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Abstract 
 

In this work we apply linear forecasting models to a very broad collection of retail sales 

of consumer goods from a Portuguese retailer. This allows us to draw conclusions for 

guidelines within this field, and also to contribute to general observations relevant to the 

main field of forecasting. For each retail series the model with the minimum value of 

the AIC for the in-sample period is selected from all admissible models for further 

evaluation in the out-of-sample. Both one-step and multiple-step forecasts are produced. 

The results show that ARIMA models outperform state space models in out-of-sample 

forecasting judged by MAPE. 

 

Keywords: Aggregate retail sales, Forecast accuracy, State space models, ARIMA 

models 

 

 

Introduction 

Demand forecasting is one of the most important issues that is beyond all strategic and 

planning decisions in any business organization. The importance of accurate demand 

forecasts in successful supply chain operations and coordination has been recognized by 

many researchers (Wong and Guo, 2010; Arlot and Alain, 2010). A poor forecast would 

result in either too much or too little inventory, directly affecting the profitability of the 

supply chain and the competitive position of the organization. Forecasting future sales is 

crucial to the planning and operation of retail business at both high and low levels. At 

the organizational level, forecasts of sales are needed as the essential inputs to many 

decision activities in various functional areas such as marketing, sales, 

production/purchasing, as well as finance and accounting (Agrawal and Schorling, 

1996; Chopra and Meindl, 2007). 

Retail sales often exhibit strong trend and seasonal variations, presenting challenges 

in developing effective forecasting models. Historically, modeling and forecasting 

seasonal data is one of the major research efforts and many theoretical and heuristic 

methods have been developed in the last several decades (Alon et al., 2001; Chu and 

Zhang, 2003; Zhang and Qi, 2005; Kuvulmaz et al., 2005, Pan et al., 2013). Exponential 

smoothing and Autoregressive Integrated Moving Average (ARIMA) models are the 
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most widely-used approaches to time series forecasting, and provide complementary 

approaches to the problem. While exponential smoothing methods are based on a 

description of trend and seasonality in the data, ARIMA models aim to describe the 

autocorrelations in the data. The ARIMA framework to forecasting originally developed 

by Box et al. (1994) involves an iterative three-stage process of model selection, 

parameter estimation and model checking. A statistical framework to exponential 

smoothing methods was recently developed based on innovations state space models 

called ETS models (Hyndman et al., 2008a). 

Despite the investigator's efforts, the several existing studies have not led to a 

consensus about the relative forecasting performances of these two modeling 

frameworks when they are applied to retail sales data. The purpose of this work is to 

compare the forecasting performance of state space models and ARIMA models when 

applied to a very broad collection of retail sales of four different categories of consumer 

goods from the Portuguese retailer Jerónimo Martins. As far as we known it's the first 

time ETS models are tested for retail sales forecasting. 

The remainder of the paper is organized as follows. The next section describes the 

datasets used in the study. Section 3 discusses the methodology used in the time series 

modeling and forecasting. The empirical results obtained in the research study are 

presented in Section 4. The last section offers the concluding remarks. 

 

Data 

Jerónimo Martins is a Portugal-based international group operating in food distribution, 

food manufacturing and services sectors. Involving operations in retail and wholesale 

formats, the Jerónimo Martins Group is the leader in food distribution in Portugal, with 

the brands Pingo Doce (leader in supermarkets) and Recheio (leader in cash & carry), in 

food store chains in Poland (Biedronka) and in Colombia (Ara). 

The work presented in this paper was developed using 67 time series of sales of 

consumer goods of a Pingo Doce supermarket of around 1500 m
2
 between January 2007 

and July 2012 (67 months). Figure 1 shows the time plot of the number of different 

products sold per day in this supermarket during that period. It can be seen that the 

number of different products sold per day is increasing and it has an annual seasonal 

behavior. 

 

 
Figure 1 – Number of different products sold per day between January 2007 and July 2012. 

 

To illustrate the broad collection of time series analyzed in this work, Figure 2 shows 

the time plot of monthly sales of six products sold between January 2007 and July 2012 

(67 observations). All these series are obviously non-stationary exhibiting strong trend 
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and/or seasonal patterns providing a good testing ground for comparing the two 

forecasting methods. 

