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Abstract: This paper presents a new hybrid automatic learning 

approach, which combines artificial neural networks (ANN) and 
regression trees (RT), to perform on-line dynamic security 
assessment of power systems. In the proposed method, the RT is 
firstly used to split the vast amount of knowledge data that describes 
a security problem into several less spread and disjoint problems. 
Then, an ANN is trained for each of these new smaller problems, 
resulting in a tree structure with an ANN predicting function 
associated to each leaf. Moreover, the capability of the RT to perform 
feature subset selection before ANN training is also tested. With this 
new method, the advantages of the two techniques are exploited in 
order to obtained a more accurate model without compromising 
prediction time. The quality of the approach is illustrated through its 
application to a major security problem of the power system of 
Madeira Island (Portugal). 
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I. INTRODUCTION 
In the last years, automatic learning techniques have been 

exploited to perform security assessment functions in 
advanced control systems specially designed to achieve secure 
and economical operation of isolated power systems with 
increased renewable penetration. Such work has been 
developed within the framework of the MORECARE 
European R&D project [1]-[2], which resulted in the 
installation of a MORECARE prototype system in Madeira 
and Crete Island (in Portugal and Greece). 

One of the key features of this control applications is 
related with the capability to assure a robust operation of the 
power system regarding to expected disturbances, which is 
achieved by performing on-line and accurate prediction of the 
system dynamic security for present and future operating 
scenarios, and also by providing fast preventive control 
measures when insecurity is detected. In the ongoing project, 
these security functions where successfully implemented, 
namely by exploiting Decision Trees [3], backpropagation 
Artificial Neural Networks [4][5] (ANN) and Kernel 
Regression Trees [6] (KRT). This last approach, integrates the 
classical Regression Trees (RT) [7] with kernel regression 
models to make prediction in the tree leafs. 

 
 
 
 
 
 
 
 

From the authors previous research work, it was possible to 
identify that the most performing security assessment 
structures were ANN. The KRT, although showing a 
comparable accuracy relatively to ANN, were more 
demanding in computational requests, namely in terms of [2]: 

 
�  memory, since the learning set needs to be stored together 

with the security rules; 
�  computational times, because each time a security 

prediction is performed a regression procedure needs to 
be performed, which may be a very burden task. 

 
Moreover, as presented in [8], ANN also offer simple and 

effective mechanisms of computing the derivatives of the 
system security indices (the ANN outputs) with respect to the 
power system operating conditions (the ANN inputs), which 
allows the application of gradient based methods for 
preventive control purposes. 

Although these advantages, it is known from bibliography 
[9] that backpropagation ANN may lose predicting 
performance in the boundary of knowledge discontinuities. 
These discontinuities are assumed to be removed by the 
training of a regression tree, and this fact is exploited in this 
research. 

Based on this assumptions, an innovative security structure 
type was developed, named here RT+ANN, which integrates 
artificial neural networks (ANN) in the regression tree (RT) 
leafs, in order perform on-line dynamic security assessment of 
electrical power systems. 

As already demonstrated with the KRT approach in [6], by 
considering a RT+ANN structure, the RT accuracy is with no 
doubt improved by including a function that highly 
approximate non-linear functions in the tree leafs. The 
accuracy improvement regarding to a single ANN is not so 
obvious, depending of the properties of the security surface to 
evaluate, and therefore performance evaluation tests must be 
performed. 

In this paper, results obtained from the application of the 
proposed approach to a major security problem of the Madeira 
power system are presented. From this case study, as initially 
expected, an increased accuracy was experienced by the 
application of RT+ANN security structures, when compared 
to isolated application of ANN or RT. 

 
II. MAIN STEPS TO GENERATE A RT+ANN 

STRUCTURE 
The following three main steps were followed in order to 

obtain an accurate RT+ANN structure (i.e. a tree structure 
with ANN predicting functions in the leafs): 
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�  STEP 1: Design of a regression tree (RT) for all the 
security knowledge, i.e. a binary tree with the mean value 
as the model to make prediction at the tree leafs. 

�  STEP 2: ANN training for all the security knowledge, i.e. 
an ANN for the root of the tree structure; 

�  STEP 3: Training an ANN for each of the tree leafs. 
 

Previous to ANN training, the interpretable “if-then-else” 
rules of the RT structure may also be explored in order to 
perform feature subset selection. All these steps are performed 
off-line, being the final product of the procedure – the 
RT+ANN security structure – to be used within the on-line 
security assessment framework of power systems control 
centers. These steps are described next. 

