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Abstract— In this paper we analyse the performance of replaced by its estimate provided by an observer. It turns
state-observers in the control of compartmental systems qut that, in this case, the asymptotic mass values coincide
under the presence of uncertainties in the system initial slte. ity those obtained when the state of the real system
We combine a state feedback law with positivity constraints .
and a state observer and prove that, as expected, the mass is supposed to be known. Moreover, we prqve that for
control objective is still attained. Moreover we show that, @ class of three-compartmental systems of interest, the
for a class of three-compartmental systems of interest, the state of the controlled system also tends to the same point
resulting mass control law also allows reaching a desired achieved when there is not uncertainties in the real system
steady state. state. Our results are illustrated by several simulations,

Our results are illustrated by several simulations for the hich. in particular. show that. even when the svstem is
control of the administration of a neuromuscular relaxant which, In particular, W » BVEn W y :

to patients undergoing surgery, which show the relevance of asymptotically stable, it is still relevant to use a state-
incorporating an observer for convergence acceleration @an  observer in order to accelerate the convergence of the

in case the original system is asymptotically stable. system mass or of the state trajectories to the desired
Abstract— Index Terms—Compartmental systems, posi- values.

tive control, state-observers, neuromuscular blockade cp
trol. Il. COMPARTMENTAL SYSTEMS

. INTRODUCTION Compartmental systems are dynamical systems de-

... scribed by a set of equations of the form
Compartmental systems form a subclass of positive

systems that consist of a finite number of subsystems, ;=3 . fji(x) — >, fu(x) — fio(x) + foi(x)

the compartments, which exchange matter with each other 5 =1,...,n
and with the environment. Such systems have been suc- .
cessfully used to model biomedical and pharmacokineticdsee [4] or [12]) wherer = (z1,...,2,)" is the state

processes, see, for instance, [4] or [6]. Since one has triable andz; and f;; take nonnegative values. Each
guarantee the positivity of the control input, the design ofequation describes the evolution of the quantity or con-
suitable control laws for such systems is more delicatecentration of material within a subsystem, called compart-
In [5], for instance, a nonnegative adaptive control law isment. Since the compartments exchange with each other
proposed in order to guarantee the partial asymptotic sefnd with the environment, in the above equatiepis the
point stability of the closed loop system, and a positivedmount (or concentration) of material in compartmgnt
feedback control law is proposed in [1], in order to fi; is the flow rate from compartmefitto compartment
stabilize the total system mass at an arbitrary set-poinfind the subscript denotes the environment (see [4]). In
The positive control law proposed in [1], was also used inthis paper, we consider the class of linear time-invariant
[10] for the control of the neuromuscular blockade levelcompartmental systems described by
(see [8], [9] and [11]) of patients undergoing surgery. . .

In most practical cases, the physical state of a system®* — Z kﬁxi_z kawi—qizi+biu, i =1,...,n, (1)
cannot be determined by direct observation. In these 7 7
cases, we often use a state observer (see, for instanaehere z; and the inputu take nonnegative values,
[2] or [3]) to estimate the state from the knowledge ofk;;,¢;,b; € Ry and at least one, is positive (see
the input and the output of the real system. In this paperfig. 1). Note that, in this case;; = kjizj, foi = biu
we consider the control law referred in [1] and in [10], and f,0 = ¢;z;, and it can be easily proved that the
and analyse its performance for the target control of thesystem is positive, this is, if we consider an inputhat
total mass, when the unknown state of the system isemains nonnegative, then the state variable also remains
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nonnegative. Moreover, (1) can also be written in matrix I1l. OBSERVERS

form as In most practical cases, the physical state of a system
cannot be determined by direct observation. In these
& = Az + bu, (2)  cases, we often use a state observer to estimate the state
L from the knowledge of the input and the output of the
where A (called compartmental matrix) is so that real system.
. In this section, we analyse the effect of replacing the
Qii = =4 = Z kij and, ifi # j, ai; = kji, unknown state of the system by its estimate provided by
7 an observer for control purposes.
andb = (b, b, ’bn)T' Consider the system described by
The total mass of the system in a given statds i = Azt bu
defined asM(xz) = >°"  x;. For an arbitrary positive { y =Cx 4)
value M*, the setQ« = {z € R} : M(z) = M*} of _ _
all the pointsz in the state space with mad$* is called where A is a compartmental matrix,b =
aniso-mass (b1,ba,...,bn)" (with b; € R, and at least one;

