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Resumo 

A asma e a doença pulmonar obstrutiva crónica (DPOC) são geralmente reconhecidas como 

patologias diferentes, embora ambas partilhem algumas características em comum como a 

limitação da passagem de ar, inflamação, e remodelação de tecidos. Tradicionalmente têm 

origem diferentes, a asma tipicamente aparece na infância e está associada com alergias e 

eosinófilos; o seu melhor tratamento é atacar a inflamação. Contudo, o DPOC aparece em 

adultos que fumam, envolve neutrófilos, e o seu melhor tratamento é com broncodilatadores 

e evitando fatores de risco. Ambas podem resultar numa respiração superficial, num severo 

decréscimo na qualidade de vida e, no caso do DPOC, morte, se não for detetada e tratada 

devidamente. 

Esta dissertação é um seguimento do trabalho desenvolvido pelo João Teixeira na sua Tese 

de Mestrado “Classification of Lung Function on a Smartphone App”. Assim sendo, o principal 

objetivo é produzir uma aplicação móvel capaz de classificar a função pulmonar usando a 

combinação dos melhores métodos de processamento de sinal e de aprendizagem 

computacional. Ao completar este objetivo, a prevenção e deteção de anomalias na 

respiração serão mais antecipadas, fornecendo uma solução pequena e portátil, que 

transporta um sistema capaz de monitorizar doenças pulmonares. 

Os resultados mostram que o sistema implementado parece ser melhor que os anteriores, 

tendo uma alta exatidão e sensibilidade (> 94 % em ambos os casos). 

A aplicação foi construída para correr em diversos dispositivos com sistemas operativos 

diferentes, desde computadores a smartphones. 

A aplicação mostra claros sinais de que é fácil de usar como os questionários de 

Usabilidade de Sistemas o demonstram, com um resultado médio de 83 em 100. 

Ainda há margem para melhorias no sistema e na aplicação, considerando que os modelos 

de aprendizagem utilizaram um conjunto de dados algo reduzido. No entanto, é visível que 

este projeto é algo promissor e que pode ter um futuro bastante positivo. 
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Abstract 

Asthma and chronic obstructive pulmonary disease (COPD) are usually recognized as 

different diseases, although they share some common characteristics such as airflow 

limitation, inflammation, and tissue remodeling. Traditionally they have different origins, 

asthma typically appears in childhood and is associated with allergies and eosinophils; its best 

treatment is targeting the inflammation. However, COPD arises in adults who smoke, involves 

neutrophils, and is best treated with bronchodilators and the removal of risk factors. Both of 

them can result in shallow breathing, a severe decrease in quality of life and, in case of 

COPD, death, if not spotted and properly managed. 

This dissertation is a follow-up of the work developed earlier by João Teixeira on his 

Master Thesis “Classification of Lung Function on a Smartphone App”.  Likewise, the main 

goal is to produce a mobile application capable of classifying the lung function using the 

combination of the best signal processing and machine learning methods. By accomplishing 

this, the prevention and detection of abnormalities in the airflow will me more anticipated, 

providing a tiny and portable solution, carrying a system capable of monitoring pulmonary 

diseases. 

The results show that the system implemented is looking better than the previous ones, 

having a high accuracy and recall (> 94 % in both cases). 

The application is built to run on diverse devices with different operative systems, ranging 

from desktop to smartphones. It is easy to use as the System Usability Scale (SUS) 

questionnaires have shown, scoring 83 out of 100, on average.  

Still, there is room for improvement in the system and application, considering that the 

models used for the learning used a reduced dataset. 

However, it is visible that this project is promising and might have a very positive future. 
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Chapter 1 

Introduction 

1.1   Overview 

 

An ounce of prevention is worth a pound of cure. 

Benjamin Franklin (1730–1774) 
 

Asthma is a very common condition, occurring in 5 % to 10 % of the world population. 

Formerly, asthma was thought to be the result of bronchospasm (sudden constriction of the 

muscles in the walls of the bronchioles) alone, but it is now recognized to be primarily an 

inflammatory disorder, with bronchospasm being secondary to the underlying inflammation. 

When a susceptible person inhales a trigger (e.g., pollen), inflammatory cells rush into the 

airways, releasing a multitude of cytokines, leukotrienes, and other humoral substances 

(substances found in the humours, or body fluids) that induce bronchospasm. The most well-

known of these substances is histamine [1]. 

The patient suffering an acute asthma attack is usually easy to recognize. The classic 

presentation includes shortness of breath, wheezing, and coughing. Triggers include 

allergens, heat or cold, a host of occupational irritants, and exercise. 

The most recent revised global estimate of asthma suggests that as many as 334 million 

people have asthma, and that the burden of disability is high. The historical view of asthma 

being a disease of high-income countries no longer holds: most people affected are in low- 

and middle-income countries, and its prevalence is estimated to be increasing fastest in 

those countries. Ongoing monitoring is needed to follow the epidemic of asthma and its 

management [2]. 

Chronic obstructive pulmonary disease (COPD), is a progressive disease that makes it hard 

to breathe. "Progressive" means the disease gets worse over time. COPD can cause coughing 
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that produces large amounts of mucus (a slime like substance), wheezing, shortness of 

breath, chest tightness, and other symptoms. Cigarette smoking is the leading cause of COPD. 

Most people who have COPD smoke or used to smoke. Long-term exposure to other lung 

irritants—such as air pollution, chemical fumes, or dust—also may contribute to COPD [3]. 

According to WHO [4] estimates, 65 million people have moderate to severe chronic 

obstructive pulmonary disease (COPD). 

 

1.2   Main goal 

 

The main goal of this dissertation is to continue the work developed earlier by João 

Teixeira on his Master Thesis [5]. The objective is to create a totally functional mobile 

application that can help to diagnose the user condition regarding respiratory airflow, using 

the signal processing and machine learning methods developed on his Master Thesis. While 

everyone can use this application, the solution might have particular relevance in less 

developed countries where the medical facilities are not as developed or accessible as in 

other countries. Despite this reality, there is an incredible fact underlying these countries; a 

good portion of the population has access to a smartphone. Indubitably the popular 

smartphones are going to be low-tier or mid-tier range, but this is not problematic, since this 

application will not be very demanding at resources, the minimum requirement will be a 

working microphone. Since it does not need any extra smartphone attachments or sensors, 

this will be a very low-cost solution. The users will follow the on-screen instructions, holding 

their smartphone about arm's-length away and breathe in deeply. Then, they exhale as fast 

and forcefully as they can. As they blow away, the application records the sound it hears 

through the phone's microphone. Afterward, the app searches the recorded audio signal for 

segments associated with reduced lung capacity. 
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Chapter 2 

Literature Review 

This chapter presents the essential literature considered for the development of this 

work. The goal is to introduce the vital theoretical concepts that are used throughout this 

thesis and review the main research conducted on its subject. 

Section 2.1 will present a brief description of the medical science behind respiration and 

spirometry, how to perform a manoeuvre in order to analyse the pulmonary function and how 

to interpret the results brought by this procedure. 

