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Abstract: In this paper we define a reset switched system as a switched system
where, once switching occurs, the state is forced to assume (is reset to) a new
value which is a linear function of the previous state. Using a different approach
from the ones that have already been proposed in the literature, we show that,
by carefully selecting te reset laws, it is always possible to achieve stability under
arbitrary switching.
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1. INTRODUCTION

A switched linear system is a special type of time
varying system that can be viewed as a family
of time invariant linear systems together with
a switching law. The switching law determines
which of the linear system within the family is
active at each time instant, hence defining how
the time invariant systems commute among them-
selves. This type of systems may appear either as
a direct result of the mathematical modeling of
a phenomenon or as the consequence of certain
control techniques using switching schemes, see,
for instance, (?) (?). In these schemes, instead of
using a unique controller for a given system, a
bank of controllers (multi-controller) is considered
and the control procedure is made by commuta-
tion within the bank. In this context, finding con-
ditions that guarantee that the obtained switched
system is stable for every switching control law is
a crucial issue, (?).
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The most common approach when dealing with
switched systems is not to allow jumps in the
state during the switching instances. In such case,
even if each individual time invariant system is
stable the correspondent switched system may be
unstable, (?). The stability of switched systems
with continuous state trajectories has been widely
investigated, see, for instance, (?), (?), (?), (?)
and (?). In particular, it has been shown that
the existence of a common quadratic Lyapunov
function (CQLF) for a set of state-space models
{Σp, p ∈ P} implies the stability of the overall
switched system, (?).

However, in some situations it is natural and prof-
itable to allow discontinuous state jumps during
switching instants. In fact, many processes may
experience abrupt state changes at certain mo-
ments of time, for instance in drug administration,
(?). Also, it is possible to use a state reset in order
to construct a multi-controller that stabilizes a
given process, (?).

In this paper, we define reset switched systems
as switched systems where the state may change
according with a certain linear reset map when
switching occurs. This reset map does not depend
on the instant when the switching occurs itself,
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but only on the value of the switching signal
before and after the switching. Reset switched
systems t may be regarded as, some authors call,
systems with impulse effects, (?), (?), (?). We
shall show that, by carefully selecting the resets, it
is always possible to stabilize the switched system.
This resembles what has been done in (?) using
different framework and techniques.

2. PRELIMINARIES

Let P be a finite index set, {Σp, p ∈ P} a family of
time invariant linear systems and (Ap, Bp, Cp, Dp)
the state model representation of Σp, for p ∈ P.
Additionally, define a switching law σ : [0,+∞[→
P to be a piecewise constant function of time, i.
e.,

σ(t) = ik, for tk ≤ t < tk+1

where 0 = t0 < t1 < t2 < · · · < tk < · · · . The time
instants tk, k ∈ N0, are called switching instants.
The corresponding switched system Σσ has the
following representation{

ẋ(t) = Aσ(t)x(t) + Bσ(t)u(t)
y(t) = Cσ(t)x(t) + Dσ(t)u(t) (1)

where u(t) ∈ Rm is the input, y(t) ∈ Rp is
the output and x(t) ∈ Rn is the state. At each
switching instant, tk, the state is considered to be
such that

x(tk) = R(ik−1,ik)x(t−k ) , (2)

where x(t−k ) := lim
t→tk t<tk

x(t) and R(ik−1,ik) is an

invertible square matrix, for k ∈ N. The matrices
R(ik−1,ik) are called reset matrices or resets.

Notice that, as above mentioned, R(ik−1,ik) is
determined by the linear systems (within the
family) active before and after the commutation;
it does not depend on the switching instant.

When all reset matrices, R(ik−1,ik), are the iden-
tity matrix, the state replacement does not ex-
ist. In this case, Σσ is called a switched system
without reset or, simply, a switched system. In the
contrary, Σσ is called a reset switched system. In
the first case, it is assumed that there are no
discontinuous state jumps during the switching
instants, while, in the second case, discontinuous
state jumps during the switching instants are al-
lowed, and determined by the reset matrices.

