
Obstacle avoidance in optimal switching of
a formation geometry ?

Fernando A.C.C. Fontes ∗ Dalila B.M.M. Fontes ∗∗

Amélia C.D. Caldeira ∗∗∗

∗ Faculdade de Engenharia and ISR Porto, Universidade do Porto,
4200-465 Porto, Portugal (e-mail: faf@fe.up.pt).

∗∗ Faculdade de Economia and LIAAD-INESC Porto L.A.,
Universidade do Porto, 4200-464 Porto, Portugal

(e-mail: fontes@fep.up.pt).
∗∗∗Departamento de Matemática, Instituto Superior de Engenharia do

Porto, 4200-072 Porto, Portugal (e-mail: acd@isep.ipp.pt).

Abstract: We address the problem of dynamically switching the geometry of a formation of a
number of undistinguishable agents, while avoiding collisions among agents and with external
obstacles. The need to switch formation geometry arises in situations when mission requirements
change or there are obstacles or boundaries along the path for which the current geometry is
inadequate. Here we propose a strategy to determine which agent should go to each of the
new target positions, avoiding collisions among agents and assuming no agent communication.
In addition, in order to avoid obstacles, each agent can also modify its path by changing
its curvature, which is a main distinguishing feature from previous work. Among all possible
solutions we seek one that minimizes the total formation switching time, i.e. that minimizes the
maximum time required by all agents to reach their positions in the new formation geometry.
We describe an algorithm based on dynamic programming to solve this problem. (Copyright c©
IFAC Controlo 2012).

Keywords: Autonomous agents, optimization, dynamic programming, vehicle formations,
formation geometry, formation switching, collision avoidance, obstacle avoidance.

1. INTRODUCTION

Consider the problem of switching the geometry of a for-
mation of undistinguishable vehicles by minimizing some
performance criterion. Given the initial positions and a set
of final desirable positions, the questions addressed are:

(1) Which vehicle should go to a specific final position?
(2) How to avoid collision between the vehicles?
(3) Which should be the traveling velocities of each

vehicle between the initial and final positions?

Each vehicle can also modify its path, from initial to
final position, by changing its curvature, in order to avoid
obstacles. In this work, we are particularly interested in
exploiting this last possibility.

The performance criterion used in the example explored is
to minimize the maximum traveling time, that is, we seek
the allocation that minimizes the total formation switching
time, but the method developed - based on dynamic
programming - is sufficiently general to accommodate
many different criteria.

The specific problem of switching the geometry of a
formation arises in many cooperative vehicles missions,
due to the need to adapt to environmental changes or to
? Research supported by FCT, FEDER & COMPETE through
Projects PTDC/EEA-CRO/100692/2008 and PTDC/EEA-
CRO/116014/2009.

adapt to new tasks. An example of the first type is when a
formation has to go through a narrow passage, or deviate
from obstacles, and must reconfigure to a new geometry
(see Figure 1). Examples of adaption to new tasks arise in
robot soccer teams: when a team is in an attack formation
and looses the ball, it should switch to a defense formation
more appropriate to the new task, (see Lau et al. (2009)).

Fig. 1. Reconfiguration of a formation to avoid obstacles.

Another example is in the detection and containment of
a chemical spillage, the geometry of the formation for the
initial task of surveillance, should change after detection
occurs, switching to a formation more appropriate to
determine the perimeter of the spill.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Aberto da Universidade do Porto

https://core.ac.uk/display/143404223?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Fig. 2. Different formation of soccer robots used for differ-
ent ball position (from Lau et al. (2009)).

Research in coordination and control of teams of several
vehicles (that may be robots, ground, air or underwater
vehicles) has been growing fast in the past few years.
Application areas include unmanned aerial vehicles, au-
tonomous underwater vehicles, automated highway sys-
tems and mobile robotics. While each of these application
areas poses its own unique challenges, several common
threads can be found. In most cases, the vehicles are
coupled through the task they are trying to accomplish,
but are otherwise dynamically decoupled, meaning that
the motion of one does not directly affect the others. For
a survey in cooperative control of multiple vehicles sys-
tems see, for example, the work Murray (2007). Regarding
research on the optimal formation switching problem, it
is not abundant, although it has been addressed by some
authors. See e.g. Desai et al. (2001), Hu and Sastry (2001),
Yamagishi (2004), Rasmussen et al. (2004)), Rasmussen
and Shima (2006)),Schumacher et al. (2002, 2003)), and
Jin et al. (2006)). None of these works address velocity
nor curvature issues.

