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Abstract— Modeling Heart Rate Variability (HRV) data has
become important for clinical applications and as a research
tool. These data exhibit long memory and time-varying condi-
tional variance (volatility). In HRV, volatility is traditionally
estimated by recursive least squares combined with short
memory AutoRegressive (AR) models. This work considers a
parametric approach based on long memory Fractionally Inte-
grated AutoRegressive Moving Average (ARFIMA) models with
heteroscedastic errors. To model the heteroscedasticity nonlin-
ear Generalized Autoregressive Conditionally Heteroscedastic
(GARCH) and Exponential Generalized Autoregressive Con-
ditionally Heteroscedastic (EGARCH) models are considered.
The latter are necessary to model empirical characteristics of
conditional volatility such as clustering and asymmetry in the
response, usually called leverage in time series literature. The
ARFIMA-EGARCH models are used to capture and remove
long memory and characterize conditional volatility in 24 hour
HRV recordings from the Noltisalis database.

I. INTRODUCTION

Heart Rate Variability (HRV) reflects the interaction be-
tween perturbations to the cardiovascular variables and the
corresponding response of the cardiovascular regulatory sys-
tems [1]. Thus modeling such variability can provide a quan-
titative and non-invasive method to assess the integrity of
the cardiovascular system. HRV data display non stationary
characteristics and exhibit long memory and time-varying
conditional variance (usually designated by volatility) which
may contain indicators of current disease or warnings about
impending diseases.

Traditionally, HRV data can be characterized by linear
AutoRegressive (AR) models, which describe only short
memory in the mean. These models combined with recur-
sive least squares have been used to estimate volatility in
HRV data [2]. However, it is acknowledged that complex
interactions of electrophysiological, humoral variables and
autonomic and central nervous regulations induce nonlinear
effects in HRV [3], [4]. Thus the analysis of HRV based
on nonlinear models might elicit valuable information for
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its physiological interpretation as well as risk assessment.
A nonlinear approach to volatility description in HRV data
was proposed by Leite et al [5], [6] using Fractionally Inte-
grated AutoRegressive Moving Average (ARFIMA) models
with Generalized AutoRegressive Conditional Heteroscedas-
tic (GARCH) errors, an extension of the usual AR anal-
ysis. ARFIMA-GARCH models are used to capture and
remove long memory and estimate volatility in 24 hour HRV
recordings [6], [7]. However, GARCH models assume that
volatility depends only on the magnitude of the shocks and
not on their sign, meaning that positive and negative shocks
have a symmetric effect on volatility [8].

This work considers Exponential GARCH (EGARCH)
[8] models which are an extension of GARCH models.
EGARCH models assume that the effect of positive and
negative shocks on volatility is asymmetric, an effect usually
designated by leverage. A model with leverage effect is more
suited to describe the complex characteristics of HRV data.
The ARFIMA-EGARCH models are applied to 24 hour HRV
recordings from 30 subjects of the Noltisalis database [9]: 10
healthy subjects (N), 10 patients suffering from congestive
heart failure (C) and 10 heart transplanted patients (T). The
database was collected by the cooperative effort of university
departments and rehabilitation clinics in Italy, [9].

II. MODELS WITH CONDITIONAL VOLATILITY

In this work we consider models satisfying

φ(B)(1−B)dxt = θ(B)εt (1)
εt = σtzt (2)

σ2
t = Var(εt|Ht−1) (3)

where B is the backward-shift operator. Equation (1) de-
scribes the conditional mean of the process with serially
uncorrelated residuals εt and is said an ARFIMA(p, d, q)
with p, q ∈ N0 and d ∈ R, [10]; d is the long-memory
parameter, determines the long-term behaviour in mean and

