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Abstract— In this paper we analyse the performance of
state-observers in the control of compartmental systems
under the presence of uncertainties in the system initial state.
We combine a state feedback law with positivity constraints
and a state observer and prove that, as expected, the mass
control objective is still attained. Moreover we show that,
for a class of three-compartmental systems of interest, the
resulting mass control law also allows reaching a desired
steady state.

Our results are illustrated by several simulations for the
control of the administration of a neuromuscular relaxant
to patients undergoing surgery, which show the relevance of
incorporating an observer for convergence acceleration even
in case the original system is asymptotically stable.

Abstract— Index Terms—Compartmental systems, posi-
tive control, state-observers, neuromuscular blockade con-
trol.

I. I NTRODUCTION

Compartmental systems form a subclass of positive
systems that consist of a finite number of subsystems,
the compartments, which exchange matter with each other
and with the environment. Such systems have been suc-
cessfully used to model biomedical and pharmacokinetical
processes, see, for instance, [4] or [6]. Since one has to
guarantee the positivity of the control input, the design of
suitable control laws for such systems is more delicate.
In [5], for instance, a nonnegative adaptive control law is
proposed in order to guarantee the partial asymptotic set-
point stability of the closed loop system, and a positive
feedback control law is proposed in [1], in order to
stabilize the total system mass at an arbitrary set-point.
The positive control law proposed in [1], was also used in
[10] for the control of the neuromuscular blockade level
(see [8], [9] and [11]) of patients undergoing surgery.

In most practical cases, the physical state of a system
cannot be determined by direct observation. In these
cases, we often use a state observer (see, for instance,
[2] or [3]) to estimate the state from the knowledge of
the input and the output of the real system. In this paper,
we consider the control law referred in [1] and in [10],
and analyse its performance for the target control of the
total mass, when the unknown state of the system is

replaced by its estimate provided by an observer. It turns
out that, in this case, the asymptotic mass values coincide
with those obtained when the state of the real system
is supposed to be known. Moreover, we prove that for
a class of three-compartmental systems of interest, the
state of the controlled system also tends to the same point
achieved when there is not uncertainties in the real system
state. Our results are illustrated by several simulations,
which, in particular, show that, even when the system is
asymptotically stable, it is still relevant to use a state-
observer in order to accelerate the convergence of the
system mass or of the state trajectories to the desired
values.

II. COMPARTMENTAL SYSTEMS

Compartmental systems are dynamical systems de-
scribed by a set of equations of the form

ẋi =
∑

j 6=i
fji(x) −

∑
l 6=i

fil(x) − fi0(x) + f0i(x)
i = 1, . . . , n

(see [4] or [12]) wherex = (x1, . . . , xn)T is the state
variable andxi and fij take nonnegative values. Each
equation describes the evolution of the quantity or con-
centration of material within a subsystem, called compart-
ment. Since the compartments exchange with each other
and with the environment, in the above equation,xi is the
amount (or concentration) of material in compartmenti,
fij is the flow rate from compartmentj to compartmenti
and the subscript0 denotes the environment (see [4]). In
this paper, we consider the class of linear time-invariant
compartmental systems described by

ẋi =
∑

j 6=i

kjixj−
∑

l 6=i

kilxi−qixi+biu, i = 1, . . . , n, (1)

where xi and the input u take nonnegative values,
kij , qi, bi ∈ R+ and at least onebi is positive (see
Fig. 1). Note that, in this case,fji = kjixj , f0i = biu

and fi0 = qixi, and it can be easily proved that the
system is positive, this is, if we consider an inputu that
remains nonnegative, then the state variable also remains
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nonnegative. Moreover, (1) can also be written in matrix
form as

ẋ = Ax + bu, (2)

whereA (called compartmental matrix) is so that

aii = −qi −
∑

j 6=i

kij and, if i 6= j, aij = kji,

andb = (b1, b2, . . . , bn)
T .

The total mass of the system in a given statex is
defined asM(x) =

∑
n

i=1
xi. For an arbitrary positive

value M∗, the setΩM∗ =
{
x ∈ Rn

+ : M(x) = M∗

}
of

all the pointsx in the state space with massM∗ is called
an iso-mass.

