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ABSTRACT

The monitoring of water quality is essencial to the
mankind, since we strongly depend on such resource
for living and working. The presence of sediments in
rivers usually indicates changes in the land use, which
can affect the quality of water and the lifetime of hy-
droelectric power plants. In countries like Brazil, where
more than 70% of the energy comes from the water,
it is crucial to keep monitoring the sediment yield in
rivers and lakes. In this work, we evaluate some state-
of-the-art supervised pattern recognition techniques to
classify different levels of sediments in Brazilian rivers
using satellite images, as well as we make available an
annotated dataset composed of two images to foster the
related research.

Index Terms— Sediment Yield, Machine Learning,
Optimum-Path Forest

I. INTRODUCTION

With every passing day, the water resources become
even more scarce in our planet. Being mostly found in
lakes and rivers, fresh water is quite complicated to be
drained in some remote and/or pollute regions. Even in
places with plenty of water like Brazil, there is a need
to monitor its quality for further usage by humans and
industries.

Hydroelectric power plants are in charge of producing
more than 70% of the energy used in Brazil, and they
strongly depend on the quality of the water that flows
through the rivers. Different levels of sediments in the
water, for instance, may cause the dam to get silted.
Also, such sediments can influence the water turbidity,
which may affect the lifetime of the power plant. Another
problem related to different levels of sediments in rivers
concerns changes in the land use, where the bare soil

gets flushed down to the river, thus pushing forward the
sediment yield.

Therefore, to automatic identify the levels of sediments
has become crucial to monitor the quality of water, as
well as whether there have been changes in the land use
behavior around the region of interest or not. Cigizoglu
and Alp [1], for instance, used a Generalized Regression
Neural Network for river suspended sediment estimation.
The results obtained by means of neural networks were
considerably superior when compared against multi-
linear regression and a conventional sediment rating
curve technique. Nagy et al. [2] used a neural net-
work trained with backpropagation to estimate the load
concentration of sediments in rivers, and Shamaei and
Kaedi [3] employed Genetic Programming and Neuro-
Fuzzy to estimate sediment concentration in water flow.

Recently, Lafdani et al. [4] used Artificial Neural Net-
works (ANNs) and Support Vector Machines (SVMs)
to predict daily suspended sediments in Doiraj River,
Iran. Based on an 11-year dataset (1994-2004), the
authors used information from rainfall and streamflow
to build a regression model to estimate the amount of
sediments. Both ANNs and SVMs were able to find very
suitable results. Later on, Adib and Mahmoodi [5] used
a hybrid approach composed of a neural network and
Genetic Algorithm (GA) to predict suspended sediment
load at flood conditions. Roughly speaking, the authors
employed GA to optimize the architecture of a network
trained with the Levenberg-Marquard algorithm. The
authors stated GA can reduce the Normalized Mean
Square Error of the network up to 80%, which is further
used to predict floods together with Markov chains.

A similar work was conducted by Kisi et al. [6], which
used Genetic Programming (GP) to estimate suspended
sediments. The daily water discharge and river sediment
load data of two stations on Cumberland River (USA)
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were used to build the proposed model, which was
compared against an Adaptive Neuro-Fuzzy Inference
System, ANNs and SVMs. The results evidenced that
GP can be more effective to estimate daily suspended
sediment load. Gupta et al. [7], in 2002, used satellite
imagery to evaluate the geomorphology and to map en-
vironmental degradation and sediment transfer in some
parts of the Mekong River. Also, the authors aimed
at studying the possible impacts of some development
projects on the river. However, as far as we are con-
cerned, machine learning techniques have not been used
in this work. Similarly, related works based on radar
and satellite images can be referred as well [8], [9], but
not considering machine learning-based interpretation
either.
Therefore, as we have observed, the works usually fo-