(1−B)d =
∞∑
k=0

(
d
k

)
(−1)kBk is the fractional difference

operator [10]; p, q ∈ N and the polynomials φ(B) = 1 −
φ1B − ...− φpBp and θ(B) = 1 + θ1B + ...+ θqB

q allow
for the modeling of the short-range properties in the mean;
for −0.5 < d < 0.5 the ARFIMA process is covariance
stationary. In the range −0.5 < d < 0.5, the long memory
parameter is related to the Hurst coefficient, H , to the fractal
dimension, D, and to the slope of the (generalized) spectral
density in the low frequency range, α, by d = H−0.5, H =
2−D and α = 2d, respectively. Moreover, for 0.5 ≤ d < 1
the process ARFIMA is non-stationary and mean reverting.
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Equations (2) and (3) describe the conditional variance of
the process which varies over time as in time-varying AR
models. In (2) εt are called shocks and zt, independent and
identically distributed random variables with zero mean and
unit variance, are the standardized shocks. The conditional
variance σ2

t in (2) depends on Ht−1 which is the history
of process and includes past variances σ2

1 , σ
2
2 , . . . , σ

2
t−1, and

past shocks ε1, ε2, . . . , εt−1.
There are several models to govern the evolution of σ2

t .
The most common is the GARCH(P,Q), P,Q ∈ N0 model
[8] under which

σ2
t = u0 +

P∑
i=1

vi σ
2
t−i +

Q∑
i=1

ui ε
2
t−i (4)

This model requires non-negativity constraints on the pa-
rameters to ensure positive conditional variances, u0 >

0, v1, ..., vP , u1, ..., uQ ≥ 0,
P∑
i=1

vi +
Q∑
j=1

uj < 1. The

parameters, ui and vi characterize the volatility clustering
phenomena observed in many data sets. It is noteworthy that
GARCH models assume that conditional volatility depends
only on magnitude of the shocks and not on their sign.

Several extensions of GARCH models have been proposed
so that empirical characteristics of the data such as asymmet-
ric response to positive and negative shocks, are adequately
modeled. One such model is the EGARCH(P,Q) [8] defined
as follows:

logσ2
t = u∗0+

P∑
i=1

vi logσ2
t−i+

Q∑
i=1

ui |zt−i|+
Q∑
i=1

ξizt−i (5)

where u∗0 = u0 −
Q∑
i=1

ui

√
2
π and zt = εt/σt.

This process does not require constraints on the parameters
for ensuring the positivity of the variance. The parameters ui
and vi characterise the volatility clustering phenomena and
the parameters ξi describe the leverage effects. The impact
of positive shocks, εt−i > 0 is (ui + ξi)

εt−i

σt−i
, while for

negative shocks it is (ui−ξi) εt−i

σt−i
. If ξi = 0, logσ2

t responds
symmetrically to εt−i.

In this work, we consider ARFIMA(p, d, 0)-GARCH(1, 1)
and ARFIMA(p, d, 0)-EGARCH(1, 1) models, since they are
a natural extension of the classic AR(p) models usual in the
analysis of HRV. Additionally to the parameters d, which
characterises the long memory in the mean, u1 and v1,
which characterize the volatility clustering, we give special
attention to ξ which describes the leverage effect in the
conditional variance.

Given a time series x1, . . . , xn, to estimate the parameters
of the above mentioned models proceed as follows [8],
[10]: (i) estimate d using the semi-parametric local Whittle
estimator; (ii) define the filtered data yt = (1−B)dxt; (iii)
estimate the AR(p)-GARCH(1, 1) or AR(p)-EGARCH(1, 1)
parameters in the filtered data yt by maximum likelihood
(Econometrics Toolbox of MATLAB [11]), with the order p
determined by the Akaike Information Criterion (AIC).

Fig. 1. Short-term HRV data: (a) tachogram of a normal subject (segment
with 1700 beats of RR series for subject-N6 from the Noltisalis database),
(b) ACF of the data, (c) residuals of the fitted ARFIMA(9,0.34,0) model,
(d) ACF of the residuals, (e) ACF of the squared residuals and (f) CCF of
the residuals and the squared residuals. The horizontal lines (- -) show the
95% confidence limits, (g) estimated volatility, σ̂t.

