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Abstract

Forest algebras are defined for investigating languages of forests [ordered se-
quences| of unranked trees, where a node may have more than two [ordered]
successors [9]. We show that several parameters on forests can be realized
as forest algebra homomorphisms from the free forest algebra into algebras
which retain the equational axioms of forest algebras. This includes the
number of nodes, the number of connected parts, the set of labels of nodes,
the depth, and the set of labels of roots of an element in the free forest
algebra. We show that the horizontal monoid of a forest algebra is finite if
and only if its vertical monoid is finite. By an example we show that the
image of a forest algebra homomorphism may not be a forest algebra and
also the pre-image of a forest subalgebra by a forest algebra homomorphism
may not be a forest algebra.

Bojanczyk and Walukiewicz in [9] defined the syntactic forest algebra
over a forest language. We define a new version of syntactic congruence of
a subset of the free forest algebra, not just a forest language, which is used
in the proof of an analog of Hunter’s Lemma [23] in the third chapter. The
new version of syntactic congruence is the natural extension of the syntactic
congruence for monoids in case of forest algebras. We show that for an
inverse zero action subset and a forest language which is the intersection of
the inverse zero action subset with the horizontal monoid, the two versions
of syntactic congruences coincide.

Almeida in [2] established some results on metric semigroups. We adapted
some of his results to the context of forest algebras. We define on the free
forest algebra a pseudo-ultrametric associated with a pseudovariety of forest
algebras. We show that the basic operations on the free forest algebra are
uniformly continuous, this pseudo-ultrametric space is totally bounded, and
its completion is a forest algebra. The difficult part is how to handle the
faithfulness property of forest algebras. We show that in a metric forest
algebra with uniformly continuous basic operations, its horizontal monoid is
compact if and only if its vertical monoid is compact. We show that every
forest algebra homomorphism from the free forest algebra into a finite for-
est algebra is uniformly continuous. We show that the analog of Hunter’s
Lemma [23] holds for metric forest algebras, which leads to the result that
zero-dimensional compact metric forest algebras are residually finite. We
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establish an analog of Reiterman’s Theorem [26], which is based on a study
of the structure profinite forest algebras.

We define w-algebras, which retain the equational axioms of forest alge-
bras and are endowed with additional unary operations. We establish some
useful properties of the free w-algebra which entail that it is a forest alge-
bra. A profinite algebra is defined to be a projective limit of a projective
system of finite algebras [2]. For BSSIL the pseudovariety of forest alge-
bras generated by all syntactic forest algebras of piecewise-testable forest
languages, we say that a profinite algebra S is pro-BSS if it is a projective
limit of members of BSS. It is natural to study the free pro-BSS algebra
as an w-algebra. We show that the set of multiplicatively irreducible factors
of the product of two elements is the union of the sets of multiplicatively
irreducible factors of each one. We distinguish several kinds of non-trivial
additively irreducible and non-trivial multiplicatively irreducible elements of
the free w-algebra. Then an algorithm to compute a canonical form for each
element of the free w-algebra in a certain variety is described and proved to
be correct. If the relationship between the free w-algebra in a certain variety
and the free pro-BSS algebra is as in the word analog [I, Section 8.2], then
the algorithm allows us to identify the structure of the latter.

!Stands for Bojaticzyk, Segoufin, and Straubing as it was first introduced in [6].
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Introduction

Several algebraic and combinatorial tools have played an important role in
the development of Computer Science and its applications. The theory of
formal languages, motivated both by linguistic studies and by development
of computer languages in the 1950’s, led to fruitful connections with Math-
ematics, in which algebraic tools such as semigroups, formal series, wreath
products, and the combinatorics of words found an ideal ground for appli-
cations.

Eilenberg’s treatise [12], [I3] reflects already in the mid 1970’s a signifi-
cant development in the area, which both systematized earlier results and
fostered further research. On the Computer Science side, finite automata
proved to be a simple, yet very powerful model for efficient automatic pro-
cesses. Their computing power is described by regular languages and thus
it became important to determine whether given problems could be han-
dled by restricted types of finite automata, which became a classification
problem for regular languages. Eilenberg proposed as a framework for this
classification the so-called varieties of languages and showed how they are
in natural one-to-one correspondence with pseudovarieties of semigroups.
The original Computer Science problem concerning formal languages thus
became translated as a question about semigroups: to decide whether a
given finite semigroup belongs to a given pseudovariety. Starting in the mid
1980’s, Almeida showed how one could use profinite semigroups to handle
some such decidability questions [I], 2].

But formal languages of words, in the sense of sequences of letters, are
not always the most suitable tools to deal with Computer Science prob-
lems. Words correspond to sequential processes in which an action must
be completed before the next one starts and only one action is executed at
any given time. In many computing models, actions lead to branching and
to the execution of other actions in parallel. Thus, trees are often subja-
cent to computer processes. Depending on the concrete Computer Science
question, various algebraic tools have been introduced to deal with trees
[0, 1), [14], 15, 17, 18, 28, 29]. For instance, (finite) trees may be regarded
as terms in a suitable algebraic signature, which suggests as a possible ap-
proach to replace semigroups by more general (universal) algebraic struc-
tures in the classical algebraic theory of varieties of regular languages. The



profinite method can be easily adapted to this setting, but it remains to be
explored how this can be used to solve concrete problems. The limitations
of such a model for trees to handle Computer Science problems [4] [§] have
also led to the consideration of alternative models [6], [14] [15].

One of the major open problems in this area is the algebraic characteri-
zation of the class of trees that may be defined by first-order sentences.

In this dissertation we are planning to identify the structure of the free
pro-BSS algebra.

First, we recall the forest algebra structures defined in [6], and verify
some of their properties. We construct some examples provide useful pa-
rameters for the free forest algebra. We show the finiteness conditions for
a forest algebras, the pre-image of a forest subalgebra over a forest algebra
homomorphism may not be a forest subalgebra, and the image of a forest
algebra homomorphism may not be a forest subalgebra.

After that, for a subset K of a forest algebra S, we define a binary
relation v« g of K and we show that the relation -~ g define a congruence
relation of elements of S. Then we define a syntactic forest algebra which is
the quotient of a forest algebra by « g for some subset K of the forest algebra
the so called syntactic congruence of K. Then we show that for an inverse
zero action subset K of a forest algebra the quotient of the forest algebra
by g is a forest algebra. Denote by A2 the free forest algebra on a finite
alphabet A. A forest language is a subset of the horizontal monoid of A%.
For a forest language L, denote by V7, the set of all elements in the vertical
monoid of A? which map the identity element of the horizontal monoid of
A2 into L. For a forest language L the set K = (L, V) is called the inverse
zero action subset of A® determined by L; we show that the congruence
relation ~, which is defined in [6], coincides with the syntactic congruence
«, of the inverse zero action subset K. For a subset K of a forest algebra
S, the syntactic congruence g is a more natural extension of the well-
known syntactic congruence for monoids. Then we recall the theorem by
Walukiewicz et.al. in [7], which gives a one to one correspondence between
a pseudovariety of forest algebras and a variety of forest languages.

In Chapter 3, we define a metric on the free forest algebra A® with
respect to a pseudovariety of finite forest algebras V and we show that
the basic operations with respect to this metric are contractive. We show
that the completion of the free forest algebra with respect to the defined
metric exists and is a forest algebra. We establish in this context an analog
of Hunter’s Lemma [23]. We also establish in this context an analog of
Reiterman’s Theorem [26].

In Chapter 4, we define w-algebras: an w-algebra is a set with two types
of elements endowed with five binary operations and two unary operations,
such that the equational axioms of forest algebras and three more conditions
concerning the unary operations are satisfied. The class of w-algebras is
equational, so all free w-algebras exist. Denote by A the free w-algebra on a



finite alphabet A. We give some examples of w-algebras which are the key
facts to show some useful properties of the free w-algebra A. In particular,
we show that A is a forest algebra. We consider several subsets of the
free w-algebra A which are defined in terms of multiplicatively or additively
irreducible factors or summands. These sets play a key role in the next
chapter.

Finally in Chapter 5, we consider the variety V of w-algebras, defined
by the set 3 consisting of certain suitable identities motivated by the study
of the pseudovariety BSS. We establish some consequences of the set of
identities ¥ and we describe an algorithm to compute the so-called canonical
form of an element in the free w-algebra A modulo X.



Chapter 1

Forest Algebra

Our main problem is to identify the structure of the free pro-BSS algebra.
In order to tackle it, first we need to explore the structure of forest algebras.

Over a finite alphabet A, finite unranked ordered trees and forests are
expressions defined inductively. If s is a forest and a € A, then as is a tree
where a is the root of the tree and it is the direct ancestor of the root of each
tree in the forest s. Suppose that ¢1,...,%, is a finite sequence of trees, if we
put each tree t; on the right side of the tree t;_ for i = 2,3,...,n denoted
by t1 + - - - +t, then the result is a forest. This applies as well to the empty
sequence of trees, which thus gives rise to the empty forest, denoted by O.
The set of all forests is called the horizontal set.

A set L of forests over A is called a forest language.

If we take a forest and replace one of the leaves by a special symbol hole,
which is denoted by [J, we obtain a context. A forest s can be substituted in
place of the hole of a context p; the resulting forest is denoted by ps. There
is a natural composition operation on contexts, the context ¢p is formed by
replacing the hole of ¢ with p. The set of all contexts is called the vertical
set [9] [§].

In this chapter we explore the concept of forest algebra. We state several
results which are used in the following chapters.

1.1 Preliminaries

Definition 1.1.1. A forest algebra S consists of a pair (H, V) of distinct
monoids, subject to some additional requirements, which we describe below.
We write the operation in V', the vertical monoid, multiplicatively and
the operation in H, the horizontal monoid, additively, although H is not
assumed to be commutative. We accordingly denote the identity of V' by [
and that of H by 0.
We require that V' acts on the left of H. That is, there is a map

(v,h) eV xHw—vheH



such that w(vh) = (wv)h, for every h € H and every v,w € V. We also
require that this action be monoidal, that is, [.h = h, for every h € H.

We further require that for every h € H and v € V, V' contains elements
h + v and v + h such that for every z € S,

(v+h)xr=vx+h and (h+v)r=h+vz,

where vz is given by the action of v on z if x is a forest and by composition
(multiplication) if x is a context.

We call the equational axioms of forest algebras, the preceding axioms
on the elements of the forest algebras.

Finally in the definition of forest algebra we also require that the action
be faithful, that is, if vh = wh, for every h € H, then v = w.

Let (Hy, V1) and (Ha, V2) be algebras that satisfy the equational axioms
of forest algebras. A forest algebra homomorphism

a (Hl,Vl) — (HQ,VQ)
is a pair (7, d) of monoid homomorphisms

v: Hi — Ho,
0 V1—>V2

such that, for every h € H and every v € V,

B 6(h +v) =~(h) +6(v)
v(vh) = 8(v)y(h) and { 5(v+h)= g(v) +(h)

However, we will abuse notation slightly and denote both component maps
by a.

Remark 1.1.2. Let (Hy,V1) and (Ha, V) be algebras that satisfy the equa-
tional axioms of forest algebras. A mapping

o = (’}/, 5) : (Hl,Vl) — (HQ,VQ)

is called forest algebra isomorphism, if the mappings v and J are monoid
isomorphisms and « is a forest algebra homomorphism.

Lemma 1.1.3. In a forest algebra S the following equality holds:
0O+0=0+0=0.
Proof. Let v =0+ 0 and v' = 0 + [, since for all z € S we have

ve =0O+0z =z+0,
Ve =040z =0+

if x € H, then both are equal to x. So for all h € H, vh = Oh and
also v'h = Oh. Since the action is faithful, we conclude that v = [0 and
o =0 O



The following lemma allows us to use the associativity of addition with-
out reference to the type of elements.

Lemma 1.1.4. In a forest algebra S the following equalities hold for all
x,y € H and every s € S:

(x+y)+s=x+(y+s),
(x+s)+y=x+(s+vy),
(s+z)+y=s+(z+y).

Proof. If s € H, then the results hold from the associativity of H. Let
s € V. The terms O+ z, x + 0, O+ y, and y + O are in V and, for all
h € H, the following equalities hold:

(z+y)+0)h=(z4+y)+h=z+y+h) =xz+(y+0)h = (z+ (y+0))h,

which implies
(x+y)+0=2+ (y+0),

and we have

(+D)+yh=(z+Dh+y=(r+h) +y

—z+(h+y)=z+ O+yh=(x+O+y)h,

which implies
(@+0)+y=z+0O+y).

Also we have
(O+(@z+y)h=h+(=x+y) = (h+2)+y = (O+2)h+y = (O+z)+y)h

which implies
O+4(x+y)=042z)+y.

So, for all s € V, we have the following equalities
@+y)+s=(z+y)+O)s=(+y+0)s=z+y+0)s =2+ (y+s).
This shows the first equality and

(z+s8)+y=@+0D)s+y=(z+0)+y)s=(x+ (O+y))s

=z++y)s=z+(s+y),
which yields the second equality, while
s+(@+y) = O+@+y)s=(O+a)+y)s = O+a)s+y=(s+2)+y

yields the third equality. O



Let A be a finite alphabet, and let us denote by H4 the set of forests over
A, and by V4 the set of contexts over A. Clearly H* forms a monoid under
+, see Figure VA4 forms a monoid under composition of contexts, see
Figure (the identity element is the empty context [J), and substitution
of a forest into a context defines a left action of V4 on H4, see Figure
It is straightforward to verify that this action makes (H*,V4) into a forest
algebra, which we denote by A2.

TR

A forest tq A forest tq The forest t1 + to

Figure 1.1: Forest addition

(2) (0 o

OIOERO

) o O
A context v; A context vy a

The context vqvg

Figure 1.2: Context multiplication

() (O © 3
A : FOO®
& o ® ®
A context v A forest ¢ a
The forest vt

Figure 1.3: Action

Bojanczyk and Walukiewicz in [8, Lemma 3.6] showed that A® is free
in the sense of universal algebra: if (H,V') is a forest algebra, then every
map f : A — V has a unique extension to a forest algebra homomorphism
0: A% — (H,V) such that o(ald) = f(a) for all a € A. In view of this
universal property we call A the free forest algebra on A. Since in the



proof of [8 Lemma 3.6], the faithfulness does not play any role, we can
state the following universal property:

Lemma 1.1.5. For every algebra (H,V') that satisfies the equational axioms
of forest algebras, every map f: A — V can be uniquely extended to a forest
algebra homomorphism (a, ) : A® — (H,V) such that B(ad) = f(a) for
every a € A. O

Bojariczyk and Walukiewicz in [§] denoted the set of forests over A by
H 4 and the set of contexts over A by V4. To avoid confusion with syntactic
forest algebras, which we consider later, we prefer instead the notation H4
and VA4,

For an algebra S = (H, V') which satisfies the equational axioms of forest
algebras, the relation ~gyi, is defined as follows: for elements s and h in H,
and for elements v and w in V,

h ~gpn s if and only if h =s

(1.1)

U ~gaeh w o if and only if  Vt € H, vt = wt.

Definition 1.1.6. A congruence relation is an equivalence relation = on an
algebraic structure that satisfies

wlar,az, ... an) = p(ay,dh, ... a,)

for every m-ary operation p that defines the algebra structure, and all ele-
ments ay,...,an,a,...,a, satisfying a; = a; for each i.

Definition 1.1.7. Let u and v be elements of a forest algebra S = (H,V).
We mean by basic operation, which is denoted by O(u,v), one of uv when
u€V,oru+vwhenuée€ HorveH.

Note that the value of the operation O(u,v) depends on the types of
elements v and v in S.

Lemma 1.1.8. The relation ~gy1 as defined in (1.1) is a congruence rela-
tion.

Proof. 1t is routine to check that, the relation ~ry,j, is an equivalence rela-
tion.
To show that ~gjn is a congruence, assume that

T ~paith Y and - p ~raith ¢
Then we need to show that for the basic operations we have

O(ﬂj’,p) ~faith O(:Ua Q)



For the relation & ~gi, ¥ and an element p € S, we show that

O(z,p) ~faith O(y,p)

(similarly, O(p, ) ~aitn O(p,y)). Indeed, if & ~gith ¥ and p ~gaith ¢, then
by what we have shown we have

O(x,p) ~aith O(Y, ) ~taith O(Y, q)-

With respect to the type of z and y (they should have the same type) and
a basic operation O, with respect to the type of p, we have the following:

1. Assume that x and y are in H. The relation x ~y,j, vy implies © = y
and since p = p is always true, the equality O(z,p) = O(y,p) and also
the equality O(p,x) = O(p,y) hold, which imply the relations

O(x7p) ~faith O(yvp) and O(pa l’) ~faith O(pay)a

2. Assume that z and y are in V.

(a) We show that for p € H, and every h € H, the equality (z+p)h =
(y+p)h holds. We have x ~g41 ¥, so, for every h € H, zh = yh.
Therefore, for p € H we have xh + p = yh + p, for every h € H.
Since S satisfies the equational axioms of forest algebras, we have
(x+p)h = (y+p)h, for every h € H, which means z+p ~gitn y+p-
Similarly, we obtain p + & ~gitn P + Y-

(b) We show that for p € V, and every h € H, the equality (xp)h =
(yp)h holds. We have x ~gyen v, so, for every h € H, xh = yh.
Since p € V, ph € H for every h € H. Therefore, for every
h € H we have x(ph) = y(ph). Hence, for every h € H, we have
(xp)h = (yp)h, which means zp ~iitn yp. Similarly, we obtain
PT ~faith PY-

(c) For p € H, xp ~paitn yp is immediate by definition of the relation

~faith-
We have thus shown that the relation ~gy1 is a congruence on S. ]
Definition 1.1.9. A subalgebra of a forest algebra is a subset of a forest

algebra, carrying the induced operations, that satisfies the equational axioms
of forest algebras.

Definition 1.1.10. A quotient of a forest algebra is a forest algebra morphic
image of a forest algebra.

We show in Remark [1.2.23| that a subalgebra and a quotient may not be
a forest algebra (because of faithfulness). The solution is to take the faithful
quotient of the result, which means for an algebra S = (H, V') which satisfies



the equational axioms of forest algebras, the faithful quotient of S which is
denoted by S/~ain. This is a forest algebra with the induced operations.
Let S = (H,V) be a forest algebra and K be the faithful quotient of
a subalgebra of S. Then we say that K is a forest subalgebra of S and we
write K < S.
Let S1 = (H1, V1) and Sy = (Ha, V) be forest algebras. Their direct
product S1 X Sy is (Hy x Ha, Vi x V3). The set

H, XHQZ{(hl,hQ) ’hl € Hi and hy GHQ}
is an additive monoid with identity (0,0) and the set
Vi x Vo ={(v1,v9) |v1 € V1 and vy € Va}

is a multiplicative monoid with identity (J,0). Operations are defined
componentwise. The action is faithful. Indeed, for (v, ve), (w1, ws) € V1 %
Vs, if for every (hi, he) € Hy x Ha,

(v1,v2)(h1, ha2) = (w1, w2)(h1, ha),

then for every hy; € Hy, vihy = wihi, which implies v; = w1, and for every
ho € Hs, vahy = wohs, which implies vy = wo, thus (Ul,’Ug) = (wl,’l,UQ). So
S1 X S is a forest algebra.

1.2 Some More Examples

The following examples are useful in the rest of this thesis.

Example 1.2.1. The natural and evident example of forest algebras is the
one with two elements

TFA=(H=A{0},+), (V={0},))
called trivial forest algebra.

Lemma 1.2.2. Let (S,+,0) and (T, x,1) be monoids where S is commuta-
tive. Assume that the monoid T acts on the monoid S by a monoid homo-
morphism

¢ : T — End(S5)

where End(S) is assumed to be the monoid of semigroup homomorphisms
from S to S. Let S *, T be the semidirect product of S and T under the
multiplication

(s,t) - (s, 1) = (s + @(t)(s'), t x ).
Denote ¢(t)(s) by ts. Let

V={(s,t) €S, T |s+"'0=s}

10



Then (S, V') with respect to the following operations satisfies the equational
azioms of forest algebras. For elements (s1,t1) and (s2,t2) in V and ele-
ments s and t in S define:

(Sl,tl).(SQ,tQ) = (51 —I—tISQ,tl X tg),

s+ (s1,t1) = (s +s1,t1) and (s1,t1) + s = (s1+ s,t1),

and
(51,t1) x5 = 81 + "'p.

Proof. First, we show that V' is a monoid. Let (s1,t1) and (s2,t2) be ele-
ments of V. Then we have

(51,t1).(52,t2) = (51 + "9, 11 X t3)
where we have

Sl+t182+t1><t20:81+t1(82+t20)

= s1+ " (s2),

which implies that V' is closed under the operation of S x, T. As we have
0+10 =0, (0,1) isin V. For (s,t) € V we have (s,t).(0,1) = (s+%0,tx 1) =
(s,t) and (0,1).(s,t) = (0+ 15,1 x t) = (s,1).

Since S is a commutative monoid, it is clear that for elements (si,%1)
and s respectively in V and S, the elements s+ (s1,¢1) and (s1,%1) +' s are
in V.

The following properties hold: for elements (s1,¢1) and (s2,t2) in V and
elements p and s in S we have

s+ ((s1,11).(s2,t2)) = s+ (s1 + 52,11 X tg)
= (S + 51 thlSQ,tl X tg)

and also

(54" (s1,t1)).(s2,t2) = (s + s1,t1).(s2,t2)
= (54 51+ 59,11 X ta),

which imply the equality

(s+' (s1,t1))-(s52,t2) = s+ ((s1,t1)-(52,12)).
We have

((s1,t1).(52,t2)) +' 5 = (51 + 59, t; X o) +' s

= (s1+ sy 4 5,11 X ta)

11



and also

((s1,t1) + 5).(s2,t2) = (s1 + 5,t1).(s52,t2)
= (81 + s +t152’t1 X tg),

in which, as S is commutative, we have the equality
((s1,t1) +' 8).(s2,t2) = ((s1,t1)-(s2,t2)) +' s.

We also have
s+ ((s1,t1) *p) =s+ (s1+ tlp)

and also

(s+' (s1,t1)) *p = (s+s1,t1) *p
= (s+s1) +"p,

which imply the equality
(s + (s1,t1)) *p = s+ ((s1,t1) *p).

We have
((s1,t1) *p) + 5= (51 +"p) +s

and also

((s1,t1) + s)*p = (s1+s,t1) *p
— (51 + 5) + tlpa

in which, as S is commutative, we have the equality
((s1,t1) +'8) xp = ((s1,t1) xp) + 5.
We have the following equality
((s1,t1).(52,t2)) xp = (51 + 89, t1 X ta) *p
= 51 + sy + (1712)p
and we also have

(51,t1) * ((s2,t2) * p) = (s1,11) * (59 + 2p)
= (s1+ " (s2 + p)).

As we assumed the monoid 1" acts on S, so we have

(tl ><t2) t1 (tz

p="("p)

and
t1(82 +t2p) :t182 —i—tl(t"’p).

12



We thus obtain the equality
((s1,t1)-(82,t2)) * p = (s1,t1) * ((s2,t2) * D).
The action * is monoidal, as for an element p in S we have
(0,1) xp=0+"'p=1id(p) = p. O

Proposition 1.2.3. Under the assumptions of Lemma[1.2.3, if one of the
following holds, then (S,V) is a forest algebra.

e S is cancellative and the action of the monoid T on the monoid S is
mjective;

e T is a trivial monoid.

Proof. Since by Lemma (S, V) satisfies the equational axioms of forest
algebras, in both cases we just need to show the faithfulness property. Let
(s1,t1) and (s2,t2) be elements of V' such that for all p in S the following
equality holds:

(s1,t1) *p = (s2,t2) *p
which is
s1+ tlp = S9 + t2p.
So, for p = 0 we have s + 10 = sy + 20 which implies the equality s; = s2.
We just need to check that for all s in S if for all p in S the equality
s +%p =s+p holds, then the equality ¢; = t» holds.

In the first case S is cancellative implies that for all p in S the equality
“1p = %2p holds in which as the action of the monoid T on the monoid S is
injective it implies that the equality ¢; = £2 holds.

In the second case T is trivial implies the equalities t; = t5 = 1. O

Example 1.2.4. By Proposition let T be the trivial monoid and S
be the monoid of natural numbers N under usual addition. Then Sy =
(S,8 %, T) is a forest algebra.

By the universal property of the free forest algebra A2, there is a unique
forest algebra homomorphism

#Nodes : AA — SN

such that
#Nodes(al:l) = (17 1)

Definition 1.2.5. Let s be an element of the free forest algebra A2, then
the number of nodes of s is its image by the forest algebra homomorphism

#Nodes in Example @

13



Remark 1.2.6. We will abuse notation slightly and denote both forest algebra
homomorphism from A to Sy and the number of nodes by #nodes-

Example 1.2.7. In Lemma let T = {1,c} be the free idempotent
monoid and S be the monoid of natural numbers N under usual addition.
Let the monoid T" acts on the monoid S by a monoid homomorphism

¢ : T — End(S)
1l—>’idg
c— Og

Since for every element (s,t) € S *, T the equality s + {0 = s holds, as in
both cases '0 = 0, we have S %, T" with operation . as in Lemma is a
monoid.

Let operation +' on elements of S¢ = (S, S, T') be as in Lemma [1.2.2]
We define the action of S x, T on the left of S as follows: for an element
(s,t) in S *, T and an element p in S define

s+1p

Jif t=1
s+ip+1 if t=c.

(Svt)*pz{

In order to show that S¢ satisfies the equational axioms of forest algebras,
in view of Lemma [1.2.2] we just need to check the following for elements s
and p in S and elements (s1,%1), (s2,t2) € S, T

e the equality s + ((s1,t1) *p) = (s +' (s1,t1)) * p holds, since we have
the following:

s+ (s14+"p) if 11 =1

8+(81’t1)*p:{ s+(si+ip+1) Lif h=c

and also

(s+ 1)+ p) Jif 1 =1
(s+s1)+"p+1 Jif t1=c

(54 (o)) = (s 451,00 50 = §
which imply the equality
(s +' (s1,11)) xp = s+ ((s1,t1) *p);
e since S is commutative, the equality
(s 4" (s1,t1)) *p = s + ((s1, 1) * p)
implies the equality:

((s1,t1) *p) + 5 = ((s1,11) +' 8) * p;

14



e the equality (s1,t1).(s2,t2)) *p = (s1,t1) * ((s2,t2) * p) holds, since we
have the following;:

((s1,t1).(s2,t2)) *p
= (51 +Ms9,t; X ta) % p

- Sl+tls2+(t1><t2)p ,lf tl Xt2:1
T st F sy BBy 1 it Xty =c

S1+S2+p ,if tlzl,tgzl
s1+s9+1 ,if t1=1,t9=c

s1+1 ittt =ty =1
s+l i =t =c
and we also have
_ 52+t2p Jif tp =1
(317t1)*<(527t2)*p)_(Sl’tl)*{ so+2p+1 Lif tg=c
(514" (s2 + "p) it =11 =1
_ ) stk p) 41 i =t =1
) st +f(s2+2p 1) Af =1 ta=c
[ s1+"(s2+p+ D) +1 Lif i =city=c
sits2t+p it t1=11t2=1
I R T
] sidset1l Lif h=1ta=c
s1+1 Af i =c ity =c

We thus obtain the equality
((s1,1)-(s2,82)) % p = (s1,t1) * ((s2,%2) * p);
e the action * is monoidal, as for an element p in S we have
(0,1)%p=0+"p=id(p) = p.

This shows that S¢ satisfies the equational axioms of forest algebras.
In view of Lemma by the universal property of the free forest
algebra A®, there is a unique forest algebra homomorphism

A
# ConnectedParts A= = Sc

such that
#ConnectedParts (GD) = (17 C)'

15



Definition 1.2.8. In view of the forest algebra homomorphism in Example
# ConnectedParts, We define the number of connected parts of a forest and
a context as follows: for a forest h in the free forest algebra A, number of
connected parts of the forest A is

#ConnectedParts (h) 5

and for a context v in the free forest algebra A2, where

#ConnectedParts(U) = (n,t),

number of connected parts of the context v is

nt+l if t=1
n Jif t=c.

Remark 1.2.9. For an element z in A®, we denote the number of connected
parts by CP.

Remark 1.2.10. By Definition and Definition if we have s = h+t
and h and t are non-trivial, then CP(h) < CP(s) and CP(¢t) < CP(s) and

also #Nodes(h) < #Nodes(s) and #Nodes(t) < #Nodes(s)-

Example 1.2.11. In Proposition [[.2.3] let T be the trivial monoid and S
the powerset monoid of A, P(A), under union. Then S7, = (5,5 %, T) is a
forest algebra.

By the universal property of the free forest algebra A®, there is a unique
forest algebra homomorphism

labels : A® — S..

such that
labels(a)) = ({a}, 1).

Definition 1.2.12. Let s be an element of the free forest algebra A2, then
the set of labels of nodes of s is its image by the forest algebra homomorphism
labels in Example [1.2.11

Remark 1.2.13. We will abuse notation slightly and denote both forest alge-
bra homomorphism from A® to Sy, and the set of labels of nodes by labels.

Example 1.2.14. In Lemma let T be the monoid of natural num-
bers N under usual addition and S the monoid of natural numbers N under
operation max. Let the monoid T" acts on the monoid S by a monoid ho-
momorphism

¢:T — End(S) via t+— (s—t+s).
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As the set V' contains every element (s,t) € S x, T such that the equality
max{s,t 4+ 0} = s holds, it implies that the inequality ¢ < s holds. So we
have

V=A{(s,t) € Sx, T |t <s}.

Then Lemma[l.2.2)implies that Sp = (S, V) satisfies the equational axioms
of forest algebras.

By the universal property of the free forest algebra A2, there is a unique
forest algebra homomorphism

depth : A% — Sp

such that
depth(add) = (1,1).

Definition 1.2.15. In view of the forest algebra homomorphism depth in
Example we define the depth of a forest and a context as follows: for
a forest h in the free forest algebra A%, the depth of the forest h is depth(h),
and for a context v in the free forest algebra A®, where depth(v) = (ng,ns),
the depth of the context v is ny.

Remark 1.2.16. In view of the forest algebra homomorphism depth, by the
way that we defined the action, for a context v in the free forest algebra A%
we have

depth(v % 0) = (n1,n2) * 0 = max{ny, na},
and as we assumed n; > ng, the depth of the context v is the depth of the
forest v * 0.

Remark 1.2.17. We will abuse notation slightly and denote both forest al-
gebra homomorphism from A® to Sp and the depth by depth.

For instance, the elements 0 and O of the free forest algebra A® have
depth 0.

Remark 1.2.18. If h; and wu; are elements of A?, such that hy + u; is an
element of A2, then

depth(u; + h1) = max{depth(h;),depth(u1)}.
Moreover, if z is an element of A® and a € A, then depth(az) = 14-depth(z).

Example 1.2.19. In Lemma let T'= {1,c} be the free idempotent
monoid and S the powerset monoid of A, P(A), under union. Let the monoid
T acts on the monoid S by a monoid homomorphism

¢ : T — End(S5)
1—idg
c+— Og

17



Since the set V' contains every element (s,t) € S *, T such that the equality
sU) = s holds, and for both cases ‘) = (), we have V = S *o 1.

Lemma implies that (S, V') satisfies the equational axioms of forest
algebras. Then Sg = (5,5 %, T')/~taith is a forest algebra.

By the universal property of the free forest algebra A®, there is a unique
forest algebra homomorphism

roots : A2 — Sk

such that

roots(ad) = ({a}, ¢).
Definition 1.2.20. In view of the forest algebra homomorphism roots in
Example [1.2.19], we define the set of labels of roots of a forest and a context
as follows: for a forest h in the free forest algebra A2, the set of labels of

roots of the forest h is roots(h), and for a context v in the free forest algebra
A? | where roots(v) = (X, t), the set of labels of roots of the context v is X.

Remark 1.2.21. We will abuse notation slightly and denote both forest al-
gebra homomorphism from A® to Sk and the set of labels of roots by roots.

n

Example 1.2.22. Over a finite alphabet A, let >  a; be a formal non-
i=1

commuting sum of elements of A with n € N. Define sets

H:{Zai|neN,ai€A}
i=1

and
n m
V={> a;+0+> bj|nmeN,a,b; € A}.
i—1 j=1
The set S = (H,V) is a subset of the free forest algebra A%, and it is
closed under the basic operations in the free forest algebra.
Assume that {a,b} € A. Then, we show that S = (H,V) is a forest
algebra.
Since S is closed under the basic operations in the free forest algebra
A2, then (V,.,0) and (H,+,0) are monoids, and S satisfies the equational
axioms of forest algebras. It remains to check that the action is faithful. Let

ni mi ng m2
v:Zail—i—D—i—Zbﬁ and w:ZaQQ—I—D—I—Zb;Q

i1=1 J1=1 i2=1 Jo=1

n
be elements of V. Assume that v and w are such that for every h = Z Ck

k=1
in H, the equality v.h = w.h holds. From the definition of action, we have

ni+ntmy n2+n+ma
v.h = g P, and w.h= E Qp,
k=1 k=1

18



together with the equality v.h = w.h, it implies that the equality n1 +mq =
ng + me holds.

If the equality ny = ng holds, then m; = ms. And from the equality
v.h = w.h we get that, for every 7 in {1,...,n;} and j in {1,...,m1}, the
equalities a; = aj and b; = b’ hold. So, we have the equality v = w.

