator capability necessary for the

proper evaluation of that attempt.

The response returns either a ticket for a later report request or a report on the evaluation.

In any event the response will include a ticket to recover the report on a later date. A

schematic view of this function is shown in Figure 4.5. The service endpoint provides the

interfaces for the requests and responses for the evaluation functionality. Internally the

service implementation may include several features (indexing, queuing, transforming, flow

control, etc.) needed to provide the defined functionality and a connection with a remote

data source holding the objects such as a LOR.

Service
ImplementationAgent Service

End Point

EvaluateSub missio n(exercise,attemp t,capab il ity)

ticket [and rep o rt]

Learning
Objects

Repository

Figure 4.5: The EvaluateSubmission function.

The evaluator returns a report on the evaluation, if it is completed within a predefined

time frame. The report should contain detailed information on the assessment rather than

a verdict such as passed or failed. The format of the report sent to the client should be

designed for using it as input to other systems (e.g. classification systems, feedback systems)

and may be, for instance, transformed in the client side based on a XML stylesheet. The

specification of the response format is outside the scope of this specification and must be

defined by the concrete service definition. Requesting a report using a ticket is supported

through another function called GetReport detailed in the next sub-subsection.

98 CHAPTER 4. THE ENSEMBLE E-LEARNING FRAMEWORK

4.3.1.3 The GetReport function

The GetReport function allows a requester to get a report for a specific evaluation. This

way the client will be able to filter out parts of the report and to calculate a classification

based on its data. A schematic view of this function is shown in Figure 4.6. The request

of this function includes a ticket sent previously by the service in response to an evaluation.

The response returns an evaluation report.

Service
ImplementationAgent Service

End Point

GetRepo rt(ticket)

ticket

Figure 4.6: The GetReport function.

4.3.2 Digital Repositories Interoperability

The IMS Digital Repositories v1.0 specification4, released in 2003, aims to provide recom-

mendations for the interoperation of the most common repository functions (Figure 4.7). In

order to use the IMS DRI these recommendations should be implementable across systems

to enable them to present a common interface for those functions. These core functions are:

• The Submit function defines how an object is moved to a repository from a given

network-accessible location and how the object will then be represented in that reposi-

tory for access. The recommended communication protocol is SOAP with attachments5

with the attachments taking the form of one or more IMS-compliant Content Packages;

• The Search function defines the searching of the meta-data associated with the content

exposed by repositories. Two protocols are suggested: XQuery over SOAP (for learning

object repositories) and Z39.50 (for libraries). Searching is performed using the XQuery

protocol over XML meta-data, adhering to the IMS Meta-Data Schema;

• The Request function allows a client that has located a meta-data record via the

Search function to request access to the LO described by that meta-data;

• The Alert function defines an intermediary aggregation service and envisions that

e-mail/SMTP (Simple Mail Transfer Protocol) could provide this functionality.

4http://www.imsglobal.org/digitalrepositories/
5http://www.w3.org/TR/SOAP-attachments

4.3. INTEGRATION MODEL 99

Creator Learner Agent

Client Applications

DRI compliant repository

S u b m i t S e a r c h A l e r t R e q u e s t

S t o r e E x p o s e D e l i v e r

Data

Metadata Assets

Figure 4.7: The IMS DRI Specification.

The DRI specification also includes a messaging model. This model standardizes general

communication between the components defined by the DRI architecture. The basic message

has two parts: a message header and a message body. XML bindings are also provided by

this specification but further extensions are needed to enhance the communication between

the repository and other systems [RSA06, EHR04].

4.3.3 Learning Tools Interoperability

IMS developed the Learning Tools Interoperability v.1.0 (LTI) specification in 2010. This

recent specification provides a standard way of integrating rich learning applications - in

LTI called Tool Providers (TP) - with platforms like LMSs, portals, or other systems from

which applications can be launched - called Tool Consumers (TC). LTI v1.0 defines a

formal deployment process whereby the LMS and the application reach an agreement on

the run-time services and security policies. In order to accelerate the conformance to this

new specification by Tool Consumers the IMS launched also a subset of the full LTI v1.0

specification called IMS Basic LTI. This subset exposes a single (but limited) link between

the LMS and the application as shown in Figure 4.8.

100 CHAPTER 4. THE ENSEMBLE E-LEARNING FRAMEWORK

Context
Resource

Basic LTI
Too l Proxy Runtime

Tool Provider Too l Consumer

Basic LTI Launch

Figure 4.8: The IMS Basic LTI Specification.

Basic LTI focuses on launching Web tool interfaces. It does not include provisions for

standardized web service callbacks and only one security policy is supported based on the

OAuth protocol6. The Tool Proxy Runtime manages the launch request performed by the

Tool Consumer. A context resource is sent as HTTP POST for the Tool Provider. The Tool

Provider verifies the authenticity of the request using an OAuth key and allows the access

to the context data by the Tool Provider user.

In March 2012 IMS launched the LTI v1.1 (final version) merging both specifications (Basic

LTI and LTI). This new version includes the support for an outcomes service based on a

subset of the IMS Learning Information Services (LIS)7 - the LTI Basic Outcomes Service.

The LIS specification is the definition of how systems manage the exchange of information

that describes people, groups, memberships, courses and outcomes within the context of

learning. Figure 4.9 shows how the bidirectionality of the LTI specification is performed.

Context
Resource

Tool Provider Too l Consumer

LIS Services

LTI Launch
(with LIS po inters)

replaceResult
read Result

deleteResult

LTI
Too l Proxy Runtime

Figure 4.9: The IMS LTI Specification v.1.1 - integration with LIS services.

TC provides launch data with LIS pointers to the TP. It is not required for the TC to

provide these services. The LIS services could even be provided by a third system such

as a Student Information System. Then, the TP calls the LTI Basic Outcomes Service if

available. This service receives ”Plain Old XML” (POX) messages signed using OAuth.

6Official Web site: http://oauth.net/
7Official Web site: http://www.imsglobal.org/lis/

4.4. SUMMARY 101

The service supports setting, retrieving and deleting LIS results associated with a particular

user/resource combination. The following functions are supported:

• The replaceResultRequest function sets a numeric grade (0.0 - 1.0) for a particular

result;

• The readResultRequest function returns the current grade for a particular result;

• The deleteResultRequest function deletes the grade for a particular result.

4.4 Summary

This chapter presents the Ensemble framework as a conceptual tool to organize a network of

e-learning systems and services based on content and communications specifications. These

specifications were selected based on the analysis presented in chapters 2 and 3 on the

current standards and systems in the e-learning realm. The framework presents an abstract

data and integration model that should base the implementation of networks in specialized

domains with complex evaluations. The implementation of this framework for the computer

programming domain is presented in the next chapter. This framework instance is validated

in the chapter 9.

Actually, the framework presented was abstracted from the concrete application to program-

ming exercises presented in the following chapter. It is expected that this abstract framework

may be applied to other domains, unrelated to the domain that motivated this research. In

a strict sense the EeF cannot be called as a framework since it was only ”applied” to a single

instance. It will be part of the future work, resulting from this dissertation to apply the EeF

to other domains and validated it as a framework.

102 CHAPTER 4. THE ENSEMBLE E-LEARNING FRAMEWORK

Chapter 5

Specializing Ensemble to computer

programming

”Don’t worry if it doesn’t work right.

If everything did, you’d be out of a job.”

Mosher’s Law of Software Engineering

This chapter presents the specialization of the Ensemble framework for the computer pro-

gramming domain. Firstly, the overall architecture of this Ensemble instance is presented.

Secondly, the data and the integration models are shown. The data model relies on the

creation of an interoperability language for describing programming exercises called PExIL.

This new language is included as a Learning Application Object (LAO) in an IMS CC

package as recommended by the Ensemble specification. The integration model details how

systems and services of this Ensemble instance are connected through the extension of the

recommended specifications of the EeF. The integration model includes the creation of a

new service for the communication with the AS based on the Evaluate service genre and

the extension of the IMS DRI and LTI specifications for the integration of LOR and LMS,

respectively. Finally, a selection of tools is presented according to the models presented.

5.1 Architecture

This section presents the overall architecture of a network of e-learning systems and ser-

vices participating in the automatic evaluation of programming exercises. The architecture

(Figure 5.1) is composed by the following components:

103

104 CHAPTER 5. SPECIALIZING ENSEMBLE TO COMPUTER PROGRAMMING

Teaching Assistant (TA) to interface the users with the network and to mediate the

communication among all components;

Integrated Development Environment (IDE) to code the exercises;

Assessment System (AS) to evaluate exercises of students;

Learning Objects Repository (LOR) to store and retrieve exercises;

Learning Management System (LMS) to present the exercises to students;

Conversion System (CS) to convert exercises formats.

TA

IDE

axial systems

core services

secondary services

AS

LMS

LOR

CS

Figure 5.1: Overall architecture of the Ensemble instance.

5.2 Data model

The concept of Learning Object (LO) is fundamental for producing, sharing and reusing

content in e-Learning [Fri05]. In essence a LO is a container with educational material

and metadata describing it. Since most LOs just present content to students they contain

documents in presentation formats such as HTML and PDF, and metadata describing these

documents using LOM (or other metadata format). When a LO includes exercises to be

automatically evaluated by an e-learning system, it must contain a document with a formal

description for each exercise. The QTI specification is an example of a standard for this kind

of definitions that is supported by several e-learning systems. However, QTI was designed

5.2. DATA MODEL 105

for questions with predefined answers and cannot be used for complex evaluation domains

such as the programming exercise evaluation [LQ09c]. In particular, the programming ex-

ercise domain requires interdependent resources (e.g. test cases, solution programs, exercise

description) usually processed by different services in the programming exercise life-cycle.

This kind of data cannot be characterized as metadata as they are data effectively needed

for evaluation.

The data model of the Ensemble instance extends the IMS CC specification for describing

programming exercises. This extension is achieved by adding a new LAO resource in the CC

package (Figure 5.2) as recommended by the Ensemble specification.

Description
(HTML, images,

PDF)

IMS CC
Manifest

Tests &
Feedback

PExIL
definition

Solution
program

PExIL
manifest

PExIL
descriptor

references

references

LAO associated content resources

Learning Applicat ion Object (LAO)

IMS CC package

references
PExIL

schema

complies

Figure 5.2: Ensemble instance data model.

A LAO resource contains an XML descriptor that serves as the entry point for the target

system. The descriptor file is not intended to be displayed within the target system. Rather,

it is intended to be processed by the target system upon import of the cartridge. The

descriptor file (pexil.xml) is associated with a LAO by means of a file element. It includes

references for two XML documents: pexildefinition.xml and pexilmanifest.xml. The

former describes all data needed for the generation of the evaluation resources. The latter

is a manifest with references for all the evaluation resources generated. These resources -

called associated content resources - comprise the exercise description, tests and feedback

files and the solution program.

This section focuses on the definition of an XML dialect called PExIL (Programming Exer-

cises Interoperability Language). The aim of PExIL is to consolidate all the data required in

the programming exercise life-cycle, from when it is created to when it is solved and graded.

Then, the XML Schema used to formalize the relevant data of the programming exercise life-

106 CHAPTER 5. SPECIALIZING ENSEMBLE TO COMPUTER PROGRAMMING

cycle is presented. Finally, the validation of this approach is made through the evaluation of

the expressiveness of the PExIL definition. In this evaluation the PExIL definition is used

to capture all the constraints of a set of programming exercises stored in a learning objects

repository.

5.2.1 The life-cycle of a programming exercise

A programming exercise requires a collection of files (e.g. test cases, solution programs,

exercise descriptions, feedback) and special data (e.g. compilation and execution lines).

These resources are interdependent and processed in different moments in the life-cycle of

the programming exercise. The life cycle comprises several phases:

1. in the creation phase the content author should have the means to automatically

create some of the resources (assets) related with the programming exercise such as

the exercise description and test cases and the possibility to package and distribute

them in a standard format across all the compatible systems (e.g. LMS, LOR);

2. in the selection phase the teacher must be able to search for a programming exercise

based on its metadata from a repository of learning objects and store a reference to it

in a learning management system;

3. in the presentation phase the student must be able to read the exercise description

in its native language and a proper format (e.g. HTML, PDF);

4. in the solving phase the learner should have the possibility to use test cases to test

his attempt to solve the exercise and to automatically generate new ones;

5. in the evaluation phase the evaluation engine should receive specialized metadata to

properly evaluate the learner’s attempt and return enlightening feedback.

All these phases require a set of inter-dependent resources and specialized metadata whose

manual creation would be time-consuming and error-prone.

5.2.2 PExIL

This subsection presents PExIL, an XML dialect that aims to consolidate all the data

required in the programming exercise life-cycle. This definition is formalized through the

creation of a XML Schema depicted in Figure 5.3.

The following subsections presents the PExIL XML Schema organized in three groups of

elements:

5.2. DATA MODEL 107

Ex
er
ci
se

Sp
ec
ifi
ca
tio
n

+
Li

ne
T

er
m

in
at

o
r

+
V

al
ue

S
ep

ar
at

o
r

Ti
tle

1.
.*

Cr
ea
tio
n

Au
th
or

Da
te

Ev
en
t

In
st
itu
tio
n

Co
nt
ex
t

Ch
al
le
ng
e

Ke
yw
or
ds

In
pu
t

De
sc
rip
tio
n

Ex
am
pl
e Li
ne

+
Vi

si
bl

e

Da
ta

+
Id

+
T

yp
e

+
V

al
ue

+
M

in
+

M
ax

+
Sp

ec
+

Vi
si

bl
e

Re
pe
at

+
C

o
un

t

W
he
n

+
C

o
nd

iti
o

n

Fe
ed
ba
ck

Te
st
Ca
se
Vi
si
bi
lit
y

+
Pu

b
lic

Co
rre
ct
or

+
D

ep
en

ds

Pr
og
ra
m

+
Id

+
La

ng
ua

g
e

+
C

o
m

p
ile

r
+

E
xe

cu
te

r
+

V
er

si
on

+
So

ur
ce

+
O

b
je

ct
+

C
o

m
pi

la
tio

n
+

E
xe

cu
tio

n

So
lu
tio
n

Sk
el
et
on

Fe
ed
ba
ck
Le
ve
ls

+
Le

ve
ls

+
In

cr
em

en
ta

l
+

S
ho

w
A

llL
ev

el
s

Hi
nt
s

Ou
tp
ut

In
pu
tO
ut
pu
t

0
..1

1.
.*

1.
.1

0.
.*

0.
.*

0.
.*

1.
.*

0.
.*

1.
.1

1.
.1

0.
.*

0.
.*

1.
.1

0
..1

0
..1

0
..1

0
..1

0.
.*

1.
.*

0
..1

1.
.*

1.
.*

0
..1

0.
.*

0.
.*

0.
.*

0
..1

Su
bm
is
si
on

+
T

im
e_

S
o

lv
e

+
T

im
e_

S
ub

m
it

+
At

te
m

pt
s

+
C

o
de

_L
in

es
+

Le
ng

th

Co
m
pi
lat
io
n

+
Li

ne
+

T
im

e
+

S
iz

e

Ex
ec
ut
io
n

+
Li

ne
+

T
im

e

0
..1

0
..1

0
..1

0
..1

Figure 5.3: PExIL data model.

108 CHAPTER 5. SPECIALIZING ENSEMBLE TO COMPUTER PROGRAMMING

1. Textual – elements with general information about the exercise to be presented to the

learner. (e.g. title, date, challenge);

2. Specification – elements with a set of restrictions that can be used for generating

specialized resources (e.g. test cases, feedback);

3. Programs – elements with references to programs as external resources (e.g. solution

program, correctors) and metadata about those resources (e.g. compilation, execution

line, hints).

5.2.2.1 Textual Elements

Textual elements contain general information about the exercise to be presented to the

learner. This type of elements can be used in several phases of the programming exercise

life-cycle: in the selection phase as exercise metadata to aid discoverability and to facilitate

the interoperability among systems (e.g. LMS, IDE); in the presentation phase as content to

be present to the learner (e.g. exercise description); in the resolution phase as skeleton code

to be included in the student’s project solution. Table 5.1 presents the textual elements of

the PExIL schema and identifies the phases where they are involved.

Table 5.1: Textual elements.

Element Selection Presentation Resolution Evaluation

title X X - -

creation/authors/author X X - -

creation/date X X - -

creation/purpose X X - -

challenge - X - -

context - X - -

skeleton - X X -

The title element represents the title of the programming exercise. This mandatory element

uses the xml:lang attribute to specify the human language of the element’s content. The

definition of this element in the XML Schema has the maxOccurs attribute set to unbound

allowing the same information to be recorded in multiple languages. The creation element

contains data on the authorship of the exercise and includes the following sub-elements:

authors with information about the author(s) of the exercise organized by several author

elements (represented as RDF elements); date which includes the date of the generation

of the exercise and purpose that describes the event for which the exercise was created or

the institution where the exercise will be used. The context element is an optional field

used to contextualize the student with the exercise. The challenge element is the actual

5.2. DATA MODEL 109

description of the exercise. Its content model is defined as mixed content to enable character

data to appear between XHTML child-elements. This XML markup language will be used

to enrich the formatting of the exercises descriptions. The skeleton element refers to a

resource containing code to be included in the student’s project solution.

5.2.2.2 Specification Elements

The goal of defining programming exercises as learning objects is to use them in systems

supporting automatic evaluation. In order to evaluate a programming exercise the learner

must submit a program in source code to an Assessment System (AS) that judges it using

predefined test cases - a pair of input and output data. In short, the AS compiles and

runs the program iteratively using the input data (standard input) and checks if the result

(standard output) corresponds to the expected output. Based on these correspondences the

AS returns an evaluation report with feedback.

In the PExIL schema, the input and output top-level elements are used to describe re-

spectively the input and the output test data. These elements include three sub-elements:

description, example and specification. The description element includes a brief

description of the input/output data. The example element includes a predefined example

of the input/output test data file. Both elements comply with the specification element

that describes the structure and content of the test data.

Table 5.2: Specification elements.

Element Selection Presentation Resolution Evaluation

input/specification - X X X

output/specification - X X X

This definition can be used in several phases of the programming exercise life-cycle as

depicted in Table 5.2: by 1) the content author to automatically generate an input and

output test example to be included on the exercise description for presentation purposes; 2)

the learner to automatically generate new test cases to validate his attempt; 3) the AS to

evaluate a submission using the test cases.

The specification element (Figure 5.4) contains two attributes and three top-level el-

ements. The attributes line terminator and value separator define respectively the

newline and space characters of the test data. The three top-level elements are: the line

element which defines a test data row, the repeat element which defines an iteration on a

set of nested elements controlled by the value of the count attribute and the when element

which evaluates specific conditions for the generation of test cases and respective feedback.

The line element defines a data row. Each row contains one or more variables. A variable

110 CHAPTER 5. SPECIALIZING ENSEMBLE TO COMPUTER PROGRAMMING

Figure 5.4: The specification element.

in the specification model must have a unique name which is used to refer to values from

one or more places in the specification element. A variable is represented in the PExIL

schema with the data element containing the attributes:

• id - defines the name of the variable. To access a variable one must use the id attribute

preceded by the dollar character (”$”) to enable the further resolution and evaluation

of XPath expressions while processing the specification model;

• type – defines the variable data type (e.g. integer, float, string, enum). In the case of

an enumeration the values are specified as a text child node;

• value – represents the value to be included in the input/output test file. If filled the

variable acts as a constant. Otherwise, the value can be automatically generated based

on a set of constraints - the type, min, max or spec attributes;

• min/max – represents value constraints by defining limits on the values. The semantic

of these attributes depends exclusively on the data type: may represent the ranges of

a value (integer and float), the minimum/maximum number of characters (string) or

a range of values to be selected from an enumeration list;

• spec - complementary specification to generate values. For instance, regular expres-

sion for generating/matching strings of text, such as particular characters, words, or

patterns of characters.

The following XML excerpt shows the specification elements for the input and output test

data of an exercise. The exercise challenge is ”given three numbers check if the last number

is between the first two.

5.2. DATA MODEL 111

The input begins with a single positive integer on a line by itself indicating the number of

the cases following (line 2). This line is followed by a blank line (line 3) and there is also

a blank line (line 10) between two consecutive inputs. Each line of input contains three

float numbers num1, num2 and num3 ranging values between 0 and 1000 (lines 5-9). In line

12 the when element forces the generation of a test case that complies with the condition

attribute value.

Listing 5.1: Example of the input test description.

1 <specification line terminator=”\n” value separator=” ”>

2 <line><data id=”numTestCases” type=”int” value=”3”/></line>

3 <line/>

4 <repeat count=”$numTestCases”>

5 <line>

6 <data id=”num1” type=”float” min=”0” max=”1000”/>

7 <data id=”num2” type=”float” min=”0” max=”1000”/>

8 <data id=”num3” type=”float” min=”0” max=”1000”/>

9 </line>

10 <line/>

11 </repeat>

12 <when condition=”$num1>$num2”>

13 <feedback xml:lang=”en−GB”>

14 Numbers can be given in descending order

15 </feedback>

16 </when>

17 </specification>

The output test description is shown in Listing 5.2. The output must contain a boolean for

each test case separated by a blank line between two consecutive outputs (lines 4 to 7).

Listing 5.2: Example of the output test description.

1

2 <specification line terminator=”\n” value separator=” ”>

3 <repeat count=”$numTestCases”>

4 <line>

5 <data id=”result” type=”enum” value=”1”>True False</data>

6 </line>

7 <line/>

8 </repeat>

9 </specification>

As said before, the AS is the component responsible for the assessment of an attempt to solve

a particular programming exercise posted by the student. The assessment relies on predefined

112 CHAPTER 5. SPECIALIZING ENSEMBLE TO COMPUTER PROGRAMMING

test cases. Whenever a test case fails a static feedback message (e.g. ”Wrong Answer”,

”Time Limit Exceed”, and “Execution Error”) associated with the respective test case is

generated. The PExIL schema includes a feedback element in the specification element

to complement the static feedback of the evaluator. This element defines a dynamic feedback

message to be presented to the student based on the evaluation of an XPath expression

included in the when attribute. This expression can include references to input and output

variables or even dependencies between both. If the expression is evaluated as true then the

text child node of the feedback element is used as the feedback message.

PExIL supports the concept of incremental feedback to control the presentation of both types

of feedback. The feedbackLevels element is a top-level child element which defines a set of

feedback levels that the exercise supports and when it is shown to the student. Listing 5.3

shows an example of a feedbackLevels element.

Listing 5.3: Example of the feedback element.

1 <pexil:feedbackLevels

2 levels=”simple|count classifications|test case feedback hint”

3 incremental=”2”

4 showAllLevels=”false”/>

The levels attribute may have one or more feedback levels. The existent levels are:

• Simple – a feedback message indicating whether the student’s attempt is correct or

incorrect (e.g. “Wrong answer!”);

• Count worst classification – a feedback message indicating the worst classification

of all the tests (e.g. “1 test with wrong answer”);

• Count classifications – a feedback message indicating the classifications of all tests

(e.g. “3 tests accepted and 1 test with wrong answer”);

• Test case feedback hint – a feedback message to be presented to the student based

on the evaluation of a condition defined by the content author. This feedback level is

pedagogically relevant since the teacher can cover common errors of his students and

warn them with useful and contextual feedback (e.g. “Forgot to divide by the number

of input elements”);

• Test case input result – a feedback message including the input data of an unsuc-

cessful test case (e.g. ”Unexpected output for the test with the input data: 5 6”);

• Test case input output – a feedback message with the input and the output data of

an unsuccessful test case (e.g. “Unexpected output for the test with the input data:

‘5 6’ and the output data: ‘5,5’ ”).

5.2. DATA MODEL 113

The incremental attribute defines the number of times that a given level of feedback is

shown. The showAllLevels attribute defines if the feedback to be presented to the student

should accumulate with previous ones. In the last example were defined three levels of

feedback. Based on the incremental attribute value the two first students’ unsuccessful

attempts will receive a simple feedback, the next two a count classification feedback

and so on.

5.2.2.3 Program Elements

Program elements contain references to program source files as external resources (e.g.

solution program, correctors) and metadata on those resources (e.g. compilation, execution

line, hints). These resources are used mostly in the evaluation phase of the programming

exercise life-cycle (Table 5.3) to allow the AS to produce an evaluation report of an attempt

to solve a programming exercise.

Table 5.3: Program elements.

Element Selection Presentation Resolution Evaluation

solution - - X X

corrector - - - X

hints X - - X

A program element is defined with the programType type depicted in Figure 5.5.

Figure 5.5: The program element.

This type is composed by seven attributes: id – an unique resource identifier; language –

identifies the programming language used to code the resource (e.g. JAVA, C, C#, C++,

114 CHAPTER 5. SPECIALIZING ENSEMBLE TO COMPUTER PROGRAMMING

PASCAL); compiler/executer – defines the name of the compiler/executer; version –

identifies the version of the compiler; source/object - defines the name of the program

source/object file; compilation – defines a command line to compile the source code; and

execution – defines a command line to execute the compiled code.

There are two program elements in the PExIL schema: the solution and the corrector

elements. The solution element contains a reference to the program solution file. Listing 5.4

shows an example of a solution element.

Listing 5.4: Example of the solution element.

1 <solution

2 id=”solution” language=”JAVA”

3 compiler=”javac” executer=”java”

4 version=”1.6” source=”solution.java” object=”solution”

5 compilation=”$compiler $source”

6 execution=”executer $object”/>

The corrector element is optional and refers to custom programs that change the general

evaluation pattern. There are two types of correctors: static and dynamic correctors. The

static corrector is invoked immediately after compilation, before execution. The corrector

can be used, for instance, to compute software metrics on the source code, judging the

quality of source code; to perform unit testing on the program; to check the structure of the

program’s source code. The dynamic corrector is invoked after each execution with a test

case. It is typically used to deal with non-determinism, for instance, if the output is a set

of unordered values, the corrector sort it before comparing it with the expected output. A

single programming exercise may use an arbitrary number of correctors. The order in which

they are executed is defined by the depends attribute extending the programType type.

The hints element aggregates a set of recommendations for the submission, compilation

and execution of exercises. These recommendations can be used by the AS to improve the

evaluation and feedback process. The hints element is composed by three sub-elements:

submission, compilation and execution elements.

The submission element defines guidelines for the submission process. It is composed by the

following attributes: time-solve – time limit to solve the exercise; time-submit – time limit

to submit the exercise; attempts – maximum number of attempts to submit the problem;

code-lines – maximum number of code lines in the code of the user; length - maximum

length in the code of the user.

The compilation element defines guidelines for the compilation process. It is composed by

the following attributes: time - time limit to compile the exercise; size - maximum size of

the execution code.

5.2. DATA MODEL 115

The execution element defines guidelines for the execution process. It is composed by a

single attribute: time - time limit to execute the exercise.

5.2.3 Evaluating PExIL

In this subsection the expressiveness of PExIL definition is validated. For the evaluation

process 24 programming exercises were randomly selected (1% of a total of 2393 exercises)

from a repository based on crimsonHex [LQ09a]. These exercises were originally supplied by

the administrators of the UVA Online Judge repository1. The sample exercises were manually

converted to PExIL and checked if the specification covered all the necessary constraints.

The evaluation results, depicted in the Figure 5.6, shows that in most cases (21 – 88%),

PExIL was expressive enough to cover the constraints of the exercise test data. In just one

case, a minor change was to be made in the PExIL definition to capture alternative content

models.

Cover (with minor

changes)

4%

Cannot cover

8%

Cover

88%

Figure 5.6: Evaluation of PExIL expressiveness.

Finally, two exercises were not completely covered by the PExIL definition. This means that

using only the standard data types of PExIL it is possible to define the input and output files,

and these definitions can be used to validate them. However, these definitions cannot be used

to generate a meaningful set of test data. In these cases the programming exercise author

would have to produce test files by some other means (either by hand or using a custom

made generator). However, the data types required by these exercises are comparatively

rare and do not justify their inclusion in the standard library. Moreover, PExIL does not

restrict data types and a generator of exercises can be extended with generators for other

data types, if this proves necessary.

1Official Web site: http://uva.onlinejudge.org/

116 CHAPTER 5. SPECIALIZING ENSEMBLE TO COMPUTER PROGRAMMING

5.3 Integration model

The integration model depicted in Figure 5.7 relies on communication standards recom-

mended by the Ensemble specification. This network model abstracts specific systems and

focuses on system types. For instance, it is possible to use in this network any repository

as long it supports the IMS CC specification to formalize the description of programming

exercises and it implements the IMS DRI specification for communication with other services.

Assessment
System

Integrated
Development
Environment

Learning
Objects
Repository

Learning
Management
System

Teaching
Assistant

Evaluate (E-F)

Shell

DRI (IMS)

LTI (IMS)

Converter
System

REST API

<<use>>

Figure 5.7: Network component diagram.

The next subsections report on the efforts made to integrate the systems and services of this

Ensemble instance. These efforts include the creation of a new service for the communication

with the AS based on the Evaluate service genre and the extension of the IMS DRI and LTI

specifications for the integration of LOR and LMS, respectively.