 

A. STEP 1: Design of a RT for the main security problem 

1) Growing a Very Large RT 
The design of the RT is made by applying a recursive 

partitioning algorithm, which successively divides the learning 
knowledge data (Learning Set - LS) into mutually exclusive 
subsets, aiming to minimize knowledge dispersion. Each tree 
mode is divided by the application of a splitting test of the 
following from: 

� �^ `  ? kk uOPfeature !  (1) 

where: � � OPfeaturek : value of feature k in the operating point; 

ku : optimal threshold value for the chosen feature. 
 
By applying this test to all the set of operating points (OP) 

in node t , two successor nodes are created, Lt  and Rt , which 
correspond to the two possible instances of the test. This must 
be performed according to an “optimal” splitting test, which 
corresponds to the one that provides a maximum amount of 
information. This is equivalent to divide the LS into disjoint 
regions, in such a way that in each region the security index is 
as constant as possible. By considering the mean value as the 
predicting function in the tree leafs, the goal becomes into 
reducing the knowledge variance. Therefore, the amount of 
information provided by each splitting test s  in node t  is 
measured by: 
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where: 
 

)t(N : number of operating points stored in node t ; 
)tvar( : variance of the security index in node t . 

A detailed description of the Regression Tree method may 
be found in [7] and [10]. 

2) Overfitting Control by Tree Pruning 
In order to avoid overfitting problems, after growing a very 

large tree maxT , which is supposed to overfit the LS, a pruning 
algorithm is applied in order to look for the right sized tree. 

Even for a moderate sized tree, there is an extremely large 
number of possible pruned trees and an even larger number of 

distinct ways of pruning up it to the root node. Regarding this, 
a selective pruning process is applied, that generates a 
reasonable number of pruned trees of maxT , with decreasing 
size, such that each subtree is the “best” pruned tree in its size 
range. The existing approaches differ in the measure used to 
define the next node to prune, i.e. the weakest non-terminal 
node to be replaced by a leaf. Namely, in this research the 
following criteria were used, one each time, to define the 
weakness of the tree nodes: 

 
MEC – Minimal error-complexity, by CART [7]: 

^ )̀T(MSE)t(MSEmin tLSLS � + ^ 1̀�tT
~

#max  (3) 

MEL – Minimal Error Loss, by Bohanec and Bratko [11]: 

^ )̀T(MSE)t(MSEmin tLSLS �  (4) 

newMEC – A new proposed variant of MEC: 

^ )̀T(MSE)TT(MSEmin LStLS ��  + ^ 1̀�tT
~

#max  (5) 

newMEL – A new proposed variant of MEL: 

^ )̀T(MSE)TT(MSEmin LStLS ��  (6) 

LSS – Lowest Statistical Support, by Luis Torgo [10]: 

^ )̀t(Nmin  (7) 

MCV – Maximal Coefficient of Variation, by Luis Torgo [10]: 

^ )̀t(CVmax  (8) 

where: 
 

)t(MSE : Mean Squared Error of the security index in node t , 
given by 
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)t(CV : Coefficient of Variation of the security index in node 
t , given by 

> @ )t(MSE/)t(MSESE)t(CV   (10) 

))t(MSE(SE : standard error estimation of )t(MSE . 

T : tree structure; 

tT : subtree of T , which results from having node t  as root; 

tTT � : subtree of T , which results from pruning node t ; 

T
~

: set of all the leafs in T ; 
T
~

# : number of leafs in T ; 
iy : Real value of the security index for OPi; 

iy
� : Predicting value of the security index for OPi, being, in 

the applied RT approach, equal to the mean value of y  in the 
set of OP stored in t . 

 
At the end of each pruning process, it results a sequence of 

nested trees with decreasing size, being each tree accuracy 
evaluated by the MSE obtained from applying the structure to 
an independent testing set (TS) – i.e. the � �TMSETS . 



In order to choosing the “ best”  pruning process, and 
namely the “ best”  pruned tree among the generated ones, an 
exhaustive process should be performed, by training a 
RT+ANN structure for each tree and evaluate TS predicting 
error, which we believe would be a very demanding and time 
consuming task. In a first approach, only the smaller trees 
were considered in order to derive a RT+ANN structure. The 
“ best”  candidates trees were selected from the pruning process 
that provides the most accurate RT structure (i.e. the lowest � �TMSETS ) for the range of less complex trees. 

 

3) Exploiting the RT Structure for Feature Selection 
Before performing ANN training, a feature subset selection 

may be performed by exploiting the RT structure. Based on 
the information gain provided by each feature for growing the 
most accurate RT, the following two new techniques were 
tested for measuring feature relevance: 

 
FSS1: The information gain of each feature is calculated by 

summing the obtained var' , only for the splitting tests where 
the feature was applied to perform tree division. This approach 
was inspired in the procedure presented in [12], where 
decision trees were suggested to provide an attribute ranking 
regarding its contribution to the total tree information. 