Now assume that the inequality n; < mg holds. Again, since for every
h in H the equality v.h = w.h holds, so we have, for every ¢ in {1,...,n;},
the equality a; = a; holds. And since for every h, the equality

mo n2 ma2
h+ Y b= > a,+h+ > b

J1=1 i9=n1+1 J2=1

holds, so we can choose h = a or h = b. Therefore, we have a;, |, = a and
also aj, ; = b, which is a contradiction.

For the case n1 > no, we just need to exchange the roles of v and w and
again we get to a contradiction. So, we have the equality v = w.

Now, assume that A = {a}, then S = (H,V) is not a forest algebra.
Because v = a + [ and w = [+ a are two different contexts, but for every

n n+1
h = Z a, we have the equality v.h = w.h, since both are equal to Z a.
i=1 k=1

For the case |A| > 2, by the universal property of the free forest algebra
AA | there is a unique forest algebra homomorphism

Y AD 5 S,
such that the following diagram commutes

A—— AA
\ .
S

Remark 1.2.23. Let A = {a,b} and S = (H,V) be the forest algebra and
1) be the forest algebra homomorphism in Example [1.2.22] In view of the
universal property of the free forest algebra the following diagrams commute:

A—2 A8 A—— AR
S N
(AN {ph)? s

where 15 : A — (A\ {b})2 is 12(a) = t1(a) and 12(b) = 0. Let iy : S — A
and iy : (A\ {b})® — A® be the natural injections. Then the mapping
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p: 8 — S with ¢ =1 oigo foi; is a forest algebra homomorphism, since
 is a composition of forest algebra homomorphism:

S aar o pnAr 2aar Vg

©

The set T' = (.5) is a non-empty subset of .S, in which by the forest algebra
homomorphism 1, T" is not a forest subalgebra of S.

The trivial forest algebra K’ = {0,0} is a forest subalgebra of S, but in
view of the forest algebra homomorphism v, the set K = ¢~ 1(K’) is not a
forest subalgebra of S.

1.3 Elementary Properties

Lemma 1.3.1. In a forest algebra S = (H,V), if h1,ha € H then the
following hold

hi=hy & hi+0=hy+0 & O+ h; =0+ hs.

Proof. If hy = ho then the equality h; + h = ho + h holds for all h € H. By
properties of the forest algebra S, this is equivalent to (h; +0)h = (he+0)h
for every h € H, which yields hy + 0 = ho + .

On the other hand, if hy +0 = hy 40, then to get the result it is enough
to drop the O from contexts, which follows from (h; + 0)0 = (he + O)0,
that is h1 = hs.

In a similar way

hi =hy & O+ hy =0+ ho. ]

Lemma 1.3.2. In a forest algebra S = (H,V'), the horizontal monoid H is
finite if and only if the vertical monoid V is finite.

Proof. First we will show that V finite implies H finite. By definition of
forest algebra for every h € H, h+ [ € V and also for h+ 0 € V, h =
(h+0)0 € H, define

Vi={h+0O|heH}CV.

By Lemma [1.3.1] we showed that elements of V; are in one to one corre-
spondence with elements of H. Indeed, the mapping h +— h + [ is injective
on H. Since V is finite so is V; as subset of V. Therefore H is finite.

For the converseE assume that H is finite. Since S is a forest algebra,
because of faithfulness property, every context completely determined by its
actions on all forests. So, the number of elements of V' is bounded by the
number of functions from H to H, which is finite. O

'We thank Prof. Igor Walukiewicz for this observation. Our original argument was
much more involved.
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Corollary 1.3.3. A forest algebra S = (H,V) is finite if and only if H 1is
finite. O

For a forest algebra S = (H,V), the following mapping is the action of
the contexts on the left of the forest 0.

0:V—H
v — v0

Definition 1.3.4. A subset K of a forest algebra S = (H,V) is called an
inverse zero action subset if, for every context v, v € K if and only if v0 € K.

Definition 1.3.5. Let h be a forest and v be a context in the free forest
algebra A®. We say that h is a connected forest or a tree if we cannot write h
as a summation of two non-trivial forests. Also we say that v is a connected
context if we cannot write v as a summation of a context and a non-trivial
forest and vice versa.

Note that 0 and O are respectively a connected forest and a connected
context.

Lemma 1.3.6. Let hy =t1 + -+ t, and ho = s1 + -+ - + S, be sums of
non-trivial trees in the free forest algebra A®. Then hi = hs if and only if
m =n and for every i = 1,...,n the equality s; = t; holds.

Proof. The reverse implication is easy, we just need to sum equal trees.
Now, we show the direct implication. Recall that elements of the hor-
izontal set are finite unranked ordered trees and forests and respectively
ty +---+t, and s; + - -+ + s, are the formal expressions for putting each
tree t; on the right side of the tree ¢;_1 for ¢ = 2,3,...,n and respectively
putting each tree s; on the right side of the tree s;_1 for j = 2,3,...,m. The
equality hi = ho, since they are ordered forests, implies the componentwise
equality which is the equality ¢; = s; for all ¢ and the equality n =m. [

Recall that a context v in the free forest algebra A® is a forest in which
exactly one leaf is the [J. Hence v can be written uniquely as v =t1+- -+,
as a sum of non-trivial trees over the alphabet A U {0}, in which exactly
one t; has the leaf [J; we denote by C(v) this tree ¢;. So, every context v
of the free forest algebra is uniquely of the form H; + C(v) + Hs where H;
and Hj are forests and C'(v) is a tree over AU {OJ}.

Lemma 1.3.7. Let v1 = H; + C(v1) + H2 and va = S1 + C(v2) + S be
contexts in the free forest algebra A®. Then vy = vy if and only if the
equalities Hy = S1, Hy = Sz, and C(v1) = C(v2) hold. O

Lemma 1.3.8. In the free forest algebra A, let a1 and as be elements of A.
Then the contexts a1d and as are equal if and only if the equality a1 = a9
holds.
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Proof. The direct implication is obtained by acting on the forest 0. The
reverse implication comes from the fact that, for every forest h, the equality
alh = agh holds. OJ

For the free forest algebra A2, every context v has a factorization of the

form:
o=TIw

€N
where, for all k € N,

v; = a;1 for i =2k
vi:hi71+|:|—|-hi72 for i=2k+1

with forests h;; and h;2 in HA and a; € AU {0}, for a; = 0 let 00 = [J,
such that if, for a positive integer k, ag; = 0, then for all j > 2k, v; = [.
We show that this factorization is unique by iteration on the number of
nodes of C(v). There are forests h; and hy and a context C(v) such that
v =hy 4+ C(v) + hy. If C(v) = 0, then result is immediate by Lemma
since we have (hy + O + ha) as the factorization of v. Now, consider the
case C(v) # O, then C(v) = alv; and the product of (hy + O+ ha)ald by
the factorization of v; will give the result, uniqueness of h; and hs is from
Lemma [I.3.7 and the uniqueness of alJ is from Lemma [1.3.7] together with
the forest algebra homomorphism roots.

Definition 1.3.9. Let s and t be elements of a forest algebra S. We say
that ¢ is a scattered divisor of s and denote it by ¢ |s s, when ¢ has a
decomposition of the form ¢ ...%¢, and s has a decomposition of one of the
following forms:

U1t1UQt2 e untn or U1t1UQt2 e untnunH.

Note that, for some i’s we may have u; = [.
We say that t is a divisor of s, if s has one of the following decomposi-
tions:
uitus or wupt.

In this case, we write ¢ | s.

Remark 1.3.10. Let h be a forest and v be a context of the free forest algebra
A2, Let n be the maximum integer for which a; ... a, |s h with a; € A for
alli e {1,...,n}, ie:

n=max{m|ai...am |sh,a; € A(i=1,...,m)}.

In a similar way, let d be the maximum integer for which a; ...aq |s v0 with
a; € Aforallie{1,...,d}.
We claim that depth(h) = n and depth(v) = d.
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First, for a forest h in the free forest algebra A®, we have h = hi+- - -+hy,
a sum of non-trivial connected forests. By Remark [1.2.18] there is a positive
integer 7, such that depth(h) = depth(h;). As h; is a non-trivial connected
forest, then there is an element a; € A and a forest h', such that h; =
a10(ht'), again by Remark we have

depth(h) = depth(h;) = depth(a;0(h')) = 1 + depth(h?).
Iterate the same argument for h'. Since #nodes(h) is finite and

#Nodes(h) > #Nodes(hl)a

there is a sequence of elements ay,...,a; in A such that depth(h) = k and
aj ...ay |s h. We show that k is the maximum integer for which a; ...ay |s h
witha; € Aforalli € {1,...,k}. Assume that n > kand b; ...b, |s h where,
foralli € {1,...,n}, b; € A. By applying the forest algebra homomorphism
depth, we have depth(h) > n, which is a contradiction. This establishes the
claim depth(h) = n. By Remark we have depth(v) = depth(v * 0),
then the claim depth(v) = d, is a consequence of depth(v *0) = d.

Definition 1.3.11. Let S be a forest algebra. We say that an element x of S
is a subterm of an element y of S, if there exists an n-ary operation f, which
is a composition of basic operations, and there are elements ¢1,...,%,_1 in
S such that f(x,t1,...,th—1) =y.

Lemma 1.3.12. Let A be a finite alphabet. For elements x1 and x in the
free forest algebra A2, if x1 is a subterm of x then HFNodes(T1) < #Nodes ().

Proof. By definition of a subterm, there is an n-ary operation f, and there
are elements t1,...,t,—1 such that f(z1,t1,...,thn—1) = z. So, we have

#Nodes(f(xla tiy... 7tn71)) = #Nodes(l‘)'

Since #nodes 18 a forest algebra homomorphism then we have

#Nodes (ZL‘) = #Nodes (131) + #Nodes (tl) +-- 4+ #Nodes (tnfl)’
which implies the result. O

Lemma 1.3.13. Let A be a finite alphabet. For an element x in the free
forest algebra A®, #Nodes(z) = 0 if and only if x is a trivial element.

Proof. If = is a trivial element, then #nodes(z) = 0. Now, assume that
#Nodes(z) = 0 but z is a non-trivial element, then there is an element dJ,
which is a subterm of z. By Lemma we have 1 = #Nodes(d) < 0,
which is a contradiction. ]
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Chapter 2

Syntactic Congruence and
Pseudovarieties

An important ingredient in our profinite approach to the study of the pseu-
dovariety BSS is the syntactic congruence of a certain subset of a forest
algebra, which we introduce in this chapter. We also consider the notion of
a pseudovariety of finite forest algebras.

2.1 The Relation g

Let S = (H, V) be a forest algebra and K a subset of S. We take H' = KNH
and V' = KNV. We may define on S a relation « = (o, o), the so-called
syntactic congruence of K, as follows:

e for hi,he € H, hy ok ho if for all t,w,r € V:
I. thy € K < thsy € K
IL. t(rhy +w) € K < t(rha +w) € K;
III. t(w+rhy) € K <= t(w+rh) € K.

o for u,v € V, uol vif forall t,weV and h € H:

1. tuh ok tuh;
II. tuw € K <— tvw € K.

The relation « g is defined only over elements of the same type, so for u € H
and v € V and vice versa, they are not related, which we indicate by writing

U AR .
It is easy to check that ox and o are equivalence relations.

Lemma 2.1.1. For a forest algebra S and a subset K of S, the equivalence
relations o and o' are congruences with respect to the basic operations of

S.
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Proof. See Appendix [A] Section O

Lemma [2.1.1] guarantees that the quotient of the forest algebra S with
respect to equivalence « g is well defined. Note that the equational axioms
of forest algebras are preserved by taking quotients. If the quotient satisfies
the faithfulness property, then it is a forest algebra.

Proposition 2.1.2. Let S = (Hg, Vg) be a forest algebra and let K be either
a subset of Hg or an inverse zero action subset of S, see Definition[1.3./].
Then the quotient S/ is a forest algebra.

Proof. We show that, if uh ox vh for every h € H then u o} v. Since
uh ox vh then by definition we have tuh ox tvh for every t € V. So, in
order to show that u o v we just need to show that for every ¢t and w in V'
the following holds:

tuw € K < tvw € K.

Assume that tuw € K and K is an inverse zero action subset of S. Then
we have tuw0 € K. As tuw0 ox tvw0, it follows that tvw0 € K. Again
since K is an inverse zero action subset of S, we deduce that tvw € K. This
shows that

tuw € K = tvw € K,

and the converse is obtained by interchanging the roles of v and v.
Now, assume that K is a subset of Hg. Then the following holds:

tuw € K <— tvw € K,
due to the fact that K N Vg = (. O

In the following definition we assume that K is a subset of a forest
algebra S such that the quotient S/« is a forest algebra.

Definition 2.1.3. The syntactic forest algebra for K is the quotient of
S with respect to the equivalence v, where the horizontal semigroup Hg
consists of equivalence classes o of forests in S, while the vertical semigroup
Vi consists of equivalence classes o of contexts in S.

The syntactic homomorphism

oK = (")/K,&K) S — S/V\K
assigns to every element of S its equivalence class in (Hg, Vi ).

Let K be a subset of S such that the quotient S/~ is a forest algebra,
then the set K is saturated by the congruence g, i.e. u g v and u € K
implies v € K. This means that ol ax (K) = K.

Proposition 2.1.4. The syntactic congruence of K is the largest one that
saturates K.
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Proof. We show that, if o« is a congruence over S and K is a union of classes
of &, then s o ¢ implies s « g t. Let a and b be elements of Hg, and let
t,r,w € Vg; since a o b and o is a congruence, then the relations ta o tb,
t(ra +w) x t(rb + w) and t(w + ra) < t(w + rb) hold. However, K is a
union of classes of o, therefore the elements in each of the pairs ta and tb,
t(ra + w) and t(rb + w), and t(w + ra) and t(w + rb) are either both in K
or both outside K. This is true for all £,r,w € Vg, thus a ok b.

Now, let a and b be elements of Vg, and let t,r,w € Vg and h € Hg; since
a x b and o is a congruence, then the relations tah o tbh, t(rah + w)
t(rbh + w), t(w + rah) < t(w + rbh), and taw o tbw hold. However, K
is a union of classes of o, therefore each pair tah and tbh, t(rah + w) and
t(rbh + w), t(w + rah) and t(w + rbh), and taw and tbw has either both
elements in K or both outside K. This is true for all t,7,w € Vg and h € Hg,
thus a o’ b. O

For L ¢ H”, Bojanczyk and Walukiewicz in [9], defined an equivalence
relation ~; over the free forest algebra as follows:

hy ~p he; Yo e VA vhy € L vhy€L

vy ~p vy Yhe HY , vuhe L < vh el

Then they showed that ~, is a congruence relation. They defined the syntac-
tic forest algebra over a forest language L, which they denote it by A2/~

Lemma 2.1.5. For a forest language L C H? let K be the inverse zero
action subset of A® where K N HA = L. Then, the congruence relation ~p,
coincides with the congruence relation .

Proof. First, we show that vy ~ vy implies v g v9 for contexts vi, vy €
VA, By the way the equivalence relation ~p, is defined and since ~, is a
congruence relation, then for every h € H4 and every u € V4, we have

uvrh € L & uvsh € L.

Now, assume that there exist u,w € VA such that uvyw ¢ Vi, but uvew € Vp,
then by definition of inverse zero action subset uwv;w0 ¢ L and uvew0 € L.
Let h = w0, then wvih ¢ L and uvoh € L. Which is in contradiction with
the assumption.

Conversely, that v; v g vo implies v ~p, v9 is immediate from the defi-
nition of .

Similarly, for forests hi, hg € HA, hi v ho implies hy ~r, ho.

Finally, we show that h; ~p hs implies hy v g ho. By definition of the
equivalence relation ~y and since ~, is a congruence relation, then for every
v e VA, we have

vhy € L <= vhy € L.
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Now, assume that there exist u, v and w in V4 such that u(vh; + w) ¢
K but u(vhy + w) € K, then by definition of inverse zero action subset
u(vhy +w)0 ¢ L and u(vhe + w)0 € L. Let v/ = u(v + w0), then v'hy ¢ L
and v'hy € L, which is in contradiction with the assumption. Similarly, we
can show that for all contexts u, v and w in V4, the following holds:

u(w +vhy) € K <= u(w+ vhg) € K. O

The following examples show that there are subsets K of A® such that
A® [~ is a forest algebra even though K is neither a subset of H4 nor an
inverse zero action subset of A®.

Example 2.1.6. Over a finite alphabet A, let S be the free forest algebra
A? = (HA,V4) and K be the set of non-trivial elements of the form

n m
Zai+D—|—ij with n,m € N,a;,b; € A.
i=1 j=1

It is easy to see that the quotient S/~ k = (Hg, Vi) is a forest algebra and
Hg = {{0}, K %0, H*\ (K 0)},
Vi = {0}, K, VAN K

Example 2.1.7. Over a finite alphabet A, let S be the free forest algebra
AA = (HA,VA), and K = (H,V) with H = V %0 and V is the set of all
elements of the form

n
H%’D with n>1 and a; € A.
i=1

Let W be the set of elements of one of the forms

v.(0+4+h) or w.(h+0) with veVu{O} and he H.

Then by easy calculations we can show that the quotient S/ is a forest
algebra and

Hyg = {{0},H,H*\ H},
Vic = {OL, V. W, VAN (VU W)}
Lemma [2.1.5) imply that we can adapt the results concerning the con-
gruence relation ~ defined in [9], to the results with congruence relation

k. The congruence relation v~ is defined specially for proof of the analog
of Hunter’s Lemma, which is shown in the next chapter.
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2.2 On Pseudovarieties

Definition 2.2.1. A nonempty class V of finite forest algebras is called a
pseudovariety if the following conditions hold:

(i) if S € V and B is a forest subalgebra of S, then B € V;

(ii) if S € V and S — B is an onto forest algebra homomorphism, then
BeV;

(iii) V is closed under finite direct products.

We denote by F the pseudovariety of all finite forest algebras. Pseudova-
rieties are used in the next chapter, specially when we defined a metric on
the free forest algebra.

Let (Hp, V1) be the syntactic forest algebra of a forest language L.

Definition 2.2.2. We say that a forest language L C H4 is recognized by a
forest algebra homomorphism ¢ : A® — S into a forest algebra S = (Hg, V)
if there exists a subset P C Hg such that L = ¢~ !P or, equivalently, if
L=y L.

For a forest algebra S, we say that a subset K of S is V-recognizable if

38'eV, Fp:8—=85: K= pK).

By Proposition the syntactic forest algebra of the forest language
L is the smallest forest algebra which recognizes L. Indeed for a subset K of
the free forest algebra A® such that the quotient A%/« is a forest algebra
the syntactic homomorphism ag recognizes K, and if a : A% — (H,V)
is any other forest algebra homomorphism recognizing K, then a factors
through «; that is, there is a forest algebra homomorphism g : (H,V) —
(H/ok,V/o) such that fa = ak.

For a forest algebra .S, a subset K of S is called recognizable if it is
F-recognizable.

Bojanczyk, Straubing and Walukiewicz established in 2007 a version of
Filenberg’s correspondence theorem for forest algebras{ﬂ

Definition 2.2.3. Let V be a pseudovariety of forest algebras. For every
finite alphabet A define

V(A)={L C HY| (H,,V;) e V}.
We call V the variety of forest languages associated to V, and write

V = V.

!Personal communication by Mikolaj Bojanczyk.
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Walukiewicz et al. in [7], showed that the mapping V. — V is one to one.
And also Walukiewicz et.al. in [7] showed that the following theorem holds.

Theorem 2.2.4. Let V be an operator assigning to each finite alphabet A
a family V(A) of A-languages. Then V is a variety of languages if and only
if the following conditions hold:

i.1 if L € V(A), then HA\ L € V(A);
.2 if L1, Ly € V(A), then L1 N Ly € V(A);
i.3 if L € V(A) and v € VA, then the set
v L ={we H |vw e L}
is in V(A);

i.4 if f : A® — B is a forest algebra homomorphism and if L € V(B),
then Lf~! € V(A).

We note that conditions and[i.9 jointly assert that V(A) is closed under
boolean operations. ]

Let t be an element of the free forest algebra A®. A piece of t is obtained
by removing nodes from ¢. A forest language L over A is called piecewise
testable if there exists n > 0 such that membership of ¢ in L is determined
by the set of pieces of t of size n or less. The size of a piece is the size of the
forest, i.e. the number of nodes [6].

The pseudovariety BSS of finite forest algebras is generated by all syn-
tactic forest algebras of piecewise testable forest languages.

2.2.1 Connection to a Pseudovariety of Finite Monoids

Let W be a pseudovariety of finite monoids. One can define a pseudovariety
of finite forest algebras HW consisting of all finite forest algebras whose
horizontal monoids are in W called the pseudovariety of horizontally-W
forest algebras. Also we can define a pseudovariety of finite forest algebras
VW which consisting of all finite forest algebras whose vertical monoids are
in W we call it the pseudovariety of vertically-W forest algebras. The pseu-
dovariety of all finite forest algebras whose horizontal and vertical monoids
are in W is called the pseudovariety of fully-W forest algebras and denoted
FW.

Recall that, for every forest algebra S = (H,V), Lemma shows
that the mapping h +— h 4 O is injective on H, that is an embedding of
the additive monoid H in the multiplicative monoid V. This implies the
following result.

Lemma 2.2.5. We have VW C HW. O
Corollary 2.2.6. The pseudovariety of vertically-W  forest algebras and of
fully-W  forest algebras coincide (VW = FW ). O
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2.3 Conclusions

We introduced syntactic forest algebras of a subset of a forest algebra which
is a more natural extension of the well-known syntactic congruence for
monoids. By Lemma [2.1.5] one can easily translate results concerning ~r,
into results concerning v g. Our aim in considering the new congruence is
to prove the analog of Hunter’s Lemma which is shown in the next
chapter. Pseudovarieties are introduced as a class of finite forest algebras
that is closed under taking subalgebras, onto homomorphic images and finite
direct products. Pseudovarieties are important when we define a metric on
the free forest algebra. We recall the theorem by Walukiewicz et.al. in [7],
which gives a one to one correspondence between a pseudovariety of forest
algebras and a variety of forest languages. As Salehi [27] puts it, most of
the interesting classes of algebraic structures are varieties, and similarly as
Walukiewicz et al. [7] put it, most of the interesting families of tree or string
languages studied in the literature turn out to be varieties of some kind.
The aforementioned variety theorem connects as a one-to-one correspon-
dence these interesting families to each other. For a variety of languages
there exists a characterization in terms of the structure of the syntactic for-
est algebra. Theorem says that such a characterization exists, but it
will not give any information about the algebraic structure.

Also many classes of languages fail to be a variety. But we may still have
a characterization in terms of the syntactic homomorphism. As an example
of such a case, for each finite alphabet A consider the family V(A) of A-
languages consisting only of the forest language H of Example Then
Y is not a variety because it does not satisfy but we can still characterize
it in terms of the syntactic homomorphisms of these languages, see [7]E|

By Lemma for a pseudovariety W of finite monoids, we have
VW C HW.

*We did this individually but as it states in [7] is more convenient.

30



Chapter 3

Metric Forest Algebras

A profinite forest algebra is a projective limit of finite forest algebras (which
are viewed as discrete topological forest algebras). Alternatively, a profinite
forest algebra may be defined as a compact forest algebra which, as a topo-
logical forest algebra, is residually finite. In particular, observe that a closed
forest subalgebra of a profinite forest algebra is necessarily profinite.

For a pseudovariety of finite forest algebras V, a profinite forest algebra
is said to be pro-V if it is residually in V. For each finite set A, there exists a
free pro-V forest algebra on A, which is denoted Q4V. Up to forest algebra
isomorphism, it depends only on the cardinality |A| and not on the set A
itself so that we may sometimes write ﬁ‘ 4|V instead of Q4V. The forest
algebra 24V may be constructed by completion of the free forest algebra
A® with respect to a pseudo-ultrametric naturally associated with V.

For a pseudovariety of finite forest algebras V, we show that the com-
pletion of the free forest algebra A® with respect to the pseudo-ultrametric
associated with V exists and is a forest algebra.

In this chapter we adapt some of the results on metric semigroups in [2]
to the context of forest algebras.

3.1 Metrics Associated with a Pseudovariety of
Forest Algebras

For two elements u, v € A® and a forest algebra B if for every forest algebra

homomorphism
0:A* 5 B

the equality ¢(u) = ¢(v) holds, then we say that B satisfies the identity
u = v and we write B E u = v. For a pseudovariety of finite forest algebras
V, define:

r(u,v) =min{|B|| B€V and BF u=v}
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and
d(u,v) = 9~ (uv)

where we take min ) = co and 27°° = 0.
Since a finite forest algebra B has at least the identity elements [J and
0, for all u,v € A® we have 7(u,v) > 2 or, equivalently, d(u,v) < 272
Note that in the above definition every forest algebra homomorphism
¢ : A® — B can be assumed to be onto.

Example 3.1.1. For every u € H” and v € V4, d(u,v) = 272. Indeed, for
every forest algebra homomorphism ¢ : A% — TFA, we have p(u) # p(v).
This means that r(u,v) = 2, whence d(u,v) = 272.

Definition 3.1.2. A function

d: X x X - R2Y

is said to be a pseudo-ultrametric on the set X if the following properties
hold for all u,v,w € X:

1. d(u,u) = 0;
2. d(u,v) = d(v,u);
3. d(u,w) < max{d(u,v),d(v,w)}.

We then also say that X is a pseudo-ultrametric space.
If instead of Condition 3, the following weaker condition holds

4. d(u,w) < d(u,v) + d(v,w) (triangle inequality),

then d is said to be a pseudo-metric on X, and X is said to be a pseudo-
melric space.
If the following condition holds:

5. d(u,v) = 0 implies u = v,
then we drop the prefix “pseudo”.

Proposition 3.1.3. Let 'V be a pseudovariety of finite forest algebras. The
function d is a pseudo-ultrametric on A®.

Proof. Let u,v,w € A®. TFor every forest algebra homomorphism ¢ :
A® — B and B € V, u = v implies ¢(u) = ¢(v) so

r(u,u) =min{|B|| B€V and J: AX — B Y(u) #Y(u)}

= min ) = oo,
= d(u,u) =27 =0.
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For every forest algebra homomorphism ¢ : A — B and B € V, the
inequalities p(u) # p(v) and ¢(v) # p(u) are equivalent, so
r(u,v) =min{|B|| B€V and ) : A® — B : (u) # Y(v)}
=min{|B|| BEV and I : A% — B : ¥(v) # ¢(u)}

=r(v,u)

= d(u,v) = 2770V = 2770 — [y u).

For showing d(u,w) < max {d(u,v), d(v,w)}, it is enough to show that
the following inequality holds.

r(u,w) > min {r(u,v), r(v,w)} (3.1)

If r(u,w) = oo then the inequality , is clear. Now suppose that n =
r(u,w) < oo and r(u,w) # min{r(u,v),r(v,w)}. Thus, r(u,v) > n and
r(v,w) > n. This means that for every B € V with |B| < n and for
every forest algebra homomorphism ¢ : A% — B, ¢(u) = ¢(v) by the first
of the preceding inequalities and ¢(v) = p(w) by the second one. Hence
o(u) = p(w), which contradicts the equality r(u,w) = n.

Properties (1)—(4) hold, so d is a pseudo-ultrametric and A% is a pseudo-
ultrametric space. ]

Property (5) may not hold for d. Let hy, hy € H* be two distinct forests
and let V be the pseudovariety of trivial forest algebras. Then, for every
forest algebra homomorphism ¢ : A — TF.A we have ¢(h1) = p(hs); so
d(hl, hg) =0 but hy # he.

Definition 3.1.4. A function f : (X,dx) — (Y, dy) between two pseudo-
metric spaces is said to be uniformly continuous if the following condition
holds:

Ve>0 36 >0 Vap,xe € X, (dx(z1,22) < d = dy(f(x1), f(x2)) <€).

Proposition 3.1.5. The basic operations are contractive:
d(O(u,w),O0(v,2)) < max{d(u,v),d(w, z)} .

In particular, the basic operations on A® are uniformly continuous.

Proof. By definition of the metric, the claim is equivalent to showing that
r(O(u, ), 0(v, 2)) = min {r(u,v), r(w, )} .

If either u and v, or w and z do not have the same type, then r(u,v) = 2
or r(w,z) = 2 and in both cases min {r(u,v),r(w,z)} = 2 and the above
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inequality becomes 2 < r(O(u,w),O(v, z)), which is always true. We can
therefore assume that both pairs of elements u,v and w, z have the same
type. Let n; = r(u,v) and ny = r(w, z) and let n = min{ny,ny}. Then we
have:

VBEV, |Bl<n Ve¢: A>— B, {zgz)):_s;((?) (3.2)

From Equation (3.2)), it follows directly that for every forest algebra homo-
morphism ¢ : A% — B,

O(p(u), p(w)) = O(p(v), 9(2))

which implies the equality ¢(O(u,w)) = ¢(O(v,z)). We have thus shown
that the basic operations are contractive. Hence, they are uniformly contin-
uous. O

By Lemma and the fact that, for v1,v9 € V', we have
v =v9 = v10= UQO,
we can easily see that:

Lemma 3.1.6. For h{,hy € HA and v1,V9 € VA, we have the following
facts:

1. r(h1,he) = r(h1 + 0O, hy + 0O);
2. T‘(hl, hg) = T(D + h1, O+ hg);
3. r(v1,v2) < 7(v10,v20). O

Example 3.1.7. Let A be a finite alphabet and v1 = a4+ and vo = ald in
VA, In view of the forest algebra homomorphism roots in Example [1.2.19
and since the forest algebra Sg is finite, we have

roots(alJ) = ({a},1) and roots(a+ O) = ({a},0),

which implies that there exists n € N such that (v, v2) =n < 0.
On the other hand, v1 # vy but v10 = v20, so 7(v10,v20) = 0o > n. So
we may have strict inequality in Lemma [3.1.6]

Definition 3.1.8. For a (pseudo-ultra)metric d on a set X, u € X, and a
positive real number €, consider the open ball

Be(u) ={v e X | d(u,v) < e€}.

The point u is the center and € is the radius of the ball.
A metric space that can be covered by a finite number of balls of any
given positive radius is said to be totally bounded.
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Proposition 3.1.9. Let 'V be a pseudovariety of finite forest algebras. The
pseudo-ultrametric space (AA, d) is totally bounded.

Proof. For a given € > 0, there exists n € N such that 27" < e. Up to
forest algebra isomorphism, there are only finitely many forest algebras of
cardinality at most n. For such a forest algebra T; = (H;, V;) in V, consider
all possible (there are only finitely many) forest algebra homomorphisms
Vi AR 5 Ty and let T = HTZ and
i3
o: A —T
w = ((pivj(w))i,j

where T € V.
For all t € T, choose u; € A, such that ¢(u;) = t. For k € A®, if
t = ¢(k) then ¢(k) = ¢(u) which implies k € B(ut). Thus

AA - U Be(ut).

teT
Hence, A® is totally bounded, since T = (H, V) is finite. O

Definition 3.1.10. A sequence {uy}, in a (pseudo-ultra)metric space X is
said to be a Cauchy sequence, if

Ve>0 AN (m,n> N = d(um,u,) <e€).

Note that every convergent sequence is a Cauchy sequence. The space
X is complete if every Cauchy sequence in X converges in X.

Recall that, if u,u € A® have different types, then d(u,w) = 272. This
yields immediately the following result;

Lemma 3.1.11. A Cauchy sequence of elements of A2, cannot have an
infinite number of elements of both H* and V4. O

Definition 3.1.12. A (pseudo-)metric forest algebra is a forest algebra en-
dowed with a pseudo-metric d and that the basic operations are uniformly
continuous.

A metric forest algebra B is called complete if every Cauchy sequence in
B converges in B.

Remark 3.1.13. Note that, by [22, Theorem 1.15], every metric space has a
completion.

By Lemma it is natural to consider the completion of A2, de-
noted 04V, as the union of the completions of H 4 and V4 which denoted
respectively Oy H A and Cy VA,

Since operations on A® are uniformly continuous, they do extend to
uniformly continuous operations on [4V. Hence, 04V satisfies naturally
the equational axioms of forest algebras.
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Proposition 3.1.14. There exists a complete metric forest algebra EAV
and a uniformly continuous forest algebra homomorphism ¢ : A® — L4V
with the following universal property: for every uniformly continuous forest
algebra homomorphism f : A® — B into a complete metric forest algebra
B, there exists a unique uniformly continuous forest algebra homomorphism

f CAV—>BsuchthatfoL—f

AA %EAV

N 7 ,.\

B Cave

Moreover, if n : A® — D is another uniformly continuous forest algebra
homomorphism into a complete metric forest algebra with the above univer-
sal property, then the induced unique uniformly continuous forest algebra
homomorphisms i : CAV — D and 7 : D — 0oV are mutually inverse.

Proof. By [32, Theorem 24.4], the completion exists and +(A?) is dense in
C4V. And we have the following universal property of the completion Cav
of A® as a metric space.

For every uniformly continuous forest algebra homomorphism f : A% —
B of A® into a complete metric forest algebra B, there exists a unique lifting
of f to a uniformly continuous map f : 04V — B making the diagram

AA *L> EAV
7 (3.3)

~

B

commute. Up to forest algebra isomorphism, the completion of A% is the
unique metric forest algebra satisfying this property. Therefore we just need
to check that ¢ and f are forest algebra homomorphisms.

Note that for every element x in the completion [ 4V there is a sequence
{x,}n of elements of A2 such that lim¢(z,) = .

