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Resumo

A deteção de eventos através da utilização de técnicas de Visão Computacional é um problema
estudado e com aplicações em várias áreas da sociedade, mas sem uma solução global que se
aplique a todos os casos. A sua aplicação em ambientes de retalho pode fornecer informações
valiosas para as empresas desse setor como, por exemplo, qual a área de uma loja com mais
movimento ou onde e quando os clientes interagem com os objetos lá dispostos. Estas informações
podem ser utilizadas para melhorar as técnicas de marketing e expandir os modelos de negócio
existentes.

A presente dissertação foca-se no estudo da deteção de eventos como ocultações e alterações
que acontecem regularmente em determinadas regiões de interesse de um ambiente de retalho,
através da análise de vídeo capturado por câmeras RGB-D. Para cumprir o objetivo proposto,
vários descritores visuais e métodos de segmentação de imagem foram estudados e testados para
propor a melhor solução possível, nas condições apresentadas.

Os resultados obtidos indicam que a deteção dos eventos propostos é possível de alcançar com
níveis de precisão promissores. No entanto, mais trabalho de investigação é necessário para tornar
a solução proposta mais robusta a ruído e passível de ser aplicada em situações de tempo-real.

Este documento descreve toda a metodologia proposta para atacar o problema definido, bem
como todos os resultados experimentais obtidos e conclusões sobre os mesmos. São também
referidas diferentes propostas de trabalho futuro, com vista a melhorar os resultados obtidos.
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Abstract

The detection of events through the use of Computer Vision techniques is a well studied problem
with application in various areas of society, but without a global solution that applies to all cases.
Its application in retail environments can provide valuable information for companies in this sector,
such as what is the most crowded area of a shop or where and when customers interact with the
objects placed. This information can be used to improve marketing techniques and expand existing
business models.

The present dissertation focuses on detecting events such as occlusions and alterations that
occur regularly in certain regions of interest of retail environments, through the analysis of video
captured by RGB-D cameras. To accomplish the objective set, several visual descriptors and image
segmentation methods were studied and tested in order to propose the best possible solution under
the conditions presented.

The obtained results indicate that the detection of the proposed events is possible to reach with
promising precision levels. However, more research work is needed to make the proposed solution
more robust to noise and possible to be applied in real-time situations.

This document describes all the methodology proposed to attack the defined problem, as well
as all the experimental results obtained and conclusions extracted. Different proposals for future
work are also mentioned in order to improve the results achieved.
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“Be grateful with everything you have and you will be successful in everything you do.”

Conor McGregor
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Chapter 1

Introduction

1.1 Context

The retail sector has a vast influence in modern society, with some of its most notable brands ac-

counting for a large part of the world’s most valuable companies. For instance, some of the biggest

clothing brands record annual profits in the order of the billions of dollars [1]. So, to maintain and

even increase those numbers, companies continuously look for ways to expand and improve their

existing business models and marketing techniques. However, retail shops are already scattered

around worldwide and fashion shows or commercials are regularly broadcast on television and

other multimedia platforms, which may difficult a simple expansion process. Therefore, fields of

study like Computer Vision (CV) and Data Mining may then prove to be very useful, as they allow

to process data and provide valuable information, so that improvements may be implemented and

expansions made viable and structured.

Since its inception, CV has always been a very interesting field of study. The process of captur-

ing, processing and analyzing images or videos to understand real life problems and model three

dimensional (3D) human-like perception is not trivial, but has many applications [2]. Furthermore,

with computational power constantly growing, more and more developments can be made in CV

related problems thus making it a rapidly expanding field. Event detection or, more specifically,

the need to detect and predict the occurrence of certain events is a very common CV problem. The

performance of a spatiotemporal analysis of an image or video may provide a description of the

scene through the search and recognition of homogeneous characteristics like color [3], texture

[4] or other features contained in certain objects or beings [5, 6]. The variations on those same

characteristics may then indicate the occurrence of an event, depending on the definition of what

an event really is in that specific problem (events may be more than alterations in the scene and

not all alterations are events). In other words, it is possible to detect the occurrence of a desired

event by observing critical changes in a scene or in part of it.

Event detection has a real application in the retail industry. For instance, examining alterations

in a specific region of a shop can lead to information about how and when the clients interact with

the objects placed there or even give information about what is the most crowded section of the
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2 Introduction

store, which is valuable data for marketing purposes. Furthermore, the real-time detection of spe-

cific events may allow the prevention of future unwanted situations as the appropriate authorities

or persons of interest can be alerted whenever necessary.

1.2 Motivation

Although work has already been done regarding event detection problems in various distinct con-

texts like sporting events [7], infrastructure security [8] and human gestures [9], a definitive so-

lution that applies to all problems doesn’t exist. This is mainly due to the gigantic heterogeneity

of conditions (and possible variations) presented in these problems. For example, slight variations

in the light or shading of a given object can lead to a very different digital representation and

description of that object [2].

The application of event detection in retail environments (shops) provides a solid amount of

different possible events to consider and detect. With shops exposed to constant changes due to

people moving and interacting with each other and with the objects in the scene, it is mandatory

to understand and define what a significant event is and what it’s just noise or other temporal

perturbations. Therefore, to be able to present the best and most robust scene description possible

(and thus be able to perform an appropriate event detection that provides valuable information), it

is very important to define and comprehend the regions of interest inside that scene and the specific

group of events happening in those regions that are relevant to the problem.

1.3 Objectives

The main purpose of this dissertation is to accomplish a viable detection of a predetermined set

of events happening in a retail environment, through the spatiotemporal analysis and description

of video captured by generic RGB and RGB-D cameras. To achieve that objective, it is crucial to

study, understand and apply a group of existing CV methods and techniques.

1.4 Document Structure

This document is organized in six chapters. Chapter 2 presents a review of related work, with a

focus on image segmentation and processing methods used to extract spatiotemporal information

for scene decomposition, analysis and description. Chapter 3 defines the workspace, providing a

description of the test video sequences, the set of events to detect and the evaluation metrics to

evaluate the tests results. Chapter 4 covers the description of the different approaches taken to ac-

complish the defined objective. Chapter 5 presents a guideline of the experimental procedures, an

explanation on the decisions made throughout, and a discussion of the results obtained. Chapter 6

presents a final discussion of the present work, followed by a suggestion of possible future work

and improvements.



Chapter 2

Literature Review

This chapter contains a review of related work regarding image segmentation and processing meth-

ods and techniques to extract spatiotemporal information for scene decomposition, analysis and

description. First, in section 2.1, a very brief analysis on modern capture devices and the image

information they provide is presented. Then, in section 2.2 a review on some image segmentation

tecnhiques is provided, with a focus on the foreground detection and background modelling meth-

ods. In section 2.3 a study is made on the most well-known image (or visual) descriptors and the

image properties in which they are based. Finally, a small discussion of all the reviewed methods

and their application in retail environments is presented in section 2.4.

2.1 Image Information and Capture Devices

From a visual standpoint, a video is simply a temporal sequence of images. Therefore, most (if

not all) image segmentation and processing methods and techniques can be applied to videos, by

doing it on a frame-by-frame basis. Furthermore, there are also some methods that take advantage

of a video’s temporal frame, requiring several different images for processing. These two notions

make video more interesting to use in image processing problems as it contains more information

(spatial and also temporal) to be processed.

Most modern video and image capture devices are based on the trichromatic theory [10], which

states that there are three types of photoreceptors that are approximately sensitive to the red, green

and blue (RGB) regions of the electromagnetic spectrum - RGB cameras. However, some devices

expand on that subject, providing image per-pixel depth (D) information along with the visual data

- the RGB-D cameras. In fact, in recent times, the number of these devices available to the general

public has increased, mainly due to the rise of modern gaming hardware such as the Microsoft

Kinect [11]. For instance, the latter uses a Infrared (IR) Projector to project IR dots in the scene

and an IR Camera to observe them. Making use of the known relative geometry between the IR

devices and the projected dots pattern, the Kinect tries to match them in order to reconstruct the

image in three-dimensions (3D) using triangulation methods. In figure 2.1, it is possible to observe

that IR dot matching from the Kinect, on the top image, and the correspondent depth information

3
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on the bottom. The depth value is encoded in grey-scale, meaning that the darker a pixel is, the

closest it is to the camera, with the black pixels being the exception - no depth values possible to

attain for those pixels or regions.

Figure 2.1: Microsoft Kinect depth information. On top, its IR mechanism and on the bottom, the
corresponding image depth data. Adapted from [11].

While the depth information provided by these RGB-D devices is not ideal, due to the general

low of range of capture and sometimes noisy estimate, the good cost-results ratio has opened a

lot of doors to new CV-related researches and developments, specifically in problems like 3D

modelling [12, 13] and people tracking [14, 15, 16].

2.2 Image Segmentation

Image segmentation is generally the first step in image or video analysis as its main objective is

to divide an image (or a video frame) into multiple segments (which can contain similar features

or attributes) for further process. It contains a wide variety of methods that go from the most

basic, like the Otsu threshold segmentation and its newer and improved variations [17, 18], to

edge detection methods like Canny [19, 20] and Gabor Filters [21], to the most recent foreground

extraction and background modelling techniques [22].
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Edge detection, or the visual separation of the region boundaries in an image, has a longstand-

ing relevance in the CV community. The aforementioned Canny Edge Detector is a fine example

of this sort of image segmentation due to its simplicity, fairly good results and possibility to easily

apply in conjunction with other image processing methods. It is usually comprised of five steps to

achieve the final result: first, the image is smoothed to remove noise; then it considers the edges

as the spots of the image where the gradients have large magnitudes; filters are finally applied to

remove all the values that are not local maximums, that don’t meet the defined threshold or that

are not connect to a very strong edge (hysteresis approach).

Figure 2.2: Foreground detection and background modelling example. The rows represent dif-
ferent frames from the same video. From left to right: The original frame, the background, the
ground-truth and the foreground mask. Extracted from [22].