5.3.1 Digital Repositories Interoperability

This subsection details the extensions made to the DRI specification to accommodate the

new domain requirements. These extensions were made at three levels:

Web services - to promote the use of compliant repositories adjusted to different architec-

tural styles;

Core functions - to endow compliant repositories of new capabilities (e.g. management

capabilities);

XML binding - to formalize the responses from compliant repositories.

The following sub-subsections detail these extensions.

5.3. INTEGRATION MODEL 117

5.3.1.1 Interface definition

The DRI specification recommends SOAP as the specification protocol for exchanging LO

in the implementation of Web Services. The extension adds a new web service flavour called

REST. The reason to implement two distinct web service flavours is to promote the use

of the repository by supporting different architectural styles. The repository functions are

summarized in Table 5.4.

Table 5.4: Core and extension functions of DRI.

Function SOAP REST

Register URL getNextId() GET /?nextId > URL

Submit submit(URL loid, LO lo) PUT URL < LO

Request LO request(URL loid) GET URL > LO

RequestAsset LO requestAsset(URL loid, String asset) GET URL/asset > ASSET

Search XML search(XQuery query) POST / < XQUERY > XML

Report Report(URL loid,LOReport rep) PUT URL < LOREPORT

Alert RSS getUpdates([Integer minutes]) GET /?alert+minutes > RSS

Create XML Create(URL collection) PUT URL

Remove XML Remove(URL collection) DELETE URL

Status XML getStatus() GET /?status > XML

Each function is associated with the corresponding operations in both SOAP and REST

web services interfaces. The SOAP interface exposes a method using RPC and the second

column of Table 5.4 presents its signature. For the REST interface is shown the HTTP

method (GET, POST, or PUT), the requested URL and its input and output, following

the Unix syntax of redirection operators. Strings in italic are replaced by values of that

type. The lines formatted in italics correspond to the new functions added to the DRI

specification to enrich compliant repositories of new capabilities improving the repository

communication with other e-learning systems. Next, the Core functions are enumerated and

briefly explained.

The Register function enables client systems to request a unique ID from a compliant

repository. This function is separated from the Submit function in order to allow the inclusion

of the ID in the meta-data of the LO itself. This ID is an URL that must be used for

submitting or retrieving an LO. The producer may use this URL as an ID with the guarantee

of its uniqueness and with the advantage of being a network location from where the LO

can be downloaded. This action is performed by sending a GET HTTP request to the

server. The HTTP response includes in the HTTP Location header the URL returned by

the repository.

The Submit function uploads an LO to a repository and makes it available for future access.

118 CHAPTER 5. SPECIALIZING ENSEMBLE TO COMPUTER PROGRAMMING

This operation receives an argument providing an IMS CC compliant file and an URL

generated by the Register function. This operation validates the LO conformity to the

IMS CC Conformance and, in case of success, stores the LO in the internal database of the

repository. In order to send a LO to the server through REST, the PUT or the POST HTTP

methods can be used. The repository should respond with submission status data compliant

with the Response specification language. Client systems should lookup for validation errors

in the error element of the response specification.

The Request and RequestAsset functions get a LO or part of it from the repository. The

last function is an extension made to the DRI specification. In order to get a LO asset from

the server one should use the GET HTTP request. The request URL should be composed

by the ID of the LO plus the identification of the asset (e.g. description, solution, test)

to retrieve. An asset can be an exercise description (e.g. PDF file, HTML file + images); a

solution program or a set of public input/output/feedback files from a test case. For instance,

the request URL http://crimsonHex/lo/easy/12/description retrieves the description

of the exercise 12 stored in the collection easy from an instance of the crimsonHex hosted

at http://crimsonHex/lo.

The Search function enables client systems to query the repository using the W3C XQuery

language2, as recommended by the IMS DRI. This approach gives more flexibility to perform

any queries supported by the repository’s data. These queries are based on both the LO

manifest and its usage reports, and can combine the two document types. From the XQuery

point of view the database is a collection of manifest files. For each manifest file there is

a nested collection containing the usage reports. Alternatively, it is possible to use a GET

request with the searched fields and respective values as part of the URL query string. In

the HTTP GET request the query URI uses the query parameters represented as traditional

?name=value[&...] URL parameters. The supported names in the HTTP query string

of the request are: title - main title of the programming exercise; author - name of the

person who created the programming exercise; lang - language of the exercise description.

The value parameter can be a partial string. Queries using the GET method are convenient

for simple cases but for complex queries the programmer must resort on the use of a POST

request and using XQuery as the query language.

The Report function associates a usage report with an existing LO. This function is invoked

by the client to submit a final report, summarizing the use of an LO by a single student. This

report includes general data on an attempt(s) of a student to solve a programming exercise

(e.g. data, number of evaluations, success) and particular data on the characteristics of a

student (e.g. gender, age, instructional level). The former is represented as a fixed set of

attributes and includes the following data enumerated in Table 5.5.

2XQuery 1.0: An XML Query Language (Second Edition): http://www.w3.org/TR/xquery/

5.3. INTEGRATION MODEL 119

Table 5.5: Student’s attempt general data.

Attribute Content Description

lo-id URL reference to LO

data timestamp data/time of usage

time integer (seconds) resolution time

attempts integer number of attempts

success boolean success in solving problem

A meta-model was created for representing data to characterize students. This meta-model

must be abstract enough to accommodate unexpected requirements and simple enough to

provide an efficient implementation. Having this in mind students are represented as a

collection of attribute-values pairs, without enforcing the use of any attributes in particular.

The attributes for characterizing students are not be fixed by the repository and cannot be

assumed to be present (or absent). Table 5.6 shows some of these attributes.

Table 5.6: Student’s characteristics particular data.

Attribute Content Description

gender male female gender of student

age integer age of student when (solving to problem)

country iso-code of country student’s country of residence

language iso-code of language student’s native language

level integer instruction level

For instance, with this data an LMS will be able to dynamically generate presentation orders

based on previous uses of LO, instead of fixed presentation orders.

The Alert function notifies users of changes in the state of the repository using an RSS

feed. With this option an user can have up-to-date information through a feed reader. A

minutes parameter can be included in the request returning only the repository updates

that happened in the last minutes.

The Create function adds new collections to the repository. In order to invoke this function

in the REST interface the programmer must use the PUT request method of HTTP. The

only parameter is the URL of the collection.

The Remove function removes an existent collection or learning object. This function uses the

DELETE request method of HTTP. The only parameter is an URL identifying the collection

or LO.

The Status function returns a general status of the repository, including versions of the

120 CHAPTER 5. SPECIALIZING ENSEMBLE TO COMPUTER PROGRAMMING

components, their capabilities and statistics.

5.3.1.2 XML binding

The responses generated by the repository are formalized by the Response Specification

Schema. The advantage of this approach is to formalize the responses from compliant

repositories facilitating the parsing and validation of the HTTP responses. Figure 5.8 depicts

the elements of the new language and their types.

Figure 5.8: Response specification schema.

The schema has two elements: result and rss. The former is used by all the functions

except the Alert function that returns a feed compliant with the Really Simple Syndication

(RSS) 2.0 specification3. The result element contains the following child components:

• base-url attribute, defining a base URL for the relative URLs in the response;

• request element, containing the request URL and an human readable request message;

• error element, containing an error message - client systems should search for this

element to verify the existence of errors;

• response element, describing a successful execution of the function - it is composed by

an human readable response message and, for some functions, by a resources element

that groups a set of resources defined individually in resource elements. A resource

element contains an identification of the collection absolute path (attribute idCol) and

an identification of the LO itself (attribute idLo).

For the description of the request and response messages please consult the appendix D.

5.3.2 Learning Tools Interoperability

The integration of the LMS with the Teaching Assistant (TA) relies on the LTI specification.

The LTI specification recommends REST as the web service flavour for exchanging data

3RSS 2.0 Specification: http://www.rssboard.org/rss-specification

5.3. INTEGRATION MODEL 121

between the LMS and external tools. The LTI functions are summarized in Table 5.7.

Table 5.7: LTI functions.

Function REST LTI

Basic Full

Launch POST TA URL < LTI PARAMETERS yes yes

ReplaceResult POST LIS OUTCOMES URL < LIS SOURCE ID + GRADE no yes

ReadResult POST LIS OUTCOMES URL < LIS SOURCE ID > GRADE no yes

DeleteResult POST LIS OUTCOMES URL < LIS SOURCE ID no yes

At the time of writing this dissertation the majority of the LMS do not support the full LTI

specification. Thus, only the communication from the LMS to the TA is supported. The

Launch function allows the execution of a particular external tool within the LMS. Before the

launching, two steps are required: 1) the teacher (or LMS administrator) should configure

the TA as an external tool in the LMS control panel by setting the name and the URL of the

external tool; 2) the teacher should add an activity into the course structure referring to the

external tool. Later on, when a student selects the external tool, the LMS uses the URL to

launch the TA through an HTTP POST. This request includes a set of launch parameters

(LTI PARAMETERS) as hidden form fields. Table 5.8 organizes the most important parameters

in four groups.

Table 5.8: LTI launch parameters

Groups Variables Description

Resource

resource link id Unique identifier of a resource

resource link title A title for the resource

resource link description A description for the resource

User
user id Unique identifier of a user

user image URI for an image of the user

Context

context id Context id of the link being launched

context title A title of the context

context label A label for the context

LIS

lis person name full Full name of the user

lis person contact email primary E-mail of the user

lis outcome service url Unique identifier of the launch

lis result sourceid Outcomes service URL of the TC

This list can be extended by adding custom parameters. The syntax is custom keyname =

value. Three new parameters were added to the launch request: custom collection id -

122 CHAPTER 5. SPECIALIZING ENSEMBLE TO COMPUTER PROGRAMMING

defines a link for a collection of exercises in a DRI repository; custom sequencing - defines

if the exercises should be solved sequentially; custom time limit - defines a date/time limit

for the solving of all exercises. Listing 5.5 shows a subset of the launch parameters that the

LMS (Tool Consumer) sends to the TA (Tool Provider).

Listing 5.5: LTI launch with default parameters.

1 resource link title = Sum two vectors

2 lis person name full= Pimenta Ana

3 roles = Student

4 context title = Algorithms and Programming

5 lis result sourceid={”data”:{”instanceid”:”1”,”userid”:”2”,”launchid”:1914382991},”hash”:”...”}
6 lis outcome service url=http://crimsonhex.dcc.fc.up.pt:8080/moodle/mod/lti/service.php

7 custom collection id = http://crimsonhex.dcc.fc.up.pt:8080/crimsonHex/lo/myCollection/vectors

8 custom sequencing = true

9 custom time limit = 2011−11−07 12:00:00

In this example, the TA presents the exercises of the vectors collection and students should

solve them sequentially till November 7, 2011.

Table 5.7 also refers to three functions included in the IMS LIS Outcomes Service. These

functions use the lis result sourceid parameter included in the launch request that is

unique for every combination of resource link id / user id parameters and identifies a

unique row and column within the TC gradebook. After computing a grade, the TA calls

the LTI Basic Outcomes Service using the URL stated in the lis outcome service url

launch parameter. The service supports setting, retrieving and deleting of LIS results

associated with a particular user/resource combination (lis result sourceid parameter).

The replaceResultRequest function sets a numeric grade (0.0 - 1.0) for a particular result.

The readResultRequest function returns the current grade for a particular result. The

deleteResultRequest function deletes the grade for a particular result.

5.3.3 Evaluation service

This subsection presents a specialization of the text file evaluation service genre (subsec-

tion 4.3.1) for the computer programming domain [LQ10h, LQF10]. This service models the

evaluation of an attempt to solve a programming exercise defined as a learning object and

produces a detailed report. This evaluation report includes information to support exercise

assessment and grading by client systems. In this service the focus is on the automatic

evaluation of programming exercises and the goal is to mark and grade exercises in computer

programming courses and contests. By exposing its functions as services, an assessment

system of this kind is able to participate in business processes integrating different system

types such as repositories, contest management systems and learning management systems.

5.3. INTEGRATION MODEL 123

The remaining of this subsection focuses on the interface definition of the service and in an

XML binding to formalize the responses from compliant assessment systems.

5.3.3.1 Interface definition

The definition of the interface of a service formalizes the syntax of requests and responses of

its functions. This particular service exposes its functions as SOAP and REST web services.

The syntax of function requests in both flavours is summarized in Table 5.9.

Table 5.9: Core functions of the Evaluation Engine.

Function WS Syntax

ListCapabilities
SOAP ERL ListCapabilities()

REST GET /evaluate/ > ERL

Evaluate
SOAP ERL Evaluate (LO, Attempt ,Capability, Language)

REST POST /evaluate/$CID?id=LO&lang=LANG < PROG > ERL

GetReport
SOAP ERL GetReport(Ticket)

REST GET $Ticket > ERL

The ListCapabilities function informs the client systems of the capabilities of a particular

assessment system. In a computer programming assessment system the capabilities are

related with the programming language compiler or interpreter. Each capability is described

by a list of features, with a name and a value. For a programming language they may be

the language name (e.g. Java) its version (e.g. 1.5) and vendor (e.g. JDK). In this function

the request does not accept any parameter and the response returns a list of all capabilities

of the assessment system. Using the REST API this operation is performed by sending a

GET HTTP request to the evaluator. The response complies with the Evaluate Response

Language (ERL) specification detailed in the next sub-subsection. Table 5.10 shows an

example of a request and the respective response for the ListCapabilities function.

The Evaluate function allows the request of an evaluation for an attempt to solve a specific

programming exercise. The request includes a reference to an exercise represented as a LO

held in a repository and a single attempt to solve a particular exercise. The request also

includes a specific evaluator capability necessary for the evaluation of the attempt. The

request may also include a specific ISO 639-1 language (e.g. pt for Portuguese) for the eval-

uation report. Internally the service implementation may include several features (indexing,

queuing, transforming, flow control, etc.) needed to provide the defined functionality and

a connection with a remote data source holding the objects such as a LOR. If completed

within a predefined time frame, the assessment system returns an evaluation report or a

ticket for a later report request.

124 CHAPTER 5. SPECIALIZING ENSEMBLE TO COMPUTER PROGRAMMING

Table 5.10: REST request and response for the ListCapabilities function.

Request Response

GET http://eval.domain.org/evaluate > ERL

<message date=”2001−12−31T12:00:03”>

<request date=”2001−12−31T12:00:03”/>

<reply date=”2001−12−31T12:00:05” >

<capabilities>

<capability id=”MyService.C”>

<feature name=”Compiler” value=”gcc”/>

<feature name=”Compile”

value=”/usr/bin/gcc −lm \$file”/>

...

</capability>

</capabilities>

</reply>

</message>

Using the REST API this operation is performed by sending a POST HTTP request to

the server. The respective response complies with the ERL specification and includes an

evaluation report or a ticket to later recover. Both request and response are depicted in the

Table 5.11.

Table 5.11: REST request and response for the Evaluate function.

Request Response

POST

http://eval.domain.org/evaluate/java1.6?

id=http://lor.domain.org/lo/123

&lang=pt < PROG > ERL

<message date=”2001−12−31T12:00:03” >

<request date=”2001−12−31T12:00:03”>

<capability=”MyService.C”/>

<learningObject=http://lor.domain.org/lo/123/>

<program>

<![CDATA[... program code here ...]]>

</program>

</request>

<reply date=”2001−12−31T12:00:05”>

<token id=”https://eval.domain.org/report/123”/>

</reply>

</message>

The HTTP request parameter id is a reference to a LO with the programming exercise. The

lang attribute defines the natural language for the report. The PROG is an attempt to solve

it. The ERL is the content of the HTTP response to the above request. It includes a ticket

and may include an evaluation report. The id attribute of the token element can be used

to recover the report on a later date.

5.3. INTEGRATION MODEL 125

The GetReport function allows a requester to retrieve a report for a specific evaluation using

a ticket. The request includes a ticket previously received in response to an evaluation. The

report included in this response may be transformed in the client side based on a XML

stylesheet. This way the client will be able to filter out parts of the report and to calculate

a classification based on its data. The evaluation report does not compute a grade, points

or classification, nor produces a feedback for any particular scenario. Table 5.12 shows the

HTTP request and response of the GetReport function.

Table 5.12: REST request and response for the GetReport function.

Request Response

GET

https://eval.domain.org/report/123/xpto

> ERL

<message date=”2001−12−31T12:00:00”>

...

<report date=”2001−12−31T12:00:00”

evaluationServer=”https://eval.domain.org/”>

<capability id=”MyService.C”/>

<exercise href=”http://lor.domain.org/lo/123”>

A very simple Problem

</exercise>

<tests>

<test executionTime=”100” mode=”program”>

<input>

<![CDATA[/home/.../tests/T1/in−1.txt]]>

</input>

<expectedOutput>4</expectedOutput>

<obtainedOutput>4</obtainedOutput>

<outputDifferances></outputDifferences>

<classify>Memory Limit Exceeded</classify>

<mark>0</mark>

<feedback/>

<environmentValues>

<environmentValue name=”memory”

value=”12kb” />

</environmentValues>

</test>

</tests>

</report>

...

</message>

5.3.3.2 XML binding

All these functions respond with an XML document complying with the Evaluation Response

Language (ERL). This language is formalized in XML Schema and covers the definition of

126 CHAPTER 5. SPECIALIZING ENSEMBLE TO COMPUTER PROGRAMMING

the response messages for the three assessment system functions. The specification includes

two main elements: request and reply. The former echoes the request function and

its parameters as received by the evaluation service. It contains a different sub-element

according to the function type. The structure of the reply element depicted in Figure 5.9

contains the output to that request.

Figure 5.9: The reply type on the ERL specification.

The reply element includes the possible responses of the service such as the capabilities

element for the ListCapabilities function and the token and report elements for the

Evaluate function. The former has several capability sub-elements each with several

feature elements to describe it. The latter element includes a token element which holds

a ticket to recover a report and the optional report element with the effective evaluation

data.

The structure of the element report depicted in Figure 5.10 contains the raw data sent to

the client and can be used as input to other systems (e.g. classification systems, feedback

systems). It has a single mandatory evaluationServer attribute representing the URL of

the assessment system.

The report element includes the following sequence of sub-elements: capability - a specific

evaluator capability used to evaluate this attempt;programmingLanguage – the language

used to code the solution; exercise - a reference to the Learning Object and the title of

the exercise; compilationErrors – compilation error messages of the code of the used;

tests - contains a set of tests used for the evaluation of the submitted attempt. Each

test element represents a test case describing resources supplied to evaluate the submitted

program; summary – the synthesis of the assessment.

As shown in Figure 5.10, each test corresponds to a single test case that can be repeated to

create a test set. The submitted program is executed once for each test element, receiving as

5.3. INTEGRATION MODEL 127

Figure 5.10: The report type on the ERL specification.

input the content of the input element. The resulting output, stored in the obtainedOutput

element, is compared to the expected output contained in the expectedOutput element. The

outputDifferences element describes the differences between the two previous elements

using the syntax of the Unix diff command. The test element contains also data for

grading and correcting programs. This element includes a mark element to assign a mark for

a successful execution. The client may compute a grade for the submission as the sum of the

marks of successful executions. The feedback element contains feedback for an unsuccessful

execution. The environment values are a list of property-value pairs that may be supplied

by the execution environment. For instance, if the execution environment is able to report

the memory usage of a program execution then this data is recorded in this element.

5.3.4 Workflow

The previous subsections report on the efforts made to integrate the systems and services

of an Ensemble instance for the computer programming domain. These efforts included the

creation and extension of communication specifications such as:

• the extension of the IMS DRI specification for the integration of LOR;

• the extension of the IMS LTI specification for the integration of LMS;

• the creation of an evaluation service for the communication with the AS.

For each specification the interface definition and response bindings were presented. This

subsection summarizes all the interactions among systems and services based on these

specifications and represented in the UML sequence diagram depicted in Figure 5.11.

The workflow presented in Figure 5.11 starts by the selection of an LTI activity by the

student. This activity was previously configured by the teacher by selecting a collection

of exercises. After selection, the LMS launches the TA through the Launch function of

128 CHAPTER 5. SPECIALIZING ENSEMBLE TO COMPUTER PROGRAMMING

LMS TA

Launch()

LOR AS

XML search(URL co llectionId)

XML exercises

 ERL ListCap ab il ities()

 ERL cap ab il ities

ERL Evaluate(URL lo id , String attempt, String cap abil ity, String lang)

LO Request(URL loid)

LO

ERL Ticket [and Rep o rt]

ERL GetRepo rt(String ticket)

ERL Ticket and Rep ort

Rep ort(URL loid, LOReport rep)

loop [accep ted == false]

Rep laceResult(Lis_so urce_id , Grad e)

Figure 5.11: Sequence diagram of the Ensemble instance.

the LTI specification passing the user and course parameters. In order to present the

programming exercises to the student the TA forwards the search to the LOR using the

Search DRI function with the given collection URL. Meanwhile the TA gets from the AS the

evaluation capabilities for later evaluation using the ListCapabilities function. In general

each student is able to make several submissions for the same exercise and an activity may

include several exercises. Each evaluation starts with an Evaluate request from the TA to

the AS, sending a program and referring an exercise and a programming language. The

AS retrieves the LO from the repository to have access to test cases, special correctors and

other metadata. The AS responds with a ticket and an evaluation report, if the evaluation

is completed within a certain time frame. The TA may retrieve the evaluation report using

the GetReport function with the ticket as argument. When the student ends the session,

the TA sends an usage report to the LOR using the DRI report function and a grade back

to the LMS using the LTI replaceResult function.

5.4. TOOLS SELECTION 129

5.4 Tools selection

The data and integration model of this Ensemble instance relies on content and commu-

nication standards as recommended by the Ensemble specification. These interoperability

effort abstracts specific systems and focus on system types. This approach has facilitated

the selection of tools for deployment purposes. The next paragraphs discuss the selection of

each type of system or service. Figure 5.12 shows the tools selected for networks using this

Ensemble instance.

Mooshak
(AS)

Visual Studio
(IDE)

crimsonHex
(LOR)

Moodle
(LMS)

Petcha
(TA)

Evaluate (E-F)

She ll

DRI (IMS)

LTI (IMS)

BabeLO
(CS)

REST API

<<use>>

Figure 5.12: The deployment architecture of the EeF.

On the LMS side the choice fell on Moodle since it is a popular and open source LMS,

arguably the most popular LMS nowadays [DW09, CF07]. This LMS has made efforts to

support interoperability with other e-learning systems at two levels: content (e.g. IMS CP,

SCORM, IMS CC) and communication (e.g. IMS LTI). Also successfully tests were made

with Sakai LMS on this network evidencing the interoperable characteristics of the proposed

approach.

The LOR system selected was CrimsonHex (see chapter 6) - a software for the creation

of repositories of programming exercises. The exercises are described as learning objects

and complying with the IMS CC specification. The repository also adheres to the IMS

DRI specification to communicate with other systems. Other software for repositories were

analysed (e.g. Flori, HarvestRoad Hive, IntraLibrary) but none of them met the domain

requirements for the content and communication interoperability and most of them follow a

commercial development model.

The AS system selected was Mooshak [LS03]. Mooshak is an open source system for

managing programming contests on the Web including automatic judging of submitted

programs. This was the logical choice after the survey (section 2.4) made to 15 assessment

systems. One of the most important reasons for its selection was the support of web services.

The IDE system selected was Visual Studio Express for C# assignments. Successful tests

130 CHAPTER 5. SPECIALIZING ENSEMBLE TO COMPUTER PROGRAMMING

were made also with the Eclipse IDE for JAVA assignments on this network.

The TA system selected was Petcha (see chapter 8). Petcha has a two-fold goal: to coordinate

the systems and services of this network and to interface with users, both teachers and

students. Given the specificity of this role no other similar systems were found.

The CS system selected was BabeLO (see chapter 7). This system converts formats of

programming exercises among systems. At the time of writing this dissertation no other

system was found with these characteristics.

5.5 Summary

This chapter presents a specialization of the abstract framework detailed in the previous

chapter for a new domain - computer programming. The presentation includes the overall

architecture of the Ensemble instance followed by the description of the data and the

integration models. The data model relies on the PExIL specification - an interoperability

language for describing programming exercises - included as a LAO resource in an IMS CC

package as recommended by the Ensemble specification. The integration model detailed how

systems and services of this Ensemble instance are connected through the extension of the

recommended specifications of the EeF. The integration model includes the creation of a

new service for the communication with the AS based on the Evaluate service genre and

the extension of the IMS DRI and LTI specifications for the integration of LOR and LMS,

respectively. Then, a workflow of a network based on this Ensemble instance was presented

showing how systems and services interact. Finally, a selection of tools adjusted to the models

was presented. This process was straightforward evidencing the interoperability features of

the framework. Three of these systems and services that integrate this network were created

from scratch and will be detailed in the following chapters, more precisely, the crimsonHex

repository, the BabeLO converter and the Petcha Teaching Assistant. The acceptability of

this Ensemble instance is validated in chapter 9 through an experiment in a pedagogical

environment.

Part III

Implementation

131

Chapter 6

Learning objects repository

”They were urged on by the delirium of trying to reach the books in the

Crimson Hexagon: books whose format is smaller than usual,

all-powerful, illustrated and magical.”

Jorge Luis Borges in ”The Library of Babel”

This chapter presents the design and implementation of a service oriented repository of

learning objects (LOs) called crimsonHex. This repository supports new definitions of

learning objects for specialized domains and this feature is illustrated with the definition

of programming exercises as learning objects and its validation by the repository. The

repository is also fully compliant with existing communication standards and extensions

were made by adding new functions, formalizing message interchange and providing a REST

interface. To validate the interoperability features of the repository a plug-in for Moodle

was developed.

6.1 Architecture

The repository was modelled using a book library as metaphor: LOs may be seen as books

that the learner (the reader) accesses trough the LMS. As in a book library, the repository

has a catalogue that provides efficient search. After selecting a LO the learner receives an

actual copy of it, as supplied by its author, not just a pointer to another service. As LOs

are a kind of e-books the repository will have an unlimited number of copies to lent, unlike

in a physical book library. Libraries also keep records of requisitions. It is therefore very

simple for a librarian to know which are the most popular books, those that were never

133

134 CHAPTER 6. LEARNING OBJECTS REPOSITORY

requested and the books that readers take longer to read. This kind of information will be

interesting for the next generation of e-learning systems. Instead of using fixed presentation

orders of LOs, as they do today, they will dynamically determine presentation orders based

on the information about their previous use. To accommodate these features the repository

provides the option to record information on the use of the LO and provides statistics on

this data. Based on these thoughts the following design goals were defined:

1. The repository must be simple and effective. Simplicity is the best way to promote

the reliability and efficiency of the repository. This principle led to identify a core

component with a minimal set of features efficiently implemented. Complementary

features are delegated to helper applications that connect to the core component;

2. The repository must be reusable in other contexts, with generic features available

through users or applications interfaces;

3. The repository must comply existing standards for content (e.g. IEEE LOM, IMS CP,

SCORM, IMS CC) and for communication (IMS DRI).

The architecture of crimsonHex is depicted in Figure 6.1.

<<database>>
eXist

<<infrast ructure>>
Core

Importer

<<interface>>
API crimsonHex

<<GUI>>
Web Manager

XML:DB

Other
Repositories

LMS IDE AS

crimsonHex

1

2

3

Figure 6.1: UML components diagram of the crimsonHex repository.

6.2. IMPLEMENTATION DETAILS 135

The crimsonHex repository includes the following components:

1. the Core exposes the main features of the repository, both to external services, such

as the LMS and the AS, and to internal components - the Web Manager and the

Importer;

2. the Web Manager allows the searching, previewing, uploading and downloading of

LOs and related usage data;

3. the Importer populates the repository with content from existing legacy repositories,

while converting it to LOs.

The core operations of the repository are uploading and downloading LO - ZIP archives -

which are inherently simple operations that can be implemented almost directly over the

transport protocol. Other features may need a more elaborate implementation but do not

require the same reliability and efficiency of the core features. These features are relegated

to auxiliary components, connected to the central component using the crimsonHex API.

Other e-learning systems can be plugged into the repository also using this API.

The crimsonHex interoperability is based on two models: data and communication.

The data model of crimsonHex relies on the representation of programming exercises as

learning objects. A LO containing a programming exercise must include metadata to allow

its use by different types of specialized e-learning services. The existing LO standards are

insufficient for that purpose, which led to the development of a new language to describe

programming exercises called PExIL. This language is presented in detail in subsection 5.2.2.

A PExIL descriptor is included in an IMS CC package as a LAO resource. This is the proper

place to include new extensions to the manifest since a LAO resource comprises several files

connected through a single descriptor.

The communication model of the repository defines the interaction between the repository

and the other e-learning systems. The model relies on an API used both internally and

externally. Internally the API links the main components of the repository. Externally the

API exposes the functions of the repository to third party systems. In order to promote the

integration with other e-learning systems, the API of the repository adheres and extends

the IMS DRI specification. The specification recommends a set of functions introduced in

subsection 5.3.1 and detailed in appendix D.

6.2 Implementation details

This section details the design and implementation of the Core component of crimsonHex

on the Tomcat servlet container. The following subsections detail the development of the

136 CHAPTER 6. LEARNING OBJECTS REPOSITORY

four main facets of the Core - storage, validation, interface and security.