An important issue in the context of the control of
compartmental systems is to design a control law which
yields a positive input that steers the system massM(x)
to a desired value.

In [1], the following positive control law is proposed
to guarantee that the trajectories converge to a setΩM∗ :

u(x) = max (0, ũ(x))

ũ(x) = (
∑

n

i=1
bi)

−1
(
∑

n

i=1
qixi + λ (M∗ − M(x))) ,

(3)
whereλ is an arbitrary design parameter.

In order to state the corresponding theorem, we need
to introduce the following concept of full outflow con-
nectedness. A compartmental system (1) is said to be
fully outflow connectedif at every statex there is a path
i → j → k → · · · → l with positive kij ’s from every
compartmenti to some compartmentl such thatql > 0
(see [1]).

Theorem 1:[1] Let (2) be a fully outflow connected
compartmental system. Then, for the closed loop system
(2)-(3) with arbitrary initial conditionsx(0) ∈ R

n
+:

i) the iso-massΩM∗ is forward invariant;
ii) the statex(t) is bounded for allt > 0 and converges

to the iso-massΩM∗ .

The proof of this result is based on the application
of LaSalle’s invariance principle (see [7], pg.30), by
considering the Lyapunov function

V (x) =
1

2
(M∗ − M(x))

2

of (2) on Rn
+.

   b i   b j 

   q i    q j

to/from other 
compartments

to/from other 
compartmentsk j i

k i j
i j

Fig. 1. Two compartments of a linear time-invariant compartmental
model, as described by (1).

III. O BSERVERS

In most practical cases, the physical state of a system
cannot be determined by direct observation. In these
cases, we often use a state observer to estimate the state
from the knowledge of the input and the output of the
real system.

In this section, we analyse the effect of replacing the
unknown state of the system by its estimate provided by
an observer for control purposes.

Consider the system described by

{
ẋ = Ax + bu

y = Cx
(4)

where A is a compartmental matrix,b =

(b1, b2, . . . , bn)
T (with bi ∈ R+ and at least onebi

positive) and let the closed-loop state estimatorΩ be
described by

{
˙̂x = (A − LC) x̂ + bu + Ly,

ŷ = x̂

wherex̂ is the estimated state andL = (l1, l2, . . . , ln)
T

is a vector of gains such thatσ(A−LC) ⊂ C-. In order to
guarantee the existence of suchL, we assume that(C, A)
is detectable.

If we take the estimated statêx instead of the real state
x, the control law to be applied to (4) is:

u(x̂) = max (0, ũ(x̂))

ũ(x̂) = (
∑

n

i=1
bi)

−1
(
∑

n

i=1
qix̂i + λ (M∗ − M(x̂))) .

(5)

In the sequel, we analyse the convergence of the state
trajectories of the closed loop system (4)-(5).

A. Total mass convergence

Theorem 2:Let (4) be a compartmental system such
that qi 6= 0, i = 1, . . . , n. Then, the state trajectoriesx(t)
of the closed loop system (4)-(5), with arbitrary initial
conditionsx(0) ∈ Rn

+, converge to the set

Ω =
{
x ∈ R

n
+ : M(x) = M∗

}
.

Proof: If we definee(t) = x̂(t) − x(t) as the error
between the real and the estimated state, the control law
(5) becomes

u(x̂) = max (0, ũ(x̂))

ũ(x̂) = (
∑

n

i=1
bi)

−1
(
∑

n

i=1
qi (xi + ei) + λ (M∗−

−M(xi + ei)))

= (
∑

n

i=1
bi)

−1
(
∑

n

i=1
qixi + λ (M∗− +

−M

[
x

e

]))

(
∑

n

i=1
bi)

−1 ∑
n

i=1
qiei,

(6)

where[e1, . . . , en]T = e andM

[
x

e

]
= M(x) + M(e).