Section 2.2 is dedicated to give a general overview of Bio Feedback, and how it can be 

used as a step for the final solution. 

Finally, Sections 2.3 and 2.4 describes briefly the Android platform and review some 

frameworks available to develop the app, followed by a small analysis of an existing 

application capable of evaluating lung function and spirometry. 

 

 

2.1   Spirometry 

 

2.1.1   Background  

 

The determination of lung volumes began in 1800 with the measurement of residual 

volume by Davy using a hydrogen gas dilution technique. However, the practical origin dates 

from the inspiring work of the Reverend John Hutchinson in 1844 [6]. He not only projected 

the first spirometer but also designated the expiratory vital capacity and developed normal 

standards based upon approximately 2,000 assorted English persons. He recognized the 

positive correlation with height and the negative relationship with age, excessive weight and 

pulmonary diseases. Dynamic lung volume measurements were deferred for a century until 
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the valuable studies at Bellevue Hospital by Cournand, Richards and their colleagues in the 

1940's [6]. Around 1950, Gaensler perceived that, for healthy individuals, roughly 80% of the 

FVC (volume of air that is forcedly blown out after full inspiration, measured in liters) was 

expired in the first second and the FVC in 3 seconds. This established a reference point for 

comparison between obstructed and unobstructed airways [7].  

In the 1960s, Wright and McKerrow spread the concept of monitoring asthmatic patients 

using the Peak Expiratory Flow rate (PEF or PEFR). PEF tests, referred as bronchial challenge 

or bronchial provocation tests, consisted of performing forced expirations before and after 

the inhalation of bronchodilator. The analysis was based on the percentage of change. The 

PEF also became important for a simpler tracking of intra-daily specific change patterns in 

respiratory function, such as those that occur for general and occupational asthmatics [5]. 

 

 

2.1.2   Indications for Spirometry  

 

Pulmonary function analysis should be particularly indicated for persons with complaint of 

shortness of breath. In any person, particularly cigarette smokers or asthmatics, spirometry 

will provide a baseline performance value for comparison with results of future tests. The 

impact of air pollution on nonsmokers may be detected by such comparison. Specific 

indications for ventilatory function testing include the following [6]:  

 

 To measure the extent of pulmonary function impairment; 

 To help determine the type of impairment, such as restrictive, obstructive or a 

combination;  

 To study possible effectiveness of bronchodilator therapy and the degree of air 

obstruction reversibility; 

 For preoperative evaluation, especially for surgical procedures on the chest or upper 

abdomen; 

 To follow the course of a patient's disease; 

 To establish baseline ventilatory function; 

 

 

2.1.3   What is Spirometry? 

 

Spirometry is the timed measurement of dynamic lung volumes and capacities during 

forced expiration and inspiration to quantify how effectively and quickly the lungs can be 

emptied and filled [8](left panel Figure 2.1). Measurements usually made are:  
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• The vital capacity, either forced (FVC) and/or unforced (VC) 

• Forced expiratory volume in one second (FEV1), and 

• The ratio of these two volumes (FEV1/FVC). 

 
Figure 2.1 - Normal spirogram and flow-volume curve showing the conventional 
measurements made. Taken from [8]. 

Furthermore, one can measure the maximum expiratory flow over the middle 50% of the 

vital capacity (FEF 25–75%), which is a delicate index of small airway function. Corresponding 

maximal inspiratory measures are the FIV1 and the FIVC. The FEV1/VC ratio is the most 

sensitive and explicit index to recognise airflow obstruction. The lower limit of normality for 

this index centres around 70% but decays marginally with age [8].  

On the other hand, the FEV1/FEV6 from a 6 second forced expiration can be used, since 

generally 6 seconds are enough to comprise the complete expiration. The FEV1 percent 

predicted is used to classify severity of ventilator defects. Usually a small FVC with a normal 

or high ratio signals a restrictive ventilatory imperfection.  

Measures of forced maximal flow during expiration and inspiration can be also made either 

absolutely, eg. peak expiratory flow rate (PEFR), or as a function of volume consequently 

producing a flow-volume curve, the shape of which also comprehends information of 

diagnostic value. The flow-volume curve of a normal subject is presented in the right panel of 

Figure 2.1. Its typical shape results from the fact that during expiration, shortly after peak 

flow is attained, maximal flow becomes independent of effort and drops linearly with lung 

volume. Alternatively, during inspiration maximal flow is effort dependant and predisposed 

by the strength of contraction of the diaphragm and chest wall muscles and the patency of 

the upper airway.  

A further spirometric measure undergoing renewed interest is that of inspiratory capacity 

(IC) which is the maximum volume of air that can be inspired from the end of quiet expiration 
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(functional residual capacity [FRC]) to total lung capacity (TLC). Inspiratory capacity is 

reduced when hyperinflation is present or develops dynamically, eg. during exercise in 

patients with COPD [8]. 

 

 

2.1.4   Spirometric Tests and Interpretation  

 

Air flow obstruction, whether acute or chronic, will decrease the FEV1 by increasing the 

airway resistance to expiratory flow. In chronic air flow obstruction, the chronic resistance 

can lead to chronic hyperinflation of the lungs.  

Figure 2.2 – Comparison between normal and obstructed airflow [9]. 

 

Due to premature closing of the airways on expiration, the FVC will also decrease but not 

as much as the FEV1. The ratio FEV1/FVC will drop. The flow/volume graph has a concave 

form (Figure 2.2.1). The volume/time graph will illustrate a line that upsurges slowly to 

reach its highest point, finalizing the full expiratory manoeuvre (Figure 2.2.2).  

When a forced expiration is executed with severely obstructed airways, there may be 

more failure of them, resulting in a larger concave form (Figure 2.2.3). More air can typically 

be exhaled from the lungs when the manoeuvre is relaxed and the expiratory time is 

prolonged, measuring the vital capacity (VC) of the lungs. In these cases, the VC will be 

higher than the FVC, and the FEV1/VC ratio will give the best results for that person.  

An FEV1/FVC of <0.7 (70%) is diagnostic of air flow obstruction and it is a confirmation of 

an obstructive disease. Still, a lower than normal FEV1/FVC may not be abnormal for an 

asymptomatic older person. The FEV1 does not have to be < 80 % predicted for a diagnosis of 
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airflow obstruction. If the FEV1 is ≥ 80 % predicted value with an FEV1/FVC of < 0.7 % (70%), a 

diagnosis of COPD should only be made in the presence of respiratory symptoms such as 

breathlessness or cough. This would be categorized as stage 1 (mild) COPD [9]. 

 

 

2.1.5   Fundamentals for obtaining useful results  

 

To achieve optimal results, the FVC manoeuvre must be performed with great effort. 