Typically, it is very useful and relevant to separate the foreground from the background of

an image for better processing. An example of this background and foreground separation can

be observed in the figure 2.2. Foreground detection has many applications in real-life and CV

related problems like video surveillance of human activities [23, 24], optical motion capture [25]

or gaming activities with devices such as the aforementioned Microsoft Kinect [11]. Therefore,

there are currently a vast number of methods with different approaches and most of them are used

to subtract/model the stationary parts of a scene (the background) to be able to analyze only the

foreground. Bouwmans [22] published a study where a review of most of the known methods was

performed, including both traditional and more modern approaches. To help on that analysis, the

author also defined a general block model for how background modelling and foreground detection

usually works. Like shown in figure 2.3, that model consists of three main steps: the first, consists

of the background initialization or detection, where N video frames are utilized to obtain and

define the first background image; the other two steps are executed in a loop and comprehend the

foreground detection, which consists in comparing the current frame with the known background

and then classifying the elements (pixels, blocks or clusters) of that frame as either part of the

foreground or the background, and the background maintenance that simply updates the known

background image over time. This whole process can be performed based on different image/video

features as texture, edges and motion. Also, the choice of the element of comparison influences
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the precision and the robustness to noise, as the smaller elements generally obtain better precision

(pixels obtain pixel-based precision) but also are much more subject to noise.

Figure 2.3: Generic background modelling algorithm. N represents the frame number, B(t) the
background and I(t) the current image. From [22].

There are also several challenges that foreground detection algorithms must address [22, 26].

The main difficulties are usually concerned with noisy images, camera jitter, illumination changes

(a light source turning off can completely change the description of a scene and thus lead to a bad

foreground detection) and dynamic backgrounds. For example, a waving tree or water rippling

must be detected as part of the background, but their constant motion constantly leads to false

foreground positives.

A simple approach to foreground detection may be through the use of the image depth infor-

mation mentioned on section 2.1 - by constantly subtracting the data of the current frame to the

known background model, it is possible to obtain a mask representing the foreground due to the

different depth values. However, there are many more possible approaches to foreground detec-

tion and background modelling problems, and probably the most discussed and utilized are the

statistical models and specifically the traditional Gaussian-based ones. The basic idea behind this

approach is that the history over time of the pixel’s intensities values can be modeled through a

Gaussian. Wren et al. [27] proposed the use a single Gaussian to model the background. This idea,

while having its use, severely struggled with dynamic backgrounds. To address this issue, Stauffer

et al. [28] introduced the Mixture of Gaussians (MOG) which uses a mixture of K Gaussians to

model the history of the color features (in the RGB color space) of each pixel. Although any value

of K can theoretically be utilized, the authors, based on the computational power available at the

time, proposed the use of a K between 3 and 5.

Since the introduction of the MOG model, there have been several proposals to build on top

of its properties and correct its flaws. Bouwmans et al. [29] made a full review and tested the

proposals with more recognition by the CV community. The one whose results were generally

better was the MOG adaptation via Markov Random Fields (MRF) proposed by Schindler et al.

[30]. This method greatly decreases the number of false foreground detections by incorporating

the smoothness assumption, which states that the world the consists of spatially consistent entities.
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To accomplish this, a continuous background probability value is retained for each pixel and the

foreground segmentation becomes a simple labeling problem on a first-order MRF.

Other, more modern, statistical-based models are the Visual Background Extractor (ViBE) [31]

and the Pixel-Based Adaptive Segmenter (PBAS) [32], both nonparametric. The first, developed

by Barnich et al., builds the background model by putting together the values previously observed

for each pixel location. Using a random selection policy, ViBE constantly updates those observed

values, which assures that the older ones have an exponentially decaying lifespan and thus will

not be used when they’re not supposed to. Furthermore, the method also randomly diffuses those

pixel values across the neighbouring pixels to guarantee spatial consistency. The latter, proposed

by Hofmann et al., works on the concept of a decision block, which decides if a pixel is or is not

part of the foreground through a comparison of the current image with the known background, that

itself is progressively updated via a pixel-level learning parameter. The essential idea here is that

the PBAS works based on a foreground decision which depends on another decision, with them

both being pixel-level.

2.3 Scene Description

The general approach towards describing a scene is to first set the interest regions (which can

simply be the whole image), whether by applying some image segmentation method or by simply

dividing the image into several geometrical parts and then, for each region, build a descriptor based

on the local properties or features. Therefore, there are several proposed image (or visual) descrip-

tors built from very diverse properties like color, texture or pixel intensity values of mathematical

transformations applied to the image. Most of them are distribution-based, which means that they

use histograms to represent the different characteristics of shape and appearance. In fact, several

comparative studies have been conducted on this subject and it is widely proved and accepted that

the best results for scene description are obtained through the use of distribution-based descriptors

[33, 34].

2.3.1 Color

Color is one of the main properties of an image and may be defined as the way the Human Visual

System (HVS) measures or perceives the visible part of the electromagnetic spectrum. A color

space is then a notation by which humans can group and specify different colors [35].

As mentioned on section 2.1, most of the modern video and image capture devices are based on

the trichromatic theory [10]. Then, a color can simply be specified as the sum of the three different

components of light (red, green and blue) captured from those devices. That idea gave way to the

most basic and well known color spaces: the RGB. Furthermore, as the same theory may also

be applied to video displays (and specifically computer monitors), the RGB color spaces are very

device dependant as they depend heavily on the specific sensitivity function of the capturing or

displaying device [35]. To help combat this RGB dependency and create a standard (and at that
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time to allow their use on older cathode ray tube (CRT) screens), Microsoft and Hewlett-Packard

developed the standard RGB (sRGB) color space [36].

Although RGB color spaces are the most widely recognized color spaces, they contain some

notable flaws, like the high correlation presented between its components [37] and the psycholog-

ical non-intuitivity of their concept, as it may be hard for humans to visualize a color as the sum

of three others. These issues usually restrain their use to simple applications and more often then

not a conversion to another color space is required.

Based on linear transformations from the RGB, the Hue Saturation Value (HSV) color space

represents the concepts of hue as the attribute which categorizes the color (blue, yellow, etc.),

saturation as the level of intensity of the color (non-whiteness) and value as the maximum between

the red, green and blue components [38]. This color space and the ones similar to it (like Hue

Saturation Lightness (HSL), Hue Saturation Intensity, etc.), also possess some of the RGB color

space’s shortcomings, as they are directly dependent from it and its capture devices and thus inherit

most of its flaws. However, they do provide a different, more interesting (and much more similar

to the HVS) view on color.

The high correlation between the RGB components creates a large amount of redundant infor-

mation that makes RGB signals inefficient for transmission [39]. Furthermore, the HVS is much

more sensitive to luminance changes than to chrominance [38]. Those notions allowed the cre-

ation of the luma and chrominance color spaces used for television signal transmission - YUV for

the European PAL and SECAM coded and YIQ for the American NTSC - that transmit the luma

signal (Y’) separately from the two chroma components. Y’CbCr (with Cb and Cr corresponding

roughly to the blue and red color components) is a scaled, digital version of YUV that is commonly

used on image and video compression schemes like JPEG.

The International Commission on Illumination (CIE) defined a system that classifies color

according to the HVS and allows the representation of any visible color in terms of its CIE-

coordinates [35]. As such, all the color spaces based on this system are device independent. The

CIELab (commonly represented as L*a*b*) is one of those color spaces and was introduced with

the main objective of being as linear as possible with human visual perception. The L* represents

the lightness of the color, and a* and b* the color coordinates (with a* being the position between

magenta and green and b* between yellow and blue). CIELab also has a much larger color gamut

(subset of colors) than the RGB color spaces (and the ones based on linear transformations of that

model) but as the capture devices are usually based on the trichromatic teory, that advantage is

somewhat mitigated[38].

Mathematical and computationally speaking, a grey-scale image is a matrix (width by height)

of pixel intensity values, with the values ranging from least intense (black) to the most intense

(white). This way, as expected, a colored image is composed by three separate matrices (one for

each component, whichever the color space). These notions can be used to compute histograms

from the images in order to describe the scene using the color values, as it is shown in figure 2.4.

On the left, two colored images from the same source with some moderate differences, and on the

right a 3D representation of their respective RGB histogram.
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Figure 2.4: Images (left) and a 3D representation of their corresponding RGB histogram (right).
Adapted from [37].

While color histograms are, in fact, simple concepts, they can provide valuable information

in several different image processing problems. However, they are not the only type of visual

descriptors that try to describe color, or rely on it in order to perform a description, as it may be

seen in the sections below.

2.3.2 Texture

Very much like color, the texture of an image and its use for scene description problems (amongst

others) is a constantly researched topic in the CV community and several texture operators have

been developed and proposed throughout the years. The Local Binary Pattern (LBP) [40] is prob-

ably the most widely used as it has a very clear and easy concept and thus is fast to compute,

which allows its use in more complex real-time applications. The idea behind it is to simply form

labels/textons (from which a feature vector and subsequently an histogram can be built) for the

image pixels, by thresholding the values in a 3x3 neighbourhood of each pixel with the center
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value (1 if bigger, 0 if lower) and consider the result as a binary number. Its main quality is the

tolerance against illumination changes, with its main drawbacks being its poor robustness on flat

image areas and its restriction to grey-scale images.

Throughout the years, several expansions have been made on the original LBP. For instance,

Ojala et al. [41] expanded on the original concept by using circular neighbourhood and by bilin-

early interpolating values at non-integer pixel coordinates which opened the possibility for the use

of neighbourhoods of any radius and thus of any pixel dimensions. The authors also introduced

the notion of uniform patterns which can be used to implement rotation-invariance and at the same

time reduce the size of the feature vectors. They defined that a local binary pattern is considered

uniform if it contains 2 or less binary transitions (from 0 to 1 or vice-verse) and proved that such

patterns occur way more often (around 90% for a circular neighbourhood of 8 pixels) than the

others with more transitions.

Figure 2.5: LBP and CS-LBP Algorithm applied to an 8 pixel neighbourhood. Extracted from [4].

Heikkilä et al. [4] introduced the Center Symmetric Local Binary Pattern (CS-LBP), which

instead of comparing each pixel with the center pixel, compares center-symmetric pairs of pixels,

thus reducing the number of total comparisons to half. This idea and its comparison to the original

LBP can be observed in figure 2.5. Furthermore, the tests conducted by the authors show that

the CS-LBP operator has equal or better performance than the original LBP in terms of object

description and classification problems.