We claim that the mapping ¢ respects basic operations of forest algebra.
For every x,y € 04V, since t(A?) is dense in [ 4V, there are sequences {z,, },,
and {yn }n of elements of A® such that lim¢(z,,) = 2 and lim (y,) = y. By
using the fact that ¢ and basic operations are uniformly continuous, we have

lm O(¢(zy), t(yn)) = O(lim ¢(xy,),lim ¢(y,,)) = O(z,y)

and
lim ¢(O(2n, yn)) = t(im O(zy, yn)) = O(z,y).
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Therefore the equality lim t(O(zy,, yp)) = O(lim ¢(zy,), lim ¢(y,)) holds. So ¢
respects basic operations of forest algebra.

We show that C AV is a forest algebra. Consider elements u,v € CVVA
be such that for every element h € CyH 4 the equality uh = vh holds.
As u,v € by V4 and for all h with h € by H4, consider sequences {u, }n,
{vn}n and {hy,}n, sequences of elements of A%, such that u = lim(u,),
v = lim«(vy,) and h = lim ¢(hy,). Since the equality uh = vh holds, we have
lim ¢(uy)e(hy) = lime(vy)e(hy,) which implies the equality lim e(uphy,) =
lim ¢(vyphy). We show that for every € > 0, there is a positive integer N such
that for all n > N the inequality d(uy,v,) < ¢ holds.

The equality us = vs holds for all s in H4, which implies the equality
lim ¢(uy,s) = lim ¢(vy,s), that is for every positive integer m there is a positive
integer M such that for all n > M the inequality d(u,s,v,s) < 2~™ holds.
By definition of d, for every forest algebra B in V such that |B| < m and
every forest algebra homomorphism

¢:A* 5 B
the equality ¢(uns) = ¢(v,s) holds. Since B is a forest algebra and

p(un)p(s) = p(vn)p(s),

we have ¢(u,) = ¢(v,) which implies that d(uy,,v,) < 27™. Hence, the
equality v = v holds.

By assumption, since f is a forest algebra homomorphism, for all ele-
ments z,y € A® and basic operation O(z,y), the following equality holds

f(O(x,y)) = O(f(2), [(y))-

Now, we will show that f respects basic operations of forest algebras.
For z,y € 04V, if O(z,y) be a basic operation in the forest algebra, then
by using the fact that f and basic operations are uniformly continuous, f is
a forest algebra homomorphism and Diagram , commutes, we have the
following:

f(O(x,y)) = f(lim (O
= lim f(.(O
= lim f(O(zn, yn))
= Lim O(f(xn), f(yn))
= O(lim f(zn), lim f(yn))

Tn, yn)))

(
(%n,yn)))

lim f(e(2n)), lim £ (e(yn)))
fllim (), flime(yn)))
f(@), f()- M

O(
O(
(
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Recall that a Hausdorff space is a topological space in which distinct
points have disjoint neighbourhoods. The Hausdorff completion of a pseudo-
metric space X is a complete metric space X’ together with a uniformly
continuous map tx : X — X’ such that tx(X) is dense in X', and for every
uniformly continuous map f from X to a complete metric space X" there
is a unique uniformly continuous map ¢ : X’ — X" such that f = govx. In
view of [31, Theorem 19.36], such a completion always exists. The Hausdorff
completion of the ultrametric space (A%, d), is denoted by Q4 V. In view of
the proof of Proposition Q4V is a forest algebra.

Definition 3.1.15. A subset of a metric space is clopen if it is both closed
and open.

Definition 3.1.16. A metric space is said to be zero-dimensional if every
open set is a union of clopen subsets.

Definition 3.1.17. A topological forest algebra is a forest algebra which is
also a topological space, and whose operations are uniformly continuous.

Recall that a metric space is compact if every sequence admits some con-
vergent subsequence. Equivalently, every covering by open subsets contains
a finite covering.

Definition 3.1.18. A compact forest algebra is a topological forest algebra
whose topology is compact and Hausdorff. Finite forest algebras are viewed
as topological forest algebras under the discrete topology.

Note that a metric forest algebra S = (Hg, V) is compact if and only if
Hg and Vg are compact.

Lemma 3.1.19. Let S = (H,V) be an arbitrary metric forest algebra with
uniformly continuous basic operations, then H is compact if and only if V
18 compact.

Proof. (=) Assume that H is compact. Since the basic operations are uni-
formly continuous, the following mapping is onto uniformly continuous:

(0):V—-H
v — 00

Hence, V = (_0)"!(H) is compact, as it is the inverse image of the compact
set H.
(<) Assume that V' is compact. Let H C U B, be an open covering

acl’
for H. Since the mapping (-0) is onto uniformly continuous,

Ve Jwo)(Ba)

ael
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is an open covering for V. Since, by assumption, V' is compact, it admits a
finite open covering

VC LRJLO)*(BZ-).
1=1

so, we have

n

Hence, as _0 is onto we have H C U B;. ]
i=1

Lemma 3.1.20. Let V be a pseudovariety of finite forest algebras. If B €

V, then every forest algebra homomorphism f : A® — B is uniformly
continuous.

Proof. Suppose that u,v € A® are such that both have the same type with
d(u,v) < 27181, By definition, d(u,v) = 27"(“?) where

r(u,v) =min{|C| | C € V and 3Jg: A% — C : g(u) # g(v)}.
So for d(u,v) < 2718l we have
min{|C||C €V and Jg: 4> — C : g(u) # g(v)} > |B|.

Hence, for every g : A% — B and every € > 0, we have d(g(u), g(v)) =0 <
¢, since g(u) = g(v). Thus, every forest algebra homomorphism f : A% —
B into B € V is uniformly continuous. O

For every uniformly continuous forest algebra homomorphism f : A® —
S, by Proposition [3.1.14] there exists a unique uniformly continuous forest
algebra homomorphism f : 94V — S such that the following diagram
commutes:

AA —L>EAV = ﬁAV

f

S

Let u,v € Q4V and S € V. We write S |= u = v if, for every uniformly
continuous forest algebra homomorphism f : A2 — S, the equality f (u) =
f(v) holds, and we then also say that S satisfies u = v.

For elements u,v € Q4V, the formal equality v = v in Q4V is called a

V -pseudoidentity.
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Proposition 3.1.21. Let u,v € Q4V and S € V. If u = limu, and
v = limwv,, then

(SEFEu=v) < @BN>0 Yn>N, SEu,="uv,). (3.4)

Proof. (=) Suppose that S = v = v. For every uniformly continuous
forest algebra homomorphism f : A% — S, the equality f(u) = f(v)
holds. As we assumed that v = lime(u,) and v = lim(v,), we have
f(lim e(u,)) = f(lime(vy)), whence lim f(i(un)) = lim f(¢(vy)) since f is
uniformly continuous.

Since the equality lim f(c(uy)) = lim f(1(v,)) holds, for every positive
integer m there is a positive integer M such that for all n > M the inequality

d(f(u(un)), f(¢(vn))) < 2™ holds. By definition of d, for every forest algebra
B in V such that |B| < m and every forest algebra homomorphism

¢:A® - B
the equality p(u,) = ¢(v,) holds. Let m > |S|. Indeed, there exists N > 0

such that, for all n > N, f(t(un)) = f(¢(vy)) which is equivalent to f(uy) =
f(vy). Hence, we have S = u, = v,.

(<) Suppose that there exists N > 0 such that, for all n > N, we have
S &= up = v,. So for every uniformly continuous forest algebra homomor-
phism

f:A® — 8§

and for all n > N, the equality f(u,) = f(v,) holds, which yields that
the equality f(un) = f(vn) holds; hence, so does the equality lim f(u,) =
lim f (vp). We assumed that v = limwu, and v = limwv,. Since f is uni-
formly continuous, the equality f(limu,) = f(limv,) holds, and so does the
equality f(u) = f(v). Therefore, we have S = u = v. O

Remark 3.1.22. For elements 2 and y in Q4V consider sequences {x,}, and
{yn}n of elements of A2 such that z = lim¢(z,) and y = lim«(y,), then
d(x,y) = limd(zy,,y,). This implies that for elements 2/ and ¢/ in A%, as
we have «(z') and «(y') are elements of Q4V and constant sequences {z'},
and {y'},, of elements of A® are such that 2’ = lim«(2/) and ¢/ = lim ¢(y/'),
we have d(u(2),u(y)) = limd(2,y') = d(2/, ).

Proposition 3.1.23. For u,v € Q4V, we have d(u,v) = 2 () where
r(u,v) =min{|B|: B€V and B} u=v}.

Proof. For given u,v € Q4V, with u # v, there exists m € N such that
d(u,v) >27™.

Consider {u,}, and {v,}n, sequences of elements of A®, such that u =
lim¢(u,) and v = lim¢(vy,). There is a positive integer N such that, for
every n > N,

d(u,t(uy)) <27™ and d(v,u(v,)) <27™.
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Since d(u,v) > 27", by Remark we have for all n > N, d(up,v,) =
d(e(up), t(vy)) =27,

This shows that, for every B € V with |B| < m, the identity u, = v,
fails for all sufficiently large n, and therefore by Proposition [3.1.21] we have
B~ u=w.

We have thus shown that d(u,v) > 27" implies r(u,v) < m.

To complete the proof, we should show that r(u,v) < m implies d(u, v)
27™. By contraposition, we will show that d(u,v) < 27" implies r(u,v)
m.

For given u,v € Q4V, with u # v, let m € N be such that d(u,v) < 27™.
Such an m exists because we have at least m = 2.

As before, consider sequences {u,}, and {v,}, of elements of A® such
that v = lim¢(u,) and v = lim¢(v,). Then there is a positive integer N
such that for n > N,

=
>

d(u,t(uy)) <27™ and  d(v,e(v,)) < 27™.
Since d(u,v) < 27, by Remark for all n > N,
d(Un, vy) = d(t(un), t(vy)) < 27™.

Hence, for every S € V with |S| < m, there is M € N large enough such
that for all n > M, S = u, = v,. So for every S € V with |S| < m, by
Proposition and Remark S = u = v. Therefore r(u,v) > m.
We have thus established the claim that d(u,v) < 27 implies r(u,v) >
m. 0

Proposition 3.1.24. In a metric space X we have the following:

1. If X is a totally bounded pseudo-ultrametric space, then its completion
1s also totally bounded.

2. If X is a totally bounded complete metric space, then X is compact.
Proof. See [16], Corollary 15.3.6 and Theorem 15.4.1]. O

Lemma 3.1.25. Let K = (H',V’) be an inverse zero action subset of a
compact metric forest algebra S = (H,V). Then H' is a clopen subset of H
if and only if V' is a clopen subset of V.

Proof. Assume that H' is a clopen subset of H. Since the action of the
contexts on the left of the forest 0 is uniformly continuous the set V' = {v €
V | v0 € H'} is clopen.

Now assume that V' is a clopen subset of V. Since V is a compact metric
space, V' is compact. The mapping 0 : V — H is uniformly continuous so
H' = (L0)(V") is compact, whence H' is closed. We just need to show that
H' is open. Since V is compact and V' is open, the complement V’¢ of V'
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in V is closed, whence it is compact. So H” = (_.0)(V'¢) is compact thus
it is closed. By the way that we define H” and H’ and since _0 is an onto
uniformly continuous mapping, it follows that H” is the complement of H’
in H. As H" is closed, we conclude that H' is open. O

Corollary 3.1.26. An inverse zero action subset K = (H', V') of a compact
metric forest algebra S = (H, V') is clopen if and only if H' is clopen. O

Lemma 3.1.27. (Similar to Hunter’s Lemma) Let K be a clopen inverse
zero action subset of a compact and zero-dimensional metric forest algebra
S. Then there is a continuous forest algebra homomorphism ¢ : S — T into
a finite forest algebra T such that K = 1~ o y(K).

Proof. Tt suffices to show that the classes of the syntactic congruence of K
are open. Then there are only finitely many of them since S is a compact
forest algebra. So that S/w~x = (H/ok,V /o)) is a finite forest algebra and
the natural mapping S — S/« is a continuous forest algebra homomor-
phism.

We want to show that, for a sequence {up}, of elements of S which
converge to an element u, all but finitely many terms in the sequence are
wg-equivalent to u. By Lemma it suffices to consider the cases
{u,} C H and {u,} C V.

If {u,} C H then we will show that:

JN such that Vn > N we have u, o u.
And if {u,} C V, then we will show that:
AN such that Vn > N we have u, o u.

In both cases, we argue by contradiction, assuming that there is a subse-
quence consisting of terms which fails the above property. We may as well
assume that so does the original sequence. In other words, we can assume

that {u, }AKu.

Since {uy}n — u, by Lemma we may assume that u, and u have
the same type.

If {u,} C H, then for each n there are t,,r,,w, € V such that at least
one of the following conditions does not hold:

I thu, € K <=t u € K;

II. 1. tp(rpup + wy) € K <= t,(rpu + wy) € K;
2. tp(wp + rpuy) € K <= ty(wy, + rpu) € K.

So there is a subsequence for which the same condition among these three
does not hold. For each n, we denote by P(uy,tn, ™, wy,) the term in the
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left side of the above statement which fails and P(u,t,, m,, wy) the related
one from the right side.
Thus, there exists {n} such that

P(up,, tny, Tng, Wny) € K & Pu,ty,, T, wn,) € K.

Since K is clopen, we may as well assume that P(uy, ,tn,, 7n,, Wn,) € K
and P(u,ty, , ", ,ws,) € K. Since S is compact, we may assume that the
following limits exist in S

limt¢,, =t, limw,, =w, limr, =r
Then we have
P(u,t,w,r) =lm P(uy,, tn,, Wn,, ™) = im P(u, t,, , W, , ;).
Since K is open and we assumed that the sequence

{P(U7 tnk y Wny, s Tnk)}nk

takes it values in the complement of K, we have p(u,t,w,r) ¢ K. And since
the sequence

1P (Unys b Wages Ty ) Y

takes its values in K, we have p(u,t,w,r) € K. So, P(u,t,w,r) must belong
to both K and its complement, which is a contradiction.

If the sequence {u,} is contained in V, then, in a similar way to the
preceding case, the is a positive integer N, large enough, such that for every
n > N we have u, o u.

Hence, «~g-classes are open. [

In view of proof of Lemma [3.1.27] we get the following result.

Corollary 3.1.28. Let K be a clopen inverse zero action subset of a compact
zero-dimensional metric forest algebra S. The following statements hold:

o The classes of the syntactic congruence of K are open;

o S/ is a forest algebra, then since S is compact we can conclude that
S/ K is finite;

e The natural mapping S — S/ is a continuous forest algebra homo-
morphism. ]

Lemma 3.1.29. Let s and t be two distinct forests in a compact and zero-
dimensional forest algebra S = (H,V'). Then, there is a clopen inverse zero
action subset K which separates s and t.

Furthermore, the quotient forest algebra homomorphism i : S — S/
sends s and t to two distinct points.
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Proof. By zero-dimensionality, s and t may be separated by a clopen subset
H' C H in the sense that s lies in H" and ¢ does not. Let V' = {J,cpr Va-
By Lemma [3.1.25] the inverse zero action subset K = (H’, V') is clopen and
it is such that s lies in K and ¢ does not. Since the syntactic congruence
g saturates K, the congruence classes of s and ¢ are distinct, that is the
quotient forest algebra homomorphism ¢ : S — S/« g sends s and ¢ to two
distinct points. O

Theorem 3.1.30. A zero-dimensional and compact metric forest algebra is
restdually finite.

Proof. We show that for any given two distinct points s,t € S, there is
a continuous forest algebra homomorphism p : S — T into a finite forest
algebra T such that p(s) # p(t).

For any given distinct points s,t € S exactly one of the following condi-
tions holds:

1. s and t have different types;
2. s,t € H;

3. s,t € V with s0 # ¢0;

4. s,t € V with s0 = ¢0.

If s and ¢ have different types then there is a continuous forest algebra
homomorphism 7 : S — TFA into the trivial forest algebra 7F.A which
maps forests to 0 and contexts to L. So n(s) # n(t).

For s,t € H by Lemma[3.1.29] there is a clopen inverse zero action subset
K which separates them and i : § — S/« sends s and ¢ to two distinct
points. Hence, to prove that S is residually finite, it suffices to show that
S/« is finite and 7 is continuous, which is the result of Corollary

Now assume that s,t € V with s0 # t0. By Lemma there is a
clopen inverse zero action subset K’ that separates s0 and t0 and 7 : S —
S/~ sends sO and t0 to two distinct points and, therefore, so does with s
and t. Now, Corollary [3.1.28] shows that S/~ is finite and i is continuous.

Finally for s,t € V with s0 = t0. Since s # ¢ and S is a forest algebra,
there is a forest h € H such that sh # th. For every w € V3, we have sw # tw,
because otherwise, swh’ = twh’ for every h' € H; in particular, for A’ = 0
we have sw0 = tw0, which is in contradiction with sh # th. So, for distinct
contexts s and ¢, there is a context w such that sw # tw with sw0 # tw0.
Again, by Lemma there is a clopen inverse zero action subset K’
such that sw0 € K” and tw0 &€ K”. As K" is an inverse zero action subset
of S, we have sw € K” and tw ¢ K”. Since the syntactic congruence ~ g
saturates K", the congruence classes of sw and tw are distinct, that is the
quotient forest algebra homomorphism ¢ : S — S/~ sends sw and tw to
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two distinct points. We have ¢(s) # ¢(t) because, since p(w) € Vg~ ., and
¢ is a forest algebra homomorphism; therefore if ¢(s) = ¢(t) then

p(sw) = p(s)p(w) = p(t)p(w) = p(tw)

which is a contradiction. The result of Corollary [3.1.28 gives that S/~ g
is finite and ¢ is continuous. O

Definition 3.1.31. Fix a set A, and consider the category of A-generated
topological forest algebras whose objects are the mappings A — S into
topological forest algebras whose images generate dense subalgebras, and
whose morphisms 6 : ¢ — ¢, from ¢ : A — S toy : A — T, are given by
continuous forest algebra homomorphisms 6 : S — T such that 8 o ¢ = 9.
Now, consider a projective system in this category, given by a directed set
I of indices, for each i € I an object ¢; : A — S; in our category of A-
generated topological forest algebras and, for each pair ¢,j € I withi > j a
connecting morphism 1; ; : ¢; — @; such that the following conditions hold
for all 4,5,k € I:

e 1);; is the identity morphism on ¢;;
o if i > j >k then ¢ 09 ; = ;-

The projective limit of this projective system is an A-generated topological
forest algebra ® : A — S together with morphisms ®; : & — ; such that for
all 4,7 € I with ¢ > j, 9; j o ®; = ®; and, moreover, the following universal
property holds:

For any A-generated topological forest algebra ¥ : A — T and
morphisms ¥; : ¥ — ; such that for all i,j € I with i > j,
P;j o W; = W, there exists a morphism 6 : ¥ — & such that
D, 00 =, for every i € I.

Fix a set A. Let V be a pseudovariety of finite forest algebras. Assume
that a directed set I of indices, a projective system (.S;);es of A-generated
forest algebras in V, and onto forest algebra homomorphisms ¢; ; : S; — S
for each pair i,7 € I with ¢ > j are given. Consider the subset of the
direct product [];.;S; consisting of all those (s;);cs such that s; € S; and
@i j(si) = sj whenever i > j. Let (s;)ier and (s});er be elements of S and O is
a basic operation such that O(s;;, s;) is defined for some j € I, see Definition
Note that, since the ; ;’s are forest algebra homomorphisms, (s;)icr €
[I;c;r Hs, if and only if there is a j € I such that s; € Hg,. So, O is a
basic operation such that O(s;, s}) is defined for every i € I. We claim that
O((si)ier, (s))ier) = (O(si, 5}))ier is also an element of S. Since ¢; j(s;) = s;
and ¢; j(s}) = sg- whenever ¢ > j and ; ; is a forest algebra homomorphism,
the following equalities hold

©ij(O(s,57)) = O(pij(si), ¢ij(s;) = O(sy, s;)
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Hence, S is a subalgebra of the direct product [[;c; S

Remark 3.1.32. Let s; be an element of an S; with j € I. Since S; is finite
and A-generated, there is an element w in the free forest algebra A2 which
maps to s; under the homomorphism induced by the generating mapping.
Then the image of w in S maps to s; under the j-component projection
S — S;. Hence, there is an element (s;);c of S with the j-component equal
to s;. Therefore, the natural projection S — S; is onto.

We claim that S is a forest algebra. We only need to check the faith-
fulness property of S. Let v = (v;);er and w = (w;);es be elements of Vg
such that for all h = (h;);er in Hg the equality vh = wh holds. Since the
restriction of the natural projection S — S; to the horizontal part is onto,
the equality vh = wh implies that the equality v;h; = w;h; holds for all
h; € Hg, and every ¢ € I. Since §; is a forest algebra, then the equality
v; = w; holds for every i € I. Hence, (v;)icr = (w;)icr. Therefore, S is a
forest algebra.

We claim that the mapping ® : A — S given by ®(a) = (¢;(a))icrs is
such that ®(A) generates a dense subalgebra T of S. We want to find an
approximation (t;);er € T to the element (s;);c; of S such that for every j,
ti; = s;;. Since the system is projective, to find (¢;)ics € T, take k € I such
that & > 41,...,%,. Then by Remark there is an element w € A%
which represents the element s;. This element w then represents an element
(t;)ier of T which is an approximation as required.

Now, assume that T is an A-generated topological forest algebra and
that the forest algebra homomorphisms m; : T — S; are such that for all
i,7 € I with ¢ > j, ¢;; om = mj. Define a mapping ¢ : T" — S with
o(t) = (mi(t))icr- We show that ¢ is a forest algebra homomorphism. For
elements x and y in T the following equalities hold:

p(O(z,y)) = (mi(O(x,y)))ier
= (O(mi(x), mi(y)) ier
(mi(2))ier, (mi(y))ier)

(), o (y))-

Hence, S has the required universal property and therefore it is the projective
limit of the projective system (S;)ier.

o(
o(

Definition 3.1.33. Fix a set A. A profinite forest algebra is defined to be a
projective limit of a projective system of A-generated finite forest algebras.
And for a pseudovariety V of finite forest algebras a pro-V forest algebra is
defined to be a projective limit of a projective system of A-generated finite
forest algebras in V.

Hence, a profinite forest algebra is a pro-F forest algebra.
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Theorem 3.1.34. Let V be a pseudovariety of finite forest algebras and A
be a finite set. An A-generated compact forest algebra S is a pro-V forest
algebra if and only if S is residually in 'V as a topological forest algebra.

Proof. Assuming that S is an A-generated compact pro-V forest algebra,
there are a directed set I of indices, a projective system (S;);e; of A-
generated finite forest algebras in V, and onto continuous forest algebra
homomorphisms ; ; : S; — S for each pair 4, j € I with ¢ > j, such that §
is its projective limit. By the above construction, the projective limit is the
forest subalgebra of the direct product [ [;.; S; consisting of all those (s;)icr
such that s; € S; and ¢; j(s;) = s; whenever ¢ > j. Note that, if (s;);er is in
HHieI s;, then for every i € I, s; € Hg, and similarly for the vertical part.
By construction of the projective limit, we conclude that S is residually in
V.

Conversely, suppose that an A-generated compact forest algebra S is
residually in V. Take a set D that contains all the A-generated elements
of V up to forest algebra isomorphism and consider the set I of all onto
continuous forest algebra homomorphisms ¢ : S — T with T' € D and order
them by letting ¢ > v for another continuous forest algebra homomorphism
1 : S — U if there is a forest algebra homomorphism 6 : T — U such that
0 o ¢ = 1. Note that [ is a directed set: two onto continuous forest algebra
homomorphisms ¢ : S — T and ¢ : S — U induce a continuous forest alge-
bra homomorphism A : S — T x U in which if we replace the direct product
T x U by a member of D isomorphic to the image of A we obtain a member
of I which is above both ¢ and v. We thus obtain a projective system of for-
est algebra homomorphisms between A-generated members of V. Let S’ be
its A-generated projective limit. We claim that S’ and S are isomorphic as
topological forest algebras. The forest algebra homomorphisms ¢ : S — T
in I induce a continuous forest algebra homomorphism ® from S into the
direct product of all the T’s which by construction takes its values in S’
Since S is compact, ¢ is a closed mapping. Since S is residually in V, & is
injective.

It remains to show that ® is onto. Given s’ = (t,)eer in S’, for each
¢ € I the closed set ¢~!(t,) is nonempty. Note that, if s € Hgs, then
for every ¢ € I, t, € Hy(s) and similarly for the vertical part. The fact
that I is directed and the given family belongs to S’ implies that any finite
intersection of such closed subsets is still nonempty. By compactness of .S,
we deduce that there is some s € ()¢, ¢ !(t,) and for such s we have
®(s) = s'. Hence, @ is indeed onto. O

Corollary 3.1.35. The forest algebra QaV is a pro-V forest algebra.

Proof. Theorem [3.1.30] together with Theorem imply that the zero-
dimensional and compact metric forest algebras are profinite. Since by
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Proposition Q4V is an A-generated free forest algebra as a topo-
logical forest algebra.

We just need to show that Q4V is zero-dimensional. Let = € Hg v 1t
suffices to show that the open ball B.(x) with ¢ < 272 contains some clopen
subset which contains z. Let y € Hg v \ B:(z). There is a positive integer
n such that ¢ > 27". Since d(x,y) > ¢, there is a forest algebra S, with
|Sy| > n and a continuous forest algebra homomorphism ¢, : Q4V — S,
such that ¢, (z) # ¢,(y). Then K, = ¢~ o p(y) is a clopen set which
contains y but not z. In particular K, form a clopen covering of the closed
set Hg v \ Be(z), from which the finite covering K can be extracted. The
union of the clopen sets in K is itself a clopen set K. Note that HﬁAV \ K
is also clopen, contain z, and also is contained in B (x). And similarly for
e Vq,v-

Hence, 24V is a compact and zero-dimensional forest algebra. So, it is
a pro-V forest algebra. O

3.2 Reiterman’s Theorem

In this section we establish an analog of Reiterman’s Theorem [26].

Recall that a V-pseudoidentity is a formal equality v = v with u,v €
QAV for some finite set A. And for S € V, we write S = u = v if, for
every continuous forest algebra homomorphism ¢ : 94V — S, the equality
o(u) = p(v) holds.

For a set ¥ of V-pseudoidentities, let [X]y denote the class of all S € V
such that S = u = v for every pseudoidentity v = v from X.

If 51,52 € [X]v, then clearly S; x So € [X]v. If T is a forest subalgebra
of S € [£]v, then there is an embedding ¢ : T — S. Let ¢ : Q4V — T
be any forest algebra homomorphism. Then the composite @ = 1 o ¢ is a
continuous forest algebra homomorphism Q4V — S and so, for every pseu-
doidentity u = v € X, we obtain the equality a(u) = a(v). Consequently
o(u) = p(v) and so T € [E]v. Now, let T be a forest algebra such that there
is an onto forest algebra homomorphism v : S — T'. Then it is equally easy
to obtain T € [X]v. So [X]v is a pseudovariety of finite forest algebras.

For a subpseudovariety W of V, let mw : Q4V — Q4 W be the natural
continuous forest algebra homomorphism:

A-Y L.V

. TW =W

~

QW

where the two mappings (v and tw giving Q4V and Q4 W as free respec-
tively pro-V and pro-W forest algebras over the set A.
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Lemma 3.2.1. A pseudoidentity u = v, with u,v € Q4V, holds in every
member of a subpseudovariety W of V if and only if mw(u) = mw(v).

Proof. (=) Let S € W. Let ¢ : Q4V — S be any continuous forest algebra
homomorphism. Note that, the following diagram commutes:

QaV

v
©
At S W =IW
=T
W
QAW

where the image of the mapping ¢ is dense in S. There exists then a forest
algebra homomorphism 1 : Q4 W — S such that ¢ o 7w = ¢. If mw(u) =
mw (v), then ¥(mw(u)) = ¥ (7w (v)) and the equality ¢(u) = ¢(v) holds.
(<) Let, for all S € W, S = u = v and suppose that 7w (u) # mw(v).
Since mw (u) and ww (v) are distinct elements of Q4 W, there is a forest
algebra T € W and a forest algebra homomorphism o : Q4 W — T such
that a(mw(u)) # a(mw(v)), which contradicts the assumption that for all
SeW,SEu=nw. O

Theorem 3.2.2. Let A be a finite set. Let W be a pseudovariety of finite
forest algebras and S an A-generated finite forest algebra. If there is an onto
continuous forest algebra homomorphism ¢ : Q4 W — S, then S € W,

Proof. Since, by Corollary QAW is a pro-W forest algebra, by The-
orem there are a directed set I of indices, a projective system (.S;);er
of A-generated finite forest algebras in W, and onto continuous forest alge-
bra homomorphisms ; ; : S; — S; for each pair 7,j € I with ¢ > j such
that Q4 W is a projective limit of (S;)ic;. Let m; : Q4 W — S; be a con-
tinuous forest algebra morphism such that m; o tww = tg,, where image of
the mapping tg, : A — S; is dense in S and the mapping tw : A — QW
giving Q4 W as free pro-W forest algebra over the set A. The 7 Yy (iel,
y € S;) constitute a subbasis of open sets for the topology of Q4 W. Since
¢ is continuous, for every x € Q4 W, there exist finitely many elements
i1y dzm of I such that, putting y,; = m;, ,(z) for j = 1,...,m, we
have (7L, 7 (yrj) € ¢ 'p(x). Since for each pair i,5 € I with i > j the

izv]
following diagram commutes

QW

T

S —S;
Vi j
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for every x € Q4 W we have 7; ! (m;(z)) C 7r]71 (mj(x)). Hence, for an element
ky >iz1,...,0ipm of I and y, = my, (z), wl;l (yz) C p tp(x).

Note that Q4 W is compact and Q4W = |, W’;II (yz). So there exists
an integer n, elements x1,...,7, € Q24 W, elements ky,,..., ks, € I, and
elements Yz, ..., Y, respectively of Skacl s+ Sk,, such that

xT

n
ﬁA‘Rf = U lezlj (ylj)
7j=1

with z; € 77,;1] (Yz;) and 7Tk;1j (y2,;) C ¢~ Hep(x;)) for all j.

Consider an element i of I, with i > ky,,..., ks, . For every x € Qa4 W,
there exists 1 < j < n such that z € 7} " (Yz;). Therefore, 7 (mi(z)) C
wj

w,;zlj (ﬂ'kzj (2)) € ¢~ p(z;)). Hence, for each € Q4 W, also m; (m;(z)) C

o Y (p(x)). Thus, ker(m;) C ker(y) and so ¢ factors through ;. So there is a
forest algebra homomorphism ¢; such that the following diagram commutes.

QAWLMS

[

Si

In the preceding diagram, ¢ and m; are onto, whence so is ¢;. As S; is in

W, sois S. 0

Theorem 3.2.3. (Analog of Reiterman’s Theorem) A subclass W of V is
a subpseudovariety if and only if it is of the form [X] for some set ¥ of
V -pseudoidentities.

Proof. The reverse direction has already been verified. To prove the di-
rect implication, let W C V be a pseudovariety and > be the set of
all pseudoidentities which are satisfied by every member of W, and let
W' = [E]v. Clearly W C W'. To complete the proof we show that
S € W/ implies S € W. Since S € W' is finite, there is a finite set A and
there is an onto continuous forest algebra homomorphism ¢ : Q4 W' — S.
Let 7 : Q4W’' — Q4 W be the natural projection. By Lemma
ker(m) C ker(p) and so ¢ factors through 7. So the following diagram
commutes.

ﬁAWI L\){ S
|
QAW

In the preceding diagram, Q4 W’ is compact and ¢ and 7 are onto and
continuous, whence so is 1. Now Theorem [3.2.2] implies that S € W. O
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3.3 Conclusions

We defined a metric on the free forest algebra with respect to a pseudova-
riety of finite forest algebras and we showed that the basic operations with
respect to this metric are contractive. We showed that the completion of the
free forest algebra with respect to the defined metric exists and is a forest
algebra. We established in this context an analog of Hunter’s Lemma [23].
We showed that compact and zero-dimensional metric forest algebras are
residually finite, whence profinite. We also established an analog of Reiter-
man’s Theorem . For a pseudovariety V of finite forest algebras, by
Theorem [3.2.3] a simple basis may be seen as a formalization of a simple
algebraic criterion for membership in V. For BSS such a basis was ob-
tained by Bojariczyk, Segoufin, and Straubing in [6]. In the same paper,
they also did it for the pseudovarieties of finite forest algebras generated by
all syntactic forest algebras of ccaEI—piecewise testableﬂ forest languages and
commutative piecewise testable forest languages. For a pseudovariety W of
finite monoids, if a basis is known, then by Lemma [2.2.5] we can find easily
a basis of pseudoidentities for the pseudovarieties VW and HW. For other
pseudovarieties finding a basis of pseudoidentities may be a very difficult
task.

There are several results on metric semigroups (for examples, see [2, [I]
for results and references) that we still do not know if they have a natural
analog in the context of forest algebras.

!Stands for closest common ancestor: given a forest s and three nodes z, y, and z of s
we say that z is the closest common ancestor of x and y if z is an ancestor of both x and
y and all other nodes of s with this property are ancestors of z.