 

        

        

        

Figure 2 – Time series of consumer goods sold by Pingo Doce.. 

 

Forecasting models 

 

ETS models 

Exponential smoothing methods have been used with success to generate easily reliable 

forecasts for a wide range of time series since the 1950s (Gardner, 1985; Gardner, 

2006). In these methods forecasts are calculated using weighted averages where the 

weights decrease exponentially as observations come from further in the past. The most 

common representation of these methods is the component form. Component form 

representations of exponential smoothing methods comprise a forecast equation and a 

smoothing equation for each of the components included in the method. The 

components that may be included are the level component, the trend component and the 

seasonal component. By considering all the combinations of the trend and seasonal 

components, fifteen exponential smoothing methods are possible. Each method is 

usually labeled by a pair of letters (T,S) defining the type of “Trend” and “Seasonal” 

components. The possibilities for each component are: { }d dTrend N,A,A ,M,M=  and 

{ }Seasonal N,A,M= . For illustration, denoting the time series by 1 2, , , ny y y…  and the 

forecast of t hy + , based on all of the data up to time t , by 
|

ˆ ,t h ty +  the component form for 
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the method (A,A) (additive Holt-Winters’ method) is (Hyndman and Athanasopoulos, 

2013): 

( ) ( )( )
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(3) 

(4) 

where m  denotes the period of the seasonality, tl  denotes an estimate of the level of the 

series at time t , tb  denotes an estimate of the trend of the series at time t , ts  denotes an 

estimate of the seasonality of the series at time t  and 
|

ˆ
t h ty +  denotes the point forecast for 

h  periods ahead where ( 1)mod 1mh h m
+ = − + . The initial sates 0 0 1 0, , ,ml b s s− …  and the 

smoothing parameters 
*, ,α β γ  are estimated from the observed data. The smoothing 

parameters 
*, ,α β γ  are constrained between 0 and 1 so that the equations can be 

interpreted as weighted averages. Details about all the other methods may be found in 

(Hyndman and Athanasopoulos, 2013). 

To be able to generate forecast intervals and other properties, Hyndman et al. (2008a) 

(amongst others) developed a statistical framework for all exponential smoothing 

methods. In this statistical framework each stochastic model, referred as an innovations 

state space model, consists of a measurement equation that describes the observed data, 

and state equations that describe how the unobserved components or states (level, trend, 

seasonal) change over time. For each exponential smoothing method, Hyndman et al. 

(2008a) described two possible innovations state space models, one corresponding to a 

model with additive random errors and other corresponding to a model with 

multiplicative random errors, giving a total of 30 potential models. To distinguish the 

models with additive and multiplicative errors, an extra letter E was added: the triplet of 

letters (E,T,S) refers to the three components: “Error”, “Trend” and “Seasonality”. The 

notation ETS(,,) helps in remembering the order in which the components are specified. 

For illustration, the equations of the model ETS(A,A,A) (additive Holt-Winters’ method 

with additive errors) are (Hyndman and Athanasopoulos, 2013): 

1 1

1 1

1

t t t t m t

t t t t

t t t

t t m t

y l b s

l l b

b b

s s

ε

αε

βε

γε

− − −

− −

−

−

= + + +

= + +

= +

= +

 

(5) 

(6) 

(7) 

(8) 

and the equations of the model ETS(M,A,A) (additive Holt-Winters’ method with 

multiplicative errors) are: 
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where 
*β α β= ,       0 1α< < ,       0 β α< < ,       0 1γ α< < −  (13) 

and tε  is a zero mean Gaussian white noise process with variance 
2σ . Equations (5) 

and (9) are the measurement equation and Equations (6)-(8) and (10)-(12) are the state 

equations. The term “innovations” comes from the fact that all equations in this type of 

specification use the same random error process tε . The measurement equation shows 

the relationship between the observations and the unobserved states. The transition 

equation shows the evolution of the state through time. It should be emphasized that 

these models generate optimal forecasts for all exponential smoothing methods and 

provide an easy way to obtain maximum likelihood estimates of the model parameters 

(for more details see Hyndman and Khandakar (2008b)). 