 
FSS2: The information gain of each feature is calculated by 

summing the maximum obtained var'  with this feature for 
each of the tree divisions. This second approach was also 
considered based on the knowledge that the tree structure of a 
RT (or Decision Tree) is unstable [7] (i.e. small changes in the 
LS may lead to much different tree structures, however 
achieving almost the same accuracy). If a feature does not 
appear in any of the tree splits does not mean that it is not 
relevant for the problem. In fact, a relevant attribute can be 
constantly masked by another and thus never be chosen for 
splitting the nodes. 

 
These information gains are then normalized between 0 and 

1, and the features ordering by decreasing values of 
information gain. From this ranking, only the most relevant 
features will be selected for training the ANN structures. 

 

B.  STEP 2: ANN Training for the main security problem 

1) Artificial Neural Networks 
The applied ANN approach was a multi-layer feedforward 

networks with a tan-sigmoid transfer function. ANN 
parameters, i.e. the network weights and biases, were found 
through the Adaptive Backpropagation algorithm [5][8][9] by 
performing batch training. This training algorithm is based on 
the traditional Backpropagation [4] where, instead of a fixed 
and unique learning rate, a different adaptative learning rate it 
uses for each weight and bias, which provides a much faster 
learning process. 

Besides the learning set, which was used for computing 
error gradients and updating the network weights and biases, a 
testing set was considered to perform overfitting control. 
According to the applied technique, besides considering a 

maximum number of epochs, when the testing error increases 
consecutively for a specified number of iterations, the training 
is stopped. 

In order to remove offset and measurement scale problems, 
before starting ANN training, the learning and testing patterns 
were normalized to have zero mean and a standard deviation 
of one. In this primary stage, the ANN parameters are 
randomly initialized between –1 and 1. 

 

2) ANN Training Procedure 
From tests performed in the considered power system 

security problem, the accuracy of the trained ANN showed to 
be very sensitive to the initial parameters values. Therefore, a 
special care regarding this issue was considered when defining 
the RT+ANN training procedure. Namely, the following was 
considered for training the main ANN (i.e. the ANN trained 
for all the security knowledge): 

 
�  m different sets of initial random ANN parameters; 
�  for each initial set of ANN parameters, n different initial 

learning rates. 
 

In the end it results a set of )n(m 1�u  different ANN, 
where the one with the lowest � �ANNMSETS  is selected – the 
ANNroot1. The initial and final parameters of this ANN will 
be used to initialize the ANN training in each tree leaf. 
Because of this, the initial error surface of the security 
structure will be closer to the desired one, and therefore, 
besides improving the training time, this also usually increases 
ANN final accuracy [9]. 

In order to improve the main ANN accuracy, after 
obtaining the first ANN (ANNroot1), a new retraining process 
was considered initialized with the last obtained parameters. If 
an accuracy improvement is achieved, then this second ANN 
will be used for comparing the performance results between 
the ANN and RT+ANN approaches. 

A fixed and identical structure was considered for all the 
trained ANN, where the more suitable one was obtained from 
performing several ANN trainings with different structures, 
for the main security problem. 

C. STEP 3: ANN training for each tree leaf 

The followed procedure was considered for training an 
ANN for each tree leaf: 

 
�  starting from the initial parameters of ANNroot1, n 

training process are performed by considering n different 
initial learning rates; 

�  starting from the final parameters of ANNroot1, n training 
process are equally performed; 
 

At the end it results a set of )n( 12 �u  different ANN 
security structures, where the one with the lowest � �ANNMSETS  is selected. For this procedure, only the subsets 
of LS and TS associated to the tree leaf were considered. 
Before ANN training, these sets were normalized only 
regarding to the learning and testing data stored in the tree 
leaf. 