Immediately following a full inspiration, the patient seals his/her lips around the mouthpiece 

and blasts the air out as fast and as far as possible until the lungs are absolutely empty, then 

breathes in again as forcibly and fully as possible (not all spirometers will measure 

inspiration). Demonstration to the patient of the procedure and the maximal effort required 

is helpful before starting. For the measurement of IC (the IC is the volume that can be 

inspired from FRC up to TLC), scrutiny of the stability of FRC during a short period of tidal 

breathing before full inspiration is necessary. For PEFR, only the first 1 or 2 seconds of 

maximal expiration is required. It should be noted that, particularly in airflow obstruction, it 

might take several seconds for the patient to fully expire. Resting for recovery between 

repeat tests, an erect seated position and the usage of a nose clip are suggested. Cautious 

examination of each spirogram or flow-volume curve for acceptability, reproducibility and 

correction of results to body temperature and pressure (saturated) conditions is needed. 

Measurement of spirometry in children requires animation to capture the child’s attention 

and effort, and can usually be achieved in those 5 years of age and over [8]. 

 

 

2.2   Bio Feedback 

 

2.2.1   Definition 

 

Biofeedback is a mind–body technique in which individuals learn how to adjust their 

physiology for the purpose of improving physical, mental, emotional and spiritual health. 

Much like physical therapy, biofeedback training requires active participation on the part of 

patients and often regular practice between training sessions. Clinical biofeedback might be 

used to manage disease symptoms as well as to improve overall health and wellness through 

stress management training.  

Research has shown that biofeedback interventions are efficacious in treating a variety of 

medical conditions. Clinical biofeedback training is growing increasingly popular in the world, 

as many people are seeking out relatively new approaches to healthcare [10]. 
  



 

Literature Review 

 

 

 

 

2.2.2   Bio Feedback as a step in the solution 

 

Biofeedback therapy is a process of training as opposed to a treatment. Much like being 

taught how to walk or how to hold a spoon, individuals undergoing biofeedback training must 

take an active role and practise in order to develop the skill. Rather than passively receiving 

a treatment, the patient is an active learner. It is like learning a new skill. When a patient 

comes in for clinical biofeedback therapy, an emphasis is placed on education. As sensors are 

placed on the patient, the therapist explains what each sensor will be measuring, assuring 

the patient that the sensors do not cause any pain or shock but rather are simply recording 

signals from the body and displaying those signals on the screen [10].  

For instance, Biofeedback has been a useful tool in helping individuals with urinary 

incontinence regain bladder control by controlling the muscles used in urination. Sensors are 

placed in the vaginal or anal canal to help individuals learn when the muscles are properly 

contracted. A recent study found that this type of biofeedback treatment was safe, effective, 

and well-liked by women patients 55 years and older [11]. 

On this particular case the aim is to evaluate the patient condition regarding a respiratory 

deficiency or malfunction without the aid of a technician, only using the smartphone as 

guidance. The goal is to use their smartphone in order to get the information and process it 

at an early stage so the user can be prompted with a warning if they need to get checked by 

a doctor to further evaluate more deeply the condition. It is possible to gather information 

about the parameters for this evaluation such as FEV1 and FVC using the smartphone’s 

microphone to record the breath/cough of the patient. But the way the phone is 

handled/positioned is a key point to get a clean and useful recording. With that in mind, the 

application has every bit of instruction needed on-screen, at every stages of the process, with 

the maximum detail possible. The users will be “trained” in order to have the maximum 

efficiency acquiring the data to the smartphone memory. For example, COPD patients are 

required to do certain kinds of rehabilitation exercises in order to learn how to get the most 

air out of every breath [12]. The application functions differently on these cases. It could 

help the patient by providing all the information required for him to be capable of using 

pursed-lip breathing technique in order to slow their exhalation and make his breath longer; 

it could also provide tips how to use a diaphragmatic breathing technique consequently 

increasing the amount of inhaling and exhaling air. 
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2.3   Software framework development 

 

2.3.1   Android platform overview 

 

Currently, for development, the only resources available are for Android, so the focus of 

this overview is Android, although it is possible to build the application for other platforms. 

Most Android apps are written in the Java programming language. The Android SDK tools 

compile the code, along with any data and resource files into an APK: an Android package, 

which is an archive file with an apk suffix. One APK file comprehends all the contents of an 

Android app and is the file that Android-powered devices use to install the app. Once 

installed on a device, each Android app exists in its own security sandbox [13]: 

 

 The Android operating system is a multi-user Linux system in which each app is a 

different user; 

 By default, the system allocates each app a unique Linux user ID (the ID is used only 

by the system and is unknown to the app). The system sets permissions for all the 

files in an app so that only the user ID assigned to that app can access them; 

 Each process has its own virtual machine (VM), so an app's code runs in isolation from 

other apps; 

 By default, every app runs in its own Linux process. Android starts the process when 

any of the app's components need to be executed, then shuts down the process when 

it's no longer needed or when the system must recover memory for other apps; 

 

This way, the Android system implements the principle of least privilege. That is, each 

app, by default, has access only to the components that it requires to do its work and no 

more. This creates a very secure environment in which an app cannot access parts of the 

system for which it is not given permission [13]. 

 

 

2.3.2   Different frameworks available for development 

 

A while back the only option to develop for android was based on Java language. However 

recently this paradigm “shifted” and there are other options available. In this section the 

main options are presented. 
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Kivy Language 

 

Kivy is a very promising open source Python library capable of developing mobile apps and 

other multi-touch application software with a natural user interface (NUI). It can run on 

Android, iOS, Linux, OS X, and Windows. 

The framework contains all the elements for developing an application such as: 

 Extensive input support for mouse, keyboard, TUIO (open framework that defines a 

common protocol and API for tangible multi-touch surfaces), and OS-specific multi-touch 

events; 

 A transitional language (KV) that helps to effortlessly project custom Widgets; 

 An extensive variety of Widgets that support multi-touch; 

 A graphic library operating only OpenGL ES 2, and established on Vertex Buffer 

Object and shaders; 

Kivy exhibits some features that should be looked upon [14]: 

 Fast 

Kivy is fast. This applies to both application development and application execution 

speeds. The framework was optimized in many ways. The implementation of time-critical 

functionality on the C level to leverage the power of existing compilers. More importantly, 

intelligent algorithms were used to minimize costly operations. The GPU is also used 

wherever it makes sense in the context. The computational power of today’s graphics cards 

surpasses that of today’s CPUs by far for some tasks and algorithms, especially drawing. That 

is why Kivy tries to let the GPU do as much of the work as possible, thus increasing 

performance considerably. 

 Flexible 

This framework is flexible. This means it can be run on a variety of different devices, 

including Android powered smartphones and tablets. It supports all major operating systems 

(Windows, Linux, OS X). Being flexible also means that Kivy’s fast-paced development allows 

it to adapt to new technologies quickly. Lastly, the flexibility is shown when it is possible to 

use it in combination with a great number of different third-party solutions. 

 Focused 

Kivy is focused. It is possible to write a simple application with a few lines of code. Kivy 

programs are created using the Python programming language, which is incredibly versatile 

and powerful, yet easy to use. In addition, it possesses his own description language, the Kivy 
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Language, for creating sophisticated user interfaces. This language allows to set up, connect 

and arrange the application elements quickly.  

 Funded and free to use 

This platform is actively developed by professionals in their field. Kivy is a community-

influenced, professionally developed and commercially backed solution. It’s not a small, 

vanishing student project that will fade away. Kivy is free to use even if the application is 

generating profit or being sold. 