6.2.1 Storage

Searching LOs in the repository is based on queries on their XML manifests. Since manifests

are XML documents with complex schemata two types of databases systems with XML

support were studied: XML enabled relational databases and Native XML Databases (NXD).

XML enabled relational databases are traditional databases with XML import/export fea-

tures. They do not internally store data in XML format hence they need extra processing to

support querying using XQuery. Since queries in this standard are a DRI recommendation,

this type of storage is not the best option. In contrast, NXD uses the XML document as

fundamental unit of (logical) storage, making it more suitable for data schemata difficult

to fit in the relational model. Moreover, using XML documents as storage units enables

the following standards: XPath for simple queries on document or collections of documents;

XQuery for queries requiring transformational scaffolding; SOAP, REST, WebDAV, XmlRpc

and Atom for application interface; XML:DB API (or XAPI) as a standard interface to access

XML datastores; XSLT to transform documents or query-results retrieved from the database.

Several open source NXD, including SEDNA, OZONE, XIndice and eXist were analysed.

Only eXist implements the complete list of the features enumerated above, which led to

its select as the storage component of crimsonHex. It has also two important features that

worth mentioning: support for collections, to structure the database in groups of related

documents and automatic indexes to speed up the database access [Mei02].

6.2.2 Validation

CrimsonHex is a repository of specialized learning objects. To support this multi typed

content the repository must have a flexible LO metadata validation feature. The eXist NXD

supports implicit validation on insertion of XML documents in the database but this feature

could not be used for several reasons: LO are not XML documents (are ZIP files containing

an XML manifest); manifest validation may involve many XML Schema Definition (XSD)

files that are not efficiently handled by eXist; and manifest validation may combine XSD

and Schematron validation and this last is not fully supported by eXist.

All LOs stored in crimsonHex must comply with the IMS CC that specifies its structure and

content. This specification also requires the XSD validation of their manifests. For particular

domains it is possible to configure specialized validations in crimsonHex by supplying a

Java class implementing a specific interface. These validations extend those of the IMS CC

and may introduce new schemata, even using different type definition languages such as

Schematron.

6.2. IMPLEMENTATION DETAILS 137

Validations are configured for each collection of documents. Thus, different types of special-

ized LO may coexist in a single instance of crimsonHex. As mentioned before, IMS CC main

schema imports many other schemata (more than 30) that must be downloaded from the

Internet. This requirement has a bad impact on the performance of the submit function.

To accelerate this function a cache was implemented. A newly stored schema has a time to

live of 1 hour. Outdated schemata are reloaded from their original Internet location using a

conditional HTTP request that downloads it only if it has effectively changed.

Despite the expressiveness of XML Schema, there are several situations where it is not pos-

sible to validate a document with only this language. One example is the values dependence

where it is important to guarantee that a value is higher/lower than another (e.g. value of

the imsmd:minimumversion element is less than the value of the imsmd:maximumversion

element).

To check this type of constraints a XML Schema cannot be used. There are, at least, three

options: combine with others schema languages; write code in a programming language to

express the additional constraints; use an XSLT/XPath stylesheet. The first is the chosen one

since in order to maintain the solutions based in XML technologies and, if possible, in a single

schema document. There are several alternative schema languages, such as RELAX, TREX

and Schematron. A good candidate to this “second level of validation” is Schematron. The

previous example could be validated as a separate file with the rule included in Listing 6.1:

Listing 6.1: Example of a Schematron rule.

1 <schema xmlns=”http://www.ascc.net/xml/schematron” >

2 <pattern name=”version validation”>

3 <rule context=”//imsmd:requirement”>

4 <assert test=”imsmd:minimumversion > imsmd:maximumversion”>ERROR</assert>

5 </rule>

6 </pattern>

7 </schema>

Schematron validation can be used in conjunction with a XML schema validation using two

approaches: as separate files using pipeline validation languages (e.g. DSDL, Schemachine)

or as a unique file embedding Schematron rules in the XML Schema. In order to simplify

the file version management the second option was selected and the Schematron rules were

embedded within the appinfo elements in the XSD document. However, a W3C XML

Schema processor does not validate constraints expressed by the embedded Schematron rules.

They need to be extracted from the source schema and concatenated into a new Schematron

document. To address this issue a stylesheet (Schematron-Generator.xsl) was created to

extract embedded Schematron rules from a W3C XML Schema document and merge them

into a complete schema. This approach is depicted in Figure 6.2.

138 CHAPTER 6. LEARNING OBJECTS REPOSITORY

W3C XML Schema
with Schemat ron rules

W3C XML Schema
Pro cessor

XSLT
Pro cessor

Schematron
Pro cessor

Schemat ron schema
(validator.sch)

Ext ract or st ylesheet
(schemat ron- generat or.xsl)

XML inst ance document
(imsmanifest .xml)

XML inst ance document
(imsmanifest .xml)

W3C XML Schema
report

Schemat ron report

Merged report

Figure 6.2: Validation of XML files by a W3C XML Schema with Schematron rules [Rob02].

Since Schematron rules are built using XPath and XSLT functions, the Schematron processor

is based on a XSLT processor. To perform this validation an implementation of a Java API

for the Schematron language1 was used that organizes the Schematron processing in two

steps, as shown in Figure 6.3.

XSLT
Pro cessor

XSLT
Pro cessor

Validat ing XSLT
stylesheet

Met a-stylesheet
(preprocessor.xsl)

XML inst ance document
(imsmanifest .xml)

Schemat ron report

Schemat ron schema
(validator.sch)

Schematron
processor

Figure 6.3: Schematron processing [Rob02].

The Schematron schema is transformed into a validating XSLT stylesheet by a meta-stylesheet

provided by the API. The validating stylesheet is then used on the XML instance document

and the result will be a report based on rules/assertions of the Schematron schema. By

combining these two validation languages, many of the constraints that previously had

to be checked in the application code can now be abstracted to the schema. However it

should be noticed that in time critical applications the overhead of processing the embedded

Schematron rules may be unaffordable.

1Official Web site: http://www2.informatik.hu-berlin.de/ obecker/SchematronAPI/

6.2. IMPLEMENTATION DETAILS 139

6.2.3 Security

Following the design principles of simplicity and efficiency the management of users and

access control in the Core was avoided. This decision does not preclude the security of this

component since these features can be controlled in the communication layer. Since both web

services flavours use HTTP as transport protocol the channel can be secured using Secure

Sockets Layer (SSL) (i.e. HTTPS). This ensures the integrity and confidentiality of assets

in LO. The authentication and authorization rely on the verification of client certificates

provided by SSL. In practice, to implement this approach it is necessary to configure the

servlet container (e.g. Tomcat) to support HTTPS requests with authorized certificates.

Nevertheless, managing certificates is a comparatively complex procedure thus a set of aux-

iliary functions is provided in the core that act as a mini Certificate Authority (CA). These

functions are used for managing and signing client certificates and their implementation is

based on the Java Security APIs.

6.2.4 User Interface

This subsection presents the crimsonHex user interface. Firstly the strategy to design the

user interface is presented. Then, the main tasks, namely browsing, authoring and searching

are described. The design of this user interface (Figure 6.4) was based on the identification

of task and usage profiles, task objects and task actions. The task profiles are:

Archivist - a person responsible for a set of activities related with the collection manage-

ment, such as: creation of collections, assigning of learners and reviewers to collections;

Author - a person that develops and submits LO to the repository. The submission of LO

will be enforced to comply with controlled vocabularies defined in meta-data standards

(IEEE Learning Object Metadata - LOM) and possible extensions. This class of users

will contribute with new learning objects and receive peer reviews from specialists;

Reviewer - a person that controls the quality of the repository by validating the submitted

LO;

Consumer - a person that browses (part) of the repository and has limited access to its

content (LO, usage reports, reviews, comments).

Users will have different usage profiles. On one hand, many will be novice or first-time

users, especially among authors and consumers. On the other hand, some users, especially

reviewers and archivists, will use crimsonHex frequently, tending to become experts in its

use. After the identification of users and usage profiles the tasks they need to perform

on this interface were identified. The LO and collections of LOs are task objects, each

140 CHAPTER 6. LEARNING OBJECTS REPOSITORY

Figure 6.4: crimsonHex WebManager.

with a number of associated task actions, depending on user profiles. Task actions over

LO include: viewing, reviewing, downloading, and commenting. Task actions on collections

include creating, removing and authoring/uploading (LO to that collection). Based on the

previous identifications a screen layout was defined - a single screen (Figure 6.4) with specific

areas for task object selection and task actions. Task object selection is needed by all users,

although the selectable content depends on the user’s profile, thus it can be implemented by

a common tree-based control. Different task actions require specific forms or panels that also

share a common control on the user interface. Since the number task actions is comparatively

small a tabbed control was chosen to aggregate them. The tab configuration shown to users

depend both on their profile and on the current task object selection. As a rule, all available

task actions have an associated tab, thus helping novice users to recognise which are the

available actions. However, some of these task actions can be executed directly over selected

task objects, without requiring additional data. In general, these task actions are meant

for frequent users and will be bound to contextual menus on the tree-control, as well as to

accelerator keys.

Figure 6.4 shows the user interface layout of the repository with two main areas: selection

on the left side and action on middle. In the selection area the user navigates through

the repository structure to select task objects. In the action area the user executes task

actions on the selected task objects. Secondary areas in this layout are the header, used

6.2. IMPLEMENTATION DETAILS 141

for authentication and registration, and the right side, used for news and statistics. The

remainder of this section details the design of task actions available in the main areas.

Selected LO can be viewed in different perspectives, such as, Content, Usage and Review.

As would be expected, each perspective is assigned to a different tab on the action area.

The Content tab shows the resources and meta-data of the selected LO using XSLT trans-

formations on its manifest file. Different stylesheets can be select to configure content

presentation, including:

Resources – lists resources and their meta-data with support for viewing/downloading

individual resources;

Meta-data – shows all global meta-data, including LOM and extensions;

LOM - show LOM meta-data grouped in main categories (General, Lifecycle, Technical,

Educational, Rights);

Extension – shows meta-data related with the extension schemata.

The Usage tab presents statistics on the use of a selected LO. This feature is related to the

report function that associates usage reports to an existing LO. This function is invoked by

a consumer of the repository services (typically an LMS), summarising an episode of using

a LO with a particular student. The aim of this function is to provide the LMS with the

ability to dynamically generate presentation orders based on previous uses of LO, instead

of using fixed presentation orders. This report includes both general data on the student’s

attempt to solve the programming exercise (e.g. data, number of evaluations, success) and

particular data on the student’s characteristics (e.g. gender, age, instructional level).

The Review tab assists in the review process of a LO. Before validation the LO is not available

to general users of the repository. The availability of the LO depends on this validation. If

the LO is not accepted the reviewer could justify the rejection and/or supply comments to

the author of the LO. These comments may lead to new versions that must be submitted as

a new LO.

The Web Manager component was developed using an Ajax framework called Google Web

Toolkit (GWT) to enable the implementation of the single screen design resulting from the

last section. GWT is an open source Java software development framework that allows a

rapid development of AJAX applications in Java. When the application is deployed, the

GWT cross-compiler translates Java classes of the GUI to JavaScript files and guarantees

cross-browser portability. The framework also supports asynchronous remote procedure

calls. This way, tasks that require significant computational resources (e.g., complex search-

ing within the repository) can be triggered asynchronously, increasing the user interface’s

142 CHAPTER 6. LEARNING OBJECTS REPOSITORY

responsiveness. The complex controls required by the selection and action areas are provided

by SmartGWT, a GWT API’s for SmartClient, a Rich Internet Application (RIA) system.

The Web Manager component is organised in two main packages: the back-end (server)

and the front-end (client). The back-end includes all the service implementations triggered

by the user interface. These implementations rely on the gateway class for managing the

communication with the Core of the repository. A single class implementing the Gateway

design pattern concentrates the interaction with the core component. To interact with other

DRI compliant repositories only this class will have to be re-implemented.

6.2.5 Tests

Reliability is one of the main concerns regarding the Core component of crimsonHex. The JU-

nit2 was adopted as the automated unit testing framework since crimsonHex is implemented

in Java and this tool is support by Eclipse, the Integrated Development Environment (IDE)

used in this project. Apart from the unit tests, a tool was created for automatic generation

of random requests to the repository, following the communication model. The goal of this

tool is two folded: to look for bugs in unpredicted sequences of requests and to stress-test

the repository. The tool generates a random sequence of Core functions’ invocations and

records then in the Core’s log file (through a Java-based logging utility called log4j3). Errors

generated by these request sequences are recorded by the Core in the same log files. After

each test the log file is manually inspected looking for function sequences that originated

errors. This approach was essential to discover errors that otherwise would only be detected

in production. Efficiency and scalability are two other main concerns in the development of

crimsonHex. In order to test performance the test tool was used to compare execution times

of the main functions in the two supported web services interfaces: SOAP and REST. For

the experiment the same PC was used for client and server purposes. The PC was an Asus

M70VSeries with Windows Vista Home Premium (32 bits), Intel(R) Core(TM)2 Duo P8400

@2.26GHz and 4GB RAM. Were used 100 LOs on the experiment ranging in storage size

from 2MB to 5MB. Each function has been repeated 10 times. Average function execution

times for the set of functions are shown in Table 6.1.

Table 6.1: Average function execution times per interface (in seconds).

Submit Retrieve Search

SOAP 4.53 1.57 2.23

REST 2.11 0.44 0.93

These figures show that the DRI extension, based on REST, is twice as efficient as the

2Ofiicial Web site: http://www.junit.org/
3Official Web site: http://logging.apache.org/log4j/1.2/

6.3. CASE STUDY: USING CRIMSONHEX AS A LMS PLUG-IN 143

standard SOAP interface. These results were expected since the REST interface does not

have to marshal request messages. In both interfaces submit times are significantly higher

than the other functions due to the cost of the validation process. Scalability has other

important issue. Scalability is bound by the database limits. The eXist NXD supports a

maximum of 231 documents and theoretically, documents can be arbitrary large depending on

relevant file system limits, e.g. the max size of a file in the file system. To test the scalability

of eXist some queries were made with ever increasing data volumes. The experiment shows

linear scalability of eXist’s indexing, storage and querying architecture.

6.3 Case Study: using crimsonHex as a LMS plug-in

This section presents the creation of a plug-in for the crimsonHex repository. To evaluate the

interoperability features of the crimsonHex repository this plug-in is integrated with Moodle,

arguably the most popular LMS nowadays. The development of this plug-in was straight-

forward. In terms of programming effort half a day was spent to produce approximately 100

new lines of code. This quick and simple integration benefited from the new interoperability

features of the repository. Currently, Moodle 2.2 includes support for different types of

repositories. Several APIs are available to enable the development of plug-ins by third

parties, including:

File API for managing internal repositories;

Repository API for browsing and retrieving files from external repositories;

Portfolio API for exporting Moodle content to external repositories.

The Repository API was chosen for testing the integration features of the crimsonHex

repository in Moodle. The goal of this particular API is to support the development of

plug-ins to import content from external repositories. The Repository API is organized in

two parts: Administration, for administrators to configure their repositories and File picker,

for teachers to interact with the available repositories. To create a plug-in for Moodle using

the Repository API one must implement a set of related files. For instance, the steps to

create the crimsonHex plug-in for Moodle are the following:

1. to create a folder for the plug-in (moodle/repository/crimsonHex);

2. to add to the plug-in folder the files repository.class.php – sub-classing a standard

API class and overriding its default methods and icon.png – providing the icon

displayed in the file picker;

144 CHAPTER 6. LEARNING OBJECTS REPOSITORY

3. to create the language file repository crimsonHex.php and add it to the folder

moodle/repository/lang/en utf8/.

The repository.class.php is responsible for handling the communication between Moodle

and all repository servers of that type. In this case the repository type is crimsonHex but

other types are being developed for other types of repository, such as Merlot, YouTube,

Flickr and DSpace. For Moodle, each repository is just a hierarchy of nodes. This allows

Moodle to construct a standard browse interface. The repository server must provide: a URI

to download each node (e.g. a LO) and a list of the nodes (e.g. LO and collections) under a

given node (e.g. collection). In addition to these requirements, a repository can optionally

support authentication, provide additional metadata for each node (mime type, size, dates,

related files, etc.), describe a search facility or even provide copyright and usage rules.

As explained before, the Repository API has two parts – Administration and File Picker –

each with its own graphical user interface (GUI). The Figure 6.5 shows the file picker GUI

of the crimsonHex plug-in that will be used by the teacher to pick up the suitable exercises

for the class.

Figure 6.5: crimsonHex plugin interface.

In the left panel are listed the available repositories as defined by the administrator. Two

crimsonHex repository instances are marked with label 1. Label 2 marks the default listing

of the selected repository. Pressing the “Preview” link presents a preview of the respective

LO. Pressing the “Search” link pops-up a simple search form, marked as 3 in Figure 6.5.

Federated search in all available crimsonHex repositories uses the text box marked as 4.

Each feature of the plug-in is implemented by a method in the repository.class.php

file. A typical method includes: a repository invocation (SOAP or REST), the parsing of

6.4. SUMMARY 145

its response (using the PHP simplexml load string function to parse the XML data), a

selection of the pertinent data (using XPath) and an iteration over the new results (for

instance, populating an array with the relevant data). Listing 6.2 shows an excerpt of the

overridden search function.

Listing 6.2: Example of the search function of the crimsonHex plugin.

1 private function search($queryString) {
2 $list = array();

3 $c = new curl();

4 $content=$c−>get($this−>options[’url’] . $queryString);

5 $xml = simplexml load string($content);

6 $result = $xml−>xpath(”//resource”);

7 foreach ($result as $entry) {
8 $attr = $entry−>attributes();

9 $list[] = array(

10 ’title’=>(string)$entry,

11 ’thumbnail’=>$OUTPUT−>icon url(path),

12 ’date’=>’’,

13 ’size’=>’’,

14 ’source’=>$attr[’url’].$attr[’idCol’]

15 .$attr[’idLo’]);

16 } return $list; }

6.4 Summary

This chapter presents the design and implementation of a service oriented repository of

learning objects called crimsonHex. This repository supports the definition of programming

exercises as learning objects complying several specifications (IMS CC). The repository is

also fully compliant with existing communication standards (IMS DRI) and extensions were

made by adding new functions, formalizing message interchange and providing a REST

interface. To validate the interoperability features of the repository a plug-in for Moodle

was developed that is expected to be included in its next release (version 2.3) of this LMS.

The improved interoperability of crimsonHex is expected to support the development of

new e-learning tools requiring greater integration with repositories. The repository plug-in

will facilitate the use of crimsonHex by Moodle users. In its current status crimsonHex is

available for download at the following URL: http://ensemble.dcc.fc.up.pt/crimsonHex.

The plug-in for accessing crimsonHex repositories from Moodle is also available for download

at the following URL: http://ensemble.dcc.fc.up.pt/ChMoodlePlugin.

146 CHAPTER 6. LEARNING OBJECTS REPOSITORY

Chapter 7

Programming exercises converter

”And the whole earth was of one language, and of one speech”

Genesis 11:1

In the last two decades there was a proliferation of programming exercise formats. The

study included in section 3.2.3.2 confirms the disparity of programming exercise formats

highlighting both their differences and their similar features. This heterogeneity hinders the

interoperability among the typical systems found on the automatic evaluation of exercises.

Rather than attempting to harmonize the various specifications, a pragmatic solution is to

provide a service for exercise format conversion.

BabeLO is a programming exercise converter providing services to a network of heterogeneous

e-learning systems such as contest management systems, programming exercise authoring

tools, evaluation engines and repositories of learning objects. Its main feature is the use of

a pivotal format to achieve greater extensibility. This approach simplifies the extension to

other formats, just requiring the conversion to and from the pivotal format. This chapter

starts by presenting this approach and the pivotal data format used. Then, the abstract

service definition, its components and web service interface are presented. Finally, a report

on the use of BabeLO in two concrete scenarios is included: to relocate exercises to a different

repository and to use an assessment system in a network of heterogeneous systems.

7.1 Exercise format conversion

Data conversion is the conversion of computer data from one format to another. Data

conversion can typically occur based on two approaches: direct or pivotal [Tsu10].

147

148 CHAPTER 7. PROGRAMMING EXERCISES CONVERTER

In the direct conversion the converter receives the input format and apply transformations

according to the output format. One good example is the transcoder1 developed by JISC

Centre for Educational Technology and Interoperability Standards (JISC CETIS) that en-

ables the conversion between e-learning content packages. It addresses conversions between

the most common e-learning content formats such as IMS CP, SCORM and IMS CC.

The pivotal conversion is based on an intermediate format allowing any source format to

be converted to its target. Compared with the previous approach, this pivotal encoding

approach provides several advantages such as manageability. A data format converter would

have to support a huge number of mappings for all the permutations of the data formats

supported. Using a intermediate format scales down this number since only one mapping

is needed for each format supported. Pivotal conversion is often used in several areas. For

instance, Office applications use the OpenDocument file format as a pivot for the conversion

between office file formats. Despite its use, the pivotal approach is also subject of criticism

such as the augment of noise due to the propagation of the translation errors and inaccuracy

or lost of data due to the conversion between formats that are conceptually different [Tsu10].

7.1.1 Approach

Based on the current conversion approaches the choice was on the use of the pivotal approach

for the exercise formats conversion. As depicted in Figure 7.1 using a pivot format reduces

CATS FPS

MEF PEF

Pivotal
Format

CATS FPS

MEF PEF

Figure 7.1: Exercise formats conversion using both approaches.

drastically the number of permutations needed from n × (n − 1) to n × 2, where n is the

number of formats supported. Since one of the design requirements of the converter service

is its extensibility it is important to simplify the support for new formats.

1http://purl.oclc.org/NET/transcoder

7.1. EXERCISE FORMAT CONVERSION 149

7.1.2 Pivot format

PExIL is a XML dialect that aims to consolidate all the data required in the programming

exercise life-cycle [QL11e]. The expressiveness of PExIL was validated according to the

multi-facet model proposed by Verhoeff. Table 7.1 shows the PExIL elements coverage.

Table 7.1: PExIL coverage based on the Verhoeff model.

Verhoeff / PExIL G1 G2 G3

Text X X -

Data files X X X

Parameters - - X

Tools - - X

Metadata X - X

Textual elements group (G1) in PExIL can be used in several phases of the programming

exercise life-cycle: in the selection phase as exercise metadata to aid discoverability and to

facilitate the interoperability among systems (e.g. LMS, IDE); in the presentation phase as

content to be present to the learner (e.g. exercise description); in the resolution phase as

skeleton code to be included in the student’s project solution.

Specification elements group (G2) in PExIL can be used in several phases of the

programming exercise life-cycle: by 1) the content author to automatically generate an

input and output test example to be included on the exercise description for presentation

purposes; 2) the learner to automatically generate new test cases to validate his attempt; 3)

the Evaluation Engine to evaluate a submission using the test cases.

Program elements group (G3) contain references to program source files as external

resources (e.g. solution program, correctors) and metadata about those resources (e.g.

compilation, execution line, hints). These resources are used mostly in the evaluation phase of

the programming exercise life-cycle to allow the Evaluation Engine to produce an evaluation

report of a students’ attempt to solve an exercise.

This analysis asserts the total coverage of PExIL elements based on the Verhoeff model and

guarantees PExIL as a good candidate to act as a pivot format for a conversion service of

programming exercises formats. More details about PExIL can be found in subsection 5.2.2.

7.1.3 Abstract functions

This section presents the generic capabilities of a converter service expressed in terms of

their behaviours, without prescribing how to make them operational. A service of this genre

150 CHAPTER 7. PROGRAMMING EXERCISES CONVERTER

is responsible for the conversion of programming exercises formats. It supports the following

functions:

• The GetFormats function provides the requester with a list of all the formats supported

by the service. In order to support a format the service must implement the format

conversion from and to the pivotal format. In this function, the request may not have

parameters or have one representing the input format. In the former the response

returns a list of all formats of the converter. In the latter the response includes only

the formats that can be converted from the input format given as a parameter. In the

response, each format is described by its name and a list of formats that can be used as

outputs and its corresponding URL paths. This will allow client systems to automate

the conversion request based on the available formats returned by this function.

• The Convert function performs the conversion of a given programming exercise from

an input format to an output format. The function includes three parameters: the

format of the exercise to convert, the conversion output format and a reference (URL

based) of the exercise to convert. The function returns an archive with its contents

complying the output format.

• The ConvertSets function converts a set of programming exercises from an input

format to an output format. This function is especially useful since one may not always

want to convert just an exercise. In a more competitive environment a contest manager

may want to feed a new contest based on a problem set of a existing programming

contest. In a more pedagogical context a teacher may want to use in the classroom

a set of problems from an external source. In both cases the request parameters are

similar to the previous function. The function returns an archive with a set of exercises

complying the given output format.

• The ConvertFromSet function converts a single programming exercise from a set of

exercises described with the input format to a single exercise in the output format. The

exercise to convert is given by its position within the set as an additional parameter.

The function returns an archive with a single exercise complying the output format.

• The ConvertToSet function converts a single programming exercise complying with

the input format to a single collection in the output format. The function returns an

archive containing a collection with only one exercise in the given output format.

7.2 The BabeLO service

BabeLO is a service for the conversion between different programming exercises formats.

Figure 7.2 shows the architecture of BabeLO described by the UML component diagram.

7.2. THE BABELO SERVICE 151

Mooshak
Converter

<<interface>> BabeLOCo nverter

+ convertFrom(Data : File) : File
+ convertTo (Data : File) : File
+ convertSetsFro m(Data : File, [po sition: Integ er]) : File
+ convertSetsTo(Data : File) : File
+ g etFormats([Format: String]) : XML

Learning
Objects

Repository

Authoring
System

Automatic
Assessment

System

<< imp lement>>

FPS
Converter

REST API

...

<<use>>

Figure 7.2: BabeLO architecture.

In order to allow client systems to use the conversion features of BabeLO a set of core func-

tions is exposed as services using a REST web service interface. The REST implementation

uses Jersey2 - the reference implementation of JAX-RS (The Java API for RESTful Web

Services). In Table 7.2 each function is associated with the corresponding operation in the

REST flavour.

Table 7.2: BabeLO REST API.

Functions REST API

GetFormats /convert[/inFormat] > BRL

Convert convert/inFormat/outFormat/refEx > Archive

ConvertSets convertsets/inFormat/outFormat/refEx > Archive

ConvertToSet converttoset/inFormat/outFormat/refEx > Archive

ConvertFromSet convertfromset/inFormat/outFormat/position/refEx > Archive

The GetFormats function returns a list of the formats supported by the service. The

response is formalized using the BabeLO Response Language (BRL). Listing 7.1 shows the

correspondent response of the above request.

2Official Web site: http://jersey.java.net

152 CHAPTER 7. PROGRAMMING EXERCISES CONVERTER

Listing 7.1: An example of a valid BRL instance.

1 <babelo>

2 <from name=”cats” href=”convert/cats”>

3 <to name=”fps” href=”convert/cats/fps”/>

4 <to name=”mooshak” href=”convert/cats/mooshak”/>

5 </from>

6 <from name=”fps” href=”convert/fps”>

7 <to name=”cats” href=”convert/fps/cats”/>

8 <to name=”mooshak” href=”convert/fps/mooshak”/>

9 </from>

10 <from name=”mooshak” href=”convert/mooshak”>

11 <to name=”cats” href=”convert/mooshak/cats”/>

12 <to name=”fps” href=”convert/mooshak/fps”/>

13 </from>

14 </babelo>

The Convert function converts an exercise from an input format to an output format.

The function includes three parameters: inFormat - the format of the exercise to convert;

outFormat - the conversion output format and refEx - reference (URL based) of the exercise

to convert. The function returns an archive with its contents complying the output format.

Figure 7.3 shows a conversion between two formats: Mooshak and FPS. BabeLO uses the

convertFrom() method of MooshakConverter to transform the programming exercise from

mooshak format to the PExIL format. Then, the convertTo() method of the FPSConverter

is used to transform the exercise from the PExiL format to the FPS format.

convertFrom(data) convertTo(data)

MooshakConverter

<<artifact>>
fps format

<<artifact>>
mooshak format

<<artifact>>
PExIL

FPSConverter

Figure 7.3: The Convert function.

Being an extensible converter BabeLO can be augmented with other classes implementing

a specific Java interface defining the convertFrom() and convertTo() methods mentioned

above, as well as other similar methods to handle collections.

7.3 Evaluation results

This section evaluates the effectiveness and efficiency of BabeLO on two uses: to relocate

exercises to a different repository and to use an AS in a network of heterogeneous systems.

7.3. EVALUATION RESULTS 153

7.3.1 Case study 1: repositories exchange

In the first case study the BabeLO service is used to create a repository collection based on

a problem set of an existing programming contest. Figure 7.4 depicts the interconnection of

BabeLO with two other components to achieve this purpose.