An important issue in the context of the control of positive) and let the closed-loop state estimafbrbe
compartmental systems is to design a control law whicljescribed by
yields a positive input that steers the system mags:)
to a desired value. { i = (A—LC)& + bu+ Ly,

In [1], the following positive control law is proposed 9 =2
to guarantee that the trajectories converge to d)get: - ) -

where is the estimated state add= (I1,1s,...,1,)

u(z) = max (0, ﬁ(fcl)) is a vector of gains such that A— LC) € C". In order to
a(z) = (327, b)) (2, @iwe + A(M™ — M(x))), guarantee the existence of suthwe assume thdtC, A)
(3 s detectable.

where is an arbitrary design parameter. If we take the estimated stafeinstead of the real state
In order to state the corresponding theorem, we need ihe control law to be applied to (4) is:

to introduce the following concept of full outflow con-

nectednessA compartmental system (1) is said to be u(z) = max (0, @(z))

fully outflow connected at every stater there is a path  j(3) = (27 p,)7! (37 qadi + A (M* — M(#)))
1 i=1 42t .

i=1

i —j — k — .- — [ with positive k;;'s from every (5)
compartment to some compartmeritsuch thatg; > 0
(see [1]).

In the sequel, we analyse the convergence of the state

trajectories of the closed loop system (4)-(5).
Theorem 1:[1] Let (2) be a fully outflow connected

compartmental system. Then, for the closed loop system. Total mass convergence
(2)-(3) with arbitrary initial conditions:(0) € R’

i) the iso-mass$,,+ is forward invariant

i1) the statex(t) is bounded for alt > 0 and converges
to the iso-mass$) .

Theorem 2:Let (4) be a compartmental system such
thatg; #0,i =1,...,n. Then, the state trajectoriegt)
of the closed loop system (4)-(5), with arbitrary initial
conditionsz(0) € R’;, converge to the set
The proof of this result is based on the application Q= {ecR}:M@)=M}.
of LaSalle’s invariance principle (see [7], pg.30), by

considering the Lyapunov function Proof: If we definee(t) = Z(t) — z(t) as the error

between the real and the estimated state, the control law
Viz) = % (M* - M(gc))2 (5) becomes
u(z) = max (0,u(E))
of (2) onR™. a(z) = (2, b)) (D, i (s +eg) + A (M

i=1

—M(z; + €;)))
= (7 b)) (O00 i + A (M~ +
to/from other ——» . i R » to/from other —M |:
compartments™ " ! K. J " compartments €
a q; (0, b)) qie,
(6)

Fig. 1. Two compartments of a linear time-invariant compental T _ T |
mOdeI, as described by (l) Where[el7 ceey en] =€ and ]\/[ e — M(,T) + ]\/[(e).




SinceL is such that(A — LC) C C,
e(t) = z(t) — z(t) — 0,

that is, z(t) — =(t). ThereforeVe; > 03t; > 0 : V¢ >
t1,—e1 < ei(t) < é€1.

Considere; > 0 and taket;
previous condition is verified. Then, sineed "  g;e1 <
> e < Yo qi€1, We have

i) > (S, b
)

a(2)

~[2])
&
In the following we takeM/; = M*—#sl, Mj =

M* 4+ #51 and suppose thadt"  1; > 0.

In this case, wheni(z) > 0,

M{ﬂ _

and
X * €T n
M{ . } =AM —M[ . ]) —(lellJ)M(e)
*_n( Zl:l j) _ x
>A M 5\ e —M e
Define
Ml = M* — 771(2;;\:1 lj)El,
Vi n e by
MQ:M*—F*( 7')\7 )61

and letM; = min {M;, M7} and M, = M.
Consider the functio’v : R™ — R defined by

2] ) o]

A ECHERTRR

0 otherwise

Note thatV is a Lyapunov function of the system in

R" x B(0,¢;) because it is continuous arid[ "Z

> 0 such that the

. b')fl( quixﬁA(M*_@al_

< (DL b0 (S qimi + A (M7 4 Bigtie,

0,V "Z } € R x B(0,e1) (see [7], pg.30). In fact, if

S Ri X B(O,El),

v[fc _
[

] )u]c] o]

-s)af;] w[z]-m

0 otherwise

I
7N
=
—
o 8

is nonpositive, as we next show.