 

Although Kivy has all these overwhelming features, it also holds some downsides: 

 

 Since it is a new framework, there is not a lot of documentation available. 

 It is not native opposed to Java for example. It uses Python wrappers and can affect 

overall performance of the application. 

 The application takes some seconds to boot up, since it has to wait for Python modules 

to be loaded. 

 The size after compiling the APK is usually much bigger than native compilation (using 

the android SDK), since the APK has to include some “bundles” for the interpretation of 

Python. 

  

QT for Android 

 

Qt is a cross-platform application framework that is broadly used for building application 

software that can be executed on numerous software and hardware platforms with tiny or no 

change in the underlying codebase, while having the power and speed of native applications.  
 

The following list summarizes what is achievable with Qt for Android [15]: 

 Run Widget and QML applications on the device or emulator; 

 Support for native Android style with Qt Quick Controls; 

 Handle Multimedia content in Qt Quick 2 applications; 

 Get sensor readings and react to the changes; 

 Retrieve current position data using satellite and network information; 

 Establish a serial connection to other Bluetooth devices; 

 Develop secure applications using OpenSSL library; 

 Create and deploy Application Package (APK) using Qt Creator; 

 
  



 

Literature Review 

 

 

 

 

Cordova 

 

Apache Cordova is an open-source mobile development framework. This technology gives 

the option to use standard web technologies - HTML5, CSS3, and JavaScript for cross-platform 

development. Applications execute within wrappers targeted to each platform, and rely on 

standards-compliant API bindings to access each device's capabilities such as sensors, data, 

network status, etc. [16] 

 

Figure 2.3 – Cordova Architecture, diagram from [16]. 

 

Probably this project could be done in any of these frameworks, but the framework that 

best suits the needs of this application is Kivy. One of the major features is using Python as 

the main programming language, which is known to be used for scientific purposes. 

Furthermore, the code in [5] was developed on the Matlab platform, that shares some 

resemblances with Python. Signal processing and scientific libraries are prominent too in 

Python, which benefits the development of the application.   



 

2.4   Software solution review 

 

 

13 

2.4   Software solution review 

 

This segment summarizes briefly a software solution implemented to tackle the problem 

described on the first chapter. The main focus is to observe how the software is 

implemented, and how the feedback is presented to the user.  

This application is named SpiroSmart. It is a mobile phone based platform that allows for 

the analysis of common lung function measures (FEV1, FVC, PEFR). By analyzing lip 

reverberation, it is possible to monitor pulmonary ailments such as asthma, chronic 

obstructive pulmonary disease, and cystic fibrosis. 

SpiroSmart uses a custom data collection application to record the users’ exhalation 

sounds using the built-in microphone (at 32 kHz) and provides feedback to the user, coaching 

them through the spirometry manoeuvre. The users using this application were coached with 

textual prompts on the screen and only with gestures—oral prompts would have interfered 

with the audio recording (Figure 2.4). 

 

 

 

 

 

 

 

 
Figure 2.4 - Interface and configurations used on data collection. Taken from [17]. 

 

It also calculates a real-time estimate of flow, and displays the measure as a real-time 

visualization, a ball displaced vertically in a cylinder proportionally to the strength of the 

exhalations. After the initial burst, the ball drops slowly to the bottom of the cylinder, 

signifying the end of the test. However the best way to perform the forced expiratory 

manoeuvre is not explained within the application [17]. 

In the pilot study of SpiroSmart, it was observed that participants unintentionally varied 

the distance at which they held the phone as well as lip posture, potentially introducing 

unwanted variability. Therefore, they asked participants to perform the test in four 

configurations, in random order: with a mouthpiece (to maintain lip posture), with a sling (to 

maintain distance), with neither attachment; and with both attachments (Figure 2.4). This 

test was performed on 52 subjects, showing that the mean error when compared to a clinical 

spirometer is 5.1% for common measures of lung function [17]. 

Since it is not available a public APK to test, due to being in prototype stage, it is not 

clear how accurate and precise the instructions are. 
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Chapter 3 

Classification of Lung Function 

The present chapter describes the signal processing and machine learning methods chosen 

during the work to address the proposed problem. The main goal of the project is to build an 

application where the input is only the smartphone’s microphone (no additional sensors) and 

with that input being able to perform a coarse triage. The first section will describe how the 

processing of the recording is performed. The second section focus on the details related to 

machine learning, and how the model was built using recordings from a data set. This section 

can still be divided in two other sub-sections: one for the regression phase and other for the 

classification phase. 

 

 

3.1   Signal Processing 
 
 

3.1.1   Automatic Signal Segmentation 

 

The audio input was firstly segmented to get rid of non expiration sounds, for instance the 

inspiration segment of the manoeuvre and the ambient noise. The definition and cropping the 

beginning of the recording was achieved operating a modified version of the Back-

Extrapolation algorithm [7].  

Primarily, an LPC envelope of the signal is acquired (see section 3.1.4   Linear Predictive 

Coding), then the envelope is subtracted of an arbitrary ratio of the maximum flow value (9% 

of PEF) in order to retrieve the two zero-crossings immediately before the PEF, this initial 

segment is discarded leading to the removal of the most relevant inspiration. Later, the zero-

time back-extrapolation is performed by finding the moment corresponding to the envelope's 
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peak (PEF time), computing the Time-Volume curve, drawing the tangent at the PEF time and 

finding where the tangent crosses the abscissas, which is the initial instant.  

The ending at noise level was detected applying a sliding window algorithm (5% of signal's 

length, 25% overlap) based on the magnitude ratio threshold of the maximum value (2%). 

 

 

Figure 3.1 – Automatic Cropping. Top Image - Original recording. Bottom Image - Recording 
after the two crops. 

 

 

3.1.2   Signal Preprocessing 

 

In contemplation of avoiding any saturation of the microphone the patients have to 

perform the expiratory manoeuvre at an arms length. A Spirometer measures the airflow that 

comes directly from the mouth whereas using the smartphone’s microphone some pressure is 

lost. Consequently, there should be employed some sort of compensation method, between 

the lips (plips) and smartphone (p). This is achieved using an Inverse Radiation Model [17], 

according to height and gender of the patient. Additionally, this model also takes into 

account the reverberation effect from sound reflections around a person's body. After that, 

plips was transformed to airflow at the lips (ulips), using a Pressure to Flow Conversion Model 

(3.1) [17].  

 

 
𝒖𝒍𝒊𝒑𝒔 (𝒕) ~ 𝟐𝝅𝒓𝟐

𝒍𝒊𝒑𝒔√𝟐𝒑𝒍𝒊𝒑𝒔(𝒕) 
  

(3.1) 
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Figure 3.2 – Pre-processing conversion models’ results [5]. 

 

3.1.3   Envelope Generation 

 

After the preprocessing it was necessary to obtain an envelope based on a time domain. 

The method was based on Shannon curves [18], consisting at calculating the Shannon Entropy 

and Energy envelopes of the signal. Shannon envelope (the normalized average Shannon 

energy) is known as a common technique to extract an envelope of cardiac sound signals [19]. 