III. MODELING HRV

To motivate the use of ARFIMA(p,d,0)-EGARCH(1,1)
models in HRV data, consider the tacogram of the healthy
subject N6 (segment of RR series with 1700 beats) rep-
resented in Fig. 1(a). The ACF (autocorrelation function)
of the data, represented in (b), shows a typical very slow
decay indicating the presence of long memory which can
be adequately modelled with an ARFIMA, equation (1).
The residuals (ε̂t) from the fitted ARFIMA(p = 9, d =
0.34, 0) (chosen by AIC) are represented in Fig. 1(c). The
corresponding ACF in (d), exhibits small correlation indi-



cating that the ARFIMA model is adequate to explain the
dynamics of the conditional mean of the data. However, the
squared residuals exhibit significant autocorrelation in Fig.
1(e), indicating time-varying conditional variance which can
be modeled by a GARCH model, (4), hereafter denoted as
Model I: ARFIMA(9,0.34,0)-GARCH(1,1). Additionally, the
cross-correlation between the residuals ε̂t and their squares
ε̂2t , Fig. 1(f), indicates that the conditional variance depends
also on the lagged shocks, an effect that can be modeled
by an EGARCH model, (5), hereafter denoted as Model
II: ARFIMA(9,0.34,0)-EGARCH(1,1). The results for two
models are summarized in Table I.

McLeod-Li testing [10] of the residuals of Model II gives a
test statistic Q(20) = 41.40, indicating no significant condi-
tional heteroscedasticity in the residual series. Moreover, the
cross-correlation between the residuals and their squares in
lag 1, CCF (1), is 0.04 indicating no significant correlation
and the AIC criterion favours Model II.

These results indicate that the ARFIMA(9,d,0)-
EGARCH(1,1) (Model II) model leads to further
characterisation of the HRV data. In fact, the estimate
ξ̂1 = 0.24 indicates asymmetric response to positive
and negative shocks. The conditional standard deviation
estimate σ̂t represented in Fig. 1(g), captures very well the
heteroscedasticity in the original data, plotted in (a). Similar
results were obtained in other short HRV recordings.

TABLE I
ESTIMATES (STANDARD DEVIATION) FOR MODEL I AND MODEL II

FITTED TO DATA IN FIG. 1. Q(20) STANDS FOR MCLEOD-LI’ S TEST

STATISTIC FOR THE RESIDUALS.

Parameter Model I Model II
d̂ 0.34 0.34

Q(20) of ε̂t 494.32 494.32
CCF(1) of ε̂t,ε̂2t 0.35 0.35

û0 0.13e−03(0.16e−04) −2.87 (0.20)
û1 0.33 (0.02) 0.47 (0.05)
v̂1 0.40 (0.05) 0.63 (0.03)
ξ̂1 —– 0.24 (0.02)

Q(20) of ẑt 28.84 41.40
CCF(1) of ẑt,ẑ2t 0.12 0.04
AIC of ẑt -8578.00 -8623.00

In the case of long recordings, such as ambulatory 24
hour HRV data (approximately 100000 beats), exhibiting
several non stationary characteristics, ARFIMA-EGARCH
modeling is combined with adaptive segmentation [6]: long
records are decomposed into short records of variable length
and the break points, which mark the end of consecutive
short records, are identified by AIC criterion. The short
records thus obtained have a minimum length 512 and are
subsequently modeled using ARFIMA-EGARCH models.