SinceL is such thatσ(A − LC) ⊂ C-,

e(t) = x̂(t) − x(t) → 0,

that is, x̂(t) → x(t). Therefore,∀ε1 > 0∃t1 > 0 : ∀t >

t1,−ε1 < ei(t) < ε1.
Consider ε1 > 0 and take t1 > 0 such that the

previous condition is verified. Then, since−
∑

n

i=1
qiε1 <∑

n

i=1
qiei <

∑
n

i=1
qiε1, we have

ũ(x̂) > (
∑

n

i=1
bi)

−1
(∑

n

i=1
qixi + λ

(
M∗ −

∑
n
i=1

qi

λ
ε1−

−M

[
x

e

]))

and

ũ(x̂) < (
∑

n

i=1
bi)

−1
(∑

n

i=1
qixi + λ

(
M∗ +

∑n
i=1

qi

λ
ε1−

−M

[
x

e

]))
.

In the following we takeM∗

1 = M∗−
∑

n
i=1

qi

λ
ε1, M∗

2 =

M∗ +
∑

n
i=1

qi

λ
ε1 and suppose that

∑
n

i=1
lj ≥ 0.

In this case, wheñu(x̂) ≥ 0,

Ṁ

[
x

e

]
= λ

(
M∗ − M

[
x

e

])
−

∑
n

i=1
(
∑

n

i=1
lj) ei

= λ

(
M∗ − M

[
x

e

])
− (

∑
n

i=1
lj)M(e)

≤ λ

(
M∗ +

n(
∑ n

i=1
lj)

λ
ε1 − M

[
x

e

])

and

Ṁ

[
x

e

]
= λ

(
M∗ − M

[
x

e

])
− (

∑
n

i=1
lj)M(e)

≥ λ

(
M∗ −

n(
∑ n

i=1
lj)

λ
ε1 − M

[
x

e

])
.

Define

M1 = M∗ −
n(

∑
n
i=1

lj)
λ

ε1,

M2 = M∗ +
n(

∑ n
i=1

lj)
λ

ε1

and letM1 = min
{
M1, M

∗

1

}
andM2 = M2.

Consider the functionV : Rn → R defined by

V

[
x

e

]
=

=





1
2

(
M

[
x

e

]
− M1

)2

if M

[
x

e

]
< M1

1
2

(
M

[
x

e

]
− M2

)2

if M

[
x

e

]
> M2

0 otherwise.

Note that V is a Lyapunov function of the system in

Rn
+ × B(0, ε1) because it is continuous anḋV

[
x

e

]
≤

0, ∀

[
x

e

]
∈ Rn

+ × B(0, ε1) (see [7], pg.30). In fact, if
[

x

e

]
∈ Rn

+ × B(0, ε1),

V̇

[
x

e

]
=

=





(
M

[
x

e

]
− M1

)
Ṁ

[
x

e

]
if M

[
x

e

]
< M1

(
M

[
x

e

]
− M2

)
Ṁ

[
x

e

]
if M

[
x

e

]
> M2

0 otherwise

is nonpositive, as we next show.

• Suppose thatM

[
x

e

]
< M1. In this case,̃u(x̂) and

Ṁ

[
x

e

]
will be positive if ε1 is such that

{
n(

∑
n
i=1

Lj)
λ

ε1 < M∗

∑
n
i=1

qi

λ
ε1 < M∗

. (7)

Sinceε1 > 0 is arbitrary, we shall suppose that this

is the case. Note that, in this case,

V̇

[
x

e

]
=

(
M

[
x

e

]
− M1

)
Ṁ

[
x

e

]
< 0.

• Suppose thatM

[
x

e

]
> M2. In this case, if̃u(x̂) ≥

0, Ṁ

[
x

e

]
< 0. If ũ(x̂) < 0, u(x̂) = 0 and

Ṁ

[
x

e

]
=

= −
∑

n

i=1
qixi −

∑
n

i=1
qiei − (

∑
n

i=1
lj)M(e)

≤ −qminM(x) +
∑

n

i=1
qiε1 + n (

∑
n

i=1
lj) ε1

< −qminM2 + qminM(e) +
∑

n

i=1
qiε1+

+n (
∑

n

i=1
lj) ε1

< −qminM2 + (nqmin +
∑

n

i=1
qi + n (

∑
n

i=1
lj)) ε1.