The problem of formation switching has also been ad-
dressed in Fontes and Fontes (2008) and Fontes and Fontes
(2010) using dynamic programming. The possible use of
different velocities for each vehicle was addressed in Fontes
et al. (2012). (This last reference provides a discussion on
the works cited.)

The possibility of slowing down some of the vehicles might,
as we will show, achieve better solutions while avoiding col-
lision between vehicles. Here we use a dynamic program-
ming approach to solve the problem of formation switching
with collision avoidance, vehicles velocities selection, and
path curvature selection. The main distinguishing feature
of this work from previous is precisely the fact that each
vehicle can also modify its path by changing its curvature.

The formation switching performance is given by the time
required for all vehicles to reach their new position, which
is given by the maximum traveling time amongst individ-
ual vehicle traveling times. Since we want to minimize
the time required for all vehicles to reach their new po-
sition, we have to solve a min-max problem. However, our
methodology can be used with any separable performance
function. The problem addressed here should be seen as a
component of a framework for multi-vehicle coordination,
incorporating also the trajectory control component, that
allows to maintain or change formation while following a
specified path in order to perform cooperative tasks.

2. THE PROBLEM

In our problem a team of N identical vehicles has to switch
from their current formation to some other formation, with
collision avoidance. To address collision among agents, we
impose that the trajectories of the vehicles must satisfy
the separation constraint that at any time the distance
between any two of them is at least ε, for some positive
ε. To avoid collision with external obstacles, each vehicle
can also modify its path by changing its curvature.

Regarding the new formation, it can be either a pre-
specified formation or a formation to be defined according
to the information collected by the vehicles. In both cases,
we do a pre-processing analysis that allows us to come up
with the desired locations for the next formation.

This problem can be restated as the problem of allocating
to each new position exactly one of the vehicles, located
in the old positions, and determine each vehicle velocity.
From all the possible solutions we are only interested in
the ones where vehicle and obstacle collision is prevented.
Among these, we want to find one that minimizes the time
required for all vehicles to move to the target positions,
that is an allocation which has the least maximum indi-
vidual vehicle traveling time.

To formally define the problem, consider a set ofN vehicles
moving in a space Rd, so that at time t, vehicle i has
position qi(t) in Rd (we will refer to qi(t) = (xi(t), yi(t))
when our space is the plane R2). The position of all vehicles
is defined by the N -tuple

Q(t) = [qi(t)]
N
i=1

in Rd×N . We assume that each vehicle is holonomic and
that we are able to choose its velocity, so that its kinematic
model is a simple integrator

q̇i (t) = υi (t) a.e. t ∈ R+.

The initial positions at time t = 0 are known and given by

A = [ai]
N
i=1 = Q(0).

Suppose a set of M (with M ≥ N) final positions in Rd is
specified as

F = {f1, f2, ..., fM} .

The problem is to find an assignment between the N
vehicles and N of the M final positions in F . That is, we
want to find a N -tuple B = [bi]

N
i=1 of different elements of

F , such that at some time T > 0,

Q(T) = B

and all bi ∈ F , with bi 6= bk.

There are (
M
N

)
·N !

such N -tuples (the permutations of a set of N elements
chosen from a set of M elements) and we want to find
a procedure to choose an N -tuple minimizing a certain
criterion that is more efficient than total enumeration.

The criterion to be minimized can be very general since the
procedure developed is based on dynamic programming
which is able to deal with general cost functions.

Examples can be:

• minimizing the total distance traveled by the vehicles

Minimize
N∑
i=1

‖bi − ai‖ ,

• or, the total traveling time

Minimize
N∑
i=1

‖bi − ai‖ / ‖υi‖ ,

• or, the maximum traveling time
Minimize max

i=1,...,N
‖bi − ai‖ / ‖υi‖ ,

We are also interested in selecting the traveling velocities
of each vehicle. Assuming constant velocities, these are
given by

υi (t) = υi = vi
bi − ai
‖bi − ai‖

,

where the constant speeds are selected from a discrete set

Υ = {Vmin, ..., Vmax} .

Moreover, we are also interested in avoiding collision
between vehicles. We say that two vehicles i, k (with
i 6= k), do not collide if their trajectories maintain a certain
distance apart, at least ε, at all times. The non-collision
conditions is

‖qi(t)− qk(t)‖ ≥ ε, ∀t ∈ [0, T] , (1)

where the trajectory, in the linear case, is given by

qi(t) = ai + υi(t) t, t ∈ [0, T] .