BabeLO

crimsonHex
repository

ACM/ICPC
(Waterlo o local contest)

REST API <<use>>

Figure 7.4: Case study 1 - exchanging exercises between repositories

In order to measure the efficiency of the BabeLO Service two repositories were used: an instal-

lation of crimsonHex [LQ09a] - a repository of programming exercises - and the ACM/ICPC

contest system of the University Waterloo. The exercises were copied from the Waterloo

repository to crimsonHex installation. The former supports the IMS CC format for describing

the exercises. The later uses the FPS format to describe the contest problem sets.

The time to convert collections with different numbers of exercises was measured and com-

pared with a standard download, i.e using the time of a HTTP GET as benchmark. The

average size of the exercises used in this experiment was 12KB and time was measured in

milliseconds. The PC where the tests occurred was an Asus M70VSeries with Windows

Vista Home Premium (32 bits), Intel(R) Core(TM)2 Duo P8400 @2.26GHz and 4GB RAM.

Table 7.3 summarizes the results and presents the overheads introduced by BabeLO.

Table 7.3: Download time (ms) and overhead of BabeLO

Direct BabeLO Over

ex. Coll. P.Ex. Coll. P.Ex. head

1 7 7.00 78 78.01 10.11

10 22 2.23 693 69.34 30.53

100 145 1.45 5,970 59.73 40.23

1000 1,395 1.40 56,348 56.34 39.43

The main conclusion is that BabeLO introduces an overhead of a factor of 10 when converting

an exercise. This overhead increases with the size of collections when taking as benchmark

the direct download of a collection. This fact is understandable since BabeLO has to process

154 CHAPTER 7. PROGRAMMING EXERCISES CONVERTER

each exercise, one-by-one, and takes little advantage of collections. Analysing the columns

for direct download one notices that, although the time for downloading a collection increases

with the size of the collection, the average time per exercise reduces significantly. This is

due to the fact that a collection download avoids the time of establishing a connection to

the repository for each exercise, which is a significant part of the download. Analysing the

columns for the BabeLO download one notices something similar; the time per exercise is

reduced but it is not as expressive as in the direct download. This is due to the fact that

the conversion time is a larger share of the overall time and saving the time of establishing

connection has less impact.

At first sight an overhead factor of 10 may seam impracticable for on-the-fly format conver-

sion. It should be noted that exercises only need to be downloaded from a remote site for

the first time they are used. As in any HTTP based system a cache can and should be used

to improve overall efficiency [FT00].

7.3.2 Case study 2: automatic assessment

The effectiveness of BabeLO was also validated with its inclusion on a network of heteroge-

neous systems3 with automatic assessment. The architecture depicted by UML components

diagram in Figure 7.5 is composed by several systems and services such as LOR to store/re-

trieve exercises and AS to evaluate students’ exercises.

BabeLO

AS
(Mooshak)

LOR
(crimsonHex)

REST API <<use>>

Figure 7.5: Case study 2 - automatic assessment.

The first time that the user send an attempt to the AS, the engine uses the BabeLO service

to convert the exercise from its original format to the Mooshak internal format and then

it caches the BabeLO response for further use. After that the AS evaluates the student’s

attempt and returns an evaluation report. The student may submit repeatedly, integrating

the feedback received from the AS. In the end, the AS feeds the gradebook of the student,

typically included in a LMS. The efficiency of this network was validated in an classroom

experiment with several assignments comprising 18 exercises. From a extensive list of results

the number of times that the AS accessed to BabeLO (18) comparing it with the number of

3This network is used in the Ensemble evaluation in chapter 10

7.4. SUMMARY 155

attempts submitted by students to solve the exercises (819). These results show two things:

the AS cache mechanism is working as expected and the BabeLO service made successfully

conversions since no more requests were made.

7.4 Summary

This chapter presents the design and implementation of a service for converting programming

exercise formats called BabeLO. The chapter starts by presenting the pivotal approach used

to perform the conversion and the pivotal data format (PExIL). Then, the abstract service

definition, its components and web service interface are presented. Finally, a report on the

use of BabeLO in two concrete scenarios is included: to relocate exercises to a different

repository and to use an assessment system in a network of heterogeneous systems.

This service was design to be integrated in networks of heterogeneous e-learning systems

including contest management systems, programming exercise authoring tools, assessment

systems and repositories of learning objects. In its current status BabeLO is available for

download at the following URL: http://ensemble.dcc.fc.up.pt/BabeLO.

156 CHAPTER 7. PROGRAMMING EXERCISES CONVERTER

Chapter 8

Programming Teaching Assistant

”If, what is learned is not put into practice, the student is like a cow that

does not yield milk; a fruit lacking in taste, a book bereft of wisdom.”

in Atharvaveda

A teaching assistant (TA) is a person who assists a teacher, typically in practical classes. The

task of a TA in a programming course is usually to help students in solving exercises and as-

signments. They must help students to use programming tools (e.g. integrated programming

environments, compilers, debuggers), check if they have solved the exercises and provide

feedback to help them to overcome their difficulties. Unfortunately, the number of TAs

is frequently insufficient for the number of students enrolled in introductory programming

courses and they are only available on computer labs and on a certain timetable. The role of

an automatic TA specialized in programming exercises is that of a tool for bridging between

the teacher and the students, and providing them with the best systems for each task.

This chapter presents a tool called Petcha - an acronym of Programming Exercises TeaCHing

Assistant - that acts as an automated TA in computer programming courses. Petcha meets

this objective by helping both teachers to author programming exercises and students to

solve them. It also coordinates a network of heterogeneous systems, integrating automatic

assessment systems, learning management systems, learning object repositories and inte-

grated development environments.

Petcha can be described as a scaffolding tool since it complements existing tools and was

designed to be easily removed once it is no longer needed. For instance, rather than

providing its own environment for solving exercises Petcha promotes the use of existing

Integrated Development Environments (IDEs) and different IDEs can be used with Petcha,

157

158 CHAPTER 8. PROGRAMMING TEACHING ASSISTANT

such as Eclipse or Visual Studio. More than just a scaffolding tool, Petcha is also a pivot

component on a network integrating other e-learning systems. Unlike a human TA Petcha

delegates most of its work to others, as it is fundamentally a coordinator of e-learning

systems. These e-learning systems are used for: 1) automatic evaluation of programs and

feedback generation; 2) authoring and storing of programming exercises as learning objects;

3) managing instruction and learning activities. A proper integration of these tools sets up

the necessary foundations for the practice of solving programming exercises and has a great

impact on the acquisition of programming skills.

8.1 Use Cases

As happens with a human TA, Petcha needs to interact both with teachers and students.

Thus, these two use cases provide an overview of Petcha features. Figure 8.1 shows an UML

Use Cases diagram for both uses.

Teacher

Student

provide exercises

solve exercises

create exercise

deploy exercise in
repository

configure activity
in LMS

<<include>>

<<include>>

<<include>>

select activity
in LMS

execute the ativity
in the IDE

<<include>>

<<include>>

Figure 8.1: Petcha use cases.

Although complementary, these two tasks share a number of requirements. Both teachers

and students need to: code and test programs in an IDE; send and retrieve programming

exercises from a repository; check program code against test cases. Thus, although the

graphical user interface of both user profiles shown in Figure 8.2 is apparently very different,

8.1. USE CASES 159

they actually share many Petcha internal functions. The following subsections present both

use cases in more detail.

Figure 8.2: The GUI of Petcha with teacher and student modes.

8.1.1 Teacher

To author and deploy a programming exercise in Petcha teachers must perform the following

three tasks:

• Create programming exercises. In the authoring task, teachers automatically create

most of the resources related with programming exercises such as expositive resources

(e.g. exercise description) and evaluation resources (e.g. test cases, correctors, feedback

files). The upper left window of Figure 8.2 shows an example where the teacher

describes an exercise and sets related metadata. Other tabs in this window are used for

defining tests, assigning feedback to error patterns and publishing the exercise. All the

resources defined in these tabs are encoded using PExIL [QL11e]. The aim of PExIL

is to consolidate all the data required in the programming exercise utilization, from

creation to evaluation, covering also solving, the grading and feedback. The PExIL

160 CHAPTER 8. PROGRAMMING TEACHING ASSISTANT

definition supports the concept of incremental feedback to control the appearance of

both types of feedback upon a submission of a student’s attempt.

• Deploy programming exercises in a repository. In the deployment task, teachers can

package and publish programming exercises in repositories. The packaging subtask

consists on the selection of a package format and its generation. By default, Petcha

supports the IMS Common Cartridge (IMS CC) specification as the package format.

The generation of an IMS CC package is performed in two steps. First the manifest

is generated from a valid PExIL instance and all the resources are assembled in a ZIP

package. After that, teachers must publish the package on a repository. In order to

be an eligible the repository must adhere to content (IMS CC) and communication

specifications (IMS Digital Repositories Interoperability – IMS DRI).

• Configure programming activity in LMS. For this task teachers search in repositories

for suitable programming exercises, group them in a collection and store a reference to

the collection in a LMS as a Learning Tools Interoperability (LTI) activity.

8.1.2 Student

To solve programming exercises using Petcha students performs the following two tasks:

• Select an activity in the LMS. In this task students select an activity defined by the

teacher in the LMS. This selection triggers an LTI launch of Petcha. The launch

includes student’s contextual information that can be used for presentation purposes

(e.g. personalize the Petcha frontend) or for sequencing purposes (e.g. assign an

exercises sequence model). Petcha is launched as a Java Web Start (JAWS) application

on the computer of the student enabling the interaction of Petcha with the IDE through

shell commands.

• Preform an activity using the IDE and Petcha. When a student starts solving an

exercise Petcha automatically creates a project on the IDE of the student1. Then the

student reads the exercise description in Petcha’s GUI and solves it on the IDE. The

student should test the code locally by executing the test cases provide by the teacher

and is encouraged to create new ones. If new test cases are created, a validation step

is performed to verify that they meet the specification defined by the teacher in the

authoring phase. The right window on Figure 8.2 shows an example where the code of

the student did not pass all the local tests (two provided by the teacher and one created

by the student). Even so, the student decided to submit the code to the assessment

system and received a report evaluation with a feedback message indicating an input

1Currently Petcha supports two IDEs - Eclipse and Visual Studio Express - but Petcha can be easily

extended to support other IDEs.

8.2. DESIGN 161

data that generated a wrong answer. The student may submit repeatedly, integrating

the feedback received from the AS. In the end of this cycle, Petcha reports the exercise

usage data back to the repository and sends a grade back to the LMS gradebook.

8.2 Design

The design of Petcha is described by the UML class diagram shown in Figure 8.3. This

diagram models Petcha statically showing the relations among classes.

<<ui>>
ExerciseCreator

- manageMetadata()
- manageFeedback()
- package(sp ecification:String):Void
- deploy(repository:URI):Void

<<ui>>
ExerciseSolver

- exerciseList(collectionId :URI):Map
- getStatistics(exercise:URI):Map
- manageSubmissio n():Void

<<interface>>
ProjectCreator

makeProject(path:S tring, la nguage:String):Void
getWorkspace():String
getProjectName():String
getName ():String

EclipseProjectCreator VseProjectCreator

<<ui>>
ExerciseManager

+ setContextVa riables(variab les:Map):Void
+ managerUserProfile(userId:int):Void
+ viewStatement ():Void
+ manageTests():Void
+ settings():Void

ExerciseGenerator

TeachingAssistant

<<interface>>
ExerciseUtils

+ setLoPath(path:String):Void
+ setDescription(properties:Map):Void
+ getDescription(property:S tring):String
+ generateDescription (format:St ring):Void
+ setSolutio n(propertie s:Map):Void
+ getSolut ion(prope rty:Strin g):String
+ setSpecificatio n(specif ication:S tring, t ype:String):Void
+ addTest(input:String , output:St ring):Void
+ generateOu tput(input:S tring):Void
+ generateTests(numTestCases:int):Void
+ getTest(id:Int, property:S tring):String
+ updateTest (id:Int, property:String, value:S tring):Void
+ removeTest(id:Int):Void
+ valida teTest(id:Int):String
+ generateLearning Object(fo rmat:String):Void

<<interface>>
JNLP

TeachingAssistant
Launcher

- resourceId:String
- resourceTitle :String
- resourceDesc:String
- userId:String
- userFirstName:String
- userLastName:String
- userImage:URI
- roles:String
- contextTitle:S tring
- custom:Map

- doGet(request,response)
- doPost(request,response)

Figure 8.3: The UML class diagram of Petcha.

The Petcha component relies on two different processes (running on different JVMs):

TeachingAssistantLauncher and TeachingAssistant. These active classes (with a thicker

border in the diagram) initiate and control the flow of the activity in two different moments.

The former act as an adapter for handling the HTTP requests and launching the Teaching

Assistant (Petcha). The latter is the main process where Petcha effectively runs.

162 CHAPTER 8. PROGRAMMING TEACHING ASSISTANT

8.2.1 Class TeachingAssistantLauncher

Petcha is launched as a Java Web Start (JAWS)2 application and interacts with the students

IDE by using system shell commands on the students’ computer. Since the LTI specification

supports only web-based Tool Providers there is a need to create a web service that injects

LTI variables on Petcha. A JAVA servlet fulfils this role and dynamically generates a JNLP

file ”on-the-fly” based on the LTI variables.

The TeachingAssistantLauncher class is the entry point for Petcha acting as a JAVA servlet

that generates dynamically a JNLP file based on the HTTP request initiated by the user.

The JNLP specifies how to launch JAWS applications. A JAWS application is a framework

that allows users to start JAVA application software directly from the Internet using a web

browser. After the generation, the servlet redirects the request to the generated JNLP file in

order to launch the JAWS program (Petcha). These variables can later be used, for instance,

to personalize the front-end of the tool provider. Two user profiles can perform this request:

teachers select a new or an existent exercise in the repository for authoring purposes and

students select an activity (one or several exercises) in the LMS for solving purposes. A

teacher perform an HTTP GET request. The servlet class TeachingAssistantLauncher

receives this request in the doGet method. Then, it automatically generates the JNLP file

with the inclusion of an exercise identifier in the case of the exercise’s authoring is based

on an existent exercise. In this request no LTI variables are used. A student perform an

HTTP POST request that is handled by the servlet using the doPost method. This request

automatically includes several LMS context variables based on the LTI specification. The

servlet feeds their internal properties (e.g. resourceId, resourceTitle) using the implicit

setter methods. These properties correspond to the LTI variables. Then the correspondent

getter methods are used to inject the LTI variables in the JNLP file. Listing 8.1 shows an

excerpt of the generated JNLP file.

The resources element is used to specify all the resources, such as Java class files and

native libraries which are part of the application. A JAR element specifies a Java Archive

(JAR) file that is part of the application’s classpath. The JAR file is loaded into the JVM

using a ClassLoader object. The JAR file contains Java classes and other resources, such

as icons and configuration files (available through the getResource mechanism). The j2se

element specifies what Java 2 SE Runtime Environment (JRE) versions are supported by

the application. The application-desc element indicates that the JNLP file is launching

an application (as opposed to an applet). The application element has an optional

attribute called main-class which can be used to specify the name of the application’s

main executable class (TeachingAssistant class). This element includes several argument

elements representing each LTI variable injected by the TeachingAssistantLauncher class.

2Official Web site: http://www.oracle.com/technetwork/java/javase/javawebstart/index.html

8.2. DESIGN 163

Listing 8.1: POST data sent by the Tool Consumer.

1 <?xml version=”1.0” encoding=”utf−8”?>

2 <jnlp spec=”1.0+” codebase=”$codeBase”>

3 <information>

4 <title>Pivot Component</title>

5 <homepage href=”$codeBase”/>

6 <icon href=”resources/icon.png” />

7 <description>

8 PETCHA − fostering the practice programming exercises solving.

9 </description>

10 </information>

11 <security><all−permissions /></security>

12 <resources>

13 <j2se version=”1.5+” />

14 <jar href=”resources/Pivot Component.jar” />

15 ...

16 </resources>

17 <application−desc main−class=”Pivot”>

18 <argument>$colId</argument>

19 <argument>$studentFirstName</argument>

20 ...

21 </application−desc>

22 </jnlp>

8.2.2 Class TeachingAssistant

The TeachingAssistant class is the entry point for the main process where Petcha effectively

runs. Its main objectives are to manage the graphical user interface both for teachers

and students, the programming exercises and the integrated development environments.

These objectives are achieved by using the following classes respectively: ExerciseManager,

ExerciseUtils and ProjectCreator. These classes are detailed in the next sub-subsections.

8.2.2.1 Class ExerciseManager

The graphical user interface (GUI) on Petcha is based on the Standard Widget Toolkit

(SWT)3. This toolkit aims to provide portable user-interfaces across the operating systems.

The ExerciseManager class manages the Petcha’s GUI. A new instance of this superclass is

initialized by the TeachingAssistant class based on the user profile. Two classes extend this

superclass for each user profile (creating and solving exercises): ExerciseCreator - provides

3http://www.eclipse.org/swt/

164 CHAPTER 8. PROGRAMMING TEACHING ASSISTANT

the user interface for the creation, packaging and deployment of programming exercises by

teachers and ExerciseSolver - provides the user interface for the testing and submission

of students’ attempts to solve programming exercises. Both classes inherit methods for

common features of Petcha such as statement and tests visualization but redefines others

regarding the user profile tasks. An example is the manageMetadata method from the

ExerciseCreator class that handles the metadata form to be fulfilled by the teacher while

creating the programming exercise.

8.2.2.2 Interface ProjectCreator

One of the most important tasks of both user profiles is the exercise coding: the teacher needs

to code the program solution and the student needs to code an attempt to solve it. Both

requires the use of an IDE. Thus, the TeachingAssistant class uses the ProjectCreator

interface to abstract the use of specific IDEs on Petcha. This interface must be implemented

to provide support for other IDEs. Table 8.1 enumerates the four required methods.

Table 8.1: ProjectCreator interface methods.

Method Description

makeProject(path:String,

lang:String)

Creates a project on the IDE. The path argument

includes the location and name of the project. The lang

argument is the programming language for the project.

getWorkspace() Returns a string with the project workspace location.

getProjectName() Returns a string with the name of the project.

getName() Returns a string with the IDE name.

On implementing a ProjectCreator class one must pay attention to the makeProject

method. A project contains source code and related files for building a program in a specific

programming language. Thus, a set of predefined files and directories need to be generated

for the project creation.

8.2.2.3 Interface ExerciseUtils

The ExerciseUtils interface defines a set of abstract methods for the generation of re-

sources that compose a programming exercise. The representation of a programming exercise

relies on the PExIL specification. The ExerciseGenerator class (implements the interface

ExerciseUtils) uses the Java Architecture for XML Binding (JAXB) to map Java classes

to XML representations. In other words, JAXB provides the ability to marshal Java objects

into XML and the reverse.

8.2. DESIGN 165

The generation of a programming exercise as a learning object is straightforward. Petcha

uses as input a valid PExIL instance and a program solution file and generates:

1. an exercise description in a given format and language;

2. a set of test cases and feedback files;

3. a PExIL descriptor;

4. a valid IMS CC manifest file.

Then, a validation step is performed to verify that the generated tests cases meet the specifi-

cation presented on the PExIL instance and the manifest complies with the IMS CC schema.

Table 8.2 lists for each resource type the corresponding methods of the ExerciseUtils

interface.

Table 8.2: ExerciseUtils interface methods.

Resource Method

Description (1)

setDescription(properties:Map)

getDescription(property:String)

updateDescription(property:String, value:String)

generateDescription(format:String, language:String)

Tests & Feedback (2)

setSpecification(specification:String, type:String)

addTest(input:String, output:String)

generateOutput(input:String)

generateTests(numTestCases:int)

getTest(id:Int, property:String)

updateTest(id:Int, property:String, value:String)

removeTest(id:Int)

validateTest(id:Int)

PExIL (3) generatePexil()

LO (4)

setLoPath(path:String)

generateManifest(format:String)

packageLo(format:String)

The following paragraphs detail these four groups of methods.

1) Exercise statement generation

For the generation of an exercise description (Figure 8.4) it is necessary to obtain the format

and the natural language of the exercise description. The former is given by the generator

166 CHAPTER 8. PROGRAMMING TEACHING ASSISTANT

tool and the latter is obtained from the total number of occurrences of the xml:lang attribute

in the title element of the PExIL instance.

Figure 8.4: Generation of the exercise descriptions.

The generator tool receives as input a valid PExIL instance and a respective XSLT 2.0 file

and uses the Saxon XSLT 2.0 processor combined with the xsl:result-document element to

generate a set of XSL Formatting Objects (FO)4 files corresponding to the human languages

values founded in the xml:lang attribute. W3C XSL-FO is a markup language for XML

document formatting which is most often used to generate PDFs. Listing 8.2 shows an

excerpt of the Pdf.xsl file. This stylesheet generates the FO files based on the textual

elements of a PExIL instance.

Listing 8.2: Exercise statement generation.

1 <xsl:template match=”pexil:title”>

2 <xsl:variable name=”uri” select=”concat(’desc’,@xml:lang,’.fo’)”/>

3 <xsl:result−document href=”resources/{\$uri}”>
4 <fo:root xmlns:fo=”http://www.w3.org/1999/XSL/Format”>

5 <!−apply templates over the textual elements −−> ...

6 </fo:root>

7 </xsl:result−document>

8 </xsl:template>

In the next step, the FO files are used as input to the Apache FOP formatter – an open-

source and partial implementation of the W3C XSL-FO 1.0 standard - generating for each

FO file the corresponding PDF file. The use of the PExIL definition to generate exercise

descriptions does not end here since tit is included in the LO itself making it possible, at

any time of the LO life-cycle, to regenerate the exercise description in different formats or

natural languages. Figure 8.5 shows a typical exercise in PDF format.

The description also includes a description and an example of a test case. In the case

of the absence of the input/description and input/example the generator relies on the

specification element to generate the test data and include it in the exercise description.

4XSL Version 2.0 - W3C Working Draft: http://www.w3.org/TR/xslfo20/

8.2. DESIGN 167

Figure 8.5: An example of an exercise description.

2) Test cases and feedback generation

The generation of test cases and feedback relies on the specification element of the PExIL

definition. The generator tool can be parametrized with a specific number of test files to

generate. By default, the tool calculates this parameter as the number of test cases based

on the total number of variables and the number of feedback messages. In the former, the

number of test cases is given by the formula 2n where the base represents the number of range

limits of a variable and the exponent the total number of variables. Testing the range limits

of a variable is justified since their values are usually not tested by students, thus with a high

risk of failure. In the latter, the tool generates a test case for each feedback message found.

The generation will depend on the successful evaluation of the XPath expression included in

the condition attribute of the when element. Listing 8.3 clarifies how the generator calculates

the number of test cases.

Suppose that the generator tool is parametrized to generate 10 test cases. Using the

previous example the estimation of the number of test cases and its respective input values

is demonstrated in the Table 8.3.

168 CHAPTER 8. PROGRAMMING TEACHING ASSISTANT

Listing 8.3: Example of the generation of test cases.

1 <repeat count=”$numTestCases”>

2 <line>

3 <data id=”n1” type=”float” min=”0” max=”1000”/>

4 <data id=”n2” type=”float” min=”0” max=”1000”/>

5 <data id=”n3” type=”float” min=”0” max=”1000”/>

6 </line>

7 <line/>

8 </repeat>

9 <when condition=”$n1>$n2”>

10 <feedback xml:lang=”en−GB”>

11 Numbers can be given in descending order

12 </feedback>

13 </when>

Table 8.3: Generation of input data of test cases (R=random).

Var T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

n1 0 0 0 0 1000 1000 1000 1000 Min=n2+1 R

n2 0 0 1000 1000 0 0 1000 1000 n2 R

n3 0 1000 0 1000 0 1000 0 1000 R R

The test values are: eight tests to cover the range limits of all variables (23 = 8) and one test

to represent the constraint included in the feedback message. Note that this test case will

be executed only if the expression included in the condition attribute was not covered in the

previous eight test cases; the remaining tests are generated randomly. Also note that the

creator of the programming exercise can statically define new test cases and use the PExIL

definition for validation purposes.

3) PExIL descriptor

The generation of a programming exercise as a LO in the IMS CC format implies the inclusion

of the exercise as a LAO resource. A LAO resource contains a XML descriptor that serves

as the entry point for accessing the information about a LAO required to import it into

the target system. The descriptor file is not intended to be displayed within the target

system. Rather, it is intended to be processed by the target system upon import of the

cartridge. The descriptor file (pexil.xml) is associated with a LAO by means of a file

element. It includes references for two XML documents: pexildefinition.xml - a serialized

copy of a PExIL definition and pexilmanifest.xml - a manifest with references for all the

resources generated. The former describes all data needed for the generation of the evaluation

resources. The latter is a manifest with references for all the evaluation resources generated.

8.2. DESIGN 169

Figure 8.6 shows the PExIL files included in the LO package.

Figure 8.6: PExIL files.

4) Manifest generation An IMS CC learning object assembles resources and metadata

into a distribution medium, typically a file archive in ZIP format, with its content described

by a manifest file named imsmanifest.xml in the root level. The main sections of the

manifest are: metadata which includes a description of the package, and resources which

contains a list of references to other resources in the archive and dependency among them.

In this example (Figure 8.7) the resources section starts with a LAO resource (1) pointing to

the PEXIL descriptor. This file is responsible for the automatic generation of all the other

files included in the package (with the exception of the solution program and images). The

description of the exercise is included on the manifest as a WCR resource (2). This type of

resources can be automatically rendered by the browser without any additional processing.

The program solution (3) is associated with metadata since this resource should not be made

visible in player mode to the students and will be used only to regenerate test cases and in

the evaluation phase of the programming life-cycle. The test cases are defined with a pair of

input and output files (and feedback files) as resource objects (4 and 5). Finally, the BLTI

link is included as a LAO resource (6). This link points to a XML file that includes all the

data needed to integrate the cartridge in a LMS-web application communication. Despite

its inclusion, this link will not be used since the teacher will configure the access to Petcha

as an LTI activity rather than an LTI resource.

This XML file contains information to create a link in a Tool Consumer (e.g. LMS). Upon the

user’s click on the LMS, the execution flow passes to a Tool Provider along with contextual

information about the user and Consumer.

170 CHAPTER 8. PROGRAMMING TEACHING ASSISTANT

Figure 8.7: Structure of the IMS CC manifest file.

The metadata section of the IMS CC manifest comprises a hierarchy of several IEEE LOM

elements organized in several categories (e.g. general, lifecycle, technical, educational). In

order to achieve interoperability a binding of the textual elements of the PExIL definition and

the correspondent IEEE LOM elements was defined. The generator tool uses this binding

to generate the LOM elements through a template pattern. Table 8.4 presents a binding of

the PExIL textual elements and the corresponding LOM elements which will be used by the

generator tool to feed the IMS CC manifest.

One may note some redundancy between the PExIL and the IMS CC manifest since both

reference the same files. This happens since the exercise must be independent from the

chosen export format. For instance, this allows the use of exercise as input for a format

converter service such as BabeLO detailed in chapter 7. By defining this set of metadata

at the LOM side, e-learning systems continue to use the metadata included in the IMS CC

manifest to search for programming exercises, rather than using a specialized XML dialect

8.3. SUMMARY 171

Table 8.4: Binding PExIL to IEEE LOM.

Type Schema Element Path

Title LOM //lomcc:general/lomcc:title

PExIL /exercise/title

Date LOM //lomcc:contribute[lom:role=’Author’]/lom:date

PExIL /exercise/creation/date

Author LOM //lomcc:contribute[lom:role=’Author’]/lom:entity

PExIL /exercise/creation/authors/author/v:VCard/v:fn

Event LOM //lomcc:general/lomcc:coverage

PExIL /exercise/creation/event

such as PExIL. In order to validate the IMS CC cartridges previously generated was used

the IMS validator5. This service validates cartridges for conformance with the IMS Common

Cartridge v1.0 and/or v1.1 specification. In the validation process the IMS CC Validator test

the whole cartridge (or just the XML manifest) verifying the following type of constraints:

Static - the parameters (e.g. file names) are fixed in the profile (e.g. imsmanifest.xml

must exist at the root of the package);

Dynamic - the parameters are taken from an instance document in the package (e.g. href

attribute of a resource element must point to a QTI file)

Conditional - the constraint depends on a condition (e.g. if parameter contenttype is

question then the href attribute must point to a QTI file).

The cartridges generated from PExIL instances using the methodology presented in the

previous sub-section passed all tests performed by the validator.

8.3 Summary

This chapter presents the design and implementation of a tool that acts as an automated

TA in computer programming courses called Petcha. Petcha helps both teachers to author

programming exercises and students to solve them. It also coordinates a network of heteroge-

neous systems typically found in the computer programming domain. The chapter focus on

the implementation details related with the design of Petcha and the automatic generation of

programming exercises as learning objects. The validation of the usability and usefulness of

Petcha as an automated TA is presented in chapter 9 where all the network is evaluated and

5Official Web site: http://validator.imsglobal.org/

172 CHAPTER 8. PROGRAMMING TEACHING ASSISTANT

Petcha is the front-end to its users. Petcha was recently updated to support the IMS LTI

1.1. With this support Petcha can deliver student grades to the gradebook of the student

tipically found in the school LMS. Petcha is available for download at the following URL:

http://ensemble.dcc.fc.up.pt/Petcha.

