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Abstract

Forest algebras are defined for investigating languages of forests [ordered se-
quences] of unranked trees, where a node may have more than two [ordered]
successors [9]. We show that several parameters on forests can be realized
as forest algebra homomorphisms from the free forest algebra into algebras
which retain the equational axioms of forest algebras. This includes the
number of nodes, the number of connected parts, the set of labels of nodes,
the depth, and the set of labels of roots of an element in the free forest
algebra. We show that the horizontal monoid of a forest algebra is finite if
and only if its vertical monoid is finite. By an example we show that the
image of a forest algebra homomorphism may not be a forest algebra and
also the pre-image of a forest subalgebra by a forest algebra homomorphism
may not be a forest algebra.

Bojańczyk and Walukiewicz in [9] defined the syntactic forest algebra
over a forest language. We define a new version of syntactic congruence of
a subset of the free forest algebra, not just a forest language, which is used
in the proof of an analog of Hunter’s Lemma [23] in the third chapter. The
new version of syntactic congruence is the natural extension of the syntactic
congruence for monoids in case of forest algebras. We show that for an
inverse zero action subset and a forest language which is the intersection of
the inverse zero action subset with the horizontal monoid, the two versions
of syntactic congruences coincide.

Almeida in [2] established some results on metric semigroups. We adapted
some of his results to the context of forest algebras. We define on the free
forest algebra a pseudo-ultrametric associated with a pseudovariety of forest
algebras. We show that the basic operations on the free forest algebra are
uniformly continuous, this pseudo-ultrametric space is totally bounded, and
its completion is a forest algebra. The difficult part is how to handle the
faithfulness property of forest algebras. We show that in a metric forest
algebra with uniformly continuous basic operations, its horizontal monoid is
compact if and only if its vertical monoid is compact. We show that every
forest algebra homomorphism from the free forest algebra into a finite for-
est algebra is uniformly continuous. We show that the analog of Hunter’s
Lemma [23] holds for metric forest algebras, which leads to the result that
zero-dimensional compact metric forest algebras are residually finite. We
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establish an analog of Reiterman’s Theorem [26], which is based on a study
of the structure profinite forest algebras.

We define ω-algebras, which retain the equational axioms of forest alge-
bras and are endowed with additional unary operations. We establish some
useful properties of the free ω-algebra which entail that it is a forest alge-
bra. A profinite algebra is defined to be a projective limit of a projective
system of finite algebras [2]. For BSS1, the pseudovariety of forest alge-
bras generated by all syntactic forest algebras of piecewise-testable forest
languages, we say that a profinite algebra S is pro-BSS if it is a projective
limit of members of BSS. It is natural to study the free pro-BSS algebra
as an ω-algebra. We show that the set of multiplicatively irreducible factors
of the product of two elements is the union of the sets of multiplicatively
irreducible factors of each one. We distinguish several kinds of non-trivial
additively irreducible and non-trivial multiplicatively irreducible elements of
the free ω-algebra. Then an algorithm to compute a canonical form for each
element of the free ω-algebra in a certain variety is described and proved to
be correct. If the relationship between the free ω-algebra in a certain variety
and the free pro-BSS algebra is as in the word analog [1, Section 8.2], then
the algorithm allows us to identify the structure of the latter.

1Stands for Bojańczyk, Segoufin, and Straubing as it was first introduced in [6].
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Introduction

Several algebraic and combinatorial tools have played an important role in
the development of Computer Science and its applications. The theory of
formal languages, motivated both by linguistic studies and by development
of computer languages in the 1950’s, led to fruitful connections with Math-
ematics, in which algebraic tools such as semigroups, formal series, wreath
products, and the combinatorics of words found an ideal ground for appli-
cations.

Eilenberg’s treatise [12, 13] reflects already in the mid 1970’s a signifi-
cant development in the area, which both systematized earlier results and
fostered further research. On the Computer Science side, finite automata
proved to be a simple, yet very powerful model for efficient automatic pro-
cesses. Their computing power is described by regular languages and thus
it became important to determine whether given problems could be han-
dled by restricted types of finite automata, which became a classification
problem for regular languages. Eilenberg proposed as a framework for this
classification the so-called varieties of languages and showed how they are
in natural one-to-one correspondence with pseudovarieties of semigroups.
The original Computer Science problem concerning formal languages thus
became translated as a question about semigroups: to decide whether a
given finite semigroup belongs to a given pseudovariety. Starting in the mid
1980’s, Almeida showed how one could use profinite semigroups to handle
some such decidability questions [1, 2].

But formal languages of words, in the sense of sequences of letters, are
not always the most suitable tools to deal with Computer Science prob-
lems. Words correspond to sequential processes in which an action must
be completed before the next one starts and only one action is executed at
any given time. In many computing models, actions lead to branching and
to the execution of other actions in parallel. Thus, trees are often subja-
cent to computer processes. Depending on the concrete Computer Science
question, various algebraic tools have been introduced to deal with trees
[6, 11, 14, 15, 17, 18, 28, 29]. For instance, (finite) trees may be regarded
as terms in a suitable algebraic signature, which suggests as a possible ap-
proach to replace semigroups by more general (universal) algebraic struc-
tures in the classical algebraic theory of varieties of regular languages. The
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profinite method can be easily adapted to this setting, but it remains to be
explored how this can be used to solve concrete problems. The limitations
of such a model for trees to handle Computer Science problems [4, 8] have
also led to the consideration of alternative models [6, 14, 15].

One of the major open problems in this area is the algebraic characteri-
zation of the class of trees that may be defined by first-order sentences.

In this dissertation we are planning to identify the structure of the free
pro-BSS algebra.

First, we recall the forest algebra structures defined in [6], and verify
some of their properties. We construct some examples provide useful pa-
rameters for the free forest algebra. We show the finiteness conditions for
a forest algebras, the pre-image of a forest subalgebra over a forest algebra
homomorphism may not be a forest subalgebra, and the image of a forest
algebra homomorphism may not be a forest subalgebra.

After that, for a subset K of a forest algebra S, we define a binary
relation vK of K and we show that the relation vK define a congruence
relation of elements of S. Then we define a syntactic forest algebra which is
the quotient of a forest algebra by vK for some subset K of the forest algebra
the so called syntactic congruence of K. Then we show that for an inverse
zero action subset K of a forest algebra the quotient of the forest algebra
by vK is a forest algebra. Denote by A∆ the free forest algebra on a finite
alphabet A. A forest language is a subset of the horizontal monoid of A∆.
For a forest language L, denote by VL the set of all elements in the vertical
monoid of A∆ which map the identity element of the horizontal monoid of
A∆ into L. For a forest language L the set K = (L, VL) is called the inverse
zero action subset of A∆ determined by L; we show that the congruence
relation ∼L, which is defined in [6], coincides with the syntactic congruence
vK , of the inverse zero action subset K. For a subset K of a forest algebra
S, the syntactic congruence vK is a more natural extension of the well-
known syntactic congruence for monoids. Then we recall the theorem by
Walukiewicz et.al. in [7], which gives a one to one correspondence between
a pseudovariety of forest algebras and a variety of forest languages.

In Chapter 3, we define a metric on the free forest algebra A∆ with
respect to a pseudovariety of finite forest algebras V and we show that
the basic operations with respect to this metric are contractive. We show
that the completion of the free forest algebra with respect to the defined
metric exists and is a forest algebra. We establish in this context an analog
of Hunter’s Lemma [23]. We also establish in this context an analog of
Reiterman’s Theorem [26].

In Chapter 4, we define ω-algebras: an ω-algebra is a set with two types
of elements endowed with five binary operations and two unary operations,
such that the equational axioms of forest algebras and three more conditions
concerning the unary operations are satisfied. The class of ω-algebras is
equational, so all free ω-algebras exist. Denote by A the free ω-algebra on a
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finite alphabet A. We give some examples of ω-algebras which are the key
facts to show some useful properties of the free ω-algebra A. In particular,
we show that A is a forest algebra. We consider several subsets of the
free ω-algebra A which are defined in terms of multiplicatively or additively
irreducible factors or summands. These sets play a key role in the next
chapter.

Finally in Chapter 5, we consider the variety V of ω-algebras, defined
by the set Σ consisting of certain suitable identities motivated by the study
of the pseudovariety BSS. We establish some consequences of the set of
identities Σ and we describe an algorithm to compute the so-called canonical
form of an element in the free ω-algebra A modulo Σ.
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Chapter 1

Forest Algebra

Our main problem is to identify the structure of the free pro-BSS algebra.
In order to tackle it, first we need to explore the structure of forest algebras.

Over a finite alphabet A, finite unranked ordered trees and forests are
expressions defined inductively. If s is a forest and a ∈ A, then as is a tree
where a is the root of the tree and it is the direct ancestor of the root of each
tree in the forest s. Suppose that t1, . . . , tn is a finite sequence of trees, if we
put each tree ti on the right side of the tree ti−1 for i = 2, 3, . . . , n denoted
by t1 + · · ·+ tn then the result is a forest . This applies as well to the empty
sequence of trees, which thus gives rise to the empty forest , denoted by 0.
The set of all forests is called the horizontal set.

A set L of forests over A is called a forest language.
If we take a forest and replace one of the leaves by a special symbol hole,

which is denoted by �, we obtain a context . A forest s can be substituted in
place of the hole of a context p; the resulting forest is denoted by ps. There
is a natural composition operation on contexts, the context qp is formed by
replacing the hole of q with p. The set of all contexts is called the vertical
set [9, 8].

In this chapter we explore the concept of forest algebra. We state several
results which are used in the following chapters.

1.1 Preliminaries

Definition 1.1.1. A forest algebra S consists of a pair (H,V ) of distinct
monoids, subject to some additional requirements, which we describe below.

We write the operation in V , the vertical monoid, multiplicatively and
the operation in H, the horizontal monoid, additively, although H is not
assumed to be commutative. We accordingly denote the identity of V by �
and that of H by 0.

We require that V acts on the left of H. That is, there is a map

(v, h) ∈ V ×H 7→ vh ∈ H
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such that w(vh) = (wv)h, for every h ∈ H and every v, w ∈ V . We also
require that this action be monoidal , that is, �.h = h, for every h ∈ H.

We further require that for every h ∈ H and v ∈ V , V contains elements
h+ v and v + h such that for every x ∈ S,

(v + h)x = vx+ h and (h+ v)x = h+ vx,

where vx is given by the action of v on x if x is a forest and by composition
(multiplication) if x is a context.

We call the equational axioms of forest algebras, the preceding axioms
on the elements of the forest algebras.

Finally in the definition of forest algebra we also require that the action
be faithful , that is, if vh = wh, for every h ∈ H, then v = w.

Let (H1, V1) and (H2, V2) be algebras that satisfy the equational axioms
of forest algebras. A forest algebra homomorphism

α : (H1, V1)→ (H2, V2)

is a pair (γ, δ) of monoid homomorphisms

γ : H1 → H2,
δ : V1 → V2

such that, for every h ∈ H and every v ∈ V ,

γ(vh) = δ(v)γ(h) and

{
δ(h+ v) = γ(h) + δ(v)
δ(v + h) = δ(v) + γ(h)

However, we will abuse notation slightly and denote both component maps
by α.

Remark 1.1.2. Let (H1, V1) and (H2, V2) be algebras that satisfy the equa-
tional axioms of forest algebras. A mapping

α = (γ, δ) : (H1, V1)→ (H2, V2)

is called forest algebra isomorphism, if the mappings γ and δ are monoid
isomorphisms and α is a forest algebra homomorphism.

Lemma 1.1.3. In a forest algebra S the following equality holds:

0 +� = �+ 0 = �.

Proof. Let v = �+ 0 and v′ = 0 +�, since for all x ∈ S we have

vx = (�+ 0)x = x+ 0,
v′x = (0 +�)x = 0 + x

if x ∈ H, then both are equal to x. So for all h ∈ H, vh = �h and
also v′h = �h. Since the action is faithful, we conclude that v = � and
v′ = �.
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The following lemma allows us to use the associativity of addition with-
out reference to the type of elements.

Lemma 1.1.4. In a forest algebra S the following equalities hold for all
x, y ∈ H and every s ∈ S:

(x+ y) + s = x+ (y + s),

(x+ s) + y = x+ (s+ y),

(s+ x) + y = s+ (x+ y).

Proof. If s ∈ H, then the results hold from the associativity of H. Let
s ∈ V . The terms � + x, x + �, � + y, and y + � are in V and, for all
h ∈ H, the following equalities hold:

((x+ y) +�)h = (x+ y) +h = x+ (y+h) = x+ (y+�)h = (x+ (y+�))h,

which implies
(x+ y) +� = x+ (y +�),

and we have

((x+�) + y)h = (x+�)h+ y = (x+ h) + y

= x+ (h+ y) = x+ (�+ y)h = (x+ (�+ y))h,

which implies
(x+�) + y = x+ (�+ y).

Also we have

((�+ (x+ y))h = h+ (x+ y) = (h+x) + y = (�+x)h+ y = ((�+x) + y)h

which implies
�+ (x+ y) = (�+ x) + y.

So, for all s ∈ V , we have the following equalities

(x+ y) + s = ((x+ y) +�)s = (x+ (y+�))s = x+ (y+�)s = x+ (y+ s).

This shows the first equality and

(x+ s) + y = (x+�)s+ y = ((x+�) + y)s = (x+ (�+ y))s

= x+ (�+ y)s = x+ (s+ y),

which yields the second equality, while

s+ (x+ y) = (�+ (x+ y))s = ((�+ x) + y)s = (�+ x)s+ y = (s+ x) + y

yields the third equality.
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Let A be a finite alphabet, and let us denote by HA the set of forests over
A, and by V A the set of contexts over A. Clearly HA forms a monoid under
+, see Figure 1.1, V A forms a monoid under composition of contexts, see
Figure 1.2, (the identity element is the empty context �), and substitution
of a forest into a context defines a left action of V A on HA, see Figure 1.3.
It is straightforward to verify that this action makes (HA, V A) into a forest
algebra, which we denote by A∆.

a

aa

A forest t1

d

b

c

A forest t2

a

aa

d

b

c

The forest t1 + t2

Figure 1.1: Forest addition

a

aa

A context v1

d

b

A context v2

a

aa d

b

The context v1v2

Figure 1.2: Context multiplication

a

aa

A context v

d

b

c

A forest t

a

aa d

b

c

The forest vt

Figure 1.3: Action

Bojańczyk and Walukiewicz in [8, Lemma 3.6] showed that A∆ is free
in the sense of universal algebra: if (H,V ) is a forest algebra, then every
map f : A → V has a unique extension to a forest algebra homomorphism
% : A∆ → (H,V ) such that %(a�) = f(a) for all a ∈ A. In view of this
universal property we call A∆ the free forest algebra on A. Since in the
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proof of [8, Lemma 3.6], the faithfulness does not play any role, we can
state the following universal property:

Lemma 1.1.5. For every algebra (H,V ) that satisfies the equational axioms
of forest algebras, every map f : A→ V can be uniquely extended to a forest
algebra homomorphism (α, β) : A∆ → (H,V ) such that β(a�) = f(a) for
every a ∈ A.

Bojańczyk and Walukiewicz in [8] denoted the set of forests over A by
HA and the set of contexts over A by VA. To avoid confusion with syntactic
forest algebras, which we consider later, we prefer instead the notation HA

and V A.
For an algebra S = (H,V ) which satisfies the equational axioms of forest

algebras, the relation ∼faith is defined as follows: for elements s and h in H,
and for elements v and w in V ,

h ∼faith s if and only if h = s

v ∼faith w if and only if ∀t ∈ H, vt = wt.
(1.1)

Definition 1.1.6. A congruence relation is an equivalence relation ≡ on an
algebraic structure that satisfies

µ(a1, a2, . . . , an) ≡ µ(a′1, a
′
2, . . . , a

′
n)

for every n-ary operation µ that defines the algebra structure, and all ele-
ments a1, . . . , an, a

′
1, . . . , a

′
n satisfying ai ≡ a′i for each i.

Definition 1.1.7. Let u and v be elements of a forest algebra S = (H,V ).
We mean by basic operation, which is denoted by O(u, v), one of uv when
u ∈ V , or u+ v when u ∈ H or v ∈ H.

Note that the value of the operation O(u, v) depends on the types of
elements u and v in S.

Lemma 1.1.8. The relation ∼faith as defined in (1.1) is a congruence rela-
tion.

Proof. It is routine to check that, the relation ∼faith is an equivalence rela-
tion.

To show that ∼faith is a congruence, assume that

x ∼faith y and p ∼faith q.

Then we need to show that for the basic operations we have

O(x, p) ∼faith O(y, q).
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For the relation x ∼faith y and an element p ∈ S, we show that

O(x, p) ∼faith O(y, p)

(similarly, O(p, x) ∼faith O(p, y)). Indeed, if x ∼faith y and p ∼faith q, then
by what we have shown we have

O(x, p) ∼faith O(y, p) ∼faith O(y, q).

With respect to the type of x and y (they should have the same type) and
a basic operation O, with respect to the type of p, we have the following:

1. Assume that x and y are in H. The relation x ∼faith y implies x = y
and since p = p is always true, the equality O(x, p) = O(y, p) and also
the equality O(p, x) = O(p, y) hold, which imply the relations

O(x, p) ∼faith O(y, p) and O(p, x) ∼faith O(p, y);

2. Assume that x and y are in V .

(a) We show that for p ∈ H, and every h ∈ H, the equality (x+p)h =
(y+ p)h holds. We have x ∼faith y, so, for every h ∈ H, xh = yh.
Therefore, for p ∈ H we have xh+ p = yh+ p, for every h ∈ H.
Since S satisfies the equational axioms of forest algebras, we have
(x+p)h = (y+p)h, for every h ∈ H, which means x+p ∼faith y+p.
Similarly, we obtain p+ x ∼faith p+ y.

(b) We show that for p ∈ V , and every h ∈ H, the equality (xp)h =
(yp)h holds. We have x ∼faith y, so, for every h ∈ H, xh = yh.
Since p ∈ V , ph ∈ H for every h ∈ H. Therefore, for every
h ∈ H we have x(ph) = y(ph). Hence, for every h ∈ H, we have
(xp)h = (yp)h, which means xp ∼faith yp. Similarly, we obtain
px ∼faith py.

(c) For p ∈ H, xp ∼faith yp is immediate by definition of the relation
∼faith.

We have thus shown that the relation ∼faith is a congruence on S.

Definition 1.1.9. A subalgebra of a forest algebra is a subset of a forest
algebra, carrying the induced operations, that satisfies the equational axioms
of forest algebras.

Definition 1.1.10. A quotient of a forest algebra is a forest algebra morphic
image of a forest algebra.

We show in Remark 1.2.23 that a subalgebra and a quotient may not be
a forest algebra (because of faithfulness). The solution is to take the faithful
quotient of the result, which means for an algebra S = (H,V ) which satisfies
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the equational axioms of forest algebras, the faithful quotient of S which is
denoted by S/∼faith. This is a forest algebra with the induced operations.

Let S = (H,V ) be a forest algebra and K be the faithful quotient of
a subalgebra of S. Then we say that K is a forest subalgebra of S and we
write K E S.

Let S1 = (H1, V1) and S2 = (H2, V2) be forest algebras. Their direct
product S1 × S2 is (H1 ×H2, V1 × V2). The set

H1 ×H2 = {(h1, h2) | h1 ∈ H1 and h2 ∈ H2}

is an additive monoid with identity (0, 0) and the set

V1 × V2 = {(v1, v2) | v1 ∈ V1 and v2 ∈ V2}

is a multiplicative monoid with identity (�,�). Operations are defined
componentwise. The action is faithful. Indeed, for (v1, v2), (w1, w2) ∈ V1 ×
V2, if for every (h1, h2) ∈ H1 ×H2,

(v1, v2)(h1, h2) = (w1, w2)(h1, h2),

then for every h1 ∈ H1, v1h1 = w1h1, which implies v1 = w1, and for every
h2 ∈ H2, v2h2 = w2h2, which implies v2 = w2, thus (v1, v2) = (w1, w2). So
S1 × S2 is a forest algebra.

1.2 Some More Examples

The following examples are useful in the rest of this thesis.

Example 1.2.1. The natural and evident example of forest algebras is the
one with two elements

T FA = ( (H = {0},+) , (V = {�}, .) )

called trivial forest algebra.

Lemma 1.2.2. Let (S,+, 0) and (T,×, 1) be monoids where S is commuta-
tive. Assume that the monoid T acts on the monoid S by a monoid homo-
morphism

ϕ : T → End(S)

where End(S) is assumed to be the monoid of semigroup homomorphisms
from S to S. Let S ∗ϕ T be the semidirect product of S and T under the
multiplication

(s, t) · (s′, t′) = (s+ ϕ(t)(s′), t× t′).

Denote ϕ(t)(s) by ts. Let

V = {(s, t) ∈ S ∗ϕ T | s+ t0 = s}.
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Then (S, V ) with respect to the following operations satisfies the equational
axioms of forest algebras. For elements (s1, t1) and (s2, t2) in V and ele-
ments s and t in S define:

(s1, t1).(s2, t2) = (s1 + t1s2, t1 × t2),

s+′ (s1, t1) = (s+ s1, t1) and (s1, t1) +′ s = (s1 + s, t1),

and
(s1, t1) ∗ s = s1 + t1p.

Proof. First, we show that V is a monoid. Let (s1, t1) and (s2, t2) be ele-
ments of V . Then we have

(s1, t1).(s2, t2) = (s1 + t1s2, t1 × t2)

where we have

s1 + t1s2 + t1×t20 = s1 + t1(s2 + t20)

= s1 + t1(s2),

which implies that V is closed under the operation of S ∗ϕ T . As we have
0+10 = 0, (0, 1) is in V . For (s, t) ∈ V we have (s, t).(0, 1) = (s+ t0, t×1) =
(s, t) and (0, 1).(s, t) = (0 + 1s, 1× t) = (s, t).

Since S is a commutative monoid, it is clear that for elements (s1, t1)
and s respectively in V and S, the elements s+′ (s1, t1) and (s1, t1) +′ s are
in V .

The following properties hold: for elements (s1, t1) and (s2, t2) in V and
elements p and s in S we have

s+′ ((s1, t1).(s2, t2)) = s+′ (s1 + t1s2, t1 × t2)

= (s+ s1 + t1s2, t1 × t2)

and also

(s+′ (s1, t1)).(s2, t2) = (s+ s1, t1).(s2, t2)

= (s+ s1 + t1s2, t1 × t2),

which imply the equality

(s+′ (s1, t1)).(s2, t2) = s+′ ((s1, t1).(s2, t2)).

We have

((s1, t1).(s2, t2)) +′ s = (s1 + t1s2, t1 × t2) +′ s

= (s1 + t1s2 + s, t1 × t2)

11



and also

((s1, t1) +′ s).(s2, t2) = (s1 + s, t1).(s2, t2)

= (s1 + s+ t1s2, t1 × t2),

in which, as S is commutative, we have the equality

((s1, t1) +′ s).(s2, t2) = ((s1, t1).(s2, t2)) +′ s.

We also have
s+ ((s1, t1) ∗ p) = s+ (s1 + t1p)

and also

(s+′ (s1, t1)) ∗ p = (s+ s1, t1) ∗ p
= (s+ s1) + t1p,

which imply the equality

(s+′ (s1, t1)) ∗ p = s+ ((s1, t1) ∗ p).

We have
((s1, t1) ∗ p) + s = (s1 + t1p) + s

and also

((s1, t1) +′ s) ∗ p = (s1 + s, t1) ∗ p
= (s1 + s) + t1p,

in which, as S is commutative, we have the equality

((s1, t1) +′ s) ∗ p = ((s1, t1) ∗ p) + s.

We have the following equality

((s1, t1).(s2, t2)) ∗ p = (s1 + t1s2, t1 × t2) ∗ p
= s1 + t1s2 + (t1×t2)p

and we also have

(s1, t1) ∗ ((s2, t2) ∗ p) = (s1, t1) ∗ (s2 + t2p)

= (s1 + t1(s2 + t2p)).

As we assumed the monoid T acts on S, so we have

(t1×t2)p = t1(t2p)

and
t1(s2 + t2p) = t1s2 + t1(t2p).

12



We thus obtain the equality

((s1, t1).(s2, t2)) ∗ p = (s1, t1) ∗ ((s2, t2) ∗ p).

The action ∗ is monoidal, as for an element p in S we have

(0, 1) ∗ p = 0 + 1p = id(p) = p.

Proposition 1.2.3. Under the assumptions of Lemma 1.2.2, if one of the
following holds, then (S, V ) is a forest algebra.

• S is cancellative and the action of the monoid T on the monoid S is
injective;

• T is a trivial monoid.

Proof. Since by Lemma 1.2.2, (S, V ) satisfies the equational axioms of forest
algebras, in both cases we just need to show the faithfulness property. Let
(s1, t1) and (s2, t2) be elements of V such that for all p in S the following
equality holds:

(s1, t1) ∗ p = (s2, t2) ∗ p

which is
s1 + t1p = s2 + t2p.

So, for p = 0 we have s1 + t10 = s2 + t20 which implies the equality s1 = s2.
We just need to check that for all s in S if for all p in S the equality
s+ t1p = s+ t2p holds, then the equality t1 = t2 holds.

In the first case S is cancellative implies that for all p in S the equality
t1p = t2p holds in which as the action of the monoid T on the monoid S is
injective it implies that the equality t1 = t2 holds.

In the second case T is trivial implies the equalities t1 = t2 = 1.

Example 1.2.4. By Proposition 1.2.3 let T be the trivial monoid and S
be the monoid of natural numbers N under usual addition. Then SN =
(S, S ∗ϕ T ) is a forest algebra.

By the universal property of the free forest algebra A∆, there is a unique
forest algebra homomorphism

#Nodes : A∆ → SN

such that
#Nodes(a�) = (1, 1).

Definition 1.2.5. Let s be an element of the free forest algebra A∆, then
the number of nodes of s is its image by the forest algebra homomorphism
#Nodes in Example 1.2.4.

13



Remark 1.2.6. We will abuse notation slightly and denote both forest algebra
homomorphism from A∆ to SN and the number of nodes by #Nodes.

Example 1.2.7. In Lemma 1.2.2 let T = {1, c} be the free idempotent
monoid and S be the monoid of natural numbers N under usual addition.
Let the monoid T acts on the monoid S by a monoid homomorphism

ϕ : T → End(S)

1 7→ idS

c 7→ 0S

Since for every element (s, t) ∈ S ∗ϕ T the equality s + t0 = s holds, as in
both cases t0 = 0, we have S ∗ϕ T with operation . as in Lemma 1.2.2 is a
monoid.

Let operation +′ on elements of SC = (S, S ∗ϕ T ) be as in Lemma 1.2.2.
We define the action of S ∗ϕ T on the left of S as follows: for an element
(s, t) in S ∗ϕ T and an element p in S define

(s, t) ∗ p =

{
s+ tp , if t = 1
s+ tp+ 1 , if t = c.

In order to show that SC satisfies the equational axioms of forest algebras,
in view of Lemma 1.2.2, we just need to check the following for elements s
and p in S and elements (s1, t1), (s2, t2) ∈ S ∗ϕ T :

• the equality s + ((s1, t1) ∗ p) = (s +′ (s1, t1)) ∗ p holds, since we have
the following:

s+ (s1, t1) ∗ p =

{
s+ (s1 + t1p) , if t1 = 1
s+ (s1 + t1p+ 1) , if t1 = c

and also

(s+′ (s1, t1)) ∗ p = (s+ s1, t1) ∗ p =

{
(s+ s1) + t1p) , if t1 = 1
(s+ s1) + t1p+ 1 , if t1 = c

which imply the equality

(s+′ (s1, t1)) ∗ p = s+ ((s1, t1) ∗ p);

• since S is commutative, the equality

(s+′ (s1, t1)) ∗ p = s+ ((s1, t1) ∗ p)

implies the equality:

((s1, t1) ∗ p) + s = ((s1, t1) +′ s) ∗ p;
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• the equality (s1, t1).(s2, t2)) ∗ p = (s1, t1) ∗ ((s2, t2) ∗ p) holds, since we
have the following:

((s1, t1).(s2, t2)) ∗ p

= (s1 + t1s2, t1 × t2) ∗ p

=

{
s1 + t1s2 + (t1×t2)p , if t1 × t2 = 1

s1 + t1s2 + (t1×t2)p+ 1 , if t1 × t2 = c

=


s1 + s2 + p , if t1 = 1, t2 = 1
s1 + s2 + 1 , if t1 = 1, t2 = c
s1 + 1 , if t1 = c, t2 = 1
s1 + 1 , if t1 = c, t2 = c

and we also have

(s1, t1) ∗ ((s2, t2) ∗ p) = (s1, t1) ∗
{
s2 + t2p , if t2 = 1
s2 + t2p+ 1 , if t2 = c

=


s1 + t1(s2 + t2p) , if t1 = 1, t2 = 1
s1 + t1(s2 + t2p) + 1 , if t1 = c, t2 = 1
s1 + t1(s2 + t2p+ 1) , if t1 = 1, t2 = c
s1 + t1(s2 + t2p+ 1) + 1 , if t1 = c, t2 = c

=


s1 + s2 + p , if t1 = 1, t2 = 1
s1 + 1 , if t1 = c, t2 = 1
s1 + s2 + 1 , if t1 = 1, t2 = c
s1 + 1 , if t1 = c, t2 = c

We thus obtain the equality

((s1, t1).(s2, t2)) ∗ p = (s1, t1) ∗ ((s2, t2) ∗ p);

• the action ∗ is monoidal, as for an element p in S we have

(0, 1) ∗ p = 0 + 1p = id(p) = p.

This shows that SC satisfies the equational axioms of forest algebras.
In view of Lemma 1.1.5, by the universal property of the free forest

algebra A∆, there is a unique forest algebra homomorphism

#ConnectedParts : A∆ → SC

such that
#ConnectedParts(a�) = (1, c).
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Definition 1.2.8. In view of the forest algebra homomorphism in Example
1.2.7, #ConnectedParts, we define the number of connected parts of a forest and
a context as follows: for a forest h in the free forest algebra A∆, number of
connected parts of the forest h is

#ConnectedParts(h),

and for a context v in the free forest algebra A∆, where

#ConnectedParts(v) = (n, t),

number of connected parts of the context v is{
n+ 1 , if t = 1
n , if t = c.

Remark 1.2.9. For an element x in A∆, we denote the number of connected
parts by CP.

Remark 1.2.10. By Definition 1.2.8 and Definition 1.2.5, if we have s = h+ t
and h and t are non-trivial, then CP(h) < CP(s) and CP(t) < CP(s) and
also #Nodes(h) < #Nodes(s) and #Nodes(t) < #Nodes(s).

Example 1.2.11. In Proposition 1.2.3 let T be the trivial monoid and S
the powerset monoid of A, P (A), under union. Then SL = (S, S ∗ϕ T ) is a
forest algebra.

By the universal property of the free forest algebra A∆, there is a unique
forest algebra homomorphism

labels : A∆ → SL

such that
labels(a�) = ({a}, 1).

Definition 1.2.12. Let s be an element of the free forest algebra A∆, then
the set of labels of nodes of s is its image by the forest algebra homomorphism
labels in Example 1.2.11.

Remark 1.2.13. We will abuse notation slightly and denote both forest alge-
bra homomorphism from A∆ to SL and the set of labels of nodes by labels.

Example 1.2.14. In Lemma 1.2.2 let T be the monoid of natural num-
bers N under usual addition and S the monoid of natural numbers N under
operation max. Let the monoid T acts on the monoid S by a monoid ho-
momorphism

ϕ : T → End(S) via t 7→ (s 7→ t+ s).
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As the set V contains every element (s, t) ∈ S ∗ϕ T such that the equality
max{s, t + 0} = s holds, it implies that the inequality t ≤ s holds. So we
have

V = {(s, t) ∈ S ∗ϕ T | t ≤ s}.

Then Lemma 1.2.2 implies that SD = (S, V ) satisfies the equational axioms
of forest algebras.

By the universal property of the free forest algebra A∆, there is a unique
forest algebra homomorphism

depth : A∆ → SD

such that
depth(a�) = (1, 1).

Definition 1.2.15. In view of the forest algebra homomorphism depth in
Example 1.2.14, we define the depth of a forest and a context as follows: for
a forest h in the free forest algebra A∆, the depth of the forest h is depth(h),
and for a context v in the free forest algebra A∆, where depth(v) = (n1, n2),
the depth of the context v is n1.

Remark 1.2.16. In view of the forest algebra homomorphism depth, by the
way that we defined the action, for a context v in the free forest algebra A∆

we have
depth(v ∗ 0) = (n1, n2) ∗ 0 = max{n1, n2},

and as we assumed n1 ≥ n2, the depth of the context v is the depth of the
forest v ∗ 0.

Remark 1.2.17. We will abuse notation slightly and denote both forest al-
gebra homomorphism from A∆ to SD and the depth by depth.

For instance, the elements 0 and � of the free forest algebra A∆ have
depth 0.

Remark 1.2.18. If h1 and u1 are elements of A∆, such that h1 + u1 is an
element of A∆, then

depth(u1 + h1) = max{depth(h1), depth(u1)}.

Moreover, if x is an element of A∆ and a ∈ A, then depth(ax) = 1+depth(x).

Example 1.2.19. In Lemma 1.2.2 let T = {1, c} be the free idempotent
monoid and S the powerset monoid of A, P (A), under union. Let the monoid
T acts on the monoid S by a monoid homomorphism

ϕ : T → End(S)

1 7→ idS

c 7→ 0S
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Since the set V contains every element (s, t) ∈ S ∗ϕ T such that the equality
s ∪ t∅ = s holds, and for both cases t∅ = ∅, we have V = S ∗ϕ T .

Lemma 1.2.2 implies that (S, V ) satisfies the equational axioms of forest
algebras. Then SR = (S, S ∗ϕ T )/∼faith is a forest algebra.

By the universal property of the free forest algebra A∆, there is a unique
forest algebra homomorphism

roots : A∆ → SR

such that
roots(a�) = ({a}, c).

Definition 1.2.20. In view of the forest algebra homomorphism roots in
Example 1.2.19, we define the set of labels of roots of a forest and a context
as follows: for a forest h in the free forest algebra A∆, the set of labels of
roots of the forest h is roots(h), and for a context v in the free forest algebra
A∆, where roots(v) = (X, t), the set of labels of roots of the context v is X.

Remark 1.2.21. We will abuse notation slightly and denote both forest al-
gebra homomorphism from A∆ to SR and the set of labels of roots by roots.

Example 1.2.22. Over a finite alphabet A, let
n∑
i=1

ai be a formal non-

commuting sum of elements of A with n ∈ N. Define sets

H = {
n∑
i=1

ai | n ∈ N, ai ∈ A}

and

V = {
n∑
i=1

ai +�+

m∑
j=1

bj | n,m ∈ N, ai, bj ∈ A}.

The set S = (H,V ) is a subset of the free forest algebra A∆, and it is
closed under the basic operations in the free forest algebra.

Assume that {a, b} ⊆ A. Then, we show that S = (H,V ) is a forest
algebra.

Since S is closed under the basic operations in the free forest algebra
A∆, then (V, .,�) and (H,+, 0) are monoids, and S satisfies the equational
axioms of forest algebras. It remains to check that the action is faithful. Let

v =

n1∑
i1=1

ai1 +�+

m1∑
j1=1

bj1 and w =

n2∑
i2=1

a′i2 +�+

m2∑
j2=1

b′j2

be elements of V . Assume that v and w are such that for every h =
n∑
k=1

ck

in H, the equality v.h = w.h holds. From the definition of action, we have

v.h =

n1+n+m1∑
k=1

Pk and w.h =

n2+n+m2∑
k=1

Qk,
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together with the equality v.h = w.h, it implies that the equality n1 +m1 =
n2 +m2 holds.

If the equality n1 = n2 holds, then m1 = m2. And from the equality
v.h = w.h we get that, for every i in {1, . . . , n1} and j in {1, . . . ,m1}, the
equalities ai = a′i and bj = b′j hold. So, we have the equality v = w.

Now assume that the inequality n1 < n2 holds. Again, since for every
h in H the equality v.h = w.h holds, so we have, for every i in {1, . . . , n1},
the equality ai = a′i holds. And since for every h, the equality

h+

m2∑
j1=1

bj1 =

n2∑
i2=n1+1

a′i2 + h+

m2∑
j2=1

bj2

holds, so we can choose h = a or h = b. Therefore, we have a′n1+1 = a and
also a′n1+1 = b, which is a contradiction.

For the case n1 > n2, we just need to exchange the roles of v and w and
again we get to a contradiction. So, we have the equality v = w.

Now, assume that A = {a}, then S = (H,V ) is not a forest algebra.
Because v = a+� and w = �+ a are two different contexts, but for every

h =

n∑
i=1

a, we have the equality v.h = w.h, since both are equal to

n+1∑
k=1

a.