« Suppose thaM[ "Z } < M;. Inthis casegi () and

M [ "Z }will be positive if ¢, is such that

{ HEE b, < )

Z:%\l qi €1 < M*
Sincee; > 0 is arbitrary, we shall suppose that this

is the case. Note that, in this case,
VL]l E )] 7 ] <o
€ € €
o Suppose that/ { ”Z } > M. Inthis case, ifi(z) >

O,M[ﬂ«). If (&) <0, u(z) =0 and

N [ z } _
e
== g — 2o e — (2, 1) M(e)
< —GminM () + 307 qier +n (307 1) e
< ~GminMa + qminM(e) + 307 qie1+
+n (3, L) e

< _QWinMZ + (anzn + ijl qi +n (Z?:1 l])) €1-
Since g¢ninMs > 0, it is possible to

0 such
(@min + 227 @i+ Q2 l)er < 0.
Then, fort > t,, M { “Z]] < 0 and

o[- (o)) ] oo

Applying LaSalle’s invariance principle (see [7], pg.3iD),

choose ¢; > that —qpninMs +

turns out that “Z (t) converges to the largest invariant
set contained in



{[ z ] ER? x B(0,61): V [ z ] — 0} — wherez, z5 andzs are the drug amounts in the central,
¢ ¢ peripheral and effect compartments, respectively.

It was proved in [10] and in [13], that the application

_ H @ ] €Y x B0,c1) M[ x ] c [Ml,Mg]}. of the control law (3) to a system of the form (8) not only

€ € leads the mass to a certain vall&*, but also leads the
r whole system state to an equilibrium point!”. Here,
Then, M { e } — [My, Ma]. we shall prove that a similar result still holds when we
control our system (8), using a control law (5).
The case wher& " 1, < 0 is similar to the previous Although we focus on the administration of a muscular

one. relaxant, our results are also valid for other compartnienta
systems with the same structure.
Note that the definitions ofA/; and M, allow to The next proposition is useful in the proof of the main
conclude that there is a neighbourhood &f*, N’ =  result of this subsection.

|M* — e, M* + €[, with ¢ > 0, such that\V" > [M7, Ms)].
ny, lj|€1 2ic1 4 Proposition 4: Suppose tha; # 0,7 = 1,...,n. Then,
A oA when the control law (5) is applied to (4), there exists an

instantt; > 0 such that, fort > ¢4,
u(2(t)) = u(z(t)) = 0,

Indeed, ife = max

€1 ¢, it is easy
to verify the previous inclusion. Sineg can be taken as
small as we want, we prove thaf ”Z — M*. Thus,

as M (e) — 0, we prove thatM (z) — M* as desired.

] Proof: According to the previous Theorem, when

the control law (5) is applied to (4), the system mass
Remark 3:The construction of positive observers is anconverges toM*. This implies that, for every > 0,

important issue in the theory of linear positive systemsthere exists an instari{ > 0 such that
Hovy_ever here the observer system is not requw_e_d_to be M(z) € [M* — 2, M* +¢],
positive, since the control law is subject to a positivity
constraint. Note moreover that this positivity constrasnt for ¢ > ¢;. Sincee(t) — 0, there is also a positive instant

necessary even when the (positive) real statis used suchthat-c <e; <¢e,i=1,...,n, from that instant on.

instead of the estimate. Suppose that; > 0 is such that the two previous
conditions are verified fot > ¢1. Thus, fort > ¢4,

B. The neuromuscular blockade case W(z) =

In [10], the control law (3) was applied for the control
of the neuromuscular blockade of patients undergoing= (3" bi)’1 Qo i + 300 qieit
surgery, by means of the infusion atracurium In
fact, it is possible to model this problem as a three- +\(M* — M(x) — M(e)))
compartmental model that can be described as depicted in
Fig. 2, whereu is the drug infusion dose administered in > (" ;)" (guin M (z) — 3", qic+
the central compartment, arg,, k21, k13, g3 are positive
micro-rate constants ang, g» are nonnegative micro-rate L \A/* — )\ (M* +¢) — \ne)
constants that vary from patient to patient. In this case,

the set of equations (1) becomes > (X, bi)’l (Gin (M —2) = 5" qiet
&1 = —(ki2+kiz + @)z + karze +u § §
iy = kioxy — (ko + qo)xo (8) FAM* — X (M* +¢) — Ang)
T3 = kizz1 —qars R .
. and, if
Effect Compartment 3 .
(C3) — c S anln M*,
Y Gmin + 2, @i + A(n+1)
Kis it is easily seen that(&(t)) = u(&(t)) > 0.
|
klz
Central Compartment - Peripheral Compartment
b=l (€n < (€2) It was shown in[10] and in [13] that the application of
Kz the control law (3) to a system of the form (8) leads the

whole system state to the unique steady sidte with

% T I
massM*, M = [oy Caz ] M, wherea; and
ay depend on the micro-rate constahts andg;. In the
Fig. 2. Compartmental model for the neuromuscular blockeffiect fOHOW'ng' we shall prove that this result holds when we

of the drugatracurium consider the control law (5) instead.

q: q:2



Proposition 5: Consider thaty; # 0,7 = 1,2,3. The
state trajectories(t) of the closed loop system (8)-(5),
with arbitrary initial conditionsz(0) € R, converge to
ZCIM* .