We can then define a logic-valued function c (see Figure
3) as

c (ai, vi, bi, ak, vk, bk) =

{
1 if collision between i and k,
0 otherwise.

Fig. 3. Linear trajectories of two vehicles.

With these considerations, the problem (in the case of min-
imizing the maximum traveling time) can be formulated
as follows

min
b1,...,bN ,v1,...,vN

max
i=1,...,N

‖bi − ai‖ / vi,

Subject to
bi ∈ F, ∀i,
bi 6= bk, ∀i, k with i 6= k,
vi ∈ Υ, ∀i,
c (ai, vi, bi, ak, vk, bk) = 0, ∀i, k with i 6= k.

Instead of using the set F of d-tuples, we can define a set
J = {1, 2, ...,M} of indexes to such d-tuples, and also a set
I = {1, 2, ...N} of indexes to the vehicles. Let ji in J be the
target position for vehicle i, that is, bi = fji . Define also
the distances dij = ‖fj − ai‖ which can be pre-computed
for all i ∈ I and j ∈ J . Redefining, without changing the
notation, the function c to take as arguments the indexes
to the vehicle positions instead of the positions, i.e.

c (ai, vi, fji , ak, vk, fjk) .

is simply represented as

c (ai, vi, ji, ak, vk, jk) .

The problem can be reformulated into the form

min
j1,...,jN ,v1,...,vN

max
i=1,...,N

dij / vi,

Subject to
ji ∈ J, ∀i ∈ I,
ji 6= jk, ∀i, k ∈ I with i 6= k,
vi ∈ Υ, ∀i ∈ I,
c (ai, vi, ji, ak, vk, jk) = 0, ∀i, k ∈ I with i 6= k.

We are finally in position to consider the full problem with
obstacle avoidance. Consider that the vehicle a is moving
in space R2 and travels at velocity va to position b that
is reached in time Ta. Suppose that there is an obstacle,
and if the vehicle a travels straight ahead collides with
the obstacle, then, the vehicle a should circumvents the
obstacle on the top or on the bottom (see Figure 4).

Fig. 4. Vehicle a circumvents the obstacle on top.

Now, the problem can be formulated in a similar way
where dij (pi) is the length of the path from i to j using
path pi and c is also dependent on the path pi.

min
j1,...,jN ,v1,...,vN ,p1,...,pN

max
i=1,...,N

dij (pi) / vi

Subject to
ji ∈ J, ∀i ∈ I,
ji 6= jk, ∀i, k ∈ I with i 6= k,
vi ∈ Υ, ∀i ∈ I,
pi ∈ Pi (j) , ∀i ∈ I
c (ai, vi, ji, ak, vk, jk, pi, pk) = 0, ∀i, k ∈ I with i 6= k.

where Pi (j) is the set of all paths from i to j.

3. DYNAMIC PROGRAMMING FORMULATION

Dynamic Programming (DP) is an effective method to
solve combinatorial problems of a sequential nature. It
provides a framework for decomposing an optimization
problem into a nested family of subproblems. This nested
structure suggests a recursive approach for solving the
original problem using the solution to some subproblems.
The recursion expresses an intuitive principle of optimality
Bellman (1957) for sequential decision processes, that
is, once we have reached a particular state, a necessary
condition for optimality is that the remaining decisions
must be chosen optimally with respect to that state.

3.1 Dynamic programming recursion for the simplest
problem

We start by deriving a DP formulation for a simplified
version of problem: where collision is not considered and
different velocities are not selected Fontes and Fontes
(2008). The collision avoidance, the selection of velocities
for each vehicle, and the changing of the curvature path
of each vehicle are introduced later.

Consider that there are N vehicles i = 1, 2, ..., N to be
relocated from known initial location coordinates to a
target locations indexed by set J . We want to allocate
exactly one of the vehicles to each position in the new
formation. In our model a stage i contains all states S such
that |S| ≥ i, meaning that i vehicles have been allocated
to the targets in S. The DP model has N stages, with a
transition occurring from a stage i− 1 to a stage i, when
a decision is made about the allocation of vehicle i.

Define f(i, S) to be the value of the best allocation of
vehicles 1, 2, ..., i to i targets in set S, that is, the allocation
requiring the least maximum time the vehicles take to go to
their new positions. Such value is found by determining the
least maximum vehicle traveling time between its current
position and its target position. For each vehicle i, the
traveling time to the target position j is given by

dij / vi.