For the case |A| ≥ 2, by the universal property of the free forest algebra
A∆, there is a unique forest algebra homomorphism

ψ : A∆ → S,

such that the following diagram commutes

A //

  

A∆

ψ

��

S

Remark 1.2.23. Let A = {a, b} and S = (H,V ) be the forest algebra and
ψ be the forest algebra homomorphism in Example 1.2.22. In view of the
universal property of the free forest algebra the following diagrams commute:

A
ι1 //

ι2 $$

A∆

f

��

A //

��

A∆

ψ

��

(A \ {b})∆ S

where ι2 : A → (A \ {b})∆ is ι2(a) = ι1(a) and ι2(b) = �. Let i1 : S → A∆

and i2 : (A \ {b})∆ → A∆ be the natural injections. Then the mapping
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ϕ : S → S with ϕ = ψ ◦ i2 ◦ f ◦ i1 is a forest algebra homomorphism, since
ϕ is a composition of forest algebra homomorphism:

S
i1 //

ϕ

66A∆ f
// (A \ {b})∆ i2 // A∆ ψ

// S

The set T = ϕ(S) is a non-empty subset of S, in which by the forest algebra
homomorphism ψ, T is not a forest subalgebra of S.

The trivial forest algebra K ′ = {0,�} is a forest subalgebra of S, but in
view of the forest algebra homomorphism ψ, the set K = ϕ−1(K ′) is not a
forest subalgebra of S.

1.3 Elementary Properties

Lemma 1.3.1. In a forest algebra S = (H,V ), if h1, h2 ∈ H then the
following hold

h1 = h2 ⇔ h1 +� = h2 +� ⇔ �+ h1 = �+ h2.

Proof. If h1 = h2 then the equality h1 + h = h2 + h holds for all h ∈ H. By
properties of the forest algebra S, this is equivalent to (h1 +�)h = (h2 +�)h
for every h ∈ H, which yields h1 +� = h2 +�.

On the other hand, if h1 +� = h2 +�, then to get the result it is enough
to drop the � from contexts, which follows from (h1 + �)0 = (h2 + �)0,
that is h1 = h2.

In a similar way

h1 = h2 ⇔ �+ h1 = �+ h2.

Lemma 1.3.2. In a forest algebra S = (H,V ), the horizontal monoid H is
finite if and only if the vertical monoid V is finite.

Proof. First we will show that V finite implies H finite. By definition of
forest algebra for every h ∈ H, h + � ∈ V and also for h + � ∈ V , h =
(h+�)0 ∈ H, define

V1 = {h+� | h ∈ H} ⊆ V.

By Lemma 1.3.1, we showed that elements of V1 are in one to one corre-
spondence with elements of H. Indeed, the mapping h 7→ h+� is injective
on H. Since V is finite so is V1 as subset of V . Therefore H is finite.

For the converse,1 assume that H is finite. Since S is a forest algebra,
because of faithfulness property, every context completely determined by its
actions on all forests. So, the number of elements of V is bounded by the
number of functions from H to H, which is finite.

1We thank Prof. Igor Walukiewicz for this observation. Our original argument was
much more involved.
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Corollary 1.3.3. A forest algebra S = (H,V ) is finite if and only if H is
finite.

For a forest algebra S = (H,V ), the following mapping is the action of
the contexts on the left of the forest 0.

0 : V → H

v 7→ v0

Definition 1.3.4. A subset K of a forest algebra S = (H,V ) is called an
inverse zero action subset if, for every context v, v ∈ K if and only if v0 ∈ K.

Definition 1.3.5. Let h be a forest and v be a context in the free forest
algebra A∆. We say that h is a connected forest or a tree if we cannot write h
as a summation of two non-trivial forests. Also we say that v is a connected
context if we cannot write v as a summation of a context and a non-trivial
forest and vice versa.

Note that 0 and � are respectively a connected forest and a connected
context.

Lemma 1.3.6. Let h1 = t1 + · · · + tn and h2 = s1 + · · · + sm be sums of
non-trivial trees in the free forest algebra A∆. Then h1 = h2 if and only if
m = n and for every i = 1, . . . , n the equality si = ti holds.

Proof. The reverse implication is easy, we just need to sum equal trees.
Now, we show the direct implication. Recall that elements of the hor-

izontal set are finite unranked ordered trees and forests and respectively
t1 + · · · + tn and s1 + · · · + sm are the formal expressions for putting each
tree ti on the right side of the tree ti−1 for i = 2, 3, . . . , n and respectively
putting each tree sj on the right side of the tree sj−1 for j = 2, 3, . . . ,m. The
equality h1 = h2, since they are ordered forests, implies the componentwise
equality which is the equality ti = si for all i and the equality n = m.

Recall that a context v in the free forest algebra A∆ is a forest in which
exactly one leaf is the �. Hence v can be written uniquely as v = t1 +· · ·+tn
as a sum of non-trivial trees over the alphabet A ∪ {�}, in which exactly
one ti has the leaf �; we denote by C(v) this tree ti. So, every context v
of the free forest algebra is uniquely of the form H1 + C(v) +H2 where H1

and H2 are forests and C(v) is a tree over A ∪ {�}.

Lemma 1.3.7. Let v1 = H1 + C(v1) + H2 and v2 = S1 + C(v2) + S2 be
contexts in the free forest algebra A∆. Then v1 = v2 if and only if the
equalities H1 = S1, H2 = S2, and C(v1) = C(v2) hold.

Lemma 1.3.8. In the free forest algebra A∆, let a1 and a2 be elements of A.
Then the contexts a1� and a2� are equal if and only if the equality a1 = a2

holds.
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Proof. The direct implication is obtained by acting on the forest 0. The
reverse implication comes from the fact that, for every forest h, the equality
a1h = a2h holds.

For the free forest algebra A∆, every context v has a factorization of the
form:

v =
∏
i∈N

vi

where, for all k ∈ N,

vi = ai� for i = 2k
vi = hi,1 +�+ hi,2 for i = 2k + 1

with forests hi,1 and hi,2 in HA and ai ∈ A ∪ {0}, for ai = 0 let 0� = �,
such that if, for a positive integer k, a2k = 0, then for all j ≥ 2k, vj = �.
We show that this factorization is unique by iteration on the number of
nodes of C(v). There are forests h1 and h2 and a context C(v) such that
v = h1 + C(v) + h2. If C(v) = �, then result is immediate by Lemma 1.3.7
since we have (h1 + � + h2) as the factorization of v. Now, consider the
case C(v) 6= �, then C(v) = a�v1 and the product of (h1 + � + h2)a� by
the factorization of v1 will give the result, uniqueness of h1 and h2 is from
Lemma 1.3.7 and the uniqueness of a� is from Lemma 1.3.7 together with
the forest algebra homomorphism roots.

Definition 1.3.9. Let s and t be elements of a forest algebra S. We say
that t is a scattered divisor of s and denote it by t |s s, when t has a
decomposition of the form t1 . . . tn and s has a decomposition of one of the
following forms:

u1t1u2t2 . . . untn or u1t1u2t2 . . . untnun+1.

Note that, for some i’s we may have ui = �.
We say that t is a divisor of s, if s has one of the following decomposi-

tions:
u1tu2 or u1t.

In this case, we write t | s.

Remark 1.3.10. Let h be a forest and v be a context of the free forest algebra
A∆. Let n be the maximum integer for which a1 . . . an |s h with ai ∈ A for
all i ∈ {1, . . . , n}, i.e.:

n = max{m | a1 . . . am |s h, ai ∈ A (i = 1, . . . ,m)}.

In a similar way, let d be the maximum integer for which a1 . . . ad |s v0 with
ai ∈ A for all i ∈ {1, . . . , d}.

We claim that depth(h) = n and depth(v) = d.
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First, for a forest h in the free forest algebra A∆, we have h = h1+· · ·+hm
a sum of non-trivial connected forests. By Remark 1.2.18, there is a positive
integer i, such that depth(h) = depth(hi). As hi is a non-trivial connected
forest, then there is an element a1 ∈ A and a forest h1, such that hi =
a1�(h1), again by Remark 1.2.18, we have

depth(h) = depth(hi) = depth(a1�(h1)) = 1 + depth(h1).

Iterate the same argument for h1. Since #Nodes(h) is finite and

#Nodes(h) > #Nodes(h
1),

there is a sequence of elements a1, . . . , ak in A such that depth(h) = k and
a1 . . . ak |s h. We show that k is the maximum integer for which a1 . . . ak |s h
with ai ∈ A for all i ∈ {1, . . . , k}. Assume that n > k and b1 . . . bn |s h where,
for all i ∈ {1, . . . , n}, bi ∈ A. By applying the forest algebra homomorphism
depth, we have depth(h) ≥ n, which is a contradiction. This establishes the
claim depth(h) = n. By Remark 1.2.16, we have depth(v) = depth(v ∗ 0),
then the claim depth(v) = d, is a consequence of depth(v ∗ 0) = d.

Definition 1.3.11. Let S be a forest algebra. We say that an element x of S
is a subterm of an element y of S, if there exists an n-ary operation f , which
is a composition of basic operations, and there are elements t1, . . . , tn−1 in
S such that f(x, t1, . . . , tn−1) = y.

Lemma 1.3.12. Let A be a finite alphabet. For elements x1 and x in the
free forest algebra A∆, if x1 is a subterm of x then #Nodes(x1) ≤ #Nodes(x).

Proof. By definition of a subterm, there is an n-ary operation f , and there
are elements t1, . . . , tn−1 such that f(x1, t1, . . . , tn−1) = x. So, we have

#Nodes(f(x1, t1, . . . , tn−1)) = #Nodes(x).

Since #Nodes is a forest algebra homomorphism then we have

#Nodes(x) = #Nodes(x1) + #Nodes(t1) + · · ·+ #Nodes(tn−1),

which implies the result.

Lemma 1.3.13. Let A be a finite alphabet. For an element x in the free
forest algebra A∆, #Nodes(x) = 0 if and only if x is a trivial element.

Proof. If x is a trivial element, then #Nodes(x) = 0. Now, assume that
#Nodes(x) = 0 but x is a non-trivial element, then there is an element d�,
which is a subterm of x. By Lemma 4.1.7, we have 1 = #Nodes(d�) ≤ 0,
which is a contradiction.
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Chapter 2

Syntactic Congruence and
Pseudovarieties

An important ingredient in our profinite approach to the study of the pseu-
dovariety BSS is the syntactic congruence of a certain subset of a forest
algebra, which we introduce in this chapter. We also consider the notion of
a pseudovariety of finite forest algebras.

2.1 The Relation vK

Let S = (H,V ) be a forest algebra and K a subset of S. We take H ′ = K∩H
and V ′ = K∩V . We may define on S a relation vK= (σK , σ

′
K), the so-called

syntactic congruence of K, as follows:

• for h1, h2 ∈ H, h1 σK h2 if for all t, w, r ∈ V :

I. th1 ∈ K ⇐⇒ th2 ∈ K;

II. t(rh1 + w) ∈ K ⇐⇒ t(rh2 + w) ∈ K;

III. t(w + rh1) ∈ K ⇐⇒ t(w + rh2) ∈ K.

• for u, v ∈ V , u σ′K v if for all t, w ∈ V and h ∈ H:

I. tuh σK tvh;

II. tuw ∈ K ⇐⇒ tvw ∈ K.

The relation vK is defined only over elements of the same type, so for u ∈ H
and v ∈ V and vice versa, they are not related, which we indicate by writing
u 6vK v.

It is easy to check that σK and σ′K are equivalence relations.

Lemma 2.1.1. For a forest algebra S and a subset K of S, the equivalence
relations σK and σ′K are congruences with respect to the basic operations of
S.
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Proof. See Appendix A, Section A.1.

Lemma 2.1.1, guarantees that the quotient of the forest algebra S with
respect to equivalence vK is well defined. Note that the equational axioms
of forest algebras are preserved by taking quotients. If the quotient satisfies
the faithfulness property, then it is a forest algebra.

Proposition 2.1.2. Let S = (HS , VS) be a forest algebra and let K be either
a subset of HS or an inverse zero action subset of S, see Definition 1.3.4.
Then the quotient S/vK is a forest algebra.

Proof. We show that, if uh σK vh for every h ∈ H then u σ′K v. Since
uh σK vh then by definition we have tuh σK tvh for every t ∈ V . So, in
order to show that u σ′K v we just need to show that for every t and w in V
the following holds:

tuw ∈ K ⇐⇒ tvw ∈ K.

Assume that tuw ∈ K and K is an inverse zero action subset of S. Then
we have tuw0 ∈ K. As tuw0 σK tvw0, it follows that tvw0 ∈ K. Again
since K is an inverse zero action subset of S, we deduce that tvw ∈ K. This
shows that

tuw ∈ K ⇒ tvw ∈ K,

and the converse is obtained by interchanging the roles of u and v.
Now, assume that K is a subset of HS . Then the following holds:

tuw ∈ K ⇐⇒ tvw ∈ K,

due to the fact that K ∩ VS = ∅.

In the following definition we assume that K is a subset of a forest
algebra S such that the quotient S/vK is a forest algebra.

Definition 2.1.3. The syntactic forest algebra for K is the quotient of
S with respect to the equivalence vK , where the horizontal semigroup HK

consists of equivalence classes σK of forests in S, while the vertical semigroup
VK consists of equivalence classes σ′K of contexts in S.

The syntactic homomorphism

αK = (γK , δK) : S −→ S/vK

assigns to every element of S its equivalence class in (HK , VK).

Let K be a subset of S such that the quotient S/vK is a forest algebra,
then the set K is saturated by the congruence vK , i.e. u vK v and u ∈ K
implies v ∈ K. This means that α−1

K αK(K) = K.

Proposition 2.1.4. The syntactic congruence of K is the largest one that
saturates K.
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Proof. We show that, if ∝ is a congruence over S and K is a union of classes
of ∝, then s ∝ t implies s vK t. Let a and b be elements of HS , and let
t, r, w ∈ VS ; since a ∝ b and ∝ is a congruence, then the relations ta ∝ tb,
t(ra + w) ∝ t(rb + w) and t(w + ra) ∝ t(w + rb) hold. However, K is a
union of classes of ∝, therefore the elements in each of the pairs ta and tb,
t(ra+ w) and t(rb+ w), and t(w + ra) and t(w + rb) are either both in K
or both outside K. This is true for all t, r, w ∈ VS , thus a σK b.

Now, let a and b be elements of VS , and let t, r, w ∈ VS and h ∈ HS ; since
a ∝ b and ∝ is a congruence, then the relations tah ∝ tbh, t(rah + w) ∝
t(rbh + w), t(w + rah) ∝ t(w + rbh), and taw ∝ tbw hold. However, K
is a union of classes of ∝, therefore each pair tah and tbh, t(rah + w) and
t(rbh + w), t(w + rah) and t(w + rbh), and taw and tbw has either both
elements in K or both outside K. This is true for all t, r, w ∈ VS and h ∈ HS ,
thus a σ′K b.

For L ⊂ HA, Bojańczyk and Walukiewicz in [9], defined an equivalence
relation ∼L over the free forest algebra as follows:

h1 ∼L h2 ; ∀v ∈ V A, vh1 ∈ L⇔ vh2 ∈ L

v1 ∼L v2 ; ∀h ∈ HA, v1h ∈ L⇔ v2h ∈ L

Then they showed that∼L is a congruence relation. They defined the syntac-
tic forest algebra over a forest language L, which they denote it by A∆/∼L.

Lemma 2.1.5. For a forest language L ⊂ HA let K be the inverse zero
action subset of A∆ where K ∩HA = L. Then, the congruence relation ∼L
coincides with the congruence relation vK .

Proof. First, we show that v1 ∼L v2 implies v1 vK v2 for contexts v1, v2 ∈
V A. By the way the equivalence relation ∼L is defined and since ∼L is a
congruence relation, then for every h ∈ HA and every u ∈ V A, we have

uv1h ∈ L⇔ uv2h ∈ L.

Now, assume that there exist u,w ∈ V A such that uv1w /∈ VL but uv2w ∈ VL,
then by definition of inverse zero action subset uv1w0 /∈ L and uv2w0 ∈ L.
Let h = w0, then uv1h /∈ L and uv2h ∈ L. Which is in contradiction with
the assumption.

Conversely, that v1 vK v2 implies v1 ∼L v2 is immediate from the defi-
nition of vK .

Similarly, for forests h1, h2 ∈ HA, h1 vK h2 implies h1 ∼L h2.
Finally, we show that h1 ∼L h2 implies h1 vK h2. By definition of the

equivalence relation ∼L and since ∼L is a congruence relation, then for every
v ∈ V A, we have

vh1 ∈ L⇐⇒ vh2 ∈ L.
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Now, assume that there exist u, v and w in V A such that u(vh1 + w) /∈
K but u(vh2 + w) ∈ K, then by definition of inverse zero action subset
u(vh1 + w)0 /∈ L and u(vh2 + w)0 ∈ L. Let v′ = u(v + w0), then v′h1 /∈ L
and v′h2 ∈ L, which is in contradiction with the assumption. Similarly, we
can show that for all contexts u, v and w in V A, the following holds:

u(w + vh1) ∈ K ⇐⇒ u(w + vh2) ∈ K.

The following examples show that there are subsets K of A∆ such that
A∆/vK is a forest algebra even though K is neither a subset of HA nor an
inverse zero action subset of A∆.

Example 2.1.6. Over a finite alphabet A, let S be the free forest algebra
A∆ = (HA, V A) and K be the set of non-trivial elements of the form

n∑
i=1

ai +�+

m∑
j=1

bj with n,m ∈ N, ai, bj ∈ A.

It is easy to see that the quotient S/vK = (HK , VK) is a forest algebra and

HK = {{0},K ∗ 0, HA \ (K ∗ 0)},
VK = {{�},K, V A \K}.

Example 2.1.7. Over a finite alphabet A, let S be the free forest algebra
A∆ = (HA, V A), and K = (H,V ) with H = V ∗ 0 and V is the set of all
elements of the form

n∏
i=1

ai� with n ≥ 1 and ai ∈ A.

Let W be the set of elements of one of the forms

v.(�+ h) or v.(h+�) with v ∈ V ∪ {�} and h ∈ H.

Then by easy calculations we can show that the quotient S/vK is a forest
algebra and

HK = {{0}, H,HA \H},
VK = {{�}, V,W, V A \ (V ∪W )}.

Lemma 2.1.5 imply that we can adapt the results concerning the con-
gruence relation ∼L defined in [9], to the results with congruence relation
vK . The congruence relation vK is defined specially for proof of the analog
of Hunter’s Lemma 3.1.27 which is shown in the next chapter.
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2.2 On Pseudovarieties

Definition 2.2.1. A nonempty class V of finite forest algebras is called a
pseudovariety if the following conditions hold:

(i) if S ∈ V and B is a forest subalgebra of S, then B ∈ V;

(ii) if S ∈ V and S → B is an onto forest algebra homomorphism, then
B ∈ V;

(iii) V is closed under finite direct products.

We denote by F the pseudovariety of all finite forest algebras. Pseudova-
rieties are used in the next chapter, specially when we defined a metric on
the free forest algebra.

Let (HL, VL) be the syntactic forest algebra of a forest language L.

Definition 2.2.2. We say that a forest language L ⊆ HA is recognized by a
forest algebra homomorphism ϕ : A∆ → S into a forest algebra S = (HS , VS)
if there exists a subset P ⊆ HS such that L = ϕ−1P or, equivalently, if
L = ϕ−1ϕL.

For a forest algebra S, we say that a subset K of S is V-recognizable if

∃S′ ∈ V, ∃ϕ : S → S′ : K = ϕ−1ϕ(K).

By Proposition 2.1.4, the syntactic forest algebra of the forest language
L is the smallest forest algebra which recognizes L. Indeed for a subset K of
the free forest algebra A∆ such that the quotient A∆/vK is a forest algebra
the syntactic homomorphism αK recognizes K, and if α : A∆ → (H,V )
is any other forest algebra homomorphism recognizing K, then αK factors
through α; that is, there is a forest algebra homomorphism β : (H,V ) →
(H/σK , V/σ

′
K) such that βα = αK .

For a forest algebra S, a subset K of S is called recognizable if it is
F-recognizable.

Bojańczyk, Straubing and Walukiewicz established in 2007 a version of
Eilenberg’s correspondence theorem for forest algebras1.

Definition 2.2.3. Let V be a pseudovariety of forest algebras. For every
finite alphabet A define

V(A) = {L ⊆ HA | (HL, VL) ∈ V}.

We call V the variety of forest languages associated to V, and write

V→ V.
1Personal communication by Mikolaj Bojańczyk.
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Walukiewicz et al. in [7], showed that the mapping V→ V is one to one.
And also Walukiewicz et.al. in [7] showed that the following theorem holds.

Theorem 2.2.4. Let V be an operator assigning to each finite alphabet A
a family V(A) of A-languages. Then V is a variety of languages if and only
if the following conditions hold:

i.1 if L ∈ V(A), then HA \ L ∈ V(A);

i.2 if L1, L2 ∈ V(A), then L1 ∩ L2 ∈ V(A);

i.3 if L ∈ V(A) and v ∈ V A, then the set

v−1L = {w ∈ HA | vw ∈ L}

is in V(A);

i.4 if f : A∆ → B∆ is a forest algebra homomorphism and if L ∈ V(B),
then Lf−1 ∈ V(A).

We note that conditions i.1 and i.2 jointly assert that V(A) is closed under
boolean operations.

Let t be an element of the free forest algebra A∆. A piece of t is obtained
by removing nodes from t. A forest language L over A is called piecewise
testable if there exists n ≥ 0 such that membership of t in L is determined
by the set of pieces of t of size n or less. The size of a piece is the size of the
forest, i.e. the number of nodes [6].

The pseudovariety BSS of finite forest algebras is generated by all syn-
tactic forest algebras of piecewise testable forest languages.

2.2.1 Connection to a Pseudovariety of Finite Monoids

Let W be a pseudovariety of finite monoids. One can define a pseudovariety
of finite forest algebras HW consisting of all finite forest algebras whose
horizontal monoids are in W called the pseudovariety of horizontally-W
forest algebras. Also we can define a pseudovariety of finite forest algebras
VW which consisting of all finite forest algebras whose vertical monoids are
in W we call it the pseudovariety of vertically-W forest algebras. The pseu-
dovariety of all finite forest algebras whose horizontal and vertical monoids
are in W is called the pseudovariety of fully-W forest algebras and denoted
FW.

Recall that, for every forest algebra S = (H,V ), Lemma 1.3.1 shows
that the mapping h 7→ h + � is injective on H, that is an embedding of
the additive monoid H in the multiplicative monoid V . This implies the
following result.

Lemma 2.2.5. We have VW ⊂ HW.

Corollary 2.2.6. The pseudovariety of vertically-W forest algebras and of
fully-W forest algebras coincide (VW = FW).
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2.3 Conclusions

We introduced syntactic forest algebras of a subset of a forest algebra which
is a more natural extension of the well-known syntactic congruence for
monoids. By Lemma 2.1.5, one can easily translate results concerning ∼L
into results concerning vK . Our aim in considering the new congruence is
to prove the analog of Hunter’s Lemma 3.1.27 which is shown in the next
chapter. Pseudovarieties are introduced as a class of finite forest algebras
that is closed under taking subalgebras, onto homomorphic images and finite
direct products. Pseudovarieties are important when we define a metric on
the free forest algebra. We recall the theorem by Walukiewicz et.al. in [7],
which gives a one to one correspondence between a pseudovariety of forest
algebras and a variety of forest languages. As Salehi [27] puts it, most of
the interesting classes of algebraic structures are varieties, and similarly as
Walukiewicz et al. [7] put it, most of the interesting families of tree or string
languages studied in the literature turn out to be varieties of some kind.
The aforementioned variety theorem connects as a one-to-one correspon-
dence these interesting families to each other. For a variety of languages
there exists a characterization in terms of the structure of the syntactic for-
est algebra. Theorem 2.2.4 says that such a characterization exists, but it
will not give any information about the algebraic structure.

Also many classes of languages fail to be a variety. But we may still have
a characterization in terms of the syntactic homomorphism. As an example
of such a case, for each finite alphabet A consider the family V(A) of A-
languages consisting only of the forest language H of Example 2.1.7. Then
V is not a variety because it does not satisfy i.4, but we can still characterize
it in terms of the syntactic homomorphisms of these languages, see [7].2

By Lemma 2.2.5, for a pseudovariety W of finite monoids, we have
VW ⊂ HW.

2We did this individually but as it states in [7] is more convenient.
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Chapter 3

Metric Forest Algebras

A profinite forest algebra is a projective limit of finite forest algebras (which
are viewed as discrete topological forest algebras). Alternatively, a profinite
forest algebra may be defined as a compact forest algebra which, as a topo-
logical forest algebra, is residually finite. In particular, observe that a closed
forest subalgebra of a profinite forest algebra is necessarily profinite.

For a pseudovariety of finite forest algebras V, a profinite forest algebra
is said to be pro-V if it is residually in V. For each finite set A, there exists a
free pro-V forest algebra on A, which is denoted ΩAV. Up to forest algebra
isomorphism, it depends only on the cardinality |A| and not on the set A
itself so that we may sometimes write Ω|A|V instead of ΩAV. The forest

algebra ΩAV may be constructed by completion of the free forest algebra
A∆ with respect to a pseudo-ultrametric naturally associated with V.

For a pseudovariety of finite forest algebras V, we show that the com-
pletion of the free forest algebra A∆ with respect to the pseudo-ultrametric
associated with V exists and is a forest algebra.

In this chapter we adapt some of the results on metric semigroups in [2]
to the context of forest algebras.

3.1 Metrics Associated with a Pseudovariety of
Forest Algebras

For two elements u, v ∈ A∆ and a forest algebra B if for every forest algebra
homomorphism

ϕ : A∆ → B

the equality ϕ(u) = ϕ(v) holds, then we say that B satisfies the identity
u = v and we write B � u = v. For a pseudovariety of finite forest algebras
V, define:

r(u, v) = min {|B| | B ∈ V and B 2 u = v}
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and
d(u, v) = 2−r(u,v)

where we take min ∅ =∞ and 2−∞ = 0.
Since a finite forest algebra B has at least the identity elements � and

0, for all u, v ∈ A∆ we have r(u, v) ≥ 2 or, equivalently, d(u, v) ≤ 2−2.
Note that in the above definition every forest algebra homomorphism

ϕ : A∆ → B can be assumed to be onto.

Example 3.1.1. For every u ∈ HA and v ∈ V A, d(u, v) = 2−2. Indeed, for
every forest algebra homomorphism ϕ : A∆ → T FA, we have ϕ(u) 6= ϕ(v).
This means that r(u, v) = 2, whence d(u, v) = 2−2.

Definition 3.1.2. A function

d : X ×X → R≥0

is said to be a pseudo-ultrametric on the set X if the following properties
hold for all u, v, w ∈ X:

1. d(u, u) = 0;

2. d(u, v) = d(v, u);

3. d(u,w) ≤ max {d(u, v), d(v, w)}.

We then also say that X is a pseudo-ultrametric space.
If instead of Condition 3, the following weaker condition holds

4. d(u,w) ≤ d(u, v) + d(v, w) (triangle inequality),

then d is said to be a pseudo-metric on X, and X is said to be a pseudo-
metric space.

If the following condition holds:

5. d(u, v) = 0 implies u = v,

then we drop the prefix “pseudo”.

Proposition 3.1.3. Let V be a pseudovariety of finite forest algebras. The
function d is a pseudo-ultrametric on A∆.

Proof. Let u, v, w ∈ A∆. For every forest algebra homomorphism ϕ :
A∆ −→ B and B ∈ V, u = v implies ϕ(u) = ϕ(v) so

r(u, u) = min
{
|B| | B ∈ V and ∃ψ : A∆ −→ B : ψ(u) 6= ψ(u)

}
= min ∅ =∞,

⇒ d(u, u) = 2−∞ = 0.
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For every forest algebra homomorphism ϕ : A∆ −→ B and B ∈ V, the
inequalities ϕ(u) 6= ϕ(v) and ϕ(v) 6= ϕ(u) are equivalent, so

r(u, v) = min
{
|B| | B ∈ V and ∃ψ : A∆ −→ B : ψ(u) 6= ψ(v)

}
= min

{
|B| | B ∈ V and ∃ψ : A∆ −→ B : ψ(v) 6= ψ(u)

}
= r(v, u)

⇒ d(u, v) = 2−r(u,v) = 2−r(v,u) = d(v, u).

For showing d(u,w) ≤ max {d(u, v), d(v, w)}, it is enough to show that
the following inequality holds.

r(u,w) ≥ min {r(u, v), r(v, w)} (3.1)

If r(u,w) = ∞ then the inequality (3.1), is clear. Now suppose that n =
r(u,w) < ∞ and r(u,w) � min {r(u, v), r(v, w)}. Thus, r(u, v) > n and
r(v, w) > n. This means that for every B ∈ V with |B| ≤ n and for
every forest algebra homomorphism ϕ : A∆ −→ B, ϕ(u) = ϕ(v) by the first
of the preceding inequalities and ϕ(v) = ϕ(w) by the second one. Hence
ϕ(u) = ϕ(w), which contradicts the equality r(u,w) = n.

Properties (1)−(4) hold, so d is a pseudo-ultrametric and A∆ is a pseudo-
ultrametric space.

Property (5) may not hold for d. Let h1, h2 ∈ HA be two distinct forests
and let V be the pseudovariety of trivial forest algebras. Then, for every
forest algebra homomorphism ϕ : A∆ −→ T FA we have ϕ(h1) = ϕ(h2); so
d(h1, h2) = 0 but h1 6= h2.

Definition 3.1.4. A function f : (X, dX) −→ (Y, dY ) between two pseudo-
metric spaces is said to be uniformly continuous if the following condition
holds:

∀ε > 0 ∃δ > 0 ∀x1, x2 ∈ X , (dX(x1, x2) < δ =⇒ dY (f(x1), f(x2)) < ε).

Proposition 3.1.5. The basic operations are contractive:

d(O(u,w), O(v, z)) ≤ max {d(u, v), d(w, z)} .

In particular, the basic operations on A∆ are uniformly continuous.

Proof. By definition of the metric, the claim is equivalent to showing that

r(O(u,w), O(v, z)) ≥ min {r(u, v), r(w, z)} .

If either u and v, or w and z do not have the same type, then r(u, v) = 2
or r(w, z) = 2 and in both cases min {r(u, v), r(w, z)} = 2 and the above
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inequality becomes 2 ≤ r(O(u,w), O(v, z)), which is always true. We can
therefore assume that both pairs of elements u, v and w, z have the same
type. Let n1 = r(u, v) and n2 = r(w, z) and let n = min{n1, n2}. Then we
have:

∀B ∈ V , |B| < n ∀ ϕ : A∆ −→ B ,

{
ϕ(u) = ϕ(v)
ϕ(w) = ϕ(z)

(3.2)

From Equation (3.2), it follows directly that for every forest algebra homo-
morphism ϕ : A∆ −→ B,

O(ϕ(u), ϕ(w)) = O(ϕ(v), ϕ(z))

which implies the equality ϕ(O(u,w)) = ϕ(O(v, z)). We have thus shown
that the basic operations are contractive. Hence, they are uniformly contin-
uous.

By Lemma 1.3.1 and the fact that, for v1, v2 ∈ V , we have

v1 = v2 ⇒ v10 = v20,

we can easily see that:

Lemma 3.1.6. For h1, h2 ∈ HA and v1, v2 ∈ V A, we have the following
facts:

1. r(h1, h2) = r(h1 +�, h2 +�);

2. r(h1, h2) = r(�+ h1,�+ h2);

3. r(v1, v2) ≤ r(v10, v20).

Example 3.1.7. Let A be a finite alphabet and v1 = a+� and v2 = a� in
V A. In view of the forest algebra homomorphism roots in Example 1.2.19
and since the forest algebra SR is finite, we have

roots(a�) = ({a}, 1) and roots(a+�) = ({a}, 0),

which implies that there exists n ∈ N such that r(v1, v2) = n <∞.
On the other hand, v1 6= v2 but v10 = v20, so r(v10, v20) = ∞ > n. So

we may have strict inequality in Lemma 3.1.6.

Definition 3.1.8. For a (pseudo-ultra)metric d on a set X, u ∈ X, and a
positive real number ε, consider the open ball

Bε(u) = {v ∈ X | d(u, v) < ε} .

The point u is the center and ε is the radius of the ball.
A metric space that can be covered by a finite number of balls of any

given positive radius is said to be totally bounded .
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Proposition 3.1.9. Let V be a pseudovariety of finite forest algebras. The
pseudo-ultrametric space (A∆, d) is totally bounded.

Proof. For a given ε > 0, there exists n ∈ N such that 2−n < ε. Up to
forest algebra isomorphism, there are only finitely many forest algebras of
cardinality at most n. For such a forest algebra Ti = (Hi, Vi) in V, consider
all possible (there are only finitely many) forest algebra homomorphisms

ϕi,j : A∆ −→ Ti and let T =
∏
i,j

Ti and

ϕ : A∆ −→ T
w 7→ (ϕi,j(w))i,j

where T ∈ V.
For all t ∈ T , choose ut ∈ A∆, such that ϕ(ut) = t. For k ∈ A∆, if

t = ϕ(k) then ϕ(k) = ϕ(ut) which implies k ∈ Bε(ut). Thus

A∆ ⊆
⋃
t∈T

Bε(ut).

Hence, A∆ is totally bounded, since T = (H,V ) is finite.

Definition 3.1.10. A sequence {un}n in a (pseudo-ultra)metric space X is
said to be a Cauchy sequence, if

∀ε > 0 ∃N (m,n ≥ N =⇒ d(um, un) < ε) .

Note that every convergent sequence is a Cauchy sequence. The space
X is complete if every Cauchy sequence in X converges in X.

Recall that, if u, u ∈ A∆ have different types, then d(u,w) = 2−2. This
yields immediately the following result;

Lemma 3.1.11. A Cauchy sequence of elements of A∆, cannot have an
infinite number of elements of both HA and V A.

Definition 3.1.12. A (pseudo-)metric forest algebra is a forest algebra en-
dowed with a pseudo-metric d and that the basic operations are uniformly
continuous.

A metric forest algebra B is called complete if every Cauchy sequence in
B converges in B.

Remark 3.1.13. Note that, by [22, Theorem 1.15], every metric space has a
completion.

By Lemma 3.1.11, it is natural to consider the completion of A∆, de-
noted {AV, as the union of the completions of HA and V A which denoted
respectively {VHA and {VV A.

Since operations on A∆ are uniformly continuous, they do extend to
uniformly continuous operations on {AV. Hence, {AV satisfies naturally
the equational axioms of forest algebras.
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Proposition 3.1.14. There exists a complete metric forest algebra {AV
and a uniformly continuous forest algebra homomorphism ι : A∆ −→ {AV
with the following universal property: for every uniformly continuous forest
algebra homomorphism f : A∆ −→ B into a complete metric forest algebra
B, there exists a unique uniformly continuous forest algebra homomorphism
f̂ : {AV −→ B such that f̂ ◦ ι = f .

A∆ ι //

f
!!

{AV

f̂

��

A∆

ι

}}

η

��

B {AV
ι̂

44 D

η̂
ss

Moreover, if η : A∆ −→ D is another uniformly continuous forest algebra
homomorphism into a complete metric forest algebra with the above univer-
sal property, then the induced unique uniformly continuous forest algebra
homomorphisms ι̂ : {AV −→ D and η̂ : D −→ {AV are mutually inverse.

Proof. By [32, Theorem 24.4], the completion exists and ι(A∆) is dense in

{AV. And we have the following universal property of the completion {AV
of A∆ as a metric space.

For every uniformly continuous forest algebra homomorphism f : A∆ →
B of A∆ into a complete metric forest algebra B, there exists a unique lifting
of f to a uniformly continuous map f̂ : {AV→ B making the diagram

A∆ ι //

f
""

{AV

f̂
��

B

(3.3)

commute. Up to forest algebra isomorphism, the completion of A∆ is the
unique metric forest algebra satisfying this property. Therefore we just need
to check that ι and f̂ are forest algebra homomorphisms.

Note that for every element x in the completion {AV there is a sequence
{xn}n of elements of A∆ such that lim ι(xn) = x.

We claim that the mapping ι respects basic operations of forest algebra.
For every x, y ∈ {AV, since ι(A∆) is dense in {AV, there are sequences {xn}n
and {yn}n of elements of A∆ such that lim ι(xn) = x and lim ι(yn) = y. By
using the fact that ι and basic operations are uniformly continuous, we have

limO(ι(xn), ι(yn)) = O(lim ι(xn), lim ι(yn)) = O(x, y)

and
lim ι(O(xn, yn)) = ι(limO(xn, yn)) = O(x, y).
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Therefore the equality lim ι(O(xn, yn)) = O(lim ι(xn), lim ι(yn)) holds. So ι
respects basic operations of forest algebra.