Definition 1. The system Σσ is globally uniformly
exponentially stable if there exists γ, λ ∈ R+ such
that, for every t0 ∈ R and every x0 ∈ Rn, the
solution x(t) of ẋ(t) = Aσ(t)x(t), with x(t0) = x0,

satisfies ||x(t)|| ≤ γe−λ(t−t0)||x0||, for t ≥ t0.

A function V (x) is said to be a common quadratic
Lyapunov function (CQLF) for the switched sys-
tem Σσ, defined by equations (1), (and for the
corresponding set of matrices {Ap, p ∈ P}) if it
is a quadratic Lyapunov function for each of the
systems Σp = (Ap, Bp, Cp, Dp). Moreover, it is
easy to justify that if P is a square symmetric
positive definite matrix and V (x) = xT Px, then
the function V (x) is a CQLF for the switched
system Σσ if and only if

AT
p P + PAp < 0 , for all p ∈ P .

In the following, we use the next well-known suf-
ficient condition for stability for switched systems
without reset, (?).

Theorem 2. If there exists a CQLF for the switched
system Σσ, then Σσ is stable, for every switching
signal.

Notice that the reciprocal of Theorem 2 does not
hold. In fact, there are stable switched systems, for
every switching signal, with no CQLF, (?). On the
other hand, several authors have tried to establish
conditions in order to guarantee the existence of
a CQLF for a switched system, (?), (?), (?) and
(?).

3. STATE TRAJECTORIES ANALYSIS AND
STABILITY

In this section we will study the stability of a
reset switched system by relating its state tra-
jectories with the ones of a time-varying system
without resets, i.e., with no discontinuous jumps
on the state. Our aim is to identify cases where
that associated time-varying system is indeed a
switched system without resets, according with
our definition, (which is particular type of the
former ones).

For the sake of simplicity and considering that
our interest is focussed on the system stability
properties, from now on let consider the reset
switched system represented by

Σσ := ẋ(t) = Aσ(t)x(t), (3)

associated to a switching signal σ, with switching
instances 0 = t0 < t1 < . . . < tk < . . . , k ∈ N,
where

x(tk) = R(ik−1,ik)x(t−k ) (4)
with σ(t) = ik for tk ≤ t < tk+1 and R(ik−1,ik),
k ∈ N an invertible square matrix.

We next produce a switching dynamic without
reset that will allow an analysis of the trajectories
of the reset switched system Σσ . The trajectory
of this new dynamic will be denoted by x̃(t). Here,
to simplify the notation we define ck = (ik−1, ik),
for k ∈ N.



Lemma 3. Let Σσ be a reset switched system
defined according to (3) and (4). The following
time-varying linear system

˙̃x(t) = Ã(t)x̃(t); (5)

where

Ã(t)=Ai0 , for 0 ≤ t < t1

Ã(t)=

(
1∏

m=k

Rcm

)−1

Aik

1∏
m=k

Rcm
,

for tk ≤ t < tk+1, k ≥ 1,

and x̃(tk) = x̃(t−k ), is such that

x(t) =
0∏

m=k

Rcm x̃(t), for tk ≤ t < tk+1, k ≥ 0.

By convention, Rc0 = I.

Proof.

For 0 = t0 ≤ t < t1, we have ẋ(t) = Ai0x(t), that
is equivalent to

˙̃x0(t) = Ã(t)x̃0(t); x̃0(t0) = x(t0), (6)

with

x̃0(t) = x(t) (7)

Ã(t) = Ai0 .

For t1 ≤ t < t2,

ẋ(t) = Ai1x(t),

with x(t1) = Rc1x(t−1 ). So

R−1
c1

ẋ(t) = R−1
c1

Ai1Rc1R
−1
c1

x(t);

R−1
c1

x(t1) = x(t−1 ).

But, by (7), x(t−1 ) = x̃0(t−1 ). Then,

R−1
c1

ẋ(t) = R−1
c1

Ai1Rc1R
−1
c1

x(t), (8)

where R−1
c1

x(t1) = x̃0(t−1 ).