Part IV

Validation

173

Chapter 9

Ensemble evaluation

”A successful [software] tool is one that was used to do something

undreamed of by its author.”

S. C. Johnson

This chapter evaluates the Ensemble instance presented in chapter 5. The Nielsen’s model

[Nie94] is used to evaluate the acceptability of Petcha as the user interface of the network.

For this evaluation an experiment was conducted with undergraduate students and their

teachers. This chapter starts by presenting the evaluation model followed in the experiment

based on the heuristics of Nielsen. Then, the design of the experiment is described. The

description includes the methodology followed, the educational context and infrastructure

where the experiment occurs and the instruments used to collect the data. Finally, the

evaluation results are presented and analysed.

9.1 Evaluation Model

According to Nielsen [Nie94] the acceptability of a system is defined as the combination of

social and practical acceptability. The former determines the success/failure of the system,

since the more the system is socially acceptable the greater is the number of people using

it. The latter relates factors such as usefulness, cost, reliability and interoperability with

existing systems. An adaptation to the Nielsen’s model [Nie94] is depicted in Figure 9.1.

The usefulness factor relates the utility and usability offered by the system. Utility is the

capacity of the system to achieve a desired goal. As the system perform more tasks, more

utility he has. Usability is defined by Nielsen as a qualitative attribute that estimates how

175

176 CHAPTER 9. ENSEMBLE EVALUATION

System
Acceptability

Social
Acceptability

Practical
Acceptability

Usefulness

Cost

Reliability

Interoperability

Utility

Usability

Ease of
Learning

Efficiency

Memorability

Errors

Satisfaction

Figure 9.1: System acceptability. Adapted from Nielsen [Nie94].

easy is to use an user interface. He mentions five characteristics involved in the concept of

usability: ease of learning - the system should be easy to learn so that the user can start

doing some work with the system; efficiency - the system should be efficient to use, so after

the user learns the system, a high level of productivity is possible; memorability - the system

should be easy to remember so that the casual user is able to return to the system after

a period without using it, without requiring to learn it all over again; errors - the system

should prevent the user from committing errors as should deal with them gracefully and

minimizing the chance of occurring catastrophic errors; satisfaction - the system should be

pleasant to use so that users become subjectively satisfied when using. The cost factor was

not considered since Petcha is a free (and open source) software. The reliability is the

ability of a system or component to perform its required functions under stated conditions

for a specified period of time. Interoperability is the ability of two or more systems or

components to exchange information and to use the information that has been exchanged.

9.2 Experiment Design

The experiment took place at the Escola Superior de Estudos Industriais e de Gestão

(ESEIG) - a school of the Polytechnic Institute of Porto - during the months of October

and November of 2011. The participants were students from the first-year of the course

Algorithms and Programming and their teachers. This course is offered to the degree in

Mechanical Engineering and aims to introduce students to programming concepts.

9.2.1 Methodology

The experiment methodology followed the experimental research method [Onc11]. For

this purpose experimental and control groups (two classes from the same course) were

9.2. EXPERIMENT DESIGN 177

settled. The first class (the experimental group) had 21 students and the second class

(the control group) had 19 students. Students of both groups have similar characteristics

such as the gender and previous background. For instance, the gender in both groups were

well distributed, respectively 62% and 57% of females in both groups. The conditions of

the experiment were also equal for both classes (e.g. syllabus, teaching times, teacher, labs,

technical means).

Although it could be assumed that the population of the classes were almost randomly

formed, strictly the experiment should be called a quasi-experiment . A completely ran-

domised design was not possible due to operational reasons. Based on this type of design, a

static group comparison design [BG07] was followed where students of class A used Ensemble

(the experimental group) and students of class B did not use it (the control group).

The course has an average enrolment of 40 students per year divided in two classes. The

course is organized in two lectures of one hour each and one lab session of 4 hours per week.

The experiment occurred in 6 lab sessions. In each lab session both groups (a total of 40

students) had 3 exercises to solve. In the experimental group the teacher only intervenes to

solve operational issues related to the use of Ensemble and does not give any feedback to

students regarding the exercises. Prior to the experiment, teacher and students were prepared

for the experiment. A summary of the experiment schedule is presented in Table 9.1.

Table 9.1: The ESEIG experiment schedule

Phases Date Description

Preparation

03-09-11 Install and configuration of the network

10-09-11 Presentation of Ensemble to the teacher

12-09-11 Creation of C# exercises covering the course program

19-09-11 Preliminary tests

26-09-11 Presentation of Ensemble to the students

Experiment

03-10-11 Module no1 - Variables and arithmetic operations

10-10-11 Module no2 - Conditional structures

17-10-11 Module no3 - Cyclic structures

07-11-11 Module no4 - Vectors manipulation

14-11-11 Module no5 - Matrix manipulation

21-11-11 Module no6 - Search and Sort algorithms

9.2.2 Infrastructure

The network deployed integrates systems and services selected in section 5.4. A list with the

actual systems, versions used and respective requirements is presented in Table 9.2.

178 CHAPTER 9. ENSEMBLE EVALUATION

Table 9.2: Network selected systems

System Version Requirements

Petcha 1.0 Windows/Linux + JAVA 1.6

Moodle 1.9 Windows/Linux + XAMP 1.7.7

CrimsonHex 0.8 Windows/Linux + XAMP 1.7.7

Mooshak 1.6a2 Linux + Apache + TCL

Visual Studio 10.0 Windows XP (or above)

BabeLO 1.0 Windows/Linux + XAMP 1.7.7

To model the physical deployment of these systems and services an UML deployment diagram

is depicted in Figure 9.2. This type of diagram shows what hardware components (”nodes”)

exist, what software components (”artifacts”) run on each node and how they are connected.

The nodes appear as boxes and the artifacts allocated to each node appear as rectangles

within the boxes.

Mooshak crimsonHex

BabeLO

Moodle

<<device>>
:WebServer
{OS=Linux}

<<device>>
:WebServer

{OS=Windows}

<<protocol>>
HTTP

<<device>>
:Workstation
{OS=Windows}

Petcha

VSE

<<device>>
:Workstation
{OS=Windows}

Petcha

VSE

<<device>>
:Workstation
{OS=Windows}

Petcha

VSE

The c lassro om co ntains
20 co mp uters.

Figure 9.2: UML deployment diagram for the Ensemble instance.

The core and secondary services were installed in two machines located in a servers room

at ESEIG. The servers have the following characteristics: Packard Bell - IXTREME I8875

9.3. RESULTS AND DISCUSSION 179

PT, Windows 7 Home Premium, Intel Core i7 (3.40 GHz, 8 MB), 8 GB DDR3 SDRAM, 1

TB Serial ATA. Both servers use different operating systems: one runs the Linux Fedora OS

10 and was used to install Mooshak; the second server uses the Windows 7 Professional and

housed the remaining services (Moodle, crimsonHex and BabeLO).

The axial systems (Petcha and VSE) were installed in 20 computers in the computers

lab where the experiment occurs. The computers have the following characteristics: Asus

M70VSeries, Windows 7 Home Premium edition Intel(R) Core(TM)2 Duo P8400 @2.26GHz

(32 bits), 4GB RAM and 600GB of hard disc. The communication between the lab computers

and the servers relies on a physical network with a bandwidth of 100 Mbit/s (Fast Ethernet).

9.2.3 Instruments and Data collection

The instruments used for collecting data on the experiment were the following: surveys

(session & final survey), service logs, students’ attendance logs and grades.

The surveys were fulfilled and collected on-line using Google Forms1. Two types of surveys

were presented to students: session and final survey (Appendix B). The former was filled in

by both groups of students after each lab session. The questionnaire2 includes questions on

the number of solved exercises and the feedback impact. It had an average of 38 responses

per session (the equivalent to 95% of the total of students). The latter was presented to

the experimental group at the end of the experiment. The questionnaire includes questions

on the Petcha usefulness and reliability. The final survey was completed by all the students

from the experimental group.

The service logs were used to attest the accuracy of the experimental group questionnaires

responses. The data collected in the surveys of the experimental class was checked against

the logs of Petcha and other systems in the network. An average discrepancy of 4.6% between

these two sets of values was found.

The student attendance and student outcomes (programming module and semester

grades) were collected through the Academic Management System used at ESEIG. The data

was exported to a spreadsheet to simplify the data processing.

9.3 Results and discussion

In this section the Ensemble network is evaluated based on three Nielsen heuristics: useful-

ness, reliability and interoperability.

1http://www.google.com/google-d-s/forms/
2http://goo.gl/AlhsL

180 CHAPTER 9. ENSEMBLE EVALUATION

9.3.1 Usefulness

Usefulness combines the utility and usability of a system. Utility is the capacity of the

system to achieve a desired goal. Usability is defined by Nielsen as a qualitative attribute

that estimates how easy is to use an user interface.

Petcha was evaluated according to the Nielsen’s model using a heuristic evaluation method-

ology. A heuristic evaluation is an inspection method for computer software that helps

to identify usability problems in the user interface (UI) design. Jakob Nielsen’s heuristics

(Appendix A) are arguably the most used usability heuristics for user interface design. Based

on these heuristics a questionnaire (Appendix B) with 41 questions was designed in Google

Forms. The aim of the questionnaire is to identify usability problems in the UI design of

Petcha. Two profiles of users answered this questionnaire in the end of the experiment:

21 students (experimental group) and 4 teachers (although only one was the teacher of the

students that participated in the experiment).

Figure 9.3 shows the results obtained grouped by the Nielsen’s heuristics. The data collected

are shown in graphs. In the chart graphs the heuristics are sorted in ascending order of user

satisfaction.

4%

10%

13%

57%

57%

100%

52%

81%

34%

35%

35%

38%

37%

48%

19%

62%

55%

52%

5%

6%

11. Ease of use

9. Users help

1. Visibility

4. Consistence

5. Error Prevention

10. Help and Documentation

3. Freedom

7. Flexibility

Never/Almost never Regular Always/Almost always

14%

17%

25%

43%

52%

86%

83%

75%

57%

48%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

8. Aesthetic

6. Recognition

2. Compatibility

12. Speed

11. Ease of use

Figure 9.3: Results of each heuristic in the student’s profile.

The results highlight deficiencies in three areas: Flexibility, User control and freedom, Help

and documentation. In regard to the flexibility of the system, respondents considered that

the system do not allow the personalization of the interface as shown in Figure 9.4, more

precisely, the activation/deactivation of certain functions and the configuration of the screens.

The possibility of use of accelerator keys to speed up the interaction with the TA is also a

handicap of Petcha.

9.3. RESULTS AND DISCUSSION 181

76,1%

85,7%

23,9%

14,3%

7.2. There are shortcut keys to execute the most used functions

7.1. I am allowed to configure he screen setup

7.3. The system allows me to temporarily deactivate some of the functions

Never Almost Never

14,2% 85,8%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Figure 9.4: Evaluation of Petcha’s flexibility.

The User control and freedom is the second worst facet (Figure 9.5). Most of the complaints

focused on the inability to cancel or roll back mistakes made to a previous and safe state.

67%

71%

71%

29%

19%

24%

4%

10%

5%

3.3. I can cancel an ongoing operation

3.2. I can interrupt an action and resume it whenever I wish

3.1. When I make a mistake the system allows me to undo it

Never/Almost never Regular Always/Almost always

19% 76% 5%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

3.4. I can eliminate any change and return to the previous state

Figure 9.5: Evaluation of Petcha’s freedom.

The Help and documentation is another heuristic with negative values as shown in Figure 9.6.

The respondents state that is difficult to find help and documentation in Petcha.

67%

86%

33%

14%

10.1. I can easily perform information searches

10.2. The help function is easily visible

Never/Almost never Regular Always/Almost always

19% 67%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

10.3. The information is precise complete and perceptible 14%

Figure 9.6: Results of each heuristic in the student profile.

The respondents reveal that the error messages are sometimes unclear and inadequate in

Petcha. The respondents also state that the documentation is scarce and is hard to find it.

The final classification of Petcha is shown in Figure 9.7.

One can conclude that the majority of students classified Petcha as a good tool according

182 CHAPTER 9. ENSEMBLE EVALUATION

Very Good

14%

Suficient

10%

Very Good Good Suficient

Good

76%

Figure 9.7: Classification of Pectha by students.

to the parameters evaluated.

Regarding the teacher profile, Figure 9.8 shows the results obtained.

6%

14%

33%

38%

42%

75%

62%

18%

56%

43%

25%

31%

25%

25%

38%

82%

38%

43%

42%

31%

33%

1. Visibility

9. Users help

5. Error Prevention

4. Consistence

10. Help and Documentation

3. Freedom

11. Ease of use

7. Flexibility

Never/Almost never Regular Always/Almost always

91%

75%

69%

62%

62%

9%

25%

31%

38%

38%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

8. Aesthetic

6. Recognition

2. Compatibility

12. Speed

Figure 9.8: Results of each heuristic in the teacher profile.

The results are similar to those of students. In one hand the aesthetic factor was the one with

higher values of satisfaction. The respondents considered that the information contained on

the screen is only what is needed and the system is aesthetically pleasing on the factors: color,

brightness, etc. In the other hand the flexibility, freedom and documentation heuristics had

some of the lowest values. However another heuristic had a low value: the Ease of Use.

Figure 9.9 shows the results associated to this heuristic.

9.3. RESULTS AND DISCUSSION 183

25%

50%

25% 50%

50%

11.2. It is easy for me to learn how to work with the system

11.1. The system is intuitive (I understand it easily)

Never/Almost never Regular Always/Almost always

75% 25%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

11.3. I don’t need help to work with the system

Figure 9.9: Results of the Ease of Use heuristic in the teacher profile.

9.3.2 Reliability

The reliability of a system is the ability of a system or component to perform its required

functions under stated conditions for a specified period of time. In the final survey a

reliability section was added in order to check on what tasks students and teachers had

the difficulties. Figure 9.10 shows the results of the survey in this facet.

86%

19%

5%

24%

0

48%

57%

5%

14%

33%

38%

71%

13.1 Visualize the description of exercises

13.5 Try to understand the feedback messages from programs submission

13.3 Try to understand the feedback messages from test cases creation

13.6 Visualize statistics of exercises

Always/Almost always Regular Never/Almost never

24%

48%

71%

48%

5%

5%

0% 20% 40% 60% 80% 100%

13.2 Create Test Cases

13.4 Submit programs

Figure 9.10: Reliability of Petcha.

Students reported difficulties in understanding error messages related to programs submis-

sion. Some users have left comments and suggestions, and the following were the most

common:

• the message wording should be more friendly;

• the feedback should be more complete;

• the help system is insufficient for novice users;

• the exercise statistics should be more complete (e.g. time to solve, students rankings).

The comments and suggestions of the teachers were the following:

• the creation of exercises is not intuitive;

184 CHAPTER 9. ENSEMBLE EVALUATION

• the evaluation based on test cases should be more flexible in the comparison between

the outputs generated by the student solution with the accepted outputs;

9.3.3 Interoperability

In the design of the experiment a network was deployed based on the Ensemble instance

presented in chapter 5. This network is composed by several systems and services that need

to interoperate to achieve a common goal. In this subsection the interoperability of this

network is validated. Table 9.3 summarizes the communication between pairs of systems.

These results were gathered from 6 lab sessions. In each session a class of 21 students had

3 exercises to solve. Based on these figures were computed the following expected values:

the expected number of accesses to the system that is given by multiplying the number of

students with the number of assignments (21 * 6 = 126); and the expected number of accesses

to the exercises by all the students that is given by multiplying the number of students with

the number of assignments and with the number of exercises by assignment (21 * 6 * 3 =

378).

Table 9.3: Statistical data on interoperability of the network components

Observation point Expected Real

accesses to the system (LMS to TA) 126 135

exercises requested to the repository (TA to LOR) 378 345

exercises that students try to solve (TA to IDE) 378 342

submissions (TA to AS) 378 819

exercises requested to the repository (AS to LOR) 18 18

exercises in which the students got feedback (AS to TA) 378 810

The first line of the table indicates that the system worked well since only nine extra sessions

were used. These extra values were mainly due to the accidental closing of the application

by students.

The number of exercises requested by the TA (Petcha) measures the number of times that

students got an exercise statement from the repository. This action triggers an automatic

request from Petcha to the repository. From the collected data it can be observed that not

all exercises were actually read by all the students. There are two possible justifications:

either the students did not have time to read all the available statements or some students

may have given up after reading the exercise title. In any event students did not report any

difficulty in accessing to problems

The third line of Table 9.3 is the number of exercises that students tried to solve. It is

assumed that a student tried to solve an exercise when (s)he ran locally a set of tests to

9.4. SUMMARY 185

validate the code. The real number is less than the expected and less than the number

of exercise statement accesses. Most likely some students read an exercise statement, but

did not have time to code a solution, or run the tests, or simply given up on solving it.

The number of submissions is the number of requests for evaluation received by the AS. On

average each student made approximately two submissions per exercise.

The number of exercises requests reflects the need of the AS to obtained the full LO from

to repository given its reference. Since the AS has a cache mechanism the expected and real

values are identical thus showing that the AS cache feature is working as expected and is

accelerating the evaluation process.

The number of exercises in which the students got feedback should be similar to those of the

number of submissions. Since they are almost identical (a difference of 9) one can conclude

that the communication among the two systems (TA and AS) works well.

9.4 Summary

This chapter presents an acceptability evaluation on an Ensemble network for the computer

programming domain. To carry out this evaluation an experiment was conducted in a

higher education school. This evaluation focuses on three facets: usefulness, reliability and

interoperability.

For the usefulness facet, a questionnaire based on the Nielsen’s heuristics was filled in

by students in the end of that experiment. On one hand, the results showed that the

aesthetic was the heuristic with higher values of satisfaction. The respondents claim that

the minimalist design is one of the strongest points of Petcha (the front-end of the Ensemble

network). On the other hand, the results reveal deficiencies in three areas: flexibility, freedom

and documentation. In the flexibility heuristic, the respondents felt difficulties in personalize

the user interface and speed up the execution of frequent actions (e.g. definition of short-

cuts). The freedom heuristic was another area where students were not satisfied since Petcha

does not allow, for instance, the undo/redo of actions. Finally, students complained of

the unavailability of supporting documentation while using Petcha. In the reliability facet

students stated difficulties in understanding error messages and teachers complained about

the lack of intuitiveness in the creation of exercises. For the interoperability facet, the

communication between pairs of systems was analysed during the experiment by comparing

the expected values with the real values (those obtained through service logs). The results

show that the proposed e-learning framework is useful in practice. The figures collected

during the experiment are within reasonable bound from the expected values. These results

show that the network is stable enough to handle a significant number of students, and

exercises and can be used in a classroom setting.

186 CHAPTER 9. ENSEMBLE EVALUATION

Chapter 10

Thesis validation

”Individually, we are one drop. Together, we are an ocean.”

Ryunosuke Satoro

A set of observable assertions was stated at the beginning of this dissertation. These

assertions are related with the impact of an Ensemble network in the teaching-learning

process for domains with complex evaluation. This chapter validates these assertions with

the use of an Ensemble network for the computer programming domain. The assertions are

organized in four groups of hypothesis: exercises solving, feedback, attendance and grades.

Then, each group of hypothesis is validated using statistical methods.

10.1 Hypothesis

Based on the goals formulated in the beginning of this dissertation a set of observable and

testable assertions were defined related to the impact of the Ensemble network. These

hypothesis are organized in four groups presented in Table 10.1.

Hypothesis validations relied on data collected in the experiment already described in the

previous chapter. The data collection sources are surveys, service logs and grade-books. The

following subsection validates these data. The remainder subsections seek to validate each

group of hypothesis using statistical methods.

187

188 CHAPTER 10. THESIS VALIDATION

Table 10.1: Hypothesis on Ensemble usage.

Group # List of hypothesis.

Exercises solving

H1.1 Students start to solve more exercises

H1.2 Students complete more exercises

H1.3 Students effectively solve more exercises

H1.4 Students maintain or improve the number of exercises

started over time

H1.5 Students maintain or improve the number of exercises

completed over time

H1.6 Students maintain or improve the number of exercises

effectively solved over time

Feedback

H2.1 Students receive more feedback

H2.2 Students receive more feedback to effectively overcome

their difficulties

H2.3 Students increasingly receive more feedback over time

H2.4 Students increasingly receive more feedback that effectively

overcome their difficulties over time

H2.5 The automatic feedback provided is at least as good as

the human feedback

Attendance
H3.1 Practical classes have more attendance

H3.2 Practical classes maintain or improve attendance over time

Grades
H4.1 Students get better grades in the programming module

H4.2 Students get better grades in the course

10.2 Data collection and validation

After each lab session both classes were surveyed on the number of solved exercises and the

feedback impact. Table 10.2 aggregates the answers given by students. Data collected in

the experimental class surveys was checked against the logs of Petcha and other systems in

the network to attest the truthfulness of the survey responses. An average discrepancy of

4.6% between these two sets of values was found. This value suggests that students filled

the survey carefully.

Firstly, statistical tests called Shapiro–Wilk were made to test if the samples came from

a normally distributed population. After this validation, statistical hypothesis tests were

used to assess whether the means of these two groups are statistically different from each

other. The t-test is commonly used to verify if differences in observations can be explained

by chance with a certain significance level p, typically 0.05 or 0.01. For instance, using the

10.3. RESULTS AND DISCUSSION 189

Table 10.2: Survey results averages.

Assertions Experimental group Control group

Exercises started 89% 81%

Exercises complete 83% 74%

Exercises effectively solved 82% 66%

Exercises with feedback 59% 62%

Feedback helpfulness 55% 62%

.05 significance level means that one will accept as a real difference only those that occurred

by chance only 5 times in 100 (i.e. in 95% of cases not due to chance). The statistical tests

on the two sets of data (survey data and logs data) were satisfactory since the probability of

the differences being the result of chance is higher than 5% (p = 0.312 ⇒ p > 0.05). Hence

we cannot distinguish between the to averages since their difference most likely occurred by

chance.

10.3 Results and discussion

This section includes for each group of hypothesis a subsection with the statistical results

and their analysis. To prove the usefulness of the Ensemble network the analysis is made by

student participation. A participation is defined as the performance of a single student in a

single class. The reason for using participations and not simply count the exercises solved

by students has to do with the fact that both classes have different numbers of students that

would lead to misleading results.

10.3.1 Exercises solving

The first group of hypothesis is related with exercise solving. More precisely, it is hypoth-

esized that in practical classes students that use the Ensemble network will start, complete

and effectively solve more exercises and they will maintain or improve their performance over

time. Figure 10.1 shows the average and standard deviation of exercises initiated, finished

and effectively solved by student participation in both groups.

Figure 10.1 shows that the experimental group performed better than the control group

because the mean score is higher and suggests that the use of the Ensemble network (the

treatment) is effective. It must be rule out that the differences in the mean between the

experimental and control groups occurred by chance. A significance test determines whether

the amount of difference between two groups is due to chance or due to the treatment.

190 CHAPTER 10. THESIS VALIDATION

2,67

2,48 2,45
2,42

2,00

3,00

4,00

#
 a

v
e

ra
g

e

Experimental Group Control Group

2,42

2,23

1,98

0,00

1,00

exercises started in class exercises finished in class exercises effectivelly solved in class

Exercises solving assertions

Figure 10.1: Average and standard deviation of exercises solving by student participation.

Table 10.3 shows the mean (M) and the standard deviation (SD) on student participation

(n) in the two groups (experimental and control). It includes also a statistical hypothesis

test called t-test to accept or reject the null hypothesis1.

Table 10.3: Statistics on student participation.

Assertions
Experimental Control T-Test

n M SD n M SD T p

Exercises started 116 2.67 0.52 88 2.42 0.69 2.857 0.004852

Exercises finished 116 2.48 0.60 88 2.23 0.75 2.617 0.009722

Exercises solved 116 2.45 0.62 88 1.98 0.77 4.678 0.000006

According to the results in Table 10.3, students who used the Ensemble network had a better

performance than those who did not use it. The results for all the questions are significantly

different since p < 0.05 and p < 0.01. This indicates that the difference is not due to chance

but to the treatment (the use of the Ensemble network) and validates Hypothesis 1.1, 1.2

and 1.3.

Also the standard deviation in the experimental group is smaller than the one in the control

group. This fact indicates that the number of exercises started/completed/solved is less

dispersed in the experimental group suggesting a more homogeneous student performance

when comparing with the control group.

Another goal in this experiment is to verify if the use of Ensemble influences the student

motivation. Figure 10.2 depicts the evolution of the number of the exercises started in class.

Projections are also included in the chart using trendlines. Trendlines graphically display

1The null hypothesis is accepted when has no statistical significance the difference between both groups.

10.3. RESULTS AND DISCUSSION 191

y = -0,0701x + 2,923

R² = 0,7118

2,4

2,5

2,6

2,7

2,8

2,9

3

A
v

e
ra

g
e

 o
f

e
xe

rc
is

e
s

st
a

rt
e

d
 b

y
 s

e
ss

io
n

Experimental Control Linear (Experimental) Linear (Control)

y = -0,0875x + 2,72

R² = 0,7713

2

2,1

2,2

2,3

2,4

1 2 3 4 5 6 7 8

A
v

e
ra

g
e

 o
f

e
x

e
rc

is
e

s
st

a
rt

e
d

 b
y

 s
e

ss
io

n

Lab sessions

Figure 10.2: Evolution in started exercises.

trends in data series as part of regression analysis. By using regression analysis, one can

extend a trendline in a chart beyond the actual data to predict future values. This graph

has a linear trendline that is used with simple linear data sets. A linear trendline uses the

following equation to calculate the least squares fit for a line: y = mx+b where m is the slope

and b is the intercept. The existence of linear trendline shows that something is increasing

or decreasing at a steady rate. The chart also includes an R-squared value2 that determines

the reliability and accuracy of the trend projection. This is intrinsically related with the

definition of correlation. Correlation is a statistical technique that shows whether, and how

strongly, pairs of variables are related. The measure of a correlation is called the correlation

coefficient (or ”r”). It ranges from -1.0 to +1.0. The closer r is to +1 or -1, the more closely

the two variables are related. If r is close to 0, it means there is no relationship between the

variables. If r is positive, it means that as one variable gets larger the other gets larger. If r

is negative it means that as one gets larger, the other gets smaller (often called an ”inverse”

correlation). If the correlation coefficient is squared, then the resulting value (a number

from 0 to 1) will represent the proportion of common variation in the two variables (i.e.,

the ”strength” or ”magnitude” of the relationship). One can say that the R-squared value

reveals how closely the estimated values for the trendline correspond to the actual data. A

trendline is most reliable when its R-squared value is at or near 1. Based on this line chart

several conclusions can be drawn:

• Students of the experimental group started more exercises over time compared with the

control group. A significance test (p = 0.02) was made asserting that the differences

2Also known as the coefficient of determination.

192 CHAPTER 10. THESIS VALIDATION

are statistically significant. Thus validating with success Hypothesis 1.4;

• The first session had the highest results. One of the possible reasons is the lower

complexity associated with the exercises of the first session. In the experimental group

the mean of exercises started by students was of 2.88 (96%);

• Both groups decreased the number of exercises initiated over time (mexp < 0 and mctl

< 0). This is probably due to the increase of the exercises complexity;

• In the control group the decrease is slightly higher (mexp < mctl). This means that

students in the experiment group perform consistently and increasingly better than

the control group.

• The correlation coefficient values (rexp=-0.84 and rctl=-0.88) indicate that exists a

dependence between the number of sessions and the number of exercises started in

both groups. In this case an inverse correlation. Squaring the correlation coefficient

values (R2
exp=0.71 and R2

ctl=0.77) reinforce the overall decrease of exercises initiated

indicating that the projections are reliable (values are close to 1).

A significance test was made on the obtained correlations. For this test, the degrees of

freedom (df = 4) were calculated based on the number of pairs of values less 2. Using a critical

value table3 the minimum correlation coefficient r (0.811) was obtained. If the correlations

values are greater than 0.811 or less than -0.811 (two-tailed test) one can conclude that

the odds are less than 5 out of 100 that this is a chance occurrence. Since the correlations

values (-0.84 and -0.88) are less than -0.811 one can conclude that it is not a chance finding

and that the correlations are statistically significant. Thus, the null hypothesis (there is

no relationship) is rejected and the alternative accepted. Figure 10.3 illustrates the same

kind of analysis for the number of completed exercises and the number of effectively solved

exercises. Several conclusions can be taken from this analysis:

• Students of the experimental group finished (p = 0.013) and solved (p = 0.0001) more

exercises over time compared with the control group. Thus validating with success

Hypothesis 1.5 and 1.6;

• The correlation coefficient values (rexp=-0.63 and rctl=-0.15) for exercises finished and

exercises solved (rexp=0.02 and rctl=-0.27) indicate dependency between the number of

sessions and the number of exercises finished and solve in both groups. In this case an

inverse correlation. However, testing the significance of those correlations, probabilities

greater than -0.811 (two-tailed test) are obtained. Thus, one can conclude that it is a

chance finding and that the correlation is not statistically significant;

3http://www.gifted.uconn.edu/siegle/research/Correlation/corrchrt.htm

10.3. RESULTS AND DISCUSSION 193

y = 0,0015x + 2,44

R² = 0,0006

2,1

2,3

2,5

2,7

2,9

A
v

e
ra

g
e

 o
f

e
x

e
rc

is
e

s
co

m
p

le
te

d
/s

o
lv

e
d

Experimental (finished exercises) Experimental (solved exercises) Control (finished exercises)

Control (solved exercises) Linear (Experimental (solved exercises)) Linear (Control (solved exercises))

y = -0,0223x + 2,0481

R² = 0,0733

1,5

1,7

1,9

2,1

1 2 3 4 5 6 7 8

A
v

e
ra

g
e

 o
f

e
x

e
rc

is
e

s
co

m
p

le
te

d
/s

o
lv

e
d

Lab sessions

Figure 10.3: Evolution of completed/solved exercises.