We show that {AV is a forest algebra. Consider elements u, v ∈ {VV A

be such that for every element h ∈ {VHA the equality uh = vh holds.
As u, v ∈ {VV A and for all h with h ∈ {VHA, consider sequences {un}n,
{vn}n and {hn}n, sequences of elements of A∆, such that u = lim ι(un),
v = lim ι(vn) and h = lim ι(hn). Since the equality uh = vh holds, we have
lim ι(un)ι(hn) = lim ι(vn)ι(hn) which implies the equality lim ι(unhn) =
lim ι(vnhn). We show that for every ε > 0, there is a positive integer N such
that for all n ≥ N the inequality d(un, vn) < ε holds.

The equality us = vs holds for all s in HA, which implies the equality
lim ι(uns) = lim ι(vns), that is for every positive integer m there is a positive
integer M such that for all n ≥ M the inequality d(uns, vns) < 2−m holds.
By definition of d, for every forest algebra B in V such that |B| ≤ m and
every forest algebra homomorphism

ϕ : A∆ → B

the equality ϕ(uns) = ϕ(vns) holds. Since B is a forest algebra and

ϕ(un)ϕ(s) = ϕ(vn)ϕ(s),

we have ϕ(un) = ϕ(vn) which implies that d(un, vn) < 2−m. Hence, the
equality u = v holds.

By assumption, since f is a forest algebra homomorphism, for all ele-
ments x, y ∈ A∆ and basic operation O(x, y), the following equality holds

f(O(x, y)) = O(f(x), f(y)).

Now, we will show that f̂ respects basic operations of forest algebras.
For x, y ∈ {AV, if O(x, y) be a basic operation in the forest algebra, then
by using the fact that f̂ and basic operations are uniformly continuous, f is
a forest algebra homomorphism and Diagram (3.3), commutes, we have the
following:

f̂(O(x, y)) = f̂(lim ι(O(xn, yn)))

= lim f̂(ι(O(xn, yn)))

= lim f(O(xn, yn))

= limO(f(xn), f(yn))

= O(lim f(xn), lim f(yn))

= O(lim f̂(ι(xn)), lim f̂(ι(yn)))

= O(f̂(lim ι(xn)), f̂(lim ι(yn)))

= O(f̂(x), f̂(y)).
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Recall that a Hausdorff space is a topological space in which distinct
points have disjoint neighbourhoods. The Hausdorff completion of a pseudo-
metric space X is a complete metric space X ′ together with a uniformly
continuous map ιX : X → X ′ such that ιX(X) is dense in X ′, and for every
uniformly continuous map f from X to a complete metric space X ′′ there
is a unique uniformly continuous map g : X ′ → X ′′ such that f = g ◦ ιX . In
view of [31, Theorem 19.36], such a completion always exists. The Hausdorff
completion of the ultrametric space (A∆, d), is denoted by ΩAV. In view of
the proof of Proposition 3.1.14, ΩAV is a forest algebra.

Definition 3.1.15. A subset of a metric space is clopen if it is both closed
and open.

Definition 3.1.16. A metric space is said to be zero-dimensional if every
open set is a union of clopen subsets.

Definition 3.1.17. A topological forest algebra is a forest algebra which is
also a topological space, and whose operations are uniformly continuous.

Recall that a metric space is compact if every sequence admits some con-
vergent subsequence. Equivalently, every covering by open subsets contains
a finite covering.

Definition 3.1.18. A compact forest algebra is a topological forest algebra
whose topology is compact and Hausdorff. Finite forest algebras are viewed
as topological forest algebras under the discrete topology.

Note that a metric forest algebra S = (HS , VS) is compact if and only if
HS and VS are compact.

Lemma 3.1.19. Let S = (H,V ) be an arbitrary metric forest algebra with
uniformly continuous basic operations, then H is compact if and only if V
is compact.

Proof. (⇒) Assume that H is compact. Since the basic operations are uni-
formly continuous, the following mapping is onto uniformly continuous:

( 0) : V → H

v 7→ v0

Hence, V = ( 0)−1(H) is compact, as it is the inverse image of the compact
set H.

(⇐) Assume that V is compact. Let H ⊆
⋃
α∈Γ

Bα be an open covering

for H. Since the mapping ( 0) is onto uniformly continuous,

V ⊆
⋃
α∈Γ

( 0)−1(Bα)
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is an open covering for V . Since, by assumption, V is compact, it admits a
finite open covering

V ⊆
n⋃
i=1

( 0)−1(Bi).

so, we have

( 0)(V ) ⊆ ( 0)(
n⋃
i=1

( 0)−1Bi).

Hence, as 0 is onto we have H ⊆
n⋃
i=1

Bi.

Lemma 3.1.20. Let V be a pseudovariety of finite forest algebras. If B ∈
V, then every forest algebra homomorphism f : A∆ −→ B is uniformly
continuous.

Proof. Suppose that u, v ∈ A∆ are such that both have the same type with
d(u, v) < 2−|B|. By definition, d(u, v) = 2−r(u,v), where

r(u, v) = min{|C| | C ∈ V and ∃g : A∆ −→ C : g(u) 6= g(v)}.

So for d(u, v) < 2−|B| we have

min{|C| | C ∈ V and ∃g : A∆ −→ C : g(u) 6= g(v)} > |B|.

Hence, for every g : A∆ −→ B and every ε > 0, we have d(g(u), g(v)) = 0 <
ε, since g(u) = g(v). Thus, every forest algebra homomorphism f : A∆ −→
B into B ∈ V is uniformly continuous.

For every uniformly continuous forest algebra homomorphism f : A∆ −→
S, by Proposition 3.1.14, there exists a unique uniformly continuous forest
algebra homomorphism f̂ : ΩAV −→ S such that the following diagram
commutes:

A∆ ι //

f
''

{AV = ΩAV

f̂
��

S

Let u, v ∈ ΩAV and S ∈ V. We write S |= u = v if, for every uniformly
continuous forest algebra homomorphism f : A∆ −→ S, the equality f̂(u) =
f̂(v) holds, and we then also say that S satisfies u = v.

For elements u, v ∈ ΩAV, the formal equality u = v in ΩAV is called a
V-pseudoidentity .
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Proposition 3.1.21. Let u, v ∈ ΩAV and S ∈ V. If u = limun and
v = lim vn, then

(S |= u = v) ⇐⇒ (∃N > 0 ∀n ≥ N , S |= un = vn) . (3.4)

Proof. (⇒) Suppose that S |= u = v. For every uniformly continuous
forest algebra homomorphism f : A∆ −→ S, the equality f̂(u) = f̂(v)
holds. As we assumed that u = lim ι(un) and v = lim ι(vn), we have
f̂(lim ι(un)) = f̂(lim ι(vn)), whence lim f̂(ι(un)) = lim f̂(ι(vn)) since f̂ is
uniformly continuous.

Since the equality lim f̂(ι(un)) = lim f̂(ι(vn)) holds, for every positive
integer m there is a positive integer M such that for all n ≥M the inequality
d(f̂(ι(un)), f̂(ι(vn))) < 2−m holds. By definition of d, for every forest algebra
B in V such that |B| ≤ m and every forest algebra homomorphism

ϕ : A∆ → B

the equality ϕ(un) = ϕ(vn) holds. Let m > |S|. Indeed, there exists N > 0
such that, for all n ≥ N , f̂(ι(un)) = f̂(ι(vn)) which is equivalent to f(un) =
f(vn). Hence, we have S |= un = vn.

(⇐) Suppose that there exists N > 0 such that, for all n ≥ N , we have
S |= un = vn. So for every uniformly continuous forest algebra homomor-
phism

f : A∆ −→ S

and for all n ≥ N , the equality f(un) = f(vn) holds, which yields that
the equality f̂(un) = f̂(vn) holds; hence, so does the equality lim f̂(un) =
lim f̂(vn). We assumed that u = limun and v = lim vn. Since f̂ is uni-
formly continuous, the equality f̂(limun) = f̂(lim vn) holds, and so does the
equality f̂(u) = f̂(v). Therefore, we have S |= u = v.

Remark 3.1.22. For elements x and y in ΩAV consider sequences {xn}n and
{yn}n of elements of A∆ such that x = lim ι(xn) and y = lim ι(yn), then
d(x, y) = lim d(xn, yn). This implies that for elements x′ and y′ in A∆, as
we have ι(x′) and ι(y′) are elements of ΩAV and constant sequences {x′}n
and {y′}n of elements of A∆ are such that x′ = lim ι(x′) and y′ = lim ι(y′),
we have d(ι(x′), ι(y′)) = lim d(x′, y′) = d(x′, y′).

Proposition 3.1.23. For u, v ∈ ΩAV, we have d(u, v) = 2−r(u,v), where

r(u, v) = min{|B| : B ∈ V and B 6|= u = v}.

Proof. For given u, v ∈ ΩAV, with u 6= v, there exists m ∈ N such that
d(u, v) ≥ 2−m.

Consider {un}n and {vn}n, sequences of elements of A∆, such that u =
lim ι(un) and v = lim ι(vn). There is a positive integer N such that, for
every n ≥ N ,

d(u, ι(un)) < 2−m and d(v, ι(vn)) < 2−m.
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Since d(u, v) ≥ 2−m, by Remark 3.1.22, we have for all n ≥ N , d(un, vn) =
d(ι(un), ι(vn)) ≥ 2−m.

This shows that, for every B ∈ V with |B| < m, the identity un = vn
fails for all sufficiently large n, and therefore by Proposition 3.1.21, we have
B 6|= u = v.

We have thus shown that d(u, v) ≥ 2−m implies r(u, v) ≤ m.
To complete the proof, we should show that r(u, v) ≤ m implies d(u, v) ≥

2−m. By contraposition, we will show that d(u, v) < 2−m implies r(u, v) >
m.

For given u, v ∈ ΩAV, with u 6= v, let m ∈ N be such that d(u, v) < 2−m.
Such an m exists because we have at least m = 2.

As before, consider sequences {un}n and {vn}n of elements of A∆ such
that u = lim ι(un) and v = lim ι(vn). Then there is a positive integer N
such that for n ≥ N ,

d(u, ι(un)) < 2−m and d(v, ι(vn)) < 2−m.

Since d(u, v) < 2−m, by Remark 3.1.22, for all n ≥ N ,

d(un, vn) = d(ι(un), ι(vn)) < 2−m.

Hence, for every S ∈ V with |S| ≤ m, there is M ∈ N large enough such
that for all n ≥ M , S |= un = vn. So for every S ∈ V with |S| ≤ m, by
Proposition 3.1.21 and Remark 3.1.20, S |= u = v. Therefore r(u, v) > m.

We have thus established the claim that d(u, v) < 2−m implies r(u, v) >
m.

Proposition 3.1.24. In a metric space X we have the following:

1. If X is a totally bounded pseudo-ultrametric space, then its completion
is also totally bounded.

2. If X is a totally bounded complete metric space, then X is compact.

Proof. See [16, Corollary 15.3.6 and Theorem 15.4.1].

Lemma 3.1.25. Let K = (H ′, V ′) be an inverse zero action subset of a
compact metric forest algebra S = (H,V ). Then H ′ is a clopen subset of H
if and only if V ′ is a clopen subset of V .

Proof. Assume that H ′ is a clopen subset of H. Since the action of the
contexts on the left of the forest 0 is uniformly continuous the set V ′ = {v ∈
V | v0 ∈ H ′} is clopen.

Now assume that V ′ is a clopen subset of V . Since V is a compact metric
space, V ′ is compact. The mapping 0 : V → H is uniformly continuous so
H ′ = ( 0)(V ′) is compact, whence H ′ is closed. We just need to show that
H ′ is open. Since V is compact and V ′ is open, the complement V ′c of V ′
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in V is closed, whence it is compact. So H ′′ = ( 0)(V ′c) is compact thus
it is closed. By the way that we define H ′′ and H ′ and since 0 is an onto
uniformly continuous mapping, it follows that H ′′ is the complement of H ′

in H. As H ′′ is closed, we conclude that H ′ is open.

Corollary 3.1.26. An inverse zero action subset K = (H ′, V ′) of a compact
metric forest algebra S = (H,V ) is clopen if and only if H ′ is clopen.

Lemma 3.1.27. (Similar to Hunter’s Lemma) Let K be a clopen inverse
zero action subset of a compact and zero-dimensional metric forest algebra
S. Then there is a continuous forest algebra homomorphism ψ : S → T into
a finite forest algebra T such that K = ψ−1 ◦ ψ(K).

Proof. It suffices to show that the classes of the syntactic congruence of K
are open. Then there are only finitely many of them since S is a compact
forest algebra. So that S/vK = (H/σK , V/σ

′
K) is a finite forest algebra and

the natural mapping S → S/vK is a continuous forest algebra homomor-
phism.

We want to show that, for a sequence {un}n of elements of S which
converge to an element u, all but finitely many terms in the sequence are
vK-equivalent to u. By Lemma 3.1.11, it suffices to consider the cases
{un} ⊂ H and {un} ⊂ V .

If {un} ⊂ H then we will show that:

∃N such that ∀n > N we have un σK u.

And if {un} ⊂ V , then we will show that:

∃N such that ∀n > N we have un σ
′
K u.

In both cases, we argue by contradiction, assuming that there is a subse-
quence consisting of terms which fails the above property. We may as well
assume that so does the original sequence. In other words, we can assume
that {un}6vKu.

Since {un}n → u, by Lemma 3.1.11, we may assume that un and u have
the same type.

If {un} ⊂ H, then for each n there are tn, rn, wn ∈ V such that at least
one of the following conditions does not hold:

I. tnun ∈ K ⇐⇒ tnu ∈ K;

II. 1. tn(rnun + wn) ∈ K ⇐⇒ tn(rnu+ wn) ∈ K;

2. tn(wn + rnun) ∈ K ⇐⇒ tn(wn + rnu) ∈ K.

So there is a subsequence for which the same condition among these three
does not hold. For each n, we denote by P (un, tn, rn, wn) the term in the
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left side of the above statement which fails and P (u, tn, rn, wn) the related
one from the right side.

Thus, there exists {nk} such that

P (unk
, tnk

, rnk
, wnk

) ∈ K 6⇔ P (u, tnk
, rnk

, wnk
) ∈ K.

Since K is clopen, we may as well assume that P (unk
, tnk

, rnk
, wnk

) ∈ K
and P (u, tnk

, rnk
, wnk

) 6∈ K. Since S is compact, we may assume that the
following limits exist in S:

lim tnk
= t , limwnk

= w , lim rnk
= r.

Then we have

P (u, t, w, r) = limP (unk
, tnk

, wnk
, rnk

) = limP (u, tnk
, wnk

, rnk
).

Since K is open and we assumed that the sequence

{P (u, tnk
, wnk

, rnk
)}nk

takes it values in the complement of K, we have p(u, t, w, r) /∈ K. And since
the sequence

{P (unk
, tnk

, wnk
, rnk

)}nk

takes its values in K, we have p(u, t, w, r) ∈ K. So, P (u, t, w, r) must belong
to both K and its complement, which is a contradiction.

If the sequence {un} is contained in V , then, in a similar way to the
preceding case, the is a positive integer N , large enough, such that for every
n ≥ N we have un σ

′
K u.

Hence, vK-classes are open.

In view of proof of Lemma 3.1.27, we get the following result.

Corollary 3.1.28. Let K be a clopen inverse zero action subset of a compact
zero-dimensional metric forest algebra S. The following statements hold:

• The classes of the syntactic congruence of K are open;

• S/vK is a forest algebra, then since S is compact we can conclude that
S/vK is finite;

• The natural mapping S → S/vK is a continuous forest algebra homo-
morphism.

Lemma 3.1.29. Let s and t be two distinct forests in a compact and zero-
dimensional forest algebra S = (H,V ). Then, there is a clopen inverse zero
action subset K which separates s and t.

Furthermore, the quotient forest algebra homomorphism i : S → S/vK
sends s and t to two distinct points.
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Proof. By zero-dimensionality, s and t may be separated by a clopen subset
H ′ ⊆ H in the sense that s lies in H ′ and t does not. Let V ′ =

⋃
h∈H′ Vh.

By Lemma 3.1.25, the inverse zero action subset K = (H ′, V ′) is clopen and
it is such that s lies in K and t does not. Since the syntactic congruence
vK saturates K, the congruence classes of s and t are distinct, that is the
quotient forest algebra homomorphism i : S → S/vK sends s and t to two
distinct points.

Theorem 3.1.30. A zero-dimensional and compact metric forest algebra is
residually finite.

Proof. We show that for any given two distinct points s, t ∈ S, there is
a continuous forest algebra homomorphism ρ : S → T into a finite forest
algebra T such that ρ(s) 6= ρ(t).

For any given distinct points s, t ∈ S exactly one of the following condi-
tions holds:

1. s and t have different types;

2. s, t ∈ H;

3. s, t ∈ V with s0 6= t0;

4. s, t ∈ V with s0 = t0.

If s and t have different types then there is a continuous forest algebra
homomorphism η : S → T FA into the trivial forest algebra T FA which
maps forests to 0 and contexts to �. So η(s) 6= η(t).

For s, t ∈ H by Lemma 3.1.29, there is a clopen inverse zero action subset
K which separates them and i : S → S/vK sends s and t to two distinct
points. Hence, to prove that S is residually finite, it suffices to show that
S/vK is finite and i is continuous, which is the result of Corollary 3.1.28.

Now assume that s, t ∈ V with s0 6= t0. By Lemma 3.1.29, there is a
clopen inverse zero action subset K ′ that separates s0 and t0 and i : S →
S/∼K′ sends s0 and t0 to two distinct points and, therefore, so does with s
and t. Now, Corollary 3.1.28, shows that S/∼K′ is finite and i is continuous.

Finally for s, t ∈ V with s0 = t0. Since s 6= t and S is a forest algebra,
there is a forest h ∈ H such that sh 6= th. For every w ∈ Vh we have sw 6= tw,
because otherwise, swh′ = twh′ for every h′ ∈ H; in particular, for h′ = 0
we have sw0 = tw0, which is in contradiction with sh 6= th. So, for distinct
contexts s and t, there is a context w such that sw 6= tw with sw0 6= tw0.
Again, by Lemma 3.1.29, there is a clopen inverse zero action subset K ′′

such that sw0 ∈ K ′′ and tw0 6∈ K ′′. As K ′′ is an inverse zero action subset
of S, we have sw ∈ K ′′ and tw /∈ K ′′. Since the syntactic congruence ∼K′′
saturates K ′′, the congruence classes of sw and tw are distinct, that is the
quotient forest algebra homomorphism ϕ : S → S/∼K′′ sends sw and tw to
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two distinct points. We have ϕ(s) 6= ϕ(t) because, since ϕ(w) ∈ VS/∼K′′
and

ϕ is a forest algebra homomorphism; therefore if ϕ(s) = ϕ(t) then

ϕ(sw) = ϕ(s)ϕ(w) = ϕ(t)ϕ(w) = ϕ(tw)

which is a contradiction. The result of Corollary 3.1.28, gives that S/∼K′′
is finite and ϕ is continuous.

Definition 3.1.31. Fix a set A, and consider the category of A-generated
topological forest algebras whose objects are the mappings A → S into
topological forest algebras whose images generate dense subalgebras, and
whose morphisms θ : ϕ → ψ, from ϕ : A → S to ψ : A → T , are given by
continuous forest algebra homomorphisms θ : S → T such that θ ◦ ϕ = ψ.
Now, consider a projective system in this category, given by a directed set
I of indices, for each i ∈ I an object ϕi : A → Si in our category of A-
generated topological forest algebras and, for each pair i, j ∈ I with i ≥ j a
connecting morphism ψi,j : ϕi → ϕj such that the following conditions hold
for all i, j, k ∈ I:

• ψi,i is the identity morphism on ϕi;

• if i ≥ j ≥ k then ψj,k ◦ ψi,j = ψi,k.

The projective limit of this projective system is an A-generated topological
forest algebra Φ : A→ S together with morphisms Φi : Φ→ ϕi such that for
all i, j ∈ I with i ≥ j, ψi,j ◦ Φi = Φj and, moreover, the following universal
property holds:

For any A-generated topological forest algebra Ψ : A → T and
morphisms Ψi : Ψ → ϕi such that for all i, j ∈ I with i ≥ j,
ψi,j ◦ Ψi = Ψj there exists a morphism θ : Ψ → Φ such that
Φi ◦ θ = Ψi for every i ∈ I.

Fix a set A. Let V be a pseudovariety of finite forest algebras. Assume
that a directed set I of indices, a projective system (Si)i∈I of A-generated
forest algebras in V, and onto forest algebra homomorphisms ϕi,j : Si → Sj
for each pair i, j ∈ I with i ≥ j are given. Consider the subset of the
direct product

∏
i∈I Si consisting of all those (si)i∈I such that si ∈ Si and

ϕi,j(si) = sj whenever i ≥ j. Let (si)i∈I and (s′i)i∈I be elements of S andO is
a basic operation such that O(sj , s

′
j) is defined for some j ∈ I, see Definition

1.1.7. Note that, since the ϕi,j ’s are forest algebra homomorphisms, (si)i∈I ∈∏
i∈I HSi if and only if there is a j ∈ I such that sj ∈ HSj . So, O is a

basic operation such that O(si, s
′
i) is defined for every i ∈ I. We claim that

O((si)i∈I , (s
′
i)i∈I) = (O(si, s

′
i))i∈I is also an element of S. Since ϕi,j(si) = sj

and ϕi,j(s
′
i) = s′j whenever i ≥ j and ϕi,j is a forest algebra homomorphism,

the following equalities hold

ϕi,j(O(si, s
′
i)) = O(ϕi,j(si), ϕi,j(s

′
i)) = O(sj , s

′
j).
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Hence, S is a subalgebra of the direct product
∏
i∈I Si.

Remark 3.1.32. Let sj be an element of an Sj with j ∈ I. Since Sj is finite
and A-generated, there is an element w in the free forest algebra A∆ which
maps to sj under the homomorphism induced by the generating mapping.
Then the image of w in S maps to sj under the j-component projection
S → Sj . Hence, there is an element (si)i∈I of S with the j-component equal
to sj . Therefore, the natural projection S → Sj is onto.

We claim that S is a forest algebra. We only need to check the faith-
fulness property of S. Let v = (vi)i∈I and w = (wi)i∈I be elements of VS
such that for all h = (hi)i∈I in HS the equality vh = wh holds. Since the
restriction of the natural projection S → Sj to the horizontal part is onto,
the equality vh = wh implies that the equality vihi = wihi holds for all
hi ∈ HSi and every i ∈ I. Since Si is a forest algebra, then the equality
vi = wi holds for every i ∈ I. Hence, (vi)i∈I = (wi)i∈I . Therefore, S is a
forest algebra.

We claim that the mapping Φ : A → S given by Φ(a) = (ϕi(a))i∈I is
such that Φ(A) generates a dense subalgebra T of S. We want to find an
approximation (ti)i∈I ∈ T to the element (si)i∈I of S such that for every j,
tij = sij . Since the system is projective, to find (ti)i∈I ∈ T , take k ∈ I such
that k ≥ i1, . . . , in. Then by Remark 3.1.32, there is an element w ∈ A∆

which represents the element sk. This element w then represents an element
(ti)i∈I of T which is an approximation as required.

Now, assume that T is an A-generated topological forest algebra and
that the forest algebra homomorphisms πi : T → Si are such that for all
i, j ∈ I with i ≥ j, ϕi,j ◦ πi = πj . Define a mapping ϕ : T → S with
ϕ(t) = (πi(t))i∈I . We show that ϕ is a forest algebra homomorphism. For
elements x and y in T the following equalities hold:

ϕ(O(x, y)) = (πi(O(x, y)))i∈I

= (O(πi(x), πi(y)))i∈I

= O((πi(x))i∈I , (πi(y))i∈I)

= O(ϕ(x), ϕ(y)).

Hence, S has the required universal property and therefore it is the projective
limit of the projective system (Si)i∈I .

Definition 3.1.33. Fix a set A. A profinite forest algebra is defined to be a
projective limit of a projective system of A-generated finite forest algebras.
And for a pseudovariety V of finite forest algebras a pro-V forest algebra is
defined to be a projective limit of a projective system of A-generated finite
forest algebras in V.

Hence, a profinite forest algebra is a pro-F forest algebra.
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Theorem 3.1.34. Let V be a pseudovariety of finite forest algebras and A
be a finite set. An A-generated compact forest algebra S is a pro-V forest
algebra if and only if S is residually in V as a topological forest algebra.

Proof. Assuming that S is an A-generated compact pro-V forest algebra,
there are a directed set I of indices, a projective system (Si)i∈I of A-
generated finite forest algebras in V, and onto continuous forest algebra
homomorphisms ϕi,j : Si → Sj for each pair i, j ∈ I with i ≥ j, such that S
is its projective limit. By the above construction, the projective limit is the
forest subalgebra of the direct product

∏
i∈I Si consisting of all those (si)i∈I

such that si ∈ Si and ϕi,j(si) = sj whenever i ≥ j. Note that, if (si)i∈I is in
H∏

i∈I Si
, then for every i ∈ I, si ∈ HSi and similarly for the vertical part.

By construction of the projective limit, we conclude that S is residually in
V.

Conversely, suppose that an A-generated compact forest algebra S is
residually in V. Take a set D that contains all the A-generated elements
of V up to forest algebra isomorphism and consider the set I of all onto
continuous forest algebra homomorphisms ϕ : S → T with T ∈ D and order
them by letting ϕ ≥ ψ for another continuous forest algebra homomorphism
ψ : S → U if there is a forest algebra homomorphism θ : T → U such that
θ ◦ ϕ = ψ. Note that I is a directed set: two onto continuous forest algebra
homomorphisms ϕ : S → T and ψ : S → U induce a continuous forest alge-
bra homomorphism λ : S → T ×U in which if we replace the direct product
T ×U by a member of D isomorphic to the image of λ we obtain a member
of I which is above both ϕ and ψ. We thus obtain a projective system of for-
est algebra homomorphisms between A-generated members of V. Let S′ be
its A-generated projective limit. We claim that S′ and S are isomorphic as
topological forest algebras. The forest algebra homomorphisms ϕ : S → T
in I induce a continuous forest algebra homomorphism Φ from S into the
direct product of all the T ’s which by construction takes its values in S′.
Since S is compact, Φ is a closed mapping. Since S is residually in V, Φ is
injective.

It remains to show that Φ is onto. Given s′ = (tϕ)ϕ∈I in S′, for each
ϕ ∈ I the closed set ϕ−1(tϕ) is nonempty. Note that, if s′ ∈ HS′ , then
for every ϕ ∈ I, tϕ ∈ Hϕ(S) and similarly for the vertical part. The fact
that I is directed and the given family belongs to S′ implies that any finite
intersection of such closed subsets is still nonempty. By compactness of S,
we deduce that there is some s ∈

⋂
ϕ∈I ϕ

−1(tϕ) and for such s we have
Φ(s) = s′. Hence, Φ is indeed onto.

Corollary 3.1.35. The forest algebra ΩAV is a pro-V forest algebra.

Proof. Theorem 3.1.30 together with Theorem 3.1.34, imply that the zero-
dimensional and compact metric forest algebras are profinite. Since by
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Proposition 3.1.14, ΩAV is an A-generated free forest algebra as a topo-
logical forest algebra.

We just need to show that ΩAV is zero-dimensional. Let x ∈ HΩAV. It

suffices to show that the open ball Bε(x) with ε < 2−2 contains some clopen
subset which contains x. Let y ∈ HΩAV \Bε(x). There is a positive integer

n such that ε > 2−n. Since d(x, y) ≥ ε, there is a forest algebra Sy with
|Sy| ≥ n and a continuous forest algebra homomorphism ϕy : ΩAV → Sy
such that ϕy(x) 6= ϕy(y). Then Ky = ϕ−1 ◦ ϕ(y) is a clopen set which
contains y but not x. In particular Ky form a clopen covering of the closed
set HΩAV \ Bε(x), from which the finite covering K can be extracted. The
union of the clopen sets in K is itself a clopen set K. Note that HΩAV \K
is also clopen, contain x, and also is contained in Bε(x). And similarly for
x ∈ VΩAV.

Hence, ΩAV is a compact and zero-dimensional forest algebra. So, it is
a pro-V forest algebra.

3.2 Reiterman’s Theorem

In this section we establish an analog of Reiterman’s Theorem [26].
Recall that a V-pseudoidentity is a formal equality u = v with u, v ∈

ΩAV for some finite set A. And for S ∈ V, we write S |= u = v if, for
every continuous forest algebra homomorphism ϕ : ΩAV → S, the equality
ϕ(u) = ϕ(v) holds.

For a set Σ of V-pseudoidentities, let [[Σ]]V denote the class of all S ∈ V
such that S |= u = v for every pseudoidentity u = v from Σ.

If S1, S2 ∈ [[Σ]]V, then clearly S1×S2 ∈ [[Σ]]V. If T is a forest subalgebra
of S ∈ [[Σ]]V, then there is an embedding ψ : T → S. Let ϕ : ΩAV → T
be any forest algebra homomorphism. Then the composite α = ψ ◦ ϕ is a
continuous forest algebra homomorphism ΩAV→ S and so, for every pseu-
doidentity u = v ∈ Σ, we obtain the equality α(u) = α(v). Consequently
ϕ(u) = ϕ(v) and so T ∈ [[Σ]]V. Now, let T be a forest algebra such that there
is an onto forest algebra homomorphism ψ : S → T . Then it is equally easy
to obtain T ∈ [[Σ]]V. So [[Σ]]V is a pseudovariety of finite forest algebras.

For a subpseudovariety W of V, let πW : ΩAV→ ΩAW be the natural
continuous forest algebra homomorphism:

A
ιV //

ιW
!!

ΩAV

πW=ι̂W
��

ΩAW

where the two mappings ιV and ιW giving ΩAV and ΩAW as free respec-
tively pro-V and pro-W forest algebras over the set A.
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Lemma 3.2.1. A pseudoidentity u = v, with u, v ∈ ΩAV, holds in every
member of a subpseudovariety W of V if and only if πW(u) = πW(v).

Proof. (⇒) Let S ∈W. Let ϕ : ΩAV→ S be any continuous forest algebra
homomorphism. Note that, the following diagram commutes:

ΩAV

πW=ι̂W

��

ϕ
||

A
ι //

ιV

66

ιW
((

S

ΩAW

ψ=ι̂
bb

where the image of the mapping ι is dense in S. There exists then a forest
algebra homomorphism ψ : ΩAW → S such that ψ ◦ πW = ϕ. If πW(u) =
πW(v), then ψ(πW(u)) = ψ(πW(v)) and the equality ϕ(u) = ϕ(v) holds.

(⇐) Let, for all S ∈W, S |= u = v and suppose that πW(u) 6= πW(v).
Since πW(u) and πW(v) are distinct elements of ΩAW, there is a forest
algebra T ∈ W and a forest algebra homomorphism α : ΩAW → T such
that α(πW(u)) 6= α(πW(v)), which contradicts the assumption that for all
S ∈W, S |= u = v.

Theorem 3.2.2. Let A be a finite set. Let W be a pseudovariety of finite
forest algebras and S an A-generated finite forest algebra. If there is an onto
continuous forest algebra homomorphism ϕ : ΩAW→ S, then S ∈W.

Proof. Since, by Corollary 3.1.35, ΩAW is a pro-W forest algebra, by The-
orem 3.1.34, there are a directed set I of indices, a projective system (Si)i∈I
of A-generated finite forest algebras in W, and onto continuous forest alge-
bra homomorphisms ψi,j : Si → Sj for each pair i, j ∈ I with i ≥ j such
that ΩAW is a projective limit of (Si)i∈I . Let πi : ΩAW → Si be a con-
tinuous forest algebra morphism such that πi ◦ ιW = ιSi , where image of
the mapping ιSi : A → Si is dense in S and the mapping ιW : A → ΩAW
giving ΩAW as free pro-W forest algebra over the set A. The π−1

i (y) (i ∈ I,
y ∈ Si) constitute a subbasis of open sets for the topology of ΩAW. Since
ϕ is continuous, for every x ∈ ΩAW, there exist finitely many elements
ix,1, . . . , ix,m of I such that, putting yx,j = πix,j (x) for j = 1, . . . ,m, we

have
⋂m
j=1 π

−1
ix,j

(yx,j) ⊆ ϕ−1ϕ(x). Since for each pair i, j ∈ I with i ≥ j the
following diagram commutes

ΩAW

πi

��

πj

""

Si
ψi,j

// Sj
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for every x ∈ ΩAW we have π−1
i (πi(x)) ⊆ π−1

j (πj(x)). Hence, for an element

kx ≥ ix,1, . . . , ix,m of I and yx = πkx(x), π−1
kx

(yx) ⊆ ϕ−1ϕ(x).

Note that ΩAW is compact and ΩAW =
⋃
x π
−1
kx

(yx). So there exists

an integer n, elements x1, . . . , xn ∈ ΩAW, elements kx1 , . . . , kxn ∈ I, and
elements yx1 , . . . , yxn respectively of Skx1

, . . . , Skxn such that

ΩAW =

n⋃
j=1

π−1
kxj

(yxj )

with xj ∈ π−1
kxj

(yxj ) and π−1
kxj

(yxj ) ⊆ ϕ−1(ϕ(xj)) for all j.

Consider an element i of I, with i ≥ kx1 , . . . , kxn . For every x ∈ ΩAW,
there exists 1 ≤ j ≤ n such that x ∈ π−1

kxj
(yxj ). Therefore, π−1

i (πi(x)) ⊆
π−1
kxj

(πkxj (x)) ⊆ ϕ−1(ϕ(xj)). Hence, for each x ∈ ΩAW, also π−1
i (πi(x)) ⊆

ϕ−1(ϕ(x)). Thus, ker(πi) ⊆ ker(ϕ) and so ϕ factors through πi. So there is a
forest algebra homomorphism ϕi such that the following diagram commutes.

ΩAW

πi

��

ϕ
// S

Si

ϕi

==

In the preceding diagram, ϕ and πi are onto, whence so is ϕi. As Si is in
W, so is S.

Theorem 3.2.3. (Analog of Reiterman’s Theorem) A subclass W of V is
a subpseudovariety if and only if it is of the form [[Σ]] for some set Σ of
V-pseudoidentities.

Proof. The reverse direction has already been verified. To prove the di-
rect implication, let W ⊆ V be a pseudovariety and Σ be the set of
all pseudoidentities which are satisfied by every member of W, and let
W′ = [[Σ]]V. Clearly W ⊆ W′. To complete the proof we show that
S ∈W′ implies S ∈W. Since S ∈W′ is finite, there is a finite set A and
there is an onto continuous forest algebra homomorphism ϕ : ΩAW′ → S.
Let π : ΩAW′ → ΩAW be the natural projection. By Lemma 3.2.1,
ker(π) ⊆ ker(ϕ) and so ϕ factors through π. So the following diagram
commutes.

ΩAW′

π

��

ϕ
// S

ΩAW

ψ

<<

In the preceding diagram, ΩAW′ is compact and ϕ and π are onto and
continuous, whence so is ψ. Now Theorem 3.2.2 implies that S ∈W.
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3.3 Conclusions

We defined a metric on the free forest algebra with respect to a pseudova-
riety of finite forest algebras and we showed that the basic operations with
respect to this metric are contractive. We showed that the completion of the
free forest algebra with respect to the defined metric exists and is a forest
algebra. We established in this context an analog of Hunter’s Lemma [23].
We showed that compact and zero-dimensional metric forest algebras are
residually finite, whence profinite. We also established an analog of Reiter-
man’s Theorem (3.2.3). For a pseudovariety V of finite forest algebras, by
Theorem 3.2.3, a simple basis may be seen as a formalization of a simple
algebraic criterion for membership in V. For BSS such a basis was ob-
tained by Bojańczyk, Segoufin, and Straubing in [6]. In the same paper,
they also did it for the pseudovarieties of finite forest algebras generated by
all syntactic forest algebras of cca1-piecewise testable2 forest languages and
commutative piecewise testable forest languages. For a pseudovariety W of
finite monoids, if a basis is known, then by Lemma 2.2.5, we can find easily
a basis of pseudoidentities for the pseudovarieties VW and HW. For other
pseudovarieties finding a basis of pseudoidentities may be a very difficult
task.

There are several results on metric semigroups (for examples, see [2, 1]
for results and references) that we still do not know if they have a natural
analog in the context of forest algebras.

1Stands for closest common ancestor: given a forest s and three nodes x, y, and z of s
we say that z is the closest common ancestor of x and y if z is an ancestor of both x and
y and all other nodes of s with this property are ancestors of z.

2A forest s is a cca-piece of a forest t, if there is an injective mapping from nodes of s
to nodes of t that preserves the label of the node together with the forest-order and the
closest common ancestor relationship. A forest language L is called cca-piecewise testable
if there exists n > 0 such that membership of t in L depends only on the set of cca-pieces
of t of size n.
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Chapter 4

Forest Algebras as
ω-Algebras

The natural analog for forest algebras of the structural identification of
the relatively free pro-J semigroup ΩnJ as an algebra of type (2,1), see [1,
Section 8.2], is to study the relatively free pro-BSS forest algebra ΩABSS,
as an ω-algebra.