Taking
x̃1(t) = R−1

c1
x(t), (9)

and considering (8), we obtain

˙̃x1(t) = Ã(t)x̃1(t)

x̃1(t1) = x̃0(t−1 ),

for t1 ≤ t < t2 and Ã(t) = R−1
c1

Ai1Rc1 .

For t2 ≤ t < t3,

ẋ(t) = Ai2x(t) (10)

x(t2) = Rc2x(t−2 ). (11)

Hence, by (9), we have Rc1 x̃1(t−2 ) = x(t−2 ) and
consequently

x(t2) = Rc2Rc1 x̃1(t−2 ) .

Therefore,

R−1
c1

R−1
c2

ẋ(t) = R−1
c1

R−1
c2

Ai2Rc2Rc1R
−1
c1

R−1
c2

x(t),
(12)

with R−1
c1

R−1
c2

x(t2) = x̃1(t−2 ).

Taking
x̃2(t) = R−1

c1
R−1

c2
x(t), (13)

(12) is equivalent to

˙̃x2(t) = Ã(t)x̃2(t) (14)

x̃2(t2) = x̃1(t−2 ), (15)

for t2 ≤ t < t3 and Ã(t) = R−1
c1

R−1
c2

Ai2Rc2Rc1 .

Following the previous process, we obtain, for
tk ≤ t < tk+1,

˙̃xk(t) = Ã(t)x̃k(t) , (16)
where

x̃k(tk) = x̃k−1(t−k ),

Ã(t) =

(
k∏

m=1

R−1
cm

)
Aik

1∏
m=k

Rcm

x̃k(t) =

(
k∏

m=1

R−1
cm

)
x(t), (17)

with k ∈ N.

Considering x̃(t) = x̃k(t), for tk ≤ t < tk+1, k ∈
N0, the equations (16) can be written as

˙̃x(t) = Ã(t)x̃(t), (18)

where

Ã(t)=Ai0 , for 0 ≤ t < t1

Ã(t)=

(
1∏

m=k

Rcm

)−1

Aik

1∏
m=k

Rcm ,

for tk ≤ t < tk+1, k ≥ 1,

and x̃(tk) = x̃(t−k ). From (17), it follows that

x(t) =
0∏

m=k

Rcm
x̃(t), for tk ≤ t < tk+1, k ≥ 0.

2

In order to avoid long mathematical expressions,
we will use the following notation:

Rσ,0 = I, for 0 ≤ t < t1

Rσ,k =
1∏

m=k

Rcm , for tk ≤ t < tk+1, k ≥ 1.



Notice that, in the previous proof we have as-
sociated to the original reset switched system a
time-varying system with a linear and piecewise
constant dynamic. That dynamic is determine by
the following set of stable matrices

Ã =
{

Ai0 , R
−1

σ,1Ai1Rσ,1, R
−1

σ,2Ai2Rσ,2, . . .
}

.

Although the number of distinct reset matrices
is finite, the set Ã may be infinite. In this case,
the time-varying system (18) does not fit into our
definition of switched system. Nevertheless, if Ã is
finite, then (18) can be considered a switched sys-
tem without reset, associated to the correspond-
ing finite family of time-invariant systems and a
switching signal σ̃, that supervises the switching
between those systems. This switching signal, σ̃,
will have switching instances in the same set of
switching instances of σ.

Example 1. Let Σσ := ẋ(t) = Aσ(t)x(t) be a reset
switched system such that, for each switching
signal σ, with switching instances 0 = t0 <
t1 < . . . < tk < . . . , k ∈ N, taking values in
P = {1, 2}, the reset of the state is given by
x(tk) = R(ik−1,ik)x(t−k ), where

R(ik−1,ik) =
{

R, if ik = 1
R−1, if ik = 2 .

Let us consider that σ(t) = 1, for 0 = t0 ≤ t < t1.
Then, Rσ,0 = I , Rσ,1 = Rc1 = R−1 , Rσ,2 =
Rc2Rc1 = RR−1 = I, . . ..

Thus,

Rσ,k =
{

I, if k is even
R−1, if k is odd .