Tan et al. [42] showed that when neighboring pixels are similar (uniform areas) which is

common in face recognition problems, the LBP is not very robust to local noises. The authors

then proposed the Local Ternary Pattern (LTP) which combats that issue by adding a tolerative

range to the LBP operator. Liao et al. [43] expanded on that concept by adding scale invariance -

the Scale Invariant Local Ternary Pattern (SILTP). By introducing the intensity value of the central

pixel to the texture operator’s calculation, the authors showed that the SILTP is much more robust

than either the LBP or the LTP as the scale invariance property makes it much more tolerant to

illumination changes while only adding one more comparison (three instead of two). Silva et al.

[44] applied a similar approach to the CS-LBP texture operator by also considering the value of
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the intensity of the central pixel. This process may be observed in figure 2.6 and compared with

the CS-LBP algorithm represented in figure 2.5. The eXtended Center Symmetric Local Binary

Pattern (XCS-LBP) maintains the short histogram of the CS-LBP, while making it more robust

overall.

Figure 2.6: The XCS-LBP algorithm applied to an 8 pixel neighbourhood. Extracted from [44].

Although there are variations that consider color information like the Opponent Color Local

Binary Pattern (OCLBP) [45, 46], regarding the use of the LBP in colored images, maybe the most

common practice is to apply it in a color channel-wise base and then combine the results. While

this use of color and texture in parallel seems promising, studies have showed that the increase in

performance is rather minimal and in several cases even non-existant or negative [45]. Mäenpää

et al. proved that generally, color texture analysis only outperforms the grey-level analysis for

static illumination conditions, due to the sensitivity of color to illumination changes. Therefore,

the authors claim that a parallel color-texture study should only be used in applications were

that minimal increase in performance is guaranteed and critical to the final result, recommending

instead a sequential use of both information.

A popular texture analysis, other than using the LBP and its extensions and variations, is

the one performed through the use of Gabor filters [47]. The typical approach is to convolve

the input image with a Two-Dimensional (2D) Gabor function to obtain a Gabor feature image.

That image can then be used in the same manner as the LBP feature image to obtain histograms.

The extension of the original bandpass Gabor filters [48] to 2D functions and the fact that, under

certain conditions, the phase response of those filters is approximately linear allowed that through

the use of Gabor filters with different frequencies and orientations it is possible to detect and

describe certain recognized patterns or textures from complex images, both color and grey-scale.

As expected from the nature of their concept, they can also be used to detected edges, although it

is not their main application (as mentioned on section 2.2).

The original LBP (and its already aforementioned extensions) was designed to process only

spacial information (static texture). However, since the original concept, attempts have been made

to expand it to the spatiotemporal domain to handle dynamic textures. The Volume Local Binary

Pattern (VLBP) [49] is able to process video texture (dynamic) by looking at it the same way the
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LBP does in the spatial domain (X and Y axis), while adding a new temporal axis (a frame in-

dex). As the dynamic texture is viewed as sets of volumes (because of the 3D approach) and their

features are extracted on the basis of those volume textons, the VLBP combines both appearence

and motion in order to give a description. One of the main issues with Zhao’s et al. proposed

method is that in the VLBP, a parameter P (the number of local neighboring points around the

central pixel in one frame) is what determines the total number of features and as such, a large P

will produce a very long histogram and a small one will lead to losing a lot of information. To

address that problem, the same authors developed the LBP-TOP [50] which differs from the VLBP

in two major points: first, while the VLBP used three parallel planes, of which only the middle

one contains the center pixel, the LBP-TOP uses three orthogonal planes (XY, XT and YT) which

intersect in that center pixel, and then, while the VLBP considers the co-occurrences of all neigh-

boring points from the three parallel planes (which makes the feature vector very long when the

number of neighbouring points is big), the LBP-TOP separates each feature distribution in its or-

thogonal planes and then concatenates the result (keeping the feature vector always much shorter).

The LBP-TOP principles are possible to observe in figure 2.7. While the image represented in

the figure is in color for a better representation and perception, both the VLBP and LBP-TOP are

restricted to grey-level images.

Figure 2.7: LBP-TOP principles. On the top, an image (a video frame) and its division in the XY,
XT and YT axis. On the bottom, a representation of those axis, the histograms extracted from
the application of the method in them and the final histogram (the concatenation of the three).
Extracted from [50].
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2.3.3 Local Features

The detection of the so called "local features" and its use to build descriptors is a very well studied

and documented subject in the CV community. Probably the most largely used feature descriptor is

the Scale Invariant Feature Transform (SIFT) developed by David Lowe [5]. In its original design,

Lowe provided a method to obtain interest points from the image by constructing a Difference-

of-Gaussian (DoG) pyramid and then use those points to give a description of the local image

structures in the neighbourhood around each point. A DoG pyramid can be defined as the dif-

ferences between adjacent levels in a Gaussian Pyramid which is constructed by consecutively

subsampling and smoothing the image, with the base level being the original input image [51].

With the DoG pyramid computed, the interest points are then the points where its values are ei-

ther maximums or minimums with respect to both the spatial coordinates and the scale level in

the pyramid. To achieve scale and rotational invariance, the SIFT descriptor both normalizes the

size of the local neighbourhoods in a scale-invariant manner and determines the local dominant

orientation from the orientations of the gradient vectors. Thus, based on its concept and behaviour,

the SIFT descriptor can simply be viewed as a histogram of gradient locations and orientation. Its

application on a object matching problem is obvious as it can save the description of the objects

(a process called training) and look for them in a scene through simple comparisons. An example

of this can be observed in figure 2.8.

Figure 2.8: SIFT descriptor applied to an object matching problem. The objects are represented
on the left images and the scene containing them on the right. The big squares represent the object
match and the small squares the interest points detected. Extracted from [5].

As the SIFT descriptor is also grey-scale restricted, there have been, since its original concept,

several proposals to work this issue. As is the case for the LBP, the SIFT can simply be applied

to the different color channels, but that doesn’t guarantee color invariance. Probably the most

well respected methods with regards to that were developed by Abdel-Hakim et al. [52], the

Colour Scale Invariant Feature Transform (CSIFT), and by Burghouts et al. [53], the C-colour

Scale Invariant Feature Transform (C-colour-SIFT), and they both apply the SIFT model to the

Gaussian-based color invariance concept of Geusebroek et al. [54]. Furthermore, the tests made
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by Burghouts et al. prove in fact that this approach provides the best results when compared with

several other methods and even the original SIFT.

Other widely used distribution-based local feature descriptors are the Gradient Location and

Orientation Histogram (GLOH) descriptor [33] and the Speeded Up Robust Features (SURF) de-

scriptor [55]. The first works in a very similar way to the SIFT, simply replacing the Cartesian

location grid by a log-polar one and applying Principal Component Analysis (PCA) to reduce the

size of the descriptor. The second, relies on the concept of integral images for image convolutions

and thus replaces the DoG pyramid model by a simpler Hessian matrix-based detector and Haar

wavelet responses descriptor. With this, the SURF descriptor is commonly faster than the SIFT

and more often than not obtains similar results. However, studies like the one performed by Pan-

chal et al. [56] show that when computation time is not a factor, the SIFT descriptor is still the

better option of the two.

With the growing expansion of local feature descriptor proposals, Winder et al. [57] published

a study were the process of creating such descriptors was broken down in modules to allow that

new combinations become easier to make and test. The generic descriptor proposed by the authors

is composed of 6 modules/blocks: the image patch, the Gaussian smoothing block, the Trans-

formation (T-Block) which comprises the linear or non-linear transformations or classifiers, the

Spatial Pooling (S-Block) to incorporate the distribution-based concept by including some form

of histogramming, the Post-Normalization (N-Block) and finally the Descriptor. The idea behind

the aforementioned CS-LBP (section 2.3.2) was, in fact, to include it in a SIFT-like local features

descriptor. The tests conducted by Heikkilä et al. [4] even show that the CS-LBP descriptor gener-

ally provides better results than the SIFT descriptor in addition to being computationally simpler,

thus making it very viable.

Other, more recent, descriptor is the Oriented Fast and Rotated BRIEF (ORB) [6], which is

based on the Binary Robust Independent Elementary Features (BRIEF) descriptor [58] and the

Features from Accelerated Segment Test (FAST) keypoint detector [59]. Rublee et al. combined

the two by adding an orientation component to the FAST detector and a rotation invariance to the

BRIEF descriptor, which were, respectively their main drawbacks. In the tests conducted by the

authors, the ORB descriptor outperformed the SIFT (and also SURF) while outpacing it by more

than two orders of magnitude. However, a key shortcoming in ORB might be the possible lack of

scale invariance [6].

2.3.4 Global Structures

Local feature descriptors are not really designed to handle scene categorization problems as they

tend to focus on local image points. However, that class of descriptors can also be applied to said

problems (although with some changes) with interesting results, as they can generally identify

the same objects appearing under different conditions (which explains their application in object

recognition and matching issues). For instance, Bosch et al. [60] showed that when applying

the SIFT to scene description and classification problems, it is better to compute the descriptor in
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dense grids instead of sparse interest points (hence the name Dense SIFT). This is a logical con-

clusion, as information from much more points is computed which almost every time guarantees

better results (at the cost of requiring much more computational power). Furthermore, Carvalho

et al. [61] showed that the use of a dense scan in alternative to sparse key points vastly improves

SURF in relation to SIFT. A similar approach was also taken to develop the Histogram of Oriented

Gradients (HOG) descriptor [62], widely used in human detection.

An alternative approach with local feature descriptors would be the use of the visual bag-of-

words model [63], as several methods have already been proposed and with fairly good results [64,

65]. The biggest downside with this is that the visual bag-of-words thoroughly ignores the spatial

arrangement information. To address this issue, Lazebnik et al. proposed the Spatial Pyramid

Matching (SPM) algorithm [66] that systematically incorporates the spatial information into the

visual bag-of-words-based descriptors. Yang et al. [67] and Wang et al. [68] later expanded

on the SPM algorithm proposing the Sparse Coding Spatial Pyramid Matching (ScSPM) and the

Locality-constrained Linear Coding (LLC) respectively.

Oliva et al. [69] suggested that the process of recognizing a scene can be accomplished by only

analyzing the global spatial structure of the scene, without much object information, thus creating

the concept of global descriptors. Furthermore, the authors also proposed the Gist descriptor, a

global descriptor, to analyze and represent said structures. By computing the spectral information

in an image through the Discrete Fourier Transform and then compressing the obtained spectral

signals with the Karhunen-Loeve Transform, the Gist descriptor is able to obtain fairly good results

in scene recognition for outdoor and “natural” categories, struggling a bit more in indoor scenes.