2A forest s is a cca-piece of a forest ¢, if there is an injective mapping from nodes of s
to nodes of ¢ that preserves the label of the node together with the forest-order and the
closest common ancestor relationship. A forest language L is called cca-piecewise testable
if there exists n > 0 such that membership of ¢ in L depends only on the set of cca-pieces
of t of size n.
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Chapter 4

Forest Algebras as
w-Algebras

The natural analog for forest algebras of the structural identification of
the relatively free pro-J semigroup €2,J as an algebra of type (2,1), see [1}
Section 8.2], is to study the relatively free pro-BSS forest algebra Q4BSS,
as an w-algebra.

In this chapter we introduce w-algebras which satisfy the equational
axioms of forest algebras with some extra assumptions. Forest algebras can
be viewed as special cases of w-algebras. We show several results on free
w-algebras.

4.1 w-Algebra

An w-algebra B = (H,V) is a set with two types of elements endowed with
five binary operations +, +1, +2, ., and x and two unary operations w() on
H and ()¥ on V, such that the following conditions are satisfied:

1. (H;+) is a monoid with identity 0;

2. (V;.) is a monoid with identity [J;

3. for every h € Hand v € V, v % h is in H;

4. for every h € Hand v,w € V, v* (w* h) = (v.w) * h;

5. for every h € H, % h = h;

6. for every h € Hand v € V, h+1 v and v 42 h are in V;

7. for every h,s e Hand v € V, h+1 (v +25) = (h +1v) +2 5;

8. for every h € H and v,w € V, (h+1v).w = h+v.w and (v+2 h).w =

vaw + h;

52



9. forevery h,se Hand v € V, (h+1v)*s=h+v=*sand (v+gh)*xs=
v* 8§+ h;

10. O420=0=0+, ;

11. w(0) = 0;

12. (O¥ =0

13. for every h,s € H, (h+1 0O +2 5)* = w(h) +1 O +2 w(s).

The class of w-algebras of type T = (2,2,2,2,2,1,1) satisfying the above
conditions is denoted by ‘5.

If for instance we take the unary operations w as identities, then every
forest algebra satisfies the above conditions. Hence, every forest algebra
may be thus viewed as an element of the class of w-algebras 8.

Lemma 4.1.1. Let S = (Hg,Vs) be a zero-dimensional, see Definition

and compact metric forest algebra, see Definition[3.1.18. Let v be an

element of Vg and h be an element of Hg, and let k € Z. Then sequences
of products {v™**}, > |k| and additions {(n! 4 k)(h)}n > |k| converge. For
k = 0 the limit is an idempotent.

Proof. For proof see [2, page 20]. O

The limit limv™ is denoted by v*1, and the limit lim(n!)(h) is denoted
by wa(h).

Every forest algebra S = (H, V) endowed with unary operations w; and
wo satisfies the properties of w-algebras. The axioms (1)—(10) are immediate
by the equational axioms of forest algebras, and we have

(D)t =1lim O™ = im0 =0

and
w2(0) = lim(n!)(0) = lim0 = 0,

also for a context v = hy + [0 4 ho we have the following

(h1 + O+ ho)*t = lim(hy 4 0 + hg)™
= lim(n!)(h1) + lim O + lim(n!)(h2)
= wa(h1) + O+ wa(hs).

Hence, the forest algebra S becomes an w-algebra.
An w-algebra homomorphism

n: (Hh‘/l) - (H27‘/2)
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of w-algebras is a pair (A, 1) of monoid homomorphisms

A H1—>H2,
pr Vi—Va

such that, for every h € H and every v € V,

Mosh) =) sxm) o { ARG

and
p(0?) = (u(v))*  and  Aw(h)) = w(A(h)).

However, we will abuse notation slightly and denote both component maps
by 7.

An w-subalgebra is a subset of an w-algebra, closed under all its opera-
tions, and carrying the induced operations.

Let S = (Hy, V1) and Sg = (Ha, Va) be w-algebras. Their direct product
Sl X SQ is (Hl X Hg,‘/i X ‘/2) where

Hy x Hy = {(hl,hg) ’ hi1 € Hi and hy € HQ}

and
Vi x Vo ={(v1,v2) | v1 € V1 and vy € Va}.

Operations are defined componentwise.

The class of w-algebras B is closed under direct products and subalge-
bras. So, by [5, [19] and also since it is defined by equational axioms, all the
free w-algebras exist.

Over a finite alphabet A = {a; | i = 1,...,n} an w-algebra A = (H,V)
is said to be A-free w-algebra over B with the free generating set A via the
mapping 7 : A — A such that n(A) generates A, if we have the following
universal property: for every w-algebra S = (H,V) € B with any subset
{yi|i=1,...,n} of V, there is a unique w-algebra homomorphism ¢ : A —
S such that ¢(n(a;)) = yi.

Consider the map 7 : A — A such that n(a) = aJ. Define a set A" =
{n(a) | a € A}, then A can be viewed as an A’-free w-algebra via the
natural injection ¢. Let S = (H,V) be an w-algebra in 8 such that there
is a mapping f : A’ — V. By the universal property of free w-algebras, the
following diagram commutes:

A—L5 A

K A

S

Later in this chapter we will show that the faithfulness axiom holds for A.
Hence, A is a forest algebra. Under the claim that A is a forest algebra, for
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every forest algebra S = (H,V) in B if there is a mapping f : A’ — V, then
there exists a unique w-algebra homomorphism ¢ such that the following

diagram commutes.
A——A

|
x vEI.<,0
S

In view of the universal property of the free w-algebras, A is a free forest
algebra.

Remark 4.1.2. The axioms (1) — (10) imply that over a finite alphabet A =
{a;|i=1,...,n} the A'-free w-algebra A satisfies the equational axioms of
forest algebras. Hence, in view of the universal property, Lemma [1.1.5] of
the free forest algebra A?, the following diagram commutes:

A— AD

el
\v‘p

A

For a finite alphabet A, by term algebra we mean the freely generated
algebraic structure generated by A over a signature 7, which we denote by
A, for more details see [5], [19].

In an w-algebra, we will denote all operations +, +; and +2 by +, except
in some places to avoid confusions.

Remark 4.1.3. Let S = (H,V) be a forest algebra. Hence, the axioms
(1)—(10) of w-algebras hold in S. Endow S with additional unary operations
w(l): H— Hand ¥ :V — V defined as identity mapping. Hence, the
axioms (11) — (13) of w-algebras also hold in S. Therefore, S is an w-algebra
in ‘B.

Example 4.1.4. For an alphabet A let A be the A’-free w-algebra in 8.
Let Sy be the forest algebra in Example In view of Remark SN
is an w-algebra.

By the universal property of the free w-algebra A, there is a unique
w-algebra homomorphism

#Nodes : A — Sy

such that
#Nodes(al:') =1

Definition 4.1.5. We say that the number of nodes of an element z € A
is n, if z is an element of H and #nodes(z) = n or z is an element of V and

#Nodes (37) =n'.
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Definition 4.1.6. Let S be an w-algebra in 8. We say that an element z
of S is a subterm of an element y of S, if there exists an n-ary operation
f, which is a composition of operations from {+,+1,+2, ., *,w(), ()*}, and
there are elements ¢1,...,t,—1 in S such that f(x,t1,...,th—1) = y.

Lemma 4.1.7. For elements ©1 and x in the free w-algebra A, if x1 is a
subterm of © then #Nodes(Z1) < #FNodes ().

Proof. By definition of a subterm, there is an n-ary operation f, and there
are elements t1,...,t,—1 such that f(z1,t1,...,th,—1) = 2. So, we have

#Nodes(f(xla t1,. .. 7tn71)) = #Nodes(m)~

Since #Nodes 1S an w-algebra homomorphism then we have

#Nodes (.CI?) = #Nodes(xl) + #Nodes (tl) +-- 4 #Nodes (tn—l)a
which implies the result. O

Lemma 4.1.8. For an element x in the free w-algebra A, #nodes(z) = 0 if
and only if x is a trivial element.

Proof. If = is a trivial element, then #nodes(z) = 0. Now, assume that
#Nodes(z) = 0 but z is a non-trivial element, then there is an element dJ,
which is a subterm of x. By Lemma we have 1 = #nodes(dd) < 0,
which is a contradiction. ]

Lemma is used in the following section for distinguishing all kinds of
non-trivial additively irreducible and non-trivial multiplicatively irreducible
elements of the free w-algebras.

4.2 About Free w-Algebra A

In this section, we use the universal property of free w-algebras to show the
following key theorem:

Theorem 4.2.1. For the A'-free w-algebra A = (H,V) we have the follow-
mg:

o w(H\{0})Nn+(H\ {0}, H\ {0}) = 0;

o (VN(H+O+H)~n.(v\{O}v\{O}) =0;

e for everyad € A’, a0+« HN4(H\ {0},H\ {0}) = 0;

o for every al € A', a0V N (+(H\ {0},V) U+(V,H\ {0})) = 0.
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Where
w(H\ {0}) = {w(h) [ h e H\{0}},
H+O+4+H ={h+0+ 5] h,s € H},
VN (H+O+H) ={veV]iv¢g (H+O+H)},
(V\H+O4+H)¥Y ={vwW|veV\(H+O+H)},
(VA{OELVA{OY = {vw |v,weV\{T}},
ald x H = {a0*h | h € H},

a.V = {a0.w | v € V},

HHN{0},HAN{0}) = {h+s|h,scH\{0}},
+(H\ {0},V) ={h+v|heH\{0},veV}

+(V,H\ {0}) ={v+h|heH\{0},veV}

An element of A is said to be a p-forest or a p-context, if it belongs,
respectively, to H or V. We call an element of A a finite p-forest or a finite
p-context if it does not involve the unary operations; otherwise, we call it
an infinite p-forest or an infinite p-contert. We call an infinite p-forest and
an infinite p-context respectively an w-forest and an w-context, if it is of the
form w(h) for some p-forest h or it is of the form v* for some p-context v
(respectively).

We say that a p-context v is a factor of a p-context t, if there exist p-
contexts v and w such that ¢ = wvw. And we say that a p-context v is a
factor of a p-forest t, if there exist a p-context u and a p-forest h such that
t = uvh.

The p-forest 0 and the p-context [J are called respectively the trivial
p-forest and p-context.

Let v be a p-context. We say that a p-context w is a prefix of v if there
exists a p-context u such that v = w.u. The set of all prefixes of v is denoted
by Pref(v). Let h be a p-forest. We say that a p-context w is a prefix of h
if there exists a p-forest s such that h = w * s. The set of all prefixes of h is
denoted by Pref(h). Note that every prefix of an element ¢ in A is a factor
of t.

We call a non-trivial p-context ¢ in V a [-pure p-context if, whenever
h1i,he € Hand u € V are such that ¢ = hy+u+hsg, the equalities hy = ho =0
hold.
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For a p-context v in V we define C(v) as follows. If v is a O-pure p-
context or the trivial p-context, then let C'(v) = v. Otherwise, there are
p-forests hy and he in H and a p-context v1 in V such that at least one of the
p-forests hy and heo is non-trivial and the equality v = h; + v1 + hs holds.
Iterate the same procedure on v;. By Lemma [£.1.7] since

#Nodes(vl) < #Nodes(v) < 00,

after finitely many steps we will find a p-context v, such that C(v,) = vy,.
We then let C'(v) = vy,.

The following results are immediate:
Lemma 4.2.2. A p-context v in V is O-pure if and only if C(v) =v. O

Lemma 4.2.3. For every p-context v in V there are p-forests h1 and hs in
H, and a p-context w in V such that u is O-pure and v =h1 +u+ hy. [

For a p-context v with C(v) # O, we define a factorization of v by

v = H V2i+1V2i+2
€N

where the p-contexts vg;y1’s are [l-pure, vojyo = h;1 + U+ h;2 with p-
forests h; 1 and h; 2 in H, and the v;’s are such that, if £ > 0 and vgy41 = 0,
then v; = O for all j > 2k + 1. For a p-context v with C(v) # 0O, such a
factorization exists: by the way that we defined C(v), since there are finitely
many p-forests h; and h} such that v = hy + -+ hy, + C(v) + hl, +-- -+ hf,
if n =0, then v is a O-pure, v; = v and for every ¢ > 2, v; = [J; otherwise,
v =0,vo=h1+-+h, +0+h), +---+ ki, v3 = C(v), and for every
1> 4, v, = 0.

For a p-context v with C(v) = O the factorization of v is v itself.

We say that a p-context v in V is multiplicatively irreducible if there do
not exist non-trivial p-contexts u; and wuo such that v = ujus.

Lemma 4.2.4. Fvery p-context can be written as product of its non-trivial
multiplicatively irreducible factors.

Proof. Let v be a non-trivial p-context. If v is multiplicatively irreducible,
then v can be written as a product of itself. Otherwise, there exist non-
trivial p-contexts v; and vg such that v = vivy. Iterate the same procedure
on v1 and vy. Since

#Nodes(vl) < #Nodes(v) ) #Nodes<v2) < #Nodes(v)

and #nNodes(v) is finite, we will get the result after finitely many steps. [

o8



We say that an element P in A is additively irreducible if, for the case
that P is a p-forest, there do not exist non-trivial p-forests s; and s such
that P = s1+s9 and, for the case that P is a p-context, there does not a exist
non-trivial p-forest s and a p-context v such that P = s+ v or P = v + s.
In view of the definition of [I-pure, every L-pure is an additively irreducible
p-context.

Let t be a p-forest which is not additively irreducible, then we show that ¢
can be written as a sum of non-trivial additively irreducible p-forests, which
we call summands of t.

Lemma 4.2.5. Fvery p-forest can be written as sum of its non-trivial ad-
ditively irreducible summands.

Proof. Let t be a non-trivial p-forest in H. If ¢ is additively irreducible,
then t can be written as a sum of itself. Otherwise, there exist non-trivial
p-forests s; and sy such that t = s1 4+ s9. Iterate the same procedure on s;
and sg. Since

#Nodes(sl) < #Nodes(t) < oo and #Nodes(32) < #Nodes(t) < 00,

after finitely many steps we will find non-trivial additively irreducible p-
forests h;’s and then t = h1 + -+ + h,,. O

In the case where h is a finite p-forest, in view of Remark h is
the sum of its connected forest summands. And in the case where h is an
infinite p-forest, we will show that h is the sum of its summands which are
w-forests or p-forests which are of the form v % s for some non-trivial CI-pure
p-context v and p-forest s.

Let s and t be elements of the free w-algebra A. We say that t is a
scattered divisor of s when ¢ has a decomposition of the form ¢;...¢, and s
has one of the following decompositions:

U1t1UQt2 . untn or ’LL17f1’LL2t2 e untnun+1.

Note that, for some i’s we may have u; = [.
We say that an element ¢ of A is an divisor of an element P in A if the
following conditions hold:

e in case t and P are p-contexts, there exist p-contexts u and v such
that P = utv;

e in case t is a p-context and P is a p-forest, there exist a p-context u
and a p-forest h such that P = uth;

e in case t and P are p-forests, there exists a p-context u such that
P = ut.

Note that a divisor of a p-context cannot be a p-forest.
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Remark 4.2.6. The difference between factor and divisor is that: a divisor
may be a p-forest but a factor is always a p-context.

The following result gives some conditions for being a subterm, see Def-
inition of an element of the free w-algebra A.

Lemma 4.2.7. In the free w-algebra A the following conditions hold:
e a divisor of an element y is a subterm of y;
e for a p-forest h, h is a subterm of the p-forest w(h);
e for a p-context v, v is a subterm of the p-context v¥;
o for a p-forest h, h is a subterm of the p-contexts h + 1 and O+ h;

e if an element P is a subterm of an element ) and the element @) is
a subterm of an element t, then the element P is a subterm of the
element t.

Proof. We just show the first one the next three conditions are handled
similarly. Assume that,  and y are p-forests and x is a divisor of y. Then
there is a p-context v such that v * x = y. For this case, let f(_,-) = _* _.

Now assume that, x and y are p-contexts and x is a divisor of y. Then
there are p-contexts vy and we such that vi;.x.ve = y. For this case, let
flo) =) or flooo) = (o)~

Assume that, x is a p-context and y is a p-forest and z is a divisor of y.
Then there is a p-context v and there is a p-forest h such that v * (x x h) =
(v.z) * h = y. For this case, let fi(_,_,-) = _*(-*x_) or fa(, - -) = (=.0) * .

Now we show the last one. Assume that, an element P is a subterm
of an element ), and the element @ is a subterm of an element ¢ then, by
definition of subterm there are an n-ary operation f1, an m-ary operation fo,
elements t1,...,t,_1, and also elements ¢, ..., ¢ _, such that the equalities
f1(Q,t1, ..., th—1) =t and fo( P, tll, e 7t;nfl) = ( hold. Let

f(xlwrQ? cee >=T’m+n—1) = fl(f?(xlua’?v cee 7xm)7xm+1, ey xm-i—n—l)
be the (n + m — 1)-ary operation, then we have

f(Patlla 7t;n—17t15" . 7tn71) = fl(fZ(Pat,b' "7t',m,—1)7tl?' . 'atnfl)
= fl(QutL’ . 'atn—l)
:t7

which means P is a subterm of ¢. O

Since a factor of x is a divisor of z, then a factor of x is a subterm of x.
Let us give another example of w-algebras.
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Example 4.2.8. Let m be a non-negative integer and T}, = A® be the free
forest algebra with additional operations w : H* — H#, which sends the
forest h to mh, which is the sum of m copies of h, and w : VA — V4 which
sends the context v to v™, which is the product of m copies of v.

The w-algebra T, satisfies the identities in ‘B:

1. w(0) = 0;
2. (O = 0J;
3. for every h,s € HA, (h+ 0+ s)® = w(h) + O+ w(s).

By the universal property of the free w-algebra A, for w-algebra T,,,
there is a unique w-algebra homomorphism

e A= Ty,

such that
M (ed) = ald.

Let ¢t be an element of A. We denote ™™ (t) by t™"™.
By Remark we have A% = {t™™ |t € A, m €N}

4.2.1 Some More Examples of w-Algebras in ‘B

Now we construct more examples of w-algebras which are used to show that
every free w-algebra is a forest algebra. The following example is the most
important example in the rest of this chapter.

Example 4.2.9. Let S = (Hs, Vs) be the free forest algebra
(AW {aO, b0, c})2,
with additional operations w : Hs — Hg given by

(h) = aldxh , if h is non-trivial
Y=Y 0 Jif h=0

and w : Vs — Vs given by

oo bO.v.cd ,if Cv) #0
| wh) + 04 w(hy) , if v=~h+0+ hs.

Then § is an w-algebra:
1. w(0) =0;

2. (O) = 0;
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3. for every h,s € Hg,

(h+0+4+s8)¥ = w(h) + 0+ w(s).

By the universal property of the free w-algebra A, there is a unique w-algebra
homomorphism

b A S

such that for dd € A’
®(d0) = dOl.

Example 4.2.10. Let, for every n € N, S,, = A® be the free forest algebra
with additional operations w : H4 — H* which sends every forest h to the
forest n(h), which is n-times addition of h by itself, for the case n = 0 we
assume that 0(h) = 0, and w : V4 — V4 which sends every context v to a
context v™, which is n-times product of v by itself, for the case n = 0 we
assume that v° = .

For every n € N the w-algebra .S, satisfies the identities in B:

1. w(0) =n(0) =0;
2. (O =0"=0;
3. for every h,s € HA,

(h+04+9)Y=(h+0+s)"
n(h) + 0+ n(s)
w(h) + 0+ w(s).

By the universal property of the free w-algebra A, there is a unique w-algebra
homomorphism

fn: A= S,

such that
fn(x) = 2™

Lemma 4.2.11. For an alphabet A, let A = (H,V) be the A’-free w-algebra
inB. Let h € H and v € V. Then the following conditions hold:

e w(h) =0 if and only if K = 0;
e v¥ =0 if and only if v*' = O.

Proof. We show that h'! = 0 if and only if h = 0 and that v"! = O if and
only if v = .

The equalities 01! = 0 and O = O are immediate from the definitions.
Now, assume that h'"! = 0 and v! = 0. We have the following facts:
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e if P¥ is a subterm of h with P is a finite p-context, that is Pb! = P,
then P is a subterm of hb!, so P = [J;

e if w(Q) is a subterm of h with @ is a finite p-forest, that is Q1! = @Q,
then @ is a subterm of hb!, so Q = 0;

e for a finite p-context P, that is P! = P, if P is a subterm of h, then
P is a subterm of A1, so P = [;

e for a finite p-forest Q, that is Q%! = Q, if Q is a subterm of h which
is a p-forest, then @ is a subterm of A1, so Q = 0;

e every p-forest in A, is made by combinations of some of its finite
subterms, where by combination we mean addition, multiplication,
action, and applying the operations w.

We have thus shown that h = 0.

In a similar way we can show that v = [.

By using the identity w(0) = 0 if A = 0, then w(h) = 0. Now, assume
that w(h) = 0, then A1! = 0 and so we have h = 0.

In a similar way, by using the identity (0)¥ = O, if v = O, then v* = .
Now, assume that v* = [J, then v"! = 0 and so we have v = [I. O

Corollary 4.2.12. Since for every p-context v € V, C(v) is also a p-context,
we have C(v) = 0O if and only if C(v)"! = O. O

Remark 4.2.13. If there is a forest algebra homomorphism § : A® — S into
a forest algebra S, then we can be viewed as an w-algebra homomorphism
f: A— Ssuchthat f = do fi. Note that, in the forest algebra S, the unary
operations w’s are assumed to be identities. That is the following diagram
commutes:

ATt 4n

Nk

S

Remark 4.2.14. According to Remark [4.2.13] and by using the forest algebra
homomorphism labels : A2 — S; in Example 1.2.11L there is a unique
w-algebra homomorphism

labels : A — S|,

such that
labels(ad) = {a,0}.

Definition 4.2.15. We say that the set of labels of an element = € A is
X if z is an element of H and labels(z) = X or x is an element of V and
labels(z) = X U {(J}.
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Example 4.2.16. Let S| = A® be the free forest algebra with additional
operations w : H4 — H4 and w : VA — V4 which, for a € A fixed, are

defined as follows:
_Ja if h#0
w(h) = { 0 ,otherwise

and
vW =w(hy) + C(v) +w(ha) where v=hy;+ C(v)+ he.

The w-algebra S} satisfies the identities in B:

1. w(0) = 0;

2. (O =0;

3. for every h,s € HA, (h+ 0+ s)* = w(h) + O+ w(s).

Example 4.2.17. Let S, = A® be the free forest algebra with additional

operations w : HA — H?, which sends forest h to 0, and w : VA — V4

which sends context v to alJ if C'(v) = alJu and sends to OJ if C'(v) = O.
The w-algebra S5 satisfies the identities in B:

1. w(0) =0;
2. (O =0
3. for every h,s € HA, (h+ 04 5)¥ = w(h) + O+ w(s) = 0.

Example 4.2.18. Let S = A® be the free forest algebra with additional
operations w : H4 — H4, which sends the forest h = a;0s1 + - - - + apOsp,
to ag + - -+ ay and sends 0 to 0 and w : VA — V4 which sends the context
v = h; + C(v) + hg with C(v) = cOu, hy = a10s; + -+ + a,0s, and
ho = b1ty + -+« + b, 0t toag + - +an +cd+ by + -+ + by, and sends
U to O.

The w-algebra S4 satisfies the identities in B:

1. w(0) = 0;
2. (O =0
3. for every h,s € HA, (h+ 0+ s)* = w(h) + 0+ w(s).

By the universal property of the free w-algebra A, for w-algebras S}, S
and S%, there is a unique w-algebra homomorphism

fi: A= S]

such that
fi(a0) = a0,

respectively for ¢ = 1,2 and 3.
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Lemma 4.2.19. For an element x of A, x is trivial if and only if fi(x) is
trivial.

Proof. The direct implication is trivial. We show the reverse implication.
If x is a non-trivial finite p-forest or p-context, then f5(x) = z is also non-
trivial. If z = a10sq + - - - + a, s, is sum of non-trivial finite p-forest, then,
since a;’s are non-trivial, f5(w(z)) = a1 + --- + ap is non-trivial. And if
x = hy + C(x) + he is a non-trivial finite p-context with C'(z) = cOv, hy =
a1ds1+- - -+a,0s, and hy = b1 0t +- - - +b,,,[0¢,,, then, since at least one of
a;’s, bj’s or ¢ is non-trivial, f3(z¥) = a1+---+a, +cO+b1 +- - -+ by, is non-
trivial. Every p-forest and similarly p-context in A, is made by combinations
of some of its finite subterms, where by combination we mean addition,
multiplication, action, and applying the operations w. Every non-trivial
element of A has a non-trivial finite subterm. Hence, x is non-trivial implies
f4(z) is non-trivial. O

Lemma is used later on in the proof of the fact that the free
w-algebra is a forest algebra.

We proceed with another example of w-algebras which is constructed
from a monoid together with an action on itself. The next couple of examples
of w-algebras are obtained as particular cases.

Let M be a monoid. Let ¢ : M — End M be a mapping into the monoid
of monoid endomorphisms of M, acting on the left. Denote p(v)(u) by “u.
Define on M a skew multiplication © as follows:

u@®v=u",

and denote the resulting structure by M¥. We say ¢ is a skew mapping if
@ : M¥ — End M is a semigroup homomorphism, that is, if the following
condition holds:

o(u®v) =p(u)p(v) forall u,v e M. (4.1)

Proposition 4.2.20. If ¢ is a skew mapping then M¥ is a monoid and
p: M¥ — End M is a monoid homomorphism.

Proof. Let u,v,w € M be arbitrary elements. Condition (4.1]) yields the

equality “(vw) = “v ““Yw. Hence, the following equalities also hold:

u® (vow)=uw"w) =u"v " = (uOv)"Pw=(uEv)Ow

lou=1'u=1lu=u=u"1l=u®1.
The last statement is now obvious. O

Assuming that ¢ is a skew mapping, we call the monoid M¥ the skew
monoid determined by .
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For a semigroup S, let
ST =Sw{I} (4.2)

be the monoid which is obtained from S by adding a (new) identity element
I, even if S is already a monoid.

The following result yields an example of application of Proposition
4.2.20)

Lemma 4.2.21. Let S be a commutative semigroup, denoted additively. Let
T = 8T x ST x ST be the direct product of three copies of ST and consider
the mapping ¢ : T — End T defined by

IdT ifSQ :I,

o9 otherwise,

QD(Sla 52, 83) = {

where Idr is the identity mapping on T and
oa(uy, ug, uz) = (I, ul + ug + U3,I).
Then ¢ is a skew mapping.

Proof. Since the monoid S’ is commutative, ¢ does take its values in the
monoid End T'. It is a simple calculation to verify that ¢ is a skew mapping.
Indeed, since souo = I if and only if so = uy = I, we have

©((s1,52,53) © (u1,u2,ug)) = Idp = @(s1, 52, 53) (u1, ua, us)

if and only if s = us = I. The case ssus # I is then immediate since oy is
an idempotent. O

Combining with Proposition we obtain the following result.

Corollary 4.2.22. If S is a commutative semigroup and T and ¢ are as in
Lemma then T¢ is a monoid. ]

In order to define a structure of w-algebra on (S?,T), we consider the
following operations, where we already call the elements of S’ p-forests and
those of T' p-contexts:

e p-forest addition is the addition in S';

e for s € ST and (uy,us,u3) € T, we take

s+ (u1,u2,u3) = (s + w1, uz, u3)

(u1,u2,u3) + s = (ur, ug, usz + s);

e p-context multiplication is the skew multiplication in 7T’
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e the action of (u1,us,u3) € T on s € S is given by

(u1,ug,u3) * 8§ = uy + ug + usg + $;

o for s € ST, we let

w(s):{s if s=1,

s+ sg otherwise,

where so € ST is a fixed element;

o for (uy,ug,u3) € T, we let

(w(uy),ug,w(ug)) ifug =1,

(ur, uz,ug)” = {

(u1,u2 + so,u3) otherwise.

Proposition 4.2.23. For the above operations, (ST, T) is an w-algebra.

Proof. 1t takes just a very few simple calculations to check the axioms of
w-algebras, the only ones that require any additional verification being 4, 8,
and 9. O

Example 4.2.24. For an alphabet A let A = (H, V) be the A’-free w-algebra
in B. Let S be the monoid of natural numbers N under operation +, and
let I = —oco. Then Proposition implies that ZD = (S!,T) is an
w-algebra. Note that, the element I is the identity element of ST.

By the universal property of the free w-algebra A, there is a unique
w-algebra homomorphism

Idem: A — ZID

such that
#Idem(a[l) = (_OO, 0, —OO).

Definition 4.2.25. For a non-trivial element z € A, the number of idempo-
tents of x with multiplicities, we denote by #mpEm (), i8S #idem(x) if x € H
and #igem (2 * 0) otherwise. In addition we assumed that the number of
idempotents of the trivial elements of A are also 0.

Consider the following monoids:
e the monoid P(.A) under union;

e the direct product E] = H x P(A), where H is the additive monoid of
p-forests;
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e the skew monoid 7% given by Corollary where S is the semi-
group P(A) \ {0} under union and I = ; we denote the skew multi-
plication by &, which is given by

(U1 UV, Va, Uz U V3) if Uy =10

Ui, U, Us) & (Vi, Vo, V3) =
(U1,U2,U3) @ (V1, V2, V3) {(Ul,UQUV1UV2UV3,U3) otherwise;

e the product monoid Ej = V x T% of the multiplicative monoid V of
p-contexts with the skew monoid T%; to simplify the notation, we may
sometimes write (u, U1, Us, Us) instead of (u, (U1, Usa, Us)).

The operation of FY, denoted ®, is then given by the following formula:

(U, U17 U27 U3) © (’U, Vvla ‘/27 ‘/3)

(UU,U1UV1,V2,U3UV3) ifUy; =0
(uv, Uy, Uy U V3 UV UV, Us)  otherwise.

Consider the subset EY of E/ consisting of the elements (u, Uy, Us, Us) such
that C'(u) = O if and only if Uy = ). Note that it is a submonoid of E for
which the operation is given by the following formula:

(u7 U17 UQ, U3) ®© (Ua ‘/i, ‘/23 VS)

B (U’U,Ulle,VQ,UgUVg) ifC’(u):D
(uv, Uy, U U V3 UV U V3, Us)  otherwise.

Next, to obtain an w-algebra structure (E7, E}), define the mixed operations
as follows:

(h7 U) + (U,Vl,‘/g,‘/:g) = (h+U,UU Vla‘/QaVE’))
(Ua‘/lav27‘/3) + (h‘a U) = (U + ha‘/lav27‘/3 U U)
(v, Vi, V2, V) % (h,U) = (v h, V1 UV U V3 UU).
Note that, if the p-contexts are restricted to E4 then the two mixed sums

do take their values in EY.
Finally, define the w-operations as follows:

(0,0) ifh=0
(w(h),UU{w(h)}) otherwise;
(

u“’,(Z],UlLJUQUUgLJ{uw},@) if C’(u) # [
wlh,Uy) + (O0,0,0,0) + w(k,Us) ifu=h+0+k.

w(h,U) = {
(U,Ul,UQ,Ug)w = {

Note that the w-power of an element of EY remains in EY.
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Proposition 4.2.26. For the above operations, (E{, E}) is an w-algebra and
(E1, EY) is an w-subalgebra.

Proof. For the axioms not involving the w-operations, it suffices to observe
that the reduced structure is just the direct product of A with the w-algebra
(S1,T) given by Proposition Thus, it only remains to check the
axioms involving the w-operations, which amounts to an easy verification.

O

Example 4.2.27. For an alphabet A, let A = (H,V) be the A'-free w-
algebra in B. Let ZS = (E}, EY) be the w-algebra as in Proposition [4.2.26
By the universal property of the free w-algebra A, there is a unique

w-algebra homomorphism
Ist: A= IS,

such that
Ist(aO) = (aJ,0,0,0).

In addition, the mapping
f:IS—- A

which is the first component projection, is an w-algebra homomorphism and
the composite f o Ist is the identity on free w-algebra.

Definition 4.2.28. For an element x € A, the set of idempotent subterms
of z, we denote by IST(z), is second component of Ist(x) if x € H and second
component of Ist(z * 0) otherwise.

Example 4.2.29. For an alphabet A, let A = (H,V) be the A'-free w-
algebra in B. Let NERVE = (H,V) where H is the trivial monoid and
V = A* is the free monoid on A.

We consider the only action of the monoid V' on the left of the monoid H
which we denote by * as follows: let v be an element of V', define v x 0 = 0.
And let v be an element of the monoid V. We define operation +' as follows:

v+ 0=v, 0+ v=vw

which are clearly elements of the monoid V. And define the unary operations
as identity. It is immediate to verify that NERVE is an w-algebra.

By the universal property of the free w-algebra A, there is a unique
w-algebra homomorphism

nerve : A — NERVE

such that
nerve(ald) = alJ.
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Definition 4.2.30. Let = be an element of the free w-algebra A, then the
nerve of x is its image by the w-algebra homomorphism, the unique w-algebra
homomorphism nerve in Example

In view of Remark for an element y in the free forest algebra
A®, we define nerve of y by the image of the restriction of the w-algebra
homomorphism nerve, to the free forest algebra A%, that is nerve| ga.