Since qminM2 > 0, it is possible to

choose ε1 > 0 such that −qminM2 +
(nqmin +

∑
n

i=1
qi +

∑
n

i=1
(
∑

n

i=1
lj)) ε1 < 0.

Then, fort ≥ t1, Ṁ

[
x

e

]
< 0 and

V̇

[
x

e

]
=

(
M

[
x

e

]
− M2

)
Ṁ

[
x

e

]
< 0.

Applying LaSalle’s invariance principle (see [7], pg.30),it

turns out that

[
x

e

]
(t) converges to the largest invariant

set contained in



{[
x

e

]
∈ Rn

+ × B(0, ε1) : V̇

[
x

e

]
= 0

}
=

=

{[
x

e

]
∈ Rn

+ × B(0, ε1) : M

[
x

e

]
∈ [M1, M2]

}
.

Then,M

[
x

e

]
→ [M1, M2].

The case where
∑

n

i=1
lj < 0 is similar to the previous

one.

Note that the definitions ofM1 and M2 allow to
conclude that there is a neighbourhood ofM∗, N =
]M∗ − ε, M∗ + ε[, with ε > 0, such thatN ⊃ [M1, M2] .

Indeed, ifε = max

{
n|

∑ n
i=1

lj|
λ

ε1,
∑ n

i=1
qi

λ
ε1

}
, it is easy

to verify the previous inclusion. Sinceε1 can be taken as

small as we want, we prove thatM

[
x

e

]
→ M∗. Thus,

asM(e) → 0, we prove thatM(x) → M∗ as desired.

Remark 3:The construction of positive observers is an
important issue in the theory of linear positive systems.
However here the observer system is not required to be
positive, since the control lawu is subject to a positivity
constraint. Note moreover that this positivity constraintis
necessary even when the (positive) real statex is used
instead of the estimatêx.

B. The neuromuscular blockade case

In [10], the control law (3) was applied for the control
of the neuromuscular blockade of patients undergoing
surgery, by means of the infusion ofatracurium. In
fact, it is possible to model this problem as a three-
compartmental model that can be described as depicted in
Fig. 2, whereu is the drug infusion dose administered in
the central compartment, andk12, k21, k13, q3 are positive
micro-rate constants andq1, q2 are nonnegative micro-rate
constants that vary from patient to patient. In this case,
the set of equations (1) becomes





ẋ1 = −(k12 + k13 + q1)x1 + k21x2 + u

ẋ2 = k12x1 − (k21 + q2)x2

ẋ3 = k13x1 − q3x3

(8)
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Fig. 2. Compartmental model for the neuromuscular blockadeeffect
of the drugatracurium.

wherex1, x2 andx3 are the drug amounts in the central,
peripheral and effect compartments, respectively.

It was proved in [10] and in [13], that the application
of the control law (3) to a system of the form (8) not only
leads the mass to a certain valueM∗, but also leads the
whole system state to an equilibrium pointxM∗

. Here,
we shall prove that a similar result still holds when we
control our system (8), using a control law (5).

Although we focus on the administration of a muscular
relaxant, our results are also valid for other compartmental
systems with the same structure.

The next proposition is useful in the proof of the main
result of this subsection.

Proposition 4: Suppose thatqi 6= 0, i = 1, ..., n. Then,
when the control law (5) is applied to (4), there exists an
instantt1 > 0 such that, fort ≥ t1,

u(x̂(t)) = ũ(x̂(t)) ≥ 0,

Proof: According to the previous Theorem, when
the control law (5) is applied to (4), the system mass
converges toM∗. This implies that, for everyε > 0,
there exists an instantt1 > 0 such that

M(x) ∈ [M∗ − ε, M∗ + ε] ,

for t ≥ t1. Sincee(t) → 0, there is also a positive instant
such that−ε < ei < ε, i = 1, . . . , n, from that instant on.