In this chapter we introduce ω-algebras which satisfy the equational
axioms of forest algebras with some extra assumptions. Forest algebras can
be viewed as special cases of ω-algebras. We show several results on free
ω-algebras.

4.1 ω-Algebra

An ω-algebra B = (H,V) is a set with two types of elements endowed with
five binary operations +,+1,+2, ., and ∗ and two unary operations ω() on
H and ()ω on V, such that the following conditions are satisfied:

1. 〈H; +〉 is a monoid with identity 0;

2. 〈V; .〉 is a monoid with identity �;

3. for every h ∈ H and v ∈ V, v ∗ h is in H;

4. for every h ∈ H and v, w ∈ V, v ∗ (w ∗ h) = (v.w) ∗ h;

5. for every h ∈ H, � ∗ h = h;

6. for every h ∈ H and v ∈ V, h+1 v and v +2 h are in V;

7. for every h, s ∈ H and v ∈ V, h+1 (v +2 s) = (h+1 v) +2 s;

8. for every h ∈ H and v, w ∈ V, (h+1 v).w = h+ v.w and (v +2 h).w =
v.w + h;
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9. for every h, s ∈ H and v ∈ V, (h+1 v) ∗ s = h+ v ∗ s and (v+2 h) ∗ s =
v ∗ s+ h;

10. �+2 0 = � = 0 +1 �;

11. ω(0) = 0;

12. (�)ω = �;

13. for every h, s ∈ H, (h+1 �+2 s)
ω = ω(h) +1 �+2 ω(s).

The class of ω-algebras of type τ = (2, 2, 2, 2, 2, 1, 1) satisfying the above
conditions is denoted by B.

If for instance we take the unary operations ω as identities, then every
forest algebra satisfies the above conditions. Hence, every forest algebra
may be thus viewed as an element of the class of ω-algebras B.

Lemma 4.1.1. Let S = (HS , VS) be a zero-dimensional, see Definition
3.1.16, and compact metric forest algebra, see Definition 3.1.18. Let v be an
element of VS and h be an element of HS, and let k ∈ Z. Then sequences
of products {vn!+k}n ≥ |k| and additions {(n! + k)(h)}n ≥ |k| converge. For
k = 0 the limit is an idempotent.

Proof. For proof see [2, page 20].

The limit lim vn! is denoted by vω1 , and the limit lim(n!)(h) is denoted
by ω2(h).

Every forest algebra S = (H,V ) endowed with unary operations ω1 and
ω2 satisfies the properties of ω-algebras. The axioms (1)−(10) are immediate
by the equational axioms of forest algebras, and we have

(�)ω1 = lim�n! = lim� = �

and
ω2(0) = lim(n!)(0) = lim 0 = 0,

also for a context v = h1 +�+ h2 we have the following

(h1 +�+ h2)ω1 = lim(h1 +�+ h2)n!

= lim(n!)(h1) + lim�+ lim(n!)(h2)

= ω2(h1) +�+ ω2(h2).

Hence, the forest algebra S becomes an ω-algebra.
An ω-algebra homomorphism

η : (H1, V1)→ (H2, V2)
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of ω-algebras is a pair (λ, µ) of monoid homomorphisms

λ : H1 → H2,
µ : V1 → V2

such that, for every h ∈ H and every v ∈ V ,

λ(v ∗ h) = µ(v) ∗ λ(h) and

{
µ(h+1 v) = λ(h) +1 µ(v)
µ(v +2 h) = µ(v) +2 λ(h),

and
µ(vω) = (µ(v))ω and λ(ω(h)) = ω(λ(h)).

However, we will abuse notation slightly and denote both component maps
by η.

An ω-subalgebra is a subset of an ω-algebra, closed under all its opera-
tions, and carrying the induced operations.

Let S1 = (H1, V1) and S2 = (H2, V2) be ω-algebras. Their direct product
S1 × S2 is (H1 ×H2, V1 × V2) where

H1 ×H2 = {(h1, h2) | h1 ∈ H1 and h2 ∈ H2}

and
V1 × V2 = {(v1, v2) | v1 ∈ V1 and v2 ∈ V2}.

Operations are defined componentwise.
The class of ω-algebras B is closed under direct products and subalge-

bras. So, by [5, 19] and also since it is defined by equational axioms, all the
free ω-algebras exist.

Over a finite alphabet A = {ai | i = 1, . . . , n} an ω-algebra A = (H,V)
is said to be A-free ω-algebra over B with the free generating set A via the
mapping η : A → A such that η(A) generates A, if we have the following
universal property: for every ω-algebra S = (H,V ) ∈ B with any subset
{yi | i = 1, . . . , n} of V , there is a unique ω-algebra homomorphism φ : A →
S such that φ(η(ai)) = yi.

Consider the map η : A → A such that η(a) = a�. Define a set A′ =
{η(a) | a ∈ A}, then A can be viewed as an A′-free ω-algebra via the
natural injection ι. Let S = (H,V ) be an ω-algebra in B such that there
is a mapping f : A′ → V . By the universal property of free ω-algebras, the
following diagram commutes:

A′
ι //

f
  

A

∃!f̂
��

S

Later in this chapter we will show that the faithfulness axiom holds for A.
Hence, A is a forest algebra. Under the claim that A is a forest algebra, for
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every forest algebra S = (H,V ) in B if there is a mapping f : A′ → V , then
there exists a unique ω-algebra homomorphism ϕ such that the following
diagram commutes.

A′ //

f
  

A
∃!ϕ
��

S

In view of the universal property of the free ω-algebras, A is a free forest
algebra.

Remark 4.1.2. The axioms (1)− (10) imply that over a finite alphabet A =
{ai | i = 1, . . . , n} the A′-free ω-algebra A satisfies the equational axioms of
forest algebras. Hence, in view of the universal property, Lemma 1.1.5, of
the free forest algebra A∆, the following diagram commutes:

A //

η
  

A∆

∃!ϕ
��

A

For a finite alphabet A, by term algebra we mean the freely generated
algebraic structure generated by A over a signature τ , which we denote by
A, for more details see [5, 19].

In an ω-algebra, we will denote all operations +, +1 and +2 by +, except
in some places to avoid confusions.

Remark 4.1.3. Let S = (H,V ) be a forest algebra. Hence, the axioms
(1)−(10) of ω-algebras hold in S. Endow S with additional unary operations
ω( ) : H → H and ω : V → V defined as identity mapping. Hence, the
axioms (11)− (13) of ω-algebras also hold in S. Therefore, S is an ω-algebra
in B.

Example 4.1.4. For an alphabet A let A be the A′-free ω-algebra in B.
Let SN be the forest algebra in Example 1.2.4. In view of Remark 4.1.3, SN
is an ω-algebra.

By the universal property of the free ω-algebra A, there is a unique
ω-algebra homomorphism

#Nodes : A → SN

such that
#Nodes(a�) = 1′.

Definition 4.1.5. We say that the number of nodes of an element x ∈ A
is n, if x is an element of H and #Nodes(x) = n or x is an element of V and
#Nodes(x) = n′.
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Definition 4.1.6. Let S be an ω-algebra in B. We say that an element x
of S is a subterm of an element y of S, if there exists an n-ary operation
f , which is a composition of operations from {+,+1,+2, ., ∗, ω(), ()ω}, and
there are elements t1, . . . , tn−1 in S such that f(x, t1, . . . , tn−1) = y.

Lemma 4.1.7. For elements x1 and x in the free ω-algebra A, if x1 is a
subterm of x then #Nodes(x1) ≤ #Nodes(x).

Proof. By definition of a subterm, there is an n-ary operation f , and there
are elements t1, . . . , tn−1 such that f(x1, t1, . . . , tn−1) = x. So, we have

#Nodes(f(x1, t1, . . . , tn−1)) = #Nodes(x).

Since #Nodes is an ω-algebra homomorphism then we have

#Nodes(x) = #Nodes(x1) + #Nodes(t1) + · · ·+ #Nodes(tn−1),

which implies the result.

Lemma 4.1.8. For an element x in the free ω-algebra A, #Nodes(x) = 0 if
and only if x is a trivial element.

Proof. If x is a trivial element, then #Nodes(x) = 0. Now, assume that
#Nodes(x) = 0 but x is a non-trivial element, then there is an element d�,
which is a subterm of x. By Lemma 4.1.7, we have 1 = #Nodes(d�) ≤ 0,
which is a contradiction.

Lemma 4.1.8 is used in the following section for distinguishing all kinds of
non-trivial additively irreducible and non-trivial multiplicatively irreducible
elements of the free ω-algebras.

4.2 About Free ω-Algebra A
In this section, we use the universal property of free ω-algebras to show the
following key theorem:

Theorem 4.2.1. For the A′-free ω-algebra A = (H,V) we have the follow-
ing:

• ω(H \ {0}) ∩+(H \ {0},H \ {0}) = ∅;

• (V \ (H +�+ H))ω ∩ .(V \ {�},V \ {�}) = ∅;

• for every a� ∈ A′, a� ∗ H ∩+(H \ {0},H \ {0}) = ∅;

• for every a� ∈ A′, a�.V ∩ (+(H \ {0},V) ∪+(V,H \ {0})) = ∅.
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Where

ω(H \ {0}) = {ω(h) | h ∈ H \ {0}},

H +�+ H = {h+�+ s | h, s ∈ H},

V \ (H +�+ H) = {v ∈ V | v /∈ (H +�+ H)},

(V \ (H +�+ H))ω = {vω | v ∈ V \ (H +�+ H)},

.(V \ {�},V \ {�}) = {v.w | v, w ∈ V \ {�}},

a� ∗ H = {a� ∗ h | h ∈ H},

a�.V = {a�.v | v ∈ V},

+(H \ {0},H \ {0}) = {h+ s | h, s ∈ H \ {0}},

+(H \ {0},V) = {h+ v | h ∈ H \ {0}, v ∈ V},

+(V,H \ {0}) = {v + h | h ∈ H \ {0}, v ∈ V}.

An element of A is said to be a p-forest or a p-context , if it belongs,
respectively, to H or V. We call an element of A a finite p-forest or a finite
p-context if it does not involve the unary operations; otherwise, we call it
an infinite p-forest or an infinite p-context . We call an infinite p-forest and
an infinite p-context respectively an ω-forest and an ω-context , if it is of the
form ω(h) for some p-forest h or it is of the form vω for some p-context v
(respectively).

We say that a p-context v is a factor of a p-context t, if there exist p-
contexts u and w such that t = uvw. And we say that a p-context v is a
factor of a p-forest t, if there exist a p-context u and a p-forest h such that
t = uvh.

The p-forest 0 and the p-context � are called respectively the trivial
p-forest and p-context.

Let v be a p-context. We say that a p-context w is a prefix of v if there
exists a p-context u such that v = w.u. The set of all prefixes of v is denoted
by Pref(v). Let h be a p-forest. We say that a p-context w is a prefix of h
if there exists a p-forest s such that h = w ∗ s. The set of all prefixes of h is
denoted by Pref(h). Note that every prefix of an element t in A is a factor
of t.

We call a non-trivial p-context t in V a �-pure p-context if, whenever
h1, h2 ∈ H and u ∈ V are such that t = h1+u+h2, the equalities h1 = h2 = 0
hold.
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For a p-context v in V we define C(v) as follows. If v is a �-pure p-
context or the trivial p-context, then let C(v) = v. Otherwise, there are
p-forests h1 and h2 in H and a p-context v1 in V such that at least one of the
p-forests h1 and h2 is non-trivial and the equality v = h1 + v1 + h2 holds.
Iterate the same procedure on v1. By Lemma 4.1.7, since

#Nodes(v1) < #Nodes(v) <∞,

after finitely many steps we will find a p-context vn such that C(vn) = vn.
We then let C(v) = vn.

The following results are immediate:

Lemma 4.2.2. A p-context v in V is �-pure if and only if C(v) = v.

Lemma 4.2.3. For every p-context v in V there are p-forests h1 and h2 in
H, and a p-context u in V such that u is �-pure and v = h1 + u+ h2.

For a p-context v with C(v) 6= �, we define a factorization of v by

v =
∏
i∈N

v2i+1v2i+2

where the p-contexts v2i+1’s are �-pure, v2i+2 = hi,1 + � + hi,2 with p-
forests hi,1 and hi,2 in H, and the vi’s are such that, if k > 0 and v2k+1 = �,
then vj = � for all j ≥ 2k + 1. For a p-context v with C(v) 6= �, such a
factorization exists: by the way that we defined C(v), since there are finitely
many p-forests hi and h′i such that v = h1 + · · ·+ hn +C(v) + h′n + · · ·+ h′1,
if n = 0, then v is a �-pure, v1 = v and for every i ≥ 2, vi = �; otherwise,
v1 = �, v2 = h1 + · · · + hn + � + h′n + · · · + h′1, v3 = C(v), and for every
i ≥ 4, vi = �.

For a p-context v with C(v) = � the factorization of v is v itself.
We say that a p-context v in V is multiplicatively irreducible if there do

not exist non-trivial p-contexts u1 and u2 such that v = u1u2.

Lemma 4.2.4. Every p-context can be written as product of its non-trivial
multiplicatively irreducible factors.

Proof. Let v be a non-trivial p-context. If v is multiplicatively irreducible,
then v can be written as a product of itself. Otherwise, there exist non-
trivial p-contexts v1 and v2 such that v = v1v2. Iterate the same procedure
on v1 and v2. Since

#Nodes(v1) < #Nodes(v) , #Nodes(v2) < #Nodes(v)

and #Nodes(v) is finite, we will get the result after finitely many steps.
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We say that an element P in A is additively irreducible if, for the case
that P is a p-forest, there do not exist non-trivial p-forests s1 and s2 such
that P = s1+s2 and, for the case that P is a p-context, there does not a exist
non-trivial p-forest s and a p-context v such that P = s + v or P = v + s.
In view of the definition of �-pure, every �-pure is an additively irreducible
p-context.

Let t be a p-forest which is not additively irreducible, then we show that t
can be written as a sum of non-trivial additively irreducible p-forests, which
we call summands of t.

Lemma 4.2.5. Every p-forest can be written as sum of its non-trivial ad-
ditively irreducible summands.

Proof. Let t be a non-trivial p-forest in H. If t is additively irreducible,
then t can be written as a sum of itself. Otherwise, there exist non-trivial
p-forests s1 and s2 such that t = s1 + s2. Iterate the same procedure on s1

and s2. Since

#Nodes(s1) < #Nodes(t) <∞ and #Nodes(s2) < #Nodes(t) <∞,

after finitely many steps we will find non-trivial additively irreducible p-
forests hi’s and then t = h1 + · · ·+ hn.

In the case where h is a finite p-forest, in view of Remark 4.1.2, h is
the sum of its connected forest summands. And in the case where h is an
infinite p-forest, we will show that h is the sum of its summands which are
ω-forests or p-forests which are of the form v ∗ s for some non-trivial �-pure
p-context v and p-forest s.

Let s and t be elements of the free ω-algebra A. We say that t is a
scattered divisor of s when t has a decomposition of the form t1 . . . tn and s
has one of the following decompositions:

u1t1u2t2 . . . untn or u1t1u2t2 . . . untnun+1.

Note that, for some i’s we may have ui = �.
We say that an element t of A is an divisor of an element P in A if the

following conditions hold:

• in case t and P are p-contexts, there exist p-contexts u and v such
that P = utv;

• in case t is a p-context and P is a p-forest, there exist a p-context u
and a p-forest h such that P = uth;

• in case t and P are p-forests, there exists a p-context u such that
P = ut.

Note that a divisor of a p-context cannot be a p-forest.
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Remark 4.2.6. The difference between factor and divisor is that: a divisor
may be a p-forest but a factor is always a p-context.

The following result gives some conditions for being a subterm, see Def-
inition 4.1.6, of an element of the free ω-algebra A.

Lemma 4.2.7. In the free ω-algebra A the following conditions hold:

• a divisor of an element y is a subterm of y;

• for a p-forest h, h is a subterm of the p-forest ω(h);

• for a p-context v, v is a subterm of the p-context vω;

• for a p-forest h, h is a subterm of the p-contexts h+� and �+ h;

• if an element P is a subterm of an element Q and the element Q is
a subterm of an element t, then the element P is a subterm of the
element t.

Proof. We just show the first one the next three conditions are handled
similarly. Assume that, x and y are p-forests and x is a divisor of y. Then
there is a p-context v such that v ∗ x = y. For this case, let f( , ) = ∗ .

Now assume that, x and y are p-contexts and x is a divisor of y. Then
there are p-contexts v1 and v2 such that v1.x.v2 = y. For this case, let
f( , , ) = .( . ) or f( , , ) = ( . ). .

Assume that, x is a p-context and y is a p-forest and x is a divisor of y.
Then there is a p-context v and there is a p-forest h such that v ∗ (x ∗ h) =
(v.x) ∗ h = y. For this case, let f1( , , ) = ∗ ( ∗ ) or f2( , , ) = ( . ) ∗ .

Now we show the last one. Assume that, an element P is a subterm
of an element Q, and the element Q is a subterm of an element t then, by
definition of subterm there are an n-ary operation f1, an m-ary operation f2,
elements t1, . . . , tn−1, and also elements t′1, . . . , t

′
m−1 such that the equalities

f1(Q, t1, . . . , tn−1) = t and f2(P, t′1, . . . , t
′
m−1) = Q hold. Let

f(x1, x2, . . . , xm+n−1) = f1(f2(x1, x2, . . . , xm), xm+1, . . . , xm+n−1)

be the (n+m− 1)-ary operation, then we have

f(P, t′1, . . . , t
′
m−1, t1, . . . , tn−1) = f1(f2(P, t′1, . . . , t

′
m−1), t1, . . . , tn−1)

= f1(Q, t1, . . . , tn−1)

= t,

which means P is a subterm of t.

Since a factor of x is a divisor of x, then a factor of x is a subterm of x.
Let us give another example of ω-algebras.
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Example 4.2.8. Let m be a non-negative integer and Tm = A∆ be the free
forest algebra with additional operations ω : HA → HA, which sends the
forest h to mh, which is the sum of m copies of h, and ω : V A → V A which
sends the context v to vm, which is the product of m copies of v.

The ω-algebra Tm satisfies the identities in B:

1. ω(0) = 0;

2. (�)ω = �;

3. for every h, s ∈ HA, (h+�+ s)ω = ω(h) +�+ ω(s).

By the universal property of the free ω-algebra A, for ω-algebra Tm,
there is a unique ω-algebra homomorphism

m,m : A → Tm

such that
m,m(a�) = a�.

Let t be an element of A. We denote m,m(t) by tm,m.
By Remark 4.1.2, we have A∆ = {tm,m | t ∈ A , m ∈ N}.

4.2.1 Some More Examples of ω-Algebras in B

Now we construct more examples of ω-algebras which are used to show that
every free ω-algebra is a forest algebra. The following example is the most
important example in the rest of this chapter.

Example 4.2.9. Let S = (HS , VS) be the free forest algebra

(A ] {a�, b�, c�})∆,

with additional operations ω : HS → HS given by

ω(h) =

{
a� ∗ h , if h is non-trivial
0 , if h = 0

and ω : VS → VS given by

vω =

{
b�.v.c� , if C(v) 6= �
ω(h1) +�+ ω(h2) , if v = h1 +�+ h2.

Then S is an ω-algebra:

1. ω(0) = 0;

2. (�)ω = �;
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3. for every h, s ∈ HS ,

(h+�+ s)ω = ω(h) +�+ ω(s).

By the universal property of the free ω-algebraA, there is a unique ω-algebra
homomorphism

Φ : A → S

such that for d� ∈ A′
Φ(d�) = d�.

Example 4.2.10. Let, for every n ∈ N, Sn = A∆ be the free forest algebra
with additional operations ω : HA → HA which sends every forest h to the
forest n(h), which is n-times addition of h by itself, for the case n = 0 we
assume that 0(h) = 0, and ω : V A → V A which sends every context v to a
context vn, which is n-times product of v by itself, for the case n = 0 we
assume that v0 = �.

For every n ∈ N the ω-algebra Sn satisfies the identities in B:

1. ω(0) = n(0) = 0;

2. (�)ω = �n = �;

3. for every h, s ∈ HA,

(h+�+ s)ω = (h+�+ s)n

= n(h) +�+ n(s)

= ω(h) +�+ ω(s).

By the universal property of the free ω-algebraA, there is a unique ω-algebra
homomorphism

fn : A → Sn

such that
fn(x) = xn,n.

Lemma 4.2.11. For an alphabet A, let A = (H,V) be the A′-free ω-algebra
in B. Let h ∈ H and v ∈ V. Then the following conditions hold:

• ω(h) = 0 if and only if h1,1 = 0;

• vω = � if and only if v1,1 = �.

Proof. We show that h1,1 = 0 if and only if h = 0 and that v1,1 = � if and
only if v = �.

The equalities 01,1 = 0 and �1,1 = � are immediate from the definitions.
Now, assume that h1,1 = 0 and v1,1 = �. We have the following facts:
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• if Pω is a subterm of h with P is a finite p-context, that is P 1,1 = P ,
then P is a subterm of h1,1, so P = �;

• if ω(Q) is a subterm of h with Q is a finite p-forest, that is Q1,1 = Q,
then Q is a subterm of h1,1, so Q = 0;

• for a finite p-context P , that is P 1,1 = P , if P is a subterm of h, then
P is a subterm of h1,1, so P = �;

• for a finite p-forest Q, that is Q1,1 = Q, if Q is a subterm of h which
is a p-forest, then Q is a subterm of h1,1, so Q = 0;

• every p-forest in A, is made by combinations of some of its finite
subterms, where by combination we mean addition, multiplication,
action, and applying the operations ω.

We have thus shown that h = 0.
In a similar way we can show that v = �.
By using the identity ω(0) = 0 if h = 0, then ω(h) = 0. Now, assume

that ω(h) = 0, then h1,1 = 0 and so we have h = 0.
In a similar way, by using the identity (�)ω = �, if v = �, then vω = �.

Now, assume that vω = �, then v1,1 = � and so we have v = �.

Corollary 4.2.12. Since for every p-context v ∈ V, C(v) is also a p-context,
we have C(v) = � if and only if C(v)1,1 = �.

Remark 4.2.13. If there is a forest algebra homomorphism δ : A∆ → S into
a forest algebra S, then we can be viewed as an ω-algebra homomorphism
f : A → S such that f = δ◦f1. Note that, in the forest algebra S, the unary
operations ω’s are assumed to be identities. That is the following diagram
commutes:

A f1
//

f
  

A∆

δ
��

S

Remark 4.2.14. According to Remark 4.2.13 and by using the forest algebra
homomorphism labels : A∆ → SL in Example 1.2.11, there is a unique
ω-algebra homomorphism

labels : A → SL

such that
labels(a�) = {a,�}.

Definition 4.2.15. We say that the set of labels of an element x ∈ A is
X if x is an element of H and labels(x) = X or x is an element of V and
labels(x) = X ∪ {�}.
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Example 4.2.16. Let S′1 = A∆ be the free forest algebra with additional
operations ω : HA → HA and ω : V A → V A which, for a ∈ A fixed, are
defined as follows:

ω(h) =

{
a , if h 6= 0
0 , otherwise

and
vω = ω(h1) + C(v) + ω(h2) where v = h1 + C(v) + h2.

The ω-algebra S′1 satisfies the identities in B:

1. ω(0) = 0;

2. (�)ω = �;

3. for every h, s ∈ HA, (h+�+ s)ω = ω(h) +�+ ω(s).

Example 4.2.17. Let S′2 = A∆ be the free forest algebra with additional
operations ω : HA → HA, which sends forest h to 0, and ω : V A → V A

which sends context v to a� if C(v) = a�u and sends to � if C(v) = �.
The ω-algebra S′2 satisfies the identities in B:

1. ω(0) = 0;

2. (�)ω = �;

3. for every h, s ∈ HA, (h+�+ s)ω = ω(h) +�+ ω(s) = �.

Example 4.2.18. Let S′3 = A∆ be the free forest algebra with additional
operations ω : HA → HA, which sends the forest h = a1�s1 + · · ·+ an�sn
to a1 + · · ·+ an and sends 0 to 0 and ω : V A → V A which sends the context
v = h1 + C(v) + h2 with C(v) = c�u, h1 = a1�s1 + · · · + an�sn and
h2 = b1�t1 + · · · + bm�tm to a1 + · · · + an + c� + b1 + · · · + bm and sends
� to �.

The ω-algebra S′3 satisfies the identities in B:

1. ω(0) = 0;

2. (�)ω = �;

3. for every h, s ∈ HA, (h+�+ s)ω = ω(h) +�+ ω(s).

By the universal property of the free ω-algebra A, for ω-algebras S′1, S′2
and S′3, there is a unique ω-algebra homomorphism

f ′i : A → S′i

such that
f ′i(a�) = a�,

respectively for i = 1, 2 and 3.
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Lemma 4.2.19. For an element x of A, x is trivial if and only if f ′3(x) is
trivial.

Proof. The direct implication is trivial. We show the reverse implication.
If x is a non-trivial finite p-forest or p-context, then f ′3(x) = x is also non-
trivial. If x = a1�s1 + · · ·+an�sn is sum of non-trivial finite p-forest, then,
since ai’s are non-trivial, f ′3(ω(x)) = a1 + · · · + an is non-trivial. And if
x = h1 + C(x) + h2 is a non-trivial finite p-context with C(x) = c�v, h1 =
a1�s1 +· · ·+an�sn and h2 = b1�t1 +· · ·+bm�tm, then, since at least one of
ai’s, bj ’s or c is non-trivial, f ′3(xω) = a1 + · · ·+an+c�+b1 + · · ·+bm is non-
trivial. Every p-forest and similarly p-context in A, is made by combinations
of some of its finite subterms, where by combination we mean addition,
multiplication, action, and applying the operations ω. Every non-trivial
element of A has a non-trivial finite subterm. Hence, x is non-trivial implies
f ′3(x) is non-trivial.

Lemma 4.2.19 is used later on in the proof of the fact that the free
ω-algebra is a forest algebra.

We proceed with another example of ω-algebras which is constructed
from a monoid together with an action on itself. The next couple of examples
of ω-algebras are obtained as particular cases.

Let M be a monoid. Let ϕ : M → EndM be a mapping into the monoid
of monoid endomorphisms of M , acting on the left. Denote ϕ(v)(u) by vu.
Define on M a skew multiplication � as follows:

u� v = u uv,

and denote the resulting structure by Mϕ. We say ϕ is a skew mapping if
ϕ : Mϕ → EndM is a semigroup homomorphism, that is, if the following
condition holds:

ϕ(u� v) = ϕ(u)ϕ(v) for all u, v ∈M. (4.1)

Proposition 4.2.20. If ϕ is a skew mapping then Mϕ is a monoid and
ϕ : Mϕ → EndM is a monoid homomorphism.

Proof. Let u, v, w ∈ M be arbitrary elements. Condition (4.1) yields the
equality u(v vw) = uv u�vw. Hence, the following equalities also hold:

u� (v � w) = u u(v vw) = u uv u�vw = (u� v) u�vw = (u� v)� w
1� u = 1 1u = 1u = u = u u1 = u� 1.

The last statement is now obvious.

Assuming that ϕ is a skew mapping, we call the monoid Mϕ the skew
monoid determined by ϕ.
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For a semigroup S, let
SI = S ] {I} (4.2)

be the monoid which is obtained from S by adding a (new) identity element
I, even if S is already a monoid.

The following result yields an example of application of Proposition
4.2.20.

Lemma 4.2.21. Let S be a commutative semigroup, denoted additively. Let
T = SI × SI × SI be the direct product of three copies of SI and consider
the mapping ϕ : T → EndT defined by

ϕ(s1, s2, s3) =

{
IdT if s2 = I,

σ2 otherwise,

where IdT is the identity mapping on T and

σ2(u1, u2, u3) = (I, u1 + u2 + u3, I).

Then ϕ is a skew mapping.

Proof. Since the monoid SI is commutative, ϕ does take its values in the
monoid EndT . It is a simple calculation to verify that ϕ is a skew mapping.
Indeed, since s2u2 = I if and only if s2 = u2 = I, we have

ϕ
(
(s1, s2, s3)� (u1, u2, u3)

)
= IdT = ϕ(s1, s2, s3)ϕ(u1, u2, u3)

if and only if s2 = u2 = I. The case s2u2 6= I is then immediate since σ2 is
an idempotent.

Combining with Proposition 4.2.20, we obtain the following result.

Corollary 4.2.22. If S is a commutative semigroup and T and ϕ are as in
Lemma 4.2.21, then Tϕ is a monoid.

In order to define a structure of ω-algebra on (SI , T ), we consider the
following operations, where we already call the elements of SI p-forests and
those of T p-contexts:

• p-forest addition is the addition in SI ;

• for s ∈ SI and (u1, u2, u3) ∈ T , we take

s+ (u1, u2, u3) = (s+ u1, u2, u3)

(u1, u2, u3) + s = (u1, u2, u3 + s);

• p-context multiplication is the skew multiplication in T ;
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• the action of (u1, u2, u3) ∈ T on s ∈ SI is given by

(u1, u2, u3) ∗ s = u1 + u2 + u3 + s;

• for s ∈ SI , we let

ω(s) =

{
s if s = I,

s+ s0 otherwise,

where s0 ∈ SI is a fixed element;

• for (u1, u2, u3) ∈ T , we let

(u1, u2, u3)ω =

{
(ω(u1), u2, ω(u3)) if u2 = I,

(u1, u2 + s0, u3) otherwise.

Proposition 4.2.23. For the above operations, (SI , T ) is an ω-algebra.

Proof. It takes just a very few simple calculations to check the axioms of
ω-algebras, the only ones that require any additional verification being 4, 8,
and 9.

Example 4.2.24. For an alphabet A let A = (H,V) be the A′-free ω-algebra
in B. Let S be the monoid of natural numbers N under operation +, and
let I = −∞. Then Proposition 4.2.23 implies that ID = (SI , T ) is an
ω-algebra. Note that, the element I is the identity element of SI .

By the universal property of the free ω-algebra A, there is a unique
ω-algebra homomorphism

Idem : A → ID

such that
#Idem(a�) = (−∞, 0,−∞).

Definition 4.2.25. For a non-trivial element x ∈ A, the number of idempo-
tents of x with multiplicities, we denote by #IDEM(x), is #Idem(x) if x ∈ H
and #Idem(x ∗ 0) otherwise. In addition we assumed that the number of
idempotents of the trivial elements of A are also 0.

Consider the following monoids:

• the monoid P (A) under union;

• the direct product E′1 = H× P (A), where H is the additive monoid of
p-forests;

67



• the skew monoid Tϕ given by Corollary 4.2.22, where S is the semi-
group P (A) \ {∅} under union and I = ∅; we denote the skew multi-
plication by ⊕, which is given by

(U1, U2, U3)⊕ (V1, V2, V3) =

{
(U1 ∪ V1, V2, U3 ∪ V3) if U2 = ∅
(U1, U2 ∪ V1 ∪ V2 ∪ V3, U3) otherwise;

• the product monoid E′2 = V × Tϕ of the multiplicative monoid V of
p-contexts with the skew monoid Tϕ; to simplify the notation, we may
sometimes write (u, U1, U2, U3) instead of (u, (U1, U2, U3)).

The operation of E′2, denoted �, is then given by the following formula:

(u, U1, U2, U3)� (v, V1, V2, V3)

=

{
(uv, U1 ∪ V1, V2, U3 ∪ V3) if U2 = ∅
(uv, U1, U2 ∪ V1 ∪ V2 ∪ V3, U3) otherwise.

Consider the subset E′′2 of E′2 consisting of the elements (u, U1, U2, U3) such
that C(u) = � if and only if U2 = ∅. Note that it is a submonoid of E′2 for
which the operation is given by the following formula:

(u, U1, U2, U3)� (v, V1, V2, V3)

=

{
(uv, U1 ∪ V1, V2, U3 ∪ V3) if C(u) = �

(uv, U1, U2 ∪ V1 ∪ V2 ∪ V3, U3) otherwise.

Next, to obtain an ω-algebra structure (E′1, E
′
2), define the mixed operations

as follows:

(h, U) + (v, V1, V2, V3) = (h+ v, U ∪ V1, V2, V3)

(v, V1, V2, V3) + (h, U) = (v + h, V1, V2, V3 ∪ U)

(v, V1, V2, V3) ∗ (h, U) = (v ∗ h, V1 ∪ V2 ∪ V3 ∪ U).

Note that, if the p-contexts are restricted to E′′2 then the two mixed sums
do take their values in E′′2 .

Finally, define the ω-operations as follows:

ω(h, U) =

{
(0, ∅) if h = 0

(ω(h), U ∪ {ω(h)}) otherwise;

(u, U1, U2, U3)ω =

{
(uω, ∅, U1 ∪ U2 ∪ U3 ∪ {uω}, ∅) if C(u) 6= �
ω(h, U1) + (�, ∅, ∅, ∅) + ω(k, U3) if u = h+�+ k.

Note that the ω-power of an element of E′′2 remains in E′′2 .
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Proposition 4.2.26. For the above operations, (E′1, E
′
2) is an ω-algebra and

(E′1, E
′′
2 ) is an ω-subalgebra.

Proof. For the axioms not involving the ω-operations, it suffices to observe
that the reduced structure is just the direct product of A with the ω-algebra
(SI , T ) given by Proposition 4.2.23. Thus, it only remains to check the
axioms involving the ω-operations, which amounts to an easy verification.

Example 4.2.27. For an alphabet A, let A = (H,V) be the A′-free ω-
algebra in B. Let IS = (E′1, E

′′
2 ) be the ω-algebra as in Proposition 4.2.26.

By the universal property of the free ω-algebra A, there is a unique
ω-algebra homomorphism

Ist : A → IS,

such that
Ist(a�) = (a�, ∅, ∅, ∅).

In addition, the mapping
f : IS → A

which is the first component projection, is an ω-algebra homomorphism and
the composite f ◦ Ist is the identity on free ω-algebra.

Definition 4.2.28. For an element x ∈ A, the set of idempotent subterms
of x, we denote by IST(x), is second component of Ist(x) if x ∈ H and second
component of Ist(x ∗ 0) otherwise.

Example 4.2.29. For an alphabet A, let A = (H,V) be the A′-free ω-
algebra in B. Let NERVE = (H,V ) where H is the trivial monoid and
V = A∗ is the free monoid on A.

We consider the only action of the monoid V on the left of the monoid H
which we denote by ∗ as follows: let v be an element of V , define v ∗ 0 = 0.
And let v be an element of the monoid V . We define operation +′ as follows:

v +′ 0 = v , 0 +′ v = v

which are clearly elements of the monoid V . And define the unary operations
as identity. It is immediate to verify that NERVE is an ω-algebra.

By the universal property of the free ω-algebra A, there is a unique
ω-algebra homomorphism

nerve : A → NERVE

such that
nerve(a�) = a�.
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Definition 4.2.30. Let x be an element of the free ω-algebra A, then the
nerve of x is its image by the ω-algebra homomorphism, the unique ω-algebra
homomorphism nerve in Example 4.2.29.

In view of Remark 4.1.2, for an element y in the free forest algebra
A∆, we define nerve of y by the image of the restriction of the ω-algebra
homomorphism nerve, to the free forest algebra A∆, that is nerve|A∆ .

4.2.1.1 Rank in Free ω-Algebra A

For an alphabet A, let A = (H,V) be the A′-free ω-algebra in B. Let
I = −∞, and let M be the monoid of NI under operation max, assuming
that −∞ < 0. Let M ′ = {n′ | n ∈ M} be a copy of M . There is a monoid
isomorphism ϕ : M →M ′ via n 7→ n′. In view of Proposition 1.2.3, let T be
the trivial monoid and S = M . As T ∗S and M are isomorphic, Proposition
1.2.3 implies that R = (M,M ′) is a forest algebra. Hence, the axioms
(1) − (10) of ω-algebras hold in R. Endow R with additional operations
ω( ) : M →M and ω : M ′ →M ′ defined as follows:

ω(n) = n+ 1 , for n ≥ 0

(m′)ω = (m+ 1)′ , for m ≥ 0

ω(−∞) = −∞

(−∞′)ω = −∞′

It is immediate that the axioms (11) and (12) of ω-algebras hold in R. In
order to show that R is an ω-algebra we just need to show that it satisfies
the axiom (13) of ω-algebras: for every m,n ∈ N we have

(m+−∞′ + n)ω = ω(m) +−∞′ + ω(n),

since both are equal to (max{m,n,−∞})′ω.
By the universal property of the free ω-algebra A, there is a unique

ω-algebra homomorphism
Rank : A → R

such that
Rank(a�) = 0′.

We say that an element x ∈ A has rank n, if x is an element of H and
Rank(x) = n, or x is an element of V and Rank(x) = n′.