By the previous definition, the minimum traveling time of
the i − 1 vehicles to the target positions in set S\ {j} is
given by f(i − 1, S\ {j}). From the above, the minimum
traveling time of all i vehicles to the target positions in S
they are assigned to, given that vehicle i travels at velocity
vi, without vehicle collisions, is obtained by examining all
possible target locations j ∈ S (see Figure 5).

Fig. 5. Dynamic Programming Recursion with N = 5 and
stage i = 4.

The dynamic programming recursion is then defined as

f (i, S) = min {dij / vi ∨ f(i− 1, S\ {j})} . (2)

where X ∨ Y denotes the maximum between X and Y .

The initial conditions for the above recursion are provided
by

f (1, S) = min {d1j / v1} , ∀S ⊆ J (3)

and all other states are initialized as not yet computed.

Hence, the optimal value for the performance measure,
that is, the minimum traveling time needed for all N
vehicles to assume their new positions in J , is given by

f(N, J). (4)

3.2 Considering collision avoidance and velocities selection

Recall function c for which c (i, vi, j, a, va, b) takes value
1 if there is collision between pair of vehicles i and a
traveling to positions j and b with velocities vi and va,
respectively, and takes value 0 otherwise. To analyze if
the vehicle traveling through a newly defined trajectory
collides with any vehicle traveling through previously de-
termined trajectories, we define a recursive function. This
function checks the satisfaction of the collision condition,
given by equation (1), in turn, between the vehicle which
had the trajectory defined last and each of the vehicles for
which trajectory decisions have already been made.

So, if the vehicles i and a go straight ahead, i.e., the path
for both will be straight ahead the collision between these
two vehicles occurs if the following condition is satisfied:

‖(xi, yi) + vi
(xj , yj)− (xi, yi)

‖(xj , yj)− (xi, yi)‖
t−

−
[
(xa, ya) + va

(xb, yb)− (xa, ya)

‖(xb, yb)− (xa, ya)‖
t

]∥∥∥∥ < ε

for some t ∈ [0,min {Ti, Ta}] (see Fontes and Fontes
(2010)).

We note that by trajectory we understand not only the
path between the initial and final positions but also a
timing law and an implicitly defined velocity.

Consider that we are in state (i, S) and that we are
assigning vehicle i to target j. Further let vi−1 be the
traveling velocity for vehicle i−1. Since we are solving state
(i, S) we need state (i− 1, S\ {j}), which has already been
computed (if this is not the case, then we must compute
it first). In order to find out if this new assignment is
possible, we need to check if at any point in time vehicle
i, traveling with velocity vi, will collide with any of the
vehicles 1, 2, ..., i−1 for which we have already determined
the target assignment and traveling velocities.

Let us define a recursive function

C (i, vi, j, k, V, S)

that assumes the value one if a collision occurs between
vehicle i traveling with velocity vi to j and any of the
vehicles 1, 2, ...k, with k < i, traveling to their targets, in
set S, with their respective velocities V = [v1 v2 ... vk]
and assumes the value zero if no such collisions occurs.
This function works in the following way.

(1) first it verifies c (i, vi, j, k, vk, Bej), that is, it verifies
if there is collision between trajectory i −→ j at
velocity vi and trajectory k −→ Bej at velocity
vk, where Bej is the optimal target for vehicle k
when targets in set S\ {j} are available for vehicles
1, 2, ..., k. If this is the case it returns the value 1;

(2) Otherwise, if they do not collide, it verifies if trajec-
tory i −→ j at velocity vi collides with any of the
remaining vehicles. That is, it calls the collision func-
tion C (i, vi, j, k − 1, V ′, S′), where S′ = S\ {Bej}
and V = [V ′ vk].

The collision recursion is therefore written as:

C (i, vi, j, k, V, S) = {c (i, vi, j, k, vk, Bej)∨
∨ C (i, vi, j, k − 1, V ′, S′)} (5)

where

Bej = Bestj (k, V ′, S′) ,

and
V = [V ′ vk] , S′ = S\ {j} .

The initial conditions for recursion (5) are provided by

C (i, vi, j, 1, v1, {k}) = {c (i, vi, j, 1, v1, k)}
∀i ∈ I; ∀j, k ∈ J with j 6= k; ∀vi, v1 ∈ Υ. All other
states are initialized as not yet computed.

The dynamic programming recursion for the minimal time
switching problem with collision avoidance and velocities
selection is then

f (i, V, S) = min {d (i, j) / vi ∨ f(i− 1, V ′, S′) ∨

∨ M̃ ∗ C (i, vi, j, i− 1, V ′, S′)
}
, (6)

where V = [V ′ vi] , S′ = S\ {j} and C is the collision

function where M̃ is a sufficiently large number so that
any solution with collision is eliminated.