Figure 2.9: Application of the Census transform on a image. On the left, the original image and
on the right, the transformed image. Extracted from [70].

To address the Gist and visual bag-of-words-based descriptors shortcomings, Wu et al. [70]

proposed the Census Transform Histogram (CENTRIST) descriptor. Based on the Census trans-

form (which is very similar to the LBP operator) CENTRIST captures the structural properties of

a scene by modeling the distribution of the local structures. As shown in figure 2.9 , the Census
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transform not only retains the global structures of the image, but also gathers information about

the local ones. Moreover, the CENTRIST descriptor shows very strong dependency between its

components (which allows the application of PCA to reduce the size of the feature vectors) and

also encodes the image structures which opens the way for establishing correlations between its

feature vectors and the images that they describe. However, it also has some limitations as it only

works for grey-scale images and it is not invariant to rotation or scale. While the first is certainly a

problem, the latter only means that CENTRIST is not suitable for other applications, because for

scene recognition problems, scale invariance is not very relevant and rotation invariance can usu-

ally be suppressed. Furthermore, to prove the accuracy of CENTRIST in scene recognizing, the

authors realized several tests comparing their proposed descriptor with others like the SIFT and

Gist descriptors. CENTRIST showed that not only it is very reliable in outdoor scene categories as

it even outperformed Gist, but also far outclasses the other descriptors regarding indoor locations.

Wei et al. [71] recently published a study on the effectiveness of some of the state-of-the-art

visual descriptors on scene categorization by using Support Vector Machines (SVM) to train and

then classify the different scenes. The authors showed that in those conditions, the SIFT-ScSPM

and the SIFT-LLC generally outperform other descriptors.

2.4 Discussion

As far as it is known from the literature review, there is no application of any CV-related approach

in a scenario similar to the proposed in this dissertation. However, the problem of event detection

may be closely related to scene description and, throughout the last decades, there have been

several visual descriptors developed (with different approaches and objectives) in order to describe

the scenes observed in digital images or videos. Obtaining a robust scene description is a difficult,

time consuming task, but if accomplished, can lead to the detection of changes happening in a

region throughout a time period which may indicate the occurrence of events.

To ensure better processing of the interest regions of the scene, the use of image segmentation

methods and techniques might prove to be crucial. Although older and simpler techniques like

Canny may have their use, the main image segmentation in event detection problems is, without

a doubt, foreground and background detection/separation. This is especially true in retail envi-

ronments as they usually contain a lot of people moving and interacting with each other and with

the objects of the shops. So, being able to process the data from the foreground separately from

the background might be the only way to properly classify events, instead of just labelling them

as changes. While there exist a great amount of proposed approaches about this topic, the most

common are generally statistical-based - from the MOG model and its adaptations, to the newer

(and far more complex) algorithms like the ViBE or the PBAS. Furthermore, based on its concept,

the use of the image depth information for this process should also provide very decent results if

the noise level is kept low and negligible.

Color-based description is normally performed through the calculations of color histograms

in one (or more) of the various known color spaces. As they are all represent different color
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properties, all can have their utility in specific cases and can even be used in succession. However,

color histograms are not the only way of describing color (or using it as a part of a description), but

are generally accepted as good simple solutions that may be combined with the other descriptors.

Regarding texture (or texture-based descriptors), the general consent seems to be that the best

texture operator is the LBP and its variants/extensions. From the latter, the use of uniform patterns

may lead to a severe reduction of the method computation time, while maintaining good results.

A similar reduction might be achieved with CS-LBP which only calculates center symmetric pairs

of pixels, thus halving the number of total calculations. The LTP and its more robust expansion

SILTP, were introduced to combat the LBP’s problems with local noises. A further expansion to

improve the CS-LBP robustness in a resembling fashion to the LTP was proposed as the XCS-LBP.

All of them, in addition to CENTRIST (which is based on a transform similar to the LBP) may or

may not provide good results in retail environments as not always an event implies alterations in

texture and should therefore be studied.

A very different approach was taken by the spatiotemporal LBP (specifically the more recent

LBP-TOP) which uses a both spatial and temporal information, instead of just spatial. However,

this concept might not be very applicable in retail environments due to the aforementioned constant

movement of people and the occlusions of the interest regions caused by that.

Based on their concept, the local feature descriptors should behave well in this specific prob-

lem as they are mostly designed for object matching and recognition. However, the constant

movement of people may cause slight physical differences in the scenes (for example, affine trans-

formations of objects) for which this type of descriptors are very sensitive, causing a lot a false

detections of events. Their application with SPM, ScSPM, LLC and SVMs seems unpractical for

this problem as it is quite different from scene classification.
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Chapter 3

Workspace Definition

This chapter contains an overview of the dataset utilized in the experiments in section 3.1, a de-

scription of the events to consider in section 3.2, and an analysis of the test video sequences and

the events they contain in section 3.3. It also contains some considerations taken for the prepa-

ration of the ground-truth in section 3.4, and finally, a brief explanation of the evaluation metrics

utilized to evaluate the obtained results is presented in section 3.5.

3.1 Dataset Overview

The dataset utilized for this dissertation consists in over 75 minutes of video footage captured

from an RGB-D camera (the Microsoft Kinect) from a clothing store in China (Shanghai) with

an average framerate of 30fps, a resolution of 640x480p and a fixed position. It was originally

intended for application in people tracking problems [14, 15], but due to its real-life scenario,

retail environment, crowded scene and various degrees of noise, it can be utilized for this specific

problem.

As it is possible to observe in figure 3.1, there are 4 possible well defined different zones or

regions of interest (ROIs) to consider. However, the low resolution and quality of the RGB video

difficults a proper view and perception of the events happening in the regions 3 and 4 (represented

in the yellowish boxes). Moreover, the distance at which those regions are to the camera (mostly

outside of the image depth capture range of the Kinect), makes them almost impossible to consider

and so the experiments were confined to the regions 1 and 2 (represented in shades of green).

The considered ROIs, despite their closeness in the scene, are themselves very distinct from

each other, both morphologically (as region 1 is a stand of shirts and region 2 an underwear rack)

and at color level (as region 2 is much more "white"). They are also situated at different distances

from the camera which in total makes them almost completely dissimilar and independent at the

processing level.

19
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(a) (b)

(c) (d)

(e)

Figure 3.1: Screenshots from the dataset in different frames. The different colored boxes in 3.1e
represent the different ROIs.

3.2 Events Description

The process of defining and characterizing the types of events to detect is crucial because all poste-

rior work depends on this and therefore any unnecessary subjectivity must be removed. Therefore,
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two main types of events (with some subtypes) were defined: alteration and occlusion. This may

be observed in figure 3.2, a diagram representation of the event tree.

Figure 3.2: Types of Events diagram.

Occlusion has three subtypes. It is defined as the concealment of a region of interest by some-

thing or someone for a period of time. The distinction between fixed, temporary or transitional

occlusions is made based on the duration of the event: it is considered a transitional occlusion

when a person/object only passes by the region in a mere couple of seconds (less then 5) and it

is considered fixed when the time period is larger than half a minute (30 seconds). Therefore,

temporary is the middle stage. Alteration differs from occlusion as it implies that the state of the

region was changed from a previously known state in a specific time frame. In other words, when

comparing two separate time frames (before and after the event) the region is different, it suffered

changes. Insertion and removal then refer to whether an object was inserted or removed from the

region.

3.3 Video Sequences

(a) (b)

Figure 3.3: Screenshots from different video sequences to illustrate differences between them.
3.3a represents sequence 1 and 3.3b represents sequence 5.
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From studying and analyzing the dataset and based on the types of events defined, 8 sequences

were extracted focusing on events happening in the two ROIs. They vary on total number of events,

expected level of difficulty and contain events that differ a lot from each other. For instance, as

represented in figure 3.3, sequence 1 has a low amount of people moving and only an insertion

of a shirt in the stand (ROI 1), but sequence 5 has a person standing in front of that same stand

and occluding it for a long period of time in addition to many other smaller occlusions. It is also

worth mentioning that all of the sequences were selected and cut from the overall video in order

to ensure that do not contain events in the first few seconds (at least 10).

Table 3.1 represents the general information of the video sequences and the events they contain

by ROI. This includes the total number of frames, the total number of events and their types (both

occlusions and alterations).

Table 3.1: Video Sequence Information

Occlusions Alterations
Sequence Total Frames ROI Fixed Temporary Transitory Insertion Removal

1 1945
1 - - 1 1 -
2 - - 1 - -

2 2170
1 - - 2 - 1
2 - - 1 - -

3 2022
1 - - 4 1 -
2 - 1 - - -

4 2612
1 - - 6 - 1
2 - - 6 - -

5 2816
1 1 1 5 - -
2 - - 9 - -

6 2971
1 - 1 6 - -
2 - 1 4 - -

7 3965
1 - 1 1 - -
2 - 2 4 - -

8 3850
1 - 3 2 - -
2 1 1 3 - -

A couple of notes may be taken from table 3.1: first, the number of occlusions is way higher

than the number of alterations; and second, it’s clear that the most common event are the transi-

tional occlusions. This makes sense in a way that people walk by stands or racks in shops much

more than they interact with them. Furthermore, it is also important to refer that simultaneous

occlusions occurring in the same ROI (for example, two people passing by) were only counted as

1 event, encompassing the total period in which the region was occluded. Finally, an alteration

is only considered as such if there was a change from a previous known state and the ROI is not

occluded at that instant. That also includes a case like sequence 4, in which there is an alteration

in ROI 1 which is later reversed to the original state - only one event is considered as there was

technically only one alteration.
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3.4 Preparation of the Ground-Truth

The preparation of the Ground-Truth involved the annotation of the events described in sections

3.2 and 3.3 in .xml files (one for each sequence). Along with the event type, sub-type and region

mentioned and the usual frame numbers and/or intervals, all the events annotated in the ground-

truth have a "level of trust" that varies in the interval [0, 10], with 0 being absolutely unsure and

10 absolutely certain about the annotation. This information is not so much an attribute of the

specific events, as it is an attribute of the annotation as a whole, due to it being a very subjective

procedure. Moreover, it may provide further information to a latter study of the tests results. For

instance, it is expected that the algorithm generates better results when the confidence in an event

is 8, comparing to when it is 1.