Corollary 4.2.31. All non-trivial finite p-forests and non-trivial finite p-
contexts have rank 0. By Remark 4.1.2, we have Rank−1(0) = HA \{0} and
Rank−1(0′) = V A \ {�}.
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4.2.2 Some Properties of the Free ω-Algebra A

Recall that, in Example 4.2.9, S = (A ] {a, b, c})∆ is an ω-algebra and Φ is
the ω-algebra homomorphism from A to S. These notation will apply for
the reminder of current subsection.

Lemma 4.2.32. Let x and y be elements of the free ω-algebra A, if x is a
subterm of y in A then Φ(x) is a subterm of Φ(y) in the free forest algebra
(A ] {a, b, c})∆.

Proof. There is an n-ary operation f , and there are elements t1, . . . , tn−1

such that f(x, t1, . . . , tn−1) = y. So, we have

Φ(f(x, t1, . . . , tn−1)) = Φ(y).

Since Φ is an ω-algebra homomorphism and f is an n-ary operation we have

Φ(y) = f(Φ(x),Φ(t1), . . . ,Φ(tn−1)),

which implies the result.

Lemma 4.2.33. Let x be an element of the free ω-algebra A. Then we have
Rank(x) ≤ 0 if and only if labels(Φ(x)) ⊆ A.

Proof. If Rank(x) ≤ 0, then Φ(x) = x and therefore,

labels(Φ(x)) = labels(x) ⊆ A.

If Rank(x) > 0, then for some p-forest h there is a subterm ω(h) of
x or for some p-context v there is a subterm vω of x. By Lemma 4.2.32,
respectively, Φ(ω(h)) or Φ(vω) is a subterm of Φ(x). So, respectively, a� ∗
Φ(h) or b�.Φ(v).c� is a subterm of Φ(x), which implies that, respectively,
a� or b� belongs to labels(Φ(x)). Therefore, labels(Φ(x)) is not a subset of
A.

Lemma 4.2.34. Let x be an element of the free ω-algebra A. Then Φ(x) is
trivial if and only if x is trivial.

Proof. If x is trivial, then Φ(x) is also trivial.
Assume that, Φ(x) is trivial, then since labels(Φ(x)) ⊆ A by Lemma

4.2.33, we have Rank(x) ≤ 0. So, we have Φ(x) = x which yields x is
trivial.

Lemma 4.2.35. For elements x1 and x in the free ω-algebra A, if x1 is a
subterm of x then labels(x1) ⊆ labels(x).
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Proof. By definition of a subterm, there is an n-ary operation f , and there
are elements t1, . . . , tn−1 such that f(x1, t1, . . . , tn−1) = x. So, we have the
following equality:

labels(f(x1, t1, . . . , tn−1)) = labels(x).

Since labels is an ω-algebra homomorphism, the unique ω-algebra homo-
morphism labels in Remark 4.2.14, then the equality

labels(x) = labels(x1) ∪ labels(t1) ∪ . . . ∪ labels(tn−1)

holds which implies the result.

Lemma 4.2.36. For an alphabet A, let A = (H,V) be the A′-free ω-algebra
in B. Let a� ∈ A′ and h ∈ H, then there do not exist non-trivial p-forests
h1 and h2 in H such that a� ∗ h = h1 + h2.

In addition, for v ∈ V, there do not exist a non-trivial p-forest h1 and a
p-context v1 in A such that a�.v = h1 + v1 or a�.v = v1 + h1.

Proof. Assume that, there exist p-forests h1 and h2 such that a� ∗ h =
h1 +h2. By applying the ω-algebra homomorphism f1 from Example 4.2.10,
we have

f1(a� ∗ h) = f1(h1 + h2),

which implies h1,1
1 = 0 or h1,1

2 = 0. By Lemma 4.2.11, we have h1 = 0 or
h2 = 0 that is h1 or h2 is the trivial p-forest.

In a similar way we can show that a�.v is additively irreducible.

We showed that:

Corollary 4.2.37. Let A = (H,V) be the A′-free ω-algebra in B, we have

a� ∗ H ∩+(H \ {0},H \ {0}) = ∅,

and also
a�.V ∩ (+(H \ {0},V) ∪+(V,H \ {0})) = ∅.

Lemma 4.2.38. Let A = (H,V) be the A′-free ω-algebra in B. We have

ω(H \ {0}) ∩+(H \ {0},H \ {0}) = ∅,

and also we have

(V \ (H +�+ H))ω ∩ .(V \ {�},V \ {�}) = ∅.
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Proof. Assume that, h is a non-trivial p-forest and there exist p-forests h1

and h2 such that ω(h) = h1 +h2. By the ω-algebra homomorphism Φ, since
by assumption the p-forest h is non-trivial, the following equalities hold in
S:

a� ∗ h = Φ(ω(h)) = Φ(h1 + h2) = Φ(h1) + Φ(h2).

Since a� ∗ Φ(h) is a connected forest, Lemma 1.3.6 yields Φ(h1) = 0 or
Φ(h2) = 0. By Lemma 4.2.34, it follows that h1 = 0 or h2 = 0, which
establishes the desired disjointness relation:

ω(H \ {0}) ∩+(H \ {0},H \ {0}) = ∅.

Now, assume that, for a p-context v with v /∈ (H + � + H) there exist
p-contexts v1 and v2 such that vω = v1.v2. By the ω-algebra homomorphism
Φ, we have

Φ(vω) = Φ(v1).Φ(v2).

Since v1 is a p-context, there are p-forests H1 and H2, and additively irre-
ducible p-context u such that v1 = H1 + u+H2. So, we have the equality

Φ(vω) = Φ(H1) + Φ(u).Φ(v2) + Φ(H2)

in the free forest algebra. Since Φ(vω) is connected, we have the equalities
Φ(H1) = Φ(H2) = 0. Hence, Lemma 4.2.34 implies the equalities H1 =
H2 = 0. If we assume that u = �, then we get the result.

Suppose that u 6= �, then u /∈ H + � + H. Now, by the ω-algebra
homomorphism f ′3 in Example 4.2.18, we have

f ′3(vω) = f ′3(u).f ′3(v2).

So, there are some a1, . . . , an, b1, . . . , bm, c ∈ A such that

f ′3(vω) = a1 + · · ·+ an + c�+ b1 + · · ·+ bm.

Since u is a non-trivial additively irreducible p-context and u /∈ H +�+ H,
we have C(f ′3(u)) 6= �. So, there are forests S1 and S2, and a non-trivial
context w such that f ′3(u) = S1 + w + S2. Hence, we obtain the following
equality in the free forest algebra

a1 + · · ·+ an + c�+ b1 + · · ·+ bm = S1 + w.f ′3(v2) + S2,

which implies the equalities

a1 + · · ·+ an = S1,

b1 + · · ·+ bm = S2

and
c� = w.f ′3(v2).

Hence, we obtain the equality f ′3(v2) = �, and Lemma 4.2.19 yields the
equality v2 = �.
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Lemma 4.2.39. Let h be a p-forest in A. Every factor of h + � is of the
form s+� for some p-forest s. Dually, every factor of �+h is of the form
�+ s for some p-forest s.

Proof. If h+� is multiplicatively irreducible then the only factors of h+�
are � and h+� itself.

Assume that, h + � is not multiplicatively irreducible. So, there are
non-trivial p-contexts v1 = H1 +C(v1) +H2 and v2 = H ′1 +C(v2) +H ′2 such
that h+� = v1.v2 which implies that

� = C(h+�) = C(H1 + C(C(v1).v2) +H2) = C(C(v1).v2).

We have

C(C(v1).v2) =

{
C(v1).v2 , C(v1) 6= �
C(v2) , C(v1) = �.

Since the equality � = C(C(v1).v2) holds, we have the equality

0 = #Nodes(�) = #Nodes(C(C(v1).v2)).

If the inequality C(v1) 6= � holds then, by Lemma 4.1.8, we have the in-
equality #Nodes(C(v1)) 6= 0, which implies

#Nodes(C(C(v1).v2)) = #Nodes(C(v1).v2) = #Nodes(C(v1)) + #Nodes(v2) 6= 0

yielding a contradiction. So, we have C(v1) = �, which implies

0 = #Nodes(�) = #Nodes(C(C(v1).v2)) = #Nodes(C(v2))

whence C(v2) = �. So, we have v1 = H1 +�+H2 and v2 = H ′1 +�+H ′2,
together with the equality h+� = v1.v2 yielding the equality

h+� = H1 +H ′1 +�+H ′2 +H2.

Applying the ω-algebra homomorphism f1 of Example 4.2.10 on both sides
we obtain the following equality:

(h+�)1,1 = (H1 +H ′1 +�+H ′2 +H2)1,1

which is
h1,1 +� = (H1 +H ′1)1,1 +�+ (H ′2 +H2)1,1

that is, by Remark 4.1.2, an equality in the free forest algebra A∆. Hence,
the equality (H ′2 +H2)1,1 = 0 holds in A∆. By Lemma 4.2.11 it follows that
the equality H ′2 +H2 = 0. Since the equalities

0 = #Nodes(0) = #Nodes(H
′
2 +H2) = #Nodes(H

′
2) + #Nodes(H2)

hold by Lemma 4.1.8, we deduce that #Nodes(H2) = #Nodes(H
′
2) = 0 and,

therefore, again by Lemma 4.1.8, we have the equality H2 = H ′2 = 0. So,
we have v1 = H1 +� and v2 = H ′1 +�.

Dually considerations yield the dual case.
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Corollary 4.2.40. Let s be a non-trivial p-forest in A. The p-forest s is
additively irreducible if and only if the p-context s + � is multiplicatively
irreducible. Dually, the p-forest s is additively irreducible if and only if the
p-context �+ s is multiplicatively irreducible.

Proof. (⇒) Assume that, the p-context s+� is multiplicatively irreducible
and s is not additively irreducible. Then there exist non-trivial p-forests s1

and s2 such that s = s1 + s2. Since we have the equality s1 + s2 + � =
(s1 +�).(s2 +�) and we have #Nodes(si +�) = #Nodes(si) ≥ 1 for i = 1, 2,
both p-contexts s1 + � and s2 + � are non-trivial. It follows that s + � is
not multiplicatively irreducible which is a contradiction.

(⇐) Assume that, the p-forest s is additively irreducible. We show that
the p-context s+� is multiplicatively irreducible. Indeed, otherwise, there
are non-trivial p-contexts v1 and v2 such that s + � = v1.v2. By Lemma
4.2.39, we have v1 = H1 + � and v2 = H ′1 + �. And since v1 and v2 are
non-trivial p-contexts, H1 and H ′1 must be non-trivial p-forests. Now, the
equality s+� = H1+H2+� implies that the equality s = H1+H ′1 holds, by
action of both sides on the forest 0. Hence, s is not an additively irreducible
p-forest which yields a contradiction.

By Lemma 4.2.38 and Corollary 4.2.40, the following is immediate.

Corollary 4.2.41. Let w be a p-context in A with C(w) 6= �. Then wω is
additively irreducible.

Lemma 4.2.42. Let w and v be p-contexts in A with C(w) 6= �. Then
wω.v is additively irreducible.

Proof. The case v = � is given by Corollary 4.2.41.
Suppose then that v 6= �. We show that wω.v is additively irreducible. If

not, then for some non-trivial p-forest h and some p-context u it is of the form
h+u (or u+h). Now, by applying Φ to both sides of the equality wω.v = h+u
we have the following equality in the free forest algebra (A]{a�, b�, c�})∆:

b�.Φ(w).c�.v = Φ(h) + Φ(u),

in which the left side is a connected context while the right side is not since
the p-forest h is assumed to be non-trivial which is a contradiction.

Lemma 4.2.43. The only multiplicatively irreducible p-contexts of A are
vω, s + �, � + h, and a�, where v is a p-context with C(v) 6= �, s and h
are additively irreducible p-forests, and a� ∈ A′.

Proof. Assume that, u is a non-trivial p-context which is multiplicatively
irreducible. Since u is a p-context it is of the form H1 + C(u) + H2 for
some p-forests H1 and H2 in the free ω-algebra A. By properties of the free
ω-algebra A we have u = (H1 +�).(�+H2).C(u). As u is multiplicatively
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irreducible we have u = H1 + �, u = � + H2 or u = C(u) and the other
factors of u are trivial.

If u = H1 + � then, by Corollary 4.2.40, since u is multiplicatively
irreducible, H1 is additively irreducible. Similarly, way if u = �+H2 then
H2 is additively irreducible.

Now, assume that, u = C(u). Then u has one of the forms u = zω.w,
u = a�.x or u = � where z, w and x are p-contexts and C(z) 6= �. Since u
is a non-trivial p-context, we have u 6= �. If u = zω.w with C(z) 6= �, then
#Nodes(z

ω) 6= 0. So, we have zω 6= � whence u is multiplicatively irreducible
if and only if w = �, that is, u = zω. And if u = a�.x, since a� 6= �, then
u is multiplicatively irreducible if and only if x = �, that is, u = a�.

Definition 4.2.44. We distinguish the following kinds of non-trivial addi-
tively irreducible p-forests:

• kind 1: ω(h), for some non-trivial p-forest h;

• kind 2: d� ∗ h, for some d� ∈ A′ and p-forest h;

• kind 3: uω∗h, for some p-forest h and some p-context u with C(u) 6= �.

Lemma 4.2.45. If x is a non-trivial additively irreducible p-forest in A,
then Φ(x) is connected.

Proof. As x is a non-trivial additively irreducible p-forest we may have one
of the following conditions:

• If x has kind 1, then Φ(x) = a� ∗ Φ(h) which is connected.

• If x has kind 2, then Φ(x) = d� ∗ Φ(h) which is connected.

• And if x has kind 3, then Φ(x) = (b�.Φ(u).c�) ∗ Φ(h) which is also
connected.

Lemma 4.2.46. Let x be a non-trivial additively irreducible p-forest and y
be a p-forest in A. If Φ(x) = Φ(y), then y is also a non-trivial additively
irreducible p-forest and x and y have the same kind.

Proof. First, we observe that y is non-trivial. Indeed, if y is trivial then so
is x by Lemma 4.2.34.

Next, we show that y is additively irreducible. If not, then y = y1 +
· · · + yn where for every i, yi is a non-trivial p-forest in A. Now, Lemma
4.2.45 together with the equality Φ(x) = Φ(y), which is an equality in the
free forest algebra, imply that Φ(y1) + · · · + Φ(yn) is connected which, in
view of Lemma 4.2.34, is a contradiction.

Finally, we show that x and y have the same kind. If x has kind 1, then
Φ(x) = a�∗Φ(h). Since y is non-trivial additively irreducible if y has kind 2
or 3, then we have Φ(y) = d� ∗Φ(h′) or Φ(y) = (b�.Φ(u).c�) ∗Φ(h′) where
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d and b are different from a. So, in both cases we have Φ(x) 6= Φ(y) which
is a contradiction. Thus, y has kind 1. The cases where x has kinds 2 or 3
are handled similarly.

Lemma 4.2.47. Let x be a non-trivial p-context in A. If we have x = C(x),
then Φ(x) is connected.

Proof. If x is a non-trivial p-context in A and x = C(x), then x has one
of the forms: d�.v for some d� ∈ A and p-context v, or uω.v for some
p-contexts u and v with C(u) 6= �. Applying the ω-algebra homomorphism
Φ, we obtain, respectively, Φ(x) = d�.Φ(v) or Φ(x) = (b�.Φ(u).c�).Φ(v).
In either case Φ(x) is a connected context.

Lemma 4.2.48. For every context v in the free forest algebra S we have
a�.v /∈ Φ(A).

Proof. We have roots(a�.v) = ({a}, 1). Since Φ is an ω-algebra homomor-
phism, the image of a p-context is a context and the image of a p-forest is a
forest.

Assume that, there is a p-context y such that the equality Φ(y) = a�.v
holds. Since y is a p-context, for some p-forests H1 and H2 we have y =
H1 + C(y) + H2. If at least one of H1 or H2 is a non-trivial p-forest, then,
by Lemma 4.2.34, we have #roots(Φ(y)) ≥ 2 which is a contradiction. So,
we have the equalities H1 = H2 = 0 which means y = C(y), that is, y is
a �-pure. Since a�.v is non-trivial, by Lemma 4.2.34 we deduce that y
is non-trivial. And since y is a �-pure, there are d� ∈ A′ and x ∈ V, or
z, x ∈ V with C(z) 6= �, such that y = d�.x or y = zω.x. In both cases
Φ(y) 6= a�.v.

Let x be an element of Φ(A), depth-first pre-order traversal is one way
to go through the nodes of a tree. The Figure 4.1 is an example of a tree
which is traversed with depth-first pre-order traversal algorithm; for more
details see [20].

Remark 4.2.49. Let x be an element of Φ(A). By depth-first pre-order
traversal of a tree, we can define a unique mapping from the set of natural
numbers, actually the set

{n | n ∈ N \ {0}, n ≤ #Nodes(x)},

to the nodes of x. This is one of the ways that we can determine the position
of a node in an element of Φ(A).

We denote by Pos(x, i) the value of the above mapping for the positive
integer i which gives the label of the node in the position i.

Remark 4.2.50. Let x be an element of Φ(A). By definition of the ω-algebra
homomorphism Φ, the number of nodes with label b and the number of
nodes with label c in x are equal.
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Let x be an element of S. By x|b,c we mean substitute every subterm
d� of x where d� ∈ A′ ∪ {a�}, by �.

We denote by D(b, c) the Dyck language over {b, c}, see [21, 24, 30]
for more details on Dyck Languages. The following conditions are some
properties of the Dyck language D(b, c):

• if x ∈ D(b, c), then there is a non-negative integer n such that |x| = 2n;

• if x, y ∈ D(b, c) and x = z1yz2, then z1z2 ∈ D(b, c);

• if x, y ∈ D(b, c) and x = z1z2, then z1yz2 ∈ D(b, c);

• if x ∈ D(b, c) with x = x1 . . . x2n 6= ε then, for every i ≥ 1 with xi = b,
there is a unique integer j ≥ i such that xj = c and xi+1 . . . xj−1 ∈
D(b, c).

Lemma 4.2.51. For every p-context u in A, the following statement holds:

nerve(Φ(u))|b,c ∈ D(b, c).

Proof. We argue by induction on the number of nodes of nerve(Φ(u)).
If #Nodes(nerve(Φ(u))) = 0 then, by Lemma 4.1.8 and since Φ(u) is a

context, we have nerve(Φ(u)) = � and, therefore, we have nerve(Φ(u))|b,c =
ε ∈ D(b, c).

Assume that, for every p-context u with #Nodes(nerve(Φ(u))) ≤ n, we
have nerve(Φ(u))|b,c ∈ D(b, c).

Let u be a p-context with #Nodes(nerve(Φ(u))) = n + 1. In view of the
definition of the ω-algebra homomorphism nerve, we have nerve(Φ(u)) =
nerve(Φ(C(u)). For C(u) we have: there exists a p-context u2 and d� ∈ A′
such that C(u) = d�.u2 or there are p-contexts u1 and u2 with C(u1) 6= �
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such that C(u) = uω1 .u2. If C(u) = d�.u2, then we have nerve(Φ(u)) =
d�.nerve(Φ(u2)). Since we have

#Nodes(nerve(Φ(u))) = #Nodes(d�.nerve(Φ(u2)))

= 1 + #Nodes(nerve(Φ(u2)))

= n+ 1,

we also have #Nodes(nerve(Φ(u2))) = n. By induction hypothesis, it follows
that nerve(Φ(u2))|b,c ∈ D(b, c). Combining with the equalities

nerve(Φ(u))|b,c = d�.nerve(Φ(u2))|b,c = nerve(Φ(u2))|b,c

we deduce that nerve(Φ(u))|b,c ∈ D(b, c).
Now assume that C(u) = uω1 .u2. Then the following equality holds:

nerve(Φ(u)) = b�.nerve(Φ(u1)).c�.nerve(Φ(u2)).

Since we have

#Nodes(nerve(Φ(u)))

= #Nodes(b�.nerve(Φ(u1)).c�.nerve(Φ(u2)))

= 1 + #Nodes(nerve(Φ(u1))) + 1 + #Nodes(nerve(Φ(u2)))

= n+ 1,

it follows that #Nodes(nerve(Φ(ui))) < n for i = 1, 2. By induction hypoth-
esis, we have nerve(Φ(ui))|b,c ∈ D(b, c) for i = 1, 2. In view of the equalities

nerve(Φ(u))|b,c = (b�.nerve(Φ(u1)).c�.nerve(Φ(u2)))|b,c
= b�.(nerve(Φ(u1))|b,c).c�.(nerve(Φ(u2))|b,c),

we conclude that nerve(Φ(u))|b,c ∈ D(b, c).

Remark 4.2.52. Over a finite alphabet A let Σ be the set A ∪ {�} and Σ∗

be the free monoid generated by Σ. Let ε be the empty word in Σ∗. Let x
be a word of Σ∗. We define #hole(x) the number of occurrences of the letter
� in the word x. Define sets

Σ∗H = {x ∈ Σ∗ | #hole = 0} and Σ∗V = {x ∈ Σ∗ | #hole = 1}.

Then Σ∗H is a monoid under concatenation of words and Σ∗V becomes a
monoid under insertion, denoted by /, which is defined as follows: for words
x and y in Σ∗V , where x = x1 · · ·xn assume that xi = �, define

x / y = x1 · · ·xi−1yxi+1 · · ·xn.
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It is immediate to see that S = (Σ∗H ,Σ
∗
V ) endowed with the following ad-

ditional operations satisfies the equational axioms of forest algebras: for
elements h and v respectively in Σ∗H and Σ∗V define:

h+ v = hv;
v + h = vh;
v ∗ h = v / h,

where the operations on the right are concatenation and insertion.

By the universal property of the free forest algebra (A] {a, b, c})∆, there is
a unique forest algebra homomorphism

traversal : A∆ → S

such that
traversal(a�) = a�.

Let x be an element of A. Then we have

Φ(x) ∈ Im(Φ) ⊆ (A ] {a, b, c})∆

and so traversal(Φ(x)) is a word in Σ∗ where Σ = A ] {a, b, c,�}.

Example 4.2.53. Consider the following element of A:

x = d�.((f�+ g))ω.

Then we have
Φ(x) = d�.b�.((f�+ g)).c�).

And so we have

traversal(Φ(x)) = traversal(d�) / traversal(b�.(f�+ g).c�)

= d traversal(b�.(f�+ g).c�)

= d(traversal(b�) / traversal((f�+ g).c�))

= db(traversal(f�+ g) / traversal(c�))

= db((traversal(f�) traversal(g)) / (c�))

= db((f�g) / (c�))

= dbfc�g

Lemma 4.2.54. The following property holds for every element x of A:

traversal(Φ(x))|b,c ∈ D(b, c).
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Proof. Note that for every p-context x, the p-forest x ∗ 0 and the p-context
x have the same number of nodes and the same rank.

We argue by simultaneous induction on the number of nodes and the
rank of x.

Assume that, for every element x in A with

#Nodes(x) ≤ n and Rank(x) ≤ k

and at least one of the inequalities strict, we have traversal(Φ(x))|b,c ∈
D(b, c).

Let x be a p-forest with #Nodes(x) = n and Rank(x) = k. We show that
traversal(Φ(x))|b,c ∈ D(b, c). Without loss of generality we may assume
that x is an additively irreducible element. Indeed, otherwise x = x1 + x2

for some non-trivial elements x1 and x2 so that, by Lemma 4.1.7, we have
for i = 1, 2, #Nodes(xi) < #Nodes(x) while Rank(xi) ≤ Rank(x). By the
induction hypothesis we have

traversal(Φ(xi))|b,c ∈ D(b, c).

Since the following equality holds:

traversal(Φ(x))|b,c = traversal(Φ(x1))|b,c traversal(Φ(x2))|b,c,

we have
traversal(Φ(x))|b,c ∈ D(b, c).

Hence, x is additively irreducible and one of the following must hold:

• Assume that, for some non-trivial p-forest h, we have x = ω(h). Then
we have traversal(Φ(x))|b,c = traversal(Φ(h))|b,c where #Nodes(h) = n
and Rank(h) = k − 1. And by induction hypothesis we get the result.

• Assume that, for some p-forest h and d ∈ A, we have x = d�∗h. Then
we have

traversal(Φ(x))|b,c = traversal(Φ(h))|b,c
where #Nodes(h) = n−1. Since Rank(h) = k, by induction hypothesis
we have

traversal(Φ(h))|b,c ∈ D(b, c).

• Finally, assume that, for some p-forest h and some p-context v with
C(v) 6= �, we have x = vω ∗ h. It follows that

traversal(Φ(x))|b,c = b traversal(Φ(v))|b,cc traversal(Φ(h))|b,c.

By induction hypothesis, since

#Nodes(h) < n and Rank(h) < k
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we have
traversal(Φ(h))|b,c ∈ D(b, c).

And since Rank(v) < k, while #Nodes(h) ≤ n, by the induction hy-
pothesis we have

traversal(Φ(v))|b,c ∈ D(b, c).

Since, for a p-context x, the equality

traversal(Φ(x))|b,c = traversal(Φ(x ∗ 0))|b,c

holds, the induction step and proof are complete.

Let y = y1 · · · yn ∈ D(b, c) and let i and j be positive integers such that
1 ≤ i < j ≤ n with yi = b and yj = c. We say that i is related with j if
yi+1 · · · yj−1 ∈ D(b, c).

Let x be an element of A. And let

y = traversal(Φ(x))|b,c and t = traversal(Φ(x)).

Assume that length of the words y and t are respectively n and m. In view
of Remark 4.2.49, we say that i is related with j if the following conditions
hold:

• ti = b;

• tj = c;

• t1 · · · ti|b,c = y1 · · · yi1 ;

• tj · · · tm|b,c = yj1 · · · yn;

• i1 is related with j1.

Remark 4.2.55. Let x ∈ A and y = traversal(Φ(x))|b,c. Lemma 4.2.54 im-
plies that, if y = y1 · · · yn, where each yk is a letter, and, for a certain
1 ≤ i ≤ n, yi = b, then there is a unique j with i < j ≤ n such that yj = c
and i is related with j. And if yi = c, then there is a unique j with 1 ≤ j < i
such that yj = b and j is related with i.

Lemma 4.2.56. The following diagram commutes:

A

#Nodes

##

Φ // (A ] {a, b, c})∆

#NodesA

��

(N,N′)
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where, for x ∈ {a, b, c}, we define #NodesA(x�) = 0′, and for x ∈ A we
define #NodesA(x�) = 1′.

Proof. All the mappings #Nodes, Φ and #NodesA are ω-algebra homomor-
phisms.

We just need to show that, whenever x is a generator, the following
equality holds:

#Nodes(x) = (#NodesA ◦ Φ)(x).

Let d� be an element of A′. Then we have #Nodes(d�) = 1′ and Φ(d�) = d�
which implies the following equality:

#NodesA ◦ Φ(d�) = #NodesA(d�) = 1′.

Lemma 4.2.57. For p-contexts x and y, we have the following:

• if for some forests h1 and h2 of S with the property that the number
of occurrences of the label b is less than or equal to the number of
occurrences of the label c in traversal(h1) and traversal(h2), then the
equality Φ(x)∗(c�∗h1) = Φ(y)∗(c�∗h2) implies the equalities Φ(x) =
Φ(y) and h1 = h2;

• if for some contexts u1 and u2 of S with the property that the number
of occurrences of the label b is less than or equal to the number of
occurrences of the label c in traversal(u1) and traversal(u2), then the
equality Φ(x).(c�.u1) = Φ(y).(c�.u2) implies the equalities Φ(x) =
Φ(y) and u1 = u2.

Proof. We will show just the first one, the second one can be handled simi-
larly.

We argue by simultaneous induction on the number of nodes and the
rank of x.

Assume that, for every p-context x with

#Nodes(x) ≤ n and Rank(x) ≤ k

and at least one of the inequalities strict, the equality Φ(x) ∗ (c� ∗ h1) =
Φ(y) ∗ (c� ∗ h2) implies the equalities Φ(x) = Φ(y) and h1 = h2.

Let x be a p-context with #Nodes(x) = n and Rank(x) = k. There
are p-forests H1, H2, S1, and S2 such that x = H1 + C(x) + H2 and also
y = S1 + C(y) + S2. By Lemma 4.2.47, the image of a �-pure p-context is
connected. As the equality Φ(x) ∗ (c� ∗ h1) = Φ(y) ∗ (c� ∗ h2) holds in the
free forest algebra S, and the number of occurrences of the label b and the
number of occurrences of the label c are equal in Φ(x). So, there is a unique
tree in both sides which does not have equal number of occurrences of the
label b and the label c. So, the equality

Φ(H1) + Φ(C(x)) ∗ (c� ∗h1) + Φ(H2) = Φ(S1) + Φ(C(y)) ∗ (c� ∗h2) + Φ(S2)

83



holds if and only if the following equalities hold:

Φ(H1) = Φ(S1),

Φ(H2) = Φ(S2),

Φ(C(x))) ∗ (c� ∗ h1) = Φ(C(y)) ∗ (c� ∗ h2).

If at least one of the H1 and H2 are non-trivial, then, since #Nodes(C(x)) < n
and Rank(x) ≤ k, by induction hypothesis we obtain the following equalities:

Φ(C(x)) = Φ(C(y)) and h1 = h2,

which yield to the equalities Φ(x) = Φ(y) and h1 = h2.
We may assume that H1 = H2 = 0. Then either x = d�.v1 or uω1 .v1,

and either y = d′�.v2 or y = uω2 .u2, where u1, u2, v1, and v2 are p-contexts,
with C(u1) 6= � and C(u2) 6= �, and d�, d′� ∈ A′. Since the equality
Φ(x) ∗ (c� ∗ h1) = Φ(y) ∗ (c� ∗ h2) holds, by applying traversal, we obtain
that x = d�.v1 if and only if y = d�.v2. Hence, one of the following must
hold:

• Assume that, x = d�.v1 and y = d�.v2. Then by the equality Φ(x) ∗
(c� ∗ h1) = Φ(y) ∗ (c� ∗ h2) and Lemma 1.3.7, we obtain the equality
Φ(v1) ∗ (c� ∗ h1) = Φ(v2) ∗ (c� ∗ h2). Since #Nodes(v1) = n − 1 and
Rank(v1) = k, by induction hypothesis the equality Φ(v1)∗(c�∗h1) =
Φ(v2) ∗ (c� ∗ h2) implies the equalities Φ(v1) = Φ(v2) and h1 = h2.

• Assume that, x = uω1 .v1 and y = uω2 .v2. Then by the equality Φ(x) ∗
(c� ∗ h1) = Φ(y) ∗ (c� ∗ h2) and Lemma 1.3.7, we obtain the equality

Φ(u1) ∗ (c� ∗ Φ(v1) ∗ c� ∗ h1) = Φ(u2) ∗ (c� ∗ Φ(v2) ∗ c� ∗ h2).

Since #Nodes(u1) ≤ n and Rank(u1) < k, by induction hypothesis we
obtain the following equalities:

Φ(u1) = Φ(u2) and Φ(v1) ∗ (c� ∗ h1) = Φ(v2) ∗ (c� ∗ h2).

And since #Nodes(v1) < n and Rank(v1) ≤ k, by induction hypothesis
we have the equalities Φ(v1) = Φ(v2) and h1 = h2.

Corollary 4.2.58. For elements x and y of the free ω-algebra A, we have
the following:

• if for some p-forests h and h′ and some p-contexts v and v′ with C(v) 6=
� and C(v′) 6= � we have x = vω ∗h and y = v′ω ∗h′, then the equality
Φ(x) = Φ(y) implies the equalities Φ(v) = Φ(v′) and Φ(h) = Φ(h′);

• if for some p-contexts w and w′ and some p-contexts v and v′ with
C(v) 6= � and C(v′) 6= � we have x = vω.w and y = v′ω.w′, then the
equality Φ(x) = Φ(y) implies the equalities Φ(v) = Φ(v′) and Φ(w) =
Φ(w′).
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Proof. Assume that, for some p-forests h and h′ and some p-contexts v and
v′ with C(v) 6= � and C(v′) 6= � we have x = vω ∗ h and y = v′ω ∗ h′. And
assume that the equality Φ(x) = Φ(y) holds. The equality Φ(x) = Φ(y)
implies that the following equality holds

b�.Φ(v).c� ∗ Φ(h) = b�.Φ(v′).c� ∗ Φ(h′),

which is the equality Φ(v)∗ (c�∗Φ(h)) = Φ(v′)∗ (c�∗Φ(h′)). Since Remark
4.2.55 implies that in Φ(h) and Φ(h′) the number of occurrences of the label
b and the number of occurrences of the label c are equal, Lemma 4.2.57 gives
the result.

We can apply similar arguments in the second one, and then Lemma
4.2.57 gives the result.

The following result is immediate by Lemma 1.3.6 and Lemma 1.3.7.

Lemma 4.2.59. For elements x and y of the free ω-algebra A we have the
following:

• if for some p-forests h and h′ we have x = ω(h) and y = ω(h′), then
the equality Φ(x) = Φ(y) implies the equality Φ(h) = Φ(h′);

• if for some p-contexts d� and d′� and some p-contexts v and v′ we
have x = d�.v and y = d′�.v′, then the equality Φ(x) = Φ(y) implies
the equalities Φ(v) = Φ(v′) and d = d′;

• if for some p-contexts d� and d′� and some p-forests h and h′ we have
x = d�∗h and y = d′�∗h′, then the equality Φ(x) = Φ(y) implies the
equalities Φ(h) = Φ(h′) and d = d′.

The following is one of the main results in this chapter.

Theorem 4.2.60. The ω-algebra homomorphism Φ : A → S is injective.

Proof. Let x and y be elements of A such that Φ(x) = Φ(y). We show that
x = y. We argue by simultaneous induction on the number of nodes and
the rank of x.

Assume that, for every element x of A with

#Nodes(x) ≤ n and Rank(x) ≤ k

and at least one of the inequalities strict, the equality Φ(x) = Φ(y) implies
the equality x = y.

Let x be a p-forest with #Nodes(x) = n and Rank(x) = k. We show that
the equality Φ(x) = Φ(y) implies the equality x = y.

Assume that x is a p-forest. Then x = x1+· · ·+xn and let y be a p-forest
with y = y1 + · · ·+ym where xi and yj are non-trivial additively irreducible.
Hence, Lemma 4.2.45 implies that Φ(xi) and Φ(yj) are connected. The
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equality Φ(x) = Φ(y) holds in the free forest algebra S. By Lemma 1.3.6,
we have m = n and for all i the equalities Φ(xi) = Φ(yi) hold. Since
#Nodes(xi) < n and Rank(xi) ≤ k, by induction hypothesis we have for all
i, xi = yi. So, we may assume that x and y are additively irreducible.

Hence, x is additively irreducible and one of the following must hold:

• Assume that, for some non-trivial p-forests h and h′, we have x = ω(h)
and y = ω(h′). Then by the equality Φ(x) = Φ(y) and Lemma 4.2.59,
we have Φ(h) = Φ(h′), where #Nodes(h) = n and Rank(h) = k − 1.
And by induction hypothesis we get the result.

• Assume that, for some p-forests h and h′ and d, d′ ∈ A, we have x =
d�∗h and y = d′�∗h′. Then by the equality Φ(x) = Φ(y) and Lemma
4.2.59, we have Φ(h) = Φ(h′) and d = d′, where #Nodes(h) = n − 1.
Since Rank(h) = k, by induction hypothesis the equality Φ(h) = Φ(h′)
implies the equality h = h′.

• Finally, assume that, for some p-forests h and h′ and some p-contexts
v and v′ with C(v) 6= � and C(v′) 6= �, we have x = vω ∗ h and
y = v′ω ∗ h′. Since the equality Φ(x) = Φ(y) holds, Corollary 4.2.58
implies the equalities Φ(v) = Φ(v′) and Φ(h) = Φ(h′). Hence, by
induction hypothesis, since

#Nodes(h) < n and Rank(h) ≤ k,

we have the equality h = h′. And since Rank(v) < k, while

#Nodes(h) ≤ n,

by the induction hypothesis we have the equality v = v′.

Now assume that, x is a p-context. So, there are p-forests H1, H2, S1,
and S2 such that x = H1 + C(x) + H2 and also y = S1 + C(y) + S2. By
Lemma 4.2.47, the image of a �-pure p-context is connected. As the equality
Φ(x) = Φ(y) holds in the free forest algebra S, Lemma 1.3.7 implies the
following equalities:

Φ(H1) = Φ(S1) , Φ(H2) = Φ(S2) and Φ(C(x)) = Φ(C(y)).

Hence, the equalities H1 = S1 and H2 = S2 is from the preceding arguments
on the case where x is a p-forest. So, we may assume that x is an additively
irreducible p-context.

To complete the proof, we can do the similar arguments as in the pre-
ceding arguments for the p-forest case.