cus on regression models mostly, and with data provided
by rainfall and previous sediment load information. In or-
der to fill this gap, this work has two main contributions:
(i) firstly, we compared some state-of-the-art supervised
pattern recognition techniques to estimate different lev-
els of sediments in rivers using satellite images, and (ii)
secondly, we made available an annotated dataset com-
posed of two satellite images covering Brazilian rivers in
order to foster the research on satellite-based sediment
yield estimation in rivers.
We have the feeling the related area of research lacks

on ground-truth data, since few works can be considered
similar to ours. As a matter of fact, we have not observed
any work that attempted to use Support Vector Ma-
chines [10], Näıve-Bayes (NB) [11] and Optimum-Path
Forest (OPF) [12], [13] to classify sediment yield in rivers
by means of satellite images. The reason for using such
techniques concerns the fact that SVMs are considered
one of the best techniques to date, and NB and OPF offer
competitive results at the price of being much faster for
training, since they are parameterless, thus not needing
fine-tuning.
The remainder of this paper is organized as follows.

Section II presents the datasets used in this work, and
Section III discusses the methodology and experiments
adopted to validate the datasets and the supervised
pattern recognition techniques used for sediment yield
classification purposes. Finally, Section IV states conclu-
sions and future works.

II. DATASET

In this paper, we make available a dataset composed
of two images from distinct Brazilian covering areas: (i)
Furnas and (ii) Tietê1. As aforementioned, the main idea
is to foster the research on sediment yield identification
by means of remote sensing images. We used images

1The datasets are available at http://wwwp.fc.unesp.br/˜papa/
recogna/remote sensing.html.

obtained from Landsat-8 satellite, OLI sensor, covering
the area of Tietê river, city of Botucatu, São Paulo
state, Brazil; as well as another image covering the area
of Furnas, city of Alfenas, Minas Gerais state, Brazil.
Notice both covering areas represent important water
catchment sources for electricity generation in Brazil.
The images were collected from INPE (National Institute
of Spatial Research) site catalog, and processed and
labeled in ENVI 5. Further, the images were geo-referred
using the ArcGIS 10.4 tool.
Figures 1 and 2 depict the images covering the ar-

eas of Furnas and Tietê, respectively. Additionally, the
aforementioned figures display the area of interest of this
work, i.e. the rivers. We used bands 2 (blue), 3 (green)
and 4 (red) for the image composition process, as follows:
4R3G2B concerning Furnas, and 2R3G4B with respect
to Tietê image. Such bands describe better the sediment
yields in both rivers, thus making the process of image
labeling (i.e. ground truth) easier.

(a)

(b)

Fig. 1. Image covering the area of Furnas: (a) original
image, and (b) the mask containing the area of interest
(river) only.

Table I presents a brief description of the images,
which were labeled according to the following classes and
colors:

• Furnas:

– Class 1: background - white
– Class 2: sediment yield level 1 - blue (high level

of turbidity);
– Class 3: sediment yield level 2 - light green



(a)

(b)

Fig. 2. Image covering the area of Tietê: (a) original
image, and (b) the mask containing the area of interest
(river) only.

(average level of turbidity);
– Class 4: sediment yield level 3 - green (low level

of turbidity);
– Class 5: water plants - rose.

• Tietê:

– Class 1: background - white
– Class 2: sediment yield level 1 - blue (high level

of turbidity I);
– Class 3: sediment yield level 2 - red (high level

of turbidity II);
– Class 4: sediment yield level 3 - dark blue

(average level of turbidity);
– Class 5: sediment yield level 4 - green (low level

of turbidity);

Figure 3 displays the ground-truth images labeled ac-
cording to the aforementioned colors. Both images were
analyzed and labeled by an expert in geography from our
research group.

III. EXPERIMENTAL SECTION

In this section, we present the methodology employed
to evaluate the effectiveness and efficiency of the clas-
sifiers adopted for sediment classification purposes, as

Table I. Description of the images that compose the
dataset.