Figure 3.4 may provide a better understanding of when an occlusion was considered and an-

notated in the Ground-Truth and when it was not, as they are a much more subjective type of event

than alterations.

(a) (b) (c)

Figure 3.4: Screenshots from ROI 1 in different frames. 3.4a is considered an occlusion as is 3.4b.
3.4c is not.

3.5 Evaluation Metrics

In order to proper evaluate the results obtained by each test method with the highest degree of

objectivity possible, concrete evaluation metrics must be defined. As is common in CV related

problems, the utilized procedure was the computation and analysis of Receiver Operating Char-

acteristics (ROC) curves and Area Under the Curve (AUC) and F-Measure (also known as F-1)

scores as described by Fawcett [72]. All of these evaluation metrics are based on the confusion

matrix, represented in figure 3.5 (even AUC, which is calculated of the ROC curve, that itself is

obtained from the confusion matrix). The matrix is constructed by considering the data from the

Ground-Truth as the true class (the instances) and the values obtained from the experiences as the

hypothesis class (the classifications). In a binary situation (it is or it isn’t), as in figure 3.5, there

are only four possible outcomes: the true positives represent the cases when the instance is positive
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and the classification is also positive; the false positives when it the instance is positive, but the

classification is negative; the true negatives when both are negative; and the false negatives, when

the instance is positive, but the classification negative [72].

Figure 3.5: Confusion Matrix representation. Extracted from [72].

After the construction of the confusion matrix, the true positive rate (TPR), also known as

recall, or probability of detection is calculated as

T PR =
TruePositives
TotalPositives

=
TruePositives

TruePositives+FalseNegatives
(3.1)

The false positive rate (FPR), or probability of false alarm is calculated as

FPR =
FalsePositives
TotalNegatives

=
FalsePositives

TrueNegatives+FalsePositives
(3.2)

The precision, or the positive predictive value (a measure on the relevance of the obtained values)

is obtained as

Precision =
TruePositives

TruePositives +FalsePositives
(3.3)

A ROC curve can be obtained by varying the thresholds utilized on the classification values, in

order to obtain the best possible combination of TPR and FPR (and consequently the best thresh-

old(s) value(s)), from equations 3.1 and 3.2. The AUC is then estimated as

AUC =
∫ −∞

+∞

T PR(T )×FPR′(T )dT (3.4)



3.5 Evaluation Metrics 25

The F-Measure is simply an harmonic mean of the precision and recall scores, obtained as

F−Measure = 2× Precision×Recall
Precision+Recall

(3.5)
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Chapter 4

Methodology

As mentioned in section 1.3, the main objective of this dissertation was to achieve a viable detec-

tion of a predetermined set of events happening in a retail environment through the spatiotemporal

processing of video captured by generic RGB and RGB-D cameras. Chapter 3 set the workspace

by covering the definition and description of the test video sequences, the set of events to detect

and the evaluation metrics to evaluate the tests results. This chapter then focus on the description

of the actual processing utilized to accomplish the defined objective.

The first and very high-level approach taken was that in order to accomplish the event detec-

tion, some type of processing algorithm had to be applied to the video sequences. From there,

based on the data available from the dataset and the information retrieved from the literature re-

view from chapter 2, three separate strategies were defined to survey the problem. As it may be

observed in figure 4.1, the processing was divided in: using only RGB video, only depth informa-

tion and using the sum of the two. Thus, sections 4.1, 4.2 and 4.3 cover each one respectively, pro-

viding a detailed description of the implemented algorithm, its purpose and known (or expected)

limitations.

Figure 4.1: Block diagram of the first approach.

27
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4.1 RGB Processing

As explained in section 2.1, most of the modern video capturing devices are RGB cameras. There-

fore, a natural approach to the event detection problem, would be to first develop a solution using

only that information, not only to test what type of results may be achieved, but also to understand

the limitations behind it.

As reviewed in chapter 2, the construction of visual descriptors from the local properties or

features of RGB data allows the representation and analysis of the different characteristics of shape

and appearance of an image. Thus, the comparison of descriptions obtained from distinct images

(for instance, different video frames) may allow a measure of the differences between said images.

However, without resorting to any tracking mechanisms or image segmentation methods (namely

foreground/background separation), no actual recognition of distinct types of events is possible

to achieve. Nevertheless, as differences between images can be detected, several of the reviewed

visual descriptors were tested in order to understand how each one performed in the detection of

changes happening in the defined ROIs. As all of the events from the ground-truth theoretically

represent changes in the scene (when compared with an initial state), they were considered as such

for this specific processing stage - an event either exists in a ROI, or it doesn’t.

Figure 4.2: Block diagram of the RGB Processing Algorithm.

Figure 4.2 contains the block diagram of the RGB processing algorithm referred in figure 4.1.

The algorithm is divided in two steps: the initialization, in which a model for the visual descriptor

under test is created (representing the initial state of each ROI), and the comparison loop, where

that model is compared with the description obtained from specific frames to detect the existence

(or not) of events in the ROIs. For the initialization, only the first N frames are considered, leaving

the remaining to the loop. The parameter s then represents the amount of frames skipped in each

iteration of the loop.

The following section 4.1.1 contains an overview of the tested visual descriptors, along with

some considerations regarding their choice and some figures representing their application. Sec-

tion 4.1.2 then contains information about the methods used to compare the descriptors with their

created model.
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4.1.1 Visual Descriptors

The objects contained in retail environments (such as the clothes from the clothing store of the

test dataset) are typically very colorful and with distinct visual patterns and features. So, it seems

coherent to try to detect the occurrence of events based on variations of those properties in the

scene. Therefore, from the literature review in chapter 2, a selection of a test group of visual de-

scriptors was made. To ensure that that selection was as comprehensive as possible (as the number

of descriptors available in literature, built from the diverse image properties, is quite large), the

test group includes: Color Histograms, Local Binary Patterns (LBPs), the CENTRIST descriptor

and Local Feature Descriptors - sub-sections 4.1.1.1 to 4.1.1.4.

4.1.1.1 Color Histograms

As mentioned on section 2.3.1, histograms may be computed from color images to achieve a scene

description based on that property. Even though this is a simple concept, it allows a factual rep-

resentation of color quantities (whichever the color space), which can lead to a proper analysis of

its variations during the occurrence of events. From the reviewed color spaces, two were selected

for testing purposes: the HSV and the CIELab color spaces. Their selection was due to the fact

that although they are conceptually different, both represent a perception on color similar to the

one from the HVS [35] and allow a separate measure of variations of lightness and chromacity.

Moreover, given that the video sequences are represented in the RGB color space, this color space

was also tested. Figure 4.3 represents an example of a video frame (specifically, 320 of sequence

4) in the different considered color spaces.

(a) RGB (b) HSV (c) CIELab

Figure 4.3: Representation of an example video frame in the different considered color spaces.

The initialization process for color histograms (the creation a model for each ROI) is pretty

straightforward: the RGB video sequence is converted to the desired color space (if needed) and

histograms are computed (one for each ROI) for the frame N. This process is then repeated for

the remaining frames, in the loop, so that a comparison between histograms (the models and the

current ones) may be made.

Figure 4.4 represents the color histograms (from the different color spaces) obtained for each

of the ROIS from the same video frame (320, sequence 5) of figure 4.3. From observing the figure

and as expected from the analysis of the dataset in chapter 3, it is possible to notice that the ROIs
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(a) ROI 1 - RGB (b) ROI 2 - RGB

(c) ROI 1 - HSV (d) ROI 2 - HSV

(e) ROI 1 - CIELab (f) ROI 2 - CIELab

Figure 4.4: Computed color histograms for each ROI from an example frame. 4.4a, 4.4c and 4.4e
represent ROI 1 and 4.4b, 4.4d and 4.4f, ROI 2.

are very distinct at a color level. Specifically, ROI 2 has most of it pixels around the white region

of the histograms - around 255 for the all curves of the RGB histogram, around 0 and 180 for the

hue and 255 for the saturation and value of the HSV, and around the peak value of L* for CIELab

(from the conversion of RGB to CIELab, L is obtained in the range [0,100] and then normalized to

cover the range [0,255]). On the other hand, ROI 1 has its pixels much more distributed around the

each curve, with the exceptions being the values of around 255 for saturation of HSV (representing

the "pure colors" observed in the region) and the peaks of a* and b* for CIELab (representing that
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most of the colors in the region are around those values, for that specific color space).

4.1.1.2 Local Binary Patterns

As reviewed in chapter 2, the resort to the LBP and its variations is probably the most popular

approach to the use of texture for the description of scenes, due to their clear and easy concept that

enables the encoding of local primitives from images (flat areas, spots, edges, etc.) [44]. From

all the variations surveyed, four were selected for testing purposes: the original LBP (from now

referred to as OLBP) [41], the CS-LBP [4], the SILTP [43] and the XCS-LBP [44]. An example

of the output image of each of them is represented in figure 4.5.

(a) OLBP (b) CS-LBP

(c) SILTP (d) XCS-LBP

Figure 4.5: Application of the selected LBPs to an example video frame.

The OLBP labels the pixels of image blocks by thresholding the grey-scale values of each pixel

in a circular neighbourhood with its center value and considering the result as a binary number. In

turn, the CS-LBP works in similar fashion, but reduces the number of total calculations in half as

it only does the thresholding process to center-symmetric pairs of pixels. The XCS-LBP further

expands that concept by also considering the intensity value of the center pixel to the calculations.

Finally, the SILTP represents an expansion to the LTP [42] (which simply adds a tolerative range

to the OLBP) analogous to that of the XCS-LBP in relation to the CS-LBP. The observation of

figure 4.5 may allow a better perception of the differences between the described methods. For
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instance, it is clear that each of them retains gradually less information (from OLBP to XCS-LBP)

from the scene, which is even more noticeable in flat areas (like the floor) what may help to filter

some of the visual noise. Furthermore, the SILTP and particularly the XCS-LBP (figures 4.5c and

4.5d) seem to mostly retain the edges of the scene, while the other two methods generate outputs

much harder to visualize.

The application of the selected methods in the processing algorithm (initialization and com-

parison loop) is identical to the described above for the color histograms - the texture operator is

computed for the scene and then, for the resulting image, the histograms for each ROI are calcu-

lated.