4.2.1.1 Rank in Free w-Algebra A

For an alphabet A, let A = (H,V) be the A’-free w-algebra in B. Let
I = —oc0, and let M be the monoid of N/ under operation max, assuming
that —oo < 0. Let M’ = {n’ | n € M} be a copy of M. There is a monoid
isomorphism ¢ : M — M’ via n + n’. In view of Proposition [I.2.3] let 7" be
the trivial monoid and S = M. As T'xS and M are isomorphic, Proposition
implies that R = (M, M’) is a forest algebra. Hence, the axioms
(1) — (10) of w-algebras hold in R. Endow R with additional operations
w(): M — M and ¥ : M’ — M’ defined as follows:

wn)=n+1 Jfor n>0

(m)¥=(m+1) ,for m>0

It is immediate that the axioms (11) and (12) of w-algebras hold in R. In
order to show that R is an w-algebra we just need to show that it satisfies
the axiom (13) of w-algebras: for every m,n € N we have

(m + —od +n)¥ = w(m) + —od’ + w(n),

since both are equal to (max{m,n,—oo})".
By the universal property of the free w-algebra A, there is a unique
w-algebra homomorphism
Rank: A —R

such that
Rank(a0)) = 0.

We say that an element = € A has rank n, if x is an element of H and
Rank(z) = n, or z is an element of V and Rank(z) = n'.

Corollary 4.2.31. All non-trivial finite p-forests and non-trivial finite p-
contexts have rank 0. By Remark we have Rank~1(0) = HA\ {0} and
Rank™1(0) = V4\ {O0}.
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4.2.2 Some Properties of the Free w-Algebra A

Recall that, in Example S = (Aw{a,b,c})? is an w-algebra and ® is
the w-algebra homomorphism from A to §. These notation will apply for
the reminder of current subsection.

Lemma 4.2.32. Let x and y be elements of the free w-algebra A, if x is a
subterm of y in A then ®(x) is a subterm of ®(y) in the free forest algebra
(Aw{a,b,c})?.

Proof. There is an n-ary operation f, and there are elements t1,...,t,_1
such that f(z,t1,...,t,—1) = y. So, we have

@(f(x, tl, e ,tnfl)) = (I)(y)

Since ® is an w-algebra homomorphism and f is an n-ary operation we have

Q(y> = f(q)<$)7 Q(tl)v B (I)(tn—l)>7
which implies the result. ]

Lemma 4.2.33. Let x be an element of the free w-algebra A. Then we have
Rank(z) < 0 if and only if labels(®(z)) C A.

Proof. 1If Rank(z) < 0, then ®(x) = = and therefore,
labels(®(x)) = labels(z) C A.

If Rank(z) > 0, then for some p-forest h there is a subterm w(h) of
x or for some p-context v there is a subterm v* of . By Lemma
respectively, ®(w(h)) or ®(v¥) is a subterm of ®(z). So, respectively, ald *
®(h) or b.®(v).cO is a subterm of ®(z), which implies that, respectively,
alJ or bJ belongs to labels(®(x)). Therefore, labels(®(z)) is not a subset of
A. O

Lemma 4.2.34. Let x be an element of the free w-algebra A. Then ®(x) is
trivial if and only if x is trivial.

Proof. If x is trivial, then ®(z) is also trivial.

Assume that, ®(x) is trivial, then since labels(®(z)) € A by Lemma
we have Rank(z) < 0. So, we have ®(x) = = which yields z is
trivial. O

Lemma 4.2.35. For elements x1 and x in the free w-algebra A, if x1 is a
subterm of x then labels(z1) C labels(z).
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Proof. By definition of a subterm, there is an n-ary operation f, and there
are elements t1,...,t,—1 such that f(x1,t1,...,t,—1) = 2. So, we have the
following equality:

labels(f(z1,t1,...,th—1)) = labels(x).

Since labels is an w-algebra homomorphism, the unique w-algebra homo-
morphism labels in Remark [4.2.14] then the equality

labels(z) = labels(z) U labels(¢;) U ... U labels(¢,—1)

holds which implies the result. O

Lemma 4.2.36. For an alphabet A, let A = (H,V) be the A’-free w-algebra
inB. Let ald € A’ and h € H, then there do not exist non-trivial p-forests
h1 and ho in H such that adx h = hy + hs.

In addition, for v € V, there do not exist a non-trivial p-forest h1 and a
p-context v1 in A such that aJ.v = hy + vy or ald.v = v1 + hq.

Proof. Assume that, there exist p-forests hy and hs such that adx h =
hi+ hs. By applying the w-algebra homomorphism f; from Example
we have

fl(al] * h) = f1(h1 + hg),

which implies hi’l =0or h%’l = 0. By Lemma 4.2.11] we have h; = 0 or
ho = 0 that is hq or hg is the trivial p-forest.
In a similar way we can show that alJ.v is additively irreducible. O

We showed that:
Corollary 4.2.37. Let A= (H,V) be the A’-free w-algebra in B, we have
ad«HN+(H\{0},H\ {0}) =0,

and also

a0V N (+(H\ {0},V)U+(V,H\ {0})) = 0.

Lemma 4.2.38. Let A= (H,V) be the A'-free w-algebra in B. We have

w(H\{0}) N+(H\ {0}, H\{0}) =0,
and also we have

(VN\H+O+4+H)“n.(V\{OhLVv\{O}) =0.
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Proof. Assume that, h is a non-trivial p-forest and there exist p-forests hq
and hg such that w(h) = hy + he. By the w-algebra homomorphism ®, since
by assumption the p-forest h is non-trivial, the following equalities hold in
S:
aldxh =®(w(h)) = P(hy + ha) = ®(hy) + P(he).

Since ald * ®(h) is a connected forest, Lemma yields ®(h;) = 0 or
®(he) = 0. By Lemma [4.2.34] it follows that hy = 0 or he = 0, which
establishes the desired disjointness relation:

w(H\ {0}) N +(H\ {0}, H\ {0}) = 0.

Now, assume that, for a p-context v with v ¢ (H + [0 + H) there exist
p-contexts v; and vy such that v* = vy.v9. By the w-algebra homomorphism

®, we have
O(v™) = P(v1).@(v2).

Since vy is a p-context, there are p-forests H; and Hs, and additively irre-
ducible p-context w such that v; = Hy + u + Ha. So, we have the equality

O(v¥) = ®(Hy) + O(u).®(v2) + P(Ha)

in the free forest algebra. Since ®(v“) is connected, we have the equalities
®(H;) = ®(Hz) = 0. Hence, Lemma implies the equalities H; =
Hy = 0. If we assume that v = 0J, then we get the result.

Suppose that u # O, then v ¢ H+ O+ H. Now, by the w-algebra

homomorphism f3 in Example 4.2.18, we have
f3(v%) = f3(u).f3(v2).
So, there are some aq,...,an,b1,...,bn,c € A such that
() =ar+- +an +cd+br+ -+ b

Since u is a non-trivial additively irreducible p-context and u ¢ H + O + H,
we have C(f5(u)) # 0. So, there are forests S; and Sy, and a non-trivial
context w such that f5(u) = S1 +w + S2. Hence, we obtain the following
equality in the free forest algebra

a1+t an+dd+bi 4+ by = St 4 w. f5(v2) + S,
which implies the equalities
ai+ -+ a, = 51,
bi+ -+ by =52

and
0 = w. f§(v2).

Hence, we obtain the equality f5(v2) = O, and Lemma [4.2.19| yields the
equality vo = [. O
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Lemma 4.2.39. Let h be a p-forest in A. Every factor of h + 0O is of the
form s+ for some p-forest s. Dually, every factor of D+ h is of the form
O+ s for some p-forest s.

Proof. If h+ [ is multiplicatively irreducible then the only factors of A+ O
are [ and h + O itself.

Assume that, h + [0 is not multiplicatively irreducible. So, there are
non-trivial p-contexts v; = Hy + C(v1) + He and vo = H{ + C(v2) + H) such
that h 4+ 0 = v1.v2 which implies that

O=C(h+0) = C(H + C(C(v1).v2) + Hz) = C(C(v1).v2).

We have
C(Ul).UQ ,C(Ul) 75 O

C(C(Ul).UQ) = { C(Ug) 70(01) -0
Since the equality O = C(C(v1).v2) holds, we have the equality
0= #Nodes(D) = #Nodes(c(c(vl)-v2))-
If the inequality C'(v1) # O holds then, by Lemma we have the in-
equality #nodes(C'(v1)) # 0, which implies

#Nodes(C(C(Ul)-U2)> = #Nodes(C(U1)~U2) = #Nodes(c(vl)) + #Nodes('UQ) 7é 0

yielding a contradiction. So, we have C'(v1) = O, which implies

0= #Nodes(D) = #Nodes(c(c<vl)~v2)) = #Nodes(c<v2))
whence C(v2) = 0. So, we have v; = Hy + 0+ Hy and vy = H| + O+ H),
together with the equality A + 0 = vy.v2 yielding the equality
h+0=H; + H] +0+ H) + Ho.

Applying the w-algebra homomorphism f; of Example [£.2.10] on both sides
we obtain the following equality:

(h+ 0O = (Hy + H] + 0+ Hy + Hy)"!
which is
WU 4O = (Hy + H)Y + O+ (H) + Hy) !

that is, by Remark an equality in the free forest algebra A®. Hence,
the equality (H4+ H2)"' = 0 holds in A®. By Lemma [4.2.11]it follows that
the equality H) + Hy = 0. Since the equalities

0= #Nodes(o) = #Nodes(Hé + HZ) = #Nodes(Hé) + #Nodes(H2)

hold by Lemma we deduce that #nodes(H2) = #Nodes(H5) = 0 and,
therefore, again by Lemma we have the equality Hy = Hj) = 0. So,

we have v1 = Hy; + 0 and v = Hy + 0.
Dually considerations yield the dual case. O
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Corollary 4.2.40. Let s be a non-trivial p-forest in A. The p-forest s is
additively irreducible if and only if the p-context s + I is multiplicatively
wrreducible. Dually, the p-forest s is additively irreducible if and only if the
p-context U1+ s is multiplicatively irreducible.

Proof. (=) Assume that, the p-context s+ [ is multiplicatively irreducible
and s is not additively irreducible. Then there exist non-trivial p-forests s;
and so such that s = s1 + so. Since we have the equality s; + so + [0 =
(s1+0).(s2 +0) and we have #nNodes(Si + ) = #Nodes(si) > 1 fori = 1,2,
both p-contexts s; + [0 and sy + [ are non-trivial. It follows that s 4+ [ is
not multiplicatively irreducible which is a contradiction.

(<) Assume that, the p-forest s is additively irreducible. We show that
the p-context s 4+ [J is multiplicatively irreducible. Indeed, otherwise, there
are non-trivial p-contexts v1 and wve such that s + [ = v1.v2. By Lemma
we have v1 = H; + 0 and vy = H{ + 0. And since v; and vy are
non-trivial p-contexts, Hy and H] must be non-trivial p-forests. Now, the
equality s+ = H;+ Hy+0 implies that the equality s = Hy + H| holds, by
action of both sides on the forest 0. Hence, s is not an additively irreducible
p-forest which yields a contradiction. O

By Lemma [£.2.38 and Corollary [£.2.40] the following is immediate.

Corollary 4.2.41. Let w be a p-context in A with C(w) # 0. Then w® is
additively irreducible. ]

Lemma 4.2.42. Let w and v be p-contexts in A with C(w) # O. Then
w.v is additively irreducible.

Proof. The case v = [ is given by Corollary [£.2.41]

Suppose then that v # [1. We show that w*.v is additively irreducible. If
not, then for some non-trivial p-forest A and some p-context w it is of the form
h+u (or u+h). Now, by applying ® to both sides of the equality w*.v = h+u
we have the following equality in the free forest algebra (Aw{a, b, cd})%:

bO.®(w).c.v = ®(h) + P(u),

in which the left side is a connected context while the right side is not since
the p-forest h is assumed to be non-trivial which is a contradiction. O

Lemma 4.2.43. The only multiplicatively irreducible p-contexts of A are
v, s+ 0, O+ h, and ad, where v is a p-context with C(v) # O, s and h
are additively irreducible p-forests, and ald € A’.

Proof. Assume that, u is a non-trivial p-context which is multiplicatively
irreducible. Since u is a p-context it is of the form H; + C(u) + Ha for
some p-forests Hy and Hs in the free w-algebra A. By properties of the free
w-algebra A we have u = (H; +0).(0+ H2).C(u). As u is multiplicatively
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irreducible we have v = Hy + 0, u = O 4 Hs or u = C(u) and the other
factors of u are trivial.

If w = Hy + O then, by Corollary since u is multiplicatively
irreducible, H; is additively irreducible. Similarly, way if © = [0 4+ Ho then
H, is additively irreducible.

Now, assume that, u = C(u). Then u has one of the forms u = z¥.w,
u = al.z or u = 0O where 2z, w and x are p-contexts and C(z) # . Since u
is a non-trivial p-context, we have u # 0. If u = 2*.w with C(z) # 0O, then
#FNodes(2¥) # 0. So, we have z* # [0 whence u is multiplicatively irreducible
if and only if w = [J, that is, u = z*. And if u = all.x, since alJ # [J, then
u is multiplicatively irreducible if and only if x = [J, that is, u = all. O

Definition 4.2.44. We distinguish the following kinds of non-trivial addi-
tively irreducible p-forests:

e kind 1: w(h), for some non-trivial p-forest h;
e kind 2: dJ x h, for some dJ € A’ and p-forest h;
e kind 3: u¥xh, for some p-forest h and some p-context u with C'(u) # 0.

Lemma 4.2.45. If x is a non-trivial additively irreducible p-forest in A,
then ®(x) is connected.

Proof. As x is a non-trivial additively irreducible p-forest we may have one
of the following conditions:

e If z has kind 1, then ®(x) = adJ % ®(h) which is connected.
e If z has kind 2, then ®(x) = dOJ x ®(h) which is connected.
e And if = has kind 3, then ®(z) = (b0.®(u).c0J) « ®(h) which is also

connected. O

Lemma 4.2.46. Let x be a non-trivial additively irreducible p-forest and y
be a p-forest in A. If ®(x) = ®(y), then y is also a non-trivial additively
wrreducible p-forest and x and y have the same kind.

Proof. First, we observe that y is non-trivial. Indeed, if y is trivial then so
is z by Lemma

Next, we show that y is additively irreducible. If not, then y = y; +
-+ 4+ y, where for every i, y; is a non-trivial p-forest in A. Now, Lemma
together with the equality ®(z) = ®(y), which is an equality in the
free forest algebra, imply that ®(y;) + --- + ®(y,) is connected which, in
view of Lemma is a contradiction.

Finally, we show that = and y have the same kind. If  has kind 1, then
®(xz) = ad*P(h). Since y is non-trivial additively irreducible if y has kind 2
or 3, then we have ®(y) = dOx (1) or ®(y) = (b.®(u).cO) x ®(h') where
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d and b are different from a. So, in both cases we have ®(z) # ®(y) which
is a contradiction. Thus, y has kind 1. The cases where = has kinds 2 or 3
are handled similarly. O

Lemma 4.2.47. Let x be a non-trivial p-context in A. If we have xz = C(x),
then ®(x) is connected.

Proof. If x is a non-trivial p-context in A and x = C(x), then x has one
of the forms: dJ.v for some d[] € A and p-context v, or u“.v for some
p-contexts u and v with C(u) # 0. Applying the w-algebra homomorphism
®, we obtain, respectively, ®(z) = d0.®(v) or ®(z) = (b0.®(u).cOd).®(v).
In either case ®(z) is a connected context. O

Lemma 4.2.48. For every context v in the free forest algebra S we have

alv ¢ O(A).

Proof. We have roots(ald.v) = ({a},1). Since ® is an w-algebra homomor-
phism, the image of a p-context is a context and the image of a p-forest is a
forest.

Assume that, there is a p-context y such that the equality ®(y) = aO.v
holds. Since y is a p-context, for some p-forests H; and Hy we have y =
Hy + C(y) + Ha. If at least one of Hy or Hj is a non-trivial p-forest, then,
by Lemma we have #roots(®(y)) > 2 which is a contradiction. So,
we have the equalities Hy = Hs = 0 which means y = C(y), that is, y is
a O-pure. Since all.v is non-trivial, by Lemma we deduce that y
is non-trivial. And since y is a O-pure, there are dlJ € A’ and = € V, or
z,x € V with C(z) # O, such that y = dd.x or y = 2“.z. In both cases
d(y) # alw. O

Let « be an element of ®(A), depth-first pre-order traversal is one way
to go through the nodes of a tree. The Figure [£.1]is an example of a tree
which is traversed with depth-first pre-order traversal algorithm; for more
details see [20].

Remark 4.2.49. Let = be an element of ®(A). By depth-first pre-order
traversal of a tree, we can define a unique mapping from the set of natural
numbers, actually the set

{n|neN\{0},n < #Nodes(2)},

to the nodes of x. This is one of the ways that we can determine the position
of a node in an element of ®(A).

We denote by Pos(z,i) the value of the above mapping for the positive
integer ¢ which gives the label of the node in the position i.

Remark 4.2.50. Let « be an element of ®(A). By definition of the w-algebra
homomorphism ®, the number of nodes with label b and the number of
nodes with label ¢ in x are equal.
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Figure 4.1: depth-first pre-order traversal: a be ¢ d f gjk h i Im

Let x be an element of S. By [ we mean substitute every subterm
dO of z where d0J € A’ U {a0J}, by 0.

We denote by D(b,c) the Dyck language over {b,c}, see [21], 24], [30]
for more details on Dyck Languages. The following conditions are some
properties of the Dyck language D(b, c):

e if x € D(b,c), then there is a non-negative integer n such that |z| = 2n;
o if z,y € D(b,c) and = = z1yz9, then 2129 € D(b,¢);
o if x,y € D(b,c) and = = 2129, then z1yzs € D(b,c);

o if x € D(b,c) with x = 271 ...x9, # ¢ then, for every i > 1 with z; = b,
there is a unique integer j > ¢ such that z; = c and @;41...7;-1 €
D(b,c).

Lemma 4.2.51. For every p-context u in A, the following statement holds:
nerve(®(u))p.c € D(b,c).

Proof. We argue by induction on the number of nodes of nerve(®(u)).

If #Nodes(nerve(®(u))) = 0 then, by Lemma and since ®(u) is a
context, we have nerve(®(u)) = 00 and, therefore, we have nerve(®(u))|p. =
e € D(b,c).

Assume that, for every p-context u with #noges(nerve(®(u))) < n, we
have nerve(®(u))|p. € D(b, c).

Let u be a p-context with #nodes(nerve(®(u))) = n + 1. In view of the
definition of the w-algebra homomorphism nerve, we have nerve(®(u)) =
nerve(®(C(u)). For C(u) we have: there exists a p-context us and dJ € A’
such that C'(u) = d0.uy or there are p-contexts u; and ug with C(uy) # O
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such that C(u) = u{.ua. If C(u) = dO.ua, then we have nerve(®(u)) =
dO.nerve(®(uz)). Since we have

#Nodes(nerve(®(u))) = #Nodes(dl-nerve(® (uz)))
=1 + #Nodes(nerve(®(uz)))
=n+1,

we also have #nodes(nerve(®(usz))) = n. By induction hypothesis, it follows
that nerve(®(u2))|s,c € D(b,c). Combining with the equalities

nerve(®(u))p. = dd.nerve(®(ug))|p,c = nerve(P(u2))p.c

we deduce that nerve(®(u))p. € D(b,c).
Now assume that C(u) = uf.uz. Then the following equality holds:

nerve(®(u)) = b.nerve(P®(uy)).cO.nerve(P(uz)).

Since we have

#Nodes (nerve(q) (u) ))
= #Nodes (b.nerve(®(uy)).cO.nerve(P(uz)))

= 1 + #Nodes(nerve(®(u1))) + 1 + #nNodes(nerve(®(uz)))
=n+1,

it follows that #nodes(nerve(®(u;))) < n for i = 1,2. By induction hypoth-
esis, we have nerve(®(u;))[p. € D(b,c) for i =1,2. In view of the equalities

nerve(®(u))p = (bO.nerve(®(u1)).cO.nerve(P(u2)))|p.c
= b.(nerve(®(u1))|p,c).cO.(nerve(P(uz))|pc),

we conclude that nerve(®(u))|p. € D(b,c). O

Remark 4.2.52. Over a finite alphabet A let ¥ be the set AU {0} and ¥*
be the free monoid generated by ¥. Let € be the empty word in ¥*. Let z
be a word of ¥*. We define #p..(x) the number of occurrences of the letter
0 in the word x. Define sets

Sir = {x € 5" | #note =0} and X3 = {z € T* | #pore = 1}.

Then X7, is a monoid under concatenation of words and Xj, becomes a
monoid under insertion, denoted by <, which is defined as follows: for words
x and y in X%, where x = x1 - - - x,, assume that z; = [, define

TAY =T1 " Ti—1YTig1 " Tn-
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It is immediate to see that S = (¥}, X},) endowed with the following ad-
ditional operations satisfies the equational axioms of forest algebras: for
elements h and v respectively in X3; and Xj, define:

h 4+ v = hwv;
v+ h =vh;
vxh=v<h,

where the operations on the right are concatenation and insertion.

By the universal property of the free forest algebra (AW {a,b,c})?, there is
a unique forest algebra homomorphism

traversal : A2 — §

such that
traversal(aJ) = alJ.

Let x be an element of A. Then we have
®(z) € Im(®) C (AW {a,b,c})?
and so traversal(®(x)) is a word in X* where ¥ = AW {a, b, c,O}.
Example 4.2.53. Consider the following element of A:
z=d0.((fO+ g))*.

Then we have

®(z) = dO.bO.((fO + g)).cO).

And so we have

traversal(®(x)) = traversal(ddJ) < traversal(b0J.(fO + g).cJ)
= dtraversal(b0J.(fO + g).c0J)
= d(traversal(b0J) < traversal((fOI + g).c0J))
= db(traversal(fOJ + g) < traversal(cJ))
= db((traversal( f[J) traversal(g)) < (cOJ))
— db((/0g) < (1)
= dbfcdlg

Lemma 4.2.54. The following property holds for every element x of A:

traversal(®(x))p. € D(b,c).
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Proof. Note that for every p-context x, the p-forest x * 0 and the p-context
x have the same number of nodes and the same rank.

We argue by simultaneous induction on the number of nodes and the
rank of x.

Assume that, for every element z in A with

#Nodes(w) <n and Rank(x) <k

and at least one of the inequalities strict, we have traversal(®(x))[p. €
D(b,c).

Let x be a p-forest with #nodes(z) = n and Rank(xz) = k. We show that
traversal(®(x))|p. € D(b,c). Without loss of generality we may assume
that x is an additively irreducible element. Indeed, otherwise x = x1 + x2
for some non-trivial elements z7 and xs so that, by Lemma we have
for i = 1,2, #Nodes(Ti) < #Nodes(z) while Rank(z;) < Rank(z). By the
induction hypothesis we have

traversal(®(z;))[p.c € D(b, ).
Since the following equality holds:
traversal(®(x))|p, = traversal(®(x1))ls,c traversal(®(x2))|s.c,

we have
traversal(®(x))p. € D(b,c).

Hence, x is additively irreducible and one of the following must hold:

e Assume that, for some non-trivial p-forest h, we have x = w(h). Then
we have traversal(®(z))[p. = traversal(®(h))|p, where #nodes(h) = 1
and Rank(h) =k — 1. And by induction hypothesis we get the result.

e Assume that, for some p-forest h and d € A, we have x = d[dxh. Then
we have
traversal(®(x))|p,. = traversal(®(h))|p.c

where #Nodes(h) = n— 1. Since Rank(h) = k, by induction hypothesis
we have
traversal(®(h))p.. € D(b,c).

e Finally, assume that, for some p-forest h and some p-context v with
C(v) # O, we have x = v* x h. It follows that

traversal(®(x))|p,. = btraversal(®(v))|p cc traversal(®(h))|p.c.

By induction hypothesis, since

#Nodes(h) <n and Rank(h) <k
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we have
traversal(®(h))lp. € D(b,c).

And since Rank(v) < k, while #nodes(h) < n, by the induction hy-
pothesis we have

traversal(®(v))|p. € D(b,c).

Since, for a p-context x, the equality
traversal(®(x))|p, = traversal(®(x * 0))]p.c
holds, the induction step and proof are complete. ]

Let y =y1---yn € D(b,c) and let i and j be positive integers such that
1 <i<j<nwith y; = band y; = c. We say that ¢ is related with j if
Yi+1 - Yj—1 € D(b,c).

Let x be an element of A. And let

y = traversal(®(z))|p,. and ¢ = traversal(®(x)).

Assume that length of the words y and ¢ are respectively n and m. In view

of Remark we say that 7 is related with j if the following conditions
hold:

o t; =b;
ot =c;
© tretilbe = Y1 Yir;

tj "'tm‘b,c = Yj1 " Yn;

11 is related with ji.

Remark 4.2.55. Let x € A and y = traversal(®(z))[p.. Lemma im-
plies that, if y = y1---y,, where each y; is a letter, and, for a certain
1 <i<mn,y =>b, then there is a unique j with ¢ < j < n such that y; = ¢
and i is related with j. And if y; = ¢, then there is a unique j with 1 < j < ¢
such that y; = b and j is related with i.

Lemma 4.2.56. The following diagram commutes:

A——2 s (Aw{a,b,c})A

#NodesA
#Nodes

(N,N')
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where, for x € {a,b,c}, we define #Nodes,(z0) = 0, and for x € A we
define #Nodes , (z0) = 1".

Proof. All the mappings #nodes; ® and #nNodes, are w-algebra homomor-
phisms.
We just need to show that, whenever x is a generator, the following
equality holds:
#Nodes(w) = (#NodesA ° (ID)(:E)

Let dJ be an element of A’. Then we have #nodes(d) = 1" and ®(d0) = dOJ
which implies the following equality:

#NodesA o (I)(dD) = #NodesA (dl:l) = 1/- O
Lemma 4.2.57. For p-contexts x and y, we have the following:

e if for some forests h1 and ho of S with the property that the number
of occurrences of the label b is less than or equal to the number of
occurrences of the label ¢ in traversal(hy) and traversal(hsy), then the
equality ®(z)* (cOxhy) = ®(y) * (cOxhe) implies the equalities (x) =
®(y) and hy = hy;

e if for some contexts ui and uo of S with the property that the number
of occurrences of the label b is less than or equal to the number of
occurrences of the label ¢ in traversal(u;) and traversal(usy), then the
equality ®(z).(c0uy) = D(y).(cO.ug) implies the equalities ®(x) =
®(y) and up = us.

Proof. We will show just the first one, the second one can be handled simi-
larly.

We argue by simultaneous induction on the number of nodes and the
rank of x.

Assume that, for every p-context x with

HNodes(r) <n and Rank(z) < k

and at least one of the inequalities strict, the equality ®(x) * (cO * hy) =
®(y) * (cd * hg) implies the equalities ®(x) = ®(y) and h; = ha.

Let x be a p-context with #Noqes(z) = n and Rank(z) = k. There
are p-forests Hy, Hy, S1, and Sy such that x = H; + C(x) + Hy and also
y =51+ C(y) + S2. By Lemma the image of a [J-pure p-context is
connected. As the equality ®(z) * (cd* h1) = ®(y) * (O x hy) holds in the
free forest algebra &, and the number of occurrences of the label b and the
number of occurrences of the label ¢ are equal in ®(x). So, there is a unique
tree in both sides which does not have equal number of occurrences of the
label b and the label c. So, the equality

O(Hy)+P(C(x)) * (cOxhy)+P(Ha) = D(S1) + P(C(y)) * (<O he) + P(S2)
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holds if and only if the following equalities hold:
®(Hy) = ©(51),

®(Hy) = ©(52)

O(C(x))) * (cO*h1) = 2(C(y)) * (cOx* ha).

If at least one of the H; and Hy are non-trivial, then, since #nodes(C(2)) < n
and Rank(z) < k, by induction hypothesis we obtain the following equalities:

®(C(x)) = ®(C(y)) and hy = hy,

which yield to the equalities ®(z) = ®(y) and hy = ho.

We may assume that H; = Hy = 0. Then either x = dl.v; or uf.vy,
and either y = d'O.vy or y = u§.ug, where uj, ug, vi, and vy are p-contexts,
with C(u1) # O and C(ug) # O, and dO,d'00 € A’. Since the equality
®(x) * (O x hy) = ®(y) = (cd * he) holds, by applying traversal, we obtain
that x = dJ.v; if and only if y = dJ.vo. Hence, one of the following must
hold:

e Assume that, z = d0J.v; and y = d.vy. Then by the equality ®(x) *
(cOx hy) = ®(y) = (O * hy) and Lemma [1.3.7], we obtain the equality
O(v1) * (O hy) = ®(vg) * (¢ * he). Since #nodes(v1) = n — 1 and
Rank(vy) = k, by induction hypothesis the equality ®(v1)*(cOxh;y) =
®(vy) * (cd * hg) implies the equalities ®(v1) = ®(ve) and hy = ho.

e Assume that, v = u{.v; and y = u$.v2. Then by the equality ®(z) *
(cOx hy) = P(y) * (cO* he) and Lemma we obtain the equality

D(up) * (dx* P(v1) *x O x hy) = Pug) * (O x P(va) * ¢ * ha).

Since #nNodes(u1) < n and Rank(u1) < k, by induction hypothesis we
obtain the following equalities:

D(uy) = P(ug) and P(v1) * (D * hy) = P(vg) * (O * h).

And since #Nodes(v1) < n and Rank(v;) < k, by induction hypothesis
we have the equalities ®(v;) = ®(v2) and hy = ho. O

Corollary 4.2.58. For elements x and y of the free w-algebra A, we have
the following:

e if for some p-forests h and h' and some p-contexts v and v’ with C'(v) #
O and C(v') # O we have x = v xh and y = v" xh/, then the equality
®(x) = D(y) implies the equalities ®(v) = ®(v") and ®(h) = ®(h');

e if for some p-contexts w and w' and some p-contexts v and v’ with
C(v) # 0 and C(v') # O we have x = v*.w and y = v, then the
equality ®(z) = ®(y) implies the equalities ®(v) = ®(v') and ®(w) =
O (w').
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Proof. Assume that, for some p-forests h and A’ and some p-contexts v and
v/ with C(v) # O and C(v) # O we have . = v* x h and y = v x h/. And
assume that the equality ®(x) = ®(y) holds. The equality ®(z) = ®(y)
implies that the following equality holds

bO.®(v).c * ®(h) = b0.®(v).cd * ®(h),

which is the equality ®(v)* (cO*®(h)) = ®(v') * (cOxP(h')). Since Remark
implies that in ®(h) and ®(h’) the number of occurrences of the label
b and the number of occurrences of the label ¢ are equal, Lemma [£.2.57] gives
the result.

We can apply similar arguments in the second one, and then Lemma

4.2.57| gives the result. O
The following result is immediate by Lemma [1.3.6] and Lemma [I.3.

Lemma 4.2.59. For elements x and y of the free w-algebra A we have the
following:

e if for some p-forests h and h/ we have x = w(h) and y = w(h'), then
the equality ®(x) = ®(y) implies the equality ®(h) = ®(1');

e if for some p-contexts dOJ and d'J and some p-contexts v and v' we
have x = dO.w and y = d'0.0', then the equality ®(z) = ®(y) implies
the equalities ®(v) = ®(v') and d = d';

e if for some p-contexts dJ and d'T and some p-forests h and h' we have
x=d0xh and y = d'Oxh, then the equality ®(x) = ®(y) implies the
equalities ®(h) = ®(h') and d = d'. O

The following is one of the main results in this chapter.
Theorem 4.2.60. The w-algebra homomorphism ® : A — S is injective.

Proof. Let x and y be elements of A such that ®(x) = ®(y). We show that
x = y. We argue by simultaneous induction on the number of nodes and
the rank of z.

Assume that, for every element x of A with

H#HNodes(r) <n and Rank(z) < k

and at least one of the inequalities strict, the equality ®(x) = ®(y) implies
the equality x = y.

Let x be a p-forest with #nodes(z) = n and Rank(x) = k. We show that
the equality ®(z) = ®(y) implies the equality x = y.

Assume that z is a p-forest. Then x = z1+-- -4z, and let y be a p-forest
with y = y1 +- - - +ym where x; and y; are non-trivial additively irreducible.
Hence, Lemma implies that ®(x;) and ®(y;) are connected. The
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equality ®(z) = ®(y) holds in the free forest algebra S. By Lemma [1.3.6]
we have m = n and for all ¢ the equalities ®(z;) = ®(y;) hold. Since
#Nodes (i) < n and Rank(z;) < k, by induction hypothesis we have for all
i, x; = y;. S0, we may assume that x and y are additively irreducible.
Hence, z is additively irreducible and one of the following must hold:

e Assume that, for some non-trivial p-forests h and h’, we have x = w(h)
and y = w(h’). Then by the equality ®(z) = ®(y) and Lemma
we have ®(h) = ®(h), where #nodes(h) = n and Rank(h) = k — 1.
And by induction hypothesis we get the result.

e Assume that, for some p-forests h and b’ and d,d’ € A, we have z =
dOxh and y = d’'Oxh’. Then by the equality ®(x) = ®(y) and Lemma
we have ®(h) = ®(h') and d = d’, where #noges(h) = n — 1.
Since Rank(h) = k, by induction hypothesis the equality ®(h) = ®(h’)
implies the equality h = h/.

e Finally, assume that, for some p-forests h and h’ and some p-contexts
v and v' with C(v) # O and C(v') # O, we have x = v* x h and
y = v™ x I/. Since the equality ®(z) = ®(y) holds, Corollary
implies the equalities ®(v) = ®(v') and ®(h) = ®(h'). Hence, by
induction hypothesis, since

#Nodes(h) <n and Rank(h) <k,

we have the equality h = h/. And since Rank(v) < k, while

#Nodes(h) <n,
by the induction hypothesis we have the equality v = v'.