Image Size Classes
Furnas 288 × 156 4
Tietê 515 × 549 4

(a)

(b)

Fig. 3. Ground-truth images: (a) concerning Figure 1b,
and (b) with respect to Figure 2b.

well as the experimental results. In regard to the pattern
recognition techniques, we considered the Optimum-
Path Forest, a Bayesian classifier, and Support Vector
Machines. Also, we evaluated the influence of different
training set sizes with respect to the accuracy: we consid-
ered training sets with 5% and 10% of the entire image,
being the remaining pixels (samples) used to compose
the test set. Notice each pixel was described by its RGB
values to compose the feature vector.

In order to allow a robust statistical analysis, we
employed a hold-out validation approach over 15 ran-
domly generated training and testing sets. Further, the
Wilcoxon signed-rank test [14] with significance of 0.05
was used for validation purposes. In regard to SVM
source code, we used the open-source library LibSVM



with a Radial Basis Function kernel2. The searching
range of parameter C was defined within [−32, 32], and
the searching interval of parameter γ was restricted
within [0, 32]. Notice the step-size for both parameters
is equal to 2. With respect to OPF implementation, we
employed the LibOPF [15], and concerning the Bayesian
classifier, we employed our own implementation.

Table II presents the mean accuracy and class-specific
accuracy results considering a training set composed
of 5% and 10% of the entire image, being the most
accurate results according to Wilcoxon statistical test
in bold. The recognition rates were computed using an
accuracy measure proposed by Papa et al. [12], which
considers unbalanced data. In case of Furnas dataset, for
instance, one can clearly observe this problem, where the
“pink” class has way less samples than the “blue” class
(Figure 3a).

The best results were obtained by SVM for both train-
ing set configurations, followed by Bayes and OPF. We
did no observe a clear difference among the two training
set configurations, i.e. it is usually expected better recog-
nition rates when using larger training sets. The only
situation observed concerns OPF over the Tietê image
using 10% of the image for training purposes, which
obtained an accuracy of 66.87% with a considerably high
standard deviation. Such behaviour can be explained by
taking a look at the central region of Figure 2b reveals
similar colours, tough representing different sediment
classes. One of the strongest skills of the OPF classifier
turns out to be its main weakness: a theoretical property
says OPF minimizes the classification error over the
training set, which can be close to zero depending on
the configuration (distribution of samples) of the training
set [16]. Roughly speaking, OPF training step aims at
partition the graph induced by the dataset samples by
means of a competition process among prototype samples
(key samples chosen from each class). Therefore, OPF is
quite susceptible to the quality of such prototypes, which
means it can obtain suitable results when the prototypes
are chosen at the regions with highest probability of
misclassification, i.e. the central region of Figure 2b. As
we are creating training and test sets at random, we
can no longer guarantee the prototypes will be placed
at those regions every time.

Figures 4 and 5 depict some images classified by SVM,
OPF and Bayes using 5% of the entire image for training
purposes over Furnas and Tietê datasets, respectively.
We can observe a better performance concerning SVM
with respect to Tietê image, i.e. with low spreading
(confusion) among the sediment classes. If we consider
classes 1 and 2 only, Bayes obtained better recognition
results than OPF with respect to the central region of

2https://www.csie.ntu.edu.tw/˜cjlin/libsvm

Figure 5a. A similar performance applies to Furnas image
either, with better recognition rates obtained by SVM.
In this case, OPF results were spread from classes 3 and
4 to class 1. Also, classes 1 and 3 were better recognized
by all classifiers.

Tables III and IV present the mean computational
load in seconds concerning all techniques employed in
this work over Furnas and Tietê images, respectively.
Clearly, the Bayesian classier and OPF were considerably
faster than SVM, since they are parameterless. Notice
SVM training time also considers the fine-tuning param-
eters procedure. In regard to the test step, SVM has been
the fastest classifier, closely followed by OPF and then
Bayes. If one considers the whole computational load, i.e.
training+testing, OPF classifier has been the fastest one,
followed by Bayes and SVM. The main problem related
to OPF concerns it needs to go over the whole training
set (in the worst case) to verify the sample that will
conquer each test sample, which does not happen with
SVM.