Definition 4.2.61. For an element x in the free ω-algebra A, we define
the number of summands of x to be CP(x) = CP(Φ(x)) where CP(Φ(x))
is the number of connected parts of Φ(x) in the free forest algebra S (See
Definition 1.2.8).
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Lemma 4.2.62. Let u and v be p-contexts in the free ω-algebra A. If for all
p-forests h in A the equality u ∗ h = v ∗ h holds, then we have the following
statements:

• there are some p-forests T1 and T2 such that u = T1 + C(u) + T2

and v = T1 + C(v) + T2, and for every p-forest h in A the equality
C(u) ∗ h = C(v) ∗ h holds;

• Rank(u) = Rank(v);

• #Nodes(u) = #Nodes(v).

Proof. Since for the trivial p-forest the equality u ∗ 0 = v ∗ 0 holds, the last
two statements are immediate.

Let u = H1 + C(u) +H2 and v = S1 + C(v) + S2. For the p-forest h =
d�∗(H1+H2+S1+S2) we have u∗h = v∗h. As C(v)∗d�∗(H1+H2+S1+S2)
and C(u)∗d�∗(H1+H2+S1+S2) are additively irreducible for any choice of
C(u) and C(v), Lemma 4.2.45 implies that Φ(C(v)∗d�∗(H1+H2+S1+S2))
and Φ(C(u)∗d�∗(H1+H2+S1+S2)) are connected. Applying the ω-algebra
homomorphism Φ, we obtain the following equality:

Φ(H1 + C(u) ∗ d� ∗ (H1 +H2 + S1 + S2) +H2)

= Φ(S1 + C(v) ∗ d� ∗ (H1 +H2 + S1 + S2) + S2)

in the free forest algebra (A ] {a, b, c})∆. Lemma 1.3.6 implies the compo-
nentwise equality of the forests. Since the second summands on both sides
of the preceding equality are the only ones with maximum number of nodes,
we can conclude that the following equalities hold:

Φ(C(v) ∗ d� ∗ (H1 +H2 + S1 + S2))

= Φ(C(u) ∗ d� ∗ (H1 +H2 + S1 + S2)),

Φ(H1) = Φ(S1) and Φ(H2) = Φ(S2).

Theorem 4.2.60 implies the equalities H1 = S1 and H2 = S2. Since for every
p-forest h in A the equality H1 +C(u) ∗ h+H2 = S1 +C(v) ∗ h+ S2 holds,
applying the ω-algebra homomorphism Φ, we obtain the following equality:

Φ(H1 + C(u) ∗ h+H2) = Φ(S1 + C(v) ∗ h+ S2)

which is

Φ(H1) + Φ(C(u) ∗ h) + Φ(H2) = Φ(S1) + Φ(C(v) ∗ h) + Φ(S2)).

As the preceding equality holds for all h, it implies that either both C(v)
and C(u) are trivial or both are non-trivial. In the former case, the proof
is complete. In the latter case, as C(v) ∗ h and C(u) ∗ h are additively

87



irreducible, Lemma 4.2.45 implies that Φ(C(v) ∗ h) and Φ(C(u) ∗ h) are
connected. Now, by the equalities Φ(H1) = Φ(S1) and Φ(H2) = Φ(S2),
Lemma 1.3.6 implies the equality Φ(C(u)∗h) = Φ(C(v)∗h), and the equality
C(u) ∗ h = C(v) ∗ h for every p-forest h follows by Theorem 4.2.60.

The following is the main result in this chapter.

Theorem 4.2.63. Every free ω-algebra A is a forest algebra.

Proof. As A satisfies the equational axioms of forest algebras, all we need
to show is that for given two p-contexts u and v in A such that, for every
p-forest h in A, the equality u ∗h = v ∗h holds, then the equality u = v also
holds. In view of Lemma 4.2.62, we just need to consider the cases where
u = C(u) and v = C(v). We proceed by induction on the number of nodes
of u.

For p-contexts u and v with #Nodes(u) = 0, if for every p-forest h in A
the equality u ∗ h = v ∗ h holds, then Lemma 4.2.62 implies #Nodes(v) = 0,
so that Lemma 4.1.8 implies the equalities u = v = �.

Assume that for p-contexts u and v with #Nodes(u) ≤ n if, for every
p-forest h in A, the equality u ∗h = v ∗h holds, then the equality u = v also
holds.

Now, consider p-contexts u and v with #Nodes(u) = n+ 1 such that for
every p-forest h inA the equality u∗h = v∗h holds. As we assumed u = C(u)
and v = C(v), then either u = d�.w or xω.w, and either v = d′�.w′ or
v = yω.w′, where w, w′, x, and y are p-contexts, with C(x) 6= � and
C(y) 6= �, and d�, d′� ∈ A′.

Since for every p-forest h in A the equality u ∗ h = v ∗ h holds, applying
traversal ◦Φ on u∗h = v ∗h, implies that u∗h and v ∗h have the same kind.
In the first case d = d′, which means u = d�.w if and only if v = d′�.w′.

Since for every p-forest h in A we have Φ(u ∗ h) = Φ(v ∗ h), we obtain

Φ(d� ∗ (w ∗ h)) = Φ(d� ∗ (w′ ∗ h)) or Φ(xω ∗ (w ∗ h)) = Φ(yω ∗ (w′ ∗ h)).

In the first case, we obtain the equality Φ(w ∗ h) = Φ(w′ ∗ h) and for the
second case, by Corollary 4.2.58, we obtain the equalities:

Φ(xω) = Φ(yω) and Φ(w ∗ h) = Φ(w′ ∗ h).

In both cases, Theorem 4.2.60 implies for every h the equality w ∗h = w′ ∗h
holds, where in the second case Theorem 4.2.60 also implies that xω = yω,
and by induction hypothesis, since #Nodes(w) < #Nodes(u), we have the
equality w = w′. So we have the equality u = v.

4.2.3 Some Notation in the Free ω-Algebra A

From now on, we will work on elements of the free ω-algebra A over an
alphabet A.
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For a p-context v, we define the following sets:

IrrF(v) = {w | w is a non-trivial multiplicatively irreducible factor of v};
LIrrF(v) = {h+� | h+� ∈ IrrF(v)};
RIrrF(v) = {�+ h | �+ h ∈ IrrF(v)};
PIrrF(v) = {u | u ∈ IrrF(v) , u is �-pure};
IdemF(v) = {u | u ∈ IrrF(v) , u = wω for a p-context w};
IrrNIdemF(v) = IrrF(v) \ IdemF(v);

IrrNIdemF∗(v) = IrrNIdemF(v) ∪ (
⋃

uω∈IdemF(v)

IrrNIdemF∗(u)).

And for a p-forest h, we define the following sets:

IrrS(h) = {t | t is a non-trivial additively irreducible summand of h};
IdemS(h) = {t | t ∈ IrrS(h) , t = ω(s) for a p-forest s};
IrrNIdemS(h) = IrrS(h) \ IdemS(h);

IrrNIdemS∗(h) = IrrNIdemS(h) ∪ (
⋃

ω(t)∈IdemS(h)

IrrNIdemS∗(t)).

Lemma 4.2.64. Let v be a non-trivial p-context in A. If we have IrrF(v) =
{x}, then there exists a unique positive integer k such that the equality v = xk

holds.

Proof. If v is multiplicatively irreducible, then we have the equality v = x.
Assume that, v is not a multiplicatively irreducible p-context. Then we can
write v = x1 . . . xk, as a product of its non-trivial multiplicatively irreducible
factors. By definition of IrrF(v) we must have xi = x, whence v = xk.

We show that k is unique, that is, if there are positive integers k1 and
k2 such that v = xk1 = xk2 , then the equality k1 = k2 holds.

As x is a non-trivial multiplicatively irreducible p-context, by Lemma
4.2.43, x has one of the following forms:

1. d�, where d� ∈ A;

2. uω, where C(u) 6= �;

3. s+�, where s is a non-trivial additively irreducible p-forest;

4. �+ s, where s is a non-trivial additively irreducible p-forest.

If x = d� and v = xk1 = xk2 , then by applying the ω-algebra homomorphism
#Nodes we have the following equalities:

#Nodes(v) = #Nodes(x
k1) = #Nodes(x

k2),
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which implies the equality k1 = k2.
If x = uω with C(u) 6= � and v = xk1 = xk2 , then by using the ω-algebra

homomorphism f ′2, we have

f ′2(v) = f ′2(xk1) = f ′2(xk2)

which is f ′2(v) = (q�)k1 = (q�)k2 , for some element q� ∈ A′. Now by using
#Nodes we have the following equalities:

#Nodes(f
′
2(v)) = #Nodes((b�)k1) = #Nodes((b�)k2),

which implies the equality k1 = k2.
For element of the form x = s+� in A where s is a non-trivial additively

irreducible p-forest, if s = d� ∗ h, then by using f1 we have the following
equalities:

f1(v) = f1(xk1) = f1(xk2).

Now by the forest algebra homomorphism #ConnectedParts which gives the
number of connected parts we have the following equalities:

#ConnectedParts(f1(v)) = #ConnectedParts(f1(xk1))

= #ConnectedParts(f1(xk2)),

which is

#ConnectedParts((d� ∗ f1(h) +�)k1) = #ConnectedParts((d� ∗ f1(h) +�)k2)

and it implies the equality k1 = k2.
If s = ω(h) then by using f ′1 we obtain

f ′1(v) = f ′1(xk1) = f ′1(xk2)

which is
f ′1(v) = (a+�)k1 = (a+�)k2 .

Again by using #ConnectedParts we have the following equalities:

#ConnectedParts(f
′
1(v)) = #ConnectedParts((a+�)k1)

= #ConnectedParts((a+�)k2),

which implies the equality k1 = k2.
Finally, if s = uω ∗ h with C(u) 6= �, then by using f ′2 we have

f ′2(v) = f ′2(xk1) = f ′2(xk2)

which implies the following equalities:

f ′2(v) = (a� ∗ f ′2(h) +�)k1 = (a� ∗ f ′2(h) +�)k2 .
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Now by using #ConnectedParts we have

#ConnectedParts(f
′
2(v)) = #ConnectedParts((a� ∗ f ′2(h) +�)k1)

= #ConnectedParts((a� ∗ f ′2(h) +�)k2)

which implies the equality k1 = k2.
In a similar way, we can get the uniqueness of k in case �+ s.

Lemma 4.2.65. Let w1, . . . , wn be non-trivial multiplicatively irreducible
p-contexts in A. Then the following equality holds:

IrrF(w1. · · · .wn) = {w1} ∪ IrrF(w2. · · · .wn).

Proof. See Appendix A, Section A.2.

Corollary 4.2.66. For p-contexts v1 and v2 in A, we have the following
equality:

IrrF(v1.v2) = IrrF(v1) ∪ IrrF(v2).

Proof. The result is trivial by considering the cases where at least one of
the p-contexts v1 and v2 is trivial.

We can assume that v1 and v2 are non-trivial p-contexts, then there are
non-trivial multiplicatively irreducible p-contexts w1, . . . , wn and w′1, . . . , w

′
n

such that v1 = w1. · · · .wn and v2 = w′1. · · · .w′m. To show the result we apply
Lemma 4.2.65 to w1. · · · .wn.w′1. · · · .w′m.

By definition of IrrNIdemF∗(v) and by Lemma 4.2.65, we have the fol-
lowing equality:

IrrNIdemF∗(v1.v2) = IrrNIdemF∗(v1) ∪ IrrNIdemF∗(v2)

and also we have

IrrNIdemF∗(vω) = IrrNIdemF(vω) ∪ (
⋃

uω∈IdemF(vω)

IrrNIdemF∗(u)),

IrrNIdemF(vω) = ∅,
IdemF(vω) = {vω}.

In particular, we obtain equalities:

IrrNIdemF∗(v) = IrrNIdemF∗(v2) = IrrNIdemF∗(vω).

Lemma 4.2.67. For p-forests h1 and h2 in A, the following equality holds:

IrrS(h1 + h2) = IrrS(h1) ∪ IrrS(h2).

91



Proof. By Lemma 4.2.39, for a p-forest h inA we have the following equality:

IrrF(h+�) ∗ 0 = IrrS(h).

Now, by Lemma 4.2.65, we have the equality

IrrF(h1 + h2 +�) = IrrF(h1 +�) ∪ IrrF(h2 +�),

which implies the following equality:

IrrS(h1 + h2) = IrrS(h1) ∪ IrrS(h2).

By definition of IrrNIdemS∗(h) and by Lemma 4.2.67, we have the fol-
lowing equality:

IrrNIdemS∗(h1 + h2) = IrrNIdemS∗(h1) ∪ IrrNIdemS∗(h2),

and also we have

IrrNIdemS∗(ω(h)) = IrrNIdemS(ω(h)) ∪ (
⋃

ω(t)∈IdemS(ω(h))

IrrNIdemS∗(t)),

IrrNIdemS(ω(h)) = ∅,
IdemS(ω(h)) = {ω(h)}.

So, the following equalities hold:

IrrNIdemS∗(h) = IrrNIdemS∗(2h) = IrrNIdemS∗(ω(h)).

For a p-forest h, recall that we considered in Definition 1.3.4, the set

VIrrNIdemS∗(h) = ( ∗ 0)−1(IrrNIdemS∗(h)),

and every p-context v in VIrrNIdemS∗(h) can be written as a product of its
non-trivial multiplicatively irreducible factors:

v = w1. · · · .wm.

There is a positive integer n such that

v = u1v
ω
1 · · ·unvωnun+1,

where each

ui =

ni∏
j=ni−1

wj

is a product of successive context factors of v which are not ω-context and
vωi is wni+1, which is an ω-context factor of v. For every such p-context v,
which is of the form

u1v
ω
1 · · ·unvωnun+1
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define a set Hv, which contains all possible non-trivial forests of the form

P1Q1 · · ·PnQnPn+10

such that each Pi is a scattered divisor of ui and each Qj is a product of
some of the elements of IrrNIdemF∗(vj) in some order.

For a p-forest h, we define the following set:

SpecialH(h) = IrrNIdemS∗(h) ∪

 ⋃
v∈VIrrNIdemS∗(h)

Hv

 .

Lemma 4.2.68. For p-forests h and s, the following equality holds:

SpecialH(h+ s) = SpecialH(h) ∪ SpecialH(s).

Proof. Because, we have the following equalities:

SpecialH(h+ s)

= IrrNIdemS∗(h+ s) ∪

 ⋃
v∈VIrrNIdemS∗(h+s)

Hv


= IrrNIdemS∗(h) ∪ IrrNIdemS∗(s) ∪

 ⋃
v∈VIrrNIdemS∗(h)∪IrrNIdemS∗(s)

Hv


= IrrNIdemS∗(h) ∪ IrrNIdemS∗(s) ∪

 ⋃
v∈VIrrNIdemS∗(h)∪VIrrNIdemS∗(s)

Hv



= IrrNIdemS∗(h) ∪ IrrNIdemS∗(s) ∪

 ⋃
v∈VIrrNIdemS∗(h)

Hv


∪

 ⋃
v∈VIrrNIdemS∗(s)

Hv


= IrrNIdemS∗(h) ∪

 ⋃
v∈VIrrNIdemS∗(h)

Hv

 ∪ IrrNIdemS∗(s)

∪

 ⋃
v∈VIrrNIdemS∗(s)

Hv


= SpecialH(s) ∪ SpecialH(s).
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Lemma 4.2.69. For a p-context v and a p-context h, the sets IrrF(v) and
IrrS(h) are finite.

Proof. We argue by induction on the number of nodes of v. If #Nodes(v) = 0,
then IrrF(v) = ∅ which has finite number of elements. Assume that for ev-
ery p-context v with #Nodes(v) ≤ k, IrrF(v) has finite number of elements.
Let v be a p-context with #Nodes(v) = k + 1. If v is multiplicatively ir-
reducible, then IrrF(v) = {v}. We may assume that v is not multiplica-
tively irreducible, then, there are non-trivial p-contexts v1 and v2 such that
v = v1.v2, and Corollary 4.2.66 implies that IrrF(v) = IrrF(v1) ∪ IrrF(v2).
Since #Nodes(v1) ≤ k and #Nodes(v2) ≤ k, by induction hypothesis, IrrF(v1)
and IrrF(v2) are finite, so does IrrF(v).

We can do similar arguments for a p-forest h.

Corollary 4.2.70. For a p-context v, the sets LIrrF(v), RIrrF(v), PIrrF(v),
IdemF(v), IrrNIdemF(v), and IrrNIdemF∗(v) are finite.

And similarly, for a p-forest h, the sets IdemS(h), IrrNIdemS(h) and
IrrNIdemS∗(h) are finite.

Proof. The sets LIrrF(v), RIrrF(v), PIrrF(v), IdemF(v), and IrrNIdemF(v)
are subsets of set IrrF(v), and Lemma 4.2.69 implies that all are finite.

Since finite union of finite sets is a finite set, by definition of IrrNIdemF∗,
IrrNIdemF∗(v) is finite.

For a p-forest h, we can do the similar argument.

4.3 Conclusion

We introduced ω-algebras which satisfy the equational axioms of forest al-
gebras with some extra assumptions. Since the class of ω-algebras is defined
by equational axioms, all the free ω-algebras exist. By introducing addi-
tional partial operations on a forest algebra we make it into an ω-algebra.
By using the universal property of the free ω-algebra we showed that the
free ω-algebra is a forest algebra. We distinguished all kinds of non-trivial
additively irreducible and non-trivial multiplicatively irreducible elements of
the free ω-algebras. We showed that the set of non-trivial multiplicatively
irreducible factor of a product of p-contexts is the union of the set of non-
trivial multiplicatively irreducible factor of each one. By Lemma 4.1.1, it is
natural to study the free profinite forest algebra as an ω-algebra. We still
do not know if the free ω-algebra is the answer for the corresponding term
algebra for the relatively free pro-BSS forest algebras.

Analog of Birkhoff theorem for partial algebras also holds as studies
of Németi and Sain [25], Andréka and Németi [3], and briefly studied by
Burmeister [10, p. 314]. The class of ω-algebras B is a variety and it is
defined by a set of equations on the free ω-algebra A [5]. The latter means:
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there is a family E of equations p = q, where p and q are polynomial
symbols, such that an algebra B of the type τ belongs to B if and only if
for each equation p = q in E the induced operations pB and qB coincide.
Every subvariety of B satisfies the equational axioms of ω-algebras with
more equational axioms [5]. To identify the free object in a subvariety of B
we just need to identify the quotient of the free ω-algebra by the new set of
equations.
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Chapter 5

Canonical Forms

In the study of the pseudovariety BSS, from [6, Theorem 2 and Proposition
19] and [1, Section 8.2], we obtained certain suitable identities denoted by
Σ. We describe an algorithm to compute the so-called canonical form for an
element of the free ω-algebra A modulo Σ and we prove it is correct.

In this chapter we use the same notation as in Chapters 1 and 4.

5.1 Identities

Given any finite monoid M , there is a number ω(M) [denoted by ω when
M is understood from the context] such that for each element x of M , xω

is an idempotent: xω = xωxω. Therefore for any finite forest algebra (H,V )
and any element u of V and g of H we will write uω and ω(g) for the
corresponding idempotents [6].

Let V is a pseudovariety of finite forest algebras. We say that an algebra
is pro-V if it is a projective limit of a projective system of forest algebras
from V.

Let A be a finite alphabet and let BSS be the pseudovariety of finite for-
est algebras generated by all syntactic forest algebras of piecewise-testable
forest languages. By Lemma 2.1.5 and in view of [6, Theorem 2 and Propo-
sition 19], we get BSS ⊂ VJ, where J is the pseudovariety of J -trivial
monoids. And by Lemma 2.2.5, we have BSS ⊂ FJ. For a multiplicative
finite monoid M and additive finite monoid S, and m ∈ M and s ∈ S,
there exists exactly one idempotent of the form mn and ns with n ≥ 1;
these idempotents will be represented respectively by mω and ω(s). We
thus define new unary operations m 7→ mω and s 7→ ω(s) on the pseu-
dovariety of all finite forest algebras. In order to verify that the unary
operations m 7→ mω and s 7→ ω(s) defined on the pseudovariety of all fi-
nite forest algebras commutes with all forest algebra homomorphisms let
α : S1 = (H1, V1) → S2 = (H2, V2) be a forest algebra homomorphism of
finite forest algebras and h ∈ H1 and v ∈ V1, then α(ω(h)) = ω(α(h))
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and α(vω) = α(v)ω. For construction of all elements of the free pro-BSS,
ΩABSS, from the projections a1, . . . , an, it is natural to consider the basic
operations and two unary operations x 7→ ω(x) and y 7→ yω. And so we can
study the free pro-BSS as an ω-algebra.

Consider the variety V of ω-algebras of type τ , defined by the set Σ
consisting of the following identities, for context terms u and v and forest
term h,

(uv)ω = (vu)ω = (uωvω)ω (5.1)

vωv = vω = vvω (5.2)

(vω)ω = vω (5.3)

vh+ ω(vuh) = ω(vuh) = ω(vuh) + vh (5.4)

Lemma 5.1.1. For forest terms h and s, the following identities are con-
sequences of Σ:

ω(h+ s) = ω(s+ h) = ω(ω(h) + ω(s)) (5.5)

ω(h) + h = ω(h) = h+ ω(h) (5.6)

ω(ω(h)) = ω(h) (5.7)

Proof. The identities 5.5, 5.6 and 5.7 are immediate respectively from the
identities 5.1, 5.2 and 5.3 by letting u = s + � and v = h + � and then
acting on the trivial forest term 0.

Lemma 5.1.2. The following identities are consequences of Σ:

I.1 vωvω = vω;

I.2 (uv)ωu = (uv)ω = v(uv)ω;

I.3 uω = vω where u with the factorization
∏
i∈N ui is a p-context and v

is the product, in any order, of the factors of u;

I.4 ω(h) + ω(h) = ω(h);

I.5 ω(h+ s) + h = ω(h+ s) = s+ ω(h+ s);

I.6 ω(h) = ω(s) where h is a p-forest and s is the sum, in any order, of
the elements of IrrS(h);

I.7 (vv)ω = vω;

I.8 (uvω)ω = (uv)ω;

I.9 uω = (
∏

v∈IrrNIdemF∗(u)

v)ω;
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I.10 IrrNIdemF∗(u) = IrrNIdemF∗(v) if and only if uω = vω;

I.11 if IrrNIdemF∗(u) ⊆ IrrNIdemF∗(v), then uωvω = vωuω = vω;

I.12 if IrrNIdemF∗(u) ⊆ IrrNIdemF∗(v), then uvω = vωu = vω;

I.13 ω(h+ h) = ω(h);

I.14 ω(uh+ uwh) = ω(uwh);

I.15 ω(ω(h) + s) = ω(h+ s);

I.16 for a p-context v = h1 + C(v) + h2, if C(v) = � then vω = ω(h1) +
�+ ω(h2). And for C(v) 6= �, if C(v) 6= v then there is a p-context u
with u = C(u) such that vω = uω;

I.17 for every p-context u and v and every p-forest h we have ω(uvs) =
ω(uvs) + ω(us) = ω(us) + ω(uvs);

I.18 for every p-context u and every p-forest t if p-contexts w and v are
such that one of the identities wv = w or w = vw holds, then the
identities uvt+ ω(uwt) = ω(uwt) = ω(uwt) + uvt hold;

I.19 for p-contexts v1, . . . , vn and a p-forest s, if we have u1, . . . , un are
product of some of multiplicatively irreducible factors of respectively
v1, . . . , vn or the trivial p-context � and h is a suffix of s, then

ω(vω1 · · · vωns) + u1 · · ·unh = ω(vω1 · · · vωns).

And similarly, we have the identity

ω(vω1 · · · vωns+ u1 · · ·unh) = ω(vω1 · · · vωns);

I.20 for contexts v and u with u |s v we have the identity ω(v0) + u0 =
ω(v0). And similarly, we have the identity ω(v0 + u0) = ω(v0);

I.21 ω(h) = ω(
∑

t∈IrrNIdemS∗(h)

t);

I.22 for every forest s ∈ SpecialH(h), ω(h+ s) = ω(h);

I.23 ω(h) = ω(
∑

t∈SpecialH(h)

t);

I.24 for a p-context v with factorization
n∏
i=1

vi and a p-forest h = t1 + · · ·+

tCP(h), we have the following results:

G.1 if t1 ∈ LIrrF(v)0, then vωh = vωh′ where h′ = t2 + · · ·+ tCP(h);
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G.2 if tCP(h) ∈ RIrrF(v)0, then vωh = vωh′ where h′ = t1 + · · · +
tCP(h)−1;

G.3 if there is a p-context w ∈ Pref(h) such that IrrNIdemF∗(w) ⊆
IrrNIdemF∗(v), then vωh = vωh′ where h = wh′;

G.4 if for a positive integer j with 1 ≤ j ≤ CP(h) and a nonempty
set L ⊆ LIrrF(v)0 there is a p-forest s which is a sum of, in any
order, of elements of L such that there are p-contexts u and w and
a p-forest r with t1 + · · ·+ tj = ur and s = uwr, then vωh = vωh′

where h′ = tj+1 + · · ·+ tCP(h);

G.5 if for a positive integer j with 1 ≤ j ≤ CP(h) and a nonempty
set R ⊆ RIrrF(v)0 there is a p-forest s which is a sum of, in any
order, of elements of R such that there are p-contexts u and w
and a p-forest r with tj + · · · + tCP(h) = ur and s = uwr, then
vωh = vωh′ where h′ = t1 + · · ·+ tj−1;

G.6 for vn = H1 + � + H2 with H1 = s1 + · · · + sCP(H1) and H2 =
s′1 + · · ·+ s′CP(H2) if

sCP(H1) ∈ SpecialH(h) or s′1 ∈ SpecialH(h),

then we have the identities

vω(h) = v1 . . . vn−1(s1 + · · ·+ sCP(H1)−1 + ω(h) +H2)

or

vω(h) = v1 . . . vn−1(H1 + ω(h) + s′2 + · · ·+ s′CP(H2));

G.7 for vn = H1 + � + H2 with H1 = s1 + · · · + sCP(H1) and H2 =
s′1 + · · ·+ s′CP(H2) if for a positive integer j with

1 ≤ j ≤ CP(H1) (1 ≤ j ≤ CP(H2))

and a nonempty set D ⊆ SpecialH(h) there is a p-forest p which
is a sum of, in any order, of elements of D such that there are
p-contexts u and w and a p-forest r with

sj + · · ·+ sCP(H1) = ur or s′1 + · · ·+ s′j = ur

and p = uwr, then we have the identities

vω(h) = v1 . . . vn−1(s1 + · · ·+ sj−1 + ω(h) +H2)

or

vω(h) = v1 . . . vn−1(H1 + ω(h) + s′j+1 + · · ·+ s′CP(H2));
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G.8 if SpecialH(h) ⊆ SpecialH(
∑

x∈LIrrF(v)0

x), then vωω(h) = vω0;

G.9 if SpecialH(h) ⊆ SpecialH(
∑

x∈RIrrF(v)0

x), then vωω(h) = vω0.

G.10 if SpecialH(h) ⊆ SpecialH(
∑

x∈LIrrF(v)0

x), then vωh = vω0;

G.11 if SpecialH(h) ⊆ SpecialH(
∑

x∈RIrrF(v)0

x), then vωh = vω0.

Proof. See Appendix A, Section A.3.

Remark 5.1.3. For an ω-context vω, let

h1 =
∑

h∈LIrrF(v)0

h and h2 =
∑

h∈RIrrF(v)0

h.

Then we have the following identities:

vω = (h1 +
∏

u∈PIrrF(v)

u+ h2)ω

by I.3

= ((h1 +�)(�+ h2)(
∏

u∈PIrrF(v)

u))ω

= ((h1 +�)ω(�+ h2)ω(
∏

u∈PIrrF(v)

u)ω)ω

by (5.1)

= (((h1 +�)ω)ω((�+ h2)ω)ω(
∏

u∈PIrrF(v)

u)ω)ω

by (5.3)

= ((h1 +�)ω(�+ h2)ω
∏

u∈PIrrF(v)

u)ω

by I.3 and I.8

= ((ω(h1) +�)(�+ ω(h2))
∏

u∈PIrrF(v)

u)ω

= (ω(h1) +
∏

u∈PIrrF(v)

u+ ω(h2))ω

= ω(h1) + (ω(h1) +
∏

u∈PIrrF(v)

u+ ω(h2))ω + ω(h2)

by I.2.

Lemma 5.1.4. For an ω-context vω with

h1 =
∑

h∈LIrrF(v)0

h and h2 =
∑

h∈RIrrF(v)0

h
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we have the following identities:

1. vω + ω(h2) = ω(h1) + vω = vω;

2. (v + h2)ω = vω and (h1 + v)ω = vω.

Proof. By Remark 5.1.3, we have the following identity

vω = (ω(h1) +
∏

u∈PIrrF(v)

u+ ω(h2))ω (5.8)

= ω(h1) + (ω(h1) +
∏

u∈PIrrF(v)

u+ ω(h2))ω + ω(h2). (5.9)

The identities in 1 follows from (5.9) and I.4, the identities in 2 follows from
(5.8), (5.1), and 1.

Lemma 5.1.5. We have the following results:

1. for every forest s ∈ SpecialH(h), ω(h) + s = ω(h);

2. if SpecialH(s) ⊆ SpecialH(h), then ω(h) + ω(s) = ω(s) + ω(h) = ω(h);

3. if SpecialH(s) ⊆ SpecialH(h), then ω(h) + s = s+ ω(h) = ω(h).

Proof. 1. By using I.23 and I.6 and I.5 we obtain:

ω(h) + s = ω(
∑

t∈SpecialH(h)

t) + s

= ω(s+
∑

t∈SpecialH(h)\{s}

t) + s

= ω(s+
∑

t∈SpecialH(h)\{s}

t)

= ω(
∑

t∈SpecialH(h)

t)

= ω(h).

2. Assume that the p-forests s and h are such that

SpecialH(s) ⊆ SpecialH(h).

Then, by I.6, I.23 and (5.5), there is a p-forest h1 such that

ω(h) = ω(h1 + s) = ω(s+ h1).

101



We have

ω(h) + ω(s) = ω(s+ h1) + ω(s) by I.6, I.23 and (5.5)
= ω(ω(s) + ω(h1)) + ω(s) by (5.5)
= ω(ω(s) + ω(h1)) by I.5
= ω(s+ h1) by (5.5)
= ω(h) by I.6, I.23 and (5.5).

We can do the similar arguments for the symmetric case.

3. By using the preceding identities and (5.6) we have

ω(h) + ω(s) = ω(h) + (ω(s) + s)

= (ω(h) + ω(s)) + s

= ω(h) + s.

The following is the immediate result of Lemma 5.1.5 and (5.5)

Corollary 5.1.6. If for p-forests s and h we have

SpecialH(s) ⊆ SpecialH(h),

then the identity ω(h+ s) = ω(h) holds.

Lemma 5.1.7. Let v be a p-context and consider p-context

u =
∏

w∈IrrNIdemF∗(v)

w.

Define elements v1, h1, h2, sl, and sr as follows:

v1 =
∏

w∈PIrrF(u)

w, h1 =
∑

s∈RIrrF(u)0

s,

h2 =
∑

s∈LIrrF(u)0

s, sr =
∑

s∈SpecialH(h1)

s,

sl =
∑

s∈SpecialH(h2)

s.

Then we have the following identity:

vω = (v1(sl +�+ sr))
ω.

Proof. By I.9 and I.3 we have uω = (v1.(h1 +�+ h2))ω, while (5.1) implies

(v1.(h1 +�+ h2))ω = (vω1 .(h1 +�+ h2)ω)ω.

By properties of ω-algebras we have (h1 + � + h2)ω = ω(h1) + � + ω(h2).
By I.21 we have ω(h1) = ω(sr) and ω(h2) = ω(sl), which imply that the
following identity:

(vω1 .(h1 +�+ h2)ω)ω = (vω1 .(sr +�+ sl)
ω)ω.

Hence, (5.1) implies the result.
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Remark 5.1.8. Under the assumptions of Lemma 5.1.7, we have the following
results:

1. if SpecialH(s) ⊆ SpecialH(h1), then ω(s) + vω = vω;

2. if SpecialH(s) ⊆ SpecialH(h2), then vω + ω(s) = vω;

3. if SpecialH(s) ⊆ SpecialH(h1), then s+ vω = vω;

4. if SpecialH(s) ⊆ SpecialH(h2), then vω + s = vω.

which can be easily proved by Lemmas 5.1.5 and 5.1.7.

5.2 Canonical Forms

We define relations <H and <V respectively on HA and V A over alphabet
A = {a1, . . . , an}, recursively, as follows:

• for every i ≤ n, 0 <H ai, � <V ai�;

• for every i, j ≤ n, ai� <V aj� if i < j;

• for forests t and s expressed as sums of non-trivial trees t1 + · · · + ti
and s1 + · · ·+ sj :

s <H t if


i < j

or
i = j and ∃k ≤ i ∀l < k tl = sl and tk <H sk;

• for trees aih and ajr:

aih <H ajr if


ai� <V aj�

or
ai = aj and h <H r;

• for connected contexts aiv and aju:

aiv <V aju if


ai� <V aj�

or
ai = aj and v <V u;

• for contexts v = H1 + C(v) +H2 and u = S1 + C(u) + S2:

v <V u if


C(v) <V C(u)

or
C(v) = C(u) and H1 <H S1

or
H1 + C(v) = S1 + C(u) and H2 <H S2.
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Lemma 5.2.1. The relations <H and <V are strict total orders respectively
on HA and V A.

Proof. We show that, for given forests h1 and h2, one of the following holds:

• h1 = h2;

• h1 <H h2;

• h2 <H h1.

We argue by induction on the minimum of the number of nodes of h1 and
h2. We assume that h1 is the forest which has the minimum of the number
of nodes between h1 and h2. Let h1 be a forest with #Nodes(h1) = 0, then
we have h1 = 0 which implies that 0 <H h2 or h2 = 0. Assume that for a
forest h1 with #Nodes(h1) ≤ k the result holds. We show that a forest h1

with #Nodes(h1) = k + 1 the result holds. We may assume that h1 6= h2.
We have the following three cases:

1. If CP(h1) < CP(h2), then by definition of <H , h1 <H h2.

2. If CP(h2) < CP(h1), then by definition of <H , h2 <H h1.

3. If CP(h1) = CP(h2), then we have the following two cases:

(a) If CP(h1) = 1, then we have roots(h1) <H roots(h2) which im-
plies h1 <H h2 and vice versa, or there are forests s1 and s2, and
an element d ∈ A such that h1 = d� ∗ s1 and h2 = d� ∗ s2, since

#Nodes(s1) = k,

induction hypothesis and definition of <H imply that s1 <H s2

yields to h1 <H h2 and vice versa, while s1 = s2 yields h1 = h2;

(b) If CP(h1) = n, then there are forests

s1, . . . , sn, t1, . . . , tn

such that h1 = s1 + · · ·+ sn and h2 = t1 + · · ·+ tn. Since

#Nodes(s1) ≤ k,

induction hypothesis and definition of <H imply that s1 <H t1
yields to h1 <H h2 and vice versa, while for s1 = t1, since

#Nodes(s2 + · · ·+ sn) ≤ k,

induction hypothesis and definition of <H imply that s2 + · · ·+
sn <H t2 + · · · + tn yields to h1 <H h2 and vice versa, while
s2 + · · ·+ sn = t2 + · · ·+ tn yields h1 = h2.
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We can do the similar arguments for contexts v1 and v2.

Let B = (H,V) be the free ω-algebra over the alphabet B = {a4, . . . , an}
with B ∩ {a, b, c} = ∅. We define <′H and <′V respectively on H and V as
follows: for p-contexts u and v and p-forests h and s

u <′V v if Φ(u) <V Φ(v)

h <′H s if Φ(h) <H Φ(s),

where <H and <V are strict total orders respectively on HA and V A, Φ is
the ω-algebra homomorphism in Example 4.2.9, and

A = {a1 = a, a2 = b, a3 = c, a4, . . . , an}.

From now on by order we mean <′H and <′V .

Lemma 5.2.2. By using identities in Σ, for an ω-context uω there is a p-
context v such that uω = vω where v admits a factorization v1v2 such that v1

is a product of ai� with ai� ∈ A′ in increasing order and v2 is of the form
H1 +�+H2, where H1 and H2 are sums of non-trivial additively irreducible
forests in increasing order and no summand of H1 and H2 is an ω-forest.

Proof. By Lemma 5.1.2, part I.9, for the p-context

w =
∏

v∈IrrNIdemF∗(u)

v,

we have uω = wω. By definition of IrrNIdemF∗(u), the p-context w does not
have ω-context factors. Again by Lemma 5.1.2, part I.3, there is a p-context
z, with wω = zω, of the form v1v2v3 where

v1 =
∏

x∈PIrrF(w)

x , in increasing order,

v2 =
∏

y∈LIrrF(w)

y , in increasing order

and
v3 =

∏
y′∈RIrrF(w)

y′ , in increasing order.