Now assume that, z is a p-context. So, there are p-forests Hy, Ho, Si,
and Sy such that x = Hy + C(z) + Hy and also y = S; + C(y) + S2. By
Lemma[4.2.47] the image of a O-pure p-context is connected. As the equality
®(x) = ®(y) holds in the free forest algebra S, Lemma implies the
following equalities:

O(H1) = ®(S1) , P(Hz)=®(S2) and @(C(z)) = (C(y)).

Hence, the equalities H; = S and Ho = 5 is from the preceding arguments
on the case where z is a p-forest. So, we may assume that x is an additively
irreducible p-context.

To complete the proof, we can do the similar arguments as in the pre-
ceding arguments for the p-forest case. O

Definition 4.2.61. For an element x in the free w-algebra A, we define
the number of summands of x to be CP(z) = CP(®(z)) where CP(®(z))
is the number of connected parts of ®(z) in the free forest algebra S (See

Definition |1.2.8)).
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Lemma 4.2.62. Letu and v be p-contexts in the free w-algebra A. If for all
p-forests h in A the equality uwx h = v *x h holds, then we have the following
statements:

e there are some p-forests Th and Ty such that uw = T1 + C(u) + Ts
and v = Ty + C(v) + Ta, and for every p-forest h in A the equality
C(u) * h = C(v) * h holds;

e Rank(u) = Rank(v);
i #Nodes(u) = #Nodes(v)-

Proof. Since for the trivial p-forest the equality u * 0 = v x 0 holds, the last
two statements are immediate.

Let u = Hy + C(u) + Hy and v = S1 4+ C(v) + Sa. For the p-forest h =
dOx(H1+Hy+S1+52) we have uxh = vxh. As C(v)xdOx(Hi+Ha+51+S2)
and C(u)*xdO«*(Hy+ Hy+ 51+ S2) are additively irreducible for any choice of
C(u) and C(v), Lemma[4.2.45implies that ®(C(v)xd0Ox(H; +Ha+ 51+ 52))
and ®(C(u)*dO*(H1+Ha+S1+S52)) are connected. Applying the w-algebra
homomorphism ®, we obtain the following equality:

®(Hy + C(u) x dd * (Hy + Hy 4+ S1 + S) + Hy)
= &(S) + C(v) *d0* (Hy + Ha + S1 + S2) + Sa)

in the free forest algebra (AW {a,b,c})®. Lemma implies the compo-
nentwise equality of the forests. Since the second summands on both sides
of the preceding equality are the only ones with maximum number of nodes,
we can conclude that the following equalities hold:

(I)(C(’U) x d (Hl + Ho + 51 + 82))
= @(C(u) * dl] * (Hl + Ho + 51 + Sz)),

O(Hy) = ®(S1) and ®(Hs) = B(Ss).

Theorem implies the equalities H; = S7 and Ho = S5. Since for every
p-forest h in A the equality Hy + C(u) * h + Hy = S1 + C(v) * h + S5 holds,
applying the w-algebra homomorphism ®, we obtain the following equality:

which is
®(Hy) + D(C(u) * h) + ®(Hy) = B(S1) + ®(C(v) * h) + B(S3)).

As the preceding equality holds for all h, it implies that either both C(v)
and C(u) are trivial or both are non-trivial. In the former case, the proof
is complete. In the latter case, as C(v) * h and C(u) x h are additively
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irreducible, Lemma implies that ®(C'(v) * h) and ®(C(u) * h) are
connected. Now, by the equalities ®(H;) = ®(S1) and ®(Hz) = P(S2),
Lemmal[L.3.6]implies the equality ®(C/(u)xh) = ®(C(v)*h), and the equality
C(u) x h = C(v) % h for every p-forest h follows by Theorem O

The following is the main result in this chapter.
Theorem 4.2.63. Every free w-algebra A is a forest algebra.

Proof. As A satisfies the equational axioms of forest algebras, all we need
to show is that for given two p-contexts u and v in A such that, for every
p-forest h in A, the equality u* h = v h holds, then the equality u = v also
holds. In view of Lemma [£.2.62] we just need to consider the cases where
u = C(u) and v = C(v). We proceed by induction on the number of nodes
of u.

For p-contexts u and v with #nodes(u) = 0, if for every p-forest h in A
the equality u * h = v * h holds, then Lemma implies #Nodes(v) = 0,
so that Lemma implies the equalities u = v = [J.

Assume that for p-contexts u and v with #nodes(u) < n if, for every
p-forest h in A, the equality u* h = v * h holds, then the equality u = v also
holds.

Now, consider p-contexts u and v with #nodes(t) = n + 1 such that for
every p-forest h in A the equality usxh = v*h holds. As we assumed u = C(u)
and v = C(v), then either u = d0.w or z*.w, and either v = d'0.w’ or
v = y“a', where w, w', x, and y are p-contexts, with C(z) # O and
C(y) #0, and dO,d0 € A'.

Since for every p-forest h in A the equality u * h = v x h holds, applying
traversal o® on ux h = vxh, implies that u*h and v * h have the same kind.
In the first case d = d’, which means u = dJ.w if and only if v = d'O.w'.

Since for every p-forest h in A we have ®(u * h) = ®(v * h), we obtain

O(ddx (w*h))=&(dOx (w xh)) or @@ *(wx*h)) =&y *(w xh)).

In the first case, we obtain the equality ®(w x h) = ®(w’ * h) and for the
second case, by Corollary we obtain the equalities:

O(z¥) = (y”) and ®(w*h) = P(w *h).

In both cases, Theorem implies for every h the equality w*h = w' *h
holds, where in the second case Theorem also implies that = = y*,
and by induction hypothesis, since #Nodes(W) < F#Nodes(), we have the
equality w = w’. So we have the equality u = v. O

4.2.3 Some Notation in the Free w-Algebra A

From now on, we will work on elements of the free w-algebra A over an
alphabet A.
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For a p-context v, we define the following sets:

IrrF(v) = {w | w is a non-trivial multiplicatively irreducible factor of v};
LIrrF(v) = {h+ 0| h+ 0 € IrrF(v) };

RIrrF(v) = {0+ h | O+ h € IrtF(v) };

PIrrF(v) = {u | v € IrtF(v) , w is O-pure};

IdemF (v) = {u | u € IrtF(v) , w = w" for a p-context w};
IrrNIdemF (v) = IrrF(v) \ IdemF (v);

IrrNIdemF*(v) = IrrNIdemF (v) U ( U IrrNIdemF™(u)).
u® €ldemF(v)

And for a p-forest h, we define the following sets:

IrrS(h) = {t | t is a non-trivial additively irreducible summand of h};
IdemS(h) = {t |t € IrrS(h) , t = w(s) for a p-forest s};
IrrNIdemS(h) = IrrS(h) \ IdemS(h);

IrrNIdemS*(h) = IrrNIdemS(h) U ( U IrrNIdemS*(¢)).
w(t)eldemS(h)

Lemma 4.2.64. Let v be a non-trivial p-context in A. If we have IrrF(v) =
{x}, then there exists a unique positive integer k such that the equality v = xk
holds.

Proof. If v is multiplicatively irreducible, then we have the equality v = x.
Assume that, v is not a multiplicatively irreducible p-context. Then we can
write v = 1 ...z, as a product of its non-trivial multiplicatively irreducible
factors. By definition of IrrF(v) we must have z; = 2, whence v = z*.

We show that k is unique, that is, if there are positive integers k1 and
ko such that v = 2% = 2*2, then the equality k; = ko holds.

As x is a non-trivial multiplicatively irreducible p-context, by Lemma
x has one of the following forms:

1. d, where d0J € A;

2. u¥, where C(u) # [;

3. s+ [, where s is a non-trivial additively irreducible p-forest;
4. O+ s, where s is a non-trivial additively irreducible p-forest.

If = dJ and v = 2 = 22, then by applying the w-algebra homomorphism
#Nodes We have the following equalities:

#Nodos(v) = #Nodcs(xkl) - #NOdCS(xk2)7
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which implies the equality k1 = ko.
If 2 = v with C(u) # O and v = 2¥1 = 22 then by using the w-algebra
homomorphism f}, we have

f5w) = fi(a*) = f5(2™)

which is f4(v) = (¢0)* = (¢0)*2, for some element ¢[J € A’. Now by using
#Nodes We have the following equalities:

#Nodes(fé(v)) = #Nodes((bl:])kl) - #Nodes((b[’)kQ)y

which implies the equality k1 = ko.

For element of the form x = s+ in A where s is a non-trivial additively
irreducible p-forest, if s = d % h, then by using f; we have the following
equalities:

A@) = fil@™) = fi(a™).

Now by the forest algebra homomorphism #connectedParts Which gives the
number of connected parts we have the following equalities:

# ConnectedParts (fl (U)) = #ConnectedParts (fl (55k1 ))

- #ConnectedParts (fl (ku ))a
which is
#ConnectedParts((dD * fl (h) + D)kl) = #ConnectedParts((dD * fl (h) + D)kz)

and it implies the equality k1 = ko.
If s = w(h) then by using f{ we obtain

fil) = fi(a") = fi(="2)

which is
fiw) = (a+ DM = (a+DO)*.

Again by using #cConnectedParts We have the following equalities:

# ConnectedParts (f{ ('U)) = #ConnectedPartS((a + D)kl )

- #ConneetedParts((a + D)k2 )7

which implies the equality k1 = k.
Finally, if s = u* x h with C(u) # O, then by using f5 we have

f3(v) = fo(z™) = fy(a*2)
which implies the following equalities:

F5(v) = (a0 % fy(h) + D) = (aD * fy(h) +0)*=.
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Now by USiIlg #ConnectedParts we have

#ConnectedParts(fé (U)) = #ConnectedParts((aD * fé(h) + D)kl)
= :#Connectedl:’amts((a[| * fé(h) + D)kQ)

which implies the equality k1 = k.
In a similar way, we can get the uniqueness of k in case [+ s. O

Lemma 4.2.65. Let wq,...,w, be non-trivial multiplicatively irreducible
p-contexts in A. Then the following equality holds:

IrrF(wy. - -+ cwp) = {w1 } ULrrF (wa. - - - awy,).
Proof. See Appendix [A] Section O

Corollary 4.2.66. For p-contexrts v1 and vo in A, we have the following
equality:
IrrF(vy.v2) = IrrF(v1) U IrrF (vg).

Proof. The result is trivial by considering the cases where at least one of
the p-contexts v; and vy is trivial.
We can assume that v; and vy are non-trivial p-contexts, then there are

non-trivial multiplicatively irreducible p-contexts wq, . .., w, and wi,...,w),

such that v1 = wy.- -+ .w, and vo = w. -+ .w),. To show the result we apply

Lemma {4.2.65| to wy. - -+ wp.w. -+ ). O

By definition of IrrNIdemF*(v) and by Lemma [4.2.65, we have the fol-
lowing equality:

IrrNIdemF* (vy.v2) = IrrNIdemF* (v1 ) U IrrNIdemF* (v2)
and also we have

IrrNIdemF* (v*) = IrrNIdemF (v*) U ( U IrrNIdemF* (u)),
ue €ldemF (v*)

IrrNIdemF (v*) = 0,

IdemF (v*) = {v*}.

In particular, we obtain equalities:

IrrNIdemF*(v) = IrrNIdemF* (v?) = IrrNIdemF* (v*).
Lemma 4.2.67. For p-forests hy and ho in A, the following equality holds:

IrrS(hy + he) = IrrS(hy) U IrrS(he).
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Proof. By Lemmal[4.2.39 for a p-forest h in A we have the following equality:
IrrF(h 4+ 0) % 0 = IrrS(h).
Now, by Lemma we have the equality
IrrF(hy + ho + 0) = IrrF(hy + O) U IrrF (he + O),
which implies the following equality:
IrrS(hy + he) = IrrS(hy ) U IrrS(he). O

By definition of IrrNIdemS*(h) and by Lemma [4.2.67, we have the fol-
lowing equality:

IrrNIdemS* (h1 + hg) = IrrNIdemS*(h1) U IrrNIdemS* (hs),
and also we have

IrrNIdemS*(w(h)) = IrrNIdemS(w(h)) U ( U IrrNIdemS*(t)),
w(t)eldemS(w(h))
IrrNIdemS(w(h)) = 0,
IdemS(w(h)) = {w(h)}.

So, the following equalities hold:
IrrNIdemS*(h) = IrrNIdemS*(2h) = IrrNIdemS* (w(h)).
For a p-forest h, recall that we considered in Definition the set
VierNidems* (n) = (=% 0) ' (IrrNIdemS* (h)),

and every p-context v in ViyNidems+(n) can be written as a product of its
non-trivial multiplicatively irreducible factors:

V=wW1." " Wmp.
There is a positive integer n such that
w w
V= Upvy - Up Uy Ung,

where each

n;
U; = H wy
J=ni—1
is a product of successive context factors of v which are not w-context and
vy’ 18 Wy, 41, which is an w-context factor of v. For every such p-context v,

which is of the form
w w
UVy -« - UpV, Un+1

92



define a set H,, which contains all possible non-trivial forests of the form

PiQy- - PoQnPrii0

such that each F; is a scattered divisor of u; and each @); is a product of
some of the elements of IrrNIdemF*(v;) in some order.
For a p-forest h, we define the following set:

Specialy(h) = IrrNIdemS* (h) U U H,

VEVIrNIdemS* (h)
Lemma 4.2.68. For p-forests h and s, the following equality holds:
Specialy(h + s) = Specialg (h) U Specialg (s).
Proof. Because, we have the following equalities:
Specialg (h + s)

= IrrNIdemS*(h + s) U U H,

VEVLrNIdemS* (h+s)

= IrrNIdemS*(h) U IrrNIdemS*(s) U U H,

VEVIrrNIdemS* (h)UIrrNIdemS* (s)

= IrrNIdemS*(h) U IrrNIdemS*(s) U U H,

VEVIrNIdems* (h) UVIrrNIdems* (s)

= IrrNIdemS* (h) U IrrNIdemS*(s) U U H,

VEVIrNIdemS* (h)

U U H,

VEVIrNIdemS* (s)

= IrrNIdemS* (h) U U H, | UIrrNIdemS*(s)

VEVINIdemS* (h)

U U H,

VEVIrNIdems* (s)

= Specialy(s) U Specialy(s). O

93



Lemma 4.2.69. For a p-context v and a p-context h, the sets IrrF(v) and
IrrS(h) are finite.

Proof. We argue by induction on the number of nodes of v. If #yNoqes(v) = 0,
then IrrF(v) = () which has finite number of elements. Assume that for ev-
ery p-context v with #nodes(v) < k, IrtF(v) has finite number of elements.
Let v be a p-context with #nodes(v) = k& + 1. If v is multiplicatively ir-
reducible, then IrrF(v) = {v}. We may assume that v is not multiplica-
tively irreducible, then, there are non-trivial p-contexts v; and vy such that
v = v;1.v2, and Corollary implies that IrrF(v) = IrrF(vy) U IrrF (v).
Since #Nodes(v1) < k and #nodes(v2) < k, by induction hypothesis, IrrF (v1)
and IrrF(vy) are finite, so does IrrF(v).

We can do similar arguments for a p-forest h. O

Corollary 4.2.70. For a p-context v, the sets LIrrF (v), RIrtF(v), PIrrF(v),
IdemF(v), IrrNIdemF(v), and IrtNIdemF*(v) are finite.

And similarly, for a p-forest h, the sets IdemS(h), IrrNIdemS(h) and
IrrNIdemS*(h) are finite.

Proof. The sets LIrrF (v), RIrrF (v), PIrrF(v), IdemF(v), and IrrNIdemF (v)
are subsets of set IrrF(v), and Lemma [4.2.69] implies that all are finite.
Since finite union of finite sets is a finite set, by definition of IrrNIdemF*,
IrrNIdemF*(v) is finite.
For a p-forest h, we can do the similar argument. O

4.3 Conclusion

We introduced w-algebras which satisfy the equational axioms of forest al-
gebras with some extra assumptions. Since the class of w-algebras is defined
by equational axioms, all the free w-algebras exist. By introducing addi-
tional partial operations on a forest algebra we make it into an w-algebra.
By using the universal property of the free w-algebra we showed that the
free w-algebra is a forest algebra. We distinguished all kinds of non-trivial
additively irreducible and non-trivial multiplicatively irreducible elements of
the free w-algebras. We showed that the set of non-trivial multiplicatively
irreducible factor of a product of p-contexts is the union of the set of non-
trivial multiplicatively irreducible factor of each one. By Lemma it is
natural to study the free profinite forest algebra as an w-algebra. We still
do not know if the free w-algebra is the answer for the corresponding term
algebra for the relatively free pro-BSS forest algebras.

Analog of Birkhoff theorem for partial algebras also holds as studies
of Németi and Sain [25], Andréka and Németi [3], and briefly studied by
Burmeister [10, p. 314]. The class of w-algebras B is a variety and it is
defined by a set of equations on the free w-algebra A [5]. The latter means:
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there is a family E of equations p = ¢, where p and ¢ are polynomial
symbols, such that an algebra B of the type 7 belongs to B if and only if
for each equation p = ¢ in F the induced operations pp and ¢p coincide.
Every subvariety of B satisfies the equational axioms of w-algebras with
more equational axioms [5]. To identify the free object in a subvariety of B
we just need to identify the quotient of the free w-algebra by the new set of
equations.
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Chapter 5

Canonical Forms

In the study of the pseudovariety BSS, from [6, Theorem 2 and Proposition
19] and [I, Section 8.2], we obtained certain suitable identities denoted by
>1. We describe an algorithm to compute the so-called canonical form for an
element of the free w-algebra A modulo > and we prove it is correct.

In this chapter we use the same notation as in Chapters [1| and

5.1 Identities

Given any finite monoid M, there is a number w(M) [denoted by w when
M is understood from the context] such that for each element z of M, z¢
is an idempotent: z¥ = z¥z*. Therefore for any finite forest algebra (H, V')
and any element u of V and g of H we will write u* and w(g) for the
corresponding idempotents [6].

Let V is a pseudovariety of finite forest algebras. We say that an algebra
is pro-V if it is a projective limit of a projective system of forest algebras
from V.

Let A be a finite alphabet and let BSS be the pseudovariety of finite for-
est algebras generated by all syntactic forest algebras of piecewise-testable
forest languages. By Lemma and in view of [0, Theorem 2 and Propo-
sition 19], we get BSS C VJ, where J is the pseudovariety of J-trivial
monoids. And by Lemma we have BSS C FJ. For a multiplicative
finite monoid M and additive finite monoid S, and m € M and s € S,
there exists exactly one idempotent of the form m™ and ns with n > 1;
these idempotents will be represented respectively by m* and w(s). We
thus define new unary operations m — m®“ and s — w(s) on the pseu-
dovariety of all finite forest algebras. In order to verify that the unary
operations m — m* and s — w(s) defined on the pseudovariety of all fi-
nite forest algebras commutes with all forest algebra homomorphisms let
a: S = (Hy, Vi) — So = (Hs,V3) be a forest algebra homomorphism of
finite forest algebras and h € H; and v € Vi, then a(w(h)) = w(a(h))
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and a(v*) = a(v)¥. For construction of all elements of the free pro-BSS,
Q4BSS, from the projections a1, ..., a,, it is natural to consider the basic
operations and two unary operations x — w(z) and y — y*. And so we can
study the free pro-BSS as an w-algebra.

Consider the variety V of w-algebras of type 7, defined by the set X
consisting of the following identities, for context terms u and v and forest
term h,

w)® = (vu)® = (u*o*)* (
vh 4+ w(vuh) = w(vuh) = w(vuh) + vh (5.4)

Lemma 5.1.1. For forest terms h and s, the following identities are con-
sequences of X:

wh+s)=w(s+h) =wwh)+w(s)) (5.5)
w(h)+h=w(h)=h+w(h) (5.6)
w(w(h)) =w(h) (5.7)

Proof. The identities and are immediate respectively from the
identities and by letting v = s + 0 and v = h + O and then
acting on the trivial forest term 0. O

Lemma 5.1.2. The following identities are consequences of X:
L1 v =¥,
L2 (wv)¥u = (uv)¥ = v(uv)¥;

1.8 u® = v where u with the factorization [[;cus is a p-context and v
is the product, in any order, of the factors of u;

1.4 w(h) 4+ w(h) =w(h);
L5 wh+s)+h=wh+s)=s+wh+s);

L6 w(h) = w(s) where h is a p-forest and s is the sum, in any order, of
the elements of IrrS(h);

L7 (v0)¥ =v¥;
L8 (uv¥)® = (uv)¥;

L9 v = ( I1 v)¥;
vEIrrNIdemF* (u)
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I.10 IrrNIdemF*(u) = IrrNIdemF* (v) if and only if u¥ = v*;

L11 if IrrNIdemF*(u) C IrrNIdemF*(v), then u“v* = v¥“u® = v¥;
112 if IrrNIdemF*(u) C IrrNIdemF*(v), then uwv* = v*u = v¥;
118 w(h 4+ h) = w(h);

.14 w(uh + uwh) = w(uwh);

L15 w(w(h)+s) =w(h+s);

I1.16 for a p-context v = hy + C(v) + ha, if C(v) = O then v* = w(hy) +
O+ w(he). And for C(v) # 0, if C(v) # v then there is a p-context u
with uw = C(u) such that v = u*;

L17 for every p-context u and v and every p-forest h we have w(uvs) =
w(uvs) + w(us) = w(us) + w(uvs);

1.18 for every p-context u and every p-forest t if p-contexts w and v are
such that one of the identities wv = w or w = vw holds, then the
identities uvt + w(uwt) = w(uwt) = w(uwt) + wvt hold;

1.19 for p-contexts vi,...,v, and a p-forest s, if we have uy,...,u, are
product of some of multiplicatively irreducible factors of respectively
V1,...,U, or the trivial p-context 1 and h is a suffix of s, then

w(oy - vys) +ur - uph = w(of - vy s).
And similarly, we have the identity
wy - v¥s +ug - uph) = w(vf - uys);
L20 for contexts v and u with u |s v we have the identity w(v0) + u0 =
w(v0). And similarly, we have the identity w(v0 + u0) = w(v0);

121 w(h) = w( > t);
telrrNIdemS* (h)

1.22 for every forest s € Specialg(h), w(h + s) = w(h);
L23 wh)=w( > t);

teSpecialy (h)

n
1.2/ for a p-context v with factorization H v; and a p-forest h =11 +---+
=1
tcp(ny, we have the following results:

G.1 if ty € LIrrF(v)0, then v*h = v*h' where h' = ta + - - - +toppy;
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G.2 if toppy € RIrtF(v)0, then v“h = v*“h' where h' = t; + -+ +
tep(h)—1s

G.3 if there is a p-context w € Pref(h) such that IrrNIdemF*(w) C
IrrNIdemF*(v), then v*h = v*h' where h = wh';

G.4 if for a positive integer j with 1 < j < CP(h) and a nonempty
set L C LIrrF(v)0 there is a p-forest s which is a sum of, in any
order, of elements of L such that there are p-contexts u and w and
a p-forest r with t1 +- - - +1t; = ur and s = wwr, then v*h = V1’
where ' = tji1 4+ tepn);

G.5 if for a positive integer j with 1 < j < CP(h) and a nonempty
set R C RIrrF(v)0 there is a p-forest s which is a sum of, in any
order, of elements of R such that there are p-contexts u and w
and a p-forest r with t; + -+ tcpny = ur and s = uwr, then
vWh = v“h' where ' =t1 + - +tj_1;

G.6 for v, = Hi + 0+ Hy with Hy = s1 + - -~ + Scp(my) and Hy =
5/1+'”+S/CP(H2) if

scp(m,) € Specialg(h) or s} € Specialy(h),
then we have the identities
vw(h) =v1...vn-1(81 + -+ + scp(a,)—1 +w(h) + Ha)
or
vw(h) =v1...vn—1(H1 +w(h) + 85+ + S/CP(HQ));

G.7 for v, = Hy + U+ Hy with Hy = s1 + -+ + scpu,) and Hy =
s+ + S/CP(HQ) if for a positive integer j with

1<j<CP(H;) (1<j<CP(H)

and a nonempty set D C Specialy(h) there is a p-forest p which
is a sum of, in any order, of elements of D such that there are
p-contexts u and w and a p-forest v with

8j 4+ scp(m,) =ur or s’1+--~+59 = ur
and p = uwr, then we have the identities

vw(h) =v1...0p—1(51 + -+ sj—1 +w(h) + Ha)
or

vw(h) =v1...vn 1 (Hi +w(h) + s+ + S/CP(HQ));
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G.8 if Specialy(h) C Specialgy( >,  x), then v“w(h) = v*¥0;
z€LIrrF (v)0

G.9 if Specialy(h) C Specialy( Y.  z), then v“w(h) = v*0.
z€RIrrF(v)0

G.10 if Specialg(h) C Specialg( >, ), then v“h = v*0;
z€LIrrF (v)0

G.11 if Specialg(h) C Specialg( Y. ), then v“h = v¥0.
z€RIrrF(v)0

Proof. See Appendix [A] Section

Remark 5.1.3. For an w-context v, let
hi= > h and hy= > k.
heLIrrF(v)0 heRIrrF(v)0

Then we have the following identities:

v = (hl + H u + hg)w

uw€PIrrF (v)
by
= (i +O)O@+h)( [T w)*
u€PIrrF (v)
=((m+0*O+h)*( [ w)*
u€PIrrF (v)
by
= (((h + OO+ h)*)*( I w*)®
u€PIrrF (v)
by
=((m+D0#O+h)* [ w*
u€PIrrF (v)
by [.3 and
= (wh) +O)O+w(hz) [ w*
u€PIrrF (v)
=wh)+ ] wtwhe))
uw€PIrrF (v)
=wh)+ W)+ [ wtwhe))?+why)
u€PIrrF (v)
by

Lemma 5.1.4. For an w-context v* with

hy = Z h and hy = Z h

heLIrrF (v)0 heRIrrF(v)0
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we have the following identities:
1. v 4+ w(hy) = w(hy) +v¥ =v¥;
2. (v+ h2)¥ =v¥ and (b1 +v)¥ = v¥.

Proof. By Remark we have the following identity

o= (wlh)+ ] utw(he))® (5.8)
uw€PIrrF (v)
=w(h)+ wh)+ ] w+wh)? +whe). (5.9)
u€PIrrF (v)

The identities in follows from (j5.9)) and the identities in [2| follows from
6. (51, and [T O

Lemma 5.1.5. We have the following results:
1. for every forest s € Specialy(h), w(h) + s = w(h);
2. if Speciali(s) C Specialg(h), then w(h) +w(s) = w(s) +w(h) = w(h);
3. if Specialy(s) C Specialy(h), then w(h) + s = s +w(h) = w(h).
Proof. 1. By using and [[.6] and [[.5] we obtain:
w(h) +s5=w( Z t)+s

teSpecialy (h)

:w(s—|— Z t)—i—s

teSpecialy (h)\{s}

=w(s+ Z t)

teSpecialy (h)\{s}

—o( Y0

teSpecialy (h)
= w(h).
2. Assume that the p-forests s and h are such that

Specialy(s) C Specialg(h).

Then, by and (j5.5)), there is a p-forest h; such that

w(h) =w(h1 + s) = w(s+ hy).
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We have

w(h) +w(s) =w(s+ hi) +w(s) by [L.6] [[.23] and
— w(w(s) + w(h1) +w(s) by B
= w(w(s) + (b)) by [.3
=w(s+ hy) by (5.5
=w(h) by [L.6] [[.23 and (5.5)).

We can do the similar arguments for the symmetric case.
3. By using the preceding identities and (5.6 we have
w(h) +w(s) =w(h) + (w(s) + s)
= (w(h) +w(s)) +s
=w(h) + s. O
The following is the immediate result of Lemma and (5.5))
Corollary 5.1.6. If for p-forests s and h we have
Specialy(s) C Specialy(h),
then the identity w(h + s) = w(h) holds. O
Lemma 5.1.7. Let v be a p-context and consider p-context
u = H w.
w€IrrNIdemF* (v)

Define elements vy, hi, ho, s;, and s, as follows:

U1 = H w, hl = Z S,

wEPIrrF(u) s€RIrrF (u)0

ho= > s s= 3 s
s€LIrrF (u)0 s€Specialy (h1)

s = > s.
seSpecialg (h2)
Then we have the following identity:
v = (vi(s1+ 0O+ s,))".
Proof. By [L.9[and [I.3| we have u¥ = (vi.(h1 + 0O+ hg))¥, while (5.1)) implies
(v1.(h1 + O+ h2))* = (v¥.(h1 + O+ ho)*)~.

By properties of w-algebras we have (hy + 0+ ho)* = w(h1) + 0O + w(he).
By we have w(h1) = w(s,) and w(hy) = w(s;), which imply that the
following identity:

(vY.(h1 + 04 h)?)? = (v¥.(sr + O+ s7)“)%.
Hence, (5.1]) implies the result. ]
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Remark 5.1.8. Under the assumptions of Lemma we have the following

results:
1. if Specialg(s) C Specialg(hi), then w(s) +v* =
2. if Specialy(s) C Specialy(hsg), then v* + w(s) = v*¥;
3. if Speciali(s) C Specialg(h1), then s + v = v¥;
4. if Specialp(s) C Specialg(hz), then v* + s = v¥.

which can be easily proved by Lemmas [5.1.5 and [5.1.7}

5.2

Canonical Forms

We define relations < and <y respectively on H4 and V4 over alphabet
A ={as,...,ay,}, recursively, as follows:

for every i« <mn, 0 <g a;, O <y a;;

for every i,7 < n, ;1 <y a;0if ¢ < j;

for forests t and s expressed as sums of non-trivial trees t1 + --- + ¢;

and sq + -+ -+ s;:

1< g
s<gt if or
1=7 and 3Fk<i VIi<k t;=s and

for trees a;h and a;r:

a;d <y (IjD
a;h <g ajr if or
a;=a; and h<pgr;

for connected contexts a;v and a;u:

a; <y (IjD
a;v <y aju if or
a; =a; and v <y u;

for contexts v = Hy + C(v) + Hy and u = S1 4+ C(u) + Sa:

C(v) <y C(u)

v<yu if Cv)=C(u) and H; <y S
or

te <H Sk;

Hi+C(w)=51+C(u) and Hy <pg So.
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Lemma 5.2.1. The relations <pg and <y are strict total orders respectively
on HA and VA.

Proof. We show that, for given forests hy and ho, one of the following holds:
® h1 = hy;
o h1 <pg hg;
e ho <g hy.

We argue by induction on the minimum of the number of nodes of h; and
ho. We assume that hq is the forest which has the minimum of the number
of nodes between h; and ha. Let hy be a forest with #nodes(h1) = 0, then
we have h; = 0 which implies that 0 <z hs or ho = 0. Assume that for a
forest hy with #Nodes(h1) < k the result holds. We show that a forest h;
with #nodes(h1) = k + 1 the result holds. We may assume that h; # ho.
We have the following three cases:

1. If CP(hy) < CP(hz), then by definition of <g, hy <pg he.
2. If CP(hQ) < CP(hl)7 then by definition of <g, ho <g hi.
3. If CP(h1) = CP(hz), then we have the following two cases:

(a) If CP(h1) = 1, then we have roots(hi) <pg roots(hg) which im-
plies h1 <y ho and vice versa, or there are forests s; and so, and
an element d € A such that hy = d0 x s1 and ho = d[J % s9, since

#Nodes(sl) = ka

induction hypothesis and definition of <z imply that s;1 <g s9
yields to h1 <pg hs and vice versa, while s = s9 yields h; = ho;

(b) If CP(h1) = n, then there are forests
81,...,8n,t1,...,tn
such that hy =s1+---+ s, and ho =t +--- + t,. Since

#Nodes(sl) <k,

induction hypothesis and definition of <y imply that s; <pg t;
yields to h1 <g ho and vice versa, while for s; = t1, since

#Nodes<32 +---+ Sn) S k7

induction hypothesis and definition of <y imply that so +--- +
Sp <g to+ -+ t, yields to hy <y ho and vice versa, while
Sg4 -+ sy, =ta+ -+ 1, yields hy = ha.
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We can do the similar arguments for contexts v; and vs. O

Let B = (H,V) be the free w-algebra over the alphabet B = {a4,...,a,}
with B N {a,b,c} = (. We define <’; and <, respectively on H and V as
follows: for p-contexts u and v and p-forests h and s

u <y vif ®(u) <y ®(v)
h <y sif ®(h) <y ®(s),

where <z and <y are strict total orders respectively on H4 and V4, ® is
the w-algebra homomorphism in Example and

A={a1 =a,a2 =b,a3 =c,ayq,...,an}.
From now on by order we mean <’; and <j,.

Lemma 5.2.2. By using identities in X, for an w-context u* there is a p-
context v such that u¥ = v¥ where v admits a factorization vivy such that vy
is a product of a;(0 with a;(0 € A" in increasing order and vy is of the form
Hy+UO+ Ho, where Hy and Ho are sums of non-trivial additively irreducible
forests in increasing order and no summand of Hy and Hs is an w-forest.