 

ARIMA models 

ARIMA is one of the most versatile linear models for forecasting seasonal and non-

seasonal time series. It has enjoyed great success in both academic research and 

industrial applications during the last three decades. The class of ARIMA models is 

broad. It can represent many different types of stochastic seasonal and non-seasonal 

time series such as pure autoregressive (AR), pure moving average (MA) and mixed AR 

and MA processes (Brockwell and Davis, 1991). The theory of ARIMA models has 

been developed by many researchers and its wide application was due to the work by 

Box and Jenkins (1994) who developed a systematic and practical model building 

method. 

The multiplicative seasonal ARIMA model, denoted as ARIMA ( , , ) ( , , )mp d q P D Q× , 

has the following form (Wei, 2005): 

( ) ( )(1 ) (1 ) ( ) ( )m d m D m

p P t q Q tB B B B y c B Bφ θ εΦ − − = + Θ  (14) 

where 

1( ) 1 p

p PB B Bφ φ φ= − − −⋯            1( ) 1
m m Pm

P PB B BΦ = − Φ − − Φ⋯  

1( ) 1 q

q qB B Bθ θ θ= + + +⋯            1( ) 1m m Qm

Q QB B BΘ = + Θ + + Θ⋯  

and m  is the seasonal frequency, B  is the backward shift operator, d  is the degree of 

regular differencing, and D  is the degree of seasonal differencing, ( )
p

Bφ  and ( )
q

Bθ  are 

the regular autoregressive and moving average polynomials of orders p  and q  

respectively, ( )m

P
BΦ  and ( )m

Q
BΘ  are the seasonal autoregressive and moving average 

polynomials of orders P  and Q  respectively, 1 1(1 )(1 )P Pc µ φ φ= − − − −Φ − −Φ⋯ ⋯  

where µ  is the mean of (1 ) (1 )
d m D

tB B y− −  process and tε  is a zero mean Gaussian 

white noise process with variance 
2σ . The roots of the polynomials ( )

p
Bφ , ( )m

P
BΦ , 

( )
q

Bθ  and ( )m

Q
BΘ  should lie outside a unit circle to ensure causality and invertibility 

(Shumway and Stoffer, 2011). For 2d D+ ≥ , 0c =  is usually assumed because a 

quadratic or a higher order trend in the forecast function is particularly dangerous. 

  



 

6 

 

Empirical study 

 

Estimation results 

In order to use ETS models for forecasting the values of initial states and smoothing 

parameters need to be known. It is easy to compute the likelihood of ETS models and so 

maximum likelihood estimates are usually preferred. A great advantage of the ETS 

statistical framework is that information criteria can be used for model selection, 

namely the Akaike’s Information Criteria (AIC). For ETS models, AIC is defined as 

(Hyndman and Athanasopoulos, 2013): 

AIC 2log( ) 2L k= − +  (15) 

where L  is the likelihood of the model and k  is the total number of parameters and 

initial states that have been estimated. Some of the combinations of (Error, Trend, 

Seasonal) can lead to numerical difficulties. Specifically, the models that can cause such 

instabilities are: ETS(M,M,A), ETS(M,Md,A), ETS(A,N,M), ETS(A,A,M), 

ETS(A,Ad,M), ETS(A,M,N), ETS(A,M,A), ETS(A,M,M), ETS(A,Md,N), 

ETS(A,Md,A), and ETS(A,Md,M) (Hyndman and Athanasopoulos, 2013). Usually 

these particular combinations are not considered when selecting a model. 

The time series analysis was carried using the statistical software R programming 

language and the specialized package forecast (Hyndman and Khandakar, 2008b; R 

Development Core Team, 2013). For each time series of monthly sales all admissible 

ETS models were applied using the in-sample data between January 2007 and July 2011 

(first 55 observations). The initial states and the parameters were estimated by 

maximizing the likelihood of each model. The ETS model with the minimum value of 

the AIC was selected to produce forecasts and forecast intervals on the out-of-sample 

period (August 2011 to July 2012, last 12 observations). 

The main task in ARIMA forecasting is selecting an appropriate model order, that is 

the values of , , , ,p q P Q d  and D  (the seasonal period is 12, 12m = ). We use the 

automatic model selection algorithm that was proposed by Hyndman and Khandakar 

(2008b). We start by choosing the values of d  and D  by applying unit-root tests. It is 

recommended that seasonal differencing be done first because sometimes the resulting 

series will be stationary and there will be no need for a further regular differencing. 