Since v1 is product of non-trivial �-pure multiplicatively irreducible factors
of w and w does not have ω-context factors, v1 is the product of some ai�
with ai ∈ A. By definition of RIrrF and LIrrF there are p-forests S1 and S2

such that ∏
y∈LIrrF(w)

y = S1 +� and
∏

y′∈RIrrF(w)

y′ = �+ S2.
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We claim that S1 and S2 do not have ω-forest summands. If ω(p) is an
ω-forest summand of S1, then ω(p) + � is a factor of S1 + � and also a
factor of w, which contradicts with the assumption that factors of w are not
ω-contexts, and similarly for S2.

The p-context vω in Lemma 5.2.2 is called the ordered form context of
uω.

For a given ω-forest ω(h), by Lemma 5.1.2, part I.21, for the p-forest

s =
∑

x∈IrrNIdemS∗(h)

x,

we have ω(h) = ω(s). Again by Lemma 5.1.2, part I.6, there is a p-forest r,
with ω(s) = ω(r), where

r =
∑

x∈IrrS(s)

x , in increasing order.

The ω-forest ω(r) is called the ordered form forest of ω(h).

Definition 5.2.3. Assume that h = h1 + · · ·+ hn is a p-forest decomposed
as the sum of its non-trivial additively irreducible summands. We denote by
h(i) the p-forest which is obtained from h by elimination of its i-th summand.
That is,

h(i) = h1 + · · ·+ ĥi + · · ·+ hn

= h1 · · ·+ hi−1 + hi+1 + · · ·+ hn.

Definition 5.2.4. Let v be a p-context in the free ω-algebra A. Then,
by Lemma 4.2.4, we have v = v1 · · · vn where the vi’s are non-trivial mul-
tiplicatively irreducible factors of v. For a positive integer k, we say that
NLexV (v1, . . . , vn) is k if there are positive integers

i1, . . . , ik, ik+1 ∈ {1, . . . , n+ 1},

such that the following conditions hold:

• i1 = 1 and ik+1 = n+ 1;

• for every j ∈ {1, . . . , k} we have ij < ij+1;

• for every j ∈ {1, . . . , k} and every t ∈ {ij , . . . , ij+1− 2} we have vt <
′
V

vt+1;

• for every j ∈ {2, . . . , k − 1} we have vij <
′
V vij−1.

Note that, for non-trivial additively irreducible p-forests s and t, the
equality (s+�).(�+ t) = (�+ t).(s+�) holds. And also we have:

NLexV ((s+�), (�+ t)) = 1 and NLexV ((�+ t), (s+�)) = 2.
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Definition 5.2.5. Let v be a p-context inA and let the vi’s be its non-trivial
multiplicatively irreducible factors of v. Define

V Lex(v) = min{k ∈ N | v =
n∏
i=1

vi, k = NLexV (v1, . . . , vn)}.

Definition 5.2.6. Let h be a p-forest in the free ω-algebra A. Then, by
Lemma 4.2.5, we have h = h1 + · · · + hm where the hi’s are non-trivial
additively irreducible summands of h. For a positive integer k, we say that
HLex(h1 + · · ·+ hm) is k if there are positive integers

i1, . . . , ik, ik+1 ∈ {1, . . . ,m+ 1},

such that the following conditions hold:

• i1 = 1 and ik+1 = n+ 1;

• for every j ∈ {1, . . . , k} we have ij < ij+1;

• for every j ∈ {1, . . . , k} and every t ∈ {ij , . . . , ij+1−2} we have ht <
′
H

ht+1;

• for every j ∈ {2, . . . , k − 1} we have hij <
′
H hij−1.

Note that, the number of idempotent subterms of a given element of A
is finite.

Let P = (HP , VP ) be an ω-algebra and for every u, v ∈ VP and h ∈ HP

the set of identities Σ, consisting of the following identities, hold in P .

(uv)ω = (vu)ω = (uωvω)ω

vωv = vω = vvω

(vω)ω = vω

vh+ ω(vuh) = ω(vuh) = ω(vuh) + vh

Definition 5.2.7. Let t1 and t2 be two elements with the same type in A.
We say that t1 and t2 are connected and we denote it by t1 ∼Σ t2, if there
exists a finite sequence of elements called connecting sequences S0, . . . , Sn
in A, all have the same type as the type that t1 and t2 have, such that
S0 = t1, Sn = t2 and for all i ∈ {1, . . . , n} there are subterms X and Y of
respectively Si−1 and Si, that is:

Si−1 = fi(X;Ui,1, . . . , Ui,m) and Si = fi(Y ;Ui,1, . . . , Ui,m),

for some elements Ui,1, . . . , Ui,m in A and fi is an n-ary operation which is
a composition of operations from {+,+1,+2, ., ∗, ω(), ()ω}, and there exists
an ω-algebra homomorphism:

ϕ : A → P,
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such that ϕ(X) = u and ϕ(Y ) = v, or ϕ(Y ) = u and ϕ(X) = v and the
identity u = v is in Σ.

The result [1, Proposition 1.3.6] justify the following definition:

Definition 5.2.8. Let u = v be an identity of type τ on A′ (cf. Section
4.1). The congruence defined by the identity u = v is given by⋂

{ ker(ϕ) | ϕ : A → S is an ω-algebra homomorphism with

S ∈ [[u = v]] },

where [[u = v]] is the class of ω-algebras of type τ satisfying the identity
u = v.

For more details about congruences see [1, pp. 24-31].
Since [[u = v]] is equational, by Birkhoff Theorem [1, Theorem 1.3.8],

[[u = v]] is a variety of ω-algebras of type τ .

Lemma 5.2.9. The relation ∼u=v is the congruence on A = (H,V) defined
by the identity u = v.

Proof. The relation ∼u=v is an equivalence relation.
For a p-forest h in H, the relation h ∼u=v h holds. Because, let n = 0

and S0 = h then the result is immediate.
Assume that, the relation h ∼u=v t holds. So, the connecting sequence

of p-forests S0, . . . , Sn in H exists. We show that the relation t ∼u=v h holds.
For a connecting sequence in H, we can choose S′0, . . . , S

′
n in H such that,

for every i ∈ {0, . . . , n}, S′i = Sn−i. The required properties hold in view of
the assumption h ∼u=v t. So, the relation t ∼u=v h holds.

Now, assume that, h ∼u=v t and t ∼u=v r hold. So, the connecting
sequences of p-forests S0, . . . , Sn and S′0, . . . , S

′
m exist with S0 = h, Sn = t,

S′0 = t, and S′m = r. We just need to take the sequence

Q0, . . . , Qn, Qn+1, . . . , Qm+n

such that Qi = Si for all i ∈ {0, . . . , n} and Qn+i = S′i for all i ∈ 0, . . . ,m.
The required properties hold in view of the assumptions h ∼u=v t and t ∼u=v

r. So, the relation h ∼u=v r holds.
This shows that ∼u=v is an equivalence relation on H. In a similar way

the relation ∼u=v is an equivalence relation on V.
To show that ∼u=v is a congruence, assume that x ∼u=v y and p ∼u=v q,

then we need to show for the basic operations, we have O(x, p) ∼u=v O(y, q).
It is easy to see that for p-forests x and y if x ∼u=v y, then ω(x) ∼u=v

ω(y). And for p-contexts t and z if t ∼u=v z, then tω ∼u=v z
ω. It is because

x is a subterm of ω(x) and t is a subterm of tω.
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Since the relation x ∼u=v y holds, there is a connecting sequence

S0, . . . , Sn.

Since Si’s, have the same type, the sequence

O(S0, p), . . . , O(Sn, p),

is from the element O(x, p) to the element O(y, p). With respect to the type
of x and y (they should have the same type) and basic operation O, with
respect to the type of p, we have the following:

1. If the operation is addition, then let

f ′i(q;Ui,1, . . . , Ui,m, p) = fi(q;Ui,1, . . . , Ui,m) + p,

and put the sequence of elements S′0, . . . , S
′
n in A with S′0 = x + p,

S′n = y + p and for every i ∈ {1, . . . , n},

S′i−1 = f ′i(X;Ui,1, . . . , Ui,m, p)

and
S′i = f ′i(Y ;Ui,1, . . . , Ui,m, p)

then the required properties hold in view of the assumption x ∼u=v y.
Similarly, we have p+ x ∼u=v p+ y.

2. If the operation is multiplication, then let

f ′i(q;Ui,1, . . . , Ui,m, p) = fi(q;Ui,1, . . . , Ui,m).p,

and put the sequence of elements S′0, . . . , S
′
n in A with S′0 = x.p,

S′n = y.p and for every i ∈ {1, . . . , n},

S′i−1 = f ′i(X;Ui,1, . . . , Ui,m, p)

and
S′i = f ′i(Y ;Ui,1, . . . , Ui,m, p)

then the required properties hold in view of the assumption x ∼u=v y.
Similarly, we have p.x ∼u=v p.y.

3. Assume that, x and y are p-contexts, p is a p-forest and the operation
is action. Then let

f ′i(q;Ui,1, . . . , Ui,m, p) = fi(q;Ui,1, . . . , Ui,m) ∗ p,

and put the sequence of elements S′0, . . . , S
′
n in A with S′0 = x ∗ p,

S′n = y ∗ p and for every i ∈ {1, . . . , n},

S′i−1 = f ′i(X;Ui,1, . . . , Ui,m, p)

and
S′i = f ′i(Y ;Ui,1, . . . , Ui,m, p)

then the required properties hold in view of the assumption x ∼u=v y.

109



4. Assume that, x and y are p-forests, p is a p-context and the operation
is action. Then let

f ′i(q;Ui,1, . . . , Ui,m, p) = p ∗ fi(q;Ui,1, . . . , Ui,m),

and put the sequence of elements S′0, . . . , S
′
n in A with S′0 = p ∗ x,

S′n = p ∗ y and for every i ∈ {1, . . . , n},

S′i−1 = f ′i(X;Ui,1, . . . , Ui,m, p)

and
S′i = f ′i(Y ;Ui,1, . . . , Ui,m, p)

then the required properties hold in view of the assumption x ∼u=v y.

For the relation x ∼u=v y and an element p ∈ A, we have shown that

O(x, p) ∼u=v O(y, p)

(similarly, O(p, x) ∼u=v O(p, y)). Indeed, if x ∼u=v y and p ∼u=v q, then
by what we have shown we have

O(x, p) ∼u=v O(y, p) ∼u=v O(y, q).

Thus, we have shown that the relation ∼u=v is a congruence on A∆.
The relation ∼u=v is the congruence defined by the identity u = v.

Because, if θ is the congruence defined by the identity u = v, then xθy
implies x ∼u=v y. To show this, take the sequence S0 = x and S1 = y the
existence of ω-algebra homomorphism comes from the congruence xθy.

Let A and B be respectively the A′ and A′]{d�} free ω-algebras, where
d /∈ {a, b, c} is fixed and

{a�, b�, c�} ∩A′ = ∅.

Let h be a fixed p-forest of A and let v be a fixed p-context of A. Let ∼ω(h)=d

and ∼vω=d� be the congruence defined by the identity respectively ω(h) = d
and vω = d� (see Definition 5.2.8). Note that, there is the inclusion map

ι : A → B.

For an element x ∈ A with ω(h) ∈ IST(x) (cf. Example 4.2.27), the
multiplicity of ω(h) in x is defined as follows:

mx(ω(h)) = max{length(traversal(Φ(z))|d) | z ∈ ι(x)/∼ω(h)=d},

where length of a word is the number of its letters.
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Similarly, for an element x ∈ A with vω ∈ IST(x), the multiplicity of vω

in x is defined as follows:

mx(vω) = max{length(traversal(Φ(z))|d) | z ∈ ι(x)/∼vω=d�}.

Let t be an element of A, ω(t1), . . . , ω(tn′1) be the ω-forest subterms of
t, and t′ω1 , . . . , t

′ω
n′2

be the ω-context subterms of t with C(t′i) 6= �, given by

IST(t). Let n = #IDEM(t) (cf. Example 4.2.24). Note that, the equality
n = n1+n2 holds if and only if all the idempotent subterms have multiplicity

1. Consider a sequence of elements of A, {Qj}
n′1+n′2
j=1 giving an ordering of

ti and t′k by decreasing order of rank. For q ≤ n′1 + n′2, let mq = mt(E1) +
· · · + mt(Eq) and m0 = 0, where for every i, Ei is ω(Qi) or Qωi , if defined.
Define the sequence of elements of A, {Pc}nc=1 as follows:

Pmq−1+1 = · · · = Pmq = Qq.

Let Mt = (m′1, . . . ,m
′
n) be n-tuple of natural numbers whose entries are

respectively HLex(Pi) or V Lex(Pi) in case Pi is a p-forest or a p-context
and, for every i, if Rank(Pi) = Rank(Pi+1) (cf. Section 4.2.1.1), then their
respective entries m′i and m′i+1 satisfy the inequality m′i ≥ m′i+1. We denote
Mt by LLexH(t) or LLexV (t) respectively, if t is a p-forest or a p-context.

Note that, for given p-forests h and s, and for p-contexts u and v we
can compare the n-tuple LLexH(s) and the m-tuple LLexH(h), and also
the n′-tuple LLexV (v) and the m′-tuple LLexV (u) as follows: LLexH(s) ≤
LLexH(h) if one of the following conditions holds:

• n < m;

• n = m and for

LLexH(s) = (q1, . . . , qn) and LLexH(h) = (z1, . . . , zn),

there is a positive integer 1 ≤ j ≤ n such that the following conditions
hold: {

zi = qi ,∀i > j
qj < zj .

and similarly, LLexV (v) ≤ LLexV (u) if one of the following conditions
holds:

• n′ < m′;

• n′ = m′ and for

LLexV (v) = (q′1, . . . , q
′
n′) and LLexV (u) = (z′1, . . . , z

′
n′),

there is a positive integer 1 ≤ j ≤ n′ such that the following conditions
hold: {

z′i = q′i ,∀i > j
q′j < z′j .
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That is, we can compare LLexH(s) and LLexH(h), and also LLexV (v) and
LLexV (u) by reverse-lexicographic order , i.e., the right-most component is
the most significant.

Note that for a p-forest t if the summands of t are in increasing order
and for a p-context v if v is the product of its non-trivial multiplicatively
irreducible factors in increasing order, then we have the following equalities:

V Lex(v) = 1 and HLex(t) = 1.

Remark 5.2.10. By definition of ordered form forest and ordered form con-
text, if we substitute an ω-context or ω-forest subterm, vω or ω(h), of an
element t inA by respectively its ordered form ω-context or ω-forest, then we
may reduce at least one of #IDEM(t), #Nodes(t), and LLexH(t) or LLexV (t)
if t is respectively a p-context or a p-forest.

5.2.1 Algorithm of Canonical Form

Let t be an element of A. For every i = 0, . . . ,Rank(t) − 1 define O(i) as
follows:

O.1 substitute an ω-forest subterm ω(h) of t with Rank(h) = i by its
ordered form forest, if it is not in ordered form;

O.2 substitute an ω-context subterm vω of t with Rank(v) = i by its or-
dered form context, if it is not in ordered form.

By applying the rules O.1 and O.2 of O(i) on t we may reduce #IDEM(t),
#Nodes(t), or one of LLexV (t) and LLexH(t) which the last two depends on
the type of t.

Let t1 = t, t2, . . . , tn be the sequence of elements such that for each j, tj+1

is obtained from tj by applying one of the rules O.1 or O.2. For every j in
the step from tj to tj+1 at least one of #IDEM(tj), #Nodes(tj), or LLexH(tj)
or LLexV (tj) is reduced.

Assume that, from tj to tj+1 the following equality holds:

#Nodes(tj) = #Nodes(tj+1).

Note that if we reduce #IDEM(tj), then, by definition of LLexH and
LLexV , it implies that LLexH(tj) or LLexV (tj) is reduced respectively when
tj is a p-forest or a p-context.

In this step one of the rules O.1 and O.2 is applied on an ω-context
or an ω-forest subterm of tj which is vω or ω(h). If v has an ω-context
factor or h has an ω-forest summand, then by applying the rules O.1 and
O.2 we reduce #IDEM(tj) and therefore we reduce LLexH(tj) or LLexV (tj)
respectively when tj is a p-forest or a p-context.
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Assume that, v does not have an ω-context factor and h does not have
an ω-forest summand. So, from tj to tj+1 the following equalities hold:

#Nodes(tj) = #Nodes(tj+1)

#IDEM(ti) = #IDEM(ti+1),

which implies that V Lex(v) > 1 and HLex(h) > 1. So, by applying the
rules O.1 and O.2 on the ω-context vω or on the ω-forest ω(h) subterm of
tj we may reduce LLexH(tj) or LLexV (tj) respectively when tj is a p-forest
or a p-context.

Now, assume that from tj to tj+1 the following equality holds,

LLexV (tj) = LLexV (tj+1) or LLexH(tj) = LLexH(tj+1).

This implies that #IDEM(tj) = #IDEM(tj+1). Then in this step we applied
one of the rules O.1 and O.2 on a subterm of tj which is of the form vω or
ω(h), where v = v1.(H1+�+H2) with v1 =

∏
x∈PIrrF(v) x, H1 = h1+· · ·+hm

and H2 = h′1+· · ·+h′m′ in which all are in increasing order or h = s1+· · ·+sn′
and is in increasing order. Since we could apply the rules O.1 and O.2, this
implies that we have repetitions of a factor or repetitions of a summand of
a subterm of tj and so we reduced #Nodes(tj).

Since for the element t in A we have #IDEM(t), #Nodes(t), and LLexH(t)
or LLexV (t), respectively when t is a p-forest or a p-context, are finite, we
just can apply this reduction rules finitely many times.

Assume that, an element t in A is given. Note that the rules O.1 and
O.2 just will be applied on the ω-context and ω-forest subterms. Applying
the rules O.1 and O.2 on two disjoint subterms will not collide with each
other.

The rule O.1 can be applied on an ω-forest subterm ω(h) with Rank(h) =
i. It implies that h does not have an ω-context subterm uω or an ω-forest
subterm ω(s) with

Rank(u) = i and Rank(s) = i.

This means that we can not apply the rules O.1 and O.2 on the subterms
of ω(h).

Also, the rule O.2 can be applied on an ω-context subterm vω with
Rank(v) = i. It implies that v does not have an ω-context subterm uω or
an ω-forest subterm ω(s) with

Rank(u) = i and Rank(s) = i.

This means that we can not apply the rules O.1 and O.2 on the subterms
of vω.

Assume that, for every j with j ≤ i we applied O(j) on t. By applying
the rule O.2 of O(i+1) on an ω-context subterm vω of t we do the following:
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let v = P0u
ω
1P1 · · ·uωnPn where Pk’s are p-contexts which does not have an

ω-context factor. Let w = P0u1P1 · · ·unPn then we have Rank(v) − 1 ≤
Rank(w) ≤ Rank(v). Let w′ be the p-context which is the product of non-
trivial multiplicatively irreducible factor of w in increasing order.

Note that, as for every j with j ≤ i we applied O(j) on t, the uk’s do
not have an ω-context factor.

Then w′ω is the ordered form context of vω and we have

Rank(v)− 1 ≤ Rank(w′) ≤ Rank(v).

Similarly, for the rule O.1 on an ω-forest subterm ω(h) of t we have

Rank(h)− 1 ≤ Rank(s′) ≤ Rank(h),

where ω(s′) is the ordered form forest of ω(h). This shows that by applying
O.1 and O.2 on an ω-context and an ω-forest subterm of t the rank of that
subterm will be reduced by 1 or the rank will be the same.

We may apply the rule O.1 and then the rule O.1 on the subterm ω(H1 +
ω(S1 +ω(s) +S2) +H2) then we should first apply O.1 on ω(S1 +ω(s) +S2)
to get the result ω(s′) and then exactly on some steps after that we can
apply the rule O.1 on ω(H1 +ω(s′) +H2). The order of applying these rules
can not be changed. Similarly, we may apply the rule O.2 and then the rule
O.2 on the subterm (P1(Q1w

ωQ2)ωP2)ω then we should first apply O.2 on
(Q1w

ωQ2)ω to get the result uω and then exactly on some steps after that
we can apply the rule O.2 on (P1u

ωP2)ω. The order of applying these rules
can not be changed.

This shows that if for i = 0, . . . ,Rank(t)− 1 consecutive O(i) is applied,
then by applying the rules O.1 and O.2 of O(i) in any order on an arbitrary
element t the result will be unique.

Let t be an element of A where t is the result of applying consecutive
O(j). For every i = 0, . . . ,Rank(t)− 1 define S(i) as follows:

S.1 substitute an ω-forest subterm ω(s) of t with Rank(s) = i and where
s = s1 + · · · + sn is in increasing order by ω(s(j)) where s(j) = s1 +
· · ·+ ŝj + · · ·+ sn if sj ∈ SpecialH(s(j));

S.2 substitute an ω-context subterm vω of t with Rank(v) = i and where
v = v1.(H1 +�+H2) with v1 =

∏
x∈PIrrF(v) x, H1 = h1 + · · ·+hm and

H2 = h′1 + · · ·+ h′m′ and all are in increasing order by (vl,(j))ω where

vl,(j) = v1.(H
(j)
1 +�+H2) if hj ∈ SpecialH(H

(j)
1 );

S.3 substitute an ω-context subterm vω of t with Rank(v) = i and where
v = v1.(H1 +�+H2) with v1 =

∏
x∈PIrrF(v) x, H1 = h1 + · · ·+hm and

H2 = h′1 + · · ·+ h′m′ and all are in increasing order by (vr,(j))ω where

vr,(j) = v1.(H1 +�+H
(j)
2 ) if h′j ∈ SpecialH(H

(j)
2 ).
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Note that, in S(i) if the rules S.1, S.2 or S.3 is applied on an ω-context or
an ω-forest subterm, then the result is still in order since we just remove a
forest summand and this will not change the order.

By applying the rules S.1, S.2 and S.3 of S(i) on a given element t in A
where t is the result of applying consecutive O(j) the number of nodes of t
will be reduced. And since #Nodes(t) and #IDEM(t) are finite, we just can
apply this reduction rules finitely many times.

Assume that, an element t in A is given, where t is the result of applying
consecutive O(j). The rules S.1, S.2 and S.3 of S(i) just will be applied on
ω-context and ω-forest subterms. Applying the rules S.1, S.2 and S.3 on two
disjoint subterms will not collide with each other.

The rule S.1 can be applied on an ω-forest subterm ω(h) with Rank(h) =
i. It implies that h does not have an ω-context subterm uω or an ω-forest
subterm ω(s) with

Rank(u) = i and Rank(s) = i.

This means if the rule S.1 is applied on ω(h), then we can not apply the
rules S.1, S.2 or S.3 on the subterms of h.

Also, the rules S.2 and S.3 can be applied on an ω-context subterm vω

with Rank(v) = i. It implies that v does not have an ω-context subterm uω

or an ω-forest subterm ω(s) with

Rank(u) = i and Rank(s) = i.

This means that if the rules S.2 or S.3 is applied on vω, then we can not
apply the rules S.1, S.2 and S.3 on subterms of v.

Applying the rules S.2 and S.3 on an ω-context subterm vω will not
collide with each other.

If we can apply the rule S.1 on an ω-forest subterm ω(h) and again ap-
plying the rule S.1 on it, then this mean that we first eliminate the summand
sj and then after that eliminate the summand sk, and it does not matter we
eliminate which one first. If we apply the rule S.2 on the ω-context subterm
vω and again the rule S.2 on it or similarly if we apply the rule S.3 on an
ω-context subterm vω and again the rule S.3 on it, then this mean that we
first eliminate the summand hj and then after that eliminate the summand
hk in H1 or similarly we first eliminate the summand h′j and then after that
eliminate the summand h′k in H2 where from the result of applying consec-
utive O(j) we have v = v1(H1 + � + H2), it does not matter we eliminate
which one first.

So, for i = 0, . . . ,Rank(t)−1 if we apply consecutive S(i) then by apply-
ing the rules S.1, S.2 and S.2 of S(i), in any order, on an arbitrary element t
where t is the result of applying consecutive O(j), the result will be unique.

Let t be an element of A where t is the result of applying consecutive
S(j). For every i = 0, . . . ,Rank(t)− 1 define R(i) as follows:
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R.1 substitute a forest subterm of t which is of the form s + ω(h) with
Rank(h) = i by ω(h) if s ∈ SpecialH(h);

R.2 substitute a forest subterm of t which is of the form ω(h) + s with
Rank(h) = i by ω(h) if s ∈ SpecialH(h);

R.3 substitute a forest subterm of t which is of the form ω(s) + ω(h) with
Rank(h) = i by ω(h) if SpecialH(s) ⊆ SpecialH(h);

R.4 substitute a forest subterm of t which is of the form ω(h) + ω(s) with
Rank(h) = i by ω(h) if SpecialH(s) ⊆ SpecialH(h);

R.5 substitute a context subterm of t which is of the form a�.vω with
Rank(v) = i by vω if a� ∈ PIrrF(v);

R.6 substitute a context subterm of t which is of the form vω.a� with
Rank(v) = i by vω if a� ∈ PIrrF(v);

R.7 substitute a context subterm of t which is of the form h + vω with
Rank(v) = i by vω if h ∈ SpecialH(

∑
y∈LIrrF(v)0 y);

R.8 substitute a context subterm of t which is of the form vω.(h+�) with
Rank(v) = i by vω if h ∈ SpecialH(

∑
y∈LIrrF(v)0 y);

R.9 substitute a context subterm of t which is of the form vω + h with
Rank(v) = i by vω if h ∈ SpecialH(

∑
y∈RIrrF(v)0 y);

R.10 substitute a context subterm of t which is of the form vω.(�+h) with
Rank(v) = i by vω if h ∈ SpecialH(

∑
y∈RIrrF(v)0 y);

R.11 substitute a context subterm of t which is of the form uωvω with
Rank(v) = i by vω if the following conditions satisfy:

(a) PIrrF(u) ⊆ PIrrF(v);

(b) SpecialH(
∑

x∈LIrrF(u)0 x) ⊆ SpecialH(
∑

y∈LIrrF(v)0 y);

(c) SpecialH(
∑

x∈RIrrF(u)0 x) ⊆ SpecialH(
∑

y∈RIrrF(v)0 y).

R.12 substitute a context subterm of t which is of the form vωuω with
Rank(v) = i by vω if the following conditions satisfy:

(a) PIrrF(u) ⊆ PIrrF(v);

(b) SpecialH(
∑

x∈LIrrF(u)0 x) ⊆ SpecialH(
∑

y∈LIrrF(v)0 y);

(c) SpecialH(
∑

x∈RIrrF(u)0 x) ⊆ SpecialH(
∑

y∈RIrrF(v)0 y).

By applying the rules R.1-R.12 of R(i) on a given element t in A where t
is the result of applying consecutive S(j) the number of nodes of t will be
reduced. And since #Nodes(t) and #IDEM(t) are finite, this reduction rules
can be applied only finitely many times.
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It is easy to check that for i = 0, . . . ,Rank(t)−1 if we apply consecutive
R(i), then by applying the rules R.1-R.12 of R(i), in any order, on an
arbitrary element t where t is the result of applying consecutive S(j) the
result will be unique.

5.2.1.1 Main Algorithm

Assume that, an element t in A where each ω-context subterm vω of t has
the property C(v) 6= � is given. Over the element t we will do the following
consecutive steps:

Step 1. make the element t in order: for i = 0, . . . ,Rank(t)− 1 apply consec-
utive O(i);

Step 2. reduce ω-context and ω-forest subterms: for i = 0, . . . ,Rank(t) − 1
apply consecutive S(i);

Step 3. reduce the element t: for i = 0, . . . ,Rank(t)−1 apply consecutive R(i).

For a given element t in A the result of the above steps is called the canonical
form of the element t and denote by t.

Lemma 5.2.11. For p-contexts v and w in A with C(v) 6= �, if vω is
a subterm of w, then vω is a subterm of at least one of the non-trivial
multiplicatively irreducible factor of w.

Proof. Since vω is an ω-context subterm of w, then we have vω is in IST(w).
Let w = w1. · · · .wm where wi’s are non-trivial multiplicatively irre-

ducible factors of w. We have

IST(w) = IST(w1) ∪ · · · ∪ IST(wm),

and therefore, there is a positive integer i such that vω ∈ IST(wi), which
implies that: there is a non-trivial multiplicatively irreducible factor wi of
w such that vω is an ω-context subterm of wi.

Since every non-trivial p-forest in A can be written as a sum of its non-
trivial additively irreducible summands and every non-trivial p-context in
A can be written as a product of its non-trivial multiplicatively irreducible
factors, Lemma 5.2.11 implies the following facts:

Corollary 5.2.12. Let h and t be p-forests in A and h non-trivial. If ω(h)
is a subterm of t, then ω(h) is a subterm of at least one of the non-trivial
additively irreducible summand of t.

Corollary 5.2.13. Let h be a non-trivial p-forest and w a p-context in A.
If ω(h) is a subterm of w, then ω(h) is a subterm of at least one of the
non-trivial multiplicatively irreducible factor of w.
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Corollary 5.2.14. Let t be a p-forest and v a p-context in A with C(v) 6= �.
If vω is a subterm of t, then vω is a subterm of at least one of the non-trivial
additively irreducible summand of t.

Remark 5.2.15. Since for every i, S(i) and O(i) are applied only on ω-context
and ω-forest subterms, Lemma 5.2.11, Corollaries 5.2.12, 5.2.13 and 5.2.14
imply the following equalities:

if at least one of P1 and P2 is a p-forest:
O(i)(P1 + P2) = O(i)(P1) +O(i)(P2);

if both of P1 and P2 are p-contexts:
O(i)(P1.P2) = O(i)(P1).O(i)(P2);

if P1 is a p-context and P2 is a p-forest:
O(i)(P1 ∗ P2) = O(i)(P1) ∗O(i)(P2),

and also the following equalities:

if at least one of P1 and P2 is a p-forest:
S(i)(P1 + P2) = S(i)(P1) + S(i)(P2);

if both of P1 and P2 are p-contexts:
S(i)(P1.P2) = S(i)(P1).S(i)(P2);

if P1 is a p-context and P2 is a p-forest:
S(i)(P1 ∗ P2) = S(i)(P1) ∗ S(i)(P2).

In addition, for an ω-context or an ω-forest P in A the following equalities
hold.

O(i)(P ) =




if 0 ≤ i < Rank(h) :

ω(O(i)(h))

for j = 0, . . . ,Rank(h)− 1 :
O(Rank(h))ω(O(j)(h))

, if P = ω(h)


if 0 ≤ i < Rank(v) :

(O(i)(v))ω

for j = 0, . . . ,Rank(v)− 1 :
O(Rank(v))((O(j)(v))ω)

, if P = vω

118



and

S(i)(P ) =




if 0 ≤ i < Rank(h) :

ω(S(i)(h))

for j = 0, . . . ,Rank(h)− 1 :
S(Rank(h))ω(S(j)(h))

, if P = ω(h)


if 0 ≤ i < Rank(v) :

(S(i)(v))ω

for j = 0, . . . ,Rank(v)− 1 :
S(Rank(v))((S(j)(v))ω)

, if P = vω.

Let P = (HP , VP ) be an ω-algebra and for every u, v ∈ VP and h, s ∈ HP

the set of identities Σ, consisting of the following identities, hold in P .

(uv)ω = (vu)ω = (uωvω)ω

vωv = vω = vvω

(vω)ω = vω

vh+ ω(vuh) = ω(vuh) = ω(vuh) + vh

Assume that t1 ∼Σ t2. We show that if we apply the reduction rules
on Si−1 and Si, witnesses for elementary steps of the congruence ∼Σ, the
results are the same.

Let

Si−1 = fi(X;Ui,1, . . . , Ui,m) and Si = fi(Y ;Ui,1, . . . , Ui,m),

where Ui,1, . . . , Ui,m are elements of A, fi is an n-ary operation which is a
composition of operations from {+,+1,+2, ., ∗, ω(), ()ω}, and there exists an
ω-algebra homomorphism:

ϕ : A → P,

such that ϕ(X) = u′ and ϕ(Y ) = v′, or ϕ(Y ) = u′ and ϕ(X) = v′ and the
identity u′ = v′ is in Σ. Without loss of generality we may assume that
ϕ(X) = u′ and ϕ(Y ) = v′. We argue on the choice of the identities in Σ:

1. for the identity (uv)ω = (vu)ω in Σ we do the following: apply

O(Rank(uv)) on fi(X;Ui,1, . . . , Ui,m)

and
O(Rank(vu)) on fi(Y ;Ui,1, . . . , Ui,m).

And Remark 5.2.15 implies that the results of both are the same;
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2. for the identity
(uv)ω = (uωvω)ω

in Σ we do the following: apply O(Rank(uv)) on

fi(X;Ui,1, . . . , Ui,m)

and O(Rank(uv) + 1) which is O(Rank(uωvω)) on

fi(Y ;Ui,1, . . . , Ui,m).

And Remark 5.2.15 implies that the results of both are the same;

3. for the identity vωv = vω in Σ one of the following conditions holds:

• if there is an ω-context subterm wω1 of Si−1 such that vωv is a
factor of w1, so respectively there is an ω-context subterm wω2 of
Si such that vω is a factor of w2, then we apply O(Rank(w1)) on

fi(X;Ui,1, . . . , Ui,m)

and we apply O(Rank(w2)) on

fi(Y ;Ui,1, . . . , Ui,m).

And Remark 5.2.15 implies that the results of both are the same;

• if the previous case does not hold, then we apply O(Rank(Si−1))
and after that S(Rank(Si−1)) on

fi(X;Ui,1, . . . , Ui,m)

and then we apply R(Rank(v)) by the rules R.6, R.8 and R.10
only on the subterm X of

fi(X;Ui,1, . . . , Ui,m)

and on the other side we apply the rules O(Rank(Si)) and after
that we apply the rules S(Rank(Si)) on

fi(Y ;Ui,1, . . . , Ui,m),

and then we apply R(Rank(v) − 1) on it. And Remark 5.2.15
implies that the results of both are the same.

4. for the identity vvω = vω in Σ one of the following conditions holds:
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• if there is an ω-context subterm wω1 of Si−1 such that vvω is a
factor of w1, so respectively there is an ω-context subterm wω2 of
Si such that vω is a factor of w2, then we apply O(Rank(w1)) on

fi(X;Ui,1, . . . , Ui,m)

and we apply O(Rank(w2)) on

fi(Y ;Ui,1, . . . , Ui,m).

And Remark 5.2.15 implies that the results of both are the same;

• if the previous case does not hold, then we apply O(Rank(Si−1))
and after that S(Rank(Si−1)) on

fi(X;Ui,1, . . . , Ui,m)

and then we apply R(Rank(v)) by the rules R.5, R.7 and R.9 only
on the subterm X of

fi(X;Ui,1, . . . , Ui,m)

and on the other side we apply the rules O(Rank(Si)) and after
that we apply the rules S(Rank(Si)) on

fi(Y ;Ui,1, . . . , Ui,m),

and then we apply R(Rank(v) − 1) on it. And Remark 5.2.15
implies that the results of both are the same.

5. for the identity (vω)ω = vω in Σ we do the following: apply O(Rank(v))
on

fi(Y ;Ui,1, . . . , Ui,m)

and O(Rank(v)) on
fi(X;Ui,1, . . . , Ui,m),

after that apply O(Rank(v)+1) which is O(Rank(vω)) by the rule O.2
only on the subterm X of

fi(X;Ui,1, . . . , Ui,m).

And Remark 5.2.15 implies that the results of both are the same;

6. for the identity ω(uvh) + uh = ω(uvh) in Σ one of the following con-
ditions holds:
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• if there is an ω-context subterm wω1 of Si−1 such that ω(uvh) +
uh + � or � + ω(uvh) + uh is a factor of w1, so respectively
there is an ω-context subterm wω2 of Si such that ω(uvh) +� or
�+ ω(uvh) is a factor of w2, then we apply O(Rank(Si−1)) and
after that we apply S(Rank(w1)) by the rules S.2 or S.3, depends
on the factor, only on the subterm X of

fi(X;Ui,1, . . . , Ui,m)

and we apply O(Rank(Si)) and after that S(Rank(w2)− 1) on

fi(Y ;Ui,1, . . . , Ui,m).

And Remark 5.2.15 implies that the results of both are the same;

• if there is an ω-forest subterm ω(h1) of Si−1 such that h1 =
P1+ω(uvh)+uh+P2 for some p-forests P1 and P2, so respectively
there is an ω-forest subterm ω(h2) of Si such that h2 = P1 +
ω(uvh) + P2, then we apply O(Rank(Si−1)) and after that we
apply S(Rank(h1)) by the rule S.1 only on the subterm X of

fi(X;Ui,1, . . . , Ui,m)

and we apply O(Rank(Si)) and after that S(Rank(h2)− 1) on

fi(Y ;Ui,1, . . . , Ui,m).