Table III. Mean training time (seconds).
5%

Image Bayes OPF SVM
Furnas 0.06± 0.00 0.13 ± 0.00 164.34± 3.64
Tietê 1.92± 0.00 5.46 ± 0.11 2638.73 ± 29.80

10%
Image Bayes OPF SVM
Furnas 0.25± 0.00 0.61 ± 0.01 673.27 ± 20.17
Tietê 7.89± 0.02 22.23± 0.77 10206.96 ± 253.72

Table IV. Mean testing time (seconds).
5%

Image Bayes OPF SVM
Furnas 9.16± 0.04 1.26± 0.05 1.18 ± 0.18
Tietê 334.46± 0.73 38.36 ± 0.30 22.84± 3.43

10%
Image Bayes OPF SVM
Furnas 18.28 ± 0.21 3.03± 0.15 2.02 ± 0.31
Tietê 638.01± 3.78 73.39 ± 0.24 38.39± 3.30

IV. CONCLUSIONS

In this paper, we dealt with the problem of sedi-
ment yield classification in remote sensing images by
means of supervised pattern recognition techniques. The
main idea is to employ images acquired by satellites to
automatic classify the level of sediments in Brazilian
rivers, since such information is of extreme importance
to measure the turbidity of the water, which has a
strong influence in the lifetime of power plants. Also, the
amount of sediments are usually related to the land-use
behaviour nearby the river. Another main contribution
of this work is to make available a dataset composed of



Table II. Mean recognition rates and class-specific accuracy. The recognition rates in parenthesis are displayed as
follows: (a1,a2,a3,a4,a5), where ai stands for the men recognition rate of class i according to the definition presented
in Section II.

5%
Image Bayes OPF SVM
Furnas 95.88 ± 0.06(100/95.9/94.9/98.4/90.0) 95.63 ± 0.13(100/95.3/95.3/98.3/89.0) 96.33± 0.29(100/93.6/98.2/99.7/89.4)
Tietê 97.56 ± 0.04(100/99.1/89.9/99.2/99.7) 82.71± 29.24(100/98.5/86.6/72.6/72.7) 98.07± 0.03(100/99.7/90.7/99.8/99.9)

10%
Image Bayes OPF SVM
Furnas 95.97 ± 0.17(100/96.2/95.8/97.7/89.9) 95.77 ± 0.20(100/95.0/97.0/98.9/88.0) 96.68± 0.14(100/97.1/96.0/98.9/91.0)
Tietê 97.71 ± 0.03(100/98.3/92.5/99.0/99.0) 66.87± 36.92(100/58.0/55.9/53.8/66.2) 98.14± 0.02(100/99.2/93.8/99.0/99.0)

(a) (b) (c)

Fig. 4. Furnas: classified images using 5% of the entire image for training by means of (a) Bayes, (b) OPF and (c)
SVM.

(a) (b) (c)

Fig. 5. Tietê: classified images using 5% of the entire image for training by means of (a) Bayes, (b) OPF and (c)
SVM.

two annotated images to foster the research related to
sediment yield classification in rivers.

We have compared the performance of three state-
of-the-art classifiers using two different training sets:
one composed of 5% of the entire image for training
purposes, and another with a larger training set (10%
of the image). SVM classifier obtained the best results
for both images and percentages of training sets, but
at the price of being the costly technique for training
purposes. The best trade-off concerning training+testing
computational load was obtained by the OPF classifier,
but at the price of being placed in third concerning the
recognition rates, right after SVM and Bayes.

The task of sediment classification by means of satel-
lite images seems to be fruitful, since we obtained results
nearly to 99%, but at the price of a high computational

load when considering SVM classifiers. In regard to
future works, we plan to make available more images to
the scientific community, as well as to study the influence
of the sediments with the land-use, since we do not have
labeled images at the very same region concerning both
information to date.
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