III. CASE STUDY AND RESULTS 

A. Madeira Security Problem 

The quality of the developed approach is illustrated here 
through its application to the case of Madeira island. This 
power system is an isolated grid with a peak load of 120 MW 
and a minimum load of 42.8 MW, comprising utility owned 
and independent thermal units (134 MW), one independent 
waste to energy unit (6.4 MW), utility hydro units (46 MW), 
and utility owned and independent wind parks with 
asynchronous generators (15.3 MW). The single line diagram 
of the transmission and generation system is presented in 
Figure 1. In this figure, Pw regard to wind parks, and Pc to 
conventional power plants (hydro, waste to energy and 
thermal). Due to space limitations the system data cannot be 
included but it can be obtained upon request. 
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Figure 1 – Single line diagram of Madeira Power System 

The RT+ANN approach was applied to this power system, 
in order to derive security structures to be used for security 
assessment purposes related with a critical pre-selected 
disturbance. The following disturbance was considered: short-
circuit in the eastern side of the island, causing the 
disconnection of all wind (Pw1 to Pw6), and Pc7 to Pc8 power 
plants. This regards to situations where the dynamic security 
of the system is reduced in case of short-circuits that take 
place near to power production facilities, leading to these 
facilities disconnection (due to under-voltage conditions). As 
wind parks sites are more expose to adverse climatic 
conditions, short-circuits usually take place near these 
facilities. This disturbance was selected by the utility as one of 
the most important to be included as a security restriction 
within the system operating policies, and therefore to be 
considered in a security assessment process. In fact, this is a 
particular severe disturbance that may provoke large 
frequency drops, leading to load shedding activation, or to 
system instability. Based on the set-point values of the 
installed load shedding relays, the system was considered to 
lose security if the negative frequency deviations ('f) go 
bellow –2 Hz. 

B. Madeira Knowledge Data 

The generation of a representative knowledge data set of 
the system frequency dynamic behavior, for the disturbance 
under consideration, was a key stage for the success of 
applying any “ learning from example”  approach. For 
generating the Madeira data set, an innovative generation 
procedure was adopted aiming at building an adequate 
knowledge base, able to describe implicitly the system 
dynamic security behavior of power systems with large wind 

power production. A description of this procedure may be 
found in [8]. 

The final vector of ANN inputs was selected based on 
engineering judgment, comprises 34 variables with 
information about: 

�  Pload: total active load; 
�  Pwj, Nwj: active power produced and number of 

operating units in each set of equal wind generators 
connected in the same power plant; 

�  Pci, SRi: active power produced and spinning reserve in 
each set of equal conventional generators connected in the 
same power plant; 

�  SR – Pgloss: system spinning reserve minus total power 
loss. 

 
Since the main goals of this research are to perform 

accurate security assessment and to apply preventive control 
procedures, the selection of these features was based on the 
following criteria: 

�  To be related with the dynamic phenomena under study; 
�  The number of features should be as low as possible 

without losing relevant information. (the concept of 
“ equivalent machine”  was used to group similar 
generators operating in parallel in the same plant); 

�  To use independent (or easy related) and dispatchable 
variables for further control use. 

 
Each operating point (or pattern) of the data set is therefore 

characterized by these 34 features and the security index 
'fmin, i.e. the minimum value reached by the negative 
frequency deviations that results from the considered 
disturbance. 

A total amount of 7083 patterns were obtained, where 70% 
of the data was randomly extracted for the training purposes 
(learning set), and the remaining 30% for performance 
evaluation purposes (testing set). The number of obtained 
secure/insecure patterns are summarized in Table I. 

 

Table I - Number of obtained secure/insecure patterns 

 Secure Insecure 
LS - Learning Set 3432 1526 
TS - Testing Set 1476 649 

 

C. RT for the Main Security Problem 

After growing a very large tree and applying each of the 
earlier described pruning approaches, the smaller trees of the 
newMEC method were selected as the most promising ones in 
order to extract a RT+ANN structure. In fact, this method 
provided the lowest � �TMSETS  predicting errors in the subset 
of the less complex trees. Namely, the following candidate RT 
structures were selected: 

 
�  RT with 3 nodes and � �TMSETS  = 3.557 Hz2 
�  RT with 5 nodes and � �TMSETS  = 2.387 Hz2 

To give an example of a RT, the tree structure of the 
obtained RT with 3 nodes is presented in Figure 2. 



The most accurate RT structures, having � �TMSETS  = 
0.411 Hz2, were provided by the LSS and MCV methods, 
however with a very complex tree structure, namely with 758 
and 1121 nodes. The MEC and MEL methods provided the 
less accurate RT for all the range of tree size. The newMEL 
method, provided the same size-tree/accuracy curve as the one 
provided by newMEC, however with a much higher number of 
trees, which highlights the advantage, already presented in [7], 
of pruning a tree trough a compromise between accuracy and 
complexity. The obtained size-tree/accuracy curves for each of 
the applied pruning processes are too complex to be presented 
here. 