The initial conditions are given by

f (1, v1, {j}) = min {d (1, j) / v1} , ∀j ∈ J and ∀v1 ∈ Υ.

All other states being initialized as not computed.

To determine the optimal value for our problem we have
compute

min
all N-tuples V

f (N,V, J) .

3.3 Considering obstacles

The possibility of changing the path to deviate from
obstacles is the main distinguishing feature of the work
described in this article.

Consider the following pair of vehicles moving in space
R2: vehicle i which travels at velocity vi to position j
that is reached in time Ti and the vehicle a which travels
at velocity va to position b that is reached in time Ta.
Collision between these two vehicles occurs if the following
condition is satisfied (see equation (1)):

‖qi(t)− qa(t)‖ < ε (7)

where qi(t) = (xi (t) , yi (t)) and qa(t) = (xa (t) , ya (t)) .

Assuming now that there is an obstacle, and if the vehicle a
travels straight ahead collides with the obstacle (see Figure
6). What should the vehicle a do?

Fig. 6. Vehicle a travels straight ahead and intersects an
obstacle.

Vehicle a travels straight ahead and intersects an obstacle.

Suppose that the obstacle is the rectangle [Q1Q2Q3Q4]
(see Figure 7), if not we can always put the obstacle

inside of one rectangle. Our vehicle a is in the position
A = (xa, ya) and the goal is the position B = (xb, yb)
which is reached in time Ta. If the straight line [AB] does
not intersect the obstacle then the path will be straight
ahead. Otherwise, we take the midpoint P of the straight
line resulting from the intersection of the line [AB] with
the obstacle. Calculate the point A1 = (x1, y1), so that the
point P is the midpoint of the straight line [A1B].

Fig. 7. Trajectory of the vehicle a from the position A to
position B if there is an obstacle in the way.

Let Q0 ∈ {Q1, Q2, Q3, Q4} . Considering the minimum
between d1 and d2, where d1 is the maximum distance
between P and Q1 and P and Q2 and d2 is the maximum
distance between P and Q3 and P and Q4. The point Q0

is the vertex of the rectangle that checks this minimum.
If point Q0 is determined by taking into account the
distance d1 then the vehicle circumvents the obstacle on
top, otherwise, if Q0 is determined by taking into account
the distance d2 then the obstacle is outlined below (see
Figure 7-1).

Let ξ ∈ R+ and consider Q = (xq, yq) = Q0 + ξ
−−→
PQ0.

Consider the arc of the circumference that passes through
the points A1, B and Q. The center of this circumference
is determined by the intersection of the line bisection of
the segment [A1Q] and the line bisection of the segment
[BQ]. Let C = (c1, c2) be the center of this circumference.
The radius is r = A1C (see Figure 7-2).

Defining α = arctan
(
yq−yc
xq−xc

)
and θ = arccos

(
d
r

)
(see

Figure 8), where d is the distance between the midpoint
of the line segment [QB] and C. After time τ the vehicle
travels from α to α − 2θ at speed va taking Ta − τ = 2θr

va
seconds.

Fig. 8. The angles θ and α.

So the vehicle follows a straight line from point A to point
Q which is reached in time τ , then it follows an arc of

circumference from point Q to point B defined as follows
(see Figure 7-3):{

x (t) = c1 + r cos (ζ) ,
y (t) = c2 + r sin (ζ) ,

, t ∈ [τ, Ta] .

where ζ = α− 2 t−τ
Ta−τ θ.

The trajectory of the vehicle a is, if τ 6= Ta, then qa(t) =
(xa (t) , ya (t)) where:

qa(t) =

{
(xa(0) + vat, ya(0) + vat) , if t ∈ [0, τ] ,
(c1 + r cos (ζ) , c2 + r sin (ζ)) , if t ∈ [τ, Ta] .

(8)
otherwise

qa(t) = (xa(0) + vat, ya(0) + vat) for t ∈ [0, Ta] . (9)

Fig. 9. Trajectory of vehicle a.

The logic-valued collision function C that checks whether
a pair of vehicles collides is now redefined using condition
(7) with the trajectories given by (8) or (9). Thus,

c (i, vi, j, a, va, b, pi, pa) = 0

if
‖qi(t)− qa(t)‖ < ε,

where qi(t) an qa(t) are defined by equations (8), that
define the position along the path pi (or pa) for all times.