Proof. By Lemma, part for the p-context

w= I =

vElrrNIdemF* (u)

we have u* = w*. By definition of IrrNIdemF*(u), the p-context w does not
have w-context factors. Again by Lemma[5.1.2] part[[.3] there is a p-context
z, with w* = z%, of the form vyv9v3 where

vl = H x , in increasing order,
z€PIrrF (w)
Vg = H y , in increasing order
yELIrrF(w)
and
V3 = H vy, in increasing order.

y'€RIrrF (w)

Since v; is product of non-trivial O-pure multiplicatively irreducible factors
of w and w does not have w-context factors, vy is the product of some a;[]
with a; € A. By definition of RIrrF and LIrrF there are p-forests S; and S
such that

H y=51+0 and H y' =04 Ss.
y€LIrrF (w) y' €RIrrF (w)
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We claim that S; and S2 do not have w-forest summands. If w(p) is an
w-forest summand of S, then w(p) + O is a factor of S; + O and also a
factor of w, which contradicts with the assumption that factors of w are not
w-contexts, and similarly for So. O

The p-context v* in Lemma is called the ordered form context of

uv.

For a given w-forest w(h), by Lemma part for the p-forest

s = E x,

z€IrrNIdemS* (h)

we have w(h) = w(s). Again by Lemma part there is a p-forest r,
with w(s) = w(r), where
r= Z x , in increasing order.
xz€lrrS(s)

The w-forest w(r) is called the ordered form forest of w(h).

Definition 5.2.3. Assume that h = hy + - - - + hy, is a p-forest decomposed
as the sum of its non-trivial additively irreducible summands. We denote by

h() the p-forest which is obtained from h by elimination of its i-th summand.
That is,

RO =hy+ o+ i+ + Dy
=hi-+hi-1+hit1+ -+ hp.

Definition 5.2.4. Let v be a p-context in the free w-algebra A. Then,
by Lemma we have v = vy - - - v, where the v;’s are non-trivial mul-
tiplicatively irreducible factors of v. For a positive integer k, we say that
NLexy (vi,...,v,) is k if there are positive integers

U,y Uy Tet1 € {1,...,n—|—1},
such that the following conditions hold:

o ilzlandik+1:n+1;

e for every j € {1,...,k} we have ij < ij41;

o for every j € {1,...,k} and every ¢t € {i;,...,7j41 — 2} we have v, <},
Vt+1;

e for every j € {2,...,k — 1} we have v;; <y, v, 1.

Note that, for non-trivial additively irreducible p-forests s and t, the
equality (s +0).(O+¢t) = (O +t).(s + 0) holds. And also we have:

NLexy((s+0),(0+¢) =1 and NLexy((O+1¢),(s+0)=2.
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Definition 5.2.5. Let v be a p-context in A and let the v;’s be its non-trivial
multiplicatively irreducible factors of v. Define

n
VLex(v) =min{k e N|v = Hvi, k= NLexy(vi,...,v,)}.
i=1
Definition 5.2.6. Let h be a p-forest in the free w-algebra A. Then, by
Lemma we have h = h; 4+ --- + h,, where the h;’s are non-trivial
additively irreducible summands of h. For a positive integer k, we say that
HLex(hy + -+ + hy,) is k if there are positive integers

i, i ies € {1, m+ 1},
such that the following conditions hold:
e i1 =1and igt; =n+1;
o for every j € {1,...,k} we have ij < ij41;
e forevery j € {1,...,k} and every ¢t € {ij,...,ij41 —2} we have h; </
hiq1;
e for every j € {2,...,k — 1} we have hy; <y hi;—1.

Note that, the number of idempotent subterms of a given element of A
is finite.

Let P = (Hp,Vp) be an w-algebra and for every u,v € Vp and h € Hp
the set of identities X, consisting of the following identities, hold in P.

(uwv)* = (vu)” = (u“v*)*
W =¥ = v

(Uw)w — vw

vh 4+ w(vuh) = w(vuh) = w(vuh) + vh

Definition 5.2.7. Let t; and t5 be two elements with the same type in A.
We say that t; and to are connected and we denote it by t1 ~yx to, if there
exists a finite sequence of elements called connecting sequences Sy, ..., Sy
in A, all have the same type as the type that ¢; and to have, such that
So = t1, Sp, = to and for all i € {1,...,n} there are subterms X and Y of
respectively S;_1 and .5;, that is:

Si—1 = fi(X;Uip,...,Upm) and S;= fi(Y;Uin, ..., Uim),

for some elements U; 1,...,U;,, in A and f; is an n-ary operation which is
a composition of operations from {+,+1, +2, ., *,w(), ()}, and there exists
an w-algebra homomorphism:

v: A— P,
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such that p(X) = u and p(Y) = v, or ¢(Y) = u and ¢(X) = v and the
identity u = v is in X.

The result [I, Proposition 1.3.6] justify the following definition:

Definition 5.2.8. Let u = v be an identity of type 7 on A’ (cf. Section
. The congruence defined by the identity u = v is given by

ﬂ{ ker(p) | ¢ : A — S is an w-algebra homomorphism with
Selu=ol},

where [u = v] is the class of w-algebras of type 7 satisfying the identity
u=u.

For more details about congruences see [1, pp. 24-31].
Since [u = v] is equational, by Birkhoff Theorem [I, Theorem 1.3.8],
[u = v] is a variety of w-algebras of type .

Lemma 5.2.9. The relation ~y—, is the congruence on A= (H,V) defined
by the identity u = v.

Proof. The relation ~,—, is an equivalence relation.

For a p-forest h in H, the relation h ~,—, h holds. Because, let n = 0
and Sy = h then the result is immediate.

Assume that, the relation h ~,—, t holds. So, the connecting sequence
of p-forests Sy, ..., S, in H exists. We show that the relation ¢ ~,—, h holds.
For a connecting sequence in H, we can choose S, ...,S) in H such that,
for every i € {0,...,n}, S, = Sp—i. The required properties hold in view of
the assumption A ~y,—, t. So, the relation ¢ ~,—, h holds.

Now, assume that, h ~,—, t and ¢ ~,—, 7 hold. So, the connecting
sequences of p-forests Sy, ..., S, and S|, ...,S), exist with Sy = h, S, =1,
S, =t, and S}, = r. We just need to take the sequence

QOv"‘aQﬁ?Qn-‘y—la“'va-i-n

such that @Q; = S; for all i € {0,...,n} and Qn4; = S, for all i € 0,...,m.
The required properties hold in view of the assumptions h ~y,—, t and t ~y,—,
r. So, the relation h ~,—, r holds.

This shows that ~,—, is an equivalence relation on H. In a similar way
the relation ~,_, is an equivalence relation on V.

To show that ~,—, is a congruence, assume that x ~,—, y and p ~,—, ¢,
then we need to show for the basic operations, we have O(z, p) ~y—, O(y, q).

It is easy to see that for p-forests = and y if © ~y—, y, then w(x) ~y—y
w(y). And for p-contexts t and z if ¢ ~y—, z, then t* ~,_, 2%. It is because
x is a subterm of w(x) and ¢ is a subterm of ¢“.
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Since the relation x ~,—, y holds, there is a connecting sequence
S0, -+, Sn.
Since S;’s, have the same type, the sequence
O(50,p); - -, O(Sn, p),

is from the element O(z, p) to the element O(y, p). With respect to the type
of x and y (they should have the same type) and basic operation O, with
respect to the type of p, we have the following:

1. If the operation is addition, then let

(@ Uirs .. Uim,p) = fi(lq; Ui, ..., Uim) + p,
S in A with S = = + p,

and put the sequence of elements S,...,S),

S! =y +pand for every i € {1,...,n},
i = f(X5Ui, - Ui, p)
and
= fi’(Y; Ui, Uim,p)
then the required properties hold in view of the assumption x ~,—, ¥.
Similarly, we have p + z ~y—y p + ¥.

2. If the operation is multiplication, then let

fi/(q;Ui,l,u- im>D ) fz(% 117'--,Ui,m)~pa
S!in A with S = z.p,

and put the sequence of elements S, ..., 5],

S/ =y.p and for every i € {1,...,n},
i— 1_f7,(X Ullu“'uULmap)

and
S’Z = fz/(Y7 Ui,l? ceey Ui,m7p)
then the required properties hold in view of the assumption x ~,—, y.

Similarly, we have p.x ~y—y p.y.

3. Assume that, x and y are p-contexts, p is a p-forest and the operation
is action. Then let

fz/(an’L,lv Zmyp) fl(q, zl>~"7Ui,m)*pa

and put the sequence of elements S, ...,S) in A with S = x * p,
S/ =y« p and for every i € {1,...,n},

i—1 — fz(X UZ 1;---3Ui7m,p)

and
S; = fl(Y;Uis, ..., Uim,p)

then the required properties hold in view of the assumption x ~,—, y.
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4. Assume that, x and y are p-forests, p is a p-context and the operation
is action. Then let

fz/((L Ui,l?’ . '7Ui,M7p) =p* f’L(Qa Ui,17- . '7Ui,m)7

and put the sequence of elements S, ...,S; in A with Sj = p * z,
Sl =p=*y and for every i € {1,...,n},
z{—l = fz/(Xa Ui,la ey Ui,map)

and
SZ{ = fi/(Y; Ui, ..., Ui,m’p)

then the required properties hold in view of the assumption x ~y,—, y.

For the relation z ~,—, y and an element p € A, we have shown that

O(x,p) ~u=v O(y,D)

(similarly, O(p,z) ~y=y O(p,y)). Indeed, if © ~yu—, y and p ~y—, ¢, then
by what we have shown we have

O(x,p) ~u=v Oy, p) ~u=v O(y,q).

Thus, we have shown that the relation ~,—, is a congruence on A%.

The relation ~,—, is the congruence defined by the identity u = wv.
Because, if 0 is the congruence defined by the identity v = v, then zfy
implies © ~y—, y. To show this, take the sequence Sy = x and S; = y the
existence of w-algebra homomorphism comes from the congruence zfy. [J

Let A and B be respectively the A" and A’w {00} free w-algebras, where
0 ¢ {a,b,c} is fixed and

{a0,50,c0} N A" = 0.

Let h be a fixed p-forest of A and let v be a fixed p-context of A. Let ~, )=

and ~w_y be the congruence defined by the identity respectively w(h) = 0
and v* = 90 (see Definition [5.2.8). Note that, there is the inclusion map

t: A— B.

For an element z € A with w(h) € IST(z) (cf. Example [4.2.27)), the
multiplicity of w(h) in x is defined as follows:

mz(w(h)) = max{length(traversal(®(z))[s) | z € t(z)/~ym)=a}>

where length of a word is the number of its letters.
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Similarly, for an element x € A with v* € IST(x), the multiplicity of v*
in z is defined as follows:

mg(vY) = max{length(traversal(®(z))|y) | z € t(z)/~pw=o01}-
Let ¢ be an element of A, w(t1),...,w(ty) be the w-forest subterms of

t, and t1*, ...t be the w-context subterms of ¢t with C(t;) # OJ, given by

2
IST(t). Let n = #mrm(t) (cf. Example 4.2.24). Note that, the equality

n = ni+nsg holds if and only if all the idempotent subterms have multiplicity
1. Consider a sequence of elements of A, {Q; };l;;n? giving an ordering of

t; and t) by decreasing order of rank. For ¢ < n} + nb, let mq = my(E7) +
-+ my(Ey) and mg = 0, where for every i, E; is w(Q;) or @Y, if defined.
Define the sequence of elements of A, {P.}"_; as follows:

Py r41= = P, = Qy.

Let M; = (m},...,m},) be n-tuple of natural numbers whose entries are
respectively H Lex(P;) or V Lex(FP;) in case P; is a p-forest or a p-context
and, for every i, if Rank(P;) = Rank(P;41) (cf. Section [4.2.1.1]), then their
respective entries m; and m;_ | satisfy the inequality m; > mj_ ;. We denote
M; by LLexy(t) or LLexy (t) respectively, if ¢ is a p-forest or a p-context.

Note that, for given p-forests h and s, and for p-contexts u and v we
can compare the n-tuple LLexp(s) and the m-tuple LLexy(h), and also
the n’-tuple LLexy (v) and the m/-tuple LLexy (u) as follows: LLexy(s) <
LLexy(h) if one of the following conditions holds:

e n < m;
e n=m and for
LLexp(s) = (qi,.-.,qn) and LLexg(h) = (z1,...,2n),
there is a positive integer 1 < j < n such that the following conditions
hold:
{ zi=¢q ,Vi>]
q; < Zj.

and similarly, LLexy(v) < LLexy(u) if one of the following conditions
holds:

o n/ <m;
e n' =m’ and for
LLexy(v) = (¢i,...,q,) and LLexy(u) = (21,...,2),
there is a positive integer 1 < j < n/ such that the following conditions
hold: o
{ Zi=4q, Vi>j
q; < zj.
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That is, we can compare LLexy(s) and LLexy(h), and also LLexy (v) and
LLexy (u) by reverse-lexicographic order, i.e., the right-most component is
the most significant.

Note that for a p-forest t if the summands of ¢ are in increasing order
and for a p-context v if v is the product of its non-trivial multiplicatively
irreducible factors in increasing order, then we have the following equalities:

VLex(v) =1 and HLex(t)=1.

Remark 5.2.10. By definition of ordered form forest and ordered form con-
text, if we substitute an w-context or w-forest subterm, v* or w(h), of an
element t in A by respectively its ordered form w-context or w-forest, then we
may reduce at least one of #pEM(t), #Nodes(t), and LLex g (t) or LLexy (t)
if ¢ is respectively a p-context or a p-forest.

5.2.1 Algorithm of Canonical Form

Let t be an element of A. For every i = 0,...,Rank(¢) — 1 define O(i) as
follows:

O.1 substitute an w-forest subterm w(h) of ¢t with Rank(h) = i by its
ordered form forest, if it is not in ordered form:;

0.2 substitute an w-context subterm v* of ¢t with Rank(v) = 4 by its or-
dered form context, if it is not in ordered form.

By applying the rules and of O(i) on t we may reduce #mprm(t),
#Nodes(t), or one of LLexy (t) and LLexy(t) which the last two depends on

the type of t.

Let t; = t,t2,..., 1, be the sequence of elements such that for each j, t; 11
is obtained from ¢; by applying one of the rules or For every j in
the step from t; to ;11 at least one of #pEMm(t)), #Nodes(tj), or LLexr(t;)
or LLexy (t;) is reduced.

Assume that, from ¢; to t;4; the following equality holds:

#Nodes (tj) = #Nodes (thrl ) .

Note that if we reduce #iprm(t;), then, by definition of LLexy and
LLexy, it implies that LLex g (t;) or LLexy (t;) is reduced respectively when
tj is a p-forest or a p-context.

In this step one of the rules and is applied on an w-context
or an w-forest subterm of t; which is v* or w(h). If v has an w-context
factor or h has an w-forest summand, then by applying the rules and
we reduce #pgmMm(t;) and therefore we reduce LLexy(t;) or LLexy (t;)
respectively when t; is a p-forest or a p-context.
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Assume that, v does not have an w-context factor and h does not have
an w-forest summand. So, from t; to ¢;41 the following equalities hold:

#Nodes(tj> = #Nodes(thrl)
#mem(ti) = #oem(tit1),

which implies that V Lex(v) > 1 and HLex(h) > 1. So, by applying the
rules and on the w-context v* or on the w-forest w(h) subterm of
t; we may reduce LLexy (t;) or LLexy (t;) respectively when ¢; is a p-forest
or a p-context.

Now, assume that from t; to ¢;41 the following equality holds,

LLexV(tj) = LLexv(th) or LL@:L‘H(tj> = LLe:vH(tj+1).

This implies that #mem(tj) = #meM(tj4+1). Then in this step we applied
one of the rules and on a subterm of ¢; which is of the form v or
w(h), where v = v1.(H1+0+4 Hy) with v; = HwePIHF(U) x, H = hi+--+hpn
and Hy = h+---+h! , in which all are in increasing order or h = s1+- - -+5,
and is in increasing order. Since we could apply the rules and this
implies that we have repetitions of a factor or repetitions of a summand of
a subterm of ¢; and so we reduced #nodes(t;)-

Since for the element ¢ in A we have #1pEMm (), #Nodes(t), and LLex g (t)
or LLexy (t), respectively when ¢ is a p-forest or a p-context, are finite, we
just can apply this reduction rules finitely many times.

Assume that, an element ¢ in A is given. Note that the rules and
just will be applied on the w-context and w-forest subterms. Applying
the rules [0.1] and [0.2] on two disjoint subterms will not collide with each
other.

The rule can be applied on an w-forest subterm w(h) with Rank(h) =
i. It implies that h does not have an w-context subterm u* or an w-forest
subterm w(s) with

Rank(u) =i and Rank(s) =i.

This means that we can not apply the rules and on the subterms
of w(h).

Also, the rule can be applied on an w-context subterm v“ with
Rank(v) = 4. It implies that v does not have an w-context subterm u® or
an w-forest subterm w(s) with

Rank(u) =4 and Rank(s)=1.

This means that we can not apply the rules and on the subterms
of v¥.

Assume that, for every j with j < i we applied O(j) on t. By applying
the rule of O(i+1) on an w-context subterm v of ¢ we do the following:
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let v = Pouy P - - - uy P, where P}’s are p-contexts which does not have an
w-context factor. Let w = Pyui P ---u, P, then we have Rank(v) — 1 <
Rank(w) < Rank(v). Let w’ be the p-context which is the product of non-
trivial multiplicatively irreducible factor of w in increasing order.

Note that, as for every j with j < i we applied O(j) on ¢, the ug’s do
not have an w-context factor.

Then w' is the ordered form context of v* and we have

Rank(v) — 1 < Rank(w’) < Rank(v).
Similarly, for the rule on an w-forest subterm w(h) of ¢t we have
Rank(h) — 1 < Rank(s’) < Rank(h),

where w(s') is the ordered form forest of w(h). This shows that by applying
0. 1] and on an w-context and an w-forest subterm of ¢ the rank of that
subterm will be reduced by 1 or the rank will be the same.

We may apply the rule and then the rule on the subterm w(H; +
w(S1+w(s)+S2) + Hz) then we should first apply on w(S; +w(s)+52)
to get the result w(s’) and then exactly on some steps after that we can
apply the rule on w(Hy +w(s')+ Hz). The order of applying these rules
can not be changed. Similarly, we may apply the rule and then the rule
on the subterm (P;(Qiw“Q2)*P;)“ then we should first apply on
(Qrw*Q2)* to get the result u* and then exactly on some steps after that
we can apply the rule on (Pju”Py)®. The order of applying these rules
can not be changed.

This shows that if for i = 0,...,Rank(¢) — 1 consecutive O(i) is applied,
then by applying the rules and of O(i) in any order on an arbitrary
element t the result will be unique.

Let t be an element of A where t is the result of applying consecutive
O(j). For every i = 0,...,Rank(t) — 1 define S(i) as follows:

S.1 substitute an w-forest subterm w(s) of ¢ with Rank(s) = ¢ and where
s =81 +---+ s, is in increasing order by w(s")) where s = s +
oo 554+ sy if s; € Specialy(s(Y));

S.2 substitute an w-context subterm v* of ¢t with Rank(v) = ¢ and where
v =wv1.(Hy +0+ Hy) with vy = erphrF(v) x, HH = h1+---+h,, and
Hy = hy +---+ k!, and all are in increasing order by (v"())* where
Wb = vy (HY) + 0+ Hy) if hy € Specialy(HY);

S.3 substitute an w-context subterm v* of ¢t with Rank(v) = ¢ and where
v =wv1.(H; +0+ Hy) with vy = HwePIrrF(v) z, HL =h1+---+h,, and
Hy = h} +---+ k., and all are in increasing order by (v™(7))* where
o) = vy (H + 0+ Héj)) if b} € SpecialH(Héj)).

114



Note that, in S(i) if the rules or is applied on an w-context or
an w-forest subterm, then the result is still in order since we just remove a
forest summand and this will not change the order.

By applying the rules and of S(i) on a given element ¢ in A
where ¢ is the result of applying consecutive O(j) the number of nodes of ¢
will be reduced. And since #nodes(t) and #prMm(t) are finite, we just can
apply this reduction rules finitely many times.

Assume that, an element ¢ in A is given, where t is the result of applying
consecutive O(j ) The rules [S.1] [S.:2] and [S.3) of S(i) just will be applied on
w-context and w-forest subterms. Applying the rules 1] and [S.3]on two
disjoint subterms will not collide with each other.

The rule[S.I|can be applied on an w-forest subterm w(h) with Rank(h) =
i. It implies that h does not have an w-context subterm u* or an w-forest
subterm w(s) with

Rank(u) =i and Rank(s) =

This means if the rule is applied on w(h), then we can not apply the
rules or on the subterms of h.

Also, the rules and can be applied on an w-context subterm v*
with Rank(v) = 4. It implies that v does not have an w-context subterm u*
or an w-forest subterm w(s) with

Rank(u) =¢ and Rank(s) =

This means that if the rules or is applied on v¥, then we can not
apply the rules and on subterms of v.

Applying the rules [S.2] and [S.3] on an w-context subterm v* will not
collide with each other.

If we can apply the rule on an w-forest subterm w(h) and again ap-
plying the rule on it, then this mean that we first eliminate the summand
sj and then after that eliminate the summand sk, and it does not matter we
eliminate which one ﬁrst If we apply the rule|S.2lon the w- Context subterm
v¥ and again the rule [S.2| on it or s1rn11arly 1f we apply the rule on an
w-context subterm v and again the rule [S.3| on it, then this mean that we
first eliminate the summand h; and then after that eliminate the summand
hi in Hj or similarly we first eliminate the summand h;- and then after that
eliminate the summand hj, in Hy where from the result of applying consec-
utive O(j) we have v = v1(H; + 0O+ H»), it does not matter we eliminate
which one first.

So, for i = 0,...,Rank(t)—1 1f we apply consecutive S(i) then by apply-
ing the rules|S.1} E n S.2[and |S.2} m of S(7), in any order, on an arbitrary element ¢
where t is the result of applying consecutive O(4), the result will be unique.

Let t be an element of A where t is the result of applying consecutive
S(j). For every i = 0,...,Rank(t) — 1 define R(i) as follows:
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R.1

R.2

R.3

R.4

R.5

R.6

R.7

R.8

R.9

R.10

R.11

R.12

substitute a forest subterm of ¢ which is of the form s + w(h) with
Rank(h) =i by w(h) if s € Specialg(h);

substitute a forest subterm of ¢ which is of the form w(h) 4+ s with

Rank(h) =i by w(h) if s € Specialg(h);

substitute a forest subterm of ¢ which is of the form w(s) + w(h) with
Rank(h) =i by w(h) if Specialg(s) C Specialg(h);

substitute a forest subterm of ¢ which is of the form w(h) + w(s) with
Rank(h) =i by w(h) if Specialg(s) C Specialg(h);

substitute a context subterm of ¢ which is of the form ad.v* with
Rank(v) =i by v* if a0 € PIrrF (v);

substitute a context subterm of ¢ which is of the form v*.ad with
Rank(v) =i by v* if a0 € PIrrF (v);

substitute a context subterm of ¢ which is of the form A + v* with
Rank(v) =i by v* if h € Specialu(}_, e 1rer(v)0 ¥);

substitute a context subterm of ¢ which is of the form v*.(h + ) with
Rank(v) = i by v* if h € Specialu(}_,cp1rr ()0 ¥);

substitute a context subterm of ¢ which is of the form v* + h with
Rank(v) = i by v* if h € Specialu (3., erimr(w)o ¥);

substitute a context subterm of ¢ which is of the form v*.(0+ h) with
Rank(v) = i by v* if h € Specialu (3., ermr(w)o ¥);

substitute a context subterm of ¢ which is of the form u“v* with
Rank(v) =i by v* if the following conditions satisfy:

(a) PIrrF(u) C PIrrF(v);
(b) SpeCialH<Zx€LIrrF(u)0 .TL') - SpeCiaIH(ZyGLIrrF(v)O y);
(c) Specialu (3 ermruy ©) € Specialn (3o, crurr(w)o ¥)-

substitute a context subterm of ¢ which is of the form v*u® with
Rank(v) =i by v if the following conditions satisfy:

(a) PIrrF(u) C PIrrF (v);

(b) SpecialH(erLIrrF(u)o x) C SpecialH(ZyeLIrrF(v)o Y);
(C) SpeCialH(erRIrrF(u)O ﬂ?) < SpeCialH(ZyERIrrF(U)O y)

By applying the rules of R(i) on a given element ¢t in A where ¢
is the result of applying consecutive S(j) the number of nodes of ¢ will be
reduced. And since #nodes(t) and #pgpMm(t) are finite, this reduction rules
can be applied only finitely many times.
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It is easy to check that for i = 0, ..., Rank(¢) — 1 if we apply consecutive
R(i), then by applying the rules of R(i), in any order, on an
arbitrary element ¢ where ¢ is the result of applying consecutive S(j) the
result will be unique.

5.2.1.1 Main Algorithm

Assume that, an element ¢ in A where each w-context subterm v“ of ¢ has
the property C(v) # O is given. Over the element ¢ we will do the following
consecutive steps:

Step 1. make the element ¢ in order: for i = 0,...,Rank(¢) — 1 apply consec-
utive O(i);

Step 2. reduce w-context and w-forest subterms: for ¢ = 0,...,Rank(¢) — 1
apply consecutive S(i);

Step 3. reduce the element ¢: for i =0, ..., Rank(¢)—1 apply consecutive R(z).

For a given element ¢ in A the result of the above steps is called the canonical
form of the element ¢t and denote by t.

Lemma 5.2.11. For p-contexts v and w in A with C(v) # O, if v¥ is
a subterm of w, then v* is a subterm of at least one of the non-trivial
multiplicatively irreducible factor of w.

Proof. Since v* is an w-context subterm of w, then we have v is in IST(w).
Let w = wi. -+ .wy,, where w;’s are non-trivial multiplicatively irre-
ducible factors of w. We have

IST(w) = IST(wy) U+ UIST (ws),

and therefore, there is a positive integer i such that v* € IST(w;), which
implies that: there is a non-trivial multiplicatively irreducible factor w; of
w such that v* is an w-context subterm of w;. O

Since every non-trivial p-forest in A can be written as a sum of its non-
trivial additively irreducible summands and every non-trivial p-context in
A can be written as a product of its non-trivial multiplicatively irreducible
factors, Lemma [5.2.11] implies the following facts:

Corollary 5.2.12. Let h and t be p-forests in A and h non-trivial. If w(h)
is a subterm of t, then w(h) is a subterm of at least one of the non-trivial
additively irreducible summand of t. O

Corollary 5.2.13. Let h be a non-trivial p-forest and w a p-context in A.
If w(h) is a subterm of w, then w(h) is a subterm of at least one of the
non-trivial multiplicatively irreducible factor of w. ]
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Corollary 5.2.14. Lett be a p-forest and v a p-context in A with C(v) # 0.
If v¥ is a subterm of t, then v* is a subterm of at least one of the non-trivial
additively irreducible summand of t. ]

Remark 5.2.15. Since for every ¢, S(i) and O(i) are applied only on w-context
and w-forest subterms, Lemma, [5.2.11] Corollaries [5.2.12] [5.2.13] and [5.2.14

imply the following equalities:

(if at least one of P; and P is a p-forest:
O(i)(P1 + P) = O(i)(P1) 4+ O(i) (P2);

if both of P; and P, are p-contexts:
O(i)(P1.P,) = O(i)(F1).0(i) (P);

if P; is a p-context and P is a p-forest:
O(i)(Pr * P2) = O(1)(P1) = O(i)(P2),

\
and also the following equalities:
(if at least one of P, and P, is a p-forest:

S@)(PL+ P) = S@) (1) + 5(0)(P);

if both of P; and P» are p-contexts:
S@@)(P1.P2) = Si)(P1).S(i)(Po);

if P is a p-context and P» is a p-forest:
S(@) (P Py) = S(3)(Py) x S(i)(Pa).

In addition, for an w-context or an w-forest P in A the following equalities

hold.

(if 0<i< Rank(h):
w(O(i)(h))
, if P =w(h)
for 7=0,...,Rank(h) —1:
O(Rank(h))w(O(j)(h))
o) (P) =
if 0 <i¢< Rank(v):
(O(i)(v))*
,if P=o¥
for j=0,...,Rank(v) —1:
O(Rank(v))((O(5)(v))*)
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and

if 0 <i¢ < Rank(h) :
w(S(i)(h))
, if P =w(h)
for j=0,...,Rank(h) —1:
- S(Rank(h))w(S(5)(h))
(if 0<i< Rank(v):
(S()(v))*
,if P =Y.
for j=0,...,Rank(v) —1:
L\ S(Rank(v))((5(7)(v))*)

Let P = (Hp,Vp) be an w-algebra and for every u,v € Vp and h,s € Hp
the set of identities 3, consisting of the following identities, hold in P.

vh + w(vuh) = w(vuh) = w(vuh) + vh

Assume that t; ~y to. We show that if we apply the reduction rules
on S;_1 and S;, witnesses for elementary steps of the congruence ~yx, the

results are the same.
Let

Sic1=fi(X;Uia,...,Uim) and S;= fi(Y;Uin, ..., Uim),

where Uj 1,...,U;m are elements of A, f; is an n-ary operation which is a
composition of operations from {+, 41, +2, ., *,w(), ()*}, and there exists an
w-algebra homomorphism:

v: A— P,

such that p(X) = u/ and (V) = v/, or ¢(Y) = ' and ¢(X) = ¢’ and the
identity v/ = v/ is in X. Without loss of generality we may assume that
©(X) =" and ¢(Y) = v'. We argue on the choice of the identities in X:

1. for the identity (uv)¥ = (vu)¥ in X we do the following: apply
O(Rank(uv)) on [i(X5Uia, .., Uim)

and
O(Rank(vu)) on LY Uin, .. Uim).

And Remark [5.2.15] implies that the results of both are the same;
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2. for the identity
(w0)* = (w0

in ¥ we do the following: apply O(Rank(uv)) on
fi(X5Uin, .., Uim)
and O(Rank(uv) 4+ 1) which is O(Rank(u“v“)) on
[iY5Uin, ..., Uim).
And Remark implies that the results of both are the same;
3. for the identity v“v = v* in X one of the following conditions holds:

o if there is an w-context subterm w$ of S;_; such that v“v is a
factor of wy, so respectively there is an w-context subterm w§ of
S; such that v* is a factor of wa, then we apply O(Rank(w)) on

[i(X5Uia, .o Uim)
and we apply O(Rank(wz)) on
fiY3Uin, o Uim).

And Remark [5.2.15|implies that the results of both are the same;

e if the previous case does not hold, then we apply O(Rank(S;_1))
and after that S(Rank(S;_1)) on

[i(X5Uia, .o Uim)

and then we apply R(Rank(v)) by the rules |R.6} [R.8 and [R.10|
only on the subterm X of

[i(X5Ui, .o Uim)

and on the other side we apply the rules O(Rank(S;)) and after
that we apply the rules S(Rank(.S;)) on

fZ(Y7 Ui,17 ey Ui,m)a

and then we apply R(Rank(v) — 1) on it. And Remark

implies that the results of both are the same.

4. for the identity vv* = v* in ¥ one of the following conditions holds:
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e if there is an w-context subterm w$ of S;_; such that vo* is a
factor of wy, so respectively there is an w-context subterm w§ of
S; such that v* is a factor of wa, then we apply O(Rank(w)) on

[i(X5Uia, .o Uim)
and we apply O(Rank(wz)) on
fiY3Uin, o Uim).

And Remark [5.2.15|implies that the results of both are the same;

e if the previous case does not hold, then we apply O(Rank(S;_1))
and after that S(Rank(S;_1)) on

[i(X5Uia, .o Uim)

and then we apply R(Rank(v)) by the rules|R.5| |R.7|and |R.9|only
on the subterm X of

fi(X5Uin, - Uim)
and on the other side we apply the rules O(Rank(S;)) and after
that we apply the rules S(Rank(.S;)) on

fZ(Y7 Ui,lv ey Ui,m)a

and then we apply R(Rank(v) — 1) on it. And Remark [5.2.15
implies that the results of both are the same.

5. for the identity (v*)¥ = v* in X we do the following: apply O(Rank(v))
on

LiY5Uix, . Uim)

and O(Rank(v)) on
fZ(X7 Ui,17 ey Ui,m)a

after that apply O(Rank(v)+ 1) which is O(Rank(v*)) by the rule
only on the subterm X of

[i(X5Uix, o Uim)-
And Remark implies that the results of both are the same;

6. for the identity w(uvh) + uh = w(uvh) in ¥ one of the following con-
ditions holds:
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e if there is an w-context subterm w{ of S;_; such that w(uvh) +
uh + O or O+ w(uvh) 4+ uh is a factor of wy, so respectively
there is an w-context subterm w§ of S; such that w(uvh) + O or
O + w(uvh) is a factor of we, then we apply O(Rank(S;_1)) and
after that we apply S(Rank(wy)) by the rules or depends
on the factor, only on the subterm X of

fi(X5Uias o Uim)
and we apply O(Rank(S;)) and after that S(Rank(ws) — 1) on
fiY3Uin, - Uim).

And Remark implies that the results of both are the same;

e if there is an w-forest subterm w(h;) of S;—; such that h; =
Py +w(uvh)+uh+ Py for some p-forests P; and Py, so respectively
there is an w-forest subterm w(hy) of S; such that hy = P; +
w(uvh) + P, then we apply O(Rank(S;—1)) and after that we
apply S(Rank(h;)) by the rule only on the subterm X of

Li(X5Uin, .o Uim)
and we apply O(Rank(S;)) and after that S(Rank(h2) — 1) on
fiY5Uins ..o, Uim).