Since
{
Rσ,k : k ∈ N0

}
=
{
I,R−1

}
is finite, the

time-varying system obtained from the first sys-
tem is a switched system, without reset, with a
finite switching bank, given by

Ã=
{

Ai0 , R
−1

σ,1Ai1Rσ,1, R
−1

σ,2Ai2Rσ,2, . . .
}

=
{
A1, RA2R

−1
}

and associated to the same switching signal, σ.

The next result assures that, for a switching signal
σ and under certain conditions, if the time-varying
system without reset (18) is stable, then the reset
switched system Σσ is stable too.

Theorem 4. Let Σσ be a reset switched system,
defined in (3) and (4), for which

{∥∥Rσ,k

∥∥ : k ∈ N
}

is upper bounded. If the time-varying system (5)
is stable, then Σσ is stable for the switching signal
σ.

Proof. Let ΣRσ := ẋ(t) = Aσ(t)x(t) a reset
switched system associated to a switching signal

σ, with switching instances 0 = t0 < t1 < . . . <
tk < . . . , k ∈ N, and

x(tk) = Rck
x(t−k ), k ∈ N,

for certain invertible matrices Rck
.

By Lemma 3 , we conclude that

x̃k(t) = x̃(t) e σ(tk) = σ(t), for any t > 0,

where x̃(t) is the trajectory of the system (5), i.e.,
˙̃x(t) = Ã(t)x̃(t). Then, for any t > 0, there exists
k ∈ N such that

x̃(t) = R
−1

σ,kx(t).

Therefore for each t > 0,

‖x(t)‖ ≤
∥∥Rσ,k

∥∥ ‖x̃(t)‖, for some k ∈ N.

But
{∥∥Rσ,k

∥∥ : k ∈ N
}

is an upper bounded set,
then there exists L > 0 such that

∥∥Rσ,k

∥∥ < L.
Consequently, ‖x(t)‖ ≤ L‖x̃(t)‖ and the reset
switched system Σσ is stable. 2

Remark 5. Notice that, additionally, if the set{∥∥Rσ,k

∥∥−1
: k ∈ N

}
is upper bounded, then the

sufficient condition of the theorem is also neces-
sary. For example, this happens when the set of
matrices Rσ,k, k ∈ N is finite.

4. STABILITY OBTAINED BY RESET

In this section, we prove that by an adequate
choice of reset matrices it is possible to be left
just with a finite set of matrices Rσ,k, k ∈ N0 and
that the correspondent switched system (without
resets) is stable. Hence, using Theorem 4, we
conclude that the given system with resets, Σσ,
is also stable for the switching signal σ. This is
done for every possible switching signal.

We start by showing that given a family of stable
matrices and an arbitrary positive definite sym-
metric matrix, P , there exists a set of matrices
similar to the given ones that share P as CQLF.

Lemma 6. Let {Ap, p ∈ P} ⊂ Rn×n a set of stable
matrices and P a positive definite symmetric
matrix n×n. Then, there exists a set of invertible
matrices {Wp, p ∈ P} such that Ap = WpApW

−1
p ,

for p ∈ P and

Ap
T
P + PAp < 0, p ∈ P.

Proof. Let us suppose P = PT > 0 and {Ap, p ∈
P} is set of stable matrices. Then, there exists a
invertible matrix M such that P = MT M . On the
other hand, there exists Pp = PT

p > 0 such that

AT
p Pp + PpAp < 0, p ∈ P,



because Ap, p ∈ P, is a stable matrix. But, for
each p ∈ P, Pp = MT

p Mp for some invertible
matrix Mp. Thus,

AT
p MT

p Mp + MT
p MpAp < 0, p ∈ P.

Multiplying the last inequality on the left by M−T
p

and on the right by M−1
p , we obtain

M−T
p AT

p MT
p + MpApM

−1
p < 0, p ∈ P.

Consequently,

MT
(
M−T

p AT
p MT

p + MpApM
−1
p

)
M < 0, p ∈ P.

Since I = MM−1, the last inequality can be
written as, for p ∈ P,

MT M−T
p AT

p MT
p IT M + MT IMpApM

−1
p M < 0 .

Taking Wp := M−1Mp and Ap := WpApW
−1
p , we

obtain
Ap

T
P + PAp < 0, p ∈ P.