• Squaring the correlation coefficient values for exercise solved (R2
exp=0.0006 and

R2
ctl=0.0733) indicate that the projections are not reliable (values are far from 1).

Although they are not reliable they point to a slight decrease (m < 0) in the control

group and a slight increase (m > 0) in the experimental group;

• The correlation between finished and solved exercises of both groups gives the fol-

lowing values: -0.3953 and 0.0902. Apart from being not statistically significant the

experimental values had an higher value then the control group.

10.3.2 Feedback

The second group of hypothesis is related with the feedback and its helpfulness to overcome

the students difficulties on solving exercises. Figure 10.4 shows the average and standard

deviation of the feedback received and its helpfulness by students participation.

Based on Figure 10.4 one can conclude that the control group had more feedback (and more

helpful) than the experimental group since the mean score by participation is higher. In

order to verify whether these samples are, or are not, significantly different a t-test was

performed as shown in Table 10.4.

Regarding the first question and based on the significance level established (p = 0.05) the

probability obtained shows that there is no significance differences between the means of

both groups. Although there is little difference unfavourable to Ensemble this difference is

not statistically significant and may be due to chance. Therefore, one can conclude that the

feedback of Ensemble is at least as good as the feedback of the teacher.

194 CHAPTER 10. THESIS VALIDATION

1,00

1,50

2,00

2,50

3,00

A
v

e
ra

g
e

 o
f

e
x

e
rc

is
e

s
b

y
 p

a
rt

ic
ip

a
ti

o
n

Experimental Control

1,78 1,65
1,86 1,85

0,00

0,50

1,00

Get Feedback Feedback helpful

A
v

e
ra

g
e

 o
f

e
x

e
rc

is
e

s
b

y
 p

a
rt

ic
ip

a
ti

o
n

Feedback assertions

Figure 10.4: Average of feedback received by exercise and its helpfulness.

Table 10.4: Statistics on student participation.

Assertions
Experimental Control T-Test

n M SD n M SD T p

Get feedback 116 1.78 0.69 88 1.86 0.79 -0.831 0.407

Feedback helpful 116 1.65 0.61 88 1.85 0.80 -2.019 0.045

In the second question the scenario is different since the probability value is lower than the

significance level. This indicates that the difference is not due to chance but to the treatment.

Therefore, one can conclude that the teacher’s feedback is more helpful than the automatic

feedback of Ensemble.

Figure 10.5 depicts the feedback received and its helpfulness to solve exercises over time.

Several conclusions can be drawn from the this figure:

• The line chart suggests that students of the control group get more feedback and more

helpful over time. However the significance test accept the null hypothesis based on

the probability values for both sets of data (p = 0.499 and p = 0.065) revealing that

there is not a statistically significant difference;

• The correlation coefficient values for obtained feedback (rexp=-0.29 and rctl=-0.75) and

feedback helpful (rexp=-0.22 and rctl=-0.68) indicate that exists a dependence between

the number of sessions and the feedback data in both groups. In this case an inverse

correlation. However, testing the significance of those correlations, probabilities greater

than -0.811 (two-tailed test) are obtained. Thus, one can conclude that the correlation

is not statistically significant;

10.3. RESULTS AND DISCUSSION 195

y = -0,0639x + 2,0717

R² = 0,461
1,70

1,80

1,90

2,00

2,10

2,20

A
v

e
ra

g
e

 b
y

 s
e

ss
io

n

Experimental (get feedback) Control (get feedback) Experimental (feedback helpful)

Control (feedback helpful) Linear (Experimental (feedback helpful)) Linear (Control (feedback helpful))

y = -0,0185x + 1,7142

R² = 0,0493

1,30

1,40

1,50

1,60

1 2 3 4 5 6 7 8

A
v

e
ra

g
e

 b
y

 s
e

ss
io

n

Lab sessions

Figure 10.5: Evolution of feedback and its helpfulness.

• Squaring the correlation coefficient values for helpful feedback data (R2
exp=0.049 and

R2
ctl=0.461) indicates that the projections are not reliable (values are far from 1).

Although they are not reliable, both trendlines predict a decrease over time (m < 0).

This decrease is more accentuated in the control group (m=-0.0639) comparing with

the experimental group (m=-0.0185);

• The correlation between feedback received and feedback helpful on both groups gives

the following values: 0.858 and 0.988. Both are greater than the minimum correlation

coefficient r (0.811). Thus, one can conclude that both sets of data are dependent.

Regarding the hypothesis formulated one can say that only hypothesis 2.2 had statistically

significant results. These results reject the hypothesis and confirmed that in a practical

class students without using Ensemble receive more feedback that effectively overcome their

difficulties. That was a predictable result since is very difficult to substitute the human

feedback. All the tests for the other hypothesis resulted in the non-rejection of the null-

hypotheses, i.e., results were not statistical significant. Arguably, one can say that the

automatic feedback provided by Ensemble is at least as good as the human feedback and,

for that reason, validate with success the Hypothesis 2.5.

10.3.3 Attendance

Practical class attendance was optional in this course. Hence, class attendance reflects the

level of motivation of the students. Figure 10.6 shows the overall attendance of experimental

and control groups. The overall attendance is higher on the experimental group. In fact,

92% of participations (116 of 126 possible participations) were registered against 77% of

196 CHAPTER 10. THESIS VALIDATION

88 26Control

G
ro

u
p

s

Presences Absences

116 10

0 20 40 60 80 100 120 140

Experimental

Overall number of students

Figure 10.6: Overall attendance of students of both groups.

participations (88 of 114 participations) in the control group. Using a t-test (Table 10.5) the

p value is 0.00009 (p < 0.05) which rejects the null hypothesis and indicates the difference

between both sets. Thus, the first conclusion is that the experimental group was more

assiduous than the control group which validates the hypothesis 3.1.

Table 10.5: Statistics on student attendance.

Assertion
Experimental Control T-Test

n M SD n M SD T p

Attendance 116 19,33 1,366 88 14.66 1.032 6.674 0.00009

A regressive analysis was also performed on the evolution of attendance. Figure 10.7 shows

the evolution attendance percentages of both groups. Several conclusions can be drawn:

• The correlation coefficient values for attendance (rexp=0.47 and rctl=-0.72) were used

to test their significance. The former is lower than 0.811 and the latter is greater than

-0.811 (two-tailed test). Thus, one can conclude that the correlation is not statistically

significant;

• Squaring the correlation coefficient values (R2
exp=0.2204 and R2

ctl=0.525) indicates

that the projections are not reliable (values are far from 1). Although they are not

reliable, both trendlines are asymmetric predict a decrease (m = −0.019) over time for

the control group and an increase (m = 0.0163) over time for the experimental group.

10.3. RESULTS AND DISCUSSION 197

y = 0,0163x + 0,8635

R² = 0,2204

75%

80%

85%

90%

95%

100%

P
e

rc
e

n
ta

g
e

 o
f

p
a

rt
ic

ip
a

ti
o

n

Experimental Control Linear (Experimental) Linear (Control)

y = -0,019x + 0,7651

R² = 0,525

60%

65%

70%

75%

1 2 3 4 5 6 7 8

P
e

rc
e

n
ta

g
e

 o
f

p
a

rt
ic

ip
a

ti
o

n

Lab sessions

Figure 10.7: Evolution of attendance.

10.3.4 Grades

The last group of hypothesis is related with grades. In order to verify these hypothesis was

used a grade-book of the two assessment moments after the experiment: at the end of the

programming module and at the end of semester. Figure 10.8 presents the average grades

on the two moments for both groups.

11,62
10,11

13,33

11,47

4

6

8

10

12

14

A
v

e
ra

g
e

 g
ra

d
e

s

0

2

Experimental Control Experimental Control

Programming Module End of Semester

Evaluation periods

Figure 10.8: Average grades from both groups of students.

Using a t-test (Table 10.6) to infer the statistical significance one can conclude that in the

Programming module assessment the means of both groups are statistical different since the

probability of a chance finding is lower than the significance level (p = 0.041 and p < 0.05).

This fact rejects the null hypothesis (the two sets are statistically equals) and indicates the

difference between both sets. Thus, the first conclusion to infer is that the experimental

group has better grades than the control group on the Programming module.

In the second assessment moment the probability of a chance finding is also lower than the

198 CHAPTER 10. THESIS VALIDATION

Table 10.6: Statistics on student participation.

Assertions
Experimental Control T-Test

n M SD n M SD T p

Programming module 21 11.62 2.75 19 10.10 1.66 2.130 0.041

End of Semester 21 13,33 2,35 19 11.47 2.61 2.357 0.024

significance level (p = 0.024 and p < 0.05). This fact rejects the null hypothesis and one can

conclude that the experimental group has better grades than the control group in the end

of semester as result of using Ensemble. Also a paired t-test was computed from the grades

of the experimental group. Dependent samples (or ”paired”) t-tests typically consist of a

sample of matched pairs of similar units. In this case the goal is to infer if the difference of

means in both periods of the experimental group are caused by the use of Ensemble. With

the paired t-test a probability value of 0.0011 was obtained proving the influence of treatment

in the difference of the means. Thus, proving the influence of Ensemble on the increasing

of the mean grades of the students in the experimental group. These figures validate with

success the hypothesis 4.1 and 4.2.

10.4 Summary

This chapter validates most of the hypothesis formulated at the beginning of this dissertation

with an Ensemble network for the computer programming domain. The assertions are

organized in four groups of hypothesis: exercises solving, feedback, attendance and grades.

Then, each group of hypothesis is validated using statistical methods. For the exercise

solving group all the hypothesis were validated with success proving that with Ensemble

the students start, complete and effectively solve more exercises. For the feedback group

the results confirmed that in a practical class students without using Ensemble receive more

feedback that effectively overcome their difficulties. All the other hypothesis had results that

were not statistical significant. Arguably, one can say that the automatic feedback provided

by Ensemble is at least as good as the human feedback. The attendance results prove that

students from the experimental group are more assiduous than the control group. However

no statistical conclusion can be drawn on the evolution of attendance in the practical classes.

The results for the grades group prove the influence of Ensemble on increasing of the mean

grades of the students in the experimental group.

With these figures one can conclude that the helpful feedback is the only hypothesis that

was not validated with success. This was more or less expected since it is very difficult to

replace a human TA. Improving automated feedback is a challenge to be tackled as part of

the future work.

Chapter 11

Conclusions

”A conclusion is the place where you got tired of thinking.”

Martin H. Fischer

Learning complex skills is hard. Introductory programming courses are generally regarded

as difficult and often have high failure and dropout rates [AM05, OG06, RRR03]. Many

educators claim that ”learning through practice” is by far the best way to learn computer

programming and to engage novice students [GP05, Eck09]. Practice in this area boils

down to solving programming exercises. Nevertheless, solving exercises is only effective if

students receive an assessment on their work. Assessing the work of students and providing

individualised feedback to all students is time-consuming for teachers and frequently involves

a time delay. The existent tools and specifications prove to be insufficient in complex

evaluation domains where there is a greater need to practice [RKK04].

This thesis proposes an e-learning framework - called Ensemble - that acts as a conceptual

tool in the definition and deployment of e-leaning networks using complex evaluation. The

framework relies on interoperability standards and specifications, thus several studies and

surveys were conducted to select the most relevant for the framework. Based on this

framework a network of systems and services was created and deployed for a specific domain

- the computer programming domain. Content issues are tacked with a standard format to

describe programming exercises as learning objects. Communication issues are addressed

with the development or adaptation of systems and services for managing the life-cycle of

exercises, namely their authoring, storage, conversion and assessment.

The framework instance was deployed for use in practical classes of undergraduate program-

ming courses. The experience gained using Petcha (the pivot component) in this context

and the experiments designed to assess the impact of this tool were also presented in this

199

200 CHAPTER 11. CONCLUSIONS

dissertation. These experiments showed an increase on exercises solving, attendance and

grades when Petcha replaced a human Teaching Assistant (TA). However, these results show

also that the automatic feedback provided by Petcha is less effective than that of a human

TA. There is clearly room for improving automatic feedback in Petcha, although it can be

argued that automated feedback is still a remedy for situations where a human TA is not

available.

11.1 Contributions

The main contribution of this work is a conceptual model - the Ensemble framework - for the

definition and deployment of e-learning networks using complex evaluation. The architectural

model of this framework relies on central components (called axial systems) replicated for

each teacher and student machines. One of these central components assumes a pivot role

orchestrating all the communications within a single deployment of an Ensemble instance.

Since it is distributed over each network user, this approach prevents any single-point-of-

failure issues that might occur. This pivot component communicates locally with other axial

systems and remotely with core and secondary services representing a distinctive feature

regarding other e-learning frameworks. Part of this main contribution is the specialization

of the framework for a specific domain - the computer programming domain. This framework

instance comprises several systems and services and their integration poses interoperability

issues at two levels: content and communication. The content interoperability relies on

the definition of an interoperability language for programming exercises called PExIL. The

communication among systems and services was supported by the extension of existing

specifications (e.g. IMS DRI, IMS LTI) and the creation of new ones (e.g. Evaluate service).

Other important contribution is the systematic study on the state of the art regarding

e-learning systems and standards. This comprehensive study focuses on several surveys

presented in the state of the art that were instrumental to chose the better e-learning systems

and standards for the Ensemble framework. This contribution may prove helpful to other

researchers studying the interoperability of e-learning systems.

The remaining contributions are related with the design and implementation of compo-

nents that comprises the Ensemble network for the computer programming domain. These

components are the crimsonHex repository (including a plug-in for accessing crimsonHex

based repositories from Moodle), the Petcha teaching assistant and the BabeLO exercises

converter. All these components are open source and can be downloaded from the following

URL: http://ensemble.dcc.fc.up.pt.

Most of the research presented in this dissertation was already published in international

journals and conferences with peer reviewing. A total of 35 articles was published:

11.2. OPPORTUNITIES FOR FUTURE WORK 201

• Five articles in international journals;

• Five chapters in international books;

• Eleven papers in international conference proceedings with main publisher1;

• Thirteen papers in national and international conference proceedings with peer review-

ing without a main publisher;

• One technical report.

Nevertheless, part of this research is still unpublished and a few remaining publications are

expected to be submitted by the end of 2012. In particular, the thesis validation results were

not yet published.

11.2 Opportunities for future work

The motivation for this research was drawn from the computer programming domain. How-

ever, it was always kept in mind that the proposed concepts and tools could be used in other

domains. The main opportunity for future research comes from extending this framework

to other domains and requirements. Nevertheless, the evaluation of Ensemble and the

validation of the thesis highlighted a number of issues that must be resolved in the computer

programming instance of Ensemble.

11.2.1 Framework validation

The main challenge resulting from this research is to apply the framework to other domains.

Although the research hypothesis were in general validated, the framework as such is not

yet validated since it was only applied to a single domain. One interesting domain is serious

games applied to management courses where students develop their skills using simulation.

Business simulation games improve the strategic thinking and decision making skills of

students in several areas (e.g. finances, logistics, and production). Through these simu-

lations students compete among them as they would in a real world companies. A business

simulation service fulfils a role similar to that of the assessment systems in programming

exercises and it also requires a repository containing specialized LO describing simulations.

Thus, this specific domain poses challenges not only in the development of the network TA

, but also in the refinement of the framework specifications and services (e.g. repository,

assessment system) to meet the new evaluation domains requirements.

1ACM, IEEE or Springer.

202 CHAPTER 11. CONCLUSIONS

11.2.2 Framework extension

The current version of the framework focuses mainly on exercise authoring, exchange and

evaluation. Other kinds of data and services should be added to improve the practice-based

environments supported by Ensemble, both in the computer programming domain and in

new domains.

Plagiarism checker - this component can be added to the framework to avoid plagiarism

and ensure good scholarly practices. This tool is transversal to several areas and is

therefore a good candidate to integrate the Ensemble framework;

Sequencing component - Sequencing of exercises is another topic that can be explored in

the future and it is closely related with pedagogical issues during the construction of a

learning scenario. Several standards appeared in recent years trying to cope this topic

but fail due its complexity for e-Learning systems to implement. One research path

is to deliver exercises to students dynamically according with their profiles, knowledge

evolution and course goals. An intended addition is a sequencing and adaptation tool

to guide the student through a collection of expository and evaluation resources. The

network pivot component will report the exercise assessment to this new tool that will

use it to propose the appropriate content or exercise to the student;

E-Portfolio - this is a special type of a repository where a collection of electronic evidence

is assembled and managed by a user. They are distinct from LMSs since they are

user-centric rather than course-centric. The integration of such tool in the Ensemble

framework can be achieved at content or communication level through data (e.g. LeapA

specification) or tools integration (e.g. IMS LTI specification);

Standards and specifications - support for other LO package specifications (e.g. SCORM

objects and for MathJax for displaying math expressions in the description of exercises.

11.2.3 Ensemble instance improvements

The computer programming instance of Ensemble is currently being used in the practical

classes of undergraduate programming courses at ESEIG and will continue to be used in the

next academic year. Several improvements are planned for immediate implementation based

on the suggestions of teachers and students after the experiment. These improvements focus

on Petcha - the visible system of the network, and include:

User interface - make the GUI more intuitive and flexible;

Evaluation reports - improve the visualization of the evaluation reports using new formats

(e.g. PDF);

11.2. OPPORTUNITIES FOR FUTURE WORK 203

Statistics - improve statistical data on student activity (e.g. time to solve, rankings);

Help - extend the documentation to guide users;

In general, the improvements presented previously are minor issues that should be easily

fixed for the next version of the Ensemble instance. There is also a collection of new features

that would improve automatic assessment but that will require a major redesign of the AS.

Feedback - improve the feedback mechanism based on, for instance, the use of static

analysis over the students’ code. Existing work in this area [NNH99] can be used

to improve the feedback given to students after submission.

New evaluation models - a programming problem definition must have an unambiguous

evaluation model. Typically a program from a student is assessed by the evaluator as

a single program. Another approach is the student code be included within a set of

programs from different learners for competitive evaluation. A third approach is where

several programs from different learners are evaluated simultaneously interacting with

a central component (an ”oracle”) also in a competitive fashion. For instance, in the

Tic Tac Toe game the student’s program plays the game against the oracle;

Other types of languages - the current evaluator can be configured for any programming

language with a command line interface and processing standard input/output. There

are computer languages that are not strictly programming but are regularly used in

computer science courses such as query languages (e.g. SQL), modelling languages

(e.g. UML) and user interfaces (e.g. HTML). In most cases these languages can be

evaluated statically by comparing the submitted source code with the solution.

204 CHAPTER 11. CONCLUSIONS

Appendix A

Nielsen’s heuristics

1. Visibility of system status - The system should always keep users informed about

what is going on, through appropriate feedback within reasonable time;

2. Match between system and the real world - The system should speak the users’

language, with words, phrases and concepts familiar to the user, rather than system-

oriented terms. Follow real-world conventions, making information appear in a natural

and logical order;

3. User control and freedom - Users often choose system functions by mistake and will

need a clearly marked ”emergency exit” to leave the unwanted state without having

to go through an extended dialogue. Support undo and redo;

4. Consistency and standards - Users should not have to wonder whether different

words, situations, or actions mean the same thing. Follow platform conventions;

5. Error prevention - Even better than good error messages is a careful design which

prevents a problem from occurring in the first place. Either eliminate error-prone

conditions or check for them and present users with a confirmation option before they

commit to the action;

6. Recognition rather than recall - Minimize the user’s memory load by making ob-

jects, actions, and options visible. The user should not have to remember information

from one part of the dialogue to another. Instructions for use of the system should be

visible or easily retrievable whenever appropriate;

7. Flexibility and efficiency of use - Accelerators – unseen by the novice user – may

often speed up the interaction for the expert user such that the system can cater to

both inexperienced and experienced users. Allow users to tailor frequent actions;

205

206 APPENDIX A. NIELSEN’S HEURISTICS

8. Aesthetic and minimalist design - Dialogues should not contain information which

is irrelevant or rarely needed. Every extra unit of information in a dialogue competes

with the relevant units of information and diminishes their relative visibility;

9. Help users recognize, diagnose, and recover from errors - Error messages

should be expressed in plain language (no codes), precisely indicate the problem, and

constructively suggest a solution;

10. Help and documentation - Even though it is better if the system can be used

without documentation, it may be necessary to provide help and documentation. Any

such information should be easy to search, focused on the user’s task, list concrete

steps to be carried out, and not be too large.

Appendix B

Session survey

207

222 APPENDIX B. SESSION SURVEY

Appendix C

Petcha’s user manual

Petcha is an automated Teaching Assistant (TA) with two main tasks: to assist teachers

in authoring exercises and to help students in solving them. The installation instructions

can be found in the following URL: http://ensemble.dcc.fc.up.pt/Petcha. This chapter

presents an user manual both for teachers and students.

C.1 Teacher’s user manual

Petcha allows teachers to create programming exercises and publish them in public reposi-

tories using standard package formats. This manual explains step by step this process.

C.1.1 Launching Petcha

Petcha (currently in its version 0.9) runs as a JAVA application. After installing, you can

start using Petcha by accessing this URL: http://your.machine/Petcha. This manual

shows how to create a programming exercise to calculate the transposition of a matrix. The

first task to perform is to create a project.

C.1.2 Creating a project

In order to create a new project go to the main menu by choosing Project → New. The

following fields are mandatory (Figure C.1):

• Project Name - name of the project to be automatically created in the IDE;

223

224 APPENDIX C. PETCHA’S USER MANUAL

Figure C.1: New project.

• Location - location of the project (the workspace for Eclipse IDE and the solution for

Visual Studio Express IDE);

• IDE - preferred code editor for coding and testing the program solution;

• Language - programming language used to solve the exercise.

After filling in all the fields one must press the Create button. A confirmation screen appears

(Figure C.2). In case of success a project is created in the teacher’s machine.

Figure C.2: Confirmation of the creation of the project.

C.1.3 Writing a program solution

After the creation of the project the teacher should open the generated project file of the

selected IDE (in this case the Visual Studio Express - VSE). With the IDE open the teacher

should click on the predefined class file (in CSE is the Program.cs) and start to code the

program solution as depicted in Figure C.3.

While codifying the program solution the teacher should be aware that writing to the

standard output should only occur at the end of the code at the time of presenting the

results and should not include supplementary text.

Figure C.4 shows the code that calculates the transposition of a matrix.

C.1. TEACHER’S USER MANUAL 225

Figure C.3: Coding the program solution in VSE.

After coding the program the teacher should return to Petcha to continue the description of

the exercise. Petcha is organized in four areas (Figure C.5):

1. Description - data related to the exercise and that will appear in its statement;

2. Tests - test cases to be used by the Assessment System (AS) to evaluate the student

attempts;

3. Feedback - definition of the feedback levels to be include in the evaluation report

delivered to the student after submission;

4. Publication - packaging and deploying of the programming exercise in a repository.

C.1.4 Defining the exercise statement

In the Description tab (Figure C.6), the teacher must include all the information necessary

to describe the exercise. This information will be used by Petcha to generate automatically

the exercise statement in several formats (e.g. PDF, HTML) to be showed to the student.

The mandatory fields are:

• Title - title of the exercise to be included at the top of the statement;

226 APPENDIX C. PETCHA’S USER MANUAL

Figure C.4: Matrix transposition code.

Figure C.5: User interface areas of Petcha.

• Authors - creators of the exercise. In the case of multiple authors their names should

be separated by commas;

• Date - date of creation of the exercise;

• Institution - where the exercises will be used;

• Event - in what context the exercises will be used;

• Context - brief overview of some important concepts for the resolution of the exercise;

• Challenge - description of the problem to be solved;

• Keywords - terms that summarize the exercise. For multiple terms use spaces as

delimitation.

C.1. TEACHER’S USER MANUAL 227

Figure C.6: The Description tab.

The fields Context and Challenge allows the inclusion of certain HTML tags such as the

< html : br > and < html : img >. The first makes a line break. The second allows the

teacher to include a picture. By clicking in the respective buttons the respective HTML

code is generated. For the image selection a pop-up window appears. The image formats

supported are PNG, GIF or JPG.

At any time of the creation of the exercise the teacher can view the statement by clicking

in the Preview button. Figure C.7 shows the PDF generated based on data filled until that

moment.

Figure C.7: Exercise statement.

228 APPENDIX C. PETCHA’S USER MANUAL

C.1.5 Defining and generating the test cases

The Tests tab comprises two groups: Program Solution and Test Cases. The former shows

information on the program solution (Figure C.8), namely:

• Path - location of the program solution (according to location and project name);

• Language - programming language used to code the program solution;

• Version - version of the language;

• Compiler - associated language compiler (csc for C#, javac for JAVA, etc.);

• Executor - command used to run the compiled file (for C# does not exist because the

program is executed by invoking its own name);

• Source file - the name of the file containing the program solution (prior to compilation);

• Executable file - the name of the file containing the program solution (after compila-

tion).

Figure C.8: Data about the program solution.

All previous data is automatically generated in the group Program Solution. Thus, the

teacher should only confirm that everything is correct.

The Test Cases group is used to define test cases. A test case consists of a maximum of three

files with the input data of the program, the correspondent output data and the feedback

message that appears if the student fails the test. The test cases will be used by the AS to

evaluate the attempt of the students. The evaluation process is straightforward:

1. The teacher provides the solution of the program and several valid test cases;

2. The student solves the exercise and submit its solution to the AS;

3. The AS uses the student’s program and the test cases supplied by the teacher. For

each test case the AS runs the input data in the solution of the student, and verifies

if the data returned (output) are equal to those supplied by the teacher. If all tests

run successfully the attempt of the student is considered correct. If any test fails the

attempt of the student is found to be incorrect;

C.1. TEACHER’S USER MANUAL 229

4. the AS sends an assessment report to the student notifying them of the success/failure

of its attempt.

The test cases can be created manually by the teacher or generated automatically by Petcha.

The management of the test cases is made in the Test Cases group as depicted in Figure C.9.

Figure C.9: Test cases management.

There are six buttons:

• Input - defines an input specification;

• Output - defines an output specification;

• Generate - generates automatically a set of test cases according to the definitions of

input/output;

• Add - adds a test case manually;

• Change - changes an existing test case;

• Remove - removes an existing test case.

For Petcha to be able to automatically generate a test case is necessary to describe what

is the input/output (for instance, how many input/output parameters and what type of

parameters the program read/write). This description can be configured by clicking in the

Input/Output buttons included in Figure C.9.

In the new window the teacher should define a brief (but strict) description on the input/out-

put that the program must receive/return. This text will appear in the exercise statement.

The teacher should also define a set of elements that describe the structure and content of

the input/output data. The main elements are:

• Line - defines a row in the input/output file;

230 APPENDIX C. PETCHA’S USER MANUAL

Figure C.10: Description of the input data.

• Data - defines a variable included in a row. There may be several variables. A variable

can be characterized by several attributes (identified below);

• Repeat - defines a repetition of rows or variables. This repetition is controlled by the

attribute Cont (counter);

• When - defines a feedback message resulting from the evaluation of a particular con-

dition.

The Data element is the central element of the test cases specification. The following

attributes can be associated to this element:

• Id - defines a name for the variable. in some cases, to access the variable (e.g. count)

the teacher should precede its reference with a $;

• Type - define the data type of the variable (e.g. integer, float, string, enum). In the

case of choice of enum should add/remove values of the enumeration using the +/-

buttons;

• Value - represents the value of the variable to be included in the input/output file. If

filled in it acts as a constant. Otherwise the value is automatically generated based on

a set of constraints (e.g. attribute types, min/max, spec);

• Min/Max - represents the value limits. The semantic of this attribute depends solely

on the data type. If the data type is integer or float then these attributes represent the

range of valid values for the variable. If the data type is a string then these attributes

C.1. TEACHER’S USER MANUAL 231

represent the range of number of characters that the string can contain. If the data

type is enum then these attributes represent the number of values that can be selected

from the list;

• Spec - defines a regular expression for generation/matching a string.

In order to define the structure and content of the input files for this exercise it is necessary

to define two elements Line including elements Data to accommodate the number of rows and

columns of the matrix. Then one must use two elements Repeat (one inside the other) whose

counters should reflect the number of rows/columns and include an element representing the

Data variable will assume different values along the fill of the matrix.