And Remark 5.2.15 implies that the results of both are the same;

• if the previous cases do not hold, then we apply O(Rank(Si−1))
and after that S(Rank(Si−1)) on

fi(X;Ui,1, . . . , Ui,m)

and then we apply R(Rank(uvh)) by the rule R.2 only on the
subterm X of

fi(X;Ui,1, . . . , Ui,m)

and on the other side we apply the rules O(Rank(Si)) and after
that we apply the rules S(Rank(Si)) on

fi(Y ;Ui,1, . . . , Ui,m)

and then we apply R(Rank(uvh)− 1) on it. And Remark 5.2.15
implies that the results of both are the same.

7. for the identity uh+ ω(uvh) = ω(uvh) in Σ one of the following con-
ditions holds:
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• if there is an ω-context subterm wω1 of Si−1 such that uh +
ω(uvh) +� or �+ uh+ ω(uvh) is a factor of w1, so respectively
there is an ω-context subterm wω2 of Si such that ω(uvh) +� or
�+ ω(uvh) is a factor of w2, then we apply O(Rank(Si−1)) and
after that we apply S(Rank(w1)) by the rules S.2 or S.3, depends
on the factor, only on the subterm X of

fi(X;Ui,1, . . . , Ui,m)

and we apply O(Rank(Si)) and after that S(Rank(w2)− 1) on

fi(Y ;Ui,1, . . . , Ui,m).

And Remark 5.2.15 implies that the results of both are the same;

• if there is an ω-forest subterm ω(h1) of Si−1 such that h1 =
P1+uh+ω(uvh)+P2 for some p-forests P1 and P2, so respectively
there is an ω-forest subterm ω(h2) of Si such that h2 = P1 +
ω(uvh) + P2, then we apply O(Rank(Si−1)) and after that we
apply S(Rank(h1)) by the rule S.1 only on the subterm X of

fi(X;Ui,1, . . . , Ui,m)

and we apply O(Rank(Si)) and after that S(Rank(h2)− 1) on

fi(Y ;Ui,1, . . . , Ui,m).

And Remark 5.2.15 implies that the results of both are the same;

• if the previous cases do not hold, then we apply O(Rank(Si−1))
and after that S(Rank(Si−1)) on

fi(X;Ui,1, . . . , Ui,m)

and then we apply R(Rank(uvh)) by the rule R.2 only on the
subterm X of

fi(X;Ui,1, . . . , Ui,m)

and on the other side we apply the rules O(Rank(Si)) and after
that we apply the rules S(Rank(Si)) on

fi(Y ;Ui,1, . . . , Ui,m)

and then we apply R(Rank(uvh)− 1) on it. And Remark 5.2.15
implies that the results of both are the same.

We then have a system of reduction rules which is noetherian and confluent.
This implies that for elements t1 and t2 in A with t1 ∼Σ t2 if we apply the
reduction rules on t1 and t2, then the results are the same.
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The variety V certainly contains BSS. Denoting by FAV the V-free
algebra on A, we then have an ω-algebra homomorphism

ϕ : FAV = (H1, V1)→ ΩABSS = (H2, V2)

such that xi 7→ xi (i = 1, . . . , n).
If two p-contexts or p-forests have the same canonical form, then in FAV

they are equal and so they have the same image by ϕ. Therefore, their image
by ϕ have the same scattered divisors.

Note that, ϕ is a pair (α, β) of monoid homomorphisms

α : H1 → H2,
β : V1 → V2.

In order to show that ϕ is injective, it suffices to show that β is injective.

Lemma 5.2.16. If β is injective, then ϕ is injective.

Proof. We just need to show that α is injective. Assume that for h1 and
h2 in H1, α(h1) = α(h2). It implies that α(h1) + � = α(h2) + � which is
β(h1 +�) = β(h2 +�). And since by assumption β is injective, we conclude
that h1 + � and h2 + � have the same canonical form and so does h1 and
h2.

We solved the word problem for the free ω-algebra in the variety V of
ω-algebras defined by the set Σ.

5.3 Open Problems

The following problems remain open.

Open problem 5.3.1. The monoid homomorphism β is injective.

Open problem 5.3.2. The ω-algebra homomorphism ϕ is surjective.

Open problem 5.3.3. What about other pseudovarieties?

If the first two open problems admit affirmative solutions, then together
with Lemma 5.2.16, we get the following result:

Theorem 5.3.4. The variety of type τ generated by BSS is defined by the
identities

(uv)ω = (vu)ω = (uωvω)ω

vωv = vω = vvω

(vω)ω = vω

vh+ ω(vuh) = ω(vuh) = ω(vuh) + vh
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and ΩABSS is the free object on A in this variety. Two terms in the vari-
ables from A coincide in ΩABSS if and only if they have the same canonical
form with respect to the reduction rules in the Algorithm 5.2.1.1. In partic-
ular, the word problem for ΩABSS is decidable.
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Appendix A

Long Proofs

A.1 Lemma 2.1.1

Lemma A.1.1. For a forest algebra S and a subset K of S, the equivalence
relations σK and σ′K are congruences with respect to the basic operations of
S.

Proof. Let h1 σK h2 and v1 σ
′
K v2. We should show that for every s ∈ HS

and u ∈ VS we have the following relations:

I.1 h1 + s σK h2 + s and s+ h1 σK s+ h2;

I.2 h1 + u σ′K h2 + u and u+ h1 σ
′
K u+ h2;

I.3 uh1 σK uh2;

I.4 uv1 σ
′
K uv2 and v1u σ

′
K v2u;

I.5 v1s σK v2s;

I.6 v1 + s σ′K v2 + s and s+ v1 σ
′
K s+ v2.

We claim that the following equivalence holds for every context t:

t(h1 + s) ∈ K ⇐⇒ t(h2 + s) ∈ K.

Let qt = t(�+ s). We get qth1 = t(�+ s)h1 = t(h1 + s). Hence,

t(h1 + s) = qth1 ∈ K ⇐⇒ t(h2 + s) = qth2 ∈ K,

where the middle equivalence follows from the relation h1 σK h2.
Now we show that for all contexts t, r and w we have:

1. t(r(h1 + s) + w) ∈ K ⇐⇒ t(r(h2 + s) + w) ∈ K,

2. t(w + r(h1 + s)) ∈ K ⇐⇒ t(w + r(h2 + s)) ∈ K.
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By using the term qr we get

t(r(h1 + s) + w) = t(qrh1 + w) ∈ K ⇔ t(r(h2 + s) + w) = t(qrh2 + w) ∈ K

and

t(w + r(h1 + s)) = t(w + qrh1) ∈ K ⇔ t(w + r(h2 + s)) = t(w + qrh2) ∈ K

where the equivalences follow from the hypothesis h1 σK h2. So h1 + s σK
h2 + s holds and, similarly, so does s+ h1 σK s+ h2.

We next claim that the following equivalence holds for every context t
and every forest h:

t(h1 + u)h σK t(h2 + u)h.

From definition of forest algebra S we get t(h1 + uh) = t(h1 + u)h. So we
have:

t(h1 + u)h = t(h1 + uh) σK t(h2 + uh) = t(h2 + u)h,

where the equivalence follows from I.1.
Now we show that, for all contexts t and w, we have:

t(h1 + u)w ∈ K ⇐⇒ t(h2 + u)w ∈ K.

From definition of forest algebra S we get t(h1 + uw) = t(h1 + u)w. On the
other hand the relation

t(h1 + uw) ∈ K ⇐⇒ t(h2 + uw) ∈ K,

follows from the hypothesis h1 σK h2. Hence, h1 + u σ′K h2 + u holds and,
similarly, so does u+ h1 σ

′
K u+ h2.

We claim that the following equivalence holds for every context t:

t(uh1) ∈ K ⇐⇒ t(uh2) ∈ K.

Let pt = tu. We get pth1 = (tu)h1 = t(uh1). Hence,

t(uh1) = pth1 ∈ K ⇔ t(uh2) = pth2 ∈ K,

where the equivalence follows from h1 σK h2.
Now we show that for all contexts t, r and w we have:

1. t(r(uh1) + w) ∈ K ⇐⇒ t(r(uh2) + w) ∈ K;

2. t(w + r(uh1)) ∈ K ⇐⇒ t(w + r(uh2)) ∈ K.

By using the term pr we get:

t(r(uh1) + w) = t(prh1 + w) ∈ K ⇔ t(r(uh2) + w) = t(prh2 + w) ∈ K
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and

t(w + r(uh1)) = t(w + prh1) ∈ K ⇔ t(w + r(uh2)) = t(w + prh2) ∈ K

where the equivalences follow from h1 σK h2. So uh1 σK uh2.
We next claim that the following equivalence holds for every context t

and every forest h:
t(uv1)h σK t(uv2)h.

By using the term pt we have:

t(uv1)h = ptv1h σK ptv2h = t(uv2)h,

where the equivalence follows from v1 σ
′
K v2.

Now we show that for all contexts t and w we have:

t(uv1)w ∈ K ⇐⇒ t(uv2)w ∈ K.

By using the term pt we get:

t(uv1w) = ptv1w ∈ K ⇐⇒ t(uv2w) = ptv2w ∈ K,

follows from v1 σ
′
K v2. So uv1 σ

′
K uv2 holds and, similarly, so does v1u σ

′
K

v2u.
The equivalence v1s σK v2s is clear by definition of the relation v1 σ

′
K v2.

We next claim that the following equivalence holds for every context t
and every forest h:

t(v1 + s)h σK t(v2 + s)h.

By using the term qt we have:

t(v1 + s)h = qtv1h σK qtv2h = t(v2 + s)h,

where the equivalence follows from v1 σ
′
K v2.

Now we show that for all contexts t and w we have:

t(v1 + s)w ∈ K ⇐⇒ t(v2 + s)w ∈ K.

By using the term qt we have:

t(v1 + s)w = qtv1w ∈ K ⇔ t(v2 + s)w = qtv2w ∈ K,

follows from v1 σ
′
K v2. So v1 + s σ′K v2 + s holds and, similarly, so does

s+ v1 σ
′
K s+ v2.

So vK is a congruence.
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A.2 Lemma 4.2.65

Lemma A.2.1. Let w1, . . . , wn be non-trivial multiplicatively irreducible p-
contexts in A. Then the following equality holds:

IrrF(w1. · · · .wn) = {w1} ∪ IrrF(w2. · · · .wn). (A.1)

Proof. By induction on n we will show that for n ≥ 1 the equality (A.1)
holds. For n = 1, the result follows directly from the IrrF(w1), since w1 is a
non-trivial multiplicatively irreducible p-context.

Assume that, for n = k the equality (A.1) holds.
We show that for n = k + 1 the equality (A.1) also holds.
We show that, if v be a non-trivial multiplicatively irreducible p-context

in A which is a factor of w1. · · · .wk+1, then one of the following conditions
holds:

v = w1 or v ∈ IrrF(w2. · · · .wk+1).

Since w1 is non-trivial multiplicatively irreducible, w1 has one of the forms
d�
s+�
�+ s
uω

where s is a non-trivial additively irreducible p-forest and u is a p-context
with C(u) 6= � and d� ∈ A′.

Assume that, w1 = d� and v is a non-trivial multiplicatively irreducible
p-context which is a factor of w1. · · · .wk+1. Then there are p-contexts P1

and P2 such that the equality

P1.v.P2 = w1. · · · .wk+1

holds. Since P1 is a p-context, there are p-forests H1 and H2 such that
P1 = H1 + C(P1) + H2. Applying the ω-algebra homomorphism f1, by
Lemmas 4.2.11 and 1.3.7, we have H1 = H2 = 0. So, we must have one of
the following equalities:

P1 = � or P1 = p�.w or P1 = xω.w with C(x) 6= �.

If P1 = �, then we have

v.P2 = d�.w2. · · · .wk+1.

Again, applying the ω-algebra homomorphism fn, for v = G1 + C(v) + G2

we have G1 = G2 = 0 which means

v = e� or v = yω.
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If we have v = yω, then applying the ω-algebra homomorphism Φ, we have
the following equality:

b�.Φ(y).c�.Φ(P2) = d�.Φ(w2. · · · .wk+1),

which contradicts the fact that d 6= b. So, we must have v = e�. And again
applying the ω-algebra homomorphism Φ, we have the following equality:

e�.Φ(P2) = d�.Φ(w2. · · · .wk+1),

which implies the equality e = d that is v = d�.
If we have P1 = p�.w with p� ∈ A′, then we have the following equality:

p�.w.v.P2 = d�.w2. · · · .wk+1,

and applying the ω-algebra homomorphism Φ, it implies that the following
equality holds:

p�.Φ(w.v.P2) = d�.Φ(w2. · · · .wk+1).

This yields the equalities p = d and

Φ(w.v.P2) = Φ(w2. · · · .wk+1).

By Theorem 4.2.60, we conclude that

w.v.P2 = w2. · · · .wk+1

which means v is a factor of w2. · · · .wk+1 that is v ∈ IrrF(w2. · · · .wk+1).
If P1 = xω.w with C(x) 6= �, then we have

xω.w.v.P2 = d�.w2. · · · .wk+1

and applying the ω-algebra homomorphism Φ, we have the equality

b�.Φ(x).c�.Φ(w.v.P2) = d�.Φ(w2. · · · .wk+1)

which contradicts the fact that d 6= b.
Assume that w1 = uω with C(u) 6= � and v a non-trivial multiplicatively

irreducible p-context which is a factor of w1. · · · .wk+1. There are p-contexts
P1 and P2 such that the equality

P1.v.P2 = w1. · · · .wk+1

holds. Since P1 is a p-context, there are p-forests H1 and H2 such that
P1 = H1 + C(P1) + H2. Applying the ω-algebra homomorphism Φ, by
Lemma 1.3.7 and Theorem 4.2.60, we have H1 = H2 = 0. So, we must have
one of the following equalities:

P1 = � or P1 = p�.w or P1 = xω.w with C(x) 6= �.
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If P1 = �, then we have

v.P2 = uω.w2. · · · .wk+1.

Again, applying the ω-algebra homomorphism fn, for v = G1 + C(v) + G2

we have G1 = G2 = 0 which means

v = e� or v = yω.

If v = e�, then applying the ω-algebra homomorphism Φ, we have the
following equality holds:

e�.Φ(P2) = b�.Φ(u).c�.Φ(w2. · · · .wk+1)

which contradicts the fact that e 6= b. So, we may have v = yω so that, by
applying the ω-algebra homomorphism Φ, we have the following equality:

b�.Φ(y).c�.Φ(P2) = b�.Φ(u).c�.Φ(w2. · · · .wk+1).

By Corollary 4.2.58, we have the equality Φ(y) = Φ(u) and Theorem 4.2.60
yields the equality y = u which implies that the equality yω = uω holds,
that is the equality v = w1.

If P1 = p�.w with p� ∈ A′, then the following equality holds:

p�.w.v.P2 = uω.w2. · · · .wk+1.

So that, by applying the ω-algebra homomorphism Φ, it implies the following
equality:

p�.Φ(w.v.P2) = b�.Φ(u).c�.Φ(w2. · · · .wk+1)

which contradicts the fact that p 6= b.
Now, if P1 = xω.w with C(x) 6= �, then the following equality holds:

xω.w.v.P2 = uω.w2. · · · .wk+1.

Applying the ω-algebra homomorphism Φ, we obtain the following equality:

b�.Φ(x).c�.Φ(w.v.P2) = b�.Φ(u).c�.Φ(w2. · · · .wk+1).

By Corollary 4.2.58, the equality

Φ(w.v.P2) = Φ(w2. · · · .wk+1)

holds. And by Theorem 4.2.60, we have the equality

w.v.P2 = w2. · · · .wk+1

which means v is a factor of w2. · · · .wk+1 that is

v ∈ IrrF(w2. · · · .wk+1).
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Assume next that w = s + �, where s is a non-trivial additively ir-
reducible p-forest and let v be a non-trivial multiplicatively irreducible p-
context which is a factor of w1. · · · .wk+1. There are p-contexts P1 and P2

such that the equality

P1.v.P2 = w1. · · · .wk+1

holds. Since P1 and P2 are p-contexts, there are p-forests H1, H ′1, H2, and
H ′2 such that P1 = H1 + C(P1) +H2 and P2 = H ′1 + C(P2) +H ′2. We may
have

H1 6= 0 or H1 = 0.

IfH1 6= 0, thenH1 = h1+· · ·+hm where h1, . . . , hm are non-trivial additively
irreducible p-forests. Let

w = h2 + · · ·+ hm + C(P1) +H2.

Applying the ω-algebra homomorphism Φ, we have the following equality:

Φ(h1) + Φ(w.v.P2) = Φ(s) + Φ(w2. · · · .wk+1).

By Lemma 1.3.7, together with Lemma 1.3.6, we have Φ(h1) = Φ(s), as both
are connected in the free forest algebra, and Φ(w.v.P2) = Φ(w2. · · · .wk+1).
So that, by Theorem 4.2.60, we have w.v.P2 = w2. · · · .wk+1 that is v is a
factor of w2. · · · .wk+1 which means v ∈ IrrF(w2. · · · .wk+1).

Now, assume that H1 = 0. Since s 6= 0, applying the ω-algebra homo-
morphism Φ, we have C(P1) = �; otherwise, we have

Φ(C(P1).v.P2) + Φ(H2) = Φ(s) + Φ(w2. · · · .wk+1)

so that, by Lemma 1.3.7, the equality Φ(s) = 0 holds and by Lemma 4.2.34,
we have s = 0 which contradicts the assumption that s 6= 0. So, we have
P1 = �+H2 which yields the equality

v.P2 +H2 = s+ w2. · · · .wk+1.

Now, since v is a non-trivial multiplicatively irreducible p-context, v has one
of the following forms: 

e�
t+�
�+ t
yω

where t is a non-trivial additively irreducible p-forest, y is a p-context with
C(y) 6= � and e� ∈ A′.

If we have v = e�, then applying the ω-algebra homomorphism Φ, we
obtain the following equality:

e�.Φ(P2) + Φ(H2) = Φ(s) + Φ(w2. · · · .wk+1)
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so that, by Lemma 1.3.7, we have Φ(s) = 0 and Lemma 4.2.34 yields s = 0
which contradicts the assumption that s 6= 0.

If we have v = yω, then applying the ω-algebra homomorphism Φ, we
obtain the following equality:

b�.Φ(y).c�.Φ(P2) + Φ(H2) = Φ(s) + Φ(w2. · · · .wk+1)

so that, by Lemma 1.3.7, we have Φ(s) = 0 and again Lemma 4.2.34 implies
that s = 0 which contradicts the assumption that s 6= 0.

If we have v = t+�, then applying the ω-algebra homomorphism Φ, we
obtain the following equality:

Φ(t) + Φ(P2) + Φ(H2) = Φ(s) + Φ(w2. · · · .wk+1)

so that, by Lemma 1.3.7, we have Φ(t) = Φ(s) and Theorem 4.2.60 leads to
the equality t = s which in turn yields v = s+�.

And if we have v = � + t, then applying the ω-algebra homomorphism
Φ, the following equality holds:

Φ(P2) + Φ(t) + Φ(H2) = Φ(s) + Φ(w2. · · · .wk+1).

We may have
H ′1 6= 0 or H ′1 = 0.

If we have H ′1 6= 0, then there are non-trivial additively irreducible p-forests
h′1, . . . , h

′
r such that H ′1 = h′1 + · · ·+ h′r. Let

w = h′2 + · · ·+ h′r + C(P2) +H ′2.

Applying the ω-algebra homomorphism Φ, the following equality holds:

Φ(h′1) + Φ(P1.v.w) = Φ(s) + Φ(w2. · · · .wk+1),

so that, by Lemma 1.3.7, we have the following equalities:

Φ(h′1) = Φ(s) and Φ(P1.v.w) = Φ(w2. · · · .wk+1)

and by Theorem 4.2.60, we have P1.v.w = w2. · · · .wk+1 which means v is a
factor of w2. · · · .wk+1 that is v ∈ IrrF(w2. · · · .wk+1).

If we have H ′1 = 0, then applying the ω-algebra homomorphism Φ, we
have the following equality:

Φ(C(P2)) + Φ(H ′2) + Φ(t) + Φ(H2) = Φ(s) + Φ(w2. · · · .wk+1),

so that, by Lemma 1.3.7, we have Φ(s) = 0, and Lemma 4.2.34 which yields
s = 0 which contradicts the assumption that s 6= 0.

In the dual case where w1 = � + s with s a non-trivial additively irre-
ducible p-forest and v a factor of w1. · · · .wk+1, we can use similar arguments
to show that v = w1 or v ∈ IrrF(w2. · · · .wk+1).

133



A.3 Lemma 5.1.2

Recall that, the set Σ consisting of the following identities, for contexts u
and v and forest h,

(uv)ω = (vu)ω = (uωvω)ω (A.2)

vωv = vω = vvω (A.3)

(vω)ω = vω (A.4)

vh+ ω(vuh) = ω(vuh) = ω(vuh) + vh. (A.5)

And also the following identities, for forests h and s,

ω(h+ s) = ω(s+ h) = ω(ω(h) + ω(s)) (A.6)

ω(h) + h = ω(h) = h+ ω(h) (A.7)

ω(ω(h)) = ω(h) (A.8)

are the result of Lemma 5.1.1.
We are going to establish a number of identities as consequences of Σ.
Since for an ω-algebra S = (H,V ), H and V are algebras of type (2, 1)

and the identities

ω(h+ s) = ω(s+ h) = ω(ω(h) + ω(s))

ω(h) + h = ω(h) = h+ ω(h)

ω(ω(h)) = ω(h)

and the identities

(uv)ω = (vu)ω = (uωvω)ω

vωv = vω = vvω

(vω)ω = vω,

respectively, hold in H and V , by [1, Lemma 8.2.2], we obtain I.1-I.6.

I.7 . By using (A.2), (A.4), and I.1 we have (vv)ω = (vωvω)ω = (vω)ω = vω.

I.8 . By using the identities (uv)ω = (uωvω)ω and (vω)ω = vω we have

(uvω)ω = (uω(vω)ω)ω = (uωvω)ω = (uv)ω.

I.9 . By using the identities (A.2), I.7, I.3, and I.8 we have

uω = (
∏

v∈IrrNIdemF∗(u)

v)ω.
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I.10 . If the identity uω = vω holds, then we have the following equalities:

IrrNIdemF∗(u) = IrrNIdemF∗(uω)

= IrrNIdemF∗(vω)

= IrrNIdemF∗(v),

and if the equality IrrNIdemF∗(u) = IrrNIdemF∗(v) holds, then by
using 4 and 7 we have

uω = (
∏

v1∈IrrNIdemF∗(u)

v1)ω = (
∏

v1∈IrrNIdemF∗(v)

v1)ω = vω.

I.11 . Assume that the p-contexts u and v are such that

IrrNIdemF∗(u) ⊆ IrrNIdemF∗(v).

Then by using I.9 there is a p-context v1 such that vω = (v1u)ω =
(uv1)ω. By using the identities wwω = wω = wωw, (w1w2)ω =
(wω1w

ω
2 )ω and I.2 we have

vωuω = (uv1)ωuω

= (uωvω1 )ωuω

= (uωvω1 )ω

= (uv1)ω

= vω.

We can do the similar arguments for the symmetric case.

I.12 . By using I.11 and (A.3) we have

vωuω = vω(uωu)

= (vωuω)u

= vωu.

We can do the similar arguments for the symmetric case.

I.13 . By using (A.6), (A.8), and I.4 we have

ω(h+ h) = ω(ω(h) + ω(h)) = ω(ω(h)) = ω(h).

I.14 . By (A.6), (A.8), and (A.5) we have

ω(uh+ uwh) = ω(ω(uh) + ω(uwh))

= ω(ω(uh) + ω(ω(uwh)))

= ω(uh+ ω(uwh))

= ω(ω(uwh))

= ω(uwh).
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I.15 . By using (A.6) and (A.8) we have

ω(ω(h) + s) = ω(ω(ω(h)) + ω(s)) = ω(ω(h) + ω(s)) = ω(h+ s).

I.16 . For a p-context v = h1 +C(v)+h2 if C(v) = �, then vω = ω(h1)+�+
ω(h2), it is one of the identities defining ω-algebras. And for C(v) 6= �
if C(v) 6= v, then by using I.3 we have vω = (C(v)(h1 +�+ h2))ω and
since C(v) is a �-pure p-context, it gives the result.

I.17 . By using (A.6), (A.8), (A.5), and I.5 we have:

ω(uvs) = ω(ω(uvs))

= ω(us+ ω(uvs))

= ω(ω(us) + ω(ω(uvs)))

= ω(ω(us) + ω(ω(uvs))) + ω(us)

= ω(us+ ω(uvs)) + ω(us)

= ω(uvs) + ω(us),

and in a similar way we have ω(uvs) = ω(us) + ω(uvs).

I.18 . If the identity wv = w holds, then by (A.5) we have:

uvt+ ω(uwt) = uvt+ ω(uwvt)

= ω(uwvt)

= ω(uwt).

In a similar way we can conclude that ω(uwt) + uvt = ω(uwt). And
also in a similar way if the identity vw = w holds.

I.19 . By using I.1 and I.17 we have the following identities:

ω(vω1 · · · vωns) = ω(vω1 · · · vωns) + ω(vω1 · · · vωnh)

ω(vω1 · · · vωnh) = ω(vω1 · · · vωnh) + ω(vω1 · · · vωn−1unh)

ω(vω1 · · · vωn−1unh) = ω(vω1 · · · vωn−1unh) + ω(vω1 · · · vωn−2un−1unh)

...

ω(vω1 u2 · · ·un−1unh) = ω(vω1 u2 · · ·un−1unh) + ω(u1u2 · · ·un−1unh)

ω(u1u2 · · ·un−1unh) = ω(u1u2 · · ·un−1unh) + u1 · · ·unh.

By combining the above equations and I.15 we get the result.

136



I.20 . Since u |s v, there exist p-contexts

P1, . . . , Pn, Q1, . . . , Qn+1

such that

u = P1 · · ·Pn and v = Q1P1 · · ·QnPnQn+1.

By using I.17 we have the following identities:

ω(v0) = ω(Q1P1 · · ·QnPnQn+10) + ω(P1Q2 · · ·QnPnQn+10)

ω(P1Q2 · · ·QnPnQn+10)

= ω(P1Q2 · · ·QnPnQn+10) + ω(P1P2Q3 · · ·QnPnQn+10)

ω(P1P2Q3 · · ·QnPnQn+10)

= ω(P1P2Q3 · · ·QnPnQn+10) + ω(P1P2P3Q4 · · ·QnPnQn+10)

ω(P1P2 · · ·Pn−1PnQn+10)

= ω(P1P2 · · ·Pn−1PnQn+10) + ω(P1P2 · · ·Pn−1Pn0)

...

ω(P1P2 · · ·Pn−1Pn0) = ω(P1P2 · · ·Pn−1Pn0) + P1P2 · · ·Pn−1Pn0.

By combining the above equations and I.15 we get the result.

I.21 . By (A.4), I.13 and I.6 ω(h) = ω(
∑

t∈IrrS(h)

t) and by using I.15 we get

the result.

I.22 . If for a p-forest s we have s ∈ SpecialH(h), then we have

s ∈ IrrNIdemS∗(h) or s ∈ SpecialH(h) \ IrrNIdemS∗(h).

If s ∈ IrrNIdemS∗(h), then by I.5, I.6 and I.21 we get the result.

It remains to show the result for s ∈ SpecialH(h) \ IrrNIdemS∗(h).
From the definition of the set SpecialH(h) it follows that

s = P1Q1 · · ·PnQnPn+10 6= 0,

where
u1v

ω
1 · · ·unvωnun+10 ∈ IrrNIdemS∗(h)
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such that each p-context Pi is a scattered divisor of ui and each p-
context Qj is a product of some of the elements of IrrNIdemF∗(vj) in
any order and some but not all of the p-contexts Pi and Qj are �.
Then the result is by I.19 and I.20.

I.23 . By I.21 and I.22 for every s ∈ SpecialH(h), we obtain

ω(h) = ω(
∑

t∈IrrNIdemS∗(h)

t+ s).

So, we have

ω(h) = ω(
∑

t∈IrrNIdemS∗(h)

t+
∑

s∈SpecialH(h)

s).

By I.6 we have the following identity:

ω(h)

= ω(
∑

t∈IrrNIdemS∗(h)

t

+
∑

s′∈IrrNIdemS∗(h)

s′

+
∑

s′′∈SpecialH(h)\IrrNIdemS∗(h)

s′′),

where I.6 and I.15 implies that

ω(h) = ω(
∑

t∈IrrNIdemS∗(h)

t+
∑

s′′∈SpecialH(h)\IrrNIdemS∗(h)

s′′),

that is
ω(

∑
t∈SpecialH(h)

t) = ω(h).

I.24 . For a p-context v with factorization
n∏
i=1

vi let

h1 =
∑

s∈LIrrF(v)0

s and h2 =
∑

s∈RIrrF(v)0

s,

and let h = t1 + · · ·+ tCP(h) we have the following conditions:

G.1 . For a p-context v let

w = (
∏

u∈PIrrF(v)

u)(
∏

u∈LIrrF(v)

u)(
∏

u∈RIrrF(v)

u),
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then by I.3 we obtain vω = wω. Since t1 ∈ LIrrF(v)0, we have

vωh = wωh

by I.3

= wω((
∏

u∈LIrrF(v)

u)ω(
∏

u∈RIrrF(v)

u)ω)(t1 + · · ·+ tCP(h))

by (A.2) and I.2

= wω(ω(h1) +�+ ω(h2))(t1 + · · ·+ tCP(h))

= wω(ω(h1) + (t1 + · · ·+ tCP(h)) + ω(h2))

= wω((ω(h1) + t1) + (t2 + · · ·+ tCP(h)) + ω(h2))

= wω(ω(h1) + (t2 + · · ·+ tCP(h)) + ω(h2))

by I.5 and I.6

= wω(ω(h1) +�+ ω(h2))(t2 + · · ·+ tCP(h))

= wω(t2 + · · ·+ tCP(h))

by I.2

= vωh′

by I.3.

G.2 . We can do the similar arguments as in the proof of G.1.

G.3 . Since there is a p-context w ∈ Pref(h) such that

IrrNIdemF∗(w) ⊆ IrrNIdemF∗(v),

there is a p-context u and a p-forest h′ such that by using I.3 we
have vω = (wu)ω and h = wh′, while I.12 implies the result.

G.4 . We want to show that: if for a positive integer j with 1 ≤ j ≤
CP(h) and a nonempty set L ⊆ LIrrF(v)0 there is a p-forest s
which is a sum of, in any order, of elements of L such that there
are p-contexts u and w and a p-forest r with t1 + · · · + tj = ur
and s = uwr, then vωh = vωh′ where h′ = tj+1 + · · ·+ tCP(h).

Let
w = (

∏
u∈PIrrF(v)

u)(
∏

u∈LIrrF(v)

u)(
∏

u∈RIrrF(v)

u).

Since the positive integer j with 1 ≤ j ≤ CP(h) and the nonempty
set L ⊆ LIrrF(v)0 are such that there is a p-forest s which is a
sum, in any order, of elements of L such that there are p-contexts
u and z and a p-forest r such that t1 + · · ·+ tj = ur and s = uzr.
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Then by I.6 we obtain for some p-forest h′′, ω(h1) = ω(s + h′′).
So, we have

vωh

= wω(ω(s+ h′′) +�+ ω(h2))h

by (A.2) and I.2

= wω(ω(s+ h′′) + h+ ω(h2))

= wω(ω(ω(s) + ω(h′′)) + ω(s) + h+ ω(h2))

by (A.6) and I.5

= wω(ω(ω(s) + ω(h′′))

+ ω(uzr) + (ur + tj+1 + · · ·+ tCP(h)) + ω(h2))

= wω(ω(ω(s) + ω(h′′))

+ (ω(uzr) + ur) + (tj+1 + · · ·+ tCP(h)) + ω(h2))

= wω(ω(ω(s) + ω(h′′))

+ ω(s) + (tj+1 + · · ·+ tCP(h)) + ω(h2))

by (A.5)

= wω(ω(ω(s) + ω(h′′))

+ ω(s) +�+ ω(h2))(tj+1 + · · ·+ tCP(h))

= wω(ω(ω(s) + ω(h′′))

+�+ ω(h2))(tj+1 + · · ·+ tCP(h))

by I.5

= wω(ω(s+ h′′) +�+ ω(h2))(tj+1 + · · ·+ tCP(h))

= wω(tj+1 + · · ·+ tCP(h))

by I.2

= vωh′

by I.3.

G.5 . We can do the similar arguments as in the proof of G.4.

G.6 . Let vn = H1 + � + H2 with H1 = s1 + · · · + sCP(H1) and H2 =
s′1 + · · ·+ s′CP(H2). If sCP(H1) ∈ SpecialH(h), then we have

vω(h) = v1 . . . vnω(h)

= v1 . . . vn−1(H1 +�+H2)ω(h)

= v1 . . . vn−1(H1 + ω(h) +H2)

= v1 . . . vn−1(s1 + · · ·+ sCP(H1) + ω(h) +H2)

= v1 . . . vn−1(s1 + · · ·+ (sCP(H1) + ω(h)) +H2)

= v1 . . . vn−1(s1 + · · ·+ sCP(H1)−1 + ω(h) +H2)

by I.5 and I.23.
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We can do the similar arguments for the symmetric case.

G.7 . We want to show that: for vn = H1 + � + H2 with H1 = s1 +
· · ·+ sCP(H1) and H2 = s′1 + · · ·+ s′CP(H2) if

sCP(H1) ∈ SpecialH(h) or s′1 ∈ SpecialH(h),

then we have the identities

vω(h) = v1 . . . vn−1(s1 + · · ·+ sCP(H1)−1 + ω(h) +H2)

or

vω(h) = v1 . . . vn−1(H1 + ω(h) + s′2 + · · ·+ s′CP(H2)).

Let for a positive integer j with 1 ≤ j ≤ CP(H1) and a nonempty
set D ⊆ SpecialH(h) and there is a p-forest p which is a sum, in
some order, of elements of D such that there are p-contexts u and
w and a p-forest r such that sj + · · ·+sCP(H1) = ur and p = uwr.
Then by I.6 we obtain for some p-forest h′′, ω(h) = ω(p+q). And
we have

vω(h)

= v1 . . . vnω(h)

= v1 . . . vn−1(H1 +�+H2)ω(h)

= v1 . . . vn−1(H1 + ω(q + p) +H2)

= v1 . . . vn−1(H1 + ω(ω(q) + ω(p)) +H2)

by (A.6)

= v1 . . . vn−1(H1 + ω(p) + ω(ω(q) + ω(p)) +H2)

by I.5

= v1 . . . vn−1(s1 + · · ·+ sj−1 + ur + ω(p)

+ ω(ω(q) + ω(p)) +H2)

= v1 . . . vn−1(s1 + · · ·+ sj−1 + ω(p) + ω(ω(q) + ω(p)) +H2)

by (A.5)

= v1 . . . vn−1(s1 + · · ·+ sj−1 + ω(ω(q) + ω(p)) +H2)

by I.5

= v1 . . . vn−1(s1 + · · ·+ sj−1 + ω(h) +H2)

by (A.6).

We can do the similar arguments for the symmetric case.

G.8 . Assume that SpecialH(h) ⊆ SpecialH(
∑

x∈LIrrF(v)0

x). Let

w = (
∏

u∈PIrrF(v)

u)(
∏

u∈LIrrF(v)

u)(
∏

u∈RIrrF(v)

u).
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Then vω = wω. Therefore,

vωω(h) = wω(ω(h+ h1) +�+ ω(h2))ω(h)

by (A.2), I.2, I.3, and I.22

= wω(ω(h+ h1) + ω(h) + ω(h2))

= wω(ω(ω(h) + ω(h1)) + ω(h) + ω(h2))

by (A.6)

= wω((ω(ω(h) + ω(h1)) + ω(h)) + ω(h2))

= wω(ω(ω(h) + ω(h1)) + ω(h2))

by I.5

= wω(ω(ω(h) + ω(h1)) +�+ ω(h2))0

= wω(ω(h+ h1) +�+ ω(h2))0

by (A.6)

= wω0

by (A.2), I.2, I.3, and I.22

= vω0

by I.3.

G.9 . The identity is symmetric to G.8 and we can do the similar ar-
guments for the symmetric case.

G.10 . Assume that SpecialH(h) ⊆ SpecialH(
∑

x∈LIrrF(v)0

x). Let

w = (
∏

u∈PIrrF(v)

u)(
∏

u∈LIrrF(v)

u)(
∏

u∈RIrrF(v)

u).

Then vω = wω. Therefore,

vωh = wω(ω(h+ h1) +�+ ω(h2))h

by (A.2), I.2, I.3, and I.22

= wω(ω(h+ h1) + h+ ω(h2))

= wω(ω(h+ h1) + ω(h2))

by I.5

= wω(ω(h+ h1) +�+ ω(h2))0

= wω0

by (A.2), I.2, I.3, and I.22

= vω0

by I.3.

G.11 . The identity is symmetric to G.10 and we can do the similar
arguments for the symmetric case.
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tm,m, 61
x|b,c, 78
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