0D =  or 1D =  depending on the OCSB test (Osborn et al., 1988). Once the value of D  

is selected, d  is chosen by applying successive KPSS unit-root tests (Kwiatkowski et 

al., 1992). Once d  and D  are known, the orders of , ,p q P  and Q  are selected via 

Akaike’s Information Criteria: 

AIC 2log( ) 2( 1)L p q P Q k= − + + + + + +  (16) 

where 2k =  if 0c ≠  and 1 otherwise (the other parameter being 
2σ ), and L  is the 

maximized likelihood of the model fitted to the differenced data (1 ) (1 ) .d m D

tB B y− −  

Rather than considering every possible combination of , ,p q P  and Q , the algorithm 

uses a stepwise search to traverse the model space: 

(a) The best model (with smallest AIC) is selected from the following four: 

• ARIMA 12(2, ,2) (1, ,1)d D×  

• ARIMA 12(0, ,0) (0, ,0)d D× , 

• ARIMA 12(1, ,0) (1, ,0)d D× , 

• ARIMA 12(0, ,1) (0, ,1)d D× . 
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If 1d D+ ≤ , these models are fitted with 0c ≠ , otherwise 0c = . This is called the 

“current” model.  

(b) Thirteen variations on the current model are considered where: 

• one of , ,p q P  and Q  is allowed to vary from the current model by 1± ; 

• p  and q  both vary from the current model by 1± ; 

• P  and Q  both vary from the current model by 1± ; 

• the constant c  is included if the current model has 0c =  and excluded 

otherwise. 

Whenever a model with a lower AIC is found, it becomes the new “current” model and 

the procedure is repeated. This process finishes when we cannot find a model close to 

the current model with a lower AIC. For each time series of monthly sales the step-wise 

algorithm described above was applied using the in-sample data between January 2007 

and July 2011 (first 55 observations) to find an appropriate ARIMA model. The 

parameters of the models are estimated by maximizing the likelihood. The selected 

model was used to produce forecasts and forecast intervals on the out-of-sample period 

(August 2011 to July 2012, last 12 observations). 

 

Forecast evaluation results 

For each retail series both selected models (ETS and ARIMA) were used to forecast on 

the out-of-sample period from August 2011 to July 2012 (12 observations). Both one-

step and multiple-step forecasts were produced. Using each model fitted for the in-

sample period, point forecasts of the next 12 months (one-step forecasts) and the 

forecast accuracy measures based on the errors obtained were computed. The values of 

the average MAPE (mean absolute percentage error) of one-step forecasts obtained are 

presented in Table 1. Supposing T  is the total number of observations, N  is the in-

sample size and h  is the step-ahead, multi-step forecasts were obtained using the 

following algorithm: 

For 1h =  to T N−   

For 1i =  to 1T N h− − +  

Select the observation at time 1N h i+ + −  as out-of-sample 

Use the observations until time 1N i+ −  to estimate the model 

Compute the h -step error on the forecast for time 1N h i+ + −  

     Compute the forecast accuracy measures based on the errors obtained for step-

ahead h  

Compute the mean of the forecast accuracy measures 

In our case study 67T =  and 55N = . It should be emphasized that in multi-step 

forecasts the model is estimated recursively in each step i  using the observations until 

time 1N i+ − . Both one-step and multi-step forecasts are important in facilitating a 

short and long planning and decision making. They simulate the real-world forecasting 

environment in which data need to be projected for short and long periods (Alon et al., 

2001). The values of the average MAPE of multi-step forecasts obtained are also 

presented in Table 1. 

The results from Table 1 show that ARIMA models outperform state space models 

on both one-step and multi-step forecasts judged by MAPE. ARIMA consistently 

forecasts more accurately than ETS on one-step forecasts and on all steps-ahead of 

multi-step forecasts. 
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Improvements on one-step forecasts are of 51%. On multi-step forecasts 

improvements increase with the increasing of the step until step-ahead 6 and then 

decrease until step-ahead 12. The improvements are 0%, 12%, 27%, 34%, 37%, 40%, 

36%, 31%, 29%, 20%, 17% and 13% respectively. In both models the value of MAPE 

tends to increase with the increasing of the step until step-ahead 6 and then tends to 

decrease until step-ahead 12. The results of our analysis also show that multi-step 

forecasts are more accurate than one-step forecasts (with exception to steps-ahead 4, 5 

and 6 in the ARIMA model). This is not surprising since multi-step forecasts 

incorporate information that is more updated. 