2 32 3N(2): 4333 
vary (2): 1.152 Hz2

Meany (2): -1.381Hz

N(3): 625
vary (3): 18.298Hz2

Meany (3): -6.559Hz
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N(root): 4958
vary(root): 6.267 Hz2root

 
Figure 2 – Obtained RT with 3 nodes, with LS information 

D. ANN for the Main Security Problem 

For all the trained ANN, a structure defined by 34 inputs 
(the security features), two hidden layers with 16 and 10 units 
and one output (the security index) was considered. After 
applying the training procedure described in Section B, an 
ANN with the estimated accuracy presented in Table II was 
obtained for the main security problem. 

 
Table II – TS predicting errors for ANNroot 

MSE  (Hz2) 0.037 
MAE  (Hz) 0.088 
Global Classification Error (%) 1.60 
False Alarm Error (%) 1.49 
Missed Alarm Error (%) 1.85 

 
In this table, besides Mean Squared Error, the following 

predicting errors were considered: 
 
MAE : Mean Absolute Error, given by 

¦
�

� 
TSOPi

iiTS yy
N(TS)
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 (11) 

Global Class. Error, given by 

^ `
^ ` 100% 

TS  theof OP Nº
 class.y incorrectl TS  theof OP Nº �  (12) 

False Alarm Error, given by 

^ `
^ ` 100%

TS  theof OP secure""Nº
insecure""  as  class.  TS of OP secure""Nº �  (13) 

Missed Alarm Error, given by 

^ `
^ ` 100%

TS  theof OP insecure""Nº
secure"" as  class. TS of OP insecure""Nº �  (14) 

E. RT+ANN Obtained Results 

After applying the training procedure described in Section 
C for each of the two selected candidate RT structures (with 3 

and 5 nodes), two different RT+ANN structures were obtained 
where an accuracy improvement was observed for all the 
considered predicting errors. These results are presented in 
Figure 3 and Figure 4, where a comparison between the 
accuracy provided by the ANN and RT+ANN approaches is 
performed. We may still observe that the larger RT provides 
the lowest predicting errors, which leads to the assumption 
that RT+ANN accuracy may still benefit from considering 
some other larger trees. 
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Figure 3 – TS predicting errors for ANNroot and RT(3nodes)+ANN 
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Figure 4 – TS predicting errors for ANNroot and RT(5nodes)+ANN 

F. Exploiting the RT Structure for Feature Selection 

The automatic learning structures presented in last sections 
were extracted by considering all the 34 initial features. 
Namely, Figure 5 presents the set of trained ANN for the main 
security problem, where the one with the highest testing set 
accuracy ( � �ANNMSETS  of 0.037 Hz2) was selected. 

To analyze the capability of the two earlier described 
techniques that performed feature selection by exploiting the 
RT structure, these were applied before starting a new ANN 
training for the main security problem. The exploited tree 
structure was the one resulted from the RT that minimizes the 
testing set predicting error, with 1121 nodes and � �TMSETS = 
0.411 Hz2. 

After applying the FSS1 method, 4 features were 
eliminated since they don’t provide any information gain (i.e. 
have not been selected in any splitting test). After applying the 
FSS2 method, 13 features were eliminated since they provided 
an information gain lower than 0.3 (normalized value). 

After performing the ANN training with these two new set 
of features (30 and 21), the set of trained ANN presented in 
Figure 6 and Figure 7 were obtained. These figures present the 
testing set accuracy of each trained ANN and the minimum, 
maximum and mean value of the obtained � �ANNMSETS . A 



solid line was draw to highlight the minimum error obtained 
with no feature selection procedure. By comparing these 
results with the ones presented in Figure 5, we may clearly 
recognize that the two applied methods improve ANN 
accuracy, where a higher reduction is observed with FSS1 
method. However, in applications where features reduction is 
of higher importance, FSS2 method should be more 
advantageous, because much more features are eliminated 
providing almost the same accuracy. 
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Figure 5 – ANNroot training results without feature selection 
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Figure 6 – ANNroot training results after FSS1 
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Figure 7 – ANNroot training results after FSS2 

IV. CONCLUSIONS 
In this paper, a new promising automatic learning 

approach, to perform on-line dynamic security assessment of 
electrical power systems, was presented. With the obtained 
hybrid security structure, the advantages of artificial neural 
networks and regression trees are exploited in order to 
obtained a more accurate model without compromising 
prediction time. The quality of the approach was illustrated 
through its application to a major security problem of the 
power system of Madeira Island. 

The contributions of the proposed method is however not 
restricted to accuracy improvement. In future work, the 
obtained tree structure with ANN in the tree leafs will be 
exploit in order to provide fast preventive control. This will be 
performed by combining the interpretable “ if-then-else”  tree 
structure, with the capability of ANN to provide new inputs 
solutions in order to reach some output threshold, trough the 
application of gradient based methods. 
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