 

 
 

 Shannon Energy: 𝐸 =  −𝑥2(𝑡). log 𝑥2 (𝑡) (3.2) 

 Shannon Entropy: 𝐸 =  −|𝑥(𝑡)|. log|𝑥(𝑡)| (3.3) 

 

The equations (3.2) and (3.3) focus on different features. Shannon energy emphasizes the 

medium intensity signal and attenuates the effect of low intensity signal in a greater way 

than that of high intensity signal, while Shannon entropy attenuates the effect of low value 

noise that makes the envelope too noisy to read. Shannon energy is good at shortening the 
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difference of the envelope intensity between low and high intensity sounds [20]. This 

shortening makes the finding of low intensity sounds easier [18]. On the final system, only 

Shannon Energy was used because of the above, and since it is the least complex envelope 

generator is more efficient to compute. 

 

 

3.1.4   Linear Predictive Coding 
 

LPC speech model is tremendously popular in speech analysis and synthesis. Various of the 

methods used for speech compression and feature extraction have the foundation on the LPC 

model and/or attempt to capture the deviations from it. Regardless of its popularity, there 

should be emphasized that the LPC speech model is an attempt to mimic the speech 

construction apparatus, and does not directly relate to the way the speech is perceived.  

For voiced speech the vocal chords create a series of pulses at a frequency known as the 

pitch. This excitation goes through the vocal tract, which resonates at certain frequencies 

known as formants, and hence amplifies the pitch harmonics that are near these frequencies. 

For unvoiced speech the vocal chords do not vibrate but the vocal tract remains untouched. 

Since the vocal tract mainly emphasizes frequencies (the zeros are neglected in the spectrum 

caused by the nasal tract) it can be modeled it by an all-pole filter [21]. 

 

 

 

 

 

  

 

 

 

 
Figure 3.3 – Block diagram model for the generation of a speech signal. 

In this case, the breathing procedure comprises two concepts very similar to LPC: a vocal 

tract which can be modeled as a varying width tube; and the exhalation, working as the 

power source of the expiration sound. This tube model can be represented by (3.4) and the 

power source can be modeled as white noise [5]. 

 

 
𝑦(𝑛) =  ∑ 𝑎𝑖𝑦(𝑛 − 1) ± 𝐺𝑥(𝑛)

𝑝

𝑛=1

 
(3.4) 
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3.1.5   Post-processing 

 

The envelopes obtained were smoothed by a regular low pass filter (LPF) and, in parallel, 

were also approximated by a 4th order polynomial. The non-approximated envelopes were 

also further processed using a Savitzky-Golay Filter (SG) with order 3 and size 11. Savitzky 

and Golay wanted to smooth noisy data acquired from chemical spectrum analyzers, and they 

verified that least squares smoothing diminishes noise while preserving the shape and height 

of waveform peaks [22], so it seemed like a good approach to use at the end of the post-

processing. 

 

 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4 – Final Signal Processing Architecture [23] 
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3.1.6   Parameter Extraction 
 

The spirometry parameters were computed from each of the final envelopes. The 

measurements obtained were PEF, FVC, FEV1 and FEV1/FVC (TIFF). The envelopes are 

regarded as Flow-Time curves, characteristic of spirometer reports. PEF is defined as the 

Peak Expiratory Flow or the global maximum of the audio envelope. By integrating the 

envelope with respect to time the Volume-Time curve can be acquired. FVC is defined as the 

total volume expired of a FEM. FEV1 is the total volume expired during the first second. 

 
 

3.2   Machine Learning 
 
 

The dataset is represented by a very unbalanced quantity of observations. There are much 

more cases of normal lung behavior than cases showing anomalies. The total of usable 

recordings is 101. 

There are two phases regarding the machine learning architecture: the regression and the 

classification. In the regression, the parameters are extracted from the curves to get an 

approximation of the corresponding clinical values, like the output of a spirometer. The 

classification, formulates models that can distinguish between the two possible diagnosis: 

normal or abnormal lung function. The approaches picked for these two distinct stages 

(regression and classification) were based on [23] best results. 
 
 

3.2.1   Regression Phase 

 

Several envelopes are generated and every one of them is manipulated to extract clinical 

parameters. With that data, it is possible to attain a good estimation of the respective 

spirometer clinical parameter. The corresponding spirometer measurements operated as 

ground truth or regression targets. 

Analysing the results of[23], the best method was Random Forest. In the end, both Bagging 

and Random Forest presented similar results, but Random Forest could reduce overfitting and 

shorten regression time, therefore this method was the chosen one. The number of trees in 

the ensembles and their depth was 10 and it was used a 5 fold cross-validation.  
 

Random Forests: The random forest algorithm lean towards producing quite accurate 

models because the ensemble reduces the instability that can be observed when single 

decision trees are built. This can frequently be demonstrated solely by removing a very small 

number of observations from the training dataset, to see quite a change in the resulting 

decision tree. 
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Random forests treat underrepresented classification tasks quite well. This is where, in 

the binary classification task, one class has very few (e.g., 5% or fewer) observations 

compared with the other class [24]. The randomness operated by a random forest algorithm 

is in the choice of both observations and variables. It is this randomness that brings 

considerable robustness to noise, outliers, and overfitting, when compared with a single-tree 

classifier. 

Random Forest number of determining features typically are one third of the total 

number, for regression, and the square root of the total number, for classification. 

 

 

3.2.2   Classification Phase 

 

On this stage, the regressed parameters were the input of the learning models. Analysing 

the results for the classification stage, it is clear that the best performance comes from Tree 

Bagging and Random Forest. Since the library (discussed later) available for Android only 

offers the Random Forest Model, the choice for classifying continued on this model (same 

parameters, 10 trees with depth of 10). 

 
  



 

Classification of Lung Function 

 

 

 

 

 



 

23 

 

 

Chapter 4 

Implementation and design of the mobile 
application 

The current chapter describes how the application was implemented and designed, what 

paths were chosen and the inner reasons behind those decisions. In the beginning of the 

chapter there is a brief explanation about how the platform chosen (Kivy) works. Afterwards, 

it is presented the thought process designing the application. Finally, it is discussed how the 

implementation was made, and what hurdles emerged upon development.   

 

 

4.1   Kivy’s architecture  

 

In Chapter 2 were listed some advantages and disadvantages of this framework. In this 

section the goal is to explain how does Kivy works. This platform of development usually uses 

two files to operate. One of them is written in Python and it is the core of the application, 

this file is named main.py (Kivy looks for this specific name to search for the app class) and 

usually holds the logic of the application. The other one holds the Kv extension and it has the 

name of our app class. Kivy offers a design language specifically geared toward easy and 

scalable GUI (Graphical User Interface) design. The Kv language splits the interface design 

from the application logic, sticking to the separation of concerns principle, where the 

application logic remains in Python and the design remains in the Kv language [25]. Usually 

the Kv file is populated by a hierarchy of widgets (a widget tree), where the outer widgets 

are higher in the hierarchy than the inner ones. This way is easy to read the design and 

structure of the application. The term widget is frequently used in GUI programming 

circumstances to define some part of the program that the user interacts with. In Kivy, a 
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widget is an object that receives input events, even though it does not necessarily mean that 

it has to show a visible representation on the screen. 