Suppose thatt1 > 0 is such that the two previous
conditions are verified fort ≥ t1. Thus, fort ≥ t1,

ũ(x̂) =

= (
∑

n

i=1
bi)

−1
(
∑

n

i=1
qixi +

∑
n

i=1
qiei+

+λ (M∗ − M(x) − M(e)))

≥ (
∑

n

i=1
bi)

−1
(qminM(x) −

∑
n

i=1
qiε+

+λM∗ − λ (M∗ + ε) − λnε)

≥ (
∑

n

i=1
bi)

−1
(qmin (M∗ − ε) −

∑
n

i=1
qiε+

+λM∗ − λ (M∗ + ε) − λnε)

= (
∑

n

i=1
bi)

−1
[qminM∗ − (qmin +

∑
n

i=1
qi + λ(n + 1)) ε]

and, if

ε ≤
qmin

qmin +
∑

n

i=1
qi + λ(n + 1)

M∗,

it is easily seen thatu(x̂(t)) = ũ(x̂(t)) ≥ 0.

It was shown in[10] and in [13] that the application of
the control law (3) to a system of the form (8) leads the
whole system state to the unique steady statexM∗

with
massM∗, xM∗

= [α1 α2 1]T M∗

α1+α2+1 , whereα1 and
α2 depend on the micro-rate constantskij andqi. In the
following, we shall prove that this result holds when we
consider the control law (5) instead.



Proposition 5: Consider thatqi 6= 0, i = 1, 2, 3. The
state trajectoriesx(t) of the closed loop system (8)-(5),
with arbitrary initial conditionsx(0) ∈ Rn

+, converge to
xM∗

.
Proof: Define F = [q1 − λ q2 − λ q3 − λ] and

v = λM∗.
According to Proposition 4, there exists an instantt1 >

0 such that, fort ≥ t1, u(x̂(t)) = ũ(x̂(t)) ≥ 0. Thus, for
t ≥ t1, we obtain the following closed loop system:




˙[
x

e

]
=

[
A + bF bF

0 A − LC

] [
x

e

]
+

[
b

0

]
v

y =
[

C 0
] [

x

e

] .

(9)
Let

A1 =

[
A + bF bF

0 A − LC

]
.

Since it can be easily seen (using the Routh - Hurwitz
stability criterion) that, all the eigenvalues ofA + bF lie
in C-, it turns out thatA1 is asymptotically stable. Thus,
[

x

e

]
(t) = eA1t

[
x

e

]
(0) +

∫ t

0 eA1(t−τ)

[
b

0

]
vdτ

= eA1t

[
x

e

]
(0) +

∫ t

0
eA1(t−τ)dτ

[
b

0

]
v

= eA1t

[
x

e

]
(0) + A−1

1

(
eA1t − I

) [
b

0

]
v

and, sinceeA1t → 0, it turns out that

[
x

e

]
(t) →

−A−1
1

[
b

0

]
v.

However,

A−1
1 =

[
A + bF bF

0 A − LC

]
−1

=

=

[
(A + bF )−1 − (A + bF )−1

bF (A − LC)−1

0 (A − LC)−1

] .

Therefore,

−A−1
1

[
b

0

]
v = −

[
(A + bF )−1

bv

0

]

and it turns out that

x(t) → − (A + bF )−1
bv.

Since it is easy to verify that− (A + bF )
−1

bv coincides
with xM∗

, this proves our result.

1) Simulations:In the sequel, some simulation exam-
ples are presented for the control of the administration of
the neuromuscular relaxant drugatracurium to patients
undergoing surgery. As it was already shown, it is possible
to model this problem as a three compartmental model
described by the set of equations (8).

Here, we consider that the patient’s real model is given
by (8), with the following values for the parameters

(units = min−1): k12 = 0.2131, k13 = 0.0017, k21 =
0.1252, q1 = 0.1047, q2 = 0.01, q3 = 0.0836.

Our aim is to stabilize the system mass on the value
M∗ = 143.5997 and the third component of the system
state (which corresponds to the drug effect) onxM∗

3 =
1.1169 (which, in an exact modeling situation, can be
shown to correspond to the typical10% level of neuro-
muscular blockade), applying the control law (5) to (8).

The following simulations illustrate the behavior of the
mass and of the drug effect for the controlled system
for different observer gain vectorsL. In the first and in
the second simulations, depicted in Fig. 3, it is assumed
that L = 0. Note that this corresponds to a parallel
computation of the state based on initial conditions that
are affected by error. However, since the system turns out
to be asymptotically stable, this initial error will converge
to zero. The other simulations show how the convergence
can be accelerated by the choice of suitable observer
gains.