To add an element (Figure C.11) one should select the item in the list box and then press

the Add button. Note that to add an element within another one must first select the parent

element. It is possible always to change a particular element selecting the element on the

table of elements and then change the specific attribute and finish by clicking in the Save

button. The Remove button removes a selected element. Note that this action also removes

all the descendants of the element to remove. In order to add top elements one should always

remove the focus of the element selected in the table of elements by clicking in the Deselect

button.

Figure C.11: Definition of a test case (input part).

The Record button saves the definition. Below is an excerpt that shows how the specification

is serialized in the file system:

You should now repeat this process for the output by pressing the Output button. In this

case the definition of the output (Figure C.12) should only represent the matrix elements

232 APPENDIX C. PETCHA’S USER MANUAL

Listing C.1: Specification format.

1 <LINE visivel=’true’ >

2 <DATA id=’nLinhas’ min=’1’ max=’10’

3 type=’integer’ visible=’true’ />

4 </LINE>

5 <LINE visivel=’true’ >

6 <DATA id=’nColunas’ min=’1’ max=’10’

7 type=’integer’ visible=’true’ />

8 </LINE>

9 <REPEAT count=’\$nLinhas’ >

10 <LINE visible=’true’ >

11 <REPEAT count=’\$nColunas’ >

12 <DATA id=’num’ max=’1’ min=’128’

13 type=’integer’ visible=’true’ />

14 </REPEAT>

15 </LINE>

16 </REPEAT>

and not capture the number of rows/columns.

Figure C.12: Definition of a test case (input part).

After defining the structure and content of files input/output the teacher can press the

Generate button to automatically generate a set of test cases complying with the specification

defined above. The table with the test cases (Figure C.13) comprises several columns:

• # - Number of the test case;

• Input - the first line of the input file;

• Output - the first line of the output file;

• Feedback - feedback message associated with the test case (defined by the element

When);

• Public - visibility of the test. The default is not public. A test case can be used as

public and included in the feedback in the evaluation report delivered to the student;

C.1. TEACHER’S USER MANUAL 233

Figure C.13: Automatic generation of test cases.

• Valid - validity of the test. A test case generated from the specification is valid

according to this specification. This column is extremely useful in situations in which

test cases are created manually and it is necessary to verify whether complies with the

specification.

It is possible to re-generate new test cases pressing the Generate button or add them

manually by pressing the Add button. At any time the teacher can also change the existing

test cases pressing the Change button or remove them by pressing the Remove button. For

instance, selecting the test case 2 and then clicking Change the following window appears

(Figure C.14).

Figure C.14: Test case update.

234 APPENDIX C. PETCHA’S USER MANUAL

The teacher can now change the test or simply add feedback or make the public test. There

are two major advantages of defining a specification for testing: 1) automatically generate

test cases from the specification and 2) validate test cases. Suppose that the teacher manually

creates a test case and instead of putting an integer put a letter. In this case, Petcha notifies

the teacher with an error message as shown in Figure C.15.

Figure C.15: Invalid test case.

Figure C.16 shows the first test case with feedback and public.

Figure C.16: Public test case with feedback.

C.1.6 Defining the feedback types

The feedback is an essential part of the automatic evaluation of exercises. Based on the

feedback the student is aware if his resolution attempt was successful or not. In Petcha the

teacher can set the level of feedback to show to the student. There are five levels of feedback:

1. Worst classification of tests - it presents the student how many tests failed (example:

two tests with Wrong Answer);

2. All tests marks - it presents the student the status of all tests that were applied to the

solution of the student (example: a test accepted and three tests with Wrong Answer);

C.1. TEACHER’S USER MANUAL 235

3. Tip of the Teacher - it presents a teacher’s clue to the student related to a test that

produced a wrong answer (example: The factorial of 0 is 1. The empty product, ie the

product of any number is always 1);

4. Wrong tests (Data Input) - it presents to the students the input data of a test which

produced an incorrect answer (example: input produces 78,117 Wrong Answer);

5. Wrong tests (Data Input / Output) - it presents to the student the input and output

data of a test which produced an incorrect answer (example: the input should return

63 110 173).

The teacher can choose (Figure C.17) which levels to show to the students and in which

order.

Figure C.17: Feedback levels definition.

To accomplish this task one must select them in the Existing Feedback Levels of list box.

The > button copies the feedback levels to the listbox Feedback levels selected. The ând v

buttons manage the order of the levels. The >> button allows a complete copy of the levels

of feedback and the << button made the opposite.

The teacher can also set whether the feedback is incrementally adding an offset value in

the Incremental text box. The example shows four levels of feedback with an increase of 1.

This means that if the student fails the first time a message will appear associated with the

feedback level ”All classifications of tests.” If the student miss again a message will appear

associated with the feedback level ”Tip of the Professor” (this feedback level is associated

with a given test case and will only appear to the student if the test case in question has

236 APPENDIX C. PETCHA’S USER MANUAL

produced a wrong answer) and so until reach the maximum number of levels. After that the

last message persists as the feedback for the student.

The teacher can also set what messages are stored in history and are shown in all the

evaluation reports. This option is set by activating the Accumulate Text Feedback check

box.

C.1.7 Packaging and deploying the exercise

As the exercise will be used in a teaching environment and manipulated by several systems

including the LMS makes sense to use a standard description of learning objects. Currently,

Petcha supports the IMS CC specification which can be defined as a standard packaging of

learning objects. A IMS CC package is a ZIP file comprising a manifest file with metadata

about the exercise and references to all resources used by exercise (statement, test cases,

feedback, program solution and so on).

Figure C.18: Exercise packaging.

The Packaging group (Figure C.18) includes three fields: the export standard to use, the

path for the package and its name. After that by pressing the Packaging button the table

on the right is populated with all the generated files. It is possible to get information about

the number of files in the package and the overall size (in bytes). The Validate button starts

the validation process that verifies if the package is conform with the IMS CC specification.

This action invokes an on-line validation service sponsored by IMS.

After packaging is time to publish the package in a public repository. By default, the

repository crimsonHex appears. All the options that appear by default can be configured

through the main menu option Options → Settings.

The exercise is published in the crimsonHex repository. The collection will be myCol-

lection/aula4. To do this one must define the group Published URL field of service for

C.2. STUDENT MANUAL (DISTRIBUTED TO THE STUDENTS - PT) 237

http://mooshak.dcc.fc.up.pt:8080/crimsonHex/lomyCollection/aula4.

Figure C.19: Exercise deploy in crimsonHex repository.

The Publish button (Figure C.19) allows the submission of the package in the configured

repository. Figure C.20 depicts an image of the crimsonHex repository with the new LO.

Figure C.20: crimsonHex repository.

C.2 Student manual (distributed to the students - PT)

Este tutorial explica passo a passo como é que o Petcha pode ser usado para auxiliar um

Aluno na resolução de exerćıcios de programação.

C.2.1 Execução do Petcha

O Aluno para aceder aos exerćıcios deve abrir um LMS (ex: Moodle) e executar um link

fornecido pelo Professor. O Petcha (atualmente na sua versão 0.9) usa o protocolo JNLP

(Java Network Launching Protocol) que permite a execução de aplicações JAVA no lado do

238 APPENDIX C. PETCHA’S USER MANUAL

cliente. Dependendo do browser usado deve executar o ficheiro JNLP após descarregamento.

A Figura C.21 mostra o ecrã de arranque do Petcha (modo Aluno).

Figure C.21: Ecrã inicial do Petcha (modo aluno).

O link fornecido no LMS pelo Professor aponta para uma atividade. Uma atividade (ou

aula) é composta por um conjunto de exerćıcios que o Professor espera que o Aluno resolva.

Para além de uma lista de exerćıcios o ecrã inicial inclui a seguinte informação:

• Nome do Curso/Disciplina: nome do Curso/Disciplina onde foi colocado o link pelo

Professor;

• T́ıtulo da Atividade: nome da atividade (conjunto de exerćıcios);

• Descrição da Atividade: informação adicional sobre a atividade. Pode conter quais

as temáticas inclúıdas nos exerćıcios e objetivos que o Professor espera que os Alunos

atinjam ao resolver os exerćıcios;

• Nome do Aluno: nome do aluno que clicou no link.

C.2.2 Criação de um projeto

Para começar a resolver os exerćıcios o Aluno deverá seleccionar um exerćıcio (Figura C.22).

C.2. STUDENT MANUAL (DISTRIBUTED TO THE STUDENTS - PT) 239

Figure C.22: Criação de projeto.

O grupo Exerćıcios contém uma tabela com os exerćıcios propostos pelo Professor. Um

exerćıcio é inclui a seguinte informação:

• T́ıtulo: t́ıtulo do exerćıcio (dado pelo Professor na altura da criação do exerćıcio);

• Projeto: nome do projeto associado ao exerćıcio. Se o Aluno ainda não tiver criado

um projeto para o exerćıcio este campo aparece em branco;

• Data: data de criação do exerćıcio pelo Professor;

• Resolvido: estado do exerćıcio (SIM - já foi resolvido pelo Aluno e NÃO - caso

contrário).

O Grupo inclui também uma referência à sequenciação de exerćıcios. Esta sequênciação é

definida pelo Professor na altura da definição da atividade e indica se os exerćıcios devem ser

resolvidos sequencialmente (ordem evidenciada na tabela). Após a selecção de um exerćıcio

o Grupo Projecto é activado com as informações necessárias à criação de um Projecto:

• IDE: nome do ambiente de desenvolvimento desejado para resolver o exerćıcio;

• Linguagem: nome da linguagem de programação desejada para resolver o exerćıcio;

• Localização: localização onde o projecto vai ser criado (por omissão o local é o home

do utilizador que fez login na máquina);

• Projeto: nome do projeto associado ao exerćıcio.

Renomeie o projecto para PrjFatorial e pressione o botão Criar. Se o projeto já existir o

mesmo botão surge com o texto Abrir.

240 APPENDIX C. PETCHA’S USER MANUAL

C.2.3 Resolvendo um exerćıcio

Após a ação anterior é aberta a janela de Gestão de Resolução de Exerćıcios (Figura C.23)

que vai acompanhar o Aluno durante a resolução dos exerćıcios.

Figure C.23: Gestão da resolução de exerćıcios.

Para começar o Aluno deverá ler o enunciado pressionando o botão Visualizar.

Figure C.24: Enunciado do exerćıcio.

Após a leitura do enunciado (Figura C.24) o Aluno deve aceder ao projeto no sistema de

ficheiros. Após duplo-clique sobre o ficheiro PrjFatorial o Aluno pode começar a resolver o

exerćıcio (Figura C.25).

C.2. STUDENT MANUAL (DISTRIBUTED TO THE STUDENTS - PT) 241

Figure C.25: Codificação da solução por parte do Aluno.

C.2.4 Testando

Após a codificação da solução o Aluno poderá usar o Petcha para testar a sua solução. O

grupo Casos de Teste permite ao Aluno executar dois tipos de testes: testes públicos criados

pelo Professor (aparecem automaticamente na tabela) e testes adicionados pelo próprio

Aluno (clicando no botão Adicionar).

Figure C.26: Gestão de testes.

A tabela da Figura C.26 inclui os seguintes campos:

242 APPENDIX C. PETCHA’S USER MANUAL

• # Teste - número do teste;

• Input - dados de input (testes do Professor apenas se pode ver parte dos dados);

• Output - dados de output (testes do Professor apenas se pode ver parte dos dados);

• Obtido - output obtido pelo Aluno usando a sua solução e os dados de input do teste;

• Criador - nome de quem criou o teste.

Para definir um novo teste o Aluno deve clicar no botão Adicionar.

Figure C.27: Novo teste.

A definição de um novo teste (Figura C.27) passa por definir os dados de input e output do

teste. Adicione os seguintes testes:

1. Input = 4 e Output= 24

2. Input = 5 e Output= 120

3. Input = x e Output= 2

Após definição de todos os testes o Aluno deve pressionar o botão Executar para executar

os testes localmente.

Os testes podem ter 3 estados (realçados com cores distintas):

• Teste inválido/não executado - os dados de input/output não obedecem à especificação

de testes criados pelo Professor. Neste caso o Aluno deverá verificar o texto no campo

Validação para mais informação sobre como corrigir o problema. Estes testes não são

executados;

C.2. STUDENT MANUAL (DISTRIBUTED TO THE STUDENTS - PT) 243

Figure C.28: Execução local de testes.

• Teste válido/resposta errada - os dados de input/output são válidos, mas o output

esperado é diferente do output obtido. Isso significa que o Aluno deve recodificar a sua

solução de forma a resolver este problema;

• Teste válido/resposta certa - os dados de input/output são válidos e o output esperado

é igual ao output obtido. Isso significa que a solução do Aluno passou neste teste com

sucesso.

A Figura C.28 mostra que o primeiro teste é válido mas é esperado o output de 1 e o output

da execução da solução do aluno dá 0 o que evidencia que o código do Aluno tem um erro

de lógica. Os dois testes seguintes que foram criados pelo Aluno são válidos e os outputs

coincidem. No último teste criado pelo Aluno a sua validação falhou pelo que o Aluno deverá

ler o campo validação e verificar a origem do problema (ex: esperado um inteiro).

C.2.5 Submetendo uma solução

A qualquer altura o Aluno poderá submeter a sua resolução ao Avaliador e verificar se o

feedback enviado pelo Avaliador é esclarecedor. Para enviar a sua tentativa de resolução do

exerćıcio o aluno deve pressionar o botão Submeter.

Figure C.29: Feedback automático providenciado pelo Avaliador.

O Grupo Submissão indica o estado da solução do Aluno após submissão (RESOLVIDO

ou NÃO RESOLVIDO) e o número de submissões feitas. O Grupo Feedback apresenta a

mensagem de feedback providenciada pela Avaliador. No exemplo da Figura C.29, a primeira

mensagem de feedback apresentada é a dica fornecida pelo Professor na altura de criação dos

244 APPENDIX C. PETCHA’S USER MANUAL

testes. O tipo de feedback está associado à sequenciação definida pelo Professor na altura

da definição do feedback incremental. Após nova submissão é apresentada a mensagem de

feedback associada ao ńıvel de feedback atual (Figura C.30).

Figure C.30: Feedback automático providenciado pelo Avaliador.

E assim sucessivamente até que o Aluno consiga resolver com sucesso o exerćıcio (Fig-

uras C.31 e C.32).

Figure C.31: Solução correta.

ATENÇÃO: Mesmo tendo todos os testes correctos isso não significa que a resposta esteja

correta. Os testes usados no Petcha são apenas aqueles que foram definidos pelo Professor

como sendo públicos mais os testes acrescentados pelo Aluno. No entanto, existem outros

testes que foram definidos na altura da criação do exerćıcio que não foram usados. Para usar

C.2. STUDENT MANUAL (DISTRIBUTED TO THE STUDENTS - PT) 245

Figure C.32: Feedback automático providenciado pelo Avaliador.

esses testes o Aluno terá que submeter a sua resolução para um Avaliador público. Esse

Avaliador usa todos os testes e, após avaliação, envia um relatório de avaliação para o Aluno

contendo feedback. A qualquer altura o Aluno pode ver as estat́ıticas associadas ao exerćıcio

no Grupo Estat́ısticas (Figura C.33).

Figure C.33: Estat́ısticas do exerćıcio.

Os dados estat́ısticos são: total de submissões - no de submissões total feitas pelos alunos;

Alunos que tentaram resolver - no de alunos que tentaram resolver o exerćıcio; Alunos que

resolveram - no de alunos que efetivamente resolveram o exerćıcio. Após resolução o Aluno

deve pressionar o botão Voltar e resolver os restantes exerćıcios (Figura C.34).

Figure C.34: Resolução dos restantes exerćıcios.

246 APPENDIX C. PETCHA’S USER MANUAL

Appendix D

crimsonHex Core Functions

This section describes the request and response messages of each crimsonHex core function

(Table D.1) adopting the REST interface syntax.

Table D.1: Core functions of the repository.

Function SOAP REST

Register URL getNextId() GET /?nextId > URL

Submit submit(URL loid, LO lo) PUT URL < LO

Request LO request(URL loid) GET URL > LO

RequestAsset LO requestAsset(URL loid, String asset) GET URL/asset > ASSET

Search XML search(XQuery query) POST / < XQUERY > XML

Report Report(URL loid,LOReport rep) PUT URL < LOREPORT

Alert RSS getUpdates([Integer minutes]) GET /?alert+minutes > RSS

Create XML Create(URL collection) PUT URL

Remove XML Remove(URL collection) DELETE URL

Status XML getStatus() GET /?status > XML

D.1 Register function

The Register function (Listing D.1) enables client systems to reserve a unique ID.

Listing D.1: The Reserve function.

1 GET http://repository/lo?nextId

2 // The response is included in the Location HTTP header.

3 Location: http://repository/lo/123

247

248 APPENDIX D. CRIMSONHEX CORE FUNCTIONS

D.2 Submit function

The Submit function uploads an LO to a repository and makes it available for future access.

Listing D.2 includes an example.

Listing D.2: The Submit function.

1 // The HTTP post of a LO compliant with the IMS CC specification.

2 POST http://repository/lo/123

3 ...

4 [BINARY DATA]

D.3 Request and RequestAsset functions

The Request and RequestAsset functions get a LO or part of it from the repository. A

request/response example of the latter is presented in Listing D.3.

Listing D.3: The RequestAsset function.

1 // The HTTP request for an existing asset.

2 GET http://repository/123/SOLUTION

3

4 // The server response returns the asset (if multiple files

5 the server must package them before sent to the client).

6 HTTP/1.x 200 OK

7 Content−Type: application/zip

8 Transfer−Encoding: chunked

D.4 Search function

The Search function enables client systems to query the repository based on the XQuery

specification.

Listing D.4: The Search function.

1 declare namespace imsmd=”http://www.imsglobal.org/xsd/imsmd v1p2”;

2 for $p in //imsmd:lom

3 where contains

4 ($p/imsmd:educational/imsmd:difficulty/imsmd:value/imsmd:langstring,”easy”)

5 return \$p/imsmd:general/imsmd:title/imsmd:langstring/text()

D.4. SEARCH FUNCTION 249

Listing D.4 shows an excerpt of a XQuery file for the selection of all programming exercise

titles with an easy difficulty level. Listing D.5 shows the respective POST request.

Listing D.5: The Search function - POST request.

1 // The HTTP POST of a XQuery file.

2 POST http://repository/lo

3 ...

4 [XQUERY FILE]

Alternatively, it is possible to use a GET request with the searched fields and respective

values as part of the URL query string. Listing D.6 shows an example of a simple search

for the selection of all exercises whose author is Manzoor.

Listing D.6: The Search function - GET request.

1 // The HTTP GET request for the Search function.

2 http://repository/lo?author=Manzoor

In both approaches the result is a valid XML document as shwon in Listing D.7.

Listing D.7: The Search function - HTTP response.

1 // The HTTP response for the Search function.

2 <result base−url=”http://repository/lo/”>

3 <request source=”http://repository/lo/”

4 message=”Querying repository” />

5 <response message=”3 LOs found...”>

6 <resources>

7 <resource idCol=”” idLo=”5”>

8 Hashmat the Brave Warrior

9 </resource>

10 <resource idCol=”” idLo=”123”>

11 Summation of Four Primes

12 </resource>

13 <resource idCol=”graphs/” idLo=”2”>

14 InCircle

15 </resource>

16 </resources>

17 </response>

18 </result>

250 APPENDIX D. CRIMSONHEX CORE FUNCTIONS

D.5 Report function

The Report function associates a usage report to an existing LO. Listing D.8 shows a report

of the use of a specific LO. Listing D.9 shows the respective POST request.

Listing D.8: The Report function - XML report.

1 // Report file

2 <?xml version=”1.0” ?>

3 <report loid=”http://repository/lo/123”>

4 <item item−type=”attempt”

5 item−name = ”data” item−value = ”11−01−2008 15:21:23”/>

6 <item item−type=”attempt”

7 item−name = ”time” item−value = ”3332”/>

8 <item item−type=”attempt”

9 item−name = ”attempts” item−value = ”2”/>

10 <item item−type=”attempt”

11 item−name = ”success” item−value = ”false”/>

12 <item item−type=”learner”

13 item−name = ”gender” item−value = ”female”/>

14 <item item−type=”learner”

15 item−name = ”age” item−value = ”14”/>

16 <item item−type=”learner”

17 item−name = ”country” item−value = ”pt−PT”/>

18 </report>

Listing D.9: The Report function - POST request.

1 // The HTTP POST of a report file.

2 POST http://repository/lo

3 ...

4 [REPORT FILE]

D.6 Alert function

The Alert function notifies users of changes in the state of the repository using an RSS feed.

A request/response example of this function is presented in Listing D.10.

Listing D.10: The Alert function.

1 GET http://repository/lo?alert+minutes

2 // The response message is a RSS compliant file with the repository updates.

D.7. CREATE FUNCTION 251

D.7 Create function

The Create function adds new collections to the repository. Listing D.11 includes both

request and response messages.

Listing D.11: The Create function.

1 // The HTTP request for the creation of a collection.

2 PUT http://repository/newCollection

3

4 // The response message.

5 <result base−url=”http://repository/” ...>

6 <request

7 source=”http://repository/newCollection”

8 message=”Creating new collection” />

9 <response message=”Collection created”>

10 <resource idCol=”newCollection” idLo=””/>

11 </response>

12 </result>

D.8 Remove function

The Remove function removes an existent collection or learning object. Listing D.12 shows

an example.

Listing D.12: The Remove function.

1 // The HTTP request for the remotion of a LO.

2 DELETE http://repository/123

3

4 // The response message.

5 <result base−url=”http://repository/” ...>

6 <request

7 source=”http://repository/123”

8 message=”Deleting a LO” />

9 <response message=”LO deleted”>

10 <resource idCol=”” idLo=”123”/>

11 </response>

12 </result>

252 APPENDIX D. CRIMSONHEX CORE FUNCTIONS

D.9 Status function

The Status function returns a general status of the repository, including versions of the

components, their capabilities and statistics.

Index

.LRN, 20

abstract frameworks, 49

AJAX, 141

AMS, 22, 24

Apache FOP, 166

API integration, 78

APML, 64

ARIADNE, 29

AS, 31

Atom, 84

AutoGrader, 37

axial systems, 90, 91

BabeLO, 130, 147

Bepress, 30

BerkleeShares, 30

Blackboard, 20, 21

BOSS2, 37

CATS, 73

CMS, 17

Component based systems, 12

concrete frameworks, 52

Connexions, 30

CONTENTdm, 28

core services, 92

CourseMaker, 37

CQL, 84

crimsonHex, 129, 133

CTPraticals, 37

data integration, 78

data pull, 84

data push, 83

DCMI, 59

Desire2Learn, 20

digital libraries, 27

DigiTool, 28

Dokeos, 20

DOMJudge, 33

DSpace, 28

Dublin Core, 58

E-Framework, 54, 96

e-learning frameworks, 48

e-learning services, 13

e-portfolio, 78

Eclipse, 130

EduComponents, 37

EPrints, 28

Equella, 28

eXist, 136

experiment, 175

Fedora, 28

Flori, 29

FPS, 73, 152

GAME, 37

GEM, 30

Greenstone, 28

GWT, 141

HarvestRoad Hive, 29

Hot Potatoes, 23

HR-XML, 64

HUSTOJ, 37

IEEE LOM, 58, 170

253

254 INDEX

IEEE LTSA, 50

ILOX, 70, 84

IMS Abstract Framework, 51

IMS CC, 67, 93, 116, 118, 168

IMS CP, 65

IMS DRI, 84, 94, 98, 116

IMS LD, 66

IMS LIS, 100, 122

IMS LODE, 70, 84

IMS LTI, 95, 99, 120, 162

IMS QTI, 3, 69, 71, 96, 104

IMS SS, 66

IntraLibrary, 29

ISO MLR, 63

JAX-RS, 151

JAXB, 164

Jersey, 151

JNLP, 162

JUnit, 142

LAO, 68, 94, 168

LCMS, 17

LeMill, 30

LMS, 17, 77

LO, 57, 93, 104, 133

LO.NET, 30

LOR, 27, 29

LRE (European Schoolnet), 30

Mahara, 78

Maricopa, 30

MathJax, 202

Merlot, 24, 30

METS, 64

MIX, 64

MLE, 17

Mobile learning, 19

MODS, 64

Moe, 37

Moodle, 20, 21, 72, 78, 129, 143

Mooshak, 32, 37, 74, 129, 152

Nielsen’s model, 175, 180

OAI-PMH, 84

OAuth, 100

OKI, 51, 83

OUSS, 53

Peach, 74

PENS, 83

Petcha, 130, 157, 175

PExIL, 135, 149

PLQL, 85

PREMIS, 64

quasi-experiment, 177

referatories, 26

Reload, 23

REST, 95, 117, 151

RPC, 95, 117

RSS, 119

SaaS, 19, 80

Sakai, 20

Saxon, 166

Schematron, 136, 138

SCORM, 67, 70

Scriptorium, 30

secondary services, 92

SIF, 53

SOA, 14, 19

SOAP, 95

SPI, 83

SPOJ, 33

SQI, 84

SRU/SRW, 84

Submit, 37

survey, 179

SWORD, 83

SWT, 163

INDEX 255

TA, 91, 157

Talent Management, 19

tool integration, 79

UVA Online Judge, 33

Verkkoke, 37

Visual Studio, 129

VLE, 17

Web 2.0, 19

Web-CAT, 37

Wisc-Online, 30

XAMPP, 178

XML Schema, 125, 136

XPath, 137, 167

XQuery, 118, 136

XSL-FO, 166

XSLT, 136, 137, 166

Z39.50, 84

Zentity, 28

256 INDEX

References

[ADjH+06] Lora Aroyo, Peter Dolog, Geert jan Houben, Milos Kravcik, Ambjörn Naeve,

Mikael Nilsson, and Fridolin Wild. Interoperability in personalized adaptive

learning. Journal of Educational Technology & Society, 9(2):4–18, 2006. http:

//www.ifets.info/journals/9_2/2.pdf.

[AK03] Theodore K. Apostolopoulos and Anna S. Kefala. An e-learning service

management architecture. In ICALT, pages 140–144, 2003.

[AKD06] Hend S. Al-Khalifa and Hugh C. Davis. The evolution of metadata from

standards to semantics in e-learning applications. In Hypertext, pages 69–72,

2006. http://doi.acm.org/10.1145/1149941.1149956.

[AM05] K. Ala-Mutka. A survey of automated assessment approaches for

programming assignments. Journal of Computer Science Education,

15(2):83–102, 2005. http://www.tandfonline.com/doi/pdf/10.1080/

08993400500150747.

[AS10] C. Al-Smadi, M.; Gutl. Soa-based architecture for a generic and flexible e-

assessment system. In EDUCON, 2010.

[ASQ+06] Sandra Aguirre, Joaqúın Salvachúa, Juan Quemada, Antonio Fumero, and

Antonio Tapiador. Joint degrees in e-learning systems: A web services

approach. In Proceedings of the 2nd IEEE International Conference on

Collaborative Computing: Networking, Applications and Worksharing (Col-

laborateCom 2006), November 2006.

[BBF+11] Steve Benford, Edmund Burke, Eric Foxley, Neil Gutteridge, and Abdullah

Zin. Early experiences of computer-aided assessment and administration when

teaching computer programming. Research in Learning Technology, 1(2),

2011.

[BC10] Phil Barker and Lorna M. Campbell. Metadata for learning

materials: an overview of existing standards and current developments.

257

258 REFERENCES

Technology, Instruction, Cognition and Learning, 7(3-4):225–243, 2010.

http://www.icbl.hw.ac.uk/publicationFiles/2010/TICLMetadata/

TICLpaper.MetadataForEducation_postref.pdf.

[Ber09] Howard C. O’Leonard K. & Mallon D. Bersin, J. Learning management

systems 2009: Executive summary. Bersin & Associates, 2009.

[BG07] Walter R. Borg and Meredith Damien Gall. Educational research; an

introduction, by Walter R. Borg and Meredith D. Gall. McKay New York,,

8th ed. edition, 2007.

[BGNM04] Michael Blumenstein, Steven Green, Ann Nguyen, and Vallipuram Muthukku-

marasamy. An experimental analysis of game: a generic automated marking

environment. SIGCSE Bull., 36:67–71, June 2004.

[Bri98] Liber O. Britain, S. A Framework for Pedagogical Evaluation of Virtual

Learning Environments. Technical report, 1998. http://www.leeds.ac.uk/

educol/documents/00001237.htm.

[Bur10] Juan C. Burguillo. Using game theory and competition-based learning to

stimulate student motivation and performance. Comput. Educ., 55(2):566–

575, September 2010.

[CCF+07] Giovanni Casella, Gennaro Costagliola, Filomena Ferrucci, Giuseppe Polese,

and Giuseppe Scanniello. A scorm thin client architecture for e-learning

systems based on web services. IJDET, 5(1):19–36, 2007.

[CCMN04] Girish B. Chafle, Sunil Chandra, Vijay Mann, and Mangala Gowri Nanda.

Decentralized orchestration of composite web services. In Proceedings of the

13th international World Wide Web conference on Alternate track papers &

posters, WWW Alt. ’04, pages 134–143, New York, NY, USA, 2004. ACM.

[CDK+02] F. Curbera, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi, and S. Weerawarana.