Producing estimates of uncertainty is an essential aspect of forecasting which is often 

ignored. We also evaluated the performance of both forecasting methodologies in 

producing forecast intervals that provide coverages which are close to the nominal rates. 

Table 2 and Table 3 show the mean percentage of times that the nominal 95% and 80% 

forecast intervals contain the true observations for both one-step and multiple-step 

forecasts, respectively. The results indicate that both ETS and ARIMA produce 

coverage probabilities that are very close to the nominal rates. ETS produces better 

coverage probabilities for both 80% and 90% forecast intervals on both one-step and 

multiple-step forecasts. It can also be observed that both methods slightly underestimate 

the coverage probabilities for the nominal 80% forecast intervals. 

 

Conclusions 

Accurate retail sales forecasting can have a great impact on effective management of 

retail operations. Retail sales time series often exhibit strong trend and seasonal 

variations presenting challenges in developing effective forecasting models. How to 

effectively model these series and how to improve the quality of forecasts are still 

outstanding questions. Despite the investigator's efforts, the several existing studies 

have not led to a consensus about the relative forecasting performances of ETS and 

ARIMA modeling frameworks when they are applied to retail sales data. The purpose 

of this work was to compare the forecasting performance of state space models and 

ARIMA models when applied to a very broad collection of retail sales of four different 

categories of consumer goods from the Portuguese retailer Jerónimo Martins. 

For each time series of monthly sales all admissible ETS models were applied using the 

in-sample period. The ETS model with the minimum value of the AIC was selected to 

produce forecasts and forecast intervals on the out-of-sample period. The automatic 

model selection algorithm proposed by Hyndman and Khandakar (2008b) was used to 

select an appropriate ARIMA model for each time series of monthly sales. The model 

selected by the step-wise algorithm for each time series was then used to produce 

forecasts and forecast intervals on the out-of-sample period. Both one-step and 

multiple-step forecasts were produced. The results indicate that ARIMA models 

outperform state space models in out-of-sample forecasting judged by MAPE. On both 

modeling approaches multi-step forecasts are generally better than one-step forecasts 

which is not surprising because multi-step forecasts incorporate information that is more 

updated. The performance of both forecasting methodologies in producing forecast 

intervals that provide coverages which are close to the nominal rates was also evaluated. 

The results indicate that both ETS and ARIMA produce coverage probabilities that are 

very close to the nominal rates. However, ETS produces better coverage probabilities 

for both 80% and 90% forecast intervals on both one-step and multiple-step forecasts. 

We could also observe that both methods slightly underestimate the coverage 

probabilities for the nominal 80% forecast intervals. 
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Table 1 – MAPE (%) for out-of-sample period forecasts (January 2007 to July 2012). 

Model 
One-step 

forecasts 

Step-ahead of multi-step forecasts 

1 2 3 4 5 6 7 8 9 10 11 12 

ARIMA 64.83 44.31 53.20 60.96 67.74 67.42 68.26 59.38 50.65 49.29 41.78 44.35 45.76 

ETS 132.93 44.53 60.69 83.59 102.31 107.51 113.90 92.81 73.32 69.21 52.40 53.67 52.56 

 
 

Table 2 – Forecast 80% interval coverage for out-of-sample period forecasts (January 2007 to July 2012). 

Model 
One-step 

forecasts 

Step-ahead of multi-step forecasts 

1 2 3 4 5 6 7 8 9 10 11 12 

ARIMA 75 74 75 75 74 73 75 75 77 76 77 76 66 

ETS 80 75 78 78 78 80 80 82 84 82 81 86 78 

 
 

Table 3 – Forecast 95% interval coverage for out-of-sample period forecasts (January 2007 to July 2012). 

Model 
One-step 

forecasts 

Step-ahead of multi-step forecasts 

1 2 3 4 5 6 7 8 9 10 11 12 

ARIMA 92 89 91 91 90 89 92 91 90 90 89 89 90 

ETS 94 90 91 90 90 91 93 94 93 93 92 95 97 
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