And Remark [5.2.15 implies that the results of both are the same;

e if the previous cases do not hold, then we apply O(Rank(S;_1))
and after that S(Rank(S;—1)) on

fi(X5 Ui, ..., Uim)

and then we apply R(Rank(uvh)) by the rule only on the
subterm X of

[i(X5Ui, .o Uim)

and on the other side we apply the rules O(Rank(S;)) and after
that we apply the rules S(Rank(S;)) on

[i(Y5Uix, o Uim)

and then we apply R(Rank(uvh) — 1) on it. And Remark [5.2.15
implies that the results of both are the same.

7. for the identity uh + w(uvh) = w(uvh) in X one of the following con-
ditions holds:
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o if there is an w-context subterm w{ of S;_1 such that uh +
w(uvh) + 0O or O+ uh 4+ w(uvh) is a factor of wy, so respectively
there is an w-context subterm w§ of S; such that w(uvh) + O or
O + w(uvh) is a factor of we, then we apply O(Rank(S;_1)) and
after that we apply S(Rank(wy)) by the rules or depends
on the factor, only on the subterm X of

[i(X5Ui, .o Uim)
and we apply O(Rank(S;)) and after that S(Rank(ws) — 1) on
fiY3Uin, - Uim).

And Remark [5.2.15|implies that the results of both are the same;

e if there is an w-forest subterm w(h;) of S;—; such that h; =
Py +uh+w(uvh)+ P, for some p-forests P; and Py, so respectively
there is an w-forest subterm w(hy) of S; such that hy = P; +
w(uvh) + Py, then we apply O(Rank(S;_1)) and after that we
apply S(Rank(hq)) by the rule only on the subterm X of

[i(X5Uia, .o Uim)
and we apply O(Rank(S;)) and after that S(Rank(hg) — 1) on
fiY3Uins ..o, Uim).

And Remark [5.2.15 implies that the results of both are the same;

e if the previous cases do not hold, then we apply O(Rank(S;_1))
and after that S(Rank(S;_1)) on

[i(X5Uia, .o Uim)

and then we apply R(Rank(uvh)) by the rule only on the
subterm X of

[i(X5Uin, .o Uim)

and on the other side we apply the rules O(Rank(S;)) and after
that we apply the rules S(Rank(.S;)) on

LiY5Uix, .. Uim)

and then we apply R(Rank(uvh) — 1) on it. And Remark [5.2.15
implies that the results of both are the same.

We then have a system of reduction rules which is noetherian and confluent.
This implies that for elements ¢; and to in A with t1 ~x to if we apply the
reduction rules on t; and 5, then the results are the same.
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The variety V certainly contains BSS. Denoting by F4V the V-free
algebra on A, we then have an w-algebra homomorphism

© FuY = (Hl,Vl) — QABSS = (HQ,VQ)

such that z; — z; (i =1,...,n).

If two p-contexts or p-forests have the same canonical form, then in F4V
they are equal and so they have the same image by ¢. Therefore, their image
by ¢ have the same scattered divisors.

Note that, ¢ is a pair («, 5) of monoid homomorphisms

(o7 H1—>H2,
B: Vi— VW

In order to show that ¢ is injective, it suffices to show that 3 is injective.
Lemma 5.2.16. If 5 is injective, then ¢ is injective.

Proof. We just need to show that « is injective. Assume that for h; and
he in Hy, a(hy) = a(hg). It implies that a(hi) + O = a(hs) + O which is
B(h1+0) = B(he+0). And since by assumption [ is injective, we conclude
that h; + O and hs + O have the same canonical form and so does h; and
ho. O

We solved the word problem for the free w-algebra in the variety V of
w-algebras defined by the set X.

5.3 Open Problems

The following problems remain open.

Open problem 5.3.1. The monoid homomorphism 3 is injective.
Open problem 5.3.2. The w-algebra homomorphism ¢ is surjective.
Open problem 5.3.3. What about other pseudovarieties?

If the first two open problems admit affirmative solutions, then together
with Lemma [5.2.16] we get the following result:

Theorem 5.3.4. The variety of type T generated by BSS is defined by the
identities

vh 4+ w(vuh) = w(vuh) = w(vuh) + vh
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and QaBSS is the free object on A in this variety. Two terms in the vari-
ables from A coincide in QoBSS if and only if they have the same canonical
form with respect to the reduction rules in the Algorithm[5.2.1.1. In partic-
ular, the word problem for QaBSS is decidable. ]
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Appendix A

Long Proofs

A.1 Lemma|2.1.1

Lemma A.1.1. For a forest algebra S and a subset K of S, the equivalence
relations o and o are congruences with respect to the basic operations of

S.

Proof. Let hy ok hy and vy o va. We should show that for every s € Hg
and u € Vs we have the following relations:

1.1 hi+sog ho+sand s+ hy o s+ ho;
1.2 hy +u ol ha+uand u+ hy o u+ ho;
1.3 uhy o uho;

L4 wvy o uvy and viu ol vou;

1.5 vis ok vas;

L6 vi+ s 0 va+sand s+ v o S+ va.

We claim that the following equivalence holds for every context t:
t(h1 +s) € K < t(hg +s) € K.
Let ¢ = t(O+ s). We get ¢thy = t(0+ s)hy = t(h1 + s). Hence,
t(h1 + s) = ¢h1 € K < t(ha + s) = qths € K,

where the middle equivalence follows from the relation hq ox ho.
Now we show that for all contexts ¢, r and w we have:

1. t(r(h1+ ) +w) € K < t(r(ha+s)+w) € K,

2. tlw+r(hi1+s)) e K < t(w+r(hy+s)) € K.
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By using the term ¢, we get

t(r(hy + s) + w) = t(g-h1 + w) € K & t(r(he + 8) + w) = t(grho + w) € K
and

t(w+rhy +s)) =t(w+ g-h1) € K< t(w+r(he+s)) =t(w+ qha) € K

where the equivalences follow from the hypothesis hy ox ho. So h1 4+ s o
ho + s holds and, similarly, so does s + h1 o s+ ho.
We next claim that the following equivalence holds for every context t
and every forest h:
t(hl + u)h OK t(hz + u)h.

From definition of forest algebra S we get t(hy + uh) = t(h1 + u)h. So we
have:
t(h1 + u)h = t(h1 + uh) oK t(hQ + uh) = t(hQ + u)h,

where the equivalence follows from
Now we show that, for all contexts ¢ and w, we have:

t(h1 +uv)w € K <= t(ha +u)w € K.

From definition of forest algebra S we get t(h1 + uw) = t(h; +w)w. On the
other hand the relation

t(h1 + uvw) € K <= t(hs +uw) € K,

follows from the hypothesis h1 ox hs. Hence, hy + u U’K ho 4+ u holds and,
similarly, so does u + hy o u + hs.
We claim that the following equivalence holds for every context t:

t(uhy) € K <= t(uh2) € K.
Let p; = tu. We get p:hy = (tu)hy = t(uh1). Hence,
t(uh1) = pth1 € K < t(uhg) = pihe € K,

where the equivalence follows from hi ox ho.
Now we show that for all contexts ¢, » and w we have:

L. t(r(uh1) + w) € K <= t(r(uh2) +w) € K;
2. tlw+r(uhy)) € K < t(w+ r(uhg)) € K.

By using the term p, we get:

t(r(uhi) +w) = t(prh1 +w) € K < t(r(uh2) + w) = t(prhe + w) € K

127



and
t(w + r(uhy)) = t(w + prh1) € K < t(w + r(uhg)) = t(w + prhe) € K

where the equivalences follow from hqi o hs. So uhi ox uho.
We next claim that the following equivalence holds for every context ¢
and every forest h:
t(uv1)h o t(uvg)h.

By using the term p; we have:
t(uvi)h = pyvrh o prvoh = t(uvg)h,

where the equivalence follows from vy o vs.
Now we show that for all contexts ¢t and w we have:

t(uv))w € K <= t(uv)w € K.
By using the term p; we get:
t(uviw) = projw € K <= t(uvgw) = proow € K,

follows from vy ¢’ v2. So uvi o wwvy holds and, similarly, so does viu o'
Vol
The equivalence v1s o v9s is clear by definition of the relation vy J’K V9.
We next claim that the following equivalence holds for every context ¢
and every forest h:
t(vy + s)h ok t(ve + s)h.

By using the term ¢; we have:
t(vi + s)h = gu1h ok qruah = t(ve + s)h,

where the equivalence follows from vy o vs.
Now we show that for all contexts ¢ and w we have:

t(n +s)w e K <= t(va+s)w € K.
By using the term ¢; we have:
t(v1 + s)w = guiw € K < t(vg + s)w = guow € K,
follows from v o v2. So v + s 0% v2 + s holds and, similarly, so does

s+ v1 o s+ va.
So v is a congruence. O
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A.2 Lemma|4.2.65

Lemma A.2.1. Let wy,...,w, be non-trivial multiplicatively irreducible p-
contexts in A. Then the following equality holds:

IrrF(wy. - - cwy) = {w1 } UIrrF(wa. - - - cwy,). (A.1)

Proof. By induction on n we will show that for n > 1 the equality
holds. For n = 1, the result follows directly from the IrrF(w;), since w; is a
non-trivial multiplicatively irreducible p-context.

Assume that, for n = k the equality holds.

We show that for n = k + 1 the equality also holds.

We show that, if v be a non-trivial multiplicatively irreducible p-context
in A which is a factor of wy.- - .wg41, then one of the following conditions
holds:

v=w; or v€IlrrF(ws.- - wky1).

Since wy is non-trivial multiplicatively irreducible, w; has one of the forms

dd
s+ 0
O+ s
uw
where s is a non-trivial additively irreducible p-forest and u is a p-context
with C(u) # 0 and dOJ € A'.

Assume that, w; = dJ and v is a non-trivial multiplicatively irreducible
p-context which is a factor of wi.--- .wgs1. Then there are p-contexts Pj
and P, such that the equality

Pl.’U.PQ = wi." - Wk41

holds. Since P; is a p-context, there are p-forests H; and Hs such that
P, = Hy + C(P1) + Ha. Applying the w-algebra homomorphism fi, by
Lemmas [£.2.17] and [1.3.7], we have H; = H, = 0. So, we must have one of
the following equalities:

Py =0or P, =p0w or P = a%.w with C(x) # O.
If P, =0, then we have
’U.PQ = dDwg s Wt

Again, applying the w-algebra homomorphism f,, for v = G; + C(v) + G2
we have G1 = G9 = 0 which means

v=eld or v=y".
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If we have v = y¥, then applying the w-algebra homomorphism ®, we have
the following equality:

bO.9(y).cO.®(Pp) = dO.®(wy. -+ - wg41),

which contradicts the fact that d # b. So, we must have v = el[J. And again
applying the w-algebra homomorphism ®, we have the following equality:

€|:|(I)(P2) = qu)(wg s .wk+1),

which implies the equality e = d that is v = dU.
If we have P; = pll.w with p(J € A’, then we have the following equality:

pUww.Pe = ddws. - -+ wpyq,

and applying the w-algebra homomorphism &, it implies that the following
equality holds:

pO.(w.Py) = dO.®(ws. - - - Wt1)-
This yields the equalities p = d and
O(w.v.Py) = ®(wy. - -+ wWgy1).
By Theorem we conclude that
WPy =wy. -+ Wk

which means v is a factor of wy. - -+ .wgyq that is v € IrrF(wa. - -+ .wg41).
If P = a*.w with C(x) # O, then we have

¥ w.v.Py = d0ws. - -+ w1
and applying the w-algebra homomorphism ®, we have the equality
bO.®(z).cd.®(w.v.Py) = dO.P(wa. - - - wg1)

which contradicts the fact that d # b.

Assume that wy = u* with C(u) # O and v a non-trivial multiplicatively
irreducible p-context which is a factor of wy. - -+ .wg11. There are p-contexts
P; and P, such that the equality

Pl.’U.PQ =wi. - Wk41

holds. Since P; is a p-context, there are p-forests H; and Hs such that
P, = Hy + C(P1) + Ha. Applying the w-algebra homomorphism &, by
Lemma and Theorem we have H, = Hy = 0. So, we must have
one of the following equalities:

Pr=0 or P=p0w or P =z"w with C(z)# 0.
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If P, =0, then we have
v.Py =u”wy. -+ Wpq.

Again, applying the w-algebra homomorphism f,, for v = Gy + C(v) + G2
we have GG1 = Go = 0 which means

v=eld or v=y".

If v = eld, then applying the w-algebra homomorphism ®, we have the
following equality holds:

ed.®(Py) = b0.9(u).cO.®(ws. - -+ wgt1)

which contradicts the fact that e # b. So, we may have v = y* so that, by
applying the w-algebra homomorphism ®, we have the following equality:

bO.®(y).cO.®(Py) = b0.9(u).cO.®(ws. - -+ .wp41).

By Corollary [4.2.58, we have the equality ®(y) = ®(u) and Theorem [4.2.60
yields the equality y = uw which implies that the equality y* = u“ holds,

that is the equality v = w;.
If P, = p0.w with p(d € A’, then the following equality holds:

pOw.v.Po = u” wa. -+ wWgy1.

So that, by applying the w-algebra homomorphism ®, it implies the following
equality:
pO.®(w.v.Py) = b0.®(u).cO.®(ws. - - - .wWky1)

which contradicts the fact that p # b.
Now, if P, = 2¥.w with C(z) # O, then the following equality holds:

2w Py = u’ wy. -+ Wy
Applying the w-algebra homomorphism ®, we obtain the following equality:
b0.9(z).c0.¢(w.v.Py) = b0.9(u).cO.®(ws. « -+ .wgt1).
By Corollary [£.2.58] the equality
O (w.v.Py) = ®(wy. -+ wWky1)

holds. And by Theorem we have the equality

w.u. Py =wy. - Wiy
which means v is a factor of wa. - - .«wg4; that is
v € IrrF(wa. - -+ wWg41)-
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Assume next that w = s + [0, where s is a non-trivial additively ir-
reducible p-forest and let v be a non-trivial multiplicatively irreducible p-
context which is a factor of w;.--- .wg41. There are p-contexts P, and P
such that the equality

Pl.’U.P2 = wi." - Wk41

holds. Since P; and P, are p-contexts, there are p-forests Hy, H{, Hy, and
H) such that P, = Hy + C(P1) + Hs and P, = H{ + C(P2) + H). We may
have

H1 75 0 or Hl =0.

If Hy # 0, then Hy = h1+- - -+hy, where hy, ..., h,, are non-trivial additively
irreducible p-forests. Let

w=hy+ -+ hm + C(P) + Ho.
Applying the w-algebra homomorphism ®, we have the following equality:
O(hy) + (w.v.Py) = ®(s) + P(wa. - -+ Wkt1)-
By Lemmall.3.7] together with Lemmal[l.3.6] we have ®(h1) = @(s), as both

are connected in the free forest algebra, and ®(w.v.P) = ®(ws. - wg1).
So that, by Theorem [£.2.60, we have w.v.Py = ws.--- .wj41 that is v is a
factor of wsa. - -+ .wg41 which means v € IrrF(wa. - -+ wg41).

Now, assume that H; = 0. Since s # 0, applying the w-algebra homo-
morphism ®, we have C'(P;) = [J; otherwise, we have

<I>(C(P1)UP2) + (P(HQ) = (I)(S) + (I)(’LUQ ce .wk+1)

so that, by Lemma the equality ®(s) = 0 holds and by Lemma |4.2.34
we have s = 0 which contradicts the assumption that s # 0. So, we have

P, =+ Hs which yields the equality
v.Py+ Hy =54+ wo. -+ Wkt

Now, since v is a non-trivial multiplicatively irreducible p-context, v has one
of the following forms:

el

t+0

O+t

y(.d
where t is a non-trivial additively irreducible p-forest, y is a p-context with
C(y) #0and e0 e A'.

If we have v = ell, then applying the w-algebra homomorphism ®, we

obtain the following equality:

6D.(I)(P2) + @(HQ) = @(S) + @(’wg. cee .wk+1)
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so that, by Lemma we have ®(s) = 0 and Lemma 4.2.34] yields s = 0
which contradicts the assumption that s # 0.

If we have v = 9%, then applying the w-algebra homomorphism ®, we
obtain the following equality:

so that, by Lemma we have ®(s) = 0 and again Lemma [4.2.34] implies
that s = 0 which contradicts the assumption that s # 0.

If we have v = t + [, then applying the w-algebra homomorphism ®, we
obtain the following equality:

q)(t) =+ (I’(PQ) + q)(Hg) = (I’(S) + <I>(w2 cee 'wk+1)

so that, by Lemma[l.3.7, we have ®(¢) = ®(s) and Theorem leads to
the equality ¢ = s which in turn yields v = s 4 .

And if we have v = [0 + ¢, then applying the w-algebra homomorphism
®, the following equality holds:

(I)(PQ) =+ ‘I’(t) + @(HQ) = CD(s) + <I>(w2 cee 'warl)'

We may have
H{ #0 or H;=0.

If we have H] # 0, then there are non-trivial additively irreducible p-forests
Ry, ..., R, such that H{ = h} +--- + h].. Let

w=hy+ -+ hy, + C(P) + Hs.
Applying the w-algebra homomorphism &, the following equality holds:
D(R,) + B(Pro.w) = B(s) + Dlws. - wgy1),
so that, by Lemma [1.3.7] we have the following equalities:
®(h)) = ®(s) and @(Pr.v.w)= ®(wy. - Wpy1)

and by Theorem we have Pj.v.w = ws. -+ - w1 which means v is a
factor of wa. - -+ w4 that is v € IrrF(wa. - -+ wg41).-

If we have H{ = 0, then applying the w-algebra homomorphism ®, we
have the following equality:

O(C(Py)) + ®(Hs) + D(t) + P(Ha) = O(s) + P(wa. -+ wk41),

so that, by Lemma[l.3.7] we have ®(s) = 0, and Lemma which yields
s = 0 which contradicts the assumption that s # 0.

In the dual case where w; = O+ s with s a non-trivial additively irre-
ducible p-forest and v a factor of wy. - - - .wg41, we can use similar arguments
to show that v = wy or v € IrrF(ws. - - - .wiy1). O
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A.3 Lemma|5.1.2

Recall that, the set ¥ consisting of the following identities, for contexts u
and v and forest h,

wo)® = (vu)® = (uo¥)? (A.2
v =¥ = vo® (A.3
(1) = o (A
vh + w(vuh) = w(vuh) = w(vuh) + vh. (A.5)

And also the following identities, for forests h and s,

wh+s)=w(s+h) =wwh)+w(s)) (A.6)
w(h)+h=w(h)=h+wh) (A.7)
w(w(h)) = w(h) (A8)

are the result of Lemma [5.1.9]
We are going to establish a number of identities as consequences of .
Since for an w-algebra S = (H,V), H and V are algebras of type (2,1)
and the identities

wh+s)=w(s+h)=wwh)+w(s))
w(h)+h=w(h) =h+w(h)
w(w(h)) = w(h)

and the identities

respectively, hold in H and V, by [I, Lemma 8.2.2], we obtain [I.1I.6
[L7. By using (A.2)), (A.4), and [[.1] we have (vv)* = (v¥v¥)* = (V¥)¥ = v*.

[[]. By using the identities (uv)¥ = (u“v*)¥ and (v*)* = v* we have

(u)* = (u”(v*)*)" = (u*v*)* = (w)*.
. By using the identities (A.2)), and [[.8] we have
u® = ( H v)¥.

vElrrNIdemF* (u)
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[L10]. If the identity u* = v* holds, then we have the following equalities:

IrrNIdemF* (u) = IrrNIdemF* (u®)
= IrrNIdemF™* (v*)
= IrrNIdemF* (v),

and if the equality IrrNIdemF*(u) = IrrNIdemF*(v) holds, then by
using 4 and 7 we have

u? = ( H v1)Y = ( H v1)¥ =¥,

v1 €EIrrNIdemF* (u) v1 €IrrNIdemE* (v)

[[L11]. Assume that the p-contexts v and v are such that
IrrNIdemF*(u) C IrrNIdemF*(v).

Then by using there is a p-context v; such that v¥ = (vju)¥
(uv1)”. By using the identities ww® = w¥ = wYw, (wiws)¥ =
(wyw§)* and .2 we have

vu® = (uvy)“u

= .
We can do the similar arguments for the symmetric case.

[.12]. By using and (A.3]) we have

We can do the similar arguments for the symmetric case.

[[13. By using (A.6), (A.8), and [[.4] we have
w(h+h)=ww(h)+wh)) =wwlh)) =w(h).

[14. By , , and we have
w(uh + uwh) = w(w(uh) + w(uwh))
w(w(uh) + w(w(uwh)))
= w(uh + w(uwh))
w(
w(



[LI5. By using (A.6) and (A.8) we have
w(w(h) +5) = w(w(w(h)) +w(s)) =w(w(h) +w(s)) =w(h+s).
[[16. For a p-context v = hy+C(v)+hy if C(v) =0, then v* = w(hy)+0+
w(hg), it is one of the identities defining w-algebras. And for C'(v) # O

if C(v) # v, then by using [[.3|we have v* = (C(v)(h1 + O+ hy))* and
since C'(v) is a O-pure p-context, it gives the result.

[17. By using (A.6), (A.8), (A.5), and [L.5 we have:

w(uvs) = w(w(uvs))

= w

+ w(us)

w(us)

(

(

(w(us) + w(w(uwvs))
(us + w(uwvs)) +

(

uvs) + w(us),
and in a similar way we have w(uvs) = w(us) + w(uvs).
[LI] . If the identity wv = w holds, then by (A.5]) we have:

wvt + w(uwt) = wvt + w(uwot)
= w(uwuvt)

= w(uwt).

In a similar way we can conclude that w(uwt) + wvt = w(uwt). And
also in a similar way if the identity vw = w holds.

[19. By using[[.1] and we have the following identities:

wf - us) = wf - vs) + w(v - v h)

w@? - vrh) =w@f - vEh) + w(f - vp_jugh)

n

w(y v _juph) = w(f v _qunh) + w (v v _gup—1unh)

w(vfug - up—1uph) = w@WYug - - up—1uph) + w(ugug - - Up—1uyh)

w(uug -+ Up—q1uph) = w(ujug - - - Up—1uph) + uq - - - uph.

By combining the above equations and we get the result.
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[L20. Since u |s v, there exist p-contexts
P P, Qp, . Qn
such that
u=P---P, and v=Q1P1-- - QnPQny1.
By using [[.L17] we have the following identities:
w(v0) = w(Q1Pr - QnPpQn10) + w(P1Q2 - QnPrQn110)

w(P1Q2 - QnPpQrnt10)
=w(P1Q2 - QnPrQn110) + w(PLPQ3 - - QnPrQni10)

WP PQ3 -+ QnPpQni10)
=w(PiQs3 - QnPrQni10) + w(PLPaPsQy - - - QnPrQn110)

w(P1 Py Pp_1P,Qpn410)
=w(P Py Pr1PrQnt10) + w(P1 Py - P Py0)

O.)(Plpg v Pnflpn()) = w(PlPQ s Pnflpn()) + PP P, 1P,0
By combining the above equations and we get the result.
[21]. By (A.4), .13 and w(h) =w( >, t) and by using [[.15| we get

telrrS(h)

the result.
[L22]. If for a p-forest s we have s € Specialy(h), then we have

s € IrrNIdemS*(h) or s € Specialg(h) \ IrrNIdemS™*(h).

If s € IrrNIdemS*(h), then by and we get the result.

It remains to show the result for s € Specialg(h) \ IrrNIdemS*(h).
From the definition of the set Specialg(h) it follows that

SZPlQl"'PnQnPn+1O7é07

where
uvy - Up U up+10 € IrrNIdemS™ ()
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such that each p-context F; is a scattered divisor of u; and each p-
context @; is a product of some of the elements of IrrNIdemF*(v;) in
any order and some but not all of the p-contexts F; and Q; are L.

Then the result is by and
[23]. By and for every s € Specialy(h), we obtain
wh)y=w( Y tts)
telrrNIdemS* (h)
So, we have
w(h) =w( Z t+ Z s).
telrrNIdemS* (h) s€Specialy (k)

By [[.6] we have the following identity:

= w( Z t

telrrNIdemS* (h)

+ Z s’

s’€lrrNIdemS* (h)

+ Z S//)7

s"’ €Specialy (h)\IrrNIdemS* (h)

where [[.6] and implies that

why=w( Y t+ > "),

telrrNIdemS* (h) s €Specialy (h)\IrrNIdemS* (h)

that is
w( Y. ) =w(h).
teSpecialy (h)
n
[.24] . For a p-context v with factorization H v; let
i=1
hi = Z s and hy = Z s,
seLIrrF(v)0 s€RIrrF(v)0

and let h =t; + - - + {cp(n) we have the following conditions:

[G.1l. For a p-context v let

w=( I wC [T wC [ w,

u€PIrrF (v) ueLIrrF (v) u€RIrrF(v)
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then by [[.3| we obtain v* = w®. Since t; € LIrrF(v)0, we have

vWh=uw"h
by [
—w(C IT wC TT w*) +- -+ tera)
u€LIrF (v) uw€RIrrF (v)
by and

w (w(hl) + 0O+ w(hg))(t1 +-+ tCP(h))

w(w(hy) + (t1 + -+ +tepy) +w(he))

= w*((w(h1) +t1) + (t2 + - - + tepn)) + w(hz))
w*(

by [[.5] and [L.6]
= ww(w(hl) + 0O+ w(hg))(tg + -+ tcp(h))
=w(ta + - +topn))

by [[.2]
— ,UUJh/

by [[3}

. We can do the similar arguments as in the proof of
. Since there is a p-context w € Pref(h) such that

IrrNIdemF* (w) C IrrNIdemF*(v),

there is a p-context u and a p-forest h’ such that by using we
have v* = (wu)¥ and h = wh’, while implies the result.

[G4l. We want to show that: if for a positive integer j with 1 < 5 <
CP(h) and a nonempty set L C LIrrF(v)0 there is a p-forest s
which is a sum of, in any order, of elements of L such that there
are p-contexts u and w and a p-forest r with ¢; + --- +1¢; = ur
and s = wwr, then v*h = v“h’ where h' =11+ +tcp()-

Let
w=( [ o [T =»C [ »

u€PIrrF (v) u€LIrrF (v) u€RIrrF(v)

Since the positive integer j with 1 < j < CP(h) and the nonempty
set L C LIrrF(v)0 are such that there is a p-forest s which is a
sum, in any order, of elements of L such that there are p-contexts
uw and z and a p-forest r such that t; 4 ---+t; = ur and s = uzr.
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Then by [[.6] we obtain for some p-forest h”, w(hy) = w(s + h").
So, we have

v“h
= w*(w(s+h")+ 0+ wh2))h
by (A.2) and [L.2)
“(w(s+h") +h+wh))

“(w(w(s) +w(h")) +w(s) + h+w(ha))

by and

=w
w

= w”(w(w(s) +w(h"))

+ w(uzr) + (ur +tjp1 + - +tepr)) + w(he))
= w”(w(w(s) +w(h"))

+ (w(uzr) +ur) + (tj41 + - +tepp)) +w(he))
= w*(w(w(s) +w(h"))

+ w(s) + (tj+1+ - +topm)) +w(ha))

by

= w”(w(w(s) +w(h"))

+w(s) + O+ w(he))(tj+1 + - +tcpm)
= w”(w(w(s) +w(h"))

+ 0+ w(h2))(tj+1 + -+ tepn))

by [[.3]
=w*(w(s +h") + 04 wha))(tjz1 + - +tepm))
= w“(tjp1 4+ +tepm))

by [.2]
=R

by [L.3]

[GH. We can do the similar arguments as in the proof of [G.4}
[G6. Let v,, = H; + 0O+ Hy with H; = S1+ -+ Scp(m) and Hy
s+ + SICP(HQ)' If scp(m,) € Specialy(h), then we have
vw(h) =v1...vw(h)
=v1...0p—1(H1 + 0+ Ho)w(h)

=V]...Up_ 1(H1+w( ) + Ho)
=v1...0n-1(51 + +SCP(H1)+OJ(h)+H2)
=v1...p-1(81 + -+ (Scp(ay) +w(h)) + Ha)
=v1...Vp-1(81 + -+ SscpE,)—1 +w(h) + Ha)

by [.5] and
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We can do the similar arguments for the symmetric case.
&7l . We want to show that: for v, = Hy + O+ Hy with Hy = s1 +

-+ scpm,) and Hy = 87 +--- + S/CP(H2) if
scp(my) € Specialy(h) or s; € Specialy(h),
then we have the identities
vw(h) =v1...vp-1(81 + - + scp(a)—1 +w(h) + Ha)
or
vw(h) =v1...vp—1(Hy +w(h) + 85+ -+ + s'CP(HQ)).

Let for a positive integer j with 1 < j < CP(H;) and a nonempty
set D C Specialy(h) and there is a p-forest p which is a sum, in
some order, of elements of D such that there are p-contexts u and
w and a p-forest r such that s;+---+scp(y,) = ur and p = uwr.
Then by [L.6] we obtain for some p-forest 1", w(h) = w(p+gq). And
we have

vw(h)
=v1...vw(h)
=1.. .’Unfl(Hl + 0O+ Hz)w(h)

=v1...0n_1(H1 +w(q+p)+ Hs)
=v1... 01 (H1 +w(w(q) + w(p)) + Ha)
by
=v1... 01 (H1 + w(p) + w(w(q) + w(p)) + Hz)
by [L3]

:vl...vn_1(81+"'+5j—1 +U7’+w(p)
+ w(w(q) +w(p)) + Ha)
=v1...Vp1(51 + -+ 5521 +w(p) +w(w(q) +w(p)) + Ha)

by
=01...Up1(81 4+ -+ 521 +w(w(q) + w(p)) + Ha)
by [[3]
=v1...Up—1(s1+ -+ sj-1 +w(h) + Ha)
by .

We can do the similar arguments for the symmetric case.

[G.8. Assume that Specialy(h) C Specialg( >,  z). Let
z€LIrrF(v)0

w=C I w [T o I] w

u€PIrrF(v) ueLIrrF (v) u€RIrrF(v)
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Then v* = w*. Therefore,

vWw(h) = w(w(h+ h) + O+ w(he))w(h)
by (52, [3 [ and [22
w(w(h + h1) +w(h) +w(he))
= w*(w(w(h) + w(hi)) +w(h) + w(ha))
by
“((w(w(h) +w(hy)) + w(h)) +w(h2))

by [L3]
“(w(w(h) +w(h1)) + B+ w(he))0
“(w(h+ h1) + 0+ w(h2))0
by

by (3. [3 [3 and [

by [L.3]

(2.9 . The identity is symmetric to and we can do the similar ar-
guments for the symmetric case.

G.101. Assume that Specialg(h) C Specialg( >, ). Let
z€LIrrF(v)0

w=( [ o [[ »C [[ w.
u€PIrrF (v) u€LIrrF(v) uw€RIrrF (v)
Then v* = w*. Therefore,
vh =w*(w(h+ h1) + 04 w(he))h
by (53, [3 3 and [23
=w(w(h+ h1) +h+w(hg))
=w“(w(h+ h1) + w(h2))
by [L5]
=w“(w(h+ h1) + 0+ w(h2))0
= w0
by (5. [3 [ and 23
= 0“0
by [[3]

G.11]. The identity is symmetric to and we can do the similar
arguments for the symmetric case.
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factorization,
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depth-first pre-order traversal,

direct product,
Dyck language,

equational axioms,

factor,
factorization,

faithful quotient,
finite p-context,
finite p-forest,
forest,
empty forest, [4]
forest algebra,
compact, [3§]
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isomorphism, [5]
pro-V,
syntactic, 25]
trivial,
forest language, [
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inverse zero action subset,

kind, [70]
kind 1, [76]
kind 2, [76]

kind 3, [76]
labels of nodes,



metric, [32]

Cauchy sequence,

clopen,

compact, [3§

complete,

Hausdorff,

Hausdorff completion, 3§

pseudo-metric,

pseudo-ultrametric,

totally bounded,

uniformly continuous,

zero-dimensional,
multiplicatively irreducible,
multiplicity of w(h), 110
multiplicity of v¥,

nerve, [70]

number of connected parts,

number of idempotents with
multiplicities, [67]

number of nodes,

number of occurrences of the
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number of summands,

open ball,

center, [34]

radius,
ordered form context,
ordered form forest,

piece, 29|

piecewise testable,
pro-V, 3]

pro-V forest algebra, [46]

profinite,
profinite forest algebra, [A0]

projective limit,
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projective system, 5]

pseudoidentity, [39]

pseudovariety,
fully-W,
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quotient, [9]
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Reiterman’s Theorem,

related,
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trivial,
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types of elements,
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Notation

A, RIrrF, B9
A3, CP,
C(v), IST(z),
ST, 166 Ist,
#ConnectedParts: Rank,
#peM(2), [67] Specialy,
#1dems @ depth,
#NodeSa @ labels, @ @
P, [62] nerve, [69

-0, 27] roots, [T§]
7m,m’ @ H,

[Xlv, Vv,

oK, [24) l,

¢, [36] LS’

F, Q4V,

-’47 IS_ZI CAV7

S, ~faith
TFA, L] “K, 24
IdemF, @ T, @
IdemsS, traversal,
IrrF, B9 w, [61]
IrrNIdemF*, e,
IrrNIdemF, ! 64
IrrNIdemS*, R 106
IrrNIdemS, mg(w(h)), 110
IrrS, [89) mg(v*), [[11
LIrrF, [89] tmm 6]
PlIrrF, | e,
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