2

Based on the previous lemma, the next result
shows a way to adequately select the reset ma-
trices in order to guarantee the stability of the
switched system ẋ(t) = Aσ(t)x(t), for all switching
signal σ. Note that, a similar result was obtained
in (?) using another perspective.

Theorem 7. Let Σσ be a reset switched system,
defined in (3) and (4). Consider a set of in-
vertible matrices {Sp, p ∈ P} such that the set{
SpApS

−1
p , p ∈ P

}
has a CQLF.

If

R(ik−1,ik) = S−1
ik

Sik−1 , (19)

where σ(t) = ik for tk ≤ t < tk+1, k ∈ N, then Σσ

is stable.

Proof. Let σ : [0,+∞[→ P a switching signal
with switching instances 0 = t0 < t1 < . . . < tk <
tk+1 < . . . ,∈ N.

Let us consider Rck
= S−1

ik
Sik−1 , where ck :=

(ik−1, ik) and σ(t) = ik for tk ≤ t < tk+1. Then,
considering Rσ,k =

∏1
m=k Rcm and Rσ,0 = I, we

obtain Rσ,1 = Rc1 = S−1
i1

Si0 , Rσ,2 = Rc2Rc1 =
S−1

i2
Si0 , . . .. Thus,

Rσ,k = S−1
ik

Si0 , k ∈ N0

and
{
Rσ,k : k ∈ N0

}
= {SpSi0 ; p ∈ P} is a finite

set. So, by Theorem 4, it is sufficient to prove that
the following system

˙̃x(t) = Ã(t)x̃(t), Ã(t) ∈ Ã (20)

Ã=
{

Ai0 , R
−1

σ,1Ai1Rσ,1, R
−1

σ,2Ai2Rσ,2, . . .
}
(21)

is stable. But,

Ã =
{
S−1

i0
ApSi0 : p ∈ P

}
,

where Ap = SpApS
−1
p , p ∈ P. Hence the time-

varying system (20) is a switched system with
switching signal σ, and it is stable because the
matrices S−1

i0
ApSi0 , p ∈ P have a CQLF. Notice

that the matrices Ap, p ∈ P have a CQLF. Then,
by Theorem4, we conclude that the system Σσ is
stable for σ. 2

Remark 8. In the previous theorem, the resets
applied in the switching instances are always from
the same type, independently of the considered
switching signal, and so the reset switched system
Σσ is stable for any switching signal.

Remark 9. In particular, if Ap = SpApS
−1
p , p ∈ P

are all upper triangular matrices, then they have
a CQLF and the switched system is stable since
the resets are chosen as in last theorem.

Finally, to illustrate the previous result, we
present a example that shows a way to pick the
reset matrices in order to ensure stability of a
switched systems which, without reset, is unsta-
ble.

Example 2. Consider Σσ := ẋ(t) = Aσ(t)x(t),
a switched system, with switching signal σ :
[0,+∞[→ {1, 2}. Assume that

A1 =
(
−0.05 2
−1 −0.05

)
and A2 =

(
−0.05 1
−2 −0.05

)
.

Note that the time-invariant systems ẋ(t) =
A1x(t) and ẋ(t) = A2x(t) are stable, but the
switched system Σσ is unstable, (?).

If we have invertible matrices S1 and S2, such that
S1A1S

−1
1 and S2A2S

−1
2 have a CQLF, for instance

the identity matrix, then choosing the resets as

R(1,2) = S−1
2 S1 and R(2,1) = S−1

1 S2

we obtain stability of the reset switched system
Σσ, for all switching signal σ. In fact, the pair
(S1, S2) is not unique. We may take, for instance,

S1 =
(√

10 0
0 2

√
5

)
and S2 =

(
2
√

5 0
0

√
10

)
.

In this case

S1A1S
−1
1 = S2A2S

−1
2 =

− 1
20

√
2

−
√

2 − 1
20

 .

and the resets to be used are

R(1,2) =

 1√
2

0

0
√

2

 and R(2,1) =

√2 0

0
1√
2

 .
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