 

 
Figure 4.1 – Kivy’s architecture [26]. 

 

 

4.2   Design 

 

The application was designed thinking on simplicity and functionality. The application has 

four main screens. The home screen gives access to all of them. The design strictly follows 

Google guidelines for Material Design [27]. 
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Figure 4.2 – Home Screen of the application. 

 

Looking to Figure 4.2 and starting from the top of the screen it is possible to perceive a 

toolbar with the application’s name. This toolbar is a common element throughout all the 

screens, to ensure the possibility to return the to the home screen by clicking the home 

button and to access the navigation drawer.  
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Figure 4.3 – Navigation Drawer. 

 

This navigation drawer slides from the left side and with the height of the screen (Figure 

4.3), with everything behind it discernible but darkened by a scrim [28]. Taking a look closer 

there are two options within the drawer, the first option will render everything in a dark 

theme, some users prefer this option and it is also a great way to save some battery, 

specially if the screen is AMOLED. This type of screen emits light individually to the pixels 

opposed to a LCD that lights the entire display panel. So if any of the pixels are black, it just 

turns off the light on those pixels, as a result that portion of the screen is pitch black, thus 

saving energy (Figure 4.4). The other option is to change the language of the interface. This 

is a feature for the future, in case the application reaches other markets. 
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Figure 4.4 – Dark theme. 

 

Under the main toolbar there are four major floating buttons [29], each one leading to a 

different screen. On the first launch of the application only the first and fourth buttons (User 

Profile and Settings respectively) are available. If the user tries to access the other two, he 

will be presented by the a snackbar [30], for instance, if he clicks on “Start Evaluation”: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.5 – Snackbar showing information to the user. 
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This pops up because it is mandatory to have the user profile filled before proceeding, 

because the pre-processing uses parameters such height and gender (3.1.2   Signal 

Preprocessing). If the user tries to press “Show results” before any evaluation was made, it 

also warns him about this situation. 

After pressing the “User Profile” button, this screen shows up: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4.6 – User’s profile screen. 

This screen exhibits a card [31] in the center that holds all the elements to be filled by the 

user. The first information to be filled is the gender, this is accomplished by picking a radio 

button [32] which is the gender of the user. Shortly after there are three text fields [33], one 

to filled by the name and the others with the height and age. The last two of them are 

restricted to a numeric input. There are multiple checks to all these fields. If the user fails to 

fill any of them, a snackbar appears warning him what fields are still missing to be satisfied. 

After completing the profile, the “Save Profile” raised button [34] has to be pressed, 

representing that the user want to store this information in the internal storage of the 
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application (even though this info can be modified anytime he wishes to). Afterwards a new 

snackbar appears stating that the profile was saved successfully. After this step, it is possible 

to start the first evaluation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.7 – Recording Screen. 

In this screen there is a set of images in loop under the main toolbar and above the record 

button: 
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Figure 4.8 – Set of images that appear before starting the manoeuvre. 

 

The Figure 4.8 a) presents the distance needed for a clean recording (an arm’s length 

approximately). The next image portrays how the smartphone should be handled, facing 

directly into the patient’s face, making a 90º degree angle. The final image just shows that 

now it is the time to make the expiratory manoeuvre, by pressing the record button and 

exhaling with the maximum effort. After pressing the record button, this element is greyed 

out (disabled), the progress bar [35] starts moving towards the 8 second mark (4.3.1   

Obtaining the signal) and a downsampled real time graph starts being drawn (this 

downsampling occurs in order to avoid FPS drop). The Y axis automatically adjusts its value 

depending on the exhalation. This graph is not very meaningful; it is just to have an idea if 

the microphone/device is working properly. When the progress bar reaches the end, the 
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processing of the recorded signal begins, the label of the button changes to “Processing” and 

a blue spinner [35] appears illustrating that the user should wait until the processing is done:  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.9 – Start of the processing. 

 

After the processing is completed, it is revealed the final screen of the procedure. This 

screen presents two graphs, one showing the cropped signal and the other one the Flow Vs 

Volume graph, generally shown in the spirometer. Under the last graph it is also depicted the 

diagnostic of the patient, whether he has a normal lung function or not (using the machine 

learning models referred at 3.2   Machine Learning). 
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Figure 4.10 – Results Screen for a normal state. 

 

In Figure 4.10 it is observable that the expiratory manoeuvre was performed by a person 

without any abnormalities in the lung function. 

It was needed a splash screen before the application booting up completely, so the main 

toolbar color was used as background and the iconic element is represented by a set of lungs. 

The final result can be observed at Figure 4.11. 
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Figure 4.11 – Splash screen before the application loads all its dependencies. 

 

 

 

4.3   Implementation 

 

The implementation of the system was not trivial, since this solution is multi-platform. 

This means that majority of the libraries available will work under Windows, Linux and 

Macintosh but some of them will not function at Android/iOS. This section will describe how 

the implementation was made and also what hurdles had to be overcome in order to succeed 

in mobile development. Most of the barriers are tied within the processor architecture, since 

the libraries have to be built for a specific platform. Usually the CPUs running under the hood 

of the smartphone are based on ARM technologies (RISC). In the other hand, desktop 

processors typically are x86 or x64 (CISC). This difference makes some libraries unattainable 

(at least for now), regarding the smartphones. Fortunately, one of the biggest scientific 

libraries has a recipe to be built in the ARM environment, without this library (Numpy [36]) 

would be impossible to continue further. 
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4.3.1   Obtaining the signal 

 

In order to record the audio, it was created a class called Recorder.  
 

 

Figure 4.12 – Recorder class. 

 

Since this is the class handling the capture of the audio from the microphone, it is needed 

to set a buffer size, encoding and sample rate. Since the latency in this case is not a problem 

(it is irrelevant if the audio comes with a delay or not, since the main goal is to process it), it 

is better suited a larger buffer size (in this case it is 4096), because it has more time to 

process the audio and thus is less demanding for the system. The sample rate was fixed at 

16000 samples per second. It should not be very high on mobile environment, due to the 

limitation of the CPU. Although this setup should work in most of the cases, the code has a 

caveat if the system is not able to use 16k in the sample rate. In this case the sample rate is 

changed to 44.1k, since it is the standard for most of the microphones. The encoding was set 

to 16. Furthermore, it was decided that the optimal time for performing the manoeuvre was 

8 seconds. This time seems perfectly sufficient to do the exhalation and it takes into account 

the possible hesitations of the patient before exhaling and the portion that contains the 

inhalation. 