4.1.1.3 CENTRIST Descriptor

Figure 4.6: Application of the CENTRIST descriptor to an example video frame.

Global descriptors, as reviewed in chapter 2, were designed for image classification problems,

and thus focus on the global structural properties of scenes without regarding much object infor-

mation. So, for a better perception if that type of approach is viable in the detection of changes

in a scene, the CENTRIST descriptor [70] was included in the visual descriptors test group for

this specific problem. The specific choice of CENTRIST was made based on the fact that it cap-

tures the global properties of a scene by modeling the distribution of the local structures and thus

doesn’t completely ignore them.

Figure 4.6 represents the application of the CENTRIST descriptor in the same given example

video frame (320, sequence 4). Furthermore, as CENTRIST has a working principal similar to the

aforementioned OLBP [41] - the Census Transform is essentially the LBP texture operator with

a different bit ordering in the binary result - and so their application in the designed processing

algorithm (the model creation and the comparison loop) was analogous.
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4.1.1.4 Local Feature Descriptors

From the local feature descriptors reviewed in chapter 2, three were selected for testing purposes:

the SIFT [5], SURF [55] and ORB [6] descriptors. The decision to include the first two was made

based on their longstanding relevance in the CV community and CV-related problems. On the

other hand, ORB was selected exactly for the opposite reason, as it is a much more recent, state-

of-the-art, descriptor. Moreover, all of them follow an identical procedure - the retrieval of local

interest points (also known as keypoints) from images to build feature vector descriptors - but are

conceptually very different, which offers a better surveying on the performance of local feature

descriptors in the event detection problem.

As these type of descriptors differ quite a lot from the others considered above (sub-sections

4.1.1.1 to 4.1.1.3), their application in this problem is also distinct. The model creation was

achieved through successively matching the description vectors obtained for each of the ROIs

(and for each of the local feature descriptors) from frame N − s to frame N (which, as known,

represent a "clean", uneventful scene and should then be a total match). The resulting number

of total keypoints was then divided by s to obtain an average value to be used as comparison.

The same exact principal is applied to the comparison loop, where that matching process is made

between the ROIs in frame N and the ROIs in the current frame. The resulting values of each

iteration are then compared with a thresholded percentage of known model values which allows

a decision of the occurrence or not of an event in that specific video frame. In other words, if

the number of keypoints obtained from the matching process drops below a certain determined

number, the algorithm considers that that ROI is different from what is expected and thus contains

an event. The way the matching was performed for each descriptor is explained in the following

section 4.1.2.

4.1.2 Comparison Methods

The comparison of the histograms obtained from each iteration of the loop with the created mod-

els, for the descriptors mentioned from sub-section 4.1.1.1 to 4.1.1.3, was made by measuring

the Hellinger distance between them. For two discrete probability functions (two histograms)

H1 = (h1,1,h1,2, ...,h1,k) and H2 = (h2,1,h2,2, ...,h2,k), the Hellinger distance represents a numeri-

cal measure of the overlap between them and is given by

(H1,H2) =

√
1− 1√

H̄1H̄2N2 ∑
I

√
H1(I) ·H2(I) (4.1)

If the measured overlap between H1 and H2 is high, it indicates that the distributions are similar

and thus, their Hellinger distance is small. Furthermore, it is worth noting that it is a normalized

function in the interval [0,1]. In this specific case, as the images and their histograms are more

dissimilar, the bigger the value of Hellinger distance will be. Then, if a threshold value is defined

and the distance calculation surpasses that value, an event has been possibly detected.
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As explained above, in sub-section 4.1.1.4, the same process of comparing the histograms

cannot be applied to the Local Feature descriptors, due to their different concept. The described

model for each ROI (the average of total of keypoints matched between the s identical images)

and the comparison value were then obtained by applying a brute-force matcher with ratio test,

as described in [5]. That matcher takes the descriptor of one feature (one obtained keypoint) in

the first set (first image) and tries to match it with all the others in the second set (second image)

using a given distance calculation and returns the two best matches. The ratio test guarantees that

if those matches are too far apart, that keypoint is not good and thus should be ignored. While for

the SIFT and SURF descriptors, the distance calculation was made using the Euclidean distance,

which for two points a and b represents the line segment connecting them (ab), for ORB, due

to its binary descriptor status, the used distance was the Hamming distance, which measures the

minimum number of "substitutions" required to change one feature vector into the other. On figure

2.8, an example of that matching process may be observed for the SURF descriptor in ROI 1. For

a better perspective, only the 10 best matches between images were drawn.

Figure 4.7: Representation of the 10 best matching keypoints obtained for an example frame for
ROI 1, using SURF.

4.2 Depth Processing

The use and processing of image per-pixel depth information opens the possibility of segmenting

the scene into background and foreground, which, contrary to the pure RGB approach described

in section 4.1, allows a proper acknowledgement and classification of occlusions. As mentioned in

section 2.2, the constant subtraction of data from the current frame to a known background model,

enables the achievement of a mask representing the foreground due to the different depth values.

For instance, if there is an object, in one of the ROI(s), in a specific frame that wasn’t there in the

background model, it is expected that that object is represented in the foreground mask, due to its

different distance to the camera in relation to the model (and consequently different depth values).
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However, the same can not be said to the detection of alterations, as their concept represents that

the change was within the same distance range as the previous known values (the depth variation

is too small to be properly detected). Therefore, the events considered for testing purposes of

depth-only processing were restricted to the occlusions.

Figure 4.8: Block diagram of the Depth Processing Algorithm.

Figure 4.8 represents the block diagram of the depth processing algorithm from figure 4.1.

The algorithm consists in the institution of a background model through the first N frames - Back-

ground Initialization, the creation of a foreground mask through the comparison of the remaining

frames (in a loop) with the known model - Foreground Detection, and the calculation of the per-

centage of area occluded for each ROI - Occluded Area. A full explanation of these blocks is

presented in sections 4.2.1 (Background Initialization), 4.2.2 (Foreground Detection) and 4.2.3

(Occluded Area).

4.2.1 Background Initialization

The concept of creating a background model requires the test ROIs to be without events for a

defined N frames to ensure that the model actually represents "clean", unnocluded ROIs so that

a proper detection of occlusions may be achieved, as explained above. This is similar to the

procedure defined in section 4.1.

Figure 4.9 represents the frame 150 (from now used as representative example value for N)

of the depth video sequence 2 of the dataset. Based on the review from section 2.1, it is possible

to observe that it contains large zones without depth information (black) and various points with

noisy estimates (white points). To cover those issues, three major steps were defined: first, instead

of taking the sample from just one frame, the arithmetic mean of the last s was computed; second,

a low-pass filter was applied to filter the noisy white points; and third, a median filter to add blur to

the image to further smooth the information. As figure 4.10 can attest, by utilizing more than just

one frame, some of the black zones (at least in the ROIs) were covered with actual depth measures.

However, it also shows that without the application of the filters, the usage of more frames would

induce even more noisy points.
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Figure 4.9: Depth image of an example video frame.

Figure 4.10: Representation of averaging s depth video frames.

The concept of a low-pass filter is simple: only the values below a defined value a are kept,

the rest are removed. In this case, the range of values corresponds to the interval of a grey-scale

image ([0,255]), so a was empirically defined as 50. As for the median blur filter, it replaces the

value of the pixels in a k× k neighbourhood with the median of said values [73]. To ensure that

the image was as smooth as possible, without losing too much information, k was empirically set

as 9. The result of the application of these filters may be observed in figure 4.11.
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Figure 4.11: Resulting depth image of the filtering process.

The final step of the background modelling process consisted in an equalization of the his-

togram of the image represented in figure 4.11. This was done to normalize the brightness and

increase the contrast of the image. It was achieved by calculating the histogram of the image,

normalizing it so that the sum of all the bins equals 255 (the range of a grey-scale image) and then

transform it using Imagedestination(x,y) = H ′(Imagesource(x,y)), where

H ′i = ∑
0≤ j<i

H( j) (4.2)

The resulting image was considered the background model and may be observed (for the

example given for sequence 2) in figure 4.12.

4.2.2 Foreground Detection

After obtaining the background model and while the video sequence is not over, the foreground

mask is achieved through the absolute subtraction of a similar processing of the next s frames to

the known model, in a loop. In other words, for the duration of the video sequence, the successive

next s frames are processed the exact same way as the s frames that defined the background model

and then the absolute difference of the two is calculated to obtain a foreground mask. An example

of a mask obtained for sequence 2, from the background model shown in figure 4.12 and the

processing of the frames in the interval [371,380] (using s = 10), is represented in figure 4.13.

In order to be able to calculate the occlusion (or not) of one of the ROIs in the next step,

the obtained mask needs to be thresholded so that it becomes a binary image (where pixels only

take values of pure white or pure black). The threshold value that separates if a pixel is white
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Figure 4.12: Resulting depth image of the histogram equalization.

Figure 4.13: Example of an obtained foreground mask.

(foreground) or black (background) was then empirically set as 30: if a pixel intensity is over 30

it is set to black (255), otherwise, to white (0).

To remove the white noise associated with the calculation of the mask and the thresholding

process, two last filters were applied: erosion, followed by dilation, which is also known as an

opening filter. Both run through the image performing successive convolutions of a kernel of size

k× k with a region of the same size. However, they do opposite things: as the first (erosion) sets
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to zero (0) all the white blobs smaller (or equal) than the kernel, and the second sets to one (255)

all the pixels in a region the size of the kernel, if there is at least one non-zero. This is very useful

as it allows the removal of some of the smaller white blobs (usually noise) while not affecting (of

course, depending on the size of the kernel) the bigger ones. The kernel utilized in this procedure

was a block of 5×5 ones which means that the convolutions were performed with the whole region

of the kernel. The final foreground detection output (the final foreground mask) for the example

given in figure 4.13 may be observed in figure 4.14

Figure 4.14: Thresholded and filtered version of the foreground mask from figure 4.13

4.2.3 Occluded Area Calculation

From the foreground mask, it is possible to obtain a measure of the occluded area in each of the

ROIs by counting the number of non-zero pixels (which in this case, is equal to counting the

number of white pixels) in each ROI and dividing it by its total area. In other words, for both

ROIs, the percentage of occluded area is given by equation 4.3. For a better perception, figure

4.15 represents the mask from figure 4.14 in each of the ROIs.