IV. RESULTS AND DISCUSSION

In this section, the above methodology is applied to long-
term HRV series of subjects from the Noltisalis database [9].
The results are first illustrated for the healthy subject N6 and
the patient C10, in Figs. 2 and 3, respectively.
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Fig. 2. (a) Tachogram of healthy subject N6, 24 hour recordings Noltisalis
database, Evolution over 24 hours of d̂ in (b), û1(-) and v̂1(- -) in (e) and
ξ̂1 in (f) estimated using ARFIMA-EGARCH models and segmentation;
statistic Q(20) of the McLeod-Li test for conditional heteroscedasticity in
(c) and cross-correlation between the residuals εt and their squares of lag
1 in (d).

The long memory estimates d̂ in Fig. 2(b) and Fig. 3(b),
change over time showing circadian variation, with lowest
values during the night periods, 0 < d̂ < 0.5 in contrast
with 0.5 < d̂ < 1 for the day period. These results are in
concordance with Leite et al.[6].

The residuals from the ARFIMA modeling are tested for
conditional heteroscedasticity with McLeod-Li test. The cor-
responding test statistics Q(20) are represented in plots (c)
in Figs. 2 and 3. It is found that the percentage of segments
with heteroscedasticity are 98.8% and 94.5 % for subjects
N6 and C10, respectively. Moreover, the volatility parameters
estimates û1 and v̂1, Fig. 2(e) and Fig. 3(e), change over time
with some circadian variation for the healthy subject. For
the sick subject, the estimate v̂1 increases and û1 decreases.
Note that the estimated values for parameter v1 are over 0.5
indicating some persistence in conditional variance. These
results are in agreement with Leite et al.[6].

The residuals from the ARFIMA models are also checked
for the asymmetric effect (leverage). Plot (d) in Figs. 2 and
3 represent the values of CCF(1) between the residuals and
their squares. The correlations indicate that the conditional
variance depends also on the lagged shocks, leverage effect.
In fact, the percentage of segments with leverage effect are
93.8% and 43.8 % for subjects N6 and C10, respectively.
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Fig. 3. (a) Tachogram of patient C10 affected by congestive heart failure, 24
hour recordings Noltisalis database. Evolution over 24 hours of d̂ in (b), û1(-
) and v̂1(- -) in (e) and ξ̂1 in (f) estimated using ARFIMA-EGARCH models
and segmentation; statistic Q(20) of the McLeod-Li test for conditional
heteroscedasticity in (c) and cross-correlation between the residuals εt and
their squares of lag 1 in (d).

Moreover, the leverage parameter estimates ξ̂1, Fig. 2(f) and
Fig. 3(f), change over time and present higher values for the
healthy subject. The same analysis is performed for patient
T3. The results for subjects N6, C10 and T3 are summarized
in Fig. 4(a).

Finally, the mean estimates d̂, û1, v̂1 and ξ̂1 for each of
the 30 subjects in the database are summarized in Fig. 4(b).
These overall results indicate that the long memory param-
eter d is lower for healthy subjects N while the volatility
and the leverage parameters u1, ξ1 respectively, are lower
for sick subjects C and T. The parameter v1 presents high
variability for the sick subjects T. The results are promising
in differentiating health and disfunction situations deserving
further study.

V. CONCLUSIONS

This paper contributes for further characterization of the
complex dynamics of HRV with a leverage parameter. In
particular, the model under discussion indicates that values
of HRV under the mean lead to less variability in HRV than
values over the mean- asymmetric effect captured by the
leverage parameter. Furthermore this study indicates that this
effect is stronger in healthy subjects. However, further studies
are necessary to assess the importance of this parameter in
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Fig. 4. Boxplots for d̂, û1, v̂1 and ξ̂1 using ARFIMA-EGARCH models
and segmentation: (a) an healthy subject-N6, a patient suffering from
congestive heart failure-C10 and a heart transplanted patient-T3, (b) subjects
mean values for each group N, C, T.

risk stratification and autonomic nervous system dysfunction
characterization.
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[11] MATLAB, version 8.5 (R2015a), The MathWorks Inc., Natick, Mas-
sachusetts, 2015.