In accordance with our theoretical results, in all sim-
ulations one observes that the system mass converges to
M∗and the drug effect converges toxM∗

3 .
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Fig. 3. Simulations for the neuromuscular blockade case for
L = 0. Observer poles:−0.0836,−0.0398 and −0.4149. (a)
Simulation for the control of the system mass. Convergence
time: 149.7 min. (b) Simulation for the control of the drug
effect. Convergence time:156.3 min.
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Fig. 4. Simulations for the neuromuscular blockade case
for L = [−0.9521 0.7880 0.0127]T . Observer poles:
−0.0905,−0.0405 and−0.42. (a) Simulation for the control of
the system mass. Convergence time:118.3 min. (b) Simulation
for the control of the drug effect. Convergence time:127 min.
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Fig. 5. Simulations for the neuromuscular blockade case
for L = [0.1686 4.5141 0]T . Observer poles:−10 with
multiplicity 3. (a) Simulation for the control of the system mass.
Convergence time:39.67 min. (b) Simulation for the control of
the drug effect. Convergence time:92.33 min.

CONCLUSION

This paper presents an analysis of the performance of
state-observers in the control of compartmental systems
under the presence of uncertainties in the system initial
state.

It turns out that, in this case, the asymptotic mass
values coincide with those obtained when the state of
the real system is supposed to be known. Moreover, we
prove that, for a class of three-compartmental systems of
interest, the steady state of the controlled system is the
same as in the exact case. Our results are illustrated by
several simulations, which show the role of observers in
the acceleration of the convergence.

ACKNOWLEDGMENT

This work was partially supported by FCT through
the Unidade de Investigação Matemática e Aplicações
(UIMA), Universidade de Aveiro, Portugal.

REFERENCES

[1] Bastin, G. and A. Provost (2002). “Feedback stabilisation with
positive control of dissipative compartmental systems”. In: Pro-
ceedings of the 15th International Symposium on Mathematical
Theory of Networks and Systems. Notre Dame, Indiana, USA.

[2] Luenberger, D. G. (1964). “Observing the state of a linear system”,
IEEE Transactions on Military Electronics,vol. 23, pp. 119-125.

[3] Luenberger, D. G. (1966). “An introduction to observers”, IEEE
Transactions on Automatic Control,vol. 16, pp. 596-602.

[4] Godfrey, K. (1983).Compartmental Models and Their Application.
Academic Press.

[5] Haddad, W., T. Hayakawa and J. Bayley (2003). “ Adaptive
control for non-negative and compartmental dynamical systems
with applications to general anesthesia”.International Journal of
Adaptive Control and Signal Processing,vol. 17, pp. 209-235.

[6] Jacquez, J. and C. Simon (1993). “Qualitative theory of compart-
mental systems”.SIAM Review,vol. 35, no. 1, pp. 43-79.

[7] LaSalle, J. P. (1976).The Stability of Dynamical Systems.SIAM,
Bristol, England.

[8] Lemos, J., T. Mendonça and E. Mosca (1991). “Long-range
adaptive control with input constraints”.International Journal of
Control, vol. 54, pp. 289-306.

[9] Linkens, D. (1994).Intelligent control in biomedicine.Taylor and
Francis, London.

[10] Magalhães, H. (2005). “Identification and control of positive
and compartmental systems applied to neuromuscular blockade”.
In: Preprints of the 16th IFAC World Congress. Prague, Czech
Republic.

[11] Mendonça, T. and P. Lago (1998). “PID control strategies for the
automatic control of neuromuscular blockade”.Control Engineer-
ing Practice,vol. 6, pp. 1225-1231.

[12] Sandberg, W. (1978). “On the mathematical foundationsof com-
partmental analysis in biology, medicine and ecology”,IEEE
Transactions on Circuits and Systems,vol. 25, pp. 273-279.

[13] Sousa, C., T. Mendonça and P. Rocha (2008). “Total mass control
in uncertain compartmental systems”. In:Proceedings of the 8th
Portuguese Conference on Automatic Control.Vila Real, Portugal.