OROI(%) =
∑NonZero

AreaROI
×100 (4.3)

Although it is clear that the ROIs still contain a noticeable degree of noise (which is expected

due to the use of image depth information, as mentioned above), the application of equation 4.3

may provide a useable measure of the area occluded. For instance, for the example images in

figures 4.15a and 4.15b, which are both annotated as occlusions in the ground-truth, values of

23.4% and 25.5% were obtained, respectively. Thus, the definition of an optimized threshold

value may to help to achieve a viable detection of these events.
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(a) ROI 1
(b) ROI 2

Figure 4.15: Separation of figure 4.14 to both ROIs.

4.3 RGB-D Processing

Figure 4.16: Block diagram of the RGB-D processing algorithm.

The RGB video processing algorithm from section 4.1 allowed for no more than the detection

of changes happening in the scene. However, as explained in section 4.2, the processing of the im-

age per-pixel depth information for the segmentation of the scene into background and foreground

permits the detection of occlusions. Thus, if used in cascade, the combination of both algorithms

may accomplish a viable detection and classification of all the considered events through a "divide-

and-conquer" strategy. That is, if the processing of the depth information detects the occurrence

of an occlusion and transmits that information to the RGB processing algorithm, it will know that

it doesn’t need to process that specific frame. If on the other hand, the depth processing algorithm

detects no current occlusion, it means that if the RGB detects changes in the scene, they represent

alterations. The figure above, figure 4.16, represents this final approach to the problem, with the
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blocks represented denoting the algorithms described in previous sections.
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Chapter 5

Results and Discussion

In this chapter, the tests results from the application of the methodologies proposed in chapter 5 in

the workspace defined in chapter 3 are evaluated, analyzed and discussed. Furthermore, the whole

testing procedure is described, providing some insight on the decisions that were made.

As already stated, three separate, but complementary, strategies were developed in order to

accomplish the objective defined in this dissertation: the processing of RGB video information, of

image per-pixel depth data, and the sum of both. The following sections (5.1 to 5.3), then contain

the experimental results of each.

The application of the proposed methodology implied that some parameters needed to be set.

As mentioned in section 3.3, the video sequences do not contain any event in the first 10 seconds

and so, for testing purposes, the parameter N, referred in chapter 4, was set as 150, which is

equivalent to 5 seconds. In turn, the parameter s (which represents the amount of frames skipped

in each iteration of the loop, was set as 10 ( 1
3 of a second). Although technically s may assume

any value in the interval [0,T −N−1], where T represents the total duration of the video sequence

in test, it was set to 10, as testing every single frame would be typically unpractical in a real-life

application, where 3 tests for each second seems more logical. Also, and more importantly, each of

the test visual descriptors (particularly the local feature descriptors) also contains certain internal

parameters, which were all set exactly as defined by the authors to avoid the induction of external

errors and thus misleading results. Finally, it is important to mention that all the testing procedure

was implemented using the Open Source Computer Vision Library (OpenCV) library [74, 75, 76].

5.1 RGB Processing

As explained in section 4.1, the RGB processing algorithm was designed to obtain a perception

of how the reviewed visual descriptors performed when trying to detect visual changes happen-

ing in the test dataset (specifically in the two ROIs). The evaluation of that performance was

accomplished through the construction of ROC curves and the calculation of their AUC score, as

previously mentioned. The table below, table 5.1, represents the obtained AUC score for each of

43
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the descriptors tested (HSV depicts the analysis of the three channels in the HSV colorspace, H-

HSV the analysis of solely the Hue channel, SV-HSV the analysis of just the saturation and value,

and so on).

Table 5.1: Visual Descriptors and their AUC scores.

AUC
Visual Descriptors ROI 1 ROI 2

Color Histograms

RGB 0.7987597 0.929002
HSV 0.796746 0.927043

H-HSV 0.762366 0.886007
SV-HSV 0.819632 0.927579
CIELab 0.799224 0.924422

L-CIELab 0.794264 0.909139
AB-CIELab 0.789040 0.886609

LBPs

OLBP 0.710723 0.912651
CSLBP 0.658013 0.775411
SILTP 0.645383 0.782582

XCSLBP 0.769438 0.651480
CENTRIST 0.563244 0.613861

Local Features
SIFT 0.876096 0.977278
SURF 0.912470 0.977373
ORB 0.857218 0.968225

Promptly, a brief overview of the table above enables the perception that the local feature de-

scriptors obtain the best results (for ROI 2, even very close to a perfect score of 1) and CENTRIST

the worst (very close to the score of 0.5 that represents chance). Furthermore, it also allows to

observe that the general detection of visual changes is worse in ROI 1, than it is in ROI2, which

coincides with the preliminary analysis of the difference between the ROIs, back in chapter 3 -

ROI 1 is very homogeneous, both at color and texture level, while ROI 2 is much more sharp, with

clear edges, and its color values center around white. By analyzing the table with more detail, it is

possible to understand that a color-based analysis provides mixed results. While all the considered

color spaces obtain similar AUC scores, it is clear that looking for alterations in chromacity is

generally inferior than looking for variations of lightness. This was expected particularly in ROI

1, as the region has a very distributed color representation (as depicted in the color histograms pre-

sented in section 4.1.1.1) and so, slight variations of chromacity should be much harder to detect

than variations of light.

The analysis of texture (LBPs) follows a similar path to that of color (although much worse).

Again, ROI 1 is very homogeneous in terms of texture (figure 4.5) and the events are mostly caused

by people either inserting or removing a piece of clothing from the ROI or walking/standing by

it, dressed in similar fashion, which doesn’t alter much the texture of the region as a whole. This

may be comproved by the much better AUC score of the OLBP for ROI 2. The better performance

of the OLBP in comparison to the other LBPs may be attributed to the fact that it doesn’t discard

much of the data that the others do (none of the ROIs represent "flat" areas). This whole idea also
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applies to CENTRIST, which tends to neglect local information to focus on global structures of

the scenes (which, in this case, do not suffer very noticeable changes).

Lastly, the performance of the Local feature descriptors is clearly the best (for both ROIs). This

was expected as due to their concept designed for application in object detection and matching

problems, they are able to detect most of the small changes (that still represent events) that other

descriptors are not. Furthermore, the better performance of SURF in relation to the other two

(SIFT and ORB) proves the points made above about color, as SURF is typically more robust to

illumination variations [77].

(a) CIELab

(b) SURF

Figure 5.1: ROC curves obtained for two of the tested visual descriptors.

To allow a better perception of the presented AUC scores, figure 5.1 represents two of the

obtained ROC curves, one for the CIELab color histogram, the other for the SURF descriptor. It is

clear from the observation of the figure that a TPR close to 1 is achieved much later (for a higher
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FPR) for CIELab than for SURF, which validates their respective AUC scores. The straight line

in both images symbolizes the line of chance - the straigth y = x.

From the results of the tests conducted in this part of the methodology, it is possible to conclude

that the better perfomance to the task of detect changes in a scene (at least in this scenario) is

accomplished by the local feature descriptors (and more specifically SURF), which made them

the descriptors to use in the RGB-D experimental tests. Furthermore, the ROC curves and AUC

scores obtained suggest that different threshold values are needed for each of the ROIs, in order to

maximize the results obtained from them.

5.2 Depth Processing

As mentioned in section 4.2, the usage of image per-pixel depth information allows the classifi-

cation of some of the detected events as occlusions. Then, to attest that idea and to analyze the

proposed methodology for the depth processing algorithm, a similar testing procedure to the one

made to test the visual descriptors was conducted, reducing the types of event in study to solely

occlusions.

The obtained ROC curve (for each of the ROIs) in this experimental step is represented in

figure 5.2. It is clear by observing the figure that this specific ROC is superior to each of the ones

represented in figure 5.1. The respective AUC scores also prove this notion: 0.948873 for ROI 1

and 0.996427 for ROI 2.

Figure 5.2: ROC curve for the depth processing algorithm.

The worst result obtained for ROI 1 is caused by two specific video sequences - 5 and 6 (and

two specific events), represented below in figures 5.3 and 5.4, respectively. For sequence 5, the

problem lies that the noise caused by the red jacket, as it stays immediately closer (from a depth

perspective) to the camera and is impossible to filter out without causing a severe decay in the
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performance for other sequences. As for sequence 6, the problem refers to the event represented

in figure 5.4, which was considered as an occlusion for the preparation of the ground-truth, but

such event is hard to be detected using depth information, as the arms that cause the occlusion of

the ROI are technically "inside" the region and therefore in the same depth range. Again, to be

able to include that specific event, the performance in others would suffer vastly.

(a) 830 (b) 950 (c) 1080

Figure 5.3: Problematic event from video sequence 5. The captions represent the frame numbers.

(a) 1212 (b) 1330

Figure 5.4: Problematic event from video sequence 6. The captions represent the frame numbers.

Other than for the aforementioned problematic occlusions, the use of depth data may provide

very good results in occlusion detection, as its ROC curve and AUC score show. As is the case for

the visual descriptors from section 5.1, the use of different thresholds for each ROI is needed to

maximize the final output results.

5.3 RGB-D Processing

As proposed in section 4.3, the final methodology uses both depth and RGB video, in cascade,

to detect the events from the ground-truth. From the experimental results described in sections

5.1 and 5.2, it was possible to, respectively, take away that the local feature descriptors are the

best (from the test group) at detecting the occurrence of changes in a scene, and that the use of

depth information for occlusion detection provides solid results. Then, the final experiments were

conducted using the depth information to detect occlusions and the local feature descriptors to

detect alterations.
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(a) ROI 1

(b) ROI 2

Figure 5.5: Precision and recall curves, in function of the threshold values, for the proposed
occlusion detection methodology.

The choice of the threshold values (for each visual descriptor and for the depth processing)

has an impact on the final results, as demonstrated by the ROC curves represented above. A blind

approach would be to simply choose the values which obtain the best precision, the best recall

(TPR) or the best overall f-measure in each specific case. However, in a retail environment, it

seems coherent to try to maximize the precision with which events are detected, but without totally

disregarding the recall, as sometimes two threshold values may have a very small difference in one

evaluation metric, but a large difference in the other. For instance, in a real-world situation of a
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security guard obtaining feedback from this type of application, it is plausible that he is only

alerted with the most accurate detections possible, but a small drop in that accuracy is accepted if

it means that a much larger detection range is achieved.