Proof: Define FF = [¢1 — A ¢2— XA ¢35 — )\ and
v=AM"*.

According to Proposition 4, there exists an instgnt-

0 such that, fort > t1, u(2(¢)) = w(&(t)) > 0. Thus, for
t > t;, we obtain the following closed loop system:

M el
y  —[C o}[w
’ ©)
Let
Al_{A—BbF AEFLC}.

(UnitSZ mm_l): k12 0.2131, k13 = 0.0017, ko1 =
0.1252, g1 = 0.1047, g2 = 0.01, g5 = 0.0836.

Our aim is to stabilize the system mass on the value
M* = 143.5997 and the third component of the system
state (which corresponds to the drug effect) o™ =
1.1169 (which, in an exact modeling situation, can be
shown to correspond to the typicad% level of neuro-
muscular blockade), applying the control law (5) to (8).

The following simulations illustrate the behavior of the
mass and of the drug effect for the controlled system
for different observer gain vectors. In the first and in
the second simulations, depicted in Fig. 3, it is assumed
that L = 0. Note that this corresponds to a parallel
computation of the state based on initial conditions that
are affected by error. However, since the system turns out

Since it can be easily seen (using the Routh - Hurwitzo be asymptotically stable, this initial error will conger

stability criterion) that, all the eigenvalues df+ bF' lie
in C7, it turns out thatd; is asymptotically stable. Thus,

z — Alt- ] tAl(t—T) b
[e](t) =e _e_(O)—i—fOe |:O:|’Ud7'
= A1t | (O)—i—ft eAt=T)dr b v
| e | 0 0
[z ] _ b
= eMit e (0)+ A" (et —1T) [ 0 ]U

and, sincee1* — 0, it turns out that i (t) —
1| b
—A] ! [ 0 |v
However,
1 [A+bE b T
L 0 A-LC B
[ A+ —(A+bF) bR (A-LO)T!
- 0 (A—rLo)™!
Therefore,
e[ e ] [ (A+bR)
SRR R

and it turns out that
z(t) = — (A4 bF) " bu.

Since it is easy to verify that (A + bF) ™" bv coincides
with ™", this proves our result. []

1) Simulations:In the sequel, some simulation exam-

ples are presented for the control of the administration of

the neuromuscular relaxant dragracuriumto patients

to zero. The other simulations show how the convergence
can be accelerated by the choice of suitable observer
gains.

In accordance with our theoretical results, in all sim-
ulations one observes that the system mass converges to
M*and the drug effect converges ¢’ .
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undergoing surgery. As it was already shown, it is possible

to model this problem as a three compartmental modefig. 3.

described by the set of equations (8).

i Simulations for the neuromuscular blockade case for
L = 0. Observer poles—0.0836, —0.0398 and —0.4149. (a)
Simulation for the control of the system mass. Convergence

Here, we consider that the patient’s real model is givenime: 149.7 min. (b) Simulation for the control of the drug

by (8), with the following values for the parameters

effect. Convergence timd56.3 min.
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Fig. 4.

for L = [-0.9521 0.7880 0.0127]7. Observer poles:

—0.0905, —0.0405 and —0.42. (a) Simulation for the control of

the system mass. Convergence times.3 min. (b) Simulation
for the control of the drug effect. Convergence timi@7 min.

system mass
— — - desired masp
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100 150 200
Time (min)

(@

drug effect
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Fig. 5.

for I = [0.1686 4.5141 0]T. Observer poles—10 with

multiplicity 3. (a) Simulation for the control of the system mass.

Convergence time39.67 min. (b) Simulation for the control of
the drug effect. Convergence time2.33 min.

CONCLUSION

This paper presents an analysis of the performance of
state-observers in the control of compartmental systems
under the presence of uncertainties in the system initial
state.

It turns out that, in this case, the asymptotic mass
values coincide with those obtained when the state of
the real system is supposed to be known. Moreover, we
prove that, for a class of three-compartmental systems of
interest, the steady state of the controlled system is the
same as in the exact case. Our results are illustrated by
several simulations, which show the role of observers in
the acceleration of the convergence.
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