 

 

Recorder 

Sample Rate Buffer Size Encoding 
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4.3.2   Pre-cropping the signal 

 

When trying to pre-crop the signal to obtain only the exhalation part it was required to 

use LPC envelopes as described in 3.1.1   Automatic Signal Segmentation. When searching for 

the solution, most of the libraries that surfaced were written in C or C++. For Python was a 

struggle to find something that could do this job. The first library that appeared was from 

scikits.talkbox [37] and it seemed like a good candidate. Unfortunately later on, it was 

noticeable that it had dependencies on SciPy [38] so it had to be discarded. This was the first 

one of many libraries that would fail because they were dependent on SciPy (mostly 

Scipy.signal). In the end of this project, it became clear that the major libraries are 

dependent on SciPy. This is observed because it is the main reference on Python for digital 

signal processing (DSP) and probably, the most efficient, reliable and complete library 

regarding this subject. It works fine for desktop environments, unfortunately it has many 

dependencies on Fortran libraries, that it is impossible to make a recipe able to convert it to 

the ARM architecture. The other candidate that emerged was the library AudioLazy by Danillo 

Bellini [39]. It is pure Python, so it would work out of the box on mobile. The major problem 

of being pure Python is the speed for obtaining the LPC envelope.  

 

 

4.3.3   Processing 

 

After acquiring the three different pre-processing signals (p, plips, ulips), each of them was 

processed by the system. 

In the code there was a downsample factor applied to the recorded signal, because earlier 

on the sample rate was higher (first tests were made on the standard sample rate value, see 

class audiostream.AudioInput [40]). The downsample factor is 1 (there is no downsampling). 

The sample rate on the beginning of the tests was set as 44100 samples per second but after 

some testing it came to realisation that there were too many samples to process in a mobile 

environment. The first problem that emerged was filtering the signal in order to get the 

Shannon envelope. There was a necessity to get the coefficients for two Butterworth filters. 

In this case there were no alternatives to the Scipy library. After studying the Scipy source 

code, a specific module was noticed. This module was able to get the coefficients for the 

Butterworth filters, by removing some special dependencies (and thus slower execution of 

the code, since they were low-level optimizations in another language), and adapting the 

source to work after that removal. 

Three dependencies were removed: sigtools, special and optimize; after the code was 

adapted to avoid the usage of those. It was not an optimal way, but it is a method that works 

for this proof of concept. Although it was possible to apply this method in order to obtain the 
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coefficients, this would not be successful in the module that applies the filter, since there 

were involved irreplaceable dependencies. The solution was to implement the filter in Python 

for an infinite impulse response (IIR) filter of order 2 or lower (4.5). 
 

 
𝑦[𝑛] =  

1

𝑎0

(∑ 𝑏𝑖 ∙ 𝑥[𝑛 − 𝑖]

𝑃

𝑖=0

− ∑ 𝑎𝑖

𝑄

𝑗=1

𝑦[𝑛 − 𝑗]) (4.5) 

 

For Savitzky-Golay filtering the same problem appeared as Butterworth filtering, but in 

this case it was impossible to use Scipy. After some research, astroML module seemed to 

possess a different implementation from Scipy. This implementation was tested (available at 

[41]), and it functioned quite well. In the end of the processing it was expected as output to 

have 6 different curves, given that each pre-processing signal would generate two different 

curves (Figure 3.4). 

 

 

4.3.4   Machine Learning model 

 

This phase of the project was the most complex to finish, not due to the complexity of the 

subject, but due to the lack of compatible libraries for mobile. Scikit-learn module [42] had 

all the necessary tools to accomplish the goal. But as previous solutions for processing it was 

reliable on Scipy. After ruling out Scikit, another possible solution was found, the milk 

module [43]. Unfortunately, it runs under Python 3, and this project is developed in Python 2, 

so it was impossible to use this one as well.  

The possibility of uploading the results and classifying them under a server machine was 

becoming the apparent fate of the application. This would not be very pleasant, since the 

mobile phone would have to be connected to the internet, and the user would be relying on 

his connection and the server to get the results. Plus, it would be necessary to deal with 

network code and the necessity to have a machine running 24 hours per day to deal with 

multiple requests from users. Fortunately, this scenario was avoidable by using the Open 

Source Computer Vision (OpenCV) library from Intel. As the name suggests, it is a library 

primarily aimed towards real-time computer vision so the machine learning portion it is a 

feature of this library, unlike the other libraries mentioned that were strict machine learning 

libraries. As mentioned in 3.1.6   Parameter Extraction, this library does not have 

implemented the Tree Bagging method, so the Random Forest method was used for the 

regression and classification models. 
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4.3.5   Saving the results 

 

After the classification is made, the results are saved. For each recording it is created a 

JSON file in the folder “Airflow/logs” and a wave file containing the expiratory manoeuvre. 

This JSON file stores every clinical parameter such as FVC, PEF, FEV1, TIFF. This is an 

important step if the patient shows any anomalies in the lung function, because this way the 

doctor has more tools to do the analysis. In the future, this storage can be helpful in 

improving the machine learning models. 

 
  



 

Implementation and design of the mobile application 
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Chapter 5 

Results and Discussion 

In the current Chapter the machine learning methods (3.2   Machine Learning) are 

evaluated and compared to the results of the previous work [23]. Unfortunately, there were 

some problems testing the application on patients. The goal was to evaluate the application 

results versus a spirometer, however the application data is not available, thus rendering a 

comparison impossible. So, the dataset used for the evaluation is from [5]. 

 

 

5.1   Dataset 

 

The dataset contains 101 recordings from 61 patients performing the forced expiration 

manoeuvre, facing directly a smartphone (Samsung GT-I9000), at an arm’s length in order to 

record the audio with the microphone’s device. 

The ground truth clinical values were obtained using the spirometer devices displayed in 

the following table: 
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Table 5.1 – Distribution of recordings. 

 

Number of 

recordings 
Location Spirometer 

14 Aveiro - ICAR Spirodoc - MIR 

17 Coimbra - ICAR Spirodoc - MIR 

18 ICP Jaeger IOS – Carefusion 

2 HCP Jaeger IOS – Carefusion 

10 Vila Real - ICAR Spirodoc - MIR 

9 Viseu - ICAR Spirodoc - MIR 

15 Loulé - ICAR Spirodoc - MIR 

16 Portimão - ICAR Spirodoc - MIR 

 

The patients’ minimum age was 18 years old and the maximum age was 82. The binary 
distribution of the classification can be seen on Table 5.2. 

 

Table 5.2 – Binary distribution of the classification. 

 

Normal Abnormal 

71 30 

 

 

 

5.2   Regression Results 

 

The results of the regression test are shown in Table 5.3, comparing the system 

implemented here to P2 (second pipeline) from [23]. The Random Forest method was 

employed using 5-fold cross validation, 10 trees of depth 10, running 1000 iterations. 

Unfortunately, it is not possible to get the training error, since it is only available as a class 

method in C++ (see [40] for more information) and the oob_error (out-of-bag data) does not 

exist in Python. Consequently, the task is about testing the trained model. 
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Table 5.3 – Comparison between regression error average and standard deviation for clinical 
parameters (testing task). 