Figure 5.5 represents the constructed curve of precision and recall in function of the threshold

value for the occlusion detection algorithm (the percentage of area occluded), with 5.5a represent-

ing ROI 1 and 5.5b ROI 2. Similarly, 5.6 represents the same idea applied to the SURF visual

descriptor for the conditions set in 5.1. However, for the visual descriptors, as no type of event

"alteration" occurs in ROI2 and their use was now limited to these events, this process and the fol-

lowing experimental evaluations were limited to ROI 1 and video sequences 1 to 4. Furthermore,

as mentioned in section 4.1.1.4, the threshold values for the local feature descriptors portray the

percentage of keypoints matched, in comparison to the set model. The defined thresholds values,

obtained from all the considered precision and recall curves, are then presented in table 5.2.

Figure 5.6: Precision and recall curves, in function of the threshold values, for the application of
SURF in the conditions set in 5.1.

Table 5.2: Threshold values obtained from the precision and recall curves in the considered con-
ditions from 5.1 and 5.2.

Threshold Values
ROI 1 ROI 2

Depth 18 23
SIFT 0.66 -
SURF 0.68 -
ORB 0.68 -

For the given example of SURF, in figure 5.6, it is clear that the maximum precision value

would be around the [0.5,0.55] interval of thresholds, but yet, as represented in table 5.2, the

considered value was 0.68. This is due to the huge jump in recall, while not dropping precision
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by much, that that difference makes, as denoted above. That exact same principal was applied for

every of the represented values.

With the definition of the thresholds, the final proposed methodology was then tested. The

attained results are expressed in the form of precision, recall and f-measure scores, by sequence

and in total, in the following tables 5.3 (Occlusions) and 5.4 (Alterations).

Table 5.3: Occlusion Detection results.

ROI 1 ROI 2
Sequence Precision Recall F-Measure Precision Recall F-Measure

1 1.0 1.0 1.0 1.0 1.0 1.0
2 1.0 0.869565 0.930233 1.0 1.0 1.0
3 0.909090 0.952380 0.930232 0.967742 0.967742 0.967742
4 1.0 0.800000 0.888889 1.0 1.0 1.0
5 0.821990 1.0 0.902298 0.921569 0.796610 0.854545
6 0.888889 0.640000 0.744186 1.0 1.0 1.0
7 0.968750 0.885714 0.925373 0.991803 0.937984 0.964143
8 0.955414 0.903614 0.928792 1.0 0.945544 0.972010

Total (by ROI) 0.900990 0.890410 0.895669 0.987878 0.938579 0.962598

Precision Recall F-Measure
Total 0.944000 0.914729 0.929133

Table 5.4: Alteration Detection results.

Alterations
Descriptor Sequence Precision Recall F-Measure

SIFT

1 1.0 1.0 1.0
2 0.936170 0.448980 0.606897
3 1.0 0.854369 0.921467
4 0.316901 0.789474 0.450000

Total 0.731182 0.770538 0.750345

SURF

1 1.0 1.0 1.0
2 0.980000 1.0 0.989899
3 1.0 0.854369 0.921466
4 0.317014 0.789473 0.452261

Total 0.767059 0.923512 0.838046

ORB

1 1.0 1.0 1.0
2 0.980000 1.0 0.989899
3 1.0 0.854369 0.921466
4 0.317014 0.789473 0.452261

Total 0.767059 0.923512 0.838046

As expected from section 5.2, the use of depth information for occlusion detection provides

results with high scores of precision and recall. Also, the sequences containing the problematic

events described perform worse than the others, but even then, as they are one-off cases, the final

total scores aren’t affected by much. Considering that the sequences containing both fixed and
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transitory occlusions obtained fairly the same results as the others and those events are much

longer (and thus extend through much more frames), it is possible to conclude that the duration of

an event doesn’t affect (directly) the final output. This makes sense as the methodology proposed

for detecting occlusions was based on spatial distances and not time or movements.

When regarding the results of the detection of alterations, it is clear that all the local feature

descriptors perform roughly the same (oddly, ORB and SURF even got the same exact results). It

is also clear that they all struggle in sequence 4. This was somewhat expected as the alteration in

that sequence, as mentioned back in chapter 3, later is reversed and the regions returns to what is

visually considered the initial state. That state is, however, somewhat different as the returned shirt

is not in the exact same position and contains some affine transformations, which as it is known

from the literature review (2 is a limitation of the local feature descriptors.

Table 5.5: Alteration Detection results with thresholds optimized.

Alterations
Descriptor Sequence Precision Recall F-Measure

SIFT

1 1.0 1.0 1.0
2 0.969697 0.979592 0.974619
3 1.0 0.854369 0.921467
4 0.316901 0.789474 0.45

Total 0.764151 0.917847 0.833977

SURF

1 1.0 0.784211 0.869048
2 0.979381 0.969388 0.974359
3 1.0 0.854369 0.921466
4 0.483871 0.7894730 0.600000

Total 0.857550 0.852691 0.855114

ORB

1 1.0 0.968421052632 0.983957219251
2 0.980000 1.0 0.989899
3 1.0 0.854369 0.921466
4 0.316901 0.789474 0.452261

Total 0.765403 0.915014 0.833548

If the same process of creating the ROC curves (from section 5.1) is repeated for these descrip-

tors, while only considering the alterations (and not the whole ground-truth), some optimization

may be made in relation to the threshold values. Following the same principles from above the

new threshold values were then: 0.7 for SIFT, 0.58 for SURF and 0.37 for ORB. As it is shown

by table 5.5, above, this procedure improved the final results (in terms of precision), especially for

SURF, which as previously mentioned was expected to provide the best results.

The combination of the usage of depth to detect occlusions and the SURF descriptor to detect

alterations, in the processing model described in section 4.3, represents the final proposed solution

to the problem of this dissertation. While detecting 85% of the total frames containing alterations

with a roughly 85% precision (plus the results obtained for occlusions, which are even higher, as

stated in table 5.3) is somewhat satisfying, it shows a flaw in the proposed methodology: the oc-

clusion detection is not perfect and every error from there will possibly carry over to the alteration
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detection. Thus, the improvement of the occlusion detection would also play a factor in improving

the alteration detection. Furthermore, the implementation and testing of others strategies of com-

puting keypoints (for instance, dense grids) and matching the feature vectors, along with possibly

other local feature descriptors, may also improve the final results.



Chapter 6

Conclusions and Future Work

6.1 Final Discussion

The objective behind this dissertation was to accomplish the detection of a pre-determined group

of events occurring in a retail environment, through the spatiotemporal analysis of RGB and RGB-

D video. Based on a literature review regarding image segmentation and processing methods and

the data available to the problem, three separate processing approaches were taken, converging

to one final proposed solution: the joint usage of image depth information and RGB video, in

cascade.

Regarding the preparation of the workspace, the dataset chosen for testing purposes consisted

in video footage captured using the Microsoft Kinect (an RGB-D camera) in a clothing store, in

China. From the analysis of the full video, 8 smaller test video sequences were extracted, two

separate ROIs were defined, and two types of events to detect were specified: occlusions and

alterations. Occlusions were defined as the concealment of a ROI by something or someone for

a period of time, while alterations implied a physical change in a ROI (from a previously known

state). The ground-truth was then prepared through the annotation of the occurrence of these

events for each of the video sequences. Finally, the evaluation metrics were defined: precision,

recall, f-measure, ROC curves and AUC score.

As mentioned, three separate methodologies were proposed in order to achieve the set objec-

tive: the processing of only RGB video, only depth information and a sum of the two. This separate

analysis established a better perception of the advantages and limitations behind the usage of each

isolated data and thus, a convergence to the usage of their sum.

The "pure" RGB processing algorithm, without the assistance of any background subtraction

method, allowed no classification of the events, as all it could measure were differences in each

ROI in separate video frames. However, it provided a way to to test and qualify the performance

of a group of visual descriptors, chosen from the literature review, in the detection of visual al-

terations happening inside each ROI. From the construction and analysis of the afforementioned

ROC curves and the calculations of the respective AUC scores, it was possible to attest that the

53
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usage of local feature descriptors provided the best results (particularly SURF, due to its tolerance

to illumination variations).

The processing of depth data, opened the possibility of separating the scene into foreground

and background and thus detect and classify events as occlusions. However, due to its concept, it

allowed no detection of alterations. Nevertheless, the mere possibility to classify certain events as

occlusions, validated the joint usage of both types of video information, as in a perfect scenario,

the depth processing would detect all occlusions and thus, visual changes detected by the RGB

analysis would represent alterations. The tests conducted for this scenario, validated this assump-

tion, as they showed that the processing of depth is able to detect the occurrence of almost all of

the occlusions, with only a few noted exceptions.

The information retrieved from both testing procedures was then agglomerated in to a final

test where the threshold values for depth and the local feature descriptors were extracted from the

construction of precision and recall curves, and maximized to detect events with the best precision

possible (while not totally disregarding the recall). The best results in this scenario were obtained

for SURF, as expected from the previous RGB tests. The final proposed solution showed that,

while it is far from being perfect, it is able to detect the vast majority of events represented in the

testing sequences.

6.2 Future Work

Despite the potential of the results obtained, the present work is still preliminary and a lot of

developments and improvements may be accomplished.

The usage of just the depth data to detect occlusions is not perfect, as it contains some visual

noise. Furthermore, this also affects the detection of alterations due to the cascading nature of

the proposed solution. The addition of a people tracking mechanism in parallel with the depth

processing algorithm, may be help to filter some of that noise as it would allow for a joint analysis

of complementary information - if depth detects an occlusion, but there was no people nearby in

the last few seconds, it probably is just noise. A similar mechanism may also be implemented

to track the objects inside a ROI in a retail environment, which would allow the classification of

alterations as insertions or removals.

The implementation and testing of others strategies of computing keypoints and matching the

feature vectors (as dense grids) for the local feature descriptors may also improve the final results,

as the information would be retrieved and matched for much more points. Furthermore, other local

feature descriptors such as BRIEF or CSIFT may be tested for a more complete analysis of this

particular group.

Finally, the testing in other particular retail environments (with more of the problematic se-

quences of events described) could help validate the obtained results and conclusions. Moreover,

testing the proposed solution for its running time may help to achieve an optimization that allows

its use in a real-time situation.
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