The objective function is now dependent on the length
along the path pi, that is dij (pi).

The length of the arc of circumference from point Q to
point B is 2rθ. So,

dij (pi) =

{
dij if vehicle a travels straight ahead

d̃ij + 2rθ if vehicle a intersects an obstacle.

where d̃ij =
∥∥∥−→AQ∥∥∥.

4. CONCLUSION

We provide an optimization algorithm to decide how to
reorganize a formation of vehicles into another formation
of different shape, which is a relevant problem in cooper-
ative control applications. The algorithms enables agent
velocity choices and handles collision avoidance not only
among agents but also with external obstacles.

The method proposed here should be seen as a component
of a framework for multi-vehicle coordination/cooperation,
which must necessarily include other components such as
a trajectory control component.

The algorithm proposed is based on a dynamic program-
ming approach and was shown to be a viable solution for
problems with a small number of agents.

The proposed methodology is very flexible, in the sense
that it easily allows for the inclusion of additional prob-
lem features, e.g. imposing geometric constraints on each
vehicle or on the formation as a whole, using nonlinear
trajectories, different objective functions, among others.

REFERENCES

Bellman, R. (1957). Dynamic Programming. Princeton University
Press, Princeton.

Desai, J.P., Ostrowski, P., and Kumar, V. (2001). Modeling and
control of formations of nonholonomic mobile robots. IEEE
Transactions on Robotics and Automation, 17(6), 905–908.

Fontes, D.B.M.M. and Fontes, F.A.C.C. (2008). Optimal reorganiza-
tion of agent formations. WSEAS Transactions on Systems and
Control, 3(9), 789–798.

Fontes, D.B.M.M., Fontes, F.A.C.C., and Caldeira, A.C.D. (2012).
Optimal formation switching with collision avoidance and allowing
variable agent velocities. In A. Sorokin, M.T. Thai, and P.M.
Pardalos (eds.), Dynamics of Information Systems: Mathematical
Foundations, volume 20 of Springer Proceedings in Mathematics
and Statistics, 165–179. Springer Verlag, New York.

Fontes, F.A.C.C. and Fontes, D.B.M.M. (2010). Minimal switching
time of agent formations with collision avoidance. In M. Hirsch,
P. Pardalos, and R. Murphey (eds.), Dynamics of Information
Systems: Theory and Applications, volume 40 of Springer Opti-
mization and Its Applications Series, 305–321. Springer Verlag,
Berlin.

Hu, J. and Sastry, S. (2001). Optimal collision avoidance and
formation switching on riemannian manifolds. IEEE Conference
on Decision and Control, 2, 1071–1076.

Jin, Z., Shima, T., and Schumacher, C.J. (2006). Optimal scheduling
for refueling multiple autonomous aerial vehicles. IEEE Transac-
tions on Robotics, 22(4), 682–693.

Lau, N., Lopes, L., Corrente, G., and Filipe, N. (2009). Multi-robot
team coordination through roles, positionings and coordinated
procedures. In 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems - IROS, 5841–5848.

Murray, R.M. (2007). Recent research in cooperative control of multi-
vehicle systems. Journal of Dynamic Systems, Measurement and
Control, 129, 571–583.

Rasmussen, S.J. and Shima, T. (2006). Branch and bound tree search
for assigning cooperating UAVs to multiple tasks. In American
Control Conference 2006. Institute of Electrical and Electronic
Engineers. Minneapolis, Minnesota, USANagoya, Japan.

Rasmussen, S.J., Shima, T., Mitchell, J.W., Sparks, A., and Chan-
dler, P.R. (2004). State-space search for improved autonomous
UAVs assignment algorithm. In IEEE Conference on Decision
and Control. Paradise Island, Bahamas.

Schumacher, C.J., Chandler, P.R., and Rasmussen, S.J. (2002). Task
allocation for wide area search munitions via iterative network
flow. In American Institute of Aeronautics and Astronautics,
Guidance, Navigation, and Control Conference 2002. Reston,
Virginia, USA.

Schumacher, C.J., Chandler, P.R., and Rasmussen, S.J. (2003).
Task allocation for wide area search munitions with variable
path length. In Institute of Electrical and Electronic Engineers,
American Control Conference 2003. New York, USA.

Yamagishi, M. (2004). Social rules for reactive formation switching.
Technical Report Technical Report UWEETR-2004-0025, Depart-
ment of Electrical Engineering, University of Washington, Seattle,
Washington, USA.