Unraveling the Web services web: an introduction to SOAP, WSDL, and

UDDI. Internet Computing, IEEE, 6(2):86–93, March 2002. http://dx.

doi.org/10.1109/4236.991449.

[CF07] Jason Cole and Helen Foster. Using Moodle: Teaching with the Popular Open

Source Course Management System. O’Reilly Media, 2 edition, November

2007.

[CKLO03] Brenda Cheang, Andy Kurnia, Andrew Lim, and Wee-Chong Oon. On

automated grading of programming assignments in an academic institution.

Comput. Educ., 41:121–131, September 2003.

REFERENCES 259

[CZS10] George Chloros, Panayiotis Zervas, and Demetrios G. Sampson. Ask-lom-ap:

A web-based tool for development and management of ieee lom application

profiles. In ICALT, pages 138–142, 2010. http://dx.doi.org/10.1109/

ICALT.2010.46.

[Dal99] Charlie Daly. Roboprof and an introductory computer programming course.

SIGCSE Bull., 31(3):155–158, June 1999.

[Dig07] Digital Library Federation. Metadata encoding and transmission standard:

Primer and reference manual. http://www.loc.gov/standards/mets/mets-

schemadocs.html, September 2007.

[DLO05] Christopher Douce, David Livingstone, and James Orwell. Automatic test-

based assessment of programming: A review. J. Educ. Resour. Comput., 5,

September 2005.

[DOL+07] Declan Dagger, Alexander O’Connor, Seamus Lawless, Eddie Walsh, and

Vincent P. Wade. Service-Oriented E-Learning Platforms: From Monolithic

Systems to Flexible Services. Internet Computing, IEEE, 11(3):28–35, 2007.

http://ieeexplore.ieee.org/xpls/abs/_all.jsp?arnumber=4196172.

[Don02] J. Donello. Theory & practice: Learning content management systems.

ELearningMag, 2002.

[DW09] Carmean C. Davis, B. and E.D. Wagner. The Evolution of the LMS: From

Management to Learning - Deep Analysis of Trends Shaping the Future of

eLearning. Technical report, Sage Road Solutions, LLC, 2009.

[EBC+08] Stephen H. Edwards, Jürgen Börstler, Lillian N. Cassel, Mark S. Hall, and

Joseph Hollingsworth. Developing a common format for sharing programming

assignments. SIGCSE Bull., 40(4):167–182, 2008.

[Eck95] Wayne W. Eckerson. Three tier client/server architecture: Achieving

scalability, performance, and efficiency in client server applications. Open

Information Systems, 10(1), 1995.

[Eck09] Anna Eckerdal. Novice Programming Students’ Learning of Concepts and

Practise. PhD thesis, Uppsala UniversityUppsala University, Division of

Scientific Computing, Numerical Analysis, 2009.

[EFMM10] Micaela Esteves, Benjamim Fonseca, Leonel Morgado, and Paulo Martins.

Improving teaching and learning of computer programming through the use

of the Second Life virtual world. British Journal of Educational Technology,

March 2010.

260 REFERENCES

[EHR04] Ty Mey Eap, Marek Hatala, and Griff Richards. Digital repository inter-

operability: design, implementation and deployment of the ecl protocol and

connecting middleware. In Proceedings of the 13th international World Wide

Web conference on Alternate track papers & posters, WWW Alt. ’04, pages

376–377, New York, NY, USA, 2004. ACM.

[ELC07] Steve Engels, Vivek Lakshmanan, and Michelle Craig. Plagiarism detection

using feature-based neural networks. SIGCSE Bull., 39:34–38, March 2007.

[Ell09] Ryann K. Ellis. Field guide to learning management systems. ASTD Learning

Circuits, 2009.

[EP06] Stephen H. Edwards and William Pugh. Toward a common automated

grading platform. In Birds-of-a-Feather session at the 37th SIGCSE Technical

Symposium on Computer Science Education, March 2006.

[Erl05] T. Erl. Service-oriented architecture - Concepts, Technology and Design.

Prentice Hall, 2005.

[Fay10] Ed Fay. Repository software comparison: Building digital library infrastruc-

ture at lse. Ariadne, 64, 2010. http://www.ariadne.ac.uk/issue64/fay/.

[FCN+11] J L Fernandez, J M Carrillo, J Nicolas, A Toval, and M I Carrion. Trends

in e-learning standards. International Journal of Computer Applications,

353(1):49–54, 2011.

[Fri04a] Norm Friesen. chapter Semantic and Syntactic Interoperability for Learning

Object Metadata. ALA Editions, 2004.

[Fri04b] Norm Friesen. Editorial - a gentle introduction to technical e-learning

standards. Canadian Journal of Learning and Technology, 30(3), 2004.

http://www.cjlt.ca/index.php/cjlt/article/view/136.

[Fri05] N. Friesen. Interoperability and learning objects: An overview of e-learning

standardization. Interdisciplinary Journal of Knowledge and Learning Ob-

jects, 2005.

[FT99] Frank Farance and Joshua Tonkel. Ltsa specification - learning technology

systems architecture, draft 5. Technical report, IEEE, 1999.

[FT00] R.T. Fielding and R.N. Taylor. Principled design of the modern web archi-

tecture. In Software Engineering, 2000. Proceedings of the 2000 International

Conference on, pages 407 –416, 2000.

REFERENCES 261

[GG08] P. Guerreiro and Katerina Georgouli. Enhancing elementary programming

courses using e-learning with a competitive attitude. International Journal

of Internet Education, 10, 01 2008.

[Gil10] T. Gilbert. Leveraging sakai and ims lti to standardize integrations. In 10th

Sakai Conference, 2010.

[GM07] Anabela Gomes and António José Mendes. Learning to program - difficulties

and solutions. Proceedings of the International Conference on Engineering

Education, 2007.

[GP05] Paul Gross and Kris Powers. Evaluating assessments of novice programming

environments. In Proceedings of the first international workshop on Comput-

ing education research, ICER ’05, pages 99–110, New York, NY, USA, 2005.

ACM.

[GRACG+09] Israel Gutiérrez Rojas, Álvaro Agea, Raquel M Crespo Garćıa, Abelardo

Pardo, and Carlos Delgado Kloos. Assessment Interoperability using QTI.

2009.

[Har06] Linda Harasim. A History of E-learning: Shift Happened. pages 59–94. 2006.

[HGST05] Colin A. Higgins, Geoffrey Gray, Pavlos Symeonidis, and Athanasios Tsintsi-

fas. Automated assessment and experiences of teaching programming. J.

Educ. Resour. Comput., 5, September 2005.

[HK06] Keith Harman and Alex Koohang. Learning Objects: Standards, Metadata,

Repositories, and LCMS. Informing Science Press, Santa Rosa, CA, USA,

2006.

[HM11] Tore Hoel and Jon Mason. Expanding the scope of metadata and the

issue of quality. In 19th International Conference on Computers in Ed-

ucation, 2011. http://hoel.nu/publications/ICCE_workshop_paper\

_Hoel_Mason2011\\-final.pdf.

[IAKS10] Petri Ihantola, Tuukka Ahoniemi, Ville Karavirta, and Otto Seppälä. Review

of recent systems for automatic assessment of programming assignments. In

Proceedings of the 10th Koli Calling International Conference on Computing

Education Research, Koli Calling ’10, pages 86–93, New York, NY, USA, 2010.

ACM.

[JBK05] Borka Jerman-Blazic and Tomaz Klobucar. Privacy provision in e-learning

standardized systems: status and improvements. Computer Standards

& Interfaces, 27, 2005. http://www.qou.edu/arabic/researchProgram/

eLearningResearchs/privacyp.pdf.

262 REFERENCES

[Jen02] Tony Jenkins. On the Difficulty of Learning to Program. In 3rd annual

Conference of LTSN-ICS,, Loughbourgh, 2002.

[Jen08] Somyajit Jena. Authoring and sharing of programming exercises. Master’s

thesis, San Jose State University, 2008. http://scholarworks.sjsu.edu/

etd_projects/19.

[JU97] D. Jackson and M. Usher. Grading student programming using assyst. In

In Technical Symposium on Computer Science Education, Proceedings of the

28th SIGCSE, pages 335 –339, 1997.

[Jue03] D.W. Juedes. Experiences in web-based grading. In In 33rd ASEE/IEEE

Frontiers in Education Conference, pages 5–8, 2003.

[KC] Jan M. Pawlowski Kati Clements, Àgueda Gras-Velázquez. Educational

resources packaging standards scorm and ims common cartridge – the

users point of view. In Search and Exchange of e-learning Materials 2010

Proceedings.

[Kle11] Alexander Klenin. Common problem description format: Requirements.

ACM-ICPC World Final CLIS (Competitive Learning Institute Symposium),

2011.

[KSSM10] P. Kumar, S.G. Samaddar, A.B. Samaddar, and A.K. Misra. Extending ieee

ltsa e-learning framework in secured soa environment. In 2nd International

Conference on Education Technology and Computer (ICETC), 2010.

[Kur12] E. Kurilovas. European Learning Resource Exchange: A Platform for

Collaboration of Researchers, Policy Makers, Practitioners, and Publishers to

Share Digital Learning Resources and New e-Learning Practices. IGI-Global,

2012.

[LAMJ05] Essi Lahtinen, Kirsti Ala-Mutka, and Hannu-Matti Järvinen. A study of the

difficulties of novice programmers. SIGCSE Bull., 37(3):14–18, June 2005.

[Les06] Scott Leslie. Challenges to Implementing DSpace as a LOR, 2006.

[LJ99] Michael Luck and Mike Joy. A secure on-line submission system. In

SOFTWARE - PRACTICE AND EXPERIENCE, pages 721–740, 1999.

[LL10] L. Levensaler and M. Laurano. Talent management systems 2010: Market

realities, implementation experiences and solution provider profiles. Bersin &

Associates, 2010.

[lLH00] Fong lok Lee and Rex Heyworth. Problem complexity: A measure of problem

difficulty in algebra by using computer, 2000.

REFERENCES 263

[LLXW09] Yingli Liang, Quanbo Liu, Jun Xu, and Dongqing Wang. The recent develop-

ment of automated programming assessment. In Computational Intelligence

and Software Engineering, 2009. CiSE 2009. International Conference on,

pages 1 –5, dec. 2009. http://ieeexplore.ieee.org/stamp/stamp.jsp?

tp=&arnumber=5365307.

[LQ09a] José Paulo Leal and Ricardo Queirós. Crimsonhex: a service oriented

repository of specialised learning objects. In ICEIS 09 - 11th International

Conference on Enterprise Information Systems, Milan, Italy, volume 24 of

Lecture Notes in Business Information Processing, pages 102–113. Springer-

Verlag, LNBIP, Springer-Verlag, LNBIP, May 2009.

[LQ09b] José Paulo Leal and Ricardo Queirós. crimsonhex: um repositório de objectos

de aprendizagem. In Jornadas Luso Brasileiras de Ensino e Tecnologia em

Engenharia (JLBE09), Porto, Portugal, pages 3–10, Fevereiro 2009.

[LQ09c] José Paulo Leal and Ricardo Queirós. Defining programming problems as

learning objects. In ICCEIT - World Academy of Science, Engineering and

Technology, volume 58, pages 1033–1040, 2009.

[LQ09d] José Paulo Leal and Ricardo Queirós. Designing a user interface for

repositories of learning objects. In International Conference on e-Learning

(IADIS 2009), Algarve, Portugal, June 2009.

[LQ09e] José Paulo Leal and Ricardo Queirós. Extending the learning object defintion

to represent programming problems. In Actas do Inforum - Simpósio de

Informática, pages 421–432, Lisbon, September 2009.

[LQ10a] José Paulo Leal and Ricardo Queirós. elearning frameworks: a survey. In

International Technology, Education and Development Conference, Valencia,

Spain, March 2010.

[LQ10b] José Paulo Leal and Ricardo Queirós. From eLearning Systems to specialised

eLearning Services. Sello Editorial, Madrid, 2010.

[LQ10c] José Paulo Leal and Ricardo Queirós. Integration of repositories in elearning

systems. In ICEIS 10 - 12th International Conference on Enterprise

Information Systems, Funchal, Madeira, Portugal, June 2010.

[LQ10d] José Paulo Leal and Ricardo Queirós. Integration of repositories in moodle.

In Alberto Simões, Daniela da Cruz, and José Carlos Ramalho, editors,

Conferência Nacional em XML, Aplicações e Tecnologias Aplicadas, page

57–68, Vila do Conde, Maio 2010.

264 REFERENCES

[LQ10e] José Paulo Leal and Ricardo Queirós. Interfacing repositories of learning

objects with support for programming problems. In ACM-ICPC 3nd

Competitive Learning Symposium, Harbin, China, February 2010.

[LQ10f] José Paulo Leal and Ricardo Queirós. Modelling non-trivial evaluation

processes. In CENTERIS 2010 - Conference on Enterprise Information

Systems, Viana do Castelo, Portugal, October 2010.

[LQ10g] José Paulo Leal and Ricardo Queirós. Modelling text file evaluation processes.

In 2010 International Workshop on Cognitive-based Interactive Computing

and Web Wisdom (CICW’10), LNCS, Shanghai, China, December 2010.

Springer-Verlag, Springer-Verlag.

[LQ10h] José Paulo Leal and Ricardo Queirós. Specifying a programming exercises

evaluation service on the e-framework. In Xiangfeng Luo, Marc Spaniol,

Wolfgang Nejdl, and Wu Zhang, editors, ICWL - 9th International Conference

on Web-based Learning, volume 6483/2010, pages 141–150, Shanghai, Chine,

December 2010. Springer Lecture Notes in Computer Science (LNCS),

Springer Lecture Notes in Computer Science (LNCS).

[LQ11a] José Paulo Leal and Ricardo Queirós. A comparative study on LMS

interoperability, pages 142–161. IGI-Global, 2011.

[LQ11b] José Paulo Leal and Ricardo Queirós. Integrating the lms in service oriented

elearning systems. International Journal of Knowledge Society Research

(IJKSR),IGI-Global, 2(2):1–12, 2011.

[LQ11c] José Paulo Leal and Ricardo Queirós. Modelling a network of heterogeneous

elearning systems. In Fifth International Workshop on Enterprise Systems

and Technology (I-WEST). Published by INSTICC, 2011.

[LQ11d] José Paulo Leal and Ricardo Queirós. A programming exercise evaluation

service for mooshak. ACM-ICPC World Final CLIS (Competitive Learning

Institute Symposium), ACM-ICPC World Final CLIS (Competitive Learning

Institute Symposium), 2011.

[LQ11e] José Paulo Leal and Ricardo Queirós. Using the learning tools interoperability

framework for lms integration in service oriented architectures. In ”Technology

Enhanced Learning”, TECH-EDUCATION’11. Springer Verlag, May 2011

2011.

[LQF10] José Paulo Leal, Ricardo Queirós, and Duarte Ferreira. A contribution to the

e-framework – a specification of a programming exercise evaluation service.

Technical Report 03, DCC / FCUP, Porto, Portugal, June 2010.

REFERENCES 265

[LS03] José Paulo Leal and Fernando M. A. Silva. Mooshak: a web-based multi-site

programming contest system. Softw., Pract. Exper., 33(6):567–581, 2003.

[Mas10] D. et al Massart. Taming the metadata beast: Ilox. D-Lib Maga-

zine, 16(11/12), 2010. http://www.dlib.org/dlib/november10/massart/

11massart.html.

[McC06] S. H. McCallum. A look at new information retrieval protocols: Sru,

opensearch/a9, cql, and xquery. In In World Library and Information

Congress: 72nd IFLA General Conference and Council - IFLA, 2006. http:

//archive.ifla.org/IV/ifla72/papers/102-McCallum-en.pdf.

[McG08] R. McGreal. A typology of learning object repositories. In Heimo H.

Adelsberger, Kinshuk, Jan M. Pawlowski, and Demetrios G. Sampson,

editors, Handbook on Information Technologies for Education and Training,

International Handbooks on Information Systems, pages 5–28. Springer Berlin

Heidelberg, 2008.

[MdL01] Marcus Eduardo Markiewicz and Carlos J. P. de Lucena. Object oriented

framework development. Crossroads, 7:3–9, July 2001. http://doi.acm.

org/10.1145/372765.372771.

[Mei02] Wolfgang Meier. exist: An open source native xml database. In Web-Services,

and Database Systems, NODe 2002 Web and Database-Related Workshops,

pages 169–183. Springer, 2002.

[MGH98] Fatima Z. Mansouri, Cleveland A. Gibbon, and Colin A. Higgins. Pram:

prolog automatic marker. In ITiCSE, pages 166–170, 1998.

[MKKN05] Lauri Malmi, Ville Karavirta, Ari Korhonen, and Jussi Nikander. Experi-

ences on automatically assessed algorithm simulation exercises with different

resubmission policies. J. Educ. Resour. Comput., 5, September 2005.

[MMR06] Amit Kumar Mandal, Chittaranjan Mandal, and Christopher M P Reade.

Architecture of an automatic program evaluation system. CSIE, 2006. http:

//sit.iitkgp.ernet.in/~chitta/pubs/CSIEAIT06-p152.pdf.

[Mor07] Edna H. Mory. Feedback Research Revisited. Association for Educational

Communications and Technology, 2007.

[MR03] Robin Mason and D Rehak. Keeping the learning in learning objects. In

A Littlejohn, editor, Reusing online resources: a sustainable approach to e-

learning, pages 20–34. Kogan Page, London, 2003. http://oro.open.ac.uk/

800/.

266 REFERENCES

[Nic01] M. Nichani. Lcms = lms + cms [rlos] – how does this affect the learner? the

instructional designer? ELearningPost, 2001.

[Nie94] Jakob Nielsen. Usability engineering. Morgan Kaufmann Publishers, San

Francisco, Calif., 1994.

[NNH99] Flemming Nielson, Hanne R. Nielson, and Chris Hankin. Principles of

Program Analysis. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1999.

[OD09] X Ochoa and E Duval. Quantitative analysis of learning object repositories,

2009.

[OG06] Jackie O’Kelly and J. Paul Gibson. Robocode & problem-based learning:

a non-prescriptive approach to teaching programming. SIGCSE Bull.,

38(3):217–221, June 2006.

[OKVD11] Xavier Ochoa, Joris Klerkx, Bram Vandeputte, and Erik Duval. On the use of

learning object metadata: The globe experience. In EC-TEL, pages 271–284,

2011. DBLP,http://dblp.uni-trier.de.

[Onc11] Cakir H. Oncu, S. Research in online learning environments: Priorities and

methodologies. Computers and Education, 57(1):1098–1108, 2011. cited By

(since 1996) 3.

[PRS+03] Yusuf Pisan, Debbie Richards, Anthony Sloane, Helena Koncek, and Simon

Mitchell. Submit! a web-based system for automatic program critiquing.

In Proceedings of the fifth Australasian conference on Computing education -

Volume 20, ACE ’03, pages 59–68, Darlinghurst, Australia, Australia, 2003.

Australian Computer Society, Inc.

[QL09] Ricardo Queirós and José Paulo Leal. Interoperability in pedagogical elearning

services. In Doctoral Consortium, ICEIS 2009: 11th International Conference

on Enterprise Information Systems, Milan, Italy, May 2009.

[QL11a] Ricardo Queirós and José Paulo Leal. Modelling an elearning environment

for learning programming languages. Learning Technology Newsletter of IEEE

Computer Society’s Technical Committee on Learning Technology (TCLT).,

2011.

[QL11b] Ricardo Queirós and José Paulo Leal. Programming exercises interoperability

language. ACM-ICPC World Final CLIS (Competitive Learning Institute

Symposium), ACM-ICPC World Final CLIS (Competitive Learning Institute

Symposium), 2011.

REFERENCES 267

[QL11c] Ricardo Queirós and José Paulo Leal. A survey on elearning content

standardization. In ”World Summit on the Knowledge Society”, WSKS’11.

Springer Verlag, September 2011 2011.

[QL11d] Ricardo Queirós and José Paulo Leal. Using the common cartridge profile to

enhance learning content interoperability. In ECEL 2011: The 7th European

Conference on e-Learning, Brighton, UK, November 2011.

[QL11e] Ricardo Queirós and José Paulo Leal. Pexil: Programming exercises

interoperability language. Conferência - XML: Aplicações e Tecnologias

Associadas (XATA), 2011.

[QL12a] Ricardo Queirós and José Paulo Leal. crimsonhex: a learning objects

repository for programming exercises. Softw., Pract. Exper., 2012. (to

appear).

[QL12b] Ricardo Queirós and José Paulo Leal. Petcha - a programming exercises

teaching assistant. In ACM SIGCSE 17th Anual Conference on Innovation

and Technology in Computer Science Education, Haifa, Israel, July 2012 2012.

ACM.

[QL12c] Ricardo Queirós and José Paulo Leal. Programming exercises evaluation

systems: an interoperability survey. In 4th International Conference on

Computer Supported Education, Porto, Portugal, Apri 2012.

[Ree89] Kenneth A. Reek. The try system -or- how to avoid testing student programs.

SIGCSE Bull., 21:112–116, February 1989.

[Reh03] Mason R. Rehak, D. R. Keeping the learning in learning objects. In Littlejohn,

A. (Ed.) Reusing online resources: a sustainable approach to e-Learning,

pages 22–30, 2003.

[RKK04] Timo Rongas, Arto Kaarna, and Heikki Kälviäinen. Classification of

computerized learning tools for introductory programming courses: Learning

approach. In Kinshuk, Chee-Kit Looi, Erkki Sutinen, Demetrios G. Sampson,

Ignacio Aedo, Lorna Uden, and Esko Kähkönen, editors, ICALT. IEEE

Computer Society, 2004.

[Rob02] Eddie Robertsson. Combining schematron with other xml schema languages.

Technical report, -, 2002.

[Rog03] Sally A Rogers. Developing an institutional knowledge bank at ohio state

university: From concept to action plan. portal Libraries and the Academy,

3(1):125–136, 2003.

268 REFERENCES

[RRR03] Anthony Robins, Janet Rountree, and Nathan Rountree. Learning and teach-

ing programming: A review and discussion. Computer Science Education,

13:137–172, 2003.

[RSA06] E Rodŕıguez, M A Sicilia, and Sinuhe Arroyo. Bridging the semantic gap in

standards-based learning object repositories, pages 478–483. 2006.

[RSS10] Repository software survey. Repositories Support Project, 2010.

[RSZ10] R. Romli, S. Sulaiman, and K.Z. Zamli. Automatic programming assessment

and test data generation a review on its approaches. In Information

Technology (ITSim), 2010 International Symposium in, volume 3, pages 1186

–1192, june 2010.

[RWS06] William Reilly, Robert Wolfe, and MacKenzie Smith. Mit’s cwspace project:

packaging metadata for archiving educational content in dspace. Int. J. Digit.

Libr., 6(2):139–147, April 2006.

[SB06] Carsten Schulte and Jens Bennedsen. What do teachers teach in introductory

programming? In Proceedings of the second international workshop on

Computing education research, ICER ’06, pages 17–28, New York, NY, USA,

2006. ACM.

[SG10] Michael Striewe and Michael Goedicke. Visualizing data structures in an

e-learning system. In CSEDU, pages 172–179, 2010.

[SHP+06] Jaime Spacco, David Hovemeyer, William Pugh, Fawzi Emad, Jeffrey K.

Hollingsworth, and Nelson Padua-Perez. Experiences with marmoset: design-

ing and using an advanced submission and testing system for programming

courses. SIGCSE Bull., 38(3):13–17, June 2006.

[SKA08] Atiq Siddiqui, Mehmood Khan, and Sohail Akhtar. Supply chain simulator: A

scenario-based educational tool to enhance student learning. Comput. Educ.,

51(1):252–261, August 2008.

[SMK01] Riku Saikkonen, Lauri Malmi, and Ari Korhonen. Fully automatic assessment

of programming exercises. SIGCSE Bull., 33:133–136, June 2001.

[SMvA+05] Bernd Simon, David Massart, Frans van Assche, Stefaan Ternier, Erik

Duval, Stefan Brantner, Daniel Olmedilla, and Zoltán Miklós. A simple

query interface for interoperable learning repositories. In PROCEEDINGS

OF THE 1ST WORKSHOP ON INTEROPERABILITY OF WEB-BASED

EDUCATIONAL SYSTEMS, pages 11–18, 2005.

REFERENCES 269

[SZC12] Demetrios G. Sampson, Panagiotis Zervas, and George Chloros. Supporting

the process of developing and managing lom application profiles: The ask-

lom-ap tool. IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES,

2012.

[Tan09a] Yu Y. T. & Poon C. K. Tang, C. M. An approach towards automatic testing

of student programs using token patterns. In In Proceedings of the 17th

International Conference on Computers in Education (ICCE 2009), pages

188–190, 2009.

[Tan09b] Yu Y. T. & Poon C. K. Tang, C. M. Automated systems for testing

student programs: Practical issues and requirements. In In Proceedings of the

International Workshop on Strategies for Practical Integration of Emerging

and Contemporary Technologies in Assessment and Learning, pages 132–136,

2009.

[TC10] Poon C.K. Tang C.M., Yu Y. T. A review of the strategies for output

correctness determination in automated assessment of student programs. In In

Proceedings of Global Chinese Conference on Computers in Education, 2010.

[Tea06] JORUM Team. E-learning repository systems research watch. Technical

report, JISC, 2006.

[Ter08] Stefaan Ternier. Standards Based Interoperability for Searching in and Pub-

lishing to Learning Object Repositories (Interoperabiliteit voor het publiceren

en ontsluiten van leerobjecten in repositories met gebruik van standaarden).

PhD thesis, K.U.Leuven, March 2008.

[TGPS08] G. Tremblay, F. Guérin, A. Pons, and A. Salah. Oto, a generic and extensible

tool for marking programming assignments. Softw. Pract. Exper., 38(3):307–

333, March 2008.

[TMT+10] S. Ternier, D. Massart, M. Totschnig, J. Klerkx, and E. Duval. The simple

publishing interface (spi). D-Lib Magazine, 16(9/10), 2010. http://www.

dlib.org/dlib/september10/ternier/09ternier.html.

[Tru07] Nghi Khue Dinh Truong. A web-based programming environment for novice

programmers. PhD thesis, Queensland University of Technology, 2007.

[TS05] White A. Tastle, J. and P. Shackleton. E-learning in higher education:

the challenge, effort, and return of investment. International Journal on

ELearning, 2005.

[Tsu10] Takashi Tsunakawa. Pivotal Approach for Lexical Translation. PhD thesis,

University of Tokyo, 2010.

270 REFERENCES

[Tzi09] Manouselis N. & Vuorikari R. Tzikopoulos, A. An overview of learning

object repositories. In In T. Halpin (Ed.), Selected Readings on Database

Technologies and Applications. IGI Global, 2009.

[VA06] Iraklis Varlamis and Ioannis Apostolakis. The present and future of

standards for e-learning technologies. Interdisciplinary Journal of Knowl-

edge and Learning Objects, 2, 2006. http://www.ijello.org/Volume2/

v2p059-076Varlamis.pdf.

[VD03] Maarten Vansteenkiste and Edward L. Deci. Competitively contingent

rewards and intrinsic motivation: Can losers remain motivated? Motivation

and Emotion, 27:273–299, 2003. 10.1023/A:1026259005264.

[Ver08] Tom Verhoeff. Programming task packages: Peach exchange format. Inter-

national Journal Olympiads In Informatics, 2:192–207, 2008.

[VRV+11] Elena Verdú, Luisa M. Regueras, Maŕıa J. Verdú, José Paulo Leal, Juan P.

de Castro, and Ricardo Queirós. A distributed system for learning program-

ming on-line. Computers & Education, 2011.

[War04] Jewel Ward. Unqualified dublin core usage in oai-pmh data providers.

OCLC Systems & Services, 20(1):40–47, 2004. http://dx.doi.org/10.

1108/10650750410527322.

[WBR04] Scott Wilson, Kerry Blinco, and Daniel Rehak. Service-Oriented Frame-

works: Modelling the infrastructure for the next generation of e-Learning

Systems. Technical report, JISC Report, July 2004. http://www.jisc.ac.

uk/uploaded_documents/AltilabServiceOrientedFrameworks.pdf.

[Wil05] Goldberg M. Williams, J. The evolution of e-learning. Universitas 21 Global,

2005.

[WLK04] Susan Wiedenbeck, Deborah Labelle, and Vennila N. R. Kain. Factors

affecting course outcomes in introductory programming. In In 16th Annual

Workshop of the Psychology of Programming Interest Group, pages 97–109,

2004.

[WW08] Fu Lee Wang and Tak-Lam Wong. Designing programming exercises with

computer assisted instruction. In Proceedings of the 1st international

conference on Hybrid Learning and Education, ICHL ’08, pages 283–293,

Berlin, Heidelberg, 2008. Springer-Verlag.

[XC11] J. Xavier and A. Coelho. Computer-based assessment system for e-learning

applied to programming education. In ICERI2011 Proceedings, 4th Interna-

REFERENCES 271

tional Conference of Education, Research and Innovations, pages 3738–3747.

IATED, 14-16 November, 2011 2011.