 

 
Average Error (%) Std. Dev. Error (%) 

PEF FVC FEV1 TIFF PEF FVC FEV1 TIFF 

Previous 

work 
27.37 32.57 25.88 13.61 26.18 23.30 17.51 13.29 

Current 

work 
17.25 19.11 21.13 7.48 17.06 17.37 19.47 6.05 

  

Observing these results it looks like that there is a noticeable improvement both in the 

average error and in the standard deviation (the only increase is in the standard deviation at 

FEV1). 

The cause of this improvement is not clear though, since the depth of the forest is not 

discriminated in [23], but it might be a factor for this difference in results, since the 

pipelines share the same structure. 

 

 

5.3   Classification Results 

 

The results from [5] were obtained for a multi-label classification, where the abnormal 

class was subdivided into Obstructive, Restrictive and Mixed. But after evaluating and 

analysing the results, the safest decision was to pick a binary classification for the model, 

because the dataset is small and consequently not very reliable to make a multi-label 

classification. To compare results, an extrapolation was made, to convert the multiple label 

classification into binary classification. 
Table 5.4 and  

Table 5.5 show the linearized confusion matrices regarding these 101 recordings. 

 
Table 5.4 – Confusion matrix from [5]. 

 

 Predicted Label 

True Label Normal Abnormal 

Normal 69 5 

Abnormal 7 20 
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Table 5.5 – Confusion matrix from current work. 

 

 Predicted Label 

True Label Normal Abnormal 

Normal 70 1 

Abnormal 4 26 

 

Table 5.6 and Table 5.7 depict the results, as percentage error, precision and recall. 

Precision is defined as (6.1) and recall as (6.2), where tp denotes the true positive count 

(Normal observations predicted as Normal class), fp denotes to the false positive count 

(Abnormal observations predicted as Normal class) and fn denotes to the false negative count 

(Normal observations predicted as Abnormal class). 

 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡𝑝

(𝑡𝑝 + 𝑓𝑝)
 (6.1) 

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑡𝑝

(𝑡𝑝 + 𝑓𝑛)
 (6.2) 

 
Table 5.6 – Classification percentage error, precision and recall regarding [5]. 

 

Error Precision Recall 

11.88 90.79 93.24 

 

Table 5.7 – Current Classification percentage error, precision and recall. 

 

Error Precision Recall 

4.95 94.59 98.89 

 

 

Looking at these 4 tables, it is possible to conclude, that on the current system there are 

better results. Only one miss on the Normal class and four misses regarding the Abnormal 

class, making a total of 5 misses in 101 recordings. Both precision and recall are higher than 

94 % showing that this system surpassed the previous one. 
 

 

 



 

5.4   Usability of the application 

 

 

43 

 

5.4   Usability of the application 

 

In order to know if the usability of the application, some System Usability Scale (SUS) 

questionnaires were made. They are based on the template available at [44] and the score 

also follows those guidelines. Ten questionnaires were answered. 
 

 
Figure 5.1 – Example of a SUS questionnaire answered. 
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This questionnaire (Figure 5.1) would get a score of 90 (in the range of 0 to 100). After 

evaluating all the questionnaires, the average score of them is 83. Since above 68 is 

considered above average [44], and 83 is much higher than 68, it is safe to say that the 

usability of the application is quite good and satisfactory.  
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Chapter 6 

Conclusions and Future Work 

6.1   Final Conclusions 

 

Asthma is a very common condition, occurring in 5 % to 10 % of the world population. 65 

million people have moderate to severe chronic obstructive pulmonary disease (COPD). 

Pulmonary diseases affect thousands of people and they need to be prevented and treated 

early. Sometimes, in certain locations, the access to doctors and professionals of healthcare 

is not simple. People need to be informed earlier of their condition so they can be aware of 

their own problem. There are not many solutions available for this type of situation. In the 

present, countless persons own electronic devices such as a smartphone, a computer, a 

tablet, amongst others. They have the tools and the requirements to be able to use the type 

of the solution proposed on this project. Knowing these necessities and knowing that it is 

possible to put the solution in practise, the main objective of this work was to create a 

mobile application capable of evaluating a person’s lung function by using the smartphone’s 

microphone. 

Several recordings were evaluated and tested in order to obtain the best possible 

combination of signal processing and machine learning methods to output a reliable 

diagnosis. The final signal processing system is divided in three distinct phases, pre-

processing, envelope generation and post-processing. In the end, the system classifies the 

regressed values, using a 5 fold cross-validation by a Random Forest model. This model 

showed an error of 4.95 % at the classification stage, using a binary system consisting on two 

possible outcomes, normal state or abnormal. Unfortunately, the application could not be 

tested in new patients. That would improve the system (by collecting more samples to 

improve the machine learning models) and would help to take more conclusions about the 

precision and recall of the system. 



 

Conclusions and Future Work 

 

 

 

 

The application is multi-platform since it is able to run in desktop and mobile 

environments. It has proven to be easy to manipulate and use, as the SUS demonstrated. The 

application got an average score of 83 out of 100.  

The results are overall satisfactory, but the system can be improved. Taking into account 

this fact and knowing that the core system is implemented, it incites to continue to go 

further in the development. 

  

 

6.2   Future Work 

 

Despise of the results being promising, there are many sections of this project that can be 

improved in the future. 

 

6.2.1   Automatic cropping improvement 

 

The algorithm works well in noiseless environments without any external perturbations. 

For instance, in environments with low levels of noise, application produced a cropped signal 

where its length was about 6 seconds. The total recording is 8, so it only reduced the 

recording by 2 seconds. It is technically impossible to forcefully exhale during so many 

seconds, the algorithm needs to be polished for small fluctuations of background noise. 

 

 

6.2.2   Enhance the speed of the processing 

 

Even though it is not required to have an application running in milliseconds, it is always 

better if it performs faster. And on this case the application is slow. The speed could be 

improved in several ways. Focusing on the mobile environment (since the desktop shows a 

reasonable speed of performance, less than 5 seconds running on Intel Core i5-3450 at 3.10 

Ghz), many of the Python code can be optimized by changing some cycles and the way some 

functions are implemented. All the feasible code should be “chytonized”, must be 

transformed into Cython code to be able to reach C performance level. It is not an easy task 

on an ARM environment, but it is possible. As for the boot up time of the application, the 

rendering engine should be swapped, to decrease it. Pygame should be changed to SDL2, by 

using a new toolchain available in Kivy 1.9.2-dev0 version. This would imply to fix some 

problem that might appear during this transition of toolchains. 

 

 



 

6.2   Future Work 
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6.2.3   Improve the machine learning models 

 

The learning models are probably the most important improvement of this list. In order to 

have reliable classifications it is imperative to have a good dataset with several samples. This 

step has a massive role in the outputs. Hopefully, this will be improved in the future. 

 

 

6.2.4   Implementing breathing exercises in the application 

 

As referred in Literature Review (2.2.2), it would be interesting to have some kind of 

exercise for COPD patients. Another button could be created in the home screen, with the 

label “Training”. This would get the user to a new screen prompting him to perform several 

rehabilitation exercises with the purpose of learning how to get the most air out of every 

breath. Maybe even with audio instructions, to be more clear for the patient, since this time, 

no signal would be recorded and processed. 
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